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Chapitre 0
Présentation

“Conformément à la loi, le mémoire de thèse est rédigé en français. [. . . ]
En cas de rédaction en anglais, il est nécessaire de fournir un résumé en
français de 15 à 20 pages.”

https://www.edpif.org/fr/parcours/soutenance/

0.1 Cadre d’étude
L’équation de Navier-Stokes est une brique importante de la physiques qui est utilisée
pour modéliser des écoulements dans des domaines allant de la physique expérimentale
à l’aéronautique en passant par l’astrophysique. Pourtant, depuis sa première utilisa-
tion au milieu du XIXème siècle, aucune solution générale n’a pu être exprimée de façon
explicite. La résolution de l’équation est si difficile que l’Institut Clay de mathéma-
tiques considère que le seul problème de la régularité des solutions de l’équation est
l’un des sept problèmes du millénaire que l’Institut Clay récompense par un prix d’un
million de dollar.

D’un point de vue plus physique, l’équation de Navier-Stokes a été établie pour
décrire l’évolution du mouvement d’un fluide visqueux. L’équation provient de l’utili-
sation de l’expression linéarisée du tenseur des contraintes avec le principe fondamental
de la dynamique. Dans l’espace physique, l’équation de Navier-Stokes peut s’exprimer
pour un fluide incompressible comme

∂tu+ (u ·∇)u = −∇P + ν∆u+ F avec ∇ · u = 0 où P = p/ρ , (0.1)

où u, P , ν et F représentent respectivement le champ de vitesse, le champ de pression,
la viscosité cinématique du fluide et le champ de force. Dans les écoulements consi-
dérés, la viscosité est une grandeur stationnaire (indépendante du temps) et uniforme
(indépendante de l’espace). Elle est fixée par l’opérateur soit dans les paramètres d’une
simulation, soit en changeant le fluide dans une expérience. Le champ de force peut dé-
pendre du temps et de l’espace et est lui aussi fixé par l’opérateur. Le champ de vitesse
et le champ de pression sont les variables du problème. Elles dépendent de l’espace et
du temps et ne sont pas fixées directement par l’opérateur. Pour trouver une solution
au problème différentiel, il est aussi nécessaire d’imposer des conditions initiales et des
conditions aux bords sur la vitesse. Le champ de pression quant à lui est directement

ix

https://www.edpif.org/fr/parcours/soutenance/
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relié au champ de vitesse via la condition solénoïdale du champ de vitesse ∇ · u = 0.
Il peut être établi en résolvant l’équation de Poisson

∆P = −∇ · ((u ·∇)u) . (0.2)

La dénomination de champ de pression pour la variable P est abusive étant donné
que la pression p, définie par le système international d’unités et mesurée par un
manomètre, est reliée à P via ∇P = ρ−1∇p où ρ représente la masse volumique du
fluide. Quand la densité est uniforme, les deux pressions sont proportionnelles. Dans
le cas d’écoulements solénoïdaux, si la densité du fluide est initialement uniforme, elle
reste constante (uniforme et stationnaire) car elle suit l’équation de continuité

−∂tρ =∇ · (ρu) = (u ·∇)ρ+ (∇ · u)ρ = 0 . (0.3)

En effet, (∇ ·u)ρ = 0 car l’écoulement est solénoïdal et (u ·∇)ρ = 0 car la densité du
fluide est initialement uniforme. Réciproquement, si le fluide est incompressible, i.e. si
la densité est constante, l’écoulement doit être solénoïdal. La condition d’incompressi-
bilité d’un fluide est donc équivalente au caractère solénoïdal de l’écoulement.

Figure 0.1 – Schéma représentant la cascade de Richardson où les tourbillons sont brisés en
tourbillons de plus petite taille jusqu’à ce qu’ils atteignent une échelle assez petite pour être
dissipés. Cette figure est tirée de l’article de Rose et Sulem (1978) [1].

Dans l’équation de Navier-Stokes, le terme (u ·∇)u est à associer aux effets de
convection qui sont aussi appelés effet inertiels, alors que le terme ν∆u est à associer
aux effets de diffusion. Le nombre de Reynolds, Re, est le nombre sans dimension utilisé
pour caractériser le régime de l’écoulement. Il est défini par

Re = [[(u ·∇)u]]
[[ν∆u]] = Urms

ν`
, (0.4)
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où [[. . . ]] correspond à l’ordre de la quantité se trouvant entre des doubles crochets,
Urms et ` représentent respectivement la vitesse quadratique moyenne de l’écoulement
et la longueur caractéristique de l’écoulement. A faible nombre de Reynolds, Re� 1,
les effets visqueux dominent alors que les effets convectifs dominent à grand nombre
de Reynolds 1� Re. A grand nombre de Reynolds, l’écoulement devient turbulent, la
dynamique du fluide est souvent décrite à l’aide de l’image de la cascade de Richard-
son [2, 3]. Dans la description de cascade de Richardson, l’écoulement est composé de
grands tourbillons qui se brisent en plus petits tourbillons qui se brisent eux-même
en plus petits tourbillons et ainsi de suite jusqu’à ce que la taille des tourbillons soit
assez faible pour que les effets diffusifs soient assez importants pour disperser les tour-
billons. La fig. 0.1 représente le schéma fait pour illustrer le phénomène de cascade de
Richardon par Rose et Sulem dans [1]. Ce mécanisme de cascade est en accord avec la
théorie de Kolgomorov sur la turbulence [4, 3]. En montrant que seul i) le taux d’éner-
gie injectée ε et ii) le coefficient de viscosité sont les uniques paramètres indépendants
à fixer dans le problème pour décrire le système, Kolmogorov a prouvé que le spectre
d’énergie du système, E(k), suit la loi de puissance

E(k) ∝ ε2/3k−5/3 où E =
∫
E(k)dk , (0.5)

où k et E représentent respectivement le nombre d’onde et l’énergie totale du système.
La fig.0.2 représente le spectre d’énergie d’un fluide incompressible selon la prédiction
de la théorie de Kolmogorov.

100 101 102 103

k

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

E(k)

Kolmogorov

k−5/3

e−k/kd

Figure 0.2 – Spectre d’énergie prédit par Kolmogorov en échelle logarithmique. La ligne rouge
représente la prédiction de Kolmogorov. Les pointillés représentent la loi de puissance en k−5/3.
La courbe formée de points et de tirets représente la décroissance exponentielle dans la zone
visqueuse. Le variable kd représente la longueur d’onde associée à la dissipation.

De nombreuses études numériques aussi bien qu’expérimentales [5, 6] ont vérifié
la validité de la théorie de Kolmogorov. La loi des 4/5 de Kolmogorov-Monin [7] –
qui est une résultat en accord avec la théorie de Kolmogorov utilisant les relations de
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Kàrmàn and Howarth [8] sur la fonction de corrélation d’ordre trois – a même pu être
validée jusqu’à la valeur de son pré-facteur numérique [9]. La théorie de Kolmogorov
est en mesure de prédire le comportement des modes dans des échelles plus petites
que celles de forçage ; elle ne fait en revanche aucune prédiction en ce qui concerne les
modes dans des échelles plus larges que l’échelle de forçage. Par ailleurs, la cascade de
Richardson ne permet pas non plus d’avoir une intuition de la dynamique des grands
tourbillons. La dynamique des modes présents à des échelles plus grandes que celle du
forçage ne peut donc pas être décrite par les même mécanismes que ceux utilisés pour
décrire la dynamique qui a lieu dans les petites échelles.

L’objet de ce mémoire est de s’intéresser aux propriétés des écoulements pour des
échelles plus grandes que l’échelle du forçage. Le problème étudié est résumé brièvement
dans la fig. 0.3. Puisque la théorie de Kolmogorov a été validée en aval du forçage,
le spectre d’énergie doit suivre la prédiction de la théorie de Kolmogorov pour des
échelles plus petites que l’échelle de forçage. Le comportement du spectre d’énergie
avant l’échelle de forçage est quant à lui inconnu et est représenté par des points
d’interrogations verts sur la fig. 0.3.

100 101 102 103
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Figure 0.3 – Spectre d’énergie d’un champ de vitesse forcé au mode k = 101. La ligne rouge
représente le comportement connue de la vitesse dans les petites échelles et prédit la théorie
de Kolmogorov. Les lignes noires représentent les comportements asymptotiques du spectre
d’énergie. Les points d’interrogation verts représentent la partie du spectre dont les propriétés
sont encore inconnues.

Certaines théories ont postulé des prédictions concernant le comportement des
modes dans les échelles plus grandes que celle du forçage. Dans [3], U. Frisch rapporte
la conjecture selon laquelle le spectre d’énergie des solutions de l’équation de Navier-
Stokes devrait avoir un comportement similaire aux équilibres absolus solutions de
l’équation d’Euler tronquée :

“Absolute equilibrium solutions seem highly unphysical in view of the
approximately k−5/3 spectrum of the three-dimensional turbulence. Actu-
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ally, they are appropriate at the very smallest wavenumbers of turbulent
flows maintained by forcing at intermediate wavenumbers (Forster, Nelson
and Stephen 1977).”

— Uriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov, p. 209

L’article de Forster et al. [10], évoqué dans la citation, utilise le groupe de renorma-
lisation pour étudier les phénomènes turbulents. Dans un des modèles de cet article, les
auteurs sont capables de montrer que la dynamique des modes avant l’échelle de forçage
est proche des solutions de l’équation d’Euler tronquée. L’équivalent du nombre d’onde
de troncature dans le cadre des modes de grande échelle de l’équation de Navier-Stokes
est la longueur d’onde de forçage.

L’équation d’Euler décrit le comportement de fluides idéaux, i.e. sans viscosité. Elle
peut être obtenue à partir de l’équation de Navier-Stokes en mettant le coefficient de
viscosité ν à zero. Kraichnan a étudié le spectre moyen en régime établi des solutions
de l’équation d’Euler tronquée dans [11], qu’il a appelé équilibre absolu. L’équation
d’Euler tronquée est une version filtrée spectralement de l’équation d’Euler où les
modes au-delà d’un nombre d’onde maximal kM , appelé le nombre d’onde troncature,
ont été mis à zéro. Plus précisément, si les modes de Fourier du champ de vitesse sont
désignés par uk, où k représente le vecteur d’onde, uk est égal à zéro si |k| > kM et
uk suit l’équation d’Euler si kM ≥ |k|.

La fig. 0.4 représente l’aspect général du spectre d’énergie d’équilibres absolus so-
lutions de l’équation Euler tronquée. Loin du nombre d’onde de troncature, le spectre
d’énergie suit une loi de puissance en k2. Cette loi de puissance est à relier à la conser-
vation de l’énergie par l’équation d’Euler tronquée. Si l’énergie est distribuée équita-
blement entre les différents modes, à nombre d’onde constant, le spectre d’énergie doit
être proportionnel au nombre de modes par coquille. En dimension trois, la densité de
modes par coquille est à peu près constante et la surface d’une coquille est proportion-
nelle à k2. Si l’énergie est équi-répartie, le spectre d’énergie doit donc suivre une loi de
puissance en k2.

L’équation d’Euler tronquée ne conserve pas uniquement l’énergie. Elle conserve
aussi une seconde quantité appelée l’hélicité, représentée par la lettre H et définie
comme

H = 1
L3

∫
(u·∇×u)d3r avec L3 =

∫
d3r . (0.6)

où L3 correspond au volume du fluide.
La conservation d’un second invariant par l’équation d’Euler tronquée modifie l’as-

pect du spectre d’énergie moyen. La densité de probabilité de chaque mode du champ
de vitesse est régie par un poids de Boltzman modifié proportionnel à e−(α(2E)+βH)

où α et β sont les paramètres introduits par Kraichnan [11]. Le nombre de Kraichnan
Kr = −βkM

α est utilisé pour mesurer le niveau relatif d’hélicité par rapport à l’énergie
pour un fluide avec une troncature à kM . Le nombre de Kraichnan, Kr, peut donc être
introduit pour mesurer le niveau relatif d’hélicité par rapport à l’énergie. Si le nombre
de Kraichnan est égal à zero, l’écoulement n’a pas d’hélicité et le spectre d’énergie suit
une loi de puissance en k2. Si le nombre de Kraichnan est différent de zéro, le système a
de l’hélicité. Enfin, si le nombre Kraichnan est proche de 1 en valeur absolue, l’énergie
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Figure 0.4 – Prédiction d’équilibre absolu pour le spectre d’énergie pour des solutions de
l’équation d’Euler tronquée à différents nombres de Kraichan.

est concentrée dans les petites échelles et le spectre d’énergie ne suit plus une loi de
puissance en k2.
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Figure 0.5 – Spectre d’énergie tel que décrit par Frisch dans [3]. La ligne rouge représente la
prédiction du spectre d’énergie dans les échelles plus petites que l’échelle de forçage. La ligne
verte représente la prédiction du spectre d’énergie dans les échelles plus grandes que l’échelle
de forçage.

Comme l’ont expliqué Kraichnan et Chen dans [12], les analogies entre la dyna-
mique des modes de grande échelle des solutions de l’équation de Navier-Stokes et les
solutions de l’équation d’Euler tronquée peuvent aussi être décrites du point de vue de
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l’équation d’Euler tronquée. Leur argument est fondé sur le théorème de fluctuation-
dissipation et est expliqué dans la citation présentée à la page xv.

“The equilibrium equipartition distribution [. . . ] becomes more inter-
esting when the associated fluctuation-dissipation relations are considered.
These relations show that the truncated Euler system can imitate a [Navier-
Stokes] fluid: the high wavenumber degrees of freedom act like a thermal
sink into which the energy of low wavenumber modes excited above equi-
librium is dissipated. In the limit where the sink wavenumbers are very
large compared with the anomalously excited wavenumbers, this dynami-
cal damping acts precisely like a molecular viscosity. When the wavenum-
ber ratio is not asymptotically large, the dynamical damping is non-local
in space and time; it exhibits long-time tails like those obtained from the
kinetic theory of a gas.”

— Robert H. Kraichnan & Shiyi Chen,

Is there a statistical mechanics of turbulence ?,

Physica D 37 (1989) 160-172

Un autre argument, qui est utilisé pour donner une prédiction d’équilibre absolu
dans les modes de grande échelle des solutions de l’équation de Navier-Stokes, est
de considérer comment les modes de grandes échelles sont forcés. Dans les grandes
échelles, les harmoniques du mode forcé sont forcées directement par le couplage non-
linéaire lié au terme inertiel (u ·∇)u. Ce couplage non-linéaire ne permet pas de forcer
directement les modes dans les grandes échelles car les nombres d’onde ne sont pas
commensurables. Le forçage dans les grandes échelles provient du bruit produit par le
battement des modes de petite échelle. Dans les grandes échelles, il est possible que ce
bruit contrebalance le terme visqueux dans le régime turbulent, donnant ainsi lieu à
une dynamique proche des équilibres absolus.

La fig. 0.5 illustre la prédiction faite à la citation de la page xiii par Frisch concer-
nant le spectre d’énergie des modes dont l’échelle est plus grande que l’échelle de
forçage pour des solutions de l’équation de Navier-Stokes. Les modes dans les échelles
plus petites que l’échelle de forçage devraient suivre la loi de Kolmogorov, alors que
dans les échelles plus grandes que le forçage les modes devraient avoir une dynamique
similaire aux équilibres absolus solutions de l’équation Euler tronquée.

Avant d’étudier le comportement des modes de grande échelle dans des écoule-
ments turbulents, il est important de comprendre comment ces modes se comportent à
petit nombre de Reynolds. En effet, les propriétés d’écoulements laminaires et turbu-
lents ne sont pas totalement déconnectées puisqu’elles décrivent le même fluide mais à
des nombres de Reynolds différents. Même s’il est très improbable que toutes les pro-
priétés d’un écoulement laminaire restent inchangées lorsque le nombre de Reynolds
augmente, certains mécanismes peuvent encore influencer dans une moindre mesure la
dynamique d’un écoulement. La connaissance de ces mécanismes et leur évolution avec
l’augmentation du nombre de Reynolds peut donner une intuition sur le comportement
de l’écoulement à grand nombre de Reynolds.
• Dans la partie B, nous étudierons le comportement grande échelle d’écoule-

ments solutions de l’équation de Navier-Stokes forcée par des écoulements hélicitaires
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à petit nombre de Reynolds. En utilisant l’analyse de Floquet, nous quantifierons com-
ment les instabilités grandes échelles peuvent être engendrées. Nous commencerons
par reproduire l’instabilité anisotropique cinétique de type alpha (AKA) produite dans
[13, 14] à petit nombre de Reynolds avec une version linéarisée de l’équation de Navier-
Stokes. Nous montrerons aussi que le mécanisme responsable de l’instabilité AKA est
toujours en vigueur à des nombres de Reynolds modérés. Nous poursuivrons notre
étude en étudiant l’instabilité grande échelle engendrée par l’écoulement hélicitaire
ABC [15]. Nous montrerons que la première instabilité qui déstabilise l’écoulement est
une instabilité grande échelle. En utilisant des simulations numériques directes de la
version non-linéaire de l’équation de Navier-Stokes, nous montrerons que l’instabilité
grande échelle peut aussi être observée mais qu’elle finit par saturer.

Nous utiliserons la méthodologie introduite pour étudier les fluides pour étudier
les propriétés des champs magnétiques de fluides conducteurs. Étant donné que les
équations d’évolutions du champ de vitesse dans un fluides visqueux et du champ
magnétique d’un fluide conducteur partagent de nombreux points communs, leurs so-
lutions comportent de nombreuses ressemblances. Par exemple, l’instabilité AKA a
été introduite comme le pendant cinétique de l’effet alpha magnétique [16, 17]. En
utilisant la méthodologie de Floquet, nous montrerons que, tout comme le champ de
vitesse, le champ magnétique peut avoir une concentration d’énergie dans les grandes
échelles s’il n’a pas encore atteint de régime où il est déstabilisé dans les petites échelles.
Nous étayerons notre affirmation à l’aide des trois exemples suivants : un écoulement
hélicitaire, un écoulement non-hélicitaire et un écoulement aléatoire en temps.

En ce qui concerne le comportement des modes de grande échelle des écoulements
solutions de l’équation de Navier-Stokes, le spectre d’énergie contient beaucoup d’in-
formations sur un écoulement, mais la description d’un champ de vitesse ne peut se
limiter à son spectre d’énergie. En particulier, le spectre d’énergie ne donne pas d’in-
formation sur la dynamique temporelle de l’écoulement. La fonction de corrélation est
l’outil statistique qui est généralement utilisé pour mesurer les corrélations tempo-
relles d’une grandeur physique. Si le comportement des modes dont l’échelle est plus
grande que l’échelle de forçage doit ressembler au comportement de l’équation d’Euler
tronquée, leurs corrélations temporelles devraient aussi se ressembler.

Des résultats sont déjà connus sur les corrélations temporelles des modes du champ
de vitesse. Comme décrit dans [18, 19], au sein de la cascade de Kolmogorov, les
corrélations temporelles eulériennes des modes du champ de vitesse sont régies par la
vitesse quadratique moyenne du mode de forçage. Étant donné que la majeure partie
de l’énergie est concentrée dans le mode de forçage, la vitesse quadratique moyenne est
comparable à la racine carrée de l’énergie moyenne de l’écoulement. La seule échelle de
temps pouvant être construite à l’aide de la vitesse quadratique moyenne, Urms, et le
nombre d’onde, k, est (kUrms)−1. Des études [20, 6] ont proposé qu’il y ait un impact
de l’hélicité sur le temps de corrélation, mais aucune expression exacte n’a été établie
concernant le temps de corrélation des équilibres absolus.
• Dans la partie C, nous utiliserons une approximation parabolique pour cal-

culer le temps de corrélation d’équilibres absolus solutions de l’équation d’Euler tron-
quée. Nous montrerons que les écoulements avec une quantité d’hélicité modérée ont
un temps de corrélation qui suit la même loi d’échelle que celle associée à l’effet de
balayage dans la cascade de Kolmogorov. En revanche, pour les écoulements très hélici-
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taires, nous montrerons que le temps de corrélation semble suivre une autre loi d’échelle
proportionnelle à k−

1
2 . Cette loi d’échelle est compatible avec un temps caractéristique

basé sur l’hélicité. Pour confirmer l’existence de cette nouvelle loi d’échelle, nous mon-
trerons, à l’aide de simulations numériques directes, que les séries temporelles des
modes du champ de vitesse ont bien un temps de corrélation qui suit une loi d’échelle
en k−

1
2 pour de grands nombres de Kraichnan. Nous utiliserons la même procédure

pour analyser le temps de corrélation des modes de grande échelle de champs de vitesse
solutions de l’équation de Navier-Stokes. Nous montrerons que le temps de corrélation
d’écoulements sans hélicité suit la même loi d’échelle que celle des équilibres absolus
sans hélicité. En revanche, le temps de corrélation des écoulements fortement hélici-
taires testés ne montre pas de comportement en loi d’échelle en k−

1
2 .

Nous présenterons aussi des résultats sur des méthodes numériques dans la partie E
qui sont totalement indépendants de la thématique principale de ce manuscrit. Enfin,
dans la suite de ce chapitre de présentation, nous résumerons les résultats principaux
de ce manuscrit en langue française.

Les chapitres dont le titre commence par Elements of context présentent
des éléments de théories déjà établies. Les nouveaux résultats sont présentés
dans les chapitres dont le titre finit par la mention published ou submitted.

0.2 Résultats sur les instabilités grande échelle

L’objectif de cette section est de présenter succinctement les résultats principaux obte-
nus lors de l’étude d’instabilité grande échelle pour des nombres de Reynolds modérés.
Nous commencerons tout d’abord par rappeler les équations régissant l’évolution des
instabilités de grande échelle dans le cas de l’effet alpha magnétique. Nous utiliserons
ensuite la théorie établie à faible nombre de Reynolds magnétique pour avoir une ex-
trapolation du comportement à des nombres de Reynolds magnétiques modérés. Nous
présenterons aussi des résultats associés aux instabilités grande échelle dans le cas
hydrodynamique.

0.2.1 Équation d’évolution des instabilités de type alpha

Dans les fluides conducteurs se déplaçant selon le champ de vitesse u, le champ ma-
gnétique B suit l’équation d’induction donnée par

∂tB =∇×(u×B) + η∆B avec ∇ ·B = 0 . (0.7)

où η correspond à la viscosité magnétique du milieu. Comme l’ont montré Steenbeck et
al. [16], il est possible d’engendrer dans des fluides conducteurs un champ magnétique
de grande échelle à partir de certains écoulements de petite échelle. Ce phénomène
est désigné comme une instabilité de type alpha et est souvent utilisé pour expliquer
l’apparition de champs magnétiques astrophysiques. Dans [17], Childress a réussi à
caractériser à l’aide d’une approche multi-échelle les instabilités de type alpha à faible
nombre de Reynolds magnétique Rm =� 1 où Rm = U

ηkf
où U correspond à la vitesse

caractéristique de l’écoulement et kf correspond au nombre d’onde caractéristique
de l’écoulement. L’approche multi-échelle n’est en revanche pas valide pour décrire
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le comportement grand échelle du champ magnétique à grand nombre de Reynolds
magnétique.

Un phénomène d’instabilité grande échelle, l’effet AKA [13, 14], est aussi présent
pour les perturbations du champ de vitesse dans le cas de fluides suivant l’équation de
Navier-Stokes. En effet, lorsqu’on écrit l’évolution d’un fluide visqueux en fonction de
sa vorticité, on obtient l’équation d’évolution suivante

∂tω =∇×(u×ω) + ν∆ω +∇×F avec ∇ · u = 0 et ω =∇×u . (0.8)

où F correspond au forçage volumique imposé sur le fluide. Mis à part le terme de
forçage, l’équation d’évolution de la vorticité a une expression proche de celle du champ
magnétique. Il est tout de même important de noter que le champ de vorticité est relié
au champ de vitesse par ω =∇×u, ce qui n’est pas le cas du champ magnétique. Cette
relation supplémentaire conduit à des conditions nécessaires différentes pour engendrer
une perturbation de grande échelle.

Étant donné que les effets alpha et AKA ont des mécanismes d’action proches,
nous rappellerons uniquement les équations permettant de calculer l’effet alpha. Pour
établir les caractéristiques de l’effet alpha, le champ magnétique est séparé en une
composante petite échelle b et une composante grande échelle 〈B〉V` et peut s’exprimer
comme B = 〈B〉V` +b. Les équations d’évolution de ces composantes sont données par

∂tb =∇×(u× 〈B〉V`) +∇×G + η∆b avec ∇ · b = 0 , (0.9)
∂t 〈B〉V` =∇×E + η∆B avec ∇ ·B = 0 , (0.10)
où G = (u×b− 〈u× b〉V`) et E = 〈u×b〉V` . (0.11)

où 〈. . .〉V` désigne la valeur moyennée sur les petites échelles. Dans le cas où le terme G
est négligé dans l’éq. 0.9 (par example quand Rm→ 0 ou quand le temps de correlation
du champ de vitesse est très faible devant ukf ) et où le champ vitesse conduit à un
effet alpha, l’amplitude des composantes du champ magnétique peut être décrite par
le modèle simplifié décrit par le système d’équations différentielles suivant

∂

∂t

[
〈B〉V`
b

]
= M

[
〈B〉V`
b

]
avec M =

[
−ηq2 qU
kU γSSD

]
, (0.12)

d’où γ=1
2

(
γSSD − ηq2 +

√
4qkU2 + (γSSD + ηq2)2

)
. (0.13)

où γ correspond au taux de croissance du champ magnétique ayant la plus grande
valeur propre, γSSD correspond au taux de croissance du champ magnétique en l’ab-
sence de composante grande échelle, q correspond au nombre d’onde de la composante
grande échelle du champ magnétique et k correspond au nombre d’onde associé au
champ de vitesse. Le système d’équations exactes régissant l’évolution des amplitudes
des composantes du champ magnétique nécessite de connaitre l’expression précise du
champ de vitesse. L’éq. (0.12) correspond à un modèle jouet où l’amplitude des champs
est prise en compte mais où leur géométrie n’est pas considérée. Certains écoulements,
notamment ceux qui ne conduisent pas à des effets alpha, ne peuvent pas être dé-
crits par ces équations. Ce modèle jouet n’est donc valable qu’à petits nombres de
Reynolds magnétiques. En plus de donner une expression pour le taux de croissance,
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le modèle jouet nous donne aussi le rapport entre la composante petite échelle et la
composante grande échelle du champ magnétique ayant la plus grande valeur propre.
Avec les paramètres de la matrice M , on a

〈B〉V`
b

= −
γSSD + q2η −

√
4kqU2 + (γSSD + ηq2)2

2kU . (0.14)

Seuil d’instabilité petite échelle Avant Après

Taux de croissance : γ
kU ' Rm

(
q
k

)
− 1

Rm

(
q
k

)2
γ ' γk

Rapport d’amplitude : 〈B〉V`
/b ' 1

Rm 〈B〉V`
/b ' q Uγk

Rapport d’énergie : E0
Etot

'
Rm� 1

1−Rm2 E0
Etot
'
(
q Uγk

)2

Table 0.1 – Propriétés du champ magnétique de grande échelle pour un écoulement conduisant
à un effet alpha avant et après le seuil d’instabilité petite échelle q � k. Les résultats sont
exprimés en fonction du nombre de Reynolds magnétique Rm = U

ηk .

A l’aide des éq. (0.13) et (0.14), nous pouvons trouver le comportement du champ
magnétique avant le seuil d’instabilité petite échelle, i.e. dans la limite de petits
nombres Reynolds magnétiques ; dans ce cas, γSSD ' −ηk2. Même si le dévelop-
pement analytique de l’effet alpha n’est plus valide après l’apparition d’instabilités
grande échelle, on peut tout de même calculer le taux de croissance de l’instabilité et
le rapport d’amplitude de l’instabilité avec ce modèle en posant γSSD > 0. Les proprié-
tés associées à ce modèle sont rassemblées dans tableau 0.1. Elles indiquent qu’après
le seuil d’instabilité petite échelle, l’évolution du champ magnétique est déterminée
principalement par la dynamique dans les petites échelles.

0.2.2 Méthode de Floquet

Pour analyser les instabilités grande échelle magnétiques et cinétiques, nous allons
employer une méthode de Floquet numérique. Dans le cas de l’équation d’induction,
la méthode de Floquet correspond à utiliser le changement de variable b = eıq·rb̃+ c.c.
qui conduit à l’équation d’évolution suivante pour l’amplitude de Floquet du champ
magnétique

∂tb̃ = ıq×(u×b̃) +∇×(u×b̃) + η (∇+ ıq)2 b̃ et (ıq ·+∇·)b̃ = 0 . (0.15)

où les champs u et b̃ ont la même périodicité. En utilisant le changement de variable
de Floquet, on a introduit un nouveau paramètre q qui est le vecteur d’onde de Flo-
quet. Suivant la valeur de q, on peut moduler la séparation d’échelle entre b et u. Ces
équations permettent de tester le modèle jouet présenté précédemment en modélisant
une seule période de l’écoulement. Elles peuvent être intégrées numériquement en uti-
lisant une méthode pseudo-spectrale. On peut ainsi atteindre des séparations d’échelle
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de plusieurs ordres de grandeur qui ne sont pas possibles en intégrant directement les
équations sans effectuer le changement de variable de Floquet.

La même méthode peut être utilisée pour étudier l’équation de Navier-Stokes li-
néarisée. Le champ de vitesse peut être décomposé en un champ principal U et une
perturbation v de sorte que u = U + v. La méthode de Floquet correspond à utiliser
ensuite le changement de variable v = eıq·rṽ+ c.c. qui conduit à l’équation d’évolution
suivante pour l’amplitude de Floquet de la perturbation du champ de vitesse

∂tṽ = ṽ×(∇×U) +U × (ıq +∇×v)− (ıq +∇)p̃+ ν (∇+ ıq)2 ṽ . (0.16)

Tout comme dans le cas magnétique, les champs U et ṽ ont la même périodicité.

0.2.3 Instabilités magnétiques

Afin de tester le modèle à deux modes décrivant les instabilités grandes échelles, nous
allons utiliser une variante du champ de ABC [15] qui prend la forme suivante

u = U

 sin(ky + φ2) + cos(kz + ψ3)
sin(kz + φ3) + cos(kx+ ψ1)
sin(kx+ φ1) + cos(ky + ψ2)

 . (0.17)

où U est l’intensité du champ de vitesse, k est le module du nombre d’onde et les φi
et ψi sont des phases qui peuvent être modulées afin de décrire différents écoulements.
Nous allons étudier dans le cas (A) un écoulement hélicitaire avec φi = ψi = 0 pour
i ∈ {1; 2; 3}, dans le cas (B) un écoulement non-hélicitaire avec φi = ψi−π/2 = 0 pour
i ∈ {1; 2; 3} et dans le cas (C) un écoulement hélicitaire avec les phases delta-corrélées
en temps mais vérifiant aussi φi = ψi pour i ∈ {1; 2; 3}.

Les résultats numériques obtenus sont présentés à la fig. 0.6. Sur le panneau de
gauche, les résultats obtenus sans la méthode de Floquet sont représentés par une
ligne verte continue et ceux obtenus avec la méthode de Floquet sont représentés par
des croix. On remarque qu’en accord avec le modèle à deux modes, avant le seuil
de transition de l’instabilité petite échelle, les résultats obtenus avec la méthode de
Floquet conduisent à un taux de croissance nul alors que ceux obtenus sans la méthode
de Floquet conduisent à un taux de croissance négatif. Après le seuil de transition de
l’instabilité, les deux méthodes conduisent au même taux de croissance, ce qui est aussi
prévu par le modèle à deux modes.

L’analyse du taux de croissance de l’instabilité présenté dans le panneau central est
aussi en accord avec le modèle à deux modes. Avant le seuil d’instabilité petite échelle,
le taux de croissance dans les écoulements (A) et (C) est proportionnel à q, ce qui est
en accord avec un effet de type alpha. Ce taux de croissance devient indépendant de
q après l’apparition de l’instabilité de petite échelle. Dans le cas de l’écoulement (B)
le taux de croissance est proportionnel à q2, ce qui correspond à un effet de type beta.
En effet, l’écoulement (B) n’est pas propice à la création d’un effet alpha car il n’est
pas hélicitaire. On observe pourtant la disparition de la loi d’échelle en q2 après le seuil
d’apparition de l’instabilité petite échelle comme dans le cas de l’effet alpha.

Le changement de loi d’échelle du champ magnétique lors de l’apparition de l’in-
stabilité petite échelle peut aussi être observé sur le rapport entre l’énergie présente
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Figure 0.6 – Gauche) Taux de croissance en fonction du Reynolds magnétique Rm pour les
différents écoulements. Les taux de croissance des instabilités de petite échelle sont représentés
par des lignes. Les taux de croissance calculés avec la méthode de Floquet sont représentés
par des croix. Centre) Taux de croissance en fonction de q pour différentes valeurs de Rm. La
légende des encarts est la suivante : encart (A) : pointillés pour Rm < R1 et R2 < Rm < R3,
tirets pour R1 < Rm < R2, lignes pour R3 < Rm ; encart (B) : pointillés pour Rm < R4,
lignes pour R4 < Rm ; encart (C) : pointillés pour Rm < R5, lignes pour R5 < Rm. L’encart
(D) représente un signal typique pour l’évolution de l’énergie pour des écoulements de type
(C) dans le cas où Rm < R5. Droite) Rapport d’énergie E0/Etot. La légende des écarts est
la même qu’au panneau central. L’encart (D) représente le spectre d’énergie typique pour des
écoulements de type (C) au plus grand Rm.

dans les modes de grande échelle et l’énergie totale. Les lois d’échelles observées avec
les simulations numériques effectuées avec la méthode de Floquet sont en accord avec
les expressions obtenues par le modèle à deux modes et rappelées dans le tab. 0.1.

Même si les méthodes de développement multi-échelle ne sont plus valides à grand
nombre de Reynolds magnétique, le modèle à deux modes est en mesure de décrire les
comportements généraux de l’instabilité du champ magnétique. Les résultats présentés
montrent que pour les différents écoulement étudiés, même dans un cadre purement
cinématique, la dynamique du champ magnétique est régie par le comportement des
petites échelles une fois que le seuil d’instabilité petite échelle est franchi.

0.2.4 Instabilité hydrodynamiques

Les comportements grande échelle des perturbations du champ de vitesse peuvent aussi
être étudiés en utilisant des simulations numériques avec la méthode de Floquet. On
peut ainsi quantifier l’instabilité AKA de l’écoulement présenté dans [13]. Le méca-
nisme conduisant à l’effet AKA peut aussi être observé à des nombres de Reynolds
modérés. Certains écoulements hélicitaires qui ne produisent pas d’effet AKA peuvent
aussi donner lieu à des instabilités comparables à une viscosité négative. Dans le cas
de l’écoulement ABC [15], l’effet de viscosité négative conduit à une instabilité grande
échelle dont le seuil se trouve avant l’instabilité petite échelle. Elle peut être observée
en mesurant l’énergie totale de l’écoulement en fonction du nombre de Reynolds pour
différentes séparations d’échelles. On peut ainsi observer sur la fig. 0.7 que pour des
grandes séparations d’échelle KL ∈ {5; 10; 20}, l’énergie de l’écoulement diminue pour
un nombre de Reynolds critique proche de 3, alors que l’énergie de l’écoulement ne
diminue qu’à partir d’un nombre de Reynolds proche de 13.5 dans le cas d’une sépa-
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ration d’échelle de 1. Par ailleurs, la valeur du seuil de l’instabilité grande échelle est
prédite par les simulations numériques utilisant la méthode de Floquet.

La méthode de Floquet permet donc de repérer les instabilités de grande échelle
engendrées par un écoulement si elles ont lieux avant le seuil des instabilités de petite
échelle. A l’aide de simulations numériques avec la méthode Floquet, on peut quantifier
les instabilités grandes échelles et trouver les seuils d’instabilités liés à des effets de
viscosité négative.
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Figure 0.7 – Bifurcation : énergie totale de l’écoulement en fonction du nombre de Reynolds
pour différentes séparations d’échelle KL ∈ {1; 5; 10; 20}. L’encart montre un agrandissement
du graphique au niveau du seuil de l’instabilité grande échelle pour Re ∈ [2; 5].

0.3 Résultats sur les temps de corrélation
L’objectif de cette section est de présenter succinctement quelques résultats concer-
nant les points communs entre les modes de grande échelle d’écoulements solutions
de Navier-Stokes et les solutions de l’équation d’Euler tronquée. Pour ce faire, deux
caractéristiques principales des écoulements seront analysées, le spectre d’énergie et
le temps de corrélation des modes du champ de vitesse. Nous commencerons par dé-
velopper un modèle thermodynamique permettant d’avoir un résultat analytique sur
le temps de corrélation, puis nous détaillerons la procédure numérique utilisée pour
mesurer les corrélations dans des simulations numériques. Nous présenterons ensuite
quelques caractéristiques de solutions numériques de l’équation d’Euler tronquée et de
l’équation de Navier-Stokes forcée.

0.3.1 Modèle thermodynamique
Un fluide idéal tronqué spectralement suit l’équation d’Euler tronquée et conserve donc
son énergie et son hélicité. Comme l’a montré Kraichnan [11], les statistiques des modes
de Fourier du champ de vitesse suivent une généralisation des poids de Boltzmann qui
prend en compte la conservation de l’hélicité. En fonction des conditions initiales du
système, l’écoulement peut être décrit par deux paramètres α et β qui définissent la
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densité de probabilité du système de se trouver dans un état donné. En effet, proche
de l’équilibre, la densité de probabilité du système est proportionnelle à

e
−α(2E− Kr

kM
H) avec Kr = −βkM

α
. (0.18)

Ce modèle a permis à Kraichnan de calculer le spectre d’énergie moyen des équi-
libres absolus. Il peut aussi être utilisé pour calculer le temps de corrélation des équi-
libres absolus à l’aide d’une approximation parabolique de la fonction de corrélation
Γk(t) des modes de la vitesses. En effet, aux temps courts, la fonction de corrélation
du champ de vitesse peut être écrite comme

Γk(t) = u∗k(s)uk(s+ t)
|uk(s)|2

= u∗k(s)uk(s)
|uk(s)|2

+ t2

2
u∗k(s)∂2

t uk(s)
|uk(s)|2

+ O(t4) . (0.19)

où G(s) correspond à la moyenne d’une observable générique G sur la variable s qui
correspond au temps, et uk(s) correspond au mode du champ de vitesse. En suppo-
sant que le système est ergodique, on peut échanger les moyennes temporelles par des
moyennes sur des ensembles thermodynamiques 〈. . .〉 et calculer le temps de corrélation
provenant de l’approximation parabolique

τk =
√
〈|∂tuk|2〉
〈|uk|2〉

. (0.20)

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

10-1010-8 10-6 10-4 10-2 100
k / kM

100
102
104
106
108
1010

τ

k-1

k-
1
2

Figure 0.8 – Temps de corrélation calculé avec l’approximation parabolique en fonction du
nombre d’onde pour 1−Kr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}. La ligne pleine
représente les résultats obtenus avec Mathematica, les tirets représentent la loi de puissance
en k− 1

2 et les pointillés représentent la loi de puissance en k−1.

Le calcul du temps de corrélation ne peut pas être effectué de manière analytique
jusqu’à son terme. Il est nécessaire de calculer une intégrale de manière numérique. Le
temps de corrélation obtenu via Mathematica est présenté à la fig. 0.8.
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Figure 0.9 – Gauche) Temps de corrélation en fonction du nombre d’onde pour 1−Kr = 10−6.
Les résultats semi-analytiques du temps de corrélation sont représentés par la ligne avec les
points foncés. Les points clairs représentent le temps de corrélation de la composante d’hélicité
négative du champ de vitesse. La loi d’échelle en k−1/2 est représentée par des tirets. La loi
d’échelle en k−1 est représentée par des pointillés. Droite) Nombre d’onde critique en fonction
de 1−Kr, les résultats semi-analytiques sont représentés par des points et la loi de puissance
A(1−Kr) ln(1−Kr) est représentée par une ligne.

On peut observer que lorsque l’écoulement devient très hélicitaire Kr → 1, le
temps de corrélation des modes du champ de vitesse suit deux lois de puissance. La
première loi de puissance est proportionnelle à k−1 qui est compatible avec un temps de
corrélation formé à partir de l’énergie. La seconde loi d’échelle en k−

1
2 est compatible

avec un temps de corrélation formé à partir de l’hélicité. Le nombre d’onde critique
où le temps de corrélation change de loi d’échelle est représenté à la fig. 0.9. Même
s’il n’est pas aisé de calculer le temps de corrélation pour tous les nombres d’onde,
on peut calculer le comportement asymptotique des temps de corrélation en fonction
du nombre de Kraichnan et trouver le lieu de coexistence des deux lois d’échelle des
temps de corrélation. La ligne noire sur le panneau de droite de la fig. 0.9 montre la
loi d’échelle obtenue à l’aide du calcul asymptotique.

Le calcul thermodynamique du temps de corrélation du champ vitesse indique
qu’il est possible d’avoir deux régimes pour le temps de corrélation. Le premier régime
est régi par l’énergie et le second régime est régi par l’hélicité. La prochaine section
s’attardera à expliquer comment le temps de corrélation des modes de la vitesse peut
être mesuré dans le cas de simulations numériques.

0.3.2 Procédure d’évaluation numérique
Le calcul de corrélations temporelles n’est pas chose aisée à mesurer dans le cas de
simulations numériques car il nécessite de produire et de conserver de longues séries
temporelles. Pour limiter le nombre de données à conserver sans pour autant perdre
trop d’information sur les corrélations temporelles des différents modes, nous avons
uniquement conservé les séries temporelles des modes qui se trouvent sur les plans à
kx = 0, ky = 0 et kz = 0. Pour évaluer le temps de corrélation, nous avons d’abord
calculé le spectre de puissance de l’écoulement S(k, ω) avant de calculer les fonctions
de corrélation Γ(k, t). Nous avons ensuite utilisé le temps pour lequel la fonction de
corrélation atteint la mi-hauteur pour calculer le temps de corrélation.

La fig.0.10 représente le spectre de puissance et les fonctions de corrélation d’un
équilibre absolu solution de l’équation d’Euler tronquée avec les symétries de Taylor-
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Green. On remarque bien que les nombres d’onde où le spectre de puissance est resserré
au niveau des petites pulsations correspondent aux nombres d’onde qui ont la fonction
de corrélation la plus étalée.
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Figure 0.10 – Spectre spatio-temporel de simulations numériques de l’équation d’Euler tron-
quée avec les symétries Taylor-Green. Gauche) Spectre de puissance S(k, ω). Droite) Fonction
de corrélation Γ(k, t).

0.3.3 Résultats de simulations numériques
Avec la procédure de calcul du temps de corrélation, il est maintenant possible de tester
la théorie thermodynamique établie pour les équilibres absolus. La même procédure
peut aussi être utilisée pour évaluer si les modes en amont du forçage des solutions de
l’équation de Navier-Stokes forcée ont une dynamique temporelle proche de celle des
équilibres absolus.
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Figure 0.11 – Temps de corrélation pour des simulations de l’équation d’Euler tronquée.
Gauche) Écoulement non-hélicitaire Kr = 0. Centre) Écoulement avec de l’hélicité Kr = 0.85.
Droite) Écoulement très hélicitaire Kr = 0.9.

La fig. 0.11 montre les résultats obtenus par l’analyse du temps de corrélation
de simulations de l’équation d’Euler tronquée pour différentes valeurs du nombre de
Kraichnan. On peut voir qu’à petit nombre de Kraichnan, le temps de corrélation
suit une loi d’échelle en k−1 alors que pour des nombres de Kraichnan proches de 1,
la loi d’échelle du temps de corrélation change de pente et finit par suivre une loi
de puissance en k−

1
2 . Ce changement de loi d’échelle est en parfait accord avec le

calcul thermodynamique du temps de corrélation mais la résolution des simulations
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numériques ne permet pas d’observer le changement de pente aussi nettement que
dans le cas du calcul thermodynamique.
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Figure 0.12 – Spectre d’énergie de simulations numériques de l’équation de Navier-Stokes for-
cée avec les symétries Taylor-Green. Gauche) Nombre d’onde de forçage fixé à kf = 19 pour dif-
férents nombres de Reynolds Re ∈ {204; 1021; 2041}. Droite) Produit viscosité-nombre d’onde
de forçage fixé à νkf = 2 · 10−2 pour différent nombre d’onde de forçage kf ∈ {19; 60; 102}.

Les fig. 0.12 et 0.13 présentent quelques résultats sur les modes de grande échelle
de solutions de l’équation de Navier-Stokes forcée pour des écoulements respectant les
symétries d’écoulement de type Taylor-Green. La fig. 0.12 montre que, dans les grandes
échelles, le spectre d’énergie de l’écoulement correspond bien au spectre d’équipartition
de l’énergie avec E(k) ∝ k2. Sur le panneau de gauche, on peut observer au plus grand
nombre de Reynolds que le spectre d’énergie suit aussi la loi d’échelle de Kolmogorov en
k−

5
3 pour des nombres d’onde dans le régime inertiel. Les spectres d’énergie provenant

d’écoulements à des nombres de Reynolds plus petits montrent que la loi d’échelle
d’équipartition d’énergie des modes en amont du forçage peut être observée avant
d’observer la loi d’échelle de Kolmogorov. On peut ainsi étudier l’équivalence entre les
équilibres absolus et les solutions de l’équation de Navier-Stokes forcée à de plus petits
nombres de Reynolds. Le panneau de droite présente le spectre d’énergie d’écoulement
avec différentes séparations d’échelle avec des produits viscosité sur nombre d’onde
de forçage identiques à la simulation avec le plus petit nombre de Reynolds présentée
dans le panneau de droite. Cette étude de convergence permet de mettre clairement
en évidence la loi d’échelle en k2 caractéristique de l’équipartition en énergie.

La fig. 0.13 présente les résultats sur les corrélations temporelles des modes du
champ de vitesse d’écoulement respectant les symétries Taylor-Green. Tout comme le
spectre d’énergie, on peut observer que sur le panneau de gauche, le temps de corré-
lation converge plus rapidement vers un régime indépendant du nombre de Reynolds
dans les grandes échelles que dans les petites échelles. Sur le panneau de droite, on
observe que le temps de corrélation des modes du champ de vitesse suit une loi de
puissance en k−1 qui est compatible avec le temps de corrélation observé dans le cas
d’équilibres absolus.

