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ABSTRACT

The main goal of this Ph.D thesis was to improve the dynamical model of the Moon within the numerically integrated ephemeris (INPOP) and to derive results of scientific value from this improvement through the characterization of the lunar internal structure and tests of general relativity.

At first, raw binaries of LLR echoes obtained from the Grasse ILRS station were used to analyze the algorithm used by the facility, for the computation of a normal point from the fullrate data. Further analysis shows the dependence of the algorithm on the reported uncertainty contained within the distributed LLR normal points from Grasse. The importance of the normal point uncertainty is reflected in the weighted least square procedure used for parameter estimation, especially in the absence of a standardized algorithm between different LLR ground stations. The thesis also benefitted in terms of a more dense dataset due to technical improvements and the switch of operational wavelength to infrared at the Grasse LLR facility (Courde et al., 2017).

The reduction of the LLR observations was implemented within GINS -the orbit determination software from CNES. The modeling follows the IERS 2010 recommendations for the correction of all known effects on the light-time computation. The subroutines were verified through a step by step comparison study using simulated data, with LLR analysis groups in Paris and Hannover, maintaining any discrepancies in the Earth-Moon distance below 1 mm. Additionally, correction of the effect due to hydrology loading observed at the Grasse station was implemented [START_REF] Mémin | Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station[END_REF]. An improved version of the LLR reduction model was submitted to the space geodesy team of CNES (GRGS).

The lunar dynamical model of INPOP was first developed by Manche (2011). However, due to the absence of the fluid core within the previous version of INPOP (13c), the residuals obtained after a least-square fit were in the level of 5 cm for the modern day period (2006 onwards). A detailed comparison of the dynamical equations with DE430 JPL ephemeris helped to identify required changes within INPOP for the activation of the lunar fluid core. Other modifications allowed the use of a spacecraft determined lunar gravity field within the dynamical model. The use of a bounded value least square algorithm during the regression procedure accounted for variability to well-known parameters from their reported uncertainties. The resulting iteratively fit solution of INPOP ephemeris then produces a residual of 1.4-1.8 cm, on par with that reported by Folkner et al. (2014); Pavlov et al. (2016). The new INPOP ephemeris (INPOP17a) is distributed through the IMCCE website (www.imcce.fr/inpop) with a published documentation (Viswanathan et al., 2017) in the scientific notes of IMCCE. Furthermore, on providing tighter constraints on the lunar gravity field from GRAIL-data analysis within the dynamical model, a characteristic lunar libration signature with a period of 6 years was revealed with an amplitude of ± 5 cm. Several tracks were investigated for the identification of the unmodeled effect, involving higher degree tidal terms and torque components, and a new modeling is proposed. A publication is under revision on this subject.

Residuals at the level of a centimeter allow precision tests of the principle of equivalence in the solar system. The fitted value of the parameter characterizing the differential acceleration of the Earth and the Moon towards the Sun was obtained with numerically integrated partial derivatives. The results are consistent with the previous work by Williams et al. (2009[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF]; [START_REF] Hofmann | Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant[END_REF]; Hofmann and Müller (2016). An article on this work is accepted for i ii publication in MNRAS [START_REF] Viswanathan | The new lunar ephemeris INPOP17a and its application to fundamental physics[END_REF].

R ÉSUM É

L'objectif principal de ce travail était d'améliorer le modèle dynamique de la Lune dans les éphémérides numériques INPOP et d'exploiter cette amélioration en vu d'une meilleure caractérisation de la structure interne de la Lune et d'effectuer des tests de la relativité générale.

Dans un premier temps, un travail d'analyse des algorithmes nécessaires aux calculs des points normaux utilisés pour la construction des éphémérides lunaires a été effectué. L'importance de l'incertitude du point normal se reflète dans la méthode du moindre carré pondéré utilisée pour l'estimation des paramètres lors de la construction des éphémérides. En particulier, l'absence d'un algorithme standardisé entre les différentes stations LLR introduit des biais dans l'estimation des incertitudes qu'il est important de prendre en compte. La thèse a également bénéficié d'un ensemble de données plus dense en raison des améliorations techniques et du passage de la longueur d'onde à l'infrarouge à la station de Grasse (Courde et al., 2017).

Dans un second temps, afin de permettre des analyses multi-techniques combinant mesures SLR et LLR, la réduction des observations LLR a été introduite dans le logiciel de détermination d'orbites GINS du CNES, suite aux recommandations de IERS 2010. En outre, la correction des effets dus au chargement hydrologique observé à la station Grasse a été mise en oeuvre et a fait l'objet d'une première communication poster en 2016 [START_REF] Mémin | Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station[END_REF]. Une version améliorée du modèle de réduction LLR a été intégrée à la dernière version distribuée du logiciel GINS par l'équipe de géodésie spatiale (GRGS) du CNES.

