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Abstract
Dealing with the field of "Bio-inspired Perception", the present thesis focuses more particu-

larly on Artificial Visual Attention and Visual Saliency. A concept of Artificial Visual Attention,
inspired from the human mechanisms, providing a model of such artificial bio-inspired atten-
tion, was developed, implemented and tested in the context of autonomous robotics. Although
there are several models of visual saliency, in terms of contrast and cognition, there is no hybrid
model integrating both mechanisms of attention: the visual aspect and the cognitive aspect.

To carryout such a model, we have explored existing approaches in the field of visual atten-
tion, as well as several approaches and paradigms in related fields (such as object recognition,
artificial learning, classification, etc.).

A functional architecture of a hybrid visual attention system, combining principles and
mechanisms derived from human visual attention with computational and algorithmic methods,
was implemented, explained and detailed.

Another major contribution of this doctoral work is the theoretical modeling, development
and practical application of the aforementioned Bio-inspired Visual Attention model, providing
a basis for the autonomy of assistance-robotic systems.

The carried out studies and experimental validation of the proposed models confirmed the
relevance of the proposed approach in increasing the autonomy of robotic systems within a real
environment.

Keywords : Artificial visual attention, soft computing, bio-inspired perception, genetic algo-
rithms, artificial vision, visual saliency, robotics

Résumé
La présente thèse du domaine de la “Perception Bio-inspirée” se focalise plus particulière-

ment sur l’Attention Visuelle Artificielle et la Saillance Visuelle. Un concept de l’Attention
Visuelle Artificielle inspiré des êtres vivants, conduisant un modèle d’une telle attention ar-
tificielle bio-inspirée, a été élaboré, mis en œuvre et testé dans le contexte de la robotique
autonome. En effet, bien qu’il existe plusieurs dizaines de modèles de la saillance visuelle, à
la fois en termes de contraste et de cognition, il n’existe pas de modèle hybridant les deux
mécanismes d’attention : l’aspect visuel et l’aspect cognitif.

Pour créer un tel modèle, nous avons exploré les approches existantes dans le domaine de
l’attention visuelle, ainsi que plusieurs approches et paradigmes relevant des domaines connexes
(tels que la reconnaissance d’objets, apprentissage artificiel, classification, etc.).

Une architecture fonctionnelle d’un système d’attention visuelle hybride, combinant des
principes et des mécanismes issus de l’attention visuelle humaine avec des méthodes calcula-
toires et algorithmiques, a été mise en œuvre, expliquée et détaillée.

Une autre contribution majeure du présent travail doctoral est la modélisation théorique,
le développement et l’application pratique du modèle d’Attention Visuelle bio-inspiré précité,
pouvant constituer un socle pour l’autonomie des systèmes robotisés d’assistance.

Les études menées ont conclu à la validation expérimentale des modèles proposés, confirmant
la pertinence de l’approche proposée dans l’accroissement de l’autonomie des systèmes robotisés
– et ceci dans un environnement réel.

Mots clés : Attention visuelle artificielle, soft computing, perception bio-inspirée, algorithmes
génétiques, vision artificielle, saillance visuelle, robotique
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General Introduction

Foreword

In the last decades robotics was developing intensely and productively in different
niches: industry, engineering, aviation, and even extreme activities (like exploration
in hazardous conditions) — the robots took and hold their places in working process
firmly. However, all these types of robots in most cases have always been highly
specialized and thus not expected to have capabilities for general “human–robot”
interactions (as it is usually a secondary or even non-important task).

Yet, this tendency have begun to change in the last decade, as the market of
“personal robots”, – robots, which are expected to co-exist with humans in daily
life and interact with them closely, – started to emerge. Thus, in 2007 Bill Gates
predicted [Gates 07] exponential market growth relating personal robots. In 2012
valuation of the market of personal robots was assessed as $ 1.6 billion, and in 2017 is
expected to increase 4 times — up to $ 6.5 billion [Simon 14]. For example, in 2014
investments of $ 2million, targeted onto development of a simple personal robot
JIBO, were gathered by crowdfunding during just one day [ABIResearch 13], and
such facts let us consider this market having stable and high level of interest of
customers and potentially high profitability of any start-up in this field.

But in past few years the industry of personal robots have shown the imperfec-
tion of software, which also did not let the robot look and feel compared to human,
accentuating the problem of uncanny valley [Mathur 16]. All this consideration can
also be implied on the area of “social robots”, – robots that interact and communi-
cate with humans by following social behaviors and rules attached to its role.

Another field, which concerns both the personal and social robots, is the problem
of machine vision — including the approach of robot vision system to human level
of vision for higher rate of success in a number of tasks, such as robotic driver assis-
tant system or the task of finding and recognizing faces [Fritsch 08, van Kleef 16].
However, these problems are also almost solved nowadays, due to being set within
more narrow limits and constraints.

More general tasks, such as tasks of perception and recognition of environment

1
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[Ittelson 76], with varied success were solved in computer and machine vision using
limited approaches [Franke 05, Giovani 15].

A successfullness of ”human-like approach” have been shown at first time by Lau-
rent Itti in 1998 [Itti 98], incorporating the notions and concepts of neurobiology and
psychology of primates into the field of computer and machine vision de-facto, link-
ing this field to biological patterns of visual perception tasks solving. Following this
research, in first two decades of XXI century, a large number of works was devoted
to various aspects of such an approach. However, their overwhelming majority, due
to high computational resource requirements, was still oriented onto solving narrow,
limited tasks [Borji 13a]. As an example — search and recognition of text in the
image [Lienhart 02, Erkan 04], recognition of car license plates [Chen 09]. This also
left a mark on the possibility of research towards human-like approach in visual
perception in machine vision and robotics, as the embedded CPUs of autonomous
robots could not provide sufficient resources for image treatment in real time.

However, in last years several factors coincided: fast convolutional neural net-
works, usable for image processing (e.g., GoogLeNet [Szegedy 15]); new generation
personal robots of the type ”robot-companion” with sufficient computing resources
(e.g., Aldebaran Pepper [Ebling 16]); stable growth of interest and demand on Asia
markets. All this let us say about a possibility of research in terms of human-like
approach on a new level. Thus, imitation of human gaze in robots can help, for ex-
ample, to approach a solution of ”uncanny valley problem” [Koschate 16] or visual
help problem [Sudol 10].

Development of a human-like complex visual attention system based on artificial
convolutional neural networks and human-like approach could augment quality of
interaction between human and autonomous robot in general case, and also set foot
onto approach to more efficient solution of the problems of visual search in different
contexts (such as a search for fire residues [Toulouse 16] or navigation [Chang 10]).

Motivation and Objectives

As stated in Foreword, the problem of a human-like complex visual attention is
one of the fields in the social robotics industry, – the niche which gains in investments
each year.

As the science fiction authors’ dreams stay far in future, small steps in this
direction are done continuously. In fact, such steps could relate also the field of
visual attention mechanism, which might approach by efficiency the human’s visual
attention. Yet, this mechanism is worked upon only partially, being a problem
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in narrow contexts which is successfully solved by both bio-inspired and classical
approaches.

As the pioneer of artificial intelligence, Roger Schank, said in the preface of
his book ”Dynamic Memory Revisited” [Schank 99, p. vii], ”In the ... 1980s I
was fascinated by the idea that computers could be as intelligent, as people. ... I
no longer hold such views”, – scepticism about the ”turtle” speed of general AI
research as opposed to practical AI-based solutions, is pretty demotivating. Yet,
any contribution to this domain adds a sand grain into the pile, which might one
day finally become the Giza pyramid.

Another point of view on motivation can be found in opposition of terms “au-
tomatic” and “autonomous”. For example, in more general context of machinery,
“automation” can be defined as “...the technology by which a process or procedure is
performed without human assistance” [Groover 07], while “autonomy” can be seen
as “ a possibility of choice to make free of outside influence” [Clough 02]. When we
narrow the context to the robotics, the term “automatic” can be applied to industrial
robotics in general [Shell 00], or to any programmable robot as it can implement
the preexisting algorithm “automatically”. Autonomous robot, on the other hand,
can be seen as “intelligent machines capable of performing tasks in the world by
themselves, without explicit human control” [Bekey 05].

Thus, contemporary machines are often automatic, but almost never fully au-
tonomous. This also applies to the context of the visual attention – the biggest
machine vision victory so far is face or human stature recognition, combined with
simplistic gist approaches in form of scanning QR-codes or following the lines. This
is why the concept of bio-inspired human-like machine visual attention, based on
generalized approach, is so important for future systems and intelligent robots. It
is because this is the way of a major contribution to a true autonomy of future
intelligent systems, – including not far fetched social robots, or general humanoid
robotics in future.

In accordance with the requirement of autonomy in context of the machine visual
attention, we can set up the following objectives for the work that is developed
throughout the present thesis:

• Explore the existing state of art in the field of visual attention, the problems
posed and solved by the best approaches and models in general, in order to
investigate the necessity of contribution to novelty models;

• Contribute to conception of a visual attention system, which is constructed by
several basic principles of human’s attention mechanism;
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• Contribute to a model, which can provide autonomous visual attention deci-
sions, thus placing decision-wise “autonomy” as a main skill with notion of
possibility of real-time processing, and be able to show the efficiency not far
worse than state of art visual attention models, capable of flexible tuning, and
acting as a part of the previously mentioned visual attention system;

• Create a functional working implementation of this system, which should prove
the mobile robotic platforms capable to solve different real world tasks.

Frame of the Work

This thesis is done as a co-supervised work between University Paris-Est and
Brest State Technical University under co-direction of Prof. Kurosh Madani (LISSI
- Laboratoire Images, Signaux et Systèmes Intelligents) and Prof. Vladimir Golovko
(LANN - Laboratory of Artificial Neural Networks).

The work in the scope of this thesis is done in the form of constructive research,
based on definition of the problem via state-of-art study in bio-inspired visual at-
tention field and the application of approaches from that field to the autonomous
robotics.

The theoretical body of knowledge for such research considers the corpus of
previous works on the topic in LISSI team SYNAPSE (SYstèmes cogNitifs Artifi-
ciels et Perception bio-inSpiréE), – including [Ramík 11], [Amarger 12], [Wang 12],
[Madani 12] and [Ramík 13], – thus aiming the thesis to continue the research re-
lying on several attention concepts already outlined in [Ramík 12] with inclusion of
several decision-related artificial intelligence aspects based on LANN team previous
works [Golovko 03], [Imada 07], [Kachurka 12].

The already existing context of artificial curiosity, feature extraction-based visual
recognition, visual saliency concept and knowledge extraction have incepted the
frame of this work, which is focused on approaching a human-level skill of perception
as a property of artificial visual attention in order to improve the level of decision
autonomy.

The theoretical framework of this thesis employs several methodological tools,
such as simulation and modeling methods, widely used in the field of visual at-
tention in order to imitate the complex procedure of human psycho-physiology of
acquiring and processing visual information and to test these imitation models on
synthetic simulations of such acquisition; the field of autonomous robotics infers
also employment of experiment-based method, in order to evaluate and validate the
implementations of theoretical models by running them on programmable robotic
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platforms.

Contribution

The work accomplished in this thesis resulted in several contributions, relating
artificial visual attention systems:

• First, the compilation study of state-of-the-art on visual attention field, which
allows objective evaluation of achievements, relating autonomous visual atten-
tion in machines as well as an outline of open problems in this domain;

• The second major contribution of this thesis is the low-level attention model,
serving as further improvement of previously created contrast-based saliency
approach. This low-level attention model consists of several bio-inspired tech-
niques (visual saliency, center-peripheral antagonism) and is able to learn by
evolutionary algorithm approach in order to improve the quality of results in
simulations and real-world experiments, also can be a key part in bigger visual
attention model;

• Third is the contribution in the form outline of bio-inspired visual attention
system (“combined model”) which is based on both attention mechanisms –
previously mentioned low-level features-based attention model as key part,
basic level attention, and cognitive phenomena-based attention model as high
level attention, – using also human-like working memory model as controlling
module. This system stands out from similar existing algorithms as it has
more complex, human-inspired structure and could be used either as stan-
dalone mechanism, or as basis for the further complexification by adding new
components;

• The last major contribution is implementation of the combined model in mo-
bile autonomous robotic platforms, such as WiFiBot-M, Aldebaran NAO and
Aldebaran Pepper, along with validation on several real world tasks (fire de-
tection, attention concentration, visual exploration) solved by the proposed
system.

Thesis Organization

This thesis is constituted of four chapters, leading the reader from the state of
the art through general concepts of the whole system, detailing of different parts,
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to its concrete implementation and verification via several applications in real world
environment.

Chapter 1 introduces the reader into the state of the art in the domain of vi-
sual attention. It discusses the domain itself and reflects it through model-based
methodology as the classification of problems and models in the field, along with the
means of their evaluation and benchmarking. Among others it discusses works in
”bottom-up” saliency, solving the eye fixation problem, which then is posed under
different angles throughout the whole thesis. After the discussion on “top-down”
saliency, the chapter also briefly considers several related fields, such as visual object
recognition, knowledge storage and lexical analysis. This chapter should give the
reader a general overview on the state of the art, existing techniques and terminology
on which we further develop our research described in chapters that follow.

In Chapter 2 the general scheme of the proposed combined visual attention model
is outlined, defining constitutive parts of the model along with some general consid-
erations and conditions met with the units of such a model, which are subsequently
concretized in Chapter 3. It represents the concept of combined visual attention as
union between two different approaches, moderated via a decision module.

Chapter 3 is focused on details for each of aforementioned model units; thus, it
shows theoretical basis for the key part of the system – low-level “bottom-up” atten-
tion mechanism, which can also work independently. While first part of the chapter
introduces several algorithmic steps borrowed from precious researches, second part
introduces several bio-inspired techniques in order to improve the overall efficiency.
Third part shows the evolutionary-based tuning process, along with the evaluation
of its flexibility and ability to generalize, comparison of the algorithm against mod-
ern top algorithms on several benchmarks, as well as the time complexity of the
algorithms, and a novel mean for evaluation and saccade modeling. Then the chap-
ter explores the informed choice for several techniques in the field of visual object
recognition in order to constitute second part of combined model, – the “top-down”
attention mechanism. After all the chapter is concluded with detailed description
of third part of the combined model, – the “moderating” decision module, – as well
as detailed scheme of the whole model and generalized algorithm of operation.

And the Chapter 4 finalizes the research by presenting the combined model in the
form of its implementation on several autonomous robotic mobile platforms, as well
as addressing some implementation-wise quirks. Also it shows several experiments
of the real world indoor environment, as well as a chaotic outdoor environment.

The closing chapter of this thesis is the General Conclusion. That is where the
reader is given a summary conclusion and an evaluation of the research presented
here. Finally, perspectives of possible future directions of the work are provided.



1 | The State-of-art Relating Visual
Attention and Perception

1.1 Introduction

Human-like visual perception is based on one of the important concepts in pri-
mate neurobiology – so called “saliency” of an object, which is directly linked to the
concept of visual attention. Evaluating these concepts as measurable characteristics
of different parts of image provides practical approaches to solve different types of
problems mostly from the field of computer and machine vision, as well as if applied
to robotics [Borji 10, Ouerhani 05, Scheier 97, Courty 03].

In this chapter we consider existing and state-of-art approaches to visual per-
ception in computer vision, evaluate their efficiency and caveats. Also we define
more precisely the tasks of this research, input data used for analysis, and quality
parameters used for evaluation.

1.2 Problem of visual attention in computer vi-
sion

Let us start with the main concepts, terms and definitions, given and used in this
work. As it is a work based on concepts, taken from intersection of neurobiology,
computer vision and psychology, we will need to provide the definitions as given in
well-known reputed sources in these fields.

Attention is the behavioral and cognitive process of selectively concentrating
on a discrete aspect of information, whether deemed subjective or objective, while
ignoring other perceivable information. [Anderson 90]

Gaze is a coordinated motion of the eyes and head, which has often been used
as a proxy for attention in natural behavior. [Hayhoe 05]

Thus visual attention can be defined as one’s perception of one of the as-
pects of information via visual sensors, shown by gaze or its imitation, and one’s

7
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concentration on on it.
In the field of computer vision the task of modeling human’s visual attention cre-

ates another term – “saliency”, often interchangeable with “visual attention”, whilst
being slightly different. As it is given, for example, in one of the key publications in
the field:

Saliency intuitively characterizes some parts of a scene – which could be objects
or regions – that appear to an observer to stand out relative to their neighboring
parts. [Borji 13a]

At the same time attention is a general concept, covering all factors that influence
selection mechanisms. Thus we can say that saliency can be interpreted as an
intuitive characteristic, usable in visual attention model in order to describe it.

In general, there is no absolute measure for saliency; it is always used as a relative
metric. If some part of visual scene is more salient, than another part, it means that
this part is more important at this exact moment.

We need also to underline, that the word “model”, as seen in most papers in
the field, such as the best-known [Itti 98], is mostly used in the sense of simplistic
operational model of human visual attention, where the process of acquiring and
processing of visual input by physical and psycho-neurological means of a human
is imitated by a set of procedures or algorithms, whether they are bio-inspired or
purely mathematical. Therefore throughout the scope of this thesis we will also use
this word in the same way, as a soft synonym for “algorithm” and in the sense of
modeling the means of human’s visual attention as a set of procedures.

1.2.1 Visual attention problem

Let us define a visual attention problem as a problem in computer or machine
vision, where the solution should make usage of a visual attention model, and the
input is given in form of an image or a video. In general, a visual attention problem
may be formulated as following: an input image is given as a set of pixels, each
represented by a 2-dimensional position and color (given in any image space); using
this information, we have to estimate an attention characteristic for each pixel. In
many cases input image may be replaced by series of images, which could be treated
as video frames.

There exist several ways of classification for such problems. Thus, [Borji 13a]
categorizes these models using 13 factors, ordered by priority and generalization.

First two factors are related to the direction of information processing and might
be looked upon as the main factors [van de Weijer 04], as shown on Figure 1.1:

• “top-down” factor, where visual scene perception is defined by viewer’s cogni-
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tive phenomena: knowledge, experience, reward or target in each moment of
time. A classic example is given in [Yarbus 67], where the gaze of a subject
human is differently perceptive for the same visual scene, depending on the
target given by examiner.1

• “bottom-up” factor, where visual scene perception starts directly from its char-
acteristics (another name for such direction is “stimulus-driven”). Such factor
was firstly shown in [Treisman 80], when subject’s gaze was catching the only
horizontal line among all the vertical ones;

• combination of “top-down” and “bottom-up” factors.

Figure 1.1: Examples of two different reasonings for bottom-up and top-down di-
rections of attention, where the first tends to apply itself to contrast objects, the
second is applied to cognitive phenomena such as faces or texts

In general, a visual attention model should combine both factors to be able to
stand for real human visual attention. But practically the implementation of such
model is difficult due to computational problems linked to “top-down” direction.
For this reason in such models some a priori knowledge of the problem being solved
is often used to narrow down the usage and computational complexity – such as an
assumption of the placement of object in question in the problem of license plate
recognition, or knowledge about human face form [Goferman 12, Cerf 08].

1More on the topic of “top-down” and “bottom-up” attention can be found in psychoneurological
reviews, e.g., [Hayhoe 05] or [Triesch 03]
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Most of the models, which use the “bottom-up” direction, use the previously
given interpretation of “relative saliency” and implement it into “saliency maps”,
firstly coined by Koch and Ullman in [Koch 87] as a variety of a heat map:

Saliency map is such map, where for each individual point there exists an
estimation of its saliency value, relative to all other separate points of this map.

Thus, saliency map mechanism usage suggests existence of an algorithm, which
creates such an estimation of relative saliency value for each point in question. Most
of the models, which use saliency map mechanism, are built around such algorithms.
The saliency maps, created by such algorithms, are usually represented as images of
the same size and form as input visual scenes provided and encoded as images, where
each pixel of saliency map image contains information of relative saliency for the
same-position pixel of the image in question, thus implementing the aforementioned
point-to-value correspondence. Two most popular mechanisms of encoding in this
case are heat map and the shades of gray (example is shown in Figure 1.2).

Figure 1.2: Example of input image, which after processing gives a prediction dis-
tribution, usually encoded as grayscale map

Another approach to model classification is based on categorization of the prob-
lems being solved [Borji 15]:

• A problem of predicting the gaze fixation, also called “eye-fixation problem”,
where the saliency map is usually interpreted as the map of distribution of
human’s gaze fixation probability for each independent point of the map. Such
problems usually treat the saliency map as the sought solution (examples could
be found in [Wolfe 05, Parkhurst 02, Li 10, Borji 12b, Borji 12a, Koehler 14,
Li 14]).

• A problem of identification of salient regions or objects in the scene, where the
estimation of saliency map is usually only one of the steps in the algorithm, and
the sought solution should be given in the form of a part of the initial visual
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scene, which represents the most salient region or object (e.g., [Achanta 09,
Tian 15, Wang 06, Borji 13b]).

Although there is an apparent affinity between these two types of problems,
implicitly hinting onto a possible interchangeability of the saliency maps between
models of these two types, these saliency maps often are vastly different due to the
difference of the problems being solved. Though common approaches to saliency map
calculation are usually the same, the difference is in the model details. Consequently,
the models used to solve the problems of these two types, could also be classified by
the type of the problem.

Eye fixation prediction problem. Eye movements are often treated as external
evidence of attention shift. For example in the experiments, where the stimuli on
the scene are not very well seen, fixation on each of them takes longer time while
the saccadic movements are shorter [Rayner 98].

Saccade, or saccadic movement, is a quick, simultaneous movement of both
eyes between two or more phases of fixation in the same direction. [Javal 78]

Saccadic movements are ballistic in their nature. After such movement starts,
it will end independently of changes in the ending fixation point. This means that
each new saccadic movement is defined fully in advance, before it starts. Such small
paradox brings us to another concept as given in [Wong 81]:

Saccadic programming is a process of saccadic direction and maintenance,
which defines each next movement in advance; different parts of human nervous
system participate in this process (cranial nerves, cores of midbrain tegmentum,
etc.)

Thus the task of prediction of eye fixation can be interpreted as a modeling
problem for the behavior of the corresponding elements of human’s nervous sys-
tem, participating in saccadic programming. Such models can be called as saccadic
programming models.

Such models could be useful for different image processing tasks, where informa-
tion amount should be reduced – scaling, thumbnailing, – or in marketing tasks.

Salient regions identification problem is also known as “salient object detec-
tion problem”, and is often treated as a problem of search and extraction of one or
several salient objects out of the image. Main difference from the first type problems
in this case is that it not enough only to predict all the main points of eye fixation;
we have to as correctly as possible find all the points depicting the object (or the
part of the object) to provide them to the next steps of algorithm. Most often such
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step is “extraction” – clipping of the image or blackening the non-salient points. In
this case the necessity of object search adds to the model the necessity of additional
operations on the image. Usually such operation is either segmentation or edge
detection, which allows us to estimate the borders of objects or object-like regions
of the image.

The solution model for the object extraction problem can be used in many tasks
of computer or machine vision – classification, recognition, tracking, search, etc.
[Borji 13a]

1.2.2 Bottom-up visual attention direction

To solve a problem of the first type (eye fixation problem), or the main part of
the problem of second type – saliency map estimation to predict the eye fixation, –
most often one of the three general approaches is used to create a bottom-up model.

Classic contrast-based approach have been firstly coined by Koch et Ullman
in 1987 [Koch 87], then it was “rethought” and redefined many times by researchers
in their works (e.g., [Itti 98, Parkhurst 02, Wolfe 05, Achanta 09, Li 10, Liu 11,
Borji 12b, Cheng 15]) – models which use this approach with some changes. In
general, this approach is based on hypothesis that each point can be seen as more
salient if it has more contrast in relation to other points of the image. Thus is im-
plied a relation if not of equivalence, than at least of dependency between “contrast”
and “saliency”, and also between their abstract quantitative estimations. But the
term of “contrast” in this context is not detailed or concrete, and is given to be
completed by researchers for each model.

Thus, the most well known interpretations of this approach were given by Itti
in [Itti 98] and developed by Achanta in [Achanta 09] – where the quantitative es-
timation of contrast is defined as difference of some quantitative characteristics of
each point from the mean characteristics of the whole image. Thus, if a “point” is
treated as a pixel in this context, it is defined by three quantitative characteristics
– colors in 24-bit RGB color system, – and a relative estimation of contrast can be
defined as a sum of differences of each color from the mean image colors.

Another version of interpretation was explored by Liu in [Liu 11]. Based on the
concept of “central-peripheral antagonism” [Mach 65, Hering 74, Westheimer 04],
which implies that the center and the margins of mammal’s retina show antago-
nistic behavior to one another, it was proposed to use so called “local contrast”,
where an estimation for the contrast of each point is given as a difference between
mean quantitative characteristics for near-neighbouring (“center”) and little-more-
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far-neighbouring (“periphery”) points of the image.
Both main variations of this approach are based on pretty simple linear calcula-

tions of statistical indicators, and this makes the approach pretty simple and non-
demanding in terms of computational resources. On the other hand, this approach
gives worse performance evaluations in comparison with another two approaches.
Thus such an approach is usually used today only in the cases when the problem of
limited resources is important enough and with higher priority than the problem of
more accurate result.

Feature extraction-based approach is a group of models, which try to find
individual elements of the image, and characteristics of these elements. This ap-
proach tries to distance itself from the search of “contrast”, although sometimes in
some models it can incorporate such a step. Also due to its nature it can be seen
as an ensemble of completely different interpretations. A feature in this context
is interpreted as any characteristic: orientation, form, relative size of the element
[Zhang 13, Borji 12b]; direction of movement or amplitude of repeated movements
in video [Cassagne 15]; any feature, which can be seen as typical or descriptive for
given problem context.