Dans le cas d’écoulements respectant les symétries Taylor-Green, les simulations
numériques directes ont mis en évidence des comportements comparables du spectre
d’énergie et du temps de corrélation des modes du champ de vitesse de solutions de
l’équation d’Euler tronquée et des modes en amont du forçage pour des écoulements
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Figure 0.13 – Temps de corrélation de simulations numériques de l’équation de Navier-Stokes
forcée pour des écoulements avec les symétries Taylor-Green. Gauche) Nombre d’onde de for-
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fixé à νkf = 2 · 10−2 pour des nombres d’onde variables kf ∈ {19; 60; 102}.

solutions de l’équation de Navier-Stokes forcée.
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Chapter 1
Introduction

The Navier-Stokes equation is commonly used in astrophysics, physics and engineering
to model flows. But since the first use of the equation in the middle of the nineteenth
century, no general exact solutions have been found. Proving that the solutions of the
Navier-Stokes equation exist and are smooth was even deemed by the Clay Mathemat-
ics Institute to be one the seven Millennium Prize Problems with a one million dollar
reward [21].

On a more physical point of view, the Navier-Stokes equation was established to
describe the evolution of the motion of viscous fluids. The equation comes from the
combination of the linear expansion of stresses in a continuous medium with New-
ton’s second law. In physical space, the Navier-Stokes equation can be expressed for
incompressible flows as

∂tu+ (u ·∇)u = −∇P + ν∆u+ F with ∇ · u = 0 , (1.1)

where u, P , ν, F denote the velocity field, the pressure field, the viscosity and the
force field respectively. In the flows considered in this manuscript, the viscosity is a
stationary (independent of time) and uniform (independent of space) parameter fixed
by the operator either by changing the parameter of the simulation or changing the
fluid in an experiment. The forcing field can depend on space and time and is also
fixed by the operator. The velocity and pressure fields are the variables of the problem.
They depend on space and time and are not directly fixed by the operator since they
are solution of the differential eq. (1.1). Hence, to find a solution to the differential
problem, initial and boundary conditions have also to be set on the velocity field.
The pressure field is directly related to the velocity field via the solenoidal condition
∇ · u = 0. It can be derived by solving the Poisson equation

∆P = −∇ ·
(
(u ·∇)u

)
. (1.2)

Calling P a pressure field is in fact an improper use of the world pressure since the
pressure p, defined by the International System of Units and measured by a manometer,
is related to P via ∇P = ρ−1∇p where ρ denotes the density of the fluid. When the
density is uniform, the two pressures are simply proportional. In the case of solenoidal
flows, if the density is initially uniform, it will remain constant (uniform and stationary)

1
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because it follows the continuity equation

−∂tρ =∇ · (ρu) = (u ·∇)ρ+ (∇ · u)ρ = 0 . (1.3)

Indeed, (∇·u)ρ = 0 because the flow is solenoidal and (u·∇)ρ = 0 because the density
is initially uniform. Reciprocally, if the fluid is incompressible, i.e. if the density is
constant, the flow has to be solenoidal, i.e. the velocity field has zero divergence. The
solenoidal condition on the flow is equivalent to the incompressible condition on the
fluid.

Figure 1.1 – Scheme for representing the Richardson cascade where eddies are broken into
smaller eddies until their size is small enough to be dissipated. The figure is extracted from
Rose and Sulem (1978) [1].

In the Navier-Stokes equation, the (u · ∇)u term is associated to convective or
inertial effects whereas the ν∆u term is associated to diffusive effects. The Reynolds
number, Re, is the dimensionless number which characterizes whether the regime is
dominated by convection or diffusion. It is defined by

Re = [[(u ·∇)u]]
[[ν∆u]] = Urms

ν`
, (1.4)

where [[. . . ]] corresponds to the order of magnitude of the quantity within the double
square brackets, Urms and ` denote the root mean square velocity and the characteristic
length-scale of the flow respectively. At low Reynolds number Re� 1, viscous effects
dominate, whereas convective effects dominate at large Reynolds number 1� Re. At
large Reynolds number, the flow becomes turbulent, the dynamic of the flow is often
described using the image of the Richarson cascade [2, 3]. In the cascade description,
large eddies are broken into smaller eddies which are themselves broken into even
smaller eddies and so on and so forth until the size of the eddies is sufficiently small
to dissipate the eddies because of viscous effects. Fig. 1.1 reproduces the scheme from
Rose and Sulem (1978) [1]. This mechanism is in agreement with Kolmogorov’s theory
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[4, 3]. By proving that the energy injection rate ε and the viscosity are the only two
fixed quantities in the problem, Kolmogorov showed that the energy spectrum of the
system, E(k), followed the power law

E(k) ∝ ε2/3k−5/3 where E =
∫
E(k)dk = 1

2

∫
u2d3r , (1.5)

where k and E denote the wavenumber and the total energy respectively. Fig.1.2 rep-
resents the energy spectrum for an incompressible fluid as predicted by Kolmogorov’s
theory with an exponential decay corresponding to the dissipation zone kd < k where
kd denotes the dissipation wavenumber. With Kolmogorov’s theory, the dissipative
wavenumber kd can be related to the forcing wavenumber kf via kd ' kfRe3/4.
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Figure 1.2 – Energy spectrum predicted by Kolmogorov in logarithmic scale. The red line
represents Kolmogorov’s prediction, the dotted line represents the k−5/3-power law and the
dash-dotted line represents the exponential decay in the viscous range where kd denotes the
dissipation wavenumber.

Many numerical and experimental studies [5, 6] have checked the validity of Kol-
mogorov’s theory. The Kolmogorov-Monin 4/5-law [7] – which is an exact result con-
sistent with Kolmogorov’s theory applying the theory of Kàrmàn and Howarth [8] on
third order correlation functions – has even been proven to be valid in experiements
[9]. Kolmogorov’s theory may be able to predict how the modes in scales smaller than
the forcing scale behave, it does not give any information on the behavior of the modes
larger than the forcing scale. In addition, the Richardson cascade does not give any
intuition on the dynamic of formation of large eddies. The dynamic of the modes
larger the forcing scale cannot be explained with the same arguments as those used to
describe the small scale dynamic. Furthermore, let us recall that Kolmogorov’s theory
does not describe the so-called ‘intermitency’ corrections [3]. We shall not consider
intermitency in the rest of this manuscript.

The aim of this manuscript is to investigate the properties of the flow for wavenum-
bers smaller than the forcing wavenumber. The problem is summed up in fig. 1.3. Since
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Kolmogorov’s theory has already been validated, the energy spectrum should follow
Kolmogorov’s prediction for wavenumbers above the forcing wavenumber. However,
the aspect of the spectrum below the forcing scale is unknown and is denoted by green
question marks in fig. 1.3.

A few theories have attempted to give a description of what should happen below
the forcing. In [3], U. Frisch reported the conjecture that the energy spectrum of
solution of the Navier-Stokes equation should follow absolute equilibrium solutions:

“Absolute equilibrium solutions seem highly unphysical in view of the
approximately k−5/3 spectrum of the three-dimensional turbulence. Actu-
ally, they are appropriate at the very smallest wavenumbers of turbulent
flows maintained by forcing at intermediate wavenumbers (Forster, Nelson
and Stephen 1977).”

— Uriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov, p. 209
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Figure 1.3 – Energy spectrum of a velocity field forced at k = 101. The red line represents
the known trend of the velocity which has been shown to satisfies Kolmogorov’s prediction.
The dark lines represent the asymptotic behaviors of the energy spectrum. The green question
marks represent the part of the spectrum whose properties are still unknown.

The article by Forster et al. [10] mentioned in the quote used renormalisation group
theory to study turbulence. In one of the models described in the article, the authors
were able to show that the behavior of the modes below the forcing wavenumber
should have a dynamic similar to that of solution of the truncated Euler equation.
The equivalent of the truncation wavenumber for the large scale modes solution of the
Navier-Stokes equation is the forcing wavenumber. Let us give a few details on the
Euler equation to understand the comparison.

The Euler equation describes ideal fluids without any viscosity. It can be obtained
from the Navier-Stokes equation by setting the viscosity coefficient ν to zero. Kraich-
nan studied in [11] the average spectrum of the solutions of a truncated Euler equation
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in their statistically stationary regime. The associated solutions are called absolute
equilibrium solutions. The truncated Euler equation is a spectrally-filtered version of
the Euler equation where the modes above a cut-off wavenumber kM are set to zero.
More precisely, if the Fourier modes of the velocity are denoted by uk where k is the
wavevector, uk is set to zero if kM < |k| and uk follows the Euler equation if |k| ≤ kM .

The equivalence between the truncated Euler equation and the Navier-Stokes equa-
tion is valid in the case of forced turbulence. In the case of decaying tubulence where
k2-spectrum (Saffman turbulence) [22] and k4-spectrum (Batchelor turbulence) [23]
can be observed, the equivalence between the two equations is not as clear because the
maximum of the energy spectrum drifts to the large scales as time elapses.

Fig. 1.4 represents the global aspect of the energy spectrum of absolute equilibrium
solutions of the truncated Euler equation. Far below the truncation wavenumber, the
spectrum follows a k2-power law. This power law is related to the energy conservation
of the truncated Euler equation. If the energy is evenly spread out in every mode, the
energy spectrum should be proportional to the number of modes per shell. In three
dimensions, the density of modes per shell is roughly constant and the area of shell is
proportional to k2, the energy spectrum should therefore follow a k2-power law.

The truncated Euler equation does not only conserve energy, it also conserves a
second quantity called helicity, denoted with the letter H and defined by

H = 1
L3

∫
(u·∇×u)d3r and L3 =

∫
d3r . (1.6)

where L3 is the volume of the fluid.
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Figure 1.4 – Absolute equilibrium prediction for the energy spectrum of solutions of the trun-
cated Euler equation for different Kraichnan numbers.

The conservation of a second invariant by the truncated Euler equation modifies the
aspect of the average energy spectrum. The probability distribution of each mode of the
velocity field is governed by a modified Boltzman weight proportional to e−(α(2E)+βH)



6 Chapter 1. Introduction

where α and β are parameters introduced by Kraichnan in [11]. The Kraichnan number
Kr = −βkM

α can be used to measure the relative level of helicity compared with energy
for a flow truncated at kM . If the Kraichnan number is equal to zero, the system does
not have any helicity and the energy spectrum follows a k2-power law. If the Kraichnan
number is different from zero, the system has some helicity. Finally, if the Kraichnan
number is near one in absolute value, the energy is concentrated in the small scales
and the k2-power law cannot be observed in the small scales.

As described by Kraichnan and Chen in [12], the apparent similarity between the
dynamic of the large scale modes of the solutions of the Navier-Stokes equation and the
solutions of the truncated Euler equation can also be considered from the truncated
Euler perspective. Their argument is based on the fluctuation-dissipation theorem and
is explained in the quotation presented on page 6.

“The equilibrium equipartition distribution [. . . ] becomes more inter-
esting when the associated fluctuation-dissipation relations are considered.
These relations show that the truncated Euler system can imitate a [Navier-
Stokes] fluid: the high wavenumber degrees of freedom act like a thermal
sink into which the energy of low wavenumber modes excited above equi-
librium is dissipated. In the limit where the sink wavenumbers are very
large compared with the anomalously excited wavenumbers, this dynami-
cal damping acts precisely like a molecular viscosity. When the wavenum-
ber ratio is not asymptotically large, the dynamical damping is non-local
in space and time; it exhibits long-time tails like those obtained from the
kinetic theory of a gas.”

— Robert H. Kraichnan & Shiyi Chen,

Is there a statistical mechanics of turbulence ?,

Physica D 37 (1989) 160-172

Another argument used to predict an absolute equilibrium behavior of the large
scale mode for solution of the Navier-Stokes equation is to consider how energy flows
to the modes. In the small scales, the harmonics of the forcing mode can directly
transmit energy in the small scale modes via the non-linear interaction term. However,
in the large scales, the energy is transmitted by the sum of the non-linear interactions
resulting from the beating of all the modes. The resulting effect acts as a thermal bath
forcing all large scale modes independently and leaves the same amount of energy in
every mode.

Fig. 1.5 illustrates the prediction made by Frisch (see the quote on page 4) on the
energy spectrum of solutions of the forced Navier-Stokes equation. The modes in scales
smaller than the forcing scale should follow Kolmogorov’s scaling whereas the mode in
scales larger than the forcing scale should have absolute equilibrium behavior similar
to that of solutions of the truncated Euler equation.

As a prelude to the study of the large scale behavior of turbulent flows, it is im-
portant to understand how the large scale modes behave at smaller Reynolds number.
Indeed the properties of laminar and turbulent flows are not totally disconnected since
they correspond to the same system but with a different Reynolds number. Even
though it is highly unlikely that all the laminar properties of the flow will remain



7

100 101 102 103

k

10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

E(k)

forcing

ET

NS

k−5/3

e−k/kd

k2

Figure 1.5 – Energy spectrum as described by Frisch in [3]. The red line represents the energy
spectrum in scales smaller than the forcing scale. The green line represents the energy in the
scales larger than the forcing scale.

unaltered as the Reynolds number increases, some mechanisms may still impact some
modes for a wide range of Reynolds number. Knowing how these mechanisms evolve
as the Reynolds number increases can give an intuition on their turbulent behavior.

The manuscript is organized as follows:
• In part B, we will study the large scale behavior of helically-forced Navier-Stoke

problems at small Reynolds numbers. Using Floquet analysis, we will quantify how
large scale perturbation can be generated. We will first reproduce the anisotropic
kinetic alpha (AKA) instability reported in [13, 14] at low Reynolds number with a
linearized version of the Navier-Stokes equation. We will also show that the mechanism
governing the AKA instability still holds at moderate Reynolds number. We will
proceed by studying the large scale instability generated by the helical ABC flow [15].
We will show that the flow is first destabilized by a large scale instability before being
destabilized in the small scales. Using direct numeric simulations of the fully non-linear
version of the Navier-Stokes equation, we will show that the large scale instability can
be observed and eventually saturates.

We will also investigate properties of the magnetic field in kinematic magneto-
hydrodynamic (MHD). Since the evolution equation of the velocity field of a viscous
fluid and that of the magnetic field in conductive fluid share many similarities, their so-
lution also have common properties. For instance, the AKA instability was introduced
in fluid dynamics as the counterpart of the magnetic alpha-effect [16, 17]. Using the
Floquet methodology, we will show that, similarly to the velocity field, the magnetic
field can have a concentration of energy in the large scales as long as it has not crossed
the small scale instability threshold. We will support our claim with three examples:
a helical flow, a non-helical flow and a random flow in time.

Concerning the issue of the behavior of large scale modes of flows solutions of the
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Navier-Stokes equation, the energy spectrum may carry a lot of information on a flow,
but the description of a velocity field cannot be limited to its energy spectrum. The
energy spectrum does not give any information on the temporal behavior of the flow.
The correlation function is a general statistical tool used to measure the time depen-
dence of an observable. If the behavior of the modes before the forcing scale of flows
solutions of the Navier-Stokes equation are supposed to resemble that of the truncated
Euler equation, their temporal correlations should also have the same properties.

A few results are already known on the correlation time of the modes of velocity.
As described in [18, 19], in the Kolmogorov cascade, the correlation time is governed
by the sweeping effect of the root mean square velocity of the forcing mode. Since most
of the energy is concentrated in the forcing mode, the correlation time is proportional
to the only time scale that can be built using the root mean square velocity, Urms, and
a wavenumber, k, i.e. (kUrms)−1. Some studies [20, 6] have proposed an influence of
helicity on the correlation time, but no direct expression of the correlation time has
been derived for absolute equilibrium.
• In part C, we will use a short-time parabolic approximation to evaluate the

correlation time of absolute equilibrium solutions of the truncated Euler equation.
We will show that flows with a moderate level of helicity follow the same correlation
time scaling law as that generated by the sweeping effect in the Kolmogorov cascade.
However, in highly helical flows, another power law appears where the correlation time
is proportional to k−

1
2 which is compatible with a time-scale based on helicity. To

confirm this new scaling, we will use direct numeric simulations of the truncated Euler
equation to produce time series of the modes of velocity which we will then analyze
to compute the correlation time. We will use the same procedure to analyze the large
scale modes of solutions of the forced Navier-Stokes equation. We will show that the
large scale modes of flows without helicity follow the same scaling for their correlation
time as the absolute equilibrium. However, the correlation time in large scale modes
of highly helical flows are not able to exibit a k−

1
2 -power law.

We will also present some results on numeric methods in part E that are indepen-
dent of the core problem of this manuscript.

All chapters with a title starting with Elements of context review elements
of well-documented theories. New results are presented in the chapters
with a title finishing with the indicationpublished or submitted.

X



Chapter 2
Elements of context:
Hydrodynamics

The aim of this chapter is to give details on some of the properties presented in chap. 1.
We will (i) derive some properties of the evolution equation of ideal fluids, (ii) give
the equivalence between the evolution equation of viscous fluids and magnetic fields in
conductive fluids and (iii) explain how the helicity and the energy are conserved. More
information on how to integrate the equation numerically are presented in part E.
Most of the properties presented in this chapter are explained in greater depth in
[3, 24]. A general description of the pseudo-spectral numeric method used is presented
in chap. 10.

This chapter reviews elements of well-documented theories.

2.1 Ideal fluids (review)

The Navier-Stokes equation may already be an approximation of a real fluid, further
approximations are required to derive analytic results. Some results can be derived on
a simplified version of the equations where the viscosity is set to zero. This simplified
equation is called the Euler equations and satisfies

∂tu+ (u ·∇)u = −∇P and ∇ · u = 0 with P = p/ρ . (2.1)

In the case of the Euler equation, the viscosity has been set to zero thus making the
viscous term ν∆u vanish. The forcing field has also been set to zero. The absence of
viscosity in the Euler equation leads to solutions which differ a lot from the solutions
of the Navier-Stokes equation. D’Alembert’s paradox gives a good example of the
limitation of the Euler equation. In the inviscid framework, there is no friction, drag
is thus not possible, which is in contradiction with experimental results showing that
drag goes to a constant value at large Reynolds numbers. As a general rule, the Euler
equation is not well adapted to describe real fluids near solid boundaries. D’Alembert
paradox is the reason which led Stokes to use Navier’s theory of viscosity to compute
the drag of a sphere. The dynamic of the flow is totally changed by adding a small
amount of viscosity, thus the invisicid limit in fluid mechanics is a singular limit.

9
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Another difference between the solutions of the Navier-Stokes equation and those
of the Euler equation concerns their behavior at large wavenumber. Fourier space
is better suited to understand what is at hand. In Fourier space, the Navier-Stokes
equation can be written as

∂tu
α
k = Fαk − k2νuαk −

ı

2P
αβγ
k

∑
p

uβpu
γ
k−p where P

αβγ
k = kβPαγk + kγPαβk , (2.2)

with Pαβk = δαβ − kαkβ

k2 and δαβ =
{

1 if α=β
0 otherwise . (2.3)

where uαk , Fαk , P
αβ
k , Pαβk , δαβ denote the Fourier component of the velocity field, the

Fourier component of the forcing, the solenoidal transport tensor, the tensor enforcing
incompressibility and Kronecker’s delta tensor respectively. The Greek exponents indi-
cate the Cartesian directions and the index k indicates the wavevector. The equation
has been written with Einstein’s implicit summation convention over repeated Greek
variables, the sum on Latin variables are denoted with the capital sigma symbol. The
Fourier formulation may seem more difficult but the temporal evolution of every mode
can clearly be identified and the pressure term enforcing the incompressibility condition
is now included in the solenoidal transport tensor.

With the formulation of eq. (2.3), the diffusive scale of the Richardson cascade can
be identified. Since the solenoidal transport tensor is of order k and the viscous term
is of order k2, at large wavenumber, the viscous term becomes dominant even if the
forcing is strong. If the forcing is not applied, the mode of the velocity field would
decay exponentially similarly to solutions of the heat equation. However, the e−κk2t

decay of the heat equation and the e−k/kd spectral decay of turbulent Navier-Stokes
solution are not directly related. On the other hand, in the inviscid limit, the viscous
term is absent. Hence, in the small scales, velocity modes are not damped. Some
solutions of the Euler equation can even have average values in the small scales larger
than those in the large scales. Similarly to the Navier-Stokes equation, the regularity
of the solutions of the Euler equation is still an open question. In order to carry out
numeric analysis, the Navier-Stokes equation is often truncated spectrally which only
leads to a small error on the numeric solution if the truncation is done below the
dissipative scale. The truncated Euler equation is useful to understand the large scale
behavior of Navier-Stokes solutions. However, truncating the Euler equation changes
a lot more the solutions. Indeed, when the spectral truncation is applied, all modes of
wavenumber greater than the maximal wavenumber kM are set to zero. The truncated
Euler equation can be written as

∂tu
α
k = − ı2P

αβγ
k

∑
p

uβpu
γ
k−p with uk>kM = 0 . (2.4)

Even though solutions of the Euler equation and truncated Euler equation have
many discrepancies with real fluids, they still yield interesting properties that can
be used to understand the properties of real fluids, especially concerning large scale
thermalization and conserved quantities.
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2.2 Magnetic equivalences (review)
Using the Fourier formalism to express the Navier-Stokes equation, the pressure fields
can be removed from the equation by imposing directly the solenoidal condition on
the tensor used in the evolution equation of the flow. In physical space, the Navier-
Stokes equation can also be rewritten in an expression where the pressure field has
disappeared. The properties of this expression are close to those of the magnetic field
which is also a solenoidal field. To derive this formalism, the standard version of the
Navier-Stokes equation (eq.(1.1)) can be rewritten using the following vectorial formula
for generic U and V fields

∇(U · V ) = (U ·∇)V +U×(∇×V ) + (V ·∇)U + V ×(∇×U) , (2.5)
(U ·∇)U = −U×(∇×U) + 1

2∇(U2) . (2.6)

With this modification, the Navier-Stokes equation can be expressed as

∂tu = u×ω −∇
(
P + u2

2

)
+ ν∆u+ F with ∇ · u = 0 and ω =∇×u . (2.7)

where ω is the vorticity field. Taking the curl of the equation, the evolution of the
vorticity fields follows

∂tω =∇×(u×ω) + ν∆ω +∇×F with ∇ · u = 0 and ω =∇×u . (2.8)

In the vorticity equation, the pressure term has disappeared in the right hand side.
By construction of the nabla operator, the transport term ∇×(u×ω) always satisfies
the solenoidal condition. This simplification comes at a cost: the velocity field has to
be computed by uncurling the vorticity. Similarly to the pressure field in the case of
the Navier-Stokes equation, the velocity field is solution of a Poisson equation in the
case of the vorticity equation

∆u = −∇×ω with ∇ · u = 0 . (2.9)

With the formulation of the Navier-Stokes equation in terms of vorticity, it appears
that flows satisfying u×∇×u = 0 are exact solutions of the Euler equation. These
flows are often referred to as Beltrami flows and have the main property of being highly
helical.

At this stage, all these reordering of terms may seem insignificant but having the
correct formulation of the evolution of the flow greatly simplifies derivations, par-
ticularly when investigating large scale instabilities. The temporal evolution of the
vorticity equation corresponds to the general transport and diffusion of a vector field
with a solenoidal constraint. The definition of the vorticity field as the curl of velocity
appears independently when solving the Poisson equation.

Similarly to the vorticity field, the magnetic field in a conductive fluid is a vector
field governed by diffusive and transport processes with the Maxwell-Gauss solenoidal
constraint ∇ ·B = 0. Finding the evolution of the magnetic field requires to solve the
Maxwell-Faraday equation and the stationary Maxwell-Ampere equation with Ohm’s
law in a moving frame

∂tB = −∇×E , ∇×B = µ0J and J = σ(E + u×B) , (2.10)
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where E, B, J , µ0, σ denote the electric field, the magnetic field, the current field,
the permeability and the electric conductivity respectively. Combining the equations,
the magnetic field follows the induction equation

∂tB =∇×(u×B) + η∆B , ∇ ·B = 0 . (2.11)

where η = 1/(µ0σ) denotes the magnetic diffusivity. Besides the forcing, the equation
is similar to the vorticity equation. Because of their similarities, magnetic effects often
have a kinetic counterpart. For instance the alpha-effect was first discovered in the
magnetic case and then found in the kinetic case.

Similarly to the kinetic case, the magnetic Reynolds number, Rm, is the dimen-
sionless number which characterizes whether the evolution of the magnetic field is
dominated by convection or diffusion. It is defined by

Rm = [[∇×(u×B)]]
[[η∆B]] = Urms

η`
. (2.12)

When magnetic fields become important, the Laplace force J×B generated on the
fluid has to be taken into account in the Navier-Stokes equation. The evolution of the
magnetic field follows a non-linear set of equation and the magnetic field can follow
dynamics where it undergoes reversals.

2.3 Conserved quantities (review)
Conserved quantities are some of the most general properties of ideal fluids that can
easily be transcribed for real flows. To derive the evolution equation of the energy for
solutions of the Navier-Stokes equation, the following relations for generic G, U and
V fields are very useful

∇ · (U×V ) = V ·∇×U −U ·∇×V , (2.13)
∇ · (GU) = G∇ ·U +U ·∇G . (2.14)

Neglecting the boundary terms, which are equal to zero in periodic domains, the
temporal derivative of the evolution of energy leads to

∂t

〈
|u|2

2

〉
L3

=
〈
u ·
(
u×ω −∇

(
P + u2

2

)
+ ν∆u+ F

)〉
L3

=−ν
〈
|ω|2

〉
L3

+〈u · F 〉L3

(2.15)

where 〈. . .〉L3 = 1
L3

∫
. . . d3r with L3 =

∫
d3r . (2.16)

The angle brackets, 〈. . .〉L3 , denote the average over space. This notation is not com-
mon to describe an average, but the standard notations will be taken by other averages.
The thermodynamic ensemble average will be denoted by the angle brackets 〈. . .〉ens,
and temporal average will be denoted by a super-scripted line . . . . The equation of
evolution of the energy indicates that energy can be added to the system via the forcing
term 〈u · F 〉L3 . With non-zero viscosity, the enstrophy

〈
|ω|2

〉
L3 always leads to energy
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dissipation. However, the system conserves energy in the ideal case corresponding to
the Euler equation. The other possible option to cancel out the average dissipation
would be to have ω = 0. But since the problem has fixed boundaries, the only solution
is for the fluid to be at rest without any motion. The conservation of energy is not
simply restricted to the average quantity. Let us assume that only three velocity modes
of wavevector k, p and q forming a triad, i.e. k + q + p = 0, are different from zero,
using eq.(2.15), the evolution of energy at the wavenumber k is given by

1
2∂t|uk|

2 =− ı

2
(
kβ(uγk)∗uβpuγq + kγ(uβk)∗uβpuγq

)
with kα(uαk)∗ = 0 , (2.17)

where (. . .)∗ corresponds to the complex conjugation of the quatity in between the
parenthesis. Bearing in mind that the three wavevectors form a triad and that the
modes are solenoidal, the energy on a triad, 1

2
(
|uk|2 + |up|2 + |uq|2

)
, is conserved.

For the moment, the truncation condition has not yet been used, therefore the demon-
stration is valid in a general case. The energy flux, (uγk)∗uβpuγq , depends on the three
modes of the triad. When one of the mode is equal to zero, no energy can be trans-
ferred within the triad. Consequently, the truncated Euler equation conserves energy
without any specific condition on the truncation condition.

As noted by Moffat in [25], similarly to magnetic fields, ideal flows also conserve
the total helicity, H. Indeed

∂tH = 2ν 〈(ω ·∆u)〉L3 + 2 〈(ω · F )〉L3 with H = 〈u · ω〉L3 . (2.18)

When the fluid is inviscid, the helicity is conserved. The evolution of helicity is quite
different from the evolution of energy. The viscous term in the evolution equation is
not always negative. Unlike energy, helicity does not have to be positive, it can also be
negative. With the current framework, it is hard to go beyond the global conservation
of helicity. The Craya-Herring helical decomposition [26, 27] is more adapted to look
at how helicity evolves on a triad. The helical decomposition relies on the fact that
all velocity fields can be decomposed into a positive, u+, and a negative, u−, helical
components using

u±k = uk ± k−1∇×uk = u±k h
±
k where ∇×h±k = ±kh±k and |h±k |

2 = 1 , (2.19)

where h+
k denotes a complex positively helical unitary vector at mode k. h±k are unique

up to a complex phase. In the inviscid case, with this decomposition and eq. (2.7), the
evolution of a mode [28] is given by

∂t(uskk )∗=
∑

k+p+q=0
sp,sq

C
skspsq
kpq u

sp
p u

sq
q where C

skspsq
kpq =−1

4 (spp− sqq)
(
hskk · h

sp
p ×hsqq

)
. (2.20)

C
skspsq
kpq denotes the Craya-Herring tensor. It is symmetric on its last two variables:

C
skspsq
kpq = C

sksqsp
kqp . Because of the triple product, the Craya-Herring tensor is equal to

zero when at least two of the three helical modes in the triad and identical : Csksksqkkq = 0,
C
skspsk
kpk = 0 and Cskspspkpp = 0.
The evolution of helicity can also be analyzed on a triad. Similarly to the conser-

vation of energy on a triad, let us assume that only three helical velocity modes of
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wavevector k, p and q forming a triad, i.e. k + q + p = 0, are different from zero.
Using eq.(2.20), the evolution of helicity at the wavenumber k is given by

skk∂t|uskk |
2 =− 1

4skk(spp− sqq)
(
hskk · h

sp
p ×hsqq

)
uskk u

sp
p u

sq
q . (2.21)

The additional skk coefficient comes from the curl operator applied on the helical vec-
tor hskk . The derivative of the helicity of the three modes of the triad is equal to zero.
Helicity is thus conserved on a triad. The conservation of energy on a triad can also be
derived using the Craya-Herring helical decomposition. This decomposition describe
with more details the conservation of energy since the Craya-Herring helical decompo-
sition separates positive and negative helical components. The argument made about
the truncation condition in the case of the conservation of energy on a triad can also
be made for the conservation of helicity on a helical triad. Since the helicity flux is
proportional to uskk u

sp
p u

sq
q , it depends on the three modes of the triad. When one of

the modes is equal to zero, no helicity can be transferred within the triad. Conse-
quently, the truncated Euler equation conserves helicity without any condition on the
truncation method.

When F = 0, the helical decomposition gives another insight on the evolution of
the total helicity written in eq. (2.18)

∂t
∑
k

(H+
k +H−k ) = −2ν

∑
k

k2
(
H+
k +H−k

)
where H±k = ±k|u±k |

2 . (2.22)

Because of the non-linear interaction of the modes, the evolution of the helicity is quite
complex. However, if the flow is not forced, the energy at every mode will eventually
decrease which will in turn results in a decrease of helicity at every mode.

In the inviscid limit, the magnetic evolution equation also conserves a quantity
called the magnetic helicity. The magnetic helicity, HM , can be expressed as

HM = 〈A ·B〉L3 with ∇×A = B and ∇ ·A = 0 . (2.23)

where A denotes the magnetic potential vector associated to the magnetic field with
the Coulomb gauge. The magnetic potential follows the evolution equation

∂tA = u×∇×A+ η∆A . (2.24)

Adding the Laplace force to the hydrodynamic force, it can also be shown that the sum
of the kinetic and magnetic energies and the cross helicity, 〈u ·B〉L3 , are conserved in
the ideal case.

X
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Chapter 3
Elements of context:
Large scale effects

This aim of this chapter is to present some large scale effects that can occur in magnetic
fields and velocity fields. Even though the magnetic effect is not directly linked with
the study of absolute equilibrium, we will start by considering the alpha-effect before
considering its kinetic counterpart, the anisotropic kinetic alpha (AKA) effect.

Subsec. 3.1 and 3.2 review elements of well-documented theories. Sub-
sec. 3.3 presents a new model used in sec. 5 and 6 to report new results.

3.1 Alpha-effect (review)
As introduced in chap. 2, the evolution of the magnetic field in a conductive fluid is
governed by the induction equation

∂tB =∇×(u×B) + η∆B where ∇ ·B = 0 , (3.1)

where B, u and η denote the magnetic field, the velocity field and the magnetic
diffusivity respectively. Similarly to the kinetic case, the magnetic Reynolds number,
Rm, is the dimensionless number which characterizes whether the evolution of the
magnetic field is dominated by convection or diffusion. It reads

Rm = [[∇×(u×B)]]
[[η∆B]] = Urms

η`
. (3.2)

where Urms and ` denote the root mean square velocity and the length-scale of the
velocity field respectively. The double square brackets represent the order of magnitude
of the observable within it. At low Rm, for specific flows, the induction equation has
the surprising feature of being able to generate a large scale instability [16]. This
instability can be understood with a heuristic argument.

To quantify this phenomenon more precisely, let us consider the specific problem
where the velocity field is of length-scale ` and the magnetic field evolving in a domain
of size L with `� L. Let us define the averaging procedure for generic field G as

〈G〉V` (R) = 1
V`

∫
V`

G(R+ r)d3r , (3.3)

19



20 Chapter 3. Elements of context: Large scale effects

where V` is an isotropic volume centered on R with `3 � V` � L3. By definition of the
length-scale, the velocity field has an average equal to zero 〈u〉V` = 0. The magnetic
field can be decomposed as B = 〈B〉V` + b, where 〈B〉V` is the large scale component
of the magnetic field and b is the small scale component satisfying 〈b〉V` = 0. The
evolution equations of the two components of the magnetic field are given by

∂tb =∇×(u× 〈B〉V`) +∇×G + η∆b with ∇ · b = 0 , (3.4)
∂t 〈B〉V` =∇×E + η∆B with ∇ ·B = 0 , (3.5)
where G = (u×b− 〈u× b〉V`) and E = 〈u×b〉V` . (3.6)

For small Reynolds numbers, Rm � 1, the term G can be neglected. In this
situation, the small scale component, b, has a much smaller evolution time-scale than
the large scale component, 〈B〉V` . ∂tb can can thus be neglected in front of η∆b in
eq. 3.4. Solving the coupled system of equations can therefore be done by solving the
equation in the small scales and deriving an expression of b as a function of 〈B〉V` .
Once b is known, E can be computed and the large scale component of the magnetic
field can be derived. Since E is a function of 〈B〉V` , it can be expanded in gradients of
〈B〉V` using

Eδ = αδµ 〈B〉µV` + βδµν∇µ 〈B〉νV` + O(∇δ∇µ 〈B〉νV`) . (3.7)

where αδµ and βδµν are tensors whose components only depend on the velocity field.
In eq. (3.7), Einstein’s summation convention is used on repeated Greek exponents.
The O(∇δ∇µ 〈B〉νV`) term represents higher order terms which are negligible compared
to diffusion.

At small magnetic Reynolds number, for isotropic flows, the large scale magnetic
evolution equation becomes

∂t 〈B〉V` = α∇×〈B〉V` + (η + β)∆ 〈B〉V` + O((∇×)3 〈B〉V`) . (3.8)

In spatio-temporal Fourier space, for a magnetic field satisfying ∇×B = kB, the
growth rate γ of the instability can be expressed as

γ = αk − (Rm−1 + β)k2 + O(k3) , (3.9)

where k denotes the wavenumber. A large scale instability can be generated at α = 0,
if the coefficient β satisfies Rm−1 + β < 0.

The instability can also be derived [17] using the following multiscale expansion in
power of Rm

∂t = Rm−1∂τ +Rm3∂T , ∇ =∇r +Rm∇R and B =
∞∑
p=0

RmpBp , (3.10)

where τ and r denote the fast variables and T and R denote the slow variables. The
multiscale expansion gives the evolution equation of the fast variables at every order
of the expansion. It also gives evolution equation of slow variables via the solvability
condition. The equations derived with this method forB0 andB1 are identical to those
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derived with the averaging procedure for 〈B〉V` and b respectively. It is important to
stress that the multiscale derivation is only valid in the limit of small magnetic Reynolds
numbers for the alpha-effect. Consequently, the multiscale expansion can neither be
used to justify an alpha-effect at moderate or large Rm, nor can it be used to explain
a beta-effect at low Rm.

For the moment, the different methods have only shown that the possibility of a
large scale magnetic instability cannot been ruled out. They also gave properties on
the growth rate of the instability. Using the Roberts velocity field [29], uRo70, defined
at eq. (3.11), let us exhibit a system that does indeed generate an alpha-instability

uRo70 = [U sin ky ; U cos kx ; V (sin kx+ cos ky)] . (3.11)

Let us initialize the problem with a large scale magnetic field

〈B〉V` = [〈Bx〉V` ; 〈By〉V` ; 〈Bz〉V` ] . (3.12)

After the transient, the first harmonic of the small scale magnetic field b1 can be
computed using eq. (3.4) and setting the G-coupling to zero. It satisfies

b1 = −1
η

∆−1∇×(uRo70 × 〈B〉V`) = −1
ηk2 (〈B〉V` ·∇)uRo70 (3.13)

b1 = 1
ηk

 U 〈By〉V` cos ky
−U 〈Bx〉V` sin kx

V 〈Bx〉V` cos kx− V 〈By〉V` sin ky

 . (3.14)

The α-tensor can then be computed

〈uRo70×b1〉V` = α

 1 0 0
0 1 0
0 0 0

 〈B〉V` with α = UV

ηk
. (3.15)

The large scale magnetic field depends on the slow variables Z and T , since only
its x- and y-components are forced by the alpha-tensor. The evolution equation of the
large scale magnetic filed 〈B〉V` is given by

∂T 〈Bx〉V` = −α∂Z 〈By〉V` + η∂2
ZZ 〈Bx〉V` (3.16)

∂T 〈By〉V` = α∂Z 〈Bx〉V` + η∂2
ZZ 〈By〉V` . (3.17)

Since some coefficients of the alpha-tensor are equal to zero, the third component of
the large scale magnetic field does not influence the evolution of the most unstable
mode. The evolution equation of the most unstable large scale magnetic field B can
be solved efficiently by introducing B = 〈Bx〉V` + ı 〈By〉V` . The variable B follows

∂tB = ıα∂ZB + η∂2
ZZB thus B = B0e

(±αq−ηq2)T±ıqZ , (3.18)

where q is the wavenumber associated to the large scale variable Z. A stationary
small scale flow can therefore give rise to an alpha-instability. It is important to stress
that all the derivation above has been carried out at low magnetic Reynolds number.
Even though the arguments presented do not forbid the existence of alpha-instability
at larger Rm, they cannot be used to justify the presence of an alpha-instability at an
arbitrarily high magnetic Reynolds number.
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3.2 Anisotropic kinetic alpha (AKA) effect (review)

Using the similarity between the magnetic field and the velocity field, Frisch et al.
(1987) were able to show in [13, 14] that the perturbation of the velocity field can also
have an alpha-type instability. The differences between the evolution equations of the
magnetic field and the velocity field have major implications. The conditions required
for the basic flow to generate a kinetic instability turn out to be more restrictive than
those for the magnetic instability. The following extract gives the general conditions
required to generate an anisotropic kinetic alpha (AKA) effect.

There are many important instances where the [kinetic] α-tensor van-
ishes. When the basic flow is parity-invariant, this vanishing occurs because
[the tensor] has an odd number of velocities. When the basic flow is random
isotropic (that is invariant under genuine rotations, not including parity),
vanishing occurs because the tensor αδµν is by construction symmetrical in
δ and µ and there exists no non-vanishing third order isotropic tensor with
such symmetry. When the basic flow is time-independent, the alpha-tensor,
calculated perturbatively in powers of the Reynolds number, vanishes to
leading order. Vanishing also occurs when the basic flow is random and
delta-correlated in time. Finally, vanishing occurs for the ABC flows. It
must be stressed that in MHD, none of the above assumptions, excepting
parity-invariance, implies the vanishing of the alpha-effect.

— Frisch et al., Large-scale flow driven by the anisotropic kinetic alpha-effect,

Physica D: Nonlinear Phenomena, October 1st, 1987

In order to prove the existence of the AKA instability, Frisch et al. (1987) ap-
plied the time-dependent anisotropic forcing, F Fr87, to the Navier-Stokes equation in
a [0; 2π]3-periodic box

F Fr87= νV0
√

2
`20

[
cos

(
y
`0

+ νt
`20

)
; cos

(
x
`0
− νt

`20

)
; cos

(
y
`0

+ νt
`20

)
+ cos

(
x
`0
− νt

`20

)]
, (3.19)

with ∂tu+ (u ·∇)u = −∇P + ν∆u+ F Fr87 and ∇ · u = 0 , (3.20)

where V0, `0 denote the velocity and length-scale of the flow respectively. To quantify
the evolution of the kinetic instability, the velocity field is decomposed into a large
scale component, 〈u〉V` , and a small scale component, v, such that u = 〈u〉V` + v with
〈v〉V` = 0. The Navier-Stokes equation is then linearized into two coupled differential
equations

∂tv + (〈u〉V` ·∇)v = ν∆v + F and ∂t 〈u〉V` + 〈(v ·∇)v〉V` = ν∆ 〈u〉V` . (3.21)

The term quadratic in v in the evolution equation of v and the term quadratic in
〈u〉V` in the evolution equation of 〈u〉V` are not kept because they do not force the
correct wavenumber. Even though there is no pressure term, the velocity fields are still
incompressible. Indeed, since the equation does not have any non-linearity generating
a compressible flow, the pressure gradient is equal to zero. Since 〈u〉V` varies slowly
and V0`0/ν, the gradients of 〈u〉V` are always negligible in front of the gradients of v
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except in the viscous term ν∆ 〈u〉V` . The evolution equation of the components of the
field v can thus be computed analytically using spatio-temporal Fourier transform

vkω = Fkω
ı(ω + k · u)− νk2 . (3.22)

Using the Parceval-Plancherel theorem on the Fourier transform of the velocity field
v, the 〈vδvµ〉V`-tensor can be computed. At the first order in 〈u〉V` , the 〈vδvµ〉V`-tensor
is equal to

〈vδvµ〉V` = V 2
0
2

 1 0 1
0 1 1
1 1 2

+αAKA

 -〈uy〉V` 0 -〈uy〉V`
0 〈ux〉V` 〈ux〉V`

-〈uy〉V` 〈ux〉V` 〈ux〉V` -〈uy〉V`

+ O(U2) (3.23)

with αAKA = V 2
0 `0
2ν . (3.24)

Since the velocity field v is incompressible, the 〈vδvµ〉V`-tensor is related to the
〈(v ·∇)v〉V`-tensor via ∂δ(〈vδvµ〉V`) = 〈(∂δvδ)vµ〉V`+〈vδ(∂δvµ)〉V` = 〈(v ·∇)vµ〉V` . The
large scale perturbations depending only on Z are the most unstable mode. Similarly to
the magnetic alpha-instability, the x- and y-components of the large scale component
of the velocity field are differentially coupled via

∂T 〈ux〉V` = −αAKA∂Z 〈uy〉V` + ν∂2
ZZ 〈ux〉V` (3.25)

∂T 〈uy〉V` = αAKA∂Z 〈ux〉V` + ν∂2
ZZ 〈uy〉V` . (3.26)

The set of coupled equations in eq. (3.25)-(3.26) are strictly equivalent to those written
in eq. (3.16)-(3.17) if the variables U and B are exchanged. The F Fr87 is able to generate
a kinetic instability similar to the magnetic α-instability. Similarly to the magnetic
case, the kinetic Reynolds number has to be small for the instability to occur. However,
in the case of the kinetic instability, the perturbation of the velocity field also needs
to be small, otherwise the non-linear term cannot be neglected. Frisch et al. (1987)
have shown that after an initial exponential increase of the perturbation, it saturates
and gives rise to a new flow which does seem to be AKA-stable.

The AKA-instability presented in Frisch et al. (1987) was considered as the unsta-
ble response of a flow to a forcing. It can also be viewed as the instability of a fixed
velocity field. Instead of fixing the forcing, the basic flow can be fixed. Since the basic
flow is the solution of the Navier-Stokes equation in the viscous limit which is a linear
problem, both points of view are equivalent.

In order to carry out this analysis, the velocity field is decomposed into a basic
flow U and a perturbation v such that u = U + v, with ‖v‖ � ‖U‖. To enforce
incompressibility both on the basic flow and on the perturbation, the pressure field
is also decomposed into a basic component PU and a perturbation Pv such that P =
PU + Pv. The Navier-Stokes equation can then be linearized using eq. (2.7) as

∂tU = U×∇×U −∇PU + ν∆U + F with ∇ ·U = 0 , (3.27)
∂tv = U×∇×v + v×∇×U −∇Pv + ν∆v with ∇ · v = 0 . (3.28)

where the term quadratic in v is neglected. At low Reynolds number, the term U×∇×
U , quadratic in U in the evolution equation of U , is negligible in front of the diffusive
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term. This term can modify the basic flow especially in its small scales but it will not
generate an instability since it does not depend explicitly on v.

Taking the curl of the evolution equation of v, the evolution equation of the vorticity
perturbation can be derived

∂tω =∇×(U×ω) +∇×(v×∇×U) + ν∆ω where ω =∇×v . (3.29)

Besides the additional ∇×(v×∇×U) term, the evolution equation of the vorticity
perturbation is very similar to the induction equation (see eq. (3.1)) where B and u
are replaced by ω and U respectively. The similarity between the equations explains
the equivalence between the magnetic alpha-effect and the AKA-effect. The additional
∇×(v×∇×U) term is at the origin of the differences in the conditions needed to
generate an instability as described in the quote at page 22.

In addition to the small Reynolds number hypothesis, the AKA-effect has another
constraint related to the amplitude of the basic flow. The exponential growth of
the velocity perturbation will eventually lead to a modification of the basic flow and
produces the saturation observed in [13] when studying Navier-Stokes equation. The
saturation does not occur in eq. (3.29) because the Navier-Stokes equation has been
linearized. Even though the absence of saturation in eq. (3.29) is highly unphysical, it
is very useful to measure numerically the growth rate of the perturbation.

