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Anne Boyer PR Université de Lorraine, Nancy
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Introduction en français

Objectifs de la thèse

Au cours des dernières années, les recherches dans divers domaines de la biologie ont produit d'énormes

quantités de données biologiques. L' interprétation de ces grands volumes de données nécessite de mettre

en place des processus de traitement et d' analyse computationnelle complexes. L'un des moyens les plus

intéressants et les plus e�caces d'inférer des principes à partir d'ensembles de données biologiques est

l'utilisation de l'exploration de données pour trouver une solution aux problèmes biologiques. Le volume

des données biologiques est en pleine croissance, il est donc signi�catif que les applications d'exploration

de données évoluent progressivement et se développent comme un domaine de recherche actif au sein de

la bioinformatique.

L'exploration de données est un concept général qui regroupe diverses méthodes d'extraction d'informations

à partir de grands ensembles de données dans le but d'apprendre des modèles. Les techniques d'exploration

de données impliquent l'utilisation des méthodes d'apprentissage automatique, de systèmes de bases

de données, d'intelligence arti�cielle, de statistiques et de visualisation [Li et al., 2013]. Les approches

d'exploration de données sont exploitées dans plusieurs domaines de recherche et industries pour fournir

des modèles de données : c'est ce qu'on appelle de nos jours la science des données, voire l`intelligence

des données (� data science, data intelligence �). Ceci était déjà connu depuis les années 90 comme

la découverte des connaissances dans les bases de données (KDD) ou l'analyse intelligente des données

(IDA) [Raza, 2012].

Le processus d'exploration de données permet aux chercheurs d'améliorer leur compréhension des

mécanismes biologiques a�n de trouver et d'introduire des traitements modernes dans les soins de santé

et de découvrir de nouvelles connaissances sur les mécanismes de la vie. Au cours des dernières an-

nées, l'analyse computationnelle, les découvertes et les prédictions fondées sur de nouveaux modèles et

hypothèses biologiques ont énormément augmenté [Fogel, 2008].

Deux exemples remarquables d'exploration de données dans le domaine biologique sont la prédic-

tion des fonctions des protéines et la prédiction des interactions protéine-protéine. Les protéines sont

des macromolécules qui remplissent la plupart des fonctions biologiques dans les organismes vivants.

Au niveau moléculaire, les fonctions protéiques sont souvent réalisées par des régions structurales des

protéines, hautement conservées, identi�ées à partir d'alignements de séquences ou de structures, qui

peuvent être classées en familles de domaines. Comme de nombreux domaines protéiques se replient en

structures tridimensionnelles (3D) caractéristiques, il existe souvent une relation étroite entre la struc-

ture protéique et la fonction protéique [Berg et al., 2002]. Actuellement, la base de données Pfam est

l'une des classi�cations basées sur les séquences les plus largement utilisées pour les familles de domaines

[Finn et al., 2016b]. Les bases de données CATH [Orengo et al., 1997] et SCOP [Murzin et al., 1995] sont

deux exemples de classi�cations de domaines basées sur les structures.
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En plus des classi�cations basées sur la séquence et sur la structure, les protéines peuvent également

être classées en fonction de leur fonction. Par exemple, l'Ontologie des Gènes ou "Gene Ontology"

(GO) [Ashburner et al., 2000] consiste en un vocabulaire contrôlé de termes qui décrivent la fonction

des produits des gènes dans une cellule. La Commission des Enzymes (EC) a proposé un autre schéma

de classi�cation particulier pour les enzymes [Webb et al., 1992]. A priori, les systèmes de classi�cation

des fonctions sont conçus et utilisés pour décrire les fonctions des protéines entières. Au niveau des

domaines protéiques, un pourcentage très limité de domaines béné�cie d'une annotation GO manuelle.

Récemment, un travail intéressant publié sous le nom de dcGO [Fang and Gough, 2013] a tenté de dériver,

à partir des annotations de protéines entières, des annotations fonctionnelles (telles que GO) pour la

plupart des domaines protéiques. Néanmoins, nous avons constaté qu'il existe plusieurs associations GO-

Pfam organisées par InterPro [Finn et al., 2016a], qui ne sont pas présentes dans dcGO. Selon l'analyse

[Alborzi et al., 2017b], on estime que les associations dcGO ne peuvent annoter que 43

Plus généralement, il y a des millions de séquences de protéines dans UniProtKB/TrEMBL [Apweiler et al., 2017]

qui manquent actuellement d'annotations GO. Or, il existe seulement un nombre relativement limité de

familles distinctes de domaines protéiques, qui sont réutilisés et combinés de di�érentes manières dans

di�érentes protéines. En e�et, comparées au grand nombre de séquences di�érentes qui existent, les

classi�cations de domaines actuelles contiennent de l'ordre de seulement 15 000 familles de domaines

protéiques distincts. Par conséquent, il est naturel de supposer que si des annotations de structures et

de séquences protéiques connues pouvaient être attribuées à des termes GO (ou EC) au niveau du do-

maine, beaucoup de ces annotations pourraient être transférées à un très grand nombre de protéines non

annotées. Cependant, associer des termes GO aux domaines protéiques est un problème non trivial car,

à l'exception des protéines à domaine unique où la cartographie est évidente, de nombreuses relations

peuvent se produire entre les domaines et les fonctions. Ce manque d'annotations et la complexité du

problème nous intéressent pour cibler le problème de l'annotation des domaines protéiques.

En e�et, dans quelle mesure les domaines protéiques annotés peuvent-ils être utilisés pour annoter

fonctionnellement des protéines entières ? L'annotation fonctionnelle de protéines entières est d'une im-

portance cruciale pour une meilleure compréhension des processus biologiques au niveau moléculaire, et

a des implications considérables dans la recherche biomédicale et pharmaceutique. Cependant, la car-

actérisation expérimentale des protéines ne peut pas facilement être réalisée à grande échelle parce que

c'est un processus di�cile et coûteux [Liolios et al., 2009]. En outre, la véri�cation de l'annotation des

séquences protéiques existantes par des conservateurs experts est presque aussi coûteuse et longue. Ainsi,

l'annotation automatique de la fonction des protéines est devenue un problème computationnel critique

en bioinformatique [Radivojac et al., 2013]. Au cours de la dernière décennie, plusieurs approches de pré-

diction de la fonction protéique ont été décrites [Bork et al., 1998, Rost et al., 2003, Watson et al., 2005,

Friedberg, 2006, Sharan et al., 2007, Lee et al., 2007, Punta and Ofran, 2008, Rentzsch and Orengo, 2009,

Xin and Radivojac, 2011]. La plupart des approches utilisent BLAST [Altschul et al., 1997] pour com-

parer les séquences de nouvelles protéines avec des protéines dont la fonction a déjà été déterminée

expérimentalement, tandis que d'autres appliquent des principes similaires au niveau du domaine.

Ces dernières années, des techniques d'acquisition de données expérimentales à haut débit pour

l'analyse génomique, transcriptomique, protéomique et interactomique chez de nombreuses espèces ont ou-

vert de nouvelles possibilités pour la prédiction automatique de la fonction des protéines. Par exemple, des

méthodes utilisant des réseaux d'interaction protéine-protéine peuvent assigner des classes fonctionnelles à

des protéines à partir de leurs réseaux d'interactions physiques [Vazquez et al., 2003]. D'autres approches

exploitent l'information à partir de combinaisons de domaines protéiques et d'interactions de domaines

[Peng et al., 2014]. Les données d'expression génique et d'interaction moléculaire peuvent également être
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utilisées pour créer un réseau de gènes fonctionnellement connectés à partir desquels des annotations

fonctionnelles peuvent être propagées à travers le réseau [Massjouni et al., 2006], et des informations

taxonomiques peuvent être utilisées pour �ltrer les fausses prévisions [Zhu et al., 2007]. L'application

de l'apprentissage automatique aux relations évolutives entre les produits géniques et les contextes

génomiques est un autre moyen d'inférer les annotations fonctionnelles des protéines [Enault et al., 2005,

Li et al., 2007]. Des techniques d'apprentissage automatique sont également utilisées pour identi�er et

extraire des caractéristiques fonctionnelles à partir de protéines représentatives et pour propager des

fonctions à des protéines inconnues. Ces méthodes utilisent généralement des techniques probabilistes

pour extraire des fonctions des réseaux d'interactions protéiques [Nariai et al., 2007] ou des informations

phylogénétiques [Engelhardt et al., 2005]. Une autre approche utilise des techniques d'exploration de

règles d'association pour construire des modèles prédictifs basés sur des règles [Boudellioua et al., 2016].

Les informations structurelles sur les protéines peuvent également être utilisées pour faciliter l'annotation

des fonctions. Par exemple, dans [Roy et al., 2012], des protéines modèles ayant des repliements et des

sites fonctionnels similaires sont créées, et une protéine cible est ensuite comparée à la matrice homologue

la plus proche. Parce que les structures tridimensionnelles des protéines sont souvent plus conservées au

cours de l'évolution que leurs séquences, l'utilisation de modèles structurels est un moyen précis de trouver

des fonctions similaires dans di�érentes séquences protéiques [Whisstock and Lesk, 2003]. Cependant, les

algorithmes basés sur un modèle échoueront si aucun modèle homologue n'est disponible. Les méthodes

hybrides peuvent prédire les fonctions protéiques basées sur l'apprentissage et trouver des scores consen-

suels calculés à partir d'une combinaison de sources de protéines di�érentes [Hooper et al., 2014] ou d'un

mélange de méthodes di�érentes pour retourner une liste classée d'annotations [You et al., 2017].

Plusieurs méthodes d'annotation fonctionnelle utilisent les familles de domaines protéiques comme

unité de base de la similarité protéique [Peng et al., 2014, Forslund and Sonnhammer, 2008]. Néanmoins,

malgré la grande variété de techniques d'annotation de fonctions existantes, la prédiction de la fonction

des protéines reste un problème ouvert, car il n'existe aucune méthode universelle qui fournisse clairement

les meilleures annotations fonctionnelles. En réponse à ce besoin, l'expérience CAFA (Critical Assessment

of Protein Function Annotation) [Radivojac et al., 2013] a été lancée pour évaluer l'état actuel de l'art

dans l'annotation des fonctions protéiques et encourager les développements dans ce domaine. Cela nous

a également motivé à concevoir une approche pour annoter les protéines de manière fonctionnelle.

Par ailleurs, il convient de noter que les protéines exercent rarement leurs fonctions seules. elles

coopèrent généralement avec d'autres protéines en construisant un large réseau d'interactions protéine-

protéine [Gavin et al., 2002]. Les interactions protéine-protéine sont responsables de la majorité des

fonctions cellulaires et l'identi�cation de ces interactions est un moyen de mieux comprendre les divers

processus cellulaires et les mécanismes moléculaires des cellules. Grâce aux approches de génomique

à haut débit, la quantité de séquences protéiques augmente considérablement tandis que les méthodes

expérimentales pour découvrir leurs interactions sont loin derrière. De nombreuses méthodes de calcul

ont été proposées pour combler l'écart entre les connaissances sur les séquences de protéines connues

et celles sur leurs interactions. Étudier les interactions moléculaires au niveau de la protéine fournit

une compréhension intuitive précieuse de la façon dont une molécule joue ses rôles à l'intérieur d'une

cellule particulière. Cependant, des compléments d'information essentiels peuvent être apportés par

l'analyse des interactions au niveau des domaines protéiques. Il existe un petit nombre de protéines à

domaine unique impliquées dans des interactions protéine-protéine, la plupart ont plus d'un domaine

[Apic et al., 2001]. Les interactions dans ces protéines multi-domaines impliquent souvent la coopération

entre deux ou plusieurs domaines [Bhaskara and Srinivasan, 2011]. Par conséquent, l'identi�cation des

interactions protéiques au niveau du domaine est indispensable pour comprendre les détails atomiques
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précis dans les interactions protéiques et pour apprendre à prédire de nouvelles interactions.

Au cours des dernières années, les chercheurs se sont concentrés sur l'énumération et la description

informatisées des interactions protéiques au niveau des domaines. Une façon de découvrir les inter-

actions domaine-domaine consiste à utiliser des structures tridimensionnelles de protéines. KBDOCK

[Ghoorah et al., 2013b], 3did [Stein et al., 2010], iPfam [Finn et al., 2013] et INstruct [Meyer et al., 2013]

sont quatre bases de données contenant des informations structurelles sur les interactions domaine-

domaine observées, principalement déduites des données de la PDB. La qualité de ces interactions ob-

servées est très élevée, mais leur nombre reste limité par la disponibilité d'informations structurelles sur

les complexes protéiques. Même si ces méthodes ont fourni des milliers d'interactions de domaine con-

nues, le nombre d'interactions protéine-protéine inférées en utilisant ces interactions domaine-domaine

est beaucoup moindre que le nombre réel d'interactions protéine- protéines. Les interactions de domaine

déduites des données structurelles en 2010 ne peuvent couvrir qu'environ 5

Contributions

Les contributions de cette thèse concernent plusieurs thèmes de recherche à la fois : découverte des

connaissances à partir de données biologiques, annotation fonctionnelle des protéines et interactions

protéiques. Dans chacun de ces thèmes, nous avons proposé de nouvelles méthodes et applications.

Dans un premier temps, nous avons proposé une approche de fouille de données appelée CODAC

(COmputational Discovery of Direct Associations using Common neighbours) pour découvrir des associa-

tions directes entre les fonctions protéiques et les domaines protéiques [Alborzi et al., 2018, Alborzi et al., 2017b,

Alborzi et al., 2017c].

Il nous est alors apparu que notre méthode CODAC pour l'annotation fonctionnelle des domaines

protéiques pouvait servir de point de départ à l'annotation fonctionnelle automatique de l'ensemble des

séquences protéiques. Ceci nous a conduit à développer une extension de CODAC que nous appelons

CARDM (Combinatorial Association Rules Domain Miner). CARDM combine l'étape d'apprentissage

CODAC, dans laquelle les annotations fonctionnelles sont associées aux domaines protéiques, avec une

génération combinatoire de règles et une procédure de �ltrage à partir desquelles des modèles prédictifs

spéci�ques aux taxons sont construits et utilisés pour annoter automatiquement les séquences et structures

protéiques.

Nous avons �nalement introduit une nouvelle façon de résoudre le problème de la découverte des

interactions entre les domaines protéiques. Notre méthode appelée PPIDM est dérivée de notre méth-

ode CODAC précédemment développée et est à notre connaissance la première méthode qui prédit les

interactions entre des ensembles de domaines protéiques.

Les méthodes proposées dans cette thèse ne produisent pas de résultats validés comme le ferait la

véri�cation manuelle, mais elles contiennent une phase d'apprentissage à partir de données véri�ées et

une combinaison de di�érentes techniques et bases de données qui les rendent extrêmement puissantes.

Les résultats produits peuvent être utilisés par l'expérimentateur pour réduire l'espace de recherche pour

trouver des candidats pour certaines associations ou interactions. Des collaborations avec des biologistes

sont en cours pour valider les résultats de nos annotations de domaine.

Vue d'ensemble de la thèse

La thèse est organisé comme suit:

Chapitre 1: Comprendre la science des données et le contexte biologique est indispensable. Ainsi, ce

chapitre couvre l'essentiel de la science des données, comme la découverte de connaissances et l'exploration

4



de données, l'extraction de règles d'association, le modèle d'espace vectoriel, les graphes k-partis, les

tests d'hypothèses statistiques et le �ltrage d'informations. De plus, une introduction générale aux

structures et séquences protéiques, aux domaines protéiques, aux fonctions et annotations protéiques,

et aux interactions protéine-protéine est donnée dans ce chapitre. Ce chapitre présente également les

ressources utilisées dans la thèse.

Chapitre 2: Ce chapitre commence par notre premier problème: attribuer des numéros EC aux do-

maines protéiques. Notre logiciel pour prédire les associations de domaine EC s'appelle ECDomainMiner.

Chapitre 3: Ce chapitre décrit une approche générale de la découverte computationnelle d'associations

entre di�érents ensembles d'annotations en formalisant le problème sous la forme d'un problème d'enrichissement

de graphe biparti dans le cadre d'un graphe triparti.

Chapitre 4: Dans ce chapitre, nous décrivons un nouveau système de prévision de la fonction

des protéines (CARDM), qui est utilisé pour l'annotation fonctionnelle des séquences de protéines dans

UniProtKB/TrEMBL. En utilisant nos modèles de prédiction générés, notre équipe CAPSID a participé

à un dé� appelé CAFA dont les résultats sont également expliqués en détail.

Chapitre 5: : Ce chapitre décrit l'approche PPIDM (abréviation de � Protein-Protein Interaction

Domain Miner �) pour découvrir par calcul les interactions entre un seul ou des sous-ensembles de

domaines protéiques Pfam. PPIDM est dérivé de la méthode CODAC décrite précédemment pour la

découverte informatique des associations directes en utilisant des voisins communs.

Chapitre 6: Ce chapitre résume les contributions de cette thèse et présente plusieurs orientations

futures à court terme et à long terme.

Annexe A: Cette annexe décrit les serveurs Web ECDomainMiner et GODomainMiner, qui four-

nissent un accès public aux ressources EC-Pfam et GO-Pfam / CATH / SCOP.

Annexe B: Cette annexe décrit l'intégration des annotations fonctionnelles dans le serveur Web

KBDOCK2.

Annexe C: Cette annexe contient des copies des articles publiés et des a�ches présentées dans les

conférences.
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Introduction

Thesis Aims and Objectives

Over recent years, researches in diverse �elds of biology have extensively produced huge amount of

biological data. Concluding with an interpretation from such big data is in need of complex computational

analysis. One of the most interesting and e�cacious ways of inferring principles out of biological datasets

is usage of data mining to �nd a solution for biological problems. Biological data are immensely growing,

thus, it is signi�cant that the data mining applications progressively evolve in order to maintain it as an

active research area within bioinformatics.

Data mining is a general concept that groups various methods of extracting information from large

datasets for the purpose of learning patterns and models. Data mining techniques involve usage of machine

learning techniques, database systems, arti�cial intelligence, statistics, and visualisation [Li et al., 2013].

Data mining approaches is exploited in several various research �elds and industries to provide data pat-

terns (data intelligence). This is often known as Knowledge Discovery in Databases (KDD) or Intelligent

Data Analysis (IDA) [Raza, 2012].

Data mining process allows researchers to enhance their understanding of biological mechanisms in

order to �nd and introduce modern treatments in healthcare and discover new knowledge of life. In the

last few years, computational analysis, discoveries and predictions such as new biological patterns and

hypothesis, have enormously increased [Fogel, 2008].

Two remarkable examples of data mining in the biological domain are protein function prediction and

protein-protein interaction prediction. Proteins are macromolecules which carry out many biological func-

tions in living organisms. At the molecular level, protein functions are often performed by highly conserved

structural regions identi�ed from sequence or structure alignments, which may be classi�ed into families of

domains. Because many protein domains fold into characteristic three-dimensional (3D) structures, there

is often a close relationship between protein structure and protein function [Berg et al., 2002]. Currently,

the Pfam database is one of the most widely used sequence-based classi�cations of protein domains and

domain families [Finn et al., 2016b]. The CATH [Orengo et al., 1997] and SCOP [Murzin et al., 1995]

databases are two examples of structural domain classi�cations.

As well as sequence-based and structure-based classi�cations, proteins may also be classi�ed according

to their function. For example, the Gene Ontology (GO) [Ashburner et al., 2000] consists of a controlled

vocabulary of GO terms which describe the function of gene products in a cell. The Enzyme Commis-

sion number (EC number) is another classi�cation scheme particularly for enzymes [Webb et al., 1992].

However, function classi�cation systems annotate the entire proteins. One interesting exception is the

dcGO database [Fang and Gough, 2013] which provides multiple ontological annotations (such as GO)

for protein domains. Nonetheless, we found that there are several manually curated GO-Pfam asso-

ciations from InterPro [Finn et al., 2016a] which are not present in dcGO. According to the analysis
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[Alborzi et al., 2017b], it is estimated that dcGO associations can only annotate 43% of the un-annotated

structures in the Protein Data bank (PDB) [Gutmanas et al., 2014].

More generally, there are many millions of protein sequences in UniProtKB/TrEMBL [Apweiler et al., 2017]

that currently lack GO annotations. On the other hand, only a relatively small number of distinct protein

domain families exist, and which are re-used and combined in di�erent ways in di�erent proteins. Indeed,

compared to the vast number of di�erent sequences that exist, current domain classi�cations contain of

the order of only 15,000 distinct protein domain families. Therefore, it is natural to suppose that if known

protein structure and sequence annotations could be assigned GO terms (or EC numbers) at the domain

level, many of these annotations could be transferred to a potentially very large number of unannotated

proteins. However, associating GO terms with protein domains is a non-trivial problem because, except

for single-domain proteins where the mapping is obvious, many to many relationships can occur between

the domains and functions. These lack of annotations and the complexity of the problem interest us to

target the problem of annotating protein domains.

Annotating protein domains can be extended to functionally annotate entire proteins. The functional

annotation of entire proteins is crucially important for a better understanding of biological processes

at the molecular level, and has considerable implications in biomedical and pharmaceutical research.

However, the experimental characterization of proteins cannot easily be scaled up because this is a

di�cult and costly process [Liolios et al., 2009]. Furthermore, the curation and annotation of existing

protein sequences by expert curators is almost equally expensive and time-consuming. Thus, the au-

tomatic annotation of protein function has become a critical computational problem in bioinformatics

[Radivojac et al., 2013]. During the past decade, several protein function prediction approaches have been

described [Bork et al., 1998, Rost et al., 2003, Watson et al., 2005, Friedberg, 2006, Sharan et al., 2007,

Lee et al., 2007, Punta and Ofran, 2008, Rentzsch and Orengo, 2009, Xin and Radivojac, 2011]. Most

approaches use BLAST [Altschul et al., 1997] to compare the sequences of new proteins with proteins

whose function have previously been determined experimentally, while some others apply similar princi-

ples at the domain level.

In recent years, high-throughput experimental data acquisition techniques for genomic, transcriptomic,

proteomic, interactomic analysis in many species has opened new possibilities for automatic protein func-

tion prediction. For instance, methods using protein-protein interaction networks may assign functional

classes to proteins from their physical interaction networks [Vazquez et al., 2003]. Other approaches ex-

ploit information from combinations of protein domains and domain interactions [Peng et al., 2014]. Gene

expression and molecular interaction data may also be used to create a network of functionally connected

genes from which functional annotation may be propagated across the network [Massjouni et al., 2006],

and taxonomy information may be used to �lter false predictions [Zhu et al., 2007]. Applying machine

learning to evolutionary relationships between gene products and genomic contexts is another way to infer

protein function annotations [Enault et al., 2005, Li et al., 2007]. Machine learning techniques are also

used to identify and extract functional features from representative proteins, and to propagate functions to

unknown proteins. Such methods typically use probabilistic techniques to extract functions from protein

interaction networks [Nariai et al., 2007] or phylogenetic information [Engelhardt et al., 2005]. Other ap-

proach uses association rule mining techniques to construct rule-based predictive models [Boudellioua et al., 2016].

Protein structural information can also be used to aid function annotation. For example, in [Roy et al., 2012]

template proteins having similar folds and functional sites are created, and a target protein is then com-

pared to the closest homologous template. Because the three-dimensional structures of proteins are often

more evolutionary conserved than their sequences, using structural templates is an accurate way to �nd

similar functions in di�erent protein sequences [Whisstock and Lesk, 2003]. However, template-based
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algorithms will fail if no homologous template is available. Hybrid methods can predict protein functions

based on learning and �nding consensus scores computed from a combination of di�erent protein sources

[Hooper et al., 2014] or from a mixture of di�erent methods in order to return a ranked list of annotations

[You et al., 2017].

Several functional annotation methods use protein domain families as the basic unit of protein similar-

ity [Peng et al., 2014, Forslund and Sonnhammer, 2008]. Nonetheless, despite the wide variety of existing

function annotation techniques, protein function prediction is still an open problem because no universal

method exists which clearly provides the best functional annotations. In response to this need, the CAFA

(Critical Assessment of protein Function Annotation) experiment [Radivojac et al., 2013] was launched

to assess the current state of the art in protein function annotation and to encourage developments in

the �eld. This also motivated us to devise an approach to functionally annotate proteins.

Nonetheless, it should be noted that proteins rarely carry out their functions alone. They gen-

erally cooperate with other proteins by constructing a large network of protein-protein interactions

[Gavin et al., 2002]. Protein-protein interactions are responsible for the majority of cellular functions

and identi�cation of such interactions is a way toward a better understanding of diverse cellular processes

and molecular machineries of cells. Thanks to the high-throughput genomics approaches, the amount of

protein sequences are dramatically increasing while experimental methods to discover their interactions

are far behind. Many computational methods have been proposed to bridge the gap between known

protein sequences and their interaction information. Studying molecular interactions at the protein level

provides valuable intuitive understanding of how a molecule plays its roles inside a particular cell. How-

ever, for deeper insights into the interaction properties we found that predicting interactions at the

protein domain level are very interesting and useful. There are a small number of single domain proteins

that interact with their biological associates through their domains, a larger number of proteins have

more than one domain [Apic et al., 2001]. Interactions in these multi-domain proteins, often, involve

cooperating between two or more domains [Bhaskara and Srinivasan, 2011]. Therefore, identi�cation of

protein interactions at the domain level is logically useful to understand accurate atomic details in protein

interactions and predict new interactions.

During the past few years, researchers have concentrated on computationally unearthing protein

interactions at the domain level. One way to discover domain-domain interactions is using three-

dimensional structures of proteins. KBDOCK [Ghoorah et al., 2013b], 3did [Stein et al., 2010], iPfam

[Finn et al., 2013], and INstruct [Meyer et al., 2013] are four databases containing structural information

about observed domain-domain interactions principally inferred from PDB chains. The quality of such

observed interactions is very high, but the number of known domain-domain interactions is bounded by

the availability of structural information about protein complexes. Even though these methods provided

thousands of known domain interactions, the number of inferred protein interactions using these domain-

domain interactions is far fewer than the actual number of protein interactions. Domain interactions

inferred from structural data in 2010, can only cover around 5% of protein interactions in Saccharomyces

cerevisiae and 19% of protein interactions in Homo sapiens [Yellaboina et al., 2010]. This encouraged us

to introduce new methods to uncover all possible domain interactions.

Contributions

In this thesis we contributed to domains of knowledge discovery, protein function annotation, and pro-

tein interactions by proposing novel methods and applications. First, we proposed a data mining ap-

proach called CODAC for discovering direct associations between protein functions and protein domains

9



Introduction

[Alborzi et al., 2018, Alborzi et al., 2017b, Alborzi et al., 2017c].

It then became apparent to us that our CODAC method for functional annotation of protein at the

domain level could also be applied to the automatic functional annotation of the entire protein sequences.

This led us to develop an extension of CODAC which we call CARDM (Combinatorial Association

Rules Domain Miner). CARDM combines the CODAC learning step, in which function annotations are

associated with protein domains, with a combinatorial rule generation and �ltering procedure from which

aggregated taxon-speci�c predictive models are constructed and used to annotate protein sequences and

structures automatically.

We �nally introduced a novel way to tackle the problem of discovering interactions between pro-

tein domains. Our method called PPIDM is derived from our previously developed CODAC method

[Alborzi et al., 2018] and is to our knowledge the �rst method that predicts interactions between sets of

protein domains.

It is worth mentioning that like any automatic mining approach, the methods proposed in this thesis

do not produce validated results as manual curation would do, but they contain learning phase from

manually curated data and combination of di�erent techniques and databases that may make these

methods more and more reliable. The produced results can be used by experimentalist to reduce the

search space for �nding candidates for certain association or interaction. Collaboration with biologist is

ongoing to validate the results of our domain annotations.

Overview of Thesis

The rest of this thesis is organized as follows:

Chapter 1: Understanding data science and biological context is indispensable. Thus, this chapter

covers essential data science context, such as knowledge discovery and data mining, association rule

mining, vector space model, k-partite graphs, statistical hypothesis testing, and information �ltering.

Moreover, a general introduction to proteins structures and sequences, protein domains, protein functions

and annotations, and protein-protein interactions is given in this chapter. This chapter also introduces

resources which are used in the thesis.

Chapter 2: This chapter begins with our �rst problem : to assign EC numbers to protein domains.

Our software to predict EC-domain associations is called ECDomaniMiner.

Chapter 3: This chapter describes a general approach for the computational discovery of associations

between di�erent sets of annotations by formalizing the problem as a bipartite graph enrichment problem

in the setting of a tripartite graph.

Chapter 4: In this chapter, we describe a novel and comprehensive protein function prediction system

(CARDM), which is used for the functional annotation of protein sequences in UniProtKB/TrEMBL.

Using our generated prediction models, our CAPSID team participated in a challenge called CAFA that

the results are also explained in detail.

Chapter 5: This chapter describes �PPIDM� (stands for Protein-Protein Interaction Domain Miner)

to computationally discover interactions between single or subsets of Pfam protein domains. PPIDM is

derived from the previously described CODAC method for computational discovering of direct associa-

tions using common neighbors.

Chapter 6: This chapter summarizes the contributions of this thesis, and it presents several short-

term and long-term future directions.

Appendix A: This appendix describes the ECDomainMiner and GoDomainMiner web servers, which

provides public access to the EC-Pfam and GO-Pfam/CATH/SCOP resources.
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Appendix B: It depicts the integration of the functional annotations into the KBDOCK2 webserver.

Appendix C: It contains copies of the published articles and presented posters.
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1.1 Data Science Context - Data Preparation, Mining, and In-

terpretation

1.1.1 Knowledge Discovery from Data and Data Mining

Many people treat data mining as a synonym of the knowledge discovery from data (KDD), however,

we agree that they have di�erent de�nitions. The process of scrutinizing large amounts of data for

discovering patterns (considered as knowledge about the data) is described as Knowledge discovery

[Frawley et al., 1992]. But data mining is an essential step in the process of knowledge discovery and

refers to extracting or mining knowledge from large amounts of data stored in databases, data warehouses,

or other data repositories [Fayyad et al., 1996]. Knowledge discovery as a process consists of an iterative

sequence of following steps [Han et al., 2011], depicted in Figure 1.1:

• Data cleaning: To remove noise and inconsistent data,

• Data integration: To combine multiple data sources,

• Data selection: To retrieve data from database, relevant to the analysis task,
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• Data transformation: To tranform or consolidate data into proper forms for mining such as summary

or aggregation,

• Data mining: To apply intelligent approaches in order to extract data patterns and trends,

• Pattern evaluation: To identify the really interesting patterns representing knowledge based on

some measures,

• Knowledge presentation: To visualize and represent mined knowledge to the users.

Step 1 to 4 are di�erent forms of preprocessing of data where the data are prepared for mining. The

data mining is an essential step that could include an interaction with user or a knowledge base. The

interesting patterns are presented to the user and may be stored as new knowledge in the knowledge

base. The architecture of a typical data mining system may have the main components illustrated in

Figure 1.2 [Han et al., 2011]. In Figure 1.2, data are gathered from one or a set of data repositories. Data

cleaning and integration techniques may be carried out on the data. A server fetches the data based on

the request in the database server module. Data mining engine as the most essential part of the system,

perform functional modules such as characterization, associations, classi�cation, prediction, cluster, and

other analysis. Interesting patterns are searched using particular measures in pattern evaluation module.

User interface modules allows user interact with data mining system to specify a query or a task. The

knowledge base is the domain knowledge that is used to guide the process or assess the interestingness

of the patterns.

Data mining involves an integration of methods and techniques from multiple disciplines such as

database or big data technologies, high-performance computing, deep learning, statistics, machine learn-

ing, data visualization, information retrieval, and etc. Note that data mining systems have to handle

large amount of data, unless they should appropriately be called machine learning systems, statistical

analysis tools, or experimental system prototypes.

1.1.2 Machine Learning and Data Mining

Data Mining can be de�ned as the subprocess of knowledge discovery process that starts from apparently

unstructured data tries to extract knowledge and/or unknown interesting patterns. There are di�erent

ways to discover patterns out of datasets such as visualization techniques, topological data analysis, or

machine learning. Machine Learning is a sub-�eld of data science that focuses on design and development

of the algorithms with which machines gain the capability to learn without being explicitly programmed

[Samuel, 2000]. It is obvious here that machine learning can be used for data mining. Nonetheless,

data mining can exploit other techniques in addition to or on top of machine learning. Machine learn-

ing contains three types of learning; Supervised Learning, Unsupervised Learning, and Semi-Supervised

Learning [Han et al., 2011, Witten et al., 2016]. Supervised learning refers to problems where the input

variables and outputs are de�ned, and there is a need of an algorithm to learn the mapping function from

the input to the output. The objective of the algorithm is to approximate the mapping function in a

way that with a new input record, we can predict the correct output. This learning is called supervised

because the process of learning from the training dataset can be assumed as a teacher supervising the

process of learning. The correct answers are known, while the algorithm iteratively predicts based on the

training data and in each iteration the answer is corrected by the teacher. Learning process ends when

the algorithm reaches an acceptable level of performance.
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Figure 1.1: The process of knowledge discovery that considers data mining as a step in the process. Data

cleaning, integration, selection, and transformation may be considered as data preparation for the data

mining step. Discovered knowledge could be re�ned by returning to the previous steps.
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Figure 1.2: Architecture of a typical data mining system.

Unsupervised learning refers to problems where only input data is present and the corresponding

output is unknown. The objective of the unsupervised algorithm is to model the fundamental organization

or distribution in the data. Since there is no correct answers and there is no teacher, this type of learning

is called unsupervised. Algorithms are expected to devise a system to discover and present the interesting

structure in the data.

Semi-supervised learning is where a large amount of input data is unlabeled while only small number

of output are labeled. These types of problems are in between the other two learnings. Many machine

learning problems in the real world should be solved by semi-supervised algorithms. This is due to the

fact that labeling data by domain experts is time-consuming and expensive whereas unlabeled data are

easily collected in a much cheaper way. In semi-supervised learning, unsupervised learning techniques

could be used to discover the structure in the input data. This can lead for instance to detect high-density

regions in which labeled data can be used together with unlabeled data by supervised learning techniques

[Chapelle et al., 2003].

Inferred data patterns in data mining are generally used to solve grouping similar data (Cluster-

ing) [Berkhin et al., 2006], classifying new data into known classes (Classi�cation) [Phyu, 2009], �nd-

ing unusual data (Anomaly Detection) [Chandola et al., 2009], �nding a model of data (Regression)

[Kotsiantis and Pintelas, 2009], representing data in a compact manner (Summarization) [Afantenos et al., 2005],

constructing a new set of features from the original feature set [Wang et al., 2001], and �nding dependen-

cies between variables (Association Rule Mining) [Hipp et al., 2000]. Figure 1.3 illustrates the di�erences

between the general problems in data mining, machine learning algorithms to tackle the problems, learn-

ing types, and the examples of usages.
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Figure 1.3: Learning algorithms to solve the data mining problems (images from gerardnico.com).

Frequent Patterns and Association Rules

Frequent patterns and association rules will be detailed here as an example of data mining technique and

because they will be used later in the thesis. Frequent patterns are patterns that frequently appear in

a dataset. For instance, a set of items that appears frequently in a transaction list is a frequent itemset

[Han et al., 2011]. Discovering such frequently appearing patterns plays an signi�cant role in mining

associations among data. Frequent itemset mining is to discover associations and correlations among

items in a large transactional dataset. Market basket analysis is a typical example of frequent itemset

mining. This process analyzes customer purchasing behaviors by �nding associations between various

items that customers buy. Finding such associations assists sellers to develop their marketing strategies

by understanding which items are frequently sold together. For example, if customers are buying milk,

how likely do they also buy bread at the same time?

At a store with set of items, each item has a Boolean variable representing the absence or presence

of that item on the store shelf. Then, each customer can be a Boolean vector of values assigned to these

variables. Customers, Boolean vectors, can be analyzed for purchasing patterns. These patterns re�ect

items that are frequently purchased, associated, together, and be presented in the form of association

rules.

In the other words, association rules are if-then statements aiming to uncover dependencies of im-

plicitly related data in a data repository [Hipp et al., 2000]. Such information can be applied as the

foundation of decision making processes in variety of areas such as bioinformatics [Alborzi et al., 2012].

It should be noted that association rules generally do not take the order of items into account.

A typical association rule has two parts of �if� and �then� namely called an antecedent (if) and a

consequent (then).

Selecting interesting rules from a set of rules is based on the restriction on diverse ways to calculate

the signi�cance and interestingness of rules. Three main interesting measures of rules are �Support�,

�Con�dence�, and �Lift�. Support indicates how frequently items are present in the data source (equation
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1.1 and 1.2), con�dence indicates that the number of the antecedent-consequent statements found to

be true in the data source (equation 1.3), and lift shows if antecedent and consequent are independent

(equation 1.4). According to the de�nition by [Agrawal et al., 1993], let I = {i1, i2, . . . , in} be a set of n

items, and T = {t1, t2, . . . , tm} be a set of transactions called the database, where each transaction with

unique transaction identi�er in T contains a subset of items from I. Therefore, an association rule is

de�ned as Il ⇒ Ir, where both Il and Ir are itemsets composed of the items in I and Il ∩ Ir = ∅. The
support of each itemset, Ix, with respect to the T , is introduced as the ratio of transactions, t, in the T

which contains items in Ix to the whole size of T ,

Support(Ix) =
|t ∈ T ; Ix ⊆ t|

|T | (1.1)

the support of a rule, Il ⇒ Ir, with respect to the T , is introduced as the ratio of transactions, t, in the

T which contains Il ∪ Ir to the whole size of T ,

Support(Il ⇒ Ir) =
|t ∈ T ; Il ∪ Ir ⊆ t|

|T | (1.2)

the con�dence of a rule, Il ⇒ Ir, with respect to the T , is the ratio of the transactions containing both

Il and Ir to transactions having Il,

Confidence(Il ⇒ Ir) =
Support(Il ∪ Ir)

Support(Il)
(1.3)

and the lift of a rule, Il ⇒ Ir, with respect to the T , is the ratio of the transactions, containing both Il
and Ir to transactions having Il multiplied by transactions having Ir,

Lift(Il ⇒ Ir) =
Support(Il ∪ Ir)

Support(Il)× Support(Ir)
(1.4)

It is worth highlighting that an association rule with a con�dence value close to 1 has usually high

quality, while a rule with lift close to 1 implies that its antecedent and consequent are independent from

each other. When two itemsets are independent, no association rule can be established involving those two

itemsets. Association rules built by frequent itemsets across all transactions might have high con�dence

values. However, it is also possible that the lift values of the rules are very close to 1, and the relations

between their itemsets could easily be a �uke. Thus, exploiting both con�dence and lift values of a rule

enhances our understanding of its reliability. There are several techniques, with their individual features,

to generate association rules such as Apriori [Agrawal et al., 1994], Eclat [Zaki, 2000], and FP-growth

[Han et al., 2000].

Figure 1.4 shows an example of how to calculate measures for candidate association rules.

1.1.3 Information Filtering and Recommendation Systems

The amount of disseminated information and data are abundantly increasing [Wurman, 1989]. An in-

formation �ltering (IF) system uses automatic or semi-automatic methods to eliminate information

which are undesired to users from �ows of information. The main purpose of information systems is

to form �lters in order to deal with overloads of data due to the information explosion. Recommenda-

tion system (recommender system) is a subclass of information �ltering systems that actively attempts

to predict items that users are interested in [Ricci et al., 2011, Robillard et al., 2014]. Recommenda-

tion systems build a pro�le for each user and then compare it to multiple reference attributes. These

attributes are typically stemmed from the characteristics of items (content-based �ltering approaches)
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Figure 1.4: An example of association rule mining. Transactions are presented as combinations of A, B,

C, D and E items in the baskets. Item supports are Supp(A) = 3/5, Supp(B) = 3/5, Supp(C) = 4/5,

Supp(D) = 3/5, and Supp(E) = 2/5. Support, con�dence and lift measures of the four sample rules are

expressed. For the �rst rule, there are two out of �ve transactions containing items A and D together

(Support), item D exists in two transactions out of the three transactions that item A exists (Con�dence).

The lift of the �rst rule equals to 2/5 ÷ (3/5 × 3/5).

[Balabanovi¢ and Shoham, 1997, Lops et al., 2011] or prior interests and behavior of users (collaborative

�ltering approaches) [Sarwar et al., 2001, Koren and Bell, 2015] or a hybrid of the collaborative �ltering

and content-based �ltering approaches [Burke, 2002]. Collaborative �ltering approaches are divided in

two groups. User-based approaches which recommend items by �nding similar users, and item-based ap-

proaches which calculate similarity between items and then make recommendations. Figure 1.5 displays

the di�erences between collaborative and content-bases �ltering in recommendation systems.

Usage and popularity of recommender systems are more and more increasing and now it is used as a so-

lution in diverse areas such as online movie recommendation [Davidson et al., 2010, Gomez-Uribe and Hunt, 2016],

�nancial services [Felfernig et al., 2007], and collaborative research [Chen et al., 2011].

1.1.4 Data Structure and Representation

Vector Space Model

Vector space model is the representation of a set of objects (particularly text documents) as vec-

tors and their attributes as dimensions with identi�ers in a vector space. It is a fundamental topic

for data representation in information retrieval, information �ltering, indexing and relevancy rankings

[Raghavan and Wong, 1986].

Similarity between vectors (document and query vectors) in vector space models is calculated using

associative coe�cients such as Cosine, Jaccard and Dice coe�cients. These are measures based on the

normalized scalar product of two vectors where shared attribute indicates similarity. The most commonly

used similarity measure for real-valued vectors in high-dimensional positive spaces is the cosine coe�cient.

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space

that gauges the cosine of the angle between them. Cosine similarity is exclusively used in positive space
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Figure 1.5: Collaborative and content-based �ltering recommendation systems. Left: User-based �ltering

recommends (yellow dashed lines) strawberry and lemon to the customer, because of her similar taste

to another customer. Item-based �ltering calculate similarity between fruits according to the customers,

and then recommends (yellow dashed lines) strawberry to the user. Right: Content-based �ltering �nds

the similar fruits based on their characteristics, and then recommend (yellow dashed lines) raspberry to

the customer based on his interest in strawberry.

and results in a similarity score limited between zero and one. It is worth mentioning that this range

applies for any number of dimensions.

For example in information retrieval, documents are de�ned as vectors where where the values of

dimensions correspond to the term frequency in the document multiplied by the inverse frequency of

documents containing the term. Cosine similarity then gives a powerful gauge to understand and analyze

the similarity between each two documents in terms of the relatedness of their subjects [Singhal, 2001,

Mu�ikhah and Baharudin, 2009]. Furthermore, such a technique is used in the �eld of data mining

and clustering [Alborzi et al., 2016, Tsiptsis and Chorianopoulos, 2011] to calculate unity between the

members of clusters, and classi�cation by neural networks to enhance systems accuracy and speed

[Chunjie et al., 2017].

The cosine of two non-zero vectors, A and B, is de�ned as the Euclidean dot product mentioned in

equation 1.5.

A.B = ||A|| ||B|| cos(θ) (1.5)

Therefore, given two vectors with their attributes, the cosine similarity cos(θ) is calculated using a

dot product and magnitude as equation 1.6.

cos(θ) =
A.B

||A||||B|| =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(1.6)
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Figure 1.6: Translating a bipartite graph into a binary matrix. A bipartite graph sample comprise of two

sets of items, X and Y. The items in X and Y are connected via edges which can be translated into a

binary matrix. This binary matrix shows 1 if there is an edge between the item in X and the item in Y.

k-partite Graph

In mathematic and graph theory, a graph whose vertices are partitioned into k disjoint sets is called a

k-partite (multi-partite) graph [Godsil and Royle, 2013, Bollobas, 2012]. In k-partite graph, vertices can

be colored with k di�erent colors and there is no edge between the vertices with a same color. If the graph

vertices are divided into two independent sets it is called bipartite graph (bigraph) [Asratian et al., 1998].

Similarly, a tripartite graph is de�ned as a graph where vertices are partitioned into 3 independent sets.

A k-partite graph can be translated into an adjacency matrix. The adjacency matrix of a bipartite graph

G = (U, V,E), with two disjoint sets of vertices (|U | and |V |) is called biadjacency matrix. Biadjacency

matrix is a binary matrix of size |U | × |V |. This binary matrix has 1 for pairs of adjacent vertices and

a 0 for pairs of non-adjacent vertices [Asratian et al., 1998]. Figure 1.6 shows a bipartite graph and its

representative biadjacency matrix.

1.1.5 Statistical Validation of Extracted Pattern

Statistical data analysis is the process of the accumulating, analyzing, interpreting, presenting data based

upon laws of probability in order to discover models and trends or validate patterns [Lindley, 2000]. The

most popular type of statistical analysis is hypothesis testing. In statistical analysis, mathematical prin-

ciples are used to calculate a probability that a sample results match the hypothesis about a population

[Banerjee et al., 2009]. For instance, if an investigating hypothesis is that a coin is not fair, principles of

statistics are used to estimate the probability of obtaining the samples if the investigating coin were unbi-

ased (null hypothesis). If getting the sample results from a fair coin has very low probability, it is safe to

reject the null hypothesis and deduce from the results that the coin is not fair. It should be noted that we

can never say that the coin is certainly biased due to the fact that even using an unbiased coin might gener-

ate the sample results. However, we can come to the conclusion that the coin is biased by stating that our

sample results oppose the null hypothesis with strong evidence [Banerjee et al., 2009, Wasserman, 2013].

In statistical hypothesis testing, a p-value (p for probability) is often reported to present that the

sample results provide strong evidence against the null hypothesis or not. The p-value is indeed a
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numerical measurement in hypothesis test to show its statistical signi�cance. This measure presents the

probability of getting our sample data (e.g., 20 tails) if the null hypothesis is true (e.g., unbiased coin).

Conventionally, the p-value less than 5% (p-value < 0.05) supports the rejection of null hypothesis (i.e.,

the coin is biased). It means that there is strong evidence to assume that the null hypothesis is false if

the p < 0.05, and it can be concluded that the results are statistically signi�cant.

In computational research, methods usually produce a large set of results. In order to validate or �lter

the results from the view of statistical analysis, we could design a statistical signi�cance test of the predic-

tions. Thus, there is a set of hypotheses that we wish to test simultaneously. We could test each hypothesis

separately, using the typical level of signi�cance α = 0.05. It is accepted [Mittelhammer et al., 2000] that

the probability of observing at least one signi�cant result only by chance is:

P (at least one significant result) = 1− P (no significant results)

For example, if we consider a study where 20 hypotheses should be tested, we have a 0.641 chance of

observing at least one signi�cant result, even in the situation that all of the tests are indeed not signi�cant.

In biological related �elds, the number of simultaneous tests often is greater than 20. Therefore, the

probability of obtaining at least one signi�cant result just by chance is very high. Bonferroni correction

is a way to neutralize such a problem of multiple comparisons of independent test by reducing the

signi�cance threshold level to �α/n� [Mittelhammer et al., 2000]. In the example above, with 20 tests

and α = 0.05, we would reject a null hypothesis if the p-value of the test is less than 0.0025 (0.05/20).

Thus, the probability of observing at least one signi�cant result while using the Bonferroni correction is

reduced to 0.0492. It should be noted that the Bonferroni correction could be exceedingly conservative,

depending upon the correlation in the structure of the tests, it often leads to label too many predictions

as false negatives [Benjamini and Hochberg, 1995].

1.2 Biological Context - Protein Function, Domain, and Interac-

tion

1.2.1 Protein Sequence and Structure

Proteins are the most versatile macromolecules in living organisms responsible for functions in biological

processes. At their most basic level, they are made up of a sequence of amino acids, speci�ed by the

sequence of nucleotides in a gene. There are 20 various amino acids in living organisms for construction

of proteins. Amino acids includes both an acidic carboxyl group ( �-COOH�) and a basic amino group

(�-NH2�). Di�erent amino acids attach to each other in long chains. They form peptide bonds, amide

bonds between the �-COOH� of one amino acid and the �-NH2� of another amino acid (Primary structure

of protein). The terms protein or polypeptide are referred to sequences longer than 50 amino acids

while sequences with fewer amino acids are usually called peptides. A protein can be formed by one or

more polypeptides. Each peptide or protein sequence has two ends. The end of the sequence with a

free carboxyl group terms the carboxy-terminus (or C-terminus) and the end of the sequence with a free

amino group is called amino-terminus (or N-terminus).

Proteins fold into a three-dimensional structure based upon their amino acid sequences (amino acids

have di�erent biochemical properties) and their environment. This allows them to have interaction with

other molecules and proteins and carry out their functions (Figure 1.7).

11− (1− 0.05)20

21− (1− 0.0025)20

22



1.2. Biological Context - Protein Function, Domain, and Interaction

Proteins or peptides strands have unique characteristic secondary structure. Depending on hydrogen

bonding, the two principal secondary structures are the �α-helix� and the �β-sheet�. The general three-

dimensional organisation of all the secondary structure elements of a protein constitutes its tertiary

structure. Thus, a protein molecule bends and twists in order to attain lowest energy state or maximum

stability. Although, the amino acid sequence constitutes the primary structure of proteins, the chemical

and biological properties of proteins highly depends on the three-dimensional (or tertiary structure). The

tertiary structure can be described by a single polypeptide chain called backbone, with one or more

protein secondary structures elements In many cases, a protein can be divided into several structural

domains. Such domains can be described as a "fold" composed of a succession of secondary elements

(α-helices or β-sheets) arranged in a particular 3D shape. Similar structural domains can be recognized

in di�erent proteins. They correspond to conserved subsequences that can be found in various proteins.

Finally, many proteins consist of multiple polypeptides, referred to as protein subunits. The quaternary

structure is a large aggregated protein complex that is formed by interactions between these subunits.