Such definition allows interpretation of many feature-based models as the models
with factor combination of bottom-up and top-down directions of attention.

Among the big set of interpretation two most popular could be distinguished:

• “Rarity of features” [Borji 12b, Riche 13a, Riche 13b, Cassagne 15] – if any
feature is shown on the image more rarely, than other comparable features,
than the element containing such a feature would be more salient. As an
example for such approach is usually given a synthetic picture, where among
many small rectangles there are several same-sized figures of a different form
(for example, circles). In this case exactly due to the rarity of the feature
“circle form” exactly these figures would be salient.

• “Complex edge search” [Borji 15, Zhang 13] – the edges of objects are defined
as the features to be searched, and they are treated as elements with a feature
“line complexity”. In this case the edge is interpreted as a line, consisting of an
ensemble of high-order curves. A synthetic characteristic is defined, directly
dependent on the number and degrees of the curves. In this case an element
of the image with the highest estimation of this characteristic, which could be
interpreted as “element with the most complex edge”, is usually thought to be
the most salient one.
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In practice this approach is usually combined with searching of another feature
“relatively small size”, because an object with a complex form, occupying a
significant (yet not big) part of the image, will be more salient, than too small
or too big object.

Such approach in any of its interpretations would usually need more computa-
tional resources, than the classic approach, while giving better performance.

Neural network approach started to be vastly developed in last several years
because of development and evolution of convolutional deep neural networks. This
approach might be based on one of two main principles. First is that convolutional
neural networks are very good in terms of finding correlations and regularities both
among evident and among hidden features of images. Second principle is that a
deep neural network might be interpreted as imitation (in first approximation) of
the multilayer system of saccade programming in human’s neural system, which
makes it more than just an abstract mathematical model.

Most of well-known models work using first principle [Judd 12, Vig 14, Liu 16,
Kümmerer 16, Kruthiventi 17].

This approach gives best results in comparison to other approaches, but requires
much more resources for learning and operational cycle of the network. Thus, net-
work DeepGaze II [Kümmerer 16], implemented as a web-service, even in times of
minimal load onto the server, requires about two minutes for one image processing.
From the point of view of autonomous robotics, the question of available resources
might be the key part in decision process while choosing the approach. Due to
this, the usage of classic contrast-search approach (possibly partly mixed with two
others) we might consider as appropriate for models, designed to be executed in
autonomous robots.

1.2.3 Top-down visual attention direction

As given in [Borji 13c], the top-down attention direction is based on cognitive
phenomena, which are usually hardly formalized.

Models have explored three major sources of top-down influences in response
to this question: “How do we decide where to look?” Some models address visual
search, in which attention is drawn toward features of a target object we are looking
for. Some other models investigate the role of scene context or gist to constrain
locations that we look at. In some cases, it is hard to precisely say where or what
we are looking at since a complex task governs eye fixations, for example, in driving.
While, in principle, task demands on attention subsume the other two factors, in
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practice models have been focusing on each of them separately. Scene layout has
also been proposed as a source of top-down attention [Navalpakkam 05, Oliva 01]
and is considered together with scene context.

Object Features. There is a considerable amount of evidence for target-driven
attentional guidance in real-world search tasks [Einhäuser 08, Pomplun 06]. In clas-
sical search tasks, target features are a ubiquitous source of attention guidance
[Zelinsky 08]. Consider a search over simple search arrays in which the target is a
red item: attention is rapidly directed toward the red item in the scene. Compare
this with a more complex target object, such as a pedestrian in a natural scene,
where, although it is difficult to define the target, there are still some features (e.g.,
upright form, round head, and straight body) to direct visual attention [Ehinger 09].
The guided search theory [Wolfe 07] proposes that attention can be biased toward
targets of interest by modulating the relative gains through which different features
contribute to attention. To return to our prior example, when looking for a red
object, a higher gain would be assigned to red color.

Scene Context. Following a brief presentation of an image (80 ms or less), an
observer is able to report essential characteristics of a scene [Bailenson 05]. This
very rough representation of a scene, so-called “gist”, does not contain many details
about individual objects, but can provide sufficient information for coarse scene
discrimination (e.g., indoor versus outdoor).

It is important to note, that gist does not necessarily reveal the semantic cate-
gory of a scene; [Chun 98] have shown that targets appearing in repeated configu-
rations relative to some background (distractor) objects were detected more quickly
[Joubert 08]. Semantic associations among objects in a scene (e.g., a computer is
often placed on top of a desk) or contextual cues have also been shown to play
a significant role in the guidance of eye movements [Hwang 11]. Several models
for gist utilizing different types of low level features have been presented. [Oliva 01]
computed the magnitude spectrum of a Windowed Fourier Transform over non over-
lapping windows in an image. They then applied principal component analysis
(PCA) and independent component analysis (ICA) to reduce feature dimensions;
in [Walker 02] the researchers applied Gabor filters to an input image and then ex-
tracted 100 universal textons selected from a training set using K-means clustering.
Their gist vector was a histogram of these universal textons.

Task Demands. Task has a strong influence on deployment of attention [Yarbus 67].
It has been claimed that visual scenes are interpreted in a need-based manner to
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serve task demands [Triesch 03]. [Hayhoe 05] showed that there is a strong rela-
tionship between visual cognition and eye movements when dealing with complex
tasks; subjects performing a visually guided task were found to direct a majority of
fixations toward task-relevant locations. It is often possible to infer the algorithm a
subject has in mind from the pattern of her eye movements.

For example, in a “block-copying” task where subjects had to replicate an as-
semblage of elementary building blocks, the observers’ algorithm for completing the
task was revealed by patterns of eye movements. Subjects first selected a target
block in the model to verify the block’s position, then fixated the workspace to
place the new block in the corresponding location [Ballard 07]. Other research has
studied high-level accounts of gaze behaviour in natural environments for tasks such
as sandwich making, driving, playing cricket, and walking (e.g., see [Henderson 99,
Rensink 00, Bailenson 05]).

1.3 Model quality evaluation in visual attention

Comparison of quality (performance, efficiency) of how the models work could be
done using several different parameters. For both types of tasks there exist different
sets of evaluation protocols. Thus, the second task (salient regions identification
problem) can be interpreted as a classification problem, where each element of the
input visual scene (e.g., image pixel) could be classified as either “salient” or “non-
salient”. In this case model quality assessment is done using the approach adopted
in the field [Powers 11]:

• FP (false positives) – number of non-salient elements, classified as salient, –
also known as Type I errors;

• FN (false negatives) – number of non-found salient elements, – also known as
Type II errors;

• TP (true positives) – number of salient elements, correctly classified;

• TN (true negatives) – number of non-salient elements, correctly classified.

Based on these classic metrics are another de-facto standards Precision / Re-
call / F-measure:

• PR (precision) – precision of classification which shows the quality of how the
system works in whole:

PR = TP

TP + FP
(1.1)
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Table 1.1: Average metrics of the best models benchmarked over MSRA10K
dataset

Algorithm PR, % RE, % F, %
Borji’s SLIC model [Borji 15] 87.2 72.1 83.5
Cheng’s global contrast H-model [Cheng 15] 72.9 71.8 72.3
Cheng’s global contrast R-model [Cheng 15] 83.1 58.8 76.5
Achanta’s frequency contrast saliency [Achanta 09] 69.1 54.9 65.4
Goferman’s context saliency [Goferman 12] 59.8 56.7 58.1

• RE (recall) – quality of detection of salient elements, also known in terms of
ROC-analysis as sensitivity [Fawcett 06], – it shows the percent of elements
classified as salient being really salient:

RE = TP

TP + FN
(1.2)

• F (F-measure, also known as F1) – combined metric which is calculated based
on precision and recall:

F = 2 ∗ PR ∗RE
PR +RE

(1.3)

To evaluate models, and have comparable metrics, we need also to define a single
testing dataset; such a dataset in last years for the second type tasks is Zhang’s
MSRA10K dataset [Zhang 13].

In Table 1.1 we can see average metrics of several models, which try to solve the
problem of extraction of salient objects from visual scenes, represented by single-
standing static photos from MSRA10K dataset, consisting of 10 thousands testing
images. All these models represent the “bottom-up” approach, as they are essentially
based calculation-wise on one or several low-level features of the input images.

Eye fixation problem, on the other hand, can not be interpreted directly as a
classification problem. Model quality is defined by comparison of two saliency maps,
– calculated map and “ground truth” map, – where an empiric map of distribution
of eye fixations of human test subjects, recorded by eye trackers, is interpreted as
ground truth [Riche 13a]. So there exist at least 12 different metrics for comparison
between two saliency maps which allow model quality estimation, but many of these
metrics correlate between themselves, so according to recommendations given by
Riche et al. in [Riche 13a] we need to use at least 3 low correlated metrics. Also,
according to Bylinsky et al. in [Bylinskii 16], there are some metrics which we should
not omit.
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Let us establish explicitly the data to be compared: two saliency maps, identical
in size, represented as images in shades of gray: FM – original eye fixation map, pro-
duced by eye trackers and considered “ground truth”, and SM – estimated saliency
map, produced by a model. Then the saliency maps FM and SM are represented
by their pixels FM(x) and SM(x) in shades of gray. Let FMI(x) and SMI(x) be
the gray intensities (in range between 0 and 255) of the pixels respectively. These
values represent relative saliency level – the higher is the value, the higher is the
predicted possibility of this pixel being salient.

It is also pertinent to mention that similar values of intensity between different
saliency maps, produced over different input images, are usually non-comparable
due to relative origin of the estimation algorithm.

So let us provide the metrics which we will use in this work, based on the field
overview works such as [Riche 13a] and [Bylinskii 16].

First three indicators try to interpret the eye fixation problem as a classification
problem, and are based on the concept of receiver-operational curve (ROC) anal-
ysis, – graphic interpretation of classification quality, widely used in classification
problem.

AUC (Area under curve) – possibility, that a classifier will more likely correctly
classify a random element of “positive class”, than incorrectly classify a random
element of “negative class”.2

Figure 1.3: Examples of ROC-curve and the corresponding area under curve for an
eye fixation saliency map prediction matching perfectly the ground true eye fixation
saliency map (left side) and an appalling eye fixation saliency map prediction far
from matching the ground true eye fixation saliency map (right-side)

If we treat this definition in terms of eye fixation problem, an element is a pixel of
the saliency map; a “positive class” is “pixel is salient”, and “negative class” is “pixel

2More trivia, definitions and explanation of ROC-analysis in whole and AUCmetric in particular
can be found in [Fawcett 06]
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in non-salient”. Such definition is usual for the problems of binary classification:

AUC =
∫ ∞
−∞

TPR(T )FPR′(T ) dT (1.4)

Here in Equation 1.4 T is an artificial threshold in mathematical equations of
classification model between “positive” (C0) and “negative” (C1) classes, which can
be manually changed. In [Huang 05] it is shown that AUC is statistically consistent
with precision metric, independently of the distributions and bias of classes C0 and
C1 – which means that high AUC level represents also high precision level, which
allows us to use this indicator for the problems, which are not classification problems
per se.

Most often many problem types are artificially interpreted as a binary classifica-
tion problem to be able to use an indicator such as AUC .

Let us look into these AUC-based metrics, defined for eye fixation problem:

• AUCJudd – AUC-based indicator in interpretation of Judd et al. [Judd 09].
Artificial threshold T is linked to the relative saliency intensity in both im-
ages, the “true” saliency map FM and the “estimated” saliency map SM ;
each possible value of FMI(x) and SMI(x) in both saliency maps are taken
over a threshold T (∀T ∈ [0; max∀x∈Ψ2(FMI(x), SMI(x))], where x ∈ Ψ2 de-
notes a pixel and its position in 2-dimensional space), where each pixel x in
FM is classified “positive, salient” if FMI(x) > T and “negative, non-salient”
otherwise (same for SM). In this case TPR and FPR for each T value is cal-
culated in general fashion of classification-type problems, checking if “positive
salient pixels” from SM correspond in class to the same-positioned pixels in
FM , thus yielding true-positive-rates and false-positive-rates for each pair of
FM and SM , produced by different values of T .

A randomly generated saliency map, so called “Chance”, would produceAUCJudd =
0.5. Values, higher than 0.5, are considered “better, than random”. The ideal
value is 1.

• AUCBorji – AUC-based indicator in interpretation of Borji et al. [Borji 13c].
Mostly it is almost the same as in AUCJudd, but the difference is that for
comparison are taken not all the elements of image (as in general AUC), but
a random set of fixed size. Also the set should be newly randomized for each
new value of T , considered for calculation.

• sAUC – “shuffled AUC” in interpretation of Zhang et al. [Zhang 08] is a
continued development of the ideas given by Ali Borji while interpreting the
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AUCBorji indicator. In the implementation given by [Bylinskii 17] the false
positive rate is the proportion of saliency map values above threshold T sam-
pled at random pixels (as many samples as fixations, sampled uniformly from
fixations on other images from dataset being considered). As stated previously,
usually we cannot consider intersection of different images in comparison; but
in this case the accent is given on the average characteristics of dataset in
whole – average number of fixation points throughout the dataset, which de-
pends on the quality of eye trackers, number of test subjects, details of the
testing protocol, etc.

The third metric, sAUC, in several last years became more important, than
the first two, in benchmark-based evaluation and validation of models, as the
datasets in benchmarks sare thoroughly prepared and protocol-based.

• Another indicator was specifically designed for the problem of comparison
of two saliency maps. The Normalized Scanpath Saliency, NSS was intro-
duced to the saliency community as a simple correspondence measure between
saliency maps and ground truth, computed as the average normalized saliency
at fixated locations [Peters 05]. Unlike in AUC, the absolute saliency values
are part of the normalization calculation. NSS is sensitive to false positives,
relative differences in saliency across the image, and general monotonic trans-
formations. However, because the mean saliency value is subtracted during
computation, NSS is invariant to linear transformations like contrast offsets.
Considering FMB as a binary map of fixation locations (FMB(x) = 1 if
FMI(x) > T0, otherwise FMB(x) = 0):

N =
∑
x

FMB(x) (1.5)

SMI(x) = SMI(x)− µ(SM)
σ(SM) (1.6)

NSS(SM,FMB) = 1
N

∑
x

SMI(x)× FMB(x) (1.7)

Here T0 is threshold level, defined by benchmark protocol (sometimes two
different sets of ground truth are provided, – saliency map FM and binary
map of fixation FMB); N is the total number of fixated pixels in FMB.

A randomly generated saliency map “Chance” produces NSS = 0; positive
NSS indicates correspondence between maps above chance, and negative NSS
indicates anti-correspondence.
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• Last metric interprets the problem of two maps’ comparison as a comparison
between two probability distributions. KL (K ullback-Leibler divergence), also
known as relative entropy [Contreras-Reyes 12], considers FM as true distribu-
tion, and SM as estimated distribution. For calculation purposes we provide
normalized version of distributions, NFM and NSM , calculated from values
of intensities, interpreted as probabilities. The NSM estimation by NFM is
denoted as NSM ||NFM .

In this case a divergence KL(NSM ||NFM) is defined as a measure of how
much information is lost, if we use the “estimation” distribution NFM instead
of “real” distribution NSM :

NFM = FM∑
x FM(x) (1.8)

NSM = SM∑
x SM(x) (1.9)

KL(NSM ||NFM) =
∑
x

NFM(x) log NFM(x)
NSM(x) (1.10)

A randomly generated saliency map “Chance” produces KL = 2.5; the higher
is the indicator, the worse is estimation. Ideal value KL = 0 represents ideal
estimation.

Testing eye fixation models have been done using benchmark datasets, such
asToronto [Bruce 07], MIT1003 [Judd 12] and MIT300 [Bylinskii 17]. Follow-
ing table depicts best average evaluations of several eye fixation models, both as
calculated by us or given in [Bylinskii 17].

In such benchmarks input data is represented as a set of standalone static photos
and images, accompanied by ground truth saliency maps and/or binary maps of eye
fixation. MIT1003 consists of 1003 testing images (+ 1003 saliency maps and 1003
binary maps), MIT300 consists of 300 validation maps without saliency or binary
maps in published.

The biggest problem of models, depicted in Table 1.1 and Table 1.2, is the speed
and resource demand. For example, the neural network models demand usage of
GPU calculation to be able to provide competitive speed.

The implementations, provided by their creators (mostly implemented in slow in-
terpreted languages such as Matlab and Python), when run on a highly performant
consumer computer (Intel i7 3.3 GHz CPU, 32 Gb RAM) without GPU calcula-
tions, were found pretty slow. E.g., one image of size 1024x768 was processed in a
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Table 1.2: Average metrics of the best models, benchmarked over
MIT1003&300 dataset

Algorithm AUCJudd AUCBorji sAUC NSS KL

DSCLRCN: deep recurrent
CNN [Liu 16] 0.87 0.79 0.72 2.35 0.95

SalGAN: generative
adversarial networks [Pan 17] 0.86 0.81 0.72 2.04 1.07

BMS: boolean matrix
search [Zhang 13] 0.83 0.82 0.65 1.41 0.81

eDN: deep network
ensemble [Vig 14] 0.82 0.81 0.62 1.14 1.14

RARE2012: rarity feature
analysis[Riche 13b] 0.81 0.80 0.66 1.34 0.89

RARE2012 algorithm was firstly published in 2013, and afterwards improved by
Pierre Marighetto at LSUN SALICON challenge in October 2015

time ranged from 2 seconds (Cheng’s global contrast R-model) up to 200 seconds
(SalGAN).

While we say that these models are high-demanding in terms of hardware and
implementation, they are still very efficient. Given time, as embedded hardware
will gain computational abilities, these models will be able to be implemented di-
rectly in autonomous mobile platform; yet, nowadays we need to relay onto classical
approaches, which perform not really worse, but can be run onto modern mobile
platforms.

1.4 Object Recognition and Semantics

The prevailing view, according to [Borji 13c], is that bottom-up and top-down
attentions could be combined to direct the attentional behaviour. An integration
method should be able to explain when and how to attend to a top-down visual item
or skip it for the sake of a bottom-up salient cue, which implies the importance of
some kind of a decision mechanism, based on different possible cognitive conditions.

A decision mechanism can be based on any set of parameters and/or techniques;
one of the approaches here can be an ensemble of lexical labelling and semantic
analysis – what exactly do we see here and is it really important for us now.

For an autonomous mechanism, a problem of such labelling self-reduces to the
problem of visual object recognition – itself a big problem with a corpus of existing
research on the topic. While this problem is not yet really solved, it is definitely out
of the scope of this work; we can make only a brief overview of existing approach
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classification, and provide some justification for usage of some approaches over others
based on the conditions of the context of this work.

Same goes for the problem of semantic analysis, – also pretty popular in the field
of artificial intelligence. For a decision mechanism in a model of an intrinsic eye
mechanism we do not need a full-pledged analysis. A simple superficial mechanism
could suffice in order to find the usability of either the top-down or bottom-up result
for each case.

1.4.1 Existing Approaches in Object Recognition

While the word “recognition” both in human neurology and computer vision is
taken as granted, it provides several meanings, where the most used is a “provid-
ing a label for some visual scene or object” ; although, there does not exist a full
classification neither of the meanings nor of the usages. Mostly the researchers ask
themselves “how to recognize something”, or “what part of human brain is involved
in recognition”.

But there could be other questions, such as, for example, “What can a human
visually recognize?” Such a simple question could be answered in several points
[Walker 02]:

• Something, that has been recently learned, – and recognized specifically, as as
an exact object (or an object, similar to it), – e.g., just learnt letter can be
easily recognized by a child, or a freshly viewed painting. In terms of computer
vision, – an object, seen previously and “memorized”, should be able to be
recognized;

• Something, that is similar to some well-known patterns, – such as human face,
human body, tiger stripes, etc. This type of recognition is not only high-level
cognitive, but also very basic and instinctive. According to [Borji 13c], the
objects with additional information “embedded” into them, would be almost
always more salient, than other objects. Such visual cues with additional
info “embedded”, for example, are written words and symbols (which are not
only “lines and scribbles”, but also have additional semantics), or human faces
(which hold additional information of, e.g., emotions, or a possibility of inter-
action);

• Something, that is similar to some objects previously learnt, – and this type of
recognition provides more broad set of categories and labels (note the difference
of definitions between first and third points, as “recently” is not equal to
“previously”, and neurologically involves different parts of memory, short-term
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as opposed to long-term). In terms of computer vision, this type of recognition
is usually thought of as a default type, as it is possible to implement the long-
term memory as a dataset, or database, or any abstract information-holding
structure available in informatics.

1.4.1.1 Keypoint-based recognition

Starting from initial article [Lowe 99], describing the ”Scale-invariant feature
transform” (SIFT), there emerged a family of algorithms, which are based on key-
point detection, description, and descriptor comparison, which found its applications
widely in computer science.

According to the comparison by [Miksik 12], the list of algorithms could be nar-
rowed to 4 best performing algorithms:

• ”Scale-invariant feature transform” (SIFT) [Lowe 99] – keypoint detector, based
on difference of Gaussians, with decimal value descriptors;

• ”Speeded-up robust features” (SURF) [Bay 08] – SIFT modification, which
performs on a comparable level, but provides faster computation;

• ”Oriented fast and Rotated BRIEF” (ORB) [Rublee 11] – a modification of
BRIEF algorithm, which introduced the idea of binary descriptors in order to
simplify the calculations, – as in this case for a comparison it is sufficient to
calculate Hamming distance, and not Euclidean;

• ”Binary Robust Invariant Scalable Keypoints” (BRISK) [Leutenegger 11] –
another binary descriptor-based algorithm, declared as the most efficient in
the family by its authors.

We provide the comparison of these four algorithms over two different datasets,
involving an interpretation of Precision and Recall, as shown in Table 1.3.

In this table the indicators are given in form of Precision and Recall in Christian
Wolf interpretation [Wolf 06], introduced and widely used in ICDAR competitions
[Lucas 03].

The datasets Graffiti and Pascal VOC (combined into one datasetGraffiti/PVOC)
are used in the aforementioned comparative studies, where the evaluation metrics
(second part) are taken from. Another dataset, Things-50, has been produced by
us (more details in Appendix A), and so are the evaluation results.

According to Table 1.3, leading with a slight advance, the BRISK algorithm
have shown better efficiency, which gives us a justification to use this model as a
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Table 1.3: Comparison of four keypoint-based recognition algorithms over two
datasets, Things-50 and Graffiti/PVOC

Algorithm Dataset PRWolf RECWolf

SIFT

Things-50

0.491 0.463
SURF 0.543 0.581
ORB 0.494 0.474
BRISK 0.546 0.592
SIFT

Graffiti/PVOC

N/A N/A
SURF 0.485 0.513
ORB 0.493 0.495
BRISK 0.504 0.527

keypoint-based technique, usable in ”fine-grain” recognition element of recognition
module.

1.4.1.2 Pattern-based recognition

Since initial works in the field of visual saliency in social robotics (e.g., [Breazeal 99])
several patterns have always been tamed as ”pop-out” social objects which always
attract more attention. One class of such ”pop-out” objects are human faces; an-
other can be named as ”texts” – an ordered set of symbols of a known alphabet
which can be treated as words with meanings.

Problem of detection of faces or texts in real time also has a set of robust algo-
rithms to apply, as Viola-Jones framework of Haar-like features’ cascades for detec-
tion of distinctive patterns inside a shape (as a human face), or as Chen’s algorithm
of MSER and Canny edges for detection of texts.

While for face detection the Viola-Jones framework [Viola 04] since its inception
in 2004 has become an industry standard de facto due to its robustness and efficiency,
the real research in the field has undergone a massive ”desolation” – there exist only
around ten top-cited articles, dated after 2004, with keywords ”face detection” in
the name, and mostly they are concerned on other different contexts of this task.
Due to such a ”desolation” in the field, there is not much to compare in terms of a
task of face detection.

On the other hand, the problem of text detection and recognition in different
contexts has been flourishing, always present in ICDAR (International Conference
on Document Analysis and Recognition) competitions with up to 100 (and even
more) new models submitted each two years.

E.g., only at ICDAR 2015 competitions [Karatzas 15] there firstly arose the
challenge of localisation of ”incidental scene text” – text, seen in real world images,
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without any prior knowledge or preparation of data.
But most of the submitted models neither have open implementation, nor even

have an article about it, due to the models’ authors preferring a commercial possibil-
ity of the models’ usage — thus, in ICDAR competition resulting table, if sorted by
integral metric of model quality, the best model with open implementation (as seen in
GitHub), ”EAST: An Efficient and Accurate Scene Text Detector” [Zhou 17] is only
on the 19-th place, while still performing very well (PRWolf = 77.32%, RECWolf =
84.66%), and among more than 70 models there are less than 10 models with open
implementation and article. Several examples of image processing by the EAST
algorithm are given in Figure 1.4, where cyan rectangles depict the detected text
regions.

Figure 1.4: Cropped examples of EAST algorithm results on the V-60 dataset

In general, quasi-total number of these models are based on convolution neural
network approach, mostly treating the text detection task as object detection.

Concluding thus subsubsection, we can state that usage of both Viola-Jones
framework and EAST CNN for face and text detection respectively brings us the
pattern-based tier of this recognition module.

1.4.1.3 Broad category recognition

Another category for object recognition – ”broad recognition”, – is the recogni-
tion of unknown objects, based on previous learning. This field has also shown in
several previous years a big leap in the efficiency and robustness of the approaches.
The absolute leader de-facto is, again, a family of algorithms, based on convolu-
tional neural networks due to its robustness against input in form of images and
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its deep potential of generalization and distinguishing several thousands of different
categories.

