
HAL Id: tel-01791649
https://theses.hal.science/tel-01791649

Submitted on 14 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel reconfigurable hardware architectures for video
processing applications
Karim Mohamed Abedallah Ali

To cite this version:
Karim Mohamed Abedallah Ali. Parallel reconfigurable hardware architectures for video processing
applications. Signal and Image processing. Université de Valenciennes et du Hainaut-Cambresis, 2018.
English. �NNT : 2018VALE0005�. �tel-01791649�

https://theses.hal.science/tel-01791649
https://hal.archives-ouvertes.fr

Université de Valenciennes et du

Hainaut-Cambrésis
THÈSE

Soutenance prévue publiquement le le 8 février 2018 à l’Université de Valenciennes

pour obtenir le titre de

Doctorat en informatique

par

Karim Mohamed Abedallah Ali

Parallel Reconfigurable Hardware

Architectures for Video Processing

Applications

Composition du jury

Président : Smail NIAR Professeur LAMIH, Université de Valenciennes

Rapporteurs : Michael Hübner Professeur ESIT, Université de Bochum

Dirk Stroobandt Professeur CSL, Université de Gand

Examinateurs : Cécile Belleudy Professeur LEAT, Université Nice Sophia Antipolis

Maria Giovanna Sami Professeur Polytechnique de Milan

Nizar Fakhfakh Docteur NAVYA Technology

Directeurs : Jean-Luc Dekeyser Professeur LIFL, Université de Lille I

Rabie Ben Atitallah MdC, HdR LAMIH, Université de Valenciennes

UNIVERSITÉ DE VALENCIENNES ET DU HAINAUT-CAMBRÉSIS

ECOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR UNIVERSITÉ LILLE NORD-DE-FRANCE-072

Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines 8201

UVHC, Le Mont Houy, 59313 Valenciennes Cedex 9

Tél. : +33 (0)3 27 51 13 50 – Télécopie : +33 (0)3 27 51 19 40

Université de Valenciennes et du

Hainaut-Cambrésis
THÈSE

Soutenance prévue publiquement le le 8 février 2018 à l’Université de Valenciennes

pour obtenir le titre de

Doctorat en informatique

par

Karim Mohamed Abedallah Ali

Architectures Parallèles

Reconfigurables pour le Traitement

Vidéo Temps-Réel

Composition du jury

Président : Smail NIAR Professeur LAMIH, Université de Valenciennes

Rapporteurs : Michael Hübner Professeur ESIT, Université de Bochum

Dirk Stroobandt Professeur CSL, Université de Gand

Examinateurs : Cécile Belleudy Professeur LEAT, Université Nice Sophia Antipolis

Maria Giovanna Sami Professeur Polytechnique de Milan

Nizar Fakhfakh Docteur NAVYA Technology

Directeurs : Jean-Luc Dekeyser Professeur LIFL, Université de Lille I

Rabie Ben Atitallah MdC, HdR LAMIH, Université de Valenciennes

UNIVERSITÉ DE VALENCIENNES ET DU HAINAUT-CAMBRÉSIS

ECOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR UNIVERSITÉ LILLE NORD-DE-FRANCE-072

Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines 8201

UVHC, Le Mont Houy, 59313 Valenciennes Cedex 9

Tél. : +33 (0)3 27 51 13 50 – Télécopie : +33 (0)3 27 51 19 40

i

Acknowledgements
"So all praise is for Allah - Lord of the heavens and Lord of the earth, Lord of all worlds."

The Noble Quran [45 :36].

I would like to thank my supervisors Prof. Jean-Luc Dekeyser and Prof. Rabie Ben
Atitallah for giving me that opportunity to work with them. Special thanks to Rabie for his
support, patience and encouragement. He was step by step beside me by his advice and help.

I would like to thank my thesis reviewers Prof. Michael Hübner and Prof. Dirk Stroobandt
for their time to review this manuscript and for their feedback. I would like to thank Prof.
Smail Niar for presiding over my thesis defence jury as well as the other members : Prof.
Maria Giovanna Sami and Prof. Cécile Belleudy. I would like also to thank our industrial
partner NAVYA Technology represented by Dr. Nizar Fakhfakh.

I would like to thank my colleagues, friends and brothers in LAMIH, residence and
Valenciennes for their help and love. Thanks to my Indonesian family for welcoming my
guests on the defence day. Thanks to my friend Yunfei for controlling the live stream.
Thanks to my dear brothers and sisters who prepared a magnificent celebration for me in
the residence. Thanks to Safouene, Riyadh, Imad, Marwan, Moustafa, Abdoulaziz, Mohktar,
Ayman, Zeineb, Sara, Afaf and Soufia.

I would like to thank my big family, my parents, my sister for their prayers. Thanks to
my brother Mostafa for his help to edit my presentation slides in an attractive way. Finally,
I would like to thank everyone who shared with me that success.

Karim Ali
February 2018

iii

Abstract
Embedded video applications are now involved in sophisticated transportation systems

like autonomous vehicles. Many challenges faced the designers to build those applications,
among them : complex algorithms should be developed, verified and tested under restricted
time-to-market constraints, the necessity for design automation tools to increase the design
productivity, high computing rates are required to exploit the inherent parallelism to satisfy
the real-time constraints, reducing the consumed power to extend the operating duration
before recharging the vehicle, etc. In this thesis work, we used FPGA technologies to tackle
some of these challenges to design parallel reconfigurable hardware architectures for embedded
video streaming applications. First, we implemented a flexible parallel architecture with two
main contributions : (1) We proposed a generic model for pixel distribution/collection to tackle
the problem of the huge data transferring through the system. The required model parameters
were defined then the architecture generation was automated to minimize the development
time. (2) We applied frequency scaling as a technique for reducing power consumption. We
derived the required equations for calculating the maximum level of parallelism as well as the
ones used for calculating the depth of the inserted FIFOs for clock domain crossing.

As the number of logic cells on a single FPGA chip increases, moving to higher
abstraction design levels becomes inevitable to shorten the time-to-market constraint and
to increase the design productivity. During the design phase, it is common to have a space of
design alternatives that are different from each other regarding hardware utilization, power
consumption and performance. We developed ViPar tool with two main contributions to tackle
this problem : (1) An empirical model was introduced to estimate the power consumption
based on the hardware utilization (Slice and BRAM) and the operating frequency. In addition
to that, we derived the equations for estimating the hardware resources and the execution time
for each point during the design space exploration. (2) By defining the main characteristics
of the parallel architecture like parallelism level, the number of input/output ports, the pixel
distribution pattern, etc. ViPar tool can automatically generate the parallel architecture for
the selected designs for implementation. In the context of an industrial collaboration, we used
high-level synthesis tools to implement a parallel hardware architecture for Multi-window
Sum of Absolute Difference stereo matching algorithm. In this implementation, we presented
a set of guiding steps to modify the high-level description code to fit efficiently for hardware
implementation as well as we explored the design space for different alternatives in terms of
hardware resources, performance, frequency and power consumption. During the thesis work,
our designs were implemented and tested experimentally on Xilinx Zynq ZC706 (XC7Z045-
FFG900) evaluation board.

Keywords Video Streaming applications - Parallel Reconfigurable Architectures - High-
level Synthesis - Design Space Exploration - FPGA.

v

Résumé
Les applications vidéo embarquées sont de plus en plus intégrées dans des systèmes

de transport intelligents tels que les véhicules autonomes. De nombreux défis sont
rencontrés par les concepteurs de ces applications, parmi lesquels : le développement des
algorithmes complexes, la vérification et le test des différentes contraintes fonctionnelles et
non-fonctionnelles, la nécessité d’automatiser le processus de conception pour augmenter
la productivité, la conception d’une architecture matérielle adéquate pour exploiter le
parallélisme inhérent et pour satisfaire la contrainte temps-réel, réduire la puissance
consommée pour prolonger la durée de fonctionnement avant de recharger le véhicule, etc.
Dans ce travail de thèse, nous avons utilisé les technologies FPGAs pour relever certains de ces
défis et proposer des architectures matérielles reconfigurables dédiées pour des applications
embarquées de traitement vidéo temps-réel. Premièrement, nous avons implémenté une
architecture parallèle flexible avec deux contributions principales : (1) Nous avons proposé
un modèle générique de distribution/collecte de pixels pour résoudre le problème de transfert
de données à haut débit à travers le système. Les paramètres du modèle requis sont tout
d’abord définis puis la génération de l’architecture a été automatisée pour minimiser le temps
de développement. (2) Nous avons appliqué une technique d’ajustement de la fréquence pour
réduire la consommation d’énergie. Nous avons dérivé les équations nécessaires pour calculer
le niveau maximum de parallélisme ainsi que les équations utilisées pour calculer la taille des
FIFO pour le passage d’un domaine de l’horloge à un autre.

Au fur et à mesure que le nombre de cellules logiques sur une seule puce FPGA
augmente, passer à des niveaux d’abstraction plus élevés devient inévitable pour réduire la
contrainte de « time-to-market » et augmenter la productivité des concepteurs. Pendant
la phase de conception, l’espace de solutions architecturales présente un grand nombre
d’alternatives avec des performances différentes en termes de temps d’exécution, ressources
matérielles, consommation d’énergie, etc. Face à ce défi, nous avons développé l’outil ViPar
avec deux contributions principales : (1) Un modèle empirique a été introduit pour estimer la
consommation d’énergie basé sur l’utilisation du matériel (Slice et BRAM) et la fréquence de
fonctionnement ; en plus de cela, nous avons dérivé les équations pour estimer les ressources
matérielles et le temps d’exécution pour chaque alternative au cours de l’exploration de
l’espace de conception. (2) En définissant les principales caractéristiques de l’architecture
parallèle comme le niveau de parallélisme, le nombre de ports d’entrée/sortie, le modèle de
distribution des pixels, ..., l’outil ViPar génère automatiquement l’architecture matérielle
pour les solutions les plus pertinentes. Dans le cadre d’une collaboration industrielle avec
NAVYA, nous avons utilisé l’outil ViPar pour implémenter une solution matérielle parallèle
pour l’algorithme de stéréo matching « Multi-window Sum of Absolute Difference ». Dans
cette implémentation, nous avons présenté un ensemble d’étapes pour modifier le code de
description de haut niveau afin de l’adapter efficacement à l’implémentation matérielle. Nous

vi

avons également exploré l’espace de conception pour différentes alternatives en termes de
performance, ressources matérielles, fréquence, et consommation d’énergie. Au cours de notre
travail, les architectures matérielles ont été implémentées et testées expérimentalement sur la
plateforme d’évaluation Xilinx Zynq ZC706.

Mots-clés : Applications vidéo temps-réel - Architectures reconfigurables parallèles -
Synthèse de haut niveau - Exploration de l’espace de conception - FPGA.

vii

List of Publications
1. K. M. A. Ali, R. Ben Atitallah, S. Hanafi and J. L. Dekeyser, "A Generic Pixel

Distribution Architecture for Parallel Video Processing," 2014 International Conference
on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, 2014, pp. 1-8. doi :
10.1109/ReConFig.2014.7032547

2. K. M. A. Ali, R. B. Atitallah, N. Fakhfakh and J. L. Dekeyser, "Using Hardware
Parallelism for Reducing Power Consumption in Video Streaming Applications," 2015
10th International Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), Bremen, 2015, pp. 1-7. doi : 10.1109/ReCoSoC.2015.7238104

3. K. M. A. Ali, R. B. Atitallah, N. Fakhfakh and J. L. Dekeyser, "Exploring HLS
Optimizations for Efficient Stereo Matching Hardware Implementation," 2017 13th
International Symposium on Applied Reconfigurable Computing (ARC), Delft, 2017,
pp. 168–176. 10.1007/978-3-319-56258-2_15

4. R. B. Atitallah and K. M. A. Ali, "FPGA-Centric High Performance Embedded
Computing : Challenges and Trends," 2017 Euromicro Conference on Digital System
Design (DSD), Vienna, 2017, pp. 390-395. doi : 10.1109/DSD.2017.88

5. Y. B. Jmaa, K. M. A. Ali, D. Duvivier, M. B. Jemaa and R. B. Atitallah, "An
Efficient Hardware Implementation of TimSort and MergeSort Algorithms Using High
Level Synthesis," 2017 International Conference on High Performance Computing &
Simulation (HPCS), Genoa, 2017, pp. 580-587. doi : 10.1109/HPCS.2017.92

6. M. Bouain,K. M. A. Ali, D. Berdjag, N. Fakhfakh and R. B. Atitallah, "An Embedded
Multi-Sensor Data Fusion Design for Vehicle Perception Tasks," 2017 10th International
Conference on Computer Science and Information Technology, Florence, Italy, 2017.

viii

Table of contents

Table of contents ix

1 Introduction 1
1.1 The context of the work . 2
1.2 Trends and Challenges . 5

1.2.1 Industrial Challenges . 5
1.2.2 Scientific Challenges . 5

1.3 Contributions . 6
1.4 Outline . 7

2 Background and Related Works 9
2.1 Introduction . 10
2.2 Reconfigurable Architectures for Video Processing Applications 10
2.3 High-Level Synthesis Design Methodology . 17

2.3.1 HLS Design Flow . 17
2.3.2 HLS Research Directions . 19

2.3.2.1 Contributions for efficient hardware implementations
(Quality-of-Results) . 19

2.3.2.2 Contributions for demonstrating HLS-based applications . . 23
2.3.2.3 Surveys . 24

2.4 HLS Design Space Exploration . 26
2.5 Design Productivity . 28
2.6 Positioning . 29
2.7 Conclusion . 30

3 Flexible Parallel Architecture for Video Streaming Applications 31
3.1 Introduction . 32
3.2 Cost-effective Solution for Autonomous Vehicles 32

3.2.1 Experimental Setup . 33
3.3 Generic Pixel Distribution Model . 34

x TABLE OF CONTENTS

3.3.1 Model Parameters . 35
3.3.2 Pixel Distributor Architecture . 35
3.3.3 Controller Finite State Machine . 37
3.3.4 Parallel Processing . 38
3.3.5 Pixel Collector . 39
3.3.6 Experimental Results . 41

3.3.6.1 Code Generation . 42
3.3.6.2 Pixel Distributor Synthesis Results 42
3.3.6.3 Video Downscaler (16 :1) . 43
3.3.6.4 Convolution Filter . 45

3.4 Using Hardware Parallelism for Reducing Power Consumption 46
3.4.1 Level of Parallelism and FIFO Depth Calculations 48

3.4.1.1 Level of Parallelism . 48
3.4.1.2 FIFO Depth . 49

3.4.2 Experimental Results . 50
3.4.2.1 Design Points . 51
3.4.2.2 Synthesis Results . 52
3.4.2.3 Power Analysis . 53
3.4.2.4 Performance . 56

3.5 Conclusion . 56

4 Efficient Hardware Implementation for Multi-Window SAD Algorithm 59
4.1 Introduction . 60
4.2 Stereo Matching Algorithm . 60
4.3 High-level Synthesis Optimizations . 63

4.3.1 Optimizations Targeting Hardware Implementation 64
4.3.1.1 Dividing an image into strips 64
4.3.1.2 Using arbitrary precision data types 66
4.3.1.3 Choosing the I/O interface protocol 69
4.3.1.4 Grouping pixels at the I/O ports 70

4.3.2 Optimizations for Exploiting Parallelism 70
4.3.2.1 Task-level parallelism . 70
4.3.2.2 Pipeline-level parallelism . 72
4.3.2.3 Data-level parallelism . 75

4.3.3 Experimental Results . 76
4.4 Conclusion . 79

TABLE OF CONTENTS xi

5 ViPar : A Tool for Design Space Exploration 81
5.1 Introduction . 82
5.2 ViPar Tool . 82

5.2.1 ViPar Tool Design Flow . 85
5.3 Area Estimation . 85

5.3.1 Estimated utilization for LUT, FF and BRAM 88
5.3.2 Estimated utilization for Slice . 89

5.4 Power Estimation Model . 90
5.4.1 Power Measurement . 91
5.4.2 Power Regression Model . 92

5.5 Performance Estimation . 98
5.6 Automatic High-level Code Generation . 99

5.6.1 Design Flow . 99
5.6.2 Code Generation . 101

5.7 Experimental Results . 103
5.7.1 Area, Power and Performance Estimations 103
5.7.2 High-level Code Generation . 108
5.7.3 Design Space Exploration . 110

5.8 Conclusion . 111

6 Conclusion and Perspectives 113
6.1 Conclusions . 114
6.2 Perspectives . 116

References 119

xii TABLE OF CONTENTS

C h a p t e r 1

Introduction

1.1 The context of the work . 2
1.2 Trends and Challenges . 5

1.2.1 Industrial Challenges . 5
1.2.2 Scientific Challenges . 5

1.3 Contributions . 6
1.4 Outline . 7

2 Introduction

1.1 The context of the work

This thesis has a collaboration contract with NAVYA Technology [5]. NAVYA is a French
start-up company specialized in manufacturing autonomous electric vehicles for first and last
mile transportation. First and last mile transportation problem appears in the places where
public transport stations or parking facilities are far away from our final destination while
it is still too far to go on foot. In such cases, autonomous vehicles come as a solution to
increase accessibility and mobility in large public places like hospitals, universities, airports
or large industrial sites where it delivers frequent transportation services between destinations.
Usually, an autonomous vehicle is equipped by image sensors to detect, classify and track the
observed obstacles in the surrounding area of the vehicle ; in addition to that, other cameras
could be installed inside the vehicle for passengers security. This kind of video processing
applications can be processed by using industrial PCs. However, with the growing demand
to increase the image resolution for better precision, increasing the frame rate, installing
more image sensors or applying more complex video algorithms ; industrial PCs reached their
processing limits to satisfy that massive data processing request under real-time constraints.
Adding another PC could be a solution for increasing the processing capability of the system,
but unfortunately those PCs have high power consumption rates, and consequently, they
are not advised for battery-based systems like autonomous electric vehicles. For that reason,
NAVYA asked to find an efficient solution that fulfils a set of specifications including high
processing rate, low power consumption, short developing cycle, lower production costs, etc.

Today, CMOS technology scales down to increase the available number of transistors on a
single chip and thus increasing the available computation power [93]. Today, the availability
of powerful computing hardware at low cost motivates the industry and academia towards
smart cameras and intelligent sensor solutions. In smart camera systems, the images are
captured and processed locally at the image sensor node then only the result or regions of
interest are communicated to the central server [19] [80]. Increasing the computational power
of the sensor node permits the evolution of intelligent sensors where complex algorithms are
executed locally at the sensor node then advanced actions are taken upon that. Smart camera
solutions have different advantages : (i) Reducing data transfer loads between the sensor
nodes and the server. (ii) Increasing the computing power of the smart camera encourages
to increase the resolution of the captured images. (iii) Adding more camera nodes is not
limited by the processing capabilities of the centralized server ; thus, the system is more
flexible and expandable. From the examples for smart camera applications, we can mention
video surveillance in public areas [116], crowd behaviour analysis for detecting abnormal
activities [26] [102], vehicle tracking [46], car parking occupancy detection [11], intelligent
transportation systems [117] [29], assisted living for elder people [31] [32], monitoring systems
for kids safety, analyzing customers behaviour in markets, etc.

To deliver the required computing power, there are many technologies in the market that

1.1 The context of the work 3

can be used as a solution like (ASIC, FPGA, DSP, GPU,). Field-Programmable Gate
Array (FPGA) technology is a competitive solution for building smart camera applications if
compared to the other solutions for different reasons :

• One of the main features of FPGA devices is that they are reprogrammable platforms
where different hardware architectures could be implemented using the same FPGA
platform. Therefore, the hardware architecture can be redesigned and programmed
without changing the chip itself to adapt to the rapid changes in the technologies for
image sensors and video processing algorithms.

• By exploiting the inherent parallelism in video processing applications, FPGA
technology enables us to implement massively parallel architectures due to the huge
number of programmable logic available on a single chip. As long as there are
enough hardware resources available, the implemented parallel architectures over FPGA
platforms are scalable by adding more processing elements.

• Application Specific Integrated Circuits (ASIC) are known by their efficient performance
at very low power consumption level, however, their production cost is very expensive
with relatively long design cycle to develop the customized integrated circuit. For
processor-based solutions, they are characterized by their sequential processing on fixed
architectures accessible to everyone with relatively high power consumption rates. While
FPGAs represent an in-between solution where they are characterized by their high
performance per watt ; thus, FPGAs are good candidate for embedded video processing
applications where the constraint of low power consumption should be respected. In
addition to that, FPGA is considered as the prototyping platform for ASIC circuits ;
so FPGA designs can be ported to ASIC circuits when very low-power consumption
circuits are required at mass production.

• Real-time video processing applications require high computing power to run complex
video processing algorithms. In the past, this kind of applications was built using
general-purpose processor coupled with video accelerators on the same PCB board.
In today’s market, SoC platforms are introduced by FPGA vendors (Zynq platform
from Xilinx and Stratix 10 from Intel FPGA) where ARM processor is coupled with
the programmable logic on the same single chip. This combination is more attractive
for embedded video applications because neither the entire application is accelerated
by using hardware nor entirely processed by a traditional processor. However, only the
intensive calculation tasks are selected for hardware acceleration while the rest of the
application is kept running on the ARM processors. In addition to that, the presence of
general purpose processor on the same SoC allows the usage of Linux operating systems.

• FPGAs are flexible devices since it is possible to apply upgrades remotely over Ethernet
connection. In this situation, a new reconfigurable bitstream can be sent to the
embedded processor to reprogram the FPGA chip when the sensor settings are changed

4 Introduction

Figure 1.1 – FPGA Alignment with Industrial Life Cycles [23]

or when a modified hardware architecture for the applied video processing algorithm is
recently developed.

• FPGA technology enables us to integrate several functionalities by implementing them
on the same chip. Among the benefits of integration, we can mention : (i) It reduces
the board size, chip count and assembly complexity. (ii) It decreases the dynamic power
consumption in the system by reducing the I/O communication between the functional
blocks. (iii) It increases the system reliability by placing fewer components on the PCB
board.

• The life cycle of many microcontrollers and DSP devices range between 5-7 years
because their vendors tend to obsolete mature device much sooner while the life cycle
of FPGA devices range between 15-20 years as depicted in Fig. 1.1. The long life
cycle for FPGA devices helps the customers to avoid the high cost of obsolescence
management [105] [94] [23].

• Dynamic Partial Reconfiguration (DPR) is another feature of FPGA platforms where
some parts of the hardware can be reconfigured during runtime while the rest of the
design is kept unchanged. DPR can be exploited in video processing applications where
the same system can support different configurations. In that case, different FPGA
reconfigurable bitstreams with varied options for frame rate, resolution and video
compression modes can be stored in the system then the best configuration can be
selected according to the current system requirements [8].

In addition to the previously mentioned features, FPGA-based solutions are very
promising solutions for the domain of autonomous vehicles because FPGA technologies could
offer high processing rates at low power consumption rates. In this thesis, we presented

1.2 Trends and Challenges 5

design solutions for some challenges arose while designing parallel reconfigurable hardware
architectures for video processing applications as well as we realized those solutions over the
latest FPGA technologies.

1.2 Trends and Challenges

1.2.1 Industrial Challenges

• Time-to-Market. It is defined as the time taken by a product since being conceived
until being available in the market for sale. As a result of the constant competition
between companies, time-to-market is considered as a crucial constraint in the product
design cycle. It can also be defined as the flexibility to make changes in the design during
the development cycle as a response to the customer feedback without additional time
delays in the production schedule. In autonomous vehicle industry, different algorithms
are developed for detecting traffic lights, pedestrian, obstacles, ..., in the surrounding
environment of the vehicle. Knowing how to develop, verify and test those algorithms
while respecting time-to-market constraint is so crucial.

• Production Cost. Most of the time, the price of the product controls the choice of the
customer to buy it or not. Consequently, we are not aiming only to design new products,
but also we are aiming to do that at acceptable production costs to have a margin for
profit. We can divide costs into : (i) Non-recurring engineering costs which refer to the
one-time costs for designing, developing and validating a new product. (ii) Production
costs which are paid per unit product including materials, labour, etc. Automating the
design process as well as targeting architectures that could be adapted for algorithmic
changes are among the reasons to maintain the production costs in the autonomous
vehicle industry.

• Low power consumption solutions. Autonomous vehicles are 100% electric-based
vehicles. The used electricity is usually generated from renewable resources (solar or
wind) to increase the economic and environmental value of the electric vehicle industry.
Consequently, the designers are devoting their efforts to reduce the power consumed by
the vehicle to extend the number of the operational hours before the batteries have to
be recharged.

1.2.2 Scientific Challenges

• Flexible parallel reconfigurable architecture. Video processing are intensive signal
applications where a huge amount of data is transferred from/to the computing nodes.
Today the increasing demand for more frame rate or for increasing the image resolution
are additional challenges for video processing applications especially when real-time
constraints are considered. This challenge is augmented in autonomous vehicle industry

6 Introduction

where several image sensors are installed in the vehicle for obstacle detection, tracking
and classification. The combination of reconfigurability and parallelism is a key solution
for the above-described problem. In this challenge, we search for answers to the following
questions :
– How to calculate the parallelism level in order to exploit the inherent parallelism in

video processing applications ?
– Processing latency due to inefficient data distribution could limit the performance and
the safety conditions of the autonomous vehicle. So, how can we manage input/output
pixel distribution to guarantee high processing rates ?

– How can the operating frequency be scaled in order to reduce the power consumption
without affecting the system processing rate ?

• Tools for design automation. Today, a tremendous number of logic cells exist on a
single FPGA chip. Using conventional ways to design, simulate, implement and validate
such large FPGA designs is a time-consuming process. For that reason, designers always
aim to move the design efforts to the higher abstraction levels to increase the design
productivity and to shorten the time-to-market conditions. In FPGA design, there
is no unique solution for the design problem, but it is common to have a space of
design solutions that are different from each other in terms of hardware utilization,
performance, operating frequency and power consumption. Indeed, it is not practical to
explore manually a design space consisted of hundreds or thousands of design points.
Automating the exploration process is necessary to search rapidly for the solution which
better fits with the given system constraints.

1.3 Contributions

To tackle the first challenge for flexible parallel architecture, we had two main
contributions :

1. Generic pixel distribution/collection model. To address the challenge of
Input/Output data distribution in video processing applications, we proposed a generic
hardware pixel distribution/collection model for parallel video streaming applications.
We defined the required model parameters to have a flexible pixel distribution in both
vertical and horizontal directions. After defining the model parameters, the hardware
architecture for the pixel distributor/collector is automatically generated to decrease
the development efforts.

2. Hardware parallelism for reducing power consumption. We implemented a
flexible hardware parallel architecture in conjunction with frequency scaling as a
technique for reducing power consumption in video streaming applications. We derived
the required equations to calculate the maximum level of parallelism to be implemented.

1.4 Outline 7

Also, we derived the equations to determine the maximum depth of the used FIFOs for
clock domain crossing. The variation in the level of parallelism formed a set of design
alternatives which are different concerning hardware utilization and power consumption.
Accordingly, the designer is free to select the target design according to what power
reduction is required at how much hardware resources it costs.

To tackle the second challenge for design automation, we developed ViPar tool with two
main contributions :

3. Design space exploration. By varying the design parameters like level of parallelism,
operating frequency, etc, a space of different design points is constructed. First, we
derived the equations to estimate both resource utilization and performance for each
design in the design space. Second, we introduced an empirical model to estimate the
power consumption based on Slice, BRAM, and the operating frequency for each design.
Finally, the design space was explored for the candidate designs.

4. Parallel architecture automatic generation. We used ViPar tool to generate
the parallel architecture corresponding to the best candidate points for experimental
validation on FPGA. The main characteristics of the parallel architecture like the level
of parallelism, the pixel distribution pattern, the number of inputs and output ports,
etc, were defined in a specification file ; then, this file is considered as an input for ViPar
tool for parallel architecture generation.

Experimental validation. NAVYA Technology proposed Multi-window Sum of
Absolute Difference stereo matching algorithm as a video processing application for
experimental validation. First, we used high-level synthesis tool to implement the hardware
architecture for the stereo matching algorithm. Second, we showed a set of guiding steps in
order to obtain an efficient hardware implementation by exploiting the inherent parallelism
in that application. We used ViPar to explore the different design alternatives for this
application, and the selected designs were validated experimentally over Zynq ZC706
(XC7Z045-FFG900) FPGA board.

1.4 Outline

The rest of this document is organized as follows : Chapter 2 presents the related works.
Chapter 3 presents our generic model for pixel distribution/collection and how to reduce
the power consumption by using hardware parallelism. Chapter 4 details the hardware
implementation for Multi-window Sum of Absolute Difference stereo matching algorithm.
The details of ViPar tool and how to estimate the performance parameters for each design
point for design space exploration are described in Chapter 5. Finally, conclusions with some
proposed future works are presented in Chapter 6.

C h a p t e r 2

Background and Related Works

2.1 Introduction . 10
2.2 Reconfigurable Architectures for Video Processing Applications 10
2.3 High-Level Synthesis Design Methodology 17

2.3.1 HLS Design Flow . 17
2.3.2 HLS Research Directions . 19

2.4 HLS Design Space Exploration . 26
2.5 Design Productivity . 28
2.6 Positioning . 29
2.7 Conclusion . 30

10 Background and Related Works

2.1 Introduction

In this chapter, we will review FPGA-based architectures for video processing applications
like soft vector processor, soft VLIW processors, soft GPGPU processors, etc. Then, we
will introduce high-level synthesis tools for accelerating the design process. In this point,
we will discuss the research efforts done to enhance the quality of the obtained HLS-based
designs or to demonstrate the maturity of HLS tools by building efficient solutions for
different applications. At high-level design step, the design parameters can be combined in
different ways to get different hardware architectures. Thus, we will review the research works
related to the design space exploration while using HLS tools and their impact on the design
productivity.

2.2 Reconfigurable Architectures for Video Processing
Applications

In the literature, hundreds of research works present the implementation of various
video processing applications over different hardware architectures range from CPU, GPU,
FPGA, DSP and ASIC. One recent study [27] compared between three different hardware
platforms : FPGA (Altera Stratix IV E530), CPU (Intel Core i7-960 Quad-Core) and GPU
(NVIDIA GeForce GTX 560) to implement three different video processing applications :
Sum of Absolute Difference (SAD) stereo matching, 2D convolution and correntropy filter.
The implementations were evaluated for images of size 480p, 720p and 1080p to process a
kernel of a square size that ranged from 2x2 to 100x100. Two different CPU implementations
were presented : One by using OpenCL library on the multi-core CPUs, while the other
was a sequential C++ implementation which was considered as a baseline for speed-
up comparison. For 2D convolution filter, it was implemented in time-domain (TD) and
frequency-domain (FD) for both CPU and GPU platforms. The performance of the SAD
algorithm was depicted in Fig. 2.1(a) ; where the results for the GPU implementation was
always better than the quad-core CPU. While for FPGA, the computations were independent
of the kernel size ; thus, the performance was constant up to the maximum parallel kernel
size (64x64). The performance was then decreased for large kernel sizes due to kernel
partitioning overhead and final output aggregation. For window size less than 10x10, CPU
was faster than FPGA. Also, GPU delivered performance better than FPGA for windows
less than 35x35 ; whereas, FPGA outperformed for large kernel sizes. For 2D convolution
filter, Fig. 2.1(b) showed that GPU implementations (time-domain and frequency-domain)
outperformed FPGA implementation for all kernel sizes. Another experiment was done
by implementing the applications over heterogeneous single-chip platforms (CPU/GPU or
CPU/FPGA) to compare their performance to the previous PCIe accelerators. Figure 2.1(c)
showed that CPU/FPGA implementation had an average speedup of 1.7x over the PCIe

2.2 Reconfigurable Architectures for Video Processing Applications 11

version ; while CPU/GPU experienced the greatest speedup at low kernel sizes then it
decreased quickly due to the large data transfer for large kernels. Figure 2.1(d) evaluated
the energy consumption to process one frame for SAD and 2D convolution for 720p image
size over different platforms. For SAD application, GPU was more energy efficient than FPGA
for small kernels up to 25x25 while vice versa for large ones. For 2D convolution, GPU was
almost the most efficient for different kernel sizes. Similar comparison studies [47] [49] were
performed for different applications implemented over CPU, GPU and FPGA to reach for
similar results. We can summarize those results that no platform can outperform for all video
processing applications. The tradeoff between the performance metrics in terms of design
efforts, execution time, power consumption, solution cost, etc, play an important role to
prefer one solution rather than another.