3.3 Distribution of energy (description of a new model)

In the previous section, it has been shown that the alpha- and AKA-effects can generate
large scale magnetic and velocity perturbations fields respectively. The growth rate
of this instability was determined but the energy distribution was not detailed. If the
instability is described as happening in the large scale, the energy of the instability
should be located in the largest scale. To get more details on the energy distribution,
let us come back to the Roberts example of the alpha-instability. In the magnetic case
for the Roberts flows, eq. (3.14) can be used to get the order of magnitude of the ratio
of the large scale magnetic field to the small scale magnetic field

〈
b2

1

〉
V`

=
(U2 + V 2)

(〈Bx〉2V`+〈By〉
2
V`

)
2

(ηk)2 =
〈
(uRo70)2〉

V`
〈B〉2V`

(ηk)2 (3.30)

thus
‖ 〈B〉V` ‖√〈
b2

1
〉
V`

= ηk√
〈(uRo70)2〉V`

= 1
Rm

. (3.31)

If the magnetic Reynolds number is small, the instability has most of its energy
located in the large scales, which is in agreement with the approximation used to derive
the alpha-effect. However, when the magnetic Reynolds number becomes of order one,
eq. (3.31) indicates that the energy in the large scales becomes as important as that
in the small scale. The magnetic field cannot be described as being a large scale field,
even using the alpha-description out of its range of validity. Additionally, at large
magnetic Reynolds number, the magnetic field can become unstable in the large scale,
which makes the alpha-description problematic.
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The alpha-description can be adapted to derive a toy model describing the evolution
of magnetic field in a regime with large scale instabilities. The AKA-instability has
close properties since its evolution equation is similar to the evolution equation of
the alpha-effect. To describe the evolution of magnetic field with the toy model,
eq. (3.4)&(3.5) are used to write a set of coupled equations on the Fourier amplitude
of the magnetic field

∂t 〈B〉V` = qUb− ηq2 〈B〉V` and ∂tb = kU 〈B〉V` + γSSDb , (3.32)

where 〈B〉V` , b, U , q and η denote the amplitude of the large scale magnetic field, the
amplitude of the small scale magnetic field, the amplitude of the velocity field, the
large scale wavenumber and the magnetic diffusivity respectively. γSSD denotes the
growth rate of the small scale magnetic field in the absence of large scale magnetic
field. Eq. (3.4) indicates that γSSD depends on G and η∆b. At low magnetic Reynolds
number, γSSD is governed by diffusion and can be approximated by −ηk2 where k is
the wavenumber of the small scale magnetic field. At high Reynolds number, γSSD is
governed by the G-term and will be denoted as γG. If the magnetic field is unstable in
the small scale, γG is positive.

If the system of equations presented in eq. (3.32) is unstable, the growth rate of
the instability is given by the largest eigenvalue γ of the matrix M defined by

∂

∂t

[
〈B〉V`
b

]
= M

[
〈B〉V`
b

]
with M =

[
−ηq2 qU
kU γSSD

]
, (3.33)

therefore γ=1
2

(
γSSD − ηq2 +

√
4qkU2 + (γSSD + ηq2)2

)
. (3.34)

The eigenvector associated to the eigenvalue has an amplitude ratio given by

〈B〉V`
b

= −
γSSD + q2η −

√
4kqU2 + (γSSD + ηq2)2

2kU . (3.35)

The large scale energy to total energy ratio can be related to the amplitude ratio via

E0
Etot

=
〈B〉2V`

〈B〉2V` + b2
= 1

1 +
(

b
〈B〉V`

)2 . (3.36)

In the small magnetic Reynolds number limit, the small scale growth rate satisfies
γSSD ' −ηk2 < 0. For large scale separations q � k, the growth rate can be ap-
proximated by γ ' qkU2

ηk2 = qURm, and the amplitude ratio can be approximated by
〈B〉V` /b '

ηk2

kU = 1
Rm . Both scaling laws are in agreement with the alpha-instability

generated by the Roberts flow.
Let us now use the toy model to describe the magnetic field at large magnetic

Reynolds number. For q � k, after the small scale instability threshold, the growth
rate in the small scales is supposed to follow γSSD ' γG > 0. In this limit the growth
rate of the instability can be approximated by γ ' γG and the amplitude ratio can
be approximated by 〈B〉V` /b '

kqU2

γGkU
= q UγG . These relations indicate that after the
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instability threshold, the properties of the magnetic field change. The magnetic field
is located in the small scales and the growth rate of the instability is independent of
the scale separation. As the growth rate γk of the small scale instability increases, the
amount of energy in the large scales decreases. Tab. 3.1 briefly recapitulates the main
relations concerning the growth rate and the large scale energy ratio for a magnetic
field with an alpha-effect before and after the small scale instability threshold.

Small scale instability threshold Before After

Growth rate: γ
kU ' Rm

(
q
k

)
− 1

Rm

(
q
k

)2
γ ' γG

Amplitude ratio: 〈B〉V`
/b ' 1

Rm 〈B〉V`
/b ' q UγG

Energy ratio: E0
Etot

'
Rm� 1

1−Rm2 E0
Etot
'
(
q UγG

)2

Table 3.1 – Properties of the large scale magnetic fields in the presence of an alpha-effect before
and after the small scale instability threshold for q � k.

At fixed velocity, the decrease of energy in the large scales can be explained heuris-
tically by comparing the order of magnitude of the diffusive term and the convective
term in Fourier space as the diffusivity varies. Indeed, an increase in diffusivity will
lead to an increase in the dampening of all the modes of the magnetic mode. This
dampening will be more important in the small scale modes than in large scale modes
since the viscous term is expressed as −ηk2 in Fourier space. As the diffusivity in-
creases, the energy is therefore more concentrated in the large scales. Consequently,
if the magnetic Reynolds number increases, the relative energy of large scale modes
should increase. Once the magnetic Reynolds number is large enough for the generation
of large scale instabilities, large scale instabilities should hinder the alpha-mechanism,
limiting the energy to the large scales.

The scaling laws derived from the toy model are used to analyzed the magnetic
instabilities in chap. 6 and the kinetic instabilities in chap. 5. In order to quantify
properly the large scale behavior of the instability, the instabilities are studied using
the Floquet method described in chap. 4. The equations have also been integrated
directly in the magnetic case in [30]. But Floquet methods are able to study magnetic
fields at scale separations which are greater by several orders of magnitude than those
achieved with a direct integration of the equation.

X



Chapter 4
Elements of context:
Floquet analysis

The aim of this chapter is to recapitulate some elements of Floquet theory [31], the ap-
plication made by Bloch [32] in solid state physics and the method used to analyze the
large scale instabilities. Extensive descriptions of Floquet theory and of the Mathieu
equation are given in [33, 34]. Bloch theory is broadly described in [35].

This chapter reviews elements of well-documented theories.

4.1 Floquet theory (review)

Historically Floquet theory [31, 36] was first used to solve the Mathieu ordinary dif-
ferential equation (ODE)

d2x

dt2
+ (δ + ε cos t)x = 0 , (4.1)

where δ and ε are the two canonical parameters of the problem [33, 34]. The Mathieu
equation describes the evolution of a parametric oscillator with a varying pulsation. In
the limit of small angle, a pendulum with a varying length is governed by the Mathieu
equation. Fig. 4.1 represents a sketch of the parametric pendulum.

Even though the Mathieu equation is a second-order linear differential equation,
the time-dependent coefficient makes it difficult to express the solution in terms of
elementary functions. In fact, mathematicians defined special functions called Mathieu
functions [37] to describe the solution of the Mathieu equation.

Floquet theory is able to give some properties of the solutions of high-order linear
differential equations with T -periodic forcing of the form

d

dt
x(α)(t) = Aαβ(t)x(β)(t) where x(β)(t) = dβ

dtβ
x(t) (4.2)

where Aαβ(t) is T -periodic in the variable t: Aαβ(t + T ) = Aαβ(t). In eq. (4.2),
Einstein’s summation conventions are used on repeated Greek indices and exponents.
One of the main properties of Floquet theory is that, at large t, the solution x(t) can

27
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Figure 4.1 – Left) Experimental sketch of parametric oscillator. Right) δ-ε stability diagram
of the Mathieu equation. S represents stable regions and U represents unstable regions. The
figures are extracted from Recktenwald (2006) [33].

be expressed as

x(t) = x̃(t)x‡(t) where x̃(t+ T ) = x̃(t) , (4.3)

where x̃(t) is a T -periodic function and x‡(t) is an exponentially increasing function.
For a first order ODE, the derivation can be carried out exactly. If the differential

problem is of first order, it can be rewritten as

d

dt
x(t) = A(t)x(t) where A(t+ T ) = A(t) and A(t) = da

dt
. (4.4)

The function da
dt is introduced because A(t) has to be integrated in order to solve

the ODE. The solution of eq. (4.4) can be found by separating the variables and
integrating the ODE. At s = t+ nT where n ∈ N and t ∈ [0;T ], the solution satisfies
x(s) = x(0)ea(s)−a(0), which can be rewritten as

x(t+ nT )
x(0)e−a(0) = ea(t+nT ) = ena(T )+a(t) = e

t+nT
T a(T )ea(t)− t

T a(T ) , (4.5)

therefore x̃(t+ nT ) = ea(t)− t
T a(T ) and x‡(s) = x(0)e

s
T a(T )−a(0) , (4.6)

where x̃ is a T -periodic function and x‡ is exponentially increasing.
To analyze the solutions of eq. (4.2) at higher orders, we can build a fundamental

solution matrix Xµν(t) = x
(µ)
ν (t), where the functions xν(t) are a basis of solutions of

eq. (4.2). Any solution of the eq. (4.2) can be written as a linear combination of the
xν(t) functions. Since Aαβ(t) is periodic of period T , Xµν(t+T ) is also a fundamental
solution matrix of eq. (4.2) and it can be related to Xµν(t) by a constant matrix Cµν
satisfying

∀t, Xµν(t+ T ) = CµαXαν(t) thus Cµα = Xµν(T )((X(0))−1)να , (4.7)

where (X(0))−1 denotes the inverse matrix of X(0). The inverse matrix of X(0) is
properly defined since X(0) is constructed with a basis of solutions and has therefore
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linearly-independent columns. Since by construction Xµν(t) is non-singular for all t,
Cµα is non-singular.

Eq. (4.7) implies that Cµα can be found by integrating Xµν(t) for t ∈ [0;T ]. The
expression of Xµν(t) can then be computed at all time using the eigen-decomposition
of Cµα. Supposing that Cµα is diagonalizable, let us consider one of its eigenvectors
y(t) of eigenvalue λ. At s = t+ nT where n ∈ N and t ∈ [0;T ], the evolution of y(t) is
given by

y(t+ nT ) = λny(t) = y(t)e
nT
T lnλ =

(
y(0)e

t+nT
T lnλ

)(
y(t)
y(0)e

− t
T lnλ

)
, (4.8)

y(t+ nT ) = ỹ(t)y‡(t+ nT ) with y‡(s) = y(0)λ−
s
T and ỹ(t) = y(t)

y(0)λ
− t
T , (4.9)

with ỹ(T ) = y(T )
y(0) λ

−1 = 1
λ

λy(0)
y(0) = 1 = ỹ(0) . (4.10)

The solutions of eq. (4.2) can thus be expressed as linear combinations of the modes
formed with the product of a T -periodic function with another function. At large t, the
function with the greatest eigenvalue in the linear combination dominates the other
modes.

4.2 Bloch theory (review)

Floquet theory is also used in solid state physics to describe the wave-function in lattice
with a periodic potential. The application of Floquet theory is referred to as Bloch
theory in the field of solid state physics. Even though quantum mechanics has little in
common with MHD, the geometry in which Bloch theory is applied is similar to the
problem described in chap. 5 and 6.

In the general context of quantum mechanics, the wave-function ψ of an electron
is described by the Schrödinger equation

i}∂tψ = Hψ = − }2

2m∆ψ + V ψ , (4.11)

where }, H, m and V denote the reduced Planck constant, the Hamiltonian of the
system, the mass of the electron and the potential respectively. In quantum mechanics,
the term − }2

2m∆ψ is related to the kinetic energy of the electron. The square of the
norm of wave-function, |ψ|2, is also equal to the probability density function (PDF) of
the electron. Since the PDF is smooth and normalized, the wave-function is assumed
to be bounded.

Because of the linear structure of the Schrödinger equation, wave-function solution
of eq. (4.11) can be decomposed in a linear combination of eigen-state of energy En,
where n identifies the energy level. In the stationary case, the wave-function is solution
of the eigen-problem

− }2

2m∆ψ + V ψ = Enψ . (4.12)
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In one dimension, eq. (4.12) can be written as

d2

dx2ψ + 2m
}2 (En − V )ψ = 0 . (4.13)

If the potential is sinusoidal, switching x with t and ψ(x) with x(t), eq. (4.13) is
equivalent to the eq. (4.1). With such an equivalence, it is natural to introduce Floquet
theory, or rather Bloch theory, to solve the equation.

In solid state physics, the wave-function describes the probability amplitude of
an electron in a crystal. The atoms in the crystal form a finite Bravais lattice [35],
i.e. one atom is located at every position R = nαaα where nα ∈ [[1;Nα]] and aα are
the directions of the finite Bravais lattice. To solve the problem, periodic boundary
conditions are applied to the finite Bravais lattice. These conditions are referred to as
Born-Von Karman conditions in the context of solid state physics. Since the potential
is associated to the presence of an atom, the potential is said to have the periodicity
associated to the Bravais lattice. On the other hand, the wave-function covers all
the lattice and is said to have the periodicity associated to the Born-Von Karman
condition.

The problem has two levels of periodicity. The first level of periodicity is associated
to the inter-atomic distance in the finite Bravais lattice. The second level of periodicity
is associated to the periodic Born-Von Karman boundary condition used to solve the
problem. A one-dimensional analogy of the problem can be done by looking at a pearl
necklace similar to that presented in fig. 4.2. Every item of the necklace is a pearl.
Similarly to the Bravais lattice, starting from a pearl, a translation of the necklace of
a pearl diameter will bring another pearl as long as you are not near the clasp of the
necklace. But pearls are not exactly the same. If you start from a specific pearl, you
have to make a translation of an integer number of necklace length to come back to
this specific pearl just like with the Born-Von Karman periodicity.

Figure 4.2 – Photograph of an Akoya pearl necklace.

Let p be the wavevectors associated with the Fourier decomposition with the Born-
Von Karman periodicity and let k be the wavevectors associated with the Fourier de-
composition with the Bravais lattice periodicity. The wave-function and the potential
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can be written as

ψ(r) =
∑
p

ψpe
ıp·r and V (r) =

∑
k

Vke
ık·r (4.14)

With this decomposition, eq. (4.12) can be rewritten as

∑
p

eıp·r
((

}2

2mp2 − En

)
ψp +

∑
k

Vkψp−k

)
= 0 . (4.15)

Since the plane-waves eıp·r form an orthogonal set, each term in the sum of eq. (4.15)
must be equal to zero. The problem has therefore been transformed into independent
equations grouping wavevectors with the Bravais lattice periodicity. More precisely,
all wavevectors p, differing by a wavevector k1 in the Fourier decomposition associated
with the Bravais lattice periodicity, follow(

}2

2m(p− k1)2 − En

)
ψp−k1 +

∑
k

Vkψp−k1−k = 0 . (4.16)

Fixing the wavevector p, all the modes associated to the wavevectors of the form
p− k1 are coupled together. This coupling links all these modes with as many linear
equations as the number of modes. In order to define uniquely the set of wavevectors
p − k1, the smallest wavevector in norm, q, is chosen. The wavevector q is unique,
otherwise it would not be the smallest wavevector of the set. In the solid state physics
nomenclature, q is said to belong to the first Brillouin zone. The coefficients of the
wave-function in eq. (4.14) can therefore be written as

ψ(r) =
∑
q,k

ψq+ke
ı(q+k)·r =

∑
q

eıq·rψ̃q(r) with ψ̃q(r) =
∑
k

ψq+ke
ık·r , (4.17)

where the ψ̃q(r) functions have the periodicity of the Bravais lattice. The ψ̃q(r)-
functions are not coupled in q-wavenumber. Their expression depends only on the
wavevector q and the potential. They are solution of the ODE

− }2

2m
(
∆ψ̃q(r) + 2ı(q ·∇)ψ̃q(r)− q2ψ̃q(r)

)
+ V (r)ψ̃q(r) = Enψ̃q(r) (4.18)

In eq. (4.18), the ODE is a second-order linear differential equations, solutions
have two free parameters which are usually set by the boundary conditions. Since the
modulus square of the wave-function must be normalized, the wave-functions solutions
of eq. (4.18) have only one free parameter. The functions ψ̃q(r) are therefore unique
up to one parameter which is associated to the global phase of the wave-function.

The element of Bloch theory to bear in mind for the analysis of MHD instabilities
is that, for a given wavenumber q, the unique solution of the problem up to a complex
phase can be found using the ansatz eıq·rψ̃k(r), where ψ̃k(r) has the periodicity of the
Bravais lattice.

Bloch theorem can also be derived using the quantum mechanic Hermitian formu-
lation by demonstrating that the impulsion operator commutes with the translation
operator. However this formulation cannot easily be transcribed to the study of MHD
instabilities.
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Figure 4.3 – Representation of the real part of a Bloch wave for a one-dimensional Bravais
lattice with eight atoms. The gray dots represent the vertex of the lattice. The thick line
represents the real part of the wave-function. The dashed line represents the carrier plane
wave.

4.3 Floquet Linear Analysis of Spectral MHD (review)
Our objective is to study large scale effects that can happen for two linear MHD
phenomena : (i) the induction equation presented in eq.(4.19) and (ii) the linearized
Navier-Stokes equation presented in equation eq.(4.20). The induction equation de-
scribes the evolution of the magnetic field b in a conductive fluid of velocity u with a
magnetic diffusivity η

∂tb =∇×(u×b) + η∆b = Lmb and ∇ · b = 0 . (4.19)

The linearized Navier-Stokes equation describes the evolution of the velocity pertur-
bation v in a global flow of velocity U with a kinematic viscosity ν

∂tv = U×∇×v + v×∇×U −∇Pv + ν∆v = LNSv and ∇ · v = 0 . (4.20)

The linearity of both equations is highlighted with the linear operators Lm and LNS.
These operators are spatial differential operators but are time-independent.

The analogy between large scale effects of the MHD phenomenon and the Bloch
wave is quite straightforward. In the case of [0; 2π]3-periodic geometries, studying
the large scale effect of a flow requires to connect several periodic boxes and enforces
a global periodicity to group of boxes. In that sense, large scale MHD systems in
periodic box have two levels of periodicity just like Bloch wave-system. The first level
of periodicity is due to the presence of the same flow in every cell and the second level
of periodicity is related to the periodic boundary condition applied to global system.
For the induction equation, the magnetic field b and the velocity field u are the Bloch
analogues to the wave-function ψ and to the atomic potential V respectively. For the
linearized Navier-Stokes equation, the perturbation v and the flow U are the Bloch
analogues to the wave-function ψ and to the atomic potential V respectively.

Applying a Floquet analysis to the linear MHD equation is however different from
the Bloch method used to study crystalline lattices. Unlike Bloch waves, MHD prob-
lems cannot be solved in the stationary case with the eigen-states of the Hamiltonian.
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In addition, the normalization condition on the modulus square of the wave-function
does not apply to MHD problem, thus the fields are not bounded. These two elements
imply that MHD problems have growth properties that can be related to the standard
Floquet method. Because the MHD problems considered are linear, solutions can be
decomposed in a basis of eigen-states of the linear operator Lm and LNS.

The solution of the evolution equation ∂tΨ = L(Ψ) where L is a linear operator
with eigenvalues λα and eigenvector yα can be expressed as

∂tΨ(t) = L(Ψα(t)yα) = Ψα(t)λαyα thus Ψα(t) = Ψα(0)eλαt , (4.21)

where the Ψαyα is the decomposition of Ψ on the basis of eigenvector.
Since the operators are linear, the eigenvectors yα do not couple during the time

evolution. Similarly to eq. (4.12), they can be computed by solving the eigenvalue
equation Ly = λy. Using the properties established for Bloch waves, the solution of
eq. (4.21) can be expressed as

Ψ(t) =
∑
q

(Ψq(t)eıq·rỹq(r) + c.c.) (4.22)

where c.c. denotes the complex conjugate and ỹq(r) has the periodicity of one [0; 2π]3-
periodic box. The evolution of a field at a given Floquet vector can therefore be found
using the ansatz Ψ = eıq·rỹΨ(r) + c.c.. After a transitory regime where the mode of
greatest eigenvalue becomes dominant, the field will have an exponential growth with
a growth rate equal to the largest eigenvalue. For the induction equation, the Floquet
ansatz b = eıq·rb̃+ c.c. leads to

∂tb̃ = ıq×(u×b̃) +∇×(u×b̃) + η (∇+ ıq)2 b̃ and (ıq ·+∇·)b̃ = 0 . (4.23)

The fields u and b̃ are both periodic in the [0; 2π]3-box. In the kinetic case, the Floquet
ansatz v = eıq·rṽ + c.c. leads to

∂tṽ = (∇×U)×ṽ + (ıq +∇×v)×U − (ıq +∇)p̃+ ν (∇+ ıq)2 ṽ , (4.24)

where the Floquet field satisfies the solenoidal condition (ıq · +∇·)ṽ = 0. The fields
U and ṽ are both periodic in the [0; 2π]3-box.

The evolution equations eq. (4.23) and (4.24) both have two parameters, the Flo-
quet wavevector q and the dissipation coefficient – η for the magnetic field and ν for
the velocity field. These parameters can be changed independently.

Eq. (4.23) and (4.24) can be solved numerically using a pseudo-spectral method
similar to that used to solve the Navier-Stokes equation (see chap. 10). The number of
variables required to integrate the pseudo-spectral algorithm is doubled compared to
the standard Navier-Stokes equation since the Floquet variables b̃ and ṽ are complex.

The Fourier decomposition of the Floquet variables also enables to carry out spec-
tral analysis of the fields. It is especially useful to find in which scale the energy of the
field is local. This information can then be used to characterize the large scale effects
taking place in the system.

X
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Chapter 5
Large scale instabilities of
helical flows (published in PRF)

This chapter presents new results.
In the following article, we investigate the large scale hydrodynamic instabilities

of periodic helical flows of a given wavenumber K using three dimensional Floquet
numerical computations. In the Floquet formalism the unstable field is expanded in
modes of different spacial periodicity. This allows (i) to clearly distinguish large from
small scale instabilities and (ii) to study modes of wavenumber q of arbitrarily large
scale separation q � K. Different flows are examined including flows that exhibit
small scale turbulence. The growth rate σ of the most unstable mode is measured as
a function of the scale separation q/K � 1 and the Reynolds number Re. It is shown
that the growth rate follows the scaling σ ∝ q if an AKA-effect [Frisch et al., Phys. D
1987] is present or a negative eddy-viscosity scaling σ ∝ q2 in its absence.

This holds both for the Re� 1 regime where previously derived asymptotic results
are verified but also for Re = O(1), that is beyond their range of validity. Furthermore,
for values of Re above a critical value RecS beyond which small scale instabilities are
present, the growth rate becomes independent of q and the energy of the perturbation
at large scales decreases with scale separation. The non-linear behavior of these large
scale instabilities are also examined in the non-linear regime where the largest scales
of the system are found to be the most dominant energetically. These results are
interpreted by low order models.

5.1 Introduction

Hydrodynamic instabilities are responsible for the frequent encounter of turbulence
in nature. Although instabilities are connected to the onset of turbulence and the
generation of small scales, in many situation, instabilities are also responsible for the
formation of large scale structures. In such situations, flows of a given coherent length-
scale are unstable to larger scale perturbations transferring energy to these scales. A
classical example of a large scale instability is the alpha-effect [16, 24] in magneto-
hydrodynamic (MHD) flows to which the origin of large scale planetary and solar
magnetic field is attributed. In alpha-dynamo theory, small scale helical flows self-

35
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organize to generate magnetic fields at the largest scale of the system.
While large scale instabilities have been extensively studied for the dynamo prob-

lem, limited attention has been drawn to large scale instabilities of the pure hydrody-
namic case. Hence, most direct numeric simulations (DNS) and turbulence experiments
are designed so that the energy injection scale ` is close to the domain size L. This
allows to focus on the forward energy cascade and the formation of the Kolmogorov
spectrum [3]. Scales larger that the forcing scale, where no energy cascade is present,
are expected [38, 39] to reach a thermal equilibrium with a k2 spectrum [40, 41, 42, 43].
Recent studies, using (hyper-viscous) simulations of turbulent flows randomly forced at
intermediate scales [44], have shown that the energy spectrum at large scales deviates
from the thermal equilibrium prediction and forms a strong peak at the largest scale
of the system. A possible explanation for this intriguing result is that a large scale
instability is present.

In pure hydrodynamic flows, the existence of large scale instabilities has been known
for some time. An asymptotic expansion based on scale separation was used in [13,
14] to demonstrate the existence of a mechanism similar to the MHD alpha-dynamo
called the anisotropic kinetic alpha (AKA) instability. The AKA instability is present
in a certain class of non-parity-invariant, time-dependent and anisotropic flows. It
appears for arbitrary small values of the Reynolds number and leads to a growth rate
σ proportional to the wavenumber q of the unstable mode: σ ∝ q. However, the
necessary conditions for the presence of the AKA instability are stricter than those of
the alpha-dynamo. Thus, most archetypal flows studied in the literature do not satisfy
the AKA conditions for instability. This, however, does not imply that the large scales
are stable since other mechanisms may be present.

In the absence of an AKA-effect higher-order terms in the large scale expansion
may lead to a so-called eddy-viscosity effect [19]. This eddy-viscosity can be negative
and thus produce a large scale instability [45, 46]. The presence of a negative eddy-
viscosity instability appears only above a critical value of the Reynolds number. It
results in a weaker growth rate than the AKA-effect, proportional to the square of
the wavenumber of the unstable mode σ ∝ q2. Furthermore, the calculations of the
eddy-viscosity coefficient can be much more difficult than those of the AKA alpha-
coefficient. This difficulty originates on the order at which the Reynolds number enters
the expansion as we explain below.

In the present paper, the Reynolds number is defined as Re ≡ Urms`/ν where Urms
is the root mean square value of the velocity and ν is the viscosity. Note that we
have chosen to define the Reynolds number based on the energy injection scale `. An
alternative choice would be to use the domain length scale L which would lead to the
large scale Reynolds number that we will denote as ReL = UL/ν = (L/`)Re. For the
AKA effect, the large scale Reynolds number ReL is large, while the Reynolds number
Re, based on the forcing scale `, is small. This allows to explicitly solve for the small
scale behavior and obtain analytic results. This is not possible for the eddy-viscosity
calculation where there are two regimes to consider. Either the Reynolds numbers is
small and the eddy-viscosity only provides a small correction to the regular viscosity,
or the Reynolds numbers is large and the inversion of an advection operator is needed.
This last case can be obtained analytically only for very simple one dimensional shear
flows [45, 46].
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To illustrate the basic mechanisms involved in such multi-scale interactions, we
depict in fig. 5.1 a toy model demonstrating the main ideas behind these instabilities.
This toy model considers a driving flow, U at wavenumber K ∼ 1/`, that couples
to a small amplitude large scale flows, vq at wavenumber q ∼ 1/L with |q| � |K|.
The advection of vq by U and visa versa will then generate a secondary flow vQ
at wavenumbers Q = K ± q. This small scale perturbation in turn couples to the
driving flow and feeds back the large scale flow. If this feedback is constructive enough
to overcome viscous dissipation, it will amplify the large scale flow and this process
will lead to an exponential increase of vq and vQ. This toy model has most of the
ingredients required for the instabilities to occur.

K K+qK-qq

Order

O(1)

O(ε)

v

v

U

Q

q

O(ε )
2

Figure 5.1 – Sketch of the three-mode model. U represents the small scale driving flow of
wavenumber K (full arrow), vq is the large scale perturbation of wavevector q (dashed arrow)
and vQ is the small scale perturbation of wavevector Q = K ± q (doted arrow).

For the full flow, in order to study independently the large scale instabilities, they
must be isolated from other small scale competing instabilities that might coexist. This
can be achieved using Floquet theory [31] (also referred as Bloch theory in quantum
mechanics [32]). Indeed, Floquet theory decomposes the unstable flow to modes of dif-
ferent spacial periodicity that evolve independently. This enables us to study precisely
large and small spatial periodicity separately. In addition the formalism of Floquet
theory allows the study of arbitrary large scale separation between the smallest scale
of the driving flow and the largest scale of the unstable mode without including the
intermediate scales. This minimizes the computational cost and permits us to have
a systematic study for a wide range of both scale separation and Reynolds numbers
without using any approximations.

In what follows, we use direct numerical simulations (DNS) in the Floquet frame-
work to study large scale instabilities for different flows. Our aim is to go beyond the
range of validity of the asymptotic results (obtained rigorously only at the Re � 1
limit) and measure the values of the alpha-coefficient and eddy-viscosity for arbitrary
Re when this description is applicable. In addition we extend our investigation to
turbulent flows that respect a given periodicity, that in general cannot be treated an-
alytically. This allows us to quantify the effect of small scale turbulence in the large
scales. Finally, we compare the results of Floquet DNS to those of full Navier-Stokes
DNS to test non-linear effects on the instabilities.

The remaining sections are structured as follows. Section 5.2 describes in detail
the set-up of the problem we are studying and the methods used. Section 5.3 gives the
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results for the linear instability of four different flows, as well as the results from the
non-linear evolution of the instability. Our conclusions are drawn in the section 5.4.

5.2 Methods (description of new procedures)

5.2.1 Navier-Stokes
Our starting point is the Navier-Stokes equation in the [0, 2πL]3-periodic cube:

∂tV = V ×∇×V −∇P + ν∆V + F , (5.1)

with∇·V = 0 and where V , F , P and ν denote the velocity field, the forcing field, the
generalized pressure field and the viscosity coefficient, respectively. The geometry im-
poses that all fields be 2πL-periodic. We further assume that the forcing has a shorter
spatial period 2π` with L/` an arbitrary large integer. We denote the wavenumber
of this periodic forcing as K, with K = |K| = 1/` for the flows examined. If the
initial conditions of V satisfy the same periodicity as F , then this periodicity will be
preserved by the solutions of the Navier-Stokes and corresponds to the preservation of
the discrete symmetries x→ x+2π`, y → y+2π` and z → z+2π`. However, these so-
lutions can be unstable to arbitrary small perturbations that break this symmetry and
grow exponentially. To investigate the stability of the periodic solutions, we decompose
the velocity and pressure field in a driving flow and a perturbation component:

V = U + v , P = PU + Pv (5.2)

where U denotes the driving flow that has the same periodicity as the forcing 2π` and
v is the velocity perturbation. The linear stability analysis amounts to determining
the evolution of small amplitude perturbations so that only the first-order terms in v
are kept. The evolution equation of the driving flow is thus:

∂tU = U×∇×U −∇PU + ν∆U + F . (5.3)

The remaining terms give the linearized Navier-Stokes equation for the perturbation:

∂tv = U×∇×v+v×∇×U −∇pv + ν∆v , (5.4)

The two pressure terms enforce the incompressibility conditions∇·U = 0 and∇·v = 0.
The U flow is not necessarily a laminar flow (but respects 2π`-periodicity). In general,
the linear perturbation v does not only consist of modes that break the periodicity
of the forcing. Linear unstable modes respecting the periodicity may also exist: they
correspond to small scale instabilities. We show how these modes can be distinguished
from periodicity-breaking large scale modes in the following section devoted to Floquet
analysis.

5.2.2 Floquet Analysis
Studying large scale flow perturbations with a code that solves the full Navier-Stokes
equation requires considerable computational power as resolution of all scales from do-
main size L to the smallest viscous scales `ν � ` must be achieved. This is particularly
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difficult in our case where scale separation ` � L is required. In order to overcome
this limitation, we adopt the Floquet framework [31]. In Floquet theory, the velocity
perturbation can be decomposed into modes that are expressed as the product of a
complex harmonic wave, eiq·r, multiplied by a periodic vector field ṽ(r, t) with the
same periodicity 2π` as that of the driving flow:

v(r, t) = ṽ(r, t)eıq·r + c.c. , (5.5)

and similar for the pressure,

pv(r, t) = p̃(r, t)eıq·r + c.c. , (5.6)

where c.c. denotes the complex conjugate of the previous term.
Perturbations whose values of q are such that at least one component is not an

integer multiple of 1/`, break the periodicity of the driving flow. The perturbation field
v then involves all Fourier wavenumbers of the type Q = q+k, where k is a wavevector
corresponding to the 2π`-periodic space dependent of ṽ. We restrict the study to values
of q = |q| satisfying 0 < q ≤ K. For finite domain sizes q is a discrete vector with
q ≥ 1/L, while for infinite domain sizes q can take any arbitrarily small value. In
the limit q/K � 1 the perturbation involves scales much larger than `. Therefore,
scale separation is achieved without solving intermediate scales as would be required
if the full Navier-Stokes equations were used. Furthermore, this framework has the
advantage of isolating perturbations that break the forcing periodicity (q` /∈ Z3), from
other small scale unstable modes with the same periodicity (q` ∈ Z3) that might also
exist in the system.

A drawback of the Floquet decomposition is that some operators have somewhat
more complicated expressions than in the simple periodic case. For instance, taking a
derivative requires to take into account the variations of both the harmonic and the
amplitude. Separating the amplitude in its real and imaginary parts ṽ(r, t) = ṽr+ ıṽi,
we obtain

∂xv =
[
∂xṽ

r − qxṽi + ı(qxṽr + ∂xṽ
i)
]
eıq·r + c.c. , (5.7)

where ∂x denotes the x-derivative and qx denotes the x-component of the q wavevector.
Using eq. (5.4) and (5.7), the linearized Navier-Stokes equation can be written as

a set of 3 + 1 complex scalar equations:

∂tṽ =(∇×U)× ṽ + (ıq×ṽ +∇×ṽ)×U
− (ıq +∇)p̃+ ν(−q2 + ∆)ṽ , (5.8)

with ıq · ṽ +∇ · ṽ = 0 . (5.9)

We use standard pseudo-spectral methods to solve this system of equations in the
2π`-periodic cube. The complex velocity field ṽ is decomposed in Fourier space where
derivatives are reduced to a multiplication by ık, where k is the Fourier wavevector.
Multiplicative term are computed in real space. These methods have been implemented
in the: Floquet Linear Analysis for Spectral Hydrodynamics (FLASHy) code and
details are given in appx. 5.5.
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In order to find the growth rate of the most unstable mode, eq. (5.8),(5.9) are
integrated, for a time long enough for a clear exponential behavior to be observed.
The growth rate of this most unstable mode can then be measured by linear fitting.
Note that this process only leads to the measurement of the fastest growing mode.

5.2.3 Three-mode model
Although the Floquet framework is very convenient to solve equations numerically, it
does not easily yield analytic results. Rigorous results must be based on asymptotic
expansions and can only be derived in the limit of large Reynolds number [47], small
Reynolds number [45], or for simple shear layers [46]. To obtain a basic understanding
of the processes involved, we will use the idea represented in the toy model of fig. 5.1.
This model also has the major advantage of using a formalism that can easily be related
to the physical aspect of the problem.

In our derivation, we only consider the evolution of the two most intense modes of
the perturbation and of the driving flow. The velocity perturbation is thus decomposed
as a series of velocity fields of different modes:

v(r, t) = vq(r, t) + vQ(r, t) + v>(r, t) , (5.10)
vq(r, t) = ṽ(q, t)eıqr + c.c. , (5.11)
vQ(r, t) =

∑
||k||=1

ṽ(q,k, t)eı(q·r+k·r) + c.c. , (5.12)

v>(r, t) =
∑
||k||>1

ṽ(q,k, t)eı(q·r+k·r) + c.c. , (5.13)

where q denotes the wavenumber of the large scale modes and Q denotes the modes
directly coupled to q via the driving flow, sinceK = 1. At wavenumber q, the linearized
Navier-Stokes equation can be rewritten as:

∂tvq = U×∇×vQ + vQ×∇×U −∇pq + ν∆vq . (5.14)

Assuming that the coupling with the truncated velocity, v>, is negligible with respect
to the coupling with the large scale velocity, vq, the linearized equation at Q reads:

∂tvQ = U×∇×vq + vq×∇×U −∇pQ + ν∆vQ , (5.15)

where pq and pQ denote the pressure enforcing the incompressible conditions: ∇·vq = 0
and ∇ · vQ = 0, respectively.

The derivation is restricted to stationary positive helical driving flows, satisfying:
UH(r) = K−1∇×UH(r) . The problem can then be solved by making use of the
vorticity fields:

ωq =∇×vq and ωQ =∇×vQ , (5.16)

and the adiabatic approximation: ∂tvQ � ν∆vQ. The system of equations of the
three-mode model is thus:

ν∆ωQ = −∇×[UH × (ωq −Kvq)] , (5.17)
∂tωq =∇×[UH×(ωQ −KvQ)] + ν∆ωq . (5.18)
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The greatest eigenvalue of the system, σ, gives the growth rate of the perturbation.
The growth rate can be derived analytically for an ABC large scale flow:

UABCx = C sin(Kz) +B cos(Ky) , (5.19)
UABCy = A sin(Kx) + C cos(Kz) , (5.20)
UABCz = B sin(Ky) +A cos(Ky) . (5.21)

For A=1:B=1:C=λ flows (λ−ABC), one finds:

σ = βq2 − νq2 with β = bRe2ν , (5.22)

b = 1− λ2

4 + 2λ2 and Re = U
Kν , (5.23)

where Re denotes the small scale Reynolds number defined using the driving flow. The
fastest growing mode is found to be fully helical.

This simple model indicates that some driving flows, not satisfying the hypotheses
of the AKA-effect, described in [13], can generate a negative eddy-viscosity instability
satisfying σ ∝ q2. The largest growth rate is obtained for λ = 0, while no q2 instability
is predicted for λ = 1. For λ 6= 1 the flow becomes unstable when the β term can
overcome the viscosity β > ν. This happens when Re is above a critical value: Rec =
b−1/2.

5.3 Results (new results)

5.3.1 AKA

We begin by examining a flow that satisfies the conditions for an AKA-instability.
Such a flow was proposed in [13] (from now on Fr87) and is given by:

UFr87
x = U0 cos

(
Ky + νK2t

)
,

UFr87
y = U0 sin

(
Kx− νK2t

)
, (5.24)

UFr87
z = UFr87

x + UFr87
y .

The growth rate of large scale unstable modes can be calculated in the small Reynolds
number limit and is given by:

σ = αq − νq2 , (5.25)

with α = aReU0 and a = 1
2 . The fastest growing mode has negative helicity and q

along the z-direction.
Setting q along the z-direction, we integrated eq. (5.8)-(5.9) numerically and mea-

sured the growth rate σ. Fig. 5.2 displays the growth rate of the most unstable mode
as a function of the wavenumber amplitude q = |q| for three different values of Re
measured by the Floquet code and compared to the theoretical prediction. The agree-
ment is good for small values of q and for small values of Re where the asymptotic
limit is valid. For q small enough, the flow is unstable and satisfies σ ∝ q. The inset
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Figure 5.2 – Growth rate of the perturbation plotted as a function of the Floquet wavenumber
in log-log scale for a Fr87 flow, eq. (5.24). The different markers represent data for different
Reynolds number. The solid lines placed above the different sets of markers represent the
theoretical prediction.

of fig. 5.3 shows in log-log scale the growth rate of the perturbation as a function of q
for different Reynolds numbers. The solid line in the graph indicates the σ ∝ q scaling
which is satisfied for all Re. In fig. 5.3, we compare the theoretical and numerically
calculated prefactor a of the alpha coefficient. This coefficient increases linearly with
Re and is seen to be in good agreement with the theoretical prediction up to Re ' 10.
For larger values of Re, a deviates from the linear prediction and saturates.

A positive growth rate for a small q mode does not guarantee the dominance
of large scales. We should also consider what fraction of the perturbation energy
is concentrated in the large scales. Fig. 5.4 shows the energy spectra for different
Reynolds numbers. The energy spectrum for the complex Floquet field ṽ is defined
as: E(k) =

∑
k− 1

2≤|k|≤k+ 1
2
|ṽ|2 with E(k = 0) the energy at large scales 1/q. While at

small Reynolds numbers, the smallest wavenumber k = 0 dominates, as the Reynolds
number increases, more energy is concentrated in the wavenumber of the driving flow
K = 1.

To quantify this behavior, we plot in the inset of fig. 5.5 the fraction of the energy
in the zero mode E0 = E(0) divided by the total energy of the perturbation Etot =∑∞
k=0E(k), as a function of the wavenumber q for different values of Re. In the small

q limit, this ratio reaches an asymptote that depends on the Reynolds number. This
asymptotic value is shown as a function of the Re in fig. 5.5. The small scale energy
(Etot − E0) is then shown to follow a power law 1 − E0

Etot
∝ Re2 for small values of

Re. Therefore, for the AKA-instability, at small Re, the energy is concentrated in the
large scales, whereas, at large Re, the most unstable mode has a small projection in
the large scales.
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Figure 5.3 – The observable related to the alpha-coefficient (〈σ/q〉/U0 using eq. (5.25)) plotted
as a function of the Reynolds number in log-log scale for an instability generated by a Fr87
flow. The solid line represents the prediction and the crosses the numeric results collected with
the FLASHy code.
In the inset, evolution of the growth rate of the perturbation represented as a function of the
Floquet wavenumber. The results are plotted in log-log scale at various Reynolds numbers for
a Fr87 flow, eq. (5.24). The solid line represents the theoretical scaling law.
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Figure 5.4 – The energy spectrum of the Floquet perturbation of wavenumber q = (0; 0; 0.025)
represented as a function of the Fourier wavenumber in semi-log scale. The Floquet perturba-
tion was generated by a Fr87 flow, eq. (5.24). Markers of different shapes represent data with
different Reynolds number.

5.3.2 Roberts flow: λ = 0

We now investigate non-AKA-unstable flows. We consider the family of the ABC
flow, for which we expect large scale instabilities of the form given in eq. (5.22)-(5.23).
The three-mode model predicts that, from the family of ABC flows, the most unstable
is the A= 1 :B = 1 : C = 0 flow that is commonly referred to as the Roberts flow in
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Figure 5.5 – Large scale energy ratio represented as a function the Reynolds number in log-log
scale for a Fr87 flow, eq. (5.24). The solid line shows the theoretical scaling.
In the inset, evolution of the large scale energy ratio of the perturbation represented as a
function of the Floquet wavenumber. The results are plotted in log-log scale for different
Reynolds number for a Fr87 flow.

the literature [29]. The model predicts a positive growth rate when Re > 2. Fig. 5.6
shows the growth rate σ as a function of q for various Reynolds numbers calculated
using the Floquet code. For small values of the Reynolds number, all modes q have
negative growth rate. Above a critical value Rec ' 2, unstable modes appear at small
values of q in agreement with the model predictions.
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Figure 5.6 – Growth rate plotted as a function of the Floquet wavenumber in log-log scale for
a Robert flow. The different markers represent data for different Reynolds numbers.

To investigate the behavior of the instability for small values of q we plot in the
inset of fig. 5.7 the absolute value of the growth rate as a function of q, in a logarithmic
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scale, for Reynolds numbers ranging from 0.312 to 160. Dashed lines indicate positive
growth rates while dotted lines indicate negative growth rates. The solid black line
indicates the σ ∝ q2 scaling followed by all curves. Therefore, the scaling predicted by
the model (eq. (5.22),(5.23)) is verified. We will refer to the instabilities that follow
this scaling σ ∝ q2 as negative eddy-viscosity instabilities. To further test the model
predictions we measure the proportionality coefficient for the q2-power law obtained
from the Floquet code. Fig. 5.7 compares the b coefficient predicted by the three-
mode model with the results of the Floquet code. The figure shows (〈σ/q2〉 + ν)/ν
measured from the data for different values of Re, while the Re2/4 prediction of the
model is shown by a solid black line. The two calculations agree on nearly two orders
of magnitude. Positive growth rate for the large scale modes implies 〈σ/q2〉/ν+ 1 > 1.
The critical value of the Reynolds number, for which the instability begins, can be
obtained graphically at the intersection of the numerically obtained curve with the
〈σ/q2〉/ν+ 1 = 1 line plotted with a dash-dot green line. The predictions of the model
Rec = 2 and the numerically values obtained are in excellent agreement.
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Figure 5.7 – The observable related to the β-coefficient (〈σ/q2〉/ν + 1 using eq. (5.22)) of the
Floquet perturbation generated by a Roberts flow is plotted as a function of the Reynolds
number in semi-log scale.
In the inset, evolution of the growth rate of the perturbation of a Roberts flow represented
as a function of the Floquet wavenumber. The data in presented in log-log scale to highlight
the power-law. The different markers on the graph represent different Reynolds numbers.
The full markers with dashed lines represent the value of positive growth rates whereas the
empty markers with dots represent the absolute value of negative growth rates. The solid line
represents the theoretical prediction.

Similarly to the AKA flow, the fraction of energy concentrated in the large scales
(k = 1) becomes independent of q in the small q limit. This is demonstrated in the
inset of fig. 5.8 where the ratio of E0/Etot is plotted as a function of q. In fig. 5.8,
we show the asymptotic value of this ratio as a function of the Reynolds number. As
in the case of the AKA instability, the projection to the large scales depends on the
Reynolds number, and at large Re, it follows the power law E0

Etot
∝ Re−2.
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Figure 5.8 – The large scale energy ratio is represented as a function of the Reynolds number
for the most unstable Floquet mode of the Roberts flow. In inset, evolution of the large scale
energy ratio of the perturbation as a function of the Floquet wavenumber plotted in log-log
scale at different Re for a Roberts flow.

5.3.3 Equilateral ABC flow: λ = 1

For the A=1:B=1:C=1 flow, the three-mode model predicts that the b coefficient is
zero. Therefore, the model does not predict a negative eddy-viscosity instability with:
σ ∝ q2. Fig. 5.9 shows the growth rate as a function of the wavenumber q calculated
using the Floquet code for different values of the Reynolds number. Clearly the small
q modes still become unstable but the dependence on Re appears different from the
previously examined cases. We thus examine separately the small Re and large Re
behaviors.
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Figure 5.9 – Growth rate evolution of the perturbation represented as a function of the Floquet
wavenumber for the equilateral ABC flow. The different markers represent the evolution of
the growth rate of data for different Reynolds number.