This question here is a main type of problems on annual academic and re-
search challenge ILSVRC (ImageNet Large Scale Visual Recognition Competition)
[Russakovsky 15], – Similar to ICDAR competitions in the field of text detection
and recognition, – a competition, where several hundred thousands images are cat-
egorized into 1000 arbitrary categories, based on the depicted object, in terms of
previously mentioned WordNet/ImageNet synsets. This means that we can apply
one or several winning or runner-up models from this challenge and be able to change
the model as new winning researchers emerge through time.

Although each year the competition changes the main challenge, the ILSVRC2012
dataset is considered as ”standard” dataset in the field due to the choice of cate-
gories, represented in the sample, and its high level of distribution over WordNet
lexical tree. The ILSVRC2012 dataset has been considered as training and valida-
tion dataset not only in 2012, but in the following competitions as well along with
other new datasets.

To be able to choose one of the dozens existing models, submitted to ILSVRC
competition, we can create a ”short list” of existing winners and top runners of the
competition, – in contradistinction with ICDAR competition, most of the winning
models are open in both implementation and theory.

Then we can make comparison by ourselves, both on existing ILSVRC2012-Val
(validation) dataset, as well as our Things-50 dataset.

In 2014 competition on ILSVRC2012 sample dataset were found, as winners,
three models: GoogLeNet [Szegedy 15], VGG [Simonyan 14] and MSRA (also known
as ResNet [He 14]). It is also pertinent to include the well known top-runners NiN
[Lin 13], AlexNet [Krizhevsky 12] and BVLC-AlexNet modification (provided by
the creators of well-known open source robust platform for deep neural networks,
CAFFE [Jia 14]).

Let us define the experiment protocol: the algorithm processes several images,
and for each of the images it produces 5 recognition categories with highest confi-
dence level CL (”TOP-5” recognition), and also chooses 1 category out of these 5
(”TOP-1” recognition). If, among ”TOP-5” categories, one is correct category, this
image is interpreted as correctly classified in terms of ”TOP-5” challenge, else – as
classified incorrectly. Same goes for ”TOP-1” challenge.

Assuming, that there exists K images, each representing one object with only
one (out of 1000) correct classification category, the main classification metric for j-
th model, recall REC(j), can be defined as shown in Equation 1.11, where CC(i, j)
represents a binary function: 1, if i-th image is correctly classified by j-th model, 0
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otherwise.

REC(j) =
∑K
i=1CC(i, j)

K
(1.11)

Such metric works for both, ”TOP-1” and ”TOP-5”, challenges, and will surely
be less for the first challenge, than for the second.

Results of our experiments are shown in Table 1.4. While Microsoft neural
network ResNet-152 shows almost fantastic efficiency on the ImageNet validation
dataset, it proves itself pretty helpless, along with all the other models, on a pretty
specific dataset Things-50, which was aimed towards exactly recognition in terms
of ILSVRC2012 categories, but with a bias towards the household/office objects in
both controlled (neutral) and chaotic environments.

It is also pertinent to note, that while ILSVRC2012-Val contains 50000 images,
pretty fairly distributed into 1000 categories, the statistical bias and small size of
the sample of Things-50 doesn’t provide an opportunity to affirm that ResNet is
better or worse than VGG-19 in household or office environment; yet, it shows that
such a possibility is plausible and we have to consider a change of models, if the
overall task, or at least some conditions of the task of the visual attention model
changes.

1.4.2 Language Analysis

As already stated previously, the way of labelling, used in the broadest recog-
nition problem – the convolutional neural networks, taught upon ImageNet image
dataset (as stated previously in subsubsection 1.4.1.3), is the universal word classi-
fication.

The ImageNet is organized as billions of images, each depicting a concept or
an object, and labelled as such. The labels are categorized thoroughly into a giant
semantic tree, taken from WordNet [Miller 95] (already mentioned in Table 1.3 as
the provider of ”synsets” and their codes).

In short, WordNet is a lexical database for the English language. It groups
English words into sets of synonyms (called synsets), provides short definitions and
usage examples, and records a number of relations among these synonym sets or
their members. WordNet can thus be seen as a combination of dictionary and
thesaurus. This ontology gives us an opportunity in language analysis, as WordNet
applies different types of relations onto nouns, including:

• hypernyms: Y is a hypernym of X, if every X is a (kind of) Y (canine is a
hypernym of dog);
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Table 1.4: Broad category recognition models comparison over
ILSVRC2012-Val and Things-50 datasets

Model Dataset RECTOP1 RECTOP5

VGG-191

ILSVRC2012-Val2

0.6878 0.8803
VGG-CNN-S1 0.4824 0.7241
ResNet-1523 0.755 0.9167
GoogLeNet 0.5225 0.7699

BVLC-AlexNet 0.3678 0.6129
AlexNet 0.3638 0.6073
NiN 0.4181 0.6718

VGG-19

Things-50

0.4706 0.6275
VGG-CNN-S 0.3333 0.51
ResNet-152 0.451 0.5686
GoogLeNet 0.3725 0.549

BVLC-AlexNet 0.255 0.51
AlexNet 0.2157 0.49
NiN 0.1765 0.2941

1 VGG-19 and VGG-CNN-S are considered as different ”flavours”
of general VGG model and should be assessed independently

2 ILSVRC2012-Val dataset is provided by ILSVRC organisers
specifically for model validation

3 ResNet-152 is the most recent modification of MSRA/ResNet
network, and considered by its authors as the best in the family

• hyponyms: Y is a hyponym of X, if every Y is a (kind of) X (dog is a hyponym
of canine);

• coordinate terms: Y is a coordinate term of X, if X and Y share a hypernym
(wolf is a coordinate term of dog and vice versa);

• meronym: Y is a meronym of X, if Y is a part of X (window is a meronym
of building);

• holonym: Y is a holonym of X, if X is a part of Y (building is a holonym of
window)

Semantic similarity based on WordNet has been widely explored in Natural Lan-
guage Processing and Information Retrieval. But most of these methods are applied
in an ontology (e.g., WordNet).

Several methods for calculating semantic similarity between words in WordNet
exist and can be classified into three categories:
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• Edge-based methods: to measure the semantic similarity between two
words is to measure the distance (the path linking) of the words and the
position of the word in the taxonomy. That means the shorter the path from
one node to another, the more similar they are (e.g., Wu-Palmer distance
[Wu 94] in modification of Pedersen [Pedersen 04]).

• Information-based statistics methods: to solve the difficult problem to
find a uniform link distance in edge-based methods, Resnik proposes an information-
based statistic method [Resnik 99]. The basic idea is that the more information
two concepts have in common, the more similar they are. This approach (and
its relatives) is independent of the WordNet corpus and demands additional
information sources.

• Hybrid methods: combine the above methods, using both the ”tree path”
between concepts in a tree of relations, and information content, e.g., [Jiang 97].

While all of the similarity metrics address ontological similarity, they do it in dif-
ferent way. Thus, only three of them represent a normalized metric which produces
a value in range [0..1], so if we would like to use such a metric as a quantitative
modifier, we need to choose among them all.

Wu-Palmer similarity is defined as the similarity of two concepts based on the
common concepts by using the path, as shown in Equation 1.12. Here C3 is the least
common superconcept of C1 and C2. N1 is the number of nodes on the path from
C1 to C3, N2 is the number of nodes on the path from C2 to C3; N3 is the number
of nodes on the path from C3 to root.

WUP (C1, C2) = 2 ∗N3

N1 +N2
(1.12)

Lin similarity is a score denoting how similar two word senses are, based on
the Information Content (IC) of the Least Common Subsumer (most specific an-
cestor node) and that of the two input concepts. The relationship is given by the
Equation 1.13, where IC(Cn) represents function of information content: the con-
ventional way of measuring the IC of word senses is to combine knowledge of their
hierarchical structure from an ontology like WordNet with statistics on their actual
usage in text as derived from a large corpus (e.g., Brown corpus [Francis 79]).

LIN(C1, C2) = 2 ∗ IC(LCS)
IC(C1) + IC(C2) (1.13)
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Path similarity represents a very simple metric of how long is the path in the
ontologic tree, as shown in Equation 1.14, where PL(C1, C2) represents path length
between concepts in ontologic tree with edges representing hypernym/hyponym re-
lations.

Path(C1, C2) = 1
PL(C1, C2) (1.14)

An example of similarity calculation between concepts ”dog” and ”wolf”, along
with ”dog” and ”cat”, is shown in Listing 1.1.

T1 = HyperTrees ( dog ) =
[ 1 ] {∗ROOT∗ < en t i t y < {8 concepts omitted} < mammal <
p l a c en t a l < ca rn ivo r e < canine < dog}

T2 = HyperTrees ( wol f ) =
[ 1 ] {∗ROOT∗ < en t i t y < {8 concepts omitted} < mammal <
p l a c en t a l < ca rn i vo r e < canine < wol f }

T3 = HyperTrees ( cat ) =
[ 1 ] {∗ROOT∗ < en t i t y < {8 concepts omitted} < mammal <
p l a c en t a l < ca rn i vo r e < f e l i n e < cat }

LCS(T1 , T2) = { canine } , depth = 14
LCS(T1 , T3) = { ca rn ivo r e } , depth = 14

DepthT1 = min ( depth ( { t r e e in T1 } ) ) = 15
DepthT2 = min ( depth ( { t r e e in T2 } ) ) = 15
DepthT3 = min ( depth ( { t r e e in T2 } ) ) = 15

wup( dog , wol f ) = 0.9333
wup( dog , cat ) = 0.8666

IC ( ca rn i vo r e ) = 7.2549003421277245
IC ( canine ) = 7.638625463599483
IC ( dog ) = 7.7404081579094255
IC ( cat ) = 8.630265632715425
IC ( wol f ) = 11.072612668084629

l i n ( dog , wol f ) = 0.8121



32 1.4. OBJECT RECOGNITION AND SEMANTICS

l i n ( dog , cat ) = 0.8863

Shor t e s t path : {
" subsumer " : " can ine " ,
" lpath " : " dog " ,
" rpath " : " wol f " }

Path l ength = 3

Shor t e s t path : {
" subsumer " : " c a rn i vo r e " ,
" lpath " : " can ine < dog " ,
" rpath " : " f e l i n e < cat " }

Path length = 5

path ( dog , wol f ) = 0.333
path ( dog , cat ) = 0 .2

Listing 1.1: Examples of different similarities between close concepts

As it can be seen in Listing 1.1, Lin similarity is dependent onto additional metric
of ”information content”, thus making similarity between ”dog” and ”cat” higher,
than between biological relatives ”dog” and ”wolf”. Such a non-obvious approach
to calculation can jeopardize autonomous decisions of a robot, – while being pretty
interesting and emergent of a non-linear approach, such a behaviour is beyond the
scope of this work.

On the other hand, the Path similarity shows hyperbolic diminution, and for
even very similar concepts gives quantitative value lower, than 0.5; while the differ-
ence between really far concepts (such as noun ”cat” and noun ”love” in their first
meanings) path length is 20, thus scoring path(cat, love) = 0.05.

T1 = HyperTrees ( cat ) =
[ 1 ] ∗ROOT∗ < en t i t y < phys i ca l_ent i ty <
{7 concepts omitted} < mammal < p l a c en t a l <
ca rn i vo r e < f e l i n e < cat

T2 = HyperTrees ( l ove ) =
[ 1 ] ∗ROOT∗ < en t i t y < abs t r a c t i on < a t t r i b u t e < s t a t e <
f e e l i n g < emotion < love

T3 = HyperTrees ( g love ) =
[ 1 ] ∗ROOT∗ < en t i t y < phys i ca l_ent i ty <
{4 concepts omitted} < c l o th i ng <
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handwear < glove

wup( cat , l ove ) = 0.1739
l i n ( cat , l ove ) = 0 .0
path ( cat , l ove ) = 0 .05

wup( cat , g love ) = 0 .4
l i n ( cat , g love ) = 0 .0
path ( cat , g love ) = 0.0625

wup( g love , l ove ) = 0.2222
l i n ( g love , l ove ) = 0 .0
path ( g love , l ove ) = 0.0667

Listing 1.2: Similarity between far concepts

As it is depicted in Listing 1.2, Lin similarity drop to 0 when the LCS is a very
common concept; while Path score shows insignificant results of a 10−2 magnitude,
depicting a bias towards low-level scores.

Wu-Palmer similarity, in contradistinction to others, produces significant evalua-
tion both in cases of close concepts and far concepts, giving a big gap between these
estimations, and being pretty monotonic with common sense. Thus, according to
Wu-Palmer estimation, a comparison of 5 concept pairs (”dog-wolf” > ”dog-cat” >
”cat-glove” > ”cat-love” > ”love-glove”) shows an ordering by generalization of com-
mon ancestor. Given a weak hypothesis, that this ordering correlates with ”common
sense”, we can apply a survey method to partly justify it.

We have done a small survey among 40 students. They were given these 5
pairs of concepts and asked ”to place them in order of decrease of similarity”. The
results show that more than a half (68% at least) agree with such an ordering,
implying it to be a quasi-”common sense”; brief results of this survey are depicted
in Figure 1.5. While the question of ”common sense” is mostly rhetorical on one
hand, and philosophically very large on the other, the bigger scaled survey method
could approach it: the bigger set of concept pairs, along with the bigger pool of
interviewees can justify more strict hypotheses; yet, such question is not in scope of
this work.

The given survey can (at least partly) justify usage of Wu-Palmer metric as an
answer to a question – ”If the task implies a search of A, how good it is to find B
instead?”.
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Figure 1.5: Results of a mini-survey, whether the given order of concept pairs (by
decreasing of Wu-Palmer similarity) is in common sense; ”Higher” means that the
interviewee placed the pair higher in position, ”Lower” – that interviewee placed the
pair lower in position

1.4.3 Knowledge storage

Another implicit part of decision making module is some storage for existing
knowledge, as we need to categorize the data already found, and to differentiate it
from the data newly acquired.

The models of memory or knowledge storage can be informally divided into
two classes [Gavrilova 00] – the ”hard models”, which could be defined by a formal
language, and ”soft computing models”, as defined by [Zadeh 94], which are applied
for inexact solution of computationally hard problems.

While the ”soft computing” approach is directed more towards data process-
ing, the neural networks provide several types of memory-wise networks, including
Hopfield network [Hopfield 82], bidirectional associative memory (BAM) [Kosko 88],
Boltzmann machine [Ackley 85] or previously mentioned convolutional neural net-
works [Matsugu 03].

As showh in [Hertz 91], the network capacity of the Hopfield network model is
determined by neuron amounts and connections within a given network. Therefore,
the number of memories that are able to be stored is dependent on neurons and
connections, and the recall accuracy between vectors and nodes was 0.138 (approx-
imately 138 vectors can be recalled from storage for every 1000 nodes) [Liou 06].
Similar constraints apply to BAM and Boltzmann machine.

Soft computing approach is not very suitable for the task of short-term memory
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of exact objects – along with the characteristics of these objects and possible meta-
data; such a task call more for a ”hard model”. Throughout the formal models,
there have been three meta-techniques, usable for memory or knowledge storage:

• Production rule systems [Brownston 85];

• Semantic networks [Scragg 76];

• Frame networks [Minsky 75].

Production rule systems. A defining element of a production rule system is
representing knowledge in form of a set of rules ”If A, then B”, which allows,
according to a set of input data, according to the constraints, apply actions – e.g.,
induce new data or knowledge, preconize an expert verdict, etc. Main advantage of
such a model is flexibility and simplicity of the output mechanism, along with being
”sharpened” exactly for actions.

Such models are popular in industrial expert systems [Klahr 87, Khoroshevsky 93],
along with the tasks of teleo-reactive control of agents in multi-agent systems [Nilsson 94,
Hayes 08]. Such models are usable in context of the tasks of autonomous robotics,
but more in the specificity of actions and reactions. Such models demand ”pre-
learnt” set of knowledge (usually created by a human expert). In this case it is
expedient to apply such models in terms of semi-free scenarios, as a set of actions-
reactions for specific events or specific visual images, or estimation of expert verdicts
according to existing requests. Most known example of such application in AI is
IBM Watson, which solves problems in several contexts according to very complex
production-rule-based decision systems.

Semantic networks. Semantic nets, or networks, are structures which could be
represented by an oriented graph, where its vertices are concepts, and its edges are
relations between concepts. As a concept, one could define abstract or specific
objects; as a relation, one could define any linkage between concepts. Usually,
default relations in semantic network systems are ”AKO” (a kind of), ”Has part”,
etc.

Such structures, differently of the production rule systems, are not oriented onto
solution creation, – more onto description of existing situation in given environment.
In this case, a typical ”semantic network problem” is defined as a search of such
a fragment of the network, which corresponds to some input conditions. Main
advantage of such knowledge organisation is that it is more, than others, suited
according to contemporary representation of both short-term and long-term memory
organisation [Scragg 76].
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The main disadvantage in this case is the difficulty of search process.
Most often the semantic nets are used for storage of knowledge about objects,

than for induction of new knowledge. However, they are also used in different expert
systems as knowledge presentation language [Durkin 93].

Frame networks. Frames are defined as abstract images, used for representation
of a perception stereotype. Such images are averaged stereotypes of defined objects;
thus, abstract image ”child” is an aggregate of characteristics, inherent for each
child, without any further detail (”child is a human, which is less than 18 years
old”). Each frame can be then called as a set of properties, inherent to this image.

There exist ”sample frames”, depicting an abstract concept, and ”instance frames”,
describing additional details of each independent object, which is an instance of ex-
isting abstract image, and inherits its properties.

Frames apply a classification upon many properties; also, they are linked via
AKO-relations, which makes it possible to inherit the properties of a more abstract
frame. Thus, frames are more complex structures, partly resembling semantic nets,
which describe the world more fully and flexibly [Sowa 14].

As the model quality assessment in the field of knowledge representation exists
only on the level of estimation, if the induced solutions of expert systems are wrong
or right [Gavrilova 00], the choice of one or another model to be used in solving each
independent task should be done on the basis of different premises.

1.5 Conclusion

This chapter has given the reader an overview of the field of visual attention, in-
cluding best techniques, used in the domain of visual attention, and best techniques
in adjacent domains, such as object recognition and simple lexical comparison. We
provide also the means of evaluation and do comparison for the state-of-art ap-
proaches efficiency, as applied to the synthetic benchmarking datasets.

The best techniques in the field, mostly based on deep neural networks, have
caveats if applied to autonomous robotics – the inability to run in real time due to
high resource demand. This leads us to the choice of classical bottom-up approach
based on the compromise “resource supply / quality of solution” as a key part of
the visual attention system.

Another key point of the chapter, where we need to emphasize the reader’s
attention, is a giant gap between two attention directions, the bottom-up and top-
down, which are derived from absolutely different reasonings: elementary vision cues
against high-level cognitive phenomena. There have been a handful of approaches
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towards crossing this gap, trying to integrate both directions into one combined
approach – e.g., [Navalpakkam 05], or [Peters 07]. Most of them implement the top-
down direction as a “black box” using methods, such as Fourier transformations,
which are not aware of cognitive processing.

While one could argue about the usage of non-cognitive methods in this matter,
it should be noted that the state of modern hardware and algorithmics has finally ap-
proached the moment where a top-down attention can be implemented as a complex
model of artificial attention with some partial modeling of human brain’s lateral pre-
frontal cortex in the context of computer and machine vision [Buschman 07]. Which
is why we can aim our research in this direction, – combination of two attention di-
rections, where top-down model is more sensible and cognitive-like.

The means for such a cognitive-like approach could be provided by aforemen-
tioned best techniques from adjacent fields. Quasi-classification algorithms in the
field of object recognition (which can be reformulated as lexical labelling) and simple
lexical comparison for similar or relative concepts, can be used in order to provide
some distinction and a basis for a simple decision module, essential for any combi-
nation of top-down and bottom-up attention models.

It is in this direction that my research is aimed; Chapter 2 briefly outlines the
general scheme of such a combined model; Chapter 3 details this system both on top-
down and bottom-up parts; Chapter 4 is dedicated to the implementation, validation
and several real-world tasks.

The next chapter considers the general outline of such a system, representing
its theoretical framework, in order to achieve the general goal, as shown in General
Introduction.
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2 | General Outline for Combined
Visual Attention Model

2.1 Introduction

As discussed previously in subsection 1.2.1, visual attention models are usually
divided in two big groups: ”bottom-up” stimulus driven models, which usually try to
solve a task of free visual search, and ”top-down” expectation driven models, which
are influenced by cognitive phenomena (such as knowledge, task, reward, etc.). The
Chapter 1 concluded on a note that a combined visual attention model could be
created.

If we would try to create a ”generalized” implementation for autonomous or
semi-autonomous usage in robotics, we need to cover as most conditions as possible:
not always a ”bottom-up” attention model will be usable (e.g., when a robot has a
task to navigate to a human), and not always a ”top-down” attention model can help
(e.g. when a robot is in a semi-empty scene, surrounded only by several unknown
objects, and doesn’t have any particular task).

The question of combination of ”bottom-up” and ”top-down” models has been
explored for several years already, but each time in limited context of research and
not totally coherent with the scope of this research – e.g., reward-driven choice
making [Navalpakkam 10] or video game eye fixation prediction [Peters 07].

This chapter is directed towards outlining a possible system, combining both
approaches, as well as our guided choice for the techniques and approaches in the
parts of such system, – if such choice is possible.

A ”bottom-up” model is usually computationally more simple, than “top-down”,
thus it can be embedded into a modern robot; yet, as any complex ”top-down” ap-
proach needs computational strength, we can approach it in a ”weaker” sense, choos-
ing remote architecture for this part of system. This gives us an opportunity to use
the most of existing approaches, which solve this or that part of the big problem;
yet, we have to find or define the means to evaluate the approaches and techniques,
used in this model construction, in order to be able to choose between similar ana-
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logues, so we also define several datasets, used in this paper, and evaluation metrics,
used above them.

So, the ground rules of the system implementation can be lay like this: while
its basic, ”bottom-up” part still has a constraint to be able to run on robot’s CPU
in quasi-real-time, the second, ”top-down” part, can be implemented in terms of
”cloud consciousness”, where robot asks for ”help” via network to the applications,
which are physically situated elsewhere. Such approach would allow us to still
have a quasi-real-time usage experience, combined with best techniques in image
processing (usually based on convolutional neural networks, which demand GPU-
based processing).

The section 2.2 outlines ”grand scheme” of a Combined Model, along with sev-
eral techniques which could be used in it. Providing description and some general
consideration about usability, are section 2.3 for the bottom-up unit, section 2.4 for
top-down unit, and section 2.5 for a decision module, in order to establish the out-
line of the system and its units. The chapter is concluded with outlines of possible
extensions and validation directions of the model.

2.2 An Outline of a Combined Visual Attention
Model

As we have already discussed in Chapter 1, a combined visual attention model
would consist of three main parts: top-down unit (TD), bottom-up unit (BU), and
a decision making unit, which should use a set of weak conditions to choose between
TD and BU results. In Figure 2.1 it is shown such a structure.

As we stated in the last paragraph of subsection 1.2.2, in order to achieve a
possible autonomy in modern robot, we need to implement the BU part as com-
putable on modest resources of embedded CPU. Thus we have to rely on classic,
contrast-based eye fixation approach, as opposed to currently state-of-art convolu-
tional network-based approaches.

The TD part should be generally task-driven due to the context of the work,
which means the necessity of object detection and recognition on several levels.

2.3 Bottom-Up Unit

An overview of the human attention modelling problem was made in [Borji 13c],
establishing a classification of subtasks in this field and differentiating more than
60 different models into 28 subsets of methods. As previously discussed in subsec-
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Figure 2.1: An extended human-like visual attention model, combining both atten-
tion directions

tion 1.2.1, some of these subsets depend (at least partially) on detection of salient
objects in scene [Liu 11, Navalpakkam 06]; other subsets deal with detecting (or
defining) the most interesting spot in scene, which may or may not be a part of the
most salient object of this scene [Kadir 01, Kienzle 09].

And a number of listed models covers different subtasks. For example, the ap-
proach described in [Zhang 13] covers both object detection problem and eye fixation
prediction problems.

In the same way, a model which is targeted onto a specific task – e.g., fire
detection, – or more generally the detection of complex, deformed and multi-shaped
objects, may cover ”scene classification”, ”salient object detection” or ”interesting
point detection” (accordingly to classification of subtasks presented by Borji), while,
according to [Võ 12], not being any of the above-mentioned tasks, but representing
somehow some similarity with the task of eye fixation prediction due to high overall
saliency of the fire, which, with high probability, will be an eye-fixation point in
images containing fire.

The idea is based on establishing some similarity between the salient vision
and the human’s natural vision (namely through human’s eye fixation problem set
paradigm), then exploiting the ascertained likeness in order to make machine vision
come closer to human-like vision. In fact, although focusing distinct purpose and
different applications, the eye fixation paradigm provides appealing source linking



42 2.3. BOTTOM-UP UNIT

human-like visual skills.

2.3.1 Analogy between Salient Object Detection and Eye
Fixation Tasks

In order to defend the hypothesis of interusability of the algorithms in two similar
and related, yet still different contexts of problems, – salient object detection and eye
fixation, – we take the algorithm related to the previous problem, solved in the LISSI
laboratory: statistic-driven center-surround concept for objects detection, as defined
in [Ramík 12] and largely inspired from introduced notions. As that algorithm could
not handle the aforementioned purpose of visual attention modelling, we will have to
take only the first-step part of it while checking its ability to solve given tasks in new
context. As in fact, in the above-mentioned objects detection concept, even though
constituting a leading-step, the so-called saliency detection acts as intermediary
process in order to extract (e.g. detect and isolate) the salient objects in an image.
In other words, the primary action and thus the main outcome of the old algorithm
in this case was to detect and to isolate the potential salient items without any
linkage to human’s way of focusing objects in a landscape or to the human-like
visual attention.