For that reason, heterogeneous platforms (CPU coupled with FPGA or CPU coupled
with GPU) emerged as a preferred platform solution for video processing applications to
map each task of the application into the appropriate processing engine which gives the
best-expected performance. In this work, large kernel sizes are processed under real-time
constraints. Thus, reconfigurable hardware is considered the most appropriate technology
that fits to our requirements (autonomous vehicles). In this section, we will review some of
the proposed reconfigurable architectures for building image/video processing applications.
Mainly, these architectures vary in terms of flexibility and performance. From the hardware
point of view, we mean by flexibility is the ability to customize the reconfigurable architecture
to offer a large space of architectural configurations suitable for building a vast variety of
image/video applications. While from the software point of view, flexibility is the ability to
code different image/video applications without the need to resynthesis the reconfigurable
architecture. As far as we know that designing is the answer for the tradeoff question where
flexibility has an inverse impact on the expected application performance such that as the
architecture flexibility increases, the performance decreases and vice versa.

Heterogeneous Reconfigurable Platforms. Figure 2.2 shows the architecture of
the latest heterogeneous MPSoC from Xilinx [1]. Ultrascale+ Zynq MPSoC EV platform
is composed of different processing engines like quad-core ARM Cortex A53-based APU,
dual-core ARM Cortex R5-based for real-time processing, ARM Mali-400 MP2 GPU with
a geometry processor and two pixel processors, reconfigurable hardware resources range
between 177-461 K for FF, 88-230 K for LUT, 18-38 Mb for BRAM and 728-1728 for
DSP slices ; in addition to high-speed peripherals and advanced I/O capabilities for efficient
communication. This powerful platform is a good candidate for building high-performance
real-time video/image processing applications for automotive industry. Before the appearance
of a single chip heterogeneous platform, heterogeneity was achieved either by integrating
several processing engines over the same PCB board or by dedicating a part of the FPGA
fabric to build a soft-core processor like Xilinx MicroBlaze or Altera Nios II.

12 Background and Related Works

Figure 2.1 – (a)Performance of the SAD implementations in frames per second for different
kernel and image sizes, (b)Performance of the 2D convolution implementations measured
in frames per second for different kernel and image sizes, (c) Speedup of single-chip
implementations over their PCIe equivalents for SAD and 2D convolution at different kernel
sizes tested on 720p image, (d)System energy consumed to process one frame in SAD and 2D
convolution at different kernel sizes tested on 720p image [27].

2.2 Reconfigurable Architectures for Video Processing Applications 13

Figure 2.2 – Zynq UltraScale+ MPSoC EV block diagram

Soft Vector Processors. VectorBlox MXP [88] is an FPGA-based soft vector processor
for performing high parallel data tasks. The architecture is parameterized by allowing the
user specifying the number of parallel ALU ranging from 1 to 128 parallel ALU. Programs are
written in C/C++ either by using MXP specific library routines or by using MXP intrinsic
functions placed inline with the regular C/C++ code. For video processing applications,
MXP offers two modules : FrameWriter to write image frames to the external memory or
StreamWriter to write few scanlines to the MXP scratchpad. VectorBlox MXP processor can
boost the performance by defining up to four custom instructions to save the execution of tens
or hundreds of ordinary vector instructions. In the experimental results, authors implemented
H.264 deblocking filter by defining custom instructions. In addition to that, they showed the
implementation of several video applications like median filter, motion estimation and saliency
computation [88] [40].

Authors in [114] developed VESPA as a flexible portable soft vector processor architecture
with up to 32 vector lanes. VESPA is portable by being fully implemented in synthesizable
Verilog without any FPGA-device dependencies. While it is flexible by parameterizing the
set of architectural options like number of vector lanes, number of ALU per bank, number of
register file banks, maximum vector length, Icache depth, Icache line size, etc. Theoretically,

14 Background and Related Works

application speedup will increase linearly as the number of vector lanes grows, but this is
limited due to several factors : (i) The candidate portion for parallelism differs from one
application to another. (ii) Adding more vector lanes decreases the overall achieved operating
frequency. For example for a vector processor with 32-lane, the authors showed that the clock
frequency dropped significantly causing the expected speedup to reduce from 15x to 1lx. In
the experiments, the authors used industry-standard embedded microprocessor applications
(EEMBC benchmark) like FIR filter, convolution encoder and RGB filter for experimental
validation.

Soft VLIW Processors. Authors in [20] proposed a customizable VLIW processor
with a variable instruction set for exploiting parallelism. OpenIMPACT tool was used to
convert C-coded algorithms into independent assembler intermediate representation ; then,
it was analyzed and reorganized in VLIW instructions. For experimental validation, three
basic image applications were tested on Virtex-6 FPGA board (Sobel filter, convolution
filter and fast discrete cosine transform). The authors then extended their experiments by
realizing contactless palmprint extraction algorithm for biometric applications. Their VLIW
implementation over FPGA showed an average speedup of 2.7x when compared to a previously
DSP-based implementation for the same application.

Soft GPGPU Processors. GPGPU is an array of streaming multiprocessor (SM) where
each SM could consist of multiple scalar processor cores (SP). GPGPU has some similarities
with vector processor where both target SIMD computation model ; however, GPGPU could
support several threads within the same SM while vector processors support only one thread
per processor. Another difference is that the memory system in GPGPU is designed to serve
numerous running threads with low thread scheduling overhead while vector processors rely
on deep pipelining to overcome memory latency.

FlexGrip [13] is a soft GPGPU processor where compiled CUDA binaries are directly
executed on the FPGA-based GPGPU without hardware resynthesis. FlexGrip follows Single-
Instruction Multiple-Thread (SIMT) model where one instruction is fetched and executed
simultaneously by multiple SP cores. It supports the implementation of different number of
SP cores per SM processor or different number of SM processor per GPGPU according to
the available hardware resources. In the experiments, FlexGrip was implemented for a single
SM and 8-SM over Virtex-6 VLX240T board to evaluate five different highly parallel CUDA
applications. The results showed a speedup up to 30x for FlexGrip designs when compared
to MicroBlaze implementations.

FGPU [10] is another soft GPGPU processor with single level-cache optimized for FPGA.
It was developed in VHDL without using FPGA-dependent IP cores to guarantee architecture
portability. The authors developed a compiler in order to support applications written
in OpenCL [48]. FGPU has an extended MIPS assembly instruction set with additional
instructions to support OpenCL execution model. The architecture of FGPU supports several

2.2 Reconfigurable Architectures for Video Processing Applications 15

compute units (CU) where each CU has 8 processing elements sharing the same program
counter. FGPU is scalable by paying attention to the ways of implementing the register file,
how DSP blocks are used and how the operating frequency is preserved as the architecture
scales up. Flexibility is also considered by offering a set of different parameters that can
be adjusted to deliver a large space of customizable architectures. In the experimental
results, the authors compared 11 applications including three image filters implemented on
FGPU to other platforms including : single MicroBlaze soft processor, Cortex-A9 ARM with
Neon vector coprocessor and the equivalent HLS implementation. If compared to MicroBlaze
implementation, FGPU showed a speedup of 10-47x with 6-22x bigger area but at 3-7x more
energy efficient. While both FGPU and HLS-based designs performed so close to each other
with less area and power consumption for the HLS-based designs.

Multi-core Reconfigurable Architectures. Authors in [91] developed IPPRO soft
scalar RISC processor for image processing applications. Each IPPRO core uses one DSP
slice, one BRAM block and 330 slice register. IPPRO cores could be arranged in a multi-
core heterogeneous architecture to build SIMD or MIMD computation models. The processor
instruction set includes the basic arithmetic and logical operations with different addressing
modes. Image processing applications are written in dataflow language named RVC-CAL [66]
then the code is converted to IPPRO assembly code. In the experimental results, two different
image processing applications were implemented over SIMD-IPPRO architecture : traffic sign
recognition [91] and histogram of oriented gradients algorithm [12].

In [115], many-core vision processor architecture was proposed for smart camera
applications. The architecture consisted of processing tiles arranged in a grid and connected to
each other for pixel exchange while processing neighbourhood image algorithms. Algorithms
are coded using a programming model based on tiles where each function is mapped to
a single tile. The architecture has several configuration options like for PE type (VLIW4 or
RISC), communication topology (4-connected or 8-connected), communication protocol (NoC
or P2P), pixel memory (shared or private), etc. Canny edge detection was implemented over
Kintex-7 FPGA board by utilizing the proposed many-core vision processor architecture.
The application processing chain executed several image algorithms for preprocessing,
segmentation and feature extraction. The experimental results showed a fixed frame processing
rate of 495 fps for any image size.

Multi-FPGA Architectures. Authors in [103] proposed a modular multi-FPGA
platform with four detachable Kintex-7 FPGA modules. I/O interfacing was offered
through one FMC interface per module while the FPGA modules communicated with each
other through PCIe Gen 3 switch. In the experimental results, the authors showed the
implementation of an encrypted H.264 encoder with a peak throughput of 18 frame/sec for
HD 1080p image size.

Coarse-Grained Reconfigurable Array (CGRA) Architectures. Pixie [51] is a

16 Background and Related Works

heterogeneous Virtual Coarse-Grained Reconfigurable Array implemented on FPGA for image
processing applications. VCGRAs [42] are architectures consisting of a large number of
processing elements connected to each other by virtual switch blocks for communication.
The processing element (PE) can range from a single mathematical function up to a fully
RISC processor while the communication network can range from configurable connections
between the adjacent PEs up to a fully Network-on-Chip. A tool was developed to create the
VCGRA architecture and the interconnection between the PEs. Applications are represented
by dataflow graphs where the graph nodes represent PEs while edges show the dependencies.
The author demonstrated in the experimental results the implementation of Sobel edge
detection on VCGRA grid consisted of 45 PEs and 4 virtual channels.

Dedicated Reconfigurable Architectures. Another class for processing elements is
to have dedicated processing elements for a particular image/video processing application.
Those architectures are precisely customized for the application and accordingly, optimized
for area and power consumption at high-computing performance. This advantage came at
the expense of flexibility where architecture redesigning is required for every new application.
Architectures can be developed either by coding applications in HDL languages like VHDL
and Verilog or by coding them in high-level behavioural languages like C/C++ then high-level
synthesis tools are used for realization.

Authors in [95] proposed a multi-core FPGA-based implementation for real-time 2D-
clustering image processing. The parallel architecture could be of 4,8 or 16 clustering engines.
The critical path was buffered to avoid performance degradation as the number of the
clustering cores increased. By profiting from the independent data nature for image/video
applications, each clustering core could work in parallel on different parts of the same
image. Authors in [100] proposed a dedicated architecture for 8x8 2D-inverse discrete cosine
transform (IDCT). The proposed architecture consisted of five pipeline stages with the ability
to deactivate the adjacent pipeline stages when having zero additions and multiplications to
reduce the dynamic power consumption. The 2D-IDCT was implemented on Virtex-5 FPGA
board with a maximum operating frequency of 340 MHz and power consumption of 0.831 W.

Another example for dedicated architectures was proposed in [41] to implement histogram
of oriented gradients (HoG) followed by support vector machine (SVM) for real-time multi-
scale pedestrian detection. The hardware architecture was fully parallel and pipelined to
fulfil the requirements of the real-time detection. In the experimental results, the authors
implemented the application over Zynq ZC702 board for an input image of size 1920x1080 at
a speed of 60 fps.

2.3 High-Level Synthesis Design Methodology 17

2.3 High-Level Synthesis Design Methodology

The idea of generating hardware designs by using High-Level Synthesis (HLS) tools
emerged early in the domain of hardware design. It arose from the analogy existed in
the software domain where at the beginning, programs were written in machine code then
assembly languages were used then finally high-level languages (C, C++, etc) were developed
to enhance the software productivity. The first attempts for using HLS tools in hardware
design was not successful for different reasons : (i) The quality of the generated results were
not promising if compared to the ones obtained by the conventional ways. (ii) Behavioural
HDL languages were used as the input language for those tools ; consequently, the user
base was limited to include only hardware designers who were already using RTL synthesis
tools. In other words, by not considering the users of software background, the HLS market
was kept unexpanded. (iii) Intermediate results and design interfaces were not efficiently
generated [63] [64].

However, many reasons had motivated researchers from academia and industry to continue
enhancing HLS tools. We can mention among these reasons : (i) The huge growth in the silicon
capacity pushes towards using HLS tools. (ii) Design productivity is enhanced by reusing
behavioural IPs instead of RTL IPs which have fixed architecture and interface. (iii) Recent
designs tend to use accelerators and heterogeneous SoCs widely. (iv) Time-to-market
constraint usually pushes towards reducing the design time by avoiding long chip design
process. (v) In the last ten years, many high-performance applications appeared including
financial analysis, scientific computing, bio-informatics and video processing applications.
(vi) It is infeasible for software developers to use HDL languages ; thus, offering automated
tools to synthesize from C/C++ to RTL was an inevitable design step [25].

The first successful versions of HLS tools appeared in the market in the mid-2000s like
Mentor Catapult C Synthesis, AutoESL AutoPilot and Xilinx AccelDSP. Three main reasons
shared in that success : (i) Introducing C/C++ and SystemC as an input language for HLS
tools ; thus, the developer base was extended. (ii) It was a fast way to get an algorithm
synthesized into hardware architecture. (iii) The quality of the synthesized designs was
significantly improved by the newly introduced tools [28].

2.3.1 HLS Design Flow

Figure 2.3 depicts the design flow for HLS tools. The design process starts by writing the
application in C, C++ or systemC where the development and verification steps are done at
a level abstracted from the implementation details. In the C synthesis process, the control
and data paths are scheduled and bound to the hardware resources according to the applied
optimization directives. After writing the algorithm, the developer can do C simulation to
verify the correct semantics of the algorithm before proceeding to the synthesis step. In the

18 Background and Related Works

Figure 2.3 – HLS tool design flow

binding step, the HLS tool determines what hardware resources will be used to implement each
operation. For example, array structures are bound to BRAMs unless the designer used an
optimization directive to implement them as individual registers. The tool also offers a set of
C libraries that contains optimized functions for hardware implementation. For example, the
arbitrary precision data type is one of the predefined libraries. This library allows the designer
to define the variables at adjustable data width instead of using the standard data types. For
instance, if the range of values for a particular variable is between 0 and 7 ; therefore, we can
define it as a 3-bit variable instead of using the standard data type char which is equal to
8-bit. In the scheduling step, the tool schedules each operation at which clock cycle it will
occur depending on three factors : the length of the clock cycle, the required time to complete
that operation and what optimization directive that may be applied for that operation. For
example, more operations can be scheduled within the same clock cycle if the clock period
is long enough while an operation can be scheduled over several clock cycles for short clock
period. After that, the control logic is extracted to create the Finite State Machine (FSM)
which controls the execution of the operations in the RTL design. During the synthesis process,
the designer should be aware of the following synthesis steps : (i) Each argument in the top-
level function is implemented as an individual RTL I/O port. (ii) Each C sub-function is
synthesized as a separated RTL module in the final hardware implementation. (iii) By default,
loops are kept unrolled ; thus, HLS tool dedicates hardware resources for one loop iteration,

2.3 High-Level Synthesis Design Methodology 19

and the hardware will be executed in sequence a number of times equal to the maximum
iteration value. By using the unrolling optimization directive, the developer could direct the
synthesis tool to perform the loop iterations in parallel. At the end of the synthesis process,
Synthesis Report is generated to report the performance metrics of the design in terms of
hardware resources, execution time in clock cycles and if the timing constraint to schedule
the operations within the defined clock period is met or not. After analyzing the report,
the designer can modify the optimization directives to refine the implementation for better
performance. After obtaining the RTL design, C/RTL co-simulation can be conducted to
verify that the RTL implementation is functioning identically to the original C code. Finally,
the RTL files are packaged together to produce the IP block [111].

HLS tools do not support every single C/C++ functions for hardware implementation. For
example, dynamic memory allocation, function recursion, system calls and File I/O operations
are not supported by HLS tools. For that reason, there are two different design methods
with HLS synthesis tools : (i) A previous C/C++ reference design is ported to hardware
implementation. In this case, the developer starts from a previously written C/C++ code
where the role of the designer is to modify the code sections which are not supported for
synthesis, then to optimize the code by adding the optimization directives to achieve the
design goals. Top-down design flow is more practical in that situation because the design
is accelerated as one single function. (ii) Designing from scratch where the designer starts
developing his code with full awareness that the written code will be directed for hardware
implementation. Top-down, as well as bottom-up design styles, are feasible. In bottom-up,
the designer can start accelerating the sub-functions in the application with the ability to
expand the accelerator to include the other functions.

2.3.2 HLS Research Directions

We can distinguish two research directions regarding high-level synthesis design
methodology : (1) Research contributions tend to enhance the Quality-of-Results (QoR)
of the implemented hardware designs through better C-to-RTL transformations (memory
partitioning, loop unrolling, loop pipelining, ... etc). (2) Research works which present the
hardware implementation for different high-performance applications. In these contributions,
HLS designs are/are not compared to hand-written HDL designs implemented for the same
application to evaluate the design quality in terms of hardware cost, performance and design
time for both approaches.

2.3.2.1 Contributions for efficient hardware implementations (Quality-of-
Results)

Memory Partitioning. Accessing data from memory could limit the application
performance if multiple memory accesses are requested simultaneously from the same memory

20 Background and Related Works

bank. Thus, memory partitioning is used to increase the number of the available physical ports
for array access. Consequently, multiple simultaneous memory accesses could be scheduled
in parallel for better performance. In [34], three different memory partitioning schemes
(lattice-based, hyperplane-based and cyclic) were discussed. Figure 2.4 depicts the three
memory partitioning schemes for image resizing (4 :1) application. In Figure 2.4(a), pixels are
distributed in cyclic way where multiplexers on the address port are required to resolve the
conflict of reading two different elements from the same memory bank. In addition to that,
flip-flops are needed to buffer the first two pixels till all data is loaded to start computation.
Figure 2.4(b) shows hyperplane distribution manner where for the even index (i), elements
are mapped to memory banks B1 and B3 while for the odd index (i), elements are mapped
to memory banks B2 and B4. This bank alternation leads to having the same memory port
is referenced by two different positions. Figure 2.4(c) depicts the lattice-based distribution
where memory conflicts and bank switching are avoided for better data-path and less area
overhead. Authors in [57] proposed two different approaches for memory partitioning (vertical
and mixed memory partitioning) where different memory accesses in different arrays can be
scheduled simultaneously to non-conflicting memory banks. The algorithms were developed
using AutoESL and tested experimentally on a set of medical images processed over Virtex-
6 FPGA board. The results showed a gain in speed-up, power savings and area reduction
of 15.8%, 32.4% and 36% respectively. Authors in [104] proposed a generalized memory
partitioning method based on a polyhedral model to solve the problem of bank access conflict
where the results showed up to 20% reduction in the used BRAM and Slices.

Loop Transformations. It is hard to write an algorithm without including loop
structures. For that reason, HLS tools support the hardware synthesis for loops and offer
different loop optimizations like pipelining, unrolling or merging for better performance.
In [60], authors developed a parametric polyhedral model to consider the cases of uncertain
memory dependency (i.e. the array index is parameterized by undetermined variable) or when
it is not uniform by varying between loop iterations. Automatic code transformations to spilt
the original loop into sub-loops which are then synthesized normally by the HLS tool. The
results showed that the number of cycles per iterations had an average speed-up of 4.3x after
applying loop splitting with an average hardware overhead equalled to 95% for LUT, 83%
for FF and 12% for DSP. Authors in [86] compared between loop coarsing and loop tiling
for image filter applications. In loop tiling, the image is split into separate regions which
are then processed in parallel ; while in loop coarsing, the input pixel data is aggregated
in structures named superpixels where the loop kernels are only replicated inside a single
accelerator. The experimental results showed an advantage by using loop coarsing in terms of
hardware resources and performance compared to loop tiling. In [92], the authors transformed
nested loops of triangular iteration space into rectangular ones for better loop transformation
to enhance the overall performance. The reported results showed a performance improvement

2.3 High-Level Synthesis Design Methodology 21

Figure 2.4 – Memory partitioning schemes in [34] and their area overhead. (a) Cyclic
partitioning. (b) Hyperplane-based partitioning. (c) Lattice-based partitioning.

ranged between 33% to 100% for different benchmarks. While authors in [24] used loop
unrolling to decrease the area overhead arose by partitioning multidimensional arrays. Their
method was based on reducing the logic used for routing the data from the memory banks
to the processing blocks by decreasing the bank switching effect. ElasticFlow architecture
was proposed to pipeline nested loop with dynamic-bound inner loops. It distributed the
execution of the inner loops over an array of processing units. To keep the memory footprint
balanced, a customized banked memory architecture coordinated the memory accesses among
the processing units [58].

22 Background and Related Works

Dynamic Data Structures. Current HLS tools do not support dynamic memory
allocations in addition to that pointer operations are limited ; consequently, dynamic data
structures are not supported for hardware synthesis. Authors in [112] proposed an open
source synthesizable library named SynADT for linked lists, binary trees, hash tables and
vectors to allow the usage of abstract data type in HLS. The results showed that for data
structures of size 128 KB and 10 MB, HLS data structures were faster by 1.67x and 1.35x
over Microblaze processor using default malloc ; while it was 6.7x and 8x slower than an ARM
processor running at 677 MHz with 512 KB L2 cache.

Recursion. It occurs when a function makes a call to itself either directly or indirectly via
another function. Recursion is not supported for synthesis by the HLS tools ; thus, designers
are forced to remove manually any recursion functions before code synthesizing. A C++
library named Embedded Domain Specific Language (EDSL) was developed to write recursive
functions. By using EDSL, recursive functions were written by utilizing the C++ front-end
of the HLS compiler to build the state machines and stacks while the presented code to the
back-end compiler is completely synthesizable. The experimental results showed that using
EDSL library for describing recursive function is competitive to the manually converted code
in terms of hardware resources and performance [99].

Hardware Debugging Facilities. HLS tools offer software debugging where the HLS
code can be executed on a workstation and debugged by using the standard software debugging
ways. However, some errors can not be discovered using the software debugging tools like :
(i) Errors happened at the interfaces between the blocks in the design. (ii) It is required
in some applications to debug the block on runtime by using realistic input data. (iii) The
C-code is transformed to HDL code during the HLS synthesis flow. Consequently, software
debuggers are not able to discover errors in the hardware design due to tool bugs during
transformation. Commercial hardware debugging tools like (Chipscope and Logic Analyzer)
provide the visibility of the signals inside the generated RTL design without back-tracing to
their source in the original C-code. Accordingly, using those tools by the hardware designers
to understand the circuit and do back-tracing is time-consuming process which opposes the
idea for which HLS tools are used. While for software designers, debugging at that level is
nearly infeasible for them.

Authors in [36] proposed a framework to do in-system debugging by capturing the
interaction with the other blocks in the system while automatically recording the hardware
signals in a manner similar to software debugging. For signal-tracing, the experimental results
showed that the framework increased the length of the execution trace that can be recorded by
127x if compared to the embedded logic analyzer. Inspect was another framework integrated
with LegUp HLS tool for offering HLS debugging facilities. It had a software perspective to
debug HLS-generated blocks by giving the user the familiar debugging execution management
(step, run and break) with the ability to inspect variables. Two modes of debugging were

2.3 High-Level Synthesis Design Methodology 23

supported either by simulating the generated RTL design or by executing the hardware on
FPGA device (hardware debugging). Bugs had been inserted manually into the generated RTL
for a set of benchmarks where the automated discrepancy detector could discover them [21].

2.3.2.2 Contributions for demonstrating HLS-based applications

In the last five years, many HLS-based hardware implementations for applications from
different domains were published to reflect the degree of maturity that HLS synthesis tools
reached. We can highlight the following points regarding those contributions : (i) Authors
tended to compare between RTL-based and HLS-based designs for the same application.
In those comparisons, RTL-based designs showed better hardware utilization while HLS-
based designs showed shorter design time with a short learning curve for the new users. It
is worth mentioning that the increase in hardware cost for HLS-based designs is within the
acceptable margins. Accordingly, authors usually commented by expressing their acceptance
to that increase rather than spending months to obtain a handwritten RTL-based design for
the same application. This desire reflects clearly the role of time-to-market constraint which
adds another pressure on the design cycle. (ii) HLS design methodology gives the designer the
flexibility to compare different design alternatives by applying different optimization directives
without spending too much design efforts. For that reason, it is hard to find a research work
that built an HLS-based architecture for a particular application without exploring the other
possible implementations for best area utilization, best execution time or for best power
consumption.

Authors in [74] showed the hardware implementation of two algorithms used in microwave
imaging for detecting breast cancer. Hardware acceleration was recommended to improve
the processing time and to reduce power consumption. HLS was used to explore around 100
alternative implementations which were different in their cost-performance profile. Storing
FPGA bitstreams and software binaries on non-volatile memories is costly. Accordingly, HLS
was used to develop four lossless compression decoders to reduce the usage of the external
memories. The algorithms were evaluated on Zynq ZC706 operating at 200 MHz where the
results showed 30% less for software start-up time and 70% decrease in the time required
for partial reconfiguration [113]. Key-value store memcached server was another application
developed by HLS tools over Virtex-7 VC709 board. The HLS synthesis results were compared
to a previously implemented RTL design to deduce that the latency was reduced by 30% with
a decrease in resource utilization reached to 20% for LUT and 35% for FF. In addition to
that, HLS code was developed at half the time required by the RTL-based design.

FPGA-based 10 GbE active network probes were designed using HLS tool and open
source platform to measure several network parameters like throughput and delay. The
design showed 2% more accurate than software solution [81]. Authors in [44] compared the
results of designing cryptographic modules based on Advanced Encryption Standard (AES)

24 Background and Related Works

using HLS and hand-written VHDL code approaches. Their study demonstrated that both
approaches led consistently to comparable results regarding area and clock frequency. In [72],
the authors reported their experience while targeting FPGA implementation dedicated to
controlling algorithms for power converters using HLS approach. They highlighted that such
approach significantly simplified the design and simulation process without requiring specific
HDL design skills.

2.3.2.3 Surveys

Authors in [68] made a qualitative comparison for twelve HLS tools according to several
criteria including : (i) Source language and ease of implementation : it is recommended to
close the gap between algorithm design and hardware design by offering easy-to-use high-level
synthesis languages for the people who have no hardware experience. (ii) Tool complexity, user
interface and documentation : in order to wide the user base, the tool should have a friendly-
style GUIs with enough documentation and tutorials for having a smooth learning curve.
(iii) Tools capabilities : HLS tools should support defining variables in flexible data width
format for better hardware implementation. The ability to tune the optimization options
to explore several implementation varieties is another significant strength for HLS tools.
(iv) Verification : HLS tools ease the verification process by generating test benches together
with the design. During verification, the testbench includes the source code as a golden
reference while applying the test vector to the generated design for comparison. (v) Evaluating
the results quality concerning hardware resources and latency. In the experimental results,
Sobel edge filter of kernel=3x3 was used as a test application where each criterion was marked
by a number ranges between 1 (bad) to 5 (excellent). The evaluation for each HLS tool was
represented on a spider web diagram for easy visual comparison. The authors concluded with
several recommendations to improve the design productivity of the HLS tools.

In [14], authors did an empirical comparison between four different HLS languages
which were used in four different tools (Bluespec System Verilog, Altera OpenCL, LegUp
based on C language and Chisel based on Scala functional language). The four tools were
used to accelerate three common database operations : sorting, aggregations and joins by
implementing four different algorithms (bitonic sorting, spatial sorting, median operator and
hash joins). The authors detailed their experience for using these four high-level languages
by showing the trade-offs. They concluded that there is no obvious election between them,
but it depends on a set of requirements including programmability, area utilization and the
obtained performance.

In [106], authors compared three commercial HLS tools (Vivado HLS, Altera OpenCL
and BluespecBSV) in addition to two more academic tools (LegUp [22] and ROCCC [101]).
The authors gave an overview with some details about their user interaction experience for
each tool. During the experiments, two applications (dilation filter of kernel = 3x3 and AES

2.3 High-Level Synthesis Design Methodology 25

Figure 2.5 – Design space exploration with the Y-chart paradigm [53].

encryption algorithm) were used. The implementation of dilation filter was commented by the
authors’ practical experience for how to compile it by showing the strength and weak points
for each tool. Performance, area utilization and power consumption were reported for both
applications synthesized by LegUP and ROCCC.

Another recent study extended the set of benchmarks to include different domain
applications (CHStone benchmark suite [39]) to evaluate three academic tools (LegUP [22],
BAMBU [77] and DWARV [71]) in addition to a commercial HLS tool (the name was not
mentioned in the survey). Two sets of experiments (standard-optimization and performance-
optimized) were conducted to the HLS tools to report four performance metrics (number of
clock cycles required for execution, maximum reported frequency, the total execution time for
each application and the hardware utilization in terms of LUT, FF and BRAM). The authors
reached the following conclusions : (i) There was no HLS tool which performed the best for
all the benchmarks. (ii) The academic tools were not far away in their performance metrics if
compared to the commercial ones. (iii) The performance improved on average between 1.6-2x
when the code was tuned by the HLS constraints in the performance-optimized experiments.

26 Background and Related Works

2.4 HLS Design Space Exploration

Figure 2.5 depicts how the design space is explored in the Y-chart paradigm where one
system implementation is selected from a set of alternatives. In this approach, the application
and architecture specifications are explicitly separated from each other. The performance of
architectures is analyzed for a given set of applications to provide the quantitative data that
the designer will use to take a decision. In the mapping step, we define for each function
in the application on which platform it will be executed (allocation and binding) and at
which moment it will be scheduled (scheduling). The performance metrics are then evaluated
regarding area, execution time, power, etc. Iteratively, improvements are applied by changing
the architecture or by changing the way the application is described or by changing the way
of mapping until finding the solution which satisfies the design requirements [53].

Figure 2.6 shows the abstraction pyramid which describes the architecture modeling at
different abstraction levels in connection with three factors : the modeling effort, evaluation
effort and accuracy. On the right-hand side of Fig. 2.6, the axis modeling cost indicates that
the modeling effort increases as we go down along the abstraction pyramid. Therefore in
the performance analysis step, obtaining very accurate performance numbers comes at the
expense of considering a more detailed model with long evaluation time. While less accurate
numbers can be achieved at a shorter time when high-abstracted models are considered. From
the abstraction pyramid, we can conclude that exploring the design space while using high-
level synthesis tools, will accelerate the exploration process by early pruning the design space
so that by moving down the pyramid, the design space to be evaluated becomes smaller [50].
In addition to that, HLS tools give us the possibility to generate a set of micro-architectures of
different area versus performance trade-off without having to modify the original behavioural
code itself.