UniProtKB

UniProt Knowledgebase (UniProtKB) is a biological repository of protein sequences and their functional

information which are curated by experts to a limited extent [Apweiler et al., 2017]. These protein

sequences are principally obtained from genome sequencing projects and a major part of the functional

information of proteins acquired from the scienti�c publications. UniProtKB is composed of two parts

called �UniProtKB/SwissProt� and �UniProtKB/TrEMBL�.

UniProtKB/SwissProt is a section of the UniProtKB containing non-redundant, manually anno-

tated protein sequences [Boutet et al., 2007]. UniProtKB/SwissProt annotations derive from information

extracted from biological literature merged with computational analysis evaluated by biocurator. UniPro-

tKB/SwissProt aims to accumulate all known information with detailed analysis related to a speci�c

protein in the database.

In the UniProtKB/SwissProt database, to eliminate data redundancy, di�erences between protein

sequences from the identical gene and species (e.g. incorrect initiation sites or exon boundaries, natural

variation, and alternative splicing) are documented and then merged into one entry.

Protein sequences are often annotated with gene and protein names, protein functions, enzymatic

activity information such as cofactors and catalytic residues and activity, subcellular localization, protein

interactions, expression pattern, protein domains and families, and etc.

As of July 2017, the increasing amount of protein sequences in UniProtKB/SwissProt database over

thirty years is shown in Figure 1.8 (A) 3. It shows that during three years from 2007 to 2010 the size

of database was doubled, however, it expanded only by 10% during the past �ve years. Figure 1.8 (B)

displays that majority of sequences in the UniProtKB/SwissProt database are Bacteria proteins.

UniProtKB/TrEMBL is the automatically annotated section of the UniProtKB containing com-

putationally analyzed protein sequences [Bateman et al., 2014]. UniProtKB/TrEMBL came to existence

in response to the burst of data generation by genome projects and incapability of manual curation

process of UniProtKB/SwissProt to address all protein sequences. Translated coding sequences from

the EMBL-Bank [Stoesser et al., 2002], GenBank [Benson et al., 2017], and DDBJ [Tateno et al., 2000]

databases in addition to the protein sequences from the Protein Data Bank [Berman et al., 2006], and

from gene prediction databases such as Ensembl [Yates et al., 2016] are processed and inserted into the

UniProtKB/TrEMBL in a completely automatic fashion.

3http://www.uniprot.org/statistics/Swiss-Prot
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Figure 1.7: List of 20 amino acids, primary, secondary, tertiary, and quaternary protein structures.

As of July 2017, the number of protein sequences in UniProtKB/TrEMBL database is illustrated in

Figure 1.9 (A) 4. It explicitly shows the huge increase in the number of protein sequences which is mainly

because of the high-throughput genome sequencing. Similar to the UniProtKB/SwissProt, Figure 1.9 (B)

shows that most of the available sequences in the UniProtKB/TrEMBL database are Bacteria proteins.

In the rest of this thesis, we use SwissProt term for the UniProtKB/SwissProt database, and TrEMBL

for the UniProtKB/TrEMBL database.

UniRef

The UniProt Reference Clusters (UniRef) [Suzek et al., 2007, Suzek et al., 2014] is a resource divided into

three databases containing clustered protein sequences from UniProtKB (both UniProtKB/SwissProt

and UniProtKB/TrEMBL) and selected UniParc records [Leinonen et al., 2004]. UniRef100 is one of

4https://www.ebi.ac.uk/uniprot/TrEMBLstats
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Figure 1.8: The number of entries in UniProtKB/SwissProt. A: Number of proteins sequences in UniPro-

tKB/SwissProt database over time. There is an intensive growth in the number of proteins sequences

from 2007 to 2010. B: Proportions of SwissProt entries per taxonomic kingdom.
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Figure 1.9: The number of entries in UniProtKB/TrEMBL database. A: Number of proteins se-

quences in UniProtKB/TrEMBL database over time. In mid 2015, TrEMBL size is dropped due to

the proteome redundancy. This caused removing a large number of entries deemed as redundant

[Bursteinas et al., 2016, Apweiler et al., 2017]. B: Proportions of the TrEMBL entries per taxonomic

kingdom.
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Figure 1.10: Growth of UniProt and UniRef databases.

databases that incorporates identical sequences (or sequence fragments) from any organism into a single

UniRef record. Each UniRef entry has the UniProtKB accession numbers of all combined entries, as well as

the sequence of a representative protein and the corresponding records in UniProtKB and UniParc. Fur-

thermore, UniRef100 sequences are clustered using the CD-HIT algorithm [Li and Godzik, 2006] to con-

struct new clusters of protein sequences with less similarity called UniRef50 and UniRef90 [Li et al., 2001].

In UniRef50 and UniRef90, each cluster includes protein sequences with at least 50% and 90% sequence

similarity, respectively, to the longest protein sequence. Figure 1.10 shows how the number of entries in

the UniRef100, UniRef90 and Uniref50 are increasing in comparison to the increase in the UniProtKB

from 2004 until 2015 [Bateman et al., 2014].

PDB

The Protein Data Bank (PDB) [Bernstein et al., 1977, Berman et al., 2006, Gutmanas et al., 2014] is a

database containing the three-dimensional structural data of biological molecules, like nucleic acids and

proteins, acquired from experimental methods. Figure 1.11 shows di�erent types of protein structures

from the PDB5.

The PDB database is an important resource in structural biology research and currently holds more

than 127 thousand structures. These 3D structures are obtained and submitted by biologists and bio-

chemists using mainly NMR spectroscopy, X-ray crystallography, and recently increasing cryo-electron

microscopy (Cryo-EM). As of 14 March 2017, a categorization of the available PDB data based on its

properties is shown in Table 1.1.

The PDB database is supervised byWorldwide Protein Data Bank (wwPDB - https://www.wwpdb.org/)

5https://commons.wikimedia.org/wiki/File:Protein_structure_examples.png
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Figure 1.11: Examples of protein structures from the PDB
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Experimental Method Proteins Nucleic Acids Protein/Nucleic Acid complexes Other Total

X-ray crystallography 106595 1820 5471 4 113890

NMR spectroscopy 10296 1190 241 8 11735

Cryo-EM 1021 30 367 0 1418

Hybrid 99 3 2 1 105

Other 181 4 6 13 204

Total 118192 3047 6087 26 127352

Table 1.1: The PDB data (July 2017).

and structural data are accessible via the three member organizations called PDBe (https://www.ebi.ac.uk/pdbe/),

PDBj (https://pdbj.org/), and RCSB (https://www.rcsb.org/).

SIFTS

The Structure Integration with Function, Taxonomy and Sequences resource [Velankar et al., 2012] is a

database that cross-references PDB entries to biological resources. These resources are protein domain

and family classi�cations such as Pfam, SCOP, CATH, and InterPro, or functional ontologies such as

Gene Ontology (GO), and Enzyme Commission Numbers or the NCBI taxonomy database. Moreover,

it maintains cross-reference information to UniProt entries, for PDB entries existing in the UniProt

database. SIFTS database is updated weekly in close collaboration between the PDBe and UniProt using

a semi-automated process. The SIFTS pipeline has two main phases. First, a semi-automated procedure

cross-references the most recent UniProtKB entries for protein chains in the PDB. Second, an automated

process produces correlations between proteins in the PDB and the corresponding UniProtKB sequence

at the residue-level. In the second phase, cross-reference information to other biological databases are

generated. SIFTS database is available at http://pdbe.org/sifts/.

1.2.2 Protein Function

Proteins carry out a large number of functions within living organisms. These functions vary from

catalysing metabolic reactions and DNA replication to responding to stimuli, and transporting molecules

from one location to another. Although protein functions can be described in multiple ways, researchers

mainly de�ne them with ontology terms from classi�cation schemes provided by the Gene Ontology

(GO) Consortium [Harris et al., 2004] and numerical classi�cation scheme designed only for enzymatic

functions called Enzyme Commission number (EC) [Webb et al., 1992].

Gene Ontology

Gene ontology (GO) provides a collection of controlled vocabularies in structured way to unify the

representation and annotation of gene and gene products [Ashburner et al., 2000, Harris et al., 2004].

The main objectives of GO is to develop and maintain the controlled vocabularies in a way which is

easily readable by machines as well as being uni�ed across all species. Gene Ontology is divided into

three ontologies as follows.

• Molecular Function: The functions of proteins at the molecular level such as catalysis or binding.
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• Biological Process: Molecular events or operations with a determined start and �nish, which is

relevant to the function of living components such as cells, tissues.

• Cellular Component: The parts of a cell or the extracellular environment.

Information about each GO term within the GO ontology is organized into several items:

• Term name: A word or string of words.

• Alphanumeric ID: An accession number for accessing the information.

• Namespace: Ontology that the term belong to.

• Synonyms: Exactly equivalent, broader, narrower, or related names.

• Reference: Equivalent concept in other databases.

• Comment: Term meaning or usage.

• Alternate ID: Another ID of the term, mainly obsolete ones.

• Relationship: For relating a term with its ancestors and descendants. �is_a� relations operate

between terms in the same category of GO ontology. �part_of� and �regulates� operate between

di�erent GO categories.

The GO ontology is built as a rooted Directed Acyclic Graph (DAG), and each GO term has one or

many de�ned relationships to other GO terms. This relationship can be intra-ontology (using is_a) or

inter-ontology (using part_of or regulates). One of the signi�cant design feature of the GO vocabulary

is to be species-neutral. It contains terms applicable to eukaryotes and prokaryotes which can be either

single and multi-cellular organism. Figure 1.12 displays one example in GO hierarchy.

In this �gure, each box represents a GO term ID with its name. Colored arrows show the relations

between the GO terms while the colored lines express the types of relations (black: is_a, blue: part_of,

and yellow: regulates, etc). It should be noted that GO terms are more speci�c going down the graph

toward the leaf nodes and more general terms at the top of the graph toward the root nodes (molecular

function, biological process, cellular component). GO terms may be linked to more than one parent GO

term via di�erent types of relations.

In order to show the GO terms information, there are several online resources with di�erent criteria

and features such as Amigo [Carbon et al., 2008] and QuickGO [Binns et al., 2009].

Enzyme Commission Numbers

The Enzyme Commission (EC) number is a numerical classi�cation scheme for enzymatic activities. EC

numbers are introduced in regards with the chemical reactions they catalyze [Webb et al., 1992]. Based

on the naming system for EC, a recommended name for the respective enzyme is assigned to each EC

number. It should be noted that EC numbers specify only reactions that enzymes are involved in. In

other words, they de�ne the function of the protein but they do not present any information about the

protein itself. Therefore, diverse proteins (from di�erent organisms) that catalyze the same reaction

receive the same EC number [Omelchenko et al., 2010].

Each enzymatic activity as a code consists of the letters �EC� followed by four numbers which are

separated by dots. These progressive numbers represent a more and more detailed classi�cation of the

enzyme. For example, the oxalate oxidase has the code �EC 1.2.3.4�, whose components point out the

following levels of information for the enzymatic activity:
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Figure 1.12: A hierarchical view of the relations between GO:0048078, Positive Regulation of Compound

Eye.
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• EC 1: Oxidoreductases.

• EC 1.2: Acting on the aldehyde or oxo group of donors.

• EC 1.2.3: With oxygen as acceptor.

• EC 1.2.3.4: Oxalate oxidase

Overall, there are six primary classi�cations of enzymes in the Enzyme Commission Codes as follow.

• EC 1: Oxidoreductases,

• EC 2: Transferases,

• EC 3: Hydrolases,

• EC 4: Lyases,

• EC 5: Isomerases,

• EC 6: Ligases.

In order to show the EC number information, there are online databases such as BRENDA [Schomburg et al., 2002],

IntEnz [Fleischmann et al., 2004], KEGG Enzyme [Kanehisa et al., 2016], and ExPASy Enzyme [Bairoch, 2000].

UniProt General Annotations (Comments)

A large amount of useful biological information is available in the �Comments section� of the UniProt

protein entries [Apweiler et al., 2010]. These annotations which are mostly biological knowledge are

regularly added as a free text, however, UniProt is inclined to standardize them more and more using an

in-house controlled vocabulary. There are more than 26 types of general comments introduced by UniProt.

Following is the list of General annotations which are possible to be used for automatic prediction systems:

• Function: A general function of a protein.

• Catalytic activity: A reaction catalyzed by an enzyme.

• Cofactor: Non-protein substance needed for an enzymatic activity.

• Subunit: The protein quaternary structure and interaction(s) with other proteins.

• Pathway: Associated metabolic pathways.

• Subcellular location: Subcellular location of the mature protein.

• Similarity: The sequence similarity with other proteins and family.

• Interaction: Interaction with other proteins.

Additional information is available at http://www.uniprot.org/help/general_annotation/
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1.2.3 Protein Domains and Families

Based on the structure or sequence similarity, proteins are grouped into categories. These categories

mostly include proteins which are functionally characterized. Therefore, for a newly discovered protein, its

functional characteristics can be identi�ed according to the category in which it belongs. Although, these

categories such as domains and families are broadly used in di�erent biological contexts, their de�nitions

usually vary in the view of each source. Protein family is a group of proteins whose evolutionary origin is

the same. Proteins in a same family share similar functions in addition to similarities in their sequences

or structures. Protein families are often hierarchically organized. If a protein shares a common ancestor

with another bunch of proteins, they constitute a smaller and narrower related group. Superfamily and

subfamily concepts are used in some classi�cations and mean a large group of distantly related proteins

and a smaller group of closely related proteins, respectively. Figure 1.13 (top) displays a hypothetical

family hierarchy in proteins and Figure 1.13 (bottom) illustrates that with the GPCR hierarchy. This

�gure shows the usefulness of protein family because of the amount of speci�c functional information that

we can infer from hierarchy.

In computer science perspective, a domain is an abstract class that possesses several instances which

are parts of particular proteins. In biology, domains are conserved functional and structural regions

of a given protein that can evolve and exist independently in various proteins. They are structural

and sequential building blocks of proteins. They are generally responsible for a speci�c function (or

interaction) of their proteins. Domains often form functional units, however, similar domains can be found

in proteins with di�erent functions [Richardson, 1981]. Moreover, several domains can work together to

create a multi-domain and multi-functional protein with a vast number of possibilities [Chothia, 1992]. In

a multi-domain protein, each domain may carry out its individual function, or interact with its neighbors

to ful�ll a collective function. For example, Src homology 3 (SH3) domains are small domains with nearly

50 amino acids. Figure 1.14 shows its 3D structure. They occur in various proteins involved in diverse

functions, like phosphatidylinositol 3-kinases, myosins, adaptor proteins, and phospholipases.

Domains are often grouped into domain families (or families) because of the very similar domains

found in distinct proteins. Families can be considered as other classes whose instances are similar domains

described in various proteins. However, it should be clari�ed here that most domain classi�cations use

the same term, domain, to designate either the domain family or some instances of it (This will happen

also in this thesis).

Classi�cations based on family or domain are always overlapping, because proteins are occasionally

assigned to families based on domains they contain. For example Regulator of G-protein signalling (RGS)

domains are building blocks of proteins that trigger GTPases function and belong to the RGS protein

family. A RGS domain is present in all the RGS protein family members with the di�erence that some

RGS proteins such as RGS1 are single domain whereas others such as RGS6 are multi-domains. RGS

domains are also detected in several proteins from families other than RGS family such as axins and

beta-adrenergic receptor kinases. Domain combination and family groupings of some RGS proteins and

beta-adrenergic receptor kinase is depicted in Figure 1.15 below.

There are di�erent classi�cations of protein domains and families. These classi�cations discover

domains and families in automatic or semi-automatic fashion, mainly using Hidden Markov Model

[Eddy, 1998] and multiple sequence alignment [Thompson et al., 1994] techniques. These classi�cations

can be categorized based on their biological entities or their predictive models known as protein signa-

tures. Figure 1.16 shows an overview of the well-known domain classi�cations and their categorization

based on their biological entities and signature methods.
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Figure 1.13: A hierarchy of superfamily, family and subfamily in protein. Top: This hierarchy in protein

family expressing the relationships between superfamily, family and subfamily. Direction in the relation

suggests a group is a subgroup of another group. Bottom: The GPCR hierarchy that highlights short-

wave-sensitive opsins protein in green.
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Figure 1.14: 3D structure of SH3 domain which is a component in several distinct proteins with di�erent

functions.

Figure 1.15: Left: Domain combination of RGS1 and RGS6 proteins from RGS protein family. Right:

RGS domains in proteins from beta-adrenergic receptor kinases family.
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Figure 1.16: Overview of di�erent domain classi�cations. Signature methods are divided into hidden

Markov models (HMMs), pro�les, �ngerprints, and patterns. HMMs are powerful statistical models that

convert multiple sequence alignments into position-speci�c scoring systems by modeling insertions and

deletions. Pro�les are constructed by converting conserved motifs from multiple sequence alignments

into position-speci�c scoring systems (PSSMs). Fingerprints are generated using multiple pro�les. Pat-

terns are created by building regular expressions from identi�ed conserved motifs in multiple sequence

alignments.
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In the following, the most commonly used protein domain and family classi�cations are introduced.

Gene3D:CATH

The CATH Protein Classi�cation database [Orengo et al., 1997, Pearl et al., 2003] is a structural clas-

si�cation of domains which provides information on the evolutionary relationships of protein domains.

CATH has many wide speci�cations in common with the SCOP database. Nevertheless, there are many

details in which these structural classi�cations di�er greatly [Hadley and Jones, 1999]. Experimentally-

identi�ed 3D structures of proteins are acquired from the PDB. If applicable, these structures are split

into their successive polypeptide chains. Using a combination of several automatic and manual methods,

protein domains are determined within these PDB chains. Then, protein domains are classi�ed into the

CATH structural hierarchy. The four principle levels of the CATH hierarchy are:

• Class is the type of the secondary-structure content of the domain.

• Architecture is high structural similarity without con�rming homology.

• Topology/fold is categorization of topologies which have certain structure properties in common.

• Homologous superfamily is grouping based on evolutionary relationship.

It is worth it to mention that Class level in CATH and SCOP classi�cations are equivalent, while

Architecture and Homologous superfamily in CATH are the counterparts of Fold and Superfamily in

SCOP, respectively. CATH database is available at http://www.cathdb.info/

SCOP (Superfamily)

The Structural Classi�cation Of Proteins (SCOP) database [Murzin et al., 1995] is a manual classi�cation

of structural domains of proteins based on the structure and sequence similarities. The overall goal of this

classi�cation is to specify proteins which are evolutionarily related. The unit of structural classi�cation

in SCOP is the protein domain. Based on a de�nition suggested in SCOP, small and most medium-sized

proteins have only one domain while by the observation two SCOP domains are assigned for the human

hemoglobin, one for the α and one for the β subunit.

The levels of SCOP are described as:

• Class is the types of fold, for example, beta sheet.

• Fold is the di�erent forms of domains within a class.

• Superfamily distinguishes groups of domains within a fold, on the basis of a sometimes hypothet-

ical distant common ancestor.

• Family distinguishes groups of domains within a superfamily on the basis of a more recent common

ancestor.

• Protein domain is a group of domains within a family.

• Species is a group of domains in protein domains based on species.

• Domain is the smallest level (unit) of this classi�cation.
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SCOP database is available at http://scop.mrc-lmb.cam.ac.uk/scop/. SCOP stopped updating in 2010

but a successor called SCOP2 has been introduced [Andreeva et al., 2013]. SCOP2 similarly focuses on

structurally characterized proteins in the PDB and structural and evolutionary relationships of proteins.

SCOP2 also establishes a complex network of nodes instead of a tree-like hierarchy. Each node in the

network demonstrates a speci�c relationship and is represented by a structural and sequential region of

protein. SCOP2 database is available at http://scop2.mrc-lmb.cam.ac.uk/

Pfam

Pfam is a database of protein domain and family classi�cation generated using multiple sequence align-

ments and hidden Markov models [Bateman et al., 2002, Finn et al., 2016b]. The main motivation of

Pfam is to provide general and complete classi�cation of protein domains and families [Sammut et al., 2008].

The Pfam domains and families are extensively used by researchers due to its broad coverage of proteins

and realistic way of naming domains [Xu and Dunbrack Jr, 2012]. For example, Pfam was used for func-

tional annotation of genomic data in the human genome project. Pfam has also been utilized as the basis

of protein-protein interaction resources such as iPfam [Finn et al., 2013] and 3did [Stein et al., 2005].

Pfam entry types are as follows:.

• Family is the default type, de�nes that members of the family are related.

• Domain is described as an independent structural or sequential unit found in multiple proteins.

• Repeat is another type of Pfam entries which is not independently stable. Repeats are usually

required to be combined to create tandem repeats in order to form a domain.

• Motifs, unlike Repeats, are usually shorter sequence units which are stable in isolation and found

outside of globular domains.

The recent version of Pfam database is 31.0 and it was released in March 2017. It contains 16,712

domains and families so that around 76% of protein sequences in UniprotKB matched to at least one

Pfam. Pfam database is available at http://pfam.xfam.org/

TIGRFAMs

TIGRFAMs is a database of manually curated protein families designed to support both manual and

automated curated genome annotation [Haft et al., 2003, Haft et al., 2012]. TIGRFAMs entries consist

of multiple sequence alignments and hidden Markov models. TIGRFAMs have models of full-length or

small regions of proteins at three levels which are listed below.

• Superfamily is the complete set of proteins having homology over essentially their whole length.

• Subfamily is grouping based on distinct clade (a group of organisms evolved from a common

ancestor) within a superfamily.

• Equivalog is sets of homologous proteins conserved in function since their last common ancestor.

The objective of this classi�cation is to provide domains possessing maximum utility for the annotation

purposes. Therefore, TIGRFAMs is a complementary collection to the Pfam, in which models widely

cover across distant homologs but end at the boundaries of conserved structural domains. Figure 1.17

shows one striking di�erence between TIGRFAMs and Pfam.
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Figure 1.17: Six Pfam domains are covered with one TIGRFAMs entry (ΣPfami = TIGRFAMsj).

The red line represents the protein sequence and blue and green boxes represent regions for di�erent

HMMs hits by TIGRFAMs and Pfam, respectively. Larger number of Pfam domains compared to the

TIGRFAMs implies that Pfam domains are spread among various sequences and can also be found in

shorter sequences.

Six separate domains from Pfam illustrate the architecture of the �rat pyruvate decarboxylase�. How-

ever, they are not singly responsible for the function (or a full name) of the protein. In contrary with each

of these Pfam domains which describe regions shared by proteins with various functions, an individual

equivalog model of TIGRFAMs provides annotation for the whole protein. TIGRFAMs is available at

http://www.jcvi.org/cgi-bin/tigrfams/index.cgi.

PANTHER

Protein ANalysis THrough Evolutionary Relationships (PANTHER) classi�cation system [Thomas et al., 2003,

Mi et al., 2017] is a manually curated biological database of protein families and their functional anno-

tations. PANTHER families can be utilized identifying the function of proteins, ontology, and pathways.

In PANTHER, proteins are classi�ed based on di�erent attributes such as families and subfamilies, Gene

Ontology, and pathways. The most substantial feature of PANTHER is to infer functions of uncharacter-

ized proteins based on their evolutionary relationships to protein with known functions. For each protein

family in PANTHER, there is a phylogenetic tree. Using this phylogenetic model, PANTHER is able

to predict the functions of an uncharacterized protein through inheritance from its ancestors in its tree.

[Mi et al., 2017]. PANTHER database is available at http://pantherdb.org/.

SMART

Simple Modular Architecture Research Tool (SMART) database is a biological resource to detect and an-

notate domains and their architecture within protein sequences [Schultz et al., 1998, Letunic et al., 2014].

SMART like many other domain databases uses hidden Markov models built from multiple sequence align-

ments to identify protein domains. Data from SMART has been used to create the Conserved Domain

Database (CDD) collection. SMART is available at http://smart.embl.de/.
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CDD

The Conserved Domain Database (CDD) [Marchler-Bauer et al., 2005] provides annotation of protein

sequences using the location of conserved domains as footprints. These footprints are then used to infer

the functions sites in protein sequences. CDD combines several protein domain and full-length protein

model collections, and maintains an active curation e�ort that aims at providing �ne grained classi-

�cations for major and well-characterized protein domain families, as supported by available protein

three-dimensional (3D) structure and the published literature. So far, the majority of protein three-

dimensional structures are represented by models tracked by CDD, and CDD curators are character-

izing novel families that emerge from protein structure determination projects. CDD is accessible via

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

PROSITE

PROSITE is a database [Hulo et al., 2007, Sigrist et al., 2002] that consists of entries describing the

protein domains and families. It also contains functional sites and amino acid patterns and pro�les.

PROSITE entries are manually curated and then integrated into the UniProtKB/SwissProt database.

PROSITE procedure identi�es functions of recently discovered proteins and analyzes known proteins

for functions which are formerly uncharacterized. It propagates properties of well-studied proteins to

the proteins of biologically related organisms or predicts functions based on similarities for poorly know

proteins [Hulo et al., 2007]. ProRule is another database builds on top of the domain descriptions in

PROSITE [Sigrist et al., 2005]. It supplies further information about functionally critical amino acids.

Such information can help creating automatic annotation based on PROSITE. PROSITE is available at

http://prosite.expasy.org/.

PRINTS

PRINTS is a database of �ngerprints [Attwood et al., 2003] that provides an annotation list for protein

families as well as a diagnostic tool for newly discovered protein sequences. A �ngerprint is a group

of conserved motifs found by a multiple sequence alignment. The motifs create a special signature

for the protein families which are aligned. The motifs mainly come together in three-dimension to

determine interaction surfaces or binding sites in the molecules. The main strength of �ngerprints is

discerning di�erences in protein sequences at four levels of clan, superfamily, family and subfamily. This

allows more accurate functional predictions for uncharacterized sequences. The database is accessible at

http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/.

InterPro

InterPro is a rich integrated collection of protein domains families as well as protein functional sites. It

exploits features which are distinguishable in characterized proteins to apply on new protein sequences

which are functionally unknown [Apweiler et al., 2001, Finn et al., 2016a].

The contents of InterPro include diagnostic signatures and proteins which are remarkably similar.

The signatures are composed of several models such as regular expressions or hidden Markov models,

which describe protein domains families or functional sites. Models are often constructed from amino acid

sequences of characterized protein domains and families. Afterward, uncharacterized protein sequences

(such as proteins introduced by new genome sequencing) are also aligned against models and distributed in

the di�erent classes. Three main entities: proteins, signatures (also known as �methods� or �models�) and
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Figure 1.18: Yeast interactomes obtained using the yeast-two hybrid method [Jeong et al., 2001].

entries are stored in InterPro. The InterPro signatures are from member databases, the most important

ones are listed below.

The main intention of InterPro is to integrate protein domain classi�cations. InterPro database stores

all the signatures from di�erent member databases into the InterPro entries (All domains classi�cations

in Figure 1.16 are integrated into the InterPro database). Signatures from di�erent domain databases

corresponding to equivalent domains, families or functional sites are gathered into the same entry. Ad-

ditionally, applicable information such as a description, consistent names, cross-reference to function

ontologies like Gene Ontology (GO) are also associated with each InterPro entry.

InterProScan [Zdobnov and Apweiler, 2001, Jones et al., 2014] is a scanning software that searches

the protein signatures of the above-mentioned member databases inside a given protein sequence. Inter-

ProScan and InterPro are accessible from https://www.ebi.ac.uk/interpro/interproscan.html/ and

https://www.ebi.ac.uk/interpro/, respectively.

1.2.4 Protein Interaction

Protein-protein interactions (PPIs) exists in nearly all biological process in a single cell. Thus, knowing

how proteins interact is a substantial study to recognize functions and behaviors of living organisms and

their parts in normal and abnormal conditions. It is also crucial in the development of drugs due to the

fact that drugs can in�uence PPIs. Protein-protein interaction networks (PPIN) illustrate the physical

contacts amongst proteins in organisms mathematically. A sample map of protein-protein interactions of

yeast is shown in Figure 1.18. These contacts occur between particular binding sites in the interacting

proteins, and represent a speci�c biological meaning such as a determined function.
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Interactions between proteins can be indicated as both stable and transient. On the one side, stable

interactions are organized in protein complexes such as ribosome and haemoglobin while on the other side,

transient interactions are short-time interactions that alter or transport a protein and lead to subsequent

changes such as protein kinases and nuclear pore importins. Transient interactions contain majority of

the dynamic sector of the interactome. Knowledge about PPIs can be applied to the function prediction

of uncharacterized proteins, enhancement of the details about a signaling pathway, and characterization

of the proteins relationships that establish poly-molecular complexes (e.g. proteasome).

Molecular interaction can be discovered by various methods and techniques. It is important to re-

alize that they all have their own weaknesses and strengths and no individual methodology can pre-

cisely generate a complete list of protein-protein interactions. Information about protein interactions

can be acquired using experimental or computational approaches. Interaction data discovered by ex-

perimental methods are generally more accurate than computationally predicted interactions. The

most frequent experimental methods with the striking contribution to the growing of PPIs are Yeast

Two-Hybrid [Brückner et al., 2009], A�nity Puri�cation Mass Spectrometry [Bauer and Kuster, 2003],

Protein-fragment Complementation Assays (PCA) [Morell et al., 2009], Co-immunoprecipitation (Co-IP)

[Isono and Schwechheimer, 2010], X-ray crystallography [Kobe et al., 2008], and Fluorescence Resonance

Energy Transfer (FRET) [Kenworthy, 2001]. Nonetheless, these techniques are time-consuming and ex-

pensive in terms of money and manpower. Therefore, experimental methods furnish only a small part

of the available interactions data [Pitre et al., 2008, Valencia and Pazos, 2002]. Moreover, in the same

organism, there are considerable discrepancies between the PPI data acquired by the same or di�erent

methods. All these issues encourage the emergence of computational techniques for PPI prediction.

Protein-protein interaction prediction using computational methods uses the combination of structural

biology and bioinformatics to �nd physical interactions between proteins. Computationally predicted

interactions have an important role in completing the list of experimental interactions. Similar to the

experimental discovery of protein interactions, computationally predicted interactions can be used to gain

insights into intracellular signaling pathways and protein complex structures.

Protein-protein interactions can be studied at the domain level. In general, protein interactions occur

through their domains instead of the entire protein molecules [González and Liao, 2010]. Protein domains

interact physically with other protein domains to carry out the functions which their corresponding

proteins are supposed to perform [Deng et al., 2002]. Thus, understanding protein-protein interactions

at the level of domain gives a better view of the protein functions and the protein interaction network.

Protein-protein interaction at the domain level is called domain-domain interaction (DDI). There are

a variety of approaches to infer DDIs which are listed below. It also should be noted that interaction

between proteins can be predicted using the discovered DDIs. In the following, four databases of observed

and predicted DDIs in addition to six databases of the most commonly used PPIs are brie�y introduced.

3did

Database of three-dimensional interacting domains (3did) is a database of protein-protein interactions

with a known three-dimensional structure [Stein et al., 2005, Stein et al., 2010]. 3did uses the Pfam

protein domain and family classi�cation for identifying protein domains inside the protein structures. It

classi�es all possible DDIs models in the PDB database and adds molecular characterizations to each DDI.

Recently, 3did clusters similar interfaces into a group in order to include annotations [Mosca et al., 2013].

3did is available for download and browsing at http://3did.irbbarcelona.org.
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KBDOCK

KBDOCK provides a three-dimensional biological database which systematically identi�es and spatially

clusters proteins binding sites for template-based (knowledge-based) protein docking [Ghoorah et al., 2013a].

KBDOCK incorporates the Pfam protein domain and family classi�cation with their structures from PDB

coordinate data in order to investigate the arrangements of DDIs in the three-dimensional space. This pro-

cedure ends with a set of structural templates for protein docking [Ghoorah et al., 2011, Ghoorah et al., 2013b].

KBDOCK database is accessible for downloading and querying at http://kbdock.loria.fr/.

DOMINE

DOMINE provides a database of predicted and observed domain-domain interactions amassed from

diverse sources [Raghavachari et al., 2007, Yellaboina et al., 2010]. DOMINE accommodates DDIs ob-

served in the PDB database, as well as predicted DDIs from eight computational methods. This database

serves as a reference and robust dataset of DDIs for testing new methods of predicting protein and domain

interactions and for analysis of the topological structure of interaction networks. DOMINE is accessible

at http://domine.utdallas.edu.

INstruct

INstruct is a three-dimensional database that structurally identi�es protein interaction networks in human

and six model organisms [Meyer et al., 2013]. INstruct incorporates available protein-protein interactions

with atomic-resolution information derived from co-crystal structures. Its web interface is designed to

allow for �exible search based on standard and organism-speci�c protein and gene-naming conventions,

visualization of protein architecture highlighting interaction interfaces and viewing and downloading

custom 3D structurally resolved interactome datasets. INstruct is available for viewing and downloading

at http://instruct.yulab.org.

IntAct

IntAct is a protein interaction software and database which houses protein-protein interactions models and

their analysis [Kerrien et al., 2006, Kerrien et al., 2011]. In the IntAct resource, data are accumulated

from peer-reviewed journals and are manually annotated by expert curators. In its website, protein

interactions are textually represented and graphically visualized for protein interaction networks. It also

provides additional information for the interacting proteins such as GO annotations and pathways. IntAct

data and software are available at http://www.ebi.ac.uk/intact.

MINT

The Molecular INTeraction database (MINT) [Zanzoni et al., 2002, Licata et al., 2011] is a repository of

protein-protein interactions curated from experimental details of biomedical literature. MINT prepares

the curation work on physical interactions between proteins and does not include any genetic or compu-

tationally inferred interactions. Interaction data alongside the annotations are explorable in the MINT

website. The dataset can be accessed online at http://mint.bio.uniroma2.it/mint/.
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DIP

The Database of Interacting Proteins (DIP) is a biological database that aims to maintain protein-protein

interactions which are experimentally determined [Xenarios et al., 2000]. This database is intended to

provide a comprehensive and integrated tool for browsing and e�ciently extracting information about

protein interactions and interaction networks [Xenarios et al., 2002]. Researchers are able to analyze,

visualize and integrate their experimental data with the protein interacting information in the DIP

database using the DIP tools. Moreover, the DIP database is bene�cial for studying the features and

relationships in protein interaction networks, benchmarking predictions of protein-protein interactions

and studying the evolvement of protein�protein interactions. The database is accessible at http://dip.doe-

mbi.ucla.edu.

BioGRID

The Biological General Repository for Interaction Datasets (BioGRID) is a database aimed to store ge-

netic and protein interactions extracted from the primary published scienti�c literature [Stark et al., 2006].

These interactions are obtained for all major model organism species and humans. Interaction Manage-

ment System (IMS) organizes curation in BioGRID. This system facilitates the compilation of interaction

entries through gene annotation, phenotype ontologies, and structured evidence codes. The BioGRID

architecture supports the representation of more complex multi-gene or multi-protein interactions to ac-

count for cellular phenotypes via structured ontologies [Oughtred et al., 2016]. BioGRID is available at

http://thebiogrid.org/.

HPRD

Human Protein Reference Database (HPRD) is a database of manually curated proteomic information

only for human proteins [Peri et al., 2003]. HPRD database has detailed information regarding to di�erent

facets of human proteins such as protein interactions and post-translational modi�cations obtained from

manual investigation of literature as well as analyses of protein sequences. HPRD resource can be accessed

at http://www.hprd.org/.

STRING

The STRING database is a repository of interacting proteins which collects and integrates functional

interactions between proteins, by combining predicted and known protein-protein association data for

many diverse organisms. Protein associations in STRING comprise two types of physical and functional

interactions and are collected from experimental data from curated databases as well as predicted protein

interactions. Predicted interactions are extracted from identi�cation of shared signals among genomes, co-

expression analysis in a systematic way, automatic text-mining on the biomedical literature, transferring

interaction knowledge across organisms computationally. An interesting scoring system in STRING

allows users to gather and categorize the most reliable interactions having a score greater than a desired

threshold. The STRING database is accessible at http://string-db.org/.
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In this chapter, a rapid overview of the computational and biological backgrounds of this thesis has

been presented. Very important research challenges take place at the crossing of these two domains: data

mining and knowledge discovery on the one hand, protein structure, function and interactions on the

other hand. In particular, the huge amount and complexity of biological data accumulating in databases

today makes it necessary to develop knowledge-based computational approaches to make sense of these

data and facilitate their use for various applied purposes in biology and health. The next four chapters

will describe four applications based on two major computational approaches (CODAC and CARDM)

that constitute the contribution of this thesis to this interdisciplinary �eld.
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Many entries in the protein Data Bank (PDB) and UniProtKB are annotated to show their component

protein domains according to the Pfam classi�cation, as well as their biological function through the

enzyme commission (EC) numbering scheme. However, despite the fact that the biological activity of

many proteins often arises from speci�c domain-domain and domain-ligand interactions, current on-line

resources rarely provide an explicit relationship between individual EC numbers and Pfam domains. Since

the PDB now contains many tens of thousands of protein chains, and since protein sequence databases

can dwarf such numbers by orders of magnitude, there is a pressing need to develop automatic method

to �nd direct mapping between EC numbers and Pfam domains.
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2.1 Introduction

Proteins perform many essential biological functions such as catalysing metabolic reactions and mediating

signals between cells. These functions are often carried out by distinct �domains�, which may be identi�ed

as highly conserved regions within a multiple alignment of a group of similar protein sequences, as in the

Pfam classi�cation [Finn et al., 2016b]. It is widely accepted that such protein domains often correspond

to distinct and stable three-dimensional (3D) structures, and that there is often a close relationship

between protein structure and protein function [Berg et al., 2002]. Indeed, it is well known that protein

structures are often more highly conserved than protein sequences [Chothia and Lesk, 1986], and this

suggests that proteins with similar structures will have similar biological functions [Martin et al., 1998].

The Protein Data Bank (PDB) [Bernstein et al., 1977, Gutmanas et al., 2014] now contains over 107,000

3D structures, most of which have been solved by X-ray crystallography or NMR spectroscopy.

As well as sequence-based and structure-based classi�cations, proteins may also be classi�ed according

to their function. For example, the Enzyme Commission [Webb et al., 1992] uses a hierarchical four-

digit numbering system to classify the enzymatic function of many proteins. The �rst digit, or top-

level �branch� of the hierarchy, selects one of six principal enzyme classes (oxidoreductase, transferase,

hydrolase, lyase, isomerase, and ligase). The second digit de�nes a general enzyme class (chemical

substrate type). The third digit de�nes a more speci�c enzyme-substrate class (e.g. to distinguish

methyl transferase from formyl transferase), while the fourth digit, if present, de�nes a particular enzyme

substrate. However, it should be noted that because EC numbers are assigned according to the reaction

catalyzed, it is possible for di�erent proteins to be assigned the same EC number even if they have no

sequence similarity or if they belong to di�erent structural families.

Furthermore, there are several ways in which a protein might provide one or more enzymatic functions,

as illustrated in Figure 2.1. In the simplest case (Figure 2.1 (A)), a protein contains just one domain,

and there is a one-to-one association between that domain and a particular enzymatic function. In this

case, it is reasonable to suppose that the catalytic site is located entirely on that domain. Similarly, a

protein may have two or more distinct domains, each of which provides a distinct enzymatic (or non-

enzymatic) function (Figure 2.1 (B)). On the other hand, a protein domain could be involved in more

than one catalytic activity, as illustrated in Figure 2.1 (C). Finally, a catalytic site may be at the interface

between two domains, or one domain serves as a necessary co-factor for the other (Figure 2.1 (D)). It

is biologically relevant to be able to distinguish all such cases. However, except for the simplest case

(Figure 2.1 (A)), it can be seen that �nding domain-EC associations automatically is a non-trivial task.

Several groups have described approaches or resources that can associate entire PDB protein chains with

enzyme EC numbers [Reichert et al., 2000, de Beer et al., 2014, Laskowski, 2001, Martin, 2004]. Proba-

bly the most up-to-date and exhaustive association between PDB chains and EC numbers is provided

by SIFTS [Velankar et al., 2012], which is a collaboration between the Protein Data Bank in Europe and

UniProt [Apweiler et al., 2010]. SIFTS incorporates a semi-automated procedure which links PDB chain

entries to external biological resources such as Pfam, and IntEnz [Fleischmann et al., 2004].

While all of the above mentioned approaches can provide associations between PDB protein chains

and enzyme EC numbers, to our knowledge, very few approaches have been published for automatically

assigning EC numbers to structural domains. SCOPEC [George et al., 2004] uses sequence information

from SwissProt and PDB entries that have been previously annotated with EC numbers in order to

assign EC numbers to SCOP domains [Murzin et al., 1995]. It �rst looks for PDB chains that fully map

to SwissProt entries (to within up to 70 residues) and that match on at least the �rst three EC number

digits. In this way, SCOPEC identi�es single domain structures that can be associated unambiguously
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Figure 2.1: A graphical representation of di�erent situations of EC-Domain association in a protein

sequence or structure.

with an EC number. Although SCOPEC can subsequently propagate a known EC-domain association

to a matching domain in a multi-domain protein, it is generally not able to resolve cases where multiple

ECs are associated with multi-domain chains (parts B, C, and D in Figure 2.1).

Furthermore, it appears that the SCOPEC database is no longer available on-line.

In contrast, the dcGO ontology database for protein domains produced in 2012 is still available online

and provides several ontological annotations (Gene Ontology: GO, EC, pathways, phenotype, anatomy

and disease ontologies) for more than 2,000 SCOP domain families [Fang and Gough, 2013].

The dcGO approach follows the principle that if a GO term tends to be attached to proteins in UniPro-

tKB that contain a certain domain, then that term should be associated with that domain. The statistical

signi�cance of an association is assessed against a random chance association using a hypergeometric dis-

tribution followed by multiple hypotheses testing in terms of false discovery rate. The dcGO approach

addresses the issues of hierarchical structure of most biological ontologies and the nature of domain compo-

sition for multi-domain proteins. However, a mapping onto Pfam domains is proposed only for GO terms.

Here, we describe a recommender-based approach call �ECDomainMiner� for associating Pfam domains

with EC numbers, which builds on our previously described statistical approach [Alborzi et al., 2015].

Recommender systems are a class of information �ltering system [Hanani et al., 2001, Ricci et al., 2011]

which aim to present a list of items that might be of interest to an on-line customer. There are two

main kinds of recommender systems. Collaborative �ltering approaches make associations by calculat-

ing the similarity between activities of users [Sarwar et al., 2001, Koren and Bell, 2015]. Content-based

�ltering aims to predict associations between user pro�les and description of items by identifying com-

mon attributes [Robillard et al., 2014, Ricci et al., 2011]. Such an approach has recently been applied

to a quite di�erent problem of discovering novel cancer drug combinations [Huang et al., 2014]. Here,

we use content-based �ltering to associate EC numbers with Pfam domains from existing EC-chain and

Pfam-chain associations from SIFTS, and from EC-sequence and Pfam-sequence associations from Swis-

sProt and TrEMBL, where protein chains and sequences serve as the common attributes through which
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EC-Pfam associations are made. Note that our approach does not attempt to identify catalytic sites or

catalytic residues. Rather, we aim to detect frequent co-ocurrences of Pfam domains and EC numbers in

order to deconvolute the often complex EC-Pfam relationships within multi-domain and multi-function

protein chains. We assess the performance of our approach against a �Gold Standard� dataset derived

from InterPro [Finn et al., 2016a], and we compare our results with the Pfam-EC associations derived

from the dcGO database. We also show how our database of more than 20,000 EC-Pfam associations

can be exploited for automatic annotation purposes.

2.2 Methods and Materials

2.2.1 Data Preparation

Our data sources are SIFTS for EC number and Pfam domain annotations of PDB chains, and Uniprot

for EC number and Pfam domain annotations of protein sequences. UniProt is divided into three parts:

(i) the non-redundant, high quality, manually curated SwissProt part, (ii) the TrEMBL data that are

annotated using Uni�ed Rules [Pedruzzi et al., 2013], called here UniRule, and (iii) the rest called here

TrEMBL.

In addition, in order to parameterize and evaluate ECDomainMiner, we use the InterPro database

[Finn et al., 2016a] which contains a large number of manually curated EC-Pfam associations. Flat data

�les of SIFTS (July 2015), Uniprot (July 2015), and InterPro (version 53.0) were downloaded and parsed

using in-house Python scripts. From the SIFTS data, associations between EC numbers and PDB chains,

and associations between PDB chains and Pfam domains were extracted. Associations between Uniprot

sequence accession numbers (ANs) and EC numbers, and AN-Pfam associations were then extracted from

the SwissProt section of Uniprot to give a dataset of Swissprot associations. For the TrEMBL entries, we

collected and stored the corresponding AN-EC and AN-Pfam associations which had been annotated by

UniRule, and those associations lacking UniRule annotations to give two further sequence-based datasets

of associations, which we call the UniRule and TrEMBL association datasets.

To avoid bias due to duplicate structures or sequences in the four source datasets, all PDB chains

and Uniprot sequences were grouped into clusters having 100% sequence identity using the Uniref non-

redundant cluster annotations [Suzek et al., 2007], and each cluster was assigned a chain unique identi�er

(CID). Note that since just a few point mutations can dramatically change an enzyme's substrate speci-

�city, making clusters of identical rather than highly similar sequences avoids the risk of falsely clustering

proteins that share highly similar folds but which have quite di�erent substrates. Moreover, Pfam fam-

ilies display highly conserved residues in their amino acid signature. Clustering sequences according to

sequence similarity less than our strict condition may create a chance of mutating the conserved residues'

in Pfam families and lead to incorrect mapping. The source EC-chain and EC-AN associations were

then mapped to the corresponding CID in order to make four sets of EC-CID associations. A similar

mapping was applied to the source Pfam-chain and Pfam-AN associations to give four sets of Pfam-CID

associations.

For the reference data, we extracted from InterPro a total of 1,515 EC-Pfam associations in which

each EC number had all four digits and each Pfam accession code (AC) referred either to a Pfam domain

or a Pfam family (i.e. Pfam motifs and repeats were excluded). These associations were considered to be

�positive examples�, and were randomly divided into two equal �training� and �test� subsets. However,

for training purposes, we also needed some �negative examples�. We therefore created a set of �false�

EC-Pfam associations by �rst shu�ing the CID-EC and CID-Pfam associations from SIFTS dataset, and
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Figure 2.2: A graphical illustration of calculating raw EC-Pfam association scores from existing SIFTS

EC-CID and Pfam-CID associations.
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by then randomly collecting 1,515 wrong EC-Pfam associations from the shu�ed datasets. In the rest

of this article, we will refer to the combined set of 758 randomly chosen positive examples from InterPro

and 758 randomly chosen negative examples as our �training dataset� and the remaining 1,513 positive

and negative examples as our �test dataset�.

2.2.2 Inferring EC-Pfam Domain Associations

The main idea underlying the discovery of hidden EC-Pfam associations is to represent EC numbers and

Pfam domains as feature vectors, with one feature per PDB or UniProt CID, and to score any inferred

EC-Pfam association with the cosine similarity between its EC and Pfam vectors.

The various steps of our content-based �lter approach for �nding associations between 4-digit EC

numbers and Pfam domains are illustrated in Figure 2.2 for the SIFTS dataset. First, all relations

between PDB CIDs and EC numbers, and between PDB CIDs and Pfam domains are extracted from

SIFTS, as described above. Joining these two lists of relations then yields a complex many-to-many graph

that contains relations between EC numbers, PDB CIDs, and Pfam domains.

After this join operation, all EC-CID relations are encoded in a binary matrix, where a 1 represents

the presence of an association and a 0 represents no association. This matrix is then row-normalized such

that each row has unit magnitude when considered as a vector. Similarly, all PDB CID-Pfam relations

are encoded in a second binary matrix which is column-normalized. Consequently, the product of the

two normalized matrices corresponds to a matrix of cosine similarity scores between the rows of the

�rst matrix and the columns of the second matrix. Thus, each element, S(ec, d), of the product matrix

represents a raw association score between an EC number, ec, and a Pfam domain, d.

Similarly, raw EC-Pfam association scores are calculated from EC-CID and Pfam-CID relations ex-

tracted from SwissProt, TrEMBL and Unirule. Then, because we wish to draw upon the relations from all

four datasets, we combine the four raw scores as a weighted average to give a single normalized con�dence

score, CSec,d:

CSec,d =

∑
i wiSi(ec, d)∑

i wi
(2.1)

where i ∈ {SIFTS, Swissprot, T rEMBL,UniRule} enumerates the four datasets, wi are weight factors,

to be determined, and where an individual association score, Si(ec, d), is set to zero whenever there is no

data for the (ec, d) pair in dataset i.

In order to �nd the best values for the four weight factors, receiver-operator-characteristic (ROC)

curves [Fawcett, 2006] were calculated using the positive examples of our Interpro-based training dataset,

against the rest of associations (background associations).

Each weight was varied from 0.0 to 1.0 in steps of 0.1, and for each combination of weights a ROC

curve of the ranked association scores was calculated. The combination of weights that gave the largest

area under the curve (AUC) of the ROC curve was selected.

2.2.3 De�ning a Con�dence Score Threshold

Having determined the best weight for each data source, we next wished to determine an overall threshold

for the con�dence score. To do this in an objective way, we used the training dataset, then scored and

ranked the members of the dataset, and labeled them true or false according to a threshold value that

was varied from 0.0 to 1.0 in steps of 0.01. For each threshold value, we counted the number of positive

examples above the threshold (TPs), negative examples above the threshold (FPs), negative examples
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below the threshold (TNs), and positive examples below the threshold (FNs). We then calculated the

recall, R, precision, P , and their harmonic mean in order to obtain a �F-measure� using:

R =
TP

TP + FN
, P =

TP

TP + FP
, F =

2RP

P +R
. (2.2)

The score threshold that gave the best F-measure was checked on the Test subset and selected as the

best threshold to use for accepting inferred associations 6.