Le modèle dynamique lunaire d'INPOP a d'abord été développé par Manche (2011). Cependant, sans doute en raison de l'absence du noyau fluide dans la version précédente (INPOP13c), les résidus obtenus après ajustement étaient au niveau de 5 cm pour la période moderne (2006). Une comparaison détaillée des équations dynamiques avec les éphémérides JPL DE430 a permis d'identifier les changements requis dans INPOP pour l'activation du noyau liquide lunaire.
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An improvement of 5% on the standard deviation is noticed. The offset from zero is due to the uncorrected calibration value. . . . . . 22 2.7 Cumulative distribution function of photon count/session obtained with the 532 nm (Green) wavelength (2014)(2015)(2016)(2017) and the 1064 nm (IR) wavelength (2015)(2016)(2017) 3.2 θ is the angle of nutation between ⃗ K and ⃗ k, φ is the angle of precession between ⃗ i and ⃗ OΩ, ψ is the rotation angle between ⃗ OΩ and ⃗ I. Ω is the ascending node. Courtesy: Manche (2011, Fig. 3.1) 6.1 Longitude libration signature of ±1 mm over 48 years on the 1-way light time range (0.33 mas on longitude libration) with a period of about 3 years (weak) arising from the introduction of higher order figure-figure interaction (fourth degree torque) between the Moon and the Earth, as provided by ⃗ N 22 torque in Bois et al. (1992, p. 197).104 6.2 Longitude libration signature of ±3 mm over 48 years on the 1way light time range (1 mas on longitude libration) with a period of about 3 years arising from the introduction of higher order inter figure-figure interaction (fifth degree torque) between the Moon and the Earth, as provided by ⃗ N 23 torque in Bois et al. (1992, p. 198). . 105 6.3 Contribution of degree-3 love number on the 1-way light time range. 106 6.4 Longitude libration signature arising from unmodeled effects within the dynamical model, with a period of 6 year and amplitude 5 cm on the range. Post-fit residuals (in 1-way light time [cm]) obtained with APOLLO station data vs time (in years) from solution with : (left) GRAIL-derived degree-3 lunar gravity field coefficients, (center) LLR-derived degree-3 lunar gravity field coefficients (C 3,2 , S 3,2 and C 3,3 ), (right) GRAIL-derived degree-3 lunar gravity field coefficients with the model described in Section (6. xxii rate of about 2-3 ms per century. One of the fundamental laws of physics is the law of conservation of momentum. A loss in the rotational angular momentum equals the gain in the orbital angular momentum. Hence as the Earth slows down, the momentum lost is transferred to the Moon's orbit. This gain results in the increase of the distance between the Earth and the Moon, as their masses remain constant. The rate of this outward motion of the Moon amounts to about 3.8 cm/yr. This value is also measurable with the analysis of laser ranging from the Earth [START_REF] Williams | The past and present Earth-Moon system: the speed of light stays steady as tides evolve[END_REF], to the lunar retro-reflectors placed on the Moon by Apollo astronauts during the Cold War inspired Space Race era.

If this outward motion is extrapolated into the past, we see that the Moon was closer to the Earth, 4.6 billion years ago, when the Earth and Moon were formed. This suggests the formation of the Moon near or even out of the Earth in the distant past, considering stronger tidal interaction propelling the Moon outward at a quicker rate.

Formation and evolution mechanism

How did the Moon form? What theory best explains the origin of the moon? Any theory of the Moon's origin, must explain, the Moon's relatively large mass with respect to its planet Earth. Mars is the only other terrestrial planet to have a moon, however its two satellites are relatively very small. The giant planets have extensive satellite systems, but their moons are usually composed of low-density rock-ice mixtures unlike our high-density rocky Moon.

A satisfactory theory must also explain the Moon's peculiar orbit which lies at 5 degrees to the ecliptic plane (plane of the Earth's orbit around the Sun) which is itself tilted 23.5 degrees with respect to the Earth's equatorial plane (see Fig. 1.1). Furthermore, its mean mass density of about 3344 kg/m 3 is much lower than the Earth's mean mass density of 5513 kg/m 3 .