5.3. Results 47

5.3.3.1 Small values of Re

First, we examine the instability for small values of Re ≤ 10 for which the growth rate
σ tends to zero as q → 0. The inset of fig. 5.10 shows the growth rate of the instability
for the equilateral ABC flow as a function of the wavenumber q in logarithmic scale
for different values of Re ranging from 0.312 to 10. In this range, the growth rate
behaves much like the Roberts flow, and is in contradiction with the three-mode model.
The numerically calculated growth rates show a clear negative eddy-viscosity scaling
σ ∝ q2. The growth rate becomes positive above a critical value of Re. In fig. 5.10, the
measured value of 〈σ/q2〉/ν + 1 is represented as a function of the Reynolds number.
In the inset, the plot lin-log of 〈σ/q

2〉+ν
Re2ν provides a measurement of the b coefficient.

This expression becomes larger than one (signifying the instability boundary that is
marked by a dash-dot line) for Re & 3. This value Rec ' 3 is slightly higher than
the critical Reynolds number of the Roberts flow Rec = 2. At very small Reynolds
number, the value of b = 〈σ/q2〉+ν

Re2ν approaches zero very quickly, which indicates that
the model prediction is recovered at Re→ 0.
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Figure 5.10 – The observable related to the β-coefficient (〈σ/q2〉/ν + 1 using eq. (5.22)) of the
Floquet perturbation generated by a equilateral ABC flow, represented as a function of the
Reynolds number in log-log scale.
In inset, evolution of growth rate of the perturbation of a equilateral ABC flow represented as
a function of the Floquet wavenumber in log-log scale to highlight the power-law. The different
markers on the graph represent different Reynolds number. The full markers with dashed lines
represent the value of positive growth rates whereas the empty markers with dots represent
the absolute value of negative growth rates.

To investigate further the discrepancy of the Floquet results with the three-mode
model. Fig. 5.11 shows the b coefficient (measured as b = 〈σ/q2〉+ν

Re2ν ) for different
λ parameters from 0 (Roberts flow) to 1 (equilateral ABC flow). All the DNS are
carried out at Re = 10. The results indicate that the three-mode model and the
results from the Floquet code agree for λ . 0.5 but deviate as λ becomes larger. To
identify where this discrepancy between the model and the DNS occurs, we modified
the FLASHy code in order to test the assumptions of the model. This is achieved
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Figure 5.11 – The measured values of the b coefficient represented as a function of the λ-
parameter of the flow (ABC flow with A = 1 : B = 1 : C = λ ) for Re = 10. The dashed curves
with crosses represent the numeric data collected with the FLASHy code. The full line curve
with circle represents the prediction given by the three-mode model.

by enforcing the adiabatic approximation in the Floquet code and by controlling the
number of modes that play a dynamical role. The latter is performed by using a Fourier
truncation of the Floquet perturbation at a value kcut so that only modes with k < kcut
are present. Fig.5.12 shows the dependence of the b coefficient on the truncation mode,
kcut. For kcut ≥ 3, the growth rate reaches the asymptotic value that is also observed
in the inset of fig. 5.10 for Re = 10 obtained from the “untampered" FLASHy code.
This confirms the assumption that modes in the smallest scales have little impact on
the evolution of the large scale perturbation. However, the b coefficient strongly varies
for kcut ≤ 3. The model predictions are recovered only when kcut = 1, which amounts
to keeping only the modes used in the model. Therefore, the hypothesis of the model to
restrict the interaction of the perturbation to its first two Fourier modes does not seem
to hold for the equilateral ABC flow at moderate Reynolds number, 1 ≤ Re ≤ 10. The
adiabatic hypothesis does not appear to affect the results. Therefore, the discrepancy
between the three-mode model and the numeric results is due to the coupling of the
truncated velocity v> that was neglected in the model.

5.3.3.2 Large values of Re

We now turn our focus to large values of the Reynolds number that display a finite
growth rate σ at q → 0 (see fig. 5.9). Fig. 5.13 shows the growth rate σ in a lin-log
scale for four different values of the Reynolds number. Unlike the small values of Re
examined before here it is clearly demonstrated that above a critical value of Re the
growth rate σ reaches an asymptotic value independent of q. At first, this finite growth
rate seems to violate the momentum conservation. Indeed, momentum conservation
enforces modes with q = 0, corresponding to uniform flows, not to grow.

The resolution of this conundrum can be obtained by looking at the projection of
the unstable modes to the large scales. In fig. 5.14, we plot the ratio E0/Etot as a
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Figure 5.12 – The values of the b coefficient computed by the FLASHy code are represented
as a function of the truncation imposed in the code. The perturbation was generated by
equilateral ABC flow at Re = 10.
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Figure 5.13 – Evolution of growth rate of the perturbation generated by an equilateral ABC
flow at large values of Re represented as a function of the Floquet wavenumber. The different
markers represent data for different Reynolds numbers.

function of q for the same values of Re as used in fig. 5.13. Unlike the small Re cases
examined previously, for large Re, this energy ratio decays to zero at small values of
q and appears to follow the power law E0/Etot ∝ q4. Therefore, at q = 0, the energy
at large scales E0 is zero and the momentum conservation is not violated in the q = 0
limit.

5.3.3.3 Small and large scale instabilities

The results of the previous sections indicate that there are two distinct behaviors: the
first one for which limq→0 σ = 0 and limq→0E0/Etot > 0 when Re is small and the
second one for which limq→0 σ > 0 and limq→0E0/Etot = 0 when Re is large. We
argue that there is a second critical Reynolds number RecS such that flows for which
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Figure 5.14 – Evolution of the large scale energy ratio of the perturbation generated by an
equilateral ABC flow at large values ofRe represented as a function of the Floquet wavenumber.
The different markers represent data with different Reynolds number.

Rec < Re < RecS show the first behavior while flows with RecS < Re show the second
behavior. This second critical value is related to the onset of small scale instabilities.

To demonstrate this claim, we are going to use a simple model. We consider the
evolution of two modes, one at large scales vq and one at small scales vQ . These
modes are coupled together by an external field U . In the absence of this coupling,
the large scale mode vq decays while the evolution of the small scale mode vQ depends
on the value of the Reynolds number. The simplest model satisfying these constraints,
dimensionally correct and leading to an AKA-type σ ∝ q instability or a negative
eddy-viscosity instability σ ∝ q2, is:

d

dt
vq = −νq2vq +UqnQ1−nvQ , (5.26)

d

dt
vQ = UQvq +σQvQ . (5.27)

The index n takes the values n = 1 if an AKA instability is considered and n = 2 if an
instability of negative eddy-viscosity is considered. Note that for q = 0 the growth of
vq is zero, as required by momentum conservation. σQ = sUQ − νQ2 gives the small
scale instability growth rate that is positive if Re = U/(νQ) > 1/s = RecS .

The simplicity of the model allows for an analytic calculation of the growth rate and
the eigenmodes. Despite its simplicity, it can reproduce most of the results obtained
here in the q � Q limit. The general expression for the growth rate is given by
σ = 1

2

[
(σQ − νq2 ±

√
(σQ + νq2)2 + 4Q2−nqnU2

]
and eigenmode satisfies vq/vQ =

UqnQ1−n/(σ + νq2).
First, we focus on large values of ν such that σQ = −νQ2 < 0. For n = 1, the

growth rate σ and the energy ratio E0/Etot = v2
q/(v2

q + v2
Q

) are given to the first order
in q

σ ' U2q

νQ
and E0

Etot
' 1

1 +Re2 . (5.28)
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In the same limit for n = 2 we obtain:

σ ' ν(Re2 − 1)q2 and E0
Etot

' 1
1 +Re2 . (5.29)

The critical Reynolds number for the large scale instability is given by Rec = 1. Both
of these results in eqs. (5.28) and (5.29) are in agreement with the results demonstrated
in figs. 5.3, 5.5, 5.7, 5.8.

The behavior changes when a small scale instability exists σQ > 0. This occurs
when sUQ > νQ2 at the critical Reynolds number: RecS = 1/s. For large Re � RecS
we thus expect σQ ' sUQ > 0. In this case for n = 1 to first order in q, we have:

σ ' σQ and E0
Etot

' q2

s2Q2 (5.30)

while for n = 2, we obtain:

σ ' σQ and E0
Etot

' q4

s2Q4 . (5.31)

The model is thus in agreement also with the scalings observed in figs. 5.13 and 5.14.
The transition from one behavior to the other occurs at the onset of small scale insta-
bility RecS . It is thus worth pointing out that the results of the FLASHy codes showed
that the transition from limq→0 σ = 0 modes to limq→0 σ > 0 occurs at the value of
Re for which small scale instability of the ABC flow starts RecS ' 13 see [48] and the
article of Zheligovsky and Pouquet in [49]. This further verifies that the transition
observed is due to the development of small scale instabilities.

We also note here that both the Roberts flow and the Fr87 flow given in eq. (5.24)
are invariant in translations along the z-direction. This implies that each qz mode
evolves independently without coupling to other kz modes. The onset of small scale
instabilities RecS for q = 0 in this case then corresponds to the onset of two-dimensional
instabilities. Two-dimensional flows however forced at the largest scale of the system
are known to be stable at all Reynolds numbers [50]. This result originates from the
fact that two-dimensional flows conserve both energy and enstrophy and small scales
cannot be excited without exciting large scales at the same time. This is the reason
why no RecS was observed in these flows.

5.3.4 Turbulent equilateral ABC flows
As discussed in the introduction, the driving flow does not need to be laminar to
use Floquet theory. It is only required to obey the 2π`-periodicity. It is worth thus
considering large scale instabilities in a turbulent ABC flow that satisfies the forcing
periodicity. This amounts to the turbulent flow forced by an ABC forcing in a periodic
cube of the size of the forcing period 2π`. Due to the stationarity of the laminar ABC
flow, it can be excluded as possible candidate for an AKA-instability. However, this
is not true of a turbulent ABC flow since it evolves in time. We cannot thus a priori
infer that a turbulent ABC flow results in an AKA-instability or not.

To test this possibility, we consider the linear evolution of the large scale pertur-
bations v driven by an equilateral ABC flow above Re = 50, that is beyond the onset
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of the small scale instability RecS ' 13. The turbulent equilateral ABC flow U is ob-
tained solving the Navier-Stokes eq. (5.3) in the domain (2π`)3 driven by the forcing
function FABC = UABC . The code is executed until the flow reaches saturation. The
evolution of the large scale perturbations is then examined solving eq. (5.8)-(5.9) with
the FLASHy code coupled to the Navier-Stokes eq. (5.3).

The kinetic energy EU of the turbulent equilateral ABC flow U is shown in fig. 5.15.
The energy EU strongly fluctuates around a mean value. The evolution of the energy
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Figure 5.15 – Temporal evolution of the energy of the turbulent equilateral ABC driving flow
at Re = 122.

Etot of the perturbations v for different values of q is shown in the inset of 5.16. Etot
shows an exponential increase, from which the growth rate can be measured. The
growth rate σ as a function of the wavenumber q is shown in fig. 5.16 while the ratio
E0/Etot is shown in fig. 5.17. The growth rate of the large scale instabilities appears to
reach a finite value in the limit q → 0 just like laminar ABC flows above the small scale
critical Reynolds RecS . However, the ratio E0/Etot does not scale like q4 as laminar
equilateral ABC flows but like q2. This indicates that the turbulent equilateral ABC
flow has a stronger effect on the large scales than its laminar version. This can have
possible implications for the saturated stage of the instability that we examine next.

5.3.5 Non-linear calculations and bifurcation diagram

We further pursue our investigation of large scale instabilities by examining the non-
linear behavior of the flow close to the instability onset. We restrict ourselves to
the case of the equilateral ABC flow whose non-linear behavior has been extensively
studied in the absence however of scale separation [15]. The linear stability of the
ABC flow in the minimum domain size has been studied in [48] and more recently in
[51]. These studies have shown that the ABC flow destabilizes at RecS ' 13.

To investigate the non-linear behavior of the flow in the presence of scale separa-
tion, we perform a series of DNS of the forced Navier-Stokes equation (eq. (5.1)) in
triple periodic cubic boxes of size 2πL using the GHOST code [52, 53]. The forcing
maintaining the flow is FABC =

√
2√
3ν|K|

2UABC so that the laminar solution of the
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Figure 5.16 – The growth rate of the perturbation generated by the turbulent equilateral ABC
driving flow, is represented as a function of the Floquet wavenumber. In inset, the exponential
growth of the energy of the large scale perturbations represented as a function of time for
various q.
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Figure 5.17 – The large scale energy ratio is represented as a function of the Floquet wavenum-
ber for a perturbation forced by a turbulent equilateral ABC flow. The dashed line with the
crosses represents the numeric results and the solid line the scaling law.

flow is the ABC flow [15] normalized to have unit energy. Four different box-sizes are
considered: KL = 1, 5, 10 and 20. For each box size and for each value of Re, the flow
is initialized with random initial conditions and evolves until a steady state is reached.

Fig. 5.18 shows the saturation level of the total energy EV at steady state as a
function of Re for the four different values ofKL. At low Reynolds number, the laminar
solution V = UABC is the only attractor and so the energy is EV = 1. At the onset
of the instability the total energy decreases. A striking difference appears between
the KL = 1 case and the other three cases. For the KL = 1 case the first instability
appears at RecS ' 13 in agreement with the previous work [48, 51]. By definition,
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only small scale instabilities are present in the KL = 1 case (i.e. instabilities that do
not break the forcing periodicity). For the other three cases, which allow the presence
of modes of larger scale than the forcing scale, the flow becomes unstable at a much
smaller value: Rec ' 3. This value of Rec is in agreement with the results obtained in
section 5.3.3 for large scale instability by a negative eddy-viscosity mechanism. The
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Figure 5.18 – Bifurcation: the total energy of the flow is represented as a function of the
Reynolds number for different scale separations K ∈ {1; 5; 10; 20}. In inset, zoom of the graph
of the total energy near the large scale bifurcation for Re ∈ [2; 5].

energy curves for the forcing modes KL ≥ 5 all collapse on the same curve. This
indicates that not only the growth rate but also the saturation mechanism for these
three simulations are similar.

Further insight on the saturation mechanism can be obtained by looking at the
energy spectra. Fig. 5.19 shows the energy spectrum of the velocity field at the steady
state of the simulations. Two types of spectra are plotted. In fig. 5.19, spectra plotted
using lines and denoted as k-bin display energy spectrum collected in bins where modes
k satisfy n1 − 1/2 < |k|L ≤ n1 + 1/2, with n1 a positive integer. E(k) then represents
the energy in the bin n1 = k. In fig. 5.19, spectra plotted using red dots and denoted by
k2-bin display the energy spectrum collected in bins where modes k satisfy |k|2L2 = n2,
with n2 a positive integer. Since kL is a vector with integer components mx, my and
mz, its norm k2L2 = m2

x+m2
y +m2

z is also a positive integer. E(k) then represents the
energy in the bin n2 = k2L2. This type of spectrum provides more precise information
about the energy distribution among modes. In our case, they help separate K modes
from K ± 1/L modes and highlight the three-mode interaction. The k = K ± 1/L
modes as well as the largest scale mode kL = 1 that were used in the three-mode
model are shown by blue circles in the spectra. The drawback of k2-bin spectra is their
memory consumption. They have a number of bins equal to the square of the number
of bins of standard k-bin spectra. However, since spectra are not outputted at every
time-step, this inconvenience is limited.

The plots of the spectra show that the most energetic modes are the modes close
to the forcing scale and the largest scale mode kL = 1. This is true even for the largest
scale separation examined KL = 20. We note that the largest scale mode is not the
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Figure 5.19 – The energy spectra of the flow in the large scale instability bifurcation plotted
for different scale separations K ∈ {1; 5; 10; 20}.

most unstable one as seen in all the cases examined (see figs. 5.2,5.6,5.9). Despite this
fact, it appears that the kL = 1 is the dominant mode that controls saturation. The
exact saturation mechanism however is beyond the scope of this work.

5.4 Conclusion
In this work, using the Floquet framework as well as simplified models, we examined
in detail large scale hydrodynamic instabilities for a variety of flows. The Floquet
framework allowed us to distinguish small from large scale instabilities in a rigorous
manner, and study the evolution of the latter independently for a wide parameter
range. The results depend on the type of flow under study and the value of the
Reynolds number.

More precisely it was shown that for the Fr87 flow (see eq. (5.24)) and for small
values of Re, the instability growth rate scales like: σ ∝ q Re , with most of the energy
in the large scales 1−E0/Etot ∝ Re2. It is present for any arbitrarily small value of the
Reynolds number provided that scale separation is large enough. The linear scaling of
the growth rate with q persisted for values of Re beyond the asymptotic regime with
the prefactor becoming independent of Re at sufficiently large Re.

Flows without an AKA-instability, like the ABC and Roberts flow, show a nega-
tive eddy-viscosity scaling. The instability appears only above a critical value of the
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Reynolds number Rec that was found to be Rec ' 2 for the Roberts flow and Rec ' 3
for the equilateral ABC flow. The growth rate follows the scaling σ ∝ ν(bRe2 − 1)q2.
The value of b can be calculated based on a three mode model for the Roberts flow
and was found to be b = 1/4. The three-mode model however failed to predict the
b coefficient of the equilateral ABC flow because more modes were contributing to the
instability.

For the equilateral ABC flow the negative eddy-viscosity scaling σ ∝ q2 was shown
to stop at a second critical Reynolds number RecS , where the flow becomes unstable to
small scale perturbations. For values of Re larger than RecS the growth rate remains
finite and independent of q (σ ∝ q0) at the q → 0 limit. On the contrary, the fraction
of energy at the largest scale becomes dependent on q decreasing as E0/Etot ∝ q4 as
q → 0. This behavior is well described by a two-mode model that is explained in
sec. 5.3.3.3.

The scaling of the growth rate σ ∝ q0 was also observed for the turbulent ABC flow
that was also examined in this work. However, the projection on the large scales of the
unstable mode was stronger than the laminar flow following the scaling E0/Etot ∝ q2,
implying that the turbulent flow is more effective at exciting large scales. We note that
a turbulent/chaotic flow is by definition small scale unstable with a growth rate of the
unstable modes proportional to the Lyaponov exponent of phase-space trajectories.
For this reason, any flow with Re that is large enough for the flow to be turbulent can
not display a σ ∝ q or σ ∝ q2 scaling. We further note that the observed scaling cannot
be expressed in terms of a turbulent alpha-effect or a turbulent viscosity. This can have
important implications on sub-grid models commonly used in numerical codes. These
models mimic the effect of unresolved turbulent scales on large eddies and typically
have only a damping effect. Our work indicates that small scales are also responsible
for the excitation of large scales, an effect that needs to be taken into account.

Finally our study was carried out further to the non-linear regime where the sat-
uration of the large scale instabilities was examined for four different box sizes. The
presence of scale separation alters the bifurcation diagram, with the large scale modes
playing a dominant role in the saturation mechanism. The saturation amplitude of
the energy of the large scale instability appears to be independent of the scale sepa-
ration and of larger amplitude than in the absence of scale separation. This indicates
that studying small scale turbulence isolated from any large scale effects could also
be misleading. The persistence of this behavior at larger values of Re remains to be
examined.

5.5 Appendix: FLASHy (description of a new procedure)

A pseudo-spectral method is adopted to compute numerically eq. (5.8) and (5.9). The
linear terms are computed in Fourier space. All the terms involving the driving flow
are computed in physical space made incompressible by solving in periodic space the
Poisson problem, using:

Ψ(2) = −∆−1(∇×)2Ψ(1) . (5.32)

The main steps of the algorithm are written below. In this algorithm, F and F−1

denote direct and inverse fast Fourier transforms. AUX(1) and AUX(2) are two
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auxiliary vector fields.

Floquet Linear Analysis of Spectral Hydrodynamic (FLASHy)

Require: ν, T , dt, q, v(0), U
1: Ω =∇×U
2: n = 0
3: V (n) = F(v(n))
4: while t < T do
5: AUX(1) = U × F−1(ı(k + q)× V (n))−Ω× F−1(V (n))
6: AUX(2) = −||k + q||−2(k + q)× (k + q)× F[AUX(1)]
7: V (n+1) = V (n) + dt(AUX(2) − ν||k + q||2V (n))
8: n = n+ 1 , t = t+ dt
9: end while

To carry out the computations with greater precision, a fourth-order Runge-Kutta
method is used instead of the simple Euler method at line 7 of the algorithm. The
Fourier parallel expansions are also truncated at 1/3 to avoid aliasing error. The code
is parallelised with MPI and uses many routine from the GHOST code [52, 53]. Most
of the DNS are done at a 323 and 643 resolution. Convergence tests show that this
resolution is sufficient for the range of Reynolds numbers studied.

X
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Chapter 6
Fate of alpha-dynamos at
large Rm (published in PRL)

This chapter presents new results.
At the heart of today’s solar magnetic field evolution models lies the alpha-dynamo

description. In the following letter, we investigate the fate of alpha-dynamos as the
magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to
precisely quantify mean field effects like the alpha- and beta-effects (i) by rigorously
distinguishing dynamo modes that involve large scale components from the ones that
only involve small scales, and by (ii) providing a way to investigate arbitrary large scale
separations with minimal computational cost. We apply this framework to helical and
non-helical flows as well as to random flows with short correlation time. Our results
determine that the alpha-description is valid for Rm smaller than a critical value Rmc

at which small scale dynamo instability starts. When Rm is above Rmc the dynamo
ceases to follow the mean field description and the growth rate of the large scale modes
becomes independent of the scale separation while the energy in the large scale modes
is inversely proportional to the square of the scale separation. The results in this
second regime do not depend on the presence of helicity. Thus alpha-type modeling
for solar and stellar models needs to be reevaluated and new directions for mean field
modeling are proposed.

6.1 Introduction

Dynamo instability refers to the spontaneous amplification of magnetic energy due to
the stretching and refolding of magnetic field lines by a flow. It explains the presence of
magnetic fields throughout the universe from planetary to galactic scales. In many of
these cases, dynamo action produces ordered fields at scales L larger than the typical
underlying turbulent scales `. A prominent example is the sun whose magnetic field
possesses a global time and spatial coherence much larger than the typical turbulent
time and length-scales [54, 55, 56]. A mechanism for the generation of such large
scale magnetic fields by small scale turbulent eddies was proposed by E. Parker in
[57], where he considered the evolution of large scale fields due to the averaged effect
of small scale eddies that lack parity invariance. This idea has led to the concept

59



60 Chapter 6. Fate of alpha-dynamos at large Rm

of mean-field magneto-hydrodynamics [16, 17, 24, 58] where the averaged effect of
small scale velocity field is taken into account through the calculation of transport
coefficients.

The starting point for these calculations is the magnetic induction equation for the
magnetic field B:

∂tB = ∇× (u×B) + η∇2B (6.1)

that is advected by a small scale velocity u under the effect of magnetic diffusion η.
The magnetic field is then split in a mean part 〈B〉V` (averaged over the small scales)
and a fluctuating part b so that B = 〈B〉V`

+ b and 〈b〉V` = 0. The averaged equation
for the large scale magnetic field reads:

∂t〈B〉V`
= ∇× E + η∇2 〈B〉V`

(6.2)

where the mean electromotive force E = 〈u× b〉V` is a measure of the cross correlation
of the small scale velocity u and magnetic b fields. It can be found by solving for the
evolution of the small scale field b:

∂tb− η∇2b = ∇× (u× 〈B〉V`
) +∇×G (6.3)

where G = u × b − 〈u× b〉V`
. If G can be neglected (which implies that there is no

small scale dynamo), b has a linear dependence on 〈B〉V` that acts as a source term for
the small scale fluctuations. In this case the mean electromotive force can be expanded
in a series of the gradients of the large scale magnetic field as:

Ei = αij 〈B〉jV` + βijk∇j 〈B〉kV` + . . . . (6.4)

The tensors α, β, . . . are the transport coefficients that depend on the properties of
the small scale velocity field. In particular the first tensor α is non-zero if the flow is
helical. It can drive large scale magnetic field amplification with a growth rate γ that
is proportional to the scale separation γ ∝ `/L. These types of dynamos are referred
to as alpha-dynamos in the literature. In the absence of helicity, large scale dynamos
are also known to exist through an instability related to the second tensor β [59]. This
effect leads to a growth rate proportional to the square of the scale separation (`/L)2.
Both cases are examples of large scale dynamos (LSD).

Given the value of these tensors and inserting eq. (6.4) in eq. (6.2), one obtains a
closed equation for the large scale magnetic field. This allows to compute the large
scale evolution without knowing the precise details of small scale turbulence. This
procedure is commonly used in solar [60, 61, 62] and planetary models [63]. Due to
limited computational power, these models only compute the large scale magnetic field
while the effect of small scale fluctuations is modeled through the transport coefficients.
If these coefficients are properly parametrized, these models reproduce the observed
behavior of the solar magnetic field. Global models that solve the full stellar system
without parametrization still fall short of reproducing quantitatively the solar cycle
despite the great advancement in recent calculations [64, 65, 66, 67, 68, 69].

Calculating the transport coefficients with this hypothesis remains non-trivial. It
can be achieved when the magnetic Reynolds number: Rm = U`/η (where U is the
rms value of the velocity field) is much smaller than unity Rm � 1. In this case, the
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small scale induction equation can be simplified to η∇2b = −∇×(u×〈B〉V`
) and easily

solved by spectral methods. Another frequent approximation consists in assuming that
the velocity field has a very short correlation time τ compared to the eddy turnover
time. The solution is then approximated to b ≈ τ∇ × (u × 〈B〉V`

). Both cases lead
to a linear dependence of b on 〈B〉V` in agreement with alpha-modeling, and lead to a
non-zero alpha-effect provided that the flow is helical. In particular for the small Rm,
the alpha-tensor can be rigorously calculated using multi-scale methods. However,
for natural flows, neither of these assumptions hold and different methods have been
devised to measure the transport coefficients by ‘local’ numerical simulations of small
scale turbulence [70, 71, 72, 73].

6.2 Results (new results)
For large values of Rm, which correspond to astrophysical regimes, neglecting the G
term is not necessarily a valid assumption. Indeed, at sufficiently large Rm, small
scale dynamo (SSD) action is expected to take place and small scale magnetic fields to
be self-generated, exponentially amplifying the value of the electromotive force. This
is against the basic assumption made above that the electromotive force has a linear
dependence on the large scale field 〈B〉V` . Indeed, many authors have questioned the
validity of alpha-modeling beyond the critical value of Rmc where SSD takes place
[74, 75, 76, 77, 78].

Part of the objections in this work can be elegantly summed up in the following
two-mode model. We consider the evolution of a large scale mode bq at wavenumber
q ∝ 1/L and a small scale mode bk at wavenumber k ∝ 1/`, with q � k, that are
coupled by an alpha-effect as follows:

ḃq = −ηq2 bq +αq bk ,

ḃk = αk bq +γSSD bk
(6.5)

where γSSD = ukk − ηk2 is the growth rate of the SSD obtained by setting α = 0.
It is positive if Rm = uk/ηk > 1 that marks the SSD onset. Looking for exponential
solutions (bq, bk) ∝ eγt the growth rate γ of the two modes can be explicitly cal-
culated and it is given by γ = 1

2

[
γSSD − ηq2 ±

√
γ2
SSD + 4αkq + 2γSSDηq2 + η2q4

]
.

One notices directly that in the q � k limit, if γSSD < 0, the system has one
negative eigenvalue γ ' γSSD and one positive eigenvalue γ ' α2kq/|γSSD|. The
growing eigen-mode satisfies bq/bk ' (|γSSD|/αk) = O(1). On the other hand, if
γSSD > 0, the system has one positive eigenvalue γ ' γSSD and its eigenvector satis-
fies bq/bk ' (αq/|γSSD|) = O(q/k). Thus, beyond the SSD dynamo onset, the growth
rate does not satisfy the scaling γ ∝ q while the projection of the unstable eigen-mode
on the large scales decreases with scale separation.

To demonstrate the above arguments and the possible failure of the LSD descrip-
tion, the notion of scale separation needs to be clearly formulated. This has been
attempted in the past using direct numerical simulations [79] but only for moderate
scale separations. A precise way to quantify the evolution of large scales can be done
using Floquet theory [31] also known as Bloch theory in quantum mechanics [32].
Floquet theory can be applied to the linear evolution of the magnetic field B(x, t)
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driven by a spatially periodic flow u(x, t) of a given spatial period ` = 2π/k. Under
these assumptions, Floquet theory states that the magnetic field can be decomposed
as B(x, t) = eiq·xb̃(x, t) + c.c. where b̃(x, t) is a complex vector field that satisfies the
same spatial periodicity as the velocity field u, and q is an arbitrary wavenumber. For
q = |q| � k, the average

〈
b̃
〉
V`

over one spatial period 2π/k gives the amplitude of b̃

at large scales L ∝ 1/q. Thus, fields with q = 0 and
〈
b̃
〉
V`

= 0 correspond to purely
small scale fields. If such fields are dynamo-unstable, the system has a SSD instability
and we will denote its growth rate as γSSD. For 0 < q < 1 the dynamo mode has in
general a finite projection to the large scales measured by

〈
b̃
〉
V`
. Substituting in the

induction eq. (6.1), we obtain:

∂tb̃ = iq × (u× b̃) +∇× (u× b̃) + η(∇+ iq)2b̃ (6.6)

Note that now q is a control parameter that can be taken to be arbitrarily small. The
gain in using the Floquet framework is two-fold: (i) it provides us with a clear way
to disentangle dynamos that involve only small scales (for which q/k ∈ Z3) from dy-
namos that involve large scales (0 < q/k � 1); (ii) it allows to investigate numerically
arbitrary large scale separations q � k with no additional numerical cost.

In this work, we consider the velocity fields parametrized as:

u = U

 sin(ky + φ2) + cos(kz + ψ3),
sin(kz + φ3) + cos(kx+ ψ1),
sin(kx+ φ1) + cos(ky + ψ2)

 . (6.7)

Three cases are examined. In the first case (A), φi = ψi = 0 for all i ∈ (1, 2, 3), the
flow corresponds to the well-studied helical ABC flow [80, 81, 82, 83, 84, 85], in the
second case (B), φi = ψi − π/2 = 0 is a non-helical flow, and in the last case (C)
the phases φi = ψi change randomly every time τ and correspond to random helical
flows. For the time-independent flows (cases A and B), the magnetic Reynolds number
is defined as Rm = U/kη and the growth rate is measured in units of Uk. For the
random flow (case C), the definition Rm = (U/kη) × (τUk) = Uτ/η is used and the
growth rate is measured in units of U2k2τ . The latter definition takes into account
that a fast de-correlation time reduces the rate at which the flow shears the magnetic
field lines. As will be shown in fig. 6.1, this scaling makes the results collapse on the
same curve small τ . Eq. 6.6 was solved numerically and the dynamo growth rate γ was
measured for various values of Rm and q = ẑq using a pseudo-spectral code in a cubic
periodic domain of side 2π with k = 1 and spatial resolution ranging from 323 to 1283

depending on Rm. Details on the Floquet code can be found in [86]. The results are
compared with the SSD growth rate γSSD obtained from a tested dynamo code [53].

The calculated growth rates are plotted in fig. 6.1 as a function of the Reynolds
number for the three different velocity fields used. Crosses correspond to the results
obtained from the Floquet code with q = 10−3 while γSSD is shown with a solid green
line. In the first flow (A) the γSSD reproduces the classical ‘two-window’ result of the
ABC dynamo [80, 81, 82, 83, 84, 85] for which SSD exists for Rm in the range R1 <
Rm < R2 and R3 < Rm. For the non-helical case (B) SSD appears for Rm > R4 ' 12.
In the case (C), different values of τ were used in the range (0.02, 0.5) as mentioned
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Figure 6.1 – Growth rate as a function of Rm for the different flows considered. The SSD
results are given by the solid lines, while the results from the Floquet code with q = 10−3 are
denoted by crosses. In the bottom panel, the value of τ = 0.1 was used for the Floquet code,
and different values of τ were used for the SSD as indicated.

in the legend. For the Floquet results the value of τ used was τ = 0.1. SSD appears
above a critical value R5 that weakly depends on the value of τ . At sufficiently small
τ , the critical value of Rm = R5, at which SSD appears, becomes independent of τ
with R5 ' 11. All three cases show the same feature: when γSSD > 0, the Floquet
and SSD results have the same growth rate, while, when γSSD < 0, the Floquet results
have a positive growth rate but of order q (or q2).

This observation is achieved examining the dependence of the growth rate on q
shown in the three panels of fig. 6.2. For each line in these figures, a series of simulations
of fixed Rm and varying q was performed. Each line corresponds to a different value
of Rm. Panel (A) shows the growth rate for the ABC flow. For the values of Rm < R1
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Figure 6.2 – The growth rate as a function of q for different values of Rm. The line types are
as follows. Panel (A): For Rm < R1 and R2 < Rm < R3 (dotted lines), for R1 < Rm < R2
(dashed lines), for R3 < Rm (solid lines). Panel (B): For Rm < R4 (dotted lines), for R4 < Rm
(solid lines). Panel (C): For Rm < R5 (dotted lines), for R5 < Rm (solid lines). The inset (D)
shows a typical signal for the evolution of energy from case (C) for Rm < R5.

and R2 < Rm < R3 (where there is no SSD), the growth rate is plotted with dotted
lines; the first dynamo window R1 < Rm < R2 is plotted using dashed lines; while in
the range R3 < Rm solid lines are used. It is clear that for the no-small-scale-dynamo
range, a γ ∝ q scaling is followed (alpha-dynamos) while in the presence of SSD γ
is independent of the value of q. Similarly, for the non-helical runs, in the absence
of SSD (Rm < R4 dotted lines), the growth rate follows the scaling γ ∝ q2, which
indicates a β-type dynamo instability, while in the presence of SSD (solid lines) there
is no dependence of the growth rate on q. Even in the random flow, the same feature
is observed: for Rm < R5 (dotted lines) the results show a γ ∝ q scaling that suggests
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the presence of a random alpha-effect, but for Rm > R5 this behavior transitions to
a q-independent growth rate (solid lines). We note that due to the random nature of
this flow the accuracy of our measurements is limited and we only examine values of
q > 5 · 10−4. The inset (D) shows a typical energy time-series from case (C).
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Figure 6.3 – The energy ratio E0/Etot. The line styles are as in figure 6.2. The inset (D) shows
the energy spectra for four different values of q of case (C) at the highest Rm.

At first, a finite growth rate γ > 0 in the limit of q → 0 seems to violate the flux
conservation. Indeed, flux conservation enforces modes with q = 0, corresponding to
uniform fields, not to grow. The explanation is found by looking at the projection
of the unstable modes to the large scales. In fig. 6.3, we plot the ratio of the energy
contained in the large scale mode eiq·x that is given by E0 = 1

2 |
〈
b̃
〉
V`
|2 to the total

energy Etot = 1
2

〈
|b̃|2

〉
V`

as a function of q for the same values of Rm as used in fig. 6.2
and the same line types. For LSD (of the type α or β) the projection to the large
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scales becomes independent of q for q → 0 (although it still depends on the value of
Rm). As Rm approaches the small scale instability onset, this projection decreases.
For values of Rm larger than the onset of the SSD, the projection to the large scale
modes becomes dependent on q and follows the scaling γ ∝ q2 in most cases or γ ∝ q4

for the case of the ABC dynamo in the first dynamo window. This result can be
obtained by a regular expansion of eq. (6.6) for small q such that γ = γ0 + qγ1 + . . .
and b = b0 + qb1 . . . . At zeroth-order, one obtains γ = γSSD and 〈b0〉V` = 0. At
next order, by averaging over space, one obtains γ0 〈b1〉V` = iq× 〈u× b0〉V` . This last
result shows that the energy in the large scale modes scales like q2, provided that the
mean electromotive force 〈u× b0〉V` due to the SSD mode is not zero. If it is zero, the
next order term leads to a q4 scaling and so on. Note that this argument does not
depend on the presence or absence of helicity in the flow. In fact, as shown in the top
panel of fig. 6.3, the same flow results in different scalings of E0/Etot depending on
which dynamo window is examined. Indeed, in the first window R1 < Rm < R2, the
most unstable mode possesses different symmetries than the most unstable mode for
Rm > R3 [85].

6.3 Discussion
The results above give a clear description of the transition from SSD to LSD. Below the
SSD onset, the mean field predictions are valid and lead to a growth rate proportional
to q or q2 depending whether an α- of β-dynamo is present. Above the SSD onset
large scales grow with the γSSD growth rate but with a projection to the large scales
that decreases with a scale separation. This behavior cannot be modeled with terms
that are linear in the amplitude of the large scale field as eq. (6.4) implies. On the
contrary, the behavior of the large scales mode depends on SSD. Despite its small
projection, it has a faster growth rate than mean field dynamos. Therefore, the large
scales mode could possibly be modeled as a non-homogeneous term in the mean field
dynamo equation. This possibility however requires further investigations.
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Chapter 7
Elements of context:
Thermodynamics

The aim of this chapter is to recapitulate the absolute equilibrium properties by making
analogies with the probability density function (PDF) of an ideal gas. Most of the
properties presented are explained in greater depth in [87, 88, 89, 90, 11].

This chapter reviews well-documented theories.

7.1 Ideal gas distribution (review)
To get an intuition of the probability density function of the modes of an ideal fluid, let
us start by studying an ideal gas of n indistinguishable particles of negligible size with
hard sphere elastic collisions as only interactions without dissipation. The ideal gas
has an energy expression close to the energy of ideal fluid and has similar statistical
properties. For the ideal gas, the equations of motion can be described using the
Hamiltonian H

H = V +
∑
i

p2
i

2m with ṗi = −∂qiH = −∂qiV and q̇i = ∂piH = pi
m
, (7.1)

where V denotes the interaction potential between particles. The Hamilton is a func-
tion of the position {q} and impulsion {p} of the particles of the gas, and the interaction
potential is only a function of the position. Because of the elastic nature of the inter-
actions of the particles in the gas, the interaction potential bans configurations having
two particles at the same position. Between two collisions, the system is described by
n ballistic trajectories. If the total energy, EIG, of the system is fixed, the system is
located on the surface of the 3n-dimensional unitary hyper-sphere defined by

∑
i

X2
i = 1 with Xi = pi√

2mEIG
and Sd = 2πd/2

ΓEuler(d/2) , (7.2)

where Sd and ΓEuler denote the surface of a d-dimensional unitary hyper-sphere and
Euler’s Gamma function respectively. At fixed energy, the total number of configura-
tions, W , is proportional to the surface of the 3n-dimensional unitary hyper-sphere.
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The number of possible configurations, w(x, δx), with one coordinate, X, varying in
the interval [x, x+ δx], corresponds to the shell of the 3n−1-dimensional hyper-sphere
of radius sin(φ) =

√
1−X2. It can be computed using Pythagoras theorem and

trigonometric relation presented in fig. 7.1

w(x, δx) = S3n−1

∫ arccos(x+δx)

arccos(x)
sin3n−1(φ)dφ = S3n−1

∫ x+δx

x
(1−X2)(3n−3)/2dX . (7.3)

X

√
1−X2

0

1

0 1x x+ δx

arccos(x+ δx)

arccos(x)

φ

Figure 7.1 – Trigonometric scheme describing
the domain of integration of the integral. The
red line corresponds to the unit circle, the blue
line corresponds to the interval in which the
variable X varies. The orange line corresponds
to the bound of the domain over which the in-
tegral is computed. The green dashed line cor-
respond to the domain of integration

The probability density function f1(x) of finding one coordinate equal to x can be
computed using the ratio of the number of possible configurations to the total number
of configurations

f1(x) = d

d(δx)
w(x, δx)
W

= S3n−1
S3n

(1− x2)
3n−3

2 ∼
x�1
1<n

S3n−1
S3n

e−
x2
2 (3n−3) . (7.4)

In the thermodynamic limit, n→∞, the PDF is well approximated by a Gaussian near
zero, that is for values of X near the maximum of f1. In this limit, the normalization
of the PDF can also be computed using the Gaussian integral. Fig. 7.2 represents the
analytic expression of f1 in full lines and its Gaussian approximation in dashed lines
for gases with different number of particles n. As the number of particles increases,
the number of orders of magnitude over which the Gaussian approximation overlaps
the analytic PDF increases.

The Gaussian approximation of the PDF can be done analytically for the ideal gas
but it is still correct in more general cases thanks to the central limit theorem. Gaussian
distributions give a good approximation of the PDF in the vicinity of the maximum,
but their predictions can be highly unphysical when pushed outside this domain. In the
case of the ideal gas, the Gaussian distribution gives a non-zero probability for X > 1,
which is in contradiction with the conservation of energy. In the thermodynamic limit,
the Gaussian approximation still gives back the equipartition of energy〈

p2
1

2m

〉
ens

∼
n→∞

EIG
3n with 〈. . .〉ens =

∫
. . . f1(x)dx (7.5)

since
∫
x2 e

x2
2σ2
√

2πσ2dx = σ2 . (7.6)
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The triangle brackets denote the ensemble average over all configurations weighted
with their probability. At the thermodynamic limit, the average computed with the
Gaussian distribution gives the same results as those computed using the analytic
expression.
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Figure 7.2 – PDF of ideal gas. The full line represents the PDF computed analytically using
eq. (7.2) and the dashed line represents the PDF computed using the Gaussian approximation.
In the legend, the analytic PDFs are denoted with the label n = . . ., and their Gaussian
approximations are denoted with the label Gauss.... The value corresponds to the number of
particles of the system. In the legend, the value also corresponds to the number of particles.
(Left) PDF plotted in logarithmic scale. (Right) PDF plotted in linear scale.

The PDF f1(x) of having one coordinate equal to x is different from the PDF
f3n({x}) of having the system in a given configuration {x}. For independent variables,
the two distributions are related via f3n({x}) =

∏3n
k=1 f1(xk), where xk is the k-th

component of {x}. This is however not the case for an ideal gas because the energy is
fixed. This expression is still a good approximation for the PDF, or at least it is the
best that can be done with minimal computation.

Before deriving other properties on the PDF, let us sum up the main points of
the derivation. The number of possible configurations was computed at fixed energy
for a given parameter. The probability density was then derived using the ratio of
the number of possible configurations to the total number of configurations. Finally,
near its maximum, the PDF was approximated to a Gaussian distribution. Besides
the position of the maximum giving the average of the PDF, Gaussian distributions
have another free parameter, σ, associated to the standard deviation. For the ideal
gas, the standard deviation could be directly computed from the analytic results. In
many cases, the derivation cannot be done analytically. The Liouville theorem can help
solve this problem. Another way to carry out the derivation is to use the equivalence
between micro-canonical and canonical ensembles at the thermodynamic limit.

7.2 The Liouville theorem (review)
For Hamiltonian systems, the Liouville theorem is able to give a constraint on the
stationary PDF of the system. This additional constraint can be used to solve the
problem raised at the end of the last section. If a system derives from a Hamiltonian,
it can be described in the position-impulsion space. The temporal evolution of the
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PDF f of its configuration is given by the generalized Lagrangian time-derivative

Dtf = ∂tf + q̇α∂qαf + ṗα∂pαf , (7.7)

where {q} and {p} denote the position and the impulsion of the independent compo-
nents of the system respectively. Einstein’s summation convention is used on repeated
Greek variables. Additionally, if the system derives from a Hamiltonian, H, the tra-
jectories follow the Hamilton equations

ṗi = −∂qiH and q̇i = ∂piH thus ∂pi ṗi = −∂piqiH = −∂qi q̇i . (7.8)

By definition, the PDF is normalized, therefore its integral over phase-space is
conserved, which implies that it follows the conservation equation

0 = ∂tf + ∂qα(q̇αf) + ∂pα(ṗαf) = ∂tf + f(∂qα q̇α + ∂pα ṗα) + q̇α∂qαf + ṗα∂pαf . (7.9)

Using eq. (7.8) and (7.9), we get that the temporal evolution of the PDF has a
Lagrangian time-derivative equal to zero. If we consider the specific case where the
density, denoted by fs, is stationary, we get that

0 = Dtfs = q̇α∂qαfs + ṗα∂pαfs . (7.10)

The invariants of the problem also satisfy eq. (7.10). In fact this relation can be used
as the criterion to define an invariant of the system. The stationary distribution can
therefore be expressed as a function of the invariants of the system. In the case of
the ideal gas, the only invariant is the energy, the standard deviation of the Gaussian
distribution should only depend on the energy.

7.3 Absolute equilibrium theory (review)
Even though the total energy of a spectrally-truncated ideal fluid is conserved and has
an expression close to the energy of an ideal gas, ideal fluids do not have a Hamiltonian
formulation close to that of ideal gas [91, 92]. Instead of describing the system in
the position-impulsion phase space, the system will be expressed as a function of its
positive and negative Fourier helical components given in eq. (2.19). These components
do not following the equations of Hamiltonian given in eq. (7.8). However using these
variables simplifies the expression of the helicity which is the other conserved quantity
in an ideal fluid (see eq. (2.22)). In order to have consistency between the expression
of energy and helicity, they will be written as

2E = E = E+ + E− where E± =
∑
k

|u±|2 , (7.11)

H = H+ +H− where H± = ±
∑
k

k|u±|2 . (7.12)

It may seem to be an overkill to introduce a new variable for a mere factor two, but
it helps follow more smoothly the derivation. With this notation, the helicity of the
Euler equation truncated at kM is bounded by

|H| ≤ H± ≤ kM
∑
k

|u±|2 ≤ kM
∑
k

|u|2 = kME . (7.13)
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As a consequence of this bound, two independent positive definite constants quadratic
in velocity, C+ and C−, can be built

C± = α
(
E± Kr

kM
H
)

=
∑
k,sk

α
(
1± skk Kr

kM

)
|uskk |

2 , (7.14)

α has the dimension of the inverse of an energy and will be assumed to be positive.
Kr is a dimensionless number and |Kr| < 1. Since the energy and the helicity are
two independent invariants, C± are also two independent invariants and can be used
to describe the system. When the energy and the helicity are used to compute the
number of possible configurations, it is difficult to derive the maximum number of con-
figurations of the system. Indeed, at fixed helicity, depending on the sign of the helical
component, it not clear how w varies with the amplitude of the helical component.
Changing the set of invariants from the E-H set to the C± set proves to help solve the
problem.