2.2.4 Exploiting the EC Number Hierarchy

The above approach has focused on �nding explicit co-occurrences between Pfam domains and 4-digit

EC numbers. However, it is possible to �nd more associations by relaxing the criteria for co-ocurrences

of EC-Pfam annotations by looking for matches only at the 3-digit EC level. Indeed, we have observed

several cases where true associations according to the InterPro training dataset were assigned con�dence

scores below the threshold value because they had too few (4-digit EC number) instances to provide

su�cient support. Therefore, the above procedure was repeated using 3-digit EC numbers to give a

3-digit scoring scheme (with di�erent weight factors and a di�erent score threshold). Then, any 4-digit

EC-Pfam association below the 4-digit threshold, but consistent with a 3-digit EC-Pfam association above

the 3-digit threshold, was added (i.e. �rescued�) to the �nal list of accepted 4-digit EC-Pfam associations.

It should be clari�ed that �consistent� means here that the 4-digit EC number is a descendant of the

3-digit EC number and that the Pfam domains are the same.

2.2.5 Hypergeometric Distribution p-Value Analysis

While the above procedure provides a systematic way to infer EC-Pfam associations, we wished to

estimate the statistical signi�cance, and thus the degree of con�dence, that might be attached to those

predictions. More speci�cally, we wished to calculate the probability, or �p-value�, that an EC number and

a Pfam domain might be found to be associated simply by chance. For example, it is natural to suppose

such associations can be predicted at random if ec or d are highly represented in the structure/sequence

CIDs. In principle, in order to estimate the probability of getting our EC-Pfam associations by chance,

one could generate random datasets by shu�ing the relations between EC numbers and CIDs on the

one hand, and between Pfam domains and CIDs on the other hand. However, this is quite impractical

given the very large numbers of CIDs, EC numbers, and Pfam domains, and the complexity of the

�ltering procedure that would have to be repeated for each shu�ed version of the dataset. Therefore,

as in [Fang and Gough, 2013], we rather assume that the random distribution of the number of CIDs

associated with both ec and d follows an hypergeometric law.

Letting N denote the total number of CIDs, Nd the number of CIDs related to the Pfam domain d,

and Nec the number of CIDs related to the EC number ec, the hypergeometric probability distribution

is given by

p(Xec,d > Kec,d) =

∑min (Nd,Nec)
i=Kec,d

(
Nec

i

)(
N−Nec

Nd−i

)
(
N
Nd

) , (2.3)

where p(Xec,d > Kec,d) represents the probability of having a number Xec,d equal to or greater than the

observed number Kec,d of CIDs associated with both d and ec. Traditionally, a p-value of less than 0.05

6F-measure is chosen as the performance measure because it considers true and false positive and negative instances

classi�ed by our system. Furthermore, our test dataset is balanced, thus, other performance measures such as MCC which

also take TP, TN, FP and FN into account, provide the similar results.
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is taken to be statistically signi�cant. However, because this test is applied to a large number of EC-

Pfam associations, we apply a Bonferroni correction which takes into account the so-called family-wise

error rate (FWER) [Cui et al., 2003]. We therefore consider any p-value less than 0.05/T as denoting a

statistically signi�cant inferred EC-Pfam association in a dataset, with T the total number of tested EC-

Pfam associations for this dataset, In order to distinguish EC-Pfam associations using both con�dence

scores and p-values, we classify them into three classes, �Gold�, �Silver�, and �Bronze�. An association is

assigned to the Gold class if both its EC-Pfam score is greater than the determined threshold and all its

p-values (in all datasets) are statistically signi�cant. An association is labeled Silver if its score is above

the threshold but one or more of its p-values is not statistically signi�cant, or if its score is below the

threshold (�rescued� associations, see Section 2.2.4) but all its p-values are statistically signi�cant. All

other associations are labeled Bronze.

Please note that the above-mentioned method will be generalized in the next chapter. Figure 3.9

exempli�es a work�ow of the algorithm to map protein functions and domains.

2.3 Results and Discussion

2.3.1 Data Source Weights and Score Threshold

After clustering identical structures and sequences, and calculating raw association scores (Figure 2.2),

our merged dataset contains 6, 306 SIFTS, 18, 917 SwissProt, 124, 699 TrEMBL, and 141, 990 UniRule

candidate EC-Pfam associations, giving a total of 262,571 distinct EC-Pfam associations to draw from

(Table 2.1). In our ROC-based training procedure (Section 2.2.2), the best AUC value of 0.985 was

obtained with weights wSIFTS = 0.1, wSwissProt = 1.0, wTrEMBL = 0.1, and wUniRule = 0.6. These

weights indeed give greater importance to the candidate associations in SwissProt and UniRule, respec-

tively, compared to those in SIFTS and TrEMBL. This is mainly due to fact that data in SwissProt and

UniRule datasets has higher quality compared to the TrEMBL. However, the small amount of data in

SIFTS dataset results in low weight.

The optimal score threshold was determined according to the F-measure training procedure using our

training dataset (Section 2.2.3). This gave a score threshold of 0.04 for a maximum F-Measure of 0.9476.

Applying this threshold to the test dataset yielded a comparable F-measure of 0.935, and precision and

recall values of 0.99 and 0.893, respectively.

2.3.2 Global Analysis of Inferred EC-Pfam Associations

The results of the ECDomainMiner approach are summarized in Table 2.1. This table shows the numbers

of 4-digit EC-Pfam associations along with the numbers of distinct EC numbers and Pfam entries involved

in those associations for the four sources and the merged datasets before �ltering. After applying the

0.04 score threshold, the number of EC-Pfam associations falls to 8,256 with an overlap of about 96%

of InterPro reference associations. Using the relaxed 3-digit association approach (Section 2.2.4), the

�nal ECDomainMiner dataset contains 20,728 EC-Pfam associations that overlap by 99.3% the InterPro

reference dataset. These numbers show that our approach e�ciently retrieves the InterPro reference

EC-Pfam associations, including a small percentage (about 3.3%) that have a low con�dence score.

Table 2.1 also shows that our ECDomainMiner set of EC-Pfam associations represents a 13.7 fold-

increase (20,728 / 1,515) in EC-Pfam associations with respect to InterPro. Moreover, the list of EC-Pfam

associations produced by ECDomainMiner contains 6.4 times more EC numbers and 2.8 times more Pfam
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Dataset EC-Pfam associations Distinct 4-digit EC numbers Distinct Pfam entries

Source SIFTS 6,306 2,648 2,611

Datasets SwissProt 18,917 4,013 3,101

TrEMBL 124,699 3,751 5,703

UniRule 141,990 1,020 2,907

Merged 262,571 4,648 6,639

Reference InterPro 1,515 688 1,284

ECDomainMiner With CS above threshold 8,256 3,701 3,022

Results (Overlap with InterPro) (1,461) (688) (1,245)

Including low CS 20,728 4,455 3,613

(Overlap with InterPro) (1,498) (688) (1,273)

Table 2.1: Statistics on the source datasets and calculated EC-Pfam associations. CS is the Con�dence

Score.

domains than InterPro. Figure 2.3 shows how this increase in EC-Pfam associations distributes across

the 6 top-level branches (i.e. 1-digit codes) of the EC classi�cation. The greatest ECDomainMiner scale-

Figure 2.3: Scale-up factors for ECDomainMiner compared with InterPro. Ratios between the numbers

in ECDomainMiner and in InterPro have been calculated for associations (red), EC numbers (yellow),

and Pfam domains (green) after dividing the dataset according to each EC branch represented in the

associations (1 to 6) and for all the dataset (All). 1: oxydoreductases; 2: transferases; 3: hydrolases; 4:

lyases; 5: isomerases; 6: ligases

up factor occurs for associations involving the oxydoreductases (EC branch 1). The smaller scale-up

factor observed for Pfam domains (2.8 versus 6.4 for EC numbers) can be explained by the fact that not

all Pfam domains display an enzymatic activity. Thus there is a natural limit in the coverage of Pfam

database by our EC-Pfam associations, whereas there is no such limit for the coverage of EC numbers.

Combining the con�dence scores with the calculated p-values as described in Section 2.2.5 gave 4,552 Gold

associations (having scores above the threshold and signi�cant p-values in all source datasets), 11,426

Silver associations (with either scores above the threshold and one or more non-signi�cant p-values, or
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Figure 2.4: Venn diagram showing the intersection between (A) Pfam2EC (2,500 associations) from

dcGO, (B) All-Merged (262,571 associations), and (C) ECDomainMiner (20,728 associations). Region

I (480 associations) is the portion of (A) for which there is no data in any of our four source datasets.

Region II (128 associations) is the portion of (A) that exists in (B) but is not retained in ECDomainMiner

(C). Region III (1,892 associations) is the overlap between (A) and (C). Region IV (18,836 associations)

is the portion of ECDomainMiner associations that are not available from SCOP2EC. Region V (241,363

associations) is the rest of the merged set of EC-Pfam source associations that are absent from (A) and

not retained as Gold, Silver, or Bronze associations by ECDomainMiner.

with a score below the threshold but with signi�cant p-values in all source datasets), and 4,201 Bronze

associations.

2.3.3 Comparison with dcGO

In order to compare ECDomainMiner with the dcGO approach [Fang and Gough, 2013], we extracted

SCOP2EC associations from the Domain2EC �le available from the dcGO database 7. The Domain2EC

�le includes 7,249 associations with 4-digit EC numbers, of which 3,774 are related to SCOP �Families�

and 3,475 to SCOP �SuperFamilies�. Because InterPro only tabulates SCOP family domains, we limited

our comparison to the set of 3,774 SCOP2EC family associations. The SCOP families were mapped

to Pfam families according to InterPro mapping �les in order to generate a set of 2,500 �Pfam2EC�

associations (i.e. EC-Pfam associations which may be deduced directly from the SCOP2EC data). This

set (shown as set A in Figure 2.4) was compared with the set of all 262,571 merged EC-Pfam associations

found by ECDomainMiner (set B in Figure 2.4).

This comparison showed that a total of 480 Pfam2EC associations from SCOP2EC are not present

in our merged dataset. The remaining 2,020 Pfam2EC associations were then compared with the 20,728

associations calculated by ECDomainMiner (set C in Figure 2.4). This comparison (the intersection of

sets A and C) produced a total of 1,892 EC-Pfam associations which are common to Pfam2EC and

ECDomainMiner, indicating that ECDomainMiner agrees with 75.7% of the Pfam2EC associations from

dcGO. Furthemore, this comparison also shows that ECDomainMiner result set contains 18,836 (20, 728−
1, 892) additional EC-Pfam associations that are not available through dcGO.

7http://supfam.org/SUPERFAMILY/dcGO
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2.3.4 Selecting plausible associations in multi-domain proteins

Because ECDomainMiner �nds many new EC-Pfam associations, it is important to ask to what extent

it also might produce false associations. Firstly, we recall that ECDomainMiner eliminated more than

92% (241,843 out of 262,571) of low-scoring associations from the merged source dataset. This suggests

that most of the eliminated associations involve Pfam domains that are not catalytically active. Indeed,

if a Pfam domain is not regularly associated with protein chains or sequences having an enzymatic

activity, the ECDomainMiner score for that domain is very low, and hence no EC number is assigned to

that domain. This applies in particular for accessory domains that can co-occur with various catalytic

domains in multi-domain proteins. A good example of such an accessory domain is PF00188 (the CAP

protein family) which is a part of 216 di�erent architectures. Among these architectures, there are 3

and 5 di�erent architectures, which additionally contain PF00112 (Peptidase C1 domain) and PF00069

(Protein kinase domain), respectively. According to Pfam website, PF00188 is catalytically inactive but

PF00112 and PF00069 are active. In fact, ECDomainMiner assigns PF00112 to 26 di�erent EC numbers

with a majority of EC 3.4.22 (Cysteine endopeptidases), and PF00069 to 28 di�erent EC numbers that all

start with 2.7 (Transferring phosphorus-containing groups). However, ECDomainMiner does not assign

PF00188 to any EC number. This is because a large number of protein chains and sequences containing

either PF00112 or PF00069 and associated with the above-mentioned EC activities, do not contain

PF00188. In other words the catalytic activities of PF00112 and PF00069 are not strictly dependent

on the presence of PF00188. Moreover, the SIFTS and UniProt databases indicate that PF00188 is

associated with 43, and 5,197 di�erent protein chains and sequences, respectively. However, none of

those protein chains are associated with a EC number in SIFTS and only 31 protein sequences (24 in

TrEMBL and 7 in UniRule) are associated with at least one 4-digit EC number. Consequently, the

association score of PF00188 with any EC number is zero for both the SIFTS and SwissProt datasets and

is very small (less than 0.02) for both the TrEMBL and UniRule datasets. Thus, the con�dence scores of

all of the associations involving PF00188 in ECDomainMiner are lower than our threshold of 0.04, and so

these candidate associations are �ltered out. This mechanism explains how an accessory domain is not

assigned to an EC number by ECDomainMiner, and suggests that most of the retained associations are

proper candidates for domain functional annotation.

2.3.5 Single and Multiple EC-Pfam Associations

Exploring the ECDomainMiner results readily reveals that a given EC number or Pfam domain can be

involved in one or more distinct EC-Pfam associations. Figure 2.5 shows the relative distribution of

EC numbers and Pfam domains according to the number of EC-Pfam associations they are involved

in. This �gure shows that 1,576 out of 4,393 EC numbers and 1,280 out of 3,542 Pfam domains are

involved in a single EC-Pfam association. Although this represents rather high proportions of the total

number of EC numbers and Pfam domains in ECDomainMiner (35.9% and 36.1%, respectively), the

intersection of the concerned EC-Pfam single associations yields a list of only 97 one-to-one EC-Pfam

associations, of which 62, 34, and 1 are Gold, Silver, and Bronze associations, respectively. Comparison

with the InterPro reference dataset reveals that two thirds (65) of these one-to-one associations are novel

compared to InterPro. Interestingly, we con�rmed in our source datasets that all of these associations

involve single-domain proteins. Thus, these unambiguous associations constitute the most reliable novel

associations calculated by ECDomainMiner.

The complete list of one-to-one EC-Pfam associations found by ECDomainMiner may be downloaded

from the ECDomainMiner web site. Interestingly 14 of these associations (8 Gold, of which 2 match
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Figure 2.5: Distribution of EC numbers (A) and Pfam domains (B) in multiple associations. Numbers

(1 to 10 and >10) represent the arity of the association in which a given EC number, respectively Pfam

domain, is involved. In addition, for each arity, the normalized number of Gold, Silver, and Bronze

associations is plotted. It can be observed that for arities equal to or greater than 4, the proportion of

Silver associations is always the highest but signi�cant amounts of Gold associations remain present even

for high arity numbers.

InterPro reference associations, and 6 Silver) concern �DUF� (domain of unknown function) or �UPF�

(uncharacterized protein family) Pfam entries. They are listed in part (A) of Table 2.2 according to

decreasing con�dence score.

These examples demonstrate that ECDomainMiner can be used to enrich domain annotation. Visual

inspection of the one-to-one EC-Pfam associations indicates that about one quarter of them (23) could

have been retrieved simply by comparing the names associated with the EC number and the Pfam identi-

�er, which are nearly identical (see example in Table 2.2(B)). However, only 10 of these associations were

in fact already known in InterPro. As it is shown in the table, minor and unpredictable spelling di�er-

ences impair the automatic retrieval of such similar but non-identical EC and Pfam names. Nonetheless,

while these associations could be found by clever text matching, we emphasise that ECDomainMiner's

con�dence scores and p-values provide a level of support for each association that would be very di�cult

to obtain from text mining alone.

The multi-partner associations calculated by ECDomainMiner provide many more complex EC-Pfam

associations. As a �rst analysis of such multiple associations, we looked for obligate pairs or tuples of

Pfam domains that are always associated with a given EC number. Brie�y, for any pair of Pfam domains,

(d1, d2), associated with the same EC number, ec, (i) we reject those pairs for which at least one ec-

annotated CID (in any source dataset) occurs in relation with d1 and not d2 or with d2 and not d1, (ii)

for all other pairs we calculate for each source dataset the ratio of the number of ec-annotated CIDs

related to d1 and d2, to the total number of ec-annotated CIDs. A support ratio of 1 means that all CIDs

annotated with ec in a dataset are also related to d1 and d2. A similar algorithm was used for triplets

and quadruples of Pfam domains. For a support ratio of 1 in at least one source dataset, we found 907,

191 and 47 obligate associations between an EC number and a pair, a triplet or a quadruplet of Pfam

domains. These associations are available from the ECDomainMiner website. Two examples are given in

part (C) of Table 2.2.

Interestingly, �ltering the names of the Pfam domains with the expressions �N-terminal� and �C-

terminal� yielded 58 obligate pairs containing both a N-terminal and a C-terminal domain of the same

function. This indicates that our approach is �nding enzymes in which the catalytic function is provided
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EC Pfam Score EC name Pfam name Quality PDBs

(SIFTS)

A 2.7.8.28 PF01933 0.972 2-phospho-L-lactate transferase Uncharacterized protein

family UPF0052

Gold 9/0/11

4.1.99.5 PF11266 0.944 Aldehyde oxygenase

(deformylating)

Protein of unknown function

DUF3066

Gold 18/0/0

2.1.1.286 PF11968 0.889 25S rRNA (adenine(2142)-

N(1))-methyltransferase

Putative methyltransferase

DUF3321

Gold 0/0/0

1.13.99.1 PF05153 0.667 Inositol oxygenase Family of unknown function

DUF706

Gold 4/0/0

2.4.1.155 PF15027 0.611 Alpha-1,6-mannosyl-

glycoprotein

6-beta-N-

acetylglucosaminyltransferase

Domain of unknown function

DUF4525

Gold 0/0/0

4.2.3.130 PF10776 0.611 Tetraprenyl-beta-curcumene

synthase

Protein of unknown function

DUF2600

Gold 0/0/0

2.3.1.78 PF07786 0.609 Heparan-alpha-glucosaminide

N-acetyltransferase

Protein of unknown function

DUF1624

Gold 0/0/0

3.1.4.45 PF09992 0.584 N-acetylglucosamine-1-

phosphodiester

alpha-N-acetylglucosaminidase

Predicted periplasmic protein

DUF2233

Gold 0/0/1

1.13.12.20 PF08592 0.556 Noranthrone monooxygenase Domain of unknown function

DUF1772

Gold 0/0/0

2.1.1.312 PF11312 0.556 25S rRNA (uracil(2843)-N(3))-

methyltransferase.

Protein of unknown function

DUF3115

Gold 0/0/0

2.1.1.313 PF10354 0.556 25S rRNA (uracil(2634)-N(3))-

methyltransferase

Domain of unknown function

DUF2431

Gold 0/0/0

2.5.1.128 PF01861 0.556 N4-bis(aminopropyl)

spermidine synthase

Protein of unknown function

DUF43

Gold 0/0/1

5.2.1.14 PF13225 0.556 Beta-carotene isomerase Domain of unknown function

DUF4033

Gold 0/0/0

1.14.99.29 PF04248 0.333 Deoxyhypusine monooxygenase Domain of unknown function

DUF427

Silver 0/0/5

B 6.3.2.25 PF03133 0.610 Tubulin�tyrosine ligase Tubulin-tyrosine ligase family Gold 0/2/21

C

2.7.1.30

{ PF00370 0.847

Glycerol kinase

FGGY family of carbohydrate

kinases, N-terminal domain

Gold 85/32/9

PF02782 0.828 FGGY family of carbohydrate

kinases, C-terminal domain

Gold 85/32/7

6.3.4.23

{ PF06973 0.997 Formate-phosphoribosyl-amino-

imidazol

DUF1297 Gold 16/3/0

PF06849 0.997 carboxamide ligase DUF1246 Gold 16/3/0

Table 2.2: One-to-one examples of the EC-Pfam association. (A) Fourteen one-to-one EC-Pfam as-

sociations found by ECDomainMiner and involving domains of unknown function, (B) an example of

one-to-one EC-Pfam association with very similar EC and Pfam descriptions, and (C) two examples of

obligate Pfam pairs associated with an EC number. The `PDBs (SIFTS)' column contains 3 counts of

PDB chains containing the mentioned Pfam domains: in the �rst position, the count of PDB chains

having in SIFTS the same EC annotation as recommended by ECDomainMiner, in the second position,

the count of PDB chains with di�erent EC annotation and in the third position, the count of PDB chains

with no EC annotation in SIFTS. More detail and complete lists of PDB identi�ers can be retrieved from

the ECDomainMiner web server.
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Association Type ECDomainMiner Associations Concerned PDB Chains Concerned

Any 14,573 58,722

Gold 3,591 41,246

Silver 7,796 44,406

Bronze 3,186 34,820

One-to-One 44 1,334

Table 2.3: The numbers of PDB protein chains that could be annotated by ECDomainMiner associations.

by the interface between two consecutive Pfam domains. Only 4 of these obligate pair associations are

currently documented in InterPro.

2.3.6 Annotating PDB Chains with EC Numbers

Our analysis of the December 2015 release of the SIFTS database reveals that about 45% of PDB

entries lack an EC number annotation. Of course, such an annotation is not expected to be present in

all PDB entries because not all proteins have enzymatic activity. Nonetheless, it is interesting to use

ECDomainMiner to analyze the number of PDB entries that contain Pfam domains which are present

in EC-Pfam associations. Table 2.3 shows that a total of 58,722 PDB chains lacking EC annotations in

SIFTS include at least one of the 3,542 Pfam domains present in ECDomainMiner. Overall, we calculated

that these chains map to a total of 24,995 PDB entries that could bene�t from the additional annotations

inferred by ECDomainMiner. For those chains lacking EC annotations, ECDomainMiner �nds Gold,

Silver, and Bronze EC-Pfam associations for 41,246, 44,406 and 34,820 PDB chains, respectively. In

particular, 1,334 PDB chains could bene�t from our dataset of 97 non ambiguous one-to-one EC-Pfam

associations.

In chapter 4, a more systematic way to predict protein functions, using taxonomic information and

combinations of domains will be introduced.

2.3.7 The ECDomainMiner web server

The ECDomainMiner web server (Figure A.1) may be queried by EC number or Pfam domain. Thus, if

one wishes to search for associations for a protein chain that currently lacks any EC annotation in the

PDB (e.g. chain 2q7xA), one �rst needs to retrieve from the PDB the Pfam domain(s) that it contains (in

this example, PF01933). Then, querying the ECDomainMiner server with each Pfam domain identi�er

will show the associated EC numbers (in this example, 2.7.8.28), along with the associated �ltering scores

and quality classes. In this example, ECDomainMiner �nds a Gold quality association between PF01933,

present in PDB chain 2q7xA, and EC number 2.7.8.28 (2-phospho-L-lactate transferase) which conse-

quently can be associated with PDB entry 2q7x. Interestingly, PDB entry 2q7x is described as a putative

phospho transferase from streptococcus pneumoniae tigr4, which is consistent with the enzymatic activity

found by ECDomainMiner, and which could not be deduced from the Pfam domain name (UPF0052).

2.4 Conclusion

We have presented a �ltering approach for associating EC numbers with Pfam domains. This approach has

been shown to be able to infer a total of 20,728 non-redundant EC-Pfam associations, which corresponds

to over 13 times as many EC-Pfam associations as currently exist in InterPro. Furthermore, thanks to

60



2.4. Conclusion

our calculated p-values, we have assigned an intuitive quality rating (Gold, Silver, or Bronze) to each

EC-Pfam association found. These calculated associations are publicly available on the ECDomainMiner

web site.

We believe that enriching protein chain annotations will facilitate a better understanding and exploita-

tion of structure-function relationships at the domain level. While many of the associations calculated by

ECDomainMiner are consistent with those recently made available by the domain-centric dcGO approach

for �nding EC-SCOP associations, the ECDomainMiner results set contains many more associations than

dcGO. Indeed, the ECDomainMiner result set contains 18,836 EC-Pfam which are not available in dcGO.

Our analysis of the simple one-to-one associations found by ECDomainMiner shows that several DUF or

UPF entries in Pfam may be assigned functions from the EC classi�cation, and that obvious inconsisten-

cies in the annotation texts may easily be corrected or uni�ed. However, only a relatively small number

(less than 0.5 %) of EC-Pfam associations in our result set are simple one-to-one associations, indicating

that there exist a large number of many-to-many relations between EC numbers and Pfam domains.

Further analyses of these complex associations using graph database and machine-learning techniques

could reveal many more hidden protein structure-function relationships.

In the next chapter, we show that our method can be generalized to other annotation vocabularies

or ontologies, such as GO. However, it is worth mentioning that our �ndings include less noise for those

ontologies whose terms are in average assigned to fewer protein sequences, like EC numbers.
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Families of related proteins and their di�erent functions may be described systematically using com-

mon classi�cations and ontologies such as Pfam and GO (Gene Ontology), for example. However, many

proteins consist of multiple domains, and each domain, or some combination of domains, can be re-

sponsible for a particular molecular function. Therefore, identifying which domains should be associated
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with a speci�c function is a non-trivial task. We describe a general approach, based on our experience

from chapter 2, for the computational discovery of associations between di�erent sets of annotations by

formalizing the problem as a bipartite graph enrichment problem in the setting of a tripartite graph.

We call this approach �CODAC� (for COmputational Discovery of Direct Associations using Common

Neighbors). As one application of this approach, we describe �GODomainMiner� for associating GO

terms with protein domains.

We used GODomainMiner to predict GO-domain associations between each of the 3 GO ontology

namespaces (MF, BP, and CC) and the Pfam, CATH, and SCOP domain classi�cations. Overall,

GODomainMiner yields an average enrichment of 15-, 41- and 25-fold in GO-domain associations com-

pared to the existing GO annotations in these 3 domain classi�cations, respectively. These associations

could potentially be used to annotate many of the protein chains in the Protein Data Bank and protein

sequences in UniProt whose domain composition is known but which currently lack GO annotation. The

GODomainMiner result database is publicly available at http://godm.loria.fr/.

3.1 CODAC

In this chapter an approach (called CODAC) to directly associate two sets of items which are indirectly

linked is described. Given two items (A and B) are joint through a set of items (I call them common

contents (CC)), eliminating the common contents gets the two items associated directly with a similarity

score. This similarity score shows either how strong is the connection between the two items or how

similar these two items are. For the simplicity, linkage between two items and the common contents can

be depicted as a tripartite graph and association between two items is a bipartite graph. A tripartite

graph is a graph whose vectors are partitioned into three di�erent independent sets. A tripartite graph can

be colored with three colors while no two endpoints of an edge have the same color. Moreover, a bipartite

graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets such that every edge

connects a vertex from one set to another. Here, the tripartite graph has one limitation which is de�ned

based on the nature of future problems. There is no link between two sets of vertices. Equivalently, two

sets of vertices are connected to each other only through the third set. CODAC removes the connector

set of vertices and �nd direct links between the other two sets of vertices. Each link between the member

of each vertex sets is presented with a corresponding score. This score demonstrates how good is the link

between two vertices. Then, we can convert this link between two vertices into an association while the

score shows the similarity between two associated vertices. Each association can statistically be analyzed

in order to verify its statistical signi�cance.

In the next section, the CODAC method is described in detail.

3.1.1 Tripartite Graph Model

In graph theory, a k-partite graph is a graph whose vertices can be partitioned into k disjoint subsets,

such that in each subset no two vertices are connected. If k = 2, the graph is called a bipartite graph (or

bigraph), and if k = 3 it is called a tripartite graph. The CODAC approach is designed to solve problems

of bipartite graph enrichment within a tripartite graph framework. The main intuition is to calculate

new weighted edges between two sets of items which already contain reliable but sparse associations, and

which are indirectly connected through common associations with a third set of items.

Let G(X,Y, Z,E) be a tripartite graph where X, Y and Z are 3 sets of items and E is the set of

all edges connecting X, Y and Z in the input con�guration. Let us consider 3 bipartite subgraphs of
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G , denoted as G1(X,Z,E1), G2(Y, Z,E2), and G3(X,Y,E3). We now assume that the set of edges E3 is

incomplete, and that the aim is to compute new edges between items of X and items of Y in order to

generate G∗3 (X,Y,E∗
3 ) which together with G1 and G2 will make the �nal tripartite graph, G∗(X,Y, Z,E∗),

where E∗ denotes an enriched set of edges. New edges may be discovered by exploiting the existing edge

distributions in G1 and G2. For example, if items xi of X and yj of Y share the same (or almost the same)

set of neighbors {zk} in Z, then it may be supposed that an edge might exist between xi and yj . Figure

3.1 illustrates the discovery of a candidate edge between x2 and y2 because these items are associated

with the same subset of items {z1, z3, z4} from Z. Candidate edges found in this way are then scored

and �ltered, as described in more detail below.

It is now possible to instantiate our model with a set of MF GO terms (X), a set of Pfam domains

(Y ), and a set of UniProtKB/SwissProt sequences (Z). E1 is the set of edges derived from the MF GO

annotation of UniProtKB/SwissProt sequences, E2 is the set of edges derived from the domain contents of

UniProtKB/SwissProt sequences, and E3 is the set of edges derived from the InterPro manually curated

MF GO annotations of Pfam domains. In this case, our aim is to produce E∗
3 , which will contain an

enriched set of MF GO-Pfam associations weighted by their neighborhood similarity score.

3.1.2 Biadjacency Representation of bigraphs

While graphs allow complex relationships to be visualised easily, analysing graphs computationally can

be very time-consuming. In our approach it is convenient to represent each bigraph as a bi-adjacency

matrix, in which a matrix element has a value of 1 or 0 according to whether the corresponding pair of

nodes is connected or not.

Given a tripartite graph G(X,Y, Z,E) as input, the core CODAC algorithm divides it into two bi-

graphs G1(X,Z,E1) and G2(Y, Z,E2). A procedure named Cosine calculates a cosine similarity matrix C

between items of X and items of Y using the two biadjacency matrices M1 (of dimension |X| × |Z|) and
M2 (dimension |Y | × |Z|), derived from G1 and G2, respectively. These matrices are then row-normalized

to give matrices U1 and U2. Each element of the matrix C = U1 ×UT
2 thus represents a cosine similarity

between an item x of X and an item y of Y , according to the number of common associations with the

items in Z.

The main procedure called PredictAssociations determines a similarity threshold T for �ltering the

raw scores in C to produce C∗. The matrix C∗ can be interpreted as the weighted biadjacency matrix

of the enriched bigraph G∗3 (X,Y,E∗
3 ) and therefore used to predict new weighted associations between

items of X and Y . Pseudocode for the core CODAC algorithm is presented in Algorithm 1.

3.1.3 Gold Standard of Positive and Negative Examples

In order to determine an edge similarity threshold, we need to de�ne a �gold standard� set of positive

and negative examples of associations. Here, we take all of the P = |E3| existing associations present

in G3 as positive examples. To create negative examples, we shu�e the edges of G1 and G2 in order to

rearrange in a random way all edges between X and Z, and between Y and Z. During shu�ing, the

node degrees of each xi, yj and zk is kept constant, and the shu�ed edges are constrained not to overlap

the original edges. The shu�ed graphs are denoted by G#1 and G#2 , from which a new shu�ed cosine

similarity matrix, C#, may be calculated. This matrix is then used to select |N | = |P | negative examples

at random. Taken together, the P positive and N negative examples constitute our �Gold Standard�

dataset.
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Figure 3.1: Schematic illustration of edge discovery. In a typical instantiation, X is a set of MF GO terms,

Y a set of Pfam domains, and Z a set of UniProtKB/SwissProt sequences. E1 are edges derived from the

MF GO annotation of UniProtKB/SwissProt sequences, E2 are edges derived from the domain contents

of UniProtKB/SwissProt sequences, E∗
3 is the enriched set of edges, derived from initial E3 that included

a limited number of edges (represented here by (x1, y1)), derived from the InterPro manually curated

MF GO annotations of Pfam domains. E∗
3 contains all newly discovered MF GO-Pfam associations

represented here by (x2, y2).
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Algorithm 1 The Core CODAC Algorithm
Input: G(X,Y, Z,E), a tripartite graph with G1(X,Z,E1), G2(Y, Z,E2), G3(X,Y,E3), 3 associated bigraphs

Output: G∗3 (X,Y,E∗
3 ), the enriched bipartite graph with new weighted edges.

1: procedure PredictAssociations(G)
2: C = Cosine(G1,G2)
3: G#1 = Shuffle(G1)
4: G#2 = Shuffle(G2)
5: C# = Cosine(G#1 ,G#2 )

6: P = CreatePositives(C,G3)
7: N = CreateNegatives(C#)

8: GS = CreateGoldStandard(P,N)

9: {Training, Test} = SplitGoldStandard(GS)

10: T = argmaxt FMeasure(Thresholdt, T raining)

11: ReportFMeasures(T, Test, T raining)

12: C∗
i,j = Ci,j if Ci,j > T or if an (xi, yj) edge already exists in input E3, otherwise C∗

i,j = 0 forall {i, j}
13: AddEdge(xi, yj , E

∗
3 ) if C

∗
i,j > 0 forall {i, j}

14: return(G∗3 , C∗)

15: end procedure

16: procedure Cosine(G1,G2)
17: M1 = CreateBiadjacency(G1)
18: M2 = CreateBiadjacency(G2)
19: U1 = RowNormalise(M1)

20: U2 = RowNormalise(M2)

21: C = U1 × UT
2

22: return(C)

23: end procedure
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3.1.4 Determining the Score Threshold

We randomly split the Gold Standard dataset into two groups with equal numbers of positive and negative

examples to give a �Training� and a �Test� subset. We then rank the scores of all members of the Training

subset, and label them �positive� or �negative� according to a score threshold that is varied from 0.0 to

1.0 in steps of 0.001. This allows us to determine the numbers of true positive (TP ), false positive (FP ),

true negative (TN), and false negative (FN) predictions for each threshold. We then calculate the recall,

R = TP/(TP + FN), precision, P = TP/(TP + FP ), and the F-measure, F1 = 2RP/(P + R). The

similarity threshold T that gives the best F-measure with the Training subset is veri�ed using the Test

subset and retained to calculate a �ltered cosine similarity matrix, C∗, according to C∗
i,j = Ci,j if Ci,j > T

or if the (xi, yj) edge already exists in E3, otherwise, C∗
i,j = 0.

3.1.5 Combining Multiple Datasets

There may often be more than one con�guration for a graph G , that has the same G3 but di�erent Z, E1,

and E2 in G1 and G2. In our instantiation this corresponds to the fact that GO terms and Pfam domains

can be indirectly connected either through UniProtKB/SwissProt sequences [Apweiler et al., 2010] or

through PDB chains in SIFTS [Velankar et al., 2012]. To handle multiple datasets, each input tripartite

graph is processed separately to calculate its respective cosine similarity matrix Cd. The cosine similarity

scores are then combined as a weighted average to give a consensus similarity matrix, CS. Whenever

there is no data for a given pair (x, y) in an input graph, the corresponding score Cd
x,y is set to zero.

Receiver-operator-characteristic (ROC) analysis provides an objective way to measure the performance

of an information retrieval system to retrieve positive documents as �rst ranked, i.e. with the best scores

[Mogotsi, 2010]. One advantage of ROC-based approaches is that they are rather insensitive to the

particular numbers of the positive and negative instances used [Chawla et al., 2004]. Here, in order

to �nd the best values for the dataset weights wd, each weight is varied from 1 to 10 in steps of 0.1,

and for each combination of weights a ROC performance curve is calculated using the complete ranked

list of consensus scores and our Gold Standard set of positive examples. The combination of weights

that gives the largest area under the curve (AUC) is selected and used to calculate the best consensus

similarity matrix CS. Then, the PredictAssociations procedure determines the best threshold to �lter

the consensus similarity matrix CS and to deduce the resulting enriched bipartite graph G∗3 (refer to

Algorithm 2).

3.1.6 Bipartite Graph Extension with Hierarchy of Classes

Ontologies are often described as taxonomic hierarchies of classes, as is the case for the GO gene ontology

[Ashburner et al., 2000]. Thus, if one of the input graphs contains items from a hierarchical ontology,

important relationships between the ancestors of a term and its neighbor(s) could be missed because they

are generally not mentioned explicitly in the data. For example, if a vertex x from set X represents a

term in an ontology and has a neighbor z in set Z, it is quite possible that all of the ancestors of x present

in X should also have z as neighbor. If requested by the user, whenever an edge (x, z) is found where

z is annotated with an ontology term x, then CODAC will add additional edges between item z and all

parents of x present in X. This is illustrated in Figure 3.2.
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Algorithm 2 Calculating a Consensus Similarity Matrix

Input: Z = {Gd1 (X,Zd, Ed
1 ),Gd2 (Y,Zd, Ed

2 ), d = 1, ...D}, a set of input bipartite graphs.

Input: G3(X,Y,E3), the bipartite graph to be enriched.

Output: CS, a consensus similarity matrix with an optimal set of weights, W .

1: procedure Consensus(Z,G3)
2: for each d ∈ {1, ..., D} do
3: Cd = Cosine(Gd1 ,Gd2 )

4: end for

5: for each set of weights w = {wd} with d ∈ {1, ..., D} and wd ∈ [1, 10] with steps of 0.1 do

6: CSw
i,j =

∑
d wd×Cd

i,j∑
d wd

7: ROCw = CreateROC(CSw, P )

8: end for

9: W = arg maxw AUC(ROCw)

10: return(W,CSW )

11: end procedure

Figure 3.2: Edge enrichment using an ontology. Here, edge (x2, z3) is added (right, dashed link) because

z3 has an existing association with x3, and x2 is a parent term of x2 in the ontology (left).
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Figure 3.3: Clustering identical or highly similar items in Z. A: Clustering of items z1 and z2 of initial

degree 1 induces a new association between xi and yj . B: Clustering reduces the complexity of initial

multiple associations. In both cases, clustering will increase the cosine similarity scores of the associated

items xi and yj .

3.1.7 Clustering Graph Edges

A possible source of bias in any data mining approach is the existence of redundant items in the input.

This is especially the case for protein entries in UniProt where it is quite possible to have entries with

di�erent identi�ers but identical amino-acid sequences. In order to deal with this possibility, CODAC

groups all items in Z into clusters having 100% identity. Each cluster is represented by a unique cluster

identi�er (CID). As shown in Algorithm 3, all source edges (x, zi) and (y, zj) from E1 and E2 in which

identical zi and zj belong to the same CID, are merged into unique (x,CID) and (y, CID) edges,

producing GCl
1 and GCl

2 , the reduced bipartite graphs that serve as input to the CODAC core approach.

It should be noted that the 100% sequence identity threshold may be reduced to 99% or lower if desired.

As illustrated in Figure 3.3, grouping identical items into clusters of 100% identity can be very bene�cial

for recovering missing edges.

3.1.8 Calculating Statistically Signi�cant Edges in E∗3

While our approach provides a systematic way to predict edges in G∗3 , it is important to calculate a

probability, or �p-value�, for �nding an edge simply by chance. For example, it is reasonable to suppose

that an edge (x, y) might be predicted at random if x and y are each highly connected to many items

in Z. In order to estimate the probability of �nding edges by chance, one could generate multiple

random graphs by shu�ing the edges of a given input graph, as described above for constructing the

Gold Standard Negative examples. However, this is quite impractical given the very large numbers of
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Algorithm 3 Clustering Graph Edges
Input: G1(X,Z,E1) and G2(Y,Z,E2), two bipartite graphs having redundant items in Z.

Output: GCl
1 and GCl

2 , the reduced bipartite graphs in which all items of Z are grouped by the cluster

of identical items (CID).

1: procedure Cluster(G1,G2)
2: Build ZCl = {CIDk}
3: ECl

1 = ∅
4: for each (x, z) ∈ E1, such that z ∈ CID do

5: if (x,CID) /∈ ECl
1 then Add (x,CID) to ECl

1

6: end if

7: end for

8: ECl
2 = ∅

9: for each (y, z) ∈ E2, such that z ∈ CID do

10: if (y, CID) /∈ ECl
2 then Add (y, CID) to ECl

2

11: end if

12: end for

13: return(G1 = GCl
1 ,G2 = GCl

2 )

14: end procedure

items in X, Y , and Z and the complexity of the �ltering procedure that would have to be repeated for

each shu�ed version of the dataset. Instead, we assume that the probability for �nding an edge (x, y) by

random chance is given by a hypergeometric distribution of the number of common neighbors (x, z) and

(y, z). Letting Nz denote the total number of items in Z, Nx the number of neighbors of x in Z, and Ny

the number of neighbors of y in Z, the hypergeometric probability distribution is given by

p(K > Kx,y) =

min (Nx,Ny)∑

v=Kx,y

(
Nx

v

)(
Nz −Nx

Ny − v

)
/

(
Nz

Ny

)
, (3.1)

where p(K > Kx,y) is the predicted probability of having a number, K, equal to or greater than the

observed number Kx,y of common neighbors z of both x and y. Because this p-value test is applied to

a large number of (x, y) edges in G∗3 , we apply a Bonferroni correction to take into account the so-called

family-wise error rate [Cui et al., 2003]. Therefore, letting |E∗
3 | denote the total number of edges tested,

we consider any p-value less than 0.05/|E∗
3 | as denoting a statistically signi�cant edge.

3.1.9 Classi�cation into Gold, Silver, and Bronze Associations

While the above consensus scores and p-values give objective measures of the quality of predicted associ-

ations, from a user's point of view it is often convenient to provide a simple and memorable quality scale.

Therefore, we classify a predicted association as �Gold� if all of the individual data source p-values for

this association are statistically signi�cant. A predicted association is classed as �Silver� if more than half

of the data source p-values are statistically signi�cant. Otherwise, it is classed as a �Bronze� association.

71



Chapter 3. Computational Discovery of Direct Associations between Annotations using Common Content - CODAC

3.2 GODomainMiner: Computational Discovery of Direct Asso-

ciations between GO terms and Protein Domains

Proteins are macromolecules which carry out many biological functions in living organisms. At the

molecular level, protein functions are often performed by highly conserved structural regions identi�ed

from sequence or structure alignments, which may be classi�ed into families of domains. Because many

protein domains fold into characteristic three-dimensional (3D) structures, there is often a close relation-

ship between protein structure and protein function [Berg et al., 2002]. Currently, the Pfam database

is one of the most widely used sequence-based classi�cations of protein domains and domain families

[Finn et al., 2016b]. The CATH [Orengo et al., 1997] and SCOP [Murzin et al., 1995] databases are ex-

amples of structural domain classi�cations.

As well as sequence-based and structure-based classi�cations, proteins may also be classi�ed ac-

cording to their function. For example, the Gene Ontology (GO) [Ashburner et al., 2000] consists of a

controlled vocabulary of GO terms which describe the gene products in a cell. Each GO term has a

name, a distinct alphanumeric identi�er, and a �namespace� (ontology) which has one of the following

3 values: biological process (BP), molecular function (MF), or cellular component (CC). The GO on-

tology is structured as a rooted Directed Acyclic Graph (rDAG) in which terms are nodes connected

by di�erent hierarchical relations. However, most protein domain classi�cation systems annotate do-

mains only according to the entire protein to which it belongs. One interesting exception is the dcGO

database [Fang and Gough, 2013] which provides multiple ontological annotations (such as GO) for pro-

tein domains. Nonetheless, we found that there are several manually curated GO-Pfam associations from

InterPro [Finn et al., 2016a] which are not present in dcGO. Indeed, from the results of a previous version

of our approach [Alborzi et al., 2015, Alborzi et al., 2017c], we estimated that dcGO associations can only

annotate 43% of the unannotated structures in the Protein Data Bank (PDB) [Gutmanas et al., 2014].

More generally, there are many millions of protein sequences that currently lack GO annotations. On

the other hand, only a relatively small number of distinct protein domain families exist, which are re-used

and combined in di�erent ways in di�erent proteins. Indeed, compared to the vast number of di�erent

sequences that exist, current domain classi�cations contain of the order of only 15,000 distinct protein

domain families. Therefore, it is natural to suppose that if known protein structure and sequence annota-

tions could be assigned GO terms at the domain level, many of these annotations could be transferred to

a potentially very large number of unannotated proteins. However, we emphasize here that our aim is to

discover functional annotations for protein domains themselves rather than entire protein sequences, in

order to improve domain description and classi�cation by combining structural and functional features.

Nonetheless, even the task of associating GO terms with protein domains is a non-trivial problem because,

except for single-domain proteins where the mapping is obvious, many di�erent kinds of relationships can

occur (see Figure 3.4).

We described an early version of the approach presented here for assigning Enzyme Commission

(EC) numbers to Pfam domains [Alborzi et al., 2017c]. Because our new GODomainMiner approach

[Alborzi et al., 2017b] aims to answer a similar problem, with GO terms replacing EC numbers, we

decided to generalise the overall approach under the name of CODAC (for COmputational Discovery of

Direct Associations using Common Neighbors). Firstly, the problem is formalized as a bipartite graph

enrichment problem in the setting of a tripartite graph. The core CODAC algorithm solves this problem

using the vector cosine similarity model, from which it creates new weighted edges between items of the

bipartite graph on the basis of their graph neighborhood similarity. This approach is augmented using
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Figure 3.4: Graphical representation of the di�erent kinds of relationships that may exist between GO

terms and protein domains. S1: A protein with one domain providing one function; S2: Two domains of

the same protein provide di�erent functions; S3: A protein with two domains, where one domain provides

two di�erent functions, and the second domain has no known function; S4: A protein having one domain

that provides one function, and a second domain which acts as a co-factor with the �rst domain to provide

an additional function.

techniques to handle the problems of multiple data sources, bias due to identical items, the in�uence of

the hierarchical organisation of the GO ontology, and statistical signi�cance.

Here, the overall approach is applied to 9 di�erent bipartite graphs involving the 3 GO ontologies (BP,

MF, and CC) and 3 popular protein domain classi�cations (Pfam, CATH, and SCOP). Our results show

that the GO-domain associations discovered by this approach represent an average of 15-, 41- and 25-fold

increase in the number of edges on the concerned bipartite graphs. These newly discovered associations

are compared with existing associations from InterPro and those predicted by dcGO, and a selected

subset of one-to-one associations is analyzed from a biological point of view.

3.2.1 GODomainMiner Data Preparation

In this section, the CODAC approach is applied to discover new weighted GO-domain associations (the

work�ow is illustrated in Figure 3.9). In our G(X,Y, Z,E) tripartite graph model, the set X corre-

sponds to one of the MF, BP or CC GO namespaces, and Y corresponds to one of the Pfam, CATH,

or SCOP protein domain classi�cations. For each of the 9 combinations of X and Y , 3 data sources

were selected to provide common neighbors (Z) of the items in X and Y , namely: (i) SIFTS providing

curated PDB chain associations, (ii) UniProtKB/SwissProt (SP) providing curated UniProt entries, and

(iii) UniProtKB/TrEMBL (TR) providing non-curated automatically annotated UniProt sequences.

Flat data �les of SIFTS (June 2017), Uniprot (June 2017), and InterPro (version 63.0) were down-

loaded and parsed using in-house Python scripts. Associations between PDB chains and GO terms, and

associations between PDB chains and protein domains (Pfam, CATH, and SCOP) were extracted from

the SIFTS data. All CATH and SCOP domain families were transformed into their corresponding super-

families, and all Pfam �repeat� and �motif� domain types were discarded. Associations between Uniprot

sequence accession numbers (ANs) and GO terms and AN-Pfam associations (as well as AN-CATH and

AN-SCOP associations) were extracted from the UniProtKB/SwissProt and UniProtKB/TrEMBL sec-

tions of Uniprot to give two datasets of UniProtKB/SwissProt associations and UniProtKB/TrEMBL

associations, respectively. Then, using the evidence code of the GO term, the associations in the SIFTS,

UniProtKB/SwissProt, and UniProtKB/TrEMBL datasets were divided into two groups, namely one

group for which the GO term evidence code indicated manual curation, and one group for GO terms
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with evidence code �inferred from electronic annotation� (IEA). We do not make any distinction between

the various possible manual evidence codes. However, we note that the GO_REF �eld for IEA cur-

rently covers 12 an-notations sources, namely InterPro2GO, UniProt Keywords2GO, UniProt Subcellu-

lar Location2GO, EC2GO, UniRule2GO, UniPathway2GO, Ensembl Compara, Ensembl Fungi, Ensembl

Metazoa, Ensembl Plants, Ensembl Protists, and the GeneOntology Consortium. Of these, the largest

number of annotations come from InterPro2GO and UniProt Keywords2GO, which each provide around

169 million associations in UniProtKB. Moreover, only 34%, 4%, and 5% of the InterPro2GO annotations

are GO-Pfam, GO-CATH, and GO-SCOP associations, respectively.

Here, the resulting 6 datasets are called SIFTS, SIFTS-IEA, SP, SP-IEA, TR, and TR-IEA. Thus,

there are 6 input tripartite graphs for each of the 9 combinations of theX and Y source datasets. All PDB

chain IDs and Uniprot ANs having identical sequences were clustered using the Uniref non-redundant

cluster annotations [Suzek et al., 2007].

3.2.2 Dataset Weights and Threshold Scores

Using our Training set of InterPro-based positive associations and random negative associations, the best

ROC-plot AUC values and optimal weights for each input source were calculated. Table 3.1 shows a

summary of the obtained dataset weights, AUCs, F-measures of the Test and Training sets, and consen-

sus score thresholds found from these calculations. This table shows that our procedure gives greater

weight to GO-Pfam associations from the IEA sections of the SIFTS, UniProtKB/SwissProt, and UniPro-

tKB/TrEMBL than to associations from the experimental and manually curated sections of SIFTS and

UniProtKB/SwissProt datasets.