HLS design space exploration (HLS DSE) can be classified in different ways. One
classification divides the DSE into two classes : (i) DSE inside the HLS tool. (ii) DSE with
HLS tool. The first class focuses on applying DSE to the internal tasks of the HLS tools
(allocation, binding and scheduling). Each task is controlled by a set of different factors which
have a significant impact on the performance metrics of the resulted hardware. Some research
works under this class are [79] and [87]. The second class considers the HLS tools as a black
box and explore the design space of the optimization parameters offered by the HLS tools.
This class can be further subdivided into : (i) HLS synthesis directives. (ii) Resource sharing.
For the first subclass, the HLS directives are inserted into the behavioural code as comments
to affect the final synthesized micro-architecture. For example, loops can be pipelined or not
with complete or partial unrolling. Arrays can be also completely or partially partitioned with
the possibility to be mapped to registers or BRAMs. These optimization varieties generate
a design space of different combinations that can be explored for the same application. For
resource sharing, a single functional unit (FU) can be shared among different operations in

2.4 HLS Design Space Exploration 27

Figure 2.6 – Design space exploration with the Y-chart paradigm [50].

the source code. This is achieved by inserting multiplexers at the inputs and outputs of the
functional unit. Using resource sharing produces a design space of different implementations
which vary from an architecture that has one single shared FU to a fully-parallelized one.

Authors in [82] applied HLS directives then resource sharing to reduce the design space
to be explored. They proposed a probabilistic method to accelerate the DSE process by
calculating the probability of each generated architecture then continue exploring only the
designs of the highest probabilities. Their experimental results showed an acceleration of 12x
in the DSE process. Resource sharing acts differently for both ASIC and FPGA. In ASIC,
resource sharing reduces the total area of the design while for FPGA, it could act oppositely
because of the size of the inserted multiplexers consume a lot of logic resources. For that
reason, authors in [83] proposed a method to force the cost of resource sharing to be larger
than that of the used multiplexers by fixing the bitwidth of the internal variables. This
approach came at the expense of introducing overflow errors in the design. The experimental
results showed that the percentage error differed from one application to another. Thus, the
designer should estimate if the error percentage is acceptable or not in his application. A
framework for HLS DSE was presented in [76] which exploited the loop array-dependency
to reduce the DSE time. The results showed that the framework gave the same quality

28 Background and Related Works

of result as the exhaustive DSE approach while lowering the exploration time with an
average of speed-up of 14x. Another framework used sequential model-based optimization
(SMBO) to select the HLS directives automatically. During optimization, a model of the
function was constructed using machine learning methods. From the experimental results, the
convergence to the optimal HLS directive settings was improved by using transfer-learning
mechanism in the SMBO model [61]. Lin-Analyzer [118] did rapid design space exploration
for various HLS pragmas like loop pipelining, loop unrolling and array partitioning without
the need for doing RTL implementations. Programs were represented in dataflow graphs by
using dynamic data dependence graphs (DDDG). DDDG are acyclic directed graphs where
nodes represent operations while edges represent data dependence between the nodes. Lin-
Analyzer scheduled the graph nodes according to the resource constraints to obtain an early
performance estimation. For validation, 10 different applications were tested on Xilinx ZC702
FPGA board. Another classification for HLS DSE is based on the algorithm used during
the design space exploration like using genetic algorithm [35], simulated annealing [62], ant
colony [82] or machine-learning techniques [59].

2.5 Design Productivity

Design productivity gap arises due to the persistent growth of silicon capacity in
comparison with the available design capabilities. Increasing the level of design abstraction
by using high-level synthesis tools is an inevitable solution to minimize that gap. Authors
in [75] defined design productivity as not only producing designs in short design time but
also at acceptable design quality. In that work, they compared CAPH HLS language with
VHDL to evaluate CAPH design productivity. Three metrics were introduced to assess an
HLS tool : (1) The gain in Non-Recurring Engineering (NRE) to evaluate design efficiency.
NRE is defined as the time required for designing, verifying and integrating a new system
design. (2) The loss in the design quality in terms of the hardware resources (LUT, FF,
BRAM, DSP) and the operating frequency to evaluate the implementation quality. (3) The
HLS design productivity is defined as a ratio between design efficiency and implementation
quality.

HLS tool vendors work to shorten the design cycle by offering the efficient RTL
implementations for a set of functions which can be used directly in building applications.
Tool vendors show a special care to provide libraries for image/video processing applications.
For example, HLS Video Library from Xilinx offers the RTL design for some existing OpenCV
functions [111]. Another example, HDL Coder from MathWorks provides HDL descriptions
for different signal and image/video processing functions [65]. Authors in [85] implemented
a lightweight C-based library integrated with Vivado HLS to build hardware accelerators
for stream-based image processing applications. Point processing applications like brightness

2.6 Positioning 29

filter as well as local image operations as Sobel filter are supported by that library. A Very
High Level Synthesis (VHLS) framework for image processing applications is presented in [18].
Firstly, the algorithm is described in Matlab or OpenCL ; then in the next step, control and
data flow graphs are extracted. At the end, HLS tool uses these graphs to obtain the RTL
design of the application.

2.6 Positioning

In this section, we will position our contributions with respect to the described state-of-the-
art. FPGA technology was chosen among other available solutions as the developing platform
for our presented contributions for different reasons : (i) FPGAs are reprogrammable devices
that give us the chance to architect our design in an efficient way to implement parallel video
designs that fit for autonomous vehicle applications. (ii) FPGAs can deliver high-computing
performance to process complex video processing applications under real-time constraints.
(iii) FPGA devices are characterized by their low power consumption if compared to GPU
or CPU ; accordingly, they are good candidates for battery-based applications. (iv) Using
high-level synthesis tools for FPGA design enhance the design productivity. In addition to
that, software developers can profit from hardware acceleration without requiring hardware
expertise or mastering Hardware Description Languages (HDL).

Throughout the chapter, we reviewed different architectures to build video processing
applications on reconfigurable technology like soft vector processors, soft VLIW processors,
soft GPGPU processors, dedicated processors, etc. We can classify our architectural
contribution under the class of dedicated processors. We made that choice for the following
reasons : (i) Performance is our main design goal because we are targeting autonomous
vehicle domain where high-performance under real-time constraints are recommended for
safety conditions. (ii) Customizing the hardware resources for building exactly the required
application to have the power consumption as minimum as possible.

Certainly, losing flexibility was paid for those advantages. However, flexibility could be
partially recovered by automating the design process to explore different design alternatives.
In order to achieve that, we did the following steps : (i) Performance metrics (area, power
consumption and execution time) were estimated at high design level to early explore the
design space for the best candidate designs. (ii) We generated the corresponding parallel
architectures for the candidate designs for experimental validation. By reviewing high-level
synthesis (HLS) tools, it was clear that the last generations succeeded to build efficient
hardware implementations in different domains. In addition to that, these implementations
were realized during a short design cycle when compared to HDL-based designs. For that
reason, we based our implementation for the stereo matching algorithm on HLS tools.

30 Background and Related Works

2.7 Conclusion

In this chapter, we have reviewed different reconfigurable solutions for realizing video
processing applications. These solutions utilize the reconfigurable fabric in two different ways :
(i) To build soft-core processors like vector, GPGPU, VLIW, many-core, etc, to allow software
programmability and accordingly, they are more flexible when the application changes. (ii) To
build dedicated hardware architecture for a particular application to have area- and power-
customized architecture. In addition to that, the reasons behind the rapid development of
high-level synthesis tools were explained. We showed how the researchers contributed to either
improve the synthesis quality of HLS tools or to demonstrate the implementation of high-
performance applications based on HLS approach. In HLS design flow, several architectural
optimizations can be combined to deliver different solutions ; thus, design space exploration
tools are mandatory at that level to narrow the design space for further synthesis steps.

C h a p t e r 3

Flexible Parallel Architecture for
Video Streaming Applications

3.1 Introduction . 32
3.2 Cost-effective Solution for Autonomous Vehicles 32

3.2.1 Experimental Setup . 33
3.3 Generic Pixel Distribution Model 34

3.3.1 Model Parameters . 35
3.3.2 Pixel Distributor Architecture . 35
3.3.3 Controller Finite State Machine . 37
3.3.4 Parallel Processing . 38
3.3.5 Pixel Collector . 39
3.3.6 Experimental Results . 41

3.4 Using Hardware Parallelism for Reducing Power Consumption . 46
3.4.1 Level of Parallelism and FIFO Depth Calculations 48
3.4.2 Experimental Results . 50

3.5 Conclusion . 56

32 Flexible Parallel Architecture for Video Streaming Applications

3.1 Introduction

A huge amount of data is accessed and processed in video processing applications. Memory
bandwidth can limit the processing rates if the images are firstly stored to off-chip memories
then read for processing. Instead of that, it is recommended to process the input pixel stream
once the image sensor generates it. This challenge is augmented by considering today’s
image sensors which deliver high-resolution images at high frame rates. To address that
challenge, reconfigurable computing is suggested to build flexible parallel architectures for
video processing applications. In this chapter, we will present a generic model for pixel
distribution/collection dedicated for streaming video applications. By the help of this model,
the input pixel stream is directly distributed over the parallel processing elements without
storing them to an external memory. In this model, we defined the parameters required to
have a flexible pixel distribution in both vertical and horizontal directions. To decrease the
development efforts, the hardware architecture for the pixel distributor/collector is generated
automatically. In the experimental results, we will show the parallel architecture for two
different video streaming applications : Video downscaler (16 :1) and convolution filter for an
input HD image stream of 60 frame/s.

The proposed parallel video processing architecture will be modified in conjunction with
frequency scaling as a technique for reducing power consumption. In that case, the processing
elements will operate at frequencies slower than the other parts of the system. However,
to keep the same processing rate, the number of the processing elements will increase to
compensate for the scaling in the frequency. We will derive the required equations to ease
the calculation for the level of parallelism and the maximum depth for the FIFOs used for
clock domain crossing. Accordingly, a design space will be formed including all the design
alternatives for the application. The preferred design will be selected in aware of how much
hardware it will cost at what power reduction it can satisfy. In the experimental results, we
will implement two different video streaming applications : Video downscaler (16 :1) and AES
encryption algorithm to verify our approach.

3.2 Cost-effective Solution for Autonomous Vehicles

Figure 3.1 depicts an example of the autonomous shuttle from NAVYA Technology. In
this shuttle, multiple image sensors are normally installed for obstacle detection, tracking
and classification. In this application domain, image processing is usually done under real-
time constraints with an increasing request for higher frame rate and better resolution for
better obstacle detection. As previously mentioned in Chapter 1, FPGA technologies are
good candidates to fulfil those system requirements through their characteristics which can be
summarized in reconfigurability and their ability to realize massively parallel architectures. In
this chapter, we will mainly focus on the following aspects : implementing dedicated parallel

3.2 Cost-effective Solution for Autonomous Vehicles 33

Figure 3.1 – Autonomous shuttle from NAVYA

architecture, introducing a model for pixel distribution/collection and using parallelism as
a technique for reducing power consumption. In order to achieve our objective, we have
considered the following setup for experiments.

3.2.1 Experimental Setup

Figure 3.2 depicts the main components of video processing system architecture where a
color image sensor VITA-2000 [73] is configured for high definition frame resolution (1080p60).
The sensor is connected to Xilinx Zynq ZC706 FPGA board [108] through Avnet IMAGEON
FMC module [15]. It is a CMOS image sensor [33] that captures pixels in a monochrome
format (10-bit size for each pixel) where the raw captured pixels are then converted to RGB
format (24-bit) through the image preprocessing pipeline. Defective Pixel Correction (DPC)
filter is the first stage in the image preprocessing pipeline where defective pixels are removed.
To generate an RGB color image, Color Filter Array (CFA) filter [109] is used to restore the
other missing two colors based on the neighbouring pixels . Some other filters such as (gamma,
noise, edge enhancement, etc) can be added to improve the quality of the input image. For
signal synchronization, Video Timing Controller (VTC) is connected at both ends of the
processing channel for detecting/generating video timing signals. The block named Parallel
image processing elements represents a set of parallel processing elements that implement
a particular image processing algorithm. In the next section, we will explain how the input
stream is distributed over the processing elements for parallel processing then how the resulted
pixels are gathered back to form the output stream. Before showing the processed image on
the screen, RGB-to-YCbCr422 block converts the RGB pixels into YCbCr 4 :2 :2 format then

34 Flexible Parallel Architecture for Video Streaming Applications

Figure 3.2 – Video processing system architecture

vblank

hblank

active_video

data

clk

Figure 3.3 – Video timing signals

the pixels are streamed to an HD monitor with the correct timing signals. Figure 3.3 shows
the timing signals accompanied by the video stream : (i) The start of the frame is observed
when vblank signal is high. (ii) Horizontal blanking (hblank) indicates the start of a line in
the frame. (iii) A valid pixel is presented when active_video signal is asserted to high. In the
following section, we will start by introducing our generic pixel distribution model.

3.3 Generic Pixel Distribution Model

The main concern of this section is to propose a pixel distribution architecture that
can deal with various input frames and sizes for macro-block. Firstly, we will introduce
the parameters of the generic pixel distribution model. Secondly, the proposed hardware
architecture will be detailed, and we will describe the finite state machines that control the
architecture. Finally, we will show our experimental results by presenting the synthesis results
for the pixel distributor with different input frames and sizes for macro-block. In addition to
that, we will demonstrate the implementation of two different video applications : video
downscaler (16 :1) and convolution filter of kernel size = 3x3.

3.3 Generic Pixel Distribution Model 35

V

H

hor_slide

ver_slide

p
ro

cd
_n

u
m

_l
in

es
fr

a
m

e_
le

n

procd_ num_cols

frame_wid

N

Figure 3.4 – Pixel distribution model

3.3.1 Model Parameters

The required parameters to understand the pixel distribution model are illustrated in
Fig. 3.4 and described as following :
• A frame is of width frame_wid and length frame_len.
• A macro-block is the basic processing structure of length V and width H such that
V ≥ 1 and H ≥ 1.

• A macro-block can move horizontally by a step = hor_slide and vertically by a
step = ver_slide such that 1 ≤ ver_slide ≤V and 1 ≤ hor_slide ≤ H.
• procd_num_lines is the number of lines processed in one frame. If procd_num_lines
< frame_len then (frame_len - procd_num_lines) lines aren’t processed, such that
procd_num_lines = V + b frame_len−V

ver_slide c ∗ ver_slide.
• procd_num_cols is the number of pixels processed in one line. If procd_num_cols
< frame_wid then (frame_wid - procd_num_cols) pixels aren’t processed, such that
procd_num_cols = H + b frame_wid−H

hor_slide c ∗ hor_slide .
• N is the index of a line in the frame such that 1 ≤ N ≤ procd_num_lines.
• Since each line is stored in a separate buffer, then V buffers are needed. We define B

as the buffer index of a given line such that B = (N mod V).

3.3.2 Pixel Distributor Architecture

The role of the pixel distributor is to write the input video stream to the line buffers
then to distribute the stored pixels in the form of macro-blocks according to the required
size (H x V). Figure 3.5 shows the interface and the internal block diagram for the pixel

36 Flexible Parallel Architecture for Video Streaming Applications

circular
vertical
shifter

rd_clk

wr_addr

line buffer 1

line buffer V

line buffer 2

line buffer 3

.

.

.

.

rd_addr

sof

wr_clk

wr_en_buff(i)

line buffers

valid

D D D D. . .

D D D D. . .

D D D D. . .

D D D D. . .

pixel< H+1 ,...,2*H>

pixel< 1 ,..., H >

pixel< 2*H+1 ,….,3*H >

pixel< (V-1)*H+1 ,…., V*H >

D

D

.

.

.

.

.

.

.

.

.

.

.

.

clk

rst

rst

horizontal shift register

pixel< V*H >

pixel< 2*H+1 >

pixel< 3*H >

pixel< (V-1)*H+1 >

pixel< (V-1)*H+2 >

pixel< H+1 >

.

.

.

.
pixel< 2*H+2 >

pixel< H+2 >

pixel< 2*H >

pixel< 2 >

pixel< H >

pixel< 1 >

sof

valid

clk rst

controller
hblank

act_video

vblank

ver_shifting

Pixel Distributor

clk

rst

video_data

|

|

V

| |

Figure 3.5 – Pixel distributor structure

distributor. The interface consists of : (i) The ports for the input video signals which are
vblank, hblank, act_video and video_data. (ii) The output ports are equal to the number of
the pixels in the macro-block (i.e. HxV output ports). (iii) sof signal which is asserted to
high with the first macro-block to designate the start of the frame. (iv) valid signal which
is asserted to high with every macro-block to indicate the presence of a valid block at the
output ports.

The pixel distributor consists of the following internal blocks : (i) line buffers for storing
the input pixels. (ii) circular vertical shifter for shifting the pixels circularly in the vertical
direction. (iii) horizontal shift register for shifting the pixels horizontally. (iv) controller for
asserting the required control signals according to the current state of the system. For example,
controller asserts one of the wr_en_buff signals to enable writing in one of the line buffers at
a specified address wr_addr, while it loads rd_addr for reading operations. Also, controller
assigns sof, valid and ver_shifting signals to mark the start of the frame, the presence of a
valid macro-block or for shifting the pixels vertically.

A column of pixels is passed to circular vertical shifter as soon as its last pixel was written
to line buffers. horizontal shift register shifts each pixel horizontally so that after hor_slide
shifts for the first pixel in the macro-block (i.e. pixel<1>), the valid signal is asserted to
indicate a valid macro-block at the output ports of the pixel distributor. The image line of

3.3 Generic Pixel Distribution Model 37

Idle

Writing
pixels

vblank = 1

Non-padded
Pixels

Start of
 frame

Start of line
vblank = 0

bypassing
 non-padded pixels

vblank = 1waiting for
 a frame

hblank = 1

active_video = 1
vblank = 1

active_video
= 1

active_video
= 0

vblank = 1

active_video
= 0

Figure 3.6 – Writing process finite state machine

index V+1 will be stored in the first line buffer (Buffer index B = N mod V). If ver_slide
< V, then the image line of index V+1 will have an order in the macro-block rather than
being the first line. In that case, the output of the line buffers should be shifted vertically in
a circular way to put back the lines of the macro-block in their correct order.

The distribution of pixels is executed within the boundaries of the frame ; therefore, for the
neighborhood pixel applications like median filter, the border pixels are not distributed since
a part of their macro-blocks lie outside the frame boundaries. In such situation, we decided
not to process these border pixels since the percentage of the unprocessed pixels (i.e. the error
rate) is within the acceptable range. for example, when the input frame size is 1920x1080, the
percentage of the unprocessed pixels is 0.29% for a macro-block of size=3x3, 0.58% for 5x5
and is 0.86% for 7x7.

3.3.3 Controller Finite State Machine

Figure 3.6 shows the finite state machine for the writing process, (i) The system starts
from the idle state waiting for an input stream. (ii) During the vblank period, the system waits
in the start of frame state. (iii) Then, it remains in the start of line state while the hblank
signal is active. (iv) The system rests at writing pixels state during the operation of writing
pixels. (v) If procd_num_cols < frame_wid then the system will transit to non-padded pixels
state to bypass the rest of the pixels of the line ; otherwise, it will transit to start of line state
to process the next line or to start of frame state to process the next input frame.

Figure 3.7 shows the states for the reading process, (i) The system starts at the idle
state waiting for an input stream. (ii) Then, it remains in the state first column until the
first column of the macro-block is written to line buffers. (iii) In the reading macro-blocks

38 Flexible Parallel Architecture for Video Streaming Applications

Idle
start of
frame

Reading
macro-blocks

 first
column

next
first column

reading the first column
from line buffers

waiting for the
next first column

waiting for
 a frame

distributing
macro-blocks

end of the
frame

reading the first column
from line buffers

waiting until the last pixel of
the first column is written

waiting until the last pixel of
the next first column is written

Figure 3.7 – Reading process finite state machine

state, the macro-blocks are sent to circular vertical shifter as soon as they are written to line
buffers. (iv) After that, the system will transit to the next first column state waiting for the
first column of the next set of macro-blocks or it will transit to the idle state waiting for the
next input frame.

The process of writing/reading pixels to/from the line buffers doesn’t depend either on
the size of the macro-block or on the size of the input frame. Only the number of line buffers
depend on the vertical size of the macro-block (V) and the number of the output ports depend
on the size of the macro-block (H x V). Therefore, the VHDL files of the pixel distributor
can be easily generated for different sizes of macro-block by modifying only the number of
buffers in the line buffers and the number of the output ports using a script file.

3.3.4 Parallel Processing

The communication between the pixel distributor and the Processing Element (PE) is
done through the valid signal. The pixel distributor asserts valid signal when a macro-block
is available at its output ports (i.e. the input ports of PE). Figure 3.8 depicts the architecture
for parallel processing, where a demultiplexer is used to distribute valid signal among the
parallel processing elements. From the pixel distributor model, the rate of producing macro-
blocks is equal to

macro-block rate = 1
hor_slide (3.1)

3.3 Generic Pixel Distribution Model 39

Figure 3.8 – Parallel structure

Figure 3.9 – Using pixel collector to stream 1080p frames

If the computation delay for one processing element is equal to computation_delay in clock
cycles then the required number of parallel processing elements can be calculated using the
following equation :

Number of parallel PEs = dmacro-block rate ∗ computation_delaye (3.2)

= d computation_delay
hor_slide e (3.3)

3.3.5 Pixel Collector

The processed image is streamed on HD 1080p monitor ; consequently, pixel collector has
to generate frames according to HD 1080p timing signals (i.e. HBlank = 280, HActive = 1920,
HTotal = 2200, VBlank = 45, VActive = 1080 and VTotal = 1125). The processed frame could
be equal to 1080p frame size as in the case of grayscale filter or smaller than it as in the case

40 Flexible Parallel Architecture for Video Streaming Applications

Figure 3.10 – Finite state machine for pixel collector

of video downscaler (16 :1) where the processed frame size is 480x270. Border parameters
(left_border, right_border, top_border and bottom_border) are defined to pad small frames
to 1080p format as depicted in Fig. 3.9 where the shaded orange area represents the actual
image size. Vertical and horizontal blanking periods are streamed before the image frame
for synchronization such that the total number of the streamed pixels is equal to 2200x1125
pixels after adding the blanking periods for HD 1080p frame. Fig. 3.10 shows the finite state
machine which controls the process of how the pixel collector streams the processed frame in
1080p frame format. At the beginning, the pixel collector is at idle state waiting to receive
the first processed pixel when sof signal is asserted high. Before starting pixel streaming,
the pixel collector waits in a state till enough pixels are stored in its internal buffers to
guarantee continuous pixel stream. As depicted in Fig. 3.9, VBlank signal is set to high to
indicate the start of a new frame where VBlank period is counted in image lines. The system
transfers between three states until VBlank period is streamed (Streaming vblank signal high,
Streaming hblank signal high and Streaming hblank signal low). Each image line is started
by HBlank period to signal the start of a new line. After that, the control is transferred to
Streaming processed pixels state where pixels are read from the internal buffers and streamed
to the output port with high act_video signal.

3.3 Generic Pixel Distribution Model 41

Figure 3.11 – The internal structure of pixel collector

Fig. 3.11 depicts the hardware architecture of the pixel collector where three internal
buffers (Buffer_R, Buffer_G, Buffer_B) are used to store the three colour components
of each processed pixel. The controller plays the role of asserting the right control signals
according to the current state of the system. For example, to store the pixels in the internal
buffers, the controller loads wr_addr by the correct address and enables wr_en_buff while
it loads the address to rd_addr for reading operation. When the pixels are streamed to the
output, the controller is responsible for generating the correct timing signals (vblank, hblank
and act_video) according to its finite state machine.

3.3.6 Experimental Results

Firstly, we will highlight the code generation phase for pixel distributor. Secondly, we will
present the synthesis results of the pixel distributor for different macro-block sizes as well
as for different frame sizes. Finally, two video processing applications were implemented :
video downscaler (16 :1) and convolution filter of kernel size = 3x3 to illustrate the proposed
parallel structure described in section 3.3.4.

42 Flexible Parallel Architecture for Video Streaming Applications

Generated files Description Number of code lines
4x4 8x8 16x16

pixel_distributor.vhd pixel distributor top level 500 670 1300
cir_ver_shifter.vhd circular vertical shifter 80 95 127
hor_shift_reg.vhd horizontal shift register 83 190 600
buff.vhd line buffers component 60 60 60

Total generated Lines of Code 723 1015 2087

Table 3.1 – Generated VHDL code files for the pixel distributor

3.3.6.1 Code Generation

We developed a tool that takes the length H and the width V of the macro-block as inputs
to generate the required VHDL code files for the pixel distributor. By using a host machine
equipped with Intel(R) Core i7 processor and 16 GB RAM, where more than 700 lines were
generated automatically for a pixel distributor of macro-block size = 4x4. This is a significant
improvement in comparison with manual coding for the same distribution design which could
take hours for development and verification.

By using the same tool, when the size of macro-block is changed ; the designer does not
need to redesign the pixel distributor but few input parameters can be modified in the tool,
and after few seconds the required VHDL files are generated. The tool generates a set of files
containing the description for circular vertical shifter, horizontal shift register, line buffer as
well as the top-level module for pixel distributor. The tool helps the designer to obtain the
required files particularly when the number of code lines increases with larger macro-block
sizes. For instance, the code size grows from more than 700 lines for macro-block = 4x4 to
more than 2000 lines for macro-block = 16x16 as shown in Table 3.1.

3.3.6.2 Pixel Distributor Synthesis Results

Table 3.2 shows the synthesis results for the pixel distributor over Zynq XC7Z045-FFG900
evaluation board. The pixel distributor was synthesized for the following model parameters
(macro-block size = 4x4, hor_slide = 1 and ver_slide = 1) for different frame sizes (HD1080,
HD720, SVGA and VGA). The results showed that the size of the controller in terms of
Register and LUT differs according to the frame size. This occurs because the size of the
internal counters used by the controller during reading/writing process depends on the size
of the input frame. While for the other components, they are almost occupying the same area
because their size depends only on the macro-block size which was fixed to 4x4 during this
experiment.

Table 3.3 shows the synthesis results for the pixel distributor for fixed frame size (HD1080)
with hor_slide = 1, ver_slide = 1 and different sizes of macro-block (1x3, 2x2, 3x1, 4x4,....).
From the results, we can notice that circular vertical shifter has almost the same area when V

3.3 Generic Pixel Distribution Model 43

1920x1080 1280x720 800x600 640x480

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K

Circular
vertical shifter 2 36 0 2 34 0 2 36 0 2 34 0

Horizontal
shift register 130 0 0 130 0 0 130 0 0 130 0 0

Controller 95 173 0 92 174 0 87 159 0 84 163 0
Line buffers 0 0 4 0 0 4 0 0 4 0 0 4
Total 227 209 4 224 208 4 219 195 4 216 197 4
Freq(MHz) 268.53 267.95 266.17 269.40

Table 3.2 – Synthesis results for pixel distributor for model parameters (macro-block = 4x4
with hor_slide = 1 and ver_slide = 1) with different frame sizes

Macro-block
size (H x V)

Circular
vertical
shifter

Horizontal
shift

register
Controller Line

buffers Total Freq
(MHz)

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K

Sl
ic
e
R
eg

Sl
ic
e
L
U
T

B
R
A
M
_
18

K
1 x 3 2 29 26 0 83 145 3 111 174 3 289.27
2 x 2 1 9 34 0 94 170 2 129 179 2 269.98
3 x 1 0 0 26 0 92 176 1 118 176 1 269.98
3 x 8 3 134 194 0 88 170 8 285 304 8 259.87
4 x 4 2 36 130 0 95 173 4 227 209 4 268.53
4 x 6 3 107 194 0 95 178 6 292 285 6 267.59
5 x 4 2 35 162 0 95 183 4 259 218 4 257.69
5 x 7 3 144 282 0 94 183 7 379 327 7 244.92
6 x 4 2 36 194 0 95 175 4 291 211 4 268.53

Table 3.3 – Synthesis results for pixel distributor for HD1080 frame, hor_slide = 1, ver_slide
= 1 and different macro-block sizes

parameter is the same for macro-block of sizes 4x4, 5x4 and 6x4. For horizontal shift register,
it has the same area for distributors of the same number of output pixels like in the case of
3x1 and 1x3 or in the case of 4x6, 6x4 and 3x8. Based on the synthesis results, the maximum
operating frequency for pixel distributor is higher than the one required for HD1080 running
at 60 frame/sec (i.e. 148.5 MHz).

3.3.6.3 Video Downscaler (16 :1)

Video downscaler (16 :1) scales HD1080 frame (1920x1080) to one sixteenth of its size
(480x270). Figure 3.12 shows the architecture of the parallel image processing elements where

44 Flexible Parallel Architecture for Video Streaming Applications

Pixel
Distributor_R

Mux

data 0

data

SOF

Pixel
Collector

hblank
vblank

act_video
data[23:16]

hblank
vblank

act_video
data[23:0]

data 15

.

Video
Scaling

4x4
valid

data

SOF
 valid

data

SOF
validVideo

Scaling
4x4

Mux
data

SOF

valid

Mux
data

SOF

valid

Video
Scaling

4x4

Video
Scaling

4x4

Video
Scaling

4x4

Video
Scaling

4x4

data

SOF
 valid

data

SOF
valid

data

SOF
 valid

data

SOF
valid

Demux

 SOF
valid

. ...

 SOF
 valid

. ...

 SOF

valid

Pixel
Distributor_G

data 0
hblank
vblank

act_video
data[15:8] data 15

.

Demux

 SOF
valid

. ...

 SOF
 valid

. ...

 SOF

valid

Pixel
Distributor_B

data 0
hblank
vblank

act_video
data[7:0] data 15

.

Demux

 SOF
valid

. ...

 SOF
 valid

. ...

 SOF

valid

Figure 3.12 – Parallel architecture for video downscaler (16 :1)

video downscaler (16 :1) has a separate processing channel for each color component (red,
green and blue). The pixel distributor was configured with the following model parameters
(macro-block size = 4x4, hor_slide = 4 and ver_slide = 4). The computation delay for
VideoScaling_4x4 IP is 8 clock cycles, and by applying equation 3.3, we can deduce that
the required number of parallel PEs is 2. Thus, we had two VideoScaling_4x4 IPs working
simultaneously for each processing channel. The demultiplexer is used to branch the control
signals (valid and sof) over the IPs for parallel processing. While the multiplexer is used to
gather both the processed pixels and the control signals from the parallel processing elements
to send them to the pixel collector. In the pixel collector, pixels are stored in order, and when
there are enough stored pixels in the buffer, it starts streaming the video frame with the
corresponding video timing signals (vblank, hblank and active_video) to the HDMI output
port. The scaled output frame can be placed in the middle of the screen by setting the border
parameters of the pixel collector to (left_border = 720, right_border = 720, top_border = 405,
bottom_border = 405).

Table 3.4 shows the synthesis results for video downscaler (16 :1). The video downscaler
occupies 4.8% and 9.3% of the total available resources for Register and LUT respectively.
The parallel processing channels consume nearly 9.7% of the total used Register and 8.6% of
that used for LUT. Pixel distributor utilizes around 3.2% of the total design area for both
Register and LUT ; thus, it represents a low hardware design cost. For BRAM utilization,
video downscaler (16 :1) shows around 22% of the total available BRAM on the board since
pixel collector keeps the pixels for one scaled frame (480x270) before starting streaming the
output.