Comparison of the lunar rocks returned from the lunar sample return missions provides further constraints on the Moon's history. The oldest rocks on the Moon solidified about 4.5 billion years ago, which means that the Moon is about as old as the Earth. An important distinction comes from the similar quantities of oxygen isotopes in both Moon and Earth rocks, suggesting common ancestry, instead of the Moon forming elsewhere and then being captured by the Earth's gravity. Another key constraint is the compositional differences, with Moon rocks lacking any detectable water-bearing minerals, or other kinds of volatile elements with low melting points. Yet when compared to the Earth, the Moon is enriched in non-volatile substances having high melting points that require high temperatures and extraordinary heat to vaporize into space.

Fission, capture and co-accretion models (see Fig. 1.2) of lunar origin have all been studied in great detail for more than a century, but none satisfies both the Observations from the Apollo data hinted that a dichotomy in the geologic processes may have existed between the lunar nearside and far-side. Topographic data obtained from the laser altimeter on the Apollo 15 probe, showed that there was a 2-km displacement between the Moon's center of mass and center of figure roughly along the Earth-Moon axis [START_REF] Kaula | Analysis and interpretation of lunar laser altimetry[END_REF], suggesting far-side crust was thicker than that of the nearside.

Electromagnetic-sounding data placed an upper limit of about 500 km on the core radius [START_REF] Hood | Geophysical constraints on the lunar interior[END_REF]. The measurement of a weak, induced dipolar magnetic field as the Moon passes through the Earth's geomagnetic tail implies the existence of a high-electrical-conductivity core with a radius of about 340 ± 90 km [START_REF] Hood | Initial measurements of the lunar induced magnetic dipole moment using lunar prospector magnetometer data[END_REF], whereas [START_REF] Shimizu | Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite[END_REF] found a radius of 290 km with an upper bound of 400 km. Additionally, the analyses of small rotational signatures obtained from the lunar laser ranging experiment indicate that the energy is currently being dissipated at the boundary between a molten core and a solid mantle (Williams et al., 2001), providing an upper limit of 374 km for a Fe-FeS eutectic fluid core and a 352 km upper limit for a pure Fe composition.

While the available evidence indicates that the Moon possess a small molten core, the geophysical data could not unambiguously constrain its composition as none of the well-determined seismic ray paths, collected by the small network of lunar seismometers, pass through the deepest portion of the lunar interior [START_REF] Wieczorek | The interior structure of the moon: What does geophysics have to say?[END_REF].

Reanalysis of the Apollo-era seismic data using array-processing methods suggests the presence of a solid inner and fluid outer core, with a partially molten boundary layer (Weber et al., 2011). However, analysis by another group Garcia et al. (2011), reports the remaining inconsistencies within Weber et al. (2011) and concludes with a lunar model without a solid inner core due to the strong uncertainties of the different parameters used.

Many of the samples returned contained high concentration of KREEP (potassium (K), rare earth elements (REE) and phosphorous (P)). [START_REF] Lawrence | Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer[END_REF] provides the surface thorium concentrations obtained from the Lunar Prospector gamma-ray spectrometer, showing high concentration of heat sources on the nearside region called Procellarum KREEP Terrane (PKT). A more recent study by [START_REF] Laneuville | Asymmetric thermal evolution of the Moon[END_REF], show with the help of thermo-chemical convection models, that the impact of such localized heat sources in the crust leaves a present-day temperature anomaly within the nearside mantle with its influence down to the core-mantle boundary (CMB).

Contributions from GRAIL and LLR

The gravity field of a planet provides a view of its interior and thermal history by revealing areas of different density. The Gravity Recovery and Interior Laboratory
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(GRAIL) mission placed a pair of satellites in an orbit around the Moon, acting as a highly sensitive gravimeter, and began mapping the Moon's gravity in early 2012. Zuber et al. (2013) provide the lunar gravity field to spherical harmonic degree and order 420, obtained from the spacecraft-to-spacecraft tracking observations from the GRAIL mission. The study revealed several new tectonic and geologic features of the Moon. Impacts have worked to homogenize the density structure of the Moon's upper crust while fracturing it extensively. [START_REF] Wieczorek | The Crust of the Moon as Seen by GRAIL[END_REF] show that the upper crust is 35 to 40 kilometers thick and less dense and thus more porous than previously thought. [START_REF] Andrews-Hanna | Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry[END_REF] show that the crust is cut by widespread magmatic dikes that may reflect a period of expansion early in the Moon's history.

From the 3 months of data collected over the primary mission, two independent groups at the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC) determined the lunar gravity field (Konopliv et al., 2013;[START_REF] Lemoine | High-degree gravity models from GRAIL primary mission data[END_REF] up to degree and order 660, with comparable estimates and uncertainties between the groups.