In order to investigate this further, we re-calculated the AUC-based weight optimization with all IEA

weights forced to zero. This caused our optimal AUC to fall from around 0.96 to less than 0.60. This

re�ects the fact that in this setting, we do not consider the propagated InterPro2GO annotations in

UniProtKB, and consequently the GODomainMiner retrieves less amount of Gold-Standard associations.

As IEA annotations are not uniquely propagated from InterPro2GO, we also miss the contribution of the

other annotation sources (refer to previous section). We therefore decided to incorporate IEA datasets

into our approach for the rest of this study.

3.2.3 Analysis of Calculated GO-Pfam Associations

Summaries of our calculated GO MF-domain, BP-domain, and CC-domain associations are shown in

Tables 3.2, 3.3, and 3.4, respectively. These tables show the numbers of distinct GO terms and domain

entries (in units of thousands) involved in associations for the 6 source datasets, the �ltered GODomain-

Miner predictions and the InterPro dataset of positive associations. In these tables, the total numbers of

GO-Pfam associations found by GODomainMiner refer only to most-speci�c GO terms in each branch of

a GO hierarchy. In other words, if a domain is associated to a GO term and to one or more of its parent

terms, only the most-speci�c (non-parent) term is counted as a found association.

The overlap between the GODomainMiner predictions and InterPro is shown in the last row of these

tables (here, a match at any GO level is counted as a common association). The high percentage of

overlap between GODomainMiner and InterPro (from 91 % to more than 99%) re�ects the fact that our

method is calibrated to recover as many as possible correct InterPro associations. Nevertheless it also

shows that a small percentage of the InterPro associations have consensus scores below our calculated

score threshold, revealing the role of human rather than data-driven knowledge in the de�nition of such

associations.
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Optimal Weights

IEA F-measure

Dataset AUC SIFTS SP TR SIFTS SP TR Training Test Threshold

GO-Pfam 0.9605 1 1 6 10 10 10 0.926 0.924 0.005

MF GO-CATH 0.9710 1 1 10 10 1 9 0.935 0.943 0.004

GO-SCOP 0.9693 1 1 10 10 1 2 0.954 0.931 0.004

GO-Pfam 0.9546 1 1 1 10 1 8 0.898 0.903 0.008

BP GO-CATH 0.9726 1 1 1 10 1 5 0.922 0.938 0.007

GO-SCOP 0.9756 1 1 1 10 1 3 0.943 0.939 0.007

GO-Pfam 0.9228 1 1 6 10 1 10 0.871 0.866 0.003

CC GO-CATH 0.9741 1 1 1 10 1 9 0.955 0.932 0.003

GO-SCOP 0.9684 1 1 1 10 1 6 0.927 0.906 0.005

Table 3.1: Calculated AUCs, dataset weights, F-measures, and score thresholds for GO-domain associa-

tions for the 3 GO ontologies and 3 domain classi�cations studied here. Data source abbreviations are:

SP for UniprotKB/SwissProt and TR for UniProtKB/TrEMBL.

Overall, our approach yields a total of 32, 881 MF GO-Pfam associations (shown as 33× 103 in Table

3.2) that include 3, 968 associations already present in InterPro (2, 657 speci�c term matches plus 1, 311

parent term matches). This corresponds to an enrichment of about 8-fold in MF GO-Pfam associations.

Similar calculations reveals enrichemnts of about 22 and 14-fold for MF GO terms associations with

CATH and SCOP domain superfamilies, respectively. For BP GO terms we get 21-, 51- and 31-fold

enrichments in associations with Pfam, CATH and SCOP domains, respectively, and for CC GO terms

19-, 62- and 32-fold enrichments, respectively.

3.2.4 Distribution of GO-Domain Associations per GO term or per domain

Figure 3.5(A) shows the average numbers of MF, BP, and CC GO-Pfam associations per GO term and

Pfam entry, for associations in InterPro (green) and those calculated by GODomainMiner when counting

the most-speci�c GO terms assigned to a domain (purple).

GODomainMiner generally predicts more associations per GO term and per Pfam domain than exist

in InterPro. For example (top panel), GODomainMiner predicts that each MF GO term and each Pfam

entry are associated with an average of 5.2 domains and 4.0 MF GO terms, respectively, compared to

averages of 3.9 domains and 1.3 MF GO terms in InterPro, respectively. For BP and CC GO terms we

see similar enrichments from GODomainMiner compared with InterPro, with ratios of 5.4 versus 3.5 and

16.9 versus 6.8 associations per GO term, and 8.2 versus 1.17 and 4.5 versus 1.1 associations per Pfam,

respectively. These results demonstrate that GODomainminer produces a considerable enrichment in the

number of annotations compared with InterPro. They also support the notion that many Pfam domains

participate in di�erent functions, either as singleton domains or as components of multi-domain proteins.

The bar charts in Figure 3.5(B) show the distributions of GO terms (shown in orange) and Pfam

entries (in blue) according to the number of associations they are involved in. For example, considering

the �rst two bars in part B, it can be seen that some 2,100 MF, 3,500 BP, and 320 CC GO terms and

2600, 2300, and 2,800 Pfam domains are involved in only one GO-Pfam association. The remainder of

this �gure shows that many GO terms and Pfam domains are involved in two or more associations, which

supports the notion that complex many-to-many relationships exist between GO terms and domains
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Dataset GO-Domain Associations MF GO Terms Domain Entries

Pfam CATH SCOP Pfam CATH SCOP Pfam CATH SCOP

SIFTS 31 16 9.9 44 22 17 2.8 1.1 0.8

SIFTS-IEA 69 36 23 26 29 23 4.8 2.0 1.5

SwissProt 194 72 73 6.3 5.4 5.6 7.4 1.2 1.1

SwissProt-IEA 225 79 79 4.8 4.2 4.3 8.1 1.4 1.2

TrEMBL 215 104 96 4.0 3.4 3.5 7.4 1.2 1.0

TrEMBL-IEA 756 240 208 6.4 5.7 5.8 13 1.6 1.4

Merged 917 306 266 7.9 7.2 7.3 14 2.5 1.8

GODomainMiner 33 13 9.7 6.3 4.5 4.0 8.3 2.1 1.6

InterPro 4.226 0.607 0.743 1.076 0.273 0.301 3.300 0.466 0.584

Overlap 3.968 0.594 0.713 1.059 0.273 0.300 3.101 0.457 0.560

Table 3.2: The numbers of given and predicted MF GO-domain associations in thousands (×103).

Dataset GO-Domain Associations BP GO Terms Domain Entries

Pfam CATH SCOP Pfam CATH SCOP Pfam CATH SCOP

SIFTS 182 90 53 9.8 8.5 6.8 2.7 1.1 0.7

SIFTS-IEA 197 109 70 7.6 6.8 5.7 4.9 2.1 1.5

SwissProt 1336 461 465 20 18 19 8.6 1.2 1.2

SwissProt-IEA 844 267 302 14 12.5 13 9.4 1.4 1.3

TrEMBL 837 360 337 13 12 12 8.3 1.2 1.1

TrEMBL-IEA 1756 623 548 18 17 17 12 1.6 1.3

Merged 2436 872 764 21 20 20 13 2.4 1.8

GODomainMiner 75 23 18 14 8.6 7.8 9.1 2.1 1.6

InterPro 3.829 0.461 0.586 1.094 0.206 0.244 3.265 0.388 0.491

Overlap 3.518 0.448 0.572 1.077 0.205 0.244 3.028 0.376 0.480

Table 3.3: The numbers of given and predicted BP GO-domain associations in thousands (×103).
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Figure 3.5: Distribution of GO-Pfam associations for the 3 GO ontologies (MF: top; BP: middle; CC:

bottom). A: Average number of GO-Pfam associations per GO term and per Pfam entry for InterPro

(green), and GODomainMiner (purple). B: Numbers of GO terms (orange) according to their numbers

of associations with Pfam entries, and numbers of Pfam entries (blue) according to their numbers of

associations with GO terms.
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Figure 3.6: Distribution of GO-CATH associations for the 3 GO ontologies (MF: top; BP: middle; CC:

bottom). A: Average number of GO-CATH associations per GO term and per CATH entry for InterPro

(green), and GODomainMiner (purple). B: Numbers of GO terms (orange) according to their numbers

of associations with CATH entries, and numbers of CATH entries (blue) according to their numbers of

associations with GO terms.
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Figure 3.7: Distribution of GO-SCOP associations for the 3 GO ontologies (MF: top; BP: middle; CC:

bottom). A: Average number of GO-SCOP associations per GO term and per SCOP entry for InterPro

(green), and GODomainMiner (purple). B: Numbers of GO terms (orange) according to their numbers

of associations with SCOP entries, and numbers of SCOP entries (blue) according to their numbers of

associations with GO terms.

79



Chapter 3. Computational Discovery of Direct Associations between Annotations using Common Content - CODAC

Dataset GO-Domain Associations CC GO Terms Domain Entries

Pfam CATH SCOP Pfam CATH SCOP Pfam CATH SCOP

SIFTS 37 17 10 1.4 1.1 0.9 2.6 1.0 0.7

SIFTS-IEA 38 19 13 1.0 0.8 0.7 3.9 1.6 1.2

SwissProt 251 74 74 2.5 2.3 2.4 8.4 1.2 1.2

SwissProt-IEA 185 55 54 1.8 1.6 1.7 10 1.4 1.3

TrEMBL 179 67 61 1.7 1.6 1.6 7.9 1.2 1.1

TrEMBL-IEA 360 111 94 2.3 2.1 2.1 14 1.6 1.4

Merged 479 151 129 2.7 2.5 2.6 15 2.3 1.8

GODomainMiner 39 10 7.3 2.3 1.7 1.6 8.7 1.8 1.4

InterPro 2.289 0.192 0.237 0.336 0.058 0.064 2.042 0.163 0.208

Common with

InterPro 2.085 0.191 0.230 0.335 0.058 0.064 1.878 0.163 0.202

Table 3.4: The numbers of given and predicted CC GO-domain associations in thousands (×103).

(Figure 3.4). Similar results for GO-CATH and GO-SCOP associations are shown in Figures 3.6 and

3.7, respectively.

Finally, Table 3.5 shows the distribution of GODomainMiner predicted associations according to

our Gold, Silver, and Bronze classi�cation, along with the degree of overlap with the InterPro reference

dataset. Since the Gold class represents associations with statistically signi�cant p-values, it is interesting

GODomainMiner Overlap with InterPro

Class MF BP CC MF BP CC

Gold 15,605 24,782 12,967 1,815 1,378 887

Silver 11,098 31,920 17,062 778 865 628

Bronze 6,178 18,060 8,939 64 116 124

Total 32,881 74,762 38,968 2,657 2,239 1679

Table 3.5: The distribution of all most-speci�c GO-Pfam associations from GODomainMiner, and their

overlap with InterPro, in the Gold, Silver, and Bronze categories.

to see that the majority (68%) of our predicted MF GO-Pfam associations common with InterPro fall in

this class. Overall, we calculate that 47% of the GODomainMiner MF GO-Pfam associations and 33%

of the predicted BP and CC associations are of Gold quality. The quality of GO predictions for CATH

and SCOP classi�cations also follow very similar paths (see Tables 3.6 and 3.7).

3.2.5 Comparison with GO-Domain Associations from dcGO

In order to compare the GODomainMiner results with those obtained from dcGO [Fang and Gough, 2013],

we extracted the Pfam2GO associations from the dcGO website (http://supfam.org/SUPERFAMILY/dcGO/).

To avoid the complexity of comparing GO annotations at di�erent levels in the rDAG, our comparison

mainly focuses on GO-domain associations in which GO terms are leaves of the GO rDAG. GODomain-

Miner contains a total of 515,582 GO-Pfam associations regardless of their level in GO hierarchy, of

which 79,589 involve leaf GO terms (comprising 21,410 MF, 36,814 BP, and 21,365 CC GO-Pfam asso-
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GODomainMiner Overlap with InterPro

Class MF BP CC MF BP CC

Gold 7,238 9,248 3,774 257 174 84

Silver 4,256 8,525 4,139 92 80 67

Bronze 1,558 5,020 2,288 9 16 7

Total 13,052 22,793 10,201 358 270 158

Table 3.6: The distribution of all most-speci�c GO-CATH associations from GODomainMiner, and their

overlap with InterPro, in the Gold, Silver, and Bronze categories.

GODomainMiner Overlap with InterPro

Class MF BP CC MF BP CC

Gold 5,181 6,219 2,723 278 189 99

Silver 3,452 7,315 3,159 133 123 83

Bronze 1,070 4,182 1,455 9 24 6

Total 9,703 17,716 7,337 420 336 188

Table 3.7: The distribution of all most-speci�c GO-SCOP associations from GODomainMiner, and their

overlap with InterPro, in the Gold, Silver, and Bronze categories.

ciations). The Pfam2GO dataset from dcGO contains a total of 720,534 associations, of which 62,779

involve leaf GO terms (comprising 5,939 MF, 24,334 BP, and 32,506 CC associations). Thus, the numbers

of associations in GODomainMiner and Pfam2GO are broadly comparable. However, when considering

the leaf levels of all 3 ontologies, Figure 3.8 shows that only 11,138 GO-Pfam associations are common

between GODomainMiner and dcGO (overlap region B, about 14% of the GODomainMiner set and 18%

of the dcGO set). Looking at the overlap with InterPro, which contains 2,799 leaf level GO-Pfam asso-

ciations, GODomainMiner shares 2,744 associations (98%) with InterPro, while dcGO shares only 724

associations (26%; overlap C). This shows that GODomainMiner gives a greater coverage of the InterPro

reference set than dcGO. Although this is perhaps not surprising since InterPro was used to calibrate

GODomainMiner, the high agreement between GODomainMiner and InterPro gives a good indication of

the reliability of other associations predicted by GODomainMiner.

We also compared GO-SCOP associations predicted by GODomainMiner with the SCOP2GO database

from dcGO and with InterPro. Overall, GODomainMiner calculates a total of 19,708 leaf GO-SCOP asso-

ciations, compared to 2,445 such associations in SCOP2GO and 422 in InterPro. Of these, 845 GO-SCOP

associations are common to GODomainMiner and SCOP2GO. Also, 421 (i.e. 99.75% of InterPro set)

GODomainMiner associations overlap with InterPro, whereas only 55 (13% of InterPro set) SCOP2GO

associations from dcGO are found in InterPro. This con�rms the trend observed for GO-Pfam associa-

tions, in favor of a much better coverage by GODomainMiner than by dcGO, of the InterPro reference

set.

3.2.6 Biological Assessment of New Discovered GO-Pfam Associations

It would certainly be a very tedious task to validate manually the huge number of new GO-domain

associations proposed by the GODomainMiner approach. For this reason, we decided to check manually

a small subset of these associations, namely the one-to-one GO-domain associations in which the GO
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Figure 3.8: Venn diagram showing the intersections between leaf GO-Pfam associations from Pfam2GO

(62,779 associations), GODomainMiner (79,589), and manually curated associations from InterPro

(2,799). Region A (2,744 associations) is the overlap between GODomainMiner and InterPro. Region B

(11,138 associations) is the overlap between GODomainMiner and Pfam2GO. Region C (724 associations)

is the overlap between Pfam2GO and InterPro.

term is uniquely associated with one domain, which is itself uniquely associated with that GO term. Such

one-to-one associations can easily be used to assess the novelty and biological consistency of knowledge

discovered through our approach. All lists of one-to-one associations found in the 9 settings of this study

are available on the GODomainMiner website.

For the sake of brievity, we review here only the MF GO-Pfam one-to-one associations. We obtained

125 one-to-one MF GO-Pfam associations with consensus scores ranging from 0.9704 to 0.0052, 75 as-

sociations in the gold category (all p-values signi�cant), 30 and 20 in the silver and bronze categories,

respectively. From the 125 associations, 30 are already known in InterPro (21 from the gold category)

and 95 are new (54 from the gold category). Manual checking of the MF GO terms and Pfam domain

names led us to distinguish 5 situations (see the examples in Table 3.8). (i) The MF GO terms and

Pfam domains descriptions are almost identical (34 associations). Such associations are trivial but only

16 of them are reported in InterPro, probably because the remaining 18 escaped automatic retrieval

due to unpredictable spelling di�erences. (ii) The MF GO term is more speci�c than the Pfam domain

description (21 associations including 3 from InterPro). (iii) The Pfam description is more speci�c than

the MF GO term (11 associations including 3 from InterPro). (iv) The MF GO term and the Pfam

descriptions are quite di�erent (51 associations including 8 from InterPro). Such associations are likely

the most interesting to provide to the expert for further analyses. (v) The Pfam domain has no known

function (8 associations not present in InterPro). These 8 associations are listed in Table 3.8 as examples

of new knowledge discovered by the CODAC approach.

We expect that many further novel associations between MF GO terms and yet uncharacterized

domains may be mined from the complete MF GO-Pfam dataset which contains more than 3,400 as-

sociations concerning so-called DUF (Domain of Unknown Function) or UPF (Uncharacterized Protein

Family) Pfam domains.

Concerning the strict many-to-one MF GO-Pfam associations, we identi�ed 30 such Pfam domains,

most of which have only two associated GO terms. This results in 55 associations of which 7 are known

in InterPro (6 gold and 1 bronze)and 48 are new (33 gold, 8 silver and 7 bronze). For one Pfam domain

only (CobS,PF02654) the two GO terms are known already in InterPro. For 5 other Pfam domains,

one of the GO terms is known in InterPro and the other one is new. New MF GO-Pfam associations

generally give lower scores than known InterPro associations. However, in some cases this suggests an
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MF GO ID MF GO term Pfam ID Pfam description Consensus Class

Score

Case (i) : Trivial but not in InterPro

GO:0008437 thyrotropin-releasing hormone PF05438 Thyrotropin-releasing 0.0638 gold

activity hormone (TRH)

Case (ii) MF GO term more speci�c than Pfam description

GO:0098640 integrin binding involved in PF09085 Adhesion molecule, 0.0752 gold

cell-matrix adhesion immunoglobulin-like

Case (iii) Pfam description more speci�c than MF GO term

GO:1990919 nuclear membrane proteasome PF08559 Cut8, nuclear proteasome 0.0309 gold

anchor tether protein

Case (iv) MF GO term and Pfam description di�er

GO:0047991 hydroxylamine oxidase activity PF13447 Seven times multi-haem 0.2654 gold

cytochrome CxxCH

Case (v) Domains of yet unknown function

GO:1990838 poly(U)-speci�c exoribonuclease , PF09749 Uncharacterized 0.0235 gold

activity producing 3' uridine conserved protein

cyclic phosphate ends

GO:0030144 alpha-1,6-mannosylglycoprotein PF15027 Domain of unknown 0.5273 silver

6-beta-N-acetylglucosaminyl function (DUF4525)

transferase activity

GO:0030735 carnosine N-methyltransferase PF07942 N2227-like protein 0.2705 silver

activity

GO:0010340 carboxyl-O-methyltransferase PF04301 Protein of unknown 0.0201 silver

activity function (DUF452)

GO:0016772 transferase activity, transferring PF01989 Protein of unknown 0.0137 silver

phosphorus-containing groups function DUF126

GO:0071617 lysophospholipid acyltransferase PF10998 Protein of unknown 0.0072 silver

activity function (DUF2838)

GO:0015666 restriction endodeoxyribonuclease PF12102 Domain of unknown 0.0111 bronze

activity function (DUF3578)

GO:0016841 ammonia-lyase PF11807 Domain of unknown 0.0066 bronze

activity function (DUF3328)

Table 3.8: Selected examples of new one-to-one MF GO-Pfam associations. All of these examples are

absent in InterPro; additional examples are available from the GODomainMiner website for cases (i) to

(iv)).
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alternative substrate for the domain activity which may be interesting to investigate. For example,

for Pfam domain Mqo (PF06039 Malate:quinone oxidoreductase), GO:0052589 (malate dehydrogenase

(menaquinone) activity) is found in addition to GO:0008924 (malate dehydro-genase (quinone) activity).

The remaining 24 Pfam domains all have new GO MFannotations that do not exist in InterPro. Inter-

estingly, in some cases a di�erent more general InterPro annotation exists, as in the case of PF07722

domain Peptidase_C2 which GODomainMiner associates with GO:0034722 (gamma-glutamyl-peptidase

activity) and with GO:0033969 (gamma-glutamyl-gamma-aminobutyrate hydrolase) activity, whereas the

InterPro annotation is simply GO:0016787 (hydro-lase activity).

3.3 Implementation

The CODAC method was written mainly with the Python script. Python is a widely used high-level

programming language for general-purpose programming which is very suitable for quick prototyping as

well as creating a robust application software. Linux shell scripts were additionally used for handling

certain modules such as downloading and extracting �les. MySQL, an open-source relational database

management system (RDBMS), database was used to store the inferred associations in a structure way.

Database queries are principally processed by MySQL Connector developed by the MySQL community.

HTML, CSS, PHP and Javascript languages are used for online presentation of the discovered associa-

tions. PHP, a server-side scripting language designed primarily for web development is used for processing

data and querying database from MySQL. jQuery, a cross-platform JavaScript library designed to simplify

the client-side scripting of HTML, is also used for result presentation in ECDomainMiner and GODomain-

Miner. HTML and CSS are used for building the general structure of the web-servers. ClustrMaps is free

embedded plug-in in our websites to instantly discover where our visitors are accessing. It has several

features such as audience geo-location heatmap to highlight the areas in which our websites are popular,

and the total number of visits originated from there.

The web interface (Figure A.2) has been tested using several popular browsers for the Windows,

Linux, and Mac OS X operating systems.

Here, the algorithm complexity of di�erent phases of the GODomainMiner is presented. We separate

the GODomainMiner algorithm into �ve phases. First, reading phase which its complexity is calculated

based on the reading time of SIFTS, SwissProt and TrEMBL. Because reading of a �at �le is carried out

with a linear algorithm, the reading phase complexity is linear, highly depends on the size of the largest

input sources (O(s)). Second, enrichment phase of the input sources including hierarchy usage and the

clustering of identical common neighbors. The complexity of using hierarchy is O(n× s) where the n is

the size of the available GO terms, and s is the size of the sequences (common neighbors). The clustering

complexity is O(s × c), where the s is the size of the sequences, and c is the size of clusters. Due to

the huge size of the clusters and sequences, this it the most time-consuming (bottleneck) phase of the

system. Third, the complexity of the consensus score computation is based on the size of the GO terms

and domains, (O(n ×m)). Similarly, the complexity of fourth phase to calculate p-values is O(n ×m).

Last but not least, �fth phase is classi�cation which is carried out in linear time size of the associations

O(a).

It should be mentioned that running one time GODomainMiner to �nd associations between MF GO

terms and Pfam domains takes ≈ 8 hours with only one processor.
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3.4 Conclusion

We have presented a systematic approach called CODAC for mining associations from datasets that

can be represented as tripartite graphs. We have presented one implementation of this approach called

GODomainMiner, for predicting associations between GO terms and protein domains (Figure 3.9).

This was achieved by �rst collecting existing Pfam, CATH, and SCOP domain annotations of protein

chains and sequences on one hand and MF, BP, and CC GO term annotations on the other. We then

applied our method to �nd a list of direct associations between GO terms and domains. Considering

only the most-speci�c GO terms, our approach yields an enrichment of about 15-fold in the number of

GO-Pfam associations that currently exist in InterPro. A selected subset of one-to-one associations has

been analyzed from a biological point of view, and these all appear to be highly meaningful and consistent

with available knowledge. We believe that the large numbers of GO-domain associations calculated here

can enrich the existing annotations of UniProt sequences and protein chains in the PDB, and that this

will facilitate a better understanding and exploitation of protein structure-function relationships at the

domain level.
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Figure 3.9: GODomainMiner Flowchart. It starts with reading input sources and dividing them based

on the GO annotation evidence code. Then, input sources are enriched by the hierarchical information

of GO, and sequence clustering. Cosine similarity is used to discover the associations between GO terms

and domains in each source. It follows by combining similarity scores of each GO-Domain from di�erent

sources into a consensus score. The procedure ends with calculating p-values of GO-Domain associations

and their classi�cation.
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There are millions of proteins with known sequences and unknown functions. The most reliable

way to assign functions to proteins is by expert curators, but this is an expensive and time-consuming

process. The huge gap between the small number of expert curators and the ever increasing number of new

unannotated protein sequences has motivated the development of many automatic annotation approaches.

These approaches aim for a balance between maximizing the number of annotations while minimizing

the number of false assignments. However, achieving this aim in a reliable way remains an open research

problem. We present here a novel approach called CARDM (Combinatorial Association Rules Domain

Miner) which exploits that fact that many proteins consist of one or more domains. CARDM combines

a learning step in which functional annotations are assigned to protein domains, and a combinatorial

step in which association rules are generated and �ltered using previously validated annotations. The
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�ltered rules are then aggregated to build predictive models that are used to automatically annotate

protein sequences and structures. CARDM has been tested on the entire set of TrEMBL entries and

on the dataset provided at the international 2013 CAFA (Critical Assessment of Functional Annotation)

challenge. Overall, CARDM predicts 24 million EC numbers and 188 million GO terms for the protein

entries in TrEMBL. We �nd that the performance of CARDM on the CAFA 2013 targets is similar to

that of the best predictor groups in that round of CAFA. All predicted associations made by CARDM

are available at http://cardm.loria.fr/

4.1 Introduction

The functional annotation of proteins is crucially important for a better understanding of biological

processes at the molecular level, and has considerable implications in biomedical and pharmaceutical

research. However, the experimental characterization of proteins cannot easily be scaled up because this

is a di�cult and costly process [Liolios et al., 2009]. Furthermore, the curation and annotation of ex-

isting protein sequences by expert curators is almost equally expensive and time-consuming. Thus, the

automatic annotation of protein function has become a critical computational problem in bioinformatics

[Radivojac et al., 2013]. During the past decade, several protein function prediction approaches have been

described [Bork et al., 1998, Rost et al., 2003, Watson et al., 2005, Friedberg, 2006, Sharan et al., 2007,

Lee et al., 2007, Punta and Ofran, 2008, Rentzsch and Orengo, 2009, Xin and Radivojac, 2011]. Most

approaches use BLAST [Altschul et al., 1997] to compare the sequences of new proteins with proteins

whose function have previously been determined experimentally, while some others apply similar princi-

ples at the domain level.

In recent years, high-throughput experimental data acquisition techniques for the genomic sequences

of many species has opened new possibilities for automatic protein function prediction. For instance,

methods using protein-protein interaction networks may assign functional classes to proteins from their

physical interaction networks [Vazquez et al., 2003]. Other approaches exploit information from combi-

nations of protein domains and domain interactions [Peng et al., 2014]. Gene expression and molecular

interaction data may also be used to create a network of functionally connected genes from which func-

tional annotation may be propagated across the network [Massjouni et al., 2006], and taxonomy informa-

tion may be used to �lter false predictions [Zhu et al., 2007]. Applying machine learning to evolutionary

relationships between gene products and genomic contexts is another way to infer protein function an-

notations. [Enault et al., 2005, Li et al., 2007]. Machine learning techniques are also used to identify

and extract functional features from representative proteins, and to propagate functions to unknown pro-

teins. Such methods typically use probabilistic techniques to extract functions from protein interaction

networks [Nariai et al., 2007] or phylogenetic information [Engelhardt et al., 2005]. Other approach uses

association rule mining techniques to construct rule-based predictive models [Boudellioua et al., 2016].

Protein structural information can also be used to aid function annotation. For example, in [Roy et al., 2012]

template proteins having similar folds and functional sites are created, and a target protein is then com-

pared to the closest homologous template. Because the three-dimensional structures of proteins are often

more evolutionary conserved than their sequences, using structural templates is an accurate way to �nd

similar functions in di�erent protein sequences [Whisstock and Lesk, 2003]. However, template-based

algorithms will fail if no homologous template is available. Hybrid methods can predict protein functions

based on learning and �nding consensus scores computed from a combination of di�erent protein sources

[Hooper et al., 2014] or from a mixture of di�erent methods in order to return a ranked list of annotations
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[You et al., 2017].

Many protein function prediction methods use Gene Ontology (GO) [Harris et al., 2004] de�nitions

to describe protein functions. The GO vocabulary is divided into three namespaces that may be used to

describe the biological process (BP), molecular function (MF), and cellular component (CC) of a protein.

At the molecular level, speci�c functions are often carried out in highly conserved domains, which may

be identi�ed by sequence or structure alignments and which may be classi�ed into domain families.

Several functional annotation methods use protein domain families as the basic unit of protein similarity

[Peng et al., 2014, Forslund and Sonnhammer, 2008]. Nonetheless, despite the wide variety of existing

function annotation techniques, protein function prediction is still an open problem because no universal

method exists which clearly provides the best functional annotations. In response to this need, the CAFA

(Critical Assessment of protein Function Annotation) experiment [Radivojac et al., 2013] was launched

to assess the current state of the art in protein function annotation and to encourage developments in

the �eld.

We previously described a machine learning algorithm called CODAC (Computational discovery of

Domain Annotation using Common neighbors) [Alborzi et al., 2018], which we used to assign Enzyme

Commission (EC) numbers [Webb et al., 1992] and GO annotations to un-annotated protein domains

[Alborzi et al., 2017b, Alborzi et al., 2017c]. It quickly became apparent to us that this approach could

also be usefully applied to the automatic functional annotation of protein sequences. This led us to de-

velop an extension of CODAC which we call CARDM (Combinatorial Association Rules Domain Miner).

CARDM combines the CODAC learning step, in which function annotations are associated with protein

domains, with a combinatorial rule generation and �ltering procedure from which aggregated taxon-

speci�c predictive models are constructed and used to annotate protein sequences and structures auto-

matically.

Here, we describe the CARDM approach and its application to EC and GO annotations. The EC

annotation models obtained have been applied to the entire TrEMBL database, and our results are

compared with those from several existing automatic annotation methods. We also present results from

applying CARDM to the three GO namespaces. The generated MF, BP, and CC annotation models have

been applied to the target sequences of the 2013 CAFA challenge. We mention here that we also used

preliminary GO annotation models in the 2017 CAFA experiment [Alborzi et al., 2017a]. However at the

time of writing, the evaluation of this CAFA edition has not yet been published.

4.2 Methods

4.2.1 Method Overview

CARDM aims to create e�cient association rules for predicting the functions of protein sequences and

structures. The method exploits function-domain associations inferred by our previously developed CO-

DAC method using manually curated information from the UniProtKB and SIFTS databases, and it uses

a small set of annotations from the InterPro database [Finn et al., 2016a] as a �Gold Standard�. InterPro

provides an integrated classi�cation of protein sequences and domains, and links out to many other clas-

si�cation systems. Several InterPro families have been manually annotated with GO terms using expert

knowledge and the literature. However, the list of such annotations is incomplete (only around 20% of

Pfam domains and families possess MF GO functional annotation).

UniProtKB consists of two disjoint sets of entries. UniProtKB/SwissProt is the high quality, non-

redundant, and manually curated section of UniProtKB, while the much larger UniProtKB/TrEMBL
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Figure 4.1: Database statistics for SIFTS, SwissProt, and TrEMBL (July 2017 versions). Light

blue: total number of entries in SIFTS (369,521), SwissProt (554,241), TrEMBL (84,827,567). Orange:

number of entries having at least one domain identi�ed in a reference domain classi�cation (316,265,

534,235, 63,684,389, respectively). Grey: number having at least one EC annotation (150,264, 261,610,

10,933,166). Yellow: number having at least one MF GO annotation (276,340, 454,115, 40,931,904).

Dark blue: number having at least one BP GO annotation (261,672, 437,411, 27,930,466). Green: num-

ber having at least one CC GO annotation (188,211, 405,636, 28,397,194).

contains automatically annotated and unreviewed protein entries. The SIFTS (Structure Integration

with Function, Taxonomy and Sequence) database contains manually curated cross-references between

protein chains in the Protein Data Bank (PDB) with functional annotations from biological sequence

databases [Gutmanas et al., 2014].

CARDM consists of three main steps, namely learning, modeling, and annotation. The learning step

uses CODAC to infer function-domain associations from SwissProt (although any other reliable source

of annotated sequences could equally be used instead). The modeling step involves three stages: (i)

combinatorially generating association rules involving domains and taxons in each rule antecedent (left-

hand-side) and a function (EC number or GO term) in the rule consequent (right-hand-side), (ii) �ltering

these rules using parameters learnt from SwissProt, and (iii) creating predictive annotation models by

rule aggregation. The annotation step assigns EC or GO annotations to those target protein entries that

match at least one predictive model. Thus, SIFTS and SwissProt provide appropriate data sources for

the learning and modeling steps, whereas TrEMBL contains many targets for the annotation step.

Figure 4.1 shows that the majority of the SIFTS and SwissProt entries are annotated with at least

one GO term and one or more domains from our nine selected domain classi�cations (SIFTS 66%,

SwissProt 78%, on average), but that over 50% of these entries lack any EC annotation (59% and 53%,

respectively). This �gure also shows that 75% of TrEMBL entries have at least one domain assigned

from the nine domain classi�cations, while only around 13% and 38% are annotated with EC numbers

and GO terms, respectively.
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Pfam CATH SCOP TIGRFAMs SMART Panther PRINTS CDD PROSITE

EC number

Inferred 22,894 9,888 9,325 8,234 3,935 5,579 3,472 3,596 11,143

InterPro 8,442 1,297 1,144 5,640 814 3,857 1,488 2,058 2,622

MF GO term

Inferred 132,999 39,096 38,437 34,548 36,741 59,141 35,758 19,110 68,419

InterPro 19,265 2,488 2,893 15,172 3,013 18,556 11,326 4,405 7,149

BP GO term

Inferred 777,699 207,596 208,602 90,823 275,097 359,920 227,032 91,202 440,068

InterPro 48,128 5,669 7,155 38,666 5,270 55,610 14,770 10,831 10,844

CC GO term

Inferred 136,917 31,192 31,231 14,651 38,731 67,971 32,132 14,281 62,740

InterPro 9,075 840 998 3,305 833 11,462 3,656 997 1,551

Table 4.1: Number of inferred function-domain associations using the CODAC method on chain and

sequence EC and GO annotations extracted from SIFTS and SwissProt for each of the nine classi�cations

studied here. The numbers of reference associations present in InterPro are also indicated. For both

inferred and InterPro, associations are extended to the ancestor levels.

4.2.2 Using CODAC to Infer Function-Domain Associations

Our CODAC approach has been described previously [Alborzi et al., 2018]. Brie�y, the general prin-

ciple is to discover candidate function-domain associations by treating the input data as a tripar-

tite graph, G(X,Y, Z,E), where X and Y are annotations (e.g. EC numbers and domain families),

and Z is a common attribute (here, cluster of sequences). A new edge (association), E, may be

inferred between X and Y whenever X and Y are found to share a common Z. In the present

work, we use nine domain classi�cations, namely Pfam [Finn et al., 2013], CATH [Orengo et al., 1997],

SCOP [Murzin et al., 1995], TIGRFAMs [Haft et al., 2012], SMART [Letunic et al., 2014], PANTHER

[Mi et al., 2017], PRINTS [Attwood et al., 2003], CDD [Marchler-Bauer et al., 2016], and PROSITE [Sigrist et al., 2002],

and we use sequences from SIFTS and SwissProt as sources of common neighbors (Z). The CODAC scores

for each function-domain association from each data source are combined using a weighted average. The

weights are optimized by calculating the area under the curve (AUC) of receiver-operator-characteristic

(ROC) plots, and by maximizing the AUC with respect to a �Gold Standard� set of associations extracted

from InterPro. Then, a score threshold is chosen in order to eliminate weak associations. Finally, the

statistical signi�cance (p-value) of each score is calculated for each association for each data source using

a hypergeometric distribution as the null hypothesis. The CODAC association scores and p-values are

then used to classify the inferred associations into one of three categories, namely �Gold�, �Silver� or

�Bronze� [Alborzi et al., 2018].

Table 4.1 summarises the results obtained by CODAC for the prediction of EC-domain and GO-

domain associations from SIFTS and SwissProt for the nine domain classi�cations used here. Only Gold

associations (CODAC score above the threshold and all p-values signi�cant) have been counted. These

associations provide the input data for the subsequent rule-based modeling step, as described below.
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Rule ID Antecedent Consequent

Rule1 {{d1}, T1} EC1

Rule2 {{d2}, T1} EC2

Rule3 {{d2}, T2} EC2

Rule4 {{d3, d4, d5}, T3} EC3

Rule5 {{d6, d7}, T3} EC3

Table 4.2: Examples of generated association rules. Rule1 says that a single domain from one taxa is

responsible for a particular function (EC number). Taken together, Rule2 and Rule3 say that a particular

domain in any one of two taxa is responsible for a particular function. Similarly, Rule4 and Rule5 say that

the presence of di�erent combinations of domains in a given taxon can be associated with a particular

function.

4.2.3 Combinatorial Generation of Association Rules

The three main stages of the CARDM association rule modeling step are summarised in Algorithm 4

for a generic type of annotation Func, associated with domain d and represented by valid annotations

from a reference data source SP (here, SwissProt). The procedure is described here for EC annotation

but it may equally be applied to the three GO namespaces (MF, BP and CC). The inputs to the rule

generation step are the EC-domain association datasets from CODAC. Associations are grouped to give a

relation between each EC number, ECk, and a set of domains from one or more of the nine classi�cations

used here. For each of these grouped associations, all possible subsets containing up to 3 domains are

generated ({d1, d2, ..., dn}, n ≤ 3). The subsets of domains are diversi�ed by adding a taxon (Tj , one per

subset) from a list of interest. These relations may be represented as a tuple ({{d1, d2..., dn}, Tj}, ECk).

Each generated tuple is then used to make a candidate association rule having {{d1, d2..., dn}, Tj} as
the antecedent and ECk as the consequent. Such association rules may be read a follows: �IF a protein

sequence contains the set of domains {d1, d2..., dn} AND derives from an organism of taxon Tj, THEN

it can be annotated with ECk.� Table 4.2 illustrates the di�erent kinds of rules that may be generated.

4.2.4 Knowledge-based Filtering of Association Rules

Many of the candidate rules will have little or no support in the actual data, and such rules should

be discarded. Hence the next stage is to �lter the huge amount of generated association rules using

annotations from SwissProt. We achieve this using three common rule mining metrics, namely �Support�,

�Con�dence�, and �Lift�. The Support of a rule indicates how frequently the antecedent and the consequent

appear together in the dataset. Support is calculated as the number of protein entries p, containing both

the antecedent (ante) and the consequent (cons) of a rule divided by the total number of SwissProt

entries |SP |.

SupportSP (Ri) =
|p ∈ SP ; antei ⊆ p ∧ consi ⊆ p|

|SP | (4.1)

Because |SP | is very large (> 554, 000) the support ratio can be very low if only one protein entry matches

a given rule. Therefore, we replace Support by SupportCount(Ri), which simply counts the number of

proteins that match a given rule.

The Con�dence of a rule indicates how often the rule is found to be true in a given dataset, and is

expressed as the ratio of the number of instances matching both antecedent and consequent with respect
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Algorithm 4 CARDM core algorithm
Require: {(Func, d)}i: sets of pairwise function-domain associations inferred by CODAC from di�erent domain

classi�cations; SP : a reliable source of functional annotations (e.g. SwissProt); T : a list of taxons present in

SP .

Ensure: Annotation models for each function present in the input sets of associations.

1: AssociationRuleGeneration({(Func, d)}i, T )
2: AssociationRuleF iltering(Rules, SP, Thresholds : TSC , TConf , TLift)

3: AnnotationModelConstruction(FilteredRules)

4: procedure AssociationRuleGeneration({(Func, d)}i, T )
5: for each Func do

6: DomainList← GroupDomains({(Func, d)}i)
7: DomainSubsets← GenerateSubset(DomainList, Size ≤ 3)

8: for each S ∈ DomainSubsets do

9: Ante← AddTaxon(S, T )

10: Cons← Func

11: Rules← Rules+Rule(Ante, Cons)

12: end for

13: end for

14: return(Rules)

15: end procedure

16: procedure AssociationRuleF iltering(Rules, SP, Thresholds : TSC , TConf , TLift)

17: for each R ∈ Rules do

18: SC ← SupportCount(R,SP )

19: Conf ← Confidence(R,SP )

20: Lift← Lift(R,SP )

21: if SC ≥ TSC ∧ Conf ≥ TConf ∧ Lift > TLift then

22: FilteredRules← FilteredRules+R

23: end if

24: end for

25: return(FilteredRules)

26: end procedure

27: procedure AnnotationModelConstruction(FilteredRules)

28: for each Func do

29: for each R ∈ FilteredRules do

30: if Cons(R) = Func then

31: AggregAnte← AggregAnte+Ante(R)

32: end if

33: end for

34: AnnotationModel = (AggregAnte⇒ Func)

35: end for

36: return({AnnotationModel})
37: end procedure
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to the number of instances matching the antecedent. Here Con�dence is calculated as

ConfSP (Ri) =
|p ∈ SP ; antei ⊆ p ∧ consi ⊆ p|

|p ∈ SP ; antei ⊆ p|
. (4.2)

The Lift of a rule measures the dependence of an antecedent on its consequent. The Lift of rule Ri is

calculated as the ratio of the support of the rule in a given dataset to the product of the Supports of the

antecedent and the consequent. Rules with Lift greater than 1 are considered stronger than random. In

our setting, Lift is calculated as

LiftSP (Ri) =
|p ∈ SwissProt; antei ⊆ p ∧ consi ⊆ p| × |SP |
|p ∈ SP ; antei ⊆ p| × |p ∈ SP ; consi ⊆ p|

(4.3)

These metrics are calculated for each generated rule, and a rule is retained if it (i) is veri�ed in SwissProt,

(ii) has high Con�dence, and (iii) has a high Lift.

When predicting functional annotation, quality of annotations is an important criterion and only high-

con�dence rules should be used. In order to eliminate rules that might represent random associations, we

set a threshold of 1.0 for the Lift value. Furthermore, in order to be consistent with existing annotation

systems in TrEMBL, we set the rule Con�dence threshold to 0.95. This means that the �ltered annotation

rules should provide predictions which agree with existing SwissProt annotations in at least 95% of cases.

Using these �xed parameters, a range of threshold values for the SupportCount (from 1 to 30 in

steps of 1) were tested by �ve-fold cross-validation. First, the SwissProt data is divided into �ve equal-

sized partitions. Then �ve iterations of training and validation are performed in which at each iteration

a di�erent partition is held out for validation and the remaining four are used for the learning and

combinatorial rule generation steps. In the validation step, the rules are �ltered using the trial threshold

values, and the retained rules are applied to the test set. Finally, the predicted annotations are compared

to the actual SwissProt annotations.

The di�erent possible hierarchical levels of function annotation in our predictions and in existing

annotations are taken into account according to [Radivojac et al., 2013]. For example, if a SwissProt

sequence is annotated with an EC number of 1.2.3.4, then the �parent� EC numbers, 1.2.3.-, 1.2.-.-, and

1.-.-.- are also treated as annotations when comparing predicted and known annotations by counting

the numbers of matching (�true positive�), non-matching (�false positive�), and missed (�false negative�)

annotations. GO annotation terms in the GO hierarchy are treated in a similar way. The recall (ra-

tio of predicted SwissProt annotations to existing SwissProt annotations), precision (ratio of predicted

SwissProt annotations to all all predicted annotations), and F-measure (harmonic mean of recall and

precision) are then calculated. For each set of trial threshold values, the above procedure is repeated

with �ve di�erent SwissProt partitions, and the global result is calculated as the average over the �ve

rounds. This overall procedure is applied separately to each taxonomy kingdom. Because the number

of Bacteria entries is much larger than the sum of the other three, the global F-measure depends more

strongly on Bacteria than on the other three taxa.

Figure 4.2 shows the recall, precision, and F-measure as a function of SupportCount for each taxonomy

kingdom. The numbers of sequences annotated are 19,442, 16,716, 332,976, and 185,107 for Archaea,

Viruses, Bacteria, and Eukaryota, respectively. Increasing the SupportCount threshold slightly increases

the precision but dramatically decreases the recall and hence reduces the F-measure. These results

demonstrate that with Con�dence ≥ 0.95, even low support rules often predict correctly with respect

to the available SwissProt annotations. Nonetheless, prediction precision plays an important role in the

selection of the SupportCount parameter. In all four taxonomy kingdoms, increasing the SupportCount
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Figure 4.2: Recall, precision, and F-measure curves as a function of SupportCount for annotation rules

having Con�dence ≥ 0.95 and Lift > 1 in the four taxonomy kingdoms studied.

threshold from 1 to 2 has a greater e�ect on precision than increasing the SupportCount threshold from

2 to 10. This led us to choose 2 as a good value for annotating TrEMBL entries.

4.2.5 Aggregating and Applying Function Annotation Models

In the �nal stage of the modeling step, the surviving association rules for a given EC number are ag-

gregated into one �model� for that EC number. (see Algorithm 4 for details). Equation 4.4 shows an

example of a model that aggregates the antecedents of several �ltered association rules having the same

consequent, Ek. In this example, the �ve antecedents with di�erent combinations of domains and taxa

are represented as alternative cases to be matched against the target entry, p. If at least one such case

matches p then Ek is assigned to p. Pseudo-code for this procedure is shown in Algorithm 5.

Mi :





Case1 : {{d1}, T1}
Case2 : {{d2}, T1}
Case3 : {{d2, d3}, T2}
Case4 : {{d4, d5, d6}, T3}
Case5 : {{d7}, T3}





⇒ ECk (4.4)
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Algorithm 5 CARDM Annotation Algorithm
1: procedure Annotation(AnnotationModels, TargetProteins)

2: for each AnnotModel ∈ AnnotationModels do

3: {Case} ← Getcases(AnnotModel)

4: Func← GetAnnotation(AnnotModel)

5: end for

6: for each p ∈ TargetProteins do

7: {Taxonp} ← GetTaxon(p)

8: {Domainp} ← GetDom(p)

9: {DomSubsetp} ← Subset({Domainp}, Size ≤ 3)

10: for each Case do

11: if {DomSubsetp, Taxonp} ∈ Case then

12: Assign(p, Func)

13: end if

14: end for

15: end for

16: return(AnnotatedTargetProteins)

17: end procedure

4.2.6 Extension to Other Protein Annotations

CARDM was also used to build annotation models involving the GO MF, BP and CC namespaces and

the same nine domain classi�cations. In this case, the SIFTS and SwissProt annotations were split

into distinct datasets according to the GO �IEA� (Inferred from Electronic Annnotation) evidence code,

leading to four data sources for CODAC learning. This allowed lower weight to be given to the IEA

annotations compared to experimentally determined annotations when calculating CODAC's GO-domain

association scores. The whole procedure of the method is drawn in Figure 4.3.

4.2.7 Data Preprocessing

Flat data �les of SIFTS and SwissProt (July 2017) were downloaded and parsed using in-house Python

scripts. Associations between PDB chains and EC numbers, and associations between PDB chains and

domains from the nine domain classi�cations were extracted from the SIFTS data. All CATH and

SCOP domain families were transformed into their corresponding superfamilies. Pfam �repeat� and

�motif� domain types were discarded. All existing associations between SwissProt sequence accession

numbers (ANs) and associations between ANs and EC numbers were collected for each of the nine

domain classi�cations. Target protein entries were parsed to extract their taxonomic lineage information

and domain lists from the nine selected domain classi�cations. The Gold Standard reference set of

EC-domain associations required for the learning step was extracted from InterPro.

To avoid bias due to the presence of identical sequences in the data sources, PDB chains and Swis-

sProt sequences were clustered using a sequence similarity threshold of 100% into �Clusters of Identical

Sequences� (CIDs) using the Uniref non-redundant cluster annotations [Suzek et al., 2007]. The asso-

ciations extracted from SIFTS and SwissProt were then converted into domain-CID and function-CID

associations.

Function description often involves a hierarchical vocabulary or coding system. This is the case for EC

numbers which obey to a four digit hierarchical numbering scheme. In order to exploit this hierarchical

information, each extracted function-CID association was expanded to include associations involving the
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Figure 4.3: CARDM �owchart for generation of functional annotation rules using GO-domain associa-

tions.
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parent levels of the annotation hierarchy. For an EC number of the form �1.2.3.4�, this essentially means

inserting associations for �1.2.3.-� and �1.2.-.-�.

The SwissProt database was parsed again in the modeling step in order to calculate the Support,

Con�dence, and Lift of the generated associations rules. Each SwissProt entry was represented by a

list of its assigned domains from the nine domain classi�cations, its taxonomic lineage, and its EC

annotation(s). Each taxonomic lineage was split into parts from top to bottom of the hierarchy and

assigned to the corresponding entry. For example, a protein sequence annotated with �Thaumarchaeota�

is assigned to both �Archaea;Thaumarchaeota� and �Thaumarchaeota.� In a similar manner, domain(s),

taxonomic lineage, and any EC annotations were extracted for each TrEMBL entry. The annotation

models were prepared in JSON and XML formats in order to be readable by other programs.

4.3 Results and Discussion

4.3.1 CARDM Generation of EC Annotation Models

In this work we used two sets of target protein entries: the TrEMBL database and the datasets of the

2013 CAFA challenge. CARDM was applied to EC annotation based on nine domain classi�cations

(Pfam, CATH, SCOP, TIGRFAM, SMART, Panther, PRINTS, CDD, PROSITE). This required nine

runs of the CODAC learning step giving nine predicted EC-domain datasets. The CARDM modeling

step �ltered and merged these associations using SupportCount threshold learnt from SwissProt along

with a Con�dence threshold of 0.95 and a Lift threshold of 1.0. Using a �xed Con�dence threshold of

0.95 is justi�ed by the need for consistency between this study and other annotation systems in TrEMBL.