We have considered the eye fixation problem paradigm as evaluation benchmark
for experimental validation of investigated approach. As the goal in the eye fixation
problem paradigm is modelling the human eye fixation (supposed linking human vi-
sual attention) when watching a scene (namely an image), the main applicative goal
is the prediction of humans’ center of attention versus the presented image. Most
applications deal with either the accurate design of web pages’ visual content or re-
late the design of visual content for advertisement issues (commercial applications).
Although focusing distinct purpose and different applications in this chapter, the
considered paradigm provides appealing experimental credentials linking "human-
like" visual skills. In fact, stating that the human eye-fixation mechanism tends
following what may be considered by the human as being relevant in visually per-
ceived information, one may establish (or state on) some similarity between the
robot’s artificial vision and human’s natural vision.

However, in order to establish the comparison criteria (indicators and metrics)
within the considered experimental frame, we need to make a two-way appraisal:
first treating the eye fixation paradigm as an object detection problem, and then
treating the object detection algorithm as eye fixation predictor.
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2.3.1.1 Eye Fixation Problem as Quasi-object Detection Problem

Let’s consider the eye fixation map as an image that pixels’ intensities repre-
sent the eye fixation probability (interpretable as being some kind of pixels’ visual-
attractiveness-degree) – also defined previously as saliency map in the eye fixation
problem paradigm. Assimilating the eye fixation map to such an image, one can
define a quasi-object as an item, represented by a set of contiguous pixels (of the
image) highlighted by relative probabilities (or intensities) higher than some thresh-
old T . In other words, a map of such quasi-objects can be obtained by applying an
arbitrary threshold to an eye-fixation map. On the other hand and in the same way,
a quasi-object of such an image could also be seen, from the saliency detection point
of view, as a salient object (or salient region) versus the rest of the image considered
as background.

Taking into account the latest analogy, the adaptive-threshold-based salient ob-
jects’ detection algorithm could be used to detect salient quasi-objects in MIT1003
database images. Figure 2.2 shows examples of quasi-objects carried out using the
aforementioned algorithm for two different threshold values (T = 10 and T = 50)
as well as the eye fixation map obtained from experimental setup involving various
groups of humans watching the concerned stimulus (input image).

In this case we can compare the detected areas to salient regions, obtained from
MIT1003 fixation maps. For regions detection we apply the GSM/LSM/FSM algo-
rithm with default parameters {IRC = 0.2;WSC = 0.4}. As an evaluation we can
apply usual Precision and Recall technique, as in pure object detection problems,
due to similarity with classification problem [Riche 13a].

In Figure 2.3 are shown Precision and Recall values for different thresholds.
By comparing the so-called detected quasi-objects to the most visually-attractive

zones in the corresponding eye fixation map (characterized by precincts representing
high probabilities of eye fixation), it is pertinent to note the analogy between the
detected salient zones and the most relevant eye fixation precincts.

The Recall value in this case can be interpreted as ”ratio of precincts focusing
effective human attention through his frequent eye fixation on these regions de-
tectable by object detection algorithm as salient regions”. In Figure 2.3 are shown
Precision/Recall values versus different thresholds over whole 1003 images of MIT
1003 eye fixation benchmark database. It is pertinent to note that 80% (and at least
68%) of detected quasi-objects (salient zones) match with the eye fixation precincts
and thus, are detectable by the algorithm. It also highlights that at least 20% of
detected salient regions do not represent eye fixations over the detectable salient
objects. The reported results show also that a suitable tuning of the threshold, and
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Figure 2.2: Examples of quasi-objects carried out using the Ramik’s algorithm
showing input images (column a), the corresponding eye-fixation map (column b)
and matched quasi-objects obtained setting T = 10 (column c) and T = 50 (column
d)

in a more general way, an appropriate tuning of the saliency detection parameters
allows bringing closer the saliency detection process and the human-like observation
of the same vista.

2.3.1.2 Object Detection Algorithm as Quasi-eye Fixation Algorithm

According to [Kienzle 09], a center-surround feature based algorithm can be used
in eye fixation prediction tasks. Let us interpret saliency map in eye fixation prob-
lem (eye fixation saliency map, EFSM) as a map, which shows a distribution of
image’s pixels’ likelihood to match up pieces of images’ items which may draw an
attention. In this case we can say, that saliency maps, obtained via object detection
algorithm, can be interpreted as EFSM, and can be compared to eye fixation maps
from MIT1003 database. This work mode doesn’t need steps 3–4 (segmentation
map and object detection).
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Figure 2.3: Precision and Recall average values over all 1003 images versus different
salient region threshold values T ∈ [10, 250].

Equating the final saliency map to an EFSM, the following question can be
formulated: ”how similar are the final saliency map and the human’s eye fixa-
tion behaviour?”. In other words, could the salient objects’ detection algorithm
fit human-like visual attention?

The answer to this question could be loomed by evaluating, through the MIT1003
database’s images and the corresponding actual eye-fixation maps held by this
database, the likeness between eye fixation map and final saliency map. As shown
previously in section 1.3, we should use at least 5 indicators to be able to assess a
model fairly.

In Table 2.1 shows some evaluation scores of Ramik’s algorithm. We have run
it with different values of {IRC;WSC} parameters (where IRC, Image Resize
Coefficient represents an inner technical parameter of pre-scaling for the input image,
applied automatically in order to decrease the computational complexity while not
losing too much in performance – more on the subject in subsection 4.2.1), and the
best scores were achieved with different set of parameters (for example, {IRC =
0.25;WSC = 0.15} or {IRC = 0.2;WSC = 0.14}). Yet, the default set of values
{IRC = 0.2;WSC = 0.4}, as given in [Ramík 12], yields scores poorer, than some
other sets.

The indicators’ scores, obtained within quite a particular setting-option holding
the WSC parameter constant for all images in dataset, highlight three outcrops.
The first one is that some choices of the parameters (namely WSC = 0.14 and
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Table 2.1: Examples of evaluation scores’ values for four different selection options
of the parameters of Ramik’s algorithm

IRC;WSC AUCJudd AUCBorji sAUC NSS KL

0.15; 0.1 0.6902 0.6506 0.6607 0.7203 0.7537
0.2; 0.14 0.7286 0.6733 0.6921 0.7531 0.7374
0.2; 0.4 0.7246 0.6524 0.6513 0.7352 0.7603
0.25; 0.15 0.7286 0.6749 0.6831 0.7597 0.7379

WSC = 0.15 while IRC = 0.2 and IRC = 0.25) conduct to better matching of
the human-like way of gazing the images of the considered MIT1003 database. The
second one relates AUC-like indicators’ behaviour versus the parameters tweaking,
showing that those same choices lead to an effectual enhancement of the matching
algorithm’s propinquity with human’s eye fixation mechanism: in other words, it is
not an accidentally emergence of some human-like visual behaviour. The last remark
joins the concluding statement of subsubsection 2.3.1.1: an appropriate tuning of the
saliency detection parameters allows bringing closer the saliency detection process
and the human way of observation.

However, an additional overall remark relating the obtained scores steers to be
conscious that an accurate tuning of the model will require the fine-tuning of all
additional parameters embroiled in other stages of the investigated system.

2.4 Top-Down Unit

As TD models generally are classified into three different types (as mentioned in
subsection 1.2.3) which are pretty difficult to combine, we need to narrow down the
scope by several general restrictions and conditions:

• In general, such a model have to be able to work in real-time (up to 1 sec. in
optimal implementation, with possible iterations of state ”robot is thinking”,
up to 5-10 seconds);

• This model can consist of several other models combined;

• Model combination method should be able to change its parameters depending
on task;

• The default task is ”free visual search”, as a natural human behaviour;

• Other possible general tasks might be defined as ”free visual search with ad-
ditional attention to known objects”, ”search for target object”, ”search for
target pattern”, ”reconnaissance of unknown scene”.
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Thus we can define several parts of this approach which we can call as a TD visual
attention model, because it creates visual attention prediction based on cognitive
phenomena, and in general combining two of three main types of TD models, namely
it is a visual search model with a hint of task drive.

As it has been already stated, in top-down direction the attention is spanned
towards objects with additional characteristics, viewed and provided by higher cog-
nitive abilities; in such a manner, one of the fundamental higher cognitive ability
is an ability to detect and recognize the object. It is pertinent to note, that this
task is not equal to the standard ”salient object detection problem” (as outlined in
subsection 1.2.1) per se, but is a complex task of both detection and recognition.

The recognition module in this case is the one that provides both the answers
to the questions ”Is there any recognizable object in the scene?” and ”If yes, then
what is this object, and what is your confidence level for this act of recognition?”.

But there is also a necessity to answer another question, – ”If there is an object
previously learnt, how do we recognize it?”.

In order to answer this question, we have to not only use object detection and
recognition as main tool in all TD attention, but also use bi-directional information
exchange between TD model and memory unit in the principal scheme, – whether
the model memorizes an object, the recognition module should be able to recognize
it.

It would be too time-consuming to create new approaches for each step, rather
than choose an existing one, while there exist many works, spanning through decades,
both on recognition and memory models; also, such work would be out of a timespan
of a three year doctoral thesis.

From another point of view, it is possible to take either the several state-of-art
algorithms and to compare them, or to find several existing comparison works and
to verify the existing judgements, in order to make a choice of the most usable
algorithms in recognition and memory modeling. As shown in subsubsection 1.4.1.3
and already discussed in section 2.1, we can let us use pretty time-consuming models
in this part of the bigger system, without fear of losing the quasi-real-time efficiency.
Thus, the robot is still able to be autonomous: without any network connection (if
it is lost), it still can use the basic, bottom-up part of the model.

2.5 Memory and Decision Unit

Based on some rule and/or decision making module, a “mix” of attention maps,
produced by TD and BU units, should be done. As a result, we would have a more
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weighted saliency map, produced by both types of attention direction, along with
complimentary results, such as “Representative points” (produced by bottom up
model extension), or the recognition data (produced by top down model).

While the name of this module stands for two pretty broad and general con-
cepts, it is used in more narrow sense – we need to store seen objects (”short term
memory”), to be able to recognize them in future and be able to apply a correct
label onto these objects, and make the decisions based on the information gathered
previously – so this is more just a question of data systematization.

In contemporary cognitive psychology the defining model of short-term memory
changed through time: the keystone Atkinson-Schiffrin model [Atkinson 68], which
implies division of the model into modal modules (also known as multi-store model
or modal model), evolved in time into Baddeley-Hitch model of ”working memory”
[Baddeley 74] (additionally modified by Baddeley in [Baddeley 00]).

There have been several approaches to implement ”working memory” in robotics,
namely [Skubic 04] or [Phillips 05]. While Skubic’s multi-agent approach to STM
and LTM has shown very good results, in our situation it represents too high com-
plexity; for our purposes of storage of objects with images, or concepts of such ob-
jects, a simplified Baddeley model can be repurposed (model shown in Figure 2.4).

Figure 2.4: Baddeley-Hitch working memory model as contemporary cognitive psy-
chology view on STM and LTM mediator

While such model applies to the whole sensory input, including audio, tactile,
navigation ”senses” of human (or robot), in order to apply it only to visual memory
we can simplify or repurpose its parts, using Baddeley’s STM as a general basic
structure.

Thus, ”Phonological Loop” originally represents audio input coherent with visual
input; in our case, we can repurpose it as a part where input task, or input data
from recognition module is analysed in terms of language; e.g., a part which should
answer a question ” If we need to find object A, but we found object B, whether it
is significant?”, or if re-phrased, what is a quantitative estimation of the closeness
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between objects Aand B and whether the robot should react?
The ”Visuospatial Sketchpad” implies to existence of navigation sensor (”inner

compass” along with vestibular system of human); while the question of navigation
has always been an outstanding problem in modern robotics, this question is out of
the scope of this work. Thus, we can repurpose it as a map of visual knowledge,
which acquires data from recognition module and stores it.

The ”Episodic Buffer” is assumed to be a limited-capacity temporary storage
system that is capable of integrating information from a variety of sources. It is
assumed to be controlled by the central executive, which is capable of retrieving
information from the store in the form of conscious awareness, of reflecting on that
information and, where necessary, manipulating and modifying it. The buffer is
episodic in the sense that it holds episodes whereby information is integrated across
space and potentially extended across time. As in context of our research, it can be
represented as a constantly changing self-organizing model, namely Kohonen map,
which represents another mean of estimating similarity between freshly acquired
sensory information and several previously gathered images.

And as for ”Central Executive”, – it represents the part which distributes the
energy between the other memory parts, along with the information redistribution.
In our case this should be a submodule which queries all the parts of memory, and
inducts the decisions over all the gathered data.

2.6 Conclusion

This chapter discusses general outline of a combined visual attention model,
which not only combines two different directions of visual attention via several bio-
inspired techniques, but also provides additional recognition along with some im-
portance estimation of the visual data, allowing the mobile robot to react in a more
informative fashion. Such a system is described in general manner; more details on
it are given in chapter 3.

By applying the described system to several specific datasets in order to obtain
validation, we can show the usability of given sets of parameters along with the
whole system efficiency as well; more on the topic of validation of the system in
simulations and the real-world tasks will be discussed in chapter 4.
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3 | Theoretical Basis of the Combined
Visual Attention Model

3.1 Introduction

As we have discussed and stated previously in chapter 2, visual perception mod-
els, usable in autonomous robotics, should have higher operational speed, and this
condition provides several implementation constraints onto them nowadays: the
embedded part of such a model would have a ”bottom-up” direction of a visual
scene study, because ”top-down” model can not be considered as ”fast” due to large
resource demand.

Focusing on the dilemma of visual attention for autonomous visual perception,
in this chapter we propose a more in-depth view on the general model for combined
artificial visual attention, along with its parts:

• Visual-Attention-based Autonomous Artificial Vision (V A3V ) as bottom-up
unit, along with its genetic tuning process. Statistical foundation and bottom-
up nature of the proposed model provide the advantage to make it usable
without prior information, making it suitable for usage in autonomous artificial
vision in general.

• Set of object recognition approaches as top-down unit. Mostly the choice of
techniques was done in Chapters 1 and 2, so in this chapter we will consider
some practical points of implementation.

• Memory and decision unit as set of modules incorporated into schema of
Baddeley-Hitch short-time memory.

In section 3.2 we introduce the groundwork of the proposed BU approach. In
the section a statistical foundation of visual saliency is presented. Then section 3.3
provides description of the proposed approach as an extension of existing techniques,
fine-tuned by an evolutionary process along with experimental results on MIT1003
and Toronto image datasets, comparison to currently best algorithms used in the
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aforementioned field. The reported results show evaluation scores comparable to the
state-of-art algorithms with advantage of a comprehensive solid theoretical basement
and fast execution speed of our approach. The section is concluded by demonstration
of a further extension to this model in terms of expanding visual attention similarity
and saccade prediction. Then, section 3.4 provides some in-depth vision over other
two parts of the general system, TD unit and decision unit, and then the chapter is
concluded with sketching further perspectives of the presented model.

3.2 Theoretical Basis of Statistically Driven Arti-
ficial Visual Attention and the Proposed Ap-
proach

The proposed approach uses some concepts of previously mentioned Ramik’s
algorithm (see subsection 2.3.1 and [Ramík 12]), as these concepts have been justified
to be usable in eye fixation problem.

Based on saliency detection concept, the proposed Visual-Attention-based Au-
tonomous Artificial Vision (V A3V ) approach gets underway the integration of human-
like bottom-up visual attention by launching an eyes fixation mechanism based tun-
ing of the saliency detection process. This is done through a Genetic Algorithm
(GA) based evolutionary process shoving the saliency detection toward the human-
like eyes-fixation behaviour.

Figure 3.1 shows the operational block diagram of the proposed approach. As it
could be noticed from this figure, the two first blocks are liable for working out two
kinds of saliency maps, representing two different saliency levels: ”Global Saliency
Map” (GSM) and ”Local Saliency Map” (LSM). These two parts can work in parallel,
as they represent two different algorithms, applied to the same input. The results
are two maps, which are then taken as input for computation of the final saliency
map. The next block, labeled ”Fusion – Final Map”, is devoted to these fusion
operations.

The first fusion operation combines the two above-mentioned saliency maps in
order to carry out the final saliency map. The second one performs a weighted
combination of GSM and a set of LSMs.

Finally the last block “Gaussian Blob Filter” applies several filters (to be ex-
plained in details in following subsections) onto the final saliency map leading to
the ”Visual Attention Map” which holds compulsory features relating relevant visual
information of the perceived scene (image). Then, this key-map might be used either
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Figure 3.1: Operational block diagram of the proposed V A3V model

for extracting the outstanding items (e.g. objects’ detection recognition tasks) or
for acting as a visual control loop controlling a machine’s (namely robot’s) actions.

The aforementioned GA-based tuning process is depicted on the diagram as
another block, which influences operations in three parts (in saliency computation,
in fusion and in filtering). This shows the idea that the tuning process creates
various involved parameters, which are used throughout the whole operational flow.

It is also pertinent to emphasize that the investigated system admits two op-
erational modes: the “tuning mode”, which acts as some kind of learning process,
with input in form of the training datasets with corresponding “ground truths”, and
output in form of a set of suitable parameters to be used in the system; and the
“operating mode” carrying out the so-called visual attention map once the system’s
parameters have appropriately been tuned.

3.2.1 Saliency Map Computation

As a start, we need to formally define all the elements of the problem’s input.
Let us suppose the image ΩRGB(x), represented by its pixels ΩRGB(x) in RGB

color space, where x ∈ Ψ2 denotes 2d pixel position. Let ΩR(x), ΩG(x) and ΩB(x) be
the colors values in channels R, G and B, respectively. Similarly, we can define the
image in other color spaces (e.g., YCrCb) – ΩYCC(x), ΩY(x), ΩCr(x) and ΩCb(x) in
YCrCb color space. Finally, let ΩR, ΩG and ΩB (or ΩY, ΩCr and ΩCb) be median
values for each channel throughout the whole image.

As mentioned at the beginning of the present section, two kinds of saliency maps,
representing two different saliency levels, are created: ”Global Saliency Map” (GSM)
and ”Local Saliency Map” (LSM). The GSM handles the ability to catch attention
dealing with the general contrast of all and any part of the image, while LSM conveys
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fine levels analysis dealing with the local center-surround contrast in the considered
image. The computation of the saliency map is in fact the computation of these
so-called GSM and LSM.

Global Saliency Map – also called GSM, denoted as MG(x), – is a result of
non-linear fusion of two elementary maps MY(x) and MCrCb(x), relating luminance
and chromaticity separately. Equations (3.1) – (3.3) detail the calculation of each
elementary map as well as the resulting GSM.

The Equation 3.1 depicts calculation of elementary map over Y-channel, where
each value for position x is calculated as modulus of difference of the corresponding
value in ΩY(x) and median value for this channel. The Equation 3.2 does similar
calculation by combining such differences of two channels, Cr and Cb in “Euclidean
distance” fashion.

MY(x) = |ΩY − ΩY(x)| (3.1)

MCrCb(x) =
√(

ΩCr − ΩCr(x)
)2

+
(
ΩCb − ΩCb(x)

)2
(3.2)

MG(x) = 1
1 + e−C(x)MCrCb(x) +

(
1− 1

1 + e−C(x)

)
MY(x) (3.3)

As blending function for the composite “global saliency map” MG(x) we use
the logistic sigmoid. This blending of the two elementary saliency maps together
in Equation 3.3 is driven by a function of color saturation of each pixel. For this
purpose, the color saturation Cc is defined, and is calculated from RGB color model
for each pixel as pseudo-norm, normalized to 0–1 range (as shown in Equation 3.4 by
division to 255, where 255 is maximal value in any of R, G, B channels). When Cc

is low (too dull, unsaturated colors), more importance is given to intensity saliency
MY(x). When Cc is high (vivid colors), chromatic saliency MCrCb(x) is emphasized.

The values in Equation 3.5 are chosen in order to fit the logistic sigmoid [Ramík 12,
p. 63].

Cc(x) = (max (ΩR,ΩG(x),ΩB(x))−min (ΩR(x),ΩG(x),ΩB(x)))
255 (3.4)

C(x) = 10 (Cc(x)− 0.5) (3.5)

Local Saliency Map – also called LSM, – is a map, calculated on the basis of idea
of center-surround histograms (initially proposed in [Liu 11]), involving statistical
properties of two centered windows (over each pixel) sliding alongside whole the
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image. Based on this concept the LSM is obtained from a non-linear fusion of
two statistical properties-based maps (same mechanism as in the GSM calculation),
relating luminance and chromaticity of the image.

Figure 3.2: Illustrative example of areas P (x) and Q(x), representing center-
surround antagonism

Let us suppose a sliding window P (x) of size p, centered over a pixel x, which is
compared to its surrounding area Q(x), so that (Q(x)−P (x)) = p2 (as illustrated in
Figure 3.2). Let a center histogramHch

C (x) be a histogram of pixel-applied intensities
in each ch – channel in YCrCb space, – thus speaking about three histograms, one
for each channel, in window P (x) (with Hch

C (x, i) being a value of i-th bin of this
histogram, respectively), and a surrounding histogram Hch

S — a histogram of pixel
intensities in area Q(x). Then the center-surround feature dch(x) can be calculated
for each channel ch ∈ {Y,Cr,Cb} as in (3.6) — a normalized sum of difference over
all 256 histogram bins. For pixels near the edge of image the areas P (x) and Q(x)
are only over the image itself.

dch(x) =
255∑
i=1

(
Hch

C (x, i)
|Hch

C (x)| −
Hch

S (x, i)
|Hch

S (x)|

)
(3.6)

In Equation 3.6 |Hch
C | and |Hch

S | represent sum over all histogram bins.
The LSM (denoted as ML(x)), resulting from a non-linear fusion of the so-called



56 3.2. THEORETICAL BASIS OF STATISTICAL APPROACH

center-surround features (denoted as dch(x)), is calculated in Equation 3.7, with
coefficient Cµ(x) being an average color saturation over window P (x). It is calculated
in Equation 3.8 as an average of saturation C(x) on area P (x) from Equation 3.5.

ML(x) = 1
1− e−Cµ(x)dY(x) +

(
1− 1

1− e−Cµ(x)

)
max (dCb(x), dCr(x)) (3.7)

Cµ(x) =
∑P (x)
k C(k)
p

(3.8)

Let us return back to the parameter p, introduced at the beginning of the present
subsection, which regards the choice of the center-surrounding windows’ sizes (e.g.
satisfying the condition Q−P = p2 in general; and for the ”border” pixels, where the
sliding window would be out of image margins, the condition is interpreted as Q−
P ≤ p2). We need to note that small values of p direct the saliency detection process
toward highlighting details or small items, while larger values of this parameter make
the saliency detection process stressing bigger items of the image.

To formulate the task of parameter p, let n × m be the image’s size, where n and
m are numbers of horizontal and vertical pixels of image, respectively. Q may be
seen as a fraction of the image and be expressed as Q = αn × m, where 0 ≤ α ≤ 1.
α may be interpreted as the parameter linking to the visual attention’s perimeter.
Within such statements, we can define the ratio P

Q
that we denote as γ (0 ≤ γ ≤ 1),

which could be seen as the visual attention grain, representing the attention scale.
The area p2, corresponding to the surrounding part of window Q(x) – the Q − P
part, also a fraction of the image, – could be expressed as p2 = α(1 − γ)n × m,
showing the parameter p as a function of γ, α, and the image sizes:

p =
√
α(1− γ)n×m (3.9)

Therefore, p could be interpreted as the parameter relating the ”visual attentive-
ness scale” of the system (the parameter controlling the system’s visual attentive-
ness), depending both on the considered ”visual attention’s perimeter” Q (involved
through α), and on ”visual-attention grain” P

Q
(involved through γ).

An appealing way of handling the choice of the parameter p (and also the sizes
of windows P and Q) is to be able to define it by only one coefficient – window size
coefficient, WSC, which by itself should not be dependent on the size of image, but
should provide both the scale and the grain of visual attention:
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p2 = WSC2 × n×m (3.10)

WSC =
√
α(1− γ) (3.11)

It has been shown that the ”equilibrium” value of relative size between ”center”
and ”surround” windows can be γ = 1

2 [Liu 11]. In this case window size coefficient
defines both the sliding windows definitively:

P (x) = WSC2 × n×m (3.12)
Q(x) = 2WSC2 × n×m (3.13)

Final Saliency Map – or just Saliency Map (SM), denoted as Mfinal(x), is a map
resulting from a non-linear fusion of GSM and LSM as shown in (3.14).

Mfinal =

ML(x) if ML(x) > MG(x)√
ML(x)MG(x) otherwise

(3.14)

3.3 V A3V model

3.3.1 Fusion and Gaussian-Blob-Based Adaptive Filtering

Referring to Figure 3.1, two kinds of fusions are carried out by the ”Fusion —
Final Map” block. The first one has already been shown at the very end of subsec-
tion 3.2.1, which is a nonlinear fusion of GSM and LSM leading to the SM (final
saliency map of Ramik’s algorithm). This fusion concerns as well the tuning mode
as the operation mode. The second one, performing a weighted fusion, combines
GSM and a set of LSMs. This fusion operation is concerned to be able to apply
several visual attention grains onto the input image, because a fusion of different
LSMs gives better overall results, even if they are fused in a simple linear matter,
as shown in Equation 3.15:

ME(x) = w0 ∗MG(x) +
N∑
i=1

wi ∗ML i(x),
N∑
i=0

wi = 1. (3.15)

Where N represents number of LSMs to be fused, and wi, (i ∈ 0..N) are comple-
mentary weight coefficients of the fusion process. Values of N and wi are parameters
and subject to a tuning process, as it is a question of resources and performance –
the more fused LSMs we have, the better is the result, but the higher is the time
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spent to the processing.
The resulting map, also a saliency map, is then filtered by a ”Gaussian-Blob

Filter” and – in tuning mode – used by GA-based tuning process for tuning various
system’s parameters in order to shove the saliency detection process toward the
eye-fixation mechanisms.