The space of configurations of fixed energy and helicity has a geometrical descrip-
tion. For the ideal gas, the hyper-surface of constant energy is an hyper-sphere. For
an ideal fluid, having two different invariants implies that the hyper-surface of con-
figurations is located at the intersection of two hyper-surfaces. Using the E-H set of
invariants, the surface of constant energy and helicity is the intersection of an hyper-
sphere with a 3n-dimensional hyperboloid. Even when n = 1, it does not seem intuitive
to know how this surface behaves. With the C±-set of invariants, the surface of con-
stant energy and helicity corresponds to the intersection of two ellipsoids. It is still
hard to visualize, but the computation is able to give enough information to pursue
the derivation.

We tried to compute analytically the distribution associated with the intersection,
but were unable to get a simple result. We also carried simulations at low resolution,
N ∈ {2; 3; 4}, to see if we could get a deviation from the Gaussian statistics but on two
orders of magnitude the logarithm of the distribution perfectly matches a Gaussian
distribution both for non-helical and highly helical flows.

Let us consider one helical component of the velocity field at a given wavevector,
usaa , the number w(u) of possible configurations at fixed energy and helicity is given
by the surface satisfying the following two conditions∑

k,sk
(k,sk)6=(a,sa)

α
(
1± skk Kr

kM

)
|uskk |

2 = C± − α
(
1± saKra

kM

)
|usaa |2 . (7.15)

At fixed C±, when |usaa |2 increases, the radii of the surfaces decrease, reducing the
number of possible configurations as a result. The maximum of w(u) is thus located
near zero. The number of possible configurations w(u) can now be expanded near its
maximum u = 0, to get an approximation of the PDF. Noting W the total number of
configurations, the PDF of one mode, f1(u), can be computed using

f1(u) = w(u)
W

∼
u→0

w(0)
W

exp
(
−u

2

2
d2
uuw(0)
w(0)

)
. (7.16)

Since the approximation is a Gaussian of average zero, the distribution only depends
on one parameter, the standard deviation. The pre-factor is related to the standard
deviation because the PDF is normalized.
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When the system does not have helicity, it is not surprising that the conservation
of energy leads once more to PDFs with zero average. However, in highly helical
systems, it may seem surprising that this property still holds. The energy is placed
preferentially in the largest wavenumbers. These modes still have an average energy
equal to zero, since they are coupled together. The energy does not have to be stored
in one mode, it can be spread across all the modes of the shell before the truncation.

If ideal fluids had a Hamiltonian description similar to ideal gas, the next step
would be to use the Liouville theorem to compute the value of the standard deviation.
Since the Hamiltonian version of the Liouville theorem cannot directly be applied to
ideal fluids, we will use a more general version and check that the hypothesis can be
applied to an ideal fluid. Similarly to ideal gas, the PDF of a configuration of an ideal
fluid is normalized and follows therefore a conservation law. Using the Craya-Herring
decomposition of the components of the velocity field, the conservation of the PDF
can be expressed as

−∂tf = ∂u+
α

(u̇+
αf) + ∂u−α (u̇−αf) = f(∂u+

α
u̇+
α + ∂u−α u̇

−
α) + (u̇+

α∂u+
α

+ u̇−α∂u−α )f . (7.17)

To have a result similar to the Hamiltonian version of the Liouville theorem, the
term ∂u+

α
u̇+
α + ∂u−α u̇

−
α should be equal to zero. Using the expression of the Euler

equation in the Craya-Herring basis given at eq. (2.20), we get

∂

∂uskk
(u̇skk )∗ = −1

4
∑

k+p+q=0
sp,sq

(spp− sqq)
(
hskk · h

sp
p ×hsqq

) ∂

∂uskk
(uspp usqq ) = 0 . (7.18)

In this last expression, the terms in the sum, where either (p, sp) = (k, sk) or (q, sq) =
(k, sk), are equal to zero because the triple product has two identical vectors. The
other terms are also equal to zero since the derivative is equal to zero because the
helical components are all assumed to be independent variables.

Similarly to Hamiltonian systems, when the PDF is stationary, ideal fluids have an
additional constraint on their PDF

0 = (u̇+
α∂u+

α
+ u̇−α∂u−α )f . (7.19)

This constraint is satisfied by the invariants of the systems and can even be used
to characterize an invariant. Consequently, the PDF of a configuration, f , should
be expressed as a function of the invariants of the system. Since the PDF can be
approximated by a Gaussian distribution, which is quadratic in velocity, we get that

f({u}) ∝ e−C({u}) where C({u}) = αE({u}) + βH({u}) , (7.20)

where α has the dimension of the inverse of an energy and β has the dimension of the
inverse of a helicity. These constants were first introduced by Kraichnan in [11]. The
argument of the exponential has an expression very similar to the C− introduced in
(7.14). Using α, β and kM , a dimensionless number, Kr, can be constructed

Kr = −βkM
α

. (7.21)
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It will be referred to as the Kraichnan number. Similar to C−, the convergence of the
PDF at infinity requires for the Kraichnan number to be less than one in absolute
value, |Kr| < 1, and the coefficient α to be positive, α > 0.

Before making some comments about the probability distribution, let us recall the
main hypothesis required to derive the absolute equilibrium distribution.

• The evolution of the velocity fields is governed by the truncated Euler equation.

• The truncated Euler equation has two invariants: energy and helicity.

• The helical components of the velocity field are independent variables.

• The probability are approximated by a Gaussian near their maximum.

The expression of the probability distribution, given in eq. (7.20), can be compared
to a Boltzmann weight in thermodynamics. However, Boltzmann weights described
physical systems at equilibrium with a thermostat and not isolated systems. Since the
energy and the helicity of the system are supposed to be constant, it is surprising to
see a probability distribution that has non-zero values for all energy and helicity. This
discrepancy between the constraints of ideal fluids and the properties of the PDF was
already observed for the ideal gas. The Gaussian approximation is only valid in the
vicinity of the maximum of the functional and give unphysical results outside of this
region.

The theory may indicate that the components of the velocity modes should follow
Gaussian statistics. It is more difficult to get confirmation of this property from di-
rect numeric simulations (DNS). Indeed going back to the helical decomposition, the
helical unitary vector is uniquely defined up to a phase. The amplitude of a helical
component of a velocity mode is thus a complex number that is unique up to a phase.
The two independent real Gaussian variables within the complex amplitude cannot be
separated. Identifying the Gaussian behavior of the complex amplitude of the mode
can still be done by looking at the real and imaginary part of the amplitude or by
looking at the energy associated to the amplitude. The main advantage of looking
at the energy is that it does not depend on the phase of unitary helical vector and
therefore is not subject to related errors. Contrary to the amplitude of the velocity,
the energy of the modes does not follow a Gaussian statistics.

To describe the statistics followed by the energy associated to the complex ampli-
tude of a velocity mode, let us define X a random variable built with the square of
g independent random variables Gi∈[[1;g]] following the same centered 〈Gi〉ens = 0 and
reduced

〈
G2
i

〉
ens = 1 Gaussian statistics G :

X =
∑
i

G2
i and G(Gi) = e−

G2
i

2
√

2π
. (7.22)

The random variables X follows a χ2
g-distribution [93] defined by

χ2
g(X) = 1

2gΓEuler(g2)X
g
2−1e−

X
2 . (7.23)
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Figure 7.3 – Representation of the χ2
g-distribution for g ∈ {1; 2; 3}. The black curves represent

the asymptotic trends followed by the distribution.

Fig. 7.3 represents χ2
g-distribution for g ∈ {1; 2; 3}. Consequently, if the real and imag-

inary parts of the helical components of the velocity modes have Gaussian statistics,
their energy should follow a χ2

2-distribution. Checking the Gaussian property of the
helical components of velocity modes can thus be done by checking the PDF of the
energy associated to these components.

Using the Gaussian approximation of the PDF, the ensemble averages can be com-
puted using

〈. . .〉ens = 1
Z

∫
. . . e−C({u})D{u} where Z =

∫
1e−C({u})D{u} , (7.24)

where D{u} denotes the functional integral over all possible velocity fields. For the
truncated Euler equation, the functional integral reduces to a finite number of the
integral over the the helical component of the velocity of modes below the truncation.
The averages of energy and helicity per mode are given by

e±k =
〈
|u±k |

2
〉
ens

= α−1

1− (±Kr) k
kM

and h±k =
〈

(u±k )∗ · ω±k
〉
ens

= ±ke±k . (7.25)

The minus sign introduced in the definition of the Kraichnan number in eq. (7.21)
may have seemed surprising. But, with it, the sign of the helicity of the flow can
directly be known. When the Kraichnan number is positive, 0 < Kr, the energy of the
positive helical modes are greater than their negative counterparts e−k > e+

k . Positive
Kraichnan number implies that the flow has a positive helicity. Respectively, negative
Kraichnan number implies that the flow has a negative helicity.

The average energy and helicity per mode can be summed on a shell of constant
wavenumbers to give the energy and helicity spectrum. This can be done for the
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Figure 7.4 – Representation of the spectrum |uk|2 (full line), |u+
k |2 (dotted line) and |u−k |2

(dashed line) as a function of the wavenumber for different values of Kraichnan number Kr ∈
{0; 1− 10−1; 1− 10−2; 1− 10−3} and α−1 = 1−Kr2.

modulus square of the velocity modes as well as their positive and negative helical
components. Since the average quantity only depends on the wavenumber and does
not depend on the direction of the wavenumber, the integral of the shell is done by
multiplying the averaged quantity by the surface 4πk2 of the shell. The energy and
helicity spectrum are then given by

Ek = 4πk2
(
e+
k + e−k

)
=

8πk2
M

α

(
k
kM

)2

1−Kr2
(

k
kM

)2 and Hk =
8πk2

M
α KrkM

(
k
kM

)4

1−Kr2
(

k
kM

)2 . (7.26)

Fig. 7.4 represents the energy of the different helical components integrated on a
shell of constant wavenumber. As the Kraichnan number reaches one, the spectrum
deviates for the equipartition k2-power law. The global velocity and positive helical
spectrum peak at large wavenumber and the negative helical spectrum has a slight dip.

There is no equivalent for the energy spectrum in the case of an ideal gas. How-
ever, in the solid phase, crystalline lattice can be described by Hamiltonian quadratic
in impulsion and position. The collective excitation of the lattice can be decomposed
in plane-waves associated to acoustic and optic phonons. Each acoustic plane-wave has
the same energy. Using the plane-wave decomposition of the excitation, the energy
spectrum of the system can be evaluated by averaging over a shell of constant wavenum-
bers. Since all plane-waves have the same energy, at small wavenumber, the average
energy spectrum is proportional to the surface of the shell of constant wavenumber
E(k) ∝ k2.

For a Kraichnan number equal to zero, the average energy spectrum of ideal fluids
follows the k2-power law observed in acoustic phonons. When the Kraichnan number
is different from zero, which corresponds to a system with helicity, the average energy
spectrum deviates from the equipartition distribution of acoustic phonon.

Knowing the energy and helicity spectrum, the total energy and helicity of ideal
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fluids can be computed and expressed as a function of α, Kr and kM :

E = 8πk2
M

αKr3 (argtanhKr −Kr) and H = 8πk3
M

αKr4

(
argtanhKr −Kr − Kr3

3

)
. (7.27)

The evolution of the total energy and total helicity are represented in fig. 7.5 as a
function of the Kraichnan number. The relation between the (E,H) pair of parameters
and the (α, Kr) pair of parameters is bijective. Fixing one pair of parameters is enough
to describe unequivocally the system. At low Kraichnan number, the helicity goes to
zero and the energy goes to one third. When the Kraichnan number goes to one, the
helicity reaches its upper bound H = kME.

Using the same hypotheses as those used in thermodynamics, the absolute equi-
librium theory is able to show that the PDF of the helical components of the velocity
field can be approximated with Gaussian statistics. Then, with a generalized version
of the Liouville theorem valid for ideal flows, the parameters of these Gaussians can
be computed. As a consequence, the absolute equilibrium theory gives a prediction on
the energy spectrum. At small wavenumber, the energy spectrum follows a k2-power
law similar to the equipartition of acoustic phonons in crystalline lattice. However, at
large wavenumber, helical flows deviate from the the k2-power law.

X



Chapter 8
Elements of context:
Time correlation

In the chapter on absolute equilibrium, we could give predictions on the average energy
spectrum of the system and the standard deviation of the velocity modes. But this
does not give any information on the temporal evolution of the velocity modes. The
absolute equilibrium properties mainly assume that energy and helicity are conserved
throughout the evolution. Studying the temporal correlations will give additional
information on the evolution of modes. The results will be more specific to ideal fluids
since, this time, the derivation requires the detail of the temporal evolution of the
system. Some of the properties concerning ideal fluids without helicity can be found
in [94] and in chap. 9.

Subsec. 8.1 reviews elements of well documented theories. Subsec. 8.2
and 8.3 present a new model and a new numeric procedure used in chap. 9
which reports new results.

8.1 Definition and examples (review)
In experiments, it is extremely difficult to measure an observable for all the positions
of space. However it is much more simple to place a sensor at a given point and
record its evolution in time. The time series collected carry more information than
the statistical properties (average, moments, PDF) of the system at this given point.
The data points of the series are chronologically ordered and can be used to compute
correlation functions. We will only consider the correlation of an observable with itself.
From now on, the term correlation function will be used for what is in fact the auto-
correlation of an observable. The correlation function Γ(t) of the observable X can be
computed using

Γ(t) = N(x)x∗(s)x(s+ t) with x(s) = X(s)−X (8.1)

where N(x) = 1
|x|2(s)

and G(s) = lim
T→∞

1
2T

∫ T

−T
G(s)ds , (8.2)

where x and G denote the fluctuations of X and a generic function respectively. s
and t denote the starting time and the time interval of the correlation respectively. x
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corresponds to the fluctuation of the observable X around its mean value and N(x)
is the normalization of the correlation function. The normalization N(x) makes the
correlation function dimensionless. The super-scripted line . . . denotes the temporal
average of an observable recorded on an infinite time series. The function G used in
the definition of the time average is a generic dummy observable. To avoid improperly
defined integrals, correlation analysis should only be carried out on bounded functions.
In the definition of the auto-correlation function, it is important to remove the average
of the observable.

An immediate consequence of the definition of the correlation function is that the
correlation function is even. When the T → ∞ limit is taken, any finite offset in the
bounds of integral used to compute a temporal average can be neglected, therefore∫ T

−T
x∗(s1)x(s1 + t)ds1 =

∫ T+t

−T+t
x∗(s2 − t)x(s2)ds2 thus Γ(t) = Γ(−t) . (8.3)

For all observables, the correlation function is an even function in t, hence all the odd
powers of the Taylor expansion of the correlation function are equal to zero.

The correlation function can be computed analytically in a few cases. In the triv-
ial situation where the observable is independent of time, the temporal value of the
observable is equal to the average of the observable and the correlation function is
always equal to zero. Since polynomial function are not bounded for t ∈ [−∞; +∞],
a sinusoidal function is the next simplest function to analyze. Let us compute the
correlation of the cosine function of amplitude A

Γcos(t) = 1
A2 cos2(s)

A2 cos(s) cos(s+ t) = 2
(

1
2 (cos(2s+ t) + cos(t))

)
= cos(t) . (8.4)

Besides making the correlation function dimensionless, the normalization of the cor-
relation function makes the amplitude pre-factor A disappear. Another consequence
of the normalization is that the correlation function is bounded below one in absolute
value |Γcos(t)| ≤ 1. This property is not only valid for the cosine function, it is still
true for a generic function because the correlation function has the structure of a dot
product. The dot product structure of the correlation function also implies that the
correlation must be maximal at t = 0. In the case of the cosine function, the correla-
tion function has other local maxima but these are related to the periodic nature of
the cosine function.

Since the correlation function is maximal at t = 0, it can be approximated by a
parabola near t = 0. It may not bring any additional information in the case of the
cosine function, but the approximation is useful when the correlation function cannot
be computed analytically. The parabolic approximation can be used to compute the
half-time τ1/2where the correlation reached one half, defined by

Γ(τ1/2) = 1
2 . (8.5)

In the case of the cosine function, the analytic half-time is π
3 ∼ 1.057 and the parabolic

approximation of the cosine, 1 − t2

2 , leads to a half-time equal to 1. The parabolic
approximation gives a half-time in agreement with the analytic results.
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For solutions of stochastic differential equations, the correlation function can also
be computed in a few cases such as the one-dimensional Langevin equation. This
equation describes the evolution of the velocity U of a particle mass m undergoing a
friction force −m

τ U and a stochastic force F . It can be solved in the general case using
Newton’s second law:

m
dU

dt
= −m

τ
U + F thus U(t) = e−

t
τ

(
U(0) + 1

m

∫ t

0
e
s
τ F (t)ds

)
. (8.6)

Let us now suppose that the forcing satisfies F
:

= 0 and that for all s, F (s)F (s+t) =
γFδ(t), where γF is the correlation coefficient and δ(t) is the Dirac delta function. Even
though the exact solution of eq. (8.6) is still valid, it will be easier to express the
Langevin equation in Fourier space to compute the correlation function

Û(ω) = F̂ (ω)
m
(

1
τ − ıω

) and |F̂ |2 =
∫∫

e−iω(t1−t2)F (t1)F (t2)dt1dt2 = γF , (8.7)

where .̂ . . corresponds to the Fourier transform and ω denotes the temporal variable
in Fourier space. Convolutions in physical space are products in Fourier space. Con-
sequently, the correlation function, Γlgv, of a solution of the Langevin equation can be
written using

∫
U(s)U(s+ t)ds = 1

2π

∫
|Û |2eiωtdω =

γF

(
τ
m

)2
2π

∫
eiωt

1 + (ωτ)2dω (8.8)

and
∫

eiωt

1 + (ωτ)2dω =
{
π
τ e
− t
τ if 0 ≤ t

π
τ e

+ t
τ if t ≤ 0

thus Γlgv(t) = e−
|t|
τ . (8.9)

Note that the correlation function of the Langevin equation does not depend on the
coefficient γF of the delta-correlated forcing. The other feature is that the correlation
function decays with time and goes to zero at infinity which is characteristic of systems
losing the memory of their initial condition. In the case of the Langevin equation, the
half-time of the process can be computed analytically and is given by τ ln 2. However,
the parabolic approximation is improperly defined because the correlation function
has a cusp at t = 0. The behavior of the correlation function near t = 0 is specific
to the expression of differential equation and the characteristics of the forcing. For
the stochastic Langevin equation, the correlation function is not smooth because the
forcing is delta-correlated in time.

The example of the Langevin equation is not only interesting because it introduces
the idea of memory loss. The method used to derive the correlation function with
Fourier transform is also important. This method can be generalized and gives the
Wiener-Khinchin theorem which states that the spectrum of the correlation function is
equal to the power spectrum. The main consequence of the Wiener-Khinchin theorem
is that the computation of the correlation function of a temporal data-set can be done
using Fourier transform instead of computing a convolution. For a discrete data-set,
the convolution becomes a Cauchy product. The Wiener-Khinchin theorem can then
be used to accelerate the computation of correlation functions.
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The two simple examples used to present the notion of correlation function and
correlation time can guide our intuition of what is expected for the correlation of modes
in a spectrally-truncated ideal fluid. Since the modes of an ideal fluid will eventually
lose the memory of their initial condition, the correlation time should decay at infinity.
However, the forcing in an ideal fluid is much smoother than the delta-correlated forcing
of the Langevin equation. The correlation function of the helical modes in ideal fluids
should be smooth enough near t = 0 to define properly a parabolic approximation. It
is still possible, however, that the parabolic approximation of the correlation function
will not be able to give a correct value for the correlation time.

8.2 Hydrodynamic application (description of a new model)

8.2.1 Sweeping effect and parabolic expression
For the Navier-Stokes equation, some known results already exist on the dependence
of the correlation time on the wavenumber. In the inertial range of Kolmogorov tur-
bulence, the sweeping effect theory [18, 95] predicts that the correlation time should
depend on the root mean square velocity at the forcing scale, Urms. Since the energy
of the forcing scale is much greater than the energy in all the other scales, the total
energy of the system is almost entirely composed of the energy of the forcing scale. If
the viscous term in neglected in the inertial range, the velocity modes follow an evo-
lution equation dominated by the transport of velocity mode, U , in the forcing scale:
∂tuk ' ikUuk. This transport lead to a de-correlation of the large scale modes than
can be characterized using dimensional analysis.Using the energy and the wavenumber
as only parameters, the only time-scale that can be built is

τEk ∝
1

Urmsk
∝ 1
k
√
E
. (8.10)

Figure 8.1 – Spatio-temporal spectrum E(k, ω) of a numerical simulation of isotropic and
homogeneous turbulence. The solid red curve corresponds to ω = kUrms = k

√
E. Figure

extracted from Clark di Leoni, Cobelli, and Mininni (2017) [96].

The sweeping effect prediction has been confirmed in numeric simulations by the
spatio-temporal analysis of turbulent flows done in [96]. Fig. 8.1 represents the results
of Clark di Leoni et al. using the spatio-temporal spectrum of the energy of an isotropic
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and homogeneous turbulent flow in the k−ω Fourier space. ω represents the temporal
variable in Fourier space, it is not related in any way to the vorticity. To understand
the sweeping effect in the spatio-temporal spectrum, ω can be viewed as the inverse
of a time. At fixed wavenumber, the energy spectrum should be non-negligible in the
domain where ω ≤ k

√
E. More details are given on the spatio-temporal spectrum in

sec. 8.3.
In the case of the truncated Euler equation, when the flow does not have any

helicity, it is more difficult to define a dominant velocity since the energy is evenly
spread out on every mode. The correlation time of the solution of the Euler equation
could have a different behavior. Supposing that the correlation function Γk is smooth
enough, the correlation time τk of solutions of the truncated Euler equation can be
computed using the parabolic expansion

Γk(t) = u∗k(s)uk(s+ t)
|uk(s)|2

= u∗k(s)uk(s)
|uk(s)|2

+ t2

2
u∗k(s)∂2

t uk(s)
|uk(s)|2

+ O(t4) . (8.11)

Integrating by parts, the term u∗k(s)∂2
t uk(s) can be rewritten as |∂tuk(s)|2. Assuming

that the tuncated Euler equation is ergodic, averages over time can be replaced by
ensemble averages defined in eq. (7.24). The correlation can then be expressed as

Γk(t) = 1− 1
2

(
t

τk

)2
+ O(t4) where τk =

√
〈|uk|2〉ens
〈|∂tuk|2〉ens

. (8.12)

The expression of the square average of the velocity mode
〈
|uk|2

〉
ens is given by the

absolute equilibrium statistics and the square average of time derivative of the velocity
mode

〈
|∂tuk|2

〉
ens can be computed using the temporal evolution equation of the fluid

seen in eq. (2.17).

8.2.2 Correlation of velocity modes (description of new procedure)
The direct method to compute 〈∂tu(k, t)〉ens consists in writing the truncated Euler
equation in Fourier space with a quadratic operator that takes into account the incom-
pressibility condition as presented in eq. (2.4). The average correlation between two
modes can also be expressed with the incompressibility projection operator as

〈u∗α(p)uβ(q)〉ens = Pαβ(p)δ(p+ q) 〈ep〉ens . (8.13)

The average correlation of the temporal derivative of the velocity can be computed
with a method similar to that derived in p. 47 − 52 of [94] in the case of non-helical
flows using

〈∂tu∗α(k)∂tuδ(k)〉ens = 1
2

∑
k+p+q=0

Pαβγ(k)Pδµν(−k)Pγν(q)Pβµ(p) 〈eq〉ens 〈ep〉ens .

(8.14)

The derivation can be carried out by converting the discrete sums into an integral
using the equivalence∑

k+p+q=0
⇐⇒

( 1
kM 3

)2 ∫
p≤kM

∫
q≤kM

δ(k + p+ q)d3pd3q . (8.15)
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kM + k−kM
k−kM kMO k1

2k

‖
⊥

Figure 8.2 – Diagram of a cut of the integration domain. The dark surface corresponds to the
integration domain. The dotted lines correspond to the limits of the circle of radius kM and of
center 0 or k. The thick full line corresponds to radii of the previously described circle. The
dark dashed line corresponds to the distance between the center of the two circles. The bright
dashed line corresponds to the maximal length possible for q⊥.

For the moment, the truncation condition, u(k > kM ) = 0, has not been applied
to the velocity fields. The velocity appears in the equation within the expression of
the average energy with two indices p and q, therefore the summation must be done
at p ≤ kM and q ≤ kM . The domain prescribed by these conditions corresponds to
the intersection of two spheres of radii kM and center p and q. The triadic condition,
k + p + q = 0, also implies that the summation over p and q can be done over q at
fixed p = k − q. The domain of summation is represented in fig. 8.2. This domain
is invariant by rotation along the axis defined by k in fig. 8.2. This direction links
the center of the two spheres. The coefficients of the sum also satisfy the rotation
invariance of the domain. The summation can thus be performed with the variables
q⊥ and q‖ where q⊥ is the projection of the wavevector along the plane orthogonal to
k and q‖ is the projection of the wavevector along the axis of rotation. The sum can
then be written as

∑
k+p+q=0

⇐⇒
∫ 1− 1

2m

−(1− 1
2m)

dq‖

∫ 1−(|q‖|+ 1
2m)2

0
πdq2

⊥ where m = k

kM
. (8.16)

At this point, pursuing the derivation with pencil and paper does not bring much
physical intuition to the description of the evolution of the correlation. Mathematica
[97] is however capable of giving plots with significant physical information. Fig. 8.3
represents the correlation time at constant energy computed using Mathematica for
different Kraichnan numbers 1−Kr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}.
In the large scales, the graphs show that the correlation time follows a k−1-scaling
law. In the small scale, the graphs show a rapid increase of the correlation time as
wavenumbers approach the maximal wavenumber. This sharp peak in the small scales
is related to the divergence of the energy when the Kraichnan number goes to one.
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In large scales, the correlation time follows the k−1-power law characteristic of
an energy-based correlation time described in eq. (8.10). However, as the Kraichnan
number goes to one, another scaling law appears in the correlation time which is
consistent with a k−

1
2 -power law. As shown in sec. 2.3, ideal fluids conserve two

quantities: energy and helicity. When the Kraichnan number goes to one, the helicity
becomes maximal. Using helicity, H, and the wavenumber, k, as only parameters, the
only time-scale that can be built is

τHk ∝
1√
kH

. (8.17)

The new scaling only concerns intermediate wavenumbers, 1−Kr � k/kM � 1, which
follow a k−

1
2 -scaling law. As the Kraichnan number approaches one, the intermediate

domain widens and the scaling appears on a wider range of wavenumbers. The critical
wavenumber where the transition between the k−

1
2 - and k−1-power law is reported in

the center panel of fig. 8.6.
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Figure 8.3 – Correlation time as a function of the wavenumber computed using the parabolic
hypothesis for 1−Kr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8} presented from left to
right and top to bottom. The full curve represents the results computed using Mathematica,
the dashed curve represents the k− 1

2 -scaling and the dotted line represents the k−1-scaling.

The derivation of the correlation time using the projection operator is able to give
the correlation of the velocity for highly helical flows. However, it is not able to access
the properties of the helical component of the velocity. In order to quantify these
properties, the correct framework is the Craya-Herring helical decomposition given in
eq. (2.20).

A few properties of the Craya-Herring tensor can help simplify the derivation. First,
the Craya-Herring tensor Cskspsqkpq is symmetric on its last two variables. Second, it is
equal to zero when (sp,p) and (sq, q) are equal. More formally, the properties can be
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written as

C
skspsq
kpq = C

sksqsp
kqp and C

skspsp
kpp = 0 . (8.18)

With the Craya-Herring decomposition, the average correlation of the temporal deriva-
tive of the velocity can be derived with less computation since all the components are
independent. The derivation leads to〈
|∂tūskk |

2
〉
ens

=
〈 ∑
k+p1+q1=0
sp1 , sq1

∑
k+p2+q2=0
sp2 , sq2

C
sksp1sq1
kp1q1

u
sp1
p1 u

sq1
q1

[
C
sksp2sq2
kp2q2

u
sp2
q2 u

sp2
q2

]∗〉
ens

(8.19)

=
∑

k+p+q=0
sp , sq

C
skspsq
kpq

[
C
skspsq
kpq + C

sksqsp
kqp

]∗ 〈
|uspp |2

〉
ens

〈
|usqq |2

〉
ens

(8.20)

= 2
∑

k+p+q=0
sp , sq

∣∣∣Cskspsqkpq

∣∣∣2 〈espp 〉ens 〈esqq 〉ens . (8.21)

To understand how the different triads interact, the sum over sp and sq can be
separated depending on the sign of the components using

Ssks1s2
m =

∑
k+p+q=0

sp=s1 , sq=s2

2
∣∣∣Cskspsqkpq

∣∣∣2 〈espp 〉ens 〈esqq 〉ens and Tsks1s2
m =

√√√√〈eskmkM〉ens
S
sks1s2
m

,

(8.22)

where Tsks1s2
m is the time-scale associated to Ssks1s2

m . To simplify the expressions, we
will also set Ss1s2 = S+s1s2

m + S−s1s2
m

Similarly to the direct method, the sum with the truncation constraint can be
carried out on the intersection of the two spheres presented in fig. 8.2 and the discrete
sum can be transformed into an integral using eq. (8.16). This final integral can be
computed using Mathmatica for the different helical triadic interactions as shown in
fig. 8.4 for highly helical flows. Instead of computing all the different possible triads
in the sum, the graphs show computations where the triads with different helical signs
are separated. The left panel of fig. 8.4 shows the three possible sums: i) S++ plotted
with discs, ii) S+− plotted with triangles and iii) S−− plotted with squares. The S−+

is not shown because it has exactly the same value as S+−.
These helical triadic sums can be related to a correlation time via the time-scale

defined in eq. (8.22). When Kr → 1, the S++ sum dominates the other terms and has a
k1-scaling at large wavenumbers consistent with a helicity-based sweeping effect, and a
k2-scaling at small wavenumbers consistent with an energy-based sweeping effect. All
the other terms follow a k2-scaling.

The center plot of fig. 8.4 shows the evolution of the S++ for different values of
Kraichnan numbers. As the Kraichnan number goes to one, the domain where the
sum follows a k2-scaling widens. The right plot of fig. 8.4 shows the evolution of
the correlation time, T++, built using the sum S++. Its evolution is consistent with
what has been shown on the evolution of the correlation time of the full velocity field
presented in the left panel of fig. 8.3.
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Figure 8.4 – Triadic interaction as a function of the wavenumber and associated correlation
time. Left) At Kr = 1− 10−6, plots of S−− with squares, S+− with triangle, S++ with discs,
k1 with a dashed line, k2 with a full line. Center) S++ plotted at Kr = 1 − 10−8 with discs,
at Kr = 1− 10−6 with triangles, at Kr = 1− 10−2 with squares, at Kr = 1− 10−2 with stars,
k1 with a dashed line, k2 with a full line. Right) T++ plotted at Kr = 1− 10−8 with discs, at
Kr = 1 − 10−6 with triangles, at Kr = 1 − 10−2 with squares, at Kr = 1 − 10−2 with stars,
k−

1
2 with a dashed line, k−1 with a full line.

8.2.3 Asymptotic expression
In this section, we derive analytically the Eulerian correlation time of the velocity field
when k � kM in two limits: i) Kr = 0 and ii)Kr → 1. In order to compute the average
of the correlation of the temporal derivative of the velocity, the following expression
has to be computed 〈

|∂tūskk |
2
〉
ens

= 2πkM 2 ∑
sp , sq

Iskspsqm , (8.23)

Iskspsqm =
∫ 1− 1

2m

−(1− 1
2m)

dq‖

∫ 1−(|q‖|+ 1
2m)2

0
dq2
⊥

∣∣∣Cskspsq(m, q⊥, q‖)∣∣∣2 〈espQ+

〉
ens

〈
e
sq
Q−

〉
ens

,

(8.24)

∣∣∣Cskspsq(m, q⊥, q‖)∣∣∣2= m2q2
⊥

8Q2
+Q

2
−

(
2q‖+sksp

(
sp+sq

2 (Q−−Q+)− sp−sq
2 (Q−+Q+)

))2
, (8.25)

Q =
√
q2
⊥ + q2

‖ , Q+ =
√
q2
⊥ +

(
q‖ + m

2

)2
and Q− =

√
q2
⊥ +

(
q‖ − m

2

)2
. (8.26)

The kM 2 coefficient comes from the re-scaling of the term spp − sqq in the Craya-
Herring tensor. When q‖ is of order one and m � 1, the Q± terms can be simplified
using Q− ' Q+ ' Q. Setting cos(θ) = q‖

Q , the expression of the triad tensor can be
rewritten as∣∣∣C±++(m, q⊥, q‖)

∣∣∣2 =
∣∣∣C±−−(m, q⊥, q‖)

∣∣∣2 = m2

2

(
q⊥
Q

q‖
Q

)2
= m2

2 A1(cos θ) (8.27)

∣∣∣C++−(m, q⊥, q‖)
∣∣∣2 =

∣∣∣C+−+(m, q⊥, q‖)
∣∣∣2 = m2

2

(
q⊥
Q

q‖ −Q
Q

)2
= m2

2 A2(cos θ) (8.28)

∣∣∣C−+−(m, q⊥, q‖)
∣∣∣2 =

∣∣∣C−−+(m, q⊥, q‖)
∣∣∣2 = m2

2

(
q⊥
Q

q‖ +Q

Q

)2
= m2

2 A3(cos θ) (8.29)

A1(X) = (1−X2)X2 , A2(X) = (1+X)(1−X)3 , A3(X) = (1−X)(1+X)3 . (8.30)
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In the case of the plus-plus and minus-minus triadic interactions, the angular functions
are identical since the curl is a pseudo-vector operator. It can also be noticed that
A2(cos θ) = A3(cos(θ+ π)), which is not surprising since, when it occurs, the vector q
changes hemisphere. The angular functions A1(cos θ) and A2(cos θ) are represented in
fig. 8.5.

Figure 8.5 – Color-plot of the angular function. Left) A1(cos θ). Right) A2(cos θ).

With this new formulation, the correlation of the temporal derivative of velocity
can be computed analytically when Kr = 0 and in the limit where m � 1. When
Kr = 0, the average energy per helical component is

〈
e
sq
q
〉
ens = α−1 and the average

correlation of the temporal derivative of the velocity can be written as〈
|∂tūskk |

2
〉
ens

= 2kM 2
∫ π

0
sin(θ)dθ

∫ 1

0
Q2dQα−2m2

2 [4A1 + 2A2 + 2A3] (cos θ) (8.31)

=
(
mkM
α

)2
[∫ 1

0
dQ

3

3

][
4
∫ 1

−1
(1−X2)X2 + (1 +X)(1−X)3dX

]
= 112

45

(
mkM
α

)2
. (8.32)

The total energy of the system is given by E = 4π
3 CN2α−1 where CN is a constant

that depends on the resolution N . Therefore, at Kr = 0 for m � 1, the parabolic
correlation time can be written as

τ skk =

√√√√ 〈
e
sq
q
〉
ens〈

|∂tūskk |2
〉
ens

=

√√√√√ α−1

112
45

(
mkM
α

)2 =
√

45α
112

1
k

=

√√√√15π
(
N
2

)3

14
1

k
√
E
. (8.33)

The correlation time follows the energy-based sweeping effect scaling law.
When the Kraichnan number is different from zero, the Craya-Herring tensor re-

mains the same. However, the energy statistics are modified and depend on Kr, Q+
and Q− 〈

e
sp
Q±

〉
ens

= α−1

1− spKrQ±
. (8.34)

The derivation is more difficult. It can still be carried out when the approximation
Q+ = Q− = Q does not encounter any singularity. In the case of minus-minus tri-
adic interactions, the average correlation of the temporal derivative of velocity can be
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written as

S−− = 2
(
mkM
α

)2 [∫ π

0
A1(θ) sin(cos θ)dθ

] [∫ 1

0
Q2(1 + KrQ)−2dQ

]
(8.35)

= 2
(
mkM
α

)2 4
15

Kr(Kr+2)
Kr+1 −2 ln(Kr+1)

Kr3 , (8.36)

where S−− denotes the sum of minus-minus triadic interactions.
The same computation cannot be done for the other interactions because the av-

erage energy per mode diverges near the bounds of the integral on q⊥ and q‖. This
divergence prevents us from simply neglecting m in front of one of the bounds of the
integral. Computing the plus-plus interaction requires to use the exact formulation of
the triadic interaction given in eq. (8.23-8.26). The plus-plus interaction can then be
written as

S++ = 2π
(
mkM
α

)2
I (8.37)

where I =
∫ 1− 1

2m

−(1− 1
2m)

dq‖

∫ 1−(|q‖|+ 1
2m)2

0
dq2
⊥ψ(q‖, q⊥,Kr) , (8.38)

with ψ(q‖, q⊥,Kr) =
q2
⊥

((
q‖ + Q−−Q+

2

)2
+
(
q‖ −

Q−−Q+
2

)2
)

2Q2
−Q

2
+ (1−KrQ−) (1−KrQ+)

. (8.39)

The function ψ is even on its two first variable: ψ(q‖, q⊥,Kr) = ψ(q‖,−q⊥,Kr) and
ψ(q‖, q⊥,Kr) = ψ(−q‖, q⊥,Kr). Therefore the computation simplifies to

I = 4
∫ 1− 1

2m

0
dq‖

∫ 1−(q‖+ 1
2m)2

0
dq2
⊥ψ(q‖, q⊥,Kr) (8.40)

When Kr → 1 and m → 0, the integral I is dominated by the vicinity of the
maximum of the function ψ. To pursue the computation, we will introduce the small
parameter ε = 1−Kr and the variable S = 1− (q2

‖+q2
⊥) and S′ = 1− (q2

⊥+(q‖+ m
2 )2).

When ε � 1 and m � 1, the mass of the integral is located on the edge of the
integration domain, that is for S � 1. With this approximation, we get

Q± =
√
q2
⊥ + (q‖ ±

m

2 )2 '
√
q2
⊥ + q2

‖ ± q‖m (8.41)

'
√

1− S ± q‖m ' 1 +
−S ± q‖m

2 (8.42)

To get the next approximation, q‖ is considered of order one and ε, m and S are
neglected in front of one. The ψ function has the following expansions

ψ(q‖, 1− q2
‖ − S, 1− ε) '

(1− q2
‖)q

2
‖(

ε+ S+q‖m
2

) (
ε+ S−q‖m

2

) , (8.43)

ψ(q‖, 1− q2
‖ − S

′, 1− ε) '
(1− q2

‖)q
2
‖(

ε+ S′+2q‖m
2

) (
ε+ S′

2

) . (8.44)
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The computation of integral I can be carried

I ' J = 4
∫ 1− 1

2m

0
dq‖

∫ 1−q2
‖

mq‖

dSψ(q‖, 1− q2
‖ − S, 1− ε) (8.45)

The integral J can be computed analytically in the two asymptotic regimes, when
m� ε or when ε� m. If m� ε, we get

J =
m�ε

Jε = 4
∫ 1− 1

2m

0
dq‖

∫ 1−q2
‖

mq‖

dS
(1− q2

‖)q
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2

) (
ε+ S

2

) (8.46)

= 4
∫ 1− 1
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4
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If ε� m, we get

J =
ε�m

Jm = 4
∫ 1− 1
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0
dq‖

∫ 1−q2
‖

0
dS′

(1− q2
‖)q
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) (
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= 4
∫ 1− 1
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= 8
m

∫ 1

0
dq‖(1− q2

‖)q‖
(

ln(q‖)− ln
(
ε

m

))
(8.55)

= − 8
m

( 3
16 + 1

4 ln
(
ε

m

))
' − 2

m
ln ε (8.56)

The critical wavenumber at which the correlation time changes power law can be
computed using the intersection of the two regimes

Jε = Jm ⇐⇒ 16
15

1
ε

= − 2
m

ln ε ⇐⇒ m = −15
8 ε ln ε (8.57)

thus kc
kM

= −A(1−Kr) ln(1−Kr) with A = 15
8 . (8.58)
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The integral I can therefore be approximated by the harmonic average of the two
regimes

I ' −2 ln ε
m−Aε ln ε with A = 15

8 . (8.59)

Consequently, whenKr → 1 and k/kM → 0, it is possible to compute an asymptotic
expression of the correlation time with the Craya-Herring helical decomposition [26,
27]. In this limit, most of the energy is concentrated in the positive helical components
of the modes near kM . The interactions of these modes are dominant in the temporal
evolution of the velocity and give a theoretical prediction for the correlation time

T++(k, sk) =

√√√√ 〈
|uskk |2

〉
ens〈

|∂tuskk |2
〉
ens

=
Kr→1
k/kM→0

√√√√√ α
(

k
kM
−A(1−Kr) ln(1−Kr)

)
2πk2

(
1− (skKr) k

kM

)
(−2 ln(1−Kr))

(8.60)

with A = 15
8 and α = argtanh(Kr)−Kr

Kr3E
. (8.61)
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Figure 8.6 – Left) Correlation time as a function of the wavenumber for 1 − Kr = 10−6.
The semi-analytic results are represented with the full line with dots in dark for the positive
helical components and in bright for the negative helical components. The k−1/2-scaling law
is represented with the dashed line. The k−1-scaling law is represented with the dotted line.
Center) Critical wavenumber as a function of 1−Kr, the semi-analytic results are represented
with dots and the A(1 − Kr) ln(1 − Kr)-scaling law is represented with the full line. Right)
Evolution of the correlation time as the Kraichnan number increases at fixed energy for the
positive helical component, for Kr ∈ {0; 1 − 10−1; 1 − 10−2; 1 − 10−4; 1 − 10−8}, represented
by diamonds, stars, squares, triangles and discs respectively. The dotted line represents the
k−

1
2 -scaling and the full line represents the k−1-scaling.

The left panel of fig. 8.6 represents the evolution of the correlation time computed
using the parabolic hypothesis for a Kraichnan number near one : Kr = 1 − 10−6.
The correlation time of the positive and negative helical components of the velocity
are represented. The correlation of the velocity is not shown but in the highly he-
lical limit Kr → 1, most of the energy is located in the positive helical component
of velocity, consequently the velocity modes have the same correlation time as their
positive helical components. The center panel of fig. 8.6 represents the evolution of
the critical wavenumber, i.e. where the correlation time changes scaling law from k−1

to k−
1
2 . The fit on the graph indicates that the critical wavenumber follows closely the

A(1 − Kr) ln(1 − Kr) prediction. The right panel of fig. 8.6 represents the evolution
of the correlation time at fixed total energy E for different Kraichnan numbers. As
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the Kraichnan number goes to one, the correlation time in the small scales increases
and the correlation in the large scales decreases. Increasing helicity slows down the
dynamic of the small scale modes and makes the large scale dynamic quicker. Even
though helicity does not appear explicitly in eq. (8.61), a k−

1
2 -scaling appears when

1−Kr � k/kM � 1. This scaling is similar to the helicity-based correlation time and
appears at Kraichnan numbers characteristic of highly helical flows.

8.3 Spatio-temporal measurements (description of a new pro-
cedure)

In order to measure the correlation function and compute the correlation time, we
developed a method similar to that used to produce spatio-temporal spectrum in the
profilometry experiments described in [98, 99, 96]. Fig. 8.7 represents the experimental
setup of the gravito-capillary wave experiment done by Cobelli et al. in [98]. Fig. 8.8
represents the experimental setup of the thin plates wave experiment done by Miquel
et al. in [99]. In profilometry experiments, a sample image is projected on surface with
a video-projector which is recorded by a camera. Analyzing the deformation of the
surface, the profile of the height of the surface can be reconstructed. With a temporal
record of the height of the surface, the spatio-temporal spectrum of the system can be
computed using Fourier transform in space and in time.

Figure 8.7 – Setup of the profilometry of the gravito-capillary wave experiments of Cobelli et
al. (2009) and Leoni et al. (2015). Left) Scheme of the experimental setup. Right) Sample
image of the fringes projected onto the liquid surface as registered by a camera. The figures
are extracted from [98, 96].

Fig. 8.9 represents in color-plot the spatio-temporal spectrum computed from the
experiments on thin plates waves and gravito-capillary waves. The purple line in the
left panel of fig.8.9 and the red line in the right panel of fig.8.9 are characteristic of
the dispersion relation of the system. Indeed, let us consider, for instance, the one-
dimensional D’Alembert wave-equation on a passive scalar φ

0 = ∂2
ttφ− c2∂2

xxφ ⇐⇒ 0 = (ω2 − c2k2)φkω, (8.62)

where c, ω, k and φkω denote the celerity of the wave, the angular frequency, the
wavenumber and the k−ω Fourier component of the passive scalar. On the one hand,
if ω2 6= c2k2, the Fourier component φkω must be equal to zero. On the other hand,
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Figure 8.8 – Setup of the plate profilometry in the thin plates wave experiment of Miquel et
al. (2014). The figures are extracted from [99].

if ω2 = c2k2, the Fourier component φkω can be different from zero. This property
can be visualized on spatio-temporal spectral. The non-zero parts of the spectrum
correspond to regions of parameters where the dispersion relation is satisfied and the
Fourier component can be different from zero. In the other regions, the dispersion
relation is not satisfied.

Figure 8.9 – Experimental spatio-temporal spectrum. Left) Experimental spatio-temporal
spectrum from the experiment of Miquel et al. (2014). Right) Experimental spatio-temporal
spectrum from the gravito-capillary wave experiment of Leoni et al. (2014). The figures are
extracted from [99] and [96] respectively.

The computation of the spatio-temporal spectrum can be used to compute the
power spectrum in DNS in fluid mechanics. Similarly to computation of correlation
function for the stochastic Langevin equation at eq. (8.9), the power spectrum can be
used to compute the correlation function via the Wiener-Khinchin theorem.