Table 4.3 shows how the number of �ltered EC association rules and the number of distinct EC

annotation depends on the SupportCount threshold. The number of available association rules decreases

with increase in the SupportCount threshold from 1 to 30. This table also shows the number of taxa

and domain subsets involved in these models. A SupportCount threshold of 2 appears to give a good

compromise between ensuring good coverage of EC annotation models and avoiding too many false

positive annotation inferred from weak rules with support equal to 1.

4.3.2 Annotating TrEMBL Entries

The main purpose of CARDM is to annotate all of the protein entries in TrEMBL. As of July 2017,

TrEMBL contains 63,684,389 protein sequences with at least one domain from the nine domain classi�-

cations used here. Table 4.4 shows more details about the number of entries in TrEMBL across the four

taxonomy kingdoms considered here. This table shows that the number of entries for Bacteria is almost

three times the number of entries for Eukaryota. However, the number of distinct taxa in Eukaryota is ≈
22 times more than in Bacteria. The number of Eukaryota domains in TrEMBL is greater than the total

number of Bacteria domains, even though the number of Bacteria entries is more than twice the number

of Eukaryota entries. On the other hand, the number of distinct Virus domains is less than for the other

three kingdoms, which might indicate a lower diversity of virus proteins in TrEMBL.

Table 4.4 also summarises the results obtained after applying the CARDM annotation models (pro-

duced using SupportCount ≥ 2, Con�dence ≥ 0.95 and Lift > 1) to the protein entries in TrEMBL. The

results show that about one-third of the entries in each kingdom can be annotated by CARDM. In total,

CARDM annotates over 22.5 million entries using about 2,500 EC numbers and generates more than 24

million annotations. Thus, compared to the 10.9 million entries having at least one EC annotation in
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Condition Association Rules EC annotation models Taxa Domain Subsets

Any con�dence value

SupportCount ≥ 1 188,434,110 4,810 5,943 839,698

SupportCount ≥ 2 93,393,615 3,616 3,402 678,467

SupportCount ≥ 5 36,283,706 2,463 1,809 429,501

SupportCount ≥ 10 16,971,029 1,822 1,143 280,553

SupportCount ≥ 30 5,025,448 1,081 534 144,205

con�dence ≥ 0.95

SupportCount ≥ 1 163,579,783 3,733 5,935 823,107

SupportCount ≥ 2 77,895,271 2,703 3,372 649,336

SupportCount ≥ 5 29,225,841 1,855 1,728 399,789

SupportCount ≥ 10 13,451,737 1,405 1,021 251,942

SupportCount ≥ 30 4,039,989 930 461 130,123

con�dence = 1.00

SupportCount ≥ 1 163,079,769 3,733 5,935 822,915

SupportCount ≥ 2 77,395,257 2,703 3,372 649,057

SupportCount ≥ 5 28,725,827 1,854 1,726 399,326

SupportCount ≥ 10 12,951,723 1,396 1,012 249,786

SupportCount ≥ 30 3,666,611 902 435 122,827

Table 4.3: Numbers of association rules and annotation models produced with Con�dence score ≥ 0.95

and Lift ≥ 1 and various thresholds for SupportCount.

UniProtKB/TrEMBL EC Prediction Results

Kingdom Entries Distinct Domains Distinct Taxa EC numbers Entries Predictions

Archaea 1,152,973 13,495 346 520 312,045 317,832

Viruses 2,504,372 7,482 1,163 122 732,838 1,673,756

Bacteria 43,155,424 23,683 3,689 1,602 15,941,696 16,582,128

Eukaryota 16,871,620 29,601 82,640 1,610 5,573,911 5,789,926

Total 63,684,389 36,304 87,838 2,564 22,560,488 24,363,642

Table 4.4: Left: the numbers of TrEMBL protein entries having at least one domain in Pfam, CATH,

SCOP, TIGRFAM, SMART, Panther, PRINTS, CDD or PROSITE along with the corresponding numbers

of distinct domains and taxa in the four taxonomy kingdoms (�rst level of taxonomic lineage). Right:

EC annotation predictions by CARDM for the TrEMBL entries.
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TrEMBL (grey in Figure 4.1), CARDM can provide more than a 2-fold increase in the number of EC

annotations. More precisely, our set of EC predictions concerns 12.8 million TrEMBL entries having no

EC annotation and 9.7 million entries that had been previously annotated by other automatic systems.

There remain 1.2 million previously annotated TrEMBL entries that are not assigned any EC numbers

by our prediction models. This likely re�ects di�erences between the CARDM algorithm and those used

previously to annotate TrEMBL. Table 4.4 also shows how many distinct EC numbers have been assigned

by CARDM to the TrEMBL entries.

It should be noted that CARDM can annotate a protein entry with more than one EC number if

the criteria for more than one annotation model are met. Overall, CARDM annotates over one million

TrEMBL entries with multiple EC numbers.

4.3.3 Comparison with Existing Annotation Systems in TrEMBL

Here, we compare our EC prediction with existing automatic and semi-automatic annotation systems

in TrEMBL such as Rule-base [Morgat et al., 2011], SAAS [Morgat et al., 2011], and HAMAP-Rule

[Pedruzzi et al., 2013]. HAMAP-Rule and Rule-base are semi-automatic systems in which bio-curators

create annotation rules, but the rule application is automatic. SAAS is a completely automatic annota-

tion system which generates annotation rules using decision trees. It is worth mentioning that both SAAS

and Rule-base re�ne their predictions using automatic and semi-automatic annotation rules respectively,

whose con�dence score is greater than 0.95.

Figure 4.4 shows some statistics of the ≈ 24 million TrEMBL annotations produced by CARDM,

compared to existing annotations in the four kingdoms considered in this study. The upper row of this

�gure represents all CARDM predictions and displays in green new predicted annotations concerning

TrEMBL entries that were not previously annotated. These new annotations represent over 50% (reaching

around 89% for viruses) of the total predictions. The lower row of this �gure compares the results obtained

by CARDM for those TrEMBL entries that already have annotations. In these pie-charts, the light blue

sectors correspond to the number of identical predictions between CARDM and the existing annotations.

In all kingdoms, over 80% of the CARDM predictions (from 82% in Bacteria to 98% in Archae) are in

exact agreement with existing annotations. Grey sectors show the proportion of existing annotations

that are similar to but more speci�c than the CARDM predictions (from 0.1% in Viruses to 10.7% in

Bacteria) with respect to EC number hierarchy, while red sectors show the proportion that are similar

to but less speci�c than the CARDM predictions (from 0.04% in Viruses to 1.7% in Eukaryota).

Dark blue sectors (from 0.04% in Archaea to 8% in Viruses) correspond to multiple predictions for the

same TrEMBL entry for which CARDM not only agrees with existing annotations but also adds additional

predictions. Finally, yellow sectors show the proportion of mismatches between CARDM and existing

annotations (from 0.14% in Viruses to 4.4% in Bacteria). The very low percentages found here con�rm

the precision of the CARDM predictions that was indicated in the cross-validation stage. Although

CARDM produces many more annotations than exist in TrEMBL and hence the overlap between the

CARDM and existing annotations is relatively small, the above analysis strongly indicates that CARDM

produces annotations which are highly consistent with those of the annotation systems currently used in

TrEMBL.

Overall, from a total of 11,358,629 existing TrEMBL annotations, the CARDM predictions include

8,547,345 ( 75.3%) identical and 1,078,740 ( 9.5%) similar EC annotations, where an EC annotation is

considered to be similar if it matches on all digits present (i.e. if there are no mismatched digits, excluding

hyphens). Only 14% of the existing TrEMBL annotations are missed by the CARDM prediction models.
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Figure 4.4: Comparison between CARDM predictions and existing annotation systems (Rule-base,

SAAS and HAMAP-Rule) for EC annotation of protein entries in TrEMBL. Upper row: complete sets of

CARDM predictions for each kingdom. Green: new predictions for TrEMBL entries lacking any annota-

tion. Lower row: comparison of CARDM performance on TrEMBL entries having existing annotations.

Light-blue: entries for which CARDM predictions are identical to existing annotations; red: more spe-

ci�c EC number in CARDM prediction; grey: more speci�c EC number in existing prediction; yellow:

mismatch betwen CARDM and existing annotation; dark blue: entries having multiple annotations in

the which existing annotation has been con�rmed and a new prediction is proposed by CARDM. The

actual prediction counts are indicated for each sector.

4.3.4 CARDM Annotation with GO Terms

CARDM builds prediction models for GO terms using largely the same procedure as described for EC

annotations. However, in order to give di�erent weights to manually curated GO terms and those inferred

automatically, EC-AN associations were split into two groups according to the Inferred from Electronic

Annotation (IEA) attribute. These two datasets are subsequently called SwissProt and SwissProt-IEA.

The same separation into SIFTS and SIFTS-IEA was performed for SIFTS GO-AN annotations. Hence

the consensus score obtained by the CODAC procedure for each GO-domain association is based on

a weighted average of the similarity scores obtained in these four datasets. Because GO annotations

stem from three namespaces (MF, BP and CC), and because we consider here nine established domain

classi�cations, the CODAC learning procedure was applied separately to each combination of data sources

(3× 9 times), and separate sets of annotation models were built for each GO namespace.

The GO annotation results for TrEMBL are shown in Table 4.5. When considering all four kingdoms

together, the percentages in this table show that the CARDM predictions are distributed rather evenly

across the three namespaces, with the highest percentage (42.5%) being for MF annotations. This
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Kingdom GO terms Entries Predictions Ratio

MF GO terms

Archaea 690 563,539 1,090,101 1.93

Viruses 208 1,830,609 4,829,358 2.63

Bacteria 1,910 28,583,908 51,295,683 1.79

Eukaryota 3,480 11,621,820 22,458,112 1.93

Total 4,278 42,599,876 79,673,254 1.87

(percent) (38.3%) (66.7%) (42.5%)

BP GO terms

Archaea 452 409,213 602,182 1.47

Viruses 268 2,081,711 5,518,326 2.65

Bacteria 1,232 21,636,079 34,150,791 1.59

Eukaryota 9,297 9,855,319 19,603,113 1.99

Total 9,740 33,982,322 59,874,412 1.76

(percent) (87.3%) (53.4%) (31.9%)

CC GO terms

Archaea 61 241,570 318,201 1.31

Viruses 77 1,709,221 6,003,356 3.5

Bacteria 172 16,069,662 22,031,933 1.37

Eukaryota 1,587 11,591,981 19,555,286 1.69

Total 1,721 29,612,434 47,908,776 1.62

(percent) (41.5%) (46.5%) (25.6%)

Table 4.5: MF, BP, and CC GO predictions for the TrEMBL entries with annotation rules having

Lift > 1, SupportCount ≥ 2 and Con�dence ≥ 0.95. �Ratio� is the number of predictions per entity.

The percentages in the three columns from left to right are relative to total number of GO terms in

the corresponding namespace, total number of target TrEMBL entries and total number of CARDM

predictions, respectively.

namespace corresponds to the largest percentage of target TrEMBL sequences (66.7%) but suprisingly to

the lowest percentage of GO terms involved (38.3%). The larger involvement of BP terms (87.3%) likely

re�ects the diversity of BP-domain associations found in the CODAC learning step. Indeed our previous

study using GODomainMiner inferred more BP-Pfam associations than MF-associations (75 versus 33

thousand) and these associations involved more BP terms than MF terms (14 versus 6.3 thousand)

[Alborzi et al., 2018]. Furthermore, it is easy to see that the major contribution to the number of GO

terms involved in each namespace comes from the Eukaryotae. This is consistent with the fact the Gene

Ontology was originally developed to annotate eukarotic sequences.

The �Ratio� column of Table 4.5 shows that the numbers of predictions per entry are broadly similar for

the three namespaces (from 1.62 to 1.87). However, some variation is observed depending on the kingdom,

with a signi�cantly higher prediction rate for Viruses. The high prediction ratios observed in viruses for

the three GO namespaces are also associated with a high proportion of Virus entries concerned by these

predictions (total number of viruses entries is ≈2,500, see Table 4.4) and with a quite small repertoire

of GO terms (from 0.9 to 1.9%, depending on the GO namespace). The fact that function predictions

are both more numerous and less diverse for Viruses than for the other kingdoms could deserve further

investigation.
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GO terms Protein Sequences Predictions

GO Category Archaea Bacteria Eukaryota Archaea Bacteria Eukaryota Archaea Bacteria Eukaryota

MF 504 1,253 2,632 2,015 8,411 36,258 3,729 14,846 59,286

BP 283 687 6,870 1,484 6,921 26,296 2,029 10,155 75,296

CC 43 85 1,275 882 5,997 34,428 1,085 7,375 67,405

Total 830 2,025 10,777 2,195 11,116 52,040 6,843 32,376 201,987

Total = 11,623 Total = 65,351 Total= 241,206

Table 4.6: Summary of the CARDM results for the CAFA 2013 data. Shown are the numbers of assigned

GO terms, protein entries, and predictions in the CARDM results for CAFA 2013.

4.3.5 CAFA Results

In order to compare CARDM with other state of the art approaches or those still under development, we

applied CARDM to the CAFA 2013 data [Radivojac et al., 2013]. In that round of CAFA, the organisers

provided 100,816 target proteins (Bacteria: 15,451, Eucaryotes: 82,074, and Archaea: 3,291 targets), of

which predicted annotations for 3,675 proteins were assessed according to recently obtained experimental

annotations.

Using the same parameters as described above, CARDM assigned 11,623 GO terms to 65,351 protein

targets with a total of 241,206 predictions, i.e. on average 3.7 GO predictions per annotated sequence.

Table 4.6 shows the number of protein sequences which are functionally annotated for the MF, BP and CC

namespaces and the three taxonomic kingdoms in the CAFA dataset (Archaea, Bacteria, and Eukaryota).

According to these results, we calculate that CARDM was able to successfully annotate 65% (65,351) of

the CAFA targets. A more detailed analysis of our results showed that out of the 35,465 missed targets

only 8,838 targets (8.8%) were not matched by any of our GO annotation models. This suggests that

the di�erence (26,627 targets ≈ 26.6%) could have been annotated if the CARDM models had been built

with rules �ltered at lower SupportCount and Con�dence thresholds. Nonetheless, we do not lower the

optimal SupportCount or Con�dence thresholds because of the risk of producing false positives.

After the CAFA 2013 experiment, the predictors' annotation methods were evaluated using recall-

precision curves obtained by varying one parameter of the method and using ground-truth GO-Sequence

associations provided by the CAFA organisers (3,675 proteins) [Radivojac et al., 2013]. In order to eval-

uate CARDM in a similar manner, we varied the Con�dence threshold (while keeping the SupportCount

threshold �xed at 2) in order to calculate di�erent precision and recall values for the CAFA ground-truth

annotations. The curves obtained with MF, BP and CC GO predictions are shown in Figure 4.5. In

this Figure, each point (from the right to the left) is obtained by increasing the CARDM annotation rule

Con�dence threshold 0.0 to 1.0 in steps of 0.1 to make the precision increase and recall decrease. It can

be seen that using Con�dence threshold values in the range 0.8 to 1.0 yield the best precision values of

around 50% and recall values of around 33% for the BP predictions, 40% for CC, and 45%for MF. It is

worth noting that these values (and the overall shape of the recall-precision curves) are very similar to

those reported for the best prediction methods in the CAFA 2013 assessment. Hence, we believe that

the performance of CARDM is at least comparable to the state of the art approaches that participated

in CAFA 2013 [Radivojac et al., 2013]. Furthermore, thanks to the generic formalization of our CARDM

approach, we believe it could also be applied to other function classi�cation schemes such as UniProt

General Annotations.
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Figure 4.5: Recall-Precision curve for varying con�dence threshold of the �ltered GO annotation rules.

Each circle represents (from the right to the left) a Con�dence threshold (from right (0.0) to left (1.0)

in steps of 0.1). Maximum F-measures of 53.2%, 43.7%, and 52.6% are obtained for MF, BP, and CC

predictions, respectively.

4.4 Conclusion

We have described an automatic approach for functionally annotate protein sequences and structures

with EC numbers and GO terms. This was achieved by �rst inferring function-domain associations using

our previously developed CODAC method. A set of candidate association rules were then generated

combinatorially using function-domain associations and taxa. The �ltered list of association rules were

then merged to build annotation models able to predict functions for TrEMBL sequences. CARDM found

24.3 and 187.5 million EC and GO predictions for 22.5 and 50.6 million target TrEMBL entires respec-

tively. Over 60% of these predictions are new. CARDM was also used to annotate the protein sequences

in the CAFA 2013 challenge. Our results indicate that the performance of CARDM is comparable to

that achieved by the best predictor groups in that round of CAFA. Due to its generic nature, we expect

CARDM could equally be applied to many other function prediction problems.
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Many biological processes are mediated by protein-protein interactions. However, the experimental

determination of such interactions is often di�cult and time-consuming. Hence there is much interest

in developing computational approaches to predict protein interactions from knowledge of existing inter-

actions. We describe an approach called �PPIDM� (Protein-Protein Interaction Domain Miner) for the

computational discovery of protein-protein interactions using knowledge of their constituent domains.

The approach is based on our previously described �CODAC� (Computational Discovery of Direct Asso-

ciations using Common neighbors) method for the prediction of Pfam domain annotations. The approach

has been applied to seven widely used protein-protein interactions resources, and it has been validated

using a �Gold Standard� of three-dimensional domain-domain interactions extracted from the 3DID and

KBDOCK databases. Overall, PPIDM �nds a total of 27,363 non-redundant interactions between pairs

of individual Pfam domains, and 523,929 interactions between sets of Pfam domains with a F-measure

of 97% with respect to our Gold Standard dataset.

The result is publicly available at http://ppidm.loria.fr/.
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5.1 Introduction

Many biological processes from metabolic pathways to cellular signaling are mediated by protein-protein

interactions. However, the experimental determination of such interactions is often di�cult and time-

consuming. Furthermore, thanks to recent developments in high-throughput gene sequencing techniques,

the gap between the number of known protein sequences and knowledge of their biological interactions is

increasing rapidly. There is therefore a pressing need to develop computational approaches to help bridge

this gap. There is therefore much interest in developing computational approaches to predict protein

interactions from knowledge of existing interactions.

Computational methods for predicting interactions between pairs or groups of proteins often exploit

knowledge of the co-evolution of protein pairs, and can be grouped into four main categories. 1) genomic

context and structural information, 2) network topology, 3) text and literature mining (or database

search), and 4) machine learning using various features from genomic or proteomic data. Gene co-

localization is the simplest approach for predicting protein-protein interactions [Dandekar et al., 1998,

Tamames et al., 1997]. The main idea is that related genes are located close together in the genome. This

method is less appropriate for eukaryote genomes because related genes in eukaryotes are not necessarily

co-located. More generally, phylogenic pro�le based approaches exploit the fact that functionally related

genes often remain co-located in distant species. However, this approach is less well adapted when

dealing with incomplete genomes or for proteins that are present in almost all organisms. Gene fusion

events, in which several interacting proteins are fused into a single multi-functional gene, can be detected

from comparative genomics and evolutionary information, and may also be used to infer functional

relationships. However, it is less widely applicable.

Protein interaction networks in di�erent organisms have similar topologies. These similarities may be

exploited to distinguish predictions as true positives and false positives by assignment of a con�dence value

to each interaction [Goldberg and Roth, 2003]. Topological analysis of the protein-protein interaction

networks is a signi�cant task from the evolution viewpoint and network dynamics that shape the networks.

In a given protein-protein interaction network, the properties are compared to the random networks and

then con�dence values are assigned to the protein interactions for determining the importance of the

topological properties. Then, according to the con�dence values interactions can be �ltered or saved for

the network.

Biomedical abstract are proliferating in NCBI PubMed database, with the rate of nearly one pa-

per every thirty seconds [Zahiri et al., 2013]. Thus, protein interaction may also be predicted by text

mining methods that exploit the co-occurrence of proteins mentioned in PubMed abstracts. Such liter-

ature mining approaches include natural language processing (NLP) approaches that use grammars and

parsers to identify protein-protein interaction [Daraselia et al., 2004], rule-based approaches which infer

protein-protein interaction from de�ned linguistic patterns [Huang et al., 2004], and machine learning ap-

proaches in which classi�ers are trained to identify protein-protein interactions [Donaldson et al., 2003].

Several machine learning approaches have been used to predict protein-protein interaction, including

support vector machines (SVM) [Guo et al., 2008, Zhang et al., 2014, Wei et al., 2016], arti�cial neu-

ral networks (ANNs) [Fariselli et al., 2002], naïve Bayes [Hsin Liu et al., 2012, Lin and Chen, 2013], k-

nearest neighbors (k-NN) [Browne et al., 2007], decision tree (DT), and random forest (RF) decision

[Chen and Liu, 2005, Wei et al., 2016] methods. SVM classi�ers are widely used in classifying biological

data, by maximizing the margins [Ben-Hur et al., 2008]. The margin for any object depends on the con-

�dence of its classi�cation. Objects for which the assigned labels are correct will have large margins and

objects with uncertain classi�cation are likely to have small margins. SVMs can be trained using a train-
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ing dataset with certain labels which belong to one class. Then, a prediction model can be constructed

to label new samples. SVM is very e�ective in classifying with arbitrary complexity. However, de�ning

a problem for SVM is intricate and needs large memory. Moreover the selected parameters have strong

e�ect on the results in this classi�er [Ben-Hur et al., 2008].

ANNs have also been used to model protein-protein interactionis. One of the most popular ANN ap-

proachs is the multilayer perceptron (MLP) [Fariselli et al., 2002]. However, MLP is a black-box classi�er

because it is di�cult to know what the model parameters mean [Yang, 2010].

Bayeseian probability based approaches are mainly applicable to problems having normal distribu-

tions, and can be trained e�ciently with a small training dataset. However, they may fail in complex

classi�cation problems [Witten et al., 2016]. K-Nearest neighbors (K-NN) is one type of classi�ers which

assigns labels to each item based on the K nearest items in the feature space based on majority vote.

K-NN requires no explicit training unlike statistical methods, and it is easy to implement. Nonetheless,

memory and computation needs drastically increases if a large dataset or many features are used.

Finally, machine learning classi�cation in protein-protein interactions discovery is Random forest (RF)

algorithm. RF consists of many decision trees which are independently constructed according to random

feature vectors sampled from a dataset. New items are assigned into one class according to the majority

voting of decision trees. RF is useful for large numbers of features in large dataset and recovering missing

data. However, it easily over�ts databases containing noisy data [Witten et al., 2016].

Other computational methods for predicting domain-domain interactions use techniques such as corre-

lated sequence signatures [Sprinzak and Margalit, 2001, Segura et al., 2015], maximum-likelihood estima-

tion [Deng et al., 2002, Chen et al., 2012], phylogenetic pro�ling [Pagel et al., 2004, Cheng and Perocchi, 2015],

statistical signi�cance analysis [Nye et al., 2004, Bordner and Abagyan, 2005], analysis of domain pair

exclusion [Riley et al., 2005], random decision forest [Chen and Liu, 2005, Liu et al., 2016], sequence co-

evolution [Jothi et al., 2006], parsimony-driven principle [Guimarães et al., 2006], formal concept analysis

[Khor, 2014], and GO functional annotations [Lee et al., 2006]. It is worth mentioning that these auto-

matic mining approaches may not produce results as credible as manually curated data, but the growth

of manually curated data and combining di�erent techniques and databases may make these methods

more reliable.

Using three-dimensional (3D) structures is another way to predict protein interactions. This approach

can be very reliable if structural interaction homologues exist, but in comparison to the enormous num-

ber of known protein sequences, this approach is potentially limited by the relatively small number of

available 3D protein structures. On the other hand, since many proteins consist of well-de�ned domains,

and since the number of di�erent domain families is far smaller than the number of sequences to be

considered, for data mining purposes it is natural to consider treating protein domains as fundamental

units of function and interaction. However, while a small number of single domain proteins interact

with their biological associates directly, a much larger number of proteins have more than one domain

[Apic et al., 2001], and interactions between these multi-domain proteins can often involve two or more

domains [Bhaskara and Srinivasan, 2011]. Therefore, to predict protein-protein interactions from the

compositions of their constituent domains, it is �rst necessary to deconvolute the constituent domain-

domain interactions (DDIs).

3DID [Stein et al., 2005, Stein et al., 2010], iPfam [Finn et al., 2013], INstruct [Meyer et al., 2013],

and KBDOCK [Ghoorah et al., 2011, Ghoorah et al., 2013b], are examples of databases containing high

quality structural information for experimentally determined DDIs, principally from interactions observed

in crystal structures in the Protein Data Bank (PDB). Even though these databases provided thousands

of DDIs, the number of inferred PPIs using these DDIs is currently far less than the number of PPIs
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in sequence-based interaction databases. For example, it has been estimated that DDIs inferred from

structural data in 2010 only cover around 5% of PPIs in Saccharomyces cerevisiae and 19% of PPIs

in Homo sapiens [Yellaboina et al., 2010]. These observations encouraged us to develop a new method

called �PPIDM� (for Protein-Protein Interaction Domain Miner) for the automatic prediction of DDIs

between Pfam protein domains. PPIDM is derived from our previously described CODAC method

[Alborzi et al., 2017c, Alborzi et al., 2017b, Alborzi et al., 2018] and is to our knowledge the �rst method

that generates interactions between sets of protein domains.

5.2 Materials and Methods

5.2.1 Algorithm Overview

PPIDM is an extension of our previously developed CODAC method [Alborzi et al., 2018]. CODAC is a

graph-based approach to predict new protein domain annotations from knowledge of existing associations

between similar pairs of domains, whereas PPIDM treats each protein as a list of one or more domains,

and aims to predict protein interactions from inferred relationships between lists of domains, or �itemsets�.

Let G(X,Y, Z,E) be a tripartite graph where X, Y and Z are 3 sets of items and E is the set of all

edges connecting X, Y and Z in the input con�guration. In PPIDB∗, we �rst assume that each item in

Z can be a pair of elements (Z = (zl, zr)). We take into account that the edges between X and Z have

di�erent meaning from edges between Y and Z, namely, edge (x, zl) means that the item in X belongs

to the left element of Z, and edge (y, zr) means that the item in Y belongs to the right element of Z.

Thus, items in X and Y are connected to pairs of items in Z.

We next generates the subsets out of items in both X and Y such the subsets with size = 1 have

at least one neighbor in Z, and subsets with size ≥ 2 contain items connected to the same neighbor in

Z. This allows us to create a tripartite graph where X, Y includes itemsets and Z items are pairs of

elements, and E is the set of all edges connecting X, Y and Z in the input con�guration. Figure 5.1

shows how the itemsets in X and Y are connected to a pair of elements in Z.

Let us consider 3 bipartite subgraphs of G , denoted as Gl(X,Z,El), Gr(Y, Z,Er), and Gg(X,Y,Eg).

We now presume that the set of edges Ei is incomplete, and that the aim is to compute new edges between

itemsets in X and itemsets in Y in order to generate G∗g (X,Y,E∗
g ) which together with Gl and Gr will

make the �nal tripartite graph, G∗(X,Y, Z,E∗), where E∗ denotes an enriched set of edges. New edges

may be discovered by exploiting the existing edge distributions in Gl and Gr. For example, if two itemsets

xi of X and yj of Y share the same (or almost the same) pairs of elements, {(zlk , zrk)}, in Z, then it may

be supposed that an edge might exist between two itemsets xi and yj . A candidate edge between xi and

yj is discovered if these itemsets are associated with the same pairs of elements in Z. Candidate edges

found in this way are then scored and �ltered, as described in more detail in [Alborzi et al., 2018].

It is now possible to instantiate our model with itemsets of Pfam domains (X) and (Y ), and a set

of protein-protein interactions (Z). El is the set of edges representing the Pfam domain content of the

left-hand side protein sequence of each protein-protein interaction, Er is the set of edges representing the

Pfam domain content of the right-hand side protein sequence of each protein-protein interaction, and Eg

is the set of edges representing observed Pfam-Pfam interactions from the intersection of KBDOCK and

3did dataases. In this case, our aim is to produce E∗
g , which will contain an enriched set of Pfam-Pfam

interactions (also considered as associations) weighted by their neighborhood similarity score.

PPIDM infers domain-domain associations from seven existing protein-protein interaction databases.

These associations are generated based on an assumption that each domain set is represented as one vector
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Figure 5.1: Schematic illustration of the extensions of the CODAC. Each item in Z is a pair of elements

and itemsets in X and Y are connected to the neighbor items Zl and Zr in Z, respectively. CODAC∗

�nds a set of weighted edges (E∗
g ) between itemsets in X and Y using neighbors in Z.

with involving protein interactions as its features. Then, the cosine similarity between this domain set

can be calculated as their scores for interaction. Assessment of the DDI is then performed by con�rming

which interaction is statistically signi�cant and then comparing the result with observed domain-domain

interactions to demonstrate the reliability of the process.

Protein interactions, which will be treated as the features, are extracted from IntAct, MINT, DIP,

HPRD, BioGRID, String, and SIFTS databases. IntAct, MINT, DIP, HPRD, and BioGRID are manually

curated physical interaction databases between proteins, while the very extensive STRING database

contains both physical and predicted interactions between protein sequences. Protein interactions can

also be inferred from PDB chains in the SIFTS database. Therefore, these seven interaction databases

together provide a comprehensive combination of protein interactions and are appropriate for our learning

procedure. Note that we retrieve all available interactions from these databases and we do not discriminate

between stable and transient interactions. The number of protein-protein interactions obtained from the

input resources are shown in Table 5.1. This table shows the large number of protein interactions drawn

from the STRING database, while SIFTS database provides only a small collection of observed protein-

protein interactions.

5.2.2 Input Data Collection

In this section, the CODAC∗ approach is applied to discover new weighted GO-domain associations. In

our G(X,Y, Z,E) tripartite graph model, both sets X and Y in Gl and Gr correspond to Pfam domain

classi�cations. 8 data sources were selected to provide common neighbors (Z) of the itemsets in X and Y ,

namely: (i) IntAct, (ii) DIP, (iii) MINT, (iv) HPRD, (v) BioGRID, (vi) SIFTS, (vii) STRING-exp, and

(x) STRING-rest providing AN-AN associations (AN is the UniProtKB identi�er) from IntAct database,

DIP database, MINT database, HPRD database, BioGRID database, AN-AN associations inferred from

SIFTS database, AN-AN associations with experimental tags from STRING, and AN-AN associations

with non-experimental tags from STRING, respectively.
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Number of

Interactions Protein Sequences Associated Pfams

IntAct 411,624 76,747 9,898

MINT 67,191 24,735 6,438

DIP 53,585 20,489 6,418

HPRD 38,943 9,199 3,985

BioGRID 744,665 36,260 6,476

STRING 24,185,620 324,767 10,320

SIFTS 27,204 23,414 6,968

Table 5.1: Number of interactions, distinct sequences and Pfam domains obtained from the IntAct,

MINT, DIP, HPRD, BioGRID, STRING, and SIFTS.

Flat data �les of IntAct, DIP, MINT, HPRD, BioGRID, STRING, SIFTS, KBDOCK, 3did and

UniProt (February 2017), were downloaded and parsed using in-house Python scripts. Associations

between Uniprot sequence accession numbers (ANs) and Pfam domains were then extracted from the

UniprotKB/SwissProt and UniprotKB/TrEMBL sections of Uniprot to give a dataset of AN-Pfam. As-

sociations between every two interacting ANs were extracted from the IntAct, DIP, and MINT to give

three datasets of protein-protein interactions. In BioGRID, interactions are listed between two interactor

IDs. These IDs are associated to the gene names and species-level taxonomic identi�er from NCBI. Inter-

actions between ANs were generated using gene names and taxonomy IDs to give a dataset of BioGRID

associations. STRING database provides a large list of associations between a pair of proteins using their

own identi�ers. Interactions between two ANs were extracted by using the mapping of the STRING

IDs to the UniProt entries in UniProtKB. This mapping provides a large AN-AN associations database.

We categorized the AN-AN associations according to experimental and non-experimental (Text mining,

Neighborhood, Fusion-�ssion events, Occurrence, and Coexpression) labels and stored in STRING-ext

and STRING-rest datasets, respectively. From the SIFTS data, associations between PDB chains were

extracted and chain associations with high possibility of interaction are highlighted and stored using

[Ghoorah et al., 2011]. Then, PDB chains that their representative AN exist, were replaced by the ANs

and the AN-AN associations stored in the SIFTS dataset. These AN-AN associations are the pairs of

elements, Z, where the left-hand AN is the Zl and the right-hand AN is the Zr

We extracted Pfam domains and AN-Pfam associations from the UniProtKB and created itemsets

out of the Pfam domains. An itemset is kept in X if all the Pfam domains in the Pfam itemset belong

to the Zl. Similarly, an itemset is kept in Y if all the Pfam domains in the Pfam itemset belong to the

right AN in Z − r. At the end, the resulting eight datasets are eight input tripartite graphs, Z for the

Pfam itemsets in X and Y .

For the positive dataset, we extracted a total of 8,581 and 8,670 Pfam-Pfam interactions from 3did

and KBDOCK, respectively. We then obtained 7,254 common Pfam-Pfam interactions between 3did and

KBDOCK. These associations were considered to be the incomplete set of edges in Gg which is called

�Gold Standard� and is going to be enriched. Note that the Gold Standard includes interactions with

itemsets having only size 1.
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5.2.3 Pfam-Pfam Interaction Inference

We use the CODAC algorithm to discover the associations between two sets of Pfam domains and present

them as putative interactions between those sets of domains. In CODAC, to determine an edge similarity

threshold, we prepare a �Gold Standard� dataset which is the combination of positive and negative

examples of Pfam-Pfam associations. Here, we accept all of the associations in the intersection between

3did and KBDOCK as positive examples (Eg). To create negative examples, we use shu�ing technique

presented in the CODAC [Alborzi et al., 2018]. Next, we randomly split the Gold Standard dataset into

two groups with equal numbers of positive and negative examples to give a �Training� and a �Test� subset.

To handle our eight datasets, each input tripartite graph is processed separately to calculate its re-

spective cosine similarity matrix. The cosine similarity scores are then combined as a weighted average to

give a consensus similarity matrix. Receiver-operator-characteristic (ROC) analysis provides an objective

way to measure the ability of a classi�er to distinguish positive and negative examples [Fawcett, 2006].

Therefore, each weight is varied from 0.01 to 1.0 in steps of 0.01, and for each combination of weights

a ROC performance curve is calculated using the complete ranked list of consensus scores and our Gold

Standard set of positive examples. The combination of weights that gives the largest area under the curve

(AUC) is selected and used to calculate the best consensus similarity matrix.

We then rank the scores of all members of the Training subset, and label them �positive� or �negative�

according to a score threshold that is varied from 0.0 to 1.0 in steps of 0.01. This allows us to �nd the

true positive, false positive, true negative, and false negative predictions for each threshold. It should be

noted that we consider 0.0 as a weight if the database does not have any impact on �nding Gold Standard

associations. We then calculate the recall, precision, and the F-measure. The similarity threshold T that

gives the best F-measure with the Training subset is veri�ed using the Test subset and retained to �lter

out edges whose similarity score is lower than T .

We systematically predict edges in G∗g , however, it is important to calculate a probability, or �p-value�,

for highlighting edges which are simply found by chance. We assume that the probability for �nding

an edge (x, y) by random chance is given by a hypergeometric distribution of the number of common

neighbors (x, z) and (y, z) and apply the formula presented in CODAC [Alborzi et al., 2018]. We consider

any p-value less than 0.05/|E∗
g | as denoting a statistically signi�cant edge. We �nally classify our Pfam-

Pfam interactions into �Gold�, �Silver�, and �Bronze� using the p-values of interactions in di�erent input

databases.

5.3 Results and Discussion

5.3.1 Data Source Weights and Similarity Score Threshold

Our merged dataset contains 513, 260 IntAct, 75, 823 DIP, 97, 487 MINT, 69, 940 HPRD, 816, 807 Bi-

oGRID, 4, 131, 112 STRING-EXP, 4, 050, 795 STRING-REST, and 30, 709 SIFTS candidate Pfam-Pfam

interactions with only one Pfam domain at both sides of each interaction, giving a total of 4, 592, 763

distinct Pfam-Pfam associations (Table 5.2). In our ROC-based training procedure, the best AUC value

of 0.9944 was obtained with weights wIntAct = 0.05, wDIP = 0.01, wMINT = 0.01, wBioGRID = 0.09,

wSTRING−Exp = 0.12, wSTRING−Rest = 0.06, wHPRD = 0.17, and wSIFTS = 1.0. These weights indeed

give far greater importance to the candidate interactions in the SIFTS dataset, compared to those from

other databases mainly because our positive instances are observed interactions extracted from PDB

chains. It also indicates that Pfam-Pfam interactions from HPRD and STRING-EXP are more val-
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Name Pfam-Pfam Interactions (Setwise) Pfam-Pfam Interactions (Pairwise) Pfam entries

Source IntAct 2,085,450 513,260 9,898

Datasets DIP 276,465 75,823 6,418

MINT 385,885 97,487 6,438

BioGRID 2,708,430 816,807 6,467

STRING-Exp 17,368,745 4,131,112 10,320

STRING-Rest 16,947,822 4,050,795 10,313

HPRD 354,087 69,940 3,985

SIFTS 1,734,362 60,114 7,449

Merged 20,505,086 4,592,763 12,622

Reference 3did ∩ KBDOCK 7,254 7,254 5,260

3did 8,581 8,581 5,545

KBDOCK 8,670 8,670 5,882

PPIDM Results 523,929 27,363 7,628

(Common to Gold Standard) (6,897) (6,897) (5,228)

Table 5.2: Statistics on the source datasets and calculated Pfam-Pfam Interactions.

ued that those from IntAct, DIP, MINT, BioGRID, and STRING-REST. Interestingly, all data sources

weights are higher than 0, thus, all these sources have impact, even very low, on the discovering our

Pfam-Pfam interactions.

The optimal score threshold was determined according to the F-measure calculated during our proce-

dure using our training dataset. This gave a score threshold of 0.02 for a maximum F-Measure of 0.968.

Applying this threshold to the test dataset yielded a comparable F-measure of 0.969, and precision and

recall values of 0.98.7 and 0.95, respectively.

5.3.2 Analysis of Inferred Pfam-Pfam Interactions

The overall results of the PPIDM are summarized in Table 5.2. This table shows the number of inter-

actions between sets of Pfam domains (Setwise interactions). It should be noted that the size of the

itemsets in both sides of the interactions are limited to two. Table 5.2 also shows the numbers of Pfam-

Pfam Interactions along with the numbers of distinct Pfam entries involved in those associations for the

eight sources and the merged datasets before �ltering. The number of interactions between sets of Pfams

are more than three times of the Pfam-Pfam interactions with one Pfam domain at both sides of each

interaction (Pairwise interactions). The pairwise interactions are included in the setwise interactions as

an interactions between sets of Pfams with size 1.

After applying the 0.02 score threshold, the number of pairwise Pfam-Pfam interactions falls to nearly

0.6% of the merged dataset with an overlap of about 87.2%, 91.9%, and 95.1% of the 3did, KBDOCK,

and Gold-Standard (3did ∩ KBDOCK) reference associations, respectively. The results also shows that

our PPIDM �ltered out around 97.5% of the setwise interactions in the merged dataset and predicted in

total 523,929 interactions between two sets of Pfam domains.

Table 5.3 shows the distribution of PPIDM predicted interactions according to our Gold, Silver, and

Bronze classi�cation, along with the degree of overlap with the Gold-Standard reference dataset. This

table shows that PPIDM provides 5,861 �Gold� domain-domain interactions (present in at least half of

the source datasets and having signi�cant p-values in all of the source datasets), 8,954 �Silver� domain-

domain interactions (present in less than half of the source datasets and having signi�cant p-values in all

the source datasets), and 12,548 �Bronze� domain-domain interactions (having at least one insigni�cant

p-value). It is interesting to see that the 42%, 31%, and 13% of our predicted Pfam-Pfam associations in
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Overlap with Single Domain

Class PPIDM Gold-Standard PPI

Gold 5,861 2,454 1,960

Silver 8,954 3,322 2,211

Bronze 12,548 1,635 2,880

Total 27,363 6,897 7,051

Table 5.3: The distribution of all pairwise interactions from PPIDM, their overlap with our Gold-

Standard, and involving single-domain protein-protein interactions, in the Gold, Silver, and Bronze

categories.

the Gold, Silver and Bronze classes are common with the Gold-Standard, respectively.

Table 5.3 also represents the number of our predicted Pfam-Pfam interactions involving at least one

protein-protein interaction with a pair of single-domain protein sequences. Thus, these unambiguous

associations constitute the most reliable interactions calculated by PPIDM.

5.3.3 Comparison with DOMINE

In order to compare PPIDM with the DOMINE database, we extracted Pfam-Pfam Interaction from the

�le available from the latest version of the DOMINE database (http://domine.utdallas.edu/). DOMINE

�le includes 26,219 Pfam-Pfam interactions with 5,410 distinct Pfam domains. This set (shown as purple

in Figure 5.2) was compared with the set of all 27,363 calculated Pfam-Pfam interactions found by

PPIDM (blue in Figure 5.2). This comparison showed that a total of 7,346 Pfam-Pfam interactions

from DOMINE are present in our calculated dataset including 4,779 interactions from the Gold-Standard

(Intersection between yellow, blue, and purple in Figure 5.2). The remaining 18,873 DOMINE interactions

were then compared with the interactions from the Gold-Standard. This comparison (the intersection of

purple and yellow minus blue) showed a total of 155 Pfam-Pfam interactions are common to DOMINE

and the Gold-Standard but not PPIDM, indicating that PPIDM misses only 3.1% (155 ÷ 4,934) of the

DOMINE interactions con�rmed by observed Pfam-Pfam interactions. Moreover, this comparison also

shows that PPIDM result set contains 2,118 (6, 897− 4, 779) additional Pfam-Pfam interactions that are

in Gold-Standard but not available through DOMINE.

5.3.4 Comparison with INstruct

In order to compare PPIDM with the INstruct database, we extracted the Pfam-Pfam interactions from

all the available Pfam interactions in the INstruct database (http://instruct.yulab.org/downloads.html).

The INstruct database includes 2,685 interactions with 1,517 distinct Pfam domains (red in Figure 5.3).

This set was compared with the set of all 27,363 calculated Pfam-Pfam interactions found by PPIDM.

This comparison showed that a total of 1,739 Pfam-Pfam interactions from INstruct are present in our

calculated dataset This comparison illustrated a total of 1,499 Pfam-Pfam interactions which are common

to INstruct and the Gold-Standard, indicating that PPIDM shared 97.9% of the INstruct interactions

existing in our Gold-Standard.

The remaining 946 INstruct interactions were then compared with the interactions from the Gold-

Standard. It showed that only 31 of which are common to 7,267 interactions from the Gold-Standard.
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Figure 5.2: Venn diagram for overlapping domain-domain interactions between PPIDM (blue), DOMINE

(purple), and our Gold-Standard (KBDOCK ∩ 3did, yellow). PPIDM and DOMINE share 7,346 inter-

actions. The Gold-Standard has 6,897 and 4,934 domain-domain interactions in common to the PPIDM

and DOMINE, respectively, while the Gold-Standard, PPIDM, and DOMINE share 4,779 interactions.

Moreover, this comparison also showed that PPIDM results contain 5,013 (6,752 - 1,739) additional

Pfam-Pfam interactions that do not exist in INstruct but are available through the Gold-Standard.

5.3.5 Evaluation of PPIDM Predictions

It is very di�cult to review individually 20,466 (27,363 - 6,897) Pfam-Pfam interactions predicted by

PPIDM and not present in the Gold Standard (KBDOCK ∩ 3did). Thus, we �rst attempted to estimate

our interactions potential value taking into account the KBDOCK and 3did interactions that are not

common to both databases (and consequently not in the Gold Standard) are e�ectively predicted by

PPIDM. The results are presented in Table 5.4 reveal that PPIDM �nds 91.9% and 87.2% of the KBDOCK

and 3did interactions, respectively. This contrasts with the lower percentage observed for the overlap

with DOMINE and INSTRUCT databases (28% and 64.8%, respectively). Nonetheless, it did not escape

our attention that 75.4% and 44% of the KBDOCK and 3did interactions which are not present in the

Gold Standard are indeed predicted by PPIDM.

Moreover, 77% of the predicted Pfam-Pfam interactions overlapping with KBOCK and 3did are

interestingly from the gold and silver categories (i.e. all p-values signi�cant). This statistical overview is

a good implication that PPIDM predictions likely contain high quality and relevant new DDIs.

We also analyzed a small subset of PPIDM interactions, namely the one-to-one Pfam-Pfam interactions

in which the left and right Pfam domains are uniquely associated with only one domain. Such one-to-

one interactions can simply be used to evaluate the biological consistency of the discovered knowledge

through our method. We obtained a total of 1,606 one-to-one pairwise Pfam-Pfam interactions with

consensus scores ranging from 0.2046 to 0.8104, 277 interactions in the gold category, 1,284 and 45 in the

silver and bronze categories, respectively. From the 1,606 interactions, 1344 are already observed by our

Gold-Standard (250, 1,086, and 8 interactions from the gold, silver, and bronze categories, respectively)

and 262 are new (27 from the gold category). We additionally found 67 one-to-one interactions between

Pfam itemsets with size of 2. with consensus scores ranging from 0.2311 to 0.6752.
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Figure 5.3: Venn diagram for overlapping domain-domain interactions between PPIDM (blue), INstruct

(red), and our Gold-Standard (KBDOCK ∩ 3did, yellow). PPIDM and INstruct share 1,739 interactions.

The Gold-Standard has 6,897 and 1,530 domain-domain interactions in common to the PPIDM and

INstruct, respectively, while the Gold-Standard, PPIDM, and INstruct share 1,499 interactions.

Overlap with

Class PPIDM Gold Standard KBDOCK 3did DOMINE INstruct

Gold 5,861 2,454 2,752 2,617 3,018 1,255

Silver 8,954 2,808 3,268 2,964 2,238 123

Bronze 12,548 1,635 1,945 1,900 2,090 361

Total 27,363 6,897 7,965 7,481 7,346 1,739

(Percentage of Database) (95.1%) (91.9%) (87.2%) (28%) (64.8%)

Table 5.4: The number of overlapping PPIDM interactions with di�erent interactions sources divided

into Gold, Silver, and Bronze.
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In summary, it appears that the PPIDM predictions constitute an interesting resource for looking

at known or unknown DDIs and that in each studied case unknown DDIs reveal to re�ect reasonable

biological interactions.

5.4 Conclusion

We have presented PPIDM for mining protein-protein interactions at the domain level. This was accom-

plished by discovering single and subsets of Pfam domains while assuming that each connected neighbors

consists of a pair of elements. Our method yields an enrichment of about 4-fold in the number of Pfam-

Pfam interactions that currently exist in the intersection of two datasets of observed interactions. PPIDM

achieved a F-measure of 0.97, and precision and recall values of 0.99, 0.95, respectively. We believe that

the large numbers of inferred Pfam-Pfam interactions can be used to create a novel database of predicted

protein-protein interactions as well as annotate UniProt sequences.
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6.1 Summary of the Main Contributions

In this thesis we contributed to the Knowledge Discovery in Bioinformatics, speci�cally we have targeted

the domains of protein function annotation and protein interaction by developing novel methods and

applications called CODAC (ECDomainMiner and GODomainMiner), CARDM, and PPIDM.

In detail, we have presented the development of a new approach to �nd direct associations between

pairs of elements linked indirectly through various common neighbors (CODAC), and then using this

approach to directly associate biological functions to protein domains, and to discover domain-domain

interactions. Finally, we have extended this approach to generate functional prediction models and

comprehensively annotate protein structures and sequences (CARDM).

Concerning the generic formal CODAC approach, it was designed as tripartite graph framework in

which one set of sparse edges gets enriched into a new set of weighted edges through the mining of the two

other sets of edges. This approach has been implemented as ECDomainMiner and GODomainMiner, for

inferring associations between EC numbers and GO terms with protein domains, e.g. Pfam. Our method

provides an overall enrichment of more than 13-fold in the number of direct associations between EC

and Pfam or GO and Pfam associations that currently exist in the manually curated InterPro database.

Our �ndings had overlap with nearly 99% and 93% of the EC-Pfam and GO-Pfam associations present

in InterPro database. Based on our presented analysis, our method has higher coverage of associations

in InterPro in comparison to dcGO. Furthermore, a selected subset of one-to-one associations has been

analyzed and these all appear to be highly meaningful from a biological point of view and consistent

with available knowledge. We believe that these high quality function-domain associations simplify our

understanding and investigating of protein structure-function relationships at the domain level.
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Nevertheless, our method also infers a large amount of new function-domain associations that cannot

be validated in a simple manner. We are aware that our method cannot be considered as a learning

method as we lack any independent function-domain dataset to test the prediction. We prefer to consider

it as a score-based inference method which is reminiscent of information retrieval methods, especially for

InterPro-derived associations which are internal positive controls used to calibrate the system (weight

optimization and optimal threshold �nding).

Concerning functional annotation of proteins, we decided to explore these large numbers of associations

between protein functions and domains inferred by our approach, leading us to introduce a new approach

called CARDM. This new systemic approach is designed and developed to functionally annotate protein

sequences and structures in a completely automatic way. We thus applied our annotation rules for

functional prediction of the sequences in the UniProtKB/TrEMBL and target sequences provided by

CAFA 2013. The automatic functional annotation protein sequences was done in collaboration with

UniProt team at European Bioinformatics Institute (EBI). According to the latest detailed analysis from

the UniProt curators, our large amount of predicted annotations are very useful with low disagreement

with their existing annotation systems, therefore it can be integrated in the UniProtKB/TrEMBL.

Finally, the CODAC approach was extended to deal with more general tripartite graphs including

itemsets rather than single items, and sets of edges with di�erent semantics. This was implemented as

�PPIDM� to computationally discover interactions between single or subsets of Pfam protein domains.