While the high-degree coefficients are very well determined, the solutions for the low-degree coefficients are very sensitive to the libration model (obtained from the fit of lunar ephemerides to lunar laser ranging (LLR) data) and to the models of the non-gravitational acceleration on the GRAIL spacecraft including the empirical periodic acceleration model (Konopliv et al., 2013). The physical libration model of the Moon from Williams et al. (2013) consists of a solid crust and mantle plus a uniform fluid core, without a solid inner core. Williams et al. (2014b) introduced variations on the models of Weber et al. (2011) and Garcia et al. (2011) to satisfy the lunar mean density, mean solid moment of inertia, love number and a deep low-velocity zone constraints to account for a solid inner core surrounded by an outer fluid core (see Williams et al. (2014b, Table 7-8)) to give a family of lunar interior models.

A detection of the solid inner core is feasible from very precise measurements of the lunar gravity field. The axis of rotation of a solid inner core within a liquid outer core can be different from the axis of the mantle. With an axis of rotation tilted by a different amount than the mantle, the inner core degree-2 spherical harmonics would produce variable gravity field as the core rotates. This causes a time varying C 21 and S 21 harmonics (when viewed in a mantle-fixed frame) with a period of 27.212 days [START_REF] Williams | A scheme for lunar inner core detection[END_REF]. The search for variable C 21 and S 21 harmonics was one of the goals of the GRAIL mission. Though the mission goals were met, the search for the inner core periodicities did not find results above the noise level [START_REF] Williams | The deep lunar interior from GRAIL[END_REF]. The detection of the solid inner core would provide further constraints to the models of lunar origin and evolution and answer key questions related to the possible existence of a now-extinct lunar dynamo [START_REF] Wieczorek | The Constitution and Structure of the Lunar Interior[END_REF][START_REF] Laneuville | A long-lived lunar dynamo powered by core crystallization[END_REF].

Combining gravity field with other observational techniques provides synergistic advantage to the problem. Laser-altimeter data from a lunar orbiting spacecraft (e.g. LRO-LOLA) provides constraints on the body tides (Mazarico et al., 2014) and LLR provides rotational signatures [START_REF] Rambaux | The Moon's physical librations and determination of their free modes[END_REF]. A study that combines these constraints (Matsuyama et al., 2016) provide probability distribution curves to the lunar solid inner core size and liquid core density. This can then be used to provide constraints on the thermal evolution of the lunar core and hence providing a link to its evolution. However, Matsuyama et al. (2016) did not consider the hemispheric asymmetry found by [START_REF] Laneuville | Asymmetric thermal evolution of the Moon[END_REF]; [START_REF] Zhang | A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: The importance of rheology and core solidification[END_REF], which could influence the estimates of the lunar interior structure due to the tidal forcing brought by the asymmetry [START_REF] Qin | Determination of Tidal Response of the Moon with Fully Threedimensional Elastic and Density Structures Using a Perturbation Method[END_REF].

Thermal evolution models suggest that a portion of the core should have crystallized to form a solid inner core at its center [START_REF] Zhang | A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: The importance of rheology and core solidification[END_REF][START_REF] Laneuville | Asymmetric thermal evolution of the Moon[END_REF][START_REF] Scheinberg | Magnetic field generation in the lunar core: The role of inner core growth[END_REF]. Hence, similar to the gravitational torques of the Earth acting on the lunar mantle, the Earth should also drive a tilt of the elliptical figure of the solid inner core, forcing it to precess with the 18.6 year period lunar mantle precession (Dumberry and Wieczorek, 2016). Furthermore, the gravitational torques exerted by the inner core on the lunar mantle may affect the Cassini state of the lunar mantle, similar to that expected for Mercury [START_REF] Peale | Consequences of a solid inner core on Mercury's spin configuration[END_REF]. This would in turn be detectable by LLR, provided the accuracy and time span of the LLR observations permit.

LLR observations continue to bring critical information in terms of libration sensitive low-degree gravity field coefficients due to its long time span and high accuracy, which would complement the low-degree coefficients of the GRAIL-derived gravity field models for the detection of the solid inner core of the Moon.

Tests of general relativity

The year 2015 marked the 100th anniversary of General Relativity Theory (GRT) [START_REF] Einstein | Relativity: The special and the general theory[END_REF]. Up to now, GRT successfully described all available observations and no clear observational evidence against General Relativity was identified. However, the discovery of Dark Energy that challenges GRT as a complete model for the macroscopic universe and the continuing failure to merge GRT and quantum physics indicate that new physical ideas should be searched for. To streamline this search it is indispensable to test GRT in all accessible regimes and to highest possible accuracy.