In order to produce spatio-temporal spectrum, the velocity field must be outputted
from the code at a regular time-step to form a data-set in the k − t space. However,
keeping in memory the entire N3 data-set, N being the resolution, is too demanding
in computational memory. To reduce the volume of the data-set without loosing the
properties of the different modes, only the planes at kx ∈ {0; 1}, ky ∈ {0; 1} and



96 Chapter 8. Elements of context: Time correlation

kz ∈ {0; 1} are outputted for the Taylor-Green symmetric TYGRE code and kx = 0,
ky = 0 and kz = 0 for the [0; 2π]3-periodic GHOST code. The velocity time series are
then multiplied by an apodization function [100] before being Fourier-transformed to
form data-set in the k − ω space. The apodization procedure is meant to smooth the
discontinuities at the beginning and end of the time series of the data in order to limit
Gibbs sampling effect when carrying out the temporal Fourier transform.

The power spectrum s(k, ω) can then be computed by taking the modulus square
of the velocity and summing over the different Cartesian directions. The isotropic
power spectrum S(k, ω) is then computed by summing the power spectrum over the
modes of same wavenumber with a binning of spacing one in wavenumber using the
formula bk+ 1

2c to find the bin number. The reconstruction of the spectrum using only
three planes can only be done because the flow is isotropic. The correlation function
Γ(k, t) is computed using Wiener-Khinchin theorem by doing a Fourier transform of
the isotropic power spectrum and normalizing the function. Finally, the correlation
time can be computed by doing a fit of the correlation function in a well-resolved
domain not too close to the maximum. We chose to measure the correlation time
using the time when the correlation function reaches half-height, τ 1

2
, and using the

Poisson distribution normalization for the correlation time τ = τ 1
2
/ ln(2). The same

algorithm can be used to find the correlation function of the positive and negative
helical modes of the velocity field using eq. (2.19). The steps of the procedure are
summed up in the algorithm presented in fig. 8.10.

Require: u(k, n∆t), n, ∆t,
1: u(k, ω) = F[u(k, n∆t)apodization(n,∆t)](ω)
2: s(k, ω) =

∑
i |ui(k, ω)|2

3: S(k, ω) =
∑
k 11(k − 1

2 < |k| ≤ k + 1
2)s(k, ω)

4: γ(k, t) = F−1[S(k, ω)](t)
5: Γ(k, t) = γ(k, t)/γ(k, 0)
6: τ(k) = Solve[t,Γ(k, t), 1/2]

Figure 8.10 – Algorithm to compute the correlation time. F denotes the discrete Fourier
transform, F−1 denotes the discrete inverse Fourier transform, 11 denotes the characteristic
function satisfying 11(bool) = 1 if bool is true and 0 otherwise, apodization(n,∆t) denotes
an apodization function and Solve[t,Γ(k, t), 1/2] denotes a function that finds the smallest
positive t satisfying Γ(k, t) = 1/2. The reconstruction of the spectrum using only three planes
can only be done because the flow is isotropic.

In order to get a better grasp of the procedure, fig. 8.11 presents spatio-temporal
color-plots of the power spectrum S(k, ω) on the left panel and the correlation function
Γ(k, t) on the right panel for Taylor-Green symmetric DNS of the truncated Euler
equation. In the large scales, the power spectrum function is localized near zero and
the correlation function spans on a large range of time. The small scales have a totally
opposite trend. The opposite behaviors of the power spectrum and the correlation
function can be explained with standard Fourier transform properties. On the other
hand, the change of trends between the large scales and the small scales is explained
by the sweeping effect [95]. In order to quantify more precisely the sweeping effect, the
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Figure 8.11 – Spatio-temporal spectrum of Taylor-Green symmetric DNS of the truncated
Euler equation. Left) Power spectrum S(k, ω). Right) Correlation function Γ(k, ω).

correlation function has to be computed and the correlation time has to be extracted.
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Figure 8.12 – Temporal correlation properties of Taylor-Green symmetric DNS of the truncated
Euler equation. Left) Correlation function as a function of time in unit of correlation time.
Right) Correlation time as a function of wavenumber.

The correlation function of different velocity modes are shown in the left panel of
fig. 8.12. The time of each correlation function has been re-scaled by the correlation
time measured using the time where the correlation function reaches half-height. As
shown in the left panel of fig. 8.12, the correlation functions superpose on a curve
for times satisfying 0 ≤ t ≤ τk/2. The agreement of the curves is not as clear for
τk/2 < t < τk and is off for τk ≤ t. However, the results coming from the domain
where the curves collapse are already important. First, this collapse at small time
confirms the use of the parabolic hypothesis made in eq. (8.12). Second, the good
agreement of the curve until τk also confirms the use of the time at half-height as a
proxy to measure the correlation time plotted on the right panel of fig. 8.12. The right
panel of fig. 8.12 shows that the correlation follows a k−1-scaling law characteristic of
sweeping effect with an energy-based correlation time.

X
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Chapter 9
Helicity effects on large scale
correlation time in turbulence
(submitted)

This chapter presents new results.
Solutions of the Navier-Stokes equation at scales larger than the forcing scale as

well as solutions of the truncated Euler equation have been conjectured into thermalize
to absolute equilibrium statistics. Using direct numeric simulations (DNS) on Taylor-
Green flows and general-periodic flows, we present results on their probability density
function, energy spectrum, auto-correlation function and correlation time. With the
hypothesis that the correlation time of the auto-correlation function is given by its
short-time parabolic approximation, we are able to propose an analytic expression
which describes the correlation time for the truncated Euler equation. In the case of
highly helical flows, this model is able to predict a new scaling law for the correlation
time based on helicity. This scaling law is also observed in DNS. We report that
large scale modes in forced Taylor-Green symmetric flows follow the same properties
as solutions of the truncated Euler equation. General-periodic helical flows also have
similarities between the solutions of the two equations but their largest scales can
deviate from absolute equilibrium theory.

9.1 Introduction

Since Kolmogorov’s theory on turbulence in 1941 [4, 3], numerical and experiemental
studies [5, 6] have reproduced the energy spectrum power law predicted by the theory:
E(k) ∝ ε2/3k−5/3 where k and ε denote the wavenumber and the energy dissipation
respectively. Most investigations focused on the inertial range, i.e. for wavenumbers
satisfying kf < k < kd where kf and kd denote the forcing wavenumber and the viscous
dissipation wavenumber respectively. To maximize the range of the inertial range, most
experiments and direct numeric simulations (DNS) forced the flow at the largest scale
of the system. Recently, Dallas et al. [101] performed turbulent DNS with enough
resolution to model flows with a scale separation between the forcing scale `f ∝ 1/kf
and the domain scale L (from now on referred to as the large scales). In their study,

99
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Dallas et al. were able to identify the power laws of the energy and helicity spectrum
in the large scales for statistically stationary solutions.

In the inertial range, the dynamic of the system is often described using the image
of the Richardson cascade [3] where large scales transfer energy to smaller scales by
breaking big eddies into smaller eddies. This description cannot be used to describe
the large scale dynamic. Indeed, large scales do not have a direct flux of energy coming
from the forcing scale contrary to the inertial range. Some arguments [3] suggest that
in the large scales, a statistical steady state is reached when the eddy noise caused
by the turbulent scales balances viscosity. In [10, 3], Forster et al. derived a model
using renormalization theory which indicates that large scale modes should follow the
dynamic of absolute equilibrium solutions of the truncated Euler equation (TEE) [11].
Starting from the TEE and using the fluctuation-dissipation theorem, Kraichan and
Chen [12] showed that the dynamic of the absolution equilibrium solutions of the TEE
should themselves resemble the large scale modes of viscous flows. Contrary to viscous
flows, the absolute equilibrium theory was developed for incompressible inviscid flows
following the TEE

∂tu+ PkM [u ·∇u+∇P ] = 0 and ∇ · u = 0 and P = p/ρ , (9.1)

where u, P and kM denote the velocity field, the pressure field and the truncation
wavenumber respectively. The operator PkM enforces a spherical truncation in the
TEE. It acts in Fourier space as a small scale filter. The modes whose wavenumbers
satisfy |k| ≤ kM , are unaffected by the projection whereas the amplitudes of the other
modes are all set to zero. Despite keeping the amplitude of the truncated modes to zero,
the projection conserves the total energy and helicity of the flows [102]. Some temporal
properties of this system have been studied numerically in [103, 104]. Eq. (9.1) needs
to be contrasted with the full Navier-Stokes equation (NSE) governing the evolution
of viscous flows and given by

∂tu+ (u ·∇)u = −∇P + ν∆u+ F with ∇ · u = 0 , (9.2)

where u, P , F and ν denote the velocity field, the pressure field, the forcing field and
the viscosity respectively. Note that unlike the TEE, in the NSE, energy needs to be
supplied to compensate viscous dissipation in order to have non-zero steady states.

DNS of the TEE performed in [103, 104] checked the absolute equilibrium pre-
diction of the energy and helicity spectrum predicted in [11]. Large scale modes of
solutions of the NSE have been also reported [101] to have spectra in agreement with
the absolute equilibrium theory. The equivalence between the temporal dynamic of the
large scale modes of solution of the NSE and the absolute equilibrium solutions of the
TEE has not yet been investigated. And the equivalence of the temporal dynamic of
the two systems is the bedrock of the theory whereas the spectrum is a consequence.
Other mechanisms can generate energy and helicity spectrum, which results in an
equivalence between the large scale modes of solution of the NSE and the absolute
equilibrium solutions of the TEE. Energy can be transported to the large scales with
other means than eddy noise. For instance, the study of the linear instabilities of
helical flows forced at small scales [86] has shown that the dynamic of the large scale
modes can be coupled to the forcing mode. This coupling could create differences
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between the temporal evolution of the large scale modes of the solutions of the NSE
and that of absolute equilibrium solutions of the TEE. The correlation time of the
system is a good measurement to asses the temporal dynamic of large scale modes. In
pseudo-spectral DNS, the Eulerian correlation time of the modes of the velocity field
is the best suited to describe the temporal dynamic of system. Numerical solutions
have already been used to analyze the temporal evolution of statistical equilibrium in
the statistically stationary regime without helicity in [94] and in the transitory regime
with helicity in [104]. But the characterization of the correlation time has not yet been
studied.

Our aim in this study is to give analytic and numeric results concerning the cor-
relation time of incompressible flows solutions of the TEE and the NSE in the large
scales. We will start by presenting an analytic prediction of the correlation time for
the TEE taking into account the conservation of energy and helicity. This prediction
assumes: i) that the helical components of the velocity field are independent Gaus-
sian variables and ii) that the correlation time can be computed using a short time
parabolic approximation of the correlation function. Using DNS solution of the TEE
with and without helicity, we will validate these assumptions by presenting the energy
spectrum, the probability density function (PDF) and the correlation times of abso-
lute equilibrium solution of the TEE. We will also show that, when the energy is not
concentrated in the large scales, the correlation time always follows a time-scale based
on total energy whereas it can follow time-scale based on helicity when the energy is
concentrated in the large scales. Finally, we will present the energy spectrum, PDF
and correlation time of DNS solutions of the NSE with helical ABC forcing [15] and
non-helical Taylor-Green (TG) forcing. We will show that the modes in the large scales
follow Gaussian statistics, that the statistical equilibrium statistics and energy-based
correlation time can be observed for TG forcing but that ABC forced flows show trends
deviating from absolute equilibrium statistics.

9.2 Results (new results)

9.2.1 Absolute equilibrium and Thermalization theory

9.2.1.1 Energy and helicity spectra

The derivation of absolute equilibrium statistics for helical flows was carried out by
Kraichnan [90, 11] in an analogy to canonical ensembles in statistical thermodynamics
[88]. Similarly to the micro-canonical ensemble, the TEE conserves the total energy,
E. In addition, the TEE also conserves the total helicity, H, which is another global
quadratic quantity in velocity

E = 1
L3

∫
|u|2dr , H = 1

L3

∫
u · ωdr (9.3)

where L3 =
∫
dr and ω =∇×u . (9.4)

Note that, in the definition of the energy, the pre-factor 1
2 has been omitted to simplify

the expression of the statistics in the rest of the document. In analogy with the
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thermodynamic canonical ensemble, in a statistically steady state, absolute equilibrium
solutions of the TEE will correspond to a flow in a state u with probability P(u) that
follows the Boltzmann-Gibbs distribution

P(u) = 1
Z
e−C(u). (9.5)

The functional C(u) is a linear combination of the energy E and the helicity H of the
flow

C(u) = αE + βH = α

(
E −Kr

H

kM

)
and Kr = −βkM

α
(9.6)

where α and β are the two parameters introduced by Kraichnan in analogy to the
micro-canonical ensemble. These parameters unequivocally define a class of absolute
equilibrium solutions of the TEE with a fixed energy E and helicity H. Kr is the
only dimensionless number that can be built using α, β and kM . It will be referred
to as the Kraichnan number. The Kraichnan number indicates the degree of helicity
of the flow. When Kr=0, the flow does not have helicity, whereas when |Kr| = 1 the
flow is maximally helical. As a consequence of the definition of C(u), velocity modes
are independent Gaussian variables. The partition function Z used as normalization
in eq. (9.5) is defined by

Z =
∫

Due−C(u) . (9.7)

Similarly to statistical thermodynamics, Boltzmann-Gibbs weights can be used to
compute statistical averages over the space of incompressible flows. The average of a
generic observable f(u) is then given by

〈f(u)〉 = 1
Z

∫
Duf(u)e−C(u) (9.8)

In the case of the TEE, the truncation in wavenumber implies that the functional
integral can be done over a finite number of Fourier modes ũk that satisfy the incom-
pressibility condition k · ũk = 0. This last condition can be simplified by using the
Craya-Herring [26, 27] helical decomposition. Each Fourier mode ũk is written as the
sum of two modes of opposite helicity: ũk = ũ+

k + ũ−k , where

ũ±k = 1
2

[
ũk ±

ω̃k
k

]
(9.9)

with ω̃k = ik × ũk. This leads to two independent complex amplitudes ũ±k for each
Fourier mode of an incompressible flow.

Using this statistical average of eq. (9.8), the average energy and helicity of the
modes of the flow can be derived analytically. Since the PDF of every mode of the
velocity field follows a Gaussian distribution, the average energy 〈ek〉 = 〈|ũk|2〉 and
average helicity 〈hk〉 = 〈ũ−k · ω̃k〉 of each mode are given by

〈ek〉 = 2α−1

1−
(
Kr k

kM

)2 and 〈hk〉 = β

α

2α−1k2

1−
(
Kr k

kM

)2 = β

α
k2〈ek〉 . (9.10)
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WhenKr → 1, the energy is confined in the modes in the smallest scales of wavenumber
near kM . The absolute equilibrium distribution can be expressed using the Craya-
Herring [26, 27] helical decomposition for the energies 〈e±k 〉 = 〈

∣∣∣ũ±k ∣∣∣2〉 and helicities
〈h±k 〉 = ±k〈e±k 〉

〈e±k 〉 = α−1

1− (±)Kr k
kM

and 〈h±k 〉 = ±α−1k

1− (±)Kr k
kM

. (9.11)

When Kr → 1, the energy is confined in the small scale modes and more precisely in
their positive helical component.

9.2.1.2 Correlation times of absolute equilibrium solutions

Absolute equilibrium statistics are able to predict the ensemble average of the energy
and helicity per mode. However they do not characterize the temporal properties of
the system. The computation of statistical equilibrium only requires the knowledge of
the conserved quantities of the TEE and not the equation itself. To describe with more
depth the properties of the solutions of the TEE or the NSE in the thermalization
domain, the temporal properties of the flows must be analyzed.

In [103], Cichowlas studied the correlation time of absolute equilibrium solutions
of the TEE without helicity. It was shown that the correlation time (defined more
precisely below: eq.(9.16)) should follow a time-scale based on the energy E of the flow

τEk ∝ k−1E−1/2 (9.12)

where τEk is the correlation time of the velocity mode of wavevector k and is based on
the energy.

In the present work, we extend this result for flows with an arbitrary quantity of
helicity and show that a new power law emerges when the flow is strongly helical. This
new power law is based on the helicity H of the flow

τHk ∝ k−1/2H−1/2 , (9.13)

where τHk is based on the helicity. To be valid, this new power law requires highly helical
flows and wavenumbers in the range kc � k � kM where kc ∝ kM (1−|Kr|) ln(1−|Kr|),
while the non-helical scaling law of eq. (9.12) is valid for k � kc. In what follows, we
give a sketch of the derivation of eq. (9.12) and (9.13) while the full derivation is
presented in appx. 9.4.1.

The parabolic correlation time τk is built using the short time approximation of
the correlation function. The temporal correlation function Γk(t) of a mode can be
expressed as

Γk(t) = u∗k(s)uk(s+ t)
|uk(s)|2

where f(s) = lim
T→∞

1
2T

∫ T

−T
f(s)ds . (9.14)

The correlation function satisfies the relations Γk(0) = 1 and Γk(t) = Γk(−t). If the
system looses memory as time elapses, the correlation function also satisfies Γk(∞) = 0.
The rule of thumb is that the correlation function assesses how fast a mode de-correlates
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from its initial value. Using the Taylor expansion of the correlation function near t = 0,
the correlation function can be written as

Γk(t) = 1− 1
2 t

2τ−2
k + . . . with τ−2

k = −u
∗
k(s)∂2

t uk(s+ t)|t=0

|uk(s)|2
, (9.15)

where τk corresponds to the correlation time. The term −u∗k(s)∂2
t uk(s+ t)|t=0 can

be rewritten as |∂tuk(s+ t)|2t=0 using an integration by parts. Assuming that the
truncated euler dynamical system is ergodic, the averages over time can be replaced
by the statistical averages defined in eq. (9.8). The correlation time can then be
expressed as

τk =
√
〈|uk|2〉
〈|∂tuk|2〉

. (9.16)

The expression of 〈|uk|2〉 is given by the absolute equilibrium statistics. On the
other hand, the expression of 〈|∂tuk|2〉 can be computed using the temporal evolution
equation of the mode given by eq. (9.1) in the case of the TEE. The property that
the modes of the velocity field are independent Gaussian variables is used to compute
the thermodynamic averages.

In the limit where Kr → 1 and k/kM → 0, it is possible to compute an asymptotic
expression of the correlation time with the Craya-Herring helical decomposition [26, 27]
(see appx. 9.4.1). In this limit, most of the energy is concentrated in the positive helical
components of the modes near kM . The interactions of these modes are the dominant
terms in the temporal evolution equation and give a theoretical prediction for the
correlation time

τk '

√√√√ 〈|u+
k |2〉

〈|∂tu+
k |2〉

=
Kr→1
k/kM→0

√√√√A(1−Kr)− k
kM ln(1−Kr)

4πα−1k2(1− skKr k
kM

)
(9.17)

with A = 15
8 and α = tanh−1(Kr)−Kr

EtotKr3 . (9.18)

The left panel of fig. 9.1 represents the correlation time τk as a function of k for
a Kraichnan number near one: Kr = 1 − 10−6. Both power laws k−1 and k−1/2 are
represented. The k−1-power law is valid in the largest wavenumbers: k � kc, while
the k−1/2-power law is valid for an intermediate range of wavenumber: kc � k � kM .
The center panel of fig. 9.1 represents the dependence of the transition wavenumber
kc with 1 − Kr. The value of the transition wavenumber was estimated using the
intersection of the two power laws. The dark curve on the graph indicates that the
critical wavenumber follows closely the A(1 − Kr) ln(1 − Kr) prediction. The right
panel of fig. 9.1 represents the evolution of the correlation time at different Kraichnan
numbers for fixed total energy Etot. As Kr → 1, the correlation time in the small
scales increases and the correlation time in the large scales decreases. For absolute
equilibrium solutions of the TEE, increasing the helicity slows down the dynamic of
the small scales and makes the dynamic of the large scales more rapid. Even though
the helicity does not appear explicitly in eq. (9.18), the correlation time has a k−

1
2 -

scaling for intermediate wavenumbers when 1 − Kr � k/kM � 1. This scaling is
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Figure 9.1 – Left) Correlation time as a function of the wavenumber for 1−Kr = 10−6. The
results are represented with the full line with dark dots for the positive helical components and
in bright dots for the negative helical components. The k−1/2-scaling law is represented with
the dashed line. The k−1-scaling law is represented with the dotted line. Center) Transition
wavenumber as a function of 1−Kr, the semi-analytic prediction is represented with dots and
the A(1 −Kr) ln(1 −Kr) scaling law is represented with the full line. Right) Dependence of
the correlation time for the positive helical component. The Kraichnan number is increased at
fixed energy: Kr ∈ {0; 1− 10−1; 1− 10−2; 1− 10−4; 1− 10−8}, represented by diamonds, stars,
squares, triangles and discs respectively. The dotted line represents the k− 1

2 -scaling law and
the full line represents the k−1-scaling law.

similar to the helicity-based correlation time (see eq. (9.13)) and appears for a range
of Kraichnan numbers corresponding to highly helical flows.

9.2.2 Truncated Euler DNS
In the previous subsection, we discussed some predictions on the properties of the PDF,
the standard derivation and the correlation time of solutions of the TEE. We will now
check their validity in general-periodic flows with and without TG symmetries [105].
The DNS with TG symmetries are performed using the pseudo-spectral code TYGRES
[106] and those without TG symmetries were performed using the pseudo-spectral code
GHOST [52, 53]. The major advantage of studying flows with TG symmetries is that
the symmetries can be used to gain a factor 32 both in storage and execution time.
However, flows with TG symmetries have a total helicity equal to zero and consequently
always have a Kraichnan number equal to zero. In order to study helical flows, DNS
have to be performed in the general-periodic domain without TG symmetry. This last
configuration will be referred to as general-periodic flow in opposition to TG symmetric
flows.

9.2.2.1 No helicity: inviscid Taylor-Green flows

The first flows used to probe the statistical properties of the TEE have TG symmetries
that impose the total helicity to be equal to zero. As a consequence of TG symmetries
[107], the Fourier expansion of the flow can be expressed with the following simplified
expression uxruyr

uzr

 =
∞∑

kx=0

∞∑
ky=0

∞∑
kz=0

uxk × sin kxx cos kyy cos kzz
uyk × cos kxx sin kyy cos kzz
uzk × cos kxx cos kyy sin kzz

 , (9.19)

where uk ∈ R3 if kx, ky, kz are all odd or all even integers and uk = 0 otherwise. All
the properties of the Fourier coefficients related to TG symmetries can be found in the
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appendix of [107]. Specific properties useful to understand the number of independent
variables of TG symmetric flows are presented in appx.9.4.2.

Incompressible random flows with TG symmetries were used to initialize the simu-
lations. Since TG symmetric flow do not have helicity (H = 0 and Kr = 0), thermal-
ization theory predicts that they should follow

〈ek〉 = 2α−1 thus E(k) = 8πk2α−1 and τk =
k/kM→0

√
45α
112

1
k
. (9.20)
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Figure 9.2 – Left) PDF of the amplitude of the velocity of modes with one degree of freedom
of Taylor-Green symmetric DNS in semi-logarithmic scale. Right) PDF of energy of the modes
of Taylor-Green symmetric DNS of the truncated Euler equation in logarithmic scale: (thick)
theoretical predictions, (thin dashed) one degree of freedom, (thin full) two degrees of freedom.

The first hypothesis in the absolute equilibrium theory is that the components of
velocity are independent Gaussian variables. As detailed in appx.9.4.2, in TG flows,
the even modes with one of their components equal to zero – i.e. of the form (0, ky, kz),
(kx, 0, kz) or (kx, ky, 0) – and the xy-diagonal modes – i.e. of the form (k⊥, k⊥, k‖) –
both only have one degree of freedom corresponding to their real amplitude. All other
TG modes have two degrees of freedom. To test this assumption, temporal series of the
modes are recorded and analyzed to extract the PDF. PDFs of modes with one degree
of freedom are presented in the left panel of the fig. 9.2 at different wavenumbers. On
the semi-logarithmic scale, the distributions of the modes follow the parabolic trend
characteristic of Gaussian distribution. The fluctuations at the tail of the distribution
are larger for small wavenumbers, which gives an indication that the large scales may
have a larger correlation time. The right panel of fig. 9.2 represents the distribution
of energy of the different velocity modes. By definition, the energy is the sum of the
square of the velocity components. If the components of velocity are independent
Gaussian variables, the distribution of energy must follow a χ2

g-distribution [93]

χ2
g(X) = 1

2
g
2 Γ(g2)

X
g
2−1e−

X
2 . (9.21)

where X denotes a generic random variable following a χ2
g-distribution with g the

number of independent Gaussian variables (see appx.9.4.3). The TG modes with one
degree of freedom – (0, ky, kz), (kx, 0, kz), (kx, ky, 0) and (k⊥, k⊥, k‖) – should have
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an energy distribution following a χ2
1-law. All other modes should have an energy

distribution following a χ2
2-law. If the energy follows a χ2-distribution, it does not

imply that the velocity has a Gaussian statistics, it is only a characteristic of the sum
of Gaussian distributions. However, we will only check the Gaussian statistics of modes
with one degree of freedom and look at the energy distribution of the other modes.

PDFs of the helical components of velocity have already been reported in [108]
following the experiences on the scattering of ultra-sound by vorcity tubes [109] based
on the theory established in [110]. However, the independence between the helical
components of velocity has not been yet quantified.
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Figure 9.3 – Left) Average standard deviation of the velocity of Taylor-Green symmetric DNS of
the truncated Euler equation for different resolutions. Right) Energy spectrum of Taylor-Green
symmetric DNS of the truncated Euler equation at different resolutions N = {64, 128, 256, 512}
for a fixed energy.

To check the equipartition of the energy, the standard deviation of modes can be
computed with their temporal series or the energy of all the modes within a shell of
constant wavenumbers can be summed. The first method can be performed with the
temporal series used to plot the PDF of the modes in fig. 9.2. Using this time average,
the standard deviation, σ2 = 〈ek〉, is represented in the left panel of fig. 9.3. The
second method, with the shell-summed energy at a fixed time, is presented in the right
panel of fig. 9.3. If the system satisfies energy equipartition and is ergodic, the amount
of energy per shell should be proportional to the surface of the shell, 4πk2. The k2-
power law followed by the energy spectrum in the right panel of fig. 9.3 is therefore
consistent with the equipartition of energy and ergodicity.

9.2.2.2 Correlation time computation

The temporal statistics of the modes depend on the evolution equation and not only
on the conserved quantities. Since the correlation function and consequently the cor-
relation time are specific properties of the evolution equation, their measurement char-
acterizes the temporal evolution of the system. In order to compute the correlation
function and assess the correlation time, we developed a method similar to that used
to produce spatio-temporal spectrum in wave experiments [98, 99, 96]. This method
in presented in appx. 9.4.4.

Fig. 9.4 presents in the left panel the spatio-temporal color-plot of the power spec-
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Figure 9.4 – Spatio-temporal spectrum of Taylor-Green symmetric DNS of the truncated Euler
equation. The numeric data is represented with dots and the theoretical prediction with full
lines. Left) Power spectrum S(k, ω). Right) Correlation function Γ(k, ω).

trum s(k, ω) and in the right panel the correlation function Γ(k, t). In the large scales,
the power spectrum function is localized near zero and the correlation function spans
on a large time-range. The small scales have the opposite behavior. This inversion of
trend between the power spectrum and the correlation function can be explained with
standard Fourier-transform properties.
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Figure 9.5 – Temporal correlation properties of Taylor-Green symmetric DNS of the truncated
Euler equation. Left) Correlation function as a function of time. Right) Correlation time as a
function of wavenumber.

The correlation function for different velocity modes are shown in the left panel of
fig. 9.5. The time of each correlation function has been re-scaled by the correlation
time measured. As shown in the left panel of fig. 9.5, the correlation functions collapse
on the same curve for times in the range 0 ≤ t ≤ τk/2. Since long time-series are
required for the correlation function to convergence in the long time, the agreement of
the curves is not as clear when τk/2 < t.

The consequences coming the collapse of the correlation functions on the [0; τk/2]
time-range are already important. First, this collapse at small time confirms that the
parabolic assumption made in eq. (9.16) is valid for absolute equilibrium solutions of
the TEE. Second, the good agreement of the curve until τk/2 also confirms that the
half-height time is a good proxy to measure the correlation time. The right panel
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of fig. 9.5 represents the correlation time of an absolute equilibrium solution of the
TEE. It shows that the correlation time follows a k−1-scaling law characteristic of an
energy-based correlation time. The thermodynamic model developed in the previous
section is therefore in excellent agreement with the measurements carried out with TG
symmetric DNS.

9.2.2.3 Inviscid flows with helicity

The next set of DNS of the TEE were carried out using the pseudo-spectral code
GHOST [52, 53]. In these DNS, every mode has four real degrees of freedom. Indeed,
the Craya-Herring helical decomposition [26, 27] states that every Fourier mode of
velocity can be separated into a positive and a negative helical component as expressed
in eq. (9.11). The two helical components are modulated by their complex amplitude.
Since there is no additional restriction on the amplitude of the mode, velocity modes
have four real degrees of freedom.

In order to fix the helicity of the flow, Kraichnan’s statistics eq. (9.10) are used to
generate the initial velocity field. All flows are initialized with a constant energy, the
only parameter left to vary is the Kraichan number Kr = −kMβ/α. This parameter is
not present for the TG flows and leads to major differences in the global aspect of the
PDF of the modes. For the same mode, the helical components of helical flows have
different energies.
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Figure 9.6 – Separation of the PDFs due to helicity in solutions of the truncated Euler equation.
The PDFs have been rescaled to plateau at the same level near zero in order to compare the
width of the tail of the distribution at large values. At k = 1 for a fixed energy, the distributions
are the same because helicity does not have an important impact on the large scale modes. At
k = kM , the distributions of probability have an off-set for Kr = 0.9 because helicity greatly
affects the distribution of energy in the small scales.

Fig. 9.6 presents the PDF of the helical components of the velocity of two flows
with different Kraichnan numbers. The first flow has a Kraichnan number of zero and
consequently does not have any helicity. The second flow has a Kraichnan number
of 0.9 and is highly helical. For every wavenumber and every Kraichnan number,
the energy of the positive and negative helical components of the velocity follows
a χ2

2-distribution. The χ2
2-distribution is characteristic of the sum of the square of

two independent Gaussian variables. The hypothesis of Gaussian-distributed velocity
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modes is therefore in agreement with the DNS. In the left panel of fig. 9.6, the PDFs of
the positive and negative helical components at k = 1 collapse both in the cases where
Kr = 0 and Kr = 0.9. The PDFs of the two flows do not have the same exponential
cutoff. This difference in cutoff corresponds to variations of the standard deviation of
the velocity field with Kr which is consistent with eq. (9.10). In the right panel of
fig. 9.6, the PDFs of the positive and negative helical modes at k = kM collapse for the
non-helical flow at Kr = 0 but do not collapse for the highly helical flow at Kr = 0.9.
The separation of the PDFs at Kr = 0.9 is consistent with the statistics presented in
eq. (9.11). All the characteristics of the energy distribution of the DNS are in good
agreement with the properties predicted by the absolute equilibrium theory.
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Figure 9.7 – Energy spectrum for different Kraichnan numbers Kr ∈ {1− 10−2; 1− 10−3; 1−
10−4} for general-periodic solutions of the truncated Euler equation. The numeric data is
represented with dots and the theoretical prediction with full lines. Left) Energy spectrum
associated to the total velocity. Center) Energy spectrum associated to the positive helical
component of the velocity. Right) Energy spectrum associated to the negative helical compo-
nent of the velocity. On both panels, the full lines are associated with the energy of the total
velocity; the dotted lines are associated with the energy of the positive helical component of the
velocity; and the dashed lines are associated with the energy of the negative helical component
of velocity.

Fig. 9.7 represents the energy spectrum of the highly helical flows Kr = {1 −
10−2; 1 − 10−3; 1 − 10−4}. The results in the left panel come from DNS and those
in the right panel are from the absolute equilibrium theory [11]. Theoretical and
numerical results match, which confirms the validity of absolute equilibrium theory.
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Figure 9.8 – Correlation time of DNS of general-periodic solutions of the truncated Euler
equation. Left) Non-helical flow Kr = 0. Center) Slightly helical flow Kr = 0.85. Right)
Highly helical flow Kr = 0.9.

The last property that will be checked concerns the evolution of the correlation time
as the flow becomes highly helical (Kr → 1). The thermalization theory, presented
in sec. 9.2.1, predicts that, as the system becomes highly helical, the energy-based
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correlation time (τEk in eq. (9.12)) should transition to a helicity-based correlation time
(τHk in eq. (9.13)) in intermediate scales (1 − Kr) � k/kM � 1 . With the current
computational power, it is difficult to show the same number of orders of magnitude
as in fig. 9.1. Consequently, the results presented in fig. 9.7 are not able to show both
scaling laws on the same graph. The left panel of fig. 9.8 presents the correlation time
of a non-helical flow at Kr = 0 while the right panel of fig. 9.8 presents the correlation
time of a highly helical flow at Kr = 0.9. The correlation time of the non-helical flow
exhibits a k−1-scaling law characteristic of an energy-based correlation time, while the
correlation time of the highly helical flow is closer to a k−

1
2 -scaling law characteristic

of a helicity-based. Additionally, in the right panel of fig. 9.8, the correlation time
peaks in the small scales, which is characteristic of the localization of the energy near
kM of helical flows. In the highly helical case, the difference between the positive and
negative helical components of the velocity can also be observed in the small scales.
While both helical components collapse in the non-helical case, they are different in the
small scales in the highly helical case. All these observations are in agreement with the
correlation time predicted by the thermalization theory. DNS were also performed at
higher Kraichnan numbers and showed a persistence of the helicity-based correlation
time.

Even though the transition of the scaling law is hard to observe in the DNS carried
out, results indicate that the transition of correlation time regime occurs for Kraichnan
numbers in the range 0.8 ≤ Kr ≤ 0.9. The center panel of fig. 9.8 shows that for
slightly helical flows with Kr = 0.85, the correlation follows a power law with an
exponent between −1 and −1

2 . A clear visualization of the transition is demanding
in computational power, since it occurs on nearly one order of magnitude in the left
panel of fig. 9.1.

9.2.3 Navier-Stokes DNS

Because DNS of the NSE must have a converged spectrum in scales smaller than the
forcing scale, their properties cannot be assessed with scale separations as important
as those of DNS of the TEE. Using the same codes as in the previous subsection, we
will show how the PDF, the standard deviation and the correlation time scale in the
large scales for solutions of the NSE using DNS. We will also compare the results with
the observation made on DNS of the TEE.

9.2.3.1 No helicity: Taylor-Green flows

TG flows are studied with different forcing wavenumbers kf ∈ {11
√

3; 35
√

3; 59
√

3}.
The forcing was imposed on the flow by fixing to 0.125 the amplitude of the odd modes
[kf , kf , kf ]/

√
3. The other parameter of the system is the viscosity ν which was also

adjusted to reach a turbulent regime. To compare the properties of flows at different
forcing wavenumbers, the Reynolds number Re = U/(νkf ) was set at a fixed value.
In order to compute the Reynolds number, we checked that the total energy of the
flow was dominated by the forcing mode and set the amplitude of the forcing mode to
0.125. The viscosity was then set using the forcing scale ν = Rekf/U .

Fig. 9.9 represents some properties of the PDF of velocity modes with one degree
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Figure 9.9 – PDF of modes of Taylor-Green symmetric DNS of the forced Navier-Stokes equa-
tion with a forcing wavenumber at kf = 11

√
3. Left) PDF of even modes with one degree of

freedom above the forcing scale. Center) PDF of even modes with one degree of freedom below
the forcing scale. Right) Standard deviation of the velocity modes.

of freedom in the six planes kx ∈ {0; 1}, ky ∈ {0; 1} or kz ∈ {0; 1}. These PDFs have a
clear Gaussian behavior as highlighted by their parabolic shape on the semi-logarithmic
plot in the left and center panel of fig. 9.9. The data sets in the left panel, representing
modes, collapse on the same curve, which indicates that their standard deviation is
identical. The center panel represents modes smaller than the forcing wavenumber.
In this panel, the PDF becomes narrower as the wavenumber increases. These two
trends are also observed in the right panel of fig. 9.9, where the standard deviation of
the PDFs are represented for different forcing scales. In the right panel of fig. 9.9, the
standard deviations, σ, are compensated by a factor k3/2

f to take into account that the
total energy is spread out on more modes as the forcing wavenumber increases. The
wavenumber is also rescaled by the forcing wavenumber in order to compare the results.
Using this scaling, the data sets at different resolutions collapse on the same curve. At
large scales, the compensated standard deviation plateaus, indicating an analogue of
the equipartition in energy of absolute equilibrium without helicity Kr = 0. Below the
forcing scale, the standard deviation rapidly decreases because of the forward cascade
and viscosity.
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Figure 9.10 – Energy spectrum of Taylor-Green symmetric flows solutions of the forced Navier-
Stokes equation. Left) Fixed forcing mode kf = 11
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3}.

Energy equipartition in the large scale modes can directly be observed in the right
panel of fig. 9.9. It can also indirectly be observed in the energy spectrum presented in
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fig. 9.10. Since energy shells contain a number of modes proportional to their surface,
4πk2, systems satisfying equipartition in energy should have an energy spectrum pro-
portional to k2. The spectra presented on both panels of fig. 9.10 are thus consistent
with equipartition in energy. In left panel of fig. 9.10, the energy spectrum is pre-
sented at different Reynolds numbers for a fixed forcing wavenumber kf = 11

√
3. At

the biggest Reynolds number, the energy spectrum reaches the Kolmogorov’s k−5/3-
scaling in the inertial range and has also the equipartition k2-scaling in the thermal-
ization domain. Even though Kolmogorov’s scaling is not present in the other curves
with smaller Reynolds numbers, the equipartition scaling law is still observable in the
large scales. The smallest Reynolds number was then used to compute the DNS of
the right panel of fig.9.10 where the wavenumber varies at fixed Reynolds number.
The equipartition scaling of the energy spectrum can be observed on the three forcing
wavenumbers used. The curve with the largest forcing scale, kf = 59

√
3, shows that

the energy spectrum follows a k2-scaling for nearly two orders of magnitude.
We now turn to the temporal correlation of the flows presented in fig. 9.11. The left

panel shows the dependence in viscosity of the correlation time for flows forced at kf =
11
√

3. The correlations are computed using the algorithm presented in subsec. 9.2.2.2.
In the small scales, the correlation time slowly decreases as viscosity decreases whereas
the correlation time rapidly stabilizes on a k−1-power law in the large scales. The major
peak observed in the flow does not correspond to the forcing wavevector which is not
located on the planes used to compute the correlation time. This peak corresponds
to a harmonic of the forcing located in one of the planes used in the correlation time
procedure. At low Reynolds number, the different harmonics of the forcing can be
observed as a series of sharp peaks in the correlation time. At high Reynolds number,
in the large scales, the correlation time aligns on a curve, which is consistent with the
energy-based correlation time k−1-scaling.

The k−1-scaling law of the correlation time can be observed in the right panel of
fig. 9.11 which shows the correlation time for TG flows with three scale separations
kf = {11

√
3; 35
√

3; 59
√

3}. The Reynolds number used in these DNS is based on the
smallest viscosity used in the left panel of fig. 9.11. The correlation times for the
three scale separations collapse on the k−1-power law. The data at the largest forcing
wavenumber kf = 59

√
3 shows a trend which strongly agrees with the energy-based

correlation time k−1-scaling.

9.2.3.2 Helical flows: ABC flows

In order to study the impact of helicity on the velocity modes in large scales, DNS
were carried out on general-periodic flows solutions of the NSE given at eq. (9.2) with
an ABC forcing [15]

FABCx = F0(C sin kfz +B cos kfy) (9.22)
FABCy = F0(A sin kfx+ C cos kfz) (9.23)
FABCz = F0(B sin kfy +A cos kfy) . (9.24)

where F0 is the intensity of the forcing. The three dimensionless parameters A, B and
C were set to one to have an anisotropic flow. The main characteristic of ABC flows
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Figure 9.11 – Correlation time of Taylor-Green symmetric DNS of the forced Navier-Stokes
equation. Left) Different Reynolds numbers at fixed forcing wavenumber kf = 11

√
3. Right)

Different forcing wavenumber kf ∈ {11
√
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√

3; 59
√

3} at fixed Reynolds number.

is their Beltrami property: ∇×FABC = kfF
ABC . This property makes them exact

solutions of the TEE. All the ABC DNS presented are done at kf = 20. A non-helical
variant of the ABC forcing, that we will be referred to as the CBA forcing, can be
built by switching the sine components of the ABC forcing to cosine components.

FCBAx = F0(C cos kfz +B cos kfy) (9.25)
FCBAy = F0(A cos kfx+ C cos kfz) (9.26)
FCBAz = F0(B cos kfy +A cos kfy) . (9.27)

The CBA forcing has already been used as a non-helical reference of the ABC flow in
[111]. At fixed coefficients, the CBA forcing has the same energy as the ABC forcing.
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Figure 9.12 – Statistical characteristics of [0;π]3-periodic DNS of the Navier-Stokes equation.
Left) ABC forcing, PDF of modes before the forcing scale. The full lines represent the positive
helical components of the velocity and the dashed lines represent the negative helical compo-
nents of the velocity. Center) ABC forcing, energy spectrum of positive and negative helical
components of the velocity. Right) CBA forcing, energy spectrum of positive and negative
helical components of the velocity.

The PDFs of the positive and negative helical components of the modes in the
large scales are presented in the left panel of fig. 9.12 for DNS of the NSE with an
ABC forcing. The positive helical component of the velocity is represented with full
lines and the negative helical component of velocity is represented with dashed lines.
All PDFs display a plateau near zero and have an fast decay at high values. Because
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general-periodic DNS do not reach the same scale separation and Reynolds number
as TG symmetric DNS, the comparison with the χ2

2-distribution is not as clear as in
fig. 9.9. The PDFs of the two helical components do not have the same exponential
tail as observed in absolute equilibrium solutions of the TEE. Since flows solutions
of the NSE are not as helical as flows solutions of the TEE, the separation of the
tail of the distributions is not as wide as in the case of absolute equilibrium solutions
of the TEE. The center panel of fig. 9.12 represents the energy spectrum of the two
helical components of DNS of the NSE with an ABC forcing. The positive helical
component of the velocity has more energy than its negative counterpart, which is
consistent with the separation of the tail of the distribution presented in right panel.
Both components follow a k2-scaling consistent with equipartition. In the large scales,
the general features of the modes match the properties of absolute equilibrium solutions
of the TEE. The right panel of fig. 9.12 represents the energy spectrum of the two
helical components of DNS of the NSE with a CBA forcing. The energy spectrum is
not as close to the k2-scaling as the energy spectrum resulting from an ABC forcing.
However, the energy spectrum of the non-helical TG symmetric flows, presented in the
right panel of fig. 9.10, deviates from the k2-scaling at the smallest scale separations. In
the case of the CBA forcing, the spectrum deviates from the k2-scaling characteristic of
equipartition. However the convergence study carried out in the right panel of fig. 9.4
indicates that such a deviation can happen at small scale separations.
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Figure 9.13 – Spectrum of [0;π]3-periodic DNS of the Navier-Stokes equation with an ABC
forcing. Left) Helicity spectrum in dotted line and the absolute equilibrium power law in full
line. Right) Energy spectrum in dotted line with absolute equilibrium power law in full line
and absolute equilibrium fit in dashed line. The insert represents kf 〈hk〉/(k2〈ek〉) and the
asymptotic value used to make the absolute equilibrium fit.

The left panel of fig. 9.13 represents the helicity spectrum of a solution of the
Navier-Stokes equation with an ABC forcing. In the scales slightly larger than the
forcing scale, the helicity spectrum is in good agreement with the k4-power law of the
absolute equilibrium prediction. But in the largest scale, the helicity spectrum has a
deviation from the k4-power law.

To compare absolute equilibrium solutions of the TEE and the large scale modes
of solutions of the NSE, we introduce an analogue of the Kraichnan number for the
NSE. The equivalent of the maximal wavenumber kM in the truncated Euler problem
is assumed to be the forcing wavenumber kf in the case of the NSE. Two expressions
can be used to compute the local Kraichnan number: either kf 〈hk〉/(k2〈ek〉) coming
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from eq. (9.10) or using eq. (9.11). Both expressions are equivalent and give the
same numeric results presented in the insert of the right panel of fig. 9.13. The local
Kraichnan number is not independent of the wavenumber and has an important peak
in the large scales. As the wavenumber reaches the forcing wavenumber, the local
Kraichnan number goes to a constant value equal to 0.83 . The result is consistent
with the |Kr| ≤ 1 bound of absolute equilibrium solutions. This asymptotic value is
then used to plot the absolute equilibrium fit in the right panel of fig. 9.13. In the large
scales, the data from the DNS is slightly above the fit, while the data is below the fit
near the forcing wavenumber. The difference between the fit and the data near the
forcing wavenumber can be related to the presence of the forcing. The difference found
in the large scales could be related to finite size effects such as three-mode interaction
with the forcing like in [86].
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Figure 9.14 – Correlation time of [0;π]3-periodic DNS of the Navier-Stokes equation. Left)
ABC forcing. Right) CBA forcing.
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Figure 9.15 – Comparison of the correlation time of [0;π]3-periodic DNS solutions of the Navier-
Stokes equation forced with ABC and CBA forcings. Left) Energy spectrum. Right) Energy
ratio.

The correlation time of DNS of the NSE with an ABC forcing increases in the
large scales as shown in the left panel of fig. 9.14. In the inertial domain, the correlation
time decreases as the wavenumber increases. These observations are consistent with
the results coming for helical DNS of the TEE and the TG symmetric DNS of the
NSE. However, the correlation time has some elements which did not appear in
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helical DNS of the TEE presented in fig. 9.8. The correlation time of positive helical
components of the velocity is always greater than its negative counterpart, especially
in the large scales. This separation between the correlation time of the different helical
components is not observed in the right panel of fig. 9.14 representing DNS of the
NSE with a CBA. Contrary to the ABC forced flow, the correlation times of CBA
forced flows exhibit a set of peaks in the inertial domain corresponding to harmonics
of the forcing. For the ABC forcing and CBA forcing, the correlation time in the
large scales deviates from the k−1-power law observed in DNS of the TEE. However,
for similar scale separations, the results form TG DNS also deviated from the k−1-
power law in the left panel of fig. 9.11. Fig. 9.15 compares the correlation times of the
ABC forcing and CBA forcing. The correlation time of the two flows seems very close
when observing the energy spectrum presented in the left panel. However, the ratio
presented in the right panel shows that the correlation times of the helical ABC forcing
are bigger than their non-helical CBA counterparts. The differences between the two
correlation times reaches nearly twenty percents for all the wavenumbers smaller than
the forcing wavenumber and is much more important in the two smallest shells in k.