All automated methods to predicting domain-domain interactions return interactions between two single

protein domains, however, our PPIDM is the �rst method that can predict interactions between both

single and subsets of protein domains on each side of the interactions.

During the course of this thesis, two peer-reviewed journal articles: �ECDomainMiner: discovering

hidden associations between enzyme commission numbers and Pfam domains� (BMC Bioinformatics

2017) and �Computational Discovery of Direct Associations between GO terms and Protein Domains�

(BMC Bioinformatics 2018-Accepted), in addition to two peer-reviewed conference papers of �EC-PSI:

Associating Enzyme Commission Numbers with Pfam Domains� (bioRxiv 2015) and �Associating Gene

Ontology Terms with Pfam Protein Domains� (Lecture Notes in Computer Science 2017), have been

published. One manuscript about �Combinatorial Association Rules for Protein Functional Annotation

Using Inferred Function-Domain Associations� is in preparation with the UniProt team and one more

manuscript about �PPIDM� is in the �nal stage of preparation.

The ECDomainMiner, GODomainMiner, CARDM, and PPIDM result databases are publicly avail-

able at http://ecdm.loria.fr/, http://godm.loria.fr/, http://cardm.loria.fr/, http://ppidm.loria.fr/, re-

spectively.

6.2 Future Directions

6.2.1 Short-Term Perspectives

• Algorithmic Improvements: GODomainMiner and ECDomainMiner provide highly reliable as-

sociations between protein functions and domains. In the current version of the ECDomainMiner,

UniProtKB input dataset is divided into three datasets based on the manual, automatic and UniRule

annotation types. Similarly, GODomainMiner divides UniProt entires into four datasets according

to SwissProt IEA and manual, and TrEMBL IEA and manual evidence codes. However, further

separation of such annotations in the input datasets according to the annotation source might

improve the results. UniRule annotations can break into Hamap-Rule, RuleBase and SAAS for
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ECDomainMiner, and further separation of GODomainMiner input datasets based on the manual

evidence codes is one short-time future direction for improving our two main inferred datasets.

The CODAC algorithm �nds weighted associations between two items using a tripartite graph.

Edges are binary in the current version of the CODAC. One extension to the CODAC is that the

edges between X, Y , and Z could be weighted between zero and one based on the quality of the

associations.

CARDM produces prediction models that contain annotation rules with less than four protein do-

mains. Increasing the number of protein domains in the annotation rules will increase the execution

time, however, it could improve the quality of the annotation rules and �nd more annotation rules

with higher con�dence. Moreover, the annotation rules can be de�ned as a combination of protein

domains, taxonomic information, and other experimentally discovered functions as the left-hand

side of the rule. Moreover, statistical analysis of generated rules (e.g. p-value) would increase the

reliability of accepted rules.

• More Biological Applications: We proposed a method to computationally discover interactions

between Pfam domains, however, we can design a system to create models for Protein-Protein

Interaction using association rule mining techniques. Similar to CARDM, our method may consist

of three main steps, namely the learning, modeling, and annotation steps in which the learning

step consists of inferring and �ltering domain-domain interactions using the CODAC approach and

modeling step comprises the task of generating and �ltering association rules involving domains

and taxons and creating annotation models by rule aggregation. Last but not least, the annotation

step includes using the selected prediction models to discover protein-protein interactions.

Protein domain structure classi�cation systems such as CATH and SCOP provide a useful way to

describe evolutionary structure-function relationships. Similarly, the Pfam sequence-based classi�-

cation identi�es sequence-function relationships. Nonetheless, there is no complete direct mapping

from one classi�cation to another. This means that functional annotations that have been assigned

to one classi�cation cannot always be assigned to another. We can use our CODAC approach to sys-

tematically analyze multiple protein domain relationships in the SIFTS and UniProtKB databases

in order to infer direct mappings between CATH superfamilies, Pfam clans or families, and SCOP

superfamilies. Our preliminary results show that we provide 3-fold increase in the number of avail-

able CATH-SCOP mappings in the Genome3D whilst our result covers nearly 99% of the existing

mappings.

Another interesting application of the CODAC is to �nd the mappings between di�erent categories of

Gene Ontologies. Such a list of mappings between molecular function, biological process and cellular

components helps locating the lack of integrity in the annotations of the UniProtKB/TrEMBL and

also better understanding of the relations between ontologies terms.

In addition, using CODAC and CARDM methods, existing general annotations in the UniProtKB

can also be predicted for the protein sequences and structures that currently lack any annotations.

Such predictions could be carried out by creating annotation rules using either direct associations

between general comments and protein domains, or direct associations between general comments

and GO terms.

PPIDM provided a large number of domain interactions between Pfam domains. Pfam is one of the

most widely spread domain classi�cation over protein sequences and structures. However, interac-

tions for other protein domain classi�cations such as CDD or TIGRFAMs could be interesting for
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functional annotation of interacting proteins. Moreover, such interactions could assist in generating

better prediction models for protein-protein interaction.

• Execution Time Improvement: Inferring associations between two items in X and in Y is

processed separately from other items. Moreover, there are often a large number of combinations

between items in X and items in Y in biological data. This indicates that from the execution point

of view, the CODAC algorithm could be improved and highly parallelized in GPU using CUDA 8

Python (https://developer.nvidia.com/how-to-cuda-python) or CPU using symmetric multiprocess-

ing libraries (https://wiki.python.org/moin/ParallelProcessing). Similarly, generating annotation

rules in CARDM algorithm and their application on the large number of protein sequences can also

be parallelized because the generation and application of each prediction model is separate from

the other models.

6.2.2 Wider Perspectives

• RNA-Protein and DNA-Protein Interactions: RNA-protein and DNA-protein interactions

play essential roles in many cellular processes. For instance, there are interactions between RNA and

proteins within the ribosome. RNA-protein interactions mediate RNA metabolic processes such as

poly-adenylation, splicing, stability of messenger RNA, translation, and localization [Tuschl, 2003].

Moreover, several RNA-binding proteins are involved in human diseases [Cooper et al., 2009]. DNA-

protein interactions also have an impact on gene expression for example through recognition of DNA

short sequences and transcription factors or other regulatory proteins. There are some computa-

tional methods developed to predict the interactions between proteins and DNA [Nagarajan et al., 2013]

or RNA [Mann et al., 2017, Puton et al., 2012] using structure and sequence data.

We believe that we can use the CODAC approach to �nd interactions between DNA and protein

domains on one hand and RNA and protein domains on the other hand. Such �ndings could be

used to create prediction models for DNA-protein and RNA-protein prediction using the CARDM

approach.

• Domains Architectures: In the characterization of the protein with functions, Bashton and his

colleagues claim that functions of an individual protein are not only due to the combination of

the functions of its constituent domains, but also originate from a unique way that the building

blocks of the protein are interactively contributing [Bashton and Chothia, 2007]. This leads us to

the notion of domain architecture as an unique feature of proteins based on the arrangement of

domains. These features consist of the domain content and the linear order of the domains in the

protein sequences. Domain architecture concept has already been used by the SMART protein

domain classi�cation [Letunic et al., 2014] and recently been considered as an important feature

in protein function prediction [Do§an et al., 2016]. In a larger scale, we believe such a concept of

domain arrangements may upgrade our annotation prediction models produced by the CARDM

system.

• Function Similarity: GODomainMiner �nds direct associations between GO terms and protein

domains. We used hierarchy of the Gene Ontology by adding the GO terms ancestors to improve the

discovery of GO-domain associations. However, GO terms similarity can also be computed between

8Compute Uni�ed Device Architecture (CUDA) is an application programming interface model for parallel computing

created by Nvidia. It allows software application developers to use a CUDA-enabled GPU for general purpose processing.

Today, hundreds of applications such as [Alborzi et al., 2014] are GPU-accelerated.
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terms which are not in one branch of the hierarchy. Such similarities between two GO terms can

be calculated using di�erent methods such as IntelliGO [Benabderrahmane et al., 2010]. Using GO

terms similarity in addition to the GO hierarchy could further improve our �ndings inferred by

GODomainMiner.

• Negative Taxonomic Information: Feuermann and his colleagues infer function according to an

approach called �GO Phylogenetic Annotation� [Feuermann et al., 2016]. This approach integrates

GO annotations from genes across di�erent organisms which are evolutionarily related. Then, they

construct a model of the evolution of gene functions. Therefore, a function could be active in two

proteins of two distant organisms but could be inactive in a closer related organisms. This lead us

to the idea that due to evolution a function could exist for a given protein through all organisms of a

taxonomy classi�cation except a subbranch. Therefore, absence of a subbranch of taxonomic lineage

could also be integrated in our prediction models. CARDM generates annotation rules and then

prediction models based only on the presence of taxonomic lineage. In short, if an annotation rule

has the same taxon as the target sequence, we go to the veri�cation if the domains of annotation

rule are a subset of domains in the target sequence. However, we could upgrade our prediction

models during learning phase by including the absence of certain taxonomic information. In this

situation, we could create smarter annotation rules that assign a function to a given protein through

organisms belonging to the taxon branch excluding one or more subbranches.

• Beyond Bioinformatics: As a generic approach, CODAC can be applied on any tripartite setting

in which we have indirect connections between two sets (please refer to section 3.1). One example

is that we can use CODAC to predict the best applications for jobs. In this problem, language

patterns of experiences and required skills are extracted from both resumes of applicants and the

job descriptions. Thus, resumes, jobs, and patterns are the items in theX, Y , and Z of our approach.

We next run CODAC to �nd the similarities between resumes and jobs based on associated patterns.

Then, the best similarity shows the best applicant for the job. The schematic illustration of the

selection adapted to our tripartite graph is shown in Figure 6.1. This problem could be solved

simply by core CODAC algorithm, however, we could improve results by dividing the language

patterns into time ranges (each time range is considered as one input source), clustering the similar

patterns based on a thesaurus (Python programming and Python development are identical), and

enriching skills hierarchically (a person who knows Python programming, knows programming in

general).

Other examples are suggesting vacation spots or weekend getaways to customers, �nding possible

foods with new ingredients which could be added to the menu of a chained restaurant and accepted

by frequent customers, recommendation of items to the loyalty card holder customers, highlighting

cosmetic materials usable for a certain group of customers, and many other classical recommendation

problems.

6.2.3 Further Veri�cation of Inferred Functions

CODAC and CARDM provide a large set of function-domain and function-sequences/structure associa-

tions which are above certain thresholds. Such thresholds reduce the number of false-positive predictions

remarkably. However, further con�rmation of the prediction would add more credibility to our �ndings

and allow us to design knowledge-base �lters. There are di�erent ways to verify the �ndings such as

wet-lab experiments. At the time of writing this thesis, we are collaborating with a microbiology lab in
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Figure 6.1: Schematic illustration of �nding best resumes for job advertisements. In an instantiation of

CODAC, X is a set of resumes, Y a set of job advertisement, and Z a set of language patterns extracted

from the text of resumes and job descriptions. Selection dataset contains all newly discovered resume-job

associations which are sorted and represented as the list of best candidates.
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Nancy to con�rm our predictions on a small number of proteins (636 proteins) encoded by particular

genetic elements.

Another way to verify our predictions is to use observed domain-domain interaction databases such

as KBDOCK, and check if the interacting domains have same the functions. This can be extended to the

observed protein-protein interactions and verify functions of interacting partners in whole protein level.
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Appendix A

ECDomainMiner/GODomainMiner

Web-Servers

A.1 Introducing the ECDomainMiner/GODomainMinerWeb Server

The ECDomainMiner and GODomainMiner are developed as a web-server, which we believe will of

remarkable interest to the functional annotation community.

The ECDomainMiner web server may be queried by EC number or Pfam domain (Figure A.1). Thus,

if one wishes to search for associations for a protein chain that currently lacks any EC annotation in the

PDB (e.g. chain 2q7xA), one �rst needs to retrieve from the PDB the Pfam domain(s) that it contains (in

this example, PF01933). Then, querying the ECDomainMiner server with each Pfam domain identi�er

will show the associated EC numbers (in this example, 2.7.8.28), along with the associated �ltering scores

and quality classes. In this example, ECDomainMiner �nds a Gold quality association between PF01933,

present in PDB chain 2q7xA, and EC number 2.7.8.28 (2-phospho-L-lactate transferase) which conse-

quently can be associated with PDB entry 2q7x. Interestingly, PDB entry 2q7x is described as a putative

phospho transferase from streptococcus pneumoniae tigr4, which is consistent with the enzymatic activity

found by ECDomainMiner, and which could not be deduced from the Pfam domain name (UPF0052).

The GODomainMiner web server works in a very similar way and can be queried by GO term or

Pfam domain (Figure A.2).

A.2 Implementation Details

ECDomainMiner and GODomainMiner web servers were written principally in the PHP scripting lan-

guage, and JavaScript. PHP was used for creating all the transactions between client and servers. jQuery

is one of the most interesting libraries in JavaScript, and it was used for handling the web page events.

DataTables Table is a plug-in for jQuery and has been used to show the result. Data are store in MySQL

and queries are processed using the PHP MySQL interface. Data in the MySQL database are prepared

with Python scripts. The web interface has been tested using several popular browsers for the Windows,

Linux, and Mac OS X operating systems.
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Figure A.1: A screenshot of the ECDomainMiner Home page
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Figure A.2: A screenshot of the GODomainMiner Home page
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Appendix B

Integrating inferred EC-domain and

GO-domain in KBDOCK 2 Server

B.1 Introduction to KBDOCK 2

Three years ago KBDOCK web server is introduced for analyzing 3D protein domain interactions accord-

ing to the Pfam protein domain family classi�cation [Ghoorah et al., 2013a]. The original KBDOCK web

server (http://kbdock.loria.fr/) has since received over 22,000 distinct visits, thus demonstration that the

server provides a useful resource for the community.

We have recently, updated and extended the KBDOCK server and database, which we believe will

of considerable interest to the structural bioinformatics community. For comparison and evaluation

purposes, the new server is currently available with a new URL (http://kbdock2.loria.fr/). Notable

features of the new server include:

• The server's database has been re-built using the September 15 2016 snapshot of the PDB and

version 30.0 (September 2016) of the Pfam domain classi�cation, giving an increase of over 33%

in the number of Pfam domains having 3D structures (385,686 Pfam domain structures compared

to 288,309 in 2013), and a 40% increase in the number of 3D domain-domain interactions (334,748

compared to 239,494), as well as similar increases in the coverage of domain-peptide interactions.

• 3D visualisation of structural interactions by the old Jmol and Jsmol tools has been replaced by

�PV� (https://biasmv.github.io/pv/), a modern HTML5 graphical interface which allows for higher

quality graphics and fast hardware rendering on the user's desktop.

• A new tooltip has been added to the results pages which provides quick access to the Enzyme

Classi�cation (EC) number and GO gene ontology entries for each Pfam domain through links to the

Brenda (http://www.brenda-enzymes.org/), Amigo (http://amigo.geneontology.org/amigo/), and

QuickGO (https://www.ebi.ac.uk/QuickGO/) web services, respectively. This tooltip also proposes

EC numbers and GO terms that have been predicted by our new software tools �ECDomainMiner�

[Alborzi et al., 2017c], and �GODomainMiner� [Alborzi et al., 2017b].

Overall, we believe the new KBDOCK server provides a convenient way for users to analyze the latest

available 3D protein domain interactions and to consider the known and predicted functional annotations

of those interactions from a structural point of view.
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The web site contains an easy-to-use Help page (http://kbdock2.loria.fr/help.php) which explains

through worked examples how to use the server (this section is currently being updated to show screen-

shots with PV instead of the old Jmol).

B.2 Functions Associated with Pfam Domains in KBDOCK 2

Figure B.1 depicts the EC and GO functions associated to Trypsin domain, PF00089, in the KBDOCK2

server. EC and GO Functions are divided into two groups; The existing functions in the InterPro database,

and predicted functions by ECDomainMiner and GODomainMiner. Clicking on the EC numbers or GO

terms opens the function information webpage in the Brenda, QuickGO or Amigo websites.
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Figure B.1: 22 EC numbers and 2 GO terms which are associated to the Trypsin domain (PF00089).
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Appendix C

Scienti�c Articles and Posters

C.1 Published Journal and Conference Papers

C.1.1 EC-PSI: Associating Enzyme Commission Numbers with Pfam Do-

mains

With the growing number of protein structures in the protein data bank (PDB), there is a need to

annotate these structures at the domain level in order to relate protein structure to protein function.

Thanks to the SIFTS database, many PDB chains are now cross-referenced with Pfam domains and

enzyme commission (EC) numbers. However, these annotations do not include any explicit relationship

between individual Pfam domains and EC numbers. This article presents a novel statistical training-based

method called EC-PSI that can automatically infer high con�dence associations between EC numbers and

Pfam domains directly from EC-chain associations from SIFTS and from EC-sequence associations from

the SwissProt, and TrEMBL databases. By collecting and integrating these existing EC-chain/sequence

annotations, our approach is able to infer a total of 8,329 direct EC-Pfam associations with an overall

F-measure of 0.819 with respect to the manually curated InterPro database, which we treat here as a

�gold standard� reference dataset. Thus, compared to the 1,493 EC-Pfam associations in InterPro, our

approach provides a way to �nd over six times as many high quality EC-Pfam associations completely

automatically.
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Abstract With the growing number of protein structures in the protein data bank (PDB), there
is a need to annotate these structures at the domain level in order to relate protein structure to
protein function. Thanks to the SIFTS database, many PDB chains are now cross-referenced with
Pfam domains and enzyme commission (EC) numbers. However, these annotations do not include
any explicit relationship between individual Pfam domains and EC numbers. This article presents
a novel statistical training-based method called EC-PSI that can automatically infer high confi-
dence associations between EC numbers and Pfam domains directly from EC-chain associations
from SIFTS and from EC-sequence associations from the SwissProt, and TrEMBL databases. By
collecting and integrating these existing EC-chain/sequence annotations, our approach is able to
infer a total of 8,329 direct EC-Pfam associations with an overall F-measure of 0.819 with respect
to the manually curated InterPro database, which we treat here as a “gold standard” reference
dataset. Thus, compared to the 1,493 EC-Pfam associations in InterPro, our approach provides a
way to find over six times as many high quality EC-Pfam associations completely automatically.

Keywords Enzyme Commission Number (EC Number), Pfam Domains, Protein Structure Anno-
tation, Machine Learning.

1. Introduction

Proteins are macromolecules comprising one or more chains of amino acid residues. Protein molecules
carry out many essential biological functions such as catalysing metabolic reactions and mediating signals
between cells, for example. These functions are often carried out by distinct “domains”, which may often be
identified as highly conserved regions within a multiple alignment of the sequences of a group of similar pro-
teins, as in the Pfam database [1], for example. It is widely accepted that such protein domains often correspond
to distinct and stable three-dimensional (3D) structures, and that there is often a close relationship between pro-
tein structure and protein function [2]. Indeed, it is well known that protein structures are often more highly
conserved than protein sequences [3], and this suggests that proteins with similar structures will have similar
biological functions [4]. The Protein Data Bank (PDB) [5,6] now contains over 107,000 3D structures, most of
which have been solved by X-ray crystallography or NMR spectroscopy. Structure-based classifications of pro-
tein domains such as SCOP [7] and CATH [8] have revealed many conserved structure-function relationships
at the molecular level, and these classifications are now widely used in the community. However, because there
does not exist a standard way to define a protein domain precisely, there is not always a one-to-one correspon-
dence between domains defined by SCOP and those defined by CATH, for example, or between such structural
domains and the domains defined by Pfam.

As well as sequence-based and structure-based classifications, proteins may also be classified according
to their function. For example, the Enzyme Commission [9] uses a hierarchical four-digit numbering system
to classify enzymatic function of many proteins. The first digit, or top-level “branch” of the hierarchy, selects
one of six principal enzyme classes (oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase). The
second digit defines a general enzyme class (chemical substrate type). The third digit defines a more specific
enzyme-substrate class (e.g. to distinguish methyl transferase from formyl transferase), while the fourth digit,
if present, defines a particular enzyme substrate. However, it should be noted that because EC numbers are
assigned according to the reaction catalyzed, it is possible for distinct proteins to be assigned the same EC
number even if they have no sequence similarity or if they belong to different structural families.
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While the above classification schemes are very useful, they do not generally provide a direct relationship
between enzymatic function and a 3D domain structure or a (sequence-based) Pfam domain. Thus, except for
single-domain proteins where the mapping is obvious, unless a 3D structure has been very carefully annotated
at the time it was deposited in the PDB (which is often not the case), it is generally not possible to compare
and classify structure-function relationships at the domain level. Nonetheless, several groups have described
approaches or resources that can associate PDB protein chains with enzyme EC numbers. For example, both
the IMB Jena library [10] and the latest version of the PDBsum web site [11, 12] map each chain from a PDB
file to its component CATH and Pfam domains, and each provides a link to the Enzyme database [13] for each
PDB chain that has an EC number. PDBSprotEC [14] maps PDB chains to SwissProt and then uses the Enzyme
database to obtain a mapping between SwissProt codes and EC numbers. Additional partial EC assignments
are also retrieved directly from SwissProt. Columba [15] integrates annotation data from 12 different databases
including PDB, SwissProt, CATH, SCOP, and Enzyme. For each PDB entry that has an EC number, Columba
annotates the biological unit with the enzyme name and biochemical reaction, and it links SCOP and CATH
domain information to each protein chain. PDB-UF [16] aims to assign EC numbers to unannotated protein
structures which have no detectable sequence similarity to other proteins of known function. This approach
first clusters existing protein structures using the 3D-hit structure alignment program [17]. It then assigns an
unknown query structure to the most similar cluster, and it assigns a complete or partial EC number to the query
using the EC numbers found in the cluster. Probably the most up-to-date and exhaustive association between
PDB chains and EC numbers is currently provided by SIFTS [18], which is a collaboration between the Protein
Data Bank in Europe and UniProt [19]. SIFTS incorporates a semi-automated procedure which links PDB
chain entries to external biological resources such as Pfam, IntEnz [13], CATH and SCOP.

While all of the above approaches can provide associations between PDB protein chains and enzyme EC
numbers, to our knowledge, SCOPEC [20] is the only published approach for automatically assigning EC
numbers to structural domains. SCOPEC uses sequence information from SwissProt and PDB entries that have
been previously annotated with EC numbers in order to assign EC numbers to SCOP domains. The SCOPEC
approach first looks for PDB chains that fully map to SwissProt entries (to within up to 70 residues) and that
match on at least the first three EC number digits. It then extracts the single domain structures which can thus
be associated unambiguously with an EC number. It then uses these annotated domains as queries against the
multi-domain structures to annotate homologous domains. It also uses the Catalytic Site Atlas [21] to locate
catalytic domains in multi-domain structures. However, a limitation of the SCOPEC approach is that it normally
associates EC numbers only with single domain proteins. Although SCOPEC can also propagate a known EC-
domain association to a matching domain in a multi-domain protein, it is not designed to deconvolute EC-chain
associations into individual EC-domain associations. Furthermore, it appears that the SCOPEC database is no
longer available on-line. There is therefore a fresh need to develop a way of associating EC numbers with
individual domains in order to study the large number of structural domains that now exist in the PDB.

Here, we present a novel statistical training-based approach for finding associations between EC numbers
and Pfam domains directly from existing EC-chain associations from SIFTS and EC-sequence associations
from SwissProt and TrEMBL. We call our approach “EC-PSI” (being short for “EC-Pfam statistical inferen-
cing”). While SwissProt and TrEMBL were originally developed separately, both databases have since been
incorporated in the UniProt resource. SwissProt is now a high quality, non-redundant, and manually curated
part of UniProt Knowledge Base (UniProtKB). In contrast, TrEMBL is an automatically annotated and unrevie-
wed section of UniProtKB, and contains around 40 times more entries than SwissProt. In order to parameterise
and evaluate EC-PSI, we use the InterPro database [22] which contains a large number of manually curated
Pfam-EC associations. Thus it may be used as a “gold standard” reference dataset against which our predicted
Pfam-EC associations may be compared.

2. Methods

a. Data Preparation

Flat data files of SIFTS (October 2014), SwissProt and TrEMBL (November 2014), and InterPro (version
48.0) were downloaded and parsed using in-house Python scripts. From the SIFTS data, we extracted associa-
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tions between Pfam domains and PDB chains, and associations between PDB chains and EC numbers. These
associations were imported into two tables of our relational database. In the first table, each PDB chain is re-
lated to one or more Pfam domains (FIG. 1 A). In the second table, each PDB chain is related to one or more
EC numbers (FIG. 1 B). Thus, these two tables together define a many-to-many relation between EC numbers
and Pfam domains (FIG. 1 C). UniProtKB provides another source of relationships between EC numbers and
Pfam domains. However, these relationships are mediated by UniProt accession numbers (ANs) instead of PDB
chains. Since UniProtKB is divided into SwissProt and TrEMBL, we parsed and extracted the corresponding
AN-Pfam and AN-EC associations from the SwissProt and TrEMBL databases, and we stored the resulting
many-to-many relations in two further pairs of tables, similar to the two SIFTS tables.

Figure 1. Illustration of the relationships extracted from the SIFTS database between (A) PDB chains and Pfam domains,
(B) PDB chains and EC numbers, and (C) the many-to-many relationship between EC numbers and Pam domains.

As mentioned above, we used the InterPro manually curated EC-Pfam associations as a “gold standard”
reference dataset. When considering only full four-digit EC numbers, we extracted a total of 1,493 EC-Pfam
associations from InterPro, which we stored in our MySQL relational database. However, because we assume
that all of the InterPro relations are “true” (i.e. correct) EC-Pfam associations, we needed to generate some
plausible examples of false relations in order to train the EC-PSI algorithm. We therefore used our confidence
score (see Section 2.b) to calculate and rank all possible EC-Pfam associations from SIFTS, SwissProt, and
TrEMBL, and we extracted and stored 1,493 low-scoring EC-Pfam associations which could be calculated
using data from at least two of the three databases. Because these associations have very little support in the
data, we consider them to be “false” associations for the purpose of training our algorithm. In the rest of this
paper, we will refer to the combined set of 1,493 “true” EC-Pfam associations from InterPro and our 1,493
calculated “false” associations as our “GoldStandard” dataset.

Figure 2. Graphical representation of the relationships between an EC number, m, and N Pfam domains via C PDB
chains.

b. Inferring Associations Between EC Numbers and Pfam Domains

In order to infer direct Pfam-EC relations from each of the above data sources, we collected all tuples of
SIFTS data in the form (EC,PDB,Pfam), and we sorted these tuples by four-digit EC number and then by PDB
chain in order to extract a tree-like set of relations for each EC number, as illustrated in FIG. 2. A similar sorting
procedure was applied to the corresponding tuples extracted from the SwissProt and TrEMBL datasets. Then,
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for each EC number, we analyse its tree of associations by counting the numbers of occurrences of PDB chains
(or ANs for SwissProt and TrEMBL) and Pfam domains. More specifically, for each Pfam domain within an
EC tree, we calculate an EC-Pfam frequency score as the ratio between the number of chains in the tree that
possess the given Pfam domain and the total number of PDB chains in the tree. In particular, letting m denote
an EC number, i denote a PDB chain identifier, and supposing that the mth EC tree contains Cm PDB chains
denoted by Pm

i (for i = 1, ...Cm) and that Dn denote the nth Pfam domain, we define the PPFEC (“Pfam-PDB
Frequency for a given EC-Pfam association”) score as

PPFECm
n =

|{Pm
i ;Dn ∈ Pm

i , i = 1, ..., Cm}|
Cm

, (1)

where |{Pm}| denotes the cardinality of a set of PDB chains. The notation Dn ∈ Pm
i is understood to mean

that chain Pm
i possesses domain Dn. Equation (1) may be understood more graphically by considering FIG. 2.

For a given EC number, m, and a given Pfam domain, n, the PPFEC is calculated as the degree of the Pfam
node (number of connecting dashed lines) divided by the degree of the EC node (number of solid lines).

The corresponding frequencies for an inferred association between a Pfam domain and an EC number
derived from the SwissProt and TrEMBL sequence annotations may be calculated in a similar way to give
a “PSFEC” score (Pfam-SwissProt Frequency for a given EC-Pfam relation), and a “PTFEC” score (Pfam-
TrEMBL Frequency for a given EC-Pfam relation), respectively. Thus, we obtain a frequency-based association
score for each of the three data sources. However, because we wish to draw upon the relations from all three
datasets, we combine the three frequency scores to give a single normalised “confidence score”,

ConfidenceScorem,n =
a× PPFECm,n + b× PSFECm,n + c× PTFECm,n

(a+ b+ c)
, (2)

where a, b, and c are weight factors, to be determined, and where an individual frequency score is set to zero
whenever there is missing data for a given m and n.

In order to find the best values for the above three weight factors, we varied their values from 0.0 to 1.0
in steps of 0.1, and for each combination we scored and ranked each of the 2,986 GoldStandard associations.
Next, using the ranked list of true and false associations, we labeled true associations found in the top half of
the ranked list as true positives (TPs), and we labeled true associations found in the bottom half of the list as
false negatives (FNs). Similarly, we labeled false associations found in the top half of the list as false positives
(FPs), and false associations in the bottom half as true negatives (TNs). We then calculated a Receiver-Operator
(ROC) curve [23] of the TP rate against the FP rate, and we used the area under the curve (AUC) of the ROC
plot as the overall quality measure of the scoring function.

c. Defining a Confidence Score Threshold

Given that the best weights for each data source have been determined, we next wished to determine an
overall threshold for our EC-Pfam association confidence score. In order to do this in an objective way, we
randomly split the GoldStandard dataset into two equal groups with equal numbers of true and false instances
to give a “Training” dataset and a “Test” dataset. Next, we scored and ranked the members of the Training
dataset, and we divided the ranked list into two subsets according to a threshold value that ranged from 0.0
to 1.0 in steps of 0.01. For each threshold value, we counted the number of TPs (true associations above the
threshold), FPs (false associations above the threshold), TNs (false associations below the threshold), and FNs
(true associations below the threshold). We then calculated the recall, R, precision, P , and their harmonic mean
in order to obtain the “F-measure” according to

R =
TP

TP + FN
, P =

TP

TP + FP
, and F =

2RP

P +R
. (3)

The score threshold that gave the best F-measure was selected as the best threshold to use for accepting predic-
ted associations.
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3. Results and Discussion

a. Parameters of Our EC-PSI Procedure

Our EC-PSI procedure takes as input three large datasets of EC-chain associations from SIFTS, and EC-
sequence associations from SwissProt and TrEMBL. These individual source datasets, which contain 6, 204,
9, 879, and 28, 572 associations respectively, were merged to give a global dataset of 32,018 non-redundant
EC-Pfam associations. Our scoring function was trained using our GoldStandard dataset consisting of 1,493
“true” associations taken from InterPro and 1,493 “false” associations taken from low-scoring associations
from SIFTS, SwissProt, and TrEMBL. We found that the best ROC-plot AUC is obtained with weights a = 0.1,
b = 1.0, and c = 0.1 (Section 2.a), for a maximum AUC value of 0.888. These weights clearly give a 10-fold
greater importance to the associations derived from SwissProt than to those derived from SIFTS and TrEMBL.

Using these weights, various threshold values of the confidence score were tested on the ”Training” subset
of our GoldStandard dataset, using the F-measure to quantify the results objectively (Section 2.b). The optimal
score threshold was found to be 0.08 for a maximum F-Measure of 0.828. Applying this threshold to the
GoldStandard Test subset yielded a comparable F-measure value of 0.810, and precision and recall values of
0.948 and 0.707, respectively. This threshold was then used to infer new EC-Pfam relations from the merged
dataset, with a confidence score for each association being calculated by our scoring function.

b. Global Analysis of Calculated EC-Pfam Associations

The results of the filtering process are summarized in Table 1. This table shows the numbers of EC-Pfam
associations along with the numbers of distinct EC numbers and Pfam entries involved in those associations
for the three source datasets, our merged global dataset before and after filtering (the latter corresponding to
our “calculated” EC-Pfam associations), and for the InterPro dataset of true associations. The overlap between
these two last datasets is shown in the last line of the table.

Dataset EC-Pfam associations 4-digit EC numbers Pfam entries
SIFTS 6,204 2,575 2,606
SwissProt 9,879 3,959 3,147
TrEMBL 28,572 3,538 5,839
Merged 32,018 4,588 6,290
InterPro 1,493 676 1,273
EC-PSI (calculated) 8,329 4,436 2,462
Common to EC-PSI and InterPro 1,089 592 944

Table 1. Statistics on the given and calculated EC-Pfam associations.

Overall, Table 1 shows that our EC-PSI procedure yielded a total of 8, 329 calculated EC-Pfam associations
that include 1, 089 associations already present in InterPro. While this shows that EC-PSI finds 73% (100 ∗
1, 089/1, 493) of the “correct” EC-Pfam associations in InterPro, it also shows that 27% (404/1, 493) of correct
InterPro associations have EC-PSI confidence scores below our chosen score threshold of 0.08. This relatively
high proportion of “missed” associations reflects the fact that our EC-PSI method is designed to discover EC-
Pfam associations with strong factual support, whereas InterPro contains a large number of low frequency
expert-annotated associations. More specifically, the score threshold of 0.08 was chosen to give a good trade-
off between precision and recall through the F-score. If, for example, the score threshold is reduced from 0.08
to 0.01, the recovery of correct InterPro associations increases to 90% (1,354/1,493), but the number of “false”
InterPro associations rises from just 75 to 822.

Given that InterPro may be considered to represent the largest manually curated source of Pfam-EC associa-
tions currently available, it is interesting to consider the relative increase in the number of associations that our
EC-PSI approach can provide. We therefore calculated as ratios (or “scale-up factors”) the differences between
the associations calculated by EC-PSI and those of InterPro in terms of the total number of associations and
the numbers of distinct EC numbers and Pfam entries involved in those associations. In FIG. 3, the scale-up
factors are displayed across the 6 top-level branches of the EC classification (1-6) and for the entire datasets
(All). It can be seen that the scale-up factors for EC-Pfam associations and for EC entries reach their maximum
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levels in branch 1 (oxydoreductases), and that they fluctuate around their average values (All) rather evenly in
all other branches, with branch 6 (ligases) having the lowest values. The same is true for the scale-up factor
for the number of Pfam entries, but the difference is less marked in branch 1. In fact, the average increase in
Pfam entries is only about 2-fold compared to about 6-fold for Pfam-EC associations and EC numbers. This is
consistent with the fact that not all Pfam entries can be assigned an EC number because not all Pfam domains
are associated with an enzymatic activity.

Figure 3. Scale-up factors for the EC-PSI and InterPro associations according to the EC branch. 1 : oxydoreductases ; 2 :
transferases ; 3 : hydrolases ; 4 : lyases ; 5 : isomerases ; 6 : ligases ; All : all EC numbers.

c. Comparison Between Calculated and InterPro EC-Pfam Associations

In FIG. 4 A, the average number of EC-Pfam associations is plotted per EC number (1) and per Pfam entry
(2) for both InterPro and our calculated dataset. The ratios are very close for the EC numbers (2.2 and 1.9,
respectively), suggesting that our method follows the quality of annotation of InterPro and does not propose an
excess of possibly incorrect EC-Pfam associations. On the other hand, the ratio is much higher for Pfam entries
(3.38 versus 1.17), which reflects a significant enrichment in the annotation of Pfam domains. The rest of the
figure shows the distribution of EC numbers (B) and Pfam entries (C) with respect to the number of associations
they are involved in. Clearly the proportion of EC numbers (respectively, Pfam entries) that are involved in only
one EC-Pfam association is reduced in our calculated dataset.

Overall, FIG. 4 shows that our collection of EC-Pfam associations rather favours multiple associations,
thereby reflecting the complex many-to-many relationships that exists within the original datasets. Further-
more, many of the multiple associations calculated by EC-PSI seem to be quite reasonable from a biological
point of view. For example, EC-PSI finds the unique InterPro association between EC 6.1.1.9 (valine-tRNA
ligase) and the Pfam domain PF10458 (Valyl tRNA synthetase, tRNA binding arm) with a confidence score of
0.781, but it also finds two further associations with the same EC number that are not in InterPro, namely with
PF08264 (tRNA anticodon-binding domain ; EC-PSI score 0.976) and PF00133 (tRNA synthetases class I ; EC-
PSI score 0.997). These two additional associations complete the biological picture of a tRNA ligase because
they comprise a second constitutive domain, in addition to PF10458, of this complex enzyme. On the Pfam
side, another interesting example is the unique InterPro association between PF04715 (Anthranilate synthase
component, N terminal region) and EC 4.1.3.27 (anthranilate synthase). EC-PSI finds this association with a
score of 0.522, but in addition it finds two further associations for the same Pfam domain, namely with EC
2.6.1.85 (aminodeoxychorismate synthase, EC-PSI score 0.675) and EC 2.6.1.86 (2-amino-4-deoxychorismate
synthase ; EC-PSI score 0.833). In this case, the multiple association found by EC-PSI for PF04715 may be
explained by the fact that all three enzymes share a common substrate (i.e. chorismate).

d. Future Work

The approach presented here calculates associations using four-digit EC numbers. However, because EC
numbers have an embedded hierarchy, and because it seems reasonable to suppose that enzymes that act on
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Figure 4. A : average number of EC-Pfam associations per EC number (1) and per Pfam entry (2) for the InterPro (blue)
and calculated EC-PSI (red) datasets. B : distribution of EC numbers according to their numbers of associations with Pfam
entries. C : distribution of Pfam entries according to their numbers of associations with EC numbers.

similar substrates are likely to be evolutionarily related, it could be interesting to consider making additional
associations by collecting and analysing less specific three-digit associations. This could provide a way to infer
additional associations that have weak direct support (low four-digit confidence scores), but which have good
support at the three-digit level. We plan to analyse the support of EC numbers associated with more than one
Pfam entry in order to detect those EC numbers that correspond to combinations of domains (in other words
to detect cases where two or more domains are physically necessary to support a given enzyme function). We
also want to improve the way that candidate associations from different sources are combined. Even though our
current scoring function gives 10 times more weight to SwissProt than SIFTS and TrEMBL, it is still useful
use all three data sources because our algorithm finds 312 EC-Pfam associations from SIFTS and 797 from
TreMBL which are not present in the SwissProt data. However, it would be desirable to use a more statistically
sound measure of the reliability of each data source, perhaps based on a comparision of the associations found
after random shuffling of the data, for example.

4. Conclusions

Given the extensive protein chain/sequence annotations that now exist in the SIFTS, SwissProt, and TrEMBL
databases, there is a need to be able to exploit this rich knowledge at the protein domain level. We achieved
this aim by first collecting existing associations between EC numbers and protein chains or sequences, and then
by using a statistical training-based scoring method to analyse the many-to-many relations embedded in these
data. Using the above data sources, our approach is able to infer a total of 8,329 direct EC-Pfam associations.
Thus, compared to the 1,493 manually curated InterPro EC-Pfam associations, our approach provides a way
to find over six times as many associations completely automatically. We have also proposed some possible
ways to extend and further analyse the coverage of the EC-PSI approach. We believe that the large numbers of
EC-Pfam associations calculated using our approach can contribute considerably to enriching the annotations
of PDB protein chains, and that this will facilitate a better understanding and exploitation of structure-function
relationships at the protein domain level.
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Appendix C. Scienti�c Articles and Posters

C.1.2 ECDomainMiner: discovering hidden associations between enzyme

commission numbers and Pfam domains

Many entries in the protein data bank (PDB) are annotated to show their component protein domains

according to the Pfam classi�cation, as well as their biological function through the enzyme commission

(EC) numbering scheme. However, despite the fact that the biological activity of many proteins often

arises from speci�c domain-domain and domain-ligand interactions, current on-line resources rarely pro-

vide a direct mapping from structure to function at the domain level. Since the PDB now contains many

tens of thousands of protein chains, and since protein sequence databases can dwarf such numbers by

orders of magnitude, there is a pressing need to develop automatic structure-function annotation tools

which can operate at the domain level.

This article presents ECDomainMiner, a novel content-based �ltering approach to automatically infer

associations between EC numbers and Pfam domains. ECDomainMiner �nds a total of 20,728 non-

redundant EC-Pfam associations with a F-measure of 0.95 with respect to a �Gold Standard� test set

extracted from InterPro. Compared to the 1515 manually curated EC-Pfam associations in InterPro,

ECDomainMiner infers a 13-fold increase in the number of EC-Pfam associations.
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Abstract

Background: Many entries in the protein data bank (PDB) are annotated to show their component protein domains
according to the Pfam classification, as well as their biological function through the enzyme commission (EC)
numbering scheme. However, despite the fact that the biological activity of many proteins often arises from specific
domain-domain and domain-ligand interactions, current on-line resources rarely provide a direct mapping from
structure to function at the domain level. Since the PDB now contains many tens of thousands of protein chains, and
since protein sequence databases can dwarf such numbers by orders of magnitude, there is a pressing need to
develop automatic structure-function annotation tools which can operate at the domain level.

Results: This article presents ECDomainMiner, a novel content-based filtering approach to automatically infer
associations between EC numbers and Pfam domains. ECDomainMiner finds a total of 20,728 non-redundant EC-Pfam
associations with a F-measure of 0.95 with respect to a “Gold Standard” test set extracted from InterPro. Compared to
the 1515 manually curated EC-Pfam associations in InterPro, ECDomainMiner infers a 13-fold increase in the number
of EC-Pfam associations.

Conclusion: These EC-Pfam associations could be used to annotate some 58,722 protein chains in the PDB which
currently lack any EC annotation. The ECDomainMiner database is publicly available at http://ecdm.loria.fr/.

Keywords: Content-based filtering, Protein domain, Protein function, Enzyme commission number, Pfam domain

Background
Proteins performmany essential biological functions such
as catalysing metabolic reactions and mediating signals
between cells. These functions are often carried out by
distinct “domains”, which may be identified as highly con-
served regions within a multiple alignment of a group
of similar protein sequences, as in the Pfam classifica-
tion [1]. It is widely accepted that such protein domains
often correspond to distinct and stable three-dimensional
(3D) structures, and that there is often a close relation-
ship between protein structure and protein function [2].
Indeed, it is well known that protein structures are often
more highly conserved than protein sequences [3], and
this suggests that proteins with similar structures will have
similar biological functions [4]. The Protein Data Bank

*Correspondence: dave.ritchie@inria.fr
3Inria Nancy Grand-Est, 54600 Villers-lès-Nancy, France
Full list of author information is available at the end of the article

(PDB) [5, 6] now contains over 107,000 3D structures,
most of which have been solved by X-ray crystallography
or NMR spectroscopy.
As well as sequence-based and structure-based clas-

sifications, proteins may also be classified according to
their function. For example, the Enzyme Commission [7]
uses a hierarchical four-digit numbering system to clas-
sify the enzymatic function of many proteins. The first
digit, or top-level “branch” of the hierarchy, selects one
of six principal enzyme classes (oxidoreductase, trans-
ferase, hydrolase, lyase, isomerase, and ligase). The second
digit defines a general enzyme class (chemical substrate
type). The third digit defines a more specific enzyme-
substrate class (e.g. to distinguish methyl transferase from
formyl transferase), while the fourth digit, if present,
defines a particular enzyme substrate. However, it should
be noted that because EC numbers are assigned accord-
ing to the reaction catalyzed, it is possible for different

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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proteins to be assigned the same EC number even if they
have no sequence similarity or if they belong to different
structural families.
Furthermore, there are several ways in which a pro-

tein might provide one or more enzymatic functions,
as illustrated in Fig. 1. In the simplest case (Fig. 1a), a
protein contains just one domain, and there is is a one-
to-one association between that domain and a particular
enzymatic function. In this case, it is reasonable to sup-
pose that the catalytic site is located entirely on that
domain. Similarly, a protein may have two or more dis-
tinct domains, each of which provides a distinct enzymatic
(or non-enzymatic) function (Fig. 1b). On the other hand,
a protein domain could be involved in more than one
catalytic activity, as illustrated in Fig. 1c. Finally, a cat-
alytic site may be at the interface between two domains, or
one domain serves as a necessary co-factor for the other
(Fig. 1d). Clearly, it is biologically relevant to be able to dis-
tinguish all such cases. However, except for the simplest
case (Fig. 1a), it can be seen that finding domain-EC asso-
ciations automatically is a non-trivial task. Several groups
have described approaches or resources that can asso-
ciate entire PDB protein chains with enzyme EC numbers
[8–11]. Probably themost up-to-date and exhaustive asso-
ciation between PDB chains and EC numbers is pro-
vided by SIFTS [12], which is a collaboration between the
Protein Data Bank in Europe and UniProt [13]. SIFTS
incorporates a semi-automated procedure which links
PDB chain entries to external biological resources such as
Pfam, and IntEnz [14].
While all of the above mentioned approaches can pro-

vide associations between PDB protein chains and enzyme
EC numbers, to our knowledge, very few approaches have

been published for automatically assigning EC numbers
to structural domains. SCOPEC [15] uses sequence infor-
mation from SwissProt and PDB entries that have been
previously annotated with EC numbers in order to assign
EC numbers to SCOP domains [16]. It first looks for PDB
chains that fully map to SwissProt entries (to within up
to 70 residues) and that match on at least the first three
EC number digits. In this way, SCOPEC identifies single
domain structures that can be associated unambiguously
with an EC number. Although SCOPEC can subsequently
propagate a known EC-domain association to a matching
domain in a multi-domain protein, it is generally not able
to resolve cases where multiple ECs are associated with
multi-domain chains (parts B, C, and D in Fig. 1. Further-
more, it appears that the SCOPEC database is no longer
available on-line.
In contrast, the dcGO ontology database for protein

domains produced in 2012 is still available online and
provides several ontological annotations (Gene Ontol-
ogy: GO, EC, pathways, phenotype, anatomy and dis-
ease ontologies) for more than 2000 SCOP domain
families [17].
The dcGO approach follows the principle that if a

GO term tends to be attached to proteins in UniPro-
tKB that contain a certain domain, then that term
should be associated with that domain. The statistical
significance of an association is assessed against a ran-
dom chance association using a hypergeometric distri-
bution followed by multiple hypotheses testing in terms
of false discovery rate. The dcGO approach addresses
the issues of hierarchical structure of most biological
ontologies and the nature of domain composition for
multi-domain proteins. However, a mapping onto Pfam

a

b

c

d

Fig. 1 a) One domain provides one enzyme function; (b) two domains on the same chain each provide a different enzyme function; (c) one
domain provides two different enzyme functions; (d) one domain provides one enzyme function, while a second domain acts as a co-factor with
the first domain to provide an additional enzyme function
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domains is proposed only for GO terms and not for
EC numbers.
Here, we describe a recommender-based approach

call “ECDomainMiner” for associating Pfam domains
with EC numbers, which builds on our previously
described statistical approach [18]. Recommender sys-
tems are a class of information filtering system [19, 20]
which aim to present a list of items that might be of
interest to an on-line customer. There are two main
kinds of recommender systems. Collaborative filtering
approaches make associations by calculating the similarity
between activities of users [21, 22]. Content-based fil-
tering aims to predict associations between user profiles
and description of items by identifying common attributes
[20, 23]. Such an approach has recently been applied to a
quite different problem of discovering novel cancer drug
combinations [24].
Here, we use content-based filtering to associate EC

numbers with Pfam domains from existing EC-chain
and Pfam-chain associations from SIFTS, and from EC-
sequence and Pfam-sequence associations from SwissProt
and TrEMBL, where protein chains and sequences serve
as the common attributes through which EC-Pfam asso-
ciations are made. Note that our approach does not
attempt to identify catalytic sites or catalytic residues.
Rather, we aim to detect frequent co-occurrences of
Pfam domains and EC numbers in order to deconvolute
the often complex EC-Pfam relationships within multi-
domain and multi-function protein chains. We assess the
performance of our approach against a “Gold Standard”
dataset derived from InterPro [25], and we compare our
results with the Pfam-EC associations derived from the
dcGO database. We also show how our database of more
than 20,000 EC-Pfam associations can be exploited for
automatic annotation purposes.

Methods
Data preparation
Our data sources are SIFTS for EC number and Pfam
domain annotations of PDB chains, and Uniprot for
EC number and Pfam domain annotations of protein
sequences. UniProt is divided into three parts: (i) the non-
redundant, high quality, manually curated SwissProt part,
(ii) the TrEMBL data that are annotated using Unified
Rules [26], called here UniRule, and (iii) the rest called
here TrEMBL.
In addition, in order to parameterise and evaluate

ECDomainMiner, we use the InterPro database [25] which
contains a large number of manually curated EC-Pfam
associations. Flat data files of SIFTS (July 2015), Uniprot
(July 2015), and InterPro (version 53.0) were downloaded
and parsed using in-house Python scripts. From the
SIFTS data, associations between EC numbers and PDB
chains, and associations between PDB chains and Pfam

domains were extracted. Associations between Uniprot
sequence accession numbers (ANs) and EC numbers, and
AN-Pfam associations were then extracted from the Swis-
sProt section of Uniprot to give a dataset of Swissprot
associations. For the TrEMBL entries, we collected and
stored the corresponding AN-EC and AN-Pfam associa-
tions which had been annotated by UniRule, and those
associations lacking UniRule annotations to give two fur-
ther sequence-based datasets of associations, which we
call the UniRule and TrEMBL association datasets.
To avoid bias due to duplicate structures or sequences

in the four source datasets, all PDB chains and Uniprot
sequences were grouped into clusters having 100%
sequence identity using the Uniref non-redundant cluster
annotations [27], and each cluster was assigned a clus-
ter unique identifier (CID). Note that since just a few
point mutations can dramatically change an enzyme’s sub-
strate specificity, making clusters of identical rather than
highly similar sequences avoids the risk of falsely cluster-
ing proteins that share highly similar folds but which have
quite different substrates. The source EC-chain and EC-
AN associations were then mapped to the corresponding
CID in order to make four sets of EC-CID associations.
A similar mapping was applied to the source Pfam-chain
and Pfam-AN associations to give four sets of Pfam-CID
associations.
For the reference data, we extracted from InterPro a

total of 1515 EC-Pfam associations in which each EC
number had all four digits and each Pfam accession num-
ber referred either to a Pfam domain or a Pfam family
(i.e. Pfam motifs and repeats were excluded). These asso-
ciations were considered to be “positive examples”, and
were randomly divided into two equal “training” and “test”
subsets. However, for training purposes, we also needed
some “negative examples”. We therefore created a set of
“false” EC-Pfam associations by first shuffling the CID-
EC and CID-Pfam associations from SIFTS dataset, and
by then randomly collecting 1515 wrong EC-Pfam associ-
ations from the shuffled datasets. In the rest of this article,
we will refer to the combined set of 758 randomly cho-
sen positive examples from InterPro and 758 randomly
chosen negative examples as our “training dataset” and
the remaining 1513 positive and negative examples as our
“test dataset”.