The Gaussian-Blob-based filtering, suggested and discussed in several works re-
lating the eye fixation problem (e.g., [Bruce 07], [Riche 13a], [Judd 09] and [Tatler 07]),
and based on humanitarian concept of prevalence of centered attention over pe-
ripheral interest, consists in sifting the above-mentioned final saliency map by a
2-dimensional Gaussian center blob which profile is defined by Equations (3.16)-
(3.18).

G(i, j) = A× exp
(
−(i− i0)2

2σ2
i

− (j − j0)2

2σ2
j

)
(3.16)

σi = n
2 ∗Nar and σj = m

2 ∗Nar (3.17)

M̂E(i, j) = wG ∗G(i, j) + wE ∗ME(i, j) (3.18)

Here pixel x is represented by its respective coordinates (i, j), and (i0, j0) are
coordinates of the image’s geometrical center (e.g. center of the concerned picture).
sigmai and sigmaj relate the Gaussian blob’s radius, A represents amplitude, Nar
is a scale parameter which represents ”narrowness” of the blob, and (as previously
already defined) n and m are number of pixels in the image horizontally and verti-
cally, respectively.

An appealing way of tuning sigmai and sigmaj is to set them equal σ = σi = σj

as σ =
√

n×m
2∗Nar . This leads to shaping a symmetrical Gaussian blob, decreasing

computational time.

MVAM(x) =

M̂E(x) if M̂E(x) > FT

0 otherwise
(3.19)

The filtering operation itself consists of a weighted boosting of the map resulting
from the fusion block as depicted in Equation 3.18. The final map, namely the
Visual Attention Map (VAM), results from an adaptive threshold-based purging
following Equation 3.19, operated on the map issued from Gaussian operation. FT
here represents some ”final threshold”, – parameter, whose value is subject to tuning
process (along with the Gaussian weighted sum’s coefficients wG and wE, and the
parameters of Gaussian blob itself – A and K).
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Time efficiency of such model heavily depends on the number and sizes of sliding
windows in local saliency map calculation. Therefore algorithm time complexity
(and time consumption) depends on the image size: so let us denote the size of
image in the moment of processing as N = n×m ”square pixels”.

If we use a naïve approach (”sliding window” loop over each pixel in bigger
loop, calculating each histogram ”from scratch” in each iteration), local saliency
map algorithm complexity can be estimated as O(N2); But if we remember the
histograms of previous iteration and just apply the difference on each iteration,
the algorithm complexity estimation in this part can be dropped to O(N ∗ logN),
while each other step (global saliency map, ensemble fusion, Gaussian blob, final
threshold) represents simple O(N) complexity, thus giving us O(N ∗ log(N) + N)
worst complexity.

The complexity analysis for CNN-based approaches in visual saliency had never
been done; yet, there exist several works about complexity of general CNNs, used
mostly in object recognition (such as ResNet evaluation [He 15] or general CNN
evaluation [Gouk 14]). According to given works, the worst time complexity eval-
uation (after tweaking) for a CNN is O(M ∗ P ∗ I + P ∗ I log I + M ∗ I ∗ log I),
where P is the number of input feature maps, M is the number of output feature
maps, I is the number of elements in each input map. As, by design, usually the
number of feature maps is constant for each CNN architecture (yet significantly big-
ger than 1), and I represents the same number of square pixels as N , we can state
that O(N ∗ log(N) + N) ≤ O(M ∗ P ∗ I + P ∗ I log I + M ∗ I ∗ log I), giving us
the theoretic justification of better time efficiency of V A3V approach, if comparing
with CNN-based approaches (eDN, SalGAN, DeepGaze II, etc.)

3.3.2 GA-Based Evolutionary Tuning Process

The investigated V A3V system takes advantage from the illustrated analogy
by fitting in human-like conduct into the system through using the saliency detec-
tion process as the eye fixation mechanism. This adaptation is achieved through
GA-based evolutionary fine-tuning of various parameters, controlling different com-
putational blocs, impacting the three main computational levels of the system:

• namely, the saliency maps computation via WSC, N and wi parameters ad-
justment;

• the filtering process by the Gaussian blob-shape’s parameters’ regulation;

• and the final matching through the FT threshold adjustment.
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The choice of GA-based evolutionary process is motivated by contribution of a
quite large amount of interdependent parameters and the requirement of a reciprocal
tuning of these parameters regarding the involved processes. The real human gaze
depends on a big set of hardly formalized factors [Itti 07], such as: is it a free looking
task or a visual search for an exact object; what is the amount of given time; if exists
the a priori knowledge, etc.

According to the practical task needed to be solved by this algorithm, one of the
several sets of parameters should be chosen based on input data characteristics. Due
to this, the fact of considering the whole set of the involved parameters as a genome,
offers an appealing way of their optimization within the frame that privileges the
global effect of whole the set versus the individual impact of each of those parame-
ters. Taking into account the expected target (e.g. incorporation of human’s vision
skills), the fitness function is based on the previously described quality indicators
(see section 1.3) – 3 different AUC-based metrics, K ullback–Leibler divergence and
Normalized Scanpath Saliency, – as it has been established that these indicators
are not fully correlated between themselves, thus giving us an appealing possibility
to use a combined, ”integral” metric of model quality, as some kind of a sum (or
weighted sum) of all afore-mentioned metrics.

To do this, we need to define explicitly several concepts of such a metric:

• All components, used in such a sum, should be scaled in a comparable way. If
AUC-based metrics are scaled from 0 to 1, and the higher is the value – the
better is the model, the KL-divergence is controversial to them (the lower is
the indicator, the better is the model);

• The NSS indicator shows similar to AUC-based metrics dynamic. As it is
outlined in [Bylinskii 16], NSS might be the most important metric, it can be
wise not to decrease its importance, and allow it to have the scaling up to
ideal score of ≈ 3.2;

• The really bad, unfitting values of indicators (namely, if the model performs
worse, than chance) should be additionally penalized in order not to propagate
bad parameter sets in generations due to compensation by other good results.

According to these concepts, we can formulate an ”integral” metric of quality
which could also be defined as a fitness function of a genetic model, as given by
equations (3.20)–(3.22), where N represents a number of images in dataset, used for
tuning, and i is iterator over all these images.
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Fit =
N∑
i=1

(AJ(i) + AUCBorji(i) + sAUC(i) +NSS(i) +KL(i)) (3.20)

AJ(i) =

AUCJudd(i) if AUCJudd(i) > 0.5

AUCJudd(i)− 1 otherwise
(3.21)

KL(i) = 1−KLdiv(i), (3.22)

As shown in Equation 3.21, AJ(i) is one of the penalty achieving components
– if AUCJudd(i) represents poor performance, namely being lower than 0.5, which
means performing worse than chance, – the overall fitness function is penalized by
1 (for each poorly processed image). Another penalty component is imposed on
divergence KL(i): if real divergence is higher, than 1, – the fitness function is also
penalized due to a negative value.

In case of AUCBorji(i) and sAUC(i) metrics, they do not have exact ”chance”
threshold due to their ”randomized” nature by definition. And NSS metric has a
possibility to be negative by design in case of poor performance, so that we do not
need to apply additional constraints or penalization components here.

The whole tuning algorithm in this case represents an usual genetic approach.
A chromosome represents set of parameters, which define one V A3V model, and is
shown in Table 3.1.

As all items in the chromosome are either integer or decimal, it is not possible to
apply standard GA-procedures of mutation and crossover in their initial, binary form
[Holland 92]. Due to this we must use weaker definition of these two procedures,
where chromosome mutation is defined as random decimal reinitialization of one
of the chromosome parameters, and chromosomes’ crossover is an exchange of
several parameters, chosen randomly, in whole.

3.3.3 Tuning Viability Regarding Likeness with Human-like
Vision

First question about the tuning process regards the general possibility of such
a process to tune a randomly initialized V A3V model to represent a human-like
vision. For this, by referring to the dual analogy discussed in subsection 2.3.1, the
so-called visual attention map (resulting from the investigated system) is compared
against predicted eye fixation maps obtained from the best eye fixation predic-
tion algorithms, as referenced in subsection 1.2.2: namely SalGAN, eDN, BMS and
RARE2012 (DSCLRCN algorithm authors did not disclose any implementation to
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Table 3.1: Chromosome, consisiting of V A3V model parameters tuned by genetic
approach

Parameter Definition Possible value

IRC
image resize coefficient

for the initial scaling of image
decimal,

from 0 to 1

N number of local saliency maps calculated integer,
from 1 to 4

WSCi, (i ∈ [1..N ])

window size coefficients, which
define the p-parameter of

each local saliency map and, therefore,
the scale and grain of local saliency

N decimals,
from 0 to 1 each

wi, (i ∈ [1..N ]) weighted sum coefficients which define
the local & global saliency maps’ fusion

N decimals,
from 0 to 1 each

A
amplitude of 2-dimensional
Gaussian blob intensity

integer,
from 1 to 255

Nar
scale factor, ”narrowness”

of 2-dimensional Gaussian blob
decimal,

from 0 to +inf

wG Gauss map wight factor in weighted fusion decimal,
from 0 to 1

FT final threshold integer,
from 0 to 255

be used in arbitrary assessment).
In fact, the assessment protocol is based on the following reasoning: ifm as

stated before, the above-mentioned state-of-the-art algorithms are the best ones in
modeling the aforementioned human’s visual skill (e.g. the eye fixation mechanism),
then the evaluation of the investigated system versus those best algorithms will
reflect its quality regarding the eye fixation mechanism and thus will reveal the
likeness of the V A3V system and the human-like vision.

Pursuing the same reasoning, this evaluation will also reflect the tuning pro-
cess’ viability. Such test has been done by using both MIT1003 and TORONTO
benchmark databases relating the eye fixation modeling. while we have to say that
there are several other available benchmark databases (as: FiWI dataset dedicated
to webpage saliency presented in [Shen 14] or EyeCrowd dataset devoted to face
recognition presented in [Jiang 14]), our choice of using the two above-mentioned
has been motivated by the fact that they include “ground truth” eye fixation maps
obtained experimentally by involving humans and thus truly representative of eye
fixation mechanism. The evaluation has been performed through all 5 indicators
previously presented. The obtained results are summarized and presented as scores
in Table 3.2.

Examples of visual attention maps carried out by V A3V system and predicted
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Table 3.2: Comparison with state-of-art algorithms on MIT1003 and Toronto
datasets

Algorithm Dataset AUCJ AUCB KL NSS sAUC Fit

eDN

MIT1003

0.8501 0.7685 0.6681 1.2969 0.5834 N/A
BMS 0.7806 0.6103 0.6261 1.2524 0.5837 N/A

RARE2012 0.7845 0.6171 0.6052 1.3215 0.5792 N/A
SalGAN 0.8711 0.6949 0.3741 2.1931 0.6605 N/A
V A3V 0.8322 0.7445 0.6389 1.2021 0.7658 3.4696
eDN

TORONTO

0.8541 0.6291 0.4808 1.581 0.6999 N/A
BMS 0.7461 0.5368 0.4201 2.1914 0.6366 N/A

RARE2012 0.7688 0.5381 0.3910 2.2785 0.6255 N/A
SalGAN 0.8632 0.6123 0.3692 2.341 0.6954 N/A
V A3V 0.8372 0.6375 0.4504 1.6567 0.6448 4.3255

eye fixation maps achieved by the above-mentioned leading algorithms are provided
by Figure 3.3. The first and last columns in Figure 3.3 give input stimulus (e.g.
images) and the corresponding grand true (e.g. experimental) eye-fixation maps,
respectively.

The Table 3.2 highlights several appealing features. The first one relates the fact
that V A3V scores are comparable with those of the above-mentioned state-of-art
best algorithms. The second remark goes to the fact that V A3V scores are even
higher than those of two among the four algorithms, ranking it clearly as comparable
to the ”leading” algorithms (e.g. eDN and SalGAN). However, we need to note that
the prevailing position within this group of leading algorithms is a result of the
GA-based tuning of V A3V system’s parameters, reinforcing the importance of such
built-in evolutionary tuning mechanism.

Moreover, the closeness of scores to those of the best algorithms’ performances,
visibly, points up the emergence of an eye-fixation-like behaviour of the investigated
V A3V system by taking advantage from such evolutionary tuning. On the other
hand, the advantage of the eDN and SalGAN scores against those measured for
V A3V system could partly be explained by the fact that in contrast to V A3V

system, these algorithms have been designed and exploited exactly as eye fixation
estimation approaches, where such an estimation is the main goal.
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Figure 3.3: Examples of visual attention maps carried out by V A3V system (b)
and predicted eye-fixation maps achieved by eDN (c), BMS (d) and RARE2012 (e).
Columns ”a” and ”f” give input stimulus and the corresponding grand true (e.g.
experimental) eye-fixation maps, respectively

3.3.4 Generalization ability

Let us consider 60% of the MIT1003 benchmark database (e.g. 600 images
selected randomly) as learning set which is used for tuning the system’s parameters
– this means that at each iteration of GA tuning we apply V A3V model with the
set of parameters of each chromosome to all and every image in the learning set, to
be measured after by Fit integral evaluation indicator.

The learning phase is considered as completed, if the generation-best fitness
function Fit of any chromosome either remains constant or decreases during several
generations. The rest of the above-mentioned database’s images (e.g. 403 images),
joining together with those of TORONTO benchmark database (e.g. 120 images)
have set up the testing dataset, collecting 523 20 images. The experiment has
been repeated several times and the three best sets of tuned parameters have been
retained: labeled ”Run-1”, ”Run-2” and ”Run-3”, respectively.

The fitness function’s evolution during the training (tuning) phase is illustrated
by Figure 3.4, and Table 3.3 summarizes results both for training and for testing
phases showing several parameters from ”winning” chromosomes – WSC parame-
ters, wG weights, A and Nar parameters of Gaussian blobs, FT adaptive thresholds,
– along with resulting assessment measures: fitness functions Fit and the usual in-
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Table 3.3: Summary of the obtained results for tuning and testing phases

Run Chromosome1 Dataset2 Fit AUCJ AUCB KL NSS sAUC

Run-1 (0.21, 0.22; 0.49;
245; 2.44; 38)

T-600 3.5653 0.8402 0.6549 0.6372 1.1747 0.5346
V-523 N/A 0.8358 0.6429 0.5858 1.4126 0.5869

Run-2 (0.27; 0.49;
242; 1.77; 54)

T-600 3.5577 0.8312 0.6629 0.6675 1.1263 0.6074
V-523 N/A 0.8319 0.6519 0.6147 1.2354 0.6038

Run-3 (0.18; 0.49;
213; 2.20; 50)

T-600 3.4074 0.8373 0.6486 0.6636 1.046 0.5414
V-523 N/A 0.8342 0.6377 0.6107 1.3589 0.6569

1 Each chromosome is represented as a set of parameters in the following
order: (WSC; wG; A; Nar; FT ).
2 ”T-600” represents the tuning dataset, consisting of 600 MIT1003 dataset
images, and ”V-523” represents the testing (or validation) dataset, consisting of other
403 + 120 images of MIT1003 and Toronto datasets.

dicators (AUCJ , AUCB, KL, NSS and sAUC), respectively.
Confirming the concluding statements of the previously-described experimenta-

tions regarding the scores’ magnitudes values (in term of their closeness to those
of the state-of-art best algorithms’ ones) and regarding the emergence of an eye
fixation-like behavior of the investigated model, the first remark about this second
experimental assessment regards validation of the evolutionary tuning process effi-
ciency itself. However, it is essential to note the extent of the obtained scores in
testing phase, being reminiscent that the involved dataset of images doesn’t include
any pattern (image) from training dataset.

This means that carried out visual attention maps keep a same degree of likeness
to ground-true eye fixation maps that had been obtained for the learning dataset,
and thus confirming the generalization ability of the investigated system.

3.3.5 GA-based Tuning Efficiency Assessment

For this, a subtle selection of 60 images from the MIT1003 benchmark database
has been performed, creating a severely reduced new training dataset, containing
10% of the learning dataset used in previous experimentation. The selection crite-
ria have been based on representativeness of the selected images regarding diver-
sity of landscapes, colors’ assortment and attractive objects’ variety (e.g. objects
which have focused in actual fact the humans’ attention through the corresponding
ground-true eye fixation maps). This new reduced dataset has been used for tuning
the system’s parameters. The learning phase is considered as completed if the high-
est fitness function either remains constant or decreases during three consecutive
generations.

The examples of these 60 images are shown in Figure 3.5, where they are divided
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Figure 3.4: Fitness function’s evolution during the tuning phase. The tuning dataset
includes 600 images randomly selected from MIT1003 benchmark database

into four levels of subjective processing difficulty – with ”Low” labelling the lowest
level and ”Very-High” the most difficult one, – and into several levels of image
complexity – with ”One” attractive object, with ”Two”, and with ”More” than two.
Also shown are corresponding ground true eye fixation maps, attractive objects and
corresponding areas.

In the same way, a testing dataset, including also 60 images, has been built fol-
lowing the above-mentioned policy: i.e. including images with increasing ”processing
difficulty” and ”image’s complexity”.

By ”processing-difficulty”, we mean the difficulty to predict the area (or object),
which has mostly attracted human’s eye fixation. For example, in the image rep-
resenting a ”red bird”, the so-called red bird has been the unique attractive item
(simple case with a low ambiguity concerning the attractive item). While concern-
ing the image of the orange car, the attractive item has not been the ”car” but its
”license plate”, so the processing difficulty depends on several non-formalized factors
and is assessed by researchers in relative categories.

By ”image’s complexity”, we mean the density of salient visual information of
the image. In fact, an image containing only one salient object is considered simpler
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Figure 3.5: Examples of specifically selected images, representative of processing
difficulty, of T-60 image subset of MIT1003 dataset

regarding the above-mentioned criterion that an image including several potentially
salient objects which may attract (or not attract) the human’s visual attention.

Not only the ”cherry picked” testing dataset has been used; three testing datasets
have been considered. The first one, containing the same amount of images as the
learning dataset (e.g. also 60 images) has been constructed following the same policy
used for building the learning dataset (e.g. a specific selection of 60 additional repre-
sentative images from MIT1003 benchmark database). The TORONTO benchmark
database has been considered as the second one.

Finally, the previously used testing database (e.g. the testing dataset collect-
ing 523 images) has been considered as third testing dataset. In the same way,
the three best sets of tuned parameters have been retained and labeled: ”Run-4”,
”Run-5” and ”Run-6”, respectively. The Figure 3.6 illustrates the fitness function’s
evolution during the training (tuning) phase, including the three updating cycles,
and Table 3.4 summarizes results as well for training as for testing phases, showing
chromosome parameters values, fitness function and all other indicators.

Here also, regarding the closeness to state-of-art best algorithms’ scores and re-
garding the emergence of an eye fixation-like behavior of the investigated model,
the obtained scores confirm the concluding admissions of the previous experimen-



68 3.3. V A3V MODEL

Table 3.4: Summary of the obtained results for tuning phase performed using the reduced
learning dataset and testing results on three testing datasets.

Run Chromosome Dataset1 Fit AUCJ AUCB KL NSS sAUC

Run-4 (0.2, 0.36; 0.49;
246; 2.06; 89)

T-60 3.5829 0.8305 0.6833 0.7062 1.1612 0.6142
V-60 N/A 0.7867 0.6460 0.6675 1.2415 0.6433
V-120 N/A 0.7875 0.6236 0.4522 1.3471 0.6224
V-523 N/A 0.8071 0.6536 0.5888 1.451 0.6211

Run-5 (0.17; 0.49;
167; 1.92; 60)

T-60 3.5687 0.8295 0.6814 0.7072 1.1874 0.5916
V-60 N/A 0.8089 0.6437 0.6438 1.1967 0.6182
V-120 N/A 0.8144 0.6178 0.4608 1.0282 0.6055
V-523 N/A 0.8205 0.6481 0.6005 1.2041 0.5976

Run-6 (0.2, 0.33; 0.45;
246; 2.06; 73)

T-60 3.4929 0.8409 0.6803 0.7267 1.0923 0.6281
V-60 N/A 0.8122 0.6450 0.6529 1.238 0.6308
V-120 N/A 0.8304 0.6235 0.4459 1.3188 0.6364
V-523 N/A 0.8307 0.6520 0.5904 1.3218 0.6732

1 ”T-60” represents the 60-image tuning dataset; ”V-60” represents the 60-image testing (or
validation) dataset;
”V-120” represents the TORONTO dataset, used for validation; ”V-523” represents the 403+120
images of MIT1003 and Toronto datasets.

tations. We should note the extent of the obtained scores in testing phase, being
reminiscent that the involved testing dataset has drastically been reduced, including
only 60 images, even though specifically selected. Thus, additionally to validating
once more the outstanding generalization ability of V A3V model, these results show
also quite excellent efficiency of the incorporated GA-based tuning strategy in spite
of the usage of the aforementioned considerably poorer tuning dataset.

3.3.6 Best Predictions as a Quasi-Saccade Model

As we call the map, resulting from V A3V model calculation, a VAM (visual
attention map), and argue that an adequate tuning of the panel of the involved
parameters may shove the behavior of the generic eye fixation mechanism towards
a ”human-like” gazing behavior, – one may also interpret the regions corresponding
to highest probabilities (i.e. highest values) of the resulted VAM as acting for
artificial eye fixation areas simulating a human-like artificial gazing. To extend this
interpretation, Let us define a ”high-probability point” as a point, located at position
HPPi within VAM, for which the value MVAM(HPPi) of the corresponding pixel
in the map is not lower, than at least N% of the highest value of the whole VAM,
as expressed in Equation 3.23, where ĤPP represents a subset of Ψ2 image pixels
(ĤPP ⊂ Ψ2) with each pixel being a ”high probability pixel”.
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Figure 3.6: Fitness function’s evolution during the tuning phase using the reduced
learning dataset, including 60 specifically selected images from MIT1003 benchmark
database.

∀X ∈ Ψ2, X ∈ ĤPP if MVAM(X) ≥ N
100 max

K∈Ψ2
MVAM(K) (3.23)

Let us define a ”high-probability region” (denoted as HPRk ⊆ ĤPP ): a semi-
linked area of high probability points, where each high probability point HPPi,
belonging to HPRk, has at least one neighbour HPPj (belonging to the same re-
gion), which is located within a neighborhood characterized by an Euclidean distance
lower, than a threshold, as shown in Equation 3.24.

d(HPPi, HPPj) ≤ d∗, ∀HPPi ∈ HPRk, ∃HPPj ∈ HPRk (i 6= j) (3.24)

Then for each region HPRj there should exist at least one point with highest
pixel intensity value, which we could call a ”representative point of j-th region”,
which we denote as Rj ∈ HPRj, as defined in Equation 3.25. This point admits the
highest human gaze catch predicted probability over all points of this region.

MVAM(Rj) ≥MVAM(HPPi), ∀HPPi ∈ HPRj (3.25)
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In other words, all high probability points, located at an Euclidean distance
farther, than d∗ from Rj, will belong to another region HPRk. In this case an
iterative algorithm of finding all the ”representative” points of the map can be
defined, which in general would be very similar to an iterative algorithm of finding
local maximas of a function defined on two variables.

Algorithm 1 ”Representative” points search
1: MaxIntensity← maxK∈Ψ2 MVAM(K)
2: X← all pixels, whereMVAM(X) ≥ N×MaxIntensity

100
3: OrderedX← SortByIntensityDesc(X)
4: RepPoints← ∅
5: OtherPoints← ∅
6: for each x ∈ OrderedX do
7: if x ∈ OtherPoints then continue
8: RepPoints← x
9: OtherPoints← any ywhere d(x, y) ≤ d∗

If Euclidean distance and its threshold d∗ are measured in terms of number
of pixels, then it could be expressed regarding the image size n × m in pixels as
d∗ = CHPP

√
n×m, where CHPP represents a tunable coefficient invariant of image

size.
According to this extension of a human-like vision model interpretation, we could

argue that the representative points, showing the ”best prediction” points, may
imitate some kind of saccadic fixation positions of the human eye, as these points
represent not only most salient pixels, but the salient regions – if an eye stops its gaze
on such a point, than due to its central-periferic antagonism it could catch the small
region around this point and than make another saccade to another ”representative”
point in another part of the image.

Continuing with such an interpretation, assuming that any Hamiltonian path in a
complete graph, drawn over all representative points in VAM can estimate a saccadic
dynamic (i.e. movements) of a generic eye fixation behavior, we argue that within
the above-mentioned frame, the appropriate tuning of the involved parameters will
shove the model’s behavior toward human-like eye fixation behavior, modeling the
humans’ way of gazing the surrounding landscape. In other words, the presented
model could approach the eye fixation dynamics of human’s visual gazing. In fact,
the human’s gazing can produce up to 50 saccadic movements (i.e. eye fixations)
per second, while mostly averaging to 4-8 per second [Hamm 10].
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3.4 Combining the Approaches

3.4.1 Top-Down Recognition-based Model

As we have already discussed a theoretical basis of the top-down attention model
in section 2.4, and the informed choice of approaches to be used has already been
outlined in subsection 1.4.1, this subsection considers only two other possible recog-
nition approaches – the fine keypoint-based recognition, and pattern-based recogni-
tion.

3.4.1.1 Fine-grain Recognition: Confidence Levels

The keypoint-based algorithms are not formally designed to produce any confi-
dence level; yet, the matching between given inputs and stored images is based on
Euclidean distance between descriptor vectors (for decimal-based descriptor algo-
rithms, as SURF) or Hamming distance between descriptor vectors (for binary-based
descriptor algorithms, as BRISK).