3.3 Generic Pixel Distribution Model 45

Sl
ic
e
R
eg

Sl
ic
e
LU

T

B
R
A
M
_
18

K

B
R
A
M
36

D
SP

48
E
1

Video processing system architecture
Video timing controller 0 1209 1230 0 0 0
VITA image sensor
receiver 5941 6331 0 13 4

Image preprocessing
pipeline 10565 9733 19 10 9

RGB-to-YCbCr422 254 202 0 0 4
Video timing controller 1 1093 1114 0 0 0
Total 19062 18610 19 23 17

Video downscaler (16 :1)
Pixel distributor (R,G,B) 669 639 12 0 0
Demux (R,G,B) 3 9 0 0 0
Video scaling (R,G,B) 1140 756 0 0 0
Mux (R,G,B) 90 42 0 0 0
Pixel collector (R,G,B) 154 307 0 96 0
Total 2056 1753 12 96 0
Total application area 21118 20363 31 119 17
Resource utilization (%) 4.83 9.32 2.8 22 1.89

Convolution filter
Pixel distributor (R,G,B) 507 630 9 0 0
Demux (R,G,B) 9 27 0 0 0
Conv. filter (R,G,B) 4410 2844 0 0 0
Mux (R,G,B) 210 99 0 0 0
Pixel collector (R,G,B) 132 325 0 72 0
Total 5268 3925 9 72 0
Total application area 24330 22535 28 95 17
Resource utilization (%) 5.56 10.31 2.57 17.61 1.89

Table 3.4 – Synthesis results for the video downscaler (16 :1) and convolution filter

3.3.6.4 Convolution Filter

Based on the same video processing architecture shown in Fig. 3.2, a convolution filter
[38] with kernel [-1, -1, -1, -1, 9, -1, -1, -1, -1] is applied to HD1080 input frame captured by
the VITA image sensor. In this application, a processing channel is dedicated to each color
component where Fig. 3.13 shows the processing channel for the red color component and
similarly it will be for the green and blue color channels. The input stream is distributed by
pixel distributor in the form of macro-blocks of size = 3x3 with hor_slide = 1 and ver_slide
= 1. The computation delay for Conv_3x3 block is 6 clock cycles and by using equation

46 Flexible Parallel Architecture for Video Streaming Applications

Pixel
Collector

hblank
vblank

act_video
data[23:0]

Conv
3x3

data

SOF
 valid

data

SOF
valid

Conv
3x3

data

SOF

valid
Mux

Conv
3x3

Conv
3x3

Conv
3x3

Conv
3x3

data

SOF
 valid

data

SOF
valid

data

SOF
 valid

data

SOF
valid

 SOF
valid

. ...

 SOF
 valid

. ...

 SOF
valid

. ...

 SOF
 valid

. ...

Pixel
Distributor_R

data 0
hblank
vblank

act_video
data[23:16] data 8

.

Demux

 SOF
valid

. ...

 SOF
 valid

. ...