Inferring EC-Pfam domain associations
The main idea underlying the discovery of hidden EC-
Pfam associations is to assign a feature vector to each
EC number and each Pfam domain, where the length
of the vector is given by the total number of PDB and
UniProt CIDs, and where each vector element marks the
existence (1) or absence (0) of an EC number or Pfam
domain annotation for a particular CID. Each possible EC-
Pfam association is then scored using the cosine similarity
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between the corresponding pair of EC and Pfam feature
vectors.
The various steps of our content-based filter approach

for finding associations between 4-digit EC numbers and
Pfam domains are illustrated in Fig. 2 for the SIFTS
dataset. First, all relations between PDB CIDs and EC
numbers, and between PDB CIDs and Pfam domains are
extracted from SIFTS, as described above. Joining these
two lists of relations then yields a complex many-to-many
graph that contains relations between EC numbers, PDB
CIDs, and Pfam domains.
After this join operation, all EC-CID relations are

encoded in a binary matrix, where a 1 represents the pres-
ence of an association and a 0 represents no association.
This matrix is then row-normalised such that each row
has unit magnitude when considered as a vector. Simi-
larly, all PDB CID-Pfam relations are encoded in a second
binarymatrix which is column-normalised. Consequently,
the product of the two normalised matrices corresponds
to a matrix of cosine similarity scores between the rows
of the first matrix and the columns of the second matrix.
Thus, each element, S(ec, d), of the product matrix repre-
sents a raw association score between an EC number, ec,
and a Pfam domain, d.
Similarly, raw EC-Pfam association scores are calculated

from EC-CID and Pfam-CID relations extracted from
SwissProt, TrEMBL and Unirule. Then, because we wish
to draw upon the relations from all four datasets, we com-
bine the four raw scores as a weighted average to give a
single normalized confidence score, CSec,d:

CSec,d =
∑

i wiSi(ec, d)
∑

i wi
(1)

where i ∈ {SIFTS, Swissprot,TrEMBL,UniRule} enu-
merates the four datasets, wi are weight factors, to be
determined, and where an individual association score,
Si(ec, d), is set to zero whenever there is no data for the
(ec, d) pair in dataset i.
In order to find the best values for the four weight fac-

tors, receiver-operator-characteristic (ROC) curves [28]
were calculated using the positive examples of our

Interpro-based training dataset, against the remaining
associations (background associations).
Each weight was varied from 0.0 to 1.0 in steps of 0.1,

and for each combination of weights a ROC curve of the
ranked association scores was calculated. The combina-
tion of weights that gave the largest area under the curve
(AUC) of the ROC curve was selected.

Defining a confidence score threshold
Having determined the best weight for each data source,
we next wished to determine an overall threshold for
the confidence score. To do this in an objective way, we
scored and ranked the members of the training dataset,
and labeled them true or false according to a thresh-
old value that was varied from 0.0 to 1.0 in steps of
0.01. For each threshold value, we counted the number
of positive examples above the threshold (TPs), negative
examples above the threshold (FPs), negative examples
below the threshold (TNs), and positive examples below
the threshold (FNs). We then calculated the recall, R, pre-
cision, P, and their harmonic mean in order to obtain a
“F-measure” using:

R = TP
TP + FN

, P = TP
TP + FP

, F = 2RP
P + R

.

(2)

The score threshold that gave the best F-measure was
checked on the test subset and selected as the best thresh-
old to use for accepting inferred associations.

Exploiting the EC number hierarchy
The above approach has focused on finding explicit co-
occurrences between Pfam domains and 4-digit EC num-
bers. However, it is possible to find more associations
by relaxing the criteria for co-occurrences of EC-Pfam
annotations by looking for matches only at the 3-digit EC
level. Indeed, we have observed several cases where true
associations according to the InterPro training dataset
were assigned confidence scores below the threshold value
because they had too few (4-digit EC number) instances
to provide sufficient support. Therefore, the above pro-
cedure was repeated using 3-digit EC numbers to give
a 3-digit scoring scheme (with different weight factors

a b c d
Fig. 2 A graphical illustration of calculating raw EC-Pfam association scores from existing SIFTS EC-CID and Pfam-CID associations
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and a different score threshold). Then, any 4-digit EC-
Pfam association below the 4-digit threshold, but consis-
tent with a 3-digit EC-Pfam association above the 3-digit
threshold, was added to the final list of accepted 4-digit
EC-Pfam associations. It should be clarified that “consis-
tent” means here that the 4-digit EC number is a descen-
dant of the 3-digit EC number and that the Pfam domains
are the same.

Hypergeometric distribution p-value analysis
While the above procedure provides a systematic way to
infer EC-Pfam associations, we wished to estimate the sta-
tistical significance, and thus the degree of confidence,
that might be attached to those predictions. More specif-
ically, we wished to calculate the probability, or “p-value”,
that an EC number and a Pfam domain might be found
to be associated simply by chance. For example, it is nat-
ural to suppose such associations can be predicted at
random if ec or d are highly represented in the struc-
ture/sequence CIDs. In principle, in order to estimate the
probability of getting our EC-Pfam associations by chance,
one could generate random datasets by shuffling the rela-
tions between EC numbers and CIDs on the one hand,
and between Pfam domains and CIDs on the other hand.
However, this is quite impractical given the very large
numbers of CIDs, EC numbers, and Pfam domains, and
the complexity of the filtering procedure that would have
to be repeated for each shuffled version of the dataset.
Therefore, as in [17], we assume that a random associa-
tion of CIDs to pairs of ec and d follows a hypergeometric
distribution.
Letting N denote the total number of CIDs, Nd the

number of CIDs related to the Pfam domain d, and Nec
the number of CIDs related to the EC number ec, the
hypergeometric probability distribution is given by

p(Xec,d � Kec,d) =
∑min (Nd ,Nec)

i=Kec,d

(Nec
i
)(N−Nec

Nd−i
)

(N
Nd

) , (3)

where p(Xec,d � Kec,d) represents the probability of hav-
ing a number Xec,d equal to or greater than the observed
number Kec,d of CIDs associated with both d and ec. Tra-
ditionally, a p-value of less than 0.05 is taken to be statis-
tically significant. However, because this test is applied to
a large number of EC-Pfam associations, we apply a Bon-
feroni correction which takes into account the so-called
family-wise error rate (FWER) [29].We therefore consider
any p-value less than 0.05/T as denoting a statistically sig-
nificant inferred EC-Pfam association in a dataset, with
T the total number of tested EC-Pfam associations for
this dataset, In order to distinguish EC-Pfam associations
using both confidence scores and p-values, we classify
them into three classes, “Gold”, “Silver”, and “Bronze”. An

association is assigned to the Gold class if both its EC-
Pfam score is greater than the determined threshold and
all its p-values (in all datasets) are statistically significant.
An association is labeled Silver if its score is above the
threshold but one or more of its p-values is not statis-
tically significant, or if its score is below the threshold
(due to the 3-digit procedure, see “Exploiting the EC num-
ber hierarchy” section) but all its p-values are statistically
significant. All other associations are labeled Bronze.

Results and discussion
Data source weights and score threshold
After clustering identical structures and sequences, and
calculating raw association scores (Fig. 2), our merged
dataset contains 6306 SIFTS, 18,917 SwissProt, 124,699
TrEMBL, and 141,990 UniRule candidate EC-Pfam asso-
ciations, giving a total of 262,571 distinct EC-Pfam asso-
ciations to draw from Table 1. In our ROC-based training
procedure, the best AUC value of 0.985 was obtained with
weights wSIFTS = 0.1, wSwissProt = 1.0, wTrEMBL = 0.1,
and wUniRule = 0.6. These weights clearly give greater
importance to the candidate associations in SwissProt and
UniRule, respectively, compared to those in SIFTS and
TrEMBL.
The optimal score threshold was determined according

to the F-measure training procedure using our training
dataset (“Defining a confidence score threshold” section).
This gave a score threshold of 0.04 for a maximum F-
Measure of 0.9476. Applying this threshold to the test
dataset yielded a comparable F-measure of 0.935, and
precision and recall values of 0.99 and 0.893, respectively.

Global analysis of inferred EC-Pfam associations
The results of the ECDomainMiner approach are summa-
rized in Table 1. This table shows the numbers of 4-digit
EC-Pfam associations along with the numbers of distinct
EC numbers and Pfam entries involved in those associa-
tions for the four sources and the merged datasets before
filtering.
After applying the 0.04 score threshold, the number of

EC-Pfam associations falls to 8,256 with an overlap of
about 96% of InterPro reference associations. Using the
relaxed 3-digit association approach (“Exploiting the EC
number hierarchy” section), the final ECDomainMiner
dataset contains 20,728 EC-Pfam associations that overlap
by 99.3% the InterPro reference dataset. These numbers
show that our approach efficiently retrieves the Inter-
Pro reference EC-Pfam associations, including a small
percentage (about 3.3%) that have a low confidence score.
Table 1 also shows that our ECDomainMiner set of

EC-Pfam associations represents a 13.7 fold-increase
(20,728/1515) in EC-Pfam associations with respect to
InterPro. Moreover, the list of EC-Pfam associations pro-
duced by ECDomainMiner contains 6.4 times more EC
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Table 1 Statistics on the source datasets and calculated EC-Pfam associations

Dataset EC-Pfam associations Distinct 4-digit EC numbers Distinct Pfam entries

Source SIFTS 6306 2648 2611

Datasets SwissProt 18,917 4013 3101

TrEMBL 124,699 3751 5703

UniRule 141,990 1020 2907

Merged 262,571 4648 6639

Reference InterPro 1515 688 1284

ECDomainMiner With CS above threshold 8256 3701 3022

Results (Overlap with InterPro) (1461) (688) (1245)

Including low CS 20, 728 4455 3613

(Overlap with InterPro) (1498) (688) (1273)

CS is the Confidence Score
All italicized entries are calculated by ECDomainMiner

numbers and 2.8 times more Pfam domains than InterPro.
Figure 3 shows how this increase in EC-Pfam associations
distributes across the 6 top-level branches (i.e. 1-digit
codes) of the EC classification.
The greatest ECDomainMiner scale-up factor occurs

for associations involving the oxydoreductases (EC branch
1). The smaller scale-up factor observed for Pfam domains
(2.8 versus 6.4 for EC numbers) can be explained by the
fact that not all Pfam domains display an enzymatic activ-
ity. Thus there is a natural limit in the coverage of Pfam
database by our EC-Pfam associations, whereas there is
no such limit for the coverage of EC numbers. Combin-
ing the confidence scores with the calculated p-values as
described in “Hypergeometric distribution p-value anal-
ysis” section gave 4552 Gold associations (having scores
above the threshold and significant p-values in all source
datasets), 11,426 Silver associations (with either scores
above the threshold and one or more non-significant
p-values, or with a score below the threshold but with

Fig. 3 Scale-up factors for ECDomainMiner compared with InterPro.
Ratios between the numbers in ECDomainMiner and in Interpro have
been calculated for associations (red), EC numbers (yellow), and Pfam
domains (green) after dividing the dataset according to each EC
branch represented in the associations (1 to 6) and for all the dataset
(All). 1: oxydoreductases; 2: transferases; 3: hydrolases; 4: lyases; 5:
isomerases; 6: ligases

significant p-values in all source datasets), and 4201
Bronze associations.

Comparison with dcGO
In order to compare ECDomainMiner with the dcGO
approach [17], we extracted SCOP2EC associations
from the Domain2EC file available from the dcGO
database (http://supfam.org/SUPERFAMILY/dcGO). The
Domain2EC file includes 7249 associations with 4-digit
EC numbers, of which 3774 are related to SCOP “Fami-
lies” and 3475 to SCOP “SuperFamilies”. Because InterPro
only tabulates SCOP family domains, we limited our com-
parison to the set of 3774 SCOP2EC family associations.
The SCOP families were mapped to Pfam families accord-
ing to InterPro mapping files in order to generate a set of
2500 “Pfam2EC” associations (i.e. EC-Pfam associations
which may be deduced directly from the SCOP2EC data).
This set (shown as set a in Fig. 4) was compared with the
set of all 262,571 merged EC-Pfam associations found by
ECDomainMiner (set b in Fig. 4).
This comparison showed that a total of 480 Pfam2EC

associations from SCOP2EC are not present in our
merged dataset. The remaining 2020 Pfam2EC associa-
tions were then compared with the 20,728 associations
calculated by ECDomainMiner (set c in Fig. 4). This
comparison (the intersection of sets a and c) produced
a total of 1892 EC-Pfam associations which are com-
mon to Pfam2EC and ECDomainMiner, indicating that
ECDomainMiner agrees with 75.7% of the Pfam2EC asso-
ciations from dcGO. Furthemore, this comparison also
shows that ECDomainMiner result set contains 18,836
(20, 728−1, 892) additional EC-Pfam associations that are
not available through dcGO.

Selecting plausible associations in multi-domain proteins
Because ECDomainMiner finds many new EC-Pfam
associations, it is important to ask to what extent it also



Alborzi et al. BMC Bioinformatics  (2017) 18:107 Page 7 of 11

a c b

Fig. 4 Venn diagram showing the intersection between a Pfam2EC
(2500 associations) from dcGO, b All-Merged (262,571 associations),
and c ECDomainMiner (20,728 associations). Region I (480 associations)
is the portion of (a) for which there is no data in any of our four
source datasets. Region II (128 associations) is the portion of (a) that
exists in (b) but is not retained in ECDomainMiner (c). Region III (1892
associations) is the overlap between (a) and (c). Region IV (18,836
associations) is the portion of ECDomainMiner associations that are
not available from SCOP2EC. Region V (241,363 associations) is the
rest of the merged set of EC-Pfam source associations that are absent
from (a) and not retained as Gold, Silver, or Bronze associations by
ECDomainMiner

might produce false associations. Firstly, we recall that
ECDomainMiner eliminated more than 92% (241,843 out
of 262,571) of low-scoring associations from the merged
source dataset. This suggests that most of the eliminated
associations involve Pfam domains that are not catalyt-
ically active. Indeed, if a Pfam domain is not regularly
associated with protein chains or sequences having an
enzymatic activity, the ECDomainMiner score for that
domain is very low, and hence no EC number is assigned
to that domain. This applies in particular to accessory
domains that can co-occur with various catalytic domains
in multi-domain proteins. A good example of such an
accessory domain is PF00188 (the CAP protein family)
which is a part of 216 different architectures. Among
these architectures, there are 3 and 5 different architec-
tures, which additionally contain PF00112 (Peptidase C1
domain) and PF00069 (Protein kinase domain), respec-
tively. According to Pfam website, PF00188 is catalyti-
cally inactive but PF00112 and PF00069 are active. In
fact, ECDomainMiner assigns PF00112 to 26 different
EC numbers with a majority of EC 3.4.22 (Cysteine
endopeptidases), and PF00069 to 28 different EC num-
bers that all start with 2.7 (Transferring phosphorus-
containing groups). However, ECDomainMiner does not
assign PF00188 to any EC number. This is because a
large number of protein chains and sequences contain-
ing either PF00112 or PF00069 and associated with the
above-mentioned EC activities, do not contain PF00188.
In other words the catalytic activities of PF00112 and
PF00069 are not strictly dependent on the presence of
PF00188. Moreover, the SIFTS and UniProt databases

indicate that PF00188 is associated with 43 different PDB
chains and 5197 different protein sequences. However,
none of those PDB chains are associated with an EC
number in SIFTS and only 31 protein sequences (24 in
TrEMBL and 7 in UniRule) are associated with at least one
4-digit EC number. Consequently, the association score
of PF00188 with any EC number is zero for both the
SIFTS and SwissProt datasets and is quite low (less than
0.02) for both the TrEMBL and UniRule datasets. Thus,
the confidence scores of all of the associations involving
PF00188 in ECDomainMiner are lower than our thresh-
old of 0.04, and so these candidate associations are filtered
out. This mechanism explains how an accessory domain
is not assigned to an EC number by ECDomainMiner, and
suggests that most of the retained associations are proper
candidates for domain functional annotation.

Single andmultiple EC-Pfam associations
Exploring the ECDomainMiner results readily reveals that
a given EC number or Pfam domain can be involved in one
or more distinct EC-Pfam associations. Figure 5 shows the
relative distribution of EC numbers and Pfam domains
according to the number of EC-Pfam associations they are
involved in. This figure shows that 1576 out of 4393 EC
numbers and 1280 out of 3542 Pfam domains are involved
in a single EC-Pfam association.
Although this represents rather high proportions of

the total number of EC numbers and Pfam domains
in ECDomainMiner (35.9 and 36.1%, respectively), the
intersection of the concerned EC-Pfam single associations
yields a list of only 97 one-to-one EC-Pfam associations,
of which 62, 34, and 1 are Gold, Silver, and Bronze
associations, respectively. Comparison with the InterPro
reference dataset reveals that two thirds (65) of these
one-to-one associations are novel compared to InterPro.
Interestingly, we confirmed in our source datasets that
all of these associations involve single-domain proteins.
Thus, these unambiguous associations constitute themost
reliable novel associations calculated by ECDomainMiner.
The complete list of one-to-one EC-Pfam associations

found by ECDomainMiner may be downloaded from the
ECDomainMiner web site. Interestingly 14 of these asso-
ciations (8 Gold, of which 2 match InterPro reference
associations, and 6 Silver) concern “DUF” (domain of
unknown function) or “UPF” (uncharacterised protein
family) Pfam entries. These are listed in part (A) of Table 2
in order of decreasing confidence score.
These examples demonstrate that ECDomainMiner can

be used to enrich domain annotation. Visual inspection
of the one-to-one EC-Pfam associations indicates that
about one quarter of them (23) could have been retrieved
simply by comparing the names associated with the EC
number and the Pfam identifier, which are nearly iden-
tical (see example in Table 2b). However, only 10 of
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ba

Fig. 5 Distribution of EC numbers (a) and Pfam domains (b) in multiple associations. Numbers (1 to 10 and >10) represent the arity of the association
in which a given EC number, respectively Pfam domain, is involved. In addition, for each arity, the normalized number of Gold, Silver, and Bronze
associations is plotted. It can be observed that for arities equal to or greater than 4, the proportion of Silver associations is always the highest but
significant numbers of Gold associations remain present even for high arity numbers

these associations were in fact already known in Inter-
Pro. Clearly, minor and unpredictable spelling differences
impair the automatic retrieval of such similar but non-
identical EC and Pfam names. Nonetheless, while these
associations could be found by clever text matching,
we emphasise that ECDomainMiner’s confidence scores
and p-values provide a level of support for each asso-
ciation that would be very difficult to obtain from text
mining alone.
The multi-partner associations calculated by ECDo-

mainMiner provide many more complex EC-Pfam associ-
ations. As a first analysis of such multiple associations, we
looked for obligate pairs or tuples of Pfam domains that
are always associated with a given EC number. Briefly, for
any pair of Pfam domains, (d1, d2), associated with the
same EC number, ec, (i) we reject those pairs for which at
least one ec-annotated CID (in any source dataset) occurs
in relation with d1 and not d2 or with d2 and not d1, (ii)
for all other pairs we calculate for each source dataset the
ratio of the number of ec-annotated CIDs related to d1
and d2, to the total number of ec-annotated CIDs. A sup-
port ratio of 1 means that all CIDs annotated with ec in a
dataset are also related to d1 and d2. A similar algorithm
was used for triplets and quadruples of Pfam domains.
For a support ratio of 1 in at least one source dataset, we
found 907, 191 and 47 obligate associations between an
EC number and a pair, a triplet or a quadruplet of Pfam
domains. These associations are available from the ECDo-
mainMiner website. Two examples are given in part (C)
of Table 2.
Interestingly, filtering the names of the Pfam domains

with the expressions “N-terminal” and “C-terminal”
yielded 58 obligate pairs containing both a N-terminal and
a C-terminal domain of the same function. This indicates
that our approach is finding enzymes in which the cat-
alytic function is provided by the interface between two
consecutive Pfam domains. Only 4 of these obligate pair
associations are currently documented in InterPro.

Annotating PDB chains with EC numbers
Our analysis of the December 2015 release of the SIFTS
database reveals that about 45% of PDB entries lack an
EC number annotation. Of course, such an annotation
is not expected to be present in all PDB entries because
not all proteins have enzymatic activity. Nonetheless, it is
interesting to use ECDomainMiner to analyse the num-
ber of PDB entries that contain Pfam domains which
are present in EC-Pfam associations. Table 3 shows that
a total of 58,722 PDB chains lacking EC annotations in
SIFTS include at least one of the 3542 Pfam domains
present in ECDomainMiner.
Overall, we calculated that these chains map to a total

of 24,995 PDB entries that could benefit from the addi-
tional annotations inferred by ECDomainMiner. For those
chains lacking EC annotations, ECDomainMiner finds
Gold, Silver, and Bronze EC-Pfam associations for 41,246,
44,406 and 34,820 PDB chains, respectively. In particular,
1334 PDB chains could benefit from our dataset of 97 non
ambiguous one-to-one EC-Pfam associations.

The ECDomainMiner web server
The ECDomainMiner web server may be queried by EC
number or Pfam domain. Thus, if one wishes to search for
associations for a protein chain that currently lacks any
EC annotation in the PDB (e.g. chain 2q7xA), one first
needs to retrieve from the PDB the Pfam domain(s) that
it contains (in this example, PF01933). Then, querying the
ECDomainMiner server with each Pfam domain identi-
fier will show the associated EC numbers (in this example,
2.7.8.28), along with the associated filtering scores and
quality classes. In this example, ECDomainMiner finds
a Gold quality association between PF01933, present in
PDB chain 2q7xA, and EC number 2.7.8.28 (2-phospho-
L-lactate transferase) which consequently can be asso-
ciated with PDB entry 2q7x. Interestingly, PDB entry
2q7x is described as a putative phospho transferase from
streptococcus pneumoniae tigr4, which is consistent with
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Table 2 (A) Fourteen one-to-one EC-Pfam associations found by ECDomainMiner and involving domains of unknown function, (B) an
example of one-to-one EC-Pfam association with very similar EC and Pfam descriptions, and (C) two examples of obligate Pfam pairs
associated with an EC number

EC Pfam Score EC name Pfam name Quality PDBs (SIFTS)

A 2.7.8.28 PF01933 0.972 2-phospho-L-lactate transferase Uncharacterised protein family
UPF0052

Gold 9/0/11

4.1.99.5 PF11266 0.944 Aldehyde oxygenase (deformylating) Protein of unknown function
DUF3066

Gold 18/0/0

2.1.1.286 PF11968 0.889 25S rRNA (adenine(2142)-N(1))-
methyltransferase

Putative methyltransferase
DUF3321

Gold 0/0/0

1.13.99.1 PF05153 0.667 Inositol oxygenase Family of unknown function
DUF706

Gold 4/0/0

2.4.1.155 PF15027 0.611 Alpha-1,6-mannosyl-glycoprotein
6-beta-N-acetylglucosaminyltransferase

Domain of unknown function
DUF4525

Gold 0/0/0

4.2.3.130 PF10776 0.611 Tetraprenyl-beta-curcumene synthase Protein of unknown function
DUF2600

Gold 0/0/0

2.3.1.78 PF07786 0.609 Heparan-alpha-glucosaminide
N-acetyltransferase

Protein of unknown function
DUF1624

Gold 0/0/0

3.1.4.45 PF09992 0.584 N-acetylglucosamine-1-phosphodiester
alpha-N-acetylglucosaminidase

Predicted periplasmic protein
DUF2233

Gold 0/0/1

1.13.12.20 PF08592 0.556 Noranthrone monooxygenase Domain of unknown function
DUF1772

Gold 0/0/0

2.1.1.312 PF11312 0.556 25S rRNA (uracil(2843)-N(3))-
methyltransferase.

Protein of unknown function
DUF3115

Gold 0/0/0

2.1.1.313 PF10354 0.556 25S rRNA (uracil(2634)-N(3))-
methyltransferase

Domain of unknown function
DUF2431

Gold 0/0/0

2.5.1.128 PF01861 0.556 N4-bis(aminopropyl) spermidine
synthase

Protein of unknown function
DUF43

Gold 0/0/1

5.2.1.14 PF13225 0.556 Beta-carotene isomerase Domain of unknown function
DUF4033

Gold 0/0/0

1.14.99.29 PF04248 0.333 Deoxyhypusine monooxygenase Domain of unknown function
DUF427

Silver 0/0/5

B 6.3.2.25 PF03133 0.610 Tubulin–tyrosine ligase Tubulin-tyrosine ligase family Gold 0/2/21

C

2.7.1.30

{ PF00370 0.847

Glycerol kinase

FGGY family of carbohydrate
kinases, N-terminal domain

Gold 85/32/9

PF02782 0.828 FGGY family of carbohydrate
kinases, C-terminal domain

Gold 85/32/7

6.3.4.23

{ PF06973 0.997 Formate-phosphoribosyl-amino-
imidazol

DUF1297 Gold 16/3/0

PF06849 0.997 carboxamide ligase DUF1246 Gold 16/3/0

The ‘PDBs (SIFTS)’ column contains 3 counts of PDB chains containing the mentioned Pfam domain and having either the same EC annotation in SIFTS as calculated by
ECDomainMiner (first position), or different EC annotations between SIFTS and ECDomainMiner (second position), or no EC annotations in SIFTS (third position). Complete
lists of PDB identifiers may be retrieved from the ECDomainMiner web server

Table 3 The numbers of PDB protein chains that could be
annotated by ECDomainMiner associations

Association type ECDM associations concerned PDB chains concerned

Any 14,573 58,722

Gold 3591 41,246

Silver 7796 44,406

Bronze 3186 34,820

One-to-One 44 1334

the enzymatic activity found by ECDomainMiner, and
which could not be deduced from the Pfam domain name
(UPF0052).

Conclusion
We have presented a content-based filtering approach
for associating EC numbers with Pfam domains. This
approach has been shown to be able to infer a total
of 20,728 non-redundant EC-Pfam associations, which
corresponds to over 13 times as many EC-Pfam associa-
tions as currently exist in InterPro. Furthermore, thanks
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to our calculated p-values, we have assigned an intuitive
quality rating (Gold, Silver, or Bronze) to each EC-Pfam
association found. These calculated associations are pub-
licly available on the ECDomainMiner web site. We antic-
ipate that our content-based filtering approach may be
applied to other annotation vocabularies or ontologies,
and we are currently working to extend our approach to
discover new GO-Pfam annotations.
We believe that enriching protein chain annotations

will facilitate a better understanding and exploitation
of structure-function relationships at the domain level.
While many of the associations calculated by ECDo-
mainMiner are consistent with those recently made avail-
able by the domain-centric dcGO approach for finding
EC-SCOP associations, the ECDomainMiner results set
contains many more associations than dcGO. Indeed,
the ECDomainMiner result set contains 18,836 EC-Pfam
which are not available in dcGO. Our analysis of the
simple one-to-one associations found by ECDomain-
Miner shows that several DUF or UPF entries in Pfam
may be assigned functions from the EC classification,
and that obvious inconsistencies in the annotation texts
may easily be corrected or unified. However, only a
relatively small number (less than 0.5%) of EC-Pfam asso-
ciations in our result set are simple one-to-one asso-
ciations, indicating that there exist a large number of
many-to-many relations between EC numbers and Pfam
domains. Further analyses of these complex associations
using graph database and machine-learning techniques
could reveal many more hidden protein structure-
function relationships.
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C.1.3 Associating Gene Ontology Terms with Pfam Protein Domains

With the growing number of three-dimensional protein structures in the protein data bank (PDB), there

is a need to annotate these structures at the domain level in order to relate protein structure to protein

function. Thanks to the SIFTS database, many PDB chains are now cross-referenced with Pfam domains

and Gene ontology (GO) terms. However, these annotations do not include any explicit relationship

between individual Pfam domains and GO terms. Therefore, creating a direct mapping between GO terms

and Pfam domains will provide a new and more detailed level of protein structure annotation. This article

presents a novel content-based �ltering method called GODM that can automatically infer associations

between GO terms and Pfam domains directly from existing GO-chain/Pfam-chain associations from

the SIFTS database and GO-sequence/Pfam-sequence associations from the UniProt databases. Overall,

GODM �nds a total of 20,318 non-redundant GO-Pfam associations with a F-measure of 0.98 with respect

to the InterPro database, which is treated here as a �Gold Standard�. These associations could be used

to annotate thousands of PDB chains or protein sequences for which their domain composition is known

but which currently lack any GO annotation.
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1 Université de Lorraine, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France
2 CNRS, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France

marie-domonique.devignes@loria.fr
3 Inria Nancy Grand-Est, 54600 Villers-lès-Nancy, France

{seyed-ziaeddin.alborzi,dave.ritchie}@inria.fr

Abstract. With the growing number of three-dimensional protein struc-
tures in the protein data bank (PDB), there is a need to annotate
these structures at the domain level in order to relate protein struc-
ture to protein function. Thanks to the SIFTS database, many PDB
chains are now cross-referenced with Pfam domains and Gene ontol-
ogy (GO) terms. However, these annotations do not include any explicit
relationship between individual Pfam domains and GO terms. There-
fore, creating a direct mapping between GO terms and Pfam domains
will provide a new and more detailed level of protein structure annota-
tion. This article presents a novel content-based filtering method called
GODM that can automatically infer associations between GO terms and
Pfam domains directly from existing GO-chain/Pfam-chain associations
from the SIFTS database and GO-sequence/Pfam-sequence associations
from the UniProt databases. Overall, GODM finds a total of 20,318 non-
redundant GO-Pfam associations with a F-measure of 0.98 with respect
to the InterPro database, which is treated here as a “Gold Standard”.
These associations could be used to annotate thousands of PDB chains
or protein sequences for which their domain composition is known but
which currently lack any GO annotation. The GODM database is pub-
licly available at http://godm.loria.fr/.

Keywords: Protein structure · Protein function · Gene Ontology ·
Content-based filtering

1 Introduction

Proteins carry out many important biological functions. At the molecular
level, these functions are often performed by highly conserved regions called
“domains”. Currently, the Pfam database is one of the most widely used
sequence-based classifications of protein domains and domain families [1]. Pro-
tein domains may also be considered as building blocks which are combined
in different ways in order to endow different proteins with different functions.

c© Springer International Publishing AG 2017
I. Rojas and F. Ortuño (Eds.): IWBBIO 2017, Part II, LNBI 10209, pp. 127–138, 2017.
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A given Pfam domain might exist in several different proteins. It is widely
accepted that protein domains often correspond to distinct and stable three-
dimensional (3D) structures, and that there is often a close relationship between
protein structure and protein function [2]. The Protein Data Bank (PDB) [3,4]
contains more than 107,000 3D structures, that have been determined by X-ray
crystallography or NMR spectroscopy. As well as sequence-based and structure-
based classifications, proteins may also be classified according to their function.
For example, the Gene Ontology (GO) [5] organizes a controlled vocabulary
describing the biological process (BP), molecular function (MF), and cellular
component (CC) aspects of gene annotation. It provides an ontology of defined
terms to unify the representation of the gene and protein roles in cells. The GO
vocabulary is structured as a rooted Directed Acyclic Graph (rDAG) in which
GO terms are nodes connected by different hierarchical relations. Each GO term
within the gene ontology has a term name, a distinct alphanumeric identifier,
and a namespace indicating to which ontology it belongs.

Although the GO is very useful, it does not generally provide a direct relation-
ship between biological function and a (sequence-based) Pfam domain. Figure 1
illustrates the different kinds of relationships that can occur when considering
GO-protein annotations at the domain level. Except for simple single-domain
proteins where the mapping is obvious, it is generally not possible to compare
and classify structure-function relationships at the domain level. An interesting
exception is the dcGO database which provides multiple ontological annotations
(Gene Ontology: GO, EC, pathways, phenotype, anatomy and disease ontolo-
gies) for protein domains [6]. In dcGO, an association between an ontology term
and a domain is inferred from the principle that if a term tends to be attached to
proteins in UniProtKB that contain a certain domain, then the term should be
associated with that domain. For each Pfam domain, dcGO compares the num-
ber of Uniprot sequences containing that domain and annotated with a certain
GO term to what could be obtained if association was random. The statistical
significance of the association is then assessed using a hypergeometric distrib-
ution, followed by multiple hypotheses testing in terms of false discovery rate.
Only significant associations are retained in the dcGO database.

Nonetheless, we found that there are several GO-Pfam associations from
manually curated data sources (e.g. InterPro) which are not present in dcGO.
Moreover, based on our previous ECDomainMiner approach [7,8] to discover
associations between EC numbers and protein domains, we found that there are
many reliable EC-Pfam associations which are not covered by dcGO. Further-
more, there are thousands of protein structures in the PDB which lack GO anno-
tations. If there is a direct association between protein domains and GO terms,
these structures can be annotated through their associated domains. Based on
our analysis, we estimated that dcGO associations can only annotate 43% of the
unannotated PDB structures. Therefore, we were motivated to develop a more
systematic approach, which we call “GODM” (“GO Domain Miner”), with the
aim of discovering a much larger set of GO-domain associations than dcGO.
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GODM uses a “recommender-based” approach for finding direct associa-
tions between GO terms and Pfam domains. We recently developed a similar
recommender-based approach called “ECDomainMiner” for assigning enzyme
classification (EC) numbers to Pfam domains [8]. Thus, the GODM approach
described here represents a natural extension of our previously developed ECDo-
mainMiner approach. Recommender systems are a subclass of information filter-
ing system [9,10] which seek to predict a list of items that might be of interest to
an on-line customer, and are divided into two main types. Collaborative filter-
ing approaches make associations by calculating the similarity between activities
of users [11,12]. In contrast, content-based filters predict associations between
user profiles and description of items by identifying common attributes [10,13].
Here, we use content-based filtering to associate GO terms with Pfam domains
from existing GO-chain and Pfam-chain associations from SIFTS [14], and GO-
sequence and Pfam-sequence associations from SwissProt and TrEMBL. As well
has handling simple one-to-one associations as in dcGO (Fig. 1 part A), GODM
can also resolve cases where multiple GO terms are associated with multi-domain
chains (Fig. 1 parts B, C, and D).

Fig. 1. A graphical representation of different situations of GO-Domain association in
a protein sequence or structure.

While SwissProt and TrEMBL were originally developed separately, both
databases have since been incorporated in the UniProt resource. SwissProt now
represents a non-redundant, high quality, manually curated part of UniProt
Knowledge Base (UniProtKB). In contrast, TrEMBL is an automatically anno-
tated and unreviewed part of UniProtKB, and contains around 40 times more
entries than SwissProt. In order to parameterise and evaluate our method, we use
the InterPro database [15] which contains a large number of manually curated
GO-Pfam associations. We assess the performance of our approach against a
“Gold Standard” dataset derived from InterPro, and we compare our results with
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the GO-Pfam associations available from the dcGO database. We also show how
our database of more than 20,000 GO-Pfam associations for molecular function
ontology can be exploited for automatic annotation purposes.

2 Methods

2.1 Data Preparation

Flat data files of SIFTS (July 2015), Uniprot (July 2015), and InterPro (ver-
sion 53.0) were downloaded and parsed using in-house Python scripts. From
the SIFTS data, associations between PDB chains and GO terms, and associa-
tions between PDB chains and Pfam domains were extracted in which each GO
term is a leaf in the hierarchy of the Molecular Function ontology (GO-MF) and
each Pfam refers either to a Pfam domain or a Pfam family (i.e. Pfam motifs
and repeats were excluded). Associations between Uniprot sequence accession
numbers (ANs) and GO terms from GO-MF, and AN-Pfam associations were
then extracted from the SwissProt and TrEMBL sections of Uniprot to give
two datasets of Swissprot associations and TrEMBL associations, respectively.
Then, based on the evidence code of the GO term, associations in SwissProt
and TrEMBL datasets were divided into two groups namely, associations for
which GO terms were assigned in UniProtKB by manual curation, and Inferred
from Electronic Annotation (IEA). These four datasets are subsequently called
Swissprot, Swissprot-IEA, TrEMBL, and TrEMBL-IEA. Note that there were
no evidence codes in the SIFTS.

To reduce bias due to the various numbers of identical sequences and
sequences of chains in the five source datasets, all PDB chains and Uniprot
sequences were grouped into clusters having identical sequences using the Uniref
non-redundant cluster annotations [16]. Each cluster was assigned a unique
identifier (CID), and the source GO-chain and GO-AN associations were then
mapped to the corresponding cluster in order to make five sets of GO-CID asso-
ciations. A similar mapping was applied to the source Pfam-chain and Pfam-AN
associations to make five sets of Pfam-CID associations.

For the InterPro reference data, we extracted a total of 1,561 GO-Pfam asso-
ciations in which each GO term is a leaf node of the molecular function ontology
and each Pfam refers to either a Pfam domain or a Pfam family. These asso-
ciations were considered to be “true” associations. However, for training and
filtering purposes, we also needed some examples of “false” associations. We
therefore selected a set of the lowest-scoring GO-Pfam associations with the
same size as InterPro dataset from the other datasets. These associations have
to belong to at least two out of five datasets with no intersection with InterPro
dataset. Because these associations have very little support in the data, we con-
sider them to be “false” associations. Then, we randomly divided the InterPro
dataset and our calculated “false” associations into two “Training” and “Test”
subsets of the same size (each having half of the “true” and “false” associations).
These two subsets were used for training and evaluation purposes respectively.
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In the rest of this article, we will refer to the InterPro dataset as our “Gold
Standard” dataset.

2.2 Finding GO-Pfam Associations by Content-Based Filtering

For each of the five datasets, all GO-CID relations are encoded in a binary
(GO × CID) matrix, where a 1 represents the presence of a GO annotation
and a 0 represents no annotation. This matrix is then row-normalised such that
each row has unit magnitude when considered as a vector. Similarly, all CID-
Pfam relations are encoded in a second binary (CID × Pfam) matrix which is
column-normalised. Consequently, calculating the product of the two normalised
matrices corresponds to calculating a matrix of cosine similarity scores between
the rows of the first matrix and the columns of the second matrix. Thus, the
product matrix represents an array of raw GO-Pfam association scores. Because
we wish to draw upon the relations from all five input datasets, we combine the
five scores to give a single normalized confidence score (CS):

CSgo,d =

∑
i wiSi(go, d)∑

i wi
(1)

where i ∈ {SIFTS, Swissprot, Swissprot-IEA, TrEMBL, TrEMBL-IEA} enu-
merates the five datasets, wi are weight factors, to be determined, and where an
individual association score, Si(go, d) is set to zero whenever there is no data for
a given go and d. In order to calculate the weight factors, we calculated Receiver-
Operator-Characteristic (ROC) curves [17] using the true associations from the
Interpro Training set and all other associations as background associations. The
weights were varied from 0.0 to 1.0 in steps of 0.1, and for each combination,
associations were scored and ranked, and area under the curve (AUC) was cal-
culated. Finally, we selected the combination of weights that gave the best area
under the curve (AUC) of the ROC curve.

2.3 Defining a Confidence Score Threshold

Having determined the best weight for each data source, we next wished to deter-
mine a threshold for the confidence score. We scored and ranked the members of
the Training set of InterPro, and divided the ranked list into two subsets accord-
ing to a threshold value that was varied from 0.0 to 1.0 in steps of 0.01. For each
threshold value, we counted the number of true associations above the threshold,
here called true positives (TPs), false associations above the threshold, false pos-
itives (FPs), false associations below the threshold, true negatives (TNs), and
true associations below the threshold, false negatives (FNs). We then calculated
the “F-measure” which is a harmonic mean of recall and precision using:

F =
2 × TP

2 × TP + FP + FN
(2)

The score threshold that gave the best F-measure was confirmed by verifying that
the F-measure calculated on the Test dataset is also very high. This threshold was
thus selected as the best threshold to use for accepting predicted associations.
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2.4 Hypergeometric Statistical Analysis

While the above procedure provides a systematic way to infer GO-Pfam asso-
ciations, we wished to estimate the statistical significance, and thus the degree
of confidence, that might be attached to those predictions. More specifically, we
wished to calculate the probability, or “p-value”, that a GO term, go, and a Pfam
domain, d, could be found to be associated simply by chance. For example, it is
natural to suppose such associations can be predicted at random if go or d are
highly represented in the structure/sequence CIDs. In principle, in order to esti-
mate the probability of getting our GO-Pfam associations by chance, one could
generate random datasets by shuffling the relations between GO terms and CIDs
on the one hand, and between Pfam domains and CIDs on the other hand. How-
ever, this is quite impractical given the very large numbers of CIDs, GO terms,
and Pfam domains, and the complexity of the filtering procedure that would
have to be repeated for each shuffled version of the dataset. Therefore, follow-
ing [6], we assume that within each dataset (SIFTS, Swissprot, Swissprot-IEA,
TrEMBL, or TrEMBL-IEA), the random hypothesis for the (go, d) association is
represented by the hypergeometric distribution of the expected number of CIDs
associated with both go and d.

Letting N denote the total number of CIDs, Nd the number of CIDs related
to the Pfam domain d, and Ngo the number of CIDs related to the GO term go,
the hypergeometric probability distribution is given by

p(Xgo,d � Kgo,d) =

∑min (Nd,Ngo)
i=Kgo,d

(
Ngo

i

)(
N−Ngo

Nd−i

)
(

N
Nd

) , (3)

where p(Xgo,d � Kgo,d) represents, in each dataset, the probability of having
a number Xgo,d equal to or greater than the observed number Kgo,d of CIDs
associated with both d and go. Traditionally, a p-value of less than 0.05 is taken
to be statistically significant. However, because this test is applied to a large
number of GO-Pfam associations, we apply a Bonferoni correction which takes
into account the so-called family-wise error rate (FWER) [18]. We therefore con-
sider any p-value less than 0.05/T as denoting a statistically significant inferred
GO-Pfam association in a dataset, with T the total number of tested GO-Pfam
associations for that dataset.

2.5 Gold, Silver, and Bronze Associations

In order to differentiate associations based on their quality and reliability,
our method categorizes associations into three classes of “Gold”, “Silver”, and
“Bronze” using their calculated similarity scores and p-values. An association
belongs to the Gold class if all its available p-values are statistically significant.
The Silver class consists of associations for which the number of statistically sig-
nificant p-values among the five datasets is greater than or equal to the number
of statistically insignificant p-values (e.g. GO-Pfam is a Silver associations if its
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Fig. 2. A schematic overview of the GODM procedure.

p-values are significant in SIFTS, SwissProt, and TrEMBL-IEA). The remain-
ing associations are assigned to the Bronze class. An illustration of the whole
procedure is shown in Fig. 2.

3 Results

Our method takes as input five large datasets of MF GO-chain associations
from SIFTS, and MF GO-sequence associations from SwissProt, SwissProt-
IEA, TrEMBL and TrEMBL-IEA as well as five large datasets of Pfam-Chain
and Pfam-sequence associations. These source datasets were merged to give a
global dataset of 1,161,372 non-redundant GO-Pfam associations. Using the ref-
erence InterPro dataset of 1561 “true” associations against background associ-
ations, the best ROC-plot AUC value of 0.99 was obtained with the weights
wSIFTS = 10, wSwissProt = 1, wSwissProt−IEA = 10, wTrEMBL = 1,
and wTrEMBL−IEA = 8. These weights clearly give a greater importance to
the GO-Pfam associations from SIFTS and the IEA (Inferred from Electronic
Annotation) section of SwissProt and TrEMBL compared to those derived from
TrEMBL and the manually curated section of SwissProt.

In order to reduce the number of false associations predicted by our approach
(and not just to simply optimise the overall AUC performance), various threshold
values of the confidence score (using the above weights) were tested on the
Training dataset using the F-measure (Sect. 2.3) with respect to the number of
true and false associations having scores above or below the threshold. This gave
an optimal threshold score of 0.01 for a maximum F-Measure of 0.99. Applying
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this threshold to the Test dataset yielded a recall value of 0.965 and a precision
value of 1.0 to give a F-measure of 0.98. This threshold was then used to filter
GO-Pfam associations from the merged dataset according to their confidence
score. It is worth noting that if the ranked list of Test associations is evaluated
with respect to the median rank (since the dataset contains equal numbers of
true and false instances), the threshold score is 0.0095 and our scoring function
gives recall and precision values of 0.965, and thus a F-measure of only 0.965.
This shows that using the chosen score threshold of 0.01 provides an objective
way to achieve a very low rate of false positive associations while still maintaining
very high recall and precision.

3.1 Analysis of Calculated GO-Pfam Associations

The summary of our calculated GO-Pfam associations is shown in Table 1. This
table shows the numbers of GO-Pfam associations along with the numbers of
distinct GO terms (leaf level) and Pfam entries involved in those associations
for the five source datasets, our merged global dataset before and after filtering
(the latter corresponding to our “GODM” GO-Pfam associations), and for the
InterPro dataset of true associations. The overlap between these two last datasets
is shown in the last line of the table.

Table 1. Statistics on the given and filtered MF GO-Pfam associations.

Dataset GO-Pfam associations GO terms Pfam entries

SIFTS 10,064 2,763 3,370

SwissProt 22,435 4,220 4,669

SwissProt-IEA 28,982 3,228 4,469

TrEMBL 22,031 2,766 3,613

TrEMBL-IEA 1,136,711 4,254 9,342

Merged 1,161,372 5,510 9,929

Filtered associations (GODM) 20,318 5,047 6,154

Common with InterPro 1,519 586 1,362

InterPro 1,561 591 1,390

Overall, Table 1 shows that our approach yielded a total of 20, 318 GO-Pfam
associations that include 1, 519 associations already present in InterPro. While
this shows that our method finds 97.3% of the “correct” GO-Pfam associations
in InterPro, it also shows that only 2.7% of the correct InterPro associations have
confidence scores below our optimal score threshold of 0.01. This relatively high
proportion of common associations reflects the fact that our method is designed
to give relatively strong support (Confidence Score) to the correct associations
in InterPro based on the five input sources. Concerning statistical significance,
nearly half of the GO-Pfam associations belong to the Gold class (48%).



Associating Gene Ontology Terms with Pfam Protein Domains 135

3.2 Comparison Between Our GODM and InterPro GO-Pfam
Associations

Figure 3 (A) shows the average number of GO-Pfam associations per GO term
and Pfam entry both for InterPro (shown in grey) and our calculated GODM
dataset (in black). The ratio for our method is higher for GO terms (4.03 versus
2.64) and Pfam entries (3.3 versus 1.12), which reflects: (i) a significant enrich-
ment in the annotation of Pfam domains; and (ii) participation of Pfam domains
in different functions as either a single domain or a part of a complex.

Figure 3 (B) shows the distribution of GO terms (in grey) and Pfam entries
(in black) according to the number of associations they are involved in. More
than 1,800 GO terms and 2,500 Pfam entries are involved in single associations,
i.e. associated with a single Pfam domain and a single GO term respectively.
Intersection of these single association sets yields a list of 135 one-to-one GO-
Pfam associations. Nevertheless, the distribution also shows that our collection of
associations rather favours multiple associations, thereby reflecting the complex
many-to-many relationships that exist within the original datasets.

Fig. 3. A: average number of GO-Pfam associations per GO terms and per Pfam entry
for the InterPro (grey) and our calculated GODM (black) datasets. B: distribution of
GO terms according to their numbers of associations with Pfam entries (grey) and
Pfam entries according to their numbers of associations with GO terms (black).

3.3 Comparing GODM and dcGO GO-Pfam Associations

In order to compare our results with dcGO [6], we extracted the Pfam2GO asso-
ciations from the dcGO website (http://supfam.org/SUPERFAMILY/dcGO)
where GO terms are leaves in the MF hierarchy of GO terms. This Pfam2GO
dataset includes 3,086 GO-Pfam associations. Figure 4 shows that a total of 2,401
GO-Pfam associations are common to dcGO and our results (overlap B) while
only 404 GO-Pfam associations are common between InterPro and dcGO (over-
lap C). Furthermore, this comparison shows that our GODM dataset contains
17,917 (20,318-2,401) additional GO-Pfam associations that are not available in
the dcGO dataset. In a more detailed analysis, the overlap between the GODM
and Pfam2GO datasets was studied with respect to our three quality classes. As
summarized in the Table 2, the overlap between the two datasets contains 1,621,
600, and 180 Gold, Silver, and Bronze associations, respectively.
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Fig. 4. Venn diagram showing the intersection between Pfam2GO (3,086 associations)
from dcGO, our GODM associations (20,318 associations), and manually curated asso-
ciations (1,561 associations) from InterPro. Region A (1,519 associations) is the overlap
between our result and InterPro associations. Region B (2,401 associations) is the com-
mon associations between our result and Pfam2GO. Region C (404 associations) is the
overlap between Pfam2GO and InterPro associations.