Also, there is a complimentary matching algorithm, which produces the decision
– whether keypoints with descriptors, found in input image, really represent the
image from memory; it is a de-facto standard in the computer vision domain to apply
KNN-based matcher [Lowe 04]. It applies to all the descriptor vectors’ distances,
and (under additional constraints) if the best match gives distance lower, than a
fraction of next best distance, then this match is found to be true. A scheme in
Figure 3.7 depicts the order of work for this module. Here input image is processed
by the descriptor extraction algorithm (SURF or BRISK), as well as each existing
image in the “library” (in our case this is a storage of already learnt objects, based
on the visual sketchpad of semantic network). Then the sets of descriptors are
matched between themselves; if any set from library is classified as “matching” with
any input subset of descriptors, this subset is interpreted as “recognized”.

While in subsubsection 1.4.1.1 we stated, that efficiency-wise the BRISK algo-
rithm should be used, we should also pose the question of implementation. Existing
open source implementations of BRISK and SURF (OpenCV library, [Bradski 00])
give an exhausting answer: licensed SURF implementation produces descriptors
much faster, than BRISK. In our experiments on 8-core CPU SURF implementa-
tion used multithreaded calculation, while BRISK implementation used only single
CPU, resulting with SURF having almost two times faster computation of descrip-
tors than BRISK for the same set 50 images from “Things-50” database with almost
any set of parameters. These results provide us an ambiguity in interpretation, jus-
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Figure 3.7: An outline of the keypoint-based recognition module

tifying as well usage of SURF if we plan to have faster implementation.
For the rest of this work we will stick with our first choice, BRISK, based on the

idea, that better and faster implementations of this algorithm could arrive in future.
The matching algorithm is based on initial notions from [Lowe 04], as well as

[Ozuysal 10], and some parameters previously used by [Ramík 12] and [Hassan 15].
The KNN-based matcher takes each descriptor from input, produces Euclidean or
Hamming distances for this descriptor and all library image descriptors; if the rel-
ative distance of best-matching pair is lower, than the distance of the second-best
matching pair multiplied by threshold ratio D, this pair is considered as “probably
matching”. After this stage, if there is at least N “probably matching” pairs of de-
scriptors, the corresponding keypoints from input image are compared against the
keypoints of the library image in order to find homology with RANSAC algorithm
[Chum 03]. If the homology exists, the object is considered as recognized.

As the distances between descriptors are multiple relative values, we can not use
them to derive the confidence level of recognition; the only real confidence-relative
characteristic is the number of matched keypoints. The lowest level of matched
keypoints for the recognized object is N , the highest level is 128 (the total number of
keypoints, produced by both descriptor extraction algorithms by default). Also the
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confidence level depends on the ratio threshold D, because the higher is threshold,
the lower should be the confidence. We made several simulations with “Things-
50” database in order to find the highest-achieved absolute numbers in both true
positive and false positive classifications, depending on the thresholds N and D%; if
treating TPR as a confidence level proxy, we can derive an equation for it, as shown
in Equation 3.26, by extrapolating it as Richards’ curve. Here KP represents the
real number of matched keypoints.

CLBRISK = 1
D

1−D + e−D(KP−N) (3.26)

3.4.1.2 Pattern-based Recognition: Parameters to Use

The Viola-Jones framework acts as a very open platform for experimenting with
parameters. A simple GA-based training on the Faces-400, – dataset, which is
a subset of MIT1003 dataset, containing faces, – with fitness function based on
Precision/Recall in Wolf interpretation, gives us pretty good results as shown in
Table 3.5. Here parameter sets are shown in form of (Scale; Minimal region size;
Minimal Neighbours), where scale depicts the resizing allowance for the algorithm,
minimal region size is given in form of a fraction of the initial image size (e.g.,
′′0.05 × 0.05′′ for 1024 × 768 image is equal to 51 × 38), and minimal neighbours
value stands for the level of how many neighbouring true detections in the ”almost”
same region should be found in order to declare this region as true detection.

Table 3.5: Example sets of parameters of
Viola-Jones framework, and their perfor-
mance on Faces-400 dataset

Parameters PrWolf RecWolf

1.2-0.05x0.05-4 0.86 0.53
1.2-0.08x0.08-6 0.715 0.648
1.2-0.1x0.1-8 0.632 0.71

After GA Training 1 0.851 0.62
1 The best GA-trained results are found to
be (1.4-0.06x0.06-4)

Also Figure 3.8 shows several examples from our quasi-real-world simulations,
as how the recognition results are depicted.
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Figure 3.8: Examples of recognition in quasi-real-world simulations: previously
known objects and human faces

3.4.2 Short-Term Memory and Decision Model

In section 2.5 we have already outlined a schema for memory and decision mod-
ule, based on Baddeley-Hitch schema. This section contributes to enhancement of
this analogy by using some existing meta-heuristics for each part of this schema.

As subsection 1.4.2 has already depicted the usability of Wu-Palmer distance
for lexical comparison between different (similar) concepts, there is not much more
to discuss in terms of implementation. While it is an important part, it is more
an auxiliary unit for the central executive – as it provides the quantitative means
for comparison of otherly non-comparable concepts; this means, that “Phonological
Loop” can be presented as WordNet usage in terms of this simple semantic analysis.

3.4.2.1 Visual Sketchpad: knowledge storage

Let us investigate the usability of models and mechanisms, used in the field
of knowledge representation, in the context of this work. While we remember,
that STM conducts bidirectional connection with TD unit and its recognition part,
following premises can be found:

• Information, extracted from visual perception, will definitely be represented in
the form of an image or set of images, along with additional meta-information,
derived by recognition module;

• new knowledge, created autonomously “without teacher” (e.g., in recognition
module), can not be treated as 100% true – due to inexistence of a model,
which can transform the visual data into textual with 100% efficiency;

• an existing system of the knowledge, which are already gained, should have the
most general form, – due to the lack of initial context of tasks, which should
be done by the robot; inherently, one should assume a general context, until
the opposite is given.
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According to the given premises, we can hypothesize about usability of a semantic
network, with a small set of used general relations, as a basic construct of data
and knowledge storage working as a “visual sketchpad”. Upon such memory, more
specialized mechanisms could be applied.

The creation of a simple semantic memory, which would supply the data to the
fine-grain recognition algorithm, could be based on several assumptions:

1. An object can be learnt and remembered, if it is found by a segmentation
algorithm, and recognized by broad recognition CNN with confidence level of
one of the recognition labels L higher, than a threshold CT (CL(L) ≥ CT );

2. If there is no object/concept with label L in the memory, – add it there, es-
tablishing a relation ”possibly seen with” with all the objects/concepts, found
in the same image, with weight 1. Remember also the confidence level;

3. If there exists an object/concept with such label in the memory, – add the
newly acquired image to the memory for the same object/concept, interpreting
this as another possible outer view of this object/concept (also updating the
relations – for all unmet relations the weight is penalized by coefficient of
WPT ).

The segmentation algorithm, mentioned in first assumption, can be chosen arbi-
trarily – e.g., Comaniciu’s Mean-Shift [Comaniciu 02] or Moreño’s Spherical Coordinates-
based algorithm [Moreno 11].

An example of simple semantic network in shown in Figure 3.9 – where an image
is processed to achieve three new nodes in the network, connected by relations of
“possibly seen with”.

3.4.2.2 Episodic Buffer: Growing Self-Organizing Maps

As the episodic buffer is not strictly defined to address an exact problem (this
is the domain of Central Executive), we can define this part of the memory model
as the one which creates a gist-like information about each input image in the
overall sequence, while learning them and finding hidden similarities in order to give
additional info to the Central Executive about the change of environment.

An ideal candidate for such a work is a Growing Self-Organized Map (also known
as Kohonen map), which can produce gist-like comparison of sequence images on
the fly. Thus it can be justified as a mechanism of episodic buffer which is able
to answer the question ”Is the situation around the robot similar to the one of the
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Figure 3.9: An example of a simple semantic network

previous situations?”, and by this impose the status-quo where the visual attention
mechanism general results should be comparable to those, acquired previously.

A Self-Organized Map (SOM) is a type of artificial neural network that is trained
using unsupervised learning to produce a low-dimensional discretized representation
of the input space of the training samples, and is therefore a method to do dimen-
sionality reduction.

It has been used countless times in many different domains, being one of the
soft-computing meta-heuristics de facto. E.g., it has been used in image processing
for segmentation [Haring 94] or image compression [Khan 14]; yet, applying similar
conditions, we try to use as a clusterisation tool over the image input.

A growing self-organizing map (GSOM) is a growing version of SOM. The GSOM
was developed to address the issue of identifying a suitable map size in the SOM.
It starts with a minimal number of nodes (usually 4) and grows new nodes on the
boundary based on a heuristic. By using the value called Spread Factor (SF), the
data analyst has the ability to control the growth of the GSOM.

All the starting nodes of the GSOM are boundary nodes, i.e. each node has the
freedom to grow in its own direction at the beginning. New Nodes are grown from
the boundary nodes. Once a node is selected for growing all its free neighbouring
positions will be grown new nodes. In GSOM, input vectors are organized into
categories depending on their similarity to each other. For information reduction,
the image or data is broken down into smaller vectors for use as input. For each
input vector presented, the Euclidean distance to all the output nodes are computed.
The weights of the node with the minimum distance, along with its neighbouring
nodes are adjusted. This ensures that the output of these nodes is slightly enhanced.
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This process is repeated until some criterion for termination is reached.
In general, the functioning of a GSOM can be outlined as follows (as adopted

from [Alahakoon 00]):

• Initialisation phase: Initialize the weight vectors of the starting nodes (usu-
ally four) with random numbers between 0 and 1; calculate the growth thresh-
old (GT ) for the given data set of dimension D according to the spread factor
SF using the formula GT = −D × lnSF );

• Growing phase: Start of iteration: present the input data to the network.

1. Determine the weight vector that is closest to the input vector mapped
to the current feature map (winner), using Euclidean distance (step, sim-
ilar to the SOM). This step can be summarized as: find q′ such that
|v − wq′| ≤ |v − wq| ∀q ∈ N where v, w are the input and weight vectors
respectively, q is the position vector for nodes and N is the set of natural
numbers.

2. The weight vector adaptation is applied only to the neighbourhood of
the winner and the winner itself. The neighbourhood is a set of neu-
rons around the winner, but in the GSOM the starting neighbourhood
selected for weight adaptation is smaller compared to the SOM (localized
weight adaptation). The amount of adaptation (learning rate) is also re-
duced exponentially over the iterations. Even within the neighbourhood,
weights that are closer to the winner are adapted more than those further
away. The weight adaptation can be described by Equation 3.27, where
the Learning Rate LR(k), k ∈ N is a sequence of positive parameters con-
verging to zero as k →∞. wj(k), wj(k+ 1) are the weight vectors of the
node j before and after the adaptation, and Nk+1 is the neighbourhood
of the winning neuron at the (k + 1)-th iteration.

wj(k + 1) =

wj(k) if j /∈ Nk+1

wj(k) + LR(k)× (xk − wj(k)) if j ∈ Nk+1

(3.27)

The decreasing value of LR(k) in the GSOM depends on the number of
nodes existing in the map at time k.

3. Increase the error value TEj of the winning neuron j (error value is the
difference between the input vector and the weight vectors).
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4. When TEi > GT (where TEi is the total error of node i and GT is
the growth threshold), grow nodes if i is a boundary node, or distribute
weights to neighbours if i is a non-boundary node.

5. Initialize the new node weight vectors to match the neighbouring node
weights, initialize the learning rate LR to its starting value.

6. Repeat steps 1–5 until all inputs have been presented and node growth
is reduced to a minimum level.

• Smoothing phase: Reduce learning rate and fix a small starting neighbour-
hood; find winner and adapt the weights of the winner and neighbours in the
same way as in growing phase.

In order to use GSOM for image processing, we need to establish both the ar-
chitecture used, as well as several parameters.

Assuming we take the input image of n×m size given in RGB format, we need
to transform it into a vector of real values, usable as an input for SOM. One of
the most simple approaches, usable for this, is to resize the image by several times,
divide the resulting image into n′ ×m′ tiles, transform it into YCC color space and
find the average value of luminance intensity for each tile. These intensity values,
after normalization, if interpreted as a 1-dimensional vector, can be used as input
vector for SOM where SOM has exactly n′ ×m′ neurons at the input layer.

Another approach suggests the usage of additional algorithms for best informa-
tion reduction: principal component analysis, Gabor filtering, etc. We apply the
so-called “perceptual hash” approach [Zauner 10], which implies that the resulting
hash for similar images should be similar. This approach generally speaking rep-
resents almost the same idea of reducing the information positionally; Figure 3.10
represents several comparisons of perceptual hash.

Usually the comparison between perceptual hashes is done as calculation of Ham-
ming distances, giving distance 3 for the left column, 10 for the center and 24 for the
right column. On the other hand, a threshold for the decision whether the images
are similar or not, is not provided and can be parametrized by each user of the
algorithm.

Our threshold here is the usage of GSOM with the perceptual hash input (neigh-
bourhood radius = 3, number of input nodes = 128, maximum number of output
nodes = 100); the results on the simulation data correlate with mean square error
comparison metric.
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Figure 3.10: Some images from our datasets with corresponding perceptual hashes.
Left column shows two almost identical images, center column represents two images
with one different region in center, and right column provides two images which show
different environment yet in the same room

3.4.2.3 Central Executive: Decision Making

In order to describe a decision making module, we need to introduce a quanti-
tative measure which will be able to help us in this case.

Assume there exists a quantity of importance Iimg, given to the whole image, as
well as importance Ij for each object j, found (or probably found) on this image.
Comparison of importance between objects, found in the same image, can outline
difference in relative saliency for these objects, and thus let the decision module
apply this information to the resulting mix of attention maps.

Importance of different types of objects definitely changes for different tasks,
thus quasi-applying third sub-direction of ”top-down” visual attention. Assuming
the tasks:

• Generic task: ”free visual search”, look for humans or texts in order to change
the task.

I(′′HumanFace′′) = 1, I(′′Text′′) = 1, I(Other) = 0 (3.28)

• Search task: ”look for a specific object (or, maybe, something similar)”, as
shown in Equation 3.29.
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I(Obj) =

1 if Obj ∈
{
SpecObj

}
Imp ∗ wup(SpecObj, Obj) ∗ CL(Obj) if Obj /∈

{
SpecObj

}
(3.29)

Here wup(SpecObj, Obj) represents Wu-Palmer similarity of objects over Word-
Net ontology (”Language analysis”), and CL(Obj) represents confidence level
of recognition, as given by the recognition module. Imp can be defined as an
importance decrease coefficient and be applied if needed. Default value for it
should be Imp = 1, if we allow other objects to be seen as possibly important.
If we imply strict conditions of search, then Imp should be 0.

• Social task: ”Interact with humans”, as an inter-modification of generic and
search tasks.

I(Obj) =

1 if Obj ∈
{′′
HumanFace′′

}
Imp ∗ wup(SpecObj, Obj) ∗ CL(Obj) if Obj /∈

{′′
HumanFace′′

}
(3.30)

Here we assume that there is a possibility, if a part of human body is recognized
(e.g., elbow), there might be human face nearby, therefore such an object might
be important.

Another point of view is the overall image’s importance level Iimg(k), given by
episodic buffer: whether the k-th given input image represents high level of similarity
to k−1-th input image, the importance of this image should diminish: the robot has
already seen all this, and there probably is nothing new in the visual field. In this
case any change of visual scene would provide surge of image’s importance; assuming
jk as winning neuron at iteration k, and jk−1 as winning neuron at iteration k − 1,
the importance of input image I(k) is as given by Equation 3.31.

Iimg(k) =

1 if jk /∈ Nk−1 or (k = 0)

ImpK ∗ Iimg(k − 1) if j ∈ Nk−1

(3.31)

Here ImpK represents diminishing coefficient of ”curiosity drop”, – the lower it
is, the faster will diminish the importance of similar environment.

Thus we can formulate a top-down visual attention map (MTD(k)) for image
k, as given in Equation 3.32, where MTDI(k) represents ”map of importance” – a
heatmap, close to saliency map in its idea (as already defined in the scope of this
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work in section 1.3), and defined for each pixel x as importance level of the object
Obj(x), if the pixel x is a part of representation of the object Obj(x). If there is no
object found around pixel x, than Obj(x) = ∅, and I(Obj(x)) = I(∅) = 0.

MTDI(k, x) = I(Obj(x)) (3.32)
MTD(k) = Iimg(k) ∗MTDI(k) (3.33)

Thus, in the output of the whole top-down part of system, processing the k-th
image, there will be:

• Map of importance, MTD(k)

• Set of n objects, found at this image,
{
Objk1, . . . , Objkn

}
• Set of confidence levels of recognition of these objects,

{
CL(Objk1), . . . , CL(Objkn)

}
• Overall importance estimation of this image, I(k)

Here only first part, map of importance, will be used by default by the visual
attention model in order to produce the combined visual attention map as a fusion
of bottom-up saliency map and top-down importance map.

Other parts can be given to other reasoning modules of bigger robot actuating
scheme, in order for it to react.

3.4.3 Assembling the Modules Together

Let us redefine the more detailed scheme of the whole system, as shown in Fig-
ure 3.11.

To wrap up the theoretical discussion of the whole combined model, we need to
outline the algorithm of its work:

1. Input image k is given to the bottom-up module (V A3V model), which pro-
duces low-level attention map MVAM(k), along with the map of representative
points.

2. The task and semantic memory are analysed by WordNet & Central Executive:
whether there are specific types of objects, for which the importance would
be non-zero? If so, which objects, already existing in memory, would produce
such importance?
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Figure 3.11: An extended human-like visual attention model, combining both at-
tention directions: detailed vision, based on techniques choices

3. Input image k is given to the recognition module, where BRISK algorithm
tries to find the possibly-important objects in it. For each of n1 found objects
– produce confidence levels, CLBRISK(Objn), n ∈ (1, ..n1)

4. Pattern-based algorithms search for special objects – human faces and texts.
For each of n2 found pattern-based objects – produce confidence levels, CLPAT (Objn), n ∈
(1, ..n2)

5. If steps 3 and 4 did not give any result (n1 = n2 = 0), apply broad recognition
in order to produce top-5 assumptions about visual scene (n3 = 5, and the
confidence levels are given by the CNN algorithm itself CLCNN(Objn), n ∈
(1, ..n3)).

6. If confidence level, produced in step 5, is lower than a threshold CT (CT >

maxn∈(1..n3)(CLCNN(Objn))), apply an image segmentation algorithm and try
to recognize the biggest object found via step 5 (input changes from the whole
image to the salient region with biggest area; the algorithms of detecting salient
regions can be found in [Ramík 12]).

7. Input image is given to the memory module, where it is analysed by episodic
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memory (GSOM), which produces image importance estimation Iimg(k).

8. If Iimg(k) = 1, and steps 5–6 produced any object with a label, which confi-
dence level CL was higher than CT , add this object to the visual memory.

9. Produce MTD(k) by algorithm, given in subsubsection 3.4.2.3, as an output of
TD and decision making modules.

10. Produce the final, combined visual attention map M(k), based on following
(where J represents all-ones matrix of the same size, as I(k), and � represents
the Hadamard product, or element-wise product of the matrices):

M(k) = I(k)�MTD(k) + (J − I(k))�MV AM(k) (3.34)

3.5 Conclusion

While the presented approach was described in Chapter 2 in general, this chapter
is dedicated to detailed view on its elements, such as:

• A low level visual attention model is proposed, benefiting from the visual
saliency as an implementation of several psychoneurological concepts. It has
the capacity of human gaze prediction on the level, comparable to the results
of state-of-art algorithms, yet being less time complex ( O(N ∗ log(N) +N) ≤
O(M ∗P ∗I+P ∗I log I+M ∗I ∗log I), which implies at least 50% higher speed
of processing if correctly implemented). It has been inspired by existing works
studying the way human visually perceives his surroundings. In this context
an approach, which is based on previous works and extends them, is suggested.
This approach takes advantage of using the previously observed phenomena
in human neurology, such as centred bias or center-surround antagonism. The
algorithm has low complexity and can be run in real-time on contemporary
processors, if implemented correctly. Moreover, it exhibits robustness to diffi-
cult real-world light conditions due to its inheritance from previous algorithm,
invariant to light changes;

• The aforementioned low level model also shows a certain degree of flexibility
by being able to be tuned for different input image types via genetic algo-
rithm, also representing ability for generalization, which have been verified
by quantitative evaluation over subsets of benchmark datasets MIT1003 and
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TORONTO. The results show the quality of eye fixation prediction compara-
ble to the best state-of-art algorithms, which allows us to extend the ”human-
likeness” interpretation into estimation of quasi-saccades;

• The presented model is the key part of the proposed Visual Attention Com-
bined Model, which is also detailed in this chapter. Its results can be treated
both as solutions themselves in the field of eye fixation problem (in any and
each of its interpretations), and as one of the steps in modelling human visual
attention on a higher level;

• The rest of the combined approach is described as a set of object recognition
techniques, taken in ensemble for improved efficiency, as well as the moderating
Decision And Memory Module which explores the means of the combination
of approaches.

In future the low-level approach could evolve in several ways. As there exists a
trend into the third, ”neural network based” type of visual saliency models, one day
(mostly in long-term perspective) the proposed approach might be heavily modified
with the NN-based techniques (such as presented in [Liu 16] or [Pan 17]), if there is
a possibility to run such an algorithm on the embedded systems in real time.



4 | Validation and applications

4.1 Introduction

Chapters 2 and 3 present a theoretical basis of this research, showing several
aspects of a combined visual attention model, and approaches, usable as modules
in such a system. But the algorithms presented – either ours, or third-party given,
– are vastly different, and present themselves as standalone parts, it is inevitable to
make them work together in order to show a proof-of-concept implementation of the
whole model, working as a client-server system “mobile robotic platform”–“remote
high-performance computer”, as well as valorize and validate this model with several
real-world experiments, implementing some semi-autonomous behaviours based on
the visual attention.

Chapter 4 familiarizes the reader with the robots, used in the experiments, as
well as shows general information about our implementation of the model, with some
in-depth notes about several details concerning efficiency.

First part of the chapter, section 4.2, concerns general implementation of the
model, as well as some details concerning efficiency. Next part, section 4.3, concerns
a context of visual fire detection as a problem context, which is well-suited for
autonomous BU validation, both in simulation and in real world experimentations.
The section 4.4 is dedicated to several other real-world experiments focused on
validation of the whole combined attention model and its usability. The chapter is
then concluded with section 4.5.

4.2 Notes on System Implementation

As the priority is to explore usability of V A3V bottom-up vision model in con-
cern of robotic applications and real-time (or quasi-real-time) processing on both the
embedded CPUs and remote processing CPUs, this gives us a notion that we need to
explore, or at least describe, time complexity of this vision model and several practi-
cal advices for its usage. Another point is the difference of the robotic platforms used

85
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(as we will discuss more thoroughly in subsection 4.3.1 and subsection 4.4.1): while
Wifibot-M and NAO possess their own simple CPUs, their performance is seriously
outdated and not capable of running such a model in real-time, thus demanding a
remote computation architecture. On the other hand, Pepper robot’s CPU is much
more faster and, if using some pre-conditions, can run the ”bottom-up” part of the
extended model in quasi-real-time, while still asking for remote architecture in the
”top-down” part.

Here we try to show an approach to evaluate theoretical time efficiency of the
model’s implementation and the possible effect of practical advices.

The implementation of the investigated system has been done as a set of cross-
platform modules developed on Python language (version 2.7) and tested both on
Linux (Ubuntu 16.04 LTS) and Windows (version 10) platforms (on remote com-
puter), along with the robot Pepper embedded system (Gentoo Linux/OpenNAO
distribution). Following subsections describe the choices of techniques, made in
implementation, along with some time efficiency analysis.

4.2.1 Scaling the Input

Any notes on implementation of any algorithm cannot be full without notes
about its time efficiency. Current experimental implementation is done in Python
(with usage of Cython [Behnel 11]), and its time consumption is measured on Intel
Atom 1.6 GHz (non-parallel due to Python restrictions) + DDR3-1600 4 Gb RAM
system. It is worth noting, that further propagation of time efficiency is possible
via added parallelization and/or full code translation into faster languages like C.

The primary impact on time consumption is given by the size of processed image,
secondary – by used parameters in different parts of the model. We can estimate
time complexity for different algorithmic parts of model, starting with the ”heaviest”
one: model part where saliency map is calculated.

To further decrease the absolute values of time consumption, according to [Ramík 12],
we can apply a resizing procedure: for each initial input image I with size of
N = n × m square pixels, pixels we define modified input image I ′ with size
N ′ = IRC2 × n×m square pixels, where width and height depend on initial width
and height through some image resize coefficient IRC.

If we use the modified image in the model instead of initial one, it can be stated
that IRC value in range (0..1) can decrease time consumption of the whole model.
However, the question of decrease in quality stays open; we can only operate on
the level of empirical observation of dependency of several efficiency and quality
metrics on the real value of this resize coefficient. Example is depicted in Figure 4.1
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Figure 4.1: Example diagrams with average robustness metrics – time consumption
and evaluation metrics AUC Judd, AUC Borji, KL Div – for different IRC values

(left diagram represents average evaluation results for model if used with a dataset
with average image size 1024x768 pixels – set of 60 images from MIT1003 dataset;
right diagram represents same average evaluation results of AUC Judd metric, as
given in different scale). As it shows some sort of hypothetical dependency between
decrease of evaluation metrics and image resize coefficient, we can only state that
there could exist a range of IRC values, which gains real-time speed for some exact
implementation and, depending on initial image size, can be used with just a slight
decreasing effect on some evaluation metrics and even slight increasing effect on
other metrics. Such ”ranges of plausibleness” of IRC values can be found for each
standard image size, and we provide our empirical notes of such notion in Table 4.1.