9.3 Conclusion

In this study, we examined the temporal dynamic of absolute equilibrium solutions of
the truncated Euler equation and compared them to the large scale modes of solutions
of the Navier-Stokes equation.

We calculated the Eulerian parabolic auto-correlation time of velocity modes of
absolute equilibrium solutions of the TEE. This calculation assumed that: i) the
velocity modes are independent Gaussian variables, ii) the three-dimensional truncated
Euler dynamical system is ergodic, and iii) the correlation time can be computed using
a parabolic approximation of the correlation function at short times. For slightly helical
flow, |Kr| < 0.8, the correlation time computed with the model follows an energy-
based correlation time that decreases inversely proportionally to the wavenumber k−1.
On the other hand, when the flow is highly helical |Kr| > 0.9, the correlation time
transition to a helicity-based correlation time k−1/2 for intermediate wavenumbers for
(1−Kr) ln(1−Kr)� k/kM � 1.

Using DNS of TG symmetric and general-periodic flows solutions of the TEE,
we checked that their energy spectrum follows the laws predicted by the absolute
equilibrium theory. We showed that the PDFs of the modes of velocity have the
characteristics of Gaussian variables. We computed the Eulerian correlation function of
the mode and confirmed that the short time parabolic approximation of the correlation
time is valid. Finally, we identified an energy-based and helicity-based regime for
the correlation time consistent with the prediction of the thermalization theory (see
sec. 9.2.1).

Using non-helical TG symmetric DNS of the NSE, we showed that the velocity
modes at large scales follow Gaussian distributions and that the standard deviations of
the modes are consistent with equipartition. We also analyzed the correlation time and
observed that the k−1 energy-based scaling could be observed on two decades, even
for Reynolds numbers smaller than that required to observe Kolmogorov’s k−5/3-power
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law in the inertial range. This is in agreement with thermal equilibrium at large scales.
To extend our analysis to helical flow, we performed DNS of general-periodic

flows solutions of the NSE with helical ABC and non-helical CBA forcings at fixed
wavenumber at kf = 20. There is a agreement in the large scale spectrum with the
thermal equilibrium prediction but the largest scales deviate significantly, being more
energetic. Note that this deviation was also observed in [101].

The analysis of the correlation time of the ABC and CBA DNS showed a decrease
at the large scales with the wavenumber as in thermalization theory. However, the
correlation time deviates significantly from the energy-based k−1-power law. Note a
similar deviation is also observed in non-helical TG symmetric DNS at the smallest
scale separation (see fig. 9.10).

As in thermalization theory, that predicts longer correlation times for the wavenum-
bers near kM , the DNS of the helical flow also displayed longer correlation times than
the non-helical flow. However, despite using a maximally helical forcing, the equivalent
absolute equilibrium solution of the TEE would not generate enough helicity to have
a helicity-based correlation time.

The reason that the largest scales of Navier-Stokes solutions deviate from absolute
equilibrium remains an open question. Possible cause for this deviation left for other
studies include: lack to universality with respect to forcing; lack of scale separation;
insufficient Reynolds number ; finite-size effects etc.. Finally large scales instabilities
may spoil the absolute equilibrium.

9.4 Appendix (description of new procedures)

9.4.1 Appendix: Correlation time – parabolic hypothesis

The derivation of the correlation time can be done using a projection operator to
incompressible flows. However, this method is not able to assess the properties of the
helical components of the velocity. In order to quantify these properties, the standard
framework is the Craya-Herring helical basis [26, 27]. Within this decomposition, the
TEE is expressed as

(
∂tu

sk
k

)∗ =
∑

k+p+q=0
sp , sq

(spp− sqq)
(
−1

4h
sk
k · h

sp
p × hsqq

)
u
sp
p u

sq
q (9.28)

(
∂tu

sk
k

)∗ =
∑

k+p+q=0
sp , sq

C
skspsq
kpq u

sp
p u

sq
q , (9.29)

where sk denotes the sign of the helical component at mode k, uskk denotes the helical
component of the velocity of sign sk at mode k and hskk denotes the complex unitary
helical vector of the Craya-Herring basis satisfying: ∇×hskk = skkh

sk
k . The Craya-

Herring tensor Cskspsqkpq is symmetric on its last two variables: C
skspsq
kpq = C

sksqsp
kqp ,

and also satisfies : Cskspspkpp = 0. With the Craya-Herring helical decomposition, the
average correlation of the temporal derivative of the velocity can be derived with
the assumption that all helical components are independent Gaussian variables. The
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derivation leads to

〈|∂tūskk |
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〈 ∑
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∑
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(9.30)

=
∑
s1 , s2

Ss1s2 where Ss1s2 =
∑

k+p+q=0
sp=s1 , sq=s2

2
∣∣∣Cskspsqkpq

∣∣∣2 〈espp 〉 〈esqq 〉 . (9.31)

where Ss1s2 corresponds to the sum of the triadic interact of sign s1 and s2.

kM + k−kM
k−kM kMO k1

2k

‖
⊥

Figure 9.16 – Diagram of a cut of the integration domain. The dark surface corresponds to the
integration domain. The dotted lines correspond to the limit of the circles of radius kM and of
center 0 or k. The thick full line corresponds to radii of the previously described circles. The
dark dashed line corresponds to the distance between the center of the two circles. The bright
dashed line corresponds to the maximal length possible for q⊥.

In eq. (9.31), the truncation condition, u(k > kM ) = 0, has not been applied to
the velocity fields. The velocity appears in the equation within the expression of the
average energy with two indices p and q, therefore the summation must be done at
p ≤ kM and q ≤ kM . The domain prescribed by these conditions corresponds to the
intersection of two spheres of radii kM and center p and q. The triadic condition,
k + p + q = 0, also implies that the summation over p and q can be done over q at
fixed p = k− q. The domain of summation is represented in fig. 9.16. This domain is
invariant by rotation along the axis defined by k in fig. 9.16. The centers of the two
spheres are also located on this direction. The coefficients of the sum in eq. (9.31) are
unaffected by the rotation. The summation can thus be performed with the variables
q⊥ and q‖ where q⊥ is the projection of the wavevector along the plane orthogonal to
k and q‖ is the projection of the wavevector along the axis of rotation. Taking this
new coordinate system, the derivation can be simplified by converting the discrete sum
into an integral using the equivalence

∑
k+p+q=0

⇐⇒
∫ 1− 1

2m

−(1− 1
2m)

dq‖

∫ 1−(|q‖|+ 1
2m)2

0
πdq2

⊥ where m = k

kM
. (9.32)
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Figure 9.17 – Triadic interaction as a function of the wavenumber and associated correlation
time. Left) At Kr = 1 − 10−6, S−− plotted with squares, S+− plotted with triangle, S++

plotted with discs, k1 plotted with a dashed line, k2 plotted with a full line. Center) S++

plotted at Kr = 1− 10−8 with discs, at Kr = 1− 10−6 with triangles, at Kr = 1− 10−2 with
squares, at Kr = 1 − 10−2 with stars, k1 with a dashed line, k2 with a full line. Right) T++

plotted at Kr = 1− 10−8 with discs, at Kr = 1− 10−6 with triangles, at Kr = 1− 10−2 with
squares, at Kr = 1− 10−2 with stars, k− 1

2 with a dashed line, k−1 with a full line.

This integral can be computed exactly when Kr = 0 for m � 1. At Kr = 0, the
total energy of the system is proportional to the inverse of α, E = 4π

3 CNα
−1, where

CN is a constant depending on the resolution. The parabolic correlation time can be
expressed as

τ skk =
√ 〈

e
sq
q
〉

〈|∂tūskk |2〉
=
√

45α
112

1
k

=

√
15πCN

14
1

k
√
Etot

. (9.33)

When Kr = 0, the correlation time follows the energy-based scaling-law.
When Kr 6= 0, the final integral can be computed using Mathematica for the

different helical triadic interactions as shown in fig. 9.17 for highly helical flows. Instead
of computing all the terms corresponding to all different possible triads in the sum,
the graph shows the computation triad with different helical signs. The left plot of
fig. 9.17 shows three possible sums: S++ plotted with discs, S+− plotted with triangles
and S−− plotted with squares. The S−+ sum has exactly the same values as the S+−

sum for symmetry reasons. The S++ sum dominates the other terms and has a k1-
scaling at large wavenumbers consistent with a helicity-based correlation time, and a
k2-scaling at small wavenumbers consistent with an energy-based correlation time. All
other terms follow a k2-scaling. The center plot of fig. 9.17 shows the evolution of
the S++ for different Kraichnan numbers. As the Kraichnan number goes to one, the
domain where the sum follows a k2-scaling widens. The right plot of fig. 9.17 shows
the evolution of the correlation time, T++, built using the sum S++. Its evolution is
consistent with the evolution of the correlation time of the full velocity field presented
in the left panel of fig. 9.1.

When the Kraichnan number goes to one, the plus-plus triadic interaction domi-
nates the non-linear interaction in the TEE. Whether m� ε� 1 or ε� m� 1, the
correlation time follows the asymptotic expression

S++ = 2πk2α−2 −2 ln ε
m−Aε ln ε with A = 15

8 (9.34)

thus T++(k, sk) =

√
〈eskk 〉
S++ =

√√√√A(1−Kr)− k
kM ln(1−Kr)

4πα−1k2(1− skKr k
kM

)
. (9.35)
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In the domain where (1−Kr)� k
kM
� 1, the correlation time follows a helicity-based

scaling-law.

9.4.2 Appendix: Taylor Green properties
In addition to the condition listed below eq. (9.19), TG symmetries [107] impose that

uy(kx, ky, kz) = (−1)p+1ux(ky, kx, kz) (9.36)
and uz(kx, ky, kz) = (−1)p+1uz(ky, kx, kz) , (9.37)

where p characterizes the parity of the mode: p = 1 if kx, ky, kz are all even and p = 0
if kx, ky, kz are all odd.

Since the flows studied are also incompressible, they also satisfy ∇ · u = 0 ⇐⇒
kxux + kyuy + kzuz = 0 .

In a few special cases, modes of TG symmetric flows depend on only one indepen-
dent variable

• kx = ky and r = 0: uodd(kx, kx, kz) = (ex − ey)ψ0(kx, kz) , where ψ0 is a real
field.

• kx = ky and r = 1: ueven(kx, kx, kz) = (kz(ex + ey)− (kx + ky)ez)ψ1(kx, kx, kz) ,
where ψ1 is a real field.

• kx = 0 : u(0, ky, kz) = (kzey − kyez)ψ2(ky, kz) , where ψ2 is a real field.

• ky = 0 : u(kx, 0, kz) = (kzex − kyez)ψ3(kx, kz) , where ψ3 is a real field.

• kz = 0 : u(kx, ky, 0) = (kyex−kxey)ψ4(kx, ky) , where ψ4 is a real field satisfying
ψ4(ky, kx) = −ψ4(kx, ky).

The vectors eα with α ∈ {x; y; z} denote the directions of the Cartesian basis.
In the other cases, the TG symmetric modes of flows only depend on two inde-

pendent variables – φ(kx, ky, kz) and φ(ky, kx, kz), where φ is a real field – and can be
written as

uk = (kzex − kxez)φ(kx, ky, kz) + (−1)p+1(kzey − kyez)φ(ky, kx, kz) . (9.38)

9.4.3 Appendix: Chi-squared distribution
A Gaussian distribution of average µ and standard derivation σ has a probability
density function defined by

G(X|µ, σ) = 1√
2σ2π

e−
(X−µ)2

2σ2 . (9.39)

Chi-squared distributions are defined using g independent Gaussian variables. Let
(Gi)i∈[[1;g]] be independent, centered (µ = 0), reduced (σ = 1) Gaussian variables.
The sum of their squares, X =

∑g
i=1G

2
i , is distributed according to the chi-squared

distribution with g degrees of freedom denoted as χ2
g and defined by

χ2
g(X) = 1

2
g
2 ΓEuler(g2)

X
g
2−1e−

X
2 . (9.40)
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where ΓEuler denotes Euler’s Gamma function. The power law of the probability
density function at small X gives the number of degrees of freedom of the system, and
the exponential fit at large X validates the Gaussian decay of the probability density
function.

logχ2
g(X) =

X→0

(
g

2 − 1
)

log(X) thus g =
X→0

2
(

logχ2
g(X)

log(X) + 1
)

(9.41)

9.4.4 Appendix: Computation of the correlation time
In order to produce spatio-temporal spectrum, the velocity field is outputted at a
regular time interval. These outputs form a data set of the velocity field in the k − t
space. However, keeping in memory the entire N3 DNS, N being the resolution,
is too demanding in computational memory. To reduce the volume of the data set
without loosing the properties of the different modes, only the six planes – kx = {0; 1},
ky = {0; 1} and kz = {0; 1} – are outputted for the TG symmetric TYGRE code and
only the three planes – kx = 0, ky = 0 and kz = 0 – are outputted for the general-
periodic GHOST code. The velocity time series are then multiplied by an apodization
function [100] and Fourier-transformed to form a data set in the k−ω space. The power
spectrum s(k, ω) is then computed by taking the modulus square of the velocity and
summing over the different Cartesian directions. The isotropic power spectrum S(k, ω)
is computed by summing the power spectrum over the modes of same wavenumber. A
binning of spacing of one is used to compute the isotropic power spectrum. The closest
integer smaller than k + 1

2 is used to define the bin number. The left panel of fig. 9.4
represents the power spectrum of a truncated Euler DNS computed using this method.
The correlation function Γ(k, t) is then computed using Wiener-Khinchin theorem by
performing a Fourier-transform of the isotropic power spectrum and normalizing the
function. The right panel of fig. 9.4 represents the correlation function of a truncated
Euler DNS computed using this method.

Finally, the correlation time can be computed by doing a fit of the correlation
function in a well-resolved domain as shown in the left panel of fig. 9.5. The time
where the correlation function reaches half-height, τ 1

2
, can be evaluated numerically.

We then defined the correlation time using a Poisson normalization of the half-height
time τ = τ 1

2
/ ln(2). The same algorithm can be used to find the correlation function

of the positive and negative helical modes of the velocity field using eq. (9.11). The
steps of the procedure are summed up in the algorithm presented below.

Require: u(k, n∆t), n, ∆t,
1: u(k, ω) = DF[apou(k, n∆t)](ω)
2: s(k, ω) =

∑
i |ui(k, ω)|2

3: S(k, ω) =
∑
k 11ks(k, ω)

4: γ(k, t) = DF−1[S(k, ω)](t)
5: Γ(k, t) = γ(k, t)/γ(k, 0)
6: τ(k) = Solve[t,Γ(k, t), 1/2]

Algorithm to compute the correlation time. DF

denotes the discrete Fourier-transform, DF−1

denotes the discrete inverse Fourier-transform,
11 denotes the characteristic function satisfy-
ing 11(bool) = 1 if (k − 1

2 < |k| ≤ k + 1
2 )

and 0 otherwise, apo(n,∆t) denotes an apodiza-
tion function and Solve[t,Γ(k, t), 1/2] denotes a
function that finds the smallest positive t satis-
fying Γ(k, t) = 1/2.
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Conclusion

This manuscript studied some aspects of flows forced in the large scales at moderate
and high Reynolds numbers. It has also used the analogy between the magnetic alpha-
effect and the anisotropic kinetic alpha-effect to quantify the energy located in the
large scales of the instability before the threshold of the small scale instabilities and
during its moderate Reynolds number development.

At moderate Reynolds number, our study has shown that the AKA-effect can be
observed using Floquet analysis. It has also been shown that the AKA-effect still
occurs at Reynolds numbers of order unity, which goes beyond the small Reynolds
number limit in which the theory is established.

AKA-stable flows like the well-documented ABC flow and the Roberts flow have
been proven to be unstable in the large scales. For the Roberts flow, the instability
can be described with a simplified model considering three modes of the flow: (i) the
forcing mode of wavenumber K, (ii) the large scale mode of wavenumber q and (iii)
the coupling mode at wavenumber K ± q. The large scale instability generated by the
ABC and the Robert flow has been shown to be a second-order instability. Indeed, the
growth rate of an AKA-instability is proportional to scale separation q/K, whereas the
ABC and Roberts flows have an instability with a growth rate proportional to (q/K)2.
Because of the scaling law of the growth rate of the effect, the large scale instability
of the ABC and Roberts flows can be viewed as negative eddy viscosity instabilities.

Floquet analysis has also allowed the characterization of the energy in the large
scales of the instability compared with the total energy. The large scale energy to total
energy ratio reported in the DNS results can be interpreted with a linear two-mode
model. At low Reynolds number, the large scale energy to total energy ratio has been
shown to be close to unity, which indicates that the energy is concentrated in the large
scales. After the small scale instability threshold, the energy has a small projection to
the large scales and the growth rate of the instability is governed by the growth rate
of the small scale instability.

The same Floquet analysis method has also been used to characterize magnetic
fields undergoing an alpha-effect. At low magnetic Reynolds number, it has been shown
that the energy of the magnetic field is located in the large scale and the growth rate
depends on the scale separation between the large scale and the forcing scale. After
the small scale instability threshold, it has been shown that the energy has a small
projection in the large scales and the growth rate of the instability is governed by the
dynamic in the small scales. This analysis of magnetic instabilities indicates that the
growth rate of the large scale instability at high magnetic Reynolds number cannot be
directly related to the dynamic of the magnetic field at low magnetic Reynolds number.
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Once the small scale instability occurs, the description of the large scale magnetic field
must adopt an expression which takes into account the impact of the small scales.

At large Reynolds number, our study has shown that the large scale modes of a
flow forced in the small scale has a dynamics close to that of solutions the truncated
Euler equation as proposed in [10]. Two main criteria have been used to show the
similarities between the two systems: (i) the energy spectrum, (ii) the auto-correlation
time.

Concerning the truncated Euler system, our study has shown that the correla-
tion time of the helical modes of the velocity are proportional to the inverse of the
wavenumber, τE ∝ 1/(k

√
E), where E denotes the energy of the flow. This energy-

based scaling law was shown to be valid when the flow is not too helical. When the
flow is highly helical the auto-correlation time is proportional to the inverse of the
square root of the wavenumber, τH ∝ 1/(k

√
H), where H denotes the helicity of the

flow. These correlation times have been confirmed with DNS and a thermodynamic
model using the parabolic approximation of the correlation function to compute the
correlation time.

In the case of the forced Navier-Stokes system, our study has shown that in the
large Reynolds number, the DNS of Taylor-Green symmetric flows forced in the small
scales have a spectrum and a correlation time similar to that of truncated Euler system.
Flows without the Taylor-Green symmetries have also been tested but the Reynolds
number was not sufficiently high to observe all the properties of statistical equilibrium.
However, general-periodic flows were able to highlight the impact of helicity on the
correlation. Even though no change in power law could be observed because the
forcing could not inject enough helicity, the helical forced flow had a correlation time
bigger than the non-helical forced flow by 20% in average.

Many properties are still waiting to be characterized in the large scale modes of
forced velocity fields. The way the energy is transferred to the large scales at high
Reynolds numbers has still not be investigated. The transition between moderate
Reynolds instabilities and high Reynolds statistically stationary solutions is still un-
clear. The interaction between the k−

3
5 -Kolmogorov scaling and the large scale mode

has not been quantified for the moment. Even if ABC flows are highly helical at small
Reynolds number, it has not been proven that ABC forcing is the most efficient to
generate a helical flow at large Reynolds number. If more helical force fields exist, it
would be interesting to check if their correlation time can generate a correlation time
based on helicity. On a more experimental point of view, the easiest correlation func-
tions that can be measured are two-point correlation function. To get an experimental
confirmation of the time correlation properties, the relations derived for the correlation
of velocity modes should be related to two-point correlation functions.
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Chapter 10
Elements of context:
Numeric methods

The aim of this chapter is to present the pseudo-spectral numerical method used to
integrate the evolution equation of fluids and introduce semi-Lagrangian schemes.

This chapter reviews elements of well-documented theories.

10.1 Pseudo-spectral methods (review)
Since the analytic results of the Navier-Stokes equation are limited, numeric methods
are used to compute properties on the solutions of the equation. As described in [21],
two geometries are favored to solve the Navier-Stokes equation: the entire physical
space R3 or the [0; 2π]3-periodic box. Flows in both geometries do not have boundary-
related interferences since the borders of the system are either at infinity or do not
exist because of the periodicity. Even though no fluid exists in either geometries, these
geometries are able to mimic what happens in the bulk of a fluid and have been able to
give good predictions on the motion of fluid like the already mentioned Kolmogorov’s
4/5-law. Luckily for numeric computation, modeling the [0; 2π]3-periodic box can be
done with reasonable computation power. Many methods can be used to solve the
Navier-Stokes equation, but spectral methods stand out of the list because they have
exponential convergence compared to the algebraic convergence of finite differences,
finite volumes and finite elements methods. A way to illustrate the converge rate of
spectral methods [112] is to consider the solutions of the heat equation

∂tθ = κ∆θ with θ(t = 0) = Θ thus θ(t) =
∑
k

Θke
−κk2t+ıkr , (10.1)

where θ, Θk and κ denote the temperature field, its Fourier coefficient at the wavevector
k and the thermal diffusivity. Using a Fourier spectral method with a kM spherical
truncation, the spectral numeric solution, θsp(t), will only describe the solution for
modes with wavenumber below the truncation wavenumber. The error between the
spectral solution and the analytic solution will be proportional to an exponential of
the truncation wavenumber

‖θsp − θ‖ ∝ ΘkM e
−κ(kM+∆k)2t , (10.2)
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where ∆k denotes the wavenumber stepping increment. This expression of the error
is valid after the relaxation of the greatest mode of the Fourier decomposition. The
large modes will relax at large times, i.e. when t � 1

κkM∆k . The type of norm used
to evaluate the error is not important since numeric simulations are done with a finite
resolution.

Non-spectral numeric methods have an algebraic error whose order depends on
the method. For instance, the first neighbor-centered finite differences method has a
second-order error

d2
xxθx = θx+∆x − 2θx + θx−∆x

(∆x)2 = ∂2
xxθx + (∆x)2

12 ∂4
xxθx + O

(
(∆x)4

)
, (10.3)

where d2
xxθ, ∆x and ∂2

xxθ denote the discrete Laplacian in one dimension, the spacial
stepping increment and the continuous Laplacian in one dimension respectively. The
error made by the discrete method is of order two in space∥∥∥d2

xxθ − ∂2
xxθ
∥∥∥ ∝ (∆x)2

∥∥∥∂4
xxθ
∥∥∥ where ∆x ∼ 1/∆k . (10.4)

At large time, spectral methods converge faster than non-spectral methods. However,
they should not always be favored over other methods. When the field has strong gra-
dients, the spectral transform generates important small scales modes. The truncated
expansion strongly deviates from the initial field because an important part of the
information concerning fields has been discarded. This effect is known as the Gibbs
phenomenon. As a result, Godunov methods are often preferred to spectral methods
when shocks arise.

Errors can also be introduced in the numeric resolution because of the discretization
of the time derivative. The standard method to reduce the order of the temporal error is
the Runge-Kutta algorithm [113]. As the order of the method increases, the algorithm
makes more intermediate iterations within a time-step to interpolate more precisely the
field at the next increment of time. Runge-Kutta method cannot integrate any time-
stepping. The time-stepping increment has to satisfy the Courant-Friedrichs-Lewy
(CFL) condition detailed in sec. 10.2, otherwise the algorithm is unstable.

Besides their convergence rate, spectral methods are also highly efficient at solving
the Poisson equation given at eq. (1.2). Inverting a Laplacian in Fourier space is done
by dividing every mode by the square of the wavenumber. However, spectral methods
have one major drawback. Integrating the non-linear term corresponding to transport
requires to compute a Cauchy product, which has an important numeric complexity
going in O(N2) compared to the O(N) complexity for the other operations. In order to
avoid this computation, an altered version of the spectral methods called the pseudo-
spectral method computes the non-linear term in the physical space. At each time-step,
pseudo-spectral methods: (i) compute the non-linear term, (ii) transform the data in
spectral space, (iii) compute the linear term in spectral space and (iv) transform the
data back to physical space. The efficiency of the pseudo-spectral method relies on
the Fast Fourier Transform algorithm [114] which is much faster than computing a
Cauchy product with a O(N lnN) complexity. Fig. 10.1 represents the main steps of
the pseudo-spectral method. The first “for” loop at line 3 increases at every time-step.
The second “for” loop at line 6 increases at every step of the Runge-Kutta method.
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Require: T , ∆t, ν, RK, cRK(p), F (k, n∆t), u0(r)
1: U0(r) = u0(r)
2: U1(k) = F[u(r)]
3: for 1 ≤ n ≤ T do
4: U2(r) = U0(r)
5: U3(k) = U1(k)
6: for 1 ≤ p ≤ RK do
7: U4(k) = ık×U3(k)
8: U5(r) = F−1[U4(k)]
9: U6(r) = U2(r)×U5(r)

10: U7(k) = F[U6(r)]
11: U8(k) = U7(k)− (k ·U7(k))k
12: U9(k) = U1(k) + cRK(p)∆t

(
U8(k)− νk2U3(k) + F (k, n∆t)

)
13: U3(k) = U9(k)
14: U2(r) = F−1[U3(k)]
15: end for
16: U1(r) = U3(k)
17: U0(r) = U2(r)
18: un(r) = U0(r)
19: end for

Figure 10.1 – Pseudo-spectral algorithm to solve the Navier-Stokes equation in a [0; 2π]3-
periodic box. T , ∆t, ν, RK, cRK(p), F (k, t∆t), u0(r) denote the total number of iterations,
the time increment, the viscosity, the order of the Runge-Kutta method, the coefficient of the
Runge-Kutta method, the forcing field and the initial velocity field respectively. The variables
starting with the character U are auxiliary vector fields.

The variables starting with the character U are auxiliary variables. Their number can
be reduced to limit the memory use.

The computation of the non-linear term, line 9 in fig. 10.1, has to be carried out
with caution. Fields cannot be sampled at every wavenumber, otherwise modes can
overlap and the information is then distorted because of aliasing as highlighted in
fig. 10.2. If the field is sampled over N wavenumbers, the plane-wave e2ıπ P

N of index P
is the same as the plane-wave e2ıπ p

N of index p = P −N because of the periodicity of
complex exponentials. The non-linear coupling of two modes of indices P and Q forces
the mode at index P + Q. The forced mode should not correspond to another mode
whose index is smaller in absolute value. In order to suppress aliasing, the non-linear
effect should not be computed for indices above N/3.

This numeric method is implemented in the code GHOST [53, 52] which was used
to carry out the direct numeric simulations (DNS) in [86] and sec. 9. The TYGRES
code was also used in the Taylor-Green symmetric DNS done in sec. 9. As shown
in [105, 107] Taylor-Green symmetric flows can be decomposed into modes with only
odd components or only even components. When a Taylor-Green DNS is carried out
with a N3 resolution, there are in fact only (N/2)3 odd components and (N/2)3 even
components to compute. Computing an apparent N3 Taylor-Green DNS can thus be
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−N −2N
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Figure 10.2 – Description of modes of a system truncated at N/3 to prevent aliasing. Lines of
the same color represent indices describing the same plane-wave. The modes modeled in the
numeric simulation are represented by full lines. The modes represented with dashed lines are
related to the other modes via the periodicity of complex exponentials.

done with a 2(N/2)3 machine resolution. This increase of efficiency can only be done
because the odd and even separation of Taylor-Green modes is compatible with the
Fast Fourier Transform algorithm.

10.2 Semi-Lagrangian methods (review)
Semi-Lagrangian methods have been introduced to solve in general case the advection
equation

DtΦ = ∂tΦ + u(x)∂xΦ = 0 . (10.5)

where Φ and u denote a passive scalar field and the velocity of the flow. If the velocity
of the flow is constant, the solutions of the problem are function of x−ut respecting the
boundary conditions. In the case of periodic boundary conditions, Fourier transform
can be used to solve the problem using

∂tΦk = −ikuΦk thus Φk(t) = e−ikutΦk(t = 0) . (10.6)

However, when the velocity depends on space, computing the transport term in
Fourier space is highly inefficient because it requires to compute a Cauchy product.
As described in sec. 10.1, to carry out the computation faster, the pseudo-spectral
method computes the non-linear term in physical space.

In order to understand the limitation of the computation of the non-linear term in
physical space, let us solve the problem using finite differences for a constant positive
velocity u > 0. The simplest finite difference stable scheme to solve the advection
equation is the Upwind scheme because it uses the upwind values of the passive scalar
to compute the spatial derivative. Indeed, the Upwind scheme uses the following
temporal scheme

Φ(x, t+ ∆t) = Φ(x, t)− CCFL (Φ(x, t)− Φ(x−∆x, t)) with CCFL = u∆t
∆x (10.7)

where ∆t and ∆x denote the time-step and the spatial-step respectively. The con-
stant CCFL is the Courant-Friedrichs-Lewy (CFL) number [115]. The CFL number is
dimensionless and is used to determine if the flow is stable.

The stability of the Upwind scheme can be tested by applying a Fourier pertur-
bation φk(t)eikx on the passive scalar. The growth factor of the perturbation after a
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temporal iteration is given by

ξ(x,∆t) = φk(t+ ∆t)
φk(t)

= (1− CCFL) + CCFLe
−ik∆x . (10.8)

In order to have a stable scheme, all Fourier perturbations should be damped. The
growth factor must be smaller than one in modulus |ξ(x,∆t)| < 1. This stability
condition is satisfied for CFL numbers less then one, CCFL < 1. For varying velocities,
the CFL number depends on the position. The stability condition can be extended
by imposing the CFL number to be smaller than one everywhere, which is equivalent
to replacing the velocity by its maximum in the expression of the CFL number. The
stability condition can therefore be expressed as ∆tmax |u|

∆x < 1.
The stability condition of a flow following the Navier-Stokes equation is related to

the CFL number, but the diffusive term and the non-linearity can also perturb the
numeric scheme. Doing a full numeric stability analysis of a scheme modeling the
Navier-Stokes is not easy. In most numeric simulation, the time-step is chosen such
that ∆tmax |u|

∆x < 0.5 and convergence tests are performed to validate the stepping used.
Semi-Lagrangian schemes are able to go beyond the stability criteria by following

the evolution of the passive scalar on a characteristic of the flow. The denomination of
semi-Lagrangian results from the steps used to carry out the temporal evolution. The
passive scalar field is first advected like a Lagrangian particle and is then reconstructed
on the Eulerian grid.

The method can be illustrated using the constant velocity Upwind scheme presented
in eq. (10.7). If the CFL number is greater than one, the scheme is unstable to
perturbation. However, if the passive scalar is known at regular grid points, the passive
scalar field can be translated using the property that the solution of the advection
equation can be expressed as a function of x − ut. For instance, if the CFL satisfies
CCFL = C0 + C1 with C0 ∈ N and 0 ≤ C1 < 1, the evolution of the fields can be
viewed as a translation of C0∆x followed by an advection with a CFL number of C1.
The following semi-Lagrangian scheme is able to model the advection equation at a
CFL number of C0 + C1 without becoming unstable

Φ(x, t+ ∆t) = Φ(x− C0∆x, t)− C1 (Φ(x− C0∆x, t)− Φ(x− C0(∆x+ 1), t)) .
(10.9)

If C1 = 0, the scheme returns the Φ(x, t+∆t) = Φ(x−u∆t, t), which is an application of
the expression of the solutions as a function of x− ct. The stability analysis performed
in eq. (10.8) can be carried out on this scheme and gives the stability condition C1 < 1.

In the more general case where the velocity field is not constant, the computation of
the translation distance defined by (C0 +C1)∆x has to be replaced by the translation
of the distance traveled by the flow following the characteristic during the time interval
∆t. At a given position x, this distance `(x(t), t,∆t) of translation can be expressed as
`(x(t), t,∆t) =

∫∆t
0 u(x(t), t)dt. If the velocity field does not vary on the characteristic,

the translation distance can be approximated by `(x, t,∆t) ' ∆tu(x(t), t, ). Once the
translation distance `(x(t), t,∆t) is computed, the advection can be implemented using
a reconstruction scheme like the scheme presented in eq.(10.9).

By construction, semi-Lagrangian schemes are stable, but they do not always con-
verge to the correct solution when the time-step is too large. The stability problem
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of finite difference methods has been replaced by a convergence problem in the case
of semi-Lagrangian schemes. The convergence of the scheme can be related to the
gradient of the velocity field since the approximation

∫∆t
0 u(x(t), t)dt ' ∆tu(x(t), t)

is valid when the velocity field has important spatial variations. The Taylor expan-
sion of x(∆t), as x(0) + u(x(0), t)∆t, indicates that the quantity ∆tmax(∂xu) should
be smaller than one for the approximation to be valid. The full computation of the
convergence error depends on the algorithm used to perform the temporal evolution.
Similarly to the CFL condition used to implement the Navier-Stokes scheme, the safest
method to check the validity of a semi-Lagrangian scheme is to carry out a convergence
test. As a general feature, semi-Lagrangian methods are well-adapted to describe the
evolution of passive scale in slowly varying velocity fields.

X



Chapter 11
Multi-stage high-order
semi-Lagrangian schemes for
incompressible flows in Cartesian
geometries (published in IJNMF)

This chapter presents new results.
Efficient transport algorithms are essential to the numerical resolution of incom-

pressible fluid flow problems. Semi-Lagrangian methods are widely used in grid-based
methods to achieve this aim. The accuracy of the interpolation strategy then deter-
mines the properties of the scheme. We introduce a simple multi-stage procedure,
which can easily be used to increase the order of accuracy of a code based on multilin-
ear interpolations. This approach is an extension of a corrective algorithm introduced
by Dupont & Liu (2003, 2007). This multi-stage procedure can be easily implemented
in existing parallel codes using a domain decomposition strategy, as the communica-
tion pattern is identical to that of the multilinear scheme. We show how a combination
of a forward and backward error correction can provide a third-order accurate scheme,
thus significantly reducing diffusive effects while retaining a non-dispersive leading
error term.

11.1 Introduction
Semi-Lagrangian methods offer an efficient and widely used approach to model advection-
dominated problems. Initially introduced in atmospheric and weather models [116,
117], these methods are now widely used in all fields of fluid mechanics [118, 119, 120].
They have found a wide range of application in computational fluid dynamics. These
methods have triggered a wide variety of schemes, including spline interpolation meth-
ods [121, 122, 123], finite element WENO algorithms [124, 125, 126] or CIP methods
[127, 128]. Considerable development has also been achieved in application to hyper-
bolic problems (e.g. compressible hydrodynamics [129], Vlasov equation [130]) and
falls out of the scope of this paper.

Semi-Lagrangian methods involve an advected field Φ, following the characteristics

139
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backward in time. The procedure requires the estimation of field values that do not lie
on the computational grid. Semi-Lagrangian methods therefore rely on an interpolation
of Φ(t−∆t,x− u∆t), which in general is not a known quantity on the discrete grid.

Because of their local nature, low-order semi-Lagrangian methods perform remark-
ably well on massively parallel computers [131, 132]. Limitations occur with high-order
interpolation methods. As the width of the stencil increases, the locality of the scheme
is reduced and the resulting schemes require larger communications stencils. When
the interpolation strategy is simple, multi-linear in the case of the CIR scheme [115],
the scheme is local and the computational cost is small. If the interpolation stencil is
not localized near the computational point, but near the point where the interpolated
value must be reconstructed, one can show that the method is then unconditionally
stable, in the case of a uniform and steady velocity field [133]. Such schemes are how-
ever prone to large inter-process communations, and are not unconditionally stable for
general flows.

Dupont et al. [134, 135, 136] introduced two new corrective algorithms: “Forward
Error Correction” (here denoted FEC) and “Backward Error Correction” (here de-
noted BEC). These algorithms take advantage of the reversibility of the advection
equation to improve the order of most semi-Lagrangian schemes by using multiple calls
of an initial advection scheme. The resulting schemes yield an enhanced accuracy. In
that sense, they are built with a similar spirit to the predictor-corrector method [137]
or the MacCormack scheme [138].

Here we introduce a new scheme following this methodology, and thus extend this
approach to third-order accuracy.

11.2 Method (description of new procedures)

11.2.1 Multi-stage approaches
A possible strategy to increase the order of Semi-Lagrangian schemes is to use higher
order interpolation formula (e.g. [139]). This has the drawback of relying on a wider
stencil, which requires larger communication patterns on a distributed memory com-
puter. Another significant issue with wider stencils is the handling of boundary con-
ditions.

Equation (11.1) models the advection of a passive scalar Φ by a velocity field u,

DtΦ ≡ [∂t + (u ·∇)] Φ = 0 . (11.1)

The Lagrangian derivative in eq. (11.1) is usually defined as the limit, following the
characteristic, of

DtΦ = lim
∆t→0

Φ(t,x)− Φ(t−∆t,x− u∆t)
∆t . (11.2)

Semi-Lagrangian methods rely on this expression to discretize the advective operator
DtΦ instead of expanding the sum in a temporal term ∂tΦ and an advective term
(u ·∇)Φ, as in eq. (11.1). The semi-Lagrangian discretization of eq. (11.1) therefore
introduces an interpolation operator Lu [Φn] = Φ̃n(x − u∆t) , where Φ̃ denotes the
interpolated value away from the grid points.
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A strategy introduced by Dupont et al. [134] to increase the order of a semi-
Lagrangian scheme, without requiring the use of high-order interpolation formula, is
based on two consecutive calls to the interpolation operator, the second call involving
the reversed flow. This method is known as the “Forward Error Correction” [134].
The advantages of this procedure over the above high-order schemes rely both on the
accurate implementation of boundary conditions and on the limited communication
stencil. The Forward Error Correction scheme is constructed as

Φ̄ ≡ L−u [Lu [Φn]] , (11.3)

FEC [Φn] ≡ Lu [Φn] +
(
Φn − Φ̄

)
/2 . (11.4)

The FEC corrective algorithm has further been improved in [135, 136] using three
calls to the interpolation operator for each time-step. The resulting algorithm is known
as the “Backwards Error Correction” (BEC) algorithm. It is constructed using

BEC [Φn] ≡ Lu
[
Φn + (Φn − Φ̄)/2

]
. (11.5)

Both the FEC and the BEC algorithms suppress the leading order error term when
the interpolation operator is irreversible. Both the FEC and the BEC schemes are free
of numerical diffusion. However, they introduce numerical dispersive effects related to
their truncation errors.

This truncation error can be advantageously used to construct a scheme free of
numerical dispersion and characterized by a fourth-order derivative truncation error.
This is achieved for the same computational cost as the BEC scheme. A new “Com-
bined Error Correction” (CEC) algorithm is introduced, using a linear combination of
the FEC and BEC algorithms,

CEC [Φ] ≡ cFFEC [Φ] + cBBEC [Φ] . (11.6)

When the CIR scheme is used as the interpolation operator, the scheme generated
by the FEC algorithm is similar, in the Eulerian framework, to the one introduced in
[140]. In this case, the values of the coefficients cF and cB in eq. (11.6) can be explicitly
determined and the stability of the resulting schemes assessed. In one-dimension, their
expression is

3 cF = 2−∆x/(|u|∆t) and cB = 1− cF , (11.7)

where ∆t denotes the time-step and ∆x the grid-step.
In one-dimension of space, the CIR scheme is strictly equivalent to the Eulerian

upwind scheme. It is well known see [141, 142, 143] that this scheme is stable for
Courant-Friedrichs-Lewy (CFL) numbers smaller than unity and introduces diffusive
errors. The spurious diffusive effects are directly related to the truncation error of the
scheme.

The generalization to d-dimension must be carried out with care. As described
later, the fields can be advected one dimension at a time using a splitting technique
similar to [140]. In two or three dimensions, the interpolation can be done by applying
the CEC scheme on each direction separately.



142 Chapter 11. High-order semi-Lagrangian schemes

11.2.2 One-dimensional algorithms

In the semi-Lagrangian formalism, the advection equation can be discretized using the
CIR scheme [115]. In one-dimension, the CIR scheme has the same stencil as the
Upwind scheme ([120, 137, 142]):

ΦCIR
i =(1− Ui)Φn[i] + UiΦn[i− si] , (11.8)

where Φn[i] = Φn
i denotes the value of the passive scalar at time n∆t and position

i∆x, si = sgn(ui) the sign of the velocity and Ui = |ui|∆t/∆x the reduced velocity
with ui the velocity. A Von Neumann stability analysis shows that the scheme is
strictly stable for U ≤ 1. For a constant velocity, the modified equation takes the form

[
∂tΦ + u∂xΦ

]
CIR

= DCIR∂
2
xΦ + ... with DCIR= (1− U) |u|∆x2 . (11.9)

The FEC scheme pf eq. (11.4) is a multi-stage version of the CIR scheme. The
developed expression for the FEC scheme requires the first nearest neighbors for the
velocity and the second nearest neighbors for the passive scalar (see Appendix A). For
a constant velocity, the expression of FEC is

FEC[Φ]i = −1
2U(1− U)Φn[i+ 1] + (1− U2)Φn[i] + 1

2U(1 + U)Φn[i− 1] . (11.10)

The stability analysis of eq. (11.10) provides the following expression for the amplifi-
cation factor

ξFEC = 1− U2 + U2 cos(k∆x)− iU sin(k∆x) . (11.11)

The FEC scheme is stable for U ≤ 1. The modified equation associated to this scheme
is [

∂tΦ + u∂xΦ
]
FEC

= −(1− U2)u∆x2

3! ∂3
xΦ− 3(1− U2)u

2∆x2∆t
4! ∂4

xΦ + ... (11.12)

The BEC scheme, presented in eq. (11.5), is a modified version of the CIR scheme
using Φ̄n to correct the field before the advection step. The developed expression
of the BEC scheme requires the second nearest neighbors for the velocity and third
nearest neighbors for the passive scalar (see Appeendix A). To avoid using this long
development, the simplified case of a constant velocity will be studied.

BEC[Φ]i =− U

2 (1− U)2Φn
i+1 + (1− U)

2
(
3− (1− U)2 − 2U2

)
Φn
i (11.13)

+ U

2
(
3− 2(1− U)2 − U2

)
Φn
i−1 −

U2

2 (1− U)Φn
i−2 .

The stability analysis in eq. (11.13) leads to the following amplification factor

ξBEC = 1− 2iU sin(1
2k∆x)

[
e−

1
2 ik∆xU(1 + 2[1− U ] sin2(1

2k∆x)) + cos(1
2k∆x)(1− U)

]
.

(11.14)
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It can be shown analytically that the BEC scheme is stable for U ≤ 1. In fact, the
BEC scheme is still stable for a CFL number smaller than 1.5. The truncation error
analysis leads to [

∂tΦ + u∂xΦ
]
BEC

=− (1− U)(1− 2U)u∆x2

3! ∂3
xΦ (11.15)

− 9(1− U)2 u2∆x2∆t
4! ∂4

xΦ + ...

Simulations with Heaviside, triangle and cosine distributions advected by a con-
stant velocity were carried out for a CFL number U > 1. For U . 1.5, the BEC
scheme gives finite results consistent with the stable results collected for U < 1. The
other schemes (CIR, FEC and CEC) diverge for U > 1 and the BEC scheme di-
verges for U & 1.5. This extension of stability of the BEC scheme can be understood
in the following way: for U > 1, the interpolation is performed with points that are not
the nearest value to the reconstructed point. The contribution of the second nearest
neighbors in the BEC formula results in an enhanced stability of the scheme.

The FEC and BEC schemes both have modified equations with a third-order
derivative truncation error. The CEC scheme, presented in eq. (11.6) and eq. (11.7)
is a linear combination of these two schemes. The weights are computed to cancel
the leading order of truncation error (see Appendix A) and generate a higher order
scheme. Using the linearity of the stability analysis, the amplification factor is

ξCEC = 1− 2
3 sin(1

2k∆x)
[
U
(
3 + 2[1− U2] sin2(1

2k∆x)
)

sin(1
2k∆x) (11.16)

+
(
3 + 2U [1− U2] sin2(1

2k∆x)
)
i cos(1

2k∆x)
]
.

The CEC scheme is stable for U ≤ 1. To leading order, the modified equation of the
CEC scheme is[

∂tΦ + u∂xΦ
]
CEC

= −(1 + U)(1− U)(2− U) |u|(∆x)3

4! ∂4
xΦ + ... (11.17)

The essential properties of the different schemes are reported in Tab. 11.1. The
computational cost is evaluated using the number of composed interpolation operators.
The complexity of the interpolation operator varies with the interpolation method used.
In the case of the CIR scheme, the complexity is O(N) where N is the total number
grid of points.

11.2.3 Results for one-dimensional problems

To assess the efficiency of the schemes introduced previously, simulations with a con-
stant velocity were performed. A one-dimensional periodic domain is considered, and
the solution is advected for 10 or 100 cycles. Fig. 11.1, 11.2 and 11.3 show the advection
of three density profiles with different regularities. Because of the Fourier properties
of sine functions, the first harmonic was studied thoroughly to check that it matches
the properties of the modified equation.