Table 2. Overlap between associations from GODM, Pfam2GO of dcGO, and InterPro.

Dataset GODM Overlap

With Pfam2GO With InterPro

Gold 9,771 1,621 922

Silver 4,280 600 455

Bronze 6,267 180 72

Total 20,318 2401 1,519

3.4 Annotating PDB Chains with GO Terms

Our analysis of the July 2015 release of the SIFTS database reveals that some
41% of PDB entries currently lack a leaf GO term annotation. Indeed, we found
that a total of 48,409 PDB chains lacking GO annotations in SIFTS include at
least one of the 6,154 Pfam domains present in our calculated GODM associa-
tions. For those chains, GODM finds 19,371, 7,176 and 12,530 Gold, Silver, and
Bronze GO-Pfam associations, respectively, giving a total of 39,077 PDB chains
that could benefit from the annotations inferred by GODM. Moreover, 153 PDB
chains could benefit from unambiguous one-to-one GO-Pfam associations.

To give an example, GODM finds a Gold association between PF03018
(Dirigent-like protein) and GO term GO:0042349 (“Guiding stereospecific syn-
thesis activity”). Interestingly, the PF03018 domain is present in the PDB chain
4REV A (“Structure of the dirigent protein DRR206”) which is not annotated
by any GO term from the molecular function ontology. Consequently the GODM
recommendation is to annotate the 4REV PDB entry with GO:0042349 term,
which explicitly describes the possible function of this protein. Another example
is PDB structure 2YRB, which is described only as “the solution structure of
the first C2 domain from human KIAA1005 protein”, and for which its previ-
ously assigned Pfam domain (PF11618) is annotated as a “protein of unknown
function (DUF3250)”. In this case, GODM finds a Gold association between
PF11618 and GO:0031870 (thromboxane A2 receptor binding) thus indicating
that this structure could be annotated with that GO term.
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4 Conclusion

We have presented a systematic content-based filtering approach for assigning
GO terms to protein domains and then categorizing those associations. This was
achieved by first collecting existing annotations of protein chains or sequences,
namely Pfam domain compositions on one hand and GO-MF leaf term annota-
tions on the other. We then applied the content-based filtering method to find
a list of direct associations between GO-MF leaf terms and Pfam domains. Our
approach is able to infer a total of 20,318 direct GO-Pfam associations. Thus,
compared to the 1,561 manually curated GO-Pfam associations from InterPro
database, our approach discovers over 13 times as many associations in a com-
pletely automatic way. We have also proposed some possible ways to further
analyze the coverage of the our approach. We believe that the large numbers of
GO-Pfam associations calculated using our approach can considerably contribute
to enriching the annotations of PDB protein chains, and that this will facilitate
a better understanding and exploitation of structure-function relationships at
the protein domain level.
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C.1. Published Journal and Conference Papers

C.1.4 Automatic Generation of Functional Annotation Rules Using Inferred

GO-Domain Associations

There are millions of proteins with known sequences and unknown functions. The most reliable way to

assign functions to proteins is by expert curators, but this is an expensive and time-consuming process.

The huge gap between the small number of expert curators and the ever increasing number of new

unannotated protein sequences has motivated the development of many automatic annotation approaches.

These approaches aim for a balance between maximizing the number of annotations while minimizing

the number of false assignments. However, achieving this aim in a reliable way remains an open research

problem.

We present here a novel approach called CARDM (Combinatorial Association Rules Domain Miner)

which exploits that fact that many proteins consist of one or more domains. CARDM combines a learning

step in which functional annotations are assigned to protein domains, and a combinatorial step in which

association rules are generated and �ltered using previously validated annotations. The �ltered rules are

then aggregated to build predictive models that are used to automatically annotate protein sequences and

structures. CARDM has been tested on the entire set of TrEMBL entries and on the dataset provided at

the international 2013 CAFA (Critical Assessment of Functional Annotation) challenge. Overall, CARDM

predicts 24 million EC numbers and 188 million GO terms for the protein entries in TrEMBL. We �nd

that the performance of CARDM on the CAFA 2013 targets is similar to that of the best predictor groups

in that round of CAFA.
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1. INTRODUCTION

The GO ontology is widely used for functional annotation of genes and proteins. It describes
biological  processes  (BP),  molecular  function  (MF),  and  cellular  components  (CC)  in  three
distinct  hierarchical  controlled  vocabularies.  At  the  molecular  level,  functions  are  often
performed by highly conserved parts of proteins, identified by sequence or structure alignments
and classified into domains or families (SCOP, CATH, PFAM, TIGRFAMs, etc.). The InterPro
database provides a valuable integrated classification of protein sequences and domains which is
linked to nearly all  existing other classifications.  Interestingly, several  InterPro families  have
been manually annotated with GO terms using expert knowledge and the literature. However, the
list of such annotations is incomplete (only 20% of Pfam domains and families possess MF GO
functional  annotation).  We therefore  developed the GODM approach to expand the available
functional  annotations  of  protein  domains  and  families  (1).  Based  on  our  ECDomainMiner
approach (2), we use the respective associations of protein sequences with GO terms and protein
domains to infer direct associations between GO terms and protein domains. 

2. INFERRING GO-DOMAIN ASSOCIATIONS USING GODM

GODM finds associations between GO terms and protein domains from the known associations
between (i) GO terms and protein sequences and (ii) the same protein sequences and the domains
they are known to contain. The domains may belong to any domain classification such as Pfam.
We used two types of datasets: (i) SIFTS for associations between PDB chains and GO terms or
domains,  (ii)  the  Swissprot  and  TrEMBL  sections  of  UniProtKB  for  associations  between
sequence accession numbers (ANs) and GO terms or domains. Next, based on the evidence code
of the GO term assignment, AN-GO term associations in the SwissProt and TrEMBL datasets are
divided into two groups, namely associations for which GO terms were Inferred from Electronic
Annotation  (IEA)  and  the  rest.  These  four  input  datasets  are  subsequently  called  Swissprot,
Swissprot-IEA, TrEMBL, and TrEMBL-IEA. In order to exploit the GO hierarchy, associations
involving ancestors of GO terms are also added to the datasets. Finally, PDB chains and ANs are
grouped into non-redundant clusters having identical sequences using the Uniref100 resource.

In each dataset prepared in this way, each GO term and domain is assigned a feature vector
of associated chain or AN clusters. This allows to calculate cosine similarities between GO terms
and domains. The scores assigned to each vector pair in each of the five datasets are combined
using  a  weighted  average.  The  individual  weights  are  optimised  by  calculating  the  ROC
performance plot and maximizing the AUC with manually confirmed GO-Domain associations
from  InterPro  as  positive  examples,  against  all  others.  Then,  a  threshold  is  chosen  for  the
weighted  score  in  order  to  eliminate  weak  GO-domain  associations.  Finally  a  p-value is
calculated for each GO-domain association in each dataset using a hypergeometric distribution. 



3. RESULTS FOR GO-PFAM ASSOCIATIONS

The GODM method infers 20,318 GO-Pfam associations where GO terms are leaves in the MF
hierarchy  of  GO  terms.  Compared  to  the  1561  manually  curated  GO-Pfam  associations  in
InterPro, this represents a 13-fold increase in the number of GO-Pfam associations. Furthermore,
the GODM associations have been compared with the dcGO database (3) that includes 3,086
comparable GO-Pfam associations. A total of 2,401 GO-Pfam associations are common between
dcGO and our results revealing that our GODM dataset  contains 17,917 additional  GO-Pfam
associations. Moreover the overlap with the 1561 InterPro GO-Pfam associations is of 1519 for
the GODM dataset versus only 404 for the dcGO dataset. The GODM method was also run with
the SCOP and CATH classifications of domains or families and yielded very similar results.

4. USING THE GODM RESOURCE TO GENERATE ANNOTATION RULES 

In  this  section,  we  present  a  systematic  way  to  generate  high  confidence  rules  for  protein
annotation using the GODM associations. We first ran GODM several times to find associations
between  GO terms  and  domains  from  the  different  domain  classifications  (such  as  PFAM,
TIGRFAMs, etc.). Then, all associations were grouped for each given GO term resulting in an
association of the GO term with a set of domains pertaining from diverse classifications. We then
generated all  possible  subsets  of  domains  ({D1,...,  Dn},  n  ≤ 4) and associated  them with the
concerned GO term, GOk. The subsets of domains were further diversified by adding a taxon (Tj)
from a list of interest (one per subset). These complex associations, ({{D1,..., Dn}, Tj}, Gok), were
converted into annotation rules: 

IF a sequence S belongs to taxon Tj and S contains domains {D1,..., Dn} 
THEN S is annotated by GOk .

In order to verify the quality of each generated rule, a confidence score was assigned as the ratio
of the number of SwissProt sequences verifying the rule over the number of SwissProt sequences
verifying  the  premise  of  the  rule.  Candidate  rules  with  high  confidence  (usually  100%)  are
retained  and used to  assign  GO terms  to unannotated  protein  sequences.  When using  Pfam,
SCOP,  CATH,  Panther,  PROSITE,  CDD,  SMART,  PRINTS,  and  TIGRFAM  domain
classification for GODM, and a set of 40 taxa from CAFA3 unannotated protein sequences, we
obtained 6,357, 17,466, and 2,338 annotation rules for MF, BP, and CC GO terms with 100%
confidence  on  SwissProt.  These  rules  were  used  to  annotate  target  protein  sequences  in  the
CAFA3 challenge (http://biofunctionprediction.org/cafa/).  There were a total of 121,914 target
sequences having at least one known domain present  in our GODM-derived rules. Using our
high confidence annotation rules, we obtained 188,549 MF, 315,310 BP, and 191,835 CC GO
term predictions for 98,849, 106,346, and 105,274 distinct CAFA3 target sequences, respectively.

5. CONCLUSION 

The GODM approach provides a substantial enrichment of functional annotations at the protein
domain level which has been exploited here for protein functional annotation but can also be
used to deepen our knowledge about structure-function relationships at the domain level.
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Appendix C. Scienti�c Articles and Posters

C.2 Posters

C.2.1 EC-PSI: Associating Enzyme Commission Numbers with Pfam Do-

mains

With the growing number of protein structures in the protein data bank (PDB), there is a need to annotate

these structures at the domain level in order to relate protein structure to protein function. Thanks to the

SIFTS database, many PDB chains are now cross-referenced with Pfam domains and enzyme commission

(EC) numbers. However, these annotations do not include any explicit relationship between individual

Pfam domains and EC numbers. This article presents a novel statistical training-based method called

EC-PSI that can automatically infer high con�dence associations between EC numbers and Pfam domains

directly from EC-chain associations from SIFTS and from EC-sequence associations from the SwissProt,

and TrEMBL databases. By collecting and integrating these existing EC-chain/sequence annotations,

our approach is able to infer a total of 8,329 direct EC-Pfam associations with an overall F-measure of

0.819 with respect to the manually curated InterPro database, which we treat here as a �Gold Standard�

reference dataset. Thus, compared to the 1,493 EC-Pfam associations in InterPro, our approach provides

a way to �nd over six times as many high quality EC-Pfam associations completely automatically.

C.2.2 Associating Gene Ontology Terms with Pfam Protein Domains

The fast growing number of protein structures in the protein data bank (PDB) raises new opportunities

to study protein structure-function relationships. As the biological activity of many proteins often arises

from speci�c domain-domain and domain-ligand interactions, there is a need to provide a direct mapping

from structure to function at the domain level. Many protein entries in PDB and UniProt are annotated

to show their component protein domains according to Pfam classi�cation, as well as their molecular

function through the Gene Ontology (MF GO) terms. We therefore hypothesize that relevant MF GO-

domain associations are hidden in this complex dataset of annotations.

C.2.3 Using Content-Based Filtering to Infer Direct Associations between

the CATH, Pfam, and SCOP Domain Databases

Protein domain structure classi�cation systems such as CATH and SCOP provide a useful way to describe

evolutionary structure-function relationships. Similarly, the Pfam sequence-based classi�cation identi�es

sequence-function relationships. Nonetheless, there is no complete direct mapping from one classi�cation

to another. This means that functional annotations that have been assigned to one classi�cation cannot

always be assigned to another. Here, we present a novel content-based �ltering approach called CAPS

(Computing direct Associations between annotations of Protein Sequences and Structures) to systemati-

cally analyze multiple protein-domain relationships in the SIFTS and UniProt databases in order to infer

direct mappings between CATH superfamilies, Pfam clans or families, and SCOP superfamilies. We then

compare the result with existing mappings in Pfam, InterPro, and Genome3D.

C.2.4 Automatic Generation of Functional Annotation Rules Using Inferred

GO-Domain Associations

The GO ontology is widely used for functional annotation of genes and proteins. It describes biological

processes (BP), molecular function (MF), and cellular components (CC) in three distinct hierarchical
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controlled vocabularies. At the molecular level, functions are often performed by highly conserved parts

of proteins, identi�ed by sequence or structure alignments and classi�ed into domains or families (SCOP,

CATH, PFAM, TIGRFAMs, etc.). The InterPro database provides a valuable integrated classi�cation of

protein sequences and domains which is linked to nearly all existing other classi�cations. Interestingly,

several InterPro families have been manually annotated with GO terms using expert knowledge and the

literature. However, the list of such annotations is incomplete (only 20% of Pfam domains and families

possess MF GO functional annotation). We therefore developed the GODomainMiner approach to expand

the available functional annotations of protein domains and families. Based on our ECDomainMiner

approach, we use the respective associations of protein sequences with GO terms and protein domains

to infer direct associations between GO terms and protein domains. Finally, we used our calculated

GO-domain associations to devise a systematic way, called AutoProf-Annotator (* Changed to CARDM

*), to generate high con�dence rules for protein sequence (or structure) annotation.
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A. Statistics 
The EC-PSI method inferred in a completely automatic manner 
nearly six-times more associations than in our InterPro "gold 
standard" dataset  (Table 1). 
 
 
 
 
 
 
 
 
 
 
The optimal score threshold found to be 0.08. Applying this threshold to 
Test Dataset yielded F-measure, precision, and recall values of 0.81, 0.948, 
and 0.707, respectively.  

B. Increase in EC-Pfam associations depending on the 
top-level EC branch (first-digit) 
 
 
 
 
 
 
 
 
 

INTRODUCTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MATERIALS & METHODOLOGY 

We have  developed a statistical method for inferring 
associations between EC number and Pfam Domains. 
We are currently applying the method on the 3-digit level of EC 
classification. 
The large numbers of EC-Pfam associations calculated using our 
approach can contribute considerably to enriching the 
annotations of PDB protein chains (Figure 5). 
This will facilitate a better understanding and exploitation of 
structure-function relationships at the protein domain level.  

CONCLUSIONS & PERSPECTIVES 

EXAMPLE 

With the growing number of protein structures in the protein data bank (PDB) [1], there is 
a need to annotate these structures at the domain level in order to relate protein 
structure to protein function. Thanks to the SIFTS database [2], many PDB chains are now 
cross-referenced with Pfam domains [3] and Enzyme Commission (EC) numbers [4]. 
However, these annotations do not include any explicit relationship between individual 

Pfam domains and EC numbers. This poster presents a novel statistical training-based 
method called EC-PSI (for EC-Pfam Statistical Inferring) that can automatically infer high 
confidence associations between EC numbers and Pfam domains directly from EC-chain 
associations from SIFTS and from EC-sequence associations from the SwissProt, and 
TrEMBL databases [5]. 
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PDB entry 1JVN is associated in SIFTS with two 
domains: 
• N-terminal: Glutamine amidotransferase class-1 

(PF00117). 
• C-terminal: Histidine biosynthesis protein 

(PF00977). 
And is annotated with:  
• EC 2.4.2.- : Pentosyl transferase. 
EC-PSI retrieved the following annotations for each 
domain: 
• 8 EC numbers for PF00117 with a majority of EC 

6.3.-.-: Ligase forming carbon-nitrogen bonds. 
• 1 EC number for PF00977 : EC 5.3.1.16  specific 

isomerase, part of the Histidine biosynthesis 
pathway. 

These new annotations (not present in InterPro) 
enrich the global annotation of this PDB structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Data sources 
• SIFTS: A database which provides relations between PDB structures and other 

resources. 
• UniProt: A protein sequence resource which is divided into manually (Swissprot) and 

automatically curated (Trembl) databases.  
• Interpro: An integrated database of protein domains with reviewed functional 

annotations (= available “Gold Standard” set of "true" EC-Pfam associations) [6]. 
 
B. Algorithm 
1. Extract from SIFTS data associations between 4-digit EC numbers and PDB chains, and 

associations between PDB chains and Pfam domains, leading to many-to-many 
relationships between EC numbers and Pfam domains (Figure 1). Repeat this step with 
sequences instead of PDB chains using SwissProt and Trembl. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 

3. Calculate the EC-Pfam frequency score (PPFEC) for a given pair (ECm, Dn) as the ratio 
between the number of PDB chain having Pfam domain Dn and the total number of 
PDB chains associated with 𝐸𝐸𝐸𝐸𝑚𝑚(Formula 1). Calculate the corresponding frequencies 
from SwissProt (PSFEC) and Trembl (PTFEC). 
 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑛𝑛𝑚𝑚 = | 𝑃𝑃𝑖𝑖
𝑚𝑚; 𝐷𝐷𝑛𝑛 ∈ 𝑃𝑃𝑖𝑖

𝑚𝑚,𝑖𝑖=1,…,𝐶𝐶𝑚𝑚 |
𝐶𝐶𝑚𝑚

          (1) 
 
4. Aggregate the three frequency scores into one confidence score (Formula 2). 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑚𝑚,𝑛𝑛 = 𝑎𝑎 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑚𝑚,𝑛𝑛 + 𝑏𝑏 × 𝑃𝑃𝑆𝑆𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚,𝑛𝑛 + 𝑐𝑐 × 𝑃𝑃𝑇𝑇𝐹𝐹𝐹𝐹𝐶𝐶𝑚𝑚,𝑛𝑛
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐

           (2) 
 
5. Find the best values for weighting factors a, b, c using our InterPro-derived Gold 

Standard. Values for a, b and c varied from 1 to 10 in steps of 1. For each combination, 
the "true" associations retrieved from InterPro and an equivalent number of "false" 
associations were scored and a ROC plot was drawn. The highest AUC value (Area 
Under the Curve) was chosen to select the best three values : a= 1, b=10, c=1. 
 

 
 

Dataset EC-Pfam assoc. 4-digit EC no. Pfam domains 
SIFTS 6204 2575 2606 
SwissProt 9879 3959 3147 
TrEMBL 28572 3538 5839 
Merged 32018 4588 6290 
InterPro 1493 676 1273 
EC-PSI (Calculated) 8329 4436 2462 
Common to EC-PSI 
and InterPro 

1089 593 944 

2. Draw a tree-like set of relations for 
each EC number using all its 
associated PDB chains (Figure 2). 
Repeat this step with SwissProt and 
Trembl data.  
 

Figure 1. Building many-to-many relationships between EC numbers and Pfam domains. 

Figure 2. Tree-like representation of the relationships between 
an EC number 𝐸𝐸𝐸𝐸𝑚𝑚 and N Pfam domains via C PDB chains. Figure 3. Flow-chart of the EC-PSI data processing and training procedure. 

Table 1. Statistics on the given and calculated EC-Pfam associations. 

Figure 4. Scale-up factors for EC-PSI versus InterPro associations (red), 
EC entries (blue), Pfam domains (green), depending on the EC branch.  
1: Oxydoreductases, 2: Transferases, 3: Hydrolases, 4: Lyases,  
5: Isomerases, 6: Ligases, All: All EC branches.  

Figure 5. Using EC-PSI to transform EC-Chain/Sequence annotations into EC-Pfam 
annotations with confidence scores, thus enriching PDB chains annotations.  

INPUT PROCESS RESULT 

Figure 6. Schematic presentation of 1JVN.   

PF00117 
EC 6.3.-.- 

PF00977 
EC 5.3.1.16 



The fast growing number of protein structures in the protein data bank (PDB) [1] raises new
opportunities to study protein structure-function relationships. As the biological activity of
many proteins often arises from specific domain-domain and domain-ligand interactions, there
is a need to provide a direct mapping from structure to function at the domain level.

Many protein entries in PDB and UniProt are annotated to show their component protein
domains according to Pfam classification [2], as well as their molecular function through the
Gene Ontology (GO_MF) terms [3]. We therefore hypothesize that relevant GO_MF-domain
associations are hidden in this complex dataset of annotations.

Dataset GO_MF - Pfam
associations

GO_MF terms 
(leaves)

Pfam domains

SIFTS 10,064 2,763 3,370
SwissProt 22,435 4,220 4,669
SwissProt-IEA 28,982 3,228 4,469
TrEMBL 22,031 2,766 3,613
TrEMBL-IEA 1,136,711 4,254 9,342
Merged 1,161,372 5,510 9,929
GODM_MF 15,508 4,661 5,306
InterPro 1,561 591 1,390
Common with 
GODM 1,433 584 1,301

Associating Gene Ontology Terms with Pfam 
Protein Domains Using Content-Based Filtering
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Table 1. Statistics on the calculated GO-Pfam associations versus InterPro.

• The 13-fold increase in (GO-MF , Pfam)
associations compared with interPro is a possible
reservoir of functional annotations for structural
domains of unknown function in the Pfam
database.

• Multiple associations should be explored carefully.
• The GODM resource could be used to annotate

thousands of PDB chains or protein sequences
which currently lack any GO annotation although
their domain composition is known.

Fig 1. A graphical illustration of the content-based filtering workflow for calculating raw GO-Pfam from existing GO-Chain and Pfam-Chain associations.

CONCLUSION

A. Input Data Sources
• SIFTS [4] (PDB annotations) ; UniProt [5] (Swissprot + Trembl, each divided in two based

on IEA evidence code) ;

B. Extract Associations as two bipartite graphs
• between protein instances and either “leaf” GO terms or Pfam domains.

C. Cluster identical sequences and join the two graphs.
• CID: Clusters of identifiers for proteins with 100% identical sequence
• Many-to-many relations between GO terms and Pfam with CIDs as intermediates

D. Map Graphs to Adjacency Matrices and Apply Content-Based Filtering
• The cosine similarity score of a given pair (GOm, Pfamn) is the ratio between the number

of CIDs shared by GOm and Pfamn, and the square root product of the total number of
CIDs associated with GOm and the total number of CIDs associated with Pfamn.

E. Repeat the Procedure for Other Sources
• Repeat steps B, C, and D using SwissProt, SwissProt-IEA, Trembl, and Trembl-IEA.

F. Create a Gold Standard
• From InterPro [6] (1561 reviewed GO-Pfam associations = “positive examples”)
• From shuffled SIFTS data (1561 “negative samples”)

G. Determine Source Weights
• Aggregate the fiver similarity scores into one confidence score:

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒𝑔𝑜,𝑝𝑓𝑎𝑚 =
σ𝑖 𝑤𝑖𝑆(𝑔𝑜,𝑝𝑓𝑎𝑚)

σ𝑖 𝑤𝑖

• Values for 𝑤𝑠𝑖𝑓𝑡𝑠, 𝑤𝑠𝑤𝑖𝑠𝑠𝑝𝑟𝑜𝑡, 𝑤𝑠𝑤𝑖𝑠𝑠𝑝𝑟𝑜𝑡−𝐼𝐸𝐴, 𝑤𝑡𝑟𝑒𝑚𝑏𝑙 and 𝑤𝑡𝑟𝑒𝑚𝑏𝑙−𝐼𝐸𝐴 varied from 1 to 10

in steps of 1.
• For each combination, the positive examples from InterPro are scored against all other

associations (background); ROC plot is drawn and maximal AUC (0.995) is obtained for :
𝒘𝒔𝒊𝒇𝒕𝒔 = 10, 𝒘𝒔𝒘𝒊𝒔𝒔𝒑𝒓𝒐𝒕 = 1, 𝒘𝒔𝒘𝒊𝒔𝒔𝒑𝒓𝒐𝒕−𝑰𝑬𝑨 = 1𝟎,𝒘𝒕𝒓𝒆𝒎𝒃𝒍 =1, and 𝒘𝒕𝒓𝒆𝒎𝒃𝒍−𝑰𝑬𝑨 = 8

H. Determining the threshold score
• From 1 to 0.01 in steps of 0.01, F-measure is calculated with respect of InterPro positive

and shuffled SIFTS dataset negative samples.
• Optimal F-measure (88.6%) for threshold score at 0.02.

I. Calculating P-Values for each association in each dataset
• Hypergeometric law + Bonferroni correction (according to Fang and Gough 2013),

J. Categorize the Inferred Associations (score > threshold)
• Gold: all P-values significant ; Silver: number of significant P-values ≥ non-significant ones;

Bronze: the rest.

GRAPH-BASED EXPLORATION TRANSFERING ANNOTATIONS
Interpro: 
GO_MF – Pfam
(1,433 assoc.)

GODM_MF 
Gold only

(9,771 assoc.)

Fig 6 and Table 2: Analysis of selected subgraphs (not in InterPro)

Fig3. Comparison with dcGO
Venn diagram showing the various
intersections between the 3,086
Pfam2GO associations from dcGO
[7], our 15,508 GODM_MF
associations associations, and the
1,561 manually curated
associations from InterPro.Fig2. Distribution according to node degrees

Pfam domains

GO_MF leaf terms

Fig4. Graph overview of (A) InterPro associations, (B) GODM_MF 
Gold-type associations, using Neo4J graph database.

Fig 5. Example of transferring newly discovered domain annotation 
to PDB entry

Pfam ID Pfam name GO_MF
ID

GO_MF name Score

PF01040 8495 GOLD

PF02628 8495 GOLD

PF07798 8495 GOLD

PF01040 8412 GOLD

id 2083 GOLD

id 46408 GOLD

id 46428 GOLD

id 47293 GOLD

id 47295 GOLD

id 47292 BRONZE

id 10176 BRONZE

id 10355 BRONZE

id 10356 BRONZE

id 10357 BRONZE



CAPS algorithm

Protein domain structure classification systems such as CATH and SCOP provide a useful way to
describe evolutionary structure-function relationships. Similarly, the Pfam sequence-based
classification identifies sequence-function relationships. Nonetheless, there is no complete
direct mapping from one classification to another. This means that functional annotations that
have been assigned to one classification cannot always be assigned to another. Here, we

present a novel content-based filtering approach called CAPS (Computing direct Associations
between annotations of Protein Sequences and Structures) to systematically analyze multiple
protein-domain relationships in the SIFTS and UniProt databases in order to infer direct
mappings between CATH superfamilies, Pfam clans or families, and SCOP superfamilies. We
then compare the result with existing mappings in Pfam, InterPro, and Genome3D.

Using Content-Based Filtering to Infer Direct Associations between
the CATH, Pfam, and SCOP Domain Databases
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• Over 90% of all associations found, are self-consistent

with respect to triangular (SCOP-CATH-Pfam)
associations.

• Overall, our approach finds 4 times as many SCOP-CATH
superfamily associations than currently exist in
Genome3D. These new associations will be beneficial to:
1. Transfer annotations from one classification scheme to

another.
2. Investigate annotation consistency between different

classifications.
• We are currently extending our approach to

1. Analyze multiple associations in more detail.
2. Confirm the associations using 3D structure alignment

CONCLUSION

Given
• X and Y, two sets of annotating entities,
• RS+, a reference set of confirmed associations between elements of X and Y,
• S1 to Sn, n sources of relations between X and protein chains or sequences (CIDs),

and between Y and protein chains or sequences,
1. For each datasource Si

• Extract X-CID and Y-CID relations (CID: clusters of 100% identical sequences)
• Compute dot product of normalized (𝑋 × 𝐶𝐼𝐷)i and (𝐶𝐼𝐷 × 𝑌)i matrices to get

the (𝑋 × 𝑌)i cosine similarity matrix for source Si.
2. Aggregate similarity scores of all sources

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒𝑋𝑗,𝑌𝑘 =
σ𝑖
𝑛𝑤𝑖𝑆(𝑋𝑗,𝑌𝑘)

σ𝑖
𝑛𝑤𝑖

• Determine sources weights 𝑤𝑖 that maximize AUC in ROC plots using RS positive
examples of X-Y associations against background.

3. Determine the threshold confidence score
• Build a set of negative examples RS- (by random shuffling of relations supporting

RS+) and build training and test sets of positive and negative examples
• Select confidence score threshold that maximizes F-measure on the training set of

positive and negative X-Y associations and evaluate on the test set.
4. (Optional) Calculate P-Values for each association in each source Si

• Hypergeometric law + Bonferroni correction
• Categorize the CAPS-inferred associations (Gold: all P-values significant ; Silver: more

significant P-values than non significant ones ; Bronze: The rest).

Return
• “CAPS-inferred” X-Y associations (score > threshold), score and category.

Fig1. Distribution according to node degrees (Number of Associations) 

Fig 2. Intersection between our result (CAPS), InterPro, Genome3D, and Pfam website mappings. 

TRIANGULAR VERIFICATION

Content-Based Filtering Intuition

Generalization: Scoring Matrix Calculation

The CAPS algorithm

Instantiation: CATH, Pfam and SCOP

X and Y : annotating entities; CID : Cluster Identifier for 100% identical sequences

Xj and Yk

linked to CIDs

SIFTS

Swissprot

TrEMBL

InterPro
(RS)

(X,Y) = (Pfam, CATH)

(X,Y) = (SCOP, Pfam)

(X,Y) = (SCOP, CATH)

Pfam

SCOP CATH
?

SCOP-CATH SCOP-PfamPfam-CATH

Dataset SCOP-CATH
Mappings

SCOP 
SupFam

CATH
SupFam

Merged 580,763 1,851 2,604

CAPS 5,576 1,817 2,549

InterPro 2,856 1,637 2,231

Common with 
CAPS

2,764 1,634 2,225

Dataset Pfam-CATH
Mappings

Pfam 
Clans/Fam

CATH
SupFam

Merged 1,068,601 7,228 2,754

CAPS 7,623 3,033 2,745

InterPro 3,573 2,008 2,494

Common with 
CAPS

3,494 1,998 2,489

Dataset SCOP-Pfam
Mappings

SCOP 
SupFam

Pfam 
Clans/Fam

Merged 1,004,741 2,111 7,165

CAPS 6,618 2,109 3,168

InterPro 2,100 1,537 1,752

Common with 
CAPS

2,053 1,532 1,745

Table 1. CAPS mappings versus InterPro.

CID1 CID2 CID3 CID4 CID5

SCOP1 0 0 0 1 1

SCOP2 1 1 0 0 1

CID1 CID2 CID3 CID4 CID5

CATH1 0 0 0 0 1

CATH2 0 1 0 1 0

Star1 Star2 Star3 Star4 Star5

User1 0 0 0 1 1

User2 1 1 0 0 1

Star1 Star2 Star3 Star4 Star5

Film1 0 0 0 0 1

Film2 0 1 0 1 0

Film1 Film2

User1 0.7 0.5

User2 0.57 0.4

CATH1 CATH2

SCOP1 0.7 0.5

SCOP2 0.57 0.4

Mappings SCOP CATH

SCOP-CATH 5,576 1,817 2,549

Common with
SCOP-{Pfam}-CATH

5,438 1786 2518

1:1 SCOP-CATH 506 506 506

Common with 
SCOP-{Pfam}-CATH

492 492 492

Mappings SCOP CATH

Pfam-CATH 7,623 3,033 2,745

Common with 
Pfam-{SCOP}-CATH

6,768 2629 2518

1:1 Pfam-CATH 457 457 457

Common with
Pfam-{SCOP}-CATH

393 393 393

Mappings SCOP CATH

SCOP-Pfam 6,618 2,109 3,168

Common with 
SCOP-{CATH}-Pfam

5,628 1786 2629

1:1 Pfam-CATH 635 635 635

Common with
Pfam-{SCOP}-CATH

478 478 478

User and Film Profiles (Cosine) Similarity SCOP and CATH Profiles

Datasource

SCOP-{Pfam}-CATH

Pfam-{SCOP}-CATH SCOP-{CATH}-Pfam



The GO ontology is widely used for functional annotation of genes and proteins. It describes
biological processes (BP), molecular function (MF), and cellular components (CC) in three
distinct hierarchical controlled vocabularies. At the molecular level, functions are often
performed by highly conserved parts of proteins, identified by sequence or structure
alignments and classified into domains or families (SCOP, CATH, PFAM, TIGRFAMs, etc.). The
InterPro database provides a valuable integrated classification of protein sequences and
domains which is linked to nearly all existing other classifications. Interestingly, several InterPro
families have been manually annotated with GO terms using expert knowledge and the

literature. However, the list of such annotations is incomplete (only 20% of Pfam domains and
families possess MF GO functional annotation). We therefore developed the GODomainMiner
approach to expand the available functional annotations of protein domains and families (1).
Based on our ECDomainMiner approach (2), we use the respective associations of protein
sequences with GO terms and protein domains to infer direct associations between GO terms
and protein domains. Finally, we used our calculated GO-Domain associations to devise a
systematic way, called AutoProf-Annotator, to generate high confidence rules for protein
sequence (or structure) annotation.

Automatic Generation of Functional Annotation Rules 
Using Inferred GO-Domain Associations
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Fig2. CAFA3: Distribution according to the number of GO terms for each sequence (right), and sequences for each GO term (left)

Annotation Examples
Molecular Function GO Cellular Component GOBiological Process GO

CAFA Targets CAFA Targets (Conf. 1)

Prediction 188,549 164,359

Sequence 98,849 81,248

GO term 4,705 4,673

Common 
to existing 
GO terms

ISMB/ECCB 
Function SIG

ISMB/ECCB 
Function SIG

CAFA Targets CAFA Targets (Conf. 1)

Prediction 315,310 229,006

Sequence 106,346 72,543

GO term 11,676 11,582

Common 
to existing 
GO terms

ISMB/ECCB 
Function SIG

ISMB/ECCB 
Function SIG

CAFA Targets CAFA Targets (Conf. 1)

Prediction 191,835 150,411

Sequence 105,274 76,233

GO term 1,870 1,853

Common 
to existing 
GO terms

ISMB/ECCB 
Function SIG

ISMB/ECCB 
Function SIG

Table 2. GO function prediction for 130,000 CAFA Targets.
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PRS56_Human is a target of CAFA3

• Very well annotated protein sequence in UniProtKB/Swiss-Prot
• Annotation Score: 5 - Experimental evidence at protein level
• Existing information in UniProtKB/Swiss-Prot:

• MF GO:0004252
• BP GO:0043010
• BP GO:0006508
• CC GO:0005783

• AutoProf-Annotator predicts following GO terms:
• MF GO:0004252 (Exact Match) (Conf. = 1)
• BP GO:0044699 (Ancestor of GO:0043010)   (Conf. = 0.6)
• BP GO:0019538 (Parent of GO:0006508) (Conf. = 0.7)
• CC GO:0044464 (Ancestor of GO:0005783)   (Conf. = 0.7)

6PGL_SALCH is a target of CAFA3

• Annotated protein sequence in UniProtKB/Swiss-Prot
• Annotation Score: 2 – Protein inferred from homology
• Existing information in UniProtKB/Swiss-Prot :

• MF GO:0017057
• BP GO:0006006
• BP GO:0006508

• AutoProf-Annotator predicts following GO terms:
• MF GO:0017057 (Exact Match)                (Conf. = 1)
• BP GO:0006006 (Exact Match)                         (Conf. = 1)
• BP GO:0006508 (Exact Match)                         (Conf. = 1)
• CC GO:0042597 (New Prediction)                    (Conf. = 0.9)

Rules Statistics
AR Confidence > 0.5 Molecular Function Biological Process Cellular Component

Combination of Domains 1,723,497 1,841,000 1,543,333

Distinct Taxon 8,337 8,237 8,276

Prediction Rules 4,705 11,676 1,870

AR Confidence = 1 Molecular Function Biological Process Cellular Component

Combination of Domains 1,692,547 1,826,347 1,4,96,772

Distinct Taxon 8,332 7966 8,266

Prediction Rules 4,673 11,582 1,853

Association Rule Samples
Rule (Confidence = 1) 

• ({{PF02423 ∩ CATH:3.30.1780.10} ∩ Mammalia} → GO:0047127)
• PF02423: Ornithine cyclodeaminase/mu-crystallin family.
• CATH: 3.30.1780.10: Ornithine cyclodeaminase.
• MF GO:0047127: hiomorpholine-carboxylate dehydrogenase.
UniProtKB/Swiss-Prot:
• Hits: 5 sequences, all are annotated with the GO term.
UniProtKB/TrEMBL Annotation
• Hits: 47 Sequences.
• 1 Sequence is annotated with the GO term.
• 7 Sequence are annotated with ancestors of the GO term (General)
• 39 Sequence are annotated by AutoProf-Annotator

Table 1. Numbers of rules and the combination of domains result in the all rules.

Rule (Confidence = 1 ) 

• ({{CD01399} ∩ Proteobacteria} → GO:0046348)
• CD01399 : GlcN6P_deaminase.
• BP GO:0046348 : amino sugar catabolic process.

UniProtKB/Swiss-Prot:
• Hits: 103 sequences, all are annotated with the GO term.
UniProtKB/TrEMBL Annotation
• Hits: 1930 Sequences.
• 1171 Sequence is annotated with the GO term.
• 569 Sequence are annotated with ancestors of the GO term (General)
• 190 Sequence are annotated by AutoProf-Annotator
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Résumé

L'un des moyens les plus intéressants et les plus fructueux d'inférer des principes à partir de grands

ensembles de données est l'utilisation des techniques d'exploration (ou de fouille) de données. Cette thèse

aborde le problème de la découverte d'associations cachées dans des ensembles de données complexes en

utilisant la similarité vectorielle et les résultats obtenus ont été appliqués à la prédiction des annotations

biologiques grâce à l'ingénierie de règles d'association.

Les protéines sont des macromolécules qui exercent des fonctions biologiques dans les organismes vi-

vants. Une protéine consiste en une séquence d'acides aminés qui adopte une forme tridimensionnelle

(3D) particulière, largement responsable de sa fonction moléculaire. Les fonctions des protéines peu-

vent être décrites par di�érentes ontologies, termes ou classi�cations, dans lesquelles les relations entre

ces fonctions peuvent être hiérarchiques (Gene Ontology (GO), Enzyme Commission Numbers (EC)).

Au niveau moléculaire, les fonctions sont souvent e�ectuées par des parties de protéines hautement

conservées, identi�ées à partir d'alignements de séquence ou de structure, qui peuvent être classés en

domaines ou familles. Cependant, il existe des millions de protéines composées de plusieurs domaines,

dans lesquelles un domaine seul ou une combinaison de domaines sont responsables d'une fonction. Par

conséquent, annoter les domaines responsables d'une fonction spéci�que est une tâche non triviale. En

outre, l'a�ectation manuelle des fonctions protéiques aux domaines correspondants en utilisant des con-

naissances spécialisées prend beaucoup de temps. Une méthode de calcul devrait donc être développée

pour aborder le problème de l'association des domaines protéiques avec des fonctions protéiques.

Avec la croissance rapide du nombre de structures et de séquences de protéines découvertes, le nombre

de séquences de protéines qui ne comportent pas d'annotations fonctionnelles augmente énormément. La

prédiction automatique des fonctions protéiques est un des grands dé�s de la bioinformatique.

Cette thèse présente: 1) le développement d'une nouvelle approche pour trouver des associations

directes entre des paires d'éléments liés indirectement à travers diverses caractéristiques communes, 2)

l'utilisation de cette approche pour associer directement des fonctions biologiques aux domaines protéiques

(ECDomainMiner et GODomainMiner) et pour découvrir des interactions domaine-domaine, et en�n 3)

l'extension de cette approche pour annoter de manière à partir des domaines complète les structures et

les séquences des protéines.

Au total, 20 728 et 20 318 associations EC-Pfam et GO-Pfam non redondantes ont été découvertes,

avec des F-mesures de plus de 0,95 par rapport à un ensemble de référence Gold Standard extrait d'une

source d'associations connues (InterPro). Par rapport à environ 1500 associations déterminées manuelle-

ment dans InterPro, ECDomainMiner et GODomainMiner produisent une augmentation de 13 fois du

nombre d'associations EC-Pfam et GO-Pfam disponibles.

Ces associations domaine-fonction sont ensuite utilisées pour annoter des milliers de structures de

protéines et des millions de séquences de protéines pour lesquelles leur composition de domaine est connue

mais qui manquent actuellement d'annotations fonctionnelles. En utilisant des associations de domaines

ayant acquis des annotations fonctionnelles inférées, et en tenant compte des informations de taxonomie,

des milliers de règles d'annotation ont été générées automatiquement. Ensuite, ces règles ont été utilisées

pour annoter des séquences de protéines dans la base de données TrEMBL. Nous avons également utilisé

ces règles d'annotation pour participer à un dé� intitulé L'évaluation critique des algorithmes d'annotation

de fonctions protéiques (CAFA) a�n de découvrir les termes GO pour 121 914 séquences cibles ayant au
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moins un domaine connu présent dans nos règles dérivées de GODomainMiner. L'annotation fonctionnelle

automatique des séquences protéiques a été réalisée en collaboration avec l'équipe UniProt au European

Bioinformatics Institute (EBI) où j'ai passé troi mois pendant ma thèse.

Au cours de cette thèse, deux articles évalués par des pairs ont été publiés : � ECDomainMiner: la

découverte d'associations cachées entre les numéros de commission enzymatique et les domaines de Pfam

� et � Associer les termes de l'ontologie des gènes aux domaines protéiques Pfam � (accepté). Trois autres

manuscrits sont en préparation. Les bases de données des résultats ECDomainMiner et GODomainMiner

sont publiquement disponibles à http://ecdm.loria.fr/, http://godm.loria.fr/, respectivement.

Mots-clés: Graphes tripartites, similarité vectorielle, règles d'associations, bases de données biologiques,

domaines protéiques, annotation fonctionnelle des protéines, interactions domaine-domaine.
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Abstract

One of the most interesting and powerful ways of inferring principles out of large datasets is us-

age of data mining. This thesis addresses the problem of discovering hidden associations in complex

datasets using vector similarity and the method proposed has been applied to the prediction of biological

annotations.

Proteins are macromolecules which carry out biological functions in living organisms. A protein

consists of a sequence of amino acids which fold into a particular three-dimensional (3D) shape that is

largely responsible for its molecular function. The functions of proteins can be described by di�erent

ontologies, terms, or classi�cations, whereas the relationships between these functions can be hierarchical

(Gene Ontology (GO), Enzyme Commission Numbers (EC)) or �at. At the molecular level, functions are

often performed by highly conserved parts of proteins, identi�ed from sequence or structure alignments,

which may be classi�ed into domains or families (such as SCOP, CATH, PFAM, TIGRFAMs). The

known functions of a whole protein can easily be transferred to a domain if proteins comprise single

domain. However, there are millions of proteins with multiple domains in which a domain alone or a

combination of domains are responsible for a function. Therefore, annotating which domains carry out a

speci�c function is a non-trivial task.

Several direct associations between protein domains and functions have been annotated manually.

Nevertheless, the list of such annotations is incomplete. In addition, manual assignment of protein func-

tions to the corresponding domains using expert knowledge is very time-consuming. A computational

method should thus be developed to tackle the problem of associating protein domains to protein func-

tions.

With the prompt growth in the number of discovered protein structures and sequences, the number

of protein sequences that lack functional annotations from in vitro experiments is increasing enormously.

More than 99% of protein sequences in UniProtKB have no experimental functional annotations. Thus, it

is indispensable to bridge this widening functional annotation gap by computational prediction of protein

functions.

This thesis presents: 1) the development of a novel approach to �nd direct associations between

pairs of elements linked indirectly through various common features, 2) the use of this approach to

directly associate biological functions to protein domains (ECDomainMiner and GODomainMiner), and

to discover domain-domain interactions, and �nally 3) the extension of this approach to comprehensively

annotate protein structures and sequences.

ECDomainMiner and GODomainMiner are two applications to discover new associations between

EC Numbers and GO terms to protein domains, respectively. They �nd a total of 20,728 and 20,318

non-redundant EC-Pfam and GO-Pfam associations, respectively, with F-measures of more than 0.95

with respect to a �Gold Standard� test set extracted from InterPro. Compared to around 1500 manually

curated associations in InterPro, ECDomainMiner and GODomainMiner infer a 13-fold increase in the

number of available EC-Pfam and GO-Pfam associations.

These function-domain associations are then used to annotate thousands of protein structures and

millions of protein sequences for which their domain composition is known but that currently lack ex-

perimental functional annotations. Using inferred function-domain associations and taking taxonomy

information into account, thousands of annotation rules have automatically been generated. Then, these

rules have been utilized to annotate protein sequences in the TrEMBL database. We also used these

annotation rules for participating in a challenge called �The Critical Assessment of protein Function An-

notation algorithms (CAFA)� in order to discover GO terms for 121,914 target sequences having at least
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one known domain present in our GODomainMiner-derived rules. Automatic functional annotation pro-

tein sequences has been done in collaboration with UniProt team at European Bioinformatics Institute

(EBI).

During the course of this thesis, two peer-reviewed articles of �ECDomainMiner: discovering hid-

den associations between enzyme commission numbers and Pfam domains� and Associating Gene On-

tology Terms with Pfam Protein Domains have been published. Three further manuscripts are in

preparation. The ECDomainMiner and GODomainMiner result databases are publicly available at

http://ecdm.loria.fr/, http://godm.loria.fr/, respectively.

Keywords: Tripartite graphs, vector similarity, association rules, biological databases, protein domains,

functional annotation of proteins, domain-domain interactions.

196



197


	List of Tables
	Introduction en français
	Introduction
	Background
	Data Science Context - Data Preparation, Mining, and Interpretation
	Knowledge Discovery from Data and Data Mining
	Machine Learning and Data Mining
	Information Filtering and Recommendation Systems
	Data Structure and Representation
	Statistical Validation of Extracted Pattern

	Biological Context - Protein Function, Domain, and Interaction
	Protein Sequence and Structure
	Protein Function
	Protein Domains and Families
	Protein Interaction


	Discovering Hidden Associations between Enzyme Commission Numbers and Pfam Domains
	Introduction
	Methods and Materials
	Data Preparation
	Inferring EC-Pfam Domain Associations
	Defining a Confidence Score Threshold
	Exploiting the EC Number Hierarchy
	Hypergeometric Distribution p-Value Analysis

	Results and Discussion
	Data Source Weights and Score Threshold
	Global Analysis of Inferred EC-Pfam Associations
	Comparison with dcGO
	Selecting plausible associations in multi-domain proteins
	Single and Multiple EC-Pfam Associations
	Annotating PDB Chains with EC Numbers
	The ECDomainMiner web server

	Conclusion

	Computational Discovery of Direct Associations between Annotations using Common Content - CODAC
	CODAC
	Tripartite Graph Model
	Biadjacency Representation of bigraphs
	Gold Standard of Positive and Negative Examples
	Determining the Score Threshold
	Combining Multiple Datasets
	Bipartite Graph Extension with Hierarchy of Classes
	Clustering Graph Edges
	Calculating Statistically Significant Edges in E3*
	Classification into Gold, Silver, and Bronze Associations

	GODomainMiner: Computational Discovery of Direct Associations between GO terms and Protein Domains
	GODomainMiner Data Preparation
	Dataset Weights and Threshold Scores
	Analysis of Calculated GO-Pfam Associations
	Distribution of GO-Domain Associations per GO term or per domain
	Comparison with GO-Domain Associations from dcGO
	Biological Assessment of New Discovered GO-Pfam Associations

	Implementation
	Conclusion

	Functional Annotation of Protein Sequences and Structures
	Introduction
	Methods
	Method Overview
	Using CODAC to Infer Function-Domain Associations
	Combinatorial Generation of Association Rules
	Knowledge-based Filtering of Association Rules
	Aggregating and Applying Function Annotation Models
	Extension to Other Protein Annotations
	Data Preprocessing

	Results and Discussion
	CARDM Generation of EC Annotation Models
	Annotating TrEMBL Entries
	Comparison with Existing Annotation Systems in TrEMBL
	CARDM Annotation with GO Terms
	CAFA Results

	Conclusion

	Discovering Domain-Domain Interaction from Protein-Protein Interaction
	Introduction
	Materials and Methods
	Algorithm Overview
	Input Data Collection
	Pfam-Pfam Interaction Inference

	Results and Discussion
	Data Source Weights and Similarity Score Threshold
	Analysis of Inferred Pfam-Pfam Interactions
	Comparison with DOMINE
	Comparison with INstruct
	Evaluation of PPIDM Predictions

	Conclusion

	Conclusions and Perspectives
	Summary of the Main Contributions
	Future Directions
	Short-Term Perspectives
	Wider Perspectives
	Further Verification of Inferred Functions


	Appendixs
	ECDomainMiner/GODomainMiner Web-Servers
	Introducing the ECDomainMiner/GODomainMiner Web Server
	Implementation Details

	Integrating inferred EC-domain and GO-domain in KBDOCK 2 Server
	Introduction to KBDOCK 2
	Functions Associated with Pfam Domains in KBDOCK 2

	Scientific Articles and Posters
	Published Journal and Conference Papers
	EC-PSI: Associating Enzyme Commission Numbers with Pfam Domains
	ECDomainMiner: discovering hidden associations between enzyme commission numbers and Pfam domains
	Associating Gene Ontology Terms with Pfam Protein Domains
	Automatic Generation of Functional Annotation Rules Using Inferred GO-Domain Associations

	Posters
	EC-PSI: Associating Enzyme Commission Numbers with Pfam Domains
	Associating Gene Ontology Terms with Pfam Protein Domains
	Using Content-Based Filtering to Infer Direct Associations between the CATH, Pfam, and SCOP Domain Databases
	Automatic Generation of Functional Annotation Rules Using Inferred GO-Domain Associations


	Bibliography