 SOF

valid
~~~

Figure 3.13 – The red color processing channel for convolution filter

3.3, the required number of parallel Conv_3x3 elements for each channel will be 6 IPs in
order to process the distributed macro-blocks. Demultiplexer and multiplexer are used for
branching and gathering pixels and control signals through the parallel architecture. Due to
the limitation described in subsection 3.3.2, the border pixels are not processed so the pixel
collector produces the output frame with a contour of black pixels. The border parameters
of the pixel collector were set to the following values (left_border = 1, right_border = 1,
top_border = 1, bottom_border = 1).

As shown in Table 3.4, the convolution filter has 5.5% of the total available Register and
10.3% of that available for LUT. The parallel processing channels occupy 21.7% and 17.4%
of the total design utilization for Register and LUT respectively. This percentage rises due to
the presence of 6 parallel Conv_3x3 elements working at the same time for each processing
color channel. The pixel distributor shows less than 3% of both resources which proves the
low hardware cost of our solution. For BRAM utilization, the collector starts streaming at the
time it receives the first processed pixel ; however, the frame is started by a VBlank period
so the processed pixels have to be stored in buffers during that period. For this reason, the
convolution filter takes around 17.6% of the total available BRAM resources.

3.4 Using Hardware Parallelism for Reducing Power
Consumption

Fig. 3.14 depicts three processing channels (red, green and blue) where the pixel distributor
distributes the input pixel stream in the form of macro-blocks of size HxV, where H is the
horizontal size and V is the vertical one. It stores the pixels in its internal buffers during
the first (V -1) rows of the macro-block (i.e. idle time) while during the last row, it starts to



3.4 Using Hardware Parallelism for Reducing Power Consumption 47

VITA image 
sensor 

VITA image 
sensor 

VTC 0VTC 0

CFACFA

G
am

m
a

G
am

m
a

ctrl

ctrl

CLK 2

|data24

ctrl

|data10

ctrl ctrl

|data10

|data[23:16] 8

|data[7:0] 8

|data[15:8] 8 P
ix

el
D

is
tr

ib
u

to
r_

G

P
ix

el
D

is
tr

ib
u

to
r_

G

valid
data 0

sof

cl
k_

w
r

data N

.... FI
FO

 
D

em
u

x

FI
FO

 
D

em
u

x

data 0

data N
.. P

E 
M

P
E 

M
P

E 
1

P
E 

1

..

......

sof 1
valid 1

cl
k_

rd

....... M
u

x
M

u
x

valid 1
data

sof 1

valid M
data

sof M

valid
data

sof

ctrl

P
ix

el
D

is
tr

ib
u

to
r_

R

P
ix

el
D

is
tr

ib
u

to
r_

R

valid
data 0

sof

cl
k_

w
r

data N

.... FI
FO

 
D

em
u

x

FI
FO

 
D

em
u

x

data 0

data N
.. P

E 
M

P
E 

M
P

E 
1

P
E 

1

..

......

sof 1
valid 1

cl
k_

rd

.......

clk_wr

M
u

x
M

u
x

clk_rd

valid 1
data

sof 1

valid M
data

sof M

data

sof

P
ix

el
D

is
tr

ib
u

to
r_

B

P
ix

el
D

is
tr

ib
u

to
r_

B

valid
data 0

sof

cl
k_

w
r

data N

.... FI
FO

 
D

em
u

x

FI
FO

 
D

em
u

x

data 0

data N
.. P

E 
M

P
E 

M
P

E 
1

P
E 

1

..

......

sof 1
valid 1

cl
k_

rd

....... M
u

x
M

u
x

valid 1
data

sof 1

valid M
data

sof M

valid
data

sof

ctrl

ctrl

P
ix

el
 

C
o

lle
ct

o
r

P
ix

el
 

C
o

lle
ct

o
r

data[23:0]

ctrl

RGB to
 YCbCr422

RGB to
 YCbCr422

VTC 1VTC 1

ctrl

data

valid

CLK 1CLK 1

Figure 3.14 – Video processing architecture

Figure 3.15 – valid signal during the distributing_cycle for macro-blocks of H = 2 and V
= 3



48 Flexible Parallel Architecture for Video Streaming Applications

distribute the pixels in the form of macro-blocks with valid signal assigned high with each
block (i.e. distributing_time) as shown in Fig. 3.15.

The parallel Processing Elements (PEs) are operating at clock frequency FREQ2 which
is slower than the one used by the other parts of the system (FREQ1). Therefore, a FIFO is
required to store the macro-blocks during their transfer from one clock domain to another.
FIFO is typically implemented using a dual-port BRAM where we have two input clock
frequencies : clk_wr for writing and clk_rd for reading. The block named FIFO_DeMux has
two roles : (i) to store the macro-blocks when they are transferred from clock domain CLK1 to
clock domain CLK2. (ii) to distribute the macro-blocks among the processing elements ( PE1,
PE2, PE3 ,....., PEn). Multiplexers are used to gather the processed data from the parallel
PEs ; then they are later written to the pixel collector. When the pixel collector has enough
pixels, it starts streaming them to RGB-to-YCbCr422 block where pixels are converted to
YCbCr 4 :2 :2 format ready for streaming on HD monitor. The communication between the
blocks is done through the signals named valid and sof such that valid signal is asserted high
when there is an available pixel at the output port, while sof signal is flagged only if this
pixel represents the start of the frame.

3.4.1 Level of Parallelism and FIFO Depth Calculations

3.4.1.1 Level of Parallelism

If pixel distributor sends pixels to the FIFO at a rate faster than the receiving side can
handle, then the depth of FIFO will grow indefinitely. As shown in Fig. 3.15, to bound the
maximum depth of FIFO, the produced macro-blocks during the distributing_time should be
processed within the time of the distributing_cycle otherwise the maximum depth of FIFO
will grow up.

Taking this constraint into consideration, we can calculate the maximum computation
delay (max_comp_delay) available for each processing element as following :

max_comp_delay =
distributing_cycle ∗ N_PE

N_mblocks ∗ rd_clk (3.4)

=
V ∗ line_period ∗ wr_clk ∗ N_PE

N_mblocks ∗ rd_clk (3.5)

=
V ∗ line_period ∗ 1

F REQ1 ∗ N_PE
N_mblocks ∗ 1

F REQ2
(3.6)

=
V ∗ line_period ∗ FREQ2 ∗ N_PE

N_mblocks ∗ FREQ1 (3.7)

Where V is the vertical dimension of the macro-block, line_period is the time required to
stream one line of pixels in the horizontal direction, distributing_cycle is the time required
to stream V lines of pixels, N_PE is the number of parallel processing elements, N_mblocks
is the number of macro-blocks per distributing_cycle, wr_clk is the clock period for FIFO



3.4 Using Hardware Parallelism for Reducing Power Consumption 49

writing clock frequency (FREQ1) and rd_clk is the clock period for FIFO reading clock
frequency (FREQ2).

From the same equation, by fixing the computation delay (comp_delay), we can calculate
the required level of parallelism (i.e. N_PE) to be :

Level of Parallelism =
comp_delay ∗ N_mblocks ∗ rd_clk

distributing_cycle (3.8)

=
comp_delay ∗ N_mblocks ∗ rd_clk

V ∗ line_period ∗ wr_clk (3.9)

=
comp_delay ∗ N_mblocks ∗ 1

FREQ2
V ∗ line_period ∗ 1

FREQ1
(3.10)

=
comp_delay ∗ N_mblocks ∗ FREQ1

V ∗ line_period ∗ FREQ2 (3.11)

3.4.1.2 FIFO Depth

Since we can not simultaneously read and write to the same FIFO position ; therefore, a
constant value equal to 2 will be added to guarantee a minimum non-zero FIFO depth. At
every rd_clk (CLK2), one PE can be activated ; so for calculating the maximum FIFO depth,
we will have two cases according to how much slower is rd_clk (CLK2) than wr_clk (CLK1) :
• Case 1. Fig. 3.16 shows the case when not yet all PEs are activated by the end of the
distributing_time (i.e. N_PE * rd_clk > distributing_time). In this case, FIFO depth
is calculated as follows :

FIFO depth = N_mblocks − N_act_PE + 2 (3.12)

= N_mblocks − distributing_time
rd_clk + 2 (3.13)

= N_mblocks −
N_pixels_line ∗ 1

F REQ1
1

F REQ2
+ 2 (3.14)

= N_mblocks − N_pixels_line ∗ FREQ2
FREQ1 + 2 (3.15)

Where N_mblocks is the number of macro-blocks per distributing_cycle, N_act_PE
is the number of active processing elements by the end of the distributing_time, and
N_pixels_line is the number of pixels per line_period.
• Case 2. Fig. 3.17 shows the other case when all PEs are activated at least once during

the distributing_time (i.e. N_PE * rd_clk ≤ distributing_time)

FIFO depth = N_mblocks − distributing_time ∗ N_PE
rd_clk ∗ comp_delay + 2 (3.16)

= N_mblocks −
N_pixels_line ∗ 1

F REQ1 ∗ N_PE
1

F REQ2 ∗ comp_delay + 2 (3.17)

= N_mblocks − N_pixels_line ∗ FREQ2 ∗ N_PE
FREQ1 ∗ comp_delay + 2 (3.18)



50 Flexible Parallel Architecture for Video Streaming Applications

Figure 3.16 – Case 1 : when all PEs are not yet activated where N_mblocks = 6 blocks,
N_pixels_line = 20 pixels, FREQ1 = 8F and FREQ2 = F.

Figure 3.17 – Case 2 : when all PEs are activated at least once where N_mblocks = 6 blocks,
N_pixels_line = 20 pixels, N_PE = 4, comp_delay = 8 cycles, FREQ1 = 2F and FREQ2
= F

.

where comp_delay is the number of clock cycles required by PE to process one macro-
block.

3.4.2 Experimental Results

In this section, we will discuss the implementation of two different video processing
applications : video downscaler (16 :1) and AES encryption algorithm. By applying the
equations obtained in the previous section, we were able to obtain different design alternatives
varying in the depth of FIFO and in the level of parallelism. For each design alternative,
the power was estimated by Xilinx XPower Analyzer and measured practically using TI
Fusion Digital Power Designer. The preferable design is then selected based on the percentage
decrease in power compared to the hardware cost needed to implement this solution.



3.4 Using Hardware Parallelism for Reducing Power Consumption 51

Design
point

Level of
parallelism

FREQ1
( MHz )

FREQ2
( MHz )

FIFO
depth

video downscaler (16 :1) Application
D1 1 148.5 148.5 0
D2 1 148.5 74.25 242
D3 1 148.5 37.125 362
D4 2 148.5 74.25 2
D5 2 148.5 37.125 242
D6 2 148.5 18.5625 362
D7 4 148.5 37.125 2
D8 4 148.5 18.5625 242
D9 4 148.5 9.28125 362

AES Encryption Application
D1 3 148.5 148.5 0
D2 3 148.5 74.25 242
D3 3 148.5 37.125 362
D4 6 148.5 74.25 2
D5 6 148.5 37.125 242
D6 6 148.5 18.5625 362
D7 12 148.5 37.125 2
D8 12 148.5 18.5625 242
D9 12 148.5 9.28125 362

Table 3.5 – The design points for video downscaler (16 :1) and AES encryption applications

3.4.2.1 Design Points

The application was synthesized using the parallel video processing architecture depicted
in Fig 3.14 over Zynq XC7Z045-FFG900 platform. The image sensor was configured for 60
frame/sec such that FREQ1=148.5 MHz while FREQ2 was a divisor of FREQ1 according
to the selected design point. For video downscaler (16 :1), the pixel distributor distributed
the HD frames in the form of macro-blocks of size = 4x4 to the processing elements of
computation delay equal to 4 clock cycles. For AES encryption application, the HD frame
was encrypted through a non-pipelined 128-bit AES encryption IP of computation delay equal
to 12 clock cycles. We chose Electronic Codebook cipher mode (ECB) since it is the simplest
AES encryption mode where the plaintext is separately encrypted using the same 128-bit
cipher key [30].

Table 3.5 listed a set of different design points. These points could be obtained using
equation 3.11 by either varying the level of parallelism or the operating frequency FREQ2.
For both applications, the design point D1 is considered as the reference design point because
it has the minimum required level of parallelism as well as it operates at the same clock
frequency (i.e. FREQ1 = FREQ2 = 148.5 MHz).



52 Flexible Parallel Architecture for Video Streaming Applications

D
es
ig
n
po

in
t

Sl
ic
e

R
eg
is
te
r

LU
T

LU
T
R
A
M

B
R
A
M
_
18

K

B
R
A
M
_
36

K

D
SP

48
E
1

Video Downscaler (16 :1) Application
Base 8860 17273 17046 1168 29 114 16
D1 183 573 342 0 0 0 0
D2 1125 3537 2645 0 0 6 0
D3 1799 4989 4154 0 0 6 0
D4 613 1665 1034 264 0 0 0
D5 1042 3471 2830 0 0 6 0
D6 1508 4557 3767 0 0 6 0
D7 1004 2889 1797 264 0 0 0
D8 1612 5406 4026 0 0 6 0
D9 2165 6849 5005 0 0 6 0

AES Encryption Application
Base 8873 17376 17027 1168 77 18 16
D1 5660 7518 14645 0 0 0 0
D2 6378 10482 17113 0 0 6 0
D3 7157 11934 18435 0 0 6 0
D4 11564 16635 30147 264 0 0 0
D5 12643 19164 32025 0 0 6 0
D6 12998 20610 33149 0 0 6 0
D7 21881 32451 59936 264 0 0 0
D8 22539 34986 62033 0 0 6 0
D9 23534 36429 62929 0 0 6 0

Table 3.6 – The Synthesis results for each design point for both video downscaler (16 :1)
and AES encryption

3.4.2.2 Synthesis Results

The selected synthesis/implementation strategy can affect the power consumption of the
implemented design [69]. Taking this into consideration, it is worth to mention our selected
options for synthesis and implementation during our experiments. PlanAhead 14.3 tool was
used during the design process where for both applications, PlanAhead Defaults was used as a
synthesis strategy. While the implementation strategy was as follows : (i) For video downscaler,
we used ISE Defaults for all designs except for designs D8 and D9, it was ParHighEffort to
meet the timing constraints. (ii) For AES encryption, we used by default ParHighEffort
strategy while MapTiming was used for design D2 to avoid timing constraints violation.

Table 3.6 shows the hardware cost for each design point. For each application, the row
named base represents the required resources for implementing the basic blocks which exist in



3.4 Using Hardware Parallelism for Reducing Power Consumption 53

Design
point

Video Downscaler
(16 :1) Application

AES Encryption
Application

Measured
Power

(in mW)

Percentage
power

decrease ( % )

Measured
Power

(in mW)

Percentage
power

decrease ( % )
D1 1288.95 0 1038.36 0
D2 1212.94 5.9 1046.87 -0.82
D3 1116.93 13.35 1020.26 1.74
D4 1126.36 12.61 1023.54 1.43
D5 1111.96 13.73 1005.16 3.2
D6 1067.65 17.17 991.15 4.55
D7 1059.1 17.83 989.26 4.73
D8 1055.32 18.13 992.04 4.46
D9 1036.56 19.58 982.36 5.39

Table 3.7 – The measured power for different design points for video downscaler and AES
encryption

every single design point like VITA image sensor, VTC, CFA, GAMMA, pixel distributors or
pixel collector. While the row named after each design point represents the needed resources
for implementing that specified design. Therefore, the total resources used for realizing a
single design point is equal to the sum of the base row in addition to the row representing
that design point. For example, the total design cost for D1 for video downscaler (16 :1) is :
Slice = 9043, Register = 17846 and LUT = 17388.

From the synthesis results, we can get some observations that will later help us to
understand how the power is consumed in the system : (i) It is obvious that the used BRAMs
for video downscaler application was more than that used for AES application. This occurred
because video downscaler (16 :1) needs to store more pixels before start streaming the video
frames. (ii) The required level of parallelism for AES application is higher than that needed
for video downscaler as mentioned in Table 3.5. Consequently, the total used logic for AES
application will be greater than that used for video downscaler (16 :1).

3.4.2.3 Power Analysis

The power consumption for each design point was estimated using XPower Analyzer [110]
to understand how the power was broken down between the different hardware resources. The
power was also measured for verification through the power controller UCD90120A mounted
on the evaluation board using Fusion Digital Power Designer [98]. During our experiments,
we considered the Register number as the cost function to implement a certain design choice.
For sure, we can choose any other hardware resource as the cost, or we can even have multiple
factors in the cost function (for example, the summation of both register and LUT number
as the cost function).



54 Flexible Parallel Architecture for Video Streaming Applications

1 2 3 4 5 6 7 8 9
1

1.05

1.1

1.15

1.2

1.25

1.3

Design Points

Po
we

r
in

W
at
t

0

2,000

4,000

6,000

Sl
ic
e
R
eg
ist

er

Figure 3.18 – The trade-off between the estimated power , the measured power and
the slice register cost for each design point for video downscaler (16 :1)

1 2 3 4 5 6 7 8 9

1

1.1

1.2

1.3

1.4

1.5

1.6

Design Points

Po
we

r
in

W
at
t

1

1.5

2

2.5

3

3.5

·104

Sl
ic
e
R
eg
ist

er

Figure 3.19 – The trade off between the estimated power , the measured power and
the slice register cost for each design point for AES encryption

In Fig. 3.18, the estimated and measured power for video downscaler application was
plotted against the number of Register required for each design point. Experimentally, the
power consumption decreased from 1.29 W for D1 to be 1.04 W at D9 with a percentage power
reduction equal to 19.6% as listed in Table 3.7. According to the available register resources,
the designer can select which design alternative to use and what percentage decrease in power
to gain as listed in Table 3.6 and Table 3.7. For example in video downscaler (16 :1), the
percentage decrease in power consumption for D7 was 17.8% at register cost = 2889 and for
D6 was 17.1% at register cost = 4557 so D7 is always better than D6 since it achieved more
power reduction at lower register cost. Also, we can consider D7 as a design choice better than
other points like D8 or D9 because the percentage decrease in power between these points



3.4 Using Hardware Parallelism for Reducing Power Consumption 55

Video downscaler AES encryption

Clocks

Signals & Logic

Static

Other

BRAM

11%7%

53%

15%

14% 11%

52%
14%

12%
11%

Figure 3.20 – The power consumed by different resources to implement the reference design
D1 for both video downscaler and AES encryption

and D7 is not so significant (0.3% for D8 and 1.7% for D9) if compared to the percentage
increase in the register cost (87% for D8 and 137% for D9).

For AES encryption application, Fig. 3.19 depicts the estimated and measured power
versus the Register cost for different design points. From the experimental measurements, the
percentage decrease in power compared to that for the reference design was in the range of
-0.8% up to 5.4% as reported in Table 3.7. One reason for having such power increase at D2 is
because that the used implementation strategy was changed to satisfy the timing constraints.
It relies on the designer decision either to profit from the maximum possible power reduction
of 5.4% at register cost = 36429 or to stay at some moderate hardware cost like at D6 with
register cost = 20610 and power reduction of 4.5%.

Fig. 3.20 depicts the power estimations for the reference design D1 for both applications.
When we look deep into how the power consumption is broken down between the different
hardware resources. We can easily deduce that the significant power fraction was consumed by
the BRAM in the case of video downscaler while it was from the Signals & Logic in the AES
application. This can help us to explain why the maximum possible power reduction was large
for video downscaler (19.6%) while it was small for AES encryprtion (5.4%) : (i) For video
downscaler, the significant portion of the used BRAM were counted from the base design
resources as well as the significant fraction of the power was consumed by them. Therefore ;
when FREQ2 was scaled over the BRAMs, the total power consumption was decreased as
well. Table 3.5 showed that scaling down FREQ2 was accompanied by an increase in the level
of parallelism as well as the depth of FIFOs and consequently the used hardware resources
increased. But fortunately, the achieved power reduction was not too much affected by the
power consumption arising from the added logic and thus we obtained a percentage decrease
reached up to 19.6%. (ii) For the AES encryption application, the number of the used BRAM



56 Flexible Parallel Architecture for Video Streaming Applications

was not too much compared to the used logic, so the significant portion of the consumed power
was due to the used logic. Accordingly, as the level of parallelism increased, the used logic
increased as well. Unfortunately, scaling FREQ2 in this case was not enough to compensate the
increase in the power consumption due to the added logic and to show in return a significant
decrease in the total power consumption. Therefore, although D1, D4 and D7 operate at
different clock frequencies equal to 148.5 MHz, 74.25 MHz and 37.125 MHz respectively, they
reported a small percentage decrease in power reduction because of the added logic resulting
from increasing the level of parallelism.

It is notable that the percentage error between the estimated and measured power was
small for the video downscaler while it was significant for the AES encryption. This behaviour
from XPower Analyzer can be explained in the highlight of Fig. 3.20. For video downscaler
application, the power consumption was dominated by the BRAM while the Signals & Logic
dominated it for AES application. If we suppose that XPower Analyzer can assume better
activity rates for BRAMs than that assumed for Logic ; therefore, the power estimations for
video downscaler will be more close to the real measurements than that in the case of AES
application.

3.4.2.4 Performance

To satisfy the timing condition of 60 frame/sec, the output video channel was constrained
to clock frequency FREQ1 = 148.5 MHz. We also limited the maximum depth of the FIFOs
by processing the produced macro-blocks within their distributing cycle as mentioned before
in section 3.4.1.2. According to these constraints, not every pair (level of parallelism, scaled
frequency FREQ2) could suit as a design point for our application. As a result form that,
regardless what level of parallelism is applied or what value for FREQ2 is chosen, the
performance is kept constant at 60 frame/sec for all design points.

3.5 Conclusion

In this chapter, we presented a generic pixel distribution/gathering model dedicated for
streaming video applications with low hardware cost. The pixel distributor has a flexible model
where the required VHDL files can be obtained by setting the size of the macro-block and
the sliding manner in the code generation tool without spending more redesign efforts. After
that, we presented how the parallel hardware architecture is modified in conjunction with
frequency scaling to reduce power consumption. The equations required to calculate the level
of parallelism and the depth of the FIFOs were derived. Then, with the help of these equations,
a design space including all the possible design alternatives was obtained. The designer is free
to choose whichever design alternative to use based on the tradeoff between the hardware
cost and the defined goal for power consumption. Two video processing applications were



3.5 Conclusion 57

implemented to verify our approach where the results for the measured power showed up to
19.6% power reduction for video downscaler and up to 5.4% for AES application.





C h a p t e r 4

Efficient Hardware Implementation
for Multi-Window SAD Algorithm

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Stereo Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . 60
4.3 High-level Synthesis Optimizations . . . . . . . . . . . . . . . . . . 63

4.3.1 Optimizations Targeting Hardware Implementation . . . . . . . . . . 64
4.3.2 Optimizations for Exploiting Parallelism . . . . . . . . . . . . . . . 70
4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



60 Efficient Hardware Implementation for Multi-Window SAD Algorithm

4.1 Introduction

Using High-Level Synthesis (HLS) tools in Electronic Design Automation (EDA) aims at
moving the design efforts to higher abstraction levels. Among the reasons that have motivated
researchers to continue improving HLS tools : the huge growth in the silicon capacity, the
emergence of IP-based design approaches, trends towards using hardware accelerators on
heterogeneous SoCs, the time-to-market constraint which usually presses to reduce the design
time. Translating C/C++ code to RTL design with the help of HLS tools does not mean an
efficient hardware design. However, a set of high-level optimization steps could be applied in
order to obtain an efficient design. In this chapter, we will present the flow of steps to modify
the high-level code targeting hardware platforms as well as to exploit the inherent parallelism
in the application. We will show the impact of applying each optimization step on the overall
design efficiency in terms of hardware utilization and performance. It is worth to mention that
these optimization steps could be advised not only for stereo matching algorithms but also
for any other video processing application. In the context of our collaboration with NAVYA
company, Multi-window Sum of Absolute Difference (Multi-window SAD) stereo matching
algorithm was chosen as our industrial case study. In the experimental results, we will show
its hardware implementation for input grey images of size 640x480.

4.2 Stereo Matching Algorithm

Stereo matching is the problem of finding the depth of objects using two or more images.
These images are taken from different positions by different cameras at the same time. Stereo
matching is a correspondence problem where for every pixel (XR) in the right image, we try to
find its best matching pixel (XL) in the left image at the same scanline. Figure 4.1a shows how
the depth of objects is calculated in the stereo matching problem. Assuming two cameras of
focal length (f ) at the same horizontal level, separated from each other by a distance baseline
(b). Pixel (P) in the space will be located at point (XR) and point (XL) in the right and left
image respectively. The difference between the two points on the image plane is defined as
disparity (d) as depicted in Fig. 4.1b. Therefore ; the depth of pixel (P) from the two cameras
can be calculated from the following equation :

depth = baseline ∗ focal length
disparity = b ∗ f

(XR − XL) (4.1)

Several algorithms were proposed in the literature to find the best matching [84]. In
this thesis, Multi-Window Sum of Absolute Difference algorithm (Multi-Window SAD) was
implemented [43]. In Multi-Window SAD, absolute difference between pixels of the right and
left images are aggregated within a window such that the window of minimum aggregation
is considered as the best matching among its candidates. In order to overcome the error that



4.2 Stereo Matching Algorithm 61

Figure 4.1 – (a) Calculating the depth of an object in stereo matching problem (b) Disparity
is defined as the distance in pixels between (XR) and (XL)

Figure 4.2 – 5-window SAD configuration

appears at the regions of depth discontinuity, the correlation window can be divided into
smaller windows, and only non-error parts are considered in calculations. Figure 4.2 shows 5-
window SAD configuration : pixel (P) lies in the middle of window (E) where it is surrounded
by another four windows named (A, B, C and D). The four windows are partially overlapped
at the border pixel (P). These windows are of height = winV+1 and width = winH+1 while
window (E) is of height = 2*cwinV+1 and width = 2*cwinH+1. We defined window score
as the aggregation of the absolute difference of the pixels within that window. In 5-window
SAD, the correlation score at pixel (P) is equal to the score of window (E) in addition to
the minimum two scores of the other four windows (A, B, C and D). The score is calculated
at different disparities where the disparity of the minimum score is considered as the best
matching among the candidates as depicted in Fig. 4.3. Occluded objects are common to
happen in stereo matching problem where sometimes the objects are only captured by one



62 Efficient Hardware Implementation for Multi-Window SAD Algorithm

Figure 4.3 – Minimum score at disparity distance = 3

camera. For example, pixel (M) in Fig.4.1a was only captured by the right camera. Therefore,
Left/Right consistency check is done in order to get rid of occluded objects from the final
disparity image. During our experiments, we will use Vivado 2015.2 design suite to implement
our application over Zynq ZC706 FPGA evaluation board (XC7Z045-FFG900) with input
grey images of size 640x480. The system was configured for 5-window SAD with the following
parameters : winH = 23, winV = 7, cwinH = 7, cwinV = 3 and maximum disparity = 64.

The multi-window SAD algorithm is described in Listing 4.1 where it scans all the image
pixels at every disparity value ranges from zero to the maximum value (DISP_MAX). The
calculation of window (E) is usually performed independently from the others because the size
of window (E) is different from other windows (A, B, C and D). The for-loop described between
Lines 2-23 is repeated a number of times equal to the maximum disparity value (DISP_MAX).
The addition operation is considered as the core computation operation since we sum up the
absolute difference of pixels. If we assume an image of size N×N with aggregation window
of size M×M then (M2-1)N2 addition operations are needed for window aggregation at every
single pixel. While by applying box-filtering [67] in both horizontal and vertical direction ; the
number of additions will be reduced to 4N2. Box-filtering is applied in both horizontal and
vertical directions (Lines 5-10) to obtain the score of windows (A, B, C, D and E) at each pixel.
The minimum score min_score is equal to the sum of the score at window (E) in addition
to the best minimum two score values of the other four windows (Lines 12-17). The new
score value is compared to the previously calculated value at the same pixel such that if it is
smaller, then both the score array bestscoreR[ ] and the disparity map array DISP_IMG_R[ ]
are updated ; otherwise, they are kept unchanged (Lines 18-20). Occluded objects are common
to happen in the stereo matching problem ; therefore, Left/Right consistency check is applied
to get rid of occluded pixels from the final disparity map. Left/Right consistency check needs
to calculate the disparity map twice ; in the first calculation, the right image is considered as



4.3 High-level Synthesis Optimizations 63

1 Algorithm: Mutli_Window_SAD
2 for every disparity(d) where d = 0 -> DISP_MAX:
3 for every element(x,y) where x = 0 -> imgW, y = 0 -> imgH:
4 Abs[y][x] = abs(IMG_R[y][x]-IMG_L[y][x+d]);
5 for every element(x,y) where x = winH -> imgW-winH, y = 0 -> imgH:
6 row[y][x] = row[y][x-1] + Abs[y][x] - Abs[y][x-winH];
7 rowE[y][x] = rowE[y][x-1] + Abs[y][x] - Abs[y][x-2*cwinH];
8 for every element(x,y) where x = 0 -> imgW, y = winV -> imgH-winV:
9 scr[y][x] = scr[y-1][x] + row[y][x] - row[y-winV][x];

10 scrE[y][x] = scrE[y-1][x] + rowE[y][x] - rowE[y-2*cwinV][x];
11 for every element(x,y) where x = winH -> imgW-winH, y = winV -> imgH-winV:
12 scoreA = scr[y ][x ];
13 scoreB = scr[y ][x+winH ];
14 scoreC = scr[y+winV ][x+winH ];
15 scoreD = scr[y+winV ][x ];
16 scoreE = scrE[y+winV-cwinV][x+winH-cwinH];
17 min_score = scoreE + MIN_2_values{scoreA,scoreB,scoreC,scoreD};
18 if min_score < bestscoreR[y+winV][x+winH]:
19 bestscoreR[y+winV][x+winH] = min_score;
20 DISP_IMG_R[y+winV][x+winH] = d;
21 if min_score < bestscoreL[y+winV][x+winH+d]:
22 bestscoreL[y+winV][x+winH+d] = min_score;
23 DISP_IMG_L[y+winV][x+winH+d] = d;
24 for every element(x,y) where x = 0 -> imgW, y = 0 -> imgH:
25 dispVal = DISP_IMG_R[y][x];
26 if abs(DISP_IMG_L[y][x+dispVal]-dispVal) > 1:
27 DISP_IMG_R[y][x] = 0;

Listing 4.1 – Pseudo code for Multi-Window SAD algorithm

the reference while vice versa happens in the second one (Lines 18-23). Hence the disparity
maps are stored in DISP_IMG_R[ ] and DISP_IMG_L[ ] then for each pixel, we check if
the value of the left disparity map is the same as its matching pixel in the right disparity
map. If it is the case then we validate the pixel matching ; otherwise, the disparity value at
that pixel is uncertain and is replaced by zero (Lines 24-27).

4.3 High-level Synthesis Optimizations

Two classes of optimizations could be applied to modify the software code.
• Optimizations targeting hardware implementation. This type of optimizations

modifies the software code to fit for hardware implementation. For example, using
arbitrary data precision instead of the standard data types for efficient hardware size or
modifying the way of processing to be in the form of image strips to reduce the size of
used arrays or adding AXI-Stream control signals to the output ports for communication
control.

• Optimizations for exploiting the inherent parallelism in the application.
This type of optimizations modifies the software code to exploit the parallelism in the



64 Efficient Hardware Implementation for Multi-Window SAD Algorithm

Design Slice FF LUT BRAM_18K Freq. (MHz) exec. time
(ms)

SW
version 380 ms on core i7@ 2.7 GHz and 16 GB of RAM

#1 X 2637 5918 7392 100 X
#2 898 1743 2735 155 100 30080
#3 859 1758 2659 113 100 22410
#4 1400 2552 3738 75 100 8163
#5 983 1525 2567 47 100 5786
#6 996 1575 2619 49 100 6307

Table 4.1 – Synthesis results reported by Vivado HLS for each optimization step

application at different levels (pipeline-level, task-level or data-level parallelism).
The software code can be modified in two ways : (i) Code restructuring : some

optimizations are achieved by rewriting some parts of the SW code. For example, rewriting
some loops in separate sub-functions to enforce their execution in parallel or defining
variables in arbitrary precision data types to decrease area utilization. (ii) Directives offered
by the High-level Synthesis tool like loop pipelining, loop unrolling or array partitioning.
These directives are one of HLS tools strength points where they are easily added to the
software code to perform sophisticated optimizations without the need to modify the code
by hand. The order of applying the optimization steps in the design flow should be taken
into consideration in order to avoid reapplying some optimization steps twice. For example,
the optimizations targeting hardware implementation should be applied prior to that for
exploiting the parallelism.

4.3.1 Optimizations Targeting Hardware Implementation

The behavioural code was written in HLS-friendly syntax with neither file read/write, nor
dynamic memory allocation nor system calls. The SW code was executed on standard PC
to test its correct functionality. Then it was synthesized by Vivado HLS to obtain the first
synthesizable design (Design #1). Table 4.1 listed an overuse for BRAM (BRAM_18K=7392)
for Design #1 where the FPGA platform has maximum BRAM_18K=1090. This limitation
will lead to the first optimization step which is dividing an image into strips during processing
to reduce the required memory usage.

4.3.1.1 Dividing an image into strips

For window-based image processing algorithm, dividing an image into strips is an
inevitable step due to the limited number of on-chip memories (BRAMs). In strip processing,
loop boundaries and array dimensions are updated to reflect a strip size processing area
instead of full image size (i.e. the image height changed from imgH to stripH where stripH =



4.3 High-level Synthesis Optimizations 65

1 for every disparity(d) where d = 0 -> DISP_MAX:
2 for every element(x,y) where x = 0 -> imgW, y = 0 -> 2*winV+1:
3 Abs[y][x] = abs(IMG_R[y][x]-IMG_L[y][x+d]);
4 for every element(x,y) where x = winH -> imgW-winH, y = 0 -> 2*winV+1:
5 row[y][x] = row[y][x-1] + Abs[y][x] - Abs[y][x-winH];
6 for every element(x,y) where x = winH -> imgW-winH,
7 y = winV-cwinV -> winV+cwinV+1:
8 rowE[y-winV+cwinV][x] = rowE[y-winV+cwinV][x-1] + Abs[y][x] - Abs[y][x-

cwinH];
9 for every element(i) where i = 0 -> imgW:

10 for every element(y) where y = 0 -> winV+1:
11 scr_AB[i] += row[y][i];
12 for every element(y) where y = winV+1 -> 2*winV+1:
13 scr_CD[i] += row[y][i];
14 for every element(y) where y = 0 -> 2*cwinV+1:
15 scr_E[i] += row_E[y][i];
16 for every element(x) where x = winH -> imgW-winH:
17 scoreA = scr_AB[x ];
18 scoreB = scr_AB[x+winH ];
19 scoreC = scr_CD[x+winH ];
20 scoreD = scr_CD[x ];
21 scoreE = scr_E[x+winH-cwinH];
22 min_score = scoreE + MIN_2_values{scoreA,scoreB,scoreC,scoreD};
23 if min_score < bestscoreR[x+winH]:
24 bestscoreR[x+winH] = min_score;
25 DISP_IMG_R[x+winH] = d;
26 if min_score < bestscoreL[x+winH+d]:
27 bestscoreL[x+winH+d] = min_score;
28 DISP_IMG_L[x+winH+d] = d;
29 for every element(x) where x = winH -> imgW-winH:
30 dispVal = DISP_IMG_R[x];
31 if abs(DISP_IMG_L[x+dispVal]-dispVal) > 1:
32 DISP_IMG_R[x] = 0;

Listing 4.2 – Pseudo code for aggregating the pixels in horizontal then vertical direction
(Design #2)

2×winV+1) where the code will be repetitively executed until all the strips in one frame are
completely processed.

In multi-window SAD algorithm, the pixels can be summed in three different ways :
(i) Listing 4.2 shows that Design #2 aggregates the pixels in the horizontal direction (Lines
4-8) then the result is aggregated in the vertical one to get the score of the window (Lines 9-15).
(ii) While in Design #3, the aggregation is done vertically along the column length (Listing 4.3,
Lines 4-10) then horizontally along the scanline (Listing 4.3, Lines 11-14). (iii) However, in
Design #4, the pixels are aggregated within the window boundary in both directions to get
the score value (Listing 4.4, Lines 4-11). Figure 4.4 shows how the pixels are aggregated in
Design #4 to obtain the score of a window of dimensions (X1,Y 1). A circular buffer of size
(X1+1) is used to keep the sum of pixels of each column (C0, C1, C2, ...). Usually last_ptr
points to the position where the last column is added to the buffer ; while first_ptr points



66 Efficient Hardware Implementation for Multi-Window SAD Algorithm

1 for every disparity(d) where d = 0 -> DISP_MAX:
2 for every element(x,y) where x = 0 -> imgW, y = 0 -> 2*winV+1:
3 Abs[y][x] = abs(IMG_R[y][x]-IMG_L[y][x+d]);
4 for every element(x) where x = 0 -> imgW:
5 for every element(y) where y = 0 -> winV+1:
6 col_AB[x] += Abs[y][x];
7 for every element(y) where y = winV+1 -> 2*winV+1:
8 col_CD[x] += Abs[y][x];
9 for every element(y) where y = winV-cwinV -> winV+cwinV:

10 col_E[x] += Abs[y][x];
11 for every element(x) where x = winH -> imgW-winH:
12 scr_AB[x] = scr_AB[x-1] + col_AB[x] - col_AB[x-winH];
13 scr_CD[x] = scr_CD[x-1] + col_CD[x] - col_CD[x-winH];
14 scr_E[x] = scr_E[x-1] + col_E[x] - col_E[x-2*cwinH];

Listing 4.3 – Pseudo code for aggregating the pixels in vertical then horizontal direction
(Design #3)

1 for every disparity(d) where d = 0 -> DISP_MAX:
2 for every element(x,y) where x = 0 -> imgW, y = 0 -> 2*winV+1:
3 Abs[y][x] = abs(IMG_R[y][x]-IMG_L[y][x+d]);
4 for every element(i) where i = winH -> imgW-winH:
5 for every element(x,y) where x = 0 -> winH+1, y = 0 -> winV+1:
6 scr_AB[i] += Abs[y][i+x-winH];
7 for every element(x,y) where x = 0 -> winH+1, y = winV+1 -> 2*winV+1:
8 scr_CD[i] += Abs[y][i+x-winH];
9 for every element(x,y) where x = winH-cwinH -> winH+cwinH+1,

10 y = winV-cwinV -> winV+cwinV+1:
11 scr_E[i] += Abs[y][i+x-winH];

Listing 4.4 – Pseudo code for aggregating the pixels within window boundary (Design #4)

to the position next to it as depicted in Fig. 4.4. Listing 4.5 explains how to compute the
score of a window of dimensions (X1,Y 1). Initially, last_ptr points to the first place in the
buffer while first_ptr points to the next one (Line 7). Every iteration along the image scanline
imgW, a new column (C) is summed up to the end of the circular buffer (Lines 11-13). The
score for window (W1) is computed by utilizing Box-Filtering technique (Line 14) as depicted
in Fig. 4.4. Finally, the values of the pointers are updated to the new positions (Lines 16-23).

Table 4.1 reports the estimated hardware utilization for the three designs. By comparing,
we can observe that Design #4 is more efficient in terms of BRAM usage as well as for
execution time. Design #4 has 51% and 33% less BRAM utilization than Design #2 and
Design #3 with 72% and 59% better performance respectively. Therefore, we will consider
Design #4 as a base for the next optimization steps.

4.3.1.2 Using arbitrary precision data types

HLS tools support arbitrary precision data types by defining variables with smaller bit
width. Instead of using the native C-based data types of width 8, 16, 32 and 64 bit ; we



4.3 High-level Synthesis Optimizations 67

1 // BUFF_SIZE = X1+1
2 // STARTLINE = 0 // ENDLINE = Y1
3 // stripImgR[stripH][imgW] is the right image strip
4 // stripImgL[stripH][imgW] is the left image strip
5 // array SCORE[] keeps the score of windows
6 int cir_buff[BUFF_SIZE];
7 int sum = 0, scr = 0, scrTmp = 0, first_ptr = 1, last_ptr = 0;
8 for(int i = 0; i < BUFF_SIZE; i++)
9 cir_buff[i] = 0;

10 for(int i = 0; i < imgW; i++)
11 for(j = STARTLINE; j <= ENDLINE; j++)
12 sum += abs( stripImgR[j][i] - stripImgL[j][i+d] );
13 cir_buff[last_ptr ] = sum;
14 SCORE[i] = scrTmp = scr + cir_buff[last_ptr] - cir_buff[first_ptr];
15 scr = scrTmp; sum=0;