Table 4.1: Image Resize Coefficient (IRC) value ranges, depending on the robot
camera frame size (resolution)

Standard Resolution Name Size Recommended ranges
QVGA 320x240 0.5 — 1
VGA 640x480 0.4 — 0.75
SVGA 800x600 0.2 — 0.6
XGA 1024x768 0.15 — 0.45
SXGA 1280x1024 0.1 — 0.4
UXGA 1600x1200 0.1 — 0.3
FullHD 1920x1080 0.05 — 0.25
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4.3 Fire Detection Problem

The consideration of visual fire detection problem was inspired by the previous
collaborations between LISSI and LSPE (Le Laboratoire Sciences Pour l’Environnement)
of the University of Corsica.

A robot, equipped with V A3V model, could provide cooperative assistance of
firefighters. It is pertinent to note that the term of “cooperative assistance” is
a central issue in taxonomy of the investigated system versus other fire detection
approaches. In fact, the main objective in the most of the fire detection approaches
(including those mentioned in the present introductory section) is to detect the
presence of the fire. Often, this also means dealing with automated detection of the
fire, implicitly or explicitly excluding the human operator from the processing chain.

In contrast with those systems (and the related methods), linking the notion
of “firefighting assistance”, the proposed approach entrench the human operator
(namely firefighter) as pivotal ingredient associated to the designed system. This
means that although bestowing fire detection and flame-region extraction ability, the
proposed approach should also provide additional skills relating rescue of endangered
individuals, at-risk within the fire disaster. In other words, such a system has to
switch quite flexibly from fire’s region detection to humans’ detection, proffering
the user (i.e. firefighter) a flexible and cooperative assistance by improving the
user’s awareness about the environment devastated by the disaster. Within the
aforementioned point of view, we argue that proffering an artificial vision system
the skill of behaving closer to the operator that uses it (i.e. proffering it a human-
like conduct) is an appealing feature for raising the firefighter’s efficiency in rescuing
endangered people or in his (or her) firefighting action.

By acquiring some kind of artificial human-like visual attention shoving it (i.e.
the system) to focus either the fire’s region or the at-risk individuals, the resulted
system becomes able to adapt its conduct to the firefighter’s focal needs (or targets)
and cooperate with him (or her) in order to achieve an improved awareness of the
human operator regarding the hostile environment.

4.3.1 WiFiBot-M

Wifibot-M by Nexter Robotics1 is suited for those who want an affordable but
robust mobile platform for local surveillance. The base system is composed by a six
wheel drive waterproof (IP64) polycarbonate chassis, which are controllable through

1Nexter Group company filiale, more info can be found at company’s website: http://www.
nexter-group.fr/fr/filiales/nexter-robotics

http://www.nexter-group.fr/fr/filiales/nexter-robotics
http://www.nexter-group.fr/fr/filiales/nexter-robotics
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Wi-Fi. An example of the robot’s appearance is presented in Figure 4.22.

Figure 4.2: Sample photo of Wifibot-M 6-wheels mobile robotic platform

The chassis is composed by 3 parts linked with a 2 dimensional link. It is also
connectable with devices such as IP camera (MJPEG or MPEG) or any Ethernet
sensor; a liteStation2 from UBNT router is the main CPU that allows data transfer,
and a 5Ghz router can be added.

The instance of this robot, used for experiments in this work, is equipped with
an analogue PTZ (Pan-Tilt-Zoom, three degrees of freedom) camera (WONWOO
WCM-101), attached to chassis through AXIS M7001 video encoder. The robot can
be controlled through Wi-Fi or Ethernet network connection.

As this particular model is definitely old (first appearance in the market was
found not after 2010), it is provided with relatively slow and feeble in resources
CPU; such a robot should be controlled by a remote computer, providing “external
brains”. In this case the WiFiBot is mostly a “camera with wheels”, which is its first
and main real mission – the producer claims such a robot usable in search missions
or night territorial security (if equipped with a night-vision camera).

As Figure 4.3 shows, an application for robot control can be constructed. Here
two parts of the system (“Camera Handler” and “Wheels Controller”) represent
robot-specific details of implementation – how exactly do we extract the input from
the robot, and what exactly do we send to the robot in order for it to react to our
algorithm.

As two other modules are more in the context of this research, the “Visual
2As adopted from robot’s datasheet, found at http://www.wifibot.com/download/WifibotM_

datasheetEN2010.pdf

http://www.wifibot.com/download/WifibotM_datasheetEN2010.pdf
http://www.wifibot.com/download/WifibotM_datasheetEN2010.pdf
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Figure 4.3: An application system around WiFiBot-M

Attention Model” here represents a model, needed for each task – not always we
need both the bottom-up and top-down parts, as not always we need all the modules
of the top-down part.

“Reaction Strategy Inspector” represents a generic approach to the input reac-
tion. As this robot presents itself more like an agent, usable in bigger multi-agent
system of real-world search, it is appealing to use here some agent-system terminol-
ogy, thus making this implementation feasible for further scaling in any hypothetical
multi-agent system.

As according to classical work of [Benson 93], one of the main general abilities
set for a mobile robot is teleo-reactive behaviour; thus, a teleo-reactive (T-R) pro-
gram is an agent-controlling program that drives him to a goal, taking into account
continuously changing environment.

Such program could be interpreted as a set of productions (Ki → Ai), where
Ki is an i-th condition (taken from perceptual input and stored picture of previous
world states), and Ai is i-th action (which can be either an action on the world or to
the model itself, or a T-R program itself). More info on formalized T-R programs
can be found in [Nilsson 94], as the whole idea of T-R algorithms was coined and
vastly explored by Nilsson in his works.
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4.3.2 Datasets and Tuning

The validation of the investigated model in the context of fire detection has
been performed on the basis of four datasets that we denote by “FireDataSet-1”
(FDS-1), “FireDataSet-2” (FDS-2), “FireDataSet-3” (FDS-3) and “FireDataSet-4”
(FDS-4), respectively. Three of them, namely FDS-1, FDS-2 and FDS-3, contain
appraised images (evaluated by experts) and the last one (namely FDS-4) consists
of not-apprised images provided by Wifibot-M; Figure 4.4 shows the robot within
the above-mentioned experimental setup and gives a sample of images from FDS-4
obtained from Wifibot-M robot.

Figure 4.4: Robot within the experimental setup (a) and an example of provided
images (b)

First three datasets contain data both provided by LSPE and taken from different
internet image storages. FDS-1 includes a subtle selection of 122 images: 61 images
representing flames or wild-land fires in diverse environments and 61 images (i.e.
the subset of 61 other images of the same dataset that we denote by “ground-true
attention-attractive areas”) corresponding to the apprised shape of flames visible in
images of the first subset. The upper left-side sector of Figure 4.5 shows 12 samples of
such arrangement. The upper right-side sector of the same figure gives the “ground-
true attention-attractive areas” of these 12 samples. The selection criteria have been
based on representativeness of the selected images regarding diversity of landscapes,
colors’ assortment and number of attractive objects (e.g. flames).

These examples are arranged representing an increasing processing-difficulty
(four levels: “Low” labelling the lowest level and “Very-High” the most difficult
one) and representing an increasing image’s complexity (three levels: “One” attrac-
tive object, “Two” attractive objects and “More than two attractive objects”, or just
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“More”).
By “processing-difficulty”, we mean the difficulty of detection of the salient area

(or flame) which is supposed to have mostly attracted human’s attention (through
his eye-fixation spots). For example, in the image representing the “unique flame
visible within the quite empty land” (i.e. the first sample in upper left-side sector of
Figure 4.5), the flame is clearly visible and remains the unique attractive item: this
sample is labelled as “simple case” with a low ambiguity concerning the attractive
item. While concerning the image representing “an aerial-view of several flames visi-
ble within the quite complex environment including a house and troubled by smoke”
(i.e. the last sample), the flames are not the only salient items and part of them are
buried by the smoke: this sample is labelled as “difficult case” with a very-high am-
biguity concerning the available attractive item. By “image’s complexity”, we mean
the density of salient visual information of the image. In fact, an image containing
only one salient object is considered simpler regarding the above-mentioned criterion
that an image including several potentially salient objects which may attract (or not
attract) the human’s visual attention.

In the same way, FDS-2 includes a fine selection of 110 images: 55 images rep-
resenting humans in diverse wild-land fires and 55 images (i.e. the subset of 55
ground-true attention-attractive areas) corresponding to the apprised shape of hu-
mans visible in images of the first subset. Figure 4.6 shows 12 samples (upper
left-side sector of the figure) and the corresponding apprised ground-true attention-
attractive areas (upper right-side sector of this figure) of FDS-2, respectively. FDS-3,
including 100 images following the same arrangement policy, has been built by com-
bining part of FDS-2 with 13 additionally evaluated images provided by Wifibot-M
robot.

Finally, FDS-4 includes 75 not-evaluated images extracted from video-stream
sequences provided by Wifibot-M. This last dataset doesn’t include any image cor-
responding to ground-true attention-attractive areas. Concerning images provided
by Wifibot-M-based implementation, in order to make the validation scenario com-
patible with plausible fire-fighting circumstances, the experimental setup has been
realized within the robot’s scale. According to the Wifibot-M robot’s size, this means
some 300m2 area (typically 25 × 12m2 action-area) and a 80-to-100 centimeters-
height and 100 centimeters-width fire with smoke somewhere in that area. This also
ensures a correct WiFi connection (as well regarding network connection’s quality
as regarding the relative simplicity of required supply deployment in outdoor con-
ditions) and a correct energetic autonomy of the robot allowing performing several
experimental tests during several hours if required. Several tests with robot moving
toward and around the combustion (fire) zone with aim of detection of the fire’s
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Figure 4.5: Examples of obtained simulated experimental results on FDS-1 showing
input patterns (upper left-side sector), the corresponding “ground-true attention-
attractive areas” (upper right-side sector), computed visual attention maps for each
input image including the so-called “simulated eye-fixation meeting areas” repre-
sented as green spots (lower left-side sector) and detected relevant items in each
image (lower right-side sector)

shape as salient target have been realized.
The GA-based tuning was done using FDS-1 (in order to promote fire saliency)

and FDS-2 (in order to promote human figure saliency). For each tuning 3 best sets
of parameters, resulting from tuning processes, have been retained. The example
comparison of metrics evolution of tuned model against untuned model is depicted
in Figure 4.7.

It is pertinent to notice that the AUCJudd metrics dispersion characterizing the
untuned saliency detection system is substantially reduced through the GA-based
tuning process in the model resulting in an obvious increasing of the overall mean
value of AUCJudd in proposed system and thus, boosting the likeness between the
model’s behaviour and the human-like eye-fixation mechanism. This clearly means
that incorporation of the GA-based tuning process proffers model kind of human-like
artificial visual attention.
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Figure 4.6: Examples of obtained simulated experimental results on FDS-2 showing
input patterns (upper left-side sector), the corresponding “ground-true attention-
attractive areas” (upper right-side sector), computed visual attention maps for each
input image including the so-called “simulated eye-fixation meeting areas” repre-
sented as green spots (lower left-side sector) and detected relevant items in each
image (lower right-side sector)

4.3.3 Experimental Runs

Using the previously-described four datasets, several evaluations have been per-
formed involving as well tuned as untuned model:

• Evaluation-1: V A3V model has been tuned using FDS-1 and then tested by
using FDS-2 and FDS-3 (“fire tuned” model).

• Evaluation-2: model has been tuned using FDS-2 and then tested by using
FDS-1 and FDS-3 (“humans tuned” model).

• Evaluation-3: All three pre-evaluated datasets (i.e. FDS-1, FDS-2, FDA-3)
have been used to test performance of the raw (i.e. untuned) model.

• Evaluation-4: FDS-4 has been used as testing dataset for assessing the model’s
performance in outdoor conditions. This model has been tuned using FDS-1
and FDS-2.
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Figure 4.7: Comparison ofAUCJudd metrics evolution of tuned model versus untuned
using FDS-1 (left) and FDS-2 (right)

We need to emphasize that first three evaluations are done as simulations, with-
out the real usage of mobile robotic platform; while fourth is done in “real world” –
when robot WiFiBot-M takes the input data from camera, and reacts according to
its T-R program.

Table 4.2: Summary of obtained results for “Evaluation-1”

Dataset Chromosome1 AUCJ AUCB KL

Tuning
FDS-1 (0.26; 0.36; 99; 2.21; 82) 0.8276 0.7567 0.9926

Testing
FDS-2 0.8077 0.7142 1.0619
FDS-3 0.8592 0.8075 1.3628

1 Each chromosome is represented as a set of parameters in the
following order: (WSC; wG; A; Nar; FT ).

Concerning the “Evaluation-4”, it is pertinent to notice that FDS-4 includes
not-preevaluated data provided by Wifibot-M robot and thus, it is not possible to
compute the values of the three considered indicators (namely AUCJudd , AUCBorji
and KLDiv) for this set of data. That is why, the results corresponding to this
last evaluation are analyzed intuitively through a visual analysis of obtained visual-
attention-maps and the corresponding simulated eye-fixation meeting points’ loca-
tion in perceived scenery. Thus, Table 4.2 summarizes results as well for training
as for testing phases relative to “Evaluation-1”: reporting the winning chromo-
some and corresponding evaluation metrics respectively; same goes for Table 4.3 on
“Evaluation-2”. Finally, Table 4.4 recaps results obtained for raw system, where the
values of parameters were randomly initialized and not tuned.

These evaluations show, that the model acquires a kind of “human-like” staring
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Table 4.3: Summary of obtained results for “Evaluation-2”

Dataset Chromosome AUCJ AUCB KL

Tuning
FDS-2 (0.14, 0.1; 0.28; 23; 1.5; 37) 0.7895 0.6863 1.3115

Testing
FDS-1 0.7291 0.6940 1.4478
FDS-3 0.8494 0.7389 1.3978

Table 4.4: Summary of obtained results for “Evaluation-3”

Dataset Parameters AUCJ AUCB KL

FDS-1 (0.25, 0.29; 0.25; 17; 0.68; 47) 0.6397 0.7207 1.3013
FDS-2 0.6519 0.6656 1.8773
FDS-3 0.7802 0.7899 1.3686

skill of the inspected landscape within the context of confused and hostile environ-
ment of the fire disaster. This is achieved through saliency detection and artificial
visual-attention proffering such a system the ability of extracting autonomously
flame regions from raw camera images, the capability of detecting autonomously in-
dividuals (humans) at risk within the flames regions from those raw camera images
and the skill of cooperating (i.e. jointly inspecting) with the firefighters (i.e. users)
in order to improve their awareness about the concerned disaster.

Other existing systems are concerned either by fire’s shape detection or by hu-
mans’ tracking, but don’t deal with both of them within hostile and confused wild-
land fires context. Moreover, as far as we may know, there is not a system which
takes aim cooperating with the human-operator: whole other systems are “just tools
used by the operator”.

For this reason a comparative study between the proposed tuned model and other
existing approaches will only show that some “specialized algorithms” will perform
as good or even better in the task for which the concerned algorithm has been
designed. In other words, many dedicated algorithms execute faster and better, than
the human being, the specific task for which they have been designed, but they are
not able to deal with or adapt themselves to various situations for which they haven’t
been designed. Consequently, an accurate comparative study remains difficult to
realize, because still there is no equivalent systems or comparative implementations.

However, in order to give an overall idea of the investigated model’s performance
in this context, Table 4.5 provides an F-measure-based comparison between the pro-
posed system and the BMS algorithm (proposed in [Zhang 13], already mentioned in
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section 1.3). This algorithm is used as well for complex object’s recognition as an eye-
fixation predictor, and thus somehow fits similar tasks. As the table shows through
the considered metrics, although reaching somehow comparable performances for
FDS-1 (while better), the investigated system outruns BMS in detection task when
the inspected landscape includes both humans and flames.

Table 4.5: Summary of obtained results for F-measure-based comparison between
BMS algorithm and the V A3V model on three datasets

F-measure FDS-1 FDS-2 FDS-3
BMS 0.3414 0.1186 0.1578
V A3V 0.4456 0.2082 0.4097

Figure 4.5 and Figure 4.6 provide example of obtained experimental results rel-
ative to “Evaluation-1” and “Evaluation-2”, respectively. The upper left-side sector
in these figures shows 12 samples of images of each dataset, representing increasing
processing complexity (relating as well the number of salient items as the mistiness
of the seeming environment). The upper right-side sector in these figures shows the
“ground-true attention-attractive areas” corresponding to the illustrated 12 samples.
The lower left-side sector of each figure shows the computed visual attention maps
for each illustrated image including the so-called representative points (shown as
green marks), introduced and defined in subsection 3.3.6. Finally, the lower right-
side sector of each figure provides the relevant items detected by V A3V model and
the simulated eye-fixation meeting spots matching up the detected items.

Figure 4.8 provides examples of experimental results relative to “Evaluation-4”,
obtained using Wifibot-M robot in outdoor environment. The left-side results have
been obtained from tuned V A3V model and those visible at left-side are resulted
from the rough system set by arbitrary parameters.

Several observations may be formulated regarding the reported results. The
first remark relates quantitative results summarized in Table 4.2, Table 4.3 and
Table 4.4. Those results show that the tuned system admits discernibly higher
values for AUCJudd indicator: around 0.8 (or higher) for tuned system and around
0.6 for system operating with arbitrary parameters. Let us remind that the highest
attainable score for AUCJudd indicator is 1 while, a uniformly random saliency map
conducts to the score of 0.5.

This means that such a measure evaluates the assessed technique’s quality versus
the random process: scores reaching values below 0.5 are interpreted as “worse than
random process”. Thus, based on the scores reached by arbitrary set system and
those reached by tuned system, it becomes perceptible that the arbitrary set system
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Figure 4.8: Examples of experimental results relative to “Evaluation-4”, showing
detected items achieved by tuned system (left side) and those obtained when the
model’s parameters are arbitrary set (right side)

operates closer to a random process than the tuned one and thus, its scrutiny of
the landscape appears as more unsystematic than a visual-attention-based search of
same items.

The other comment relates experimental results highlighted in Figure 4.5 and
Figure 4.6. In fact, one can note that, even though more dispersed in images resulting
from untuned system, simulated visual-attention meeting spots match quite fittingly
the detected items when the input image is unchallenging. If the untuned system
carries out somehow comparable saliency detection for low-complexity landscapes,
however, it often fails in detecting accurate items (i.e. either flame or humans) when
the input image become complex or ambiguous. This may be explained by the fact
that although operating with inappropriate parameters, the basic saliency detection
mechanism remains enough for extracting salient items within smooth conditions.
However, within degraded or tricky conditions, additional visual attention is needed
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for detecting the expected items.
Finally the last remark relates experimental results illustrated in Figure 4.8. Here

also, the tuned system confirms its advantage versus the un-tuned one, especially
when either the landscape is more complex or when the flame is confusing. Results
show various examples, from simpler cases (firsts rows of the figure) to critical ones
(lasts rows of the figure). The two firsts correspond to a quite comfortable situation
where the flame is the most salient event within the inspected landscape. In fact,
although the model’s attention is clearly and effectively focused on flame, here the
saliency detection of the raw untuned model detects quite correctly the unique salient
flames. Contrary to those simpler cases, other examples illustrate more critical
situations where the landscape contains either both humans and flames (as in two
next rows) or the flame, though unique salient event, remains far from the robot
making other closer objects (as flowers, etc.) as salient as the flame. In those cases,
as the figure shows, the detection of target objects (i.e. flames and humans) is
visible for the tuned system but not achieved for the unrefined system. Alongside
validating, the investigated concept and its implementation on Wifibot-M robot
within realistic outdoor conditions, the obtained results confirm the generalization
ability of V A3V model. These results show also the efficiency and the pertinence of
the incorporated GA-based tuning strategy.

4.4 Arbitrary Attention Problem

While WiFiBot-M provides pretty interesting possibilities in terms of mobility,
the bigger context of the work was to provide the means for improvement of general
social skills of any autonomous mobile robot. Due to this another problem context
was formulated – a humanoid robot should be able to solve visual search problem,
depending on the combined visual attention model.

4.4.1 Humanoid Aldebaran Robots

To be able to apply the problem to humanoid robotics, we need to provide several
experiments exactly on these humanoid robots. This has been done on the robots,
created by SoftBank Robotics3.

Humanoid robots NAO and Pepper were designed to make the interaction with
human beings as natural and intuitive as possible, as equipped with multimodal

3formerly known as Aldebaran Robotics, but acquired in 2015 by SoftBank. More info can be
found at company’s website: https://www.ald.softbankrobotics.com/en

https://www.ald.softbankrobotics.com/en
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sensoring as well as some basic autonomous life modules. (visuals shown in Fig-
ure 4.94).

Figure 4.9: Physical overview of the robotsAldebaran NAO (left) andAldebaran
Pepper (right)

The NAO robot is “older brother” of Pepper, and is equipped with less productive
hardware: Intel ATOM Z530 1.6GHz, camera MT9M114, VGA@30fps, 72.6°DFOV
(60.9°HFOV, 47.6°VFOV). With also having the height of the robot only 58 cm, it
is rather difficult to scale the objects in a controlled experimental environment.

The Pepper robot, on the other hand, being more recent development of the
SoftBank engineers, is much more “humanoid” and is equipped with better hard-
ware: Intel Atom E3845 Quadcore 1.91 GHz, 2 cameras OV5640 which can sup-
ply VGA@30fps or up to 4VGA@1fps, 68.2°DFOV (57.2°HFOV,44.3°VFOV). Also,
the robot is equipped with ASUS Xtion 3D sensor, able to provide data in focus
range 40cm–8m with 320*240@20fps, 70.0°DFOV (58.0°HFOV,45.0°VFOV). While
the multi-sensor analysis is not in the scope of this work, we have to consider auxil-
iary usage of the 3D sensor in order to be able to provide a navigation-like control
of the robot.

Another advantage of the Pepper robot is its dimensions: it has 1.21 meters
height, which gives us more correct and human-like scales for the experimental
setups.

4Images adopted from respective Wikipedia pages, https://en.wikipedia.org/wiki/Nao_
(robot) and https://en.wikipedia.org/wiki/Pepper_(robot)

https://en.wikipedia.org/wiki/Nao_(robot)
https://en.wikipedia.org/wiki/Nao_(robot)
https://en.wikipedia.org/wiki/Pepper_(robot)
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Both robots work on the Linux-based NAOqi operational system, which provides
also NAOqi API to all the firmware modules (both considering hardware and pre-
installed software considering the previously mentioned “autonomous life modules”).

As Figure 4.10 shows, to be able to use the Aldebaran humanoid robots, we need
to create both the intermediate application tier which contacts with robot through
NAOqi API, and the “client tier” which implements the combined visual attention
model.

In this scheme we use the input from robot’s camera (or cameras) as standalone
frames in order to use the high-level resolutions. Then these frames, processed by
ALVideo NAOqi module and through intermediate tier of NAOqi API, are given to
be processed by both bottom-up and top-down modules of the combined model.

Figure 4.10: An application system around NAOqi-based humanoid robots

Depending on the task, given to the robot, the decision module provides the
attention model results to the reaction strategy inspector, which decides on the
next robotic reaction. Thus, if the task implies, that robot should point by its
hand onto the most representative points, the strategy inspector should provide this
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information.
The reaction inspector creates the reactions, which are then fulfilled by robot’s

motion and speech modules (or the robot does nothing, if there are no valid reactions
at this iteration).

4.4.2 Hand Pointing Problem

Let us assume a visual attention problem concentrated on full attention mecha-
nism and robotic modules’ usage cycle: The robot watches in front of itself, and the
most salient representative point of each iteration is found; then robot reacts with
pointing at this point by hand and saying the location of this point.

To be able to assess the results of such an experiments, we have to either use an
empty controlled environment where ground truth is easily generated, or use existing
complex images from eye fixation benchmarks. Assuming, that the “brightest” pixel
(in terms of grayscale ground truth maps, meaning the highest probability of eye
fixation at this point) is the most “eye fixating”, we use the second approach in this
experiment.

4.4.2.1 NAO with V A3V Model Experiment

Figure 4.11: Experimental setup with NAO watching an image projected on the
screen

Firstly the experiment viability was tested on the NAO robot with only the
bottom-up module enabled (thus, the top-down and decision parts are not being
tested at this moment). The robot has been placed in front of a screen and a
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subset of images, from the testing and validation datasets T-60 and V-60 (mentioned
and detailed in subsection 3.3.5), have been projected on the screen allowing the
robot watch them one-by-one; Figure 4.11 illustrates the experimental setup (NAO
watching an image projected on the screen). While the NAO’s camera isn’t a moving
camera, remaining far from the sophistication inherent to the human’s eye, the
robot’s eye-fixation could be simulated by the straight-line-direction pointed by
NAO’s arm in such way that the corresponding impact-point (location on the screen
symbolized by the red area) corresponds to the shortest straight-line between the
NAO’s camera and the screen when robot’s face is parallel to the screen.

The reported samples (illustrated in Figure 4.12) correspond to two results ob-
tained from two experimentations: the first group (e.g. the two left-side columns)
relates the robot’s V A3V -based visual behavior with tuned parameters, while the
second (e.g. the two right-side columns) corresponds to robot’s visual behavior with
model’s parameters set arbitrarily. Both two figures illustrate images provided by
the robot’s vision system (i.e. what NAO sees) where simulated eye-fixation points
(also called representative points as given in subsection 3.3.6), conformal to the
above-mentioned definition, are reported as “green marks”. The ground true eye fix-
ation areas corresponding to humans’ visual mechanism are reported in the middle
column.