The first set of tests was performed using an Heaviside profile Φ(x, t = 0) =
sgn

[
sin (2πx/l)

]
. This is a demanding test, as this profile is discontinuous at two
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Scheme Formula Error Stability Nb of calls

CIR L+
[
Φ
]

(1− U) |u|∆x2 ∂2
xΦ U < 1 1

FEC L+
[
Φ
]

+ 1
2 (Φ− Φ̄)

−(1− U2)u∆x2

3! ∂3
xΦ

−3(1− U2)u
2∆x2∆t

4! ∂4
xΦ

U < 1 2

BEC L+
[
Φ + 1

2 (Φ− Φ̄)
] −(1− U)(1− 2U)u∆x2

3! ∂3
xΦ

−9(1− U)2 u2∆x2∆t
4! ∂4

xΦ
U . 1.5 3

CEC
L+

[
Φ + 1+U

6U (Φ− Φ̄)
]

+ 1−2U
6U (Φ− Φ̄)

−(1+U)(1−U)(2−U) |u|(∆x)3

4! ∂4
xΦ U < 1 3

Table 11.1 – Comparative table of one-dimension schemes.

cross-over positions (0 and 0.5). As time elapses, the high frequencies get damped
and the profile is nearly reduced to its first harmonic. In fig. 11.1, the CEC scheme
is closer to the analytical solution than the other schemes by three criteria: (i) the
“flatness” of its profile at the beginning of the simulation, (ii) the distance from the
analytic cross-over position at all time and (iii) the phase drift of the profile at long
time. These criteria may seem independent but they are all linked to the Fourier
properties of the modified equation.
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Figure 11.1 – One-dimension advection of a Heaviside with a resolution of N = 30 at CFL =
0.75.

The second set of tests was performed using a triangular profile, Φ(x, t = 0) =
|x/l − 0.5| . This profile is non-differentiable at two cross-over positions (0 and 0.5).
In fig. 11.2, the observations reported in the previous paragraph still hold for the
triangular profile. As expected, the CEC scheme is closer to the analytic results in
the case of a continuous but non-derivable profile.

The last tests were performed using the first harmonic cosine profile, Φ(x, t = 0) =
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Figure 11.2 – One-dimension advection of a triangle with a resolution ofN = 30 at CFL = 0.75.

− cos (2πx/l) . The properties of the profile will be studied in more details in fig. 11.9
and 11.10. In fig. 11.3, the CIR scheme is so diffusive that a “corrected CIR” (green
diamond line)1 is plotted. Even though the CIR scheme is near zero in fig. 11.3, the
norm of its difference to the analytic profile is smaller than the FEC scheme which
drifted to such an extent that it is nearly opposite to the reference profile.

As noted above, provided that the interpolation strategy involves non-neighboring
points, semi-Lagrangian methods can use CFL numbers larger than one. Using a
non-local interpolation stencil, we can reproduce the advection test of fig. 11.3 using
a CFL number of 3.75 (see fig. 11.4).

The time-step being larger in this last case, fewer time-steps are needed for the
same integration time (here respectively 10 and 100 periods), the effects of numerical
dispersion and diffusion are thus weakened compared to fig. 11.3

This is achieved with a simple modification of relations eq. (11.7) to compute the
weights cF and cB, in the form

3 cF = 2− 1
(|u|∆t/∆x) %1 and cB = 1− cF , (11.18)

(where %1 denotes the remainder of the division by unity), the accuracy of the CEC
scheme is preserved for large CFL numbers.

11.2.4 Multi-dimensional problems

The extension of the above procedures to multi-dimensional problems requires some
care. For instance, in two dimensions, the CIR scheme is

CIR[Φ]i,j =(1− Uxi,j)(1− U
y
i,j)Φ

n
i,j + (1− Uxi,j)U

y
i,jΦ

n
i,j−syi,j

, (11.19)

+ Uxi,j(1− U
y
i,j)Φ

n
i−sxi,j ,j

+ Uxi,jU
y
i,jΦ

n
i−sxi,j ,j−s

y
i,j
.

1The corrected CIR values are equal to those of CIR multiplied by exp(DCIRk2t) where DCIR is
defined in (11.9).
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Figure 11.3 – One-dimension advection of the cosine function with a resolution of N = 30 at
CFL = 0.75.

The semi-Lagrangian CIR scheme uses one more value (Φ[i − sxi,j ][j − s
y
i,j ]) than the

Eulerian Upwind scheme. However, the CIR scheme is very similar to the directionally-
split Upwind scheme

Φ?
i,j =(1− Uxi,j)Φn

i,j + Uxi,jΦn[i− sxi,j ][j] , (11.20)
Φ??
i,j =(1− Uyi,j)Φ

?
i,j + Uyi,jΦ

?[i][j − syi,j ] . (11.21)

In the general case in multi-dimensions, there is no expression for the cF and cB co-
efficients of the CEC scheme. It can be extended to any dimension if the scheme is
directionnally-split as done in eq. (11.20) and eq. (11.21). However, if a simple splitting
method is used, the approximation is reduced to first order. Special splitting methods,
such as Strang splitting [144], are required to increase the order of the total scheme.

To illustrate applications of our strategy to higher dimensions, let us consider an
advection problem in two dimensions of space. A squared patch is considered for the
initial distribution of the passive scalar: one inside the square and zero outside, as
presented in fig. 11.5(a). The order of the schemes for regularly varying velocities
should be the same as the one for constant velocities. Quantitative results being
difficult, only qualitative observations will be made. The following velocity field was
used to test the schemes

u(x, y) = y

l

(
1− y

l

)(1
2 −

y

l

)[
cos

(
2πy

l
(1− y

l
)
)

+ 1
]
/(2π2) , (11.22)

v(x, y) = −x
l

(
1− x

l

)(1
2 −

x

l

)[
cos

(
2πx

l
(1− x

l
)
)

+ 1
]
/(2π2) , (11.23)

where l is the length of the box in both directions. In fig. 11.5(b), the velocity cancels
out on the edges of the box and is divergence-free. With the profiles used, the patch is
not transported through the walls of the box even though the simulation has periodic
boundary conditions. The patch never intersects itself, which makes it easier to track.
To compare the results, a fully Lagrangian method was used as a reference. The
time-step of this method was twenty times smaller to have more accurate results. The
solution is represented in fig. 11.5(c).
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Figure 11.4 – One-dimension advection of the cosine function with a resolution of N = 30 at
CFL = 3.75.

In fig. 11.6 and 11.7, the analysis of the gap between a scheme and the reference
solution should not only be guided by the intensity of the difference but also by the
area impacted. The CIR scheme clearly introduces the largest computational error.

The perturbation of the distribution can also give an intuition of the leading error
term in the modified equation. The quick oscillations at the tail of the patch in
fig. 11.7(b) and 11.7(c) can be related to the dispersive residuals of the FEC and
BEC schemes. In fig. 11.7(d), the CEC solution is the closest to the reference solution
obtained by the pure Lagrangian method. The error is of small amplitude and only
impacts the edges of the patch.

11.2.5 Application to thermal convection

In this section, the comparison between the different advection schemes is extended
to a physically more relevant case: thermal convection in a layer of fluid heated from
below. This canonical example is also known as the Rayleigh-Bénard setup. The
schemes will not only be used on passive scalars that do not influence the velocity, but
on the velocity itself and the temperature, which, in the Rayleigh-Bénard instability,
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Figure 11.5 – Initial condition, velocity profile and final distribution for the two-dimensional
advection test case.
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(a) CIR advection (b) F EC advection (c) BEC advection (d) CEC advection

Figure 11.6 – Two-dimensional patch advection using the different schemes.

(a) CIR error. (b) F EC error. (c) BEC error. (d) CEC error.

Figure 11.7 – Errors as measured by the difference of the numerical solutions to the reference
solution obtained with pure Lagrangian advection.

modifies the velocity actively.
The system of equations describing the evolution of the velocity u and the tem-

perature T of the fluid is solved on a two-dimensional Cartesian domain of aspect ratio
χ = Lz/Lx = 0.5, bounded by solid and impermeable walls. The bottom and top plates
are maintained at fixed temperatures T0 and T0−∆T , respectively, whereas the verti-
cal walls are assumed to be insulating (no heat flux through the vertical boundaries).
Gravity is assumed to be uniform and vertical g = −gez .

To retain the essential physics with a minimum complexity, the Boussinesq ap-
proximation is used to describe the fluid within the cell and assume that variations
of all physical properties other than density can be ignored. Variations in density
are also neglected “except in so far as they modify the action of gravity” [145].
The density ρ is assumed to be constant everywhere in the governing equations ex-
cept in the buoyancy force where it is assumed to vary linearly with temperature,
ρ (T ) = ρ0 (1− α (T − T0)) , where α is the thermal expansion coefficient of the fluid.

The system admits the stationary diffusive solution: u? = 0, T ? = T0 − z∆T/Lz,
and ∇P ? = −gρ (T ?) ez. Subtracting the stationary solution, choosing Lz, L2

z/κ, and
∆T as units of length, time, and temperature, respectively, and using the temperature
perturbation θ = T − T ?, the system can be written [146] as

∂tu+ (u ·∇)u = −∇Π + RaPr θ ez + Pr ∆u , (11.24)
∂tθ + (u ·∇) θ = w + ∆θ , (11.25)

∇ · u = 0 , (11.26)
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(a) CIR scheme (b) F EC scheme

(c) BEC scheme (d) CEC scheme

Figure 11.8 – Rayleigh-Bénard evolution of a localized thermal perturbation. The numerical
resolution N = 502 is intentionally modest, in order to highlight numerical errors.

with w ≡ u · ez the vertical velocity. The non-dimensional control parameters are the
Rayleigh number, defined by Ra = αg∆TL3

z/(κν) and which measures the convective
driving, and the Prandtl number, defined as the ratio of viscous to thermal diffusion,
Pr = ν/κ, with ν the kinematic viscosity and κ the thermal diffusivity.

Equations (11.24) and (11.25) are discretized on a uniform grid using finite volume
formula of order two in space and order one in time, with all the terms being treated
explicitly. To enforce the solenoidal constraint (11.26), the pressure-correction scheme
[147, 148] is used. This splitting method is composed of two steps. In the first step,
a preliminary velocity field u? is computed by neglecting the pressure term in Navier-
Stokes equation. Since this preliminary velocity field is generally not divergence-free,



150 Chapter 11. High-order semi-Lagrangian schemes

it is then corrected in a second step by a projection on the space of solenoidal vector
fields. Given the temperature and velocity distributions at time-step n, the velocity
un+1 is computed by solving

u(1) = L [un,un] , (11.27)
u(2) = u(1) + ∆t (RaPr θnez + [∆u]n) , (11.28)
∆φn = ∇ · u(2) , (11.29)
un+1 = u(2) −∇φn . (11.30)

In eq. (11.29), the algorithm requires to solve at each time-step a Poisson equation
for the pressure. The necessary impermeability conditions for the field φ are found
by multiplying (11.30) by the normal vector n. Together with the velocity boundary
condition, they lead to n ·∇φn = 0 . The boundary conditions for the velocity field
are no-slip, i.e. u = 0, while the temperature satisfies θ(z = 0) = θ(z = 1) = 0 on the
horizontal boundaries, and ∂xθ = 0 on the vertical boundaries. Boundary conditions
are imposed on the intermediate velocity field u? by introducing ghost points outside
of the domain. In consequence, the tangential component of the actual velocity field
u will not exactly satisfy the boundary conditions (the error being controlled by the
time-step).

In order to develop the instability (the Rayleigh number being sufficiently large
and the Prandtl number set to unity), the simulations were always started with u = 0
and with a small temperature perturbation. This temperature perturbation consisted
of a hot spot (θ = 0.1) next to a cold spot (θ = −0.1). This perturbation, localized
close to the lower left corner, generates a rising and a sinking plume. The different
simulations were compared when the rising plume has reached the top boundary (after
roughly a thousand iterations).

A very low resolution, N = 502, was deliberately chosen in order to highlight the
numerical errors associated to the different schemes. Snapshots of the total tempera-
ture T = T ? + θ associated with the thermal plume are compared on figure 11.8. In
fig. 11.8(b) and 11.8(c), strong ripples appear in the wake of the plumes. They are
not physically relevant and are characteristics of dispersive schemes. The comparison
of the plumes in fig. 11.8(a) and fig. 11.8(d) clearly highlights that the CEC scheme
is less diffusive than the CIR scheme for practical physical applications. The CEC
scheme offers an improved scheme, with significantly reduced diffusive effects, and free
of the strong dispersion characterizing the FEC and BEC schemes.

11.3 Conclusion
Using the simplest semi-Lagrangian CIR scheme introduced by Courant-Isaacson-
Rees, it has been demonstrated that a simple multi-stage approach can increase the
order of the scheme from first to third order. The resulting scheme is, at leading order,
non-dispersive. This procedure was shown to yield significant improvement on a ther-
mal convection problem. It can easily be used to increase the order of existing codes
on parallel computers, as the communication stencil is unaltered by the multi-stage
approach. The communications among parallel processes are then restricted to the
strict miminum (one layer of cell at each domain boundary).
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The CEC algorithm, introduced here, only requires a modest increase in the com-
putational cost and can easily be implement in existing codes. Moreover, its implemen-
tation is not limited to regular Cartesian finite differences schemes. It can be general-
ized to other geometries and scheme types by following two simple steps: (i) deriving
the modified advection equation for the FEC and BEC schemes and (ii) combining
both schemes to cancel out their leading order error.

11.4 Appendix (description of new procedures)

11.4.1 Appendix: Developed expressions of the
corrective schemes

The expressions relevant to eq. (11.10) and eq. (11.13) can be developed as

2FEC[Φ]i =− Ui(1− Ui)Φn
i+si + (2− UiUi)Φn

i (11.31)
− UiUi+siΦn[i+ si − s (i+ si)] + Ui(1 + Ui−si)Φn

i−si ,

2BEC[Φ]i = (fΦn) [i+ s (i)] + (fΦn) [i] + (fΦn) [i− s (i) + s (i− s (i))]+ (11.32)
(fΦn) [i+ s (i)− s (i+ s (i))] + (fΦn) [i−s (i)]+
(fΦn) [i−s (i)+s (i+s (i))−s (i−s (i)+s (i−s (i)))]+
(fΦn) [i− s (i)− s (i− s (i))] ,

where

f [i+ s (i)] = −(1− Ui)Ui(1− Ui+s(i)) , (11.33)
f [i] = (1− Ui)

[
3− (1− Ui)2] , (11.34)

f [i− s (i) + s (i− s (i))] = −UiUi−s(i)(1− Ui−s(i)+s(i−s(i))) , (11.35)
f [i+ s (i)− s (i+ s (i))] = −(1− Ui)UiUi+s(i) , (11.36)

f [i− s (i)] = Ui
[
3 −

(
1− Ui−s(i)

)2 ]
− (1− Ui)

(
(1− Ui)Ui

)
, (11.37)

f [i−s (i)+s (i+s (i))− s (i−s (i)+s (i−s (i)))]=−UiUi−s(i)Ui−s(i)+s(i−s(i)) , (11.38)
f [i− s (i)− s (i− s (i))] = −Ui(1− Ui−s(i))Ui−s(i) . (11.39)

11.4.2 Appendix: Analysis of the modified advection equation
The modified equation steming from the discretization of the advection equation has
in one-dimension the general form

∂tΦ + u ∂xΦ =
∑
α

Cα∂
α
xΦ , (11.40)

where the Cα prefactors come from the truncation error in the case of numeric schemes.
If the CFL stability condition is met, i.e. ∆t ∝ u−1∆x, with ∆x ∝ N−1, we have

Cα ∝ N−α+1 . (11.41)
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Going into Fourier space for spacial dimensions and Fourier-Laplace space for time,

Φ(x, t) =
∫

dk eΩ(k)t−ikxΦ̂(k,Ω(k)) where Ω(k) = −σ(k) + iω(k) . (11.42)

Thus, the dispersion relation is

Ω(k) = (ik)u+
∑
α

(−ik)αCα . (11.43)

Using the decomposition introduced in eq. (11.42), the decay rate and the phase drift
can be expressed as

σ(k) =
∑
p

(
k2
)2p+2

(
C4p+2−

(
k2
)2p

C4p

)
, (11.44)

ω(k) = k
(
u−

∑
p

(
(k2)2pC4p+1−(k2)2p+1C4p+3

) )
. (11.45)

The equation has strictly stable solutions if and only if σ(k) > 0. Because of its
dependence on the resolution, the sequence of C2p is often equivalent to its first term
different from zero. The stability reduces to the criterion Cα > 0 if α = 4p + 2 and
Cα < 0 if α = 4p. Using the equation on ω, the phase drift can be extracted

φ(k) = ω(k)− ku = −k
∑
p

(
(k2)2pC4p+1 − (k2)2p+1C4p+3

)
. (11.46)

It is important to note that the procedure introduced in the FEC scheme cannot be
repeated recursively. In order to highlight this point let us note that for pure advection,
reversing time is equivalent to reversing the velocity

∂−tΦ + u∂xΦ = 0 ⇔ ∂tΦ + (−u)∂xΦ = 0 ⇔ ∂tΦ + u∂−xΦ = 0 . (11.47)

Going into Fourier space for the spacial dimension

Φ(x, t) =
∫

dk e−ikxΦ̃(k, t) , (11.48)

the modified advection equation can be written as

∂t
(
ln Φ̃

)
(k, t) = u(ik) +

∑
α

Cα(−ik)α . (11.49)

Reversing the sign of the coordinate, x→−x, is equivalent to reversing the wavevector,
k→−k (c.c. for a real field). In order to ensure time reversibility, the following relation
should be satisfied

∂t
(
ln Φ̃

)
(k, t) = ∂t

(
ln Φ̃

)
(−k,−t) = −∂t

(
ln Φ̃

)
(−k, t) . (11.50)

This last relation shows that only terms of odd derivative are reversible. The error on
Φ̄ highlights this observation. It can be evaluated using(

ln ˜̄Φ
)

(k, t) =
(
ln Φ̃

)
(k, t) + 2∆t

∑
p

C2p(ik)2p. (11.51)
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Only terms of even order derivative modify the field and can be detected with this
procedure. This property should also be true for the Cα coefficients when the velocity
is reversed. In the case of the CIR scheme, the coefficients depend on the sign of the
velocity. In the case of the non-ideal advection equation (11.40), reverting time leads
to

∂tΦ + (−u)∂xΦ =
∑
p

(
C2p+1(−u)∂2p+1

x Φ− C2p(−u)∂2p
x Φ

)
. (11.52)

Once more, only terms of odd order derivative are reversible.
The decay rate (fig. 11.9) and the phase drift (fig. 11.10) were measured for different

resolutions. The results are plotted as a function of the resolution on a binary log
scale (lb). Fig. 11.9(a) and 11.10(a) represent the decay rate and the phase drift,
respectively. As shown in eq. (11.41), the prefactors of the derivative terms of the
error are proportional to an integer power of the resolution, Cα ∝ N−α+1. The values
of α are in good agreement with the error term of the modified equation. Using the
theoretical value of α(1) and α(2), the values are rescaled to φres = φ×Nα(1)−1 and
σres = σ×Nα(2)−1 . Fig. 11.9(b) and 11.10(b) show that the rescaled values are nearly
constant as predicted by the theory.
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(b) Rescaled decay rate

Figure 11.9 – Evolution of the decay rate with the resolution in one-dimension.
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(b) Rescaled phase drift

Figure 11.10 – Evolution of the phase drift with the resolution in ofmension.



Chapter 12
A systematic method to enforce
conservativity on semi-Lagrangian
schemes (submitted)

This chapter presents new results.
Semi-Lagrangian schemes have proven to be very efficient to model advection prob-

lems. However most semi-Lagrangian schemes are not conservative. Here, a system-
atic method is introduced in order to enforce the conservative property on a semi-
Lagrangian advection scheme. This method is shown to generate conservative schemes
with the same linear stability range and the same order of accuracy as the initial
advection scheme from which they are derived. We used a criterion based on the
column-balance property of the schemes to assess their conservativity property. We
show that this approach can be used with large CFL numbers and third-order schemes.

12.1 Introduction

Semi-Lagrangian methods have been demonstrated to be efficient schemes to model
advection-dominated problems. These methods are intensively used to solve atmo-
spheric and weather problems [116, 118], internal geophysics problems [120] or plasma
simulations [149, 150, 130]. However, when conservative properties are sought, the
method of discretisation usually relies on a finite volume discretisation. Conservativ-
ity is then ensured by canceling fluxes, defined on the computational cell boundaries
[151, 152].

Semi-Lagrangian methods, on the contrary, are in general not conservative. Some
earlier works have tried to address this issue and derive a conservative semi-Lagrangian
scheme. For example, [127, 128] introduced a modified version of a non-conservative
semi-Lagrangian scheme [153] to enforce conservativity. Their approach provides a
conservative formulation at the cost of introducing a scheme in which the coefficients
depends on the values of the advected field. An alternative strategy, which uses a semi-
Lagrangian reconstruction to estimate fluxes on the faces, was introduced by [150] in
the finite volume spirit to model the Vlasov equation. This strategy was adapted to
compressible flows in [125]. In both of the above approaches, the formulations are

155
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well-adapted to one-dimensional problems, but their generalization to higher spatial
dimensions without using a splitting strategy is challenging.

A general method to enforce conservativity on a semi-Lagrangian scheme was in-
troduced in Lentine et al. [129]. Noting that the contribution of a given cell to the
update in time of the total field does not add up to unity, they introduced an ad hoc
modification of the coefficients which allows to ensure conservativity at the cost of
reducing the order of the scheme.

We propose a systematic method to enforce conservativity on a numerical scheme.
Our method follows ideas introduced in the method of support operators developed by
Shashkov [154], or the summation-by-part method of Carpenter et al. [155, 156]. It
can easily be applied to semi-Lagrangian schemes. A close equivalence can be found
with the flux interpretation in the sense of finite volume schemes. Let us start by
considering the continuity equation, for a quantity Φ subject to a velocity field u

∂tΦ = −∇ · (Φu) ≡ C(U)[Φ] , (12.1)

where C(U) denotes the continuity operator. If the flow is incompressible, ∇ · u = 0,
the continuity equation reduces to the advection equation:

∂tΦ = −Φ(∇ · u)− (u ·∇)Φ = −(u ·∇)Φ ≡ D(U)[Φ] , (12.2)

where D(U) denotes the advection operator.
Instead of considering eq. (12.2) as a simplified version of eq. (12.1), under the

solenoidal constraint, the two equations can be viewed as two independent equations.
Introducing the canonical scalar product of two continuous fields Ψ and Φ, (Ψ , Φ) =∫

ΨΦ dτ , the continuity and advection operators are then adjoint operator up to a
change of the velocity sign:∫

Ψ [(u ·∇)Φ] dτ =
∮

ΨΦu · n ds+
∫

[∇ · (−uΨ)] Φ dτ . (12.3)

If the boundary term vanishes, the operators follow (Ψ , D(U)Φ) = (C(−U)Ψ , Φ).
Such relations have been intensively used in the support operator formalism [154].
Introducing the ? to denote the adjoint operator, we getD(U)? = C(−U) . This adjoint
property can be used to enforce conservativity on an arbitrary advection scheme.

12.2 Method (description of new procedure)

12.2.1 Column-balance criterion & adjoint operator
Using a linear finite difference scheme explicit on time, the advection equation is given
by Φn+1

i = Φn
i + Di,jΦn

j , where Di,j denotes the discrete linear operator associated
to eq. (12.2). For the discrete operator to be homogeneous, the coefficients Di,j must
only depend on the reduced velocity Ui = ui∆t/∆x.

In a similar way, finite difference schemes modeling eq. (12.1), which corresponds
to the continuity condition, can be written as

Φn+1
i = Φn

i + Ci,jΦn
j (12.4)
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where Ci,j denotes the conservative transport matrix. The evolution of the total mass,
M , is then given by

Mn+1 −Mn =
∑
i,j

Ci,jΦn
j =

∑
i

Φn
i (
∑
j

tCi,j) . (12.5)

It follows that the scheme is conservative if and only if the Ci,j operator is column-
balanced, i.e. for all i,

∑
j Cj,i = 0 . In order to link this formalism to finite vol-

ume schemes, the column-balanced conservative matrix can be compared to the flux
method. On a regular Cartesian grid, flux are defined at the boundary between two
vertices. The equation modeling the flux method is:

Φn+1
i = Φn

i + Fi−1/2 − Fi+1/2 , (12.6)

where Φn+1
i denotes the values of field Φ at the index i and Fi+1/2 the flux of field Φ

computed at index i + 1/2. Choosing Fi+1/2 = Ci+1,iΦi − Ci,i+1Φi+1, both methods
are strictly equivalent.

The adjoint relation will now be used to show how a generic advection scheme can
be modified to enforce the conservativity property. Once the problem is discrete, the
adjoint property leads to C(U) = tD(−U). It is a property of the transpose that C(U)
and D(−U) have the same eigenvalues. Both operators are thus stable for the same
set of parameters. It also implies that the error of the C(U) scheme is the transpose of
the error of the D(−U) scheme, therefore the two operators have the same consistency
order. In addition, if D(−U) is monotone, C(U) is also monotone. Using the Lax-
Richtmyer equivalence theorem [157], the consistent and stable C(U) scheme converges
to the continuity equation.

The above remarks do not ensure that the C(U) scheme conserves the total mass.
However, assuming that the advective scheme satisfies ∀i ,

∑
j Di,j(−U) = 0, it follows

that ∀j,
∑
iCi,j(U) = 0. The Ci,j(U) operator is thus column-balanced and conserves

the total mass.
It is important to stress that we only introduce a modification of the spatial oper-

ator. The conservative property of Ci,j(U) will thus be valid both for multi-step and
multi-stage time-steppings. Consider for example a Crank-Nicholson time-stepping
scheme [158, 120], the fields at each time-steps are related via(

δ − ∆t
2 D(Un+1)

)
i,j

Φn+1
j =

(
δ + ∆t

2 D(Un)
)
i,j

Φn
j , (12.7)

where δi,j denotes the Kronecker delta (δi,j = 1 if i = j and δi,j = 0 if i 6= j). The
Crank-Nicholson advection operator (CN) can be rewritten

CNi,j(U) = −δi,j +
[(
δ − ∆t

2 D(Un+1)
)−1 (

δ + ∆t
2 D(Un)

)]
i,j

. (12.8)

The corresponding conservative operator (CCN) is then

CCNi,j(U) = −δi,j +
[(
δ + ∆t

2
tD(−Un)

)(
δ − ∆t

2
tD(−Un+1)

)−1]
i,j

. (12.9)
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12.2.2 Conservative semi-Lagrangian scheme in one dimension
Let us now turn to semi-Lagrangian schemes. The conservative method can be used
to generate conservative scheme from a semi-Lagrangian algorithm. In one dimension,
the CIR scheme [115], which is equivalent to the upwind scheme, will be used to show
how a conservative CIR (CCIR) scheme can be built. The resulting CCIR scheme
will then be tested on a simple numerical simulation.

In order to be stable, advection algorithm must transport information in the di-
rection of the flow. The CIR scheme satisfies this condition by adapting its stencil
according to the direction of the velocity following the characteristic. For advection
equation in one dimension (e.g. [159]), the CIR scheme is:

Φn+1
i = Φn

i + CIRi,jΦn
j = Φn

i + (U+
i Φi−1 − |Ui|Φn

i − U−i Φn
i+1) , (12.10)

with U+
i = max(Ui, 0) and U−i = min(Ui, 0). To leading order, this scheme yields the

diffusive error term

[∂tΦ + u∂x(Φ)]
CIR
' ∆x

2 |u|∂x [(1− ua) ∂xΦ] . (12.11)

The scheme is consistent with the advection equation, but it is not conservative. The
conservative counterpart of the CIR scheme can be built by changing the sign of the
velocity and transposing the CIRi,j matrix. The expression of the CCIR scheme is:

Φn+1
i = Φn

i + CCIRi,jΦn
j = Φn

i + (U+
i−1Φn

i−1 − |Ui|Φn
i − U−i−1Φn

i+1) . (12.12)

The CCIR scheme is conservative because it is column-balanced by construction.
Similarly to the CIR scheme, the CCIR scheme has a diffusive error. As expected,
the CCIR error term is the adjoint of the CIR error term:

[∂tΦ + ∂x(uΦ)]
CCIR

' ∆x
2 ∂x [(1− ua) ∂x(|u|Φ)] . (12.13)

The CCIR scheme was tested using a velocity profile u(t;x) = sin(2πx) and a
uniform passive scalar Φ(t = 0;x) = 1. It conserved the total mass, M/M0, near unity
up to machine precision. This is not the case of the CIR scheme for varying velocities:

Φn+1
i = Φn

i + Ui−1
Ui

(U+
i Φn

i−1)− (|Ui|Φn
i−1) + Ui+1

Ui
(U−i Φn

i−1) . (12.14)

In the same manner, the second-order (dispersive) Lax-Wendroff scheme (LW ),
which takes the form:

Φn+1
i =

(
U+

U
U(1+U)

2

)
i
Φn
i−1 +

(
U+

U (1− U2)
)
i
Φn
i −

(
U+

U
U(1−U)

2

)
i
Φn
i+1 (12.15)

+
(
U−

U
U(1+U)

2

)
i
Φn
i+1 +

(
U−

U (1− U2)
)
i
Φn
i −

(
U−

U
U(1−U)

2

)
i
Φn
i−1 ,

can be transformed into a conservative LW scheme (CLW ), of the form,

Φn+1
i =

(
U+

U
U(1+U)

2 Φn
)
i−1

+
(
U+

U (1− U2)Φn
)
i
−
(
U+

U
U(1−U)

2 Φn
)
i+1

(12.16)

+
(
U−

U
U(1+U)

2 Φn
)
i+1

+
(
U−

U (1− U2)Φn
)
i
−
(
U−

U
U(1−U)

2 Φn
)
i−1

.
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In the same way, the third-order (hyperdiffusive) semi-Lagrangian Dahlquist and Björck
scheme (DB) (e.g. [120, 160]):
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has the following conservative counterpart (CDB):
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Figure 12.1 – Comparison of the total mass evolution for the 1D transport problem with
u = sin(x) and Φ(t = 0) = 1 for conservative and non-conservative semi-Lagrangian schemes
of various orders (the CFL number is here fixed to 0.75).

These schemes are compared in fig. 12.1-12.3. First, we consider the evolution of
the total mass in a simple test case of a periodic flow of the form u = sin(x) with a
constant initial distribution of mass Φ(t = 0;x) = 1. This is illustrated in fig. 12.1.
The conservative property of the CCIR, CLW and CDB schemes is highlighted by the
plot of the total mass which remains constant equal to its initial value. Fig. 12.2 shows
standard tests of advection in a periodic domain of a Heaviside, piece-wise affine and
cosine functions. The diffusive or dispersive behaviors generated by the order error
term are confirmed. The order can be quantified with more details by considering
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the error on the amplitude and the phase of the cosine profile (e.g. [161]). Fig. 12.3
illustrates that the order of the original scheme is maintained for its conservative
counterpart.
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Figure 12.2 – Advection in a periodic domain with periodic boundary conditions. The advection
velocity is constant and the initial profile takes the form of a Heaviside (a), a piece-wise affine
(b), a cosine (c) function. Graphes from left to right correspond to 1, 10 and 100 periods of
the flow respectively.

In order to generalize theses scheme to CFL numbers greater than unity, the inter-
polation point has to be shifted by a integer number of grid spaces, using

Ũi = [(ui∆t)/∆x] %1 , j = i− ui∆t/∆x+ Ũi , (12.19)
where Ũ+

i = max(Ũi, 0) , Ũ−i = min(Ũi, 0) . (12.20)

For example, the conservative CIR scheme then becomes

Φn+1
i = Φn

j +
[
(Ũ+Φn)j−1 − (|Ũ |Φn)j − (Ũ−Φn)j+1

]
. (12.21)

Similar expressions follow for the other schemes. The density profiles of the simulation
using CFL numbers above unity are presented in fig.12.4 in the case of an initial cosine
profile.
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Figure 12.3 – Decay rate (loss in amplitude) and phase shift per unit of time for the test cases
presented in fig. 12.2 at time t = 5. The nature of the leading order error term (diffusive or
dispersive) is clearly highlighted.
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Figure 12.4 – Advection of a cosine function over 100 periods of the flow with a CFL number
of 0.75 (a), 2.5 (b), and 7.5 (c).

12.2.3 Extension in higher dimensions
The standard reconstruction used with the CIR scheme is a bilinear reconstruction.
It takes the form:

Φn+1
i,j =[(1− Ua)(1− |V |)Φn]i,j [Ua(1− |V |)]i,jΦn

α,j (12.22)
+ [(1− Ua)|V |]i,jΦn

i,β + [Ua|V |]i,jΦn
α,β ,

where Vi = vi∆t/∆x, α = i− sign(ui,j) and β = j − sign(vi,j) .
The above stencil can be interpreted using the geometric construction presented in

fig. 12.5(a). Semi-Lagrangian schemes require to reconstruct the field at the backward-
advected points xi,j − ui,j∆t . Considering a CFL number smaller than unity, the
reconstruction point necessarily lies in one of the cells surrounding xi,j . This point
naturally splits the cell in four parts. The weight of each node in the bilinear inter-
polation eq. (12.22) corresponds to the ratio of the surface of the rectangle opposite
to this node normalised by the total surface of the computational cell. This graphical
interpretation of eq. (12.22) is illustrated on fig. 12.5(a) the backward displacement
−ui,j∆t being indicated with a dashed line.
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Let us now turn to the conservative scheme, the two-dimensional version of the
CCIR scheme can be expressed as:

Φn+1
i,j = [|U+||V +|Φn]i−1,j−1 + [|U+|(1− |V |)Φn]i−1,j + [|U+||V −|Φn]i−1,j+1

+ [(1− |U |)|V +|Φn]i,j−1 + [(1− |U |)(1− |V |)Φn]i,j + [(1− |U |)|V −|Φn]i,j+1

+ [|U−||V +|Φn]i+1,j−1 + [|U−|(1− |V |)Φn]i+1,j + [|U−||V −|Φn]i+1,j+1 . (12.23)

It is enlighting to interpret this formula geometrically. The weights now correspond
to the forward displacement ui,j∆t, indicated with a solid line on fig. 12.5(b). Again
the weight of each term is given by the relative surface of the rectangle opposite to
the advected vertex, normalized by the total surface of the computational cell. The
key distinction is however that the computed weight corresponds to the contribution
of Φi,j to the time evolution of its neighbors. This contrasts with the CIR scheme, for
which the computed weights correspond to the contribution of each neighbor to the
evolution of Φi,j .

In fig. 12.5, mass conservation appears as a direct consequence of the fact that
the sum of each sub-rectangle amounts to the total cell as highlighted by expression
(12.23). Let us stress that this approach results in a conservative non-split semi-
Lagrangian formulation.

1-|U|

|U|

|V|

1-|V|

(a) Advection sketch

1-|U|

|U|

|V|

1-|V|

(b) Continuity sketch

Figure 12.5 – Illustration of the reconstruction strategy and computational weights for the
standard CIR scheme (a) and its conservative CCIR counterpart (b). The red arrow corre-
sponds to the forward advection. The color of a rectangle indicates its contribution to the
evolution of a given point with the same color (see text).

A few observations can be made on this stencil. First, this rather simple geometric
interpretation can be generalized to higher dimensions. Second, the two-dimensional
CCIR stencil of eq. (12.23) is identical to the split formula corresponding to the
composition of two one-dimensional CCIR stencils, CCIRxy = CCIRx ◦ CCIRy =
CCIRy ◦CCIRx. Such is not the case for the CIR stencil. This commuting property
can be used to generalize the higher-order conservative schemes from section 12.2.2 to
higher dimensions of space.

To illustrate the conservative property of the CCIR scheme in two dimensions of
space, it was tested using an incompressible velocity profile of the form u(t;x, y) =
− sin(πx) cos(2πy), v(t;x, y) = cos(πx) sin(2πy). The initial passive scalar field takes
the form of a uniform patch Φ(t = 0;x, y) = 1 if |x− 0.5| ≤ 0.15 and |y − 0.3| ≤ 0.15 ,
and 0 elsewhere (see fig. 12.6.a).
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Since the flow is incompressible, the advection and continuity equation are equiv-
alent. We thus compare the three schemes discussed in section 12.2.2 and their con-
servative counterparts. In fig. 12.6(b), the evolution of relative total mass of the CIR,
LW and DB schemes is represented. As expected, the conservative schemes have a
relative mass equal to unity, up to machine precision for the same set of parameters.

(a) Initial density profile
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(b) Mass evolution with time

Figure 12.6 – Two-dimensional transport of a density distribution initially uniform within a
square (a). The total mass evolution with time up to t = 10 with a resolution of 1283 for
conservative and non-conservative semi-Lagrangian schemes of first, second and third order
(b) reflects the conservative nature of the schemes.

In fig. 12.7, color-plots of the density profile are given for all schemes at t = 10. The
evolution of mass in the plan of symmetry is different for all schemes. The accumulation
of mass near the stagnation point is clearly visible with the conservative schemes of
odd orders, see figs. 12.7(d) and 12.7(f). Dispersive effects in fig. 12.7(e), which do not
vanish in the symmetry plane, are still too strong to allow for this feature to emerge.

The explicit scheme introduced in eq. (12.23) corresponds to a first-order time
integration. We should stress however that the modified reconstruction strategy intro-
duced to enforced conservativity only concerns the spatial operator. The conservative
property is thus retrained for higher order or multi-level time-stepping algorithms as
shown in eqs.(12.8) and (12.9).

In fig. 12.8, convergence effects can clearly be identified by comparing results ob-
tained with the CCIR scheme (conservative, first order) with a fine grid (10242), to
the ones obtained with a coarser grid (1282) or with the CDB scheme (conservative,
third order). At low resolution, owing to the effects of the numerical diffusion, the
density on fig. 12.8(a) appears to be spread across three independent lobes. Increas-
ing the resolution, or using a higher-order scheme, reveals the fine filaments of mass
connecting these lobes.

Varying the resolution, the convergence of the density profile is tested for the con-
servative diffusive monotone CCIR scheme at CFL= 1.6 in fig. 12.9. As the resolution
increases at constant CFL, the numeric error decreases and the density profile becomes
closer to the analytic solution. At high resolution, the grid is finer, the simulation is
therefore more precise and catches the details of the structure near the symmetry axis.

At a resolution of 2562, the CCIR is able to get accurately the profile for CFL num-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12.7 – A comparison of the non-conservative scheme at CFL= 0.8 (a,b,c) with the
conservative scheme at CFL= 0.8 (d,e,f) and at CFL= 1.6 (g,h,i). The simulations were
carried out at a resolution of 1282 for an integration time of t = 10.

(a) (b) (c)

Figure 12.8 – Comparison of the first-order conservative CCIR scheme with the third-order
conservative CDB scheme at CFL= 0.8. Plots (a) and (b) compare simulations of resolution
1282 and 10242 respectively for the CCIR scheme; plot (c) presents the same setup solved
with the CDB scheme at a resolution of 1282.

bers above unity. Fig. 12.10 shows the profile computed for CFL up to 8. Comparing
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(a) (b) (c)

(d) (e) (f)

Figure 12.9 – Convergence study for the first-order conservative CCIR at CFL= 1.6 with
resolutions: (a) : 322 , (b) : 642 , (c) : 1282 , (d) : 2562 , (e) : 5122 , (f) : 10242 .

the profiles on figs. 12.9 and 12.10 with the profile of the 10242 resolution simulation
at CFL= 0.8 of fig. 12.8(b), the conservative schemes are able to model the flow for
CFL> 1 with great accuracy. The good agreement between the simulations is not
restricted to the profile, it also extents to the total mass which is conserved up to
machine precision.

(a) (b) (c)

Figure 12.10 – Comparison the profile of simulations using the first-order CCIR scheme at a
resolution of 2562 for different CFL: (a) : 1.6 , (b) : 4.0 , (c) : 8.0.

Semi-Lagrangian algorithms are composed of two main steps [162, 163, 150]: the
computation of the characteristic curves, and the reconstruction step. The present
work focused on making the reconstruction step conservative. All the simulations
carried out used the 2D-generalization of eq. (12.19)-(12.20). Even though the trajec-
tories were computed with a law order method, the algorithm can be adapted to more
sophisticated methods. To do so, the trajectory in each point can be reconstructed
using high order characteristics (e.g. [150]) and the resulting displacement should be
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decomposed as the sum of: (i) a vector whose components are equal to an integer
number of grid-steps, and (ii) a remainder vector whose components are smaller than
the grid-step.

12.3 Perspectives

We have introduced a systematic approach to derive a conservative scheme without
the need for a finite volume discretisation. The method has been successfully applied
to semi-Lagrangian schemes, which are notorious for being very efficient, but usually
not conservative. Using this method, we were able to built a third-order conservative
semi-Lagrangian scheme based on the scheme introduced by Dahlquist and Björck.

The approach presented here is similar in the spirit to that introduced by Verstap-
pen et al. in [164] to derive energy-preserving schemes. They also used an adjoint
formulation to derive the discrete scheme. As their concern is the conservation of en-
ergy, they insist of the skew symmetry property of the operator. We are here rather
concerned with mass conservation and therefore focus on the column-balanced property
of the scheme.

Our approach also bears similarities with ideas introduced by Shashkov in the
support operators method [154] or by Carpenter [155, 156]. It however differs from the
support operator method, in that we propose an algorithm (via the discretisation of
the adjoint equation) to systematically transform a non-conservative advection scheme
into a continuity preserving operator.

12.4 Appendix (convergence study)

In order to illustrate the order of convergence of the conservative schemes introduced
in section 12.2.2 in 2D, we perform a numerical study with varying resolution. The
initial distribution takes the form cos(x+y) and the flow is uniform with ux = uy = 1.
The results are illustrated in fig. 12.11.

3 4 5 6 7 8 9 10
Resolution (binary log)

30

25

20

15

10

5

0

D
ec
a
y
ra
te
(b
in
a
ry

lo
g)

CCIR

CDB

CLW

N−1

N−3

(a) Growth-rate

3 4 5 6 7 8 9 10
Resolution (binary log)

30

25

20

15

10

5

P
h
a
se

D
ri
f
t
(b
in
a
ry

lo
g)

CCIR

CDB

CLW

N−2

N−4

(b) Phase-drift

Figure 12.11 – Decay rate (loss in amplitude) and phase shift per unit of time for a 2D test
case, the initial distribution takes the form cos(x+y) and the flow is uniform with ux = uy = 1.
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Reports

This chapter contains the reports that Hélène Politano and Alain Pumir wrote
about the manuscript before the defense and the report written by the jury after the
defense by Jérémie Bec. It also gives a human face to the member of the jury and A.
Cameron.

Figure 12.12 – From left to right: Alexandros Alexakis, Alexandre Cameron and Marc-
Étienne Brachet after the proclamation of the defense report.

Figure 12.13 – From left to right: Marc-Étienne Brachet, Jérémie Bec, Alexandros Alex-
akis, Alain Pumir, Sergey Nazarenko, Hélène Politano and Alexandre Cameron after
the proclamation of the defense report.
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Résumé
Ce manuscrit décrit comment les champs de
vitesses solutions de l’équation de Navier-Stokes
se comportent à grande échelle pour un forçage
à petite échelle. Il analyse aussi le comporte-
ment à grande échelle des champs magnétiques
solutions de l’équation d’induction cinématique
lorsque le champ de vitesse est de petite échelle.
Les résultats présentés ont été obtenus à l’aide
de simulations numériques directes utilisant des
algorithmes pseudo-spectraux des équations non
modifiées ou avec un développement utilisant la
méthode Floquet.
Dans le cadre hydrodynamique, les simulations
utilisant la méthode de Floquet permettent de
retrouver les résultats de l’effet AKA à bas
Reynolds et de les étendre pour des Reynolds
d’ordre un. Elles permettent aussi d’étudier des
écoulements AKA-stable et de mettre en évi-
dence une autre instabilité pouvant être inter-
prétée comme un effet de viscosité négative.
Dans le cadre magnétique, l’effet alpha est ob-
servé sur une gamme de séparation d’échelle
dépassant par plusieurs ordres de grandeur les
autres résultats connus. Il est aussi montré que
le taux de croissance de l’instabilité devient in-
dépendant de la séparation d’échelle une fois que
le champ magnétique est déstabilisé dans ses pe-
tites échelles.
Le spectre d’énergie et le temps de corréla-
tion d’équilibres absolus solutions de l’équation
d’Euler tronquée sont présentés. Un nouveau
régime où le temps de corrélation est régi par
l’hélicité est mis en évidence. Ces résultats sont
aussi comparés à ceux des modes de grandes
échelles de solutions de l’équation de Navier-
Stokes forcée dans les petites échelles. Ils mon-
trent que le temps de corrélation croît avec
l’hélicité.

(1674 caractères, espaces inclus)Mots clés
Instabilité, hélicité, effet AKA, méthode de
Floquet, MHD, dynamo, effet alpha, sépa-
ration d’échelle, turbulence, équation Navier-
Stokes, équation d’Euler tronquée, équilibre ab-
solu, spectre spatio-temporel, correlation tem-
porelle, écoulement ABC, symétries de Taylor-
Green

Abstract
This manuscript describes how solutions of the
Navier-Stokes equations behave in the large
scales when forced in the small scales. It an-
alyzes also the large scale behavior of magnetic
fields solutions of the kinetic induction equation
when the velocity is in the small scales. The
results were acquired with direct numeric sim-
ulation (DNS) using pseudo-spectral algorithms
of the equations as well as their Floquet devel-
opments.
In the hydrodynamic case, the Floquet DNS were
able to confirm the results of the AKA-effect
at low Reynolds number and extend them for
Reynolds number of order one. The DNS were
also used to study AKA-stable flows and iden-
tify a new instability that can be interpreted as
a negative viscosity effect. In the magnetic case,
the alpha-effect is observed for a range of scale
separations that exceed known results by several
orders of magnitude. It is also shown that the
growth rate of the instability becomes indepen-
dent of the scale separation once the magnetic
field is destabilized in its small scales.
The energy spectrum and the correlation time of
absolute equilibrium solutions of the truncated
Euler equation are presented. A new regime
where the correlation time is governed by helic-
ity is exhibited. These results are also compared
with those coming from large scale modes of so-
lutions of the Navier-Stokes equation forced in
the small scales. They show that the correlation
time increases with the helicity of the flow.

(1451 characters, spaces included)

Keywords
Instability, helicity, AKA-effect, Floquet method,
MHD, dynamo, alpha-effect, scale separation,
turbulence, Navier-Stokes equation, truncated
Euler equation, absolute equilibrium, spatio-
temporal spectrum, temporal correlation, ABC
flow, Taylor-Green symmetries
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