16 if(first_ptr == BUFF_SIZE-1)
17 first_ptr = 0;
18 else
19 first_ptr ++;
20 if(last_ptr == BUFF_SIZE-1)
21 last_ptr = 0;
22 else
23 last_ptr ++;

Listing 4.5 – Calculating the score of a window of dimensions (X1,Y1)

Figure 4.4 – Pixel Aggregation in Design #4

can define our variables with adjustable bit width to produce systems of the same accuracy
but with less area utilization. In Vivado HLS, the header file ap_int.h should be included
to define variables with arbitrary precision data types. The format for integer data type is
defined as ap_[u]int<W> where u is used to define unsigned values while W is the number



68 Efficient Hardware Implementation for Multi-Window SAD Algorithm

Figure 4.5 – Bit-width analysis to define variables with arbitrary precision

of bits of the variable which could be up to 1024 bit-wide [111]. By knowing the lower and
upper limits for each variable, we can assign exactly the required number of bits. Figure 4.5
shows how bit-width analysis is applied to define variables with arbitrary precision size. In
order to enhance the quality of the final obtained disparity image, the 8-bit input image is
firstly filtered by a Laplacian filter for edge detection. In our design, we used a Laplacian filter
of window size = 11×11 and kernel value as presented in equation 4.2. After that, the filtered
images (IMG_R[y][x] or IMG_L[y][x]) are used to calculate the absolute sum of windows
such that the size of windows (A,B,C and D) is 24×8 while the size of window (E) is 15×7.
In Table 4.1, Design #5 showed around 31% reduction for LUT and 40% reduction for FF
after applying arbitrary precision data types.

Kernel_11x11 =



0 0 1 1 2 2 2 1 1 0 0
0 1 2 5 6 8 6 5 2 1 0
1 2 8 12 13 13 13 12 8 2 1
1 5 12 12 0 −9 0 12 12 5 1
2 6 13 0 −37 −60 −37 0 13 6 2
2 8 13 −9 −60 −88 −60 −9 13 8 2
2 6 13 0 −37 −60 −37 0 13 6 2
1 5 12 12 0 −9 0 12 12 5 1
1 2 8 12 13 13 13 12 8 2 1
0 1 2 5 6 8 6 5 2 1 0
0 0 1 1 2 2 2 1 1 0 0



(4.2)



4.3 High-level Synthesis Optimizations 69

1 #define stripH 2*winV+1
2 struct out_axis{
3 unsigned char disparity[imgW];
4 ap_uint<1> TLast[imgW];
5 };
6 void Mutli_Window_SAD(
7 int IMG_R[stripH][imgW],
8 int IMG_L[stripH][imgW],
9 struct out_axis *result

10 ){
11 #pragma HLS INTERFACE s_axilite port=return
12 #pragma HLS INTERFACE axis port=IMG_R
13 #pragma HLS INTERFACE axis port=IMG_L
14 #pragma HLS INTERFACE axis port=out_axis
15 ...............
16 ...............
17 ...............
18 for(int i = 0; i < imgW; i++){
19 if(i < imgW-1){
20 result->disparity[i] = DISP_IMG_R[i];
21 result->TLast[i] = 0; }
22 else if( i == imgW-1){
23 result->disparity[i] = DISP_IMG_R[i];
24 result->TLast[i] = 1; }
25 }
26 }

Listing 4.6 – Adding TLAST signal to the result output port

4.3.1.3 Choosing the I/O interface protocol

The generated HLS hardware block can be connected to the other blocks in the
design through various types of I/O protocols. Vivado HLS tool offers different ways of
communication protocols where the designer is free to choose the one which fits better with
his design requirements. During the synthesis process, the top-level function arguments are
synthesized as RTL ports where three different classes of ports can be defined :
• Clock and Reset ports. HLS tool defined two input ports for clock and reset signal.
• Block-Level interface protocol. The block-level port is used to control and check the

current state (start, ready, busy or done state) of the HLS block. The port has various
configuration options : (i) ctrl_hs where the signals (start, idle, done and ready) are
defined as separated ports. (ii) axilite_ctrl_hs where the signals of ctrl_hs protocol
are grouped into one AXI4-Lite interface. (iii) ctrl_none which implements the design
without any block-level I/O interface protocol.

• Port-Level interface protocol. The port-level port is created for each argument in
the top-level function and for the return argument if it exists. The port has various
configuration options : (i) ap_memory where array-based arguments are implemented
by default as an ap_memory interface. It is a standard block RAM interface with data,
address, chip-enable and write-enable ports. (ii) ap_hs includes two-way handshaking



70 Efficient Hardware Implementation for Multi-Window SAD Algorithm

with valid and acknowledge signals. (iii) AXI4 interfaces for function arguments
including AXI4-Stream (axis), AXI4-Lite (axilite) and AXI4 master (m_axi) for port-
level interface.

In our design, the HLS block is connected to a Zynq platform where pixels flow
between the Processing System (PS) and the Programmable Logic (PL) through DMA-based
communication system ; thus, we chose AXI-Stream for the port-level interface. While AXI-
Lite was selected for the block-level interface protocol to control the operation of the hardware
block. The defined AXI-Stream protocol by Vivado HLS tool comes only with the fundamental
AXI-Stream signals (TDATA, TREADY, TVALID) and it is the role of the designer to define
any other required AXI-Stream signals. For DMA-based communication, TLAST signal is
needed. Listing 4.6 shows how the top-level function was modified to add TLAST signal to
the AXI-Stream communication. For the output argument, it was redefined as a structure
consisted of two elements : disparity array and TLAST signal (Lines 2-5). The function
arguments were defined as AXI-Stream (axis) interface (Lines 11-14). While streaming the
last output element, TLAST is asserted high to signal the end of communication (Line 24).
In Table 4.2, Design #6 listed the hardware cost for adding the TLAST signal.

4.3.1.4 Grouping pixels at the I/O ports

The High Performance (HP) bus between the Processing System and Programmable Logic
in the Zynq platform is 64-bit data width. If the sent/received pixels are of size less than 64-
bit, then the designer can benefit from the available bus to reduce the required communication
time by merging pixels during data transfer. This operation requires an additional attention
from the designer while separating the pixels at the input ports or merging them at the output
ports. In our design, the input pixel is 32-bit width while the output disparity is only 8-bit.
Thus, we can merge up to 2 pixels at the input port and up to 8 pixels at the output port.
Listing 4.7 shows how the disparity pixels are merged up to 8 pixels before transmission.
Design #7 showed 7% improvement in the execution time as listed in Table 4.2.

4.3.2 Optimizations for Exploiting Parallelism

Video processing applications are good candidates for parallel implementation. In this
section, we will exploit the inherent parallelism in Multi-window SAD algorithm at different
levels to improve the application processing time.

4.3.2.1 Task-level parallelism

In task-level parallelism, independent data tasks can be executed concurrently. For
5-window SAD algorithm, the score of window (B) is used after (winH+1) pixel shift as a
score for a new window (A) along the same scanline. The same case applied for windows (C)



4.3 High-level Synthesis Optimizations 71

1 #define imgW 640
2 #define imgW_8 80
3 struct out_axis{
4 unsigned long int disparity_64[imgW_8];
5 ap_uint<1> TLast[imgW_8];
6 };
7 void Mutli_Window_SAD(
8 int IMG_R[stripH][imgW],
9 int IMG_L[stripH][imgW],

10 struct out_axis *result
11 ){
12 ...............
13 ...............
14 // sending pixels at the output port
15 for(int i = 0; i < imgW_8; i++){
16 if(i < imgW_8-1){
17 result->disparity_64[i] =
18 ( (unsigned long int) DISP_IMG_R[8*i ] )
19 + ( (unsigned long int) DISP_IMG_R[8*i+1] << 8 )
20 + ( (unsigned long int) DISP_IMG_R[8*i+2] << 16 )
21 + ( (unsigned long int) DISP_IMG_R[8*i+3] << 24 )
22 + ( (unsigned long int) DISP_IMG_R[8*i+4] << 32 )
23 + ( (unsigned long int) DISP_IMG_R[8*i+5] << 40 )
24 + ( (unsigned long int) DISP_IMG_R[8*i+6] << 48 )
25 + ( (unsigned long int) DISP_IMG_R[8*i+7] << 56 );
26 result->TLast[i] = 0; }
27 else if( i == imgW_8-1){
28 result->disparity_64[i] =
29 ( (unsigned long int) DISP_IMG_R[8*i ] )
30 + ( (unsigned long int) DISP_IMG_R[8*i+1] << 8 )
31 + ( (unsigned long int) DISP_IMG_R[8*i+2] << 16 )
32 + ( (unsigned long int) DISP_IMG_R[8*i+3] << 24 )
33 + ( (unsigned long int) DISP_IMG_R[8*i+4] << 32 )
34 + ( (unsigned long int) DISP_IMG_R[8*i+5] << 40 )
35 + ( (unsigned long int) DISP_IMG_R[8*i+6] << 48 )
36 + ( (unsigned long int) DISP_IMG_R[8*i+7] << 56 );
37 result->TLast[i] = 1; }
38 }
39 }

Listing 4.7 – Merging 8 pixels at the output port

and (D). Thus, only three score calculation loops are needed for windows (A/B, C/D and E).
In order to execute data-independent loops in parallel, we have : (i) To duplicate the common
input pixels between the three loops if exist. (ii) To rewrite them in separated functions to
allow the HLS tool to schedule them in parallel. Listing 4.8 explains how task-level parallelism
is applied. The input right/left strips are distributed on the local arrays (IMG_R_AB[],
IMG_L_AB[], IMG_R_CD[], ..., ..., ..., IMG_L_E[]) (Lines 19-47). The common image
lines between windows are duplicated to allow data-independent windows calculations. For
example, the common image lines between windows A/B and E are duplicated to the local
arrays for both of them (Lines 30-37). After pixel distribution, three function calls are executed



72 Efficient Hardware Implementation for Multi-Window SAD Algorithm

Design Optimization Slice FF LUT BRAM
18K

exec. time
(ms)

#6 Adding TLAST 996 1575 2619 49 6307
#7 Grouping pixels 1135 1820 3080 49 5865
#8 Task-level parallelism 1110 2002 3339 67 2658
#9 Calculating 4 disparity lines 2790 4578 7796 102 815
#10 Calculating 8 disparity lines 5012 8502 14027 204 432
#11 Calculating 12 disparity lines 6594 12563 18476 252 339
#12 Loop pipelining 1161 2004 3546 67 1174
#13 Removing false dependency 1115 2030 3433 67 1002
#14 Data-level parallelism 2771 6365 8155 59 313

Table 4.2 – Synthesis results reported by Vivado HLS for each optimization step

to calculate the score for windows (A/B, C/D and E) where the HLS tool will schedule their
executions in parallel since there is no common data between them (Lines 49-51). In Table 4.2,
Design #8 reported the effect of applying task-level parallelism where the processing time was
improved by around 50%.

4.3.2.2 Pipeline-level parallelism

In pipeline-level parallelism, the computation is divided into stages where it is possible
to execute the pipelined stages in parallel. We applied pipeline-level parallelism in two
different ways : (i) By restructuring the code manually. (ii) By applying HLS directives like
LOOP_PIPELINE. Figure 4.6 depicts that there is only one image line difference between
two adjacent strips. For calculating one disparity line, a strip of height = 2*win_V+1 is
needed ; while for four adjacent disparity lines, a strip of height = 2*win_V+4 is required.
Thus, we can increase the height of strip to benefit from the sent pixels to calculate several
disparity lines. We tried to calculate 4, 8 and 12 disparity lines while using the same pipeline
for Designs #9, #10 and #11 respectively as listed in Table 4.2.

The other way of performing pipeline-level parallelism is by adding LOOP_PIPELINE
directive to the defined for-loops in the algorithm. This loop transformation is done
automatically by the help of the tool without the need to modify the code. Design #12
in Table 4.2 reported the hardware cost and the execution time after applying pipelining for
Design #8. When LOOP_PIPELINE directive is applied, the HLS tool tries to schedule all
the loop iterations just one clock cycle far from each other (i.e. Iteration Interval (II) = 1)
but sometimes due to inter loop-dependency, II = 1 can not be achieved. It is the role of the
designer to check the positions where II > 1 are reported then to direct the tool to remove
the false loop dependency if exists by introducing LOOP_DEPENDENCE directive.

Lines 23-28 from Listing 4.2 are copied in Listing 4.9 to show a case for false
loop dependency which can be removed to allow better loop pipelining. When pipeline



4.3 High-level Synthesis Optimizations 73

1 #define imgW 640
2 #define imgW_2 320
3 #define start_E winV-cwinV
4
5 void scr_window_AB_CD(int img_R[winV+1][imgW], int img_L[winV+1][imgW],
6 int score[imgW] )
7 { .............................. }
8
9 void scr_window_E(int img_R[2*cwinV+1][imgW], int img_L[2*cwinV+1][imgW],

10 int score[imgW] )
11 { .............................. }
12
13 void Multi_Window_SAD( int IMG_R[stripH][imgW], int IMG_L[stripH][imgW],
14 struct out_axis *result
15 ){
16 int IMG_R_AB[winV+1 ][imgW], IMG_L_AB[winV+1 ][imgW];
17 int IMG_R_CD[winV+1 ][imgW], IMG_L_CD[winV+1 ][imgW];
18 int IMG_R_E[2*cwinV+1][imgW], IMG_L_E[2*cwinV+1][imgW];
19 //distributing input scanlines
20 for(int num = 0; num < 2*winV+1; num++)
21 {
22 if(num < winV-cwinV){
23 for(int i = 0; i < imgW_2 ; i++){
24 IMG_R_AB[num][2i] = (int)(IMG_R[num][i] );
25 IMG_R_AB[num][2i+1] = (int)(IMG_R[num][i] >> 32);
26 IMG_L_AB[num][2i] = (int)(IMG_L[num][i] );
27 IMG_L_AB[num][2i+1] = (int)(IMG_L[num][i] >> 32);
28 }
29 }
30 else if(num < winV+1){
31 for(int i = 0; i < imgW_2 ; i++){
32 IMG_R_AB[num][2i] = IMG_R_E[num-start_E][2i] = (int)(IMG_R[num][i] );
33 IMG_R_AB[num][2i+1] = IMG_R_E[num-start_E][2i+1] = (int)(IMG_R[num][i]>>32);
34 IMG_L_AB[num][2i] = IMG_L_E[num-start_E][2i] = (int)(IMG_L[num][i] );
35 IMG_L_AB[num][2i+1] = IMG_L_E[num-start_E][2i+1] = (int)(IMG_L[num][i]>>32);
36 }
37 }
38 else if(num == winV+1){
39 ..........................
40 }
41 else if(num <= winV+cwinV+1){
42 ..........................
43 }
44 else{
45 ..........................
46 }
47 }
48
49 scr_window_AB_CD(IMG_R_AB, IMG_L_AB, scr_AB );
50 scr_window_AB_CD(IMG_R_CD, IMG_L_CD, scr_CD );
51 scr_window_E(IMG_R_E, IMG_L_E, scr_E);
52
53 }

Listing 4.8 – Code restructuring for applying task-level parallelism



74 Efficient Hardware Implementation for Multi-Window SAD Algorithm

Figure 4.6 – Enlarging the strip height to calculate 4 disparity lines

1 for every disparity(d) where d = 0 -> DISP_MAX:
2 .......................
3 for every element(x) where x = winH -> imgW-winH:
4 .............................
5 if min_score < bestscoreR[x+winH]:
6 bestscoreR[x+winH] = min_score;
7 DISP_IMG_R[x+winH] = d;
8 if min_score < bestscoreL[x+winH+d]:
9 bestscoreL[x+winH+d] = min_score;

10 DISP_IMG_L[x+winH+d] = d;
11 .........................

Listing 4.9 – A case for false loop dependency

directive is added to the for-loop defined between Lines 3-10 ; the HLS tool signalled
a warning for bestscoreL[ ] array "Warning: unable to enforce a carried dependency

constraint (II=1, distance=1"). By examining the for-loop, we could notice that the HLS
tool considered (d) as a variable of undetermined value during the loop iterations between
Lines 3-10. Thus, it assumed a dependency between reading from bestscoreL[ ] at Line 8 and
writing to it at Line 9. Accordingly, the HLS tool scheduled the pipeline with II=2 to avoid any
conflicts between the pipelined loop iterations when read and write operations are requested
in the same clock cycle to the same array location as shown in Fig. 4.7(a). But this dependency
is a false one because variable (d) does not change its value during the iterations of the loop
defined between Lines 3-10. So, we are confident to define a false dependency directive for
bestscoreL[ ] array as following : "#pragma HLS DEPENDENCE variable=bestscoreL array

inter false" to obtain II = 1 as depicted in Fig. 4.7(b). In Table 4.2, Design #13 showed
15% gain in execution time than Design #12 when false inter loop dependency is removed.



4.3 High-level Synthesis Optimizations 75

Figure 4.7 – (a) Loop scheduling when Iteration Interval (II) = 2. (b) Loop scheduling when
Iteration Interval (II) = 1 after applying false loop dependency

4.3.2.3 Data-level parallelism

When the computation process is repeated without true loop-carried dependency between
the iterations ; then, it can be duplicated to operate on different set of data in parallel. We
applied data-level parallelism in two different ways : (i) By applying ARRAY_PARTITION
and LOOP_UNROLL directives. (ii) By increasing the number of parallel processing
elements.

The goal of array partitioning is to boost the system throughput at the expense of
increasing the used hardware resources. ARRAY_PARTITION directive partitions an array



76 Efficient Hardware Implementation for Multi-Window SAD Algorithm

either partially into small arrays or entirely as individual elements to increase the available
number of read/write ports. In this design, we used this directive in two different cases : (i) The
local arrays defined at (Lines 16-18, Listing 4.8) are two-dimensional arrays of (winV+1) rows
and imgW columns. By applying ARRAY PARTITION directive with options "type=block,

factor=8, dimension=1", the arrays will be partitioned into smaller arrays, where each image
line will be stored in an individual BRAM structure. By this configuration, one column of
pixels can be read in the same clock cycle. (ii) The circular buffer defined at (Line 6, Listing
4.5) will be partitioned completely into individual registers " type=complete, dimension=1"
to ease the process of data accessing and due to its smaller size.

LOOP_UNROLL directive duplicates the computation process to operate on a different
set of data by creating multiple copies of the loop body. The loop can be partially unrolled by
creating N copies of the loop body if factor N is defined ; otherwise, the loop is fully unrolled
by default. In our design, the arrays are implemented as BRAMs with physical dual-port
memory. Consequently, we can profit from the available dual-port of the BRAMs to unroll
the loops with factor = 2. Design #14 reported 70% improvement in the execution time with
2.3x and 3.1x increase in LUT and FF respectively as listed in Table 4.2.

The other way of exploiting data-level parallelism is by increasing the number of parallel
processing elements. This can be achieved by defining a new top-level function that includes
multiple instances of Design #14 operating in parallel. In the next chapter, we will introduce
ViPar tool which will explore the design space for the parallel architecture that better satisfies
the system constraints.

4.3.3 Experimental Results

Zynq ZC706 FPGA evaluation board (XC7Z045-FFG900) is used to process 5-window
SAD algorithm for input images of size 640×480. The left/right images are captured
by a stereoscopic camera system STERSEE which is attached to the FPGA board
through an Ethernet port as shown in Fig. 4.8. The hardware cores in the design are
initialized and controlled by the Processing System through AXI-Lite communication interface
(S_AXI_LITE port is not connected in the figure for simplicity). The pixels transfer between
Processing System (PS) and Programmable Logic (PL) through High Performance (HP) buses
with the help of AXI-DMA cores. The input images are preprocessed by a Laplacian filter
(HLS_Laplace_Filter core) of kernel size = 11×11 to enhance the quality of the obtained
disparity image. After that, the preprocessed images are sent into strips to HLS_SAD core
for stereo matching processing, and the result is written back to the DDR memory attached
to the Processing System. For demonstration, the disparity image can be sent to the output
screen through AXI-VDMA and HDMI cores.

Each hardware core with AXI_Lite interface is treated as a memory-mapped IO device
with an address space defined in xparameters.h file. In the beginning, the Processing System



4.3 High-level Synthesis Optimizations 77

Figure 4.8 – System architecture block diagram

1 int HLS_SAD_init(HLS_SAD *stereo_ptr)
2 {
3 HLS_SAD_Config *cfg_ptr;
4 int status;
5 cfg_ptr = HLS_SAD_LookupConfig(HLS_SAD_DEVICE_ID);
6 if (!cfg_ptr)
7 {
8 print("ERROR: Lookup for accelerator configuration failed.\n\r");
9 return XST_FAILURE;

10 }
11 status = HLS_SAD_CfgInitialize(stereo_ptr, cfg_ptr);
12 if (status != XST_SUCCESS)
13 {
14 print("ERROR: Could not initialize accelerator.\n\r");
15 return XST_FAILURE;
16 }
17 return status;
18 }

Listing 4.10 – The initialization for HLS_SAD core

(PS) obtains the configuration information of the device by the help of its ID (Line 5-10,
listing 4.10). But when Memory Management Unit (MMU) is used, the effective address of
the hardware core is different from that defined in xparameters.h file and a translation is
required. After initializing the cores, the left/right images are sent to HLS_Laplace_Filter



78 Efficient Hardware Implementation for Multi-Window SAD Algorithm

1 int main()
2 {
3 XAxiDma axiDma_0, axiDma_1, axiDma_2;
4 HLS_Laplace_Filter laplaceFilter;
5 HLS_SAD stereoHW;
6 int Lap_IMG_R[307200], Lap_IMG_L[307200];
7 unsigned char disparity[307200];
8
9 HLS_Laplace_Filter_Start(&laplaceFilter);

10 // Applying Laplace filter to the right image
11 status = XAxiDma_SimpleTransfer(&axiDma_0, (u32)&imageR[0], 307200*sizeof(char)

, XAXIDMA_DMA_TO_DEVICE);
12 Xil_DCacheFlushRange((unsigned)&imageR[0], 307200 * sizeof(char));
13 status = XAxiDma_SimpleTransfer(&axiDma_0, (u32)&Lap_IMG_R[0], 307200*sizeof(

int), XAXIDMA_DEVICE_TO_DMA);
14 Xil_DCacheInvalidateRange((unsigned)&Lap_IMG_R[0], 307200*sizeof(int));
15 while(!HLS_Laplace_Filter_IsReady(&laplaceFilter))
16 ; // blocked till processing ends
17
18 HLS_Laplace_Filter_Start(&laplaceFilter);
19 // Applying Laplace filter to the left image
20 status = XAxiDma_SimpleTransfer(&axiDma_0, (u32)&imageL[0], 307200*sizeof(char)

, XAXIDMA_DMA_TO_DEVICE);
21 Xil_DCacheFlushRange((unsigned)&imageL[0], 307200 * sizeof(char));
22 status = XAxiDma_SimpleTransfer(&axiDma_0, (u32)&Lap_IMG_L[0], 307200*sizeof(

int), XAXIDMA_DEVICE_TO_DMA);
23 Xil_DCacheInvalidateRange((unsigned)&Lap_IMG_L[0], 307200*sizeof(int));
24 while(!HLS_Laplace_Filter_IsReady(&laplaceFilter))
25 ; // blocked till processing ends
26
27 // Processing stereo matching algorithm in strips
28 for(line=0; line<468; line=line+4)
29 {
30 HLS_SAD_Start(&stereoHW);
31 // Sending the right preprocessed strip through AXI_DMA_1
32 status = XAxiDma_SimpleTransfer(&axiDma_1, (u32)&Lap_IMG_R[640*line], 11520 *

sizeof(int), XAXIDMA_DMA_TO_DEVICE);
33 Xil_DCacheFlushRange((unsigned)&Lap_IMG_R[640*line], 11520 * sizeof(int));
34 // Sending the left preprocessed strip through AXI_DMA_2
35 status = XAxiDma_SimpleTransfer(&axiDma_2, (u32)&Lap_IMG_L[640*line], 11520 *

sizeof(int), XAXIDMA_DMA_TO_DEVICE);
36 Xil_DCacheFlushRange((unsigned)&Lap_IMG_L[640*line], 11520 * sizeof(int));
37 // Receiving the disparity lines through AXI_DMA_1
38 status = XAxiDma_SimpleTransfer(&axiDma_1, (u32)&disparity[4480+640*line],

2560 * sizeof(unsigned char), XAXIDMA_DEVICE_TO_DMA);
39 Xil_DCacheInvalidateRange((unsigned)&disparity[4480+640*line], 2560 * sizeof(

unsigned char));
40 // Waiting until the result is written back
41 while(!HLS_SAD_IsReady(&stereoHW))
42 ; // spin
43 }
44 }

Listing 4.11 – A snapshot of the SW code running on the Processing System during stereo
matching processing



4.4 Conclusion 79

core for preprocessing. AXI_DMA_0 is used during the pixel transfer where the transmitted
image is of type char, and the resulted image is of type int (Lines 11-14, Listings 4.11).
HLS_Laplace_Filter starts processing when it receives a start signal from the Processing
System through AXI-LITE bus (Line 9). During filter processing, the system is blocked
checking the status of the core if it is ready for the next input or not (Lines 15-16). During
strip processing, the HLS_SAD core is called several times till all the image strips are
processed (Lines 27-43). Listing 4.11 shows the case where the size of strip is enlarged to
process 4 disparity lines using the same pipeline (Line 28). The filtered right strip is sent to
the HLS_SAD core through AXI_DMA_1 (Lines 31-33) while the left strip is sent through
AXI_DMA_2 core (Lines 34-36). The resulted disparity is stored back through AXI_DMA_1
in disparity[ ] array (Lines 37-39). During stereo processing, the system is blocked waiting for
ready signal to start the next strip processing (Lines 41-42).

4.4 Conclusion

High-level synthesis tools shorten the design efforts by translating high-level code
descriptions into hardware designs. However, it is the role of the designer to present the
high-level codes in a format acceptable by the HLS tool. In this chapter, we presented a set of
guidelines that the designer is advised to follow to modify the high-level code for producing
an efficient hardware implementation. As a particular case, we showed these guidelines for
5-window SAD stereo matching algorithm. Two classes of optimizations were introduced :
optimizations for targeting an efficient hardware implementation and optimizations for
exploiting the levels of parallelism inherent in the application. For each optimization step,
we showed its impact on the overall design quality concerning hardware cost and execution
time. Finally, we presented the architecture of the hardware implementation for the stereo
matching algorithm as well as the software part.





C h a p t e r 5

ViPar : A Tool for Design Space
Exploration

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 ViPar Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 ViPar Tool Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Estimated utilization for LUT, FF and BRAM . . . . . . . . . . . . 88
5.3.2 Estimated utilization for Slice . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Power Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Power Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Power Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Automatic High-level Code Generation . . . . . . . . . . . . . . . 99

5.6.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.2 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7.1 Area, Power and Performance Estimations . . . . . . . . . . . . . . . 103
5.7.2 High-level Code Generation . . . . . . . . . . . . . . . . . . . . . . . 108
5.7.3 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



82 ViPar : A Tool for Design Space Exploration

5.1 Introduction

In the last chapter, a set of optimization steps were applied to the high-level code for Multi-
Window SAD algorithm to obtain an efficient hardware implementation. Applying pipeline-
level and data-level parallelism alongside executing the application at different operating
frequencies will produce a space of various design alternatives that need to be explored.
Designing, implementing and doing measurements for performance and power for every single
design is not advisable under time-to-market constraints. Instead of that, it is preferable to
do fast estimations for area utilization, power and performance for all design alternatives then
according to the system constraints, full implementations will be built only for the candidate
designs.

For a given design, defining the priority of constraints could vary from one application
to another. For example, power consumption is a key factor for battery-based systems while
hardware resources matter if several functionalities would be embedded on the same chip. In
some other cases, timing is crucial for safety-critical applications while Quality-of-Service is
vital for interactive or multimedia applications. During the design phase, it is the role of the
designer to define the priorities of system constraints then to explore the design space for the
implementation that could efficiently satisfy the application requirements.

In this chapter, the design space was built by varying the level of parallelism at different
operating frequencies for three initial designs obtained from pipeline-level parallelism (pipe_4,
pipe_8 and pipe_12 ). The obtained designs have various trade-offs regarding hardware
resources, power consumption, execution time and operating frequency. Our objective is to
explore the possible hardware designs then choose the one that fit with our requirements. We
developed ViPar tool to automate the design space exploration process through the following
steps : (1) We estimated both resource utilization and performance for each design based on
the values obtained at parallelism level = 1. (2) We introduced an empirical power model to
estimate the power consumption for each design based on resource utilization and operating
frequency. (3) We generated automatically the high-level description codes for the parallel
video processing architectures. In the experimental results, we will compare the estimated
values with the measured ones in order to evaluate how much the estimations are correct. We
will show an example of how to select a design as a solution according to the given system
constraints.

5.2 ViPar Tool

Design productivity of complex systems is increased significantly by using high-level
synthesis tools. During the design phase, it is much easier to write, modify and verify
complex algorithms described in high-level languages. Figure 5.1 depicts an array-based video
processing architecture where N processing elements are running in parallel. Each processing



5.2 ViPar Tool 83

Figure 5.1 – Array-based video processing architecture

element has i input ports (X0, X1, ..., X i) and j output ports (Y 0, Y 1, ..., Y j). The input
pixel streams (I 0, I 1, ..., Im) are copied and distributed to individual array structures through
Pixel Distributor . After processing, Pixel Collector stores the pixels in arrays before streaming
them out in order through system output ports (O0, O1, ...., On).

When the architecture depicted in Fig. 5.1 is described in high-level language ; we have
to code how the pixels will be distributed over the parallel processing elements and how
they will be collected back to stream the output. To allow data-level parallelism execution,
the same image scanline could be mapped to several input ports of the same or different
processing elements. It could be feasible to write the distribution/collection subroutines
manually for architectures of few processing elements, but it will be a real challenge to do so
for an architecture of large number of processing cores. Another challenge arises when a large
number of parallel architectures are examined in order to find an efficient implementation that
fulfils the design requirements. Consequently, coding these architectures manually is a time-
consuming and an error-prone process. To address the above challenges, we developed ViPar
tool which explores the design space then automatically generates the high-level codes for the
best candidate parallel architectures. The generated code is then compiled by Vivado HLS
to obtain the corresponding RTL design. Our objective is to show how ViPar increases the
design productivity by exploring and building video processing architectures of large number
of parallel processing elements.



84 ViPar : A Tool for Design Space Exploration

F
igure

5.2
–
D
esign

flow
w
ith

V
iPar

tool



5.3 Area Estimation 85

Synthesis/Implementation
Strategy Name Description

Vivado Implementation Defaults Balances runtime with trying to achieve timing closure.

Performance_Explore Uses multiple algorithms for optimization, placement,
and routing to get potentially better results.

Area_Explore Uses multiple optimization algorithms to get potentially
fewer LUTs.

Power_DefaultOpt Adds power optimization (power_opt_design) to
reduce power consumption.

Table 5.1 – Different strategies with different objectives

5.2.1 ViPar Tool Design Flow

Figure 5.2 depicts the design flow for ViPar tool where the initial inputs are the metrics
of the design at parallelism level = 1. These design metrics include area utilization, power
consumption and performance. For area estimation, we keep increasing the level of parallelism
till one of the resources (Slice or BRAM) is completely utilized. The upper bound for resource
utilization depends on the selected FPGA chip during the exploration process. The produced
set of design alternatives are then estimated for power and performance as we will explain in
Sections 5.3, 5.4 and 5.5. According to the system constraints, the design space is minimized
to the set of the candidate designs. Then high-level code generation tool is used to generate
the design C++ files for each design candidate automatically. The generated High-level
description codes in addition to the HLS optimizations/User constraints are considered as the
inputs for the High-level Synthesis Tool to obtain the RTL design. Later, the RTL design is
implemented to obtain the design bit stream. The design metrics are measured experimentally
to verify how far the estimations are from the real values and to make sure that the system
constraints are indeed fulfilled.

5.3 Area Estimation

Two factors affect the resource utilization of the implemented design which are :
• Synthesis/Implementation strategy. Vivado Design Suite offers a set of pre-

defined strategies in order to obtain the hardware implementation. It is a multi-
objective problem where each strategy has a certain objective to optimize (power, area,
performance, etc.). Table 5.1 shows some of these strategies and their objectives.
• Operating frequency. The implementation tool tries to achieve timing closure

alongside satisfying the objective of the applied strategy. At higher operating
frequencies, the tool allocates more hardware resources in order to satisfy the timing
constraints.



86 ViPar : A Tool for Design Space Exploration

Parallelism
Level

Slice FF LUT BRAM_18K
Base Parallel Base Parallel Base Parallel Base Parallel

1 2624 7910 8645 20258 6643 24520 19 112
2 2611 15811 8645 40440 6638 49126 19 224
3 2714 23834 8645 60623 6643 73850 19 336
4 2707 30933 8645 80799 6646 98582 19 448
5 2866 37460 8645 100979 6645 123409 19 560
6 2686 43651 8645 121177 6640 149088 19 672
7 2118 48904 8645 141370 6605 175503 19 784
8 1736 52734 8645 161550 6559 199714 19 896

Table 5.2 – Base and parallel hardware cost for designs at different parallelism levels

Default synthesis strategies are frequently used in the design flow unless they failed
to satisfy the timing constraints. In such cases, Performance_Explore synthesis strategies
could be used for example in order to get better results. Figure 5.3 shows the relation
between LUT and FF utilization at different parallelism levels. In this figure, Default synthesis
strategies were used at two different operating frequencies 100 and 200 MHz while
Performance_Explore synthesis strategy was used at 100 MHz . We can deduce the
following observations : (i) Utilization for LUT and FF increases linearly with the increase
of the parallelism level. (ii) At the same parallelism level, the observed utilization varies
either because of using different synthesis strategies or because of using different operating
frequencies. (iii) The difference in LUT/FF utilization between designs implemented at the
same parallelism level is small at low levels then becomes more significant at high levels of
parallelism.

The hardware cost in terms of Slice, FF, LUT and BRAM for the parallel architecture
depicted in Fig. 5.1 could be divided into two parts :

• Base cost. It represents the required resources for implementing the basic blocks which
exist in every single design alternative. These basic blocks could be like AXI-DMA blocks
for pixels transfer, AXI-interconnect blocks, AXI-VDMA block for AXI4-Stream video
target peripherals, etc.

• Parallel cost. It represents the required hardware resources for implementing the
processing elements of the parallel architecture depicted in Fig. 5.1.

Table 5.2 lists the hardware cost for an application implemented at different parallelism
levels. At each parallelism level, the hardware cost for Slice, FF, LUT and BRAM is separated
into Base cost and Parallel cost. It is worth mentioning that these designs were implemented
using Default synthesis strategy at operating frequency of 100 MHz. From the synthesis
results, we can observe that the Base cost values for FF, LUT and BRAM are almost the
same value regardless which parallelism level is implemented. This observation agrees with
our definition of Base cost as it is the required resources for implementing the basic blocks



5.3 Area Estimation 87

1 2 3 4 5 6
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
·105

Parallelism level

LU
T

ut
lil
iz
at
io
n

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4
·105

Parallelism level

FF
ut
lil
iz
at
io
n

Figure 5.3 – LUT/FF utilization at different parallelism level for Default strategy at 100
MHz , Default strategy at 200 MHz and Performance_Explore strategy at 100 MHz



88 ViPar : A Tool for Design Space Exploration

which exist in every single design.
For Slice utilization, it varies with a percentage ranging between 0.5 to 33.8%. The

reason for this wide variation is that the slices are partially utilized by the synthesis tool
in order to decrease the congestion of wires in the design to satisfy the timing constraints.
But when the design size increases, the Slice occupancy increases as well and consequently
fewer Slices are dedicated to the Base cost. In fact, Slice is not considered as an independent
hardware resource ; for example, in Zynq ZC706 FPGA board (XC7Z045-FFG900), each Slice
is composed of 8 FFs and 4 LUTs. So if we tried to obtain the Slice number by dividing the
used LUT by 4 or by dividing the used FF by 8 then we will discover that the resulted values
for Slice utilization do not match with those listed in Table 5.2. For instance, at parallelism
level =3, the numbers of used LUT and FF for Base cost are 6643 and 8645 respectively. By
dividing those values to get the Slice number then it will 6643/4 = 1661 or 8645/8 = 1081 ;
however the reported Slice value in Table 5.2 was 2714. This difference can be explained that
the synthesis tool tends to use more Slices to avoid full Slice occupancy so that the timing
constraints are met.

For the parallel hardware cost, Fig. 5.3 depicts that it increases linearly with the increase
of the level of parallelism. Therefore, we can assume that the base hardware cost is the same
for all designs while the parallel hardware cost is increasing linearly. Our estimations are
based on the area utilization obtained at parallelism level = 1 ; therefore, in order to obtain
correct estimations at higher parallelism levels, the initial values should be obtained from a
design implemented at the same operating frequency while using the same strategy.

5.3.1 Estimated utilization for LUT, FF and BRAM

From the previous observations (Figure 5.3 and Table 5.2), we can deduce a linear relation
for estimating the resource utilization for LUT, FF and BRAM as follows :

Estimated Utilization|parallelism level = N =

Base cost + N ∗Utilization|parallelism level = 1 (5.1)

Where Base_cost is the hardware cost for the basic blocks in the design and N is the
level of parallelism. Table 5.3 shows that the estimation error for FF, LUT and BRAM.
The estimation error ranges between 0.15 - 0.3% and 0.14 - 2.1% of the estimated value
for FF and LUT respectively. This error arises because the synthesis tool could use less or
more FF or LUT in order to satisfy the timing constraints. We can also conclude that the
error is within the acceptable limits which reflects a correct estimation relation. For BRAM
estimation, we observed an exact estimation because BRAMs represent the memory structure
in the design where each processing channel in the parallel architecture should have exactly



5.3 Area Estimation 89

Parallelism
Level 1 2 3 4 5 6 7 8

FF
Estimated 28903 49161 69419 89677 109935 130193 150451 170709
Actual 28903 49085 69268 89444 109624 129822 150015 170195
Error (%) 0 0.15 0.22 0.26 0.28 0.28 0.28 0.3

LUT
Estimated 31163 55683 80203 104723 129243 153763 178283 202803
Actual 31163 55764 80493 105228 130054 155728 182108 206273
Error (%) 0 0.14 0.36 0.48 0.63 1.28 2.1 1.7

BRAM_18K
Estimated 131 243 355 467 579 691 803 915
Actual 131 243 355 467 579 691 803 915
Error (%) 0 0 0 0 0 0 0 0

Table 5.3 – Estimated and actual hardware utilization for FF, LUT and BRAM_18K at
different parallelism levels

the same number of arrays.

5.3.2 Estimated utilization for Slice

We have two methods to estimate the Slice utilization either by applying equation 5.1 as
used before to estimate the utilization for FF, LUT and BRAM or by profiting from the fact
that the Slice is composed of FFs and LUTs (for Zynq ZC706, one Slice consists of 8 FFs and
4 LUTs). Based on this fact, the estimated Slice utilization can be formulated as follows :

Estimated Slice Utilization|parallelism level = N =