It is pertinent to note the higher accuracy of simulated eye-fixation points’ dis-
tribution regarding the ground true eye fixation area (matching the ground true
eye fixation areas in both levels of difficulty), when the robot’s V A3V -based vision
operates using tuned parameters. In contrast to this, robot’s V A3V -based vision
operating with arbitrary-set-parameters fails the salient object’s detection, except
for firsts images (e.g. the three firsts rows) where the complexity is low.

It is also pertinent to note the emergence of some kind of robot’s human-like
visual behavior making its perception of the surrounding environment closer to the
human way of perceiving that same environment. In fact, an indicator stressing
such emergence could be defined on the basis of true positive and false positive
rates, denoted TPR and FPR, respectively.

Here true positive rate represents the rate of green marks, which are correctly
in the region of ground truth, against the whole number of the green marks produced
for this image. False positive rate uses the same logic, being the rate of misplaced
green marks (not in the region of ground truth) against the whole number of the
green marks.
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Figure 4.12: Examples of experimental results for patterns from V-60 dataset show-
ing robot’s eye-fixation behavior when V A3V uses tuned parameters (left-side re-
sults) and when the model’s parameters are arbitrary set (right-side results)

Based on these rates, one can emerge an indicator “Concentration rate” (high-
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lighting some kind of machine’s attentiveness degree), and we define it as shown in
Equation 4.1.

χ = TPR

FPR
(4.1)

Taking into account the aforementioned definition, one can define χk% as the
smallest value of χ corresponding to the true positive patterns where at least k
percent (k%) of their simulated eye fixation points (i.e. “green marks”) match with
the corresponding ground-true eye-fixation-maps. Let TPk% denote the number of
true positive patterns with χ ≥ χk%. E.g., χ30% corresponds to the smallest value of
the above-mentioned indicator relating the true positive patterns including at least
30% simulated eye-fixation points matching with the ground true eye fixation map
of the concerned patterns.

A comparison of TPk% values, corresponding to the V A3V model, operating
with tuned parameters, with arbitrary (e.g. not tuned) parameters, and a random
(Monte-Carlo style) process is shown in Table 4.6 for k = 50(χ50% = 1.0) and
k = 30(χ30% = 0.5).

Table 4.6: Comparison of TP30% and TP50% for V A3V model operating with tuned
parameters, V A3V model operating with arbitrary (e.g. not tuned) parameters, and
a random Monte-Carlo style process

V A3V tuned V A3V untuned Random
TP50%(χ ≥ 1.0) 23% 3% 0%
TP30%(χ ≥ 0.5) 58% 6% 0%

In fact, as it is visible from this table, the number of patterns for which the
value of exceeds 0.5 or 1.0 is significantly higher for V A3V model operating with
tuned parameters. In other words, the number of patterns matching the human’s
eye-fixation mechanism increases significantly for V A3V model operating with tuned
parameters making the robot acquiring a kind of human-like visual behavior.

4.4.2.2 Pepper with Full Model Experiment

In terms of full model this task is categorized as “free visual search”, meaning
that importance is given only to specific pattern-based objects, like human faces
and writings (as shown in Equation 4.2). Also, we have to “disable” the episodic
memory analysis of the visual context, as the robot doesn’t move.

I(′′HumanFace′′) = 1, I(′′Text′′) = 1, I(Other) = 0, Iimg(k) = 1, ∀k (4.2)
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In this modification of the initial experiment, we place the robot exactly in front
of the display, so that the visual field of the robot almost perfectly corresponds to
the display.

Firstly, the robot hand-pointing is calibrated to 8×8 grid on the display, so that
the hand-pointing region corresponds to one of the cells of the calibration grid each
time, that robot tries to hand-point anywhere (scheme shown in Figure 4.13). In
this case anyone from aside can quickly understand whether each iteration provides
good or bad results.

After the calibration, the subset of images is shown at this display (the same
set, as in previous experiment, T-60 and V-60). The robot watches them, again,
one-by-one.

Figure 4.13: Pepper robot hand pointing experiment, from left to right: overall
scheme of the experimental environment, view from above; calibration grid, used for
more precise hand pointing; example photo depicting the robot (lower right corner)
watching the display

Due to the setup modification, we are able to apply different (from previous
setup) evaluation means to this experiment. E.g., as the visual field of the robot
and display almost perfectly match, this means that the image, produced by robot,
almost matches geometrically to the initial input image. This leads to usability of all
the eye fixation metrics, based on the comparison of initial ground truth grayscale
maps against the visual attention maps, produced by the attention model.

Thus Figure 4.14 depicts, as an example, the robot’s vision, the saliency maps,
produced by BU unit and by combined model, as well as the example of text recog-
nition.

The evaluation metrics are shown in Table 4.7, depicting the amelioration of the
evaluation metrics for combined model against the only bottom-up approach.

As it is visible from Table 4.7, theAUCJudd andAUCBorji metrics become slightly
better for the combined models against the sole bottom-up models. While this
enhancement doesn’t look drastic, it is pertinent to remember that the top-down
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Figure 4.14: Pepper robot hand pointing experiment, from left top corner clockwise:
displayed image as perceived by robot; saliency map as given by only BU unit
(MV AM(k)); saliency map as combined result of both BU and TD units (M(k));
crop of the input image with gray rectangles depicting correct text recognitions

unit has a little different destination, and saliency maps improvement is, in some
way, a secondary target, which is yet achieved.

Also we should point out the deterioration of Küllback-Leibler divergence due to
the top-down unit generating additional information, thus increasing entropy and
the divergence.

4.4.3 Arbitrary Item Search Problem

Let us assume a more complex visual attention problem, which also somewhat
falls into the firefighting context of the first experiment: The robot has to find fire
extinguisher, which is situated somewhere in the building. As this experiment adds
the necessity of navigation-like behaviour, we enable all the modules of the combined
visual attention model, as well as some additional modules concerning pseudo 3D-
vision in order to be able to find open space and calculate the needed distance to



108 4.4. ARBITRARY ATTENTION PROBLEM

Table 4.7: Comparison of V A3V model against combined model operating with pa-
rameters, tuned over T-60 dataset, on evaluation metrics over two different datasets

Model Dataset AUCJudd AUCBorji KLdiv

V A3VT−60 V-60 0.832 0.645 0.613
V A3VT−60 + TD V-60 0.856 0.672 0.901

V A3VT−60 V-523 0.831 0.652 0.59
V A3VT−60 + TD V-523 0.852 0.675 0.983

move.
It is pertinent to note that the robot navigation problem itself is a huge research

field, which is totally out of the scope of this work. The “navigation”-like module,
which we use here, is more a set of reaction rules, where robot moves, yet neither it
creates a virtual map of surroundings, nor calculates optimal paths.

Experimental setup is depicted in Figure 4.15; the robot is shown as a triangle
with letter “R”, with the top corner showing the direction of robot’s initial vision
(not catching the evacuation door). Human in the room is shown as a circle with
letter “H”. The room, where the robot starts, is not exactly “empty”: it contains
several objects, both known and not known to the robot, which are not of the interest
for it in this particular task. If the robot doesn’t see the exact item of interest, it
turns around for 60 degrees, and starts new iteration. When the robot sees the
already seen scene, is starts to search for evacuation door in order to get out of the
room where it has already seen everything (the importance calculation is shown in
Equation 4.3).

SpecObj = [Text, F ireExtinguisher, ExtinguisherSign,EvacuationDoor,DoorKnob]

(4.3)

I(Obj) =

1 if Obj ∈
{
SpecObj

}
wup(SpecObj, Obj) ∗ CL(Obj) if Obj /∈

{
SpecObj

}
(4.4)

When the robot finds the evacuation door, it analyzes whether it could come
through it (via 3D-sensor). If not, the robot tries to open it (with fallback scenario
as asking human to open the door, if a human has been seen previously, else the
algorithm ends as failed), and when the door is open, - the robot goes out of the
room, where it starts the whole same scenario again.

In such an experiment the direct assessment via previously mentioned metrics
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Figure 4.15: Arbitrary item search experiment scheme. Left-upper picture represents
the schematic overview of the experimental setup; other pictures briefly depict the
algorithm of the robot’s actions based on the real photos

is not really possible due to non-existence of ground truth. While in the “Hand-
pointing experiment” the ground truth existed, it was just not applicable in auto-
matic way, so the “green point based” assessment was possible; this experiment,
on the contrary, could work only as “proof-of-concept”, as if the whole model can
be used for such reactive behaviour of the robot, and if it is possible to further
complexify the behaviour and mix the visual attention model with different other
modules in order to proffer the resulting system on the next level of human-inspired
social behaviour.

The most important results of the experiments are shown in Figure 4.16. First
column shows the original input images from the most important iterations - robot
sees non-interesting but known objects, robot sees human, robot sees evacuation
door, robot sees desired object.

Second column represents the input images with the bounding rectangles, de-
picting the different recognition results.



110 4.4. ARBITRARY ATTENTION PROBLEM

Figure 4.16: Input images from robot’s camera in the experimental setup, from left
to right: the original images, the images with recognized objects bounded, and the
final mixed BU/TD saliency maps

Orange rectangles show recognition of known objects by keypoint-based BRISK
algorithm, and blue rectangles show recognition of faces by pattern-based Viola-
Jones framework. The results of letter recognition and broad recognition by CNNs
are not given, as this experiment did not include any object, “true positively” clas-
sifiable by them; thus, a red chaotic object in left corner of the overview pictures
(Figure 4.15) cannot be classified even by humans either than “an object of art”,
while tables, chairs, heaters are not really recognizable objects. Also in this exper-
imental setup there was no texts with letters big enough for robot to be able to
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“read” it.
Third column shows the final saliency map, mixed already from bottom-up

saliency map and top-down importance map. Red point represents the most im-
portant object. As the first image does not hold an important (according to the
task) object, there is no addition of saliency intensity in the first saliency map, as
well as there is no red point of importance.

The results of the experiments give us a moderate justification to say that our
combined approach to artificial visual attention can be applied in more complex
problems of autonomous robotics vision, if used with other modules and approaches,
such as navigation, high-level reactions, etc. It is also pertinent to notice, that while
in this experiment the robot shows an ability to navigate itself, the approach is
in no way a substitution for the fully dedicated navigation module; the ability for
navigation in this experimental setup is provided by two additional modules:

1. teleo-reactive approach with pre-given conditions, such as “IF there is no de-
sired object AND a door is found AND a human is found, THEN ask human
to open the door, wait, go through the door” ;

2. Pseudo-3d infra-red depth sensor ASUS Xtion 3D, used by the robot to extract
the depth information, which is then processed by pseudo-3d-vision module (as
firstly shown in [Fraihat 15]). This data provides a possibility to understand,
whether the door is really closed, or already opened, and what is the exact
distance which the robot could go for through this door.

4.5 Conclusion

The purpose of this chapter was to “close the loop” of the overall design for the
combined model, presented in this work, as well as show the implementations on
several robots, the simulations and the experiments, done throughout the working
process, – “proof of concept”, so to speak, for usage of the different modules as well
as the combined model in whole.

The reader was first familiarized with several in-depth notes on the implementa-
tion details. Then, in next sections, we show the experimental setups and protocols,
ordered by ascending complexity, as well as the mobile robotic platforms used in this
setups, – Nexter Robotics WiFiBot-M, Aldebaran NAO, Aldebaran Pepper. Also
the overall implementation schemes, used for these robots, were shown in order to
explain the mode of execution for these experiments.

In this chapter all the elements of the combined model were put together in
general visual attention system implementation for the Aldebaran humanoid robots.
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The system in its complete state has shown that it is capable of fulfilling the tasks
for which it has been designed, and complex attention-based behaviour emerged in
the robot during the experiments.

The experiments, most notably the last one, underline an important detail of this
system: it can be used in ensemble with other modules, such as navigation, depth
vision, high-level decision making, or hearing. Such an ensemble can provide much
more complex behaviour, giving the robot an ability to solve more sophisticated
problems in autonomous or semi-autonomous ways.
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Conclusion

In this thesis, we proposed and accomplished a combined visual attention model
by the conditions posed in the field overview paper by Borji & Itti [Borji 13a],
including bottom-up and top-down directions of attention, as well as decision module
which completes the combined attention module.

Nowadays there exists only narrow context of the problems which are solved in
this research domain: image treatment, such compression, thumbnailing or segmen-
tation; object detection; advertising; several medical-context visual applications.
Giving an overview of existing solutions, the bibliographical study has notably
pointed out problems related to previously proposed solutions – lack of combined vi-
sual attention models, which could handle different, more general tasks. Such a study
has allowed for an objective evaluation of achievements concerning autonomous vi-
sual attention in machines as well as an outline of open problems currently existing
in this domain.

According to the results of this study, we propose a more-general, combined
artificial visual attention approach, which is suitable to be applied in artificial vision
problems on the mobile robotic platforms, either autonomous or semi-autonomous.
The overall contribution and conclusive remarks on the suggested approach could
be summarized as follows.

First, we develop the bottom-up model based on several bio-inspired concepts,
based on a continuation of works of both the LISSI laboratory and third-party lab-
oratories (most notable – [Liu 11] and [Ramík 12]). This model has shown itself on
the comparable level with the state-of-art saliency models in terms of most evalu-
ation metrics used in the field, being a little set back by the convolutional neural
network-based methods. Yet, the classical contrast-based approach which lies in
the base of our model provides less algorithmic complexity ( O(N ∗ log(N) +N) ≤
O(M ∗P ∗ I +P ∗ I log I +M ∗ I ∗ log I), which implies at least 50% higher speed of
processing if correctly implemented) and thus is able to create more faster results
with only several percent of difference in main evaluation metrics (NSS, AUCJudd,
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AUCBorji, KL, sAUC).
Second, we propose the genetic algorithm-based approach to tune this model,

in order to use it with different sets of parameters for different task contexts, as
well as a novel approach for evaluation of the visual attention models in real world
experiments via representative points, which (as a side effect) could also be used
after some tuning as a quasi-saccade model, e.g. usable in artificial eyes for better
results against the uncanny valley problem. The simulations, as well as quasi-real-
world experiments on mobile robotic platforms (Nexter Robotics WiFiBot-M and
Aldebaran NAO), show the ability of generalization as well as emergence of human-
like attention in the model due to genetic tuning. Also, different sets of parameters
provide different attention-like behaviour, which means a hypothetical possibility
to interswap the models among different tasks to be able to achieve more complex
results, such as the fire detection models used as a backup attention in object search
tasks in order to provide the “background attention” for the emergency cases.

Third, we outline a structure for combined visual attention model, grouping the
previously mentioned bottom-up model with several state-of-art object recognition
techniques, constituting the top-down attention part of the combined model, as well
as decision module represented in the structure of Baddeley-Hitch working memory
schema (as firstly given in [Baddeley 74] with additions, given in [Baddeley 00]).
This system stands out from similar existing algorithms as it has more complex bio-
inspired structure, and can work as a basis for the further complexification by adding
new components (and changing the obsolete ones), while providing comparable by
efficiency results in real time, if compared to other state of art approaches. This
combined model is then also validated via experimental setups using Aldebaran Pep-
per social humanoid robot. These experiments show additional abilities, provided
for the robot, if the combined approach is used in ensemble with other third-party
modules such as pseudo-3d-vision, navigation, high-level decision making, hearing.

Fourth, in order to provide the aforementioned simulations and experiments,
we create several image datasets, either derived from existing benchmarks (T-60,
V-60 from MIT1003 [Judd 12] and Toronto [Bruce 07]), from mix of robotic visual
input and existing close-source datasets (fire and humans images in datasets FDS-1,
FDS-2, FDS-3 and FDS-4), or completely created by us (Things-50, more details in
Appendix A). Also we have implemented two different versions of the system, the
“simple” one for old-hardware-robots like Wifibot-M along with some robot-specific
implementation details, and the “complex” one for more efficient robots such as
Aldebaran humanoid robots NAO and Pepper.
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Perspectives

The combined visual attention model, that has been presented in this thesis, has
met the objectives given in the General Introduction, and has proven itself to be
applicable in real (or quasi-real) worlds tasks and environment. This being said, a
number of perspectives remain still open and some aspects of the work could not be
reasonably addressed in the limited timeframe of this thesis. These are subject for
future development of the work accomplished here.

We can outline two different directions of perspectives, where first direction con-
siders technical improvements, and the second is about further development of the
model itself.

The nearest technical possibility of the system improvement, which could be
predicted as a short-time perspective – the work of three or four months, – is the
question of implementation. Both systems are implemented in Python, slow inter-
preted language with ”global interpreter lock”, which complicates parallel compu-
tations. Implementation translation into fast compilable languages, such as C++,
would definitely improve the implementation performance.

Another point of technical improvement, more in long-term way, concerns the
top-down mechanism. Both hardware and software are constantly evolving. The
used approaches could be easily replaced with better analogues in the future, when
and if these analogues will be created, – in several years from now.

The hardware improvement in the embedded CPU niche might also change the
whole approach, if the whole combined system could be processed only by embed-
ded hardware, thus pushing the robot further towards real autonomy. E.g., recent
improvements in mobile CPU modules announce a support for Caffe or TensorFlow-
based neural network implementations to be run directly on these mobile CPUs with
a good level of efficiency5. Such an opportunity would mean a shift in priorities for
the modules used in mechanisms such as ours, also moving the CNN processing to
the embedded hardware. But still these CPUs and algorithms are a question of at
least several years of development before they could be used in this field of research.

If speaking about further development of the model itself, we could say about
further complexification of the attention model. As mid-term perspectives, – year
or two, – we could talk about addition of several modules. E.g., Long-Term Memory
in the line with Short-Term / Working Memory – representing more complex, real
ontology constructions; or Audio Signal Treatment Module – in order to complete
the phonological loop of the Working Memory, – these modules could grant higher

5More information on this could be found, for example, on the developer sites of Qualcomm:
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine

https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
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level cognition and autonomy.
We also should mention, that there already exists vast amount of knowledge

stored in the Internet; thus, another different mid-term perspective would be the
usage of third-party knowledge databases, e.g. BabelNet [Navigli 12] or WikiNet
[Nastase 10] as semantic analysers in the decision module, or even as knowledge
providers for the high-level decision making.

From another point of view onto the “Internet knowledge” for more long-term
perspectives, Cloud Memory could become a very appealing mechanism, where sev-
eral robots use the same knowledge storage through connection via Internet, provid-
ing also the learnt material into it, in order to “share the knowledge”, thus creating
some kind of Shared Long-Term Memory. Also, more accurate additional study into
human psychoneurology could yield some additional bio-inspired mechanisms (e.g.,
information exchange techniques based on the human brain inter-cortex dynamic)
to be in line with other human-brain-modelling concepts, such as “center-surround
antagonism”, “Baddeley-Hitch working memory” or “cognitive-phenomena-based at-
tention”.

Continuing the idea of “several robots” for long-term perspectives, we can also
speculate on the idea of multi-agent distributed attention system, where each agent
provides previously mentioned “shared knowledge”. This could yield more accurate
results for real-world problems, e.g. massive visual search or navigation networks.
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A | Things-50 Dataset

This dataset was produced by us using a mid-level camera, and consists of ”easy-
to-see” photos of different things, which could or could not be found in an office or
in home. Each picture of such type contains one or several objects, of same or
different types. The goal of usage of this dataset is to evaluate an approach which
claims possibility to be able to detect the object’s bounding rectangle and/or to
recognize correctly (classify) the type of the object, contained inside; Figure A.1
contains several examples of this dataset.

Figure A.1: Examples of images in self-created Things-50 database: sunglasses and
a cup of tea, with ground-truth bounding rectangles
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Auxiliary XML-files in this dataset contain also the markings of correct object
classes – n04356056 and n07930864 (in WordNet notation [Miller 95], more on
the subject is given in subsection 1.4.2), which can be decoded as synsets (syntactic
sets) ”sunglasses, dark glasses, shades” and ”cup”, respectively – the categories, used
in ILSVRC2012 dataset (more on the subject is given in subsubsection 1.4.1.3).

An example of auxiliary XML is shown in Listing A.1.

<annotation>
<fo ld e r >custom− l i s s i −images</f o l d e r >
<fi lename >0009</ f i l ename>
<source>

<database>l i s s i −th ings−50</database>
</source>
<object>

<name>n04356056</name>
<top>110</top>
<l e f t >299</ l e f t >
<height >183</height>
<width>256</width>

</object>
</annotation>

Listing A.1: Things-50 example XML of the sunglasses image



B | WiFiBot-M Controller Notes

This appendix chapter provides some notes on the software implementation for
the WiFiBot-M robot management. While the Aldebaran humanoid robots have
well-documented NAOqi API for simplification of their programming, the WiFiBot-
M doesn’t have any, as well as almost no documentation whatsoever and only some
old-fashion proprietary software for its control, which is even difficult to be run on
modern systems (programmed in C++ with usage of WinAPI and DirectConnect
technologies, which makes this controller an old-Windows-only software).

The idea of creating new software controller comes from necessity of combining
both movement controller and video stream controller in one software, which should
be lightweight, and possible to be cross-platform.

Due to these conditions, a new controller is designed, “Wifibot-M iPy Con-
troller”, which should be able to:

• connect to robot via network, switch on/off its camera and/or wheels control;

• control movement of robot via Plug-and-Play joystick or its virtual simulation;

• collect video stream from camera, save stream frames as JPEG images;

• control camera’s PTZ-routines;

• detect salient regions on video;

• react on these regions.

As a programming problem, application can be divided into 4 parts: move-
ment controller, PTZ & video stream handler, salient regions detector and reaction
strategies inspector. The general application structure was already presented in sub-
section 4.3.1 (Figure 4.3). To achieve cross-platform compatibility, while also being
easy in terms of programming, a .NET platform (with its open source analogue
Mono) has been chosen; programming language – IronPython.

Main module consists of GUI events and some routine work handling, which is
why it is not shown on the conceptual scheme.
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Second-main module of this application part is WheelTalker module, which
implements connection between the robot itself and the whole application.

Figure B.1: Structure of Joystick and Wheels controller

Module WheelTalker is implemented as a separate thread, which has the fol-
lowing functionality implemented:

• network connection (TCP socket) between application and Wifibot-M internal
controller;

• getting current sensor’s data from internal controllers (speed, distance gone so
far, battery level etc.);

• getting current joystick (real or virtual) position;

• calculating new TCP-package contents, which should be sent to Wifibot-M
internal controllers to make it move properly.

Joystick position is taken from JoystickWindow module, new TCP-package
contents is calculated in moduleWheelCalc, and sensors info is sent viaWheelSen-
sorsEventArgs event to GUI.

Module WheelCalc implements byte arithmetic over human-readable values,
creating a 9-byte TCP-package payload, format of which is designed by robot’s
manufacturer. A code example of payload calculation is shown in Listing B.1. It
uses Crc16 calculation routine, which is applied over payload bytes from 1 to 6.
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pack [ 0 ] = 255
pack [ 1 ] = 0x07
tmp1 = 8∗( speed1 & 0x3F)
tmp2 = 8∗( speed2 & 0x3F)
pack [ 2 ] = tmp1 & 0 x f f
pack [ 3 ] = (tmp1 >> 8) & 0 x f f
pack [ 4 ] = tmp2 & 0 x f f
pack [ 5 ] = (tmp2 >> 8) & 0 x f f
i f ( speed2 & 0x80 ) : t t=t t + 32
i f ( speed2 & 0x40 ) : t t=t t + 16
pack [ 6 ] = ( speed1 & 0x80 ) + ( speed2 & 0x40 ) + t t + 13
mycrcsend = s e l f . Crc16 ( pack , 1 , 7)
pack [ 7 ] = mycrcsend & 0 x f f
pack [ 8 ] = (mycrcsend >> 8) & 0 x f f

Listing B.1: TCP initialization payload

Module JoystickWindow is implemented as a GUI region, where pointer offset
describes current joystick’s position. These offsets (X, Y) are treated as new speed
values for left and right wheels – X is for direction change and Y is for forward-
direction movement.

Module Joystick was initially created by Mark Harris1, then rewrapped for Iron-
Python usage. It uses DirectConnect module to interface a Plug-and-Play (usually
through USB port) joystick. When real joystick is connected, this module reads its
position and sends it as a new offset to JoystickWindow module.

The Camera PTZ & Video stream handler has two principal modules; the
module which handles network connection and, therefore, PTZ movement and raw
video data, and the module, which reforms the raw video data into a proper sequence
of JPEG images (video frames).

First module, CamTalker, implements network connection (HTTP requests)
to Wifibot camera’s internal controller (AXIS Encoder module) through VAPIX
protocol2. It executes requests and reads the responses, sending them to appropriate
response handler (if needed).

Main handler of such responses is module MjpegReader, which has been made
on base of Andrew Kirillov’s implementation3. This module, working as a different

1http://airobots.googlecode.com/svn-history/r8/trunk/JoypadParser/
JoystickInterface/Joystick.cs

2http://www.axis.com/techsup/cam_servers/dev/cam_http_api_index.php
3http://www.codeproject.com/Articles/15537/Camera-Vision-video-surveillance-on-C

http://airobots.googlecode.com/svn-history/r8/trunk/JoypadParser/JoystickInterface/Joystick.cs
http://airobots.googlecode.com/svn-history/r8/trunk/JoypadParser/JoystickInterface/Joystick.cs
 http://www.axis.com/techsup/cam_servers/dev/cam_http_api_index.php
 http://www.codeproject.com/Articles/15537/Camera-Vision-video-surveillance-on-C
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Figure B.2: Structure of Camera PTZ & Video stream handler

thread, reads whole HTTP-response, fetching single JPEG images as frames of video,
sending them as events through CameraEventArgs to event handlers - saliency
detector and a GUI video streaming.

Video streaming in GUI is made by CamViewer class, which is a basic GUI
class with changed painting routines.
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