Max { estimated_LUT |parallelism = N
num_LUT_per_Slice , estimated_FF |parallelism = N

num_FF_per_Slice } (5.2)

Where N is the level of parallelism, estimated_LUT is the estimated LUT
utilization and estimated_FF is the estimated register utilization at parallelism level=N.
num_LUT_per_Slice, and num_FF_per_Slice is the number of LUT and FF in one Slice (for
Zynq ZC706, num_LUT_per_Slice = 4 and num_FF_per_Slice = 8). Table 5.4 compares the
estimation percentage error when the Slice utilization is calculated using equations 5.1 and 5.2
respectively. For designs from 1 to 6, we could notice that method (2) showed an estimation
error ranges between 20.5 - 35.2% while method (1) showed only an estimation error between
0.12 - 7.58%. For the last two designs (# 7 and # 8), the values computed by method (1)
exceed the maximum Slice number for Zynq ZC706 (max Slice = 54650). This will lead us
to initially refuse these estimations and accept only the one estimated by method (2). In
summary, both methods will be used as illustrated in Fig. 5.4 where method (1) is used



90 ViPar : A Tool for Design Space Exploration

Parallelism
level

Actual
value

Estimation method (1)
(equation 5.1)

Estimation method (2)
equation (5.2)

Estimated
value

Error
(%)

Estimated
value

Error
(%)

1 10534 10534 0 7791 35.2
2 18422 18444 0.12 13921 24.4
3 26548 26354 0.73 20051 32.4
4 33640 34264 1.82 26181 28.5
5 40326 42174 4.38 32311 24.8
6 46337 50084 7.48 38441 20.5
7 51022 57994 12.02 44571 14.5
8 54470 65904 17.35 50701 7.5

Table 5.4 – Estimated Slice utilization using two different methods : estimation method (1)
and estimation method (2) by applying equation 5.1 and 5.2 respectively

till the estimated Slice value hits the maximum Slice boundary where we will switch to
use method (2).

5.4 Power Estimation Model

There are three types contribute to the power consumption in FPGA : (1) Static power.
It is the power consumed when there is no signal transition occurred at the logic gates. As gate
technology scales down, static power becomes a more dominant factor in the total chip power
consumption. (2) Short-circuit power. This power is dissipated when a signal transition
occurs at a gate output where both the pull-up and pull-down transistors can be conducted
simultaneously for a short period. (3) Dynamic power. This power is resulted from the
design activity and varies over time with the design activity.

Dynamic power could be further broken down into power consumed by clocks, interconnect
wires and hardware resources. Equation 5.3 [96] is used to formulate the dynamic power
consumption where n is the total number of nodes, f is the clock frequency, Vdd is the supply
voltage, Ci is the load capacitance for node ni, and Si is the switching activity for node ni.

Powerdynamic = 1
2 f V dd

2 ∑n
i=1 C i Si (5.3)

For correct power estimation, a detailed placement and routing design is required
to estimate the power consumption at each single node ni in the design. In literature,
three different approaches are used to estimate FPGA dynamic power consumption :
characterization through board measurements [107] [45] [90], by using statistical model [56]
[78] [89] [52] and by using simulation model [55] [37] [97]. In fact, obtaining a detailed



5.4 Power Estimation Model 91

2 4 6 8

2

4

6

·104

Parallelism level

Sl
ic
e
ut
lil
iz
at
io
n

Figure 5.4 – Slice utilization estimated by method (1) and method (2) alongside
the actual Slice values for maximum Slice boundary at Slice = 54650

placement and routing design takes a considerable time which ranges between 30 - 90 min or
even more for larger designs. During design space exploration, it is not practical to build a
detailed design for every single point to estimate the power consumption. However, instead of
that, quick power estimations are accepted at that early design stage to compare the power
consumption of different design points. In this section, we will present an empirical power
model based on hardware resources and operating frequency characterization.

5.4.1 Power Measurement

During our experiments, the power was measured through UCD90120A power controller
mounted on Zynq-ZC706 board using TI Fusion Digital Power Designer software [98]. The
power consumed by the FPGA chip was measured by monitoring rail 1 (VCCINT) of the
power controller with a sample rate of 5 samples/s. Figure 5.5 shows how the sampled power
varies over the time ; however by calculating the moving average, we noticed that the average
measured power stabilized after 600 samples (i.e. after 120 seconds). For correct average power
values, the power was sampled for at least 10 minutes on average.

The total power consumption is affected by how much hardware resources are used and
at which frequency the design is operating. In order to formulate this relation, two basic



92 ViPar : A Tool for Design Space Exploration

hardware blocks were designed where one uses only Slices while the other uses only BRAMs.
Each hardware block was implemented in a separate design at different parallelism level
operating at frequencies of values 50, 100, 150 and 200 MHz. We kept increasing the level of
parallelism until full hardware utilization. For each design, the power was measured practically
then it was plotted versus hardware utilization as depicted in Fig. 5.6. In that figure, we have
two plots where the measured power is plotted versus BRAM and Slice respectively at four
different frequencies 50 MHz , 100 MHz , 150 MHz and 200 MHz . We can
observe from the plots that there is a correlation between the measured power and hardware
utilization (Slice and BRAM). The plotted lines are not parallel to each other which reflect
the interaction of frequency in the power equation. This correlation between the measured
power, BRAM, Slice and frequency can be formulated by using regression analysis to obtain
the power estimation model.

0 200 400 600 800 1,000 1,200

1

1.5

2

2.5

Samples

Po
we

r
in

W
at
t

Figure 5.5 – Power is sampled every 200 ms while its moving average stabilizes
after 600 samples

5.4.2 Power Regression Model

Table 5.5 lists the set of experiments conducted for building the power estimation model.
For each experiment, we measured between 2700 - 3000 samples where all samples are arranged
in one spreadsheet as an input for regression analysis to estimate the relationship between
power, frequency, Slice and BRAM. Equation 5.4 describes the regression model between the
dependent variable (power) and the independent variables (Slice, BRAM, frequency) where ξ



5.4 Power Estimation Model 93

200 400 600 800 1,000

0.3

0.4

0.5

BRAM-18K

Po
we

r
in

W
at
t

1 2 3 4 5
·104

0.2

0.4

0.6

0.8

1

Slice

Po
we

r
in

W
at
t

Figure 5.6 – Measured power with BRAM and Slice variation at frequencies 50 MHz ,
100 MHz , 150 MHz and 200 MHz



94 ViPar : A Tool for Design Space Exploration

Design Frequency
(MHz)

BRAM
18K Slice FF LUT Power in Watt

(moving average)
1 50 96 8907 24737 23484 0.279
2 50 96 15503 41257 41006 0.310
3 50 156 25122 66959 68155 0.346
4 50 246 34083 93117 95716 0.383
5 50 366 46956 128006 132704 0.427
6 50 486 50216 146369 152893 0.442
7 50 606 54499 181253 189816 0.465
8 50 846 54124 176681 184439 0.504
9 50 1026 54506 187707 195683 0.515
10 100 96 8845 24737 23680 0.333
11 100 96 15219 41257 41204 0.373
12 100 156 24918 66959 68349 0.447
13 100 246 33739 93117 95908 0.522
14 100 366 46825 128006 132718 0.622
15 100 486 50300 146369 152882 0.657
16 100 606 54488 181253 189793 0.701
17 100 846 54097 176681 184455 0.720
18 100 1026 54476 187707 195709 0.744
19 150 96 8992 24737 23728 0.368
20 150 96 14989 41257 41248 0.431
21 150 156 24821 66959 68391 0.552
22 150 246 33948 93117 95946 0.651
23 150 366 46702 128006 132754 0.791
24 150 486 49885 146369 152907 0.847
25 150 606 54507 181253 189828 0.909
26 150 846 54038 176681 184490 0.937
27 150 1026 54453 187707 195780 0.971
28 200 96 8743 24737 23926 0.417
29 200 96 14797 41257 41459 0.508
30 200 156 23674 66959 68635 0.644
31 200 246 32905 93117 96246 0.788
32 200 366 44567 128006 133074 0.958
33 200 486 49834 146369 153273 1.048
34 200 606 54089 181253 190225 1.127
35 200 846 54037 176681 184909 1.186
36 200 1026 54492 187707 196224 1.208

Table 5.5 – Set of designs for building the power estimation model



5.4 Power Estimation Model 95

represents the noise while equation 5.5 formulates the estimated power ( ˆpower) :

Power = f(Slice,BRAM ,Frequency) + ξ (5.4)

ˆPower = f(Slice,BRAM ,Frequency) (5.5)

There are various kinds of regression models to predict the power. In our study, we
will compare three models (linear, pure-quadratic and full-quadratic) to choose the one
which better fits. As previously shown in Fig. 5.6, the plotted power lines are almost
linear with BRAM and Slice, but they do not have the same slope which indicates the
interaction of frequency with power. The following equations are the equations for the
three regression models (linear, pure-quadratic and full-quadratic) where βi is the unknown
regression coefficient :
• Linear regression model :

ˆPower = β0 + β1 ∗ Slice + β2 ∗BRAM + β3 ∗ Frequency (5.6)

• Pure-quadratic regression model :

ˆPower = β0 + β4 ∗ Slice ∗BRAM + β5 ∗ Slice ∗ Frequency

+ β6 ∗BRAM ∗ Frequency + β7 ∗ Slice2 + β8 ∗BRAM2

+ β9 ∗ Frequency2

(5.7)

• Full-quadratic regression model :

ˆPower = β0 + β1 ∗ Slice + β2 ∗BRAM + β3 ∗ Frequency + β4 ∗ Slice

∗BRAM + β5 ∗ Slice ∗ Frequency + β6 ∗BRAM ∗ Frequency

+ β7 ∗ Slice2 + β8 ∗BRAM2 + β9 ∗ Frequency2

(5.8)

Before going into the details, it is preferable to explain some statistical definitions that
will be used in the analysis for comparing the models.
• Residual value. It is the vertical distance between a data point and the regression line.
They are positive if they are above the regression line and negative if they are below it,
but if the regression line passes through the points, then the residual will be zero.
• Residual Sum of Squares (Residual SS). It tells if the statistical model is a good
fit for the data or not by calculating the overall difference between the data and their
predicted values where Σ error2 = Σ (Poweractual−Powerpredicted)2. Smaller Residual
SS means that the model better fits the data while greater values means the poorer



96 ViPar : A Tool for Design Space Exploration

it fits them while a zero value means that the model is a perfect fit. Residual sum of
Squares is used to calculate the coefficient of determination (R2).

• The coefficient of determination (R-squared). R2 tells how many points fall on
the regression line ; in other words, R2 represents the percentage of variability in the
model. R-squared is explained by the fitted regression model by a value ranging between
0 to 1. For example, R2 = 0.8 means that 80% of the variation of power-values fit with
the regression model.

R2 = 1− Residual sum of Squares
T otal sum of Squares (5.9)

• The correlation coefficient (Multiple-R). Multiple-R explains how strong the
relationship between the dependent and independent variables is. For example, a value
of 1 means a perfect positive relationship while a value of zero means no relationship
at all. It is the square root of R-squared.

• Adjusted R-squared. It is adjusted for the number of coefficients in the model. This
value is often used to compare models of different numbers of coefficients.

• Null hypothesis. It is the commonly accepted fact that the researchers work to nullify,
reject or disprove it. It is named "null" because we try to nullify it, but it does not mean
that the statement is null itself. For example, the null hypothesis for the coefficient β
in the regression model equation is that β = 0.

• Significance level (Alpha level α). It is the probability of making the wrong decision
when the null hypothesis is true while the confidence level is defined as (1 − α).

• P-value. It is used in hypothesis test for either supports or rejects the null hypothesis. P-
value is an evidence against the null hypothesis where the smaller p-value is, the stronger
evidence to reject the null hypothesis. For confidence level = 98% (i.e. α = 0.02), if P
≤ 0.02 then the null hypothesis is rejected ; otherwise it will be accepted.

• Significance-F. It is the probability that the regression equation does not explain the
variation in the dependent variable (power). If the Significance-F is not less than the
confidence level then there is no meaningful correlation.

Table 5.6 lists the regression analysis for the three models (linear, pure-quadratic and
full-quadratic). For the three models, Table 5.6 showed zero value for the Significance-F ;
therefore, the three models are valid (i.e. our results are statistically significant, and they
likely did not happen by chance). Adjusted R-squared can be checked to tell us how many
points fall on the regression line. It was 0.912166 for linear, 0.994009 for pure-quadratic and
0.99413 for full-quadratic. Apparently, the difference in Adjusted R2 between pure-quadratic
and full quadratic was not that big difference. For that reason, we can either choose the
pure-quadratic to have fewer model parameters or to choose the full-quadratic to have the
highest R2 ; in our case, we chose the full-quadratic model. Finally, by applying a confidence
level of 99% (i.e. α = 0.01), we checked the corresponding p-values for the coefficients β of



5.4 Power Estimation Model 97

Linear model Pure-Quadratic model Full-Quadratic model
Regression SS 6384.396 6957.231 6958.076
Residual SS 614.766 41.93071 41.0856
Total SS 6999.162 6999.162 6999.162
Significance-F 0 0 0
Multiple R 0.955074 0.997 0.997061
R-square (R 2) 0.912166 0.994009 0.99413
Adjusted R 2 0.912163 0.994009 0.994129
Observations 100152 100152 100152

Intercept
Coefficient β0 -0.10964 0.251097 0.222776
P-value 0 0 0

Slice
Coefficient β1 7.88 e-06 XX 1.29 e-06
P-value 0 XX 3 e-161

BRAM
Coefficient β2 0.000151 XX 9.39 e-05
P-value 0 XX 8.81 e-31

Frequency
Coefficient β3 0.003124 XX 0.000116
P-value 0 XX 2.28 e-60

Slice * BRAM
Coefficient β4 XX 1.31 e-09 2.38 e-09
P-value XX 5.24 e-59 1.19 e-54

Slice * Frequency
Coefficient β5 XX 7.3 e-08 7.03 e-08
P-value XX 0 0

BRAM * Frequency
Coefficient β6 XX 4.29 e-07 5.51 e-07
P-value XX 0 0

Slice 2

Coefficient β7 XX -1.2 e-11 -4.6 e-11
P-value XX 6.73 e-91 0

BRAM 2

Coefficient β8 XX 6.83 e-09 -9.5 e-08
P-value XX 0.015541 1.3 e-147

Frequency 2

Coefficient β9 XX 7.63 e-07 4.91 e-07
P-value XX 0 9.91 e-81

Table 5.6 – Regression analysis for linear, pure-quadratic and full-quadratic power estimation
model



98 ViPar : A Tool for Design Space Exploration

the full-quadratic model (β0 → β9) ; we could conclude that the null hypothesis is rejected
for all coefficients (β0 → β9) where p < 0.01. The full-quadratic power estimation model is
described in equation 5.10 as follows :

Power|Estimated = 0.222776 + 1.29× 10−6 × Slice + 9.39× 10−5 ×BRAM + 11.6× 10−5

× Frequency + 2.38× 10−9 × Slice×BRAM + 7.03× 10−8 × Slice

× Frequency + 5.51× 10−7 ×BRAM × Frequency − 4.6× 10−11

× Slice2 − 9.5× 10−8 ×BRAM2 + 4.91× 10−7 × Frequency2

(5.10)

We need to analyse the residual values to prove that the hypothesis behind the full-
quadratic regression model holds. In the residual plot, the residuals are plotted on the vertical
axis while the independent variable (power) is on the horizontal axis. If the points in the plot
are randomly dispersed around the horizontal axis, then the regression model is appropriate
for the data. In addition to that, both the sum and the mean average of the residual values
should equal to zero. Figure 5.7 shows the residual plot for the full-quadratic regression
model. It is obvious from the plot that the residual points are normally distributed around
the horizontal axis. In addition to that, the sum of residuals and their mean average were
2.76245 e-09 and 2.75826 e-14 which were almost equal to zero. From this analysis, we can
conclude that our full-quadratic model described in equation 5.10 is a valid regression model.

5.5 Performance Estimation

Two factors affect the execution time for video processing application : number of parallel
processing channels and the operating frequency. As discussed in the previous chapter, it is
common to divide the image into strips till one frame is completely processed. The execution
time for strip processing is formulated in equation 5.11 which is the summation of clock cycles
required to transfer the pixels from/to the processing element plus the clock cycles required
for algorithm processing.

Strip Processing (in cycles) =

Cycles|writing input pixels +Cycles|PE Processing +Cycles|reading output pixels (5.11)

Where Cycles|writing input pixels is the number of clock cycles required to transfer the pixels from
the memory to the processing element through DMA communication, Cycles|PE Processing is
the number of clock cycles required by the processing element for executing the application
and Cycles|reading output pixels is the number of clock cycles required to transfer the processed
pixels back to the memory. By using the following equation, we could know how many strips



5.6 Automatic High-level Code Generation 99

Figure 5.7 – High-level code generation design flow

are in one image frame :

Num_of_strips =
Num_image_lines

Num_output_lines|parallelism level = 1 ∗ parallelism level
(5.12)

Where Num_image_lines is the number of scanlines in one image and
Num_output_lines|parallelism level = 1 is the number of image lines produced by a single
processing channel from one image strip processing. From the previous equations, the frame
execution time can be calculated as follows :

Frame Execution T ime (in seconds) =

Num_of_strips ∗ Strip Processing (in clk cycles)

Frequency (in MHz)
(5.13)

5.6 Automatic High-level Code Generation

5.6.1 Design Flow

Figure 5.8 shows that the high-level code generation tool has two input files which
are : (1) Processing Element C++ File which implements the functionality of the
video processing algorithm. (2) System Specification File which represents the system
architecture constructed in Fig. 5.1. The Specification File has four main sections :



100 ViPar : A Tool for Design Space Exploration

Figure 5.8 – High-level code generation design flow

• Header section. It states all header files and constants which are defined in the
application.

• System Properties section. It defines the general system properties such as the size
of the input/output images and what level of parallelism is realized.

• Top Level Function section. It defines the port properties for both system input
ports (I 0, I 1, ..., Im) and system output ports (O0, O1, ...., On). Port properties
include its name, data type, how many scanlines are transferred from/to the system
during execution (num_of_scanlines) and either if pixels are grouped during transfer
to optimize bus communication or not (num_of_merging_elements). For example, if
an 8-bit pixel is transferred over 64-bit bus width then 8 pixels can be merged and
sent at once. For system interface, the tool implements AXI-Stream protocol for the
input/output ports.

• Processing Element section. It defines the port properties of its input ports (X0,
X1, ..., X i) and output ports (Y 0, Y 1, ..., Y j). These properties are its name, data
type, the source of the input pixel stream (src) and the range of image scanlines which
are mapped to that port during execution (store_scanlines_from, store_scanlines_to).
In this section, we define only the parameters for the first processing element,
then subsequently the tool can generate the port parameters automatically for the
other processing elements by using the shift_step property. For example, if the first
image scanline is mapped to the first processing element while the fifth one is mapped
to the second processing core then the value of the shift_step property for that port is 4.



5.6 Automatic High-level Code Generation 101

Figure 5.8 illustrates the three main phases to generate the high-level code for the parallel
video processing architecture.
• Properties extraction phase. From System Specification File, the tool can extract
level_of_parallelism and other input/output ports properties for both top-level and
processing element blocks.

• PE properties generation. Based on the extracted properties, the tool can derive
the properties of the other processing cores in the architecture (from PE = 1 to N-1 )
automatically. For both pixel distributor and pixel collector, arrays are created such
that each input/output port (X (i,PE) or Y (j,PE)) is mapped to a single array structure.

• Building the parallel architecture. Finally, the tool builds the parallel architecture
by generating C++ code for : (1) Pixel distributor subroutine to store image scanlines
in arrays according to the distribution pattern. (2) Instantiating a number of parallel
processing instances equal to the level of parallelism. (3) Pixel collector subroutine to
stream out the processed image scanlines. In addition to that, the tool manages how
the pixels are separated before distribution or merged at the output ports in order to
reduce bus communication time. After applying HLS optimizations/User constraints,
the generated C++ design files are compiled by the High-level Synthesis tool to give
the corresponding RTL design.

5.6.2 Code Generation

Listing 5.1 shows an example of the specification file for video downscaler (4 :1) for an
input VGA image size. As described before, the specification file is subdivided into four main
sections : Header section includes all header files and definitions (lines 1-12). System Properties
section (lines 14-20) defines the size of the input/output image in addition to the level of
parallelism implemented by the generated architecture (line 19). Top-level section (lines 22-
35) defines the name of the top-level function VideoDownScaler_parallel32 (line 23) and
the port properties for the system input/output ports. In this application, there is one
single input port data_img (lines 24-28) and one single output port img_result (lines 29-
33). Processing Element section is the last section in the file (lines 37-53) where the number
and the properties of the input/output ports for the processing element are defined.

Table 5.7 lists the number of Lines Of Code (LOC) generated by the tool for different
applications at different levels of parallelism. LOC are calculated after excluding both blank
lines and comments. To move from one parallelism level to another, we need only to change
the value of level_of_parallelism parameter in #System_Properties# section. Consequently,
a significant design time is saved by automating that step. For example, the size of system
specification file for 5-window SAD algorithm is 98 lines where LOC ratio between the
generated code to specification file is 3.2 (314 :98) for one processing element architecture,
and it reaches to 74 (7244 :98) for an architecture containing 64 processing element. While



102 ViPar : A Tool for Design Space Exploration

1 ## Header ##
2 #include "ap_int.h"
3 #define IMG_WIDTH 640
4 #define IMG_HEIGHT 480
5 #define IMG_SIZE 307200
6 #define IMG_WIDTH_2 320
7 #define IMG_HEIGHT_2 240
8 #define IMG_SIZE_4 76800
9 #define WIN_HEIGHT 2

10 #define STRIP_SIZE_PARA32_8 5120
11 #define IMG_WIDTH_2_PARA32_8 1280
12 ## ENDOF_Header ##
13
14 ## System_Properties ##
15 input_image.width = 640
16 input_image.height = 480
17 output_image.width = 320
18 output_image.height = 240
19 Parallelism_Level = 32
20 ## ENDOF_System_Properties ##
21
22 ## Top_Level_Function ##
23 Name = VideoDownScaler_parallel32
24 Num_of_inputs = 1
25 Input_0.name = data_img[STRIP_SIZE_PARA32_8]
26 Input_0.type = unsigned long long int
27 Input_0.num_of_scanlines = 64
28 Input_0.num_of_merging_elements = 8
29 Num_of_outputs = 1
30 Output_0.name = img_result[IMG_WIDTH_2_PARA32_8]
31 Output_0.type = unsigned long long int
32 Output_0.num_of_scanlines = 32
33 Output_0.num_of_merging_elements = 8
34 Interface = AXI−Stream
35 ## ENDOF_Top_Level_Function ##
36
37 ## Processing_Element ##
38 Name = VideoDownScaler
39 Num_of_inputs = 1
40 Input_0.name = image[IMG_WIDTH][WIN_HEIGHT]
41 Input_0.type = unsigned char
42 Input_0.src = data_img[STRIP_SIZE_PARA32_8]
43 Input_0.store_scanlines_from = 0
44 Input_0.store_scanlines_to = 1
45 Input_0.shift_step = 2
46 Num_of_outputs = 1
47 Output_0.name = image_result[IMG_WIDTH_2]
48 Output_0.type = unsigned char
49 Output_0.sink = img_result[IMG_WIDTH_2_PARA32_8]
50 Output_0.store_scanlines_from = 0
51 Output_0.store_scanlines_to = 0
52 Output_0.shift_step = 1
53 ## ENDOF_Processing_Element ##

Listing 5.1 – Specification file for video downscaler (4 :1) for input VGA image



5.7 Experimental Results 103

level of
Parallelism

Spec.
File 1 4 8 16 32 64

5-win SAD 98 314 644 1084 1964 3724 7244
1-win SAD 74 249 552 904 1608 3016 5832
Video scaler 54 87 195 339 627 1203 2355
Conv. filter 52 69 195 363 634 1098 2026

Table 5.7 – Number of code lines generated for different applications at different parallelism
level

for convolution filter, this ratio is 1.3 (69 :52) for one processing element and increases to 39
(2026 :52) for 64 elements architecture.

5.7 Experimental Results

By exploiting pipeline-level parallelism for 5-window SAD algorithm, three different
designs were implemented. These designs are named pipe4, pipe8 and pipe12 where 4, 8,
and 12 disparity lines are processed by the same processing channel. In this section, these
initial three designs will be explored by varying the level of parallelism at different operating
frequencies. By the help of ViPar tool, we will estimate the hardware utilization, power
consumption and performance for each alternative in the design space as explained in the
previous sections. According to the system constraints, only the candidate designs will be
selected for synthesizing. The high-level codes for the candidate designs will be generated
automatically then synthesized by the HLS tool to give the corresponding RTL design. The
RTL design is then implemented and experimented to verify the estimated design metrics.

5.7.1 Area, Power and Performance Estimations

Resource utilization, power and frame execution time were estimated by means of the
derived equations in the previous sections for the different designs listed in Table 5.8 and
5.9. The designs for pipe4, pipe8 and pipe12 at parallelism level = 1 operating at 100, 150
and 200 MHz are considered as the initial points for our estimation process (designs #1,
#9, #17,#25, #29, #33, #37, #40 and #43). For area estimation, we keep increasing the
level of parallelism till one of the resources either Slice or BRAM is completely utilized. The
upper boundary for resources could differ from one case to another according to the used
FPGA chip during the exploration process. For example in this exploration, Zynq ZC706 was
used with maximum hardware resources of Slice = 54650, FF = 437200, LUT = 218600 and
BRAM_18K = 1090.

Experimental measurements for power and performance were conducted in order to
evaluate how far the estimations are correct from the real values. By default, Default
synthesis/implementation strategies are used but if they failed to satisfy the timing



104 ViPar : A Tool for Design Space Exploration

#
Freq.
in

MHz

level of
Parall-
elism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
(1090)

Power
in mW

Frame Exec.
Time in ms

1

100

1 10534 28903 31163 131 342.91 84.875
2 2 18444 49161 55683 243 418.29 44.85
3 3 26354 69419 80203 355 489.81 30.965
4 4 34264 89677 104723 467 557.46 24.838
5 5 42174 109935 129243 579 621.25 20.656
6 6 50084 130193 153763 691 681.17 17.854
7 7 44571 150451 178283 803 662.85 15.7
8 8 50701 170709 202803 915 710.87 14.32
9

150

1 10111 27410 31140 131 390.71 56.733
10 2 17754 46175 55636 243 494.28 29.975
11 3 25397 64940 80132 355 594.22 20.693
12 4 33040 83705 104623 467 690.54 16.596
13 5 40683 102470 129124 579 783.22 13.8
14 6 48326 121235 153620 691 872.28 11.927
15 7 44529 140000 178116 803 853.05 10.488
16 8 50653 158765 202612 915 925.64 9.565
17

200

1 9642 29895 31184 131 437.3 42.736
18 2 16893 51145 55723 243 565.37 22.574
19 3 24144 72395 80262 355 690.15 15.581
20 4 31395 93645 104801 467 811.62 12.494
21 5 38646 114895 129340 579 929.78 10.387
22 6 45897 136145 153879 691 1044.64 8.976
23 7 53148 157395 178418 803 1156.2 7.891
24 8 50740 178645 202957 915 1144.27 7.196

Table 5.8 – Estimations for utilization, power and frame execution time for pipe4 designs

constraints, then they are replaced by Performance Explore strategies (Performance Explore
strategies were used for designs #22, #35 and #44). However, some designs could not be
synthesized even after changing the strategy due to the unsatisfied timing constraints or due
to the lack of the hardware resources required to apply that new strategy (non-synthesized
designs are #23, #24, #36 and #45).

Figure 5.9 depicts the percentage of estimation error for Slice, LUT and FF such that
positive values mean overestimated values and negative values mean underestimated ones
while the points of discontinuity in the plot are for the non-synthesized designs #23, #24,
#36 and #45. The percentage estimation error ranges between -21% to 0.4%, -3.7% to 0.3%
and -14.6% to 8% for LUT, FF and Slice respectively. The maximum estimation error for
LUT occurred for design #22 by -21% and for design #44 by -15% due to the change of the
implementation strategy (Performance Explore was used instead of the default strategies). For
BRAM, the estimation error was not plotted since both the estimated and measured values



5.7 Experimental Results 105

#
Freq.
in

MHz

level
of Para-
llelism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
(1090)

Power
in mW

Frame
Exec. Time

in ms
25

Pi
pe

8

100

1 15608 47992 48170 203 391.73 44.85
26 2 28745 87339 89700 387 510.4 24.838
27 3 41882 126686 131230 571 618.42 17.854
28 4 43190 166033 172760 755 649.25 14.32
29

150

1 16625 44339 48591 203 729.75 12.167
30 2 30357 80033 90533 387 650.15 16.596
31 3 44089 115727 132475 571 813.63 11.927
32 4 43605 151421 174417 755 837.69 9.565
33

200

1 16278 48644 53711 203 548.49 22.574
34 2 30001 88643 100770 387 777.02 12.494
35 3 43724 128642 147829 571 993.97 8.976
36 4 48722 168641 194888 755 1092.14 7.196
37

Pi
pe

12

100

1 26073 67071 66804 275 475.8 30.965
38 2 49292 125497 126967 531 652.76 17.854
39 3 46783 183923 187130 787 674.48 12.774
40

150

1 24133 61240 69833 275 567.12 20.693
41 2 45392 113835 133017 531 818.27 11.927
42 3 49051 166430 196201 787 893.56 8.531
43

200

1 22127 67339 68978 275 646 15.581
44 2 41461 126033 131286 531 957.05 8.976
45 3 48399 184727 193594 787 1093.59 6.418

Table 5.9 – Estimations for utilization, power and frame execution time for pipe8 and pipe12
designs

were identical. Figure 5.10 shows the percentage error in the estimated frame execution time
where it ranges between -10.4% to 4.3% for different designs. This error arose due to the
time consumed to set the DMA communication between the Processing System (PS) and the
Programmable Logic (PL).

For fast power estimations at high-level design, only information about frequency
and resource utilization are available. Fig. 5.11 shows that the power consumption was
underestimated by values range between 34% to 62.3% of the real measured values. It
is reasonable to see that difference because some factors which contribute to the power
consumption like switching activity, clock tree and the interconnect wires are not considered
in the model equation. For further analysis, the estimated and measured power were plotted
as depicted in Fig. 5.12 ; it is clear that the two curves behave in the same manner. In
other words, the derived power model can be used for relative power comparison between
alternative designs during the design space exploration process. However, it can not be used
to estimate a value near from the real measurements for a single design due to the lack of full
implementation design details.



106 ViPar : A Tool for Design Space Exploration

1 5 10 15 20 25 30 35 40 45

−20

−10

0

10

Design Number

%
Es

tim
at
io
n
Er

ro
r

Figure 5.9 – The estimation percentage error for Slice , LUT and FF when
compared to the measured values for different designs

1 5 10 15 20 25 30 35 40 45

−10

−5

0

5

Design Number

%
Es

tim
at
io
n
Er

ro
r

Figure 5.10 – The estimation percentage error for frame execution time when compared to
the measured values



5.7 Experimental Results 107

1 5 10 15 20 25 30 35 40 45

−60

−50

−40

Design Number

%
Es

tim
at
io
n
Er

ro
r

Figure 5.11 – The estimation percentage error for power consumption when compared to
the measured values

1 5 10 15 20 25 30 35 40 45

500

1,000

1,500

2,000

2,500

Design Number

Po
we

r
in

m
W

Figure 5.12 – Estimated and measured power for different designs



108 ViPar : A Tool for Design Space Exploration

Figure 5.13 – (a) Enlarging the strip size to calculate 4 disparity lines (b) Image scanlines
distribution pattern

5.7.2 High-level Code Generation

Figure 5.13a shows how four disparity lines can be calculated by enlarging the strip size
(Remember that 5-win SAD configuration has the following parameters : winH =23, winV
=7, cwinH =7, cwinV =3 and maximum disparity=64). Each strip consists of 18 image lines
where image lines from 0 to 10, from 7 to 17 and from 4 to 13 are used to calculate the sum
of windows A/B, C/D and E respectively as depicted in Fig. 5.13b.

Listing 5.2 lists the Processing_Element section of the specification file where each
processing channel has 6 input ports such that each port is linked to a separate array structure
(data_R_AB, data_L_AB, data_R_CD, data_L_CD, data_R_E and data_L_E) (Lines 4,
10, 16, 22, 28 and 34). We defined 6 properties for each input port : name, type and src to
define its name, type and the top-level input source linked to that port. store_scanlines_from
and store_scanlines_to are used to define the distribution pattern of the image lines. For
example, Fig. 5.13b depicts that calculating the summation of windows C/D requires to store
the image lines from 7 to 17 in arrays data_R_CD and data_L_CD (Lines 19-20 and 25-26).



5.7 Experimental Results 109

1 ## Processing_Element ##
2 Name = MultiWinSAD_pipe4
3 Num_of_inputs = 6
4 Input_0.name = data_R_AB[LINE_SIZE][STRIP_HEIGHT_ABCD_PIPE4]
5 Input_0.type = ap_int<18>
6 Input_0.src = data_img_R[STRIP_SIZE_PIPE4]
7 Input_0.store_scanlines_from = 0
8 Input_0.store_scanlines_to = 10
9 Input_0.shift_step = 4
10 Input_1.name = data_L_AB[LINE_SIZE][STRIP_HEIGHT_ABCD_PIPE4]
11 Input_1.type = ap_int<18>
12 Input_1.src = data_img_L[STRIP_SIZE_PIPE4]
13 Input_1.store_scanlines_from = 0
14 Input_1.store_scanlines_to = 10
15 Input_1.shift_step = 4
16 Input_2.name = data_R_CD[LINE_SIZE][STRIP_HEIGHT_ABCD_PIPE4]
17 Input_2.type = ap_int<18>
18 Input_2.src = data_img_R[STRIP_SIZE_PIPE4]
19 Input_2.store_scanlines_from = 7
20 Input_2.store_scanlines_to = 17
21 Input_2.shift_step = 4
22 Input_3.name = data_L_CD[LINE_SIZE][STRIP_HEIGHT_ABCD_PIPE4]
23 Input_3.type = ap_int<18>
24 Input_3.src = data_img_L[STRIP_SIZE_PIPE4]
25 Input_3.store_scanlines_from = 7
26 Input_3.store_scanlines_to = 17
27 Input_3.shift_step = 4
28 Input_4.name = data_R_E[LINE_SIZE][STRIP_HEIGHT_E_PIPE4]
29 Input_4.type = ap_int<18>
30 Input_4.src = data_img_R[STRIP_SIZE_PIPE4]
31 Input_4.store_scanlines_from = 4
32 Input_4.store_scanlines_to = 13
33 Input_4.shift_step = 4
34 Input_5.name = data_L_E[LINE_SIZE][STRIP_HEIGHT_E_PIPE4]
35 Input_5.type = ap_int<18>
36 Input_5.src = data_img_L[STRIP_SIZE_PIPE4]
37 Input_5.store_scanlines_from = 4
38 Input_5.store_scanlines_to = 13
39 Input_5.shift_step = 4
40 Num_of_outputs = 4
41 Output_0.name = best_disparity_0[LINE_SIZE]
42 Output_0.type = unsigned char
43 Output_0.sink = disp_img_result[LINE_SIZEx4]
44 Output_0.store_scanlines_from = 0
45 Output_0.store_scanlines_to = 0
46 Output_0.shift_step = 4
47 Output_1.name = best_disparity_1[LINE_SIZE]
48 Output_1.type = unsigned char
49 Output_1.sink = disp_img_result[LINE_SIZEx4]
50 Output_1.store_scanlines_from = 1
51 Output_1.store_scanlines_to = 1
52 Output_1.shift_step = 4
53 Output_2.name = best_disparity_2[LINE_SIZE]
54 Output_2.type = unsigned char
55 Output_2.sink = disp_img_result[LINE_SIZEx4]
56 Output_2.store_scanlines_from = 2
57 Output_2.store_scanlines_to = 2
58 Output_2.shift_step = 4
59 Output_3.name = best_disparity_3[LINE_SIZE]
60 Output_3.type = unsigned char
61 Output_3.sink = disp_img_result[LINE_SIZEx4]
62 Output_3.store_scanlines_from = 3
63 Output_3.store_scanlines_to = 3
64 Output_3.shift_step = 4
65 ## ENDOF_Processing_Element ##

Listing 5.2 – Specification file for calculating 4 disparity lines for 5-win SAD algorithm
(Processing_Element section)



110 ViPar : A Tool for Design Space Exploration

shift_step is used to determine from which image line will start the next strip processing for
the other processing channels (Line 9). To generate the high-level code for another level of
parallelism ; simply, we do the following modifications : (1) Updating the defined constants
for the size of the input/output pixels (Listing 5.3, Lines 3 and 4). (2) Updating the value of
the level of parallelism (Line 12). (3) Updating the number of image lines write/read to/from
the architecture (Lines 20, 24 and 29). While Listing 5.2 for the processing element is kept
unchanged. In the same way, we will generate the high-level code for other design choices
pipe8 and pipe12.

1 ## Header ##
2 #include "functions.h"
3 #define STRIP_SIZE_PIPE4 5760
4 #define LINE_SIZEx4 320
5 ## ENDOF_Header ##
6
7 ## System_Properties ##
8 input_image.width = 640
9 input_image.height = 480
10 output_image.width = 640
11 output_image.height = 480
12 Parallelism_Level = 1
13 ## ENDOF_System_Properties ##
14
15 ## Top_Level_Function ##
16 Name = D04_pipe4_parallel1
17 Num_of_inputs = 2
18 Input_0.name = data_img_R[STRIP_SIZE_PIPE4]
19 Input_0.type = unsigned long long int
20 Input_0.num_of_scanlines = 18
21 Input_0.num_of_merging_elements = 2
22 Input_1.name = data_img_L[STRIP_SIZE_PIPE4]
23 Input_1.type = unsigned long long int
24 Input_1.num_of_scanlines = 18
25 Input_1.num_of_merging_elements = 2
26 Num_of_outputs = 1
27 Output_0.name = disp_img_result[LINE_SIZEx4]
28 Output_0.type = unsigned long long int
29 Output_0.num_of_scanlines = 4
30 Output_0.num_of_merging_elements = 8
31 Interface = AXI−Stream
32 ## ENDOF_Top_Level_Function ##

Listing 5.3 – Specification file for calculating 4 disparity lines for 5-win SAD algorithm

5.7.3 Design Space Exploration

All design variations listed in Tables 5.8 and 5.9 could be accepted as a solution but
the applied system constraints will direct our final decision to choose one design among the
others. Fig. 5.14 depicts some of the candidate designs (#7, #31, #42 and #43) along with
the system constraints to guide the designer towards an efficient solution. The orange shaded



5.8 Conclusion 111

LUT

FFBRAM18K

Execution
time

Power Frequency

Figure 5.14 – Radar chart for designs #7 , #31 , #42 , #43 and system
constraints

area represents the system constraints defined by the designer which are : frame execution
time ≤ 15 ms, LUT ≤ 150000, FF ≤ 120000, BRAM ≤ 700 and frequency ≤ 150 MHz. From
Fig. 5.14, we could deduce that design #31 succeeded to satisfy all the system constraints (for
design #31, LUT = 132475 , FF = 115727 , BRAM = 571 , frequency = 150 MHz and frame
execution time = 12 ms). Design #43 had relatively less hardware utilization (LUT = 68978 ,
FF = 67339 , BRAM = 275) and acceptable execution time (15.6 ms) in compare with design
#31 ; however, it failed to meet the frequency constraint. In such case, the designer can think
either to change the system constraints to profit from the less hardware utilization or to be
stuck with them.

5.8 Conclusion

In this chapter, we presented ViPar tool which explores the design space for the best
candidate parallel architectures. To compare different design alternatives in the design space,



112 ViPar : A Tool for Design Space Exploration

we derived equations to estimate each of area utilization, performance and power consumption.
The experiments showed that the percentage estimation error for area utilization was between
-3.5% to 0.4% for LUT, -0.1% to 0.3% for FF, -14.6% to 8% for Slice and zero percentage
for BRAM. For frame execution time, the percentage estimation error was between -10.4%
to 4.3%. While for power consumption, the percentage estimation error was significantly high
ranging between 34% to 62% of the real measured values. The reason behind that error
is due to some key affecting factors in the power consumption like switching activity, the
number of interconnecting wires and clock tree were not taken into consideration in the model
equation. We showed that the estimation power model fitted for relative power comparison
between alternative designs rather than using it to estimate the power consumption of a single
design. Finally, we demonstrated an example of design space exploration problem where the
estimation equations guided the designer towards the efficient solution under certain system
constraints.



C h a p t e r 6

Conclusion and Perspectives

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



114 Conclusion and Perspectives

6.1 Conclusions

In this chapter, we will summarize the main contributions achieved in this work, and we
will put our work in perspective with suggestions for future works. This thesis emerged from
a real industrial problem in the domain of autonomous vehicle. Multiple image sensors are
usually installed in autonomous vehicles for static/dynamic obstacles detection, tracking and
classification. Although there are other sensors like lidar and radar which can be used for
achieving the same task ; but each solution has its pros and cons. Accordingly, it is preferable
to integrate those different sensors (camera, lidar and radar) in the same system to assure
the highest operation safety conditions. For image sensors, there is a continuous demand for
increasing the frame rate and for enhancing the image resolution for better obstacle detection.
Moreover, the images should be processed under real-time constraints. Different challenges
arose while solving that problem. We can mention them in the following points : First,
image/video applications are good candidates for parallel processing. Accordingly, parallel
architectures should be considered while trying to find the answers for the questions like how
parallelism level can be calculated ? how the input pixel stream can be distributed over the
parallel processing elements to guarantee the maximum performance. Second, the process of
building parallel video architectures should be automated to increase the design productivity
and to decrease the production costs while respecting the constraints for time-to-market.

In this thesis work, we chose FPGA technology as a platform for our proposed solution
for the following main reasons : First, FPGAs are reconfigurable hardware that can be
reprogrammed to build massively parallel architectures for video processing applications.
Second, compared to other technologies, FPGA offer an excellent tradeoff between computing
rate and power consumption at reasonable production costs, which suits for battery-based
systems. In the light of the aforementioned challenges, our contributions were presented as
follows :

In Chapter 3, we presented a generic model for pixel distribution/collection for parallel
streaming video architectures. In this model, first, we defined the required parameters to allow
any size processing window to slide freely in the horizontal and vertical direction. Second,
the hardware architecture for the pixel distributor/collector was generated automatically
to minimize the design efforts. In the experimental results, we showed the hardware
implementation of parallel architectures used to process two different video streaming
applications : video downscaler (16 :1) and convolution filter of kernel=3x3. In addition to
that, we used hardware parallelism to reduce the power consumption by scaling down the
operating frequency on the parallel processing elements. We derived the equations used to
calculate the depth of FIFOs for two different cases either when all processing elements were
activated or when they were not yet activated. We derived as well the equation for calculating
the required level of parallelism to maintain the same processing rate. The variation in the
parallelism level, depth of FIFO and frequency, formed a set of different design alternatives



6.1 Conclusions 115

that could be considered as a solution. The designer could select one design rather than
another according to the design constraints in terms of power consumption and hardware
utilization. In the experimental results, we showed the implementation for two applications :
video downscaler (16 :1) and AES-encrypted HD image with maximum power reduction of
19.6% and 5.4% respectively. This variation in power reduction in both applications was due
to the different power breakdown (for video downscaler, 53% of power was consumed by
BRAM while for AES encryption, 52% of power was consumed by logic and signals).

In Chapter 4, Multi-window Sum of Absolute Difference stereo matching (Multi-window
SAD) was proposed by our industrial partner NAVYA for hardware implementation. We
used high-level synthesis (HLS) tools for implementation mainly to decrease the developing
time and to easily evaluate different architectural configurations. We used a set of HLS
optimization techniques to efficiently implement the corresponding hardware architecture.
For each optimization step, we showed its impact on the overall design quality concerning
hardware cost and execution time. In the experimental results, we explained how to build the
hardware part of our application as well as the software part. Different architectures could
be evaluated by varying the parallelism level, the operating frequency (100, 150 or 200 MHz)
and the processing pipeline (pipe_4, pipe_8 or pipe_12 ) to form a design space of different
alternatives in terms of hardware utilization, frame rate and power consumption.

In Chapter 5, we developed ViPar as a tool for design space exploration. In ViPar, we
introduced the equations needed for estimating the hardware utilization and frame execution
time for different alternatives in the design space. Experimental power measurements were
done to build an empirical regression model for power estimation based on three independent
variables (Slice, BRAM and frequency). We compared statistically three regression models
(linear, pure-quadratic and full-quadratic) to select the model which better described the
consumed power. For Multi-window SAD stereo application, we explored its design space for
the best candidates by comparing different designs regarding hardware resources (LUT, FF
and BRAM), frame rate, frequency and power consumption. Finally, for the candidate designs,
we described their parallel hardware architecture in the specification file then ViPar was
used to generate the corresponding architecture automatically for synthesis and experimental
evaluation. In the experimental results, the estimated values for area utilization, execution
time and power consumption for Multi-window SAD application were compared to the
experimentally measured values for evaluation. The percentage error in area estimation was
in the range of -14% to 8% for Slice, -3.7% to 0.3% for FF and -3.6% to 0.4% for LUT where
underestimations were denoted by negative values and overestimations were indicated by
positive values. While for BRAM, estimated and measured values were identical. For frame
rate estimations, the percentage error was between -10.4% and 4.3% for different design
points. The power was underestimated by our empirical model by a percentage error reached
to 62%. This power underestimation was due to considering only the hardware resources



116 Conclusion and Perspectives

and frequency for building the power estimation model. While other factors which could
participate in power consumption like interconnection wires, switching activity or clock tree
are neglected because they are calculated from full synthesis process. In that case, running full
implementation would oppose our goal of doing fast power estimations at high design levels.
Therefore, our estimation power model is not targeting single design power estimation, but
it fits for inter-designs power comparison which is our case while exploring the design space.

6.2 Perspectives

Multi-application design space exploration. In this thesis, we considered the case
where a single application task was mapped and parallelized on a single FPGA. In autonomous
vehicle domain, it is normal to have multiple tasks running concurrently to form a long
processing channel. For example, in stereo matching applications, camera calibration and
image filter algorithms can be executed to enhance the quality of the preprocessed image.
While other algorithms for object classification and tracking can be processed after knowing
the depth of objects by the stereo matching application. In this situation, we will have multi-
application multi-objective design space exploration problem where we will search for a feasible
solution that satisfies the global system constraints in terms of performance, area utilization
and power consumption.

The first steps towards a feasible solution are by profiling those applications to figure
out the bottleneck computation tasks to be firstly considered for hardware acceleration as
well as to avoid accelerating functions which could be executed at acceptable performance
on General Purpose Processors. The communication protocol between application tasks can
be in different forms like point-to-point AXI Stream, NoC-based communication, etc. Each
communication method will have its impact on the performance and on how the data can
flow from one node to another. While searching for an efficient solution, our design space will
grow tremendously when the aforementioned factors are included ; for that reason, searching
algorithms (exact or heuristic) are advised for solving that problem.

Previously, our research team worked to solve an application mapping problem on a
heterogeneous platform (CPU + FPGA) using Mixed Integer Programming (MIP) method [9].
In our case, multi-application design space exploration will be done in two steps. First,
we explore how the tasks are mapped either to CPU or FPGA. Second, we explore the
design parameters concerning parallelism level, operating frequency, etc, to show how the
FPGA-mapped tasks are implemented to satisfy the system constraints. Heuristic searching
algorithms are preferred in that case rather than using exact methods to find the feasible task
mapping within a short time in term of seconds or minutes.

Self-adaptivity. It is the ability of the system to adapt itself due to external changes.
Self-adaptivity is done by monitoring the environment then adapt its behaviour in order to



6.2 Perspectives 117

preserve or improve the operation of the system according to some previously defined criteria.
The quality of image processing results can be affected by the environmental conditions
(day/night, foggy/clear/raining, illumination intensity, etc). For autonomous vehicles, the
input image can be preprocessed by an additional filter to guarantee the same quality of
results. In that case, there is no need to have all the image filters mapped and running at
the same time but it is recommended to apply the correct filter in the correct corresponding
environmental situation. According to that, the system will not be only autonomous but also
smart by adapting to the external influences. FPGAs are promoted to implement self-adaptive
systems because they are dynamic and partial reconfigurable architectures [16]. We can profit
from self-adaptivity to avoid system failures and consequently, increase the safety conditions
in the autonomous vehicles. For example, if one sensor failed during the operation time then
the system could use self-adaptivity to take some actions, for instance : (i) to reconfigure
its architecture to isolate the failed sensor. (ii) to adapt the decision-making behaviour by
neglecting the data coming from the failed sensor.

Three-step process should be followed to have a self-adaptive system : monitoring,
analyzing and decision making. At runtime different parameters can be monitored like
performance, power, etc, for behaviour analysis then decisions can be taken upon that. Task
mapping decisions in a self-adaptive system can have two different scenarios : In the first
scenario, we consider only the predefined mapping scenarios which are tested and validated
for use in critical safety application like autonomous vehicles. While in the second scenario,
task mapping is done at runtime by using heuristic algorithms for fast decision making.
Industrial cases will help us to build real scenarios for self-adaptivity. In those scenarios, we
have to define if those algorithms are running simultaneously or mutually exclusive then we
have to figure out how they are mapped to the reconfigurable platform without violating the
main system constraints in terms of performance, power consumption and area utilization.

System scalability. In autonomous vehicles, several functions are integrated for detecting
traffic light signs, lanes, pedestrians, etc. Accelerating all these algorithms by using a single
FPGAmay be infeasible and accordingly, migrating to a multiple-FPGA platform is advisable.
Several vendors introduce multi-FPGA boards to address the system requirements for the
most demanding high-performance applications. We can list some examples for multi-FPGA
boards which exist today in the market like HTG-847 and HTG-747 from HiTechGlobal [3],
Merrick FPGA series from Enterpoint [2], Prodigy multi-FPGA from S2C [7], quad Virtex
UltraScale and quad Virtex 7 multi-FPGA boards from PRO DESIGN Electronic [6]. Some
of these platforms are customizable according to the system requirements like PicoComputing
multi-FPGA board [4] in terms of the number of FPGA nodes and the type of each FPGA
device. The problem of flexible scalable multi-FPGA was previously tackled in our team [103].
In that work, all the communication lanes between FPGA modules go via PCIe switch to keep
the wire overhead per FPGA module constant. During multi-FPGA design space exploration,



118 Conclusion and Perspectives

first, we have to explore which tasks are mapped to which FPGA then we have to explore
the different alternatives to implement this task on the selected FPGA concerning parallelism
level, frequency and resource utilization. We will also search for efficient solutions for some
other questions like : can the same application be mapped to two different FPGAs ? In case
of failure, how can an application be migrated from one FPGA to another ?

Global processing model for autonomous vehicles. Different types of sensors
are integrated into autonomous shuttles. Smart sensors are usually used where most of
the processing is done locally at the sensor node, and only the results are communicated
to the central unit for decision making. Defining a global processing model for a system
integrating several of sensors is a challenging task. In such kind of systems, we have to
define how decisions are made because sometimes the captured data by different sensors are
redundant and sometimes they are complementary. For that reason, multi-sensor data fusion
is required for correct decision making [70]. Using deep learning [54] in video/image processing
applications for obstacle detection, tracking and classification, is very promising in the domain
of autonomous vehicles [17]. The processing model will search for answers to questions like :
How data can be fused from different sensors to take certain decisions like stopping in front
of obstacles ? How will the system behave when one sensor is failed ? And how the system
recovery will be done to maintain the same safety conditions ? How will the sensors act when
the central unit failed ? Will they exchange data in a non-centralized way ? or will they elect
a new node as the central unit ? And based on what conditions will be this election ?



References

[1] Xilinx Ultrascale+ Zynq MPSoC platform. https://www.xilinx.com/products/

silicon-devices/soc/zynq-ultrascale-mpsoc.html.

[2] Enterpoint Ltd. https://www.enterpoint.co.uk/products/

spartan-6-development-boards/merrick-6/.

[3] HiTech Global. http://www.hitechglobal.com/boards/allboards.htm.

[4] Micron Technology. https://www.micron.com.

[5] NAVYA company. http://navya.tech/en/.

[6] PRO DESIGN Electronic GmbH. http://www.prodesign-europe.com/proFPGA_

Products.html.

[7] S2C Inc. http://www.s2cinc.com/design-classification/

multi-fpga-prototyping.

[8] N. Abel, S. Manz, F. Grull, and U. Kebschull. Increasing Design Changeability Using
Dynamic Partial Reconfiguration. IEEE Transactions on Nuclear Science, 57(2) :602–
609, April 2010.

[9] A. Ait El Cadi, O. Souissi, R. Ben Atitallah, N. Belanger, and A. Artiba. Mathematical
programming models for scheduling in a CPU/FPGA architecture with heterogeneous
communication delays. Journal of Intelligent Manufacturing, Apr 2015.

[10] M. Al Kadi, B. Janssen, and M. Huebner. FGPU : An SIMT-Architecture for FPGAs. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, pages 254–263, New York, NY, USA, 2016. ACM.

[11] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo. Car parking occupancy
detection using smart camera networks and Deep Learning. In 2016 IEEE Symposium
on Computers and Communication (ISCC), pages 1212–1217, June 2016.

[12] M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, and B. Bardak. FPGA-Based
Soft-Core Processors for Image Processing Applications. Journal of Signal Processing
Systems, 87(1) :139–156, Apr 2017.

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.enterpoint.co.uk/products/spartan-6-development-boards/merrick-6/
https://www.enterpoint.co.uk/products/spartan-6-development-boards/merrick-6/
http://www.hitechglobal.com/boards/allboards.htm
https://www.micron.com
http://navya.tech/en/
http://www.prodesign-europe.com/proFPGA_Products.html
http://www.prodesign-europe.com/proFPGA_Products.html
http://www.s2cinc.com/design-classification/multi-fpga-prototyping
http://www.s2cinc.com/design-classification/multi-fpga-prototyping


120 References

[13] K. Andryc, M. Merchant, and R. Tessier. FlexGrip : A soft GPGPU for FPGAs. In
2013 International Conference on Field-Programmable Technology (FPT), pages 230–
237, Dec 2013.

[14] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J. Navaridas,
W. Song, J. Mawer, A. Cristal, and M. Luján. An empirical evaluation of high-level
synthesis languages and tools for database acceleration. In 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–8, Sept 2014.

[15] Avent. FMC-IMAGEON EDK Reference Design Tutorial.
[16] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dynamic

and Partial FPGA Exploitation. Proceedings of the IEEE, 95(2) :438–452, Feb 2007.
[17] K. Behrendt and J. Witt. Deep learning lane marker segmentation from automatically

generated labels. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 777–782, Sept 2017.

[18] Y. Bi, C. Li, and F. Yang. Very High Level Synthesis for Image Processing Applications.
In Proceedings of the 10th International Conference on Distributed Smart Camera,
ICDSC ’16, pages 160–165, New York, NY, USA, 2016. ACM.

[19] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach. Distributed
Embedded Smart Cameras for Surveillance Applications. Computer, 39(2) :68–75, Feb
2006.

[20] V. Brost, F. Yang, and C. Meunier. Flexible VLIW processor based on FPGA for
efficient embedded real-time image processing. Journal of Real-Time Image Processing,
9(1) :47–59, Mar 2014.

[21] N. Calagar, S. D. Brown, and J. H. Anderson. Source-level debugging for FPGA high-
level synthesis. In 2014 24th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–8, Sept 2014.

[22] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown,
and J. H. Anderson. Legup : An open-source high-level synthesis tool for fpga-based
processor/accelerator systems. ACM Trans. Embed. Comput. Syst., 13(2) :24 :1–24 :27,
Sept. 2013.

[23] J. Chiang and S. Zammattio. Five Ways to Build Flexibility into Industrial Applications
with FPGAs. Intel FPGA.

[24] A. Cilardo and L. Gallo. Interplay of loop unrolling and multidimensional memory
partitioning in hls. In 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 163–168, March 2015.

[25] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs : From Prototyping to Deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4) :473–491, April 2011.



121

[26] Y. Cong, J. Yuan, and Y. Tang. Video Anomaly Search in Crowded Scenes via Spatio-
Temporal Motion Context. IEEE Transactions on Information Forensics and Security,
8(10) :1590–1599, Oct 2013.

[27] P. Cooke, J. Fowers, G. Brown, and G. Stitt. A Tradeoff Analysis of FPGAs, GPUs,
and Multicores for Sliding-Window Applications. ACM Trans. Reconfigurable Technol.
Syst., 8(1) :2 :1–2 :24, Mar. 2015.

[28] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An introduction to high-level
synthesis. IEEE Design Test of Computers, 26(4) :8–17, July 2009.

[29] K. C. Dey, A. Mishra, and M. Chowdhury. Potential of Intelligent Transportation
Systems in Mitigating Adverse Weather Impacts on Road Mobility : A Review. IEEE
Transactions on Intelligent Transportation Systems, 16(3) :1107–1119, June 2015.

[30] M. J. Dworkin. SP 800-38A 2001 Edition. Recommendation for Block Cipher Modes
of Operation : Methods and Techniques. Technical report, Gaithersburg, MD, United
States, 2001.

[31] F. Erden, S. Velipasalar, A. Z. Alkar, and A. E. Cetin. Sensors in Assisted Living :
A survey of signal and image processing methods. IEEE Signal Processing Magazine,
33(2) :36–44, March 2016.

[32] S. Fleck and W. Straßer. Smart Camera Based Monitoring System and Its Application
to Assisted Living. Proceedings of the IEEE, 96(10) :1698–1714, Oct 2008.

[33] E. Fossum. CMOS Image Sensors : electronic camera on a chip. In Electron Devices
Meeting, 1995. IEDM ’95., International, pages 17–25, Dec 1995.

[34] L. Gallo, A. Cilardo, D. Thomas, S. Bayliss, and G. A. Constantinides. Area implications
of memory partitioning for high-level synthesis on FPGAs. In 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–4, Sept 2014.

[35] X. Gao and T. Yoshimura. Genetic algorithm based pipeline scheduling in high-level
synthesis. In 2013 IEEE 10th International Conference on ASIC, pages 1–4, Oct 2013.

[36] J. Goeders and S. J. E. Wilton. Signal-Tracing Techniques for In-System FPGA
Debugging of High-Level Synthesis Circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(1) :83–96, Jan 2017.

[37] J. B. Goeders and S. J. E. Wilton. VersaPower : Power estimation for diverse FPGA
architectures. In 2012 International Conference on Field-Programmable Technology,
pages 229–234, Dec 2012.

[38] R. Gonzalez and R. Woods. Digital Image Processing. Pearson Education, 2011.

[39] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and Quantitative Analysis
of the CHStone Benchmark Program Suite for Practical C-based High-level Synthesis.
Journal of Information Processing, 17 :242–254, 2009.



122 References

[40] G. Hegde and N. Kapre. Energy-Efficient Acceleration of OpenCV Saliency
Computation Using Soft Vector Processors. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 76–83, May
2015.

[41] M. Hemmati, M. Biglari-Abhari, S. Niar, and S. Berber. Real-time multi-scale
pedestrian detection for driver assistance systems. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, June 2017.

[42] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt. Efficient
implementation of Virtual Coarse Grained Reconfigurable Arrays on FPGAS. In 2013
23rd International Conference on Field programmable Logic and Applications, pages
1–8, Sept 2013.

[43] H. Hirschmuller. Improvements in Real-Time Correlation-Based Stereo Vision. In Stereo
and Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Workshop on, pages
141–148, 2001.

[44] E. Homsirikamol and K. Gaj. Can high-level synthesis compete against a hand-written
code in the cryptographic domain ? a case study. In 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), pages 1–8, Dec 2014.

[45] R. Jevtic and C. Carreras. Power Measurement Methodology for FPGA Devices. IEEE
Transactions on Instrumentation and Measurement, 60(1) :237–247, Jan 2011.

[46] W. Jiang, C. Xiao, H. Jin, S. Zhu, and Z. Lu. Vehicle Tracking with Non-
overlapping Views for Multi-camera Surveillance System. In 2013 IEEE 10th
International Conference on High Performance Computing and Communications 2013
IEEE International Conference on Embedded and Ubiquitous Computing, pages 1213–
1220, Nov 2013.

[47] D. H. Jones, A. Powell, C. S. Bouganis, and P. Y. K. Cheung. GPU Versus
FPGA for High Productivity Computing. In 2010 International Conference on Field
Programmable Logic and Applications, pages 119–124, Aug 2010.

[48] M. A. Kadi and M. Huebner. Integer computations with soft GPGPU on FPGAs. In
2016 International Conference on Field-Programmable Technology (FPT), pages 28–35,
Dec 2016.

[49] R. Kalarot and J. Morris. Comparison of FPGA and GPU implementations of real-
time stereo vision. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Workshops, pages 9–15, June 2010.

[50] B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vissers. A Methodology to Design
Programmable Embedded Systems - The Y-Chart Approach. In Embedded Processor
Design Challenges : Systems, Architectures, Modeling, and Simulation - SAMOS, pages
18–37, London, UK, UK, 2002. Springer-Verlag.



123

[51] A. Kulkarni, D. Stroobandt, A. Werner, F. Fricke, and M. Hübner. Pixie : A
heterogeneous virtual coarse-grained reconfigurable array for high performance image
processing applications. CoRR, abs/1705.01738, 2017.

[52] A. Lakshminarayana, S. Ahuja, and S. Shukla. High Level Power Estimation Models
for FPGAs. In 2011 IEEE Computer Society Annual Symposium on VLSI, pages 7–12,
July 2011.

[53] J. Lapalme, B. Theelen, N. Stoimenov, J. Voeten, L. Thiele, and E. Aboulhamid. Y-
chart based system design : a discussion on approaches. 2009.

[54] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature Magazine, 521 :436–444,
2015.

[55] F. Li, D. Chen, L. He, and J. Cong. Architecture Evaluation for Power-efficient FPGAs.
In Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field
Programmable Gate Arrays, FPGA ’03, pages 175–184, New York, NY, USA, 2003.
ACM.

[56] H. Li, S. Katkoori, and W.-K. Mak. Power Minimization Algorithms for LUT-based
FPGA Technology Mapping. ACM Trans. Des. Autom. Electron. Syst., 9(1) :33–51,
Jan. 2004.

[57] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong. Memory partitioning and
scheduling co-optimization in behavioral synthesis. In 2012 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 488–495, Nov 2012.

[58] G. Liu, M. Tan, S. Dai, R. Zhao, and Z. Zhang. Architecture and synthesis for area-
efficient pipelining of irregular loop nests. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(11) :1817–1830, Nov 2017.

[59] H.-Y. Liu and L. P. Carloni. On learning-based methods for design-space exploration
with high-level synthesis. In 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–7, May 2013.

[60] J. Liu, J. Wickerson, and G. A. Constantinides. Loop splitting for efficient pipelining
in high-level synthesis. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 72–79, May 2016.

[61] C. Lo and P. Chow. Model-based optimization of high level synthesis directives. In 2016
26th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–10, Aug 2016.

[62] A. Mahapatra and B. C. Schafer. Machine-learning based simulated annealer method
for high level synthesis design space exploration. In Proceedings of the 2014 Electronic
System Level Synthesis Conference (ESLsyn), pages 1–6, May 2014.

[63] H. Makhijani and S. Meier. A high level design solution for FPGA’s. In WESCON/94.
Idea/Microelectronics. Conference Record, pages 596–603, Sep 1994.



124 References

[64] G. Martin and G. Smith. High-level synthesis : Past, present, and future. IEEE Design
Test of Computers, 26(4) :18–25, July 2009.

[65] MathWorks. HDL Coder User’s Guide, September 2016.

[66] M. Mattavelli, I. Amer, and M. Raulet. The reconfigurable video coding standard
[standards in a nutshell]. IEEE Signal Processing Magazine, 27(3) :159–167, May 2010.

[67] M. McDonnell. Box-Filtering Techniques. Computer Graphics and Image Processing,
17(1) :65 – 70, 1981.

[68] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt. An overview of
today’s high-level synthesis tools. Design Automation for Embedded Systems, 16(3) :31–
51, Sep 2012.

[69] D. Meidanis, K. Georgopoulos, and I. Papaefstathiou. FPGA power consumption
measurements and estimations under different implementation parameters. In Field-
Programmable Technology (FPT), 2011 International Conference on, pages 1–6, Dec
2011.

[70] M. Munz, M. Mahlisch, and K. Dietmayer. Generic centralized multi sensor data fusion
based on probabilistic sensor and environment models for driver assistance systems.
IEEE Intelligent Transportation Systems Magazine, 2(1) :6–17, Spring 2010.

[71] R. Nane, V. M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels. DWARV
2.0 : A CoSy-based C-to-VHDL hardware compiler. In 22nd International Conference
on Field Programmable Logic and Applications (FPL), pages 619–622, Aug 2012.

[72] D. Navarro, . Lucı´a, L. A. Barragán, I. Urriza, and . Jiménez. High-level synthesis for
accelerating the fpga implementation of computationally demanding control algorithms
for power converters. IEEE Transactions on Industrial Informatics, 9(3) :1371–1379,
Aug 2013.

[73] ON semiconductor. VITA 2000 2.3 Megapixel 92 FPS Global Shutter CMOS Image
Sensor.

[74] D. J. Pagliari, M. R. Casu, and L. P. Carloni. Accelerators for breast cancer detection.
ACM Trans. Embed. Comput. Syst., 16(3) :80 :1–80 :25, Mar. 2017.

[75] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry. Design productivity of a high
level synthesis compiler versus HDL. In 2016 International Conference on Embedded
Computer Systems : Architectures, Modeling and Simulation (SAMOS), pages 140–147,
July 2016.

[76] N. K. Pham, A. K. Singh, A. Kumar, and M. M. A. Khin. Exploiting loop-array
dependencies to accelerate the design space exploration with high level synthesis. In
2015 Design, Automation Test in Europe Conference Exhibition (DATE), pages 157–
162, March 2015.



125

[77] C. Pilato and F. Ferrandi. Bambu : A modular framework for the high level synthesis
of memory-intensive applications. In 2013 23rd International Conference on Field
programmable Logic and Applications, pages 1–4, Sept 2013.

[78] K. K. W. Poon, S. J. E. Wilton, and A. Yan. A Detailed Power Model for Field-
programmable Gate Arrays. ACM Trans. Des. Autom. Electron. Syst., 10(2) :279–302,
Apr. 2005.

[79] A. Prost-Boucle, O. Muller, and F. Rousseau. Fast and standalone design space
exploration for high-level synthesis under resource constraints. Journal of Systems
Architecture, 60(1) :79 – 93, 2014.

[80] B. Rinner and W. Wolf. An Introduction to Distributed Smart Cameras. Proceedings
of the IEEE, 96(10) :1565–1575, Oct 2008.

[81] M. Ruiz, G. Sutter, S. Lopez-Buedo, J. Ramos, J. E. L. de Vergara, and J. Aracil.
Leveraging open source platforms and high-level synthesis for the design of FPGA-based
10 GbE active network probes. In 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–6, Dec 2015.

[82] B. C. Schafer. Probabilistic multiknob high-level synthesis design space exploration
acceleration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(3) :394–406, March 2016.

[83] B. C. Schafer. Enabling high-level synthesis resource sharing design space exploration
in fpgas through automatic internal bitwidth adjustments. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(1) :97–105, Jan 2017.

[84] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision, 47(1-3) :7–42, Apr. 2002.

[85] M. Schmid, N. Apelt, F. Hannig, and J. Teich. An image processing library for C-based
high-level synthesis. In 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–4, Sept 2014.

[86] M. Schmid, O. Reiche, F. Hannig, and J. Teich. Loop coarsening in C-based High-Level
Synthesis. In 2015 IEEE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 166–173, July 2015.

[87] A. Sengupta and R. Sedaghat. Integrated scheduling, allocation and binding in high
level synthesis using multi structure genetic algorithm based design space exploration.
In 2011 12th International Symposium on Quality Electronic Design, pages 1–9, March
2011.

[88] A. Severance and G. G. F. Lemieux. Embedded supercomputing in FPGAs with
the VectorBlox MXP Matrix Processor. In 2013 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, Sept
2013.



126 References

[89] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic Power Consumption in Virtex™-II
FPGA Family. In Proceedings of the 2002 ACM/SIGDA Tenth International Symposium
on Field-programmable Gate Arrays, FPGA ’02, pages 157–164, New York, NY, USA,
2002. ACM.

[90] D. Sharma, V. Dumitriu, and L. Kirischian. Architecture Reconfiguration as a
Mechanism for Sustainable Performance of Embedded Systems in case of Variations
in Available Power, pages 177–186. Springer International Publishing, Cham, 2017.

[91] F. M. Siddiqui, M. Russell, B. Bardak, R. Woods, and K. Rafferty. IPPro : FPGA based
image processing processor. In 2014 IEEE Workshop on Signal Processing Systems
(SiPS), pages 1–6, Oct 2014.

[92] H. Sim, A. Rahman, and J. Lee. Efficient high-level synthesis for nested loops of
nonrectangular iteration spaces. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(8) :2799–2802, Aug 2016.

[93] K. C. Smith, A. Wang, and L. C. Fujino. Through the Looking Glass : Trend Tracking
for ISSCC 2012. IEEE Solid-State Circuits Magazine, 4(1) :4–20, winter 2012.

[94] R. Solomon, P. A. Sandborn, and M. G. Pecht. Electronic part life cycle concepts
and obsolescence forecasting. IEEE Transactions on Components and Packaging
Technologies, 23(4) :707–717, Dec 2000.

[95] C. L. Sotiropoulou, S. Gkaitatzis, A. Annovi, M. Beretta, P. Giannetti, K. Kordas,
P. Luciano, S. Nikolaidis, C. Petridou, and G. Volpi. A Multi-Core FPGA-Based 2D-
Clustering Implementation for Real-Time Image Processing. IEEE Transactions on
Nuclear Science, 61(6) :3599–3606, Dec 2014.

[96] F. Sun, H. Wang, F. Fu, and X. Li. Survey of FPGA low power design. In 2010
International Conference on Intelligent Control and Information Processing, pages 547–
550, Aug 2010.

[97] X. Tang, P. E. Gaillardon, and G. D. Micheli. FPGA-SPICE : A simulation-based
power estimation framework for FPGAs. In 2015 33rd IEEE International Conference
on Computer Design (ICCD), pages 696–703, Oct 2015.

[98] Texas Instruments. Fusion Digital Power Designer GUI for Isolated Power Applications,
June 2014.

[99] D. B. Thomas. Synthesisable recursion for C++ HLS tools. In 2016 IEEE 27th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 91–98, July 2016.

[100] T. Tziortzios and S. Dokouzyannis. High throughput and energy efficient two-
dimensional inverse discrete cosine transform architecture. IET Image Processing,
7(5) :533–541, July 2013.



127

[101] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing Modular Hardware
Accelerators in C with ROCCC 2.0. In 2010 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 127–134, May
2010.

[102] S. Vishwakarma and A. Agrawal. A survey on activity recognition and behavior
understanding in video surveillance. The Visual Computer, 29(10) :983–1009, Oct 2013.

[103] V. Viswanathan. A Scalable Flexible and Dynamic Reconfigurable Architecture for
High Performance Embedded Computing, PhD dissertation, University of Valenciennes,
October, 2015.

[104] Y. Wang, P. Li, and J. Cong. Theory and Algorithm for Generalized Memory
Partitioning in High-level Synthesis. In Proceedings of the 2014 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays, FPGA ’14, pages 199–
208, New York, NY, USA, 2014. ACM.

[105] C. D. Ward and C. W. Sohns. Electronic component obsolescence. IEEE
Instrumentation Measurement Magazine, 14(6) :8–12, December 2011.

[106] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and W. A.
Najjar. High-level language tools for reconfigurable computing. Proceedings of the
IEEE, 103(3) :390–408, March 2015.

[107] Xilinx. A Simple Method of Estimating Power in XC4000XL/EX/E FPGAs.

[108] Xilinx. ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable SoC
User Guide.

[109] Xilinx. LogiCORE IP Color Filter Array Interpolation v3.0, December 2010.

[110] Xilinx. Power Methodology Guide, April 2013.

[111] Xilinx. UG902 Vivado Design Suite User Guide High-Level Synthesis, June 2015.

[112] Z. Xue and D. B. Thomas. SynADT : Dynamic Data Structures in High Level Synthesis.
In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 64–71, May 2016.

[113] J. Yan, J. Yuan, P. H. W. Leong, W. Luk, and L. Wang. Lossless compression decoders
for bitstreams and software binaries based on high-level synthesis. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 25(10) :2842–2855, Oct 2017.

[114] P. Yiannacouras, J. G. Steffan, and J. Rose. Portable, flexible, and scalable soft
vector processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(8) :1429–1442, Aug 2012.

[115] J. Yudi, C. H. Llanos, and M. Huebner. System-level design space identification for
Many-Core Vision Processors. Microprocessors and Microsystems, 52(Supplement C) :2
– 22, 2017.



128 References

[116] M. Zabłocki, K. Gościewska, D. Frejlichowski, and R. Hofman. Intelligent video
surveillance systems for public spaces – a survey. Journal of Theoretical and Applied
Computer Science, 8 :13–27, 2014.

[117] J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu, and C. Chen. Data-Driven Intelligent
Transportation Systems : A Survey. IEEE Transactions on Intelligent Transportation
Systems, 12(4) :1624–1639, Dec 2011.

[118] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar. Lin-Analyzer : A
high-level performance analysis tool for FPGA-based accelerators. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2016.


	Table of contents
	1 Introduction
	1.1 The context of the work
	1.2 Trends and Challenges
	1.2.1 Industrial Challenges
	1.2.2 Scientific Challenges

	1.3 Contributions
	1.4 Outline

	2 Background and Related Works
	2.1 Introduction
	2.2 Reconfigurable Architectures for Video Processing Applications
	2.3 High-Level Synthesis Design Methodology
	2.3.1 HLS Design Flow
	2.3.2 HLS Research Directions
	2.3.2.1 Contributions for efficient hardware implementations (Quality-of-Results)
	2.3.2.2 Contributions for demonstrating HLS-based applications
	2.3.2.3 Surveys


	2.4 HLS Design Space Exploration
	2.5 Design Productivity
	2.6 Positioning
	2.7 Conclusion

	3 Flexible Parallel Architecture for Video Streaming Applications
	3.1 Introduction
	3.2 Cost-effective Solution for Autonomous Vehicles
	3.2.1 Experimental Setup

	3.3 Generic Pixel Distribution Model
	3.3.1 Model Parameters
	3.3.2 Pixel Distributor Architecture
	3.3.3 Controller Finite State Machine
	3.3.4 Parallel Processing
	3.3.5 Pixel Collector
	3.3.6 Experimental Results
	3.3.6.1 Code Generation
	3.3.6.2 Pixel Distributor Synthesis Results
	3.3.6.3 Video Downscaler (16:1)
	3.3.6.4 Convolution Filter


	3.4 Using Hardware Parallelism for Reducing Power Consumption
	3.4.1 Level of Parallelism and FIFO Depth Calculations
	3.4.1.1 Level of Parallelism
	3.4.1.2 FIFO Depth

	3.4.2 Experimental Results
	3.4.2.1 Design Points
	3.4.2.2 Synthesis Results
	3.4.2.3 Power Analysis
	3.4.2.4 Performance


	3.5 Conclusion

	4 Efficient Hardware Implementation for Multi-Window SAD Algorithm
	4.1 Introduction
	4.2 Stereo Matching Algorithm
	4.3 High-level Synthesis Optimizations
	4.3.1 Optimizations Targeting Hardware Implementation
	4.3.1.1 Dividing an image into strips
	4.3.1.2 Using arbitrary precision data types
	4.3.1.3 Choosing the I/O interface protocol
	4.3.1.4 Grouping pixels at the I/O ports

	4.3.2 Optimizations for Exploiting Parallelism 
	4.3.2.1 Task-level parallelism
	4.3.2.2 Pipeline-level parallelism
	4.3.2.3 Data-level parallelism

	4.3.3 Experimental Results

	4.4 Conclusion

	5 ViPar: A Tool for Design Space Exploration
	5.1 Introduction
	5.2 ViPar Tool
	5.2.1 ViPar Tool Design Flow

	5.3 Area Estimation
	5.3.1 Estimated utilization for LUT, FF and BRAM
	5.3.2 Estimated utilization for Slice

	5.4 Power Estimation Model
	5.4.1 Power Measurement
	5.4.2 Power Regression Model

	5.5 Performance Estimation
	5.6 Automatic High-level Code Generation
	5.6.1 Design Flow
	5.6.2 Code Generation

	5.7 Experimental Results
	5.7.1 Area, Power and Performance Estimations
	5.7.2 High-level Code Generation
	5.7.3 Design Space Exploration

	5.8 Conclusion

	6 Conclusion and Perspectives
	6.1 Conclusions
	6.2 Perspectives

	References