Violations of the Equivalence Principle (EP) are predicted by a number of modifications of GRT aimed to suggest a solution for the problem of Dark Energy and/or to merge GRT with quantum physics (Damour and Polyakov, 1994;[START_REF] Williams | The jpl lunar laser range model[END_REF]2. TESTS OF GENERAL RELATIVITY Damour and Donoghue, 2010;[START_REF] Damour | Theoretical aspects of the equivalence principle[END_REF]. The Universality of Free Fall (UFF), an important part of the Equivalence Principle, is currently tested at a level of about 10 -13 with torsion balances (Adelberger et al., 2003) and the LLR (Williams et al., 2012a;Müller et al., 2012). EP violations and time variations in the fundamental coupling constants could also be a result of the effects of a scalar field coupling with the gravitational field [START_REF] Damour | Testing the equivalence principle: why and how? Classical and Quantum Gravity[END_REF][START_REF] Damour | Equivalence principle and the Moon[END_REF]. Therefore, tests of EP and Ġ have great importance due to its wide reach as sensitive probes towards new physics (Murphy, 2013).

Some other formalisms often used to test gravity in the solar system and to solve some questions raised by the Dark Matter and the expending universe can also be tested with the LLR measurements: the modification of the inverse square law of gravity [START_REF] Falcon | MoND with Einstein's Cosmological Term as alternative to Dark Matter[END_REF], additional force represented by Yukawa-type expression (Adelberger et al., 2003;[START_REF] Müller | Potential Capabilities of Lunar Laser Ranging for Geodesy and Relativity[END_REF].

"Measurement of the precession rate can also probe a recent idea (called Dvali, Gabadadze, Porrati (DGP) gravity) in which the accelerated expansion of the universe arises not from a non-zero cosmological constant but rather from a long-range modification of the gravitational coupling, brought about by higher-dimensional effects [START_REF] Lue | Gravitational leakage into extra dimensions: Probing dark energy using local gravity[END_REF]Dvali et al., 2003;Dvali et al., 2003). Even though the lunar orbit is far smaller than the Gigaparsec length-scale characteristic of the anomalous coupling, there would be a measurable signature of this new physics, manifesting itself as an anomalous precession rate at about 5 µarcsec.yr -1 , roughly a factor of 10 below current LLR limits, and potentially reachable by millimeter quality LLR." - (Murphy, 2013, p. 8) Tests of GRT remains as an important tool to streamline the theoretical development. While a number of space missions are planned to improve these tests (MICROSCOPE to test the UFF with the level of 10 -15 [START_REF] Bergé | Status of MICROSCOPE, a mission to test the Equivalence Principle in space[END_REF], Gaia (Hees et al., 2015) and BepiColombo (de Marchi and Congedo, 2017) to provide a number of high accuracy tests of GRT, EUCLID [START_REF] Laureijs | Euclid definition study report[END_REF] to study the distribution of Dark Matter in our Galaxy and the Universe, etc.), the instrumentation proposed here will lead to study the solar system dynamics for aiming at a set of advanced GRT tests that are complementary to the planned space-mission tests.

Finally, direct measurement of Dark matter in the solar system is also proposed by [START_REF] Nordtvedt | Cosmic acceleration of the Earth and Moon by dark matter[END_REF] with the detection of its gravitational influence on the most accurately measured quantity in the solar system, the Earth-Moon distances (Merkowitz, 2010).

CHAPTER 1. INTRODUCTION

Ephemerides and its applications

The 1960's were a turning point for the generation of ephemerides, before which analytical models were used for describing the state of the solar system bodies as a function of time. A team from the Lincoln Laboratory, MIT [START_REF] Ash | Generation of the lunar ephemeris on an electronic computer[END_REF] introduced the planetary ephemeris program (PEP) on a computer software using FORTRAN IV language, to improve the planetary and lunar ephemerides using the results of radar and optical observations. The first laser ranges to the lunar retro-reflectors were obtained in 1969 after the Apollo landing (Faller et al., 1969). The change from lunar angular measurements to laser ranges marked a great improvement to the observational accuracy driving comparable improvements to the lunar ephemerides (Bender et al., 1973). Opportunities to test the theory of general relativity also surfaced [START_REF] Shapiro | Fourth Test of General Relativity[END_REF]Nordtvedt, 1968;[START_REF] Williams | New test of the equivalence principle from lunar laser ranging[END_REF][START_REF] Anderson | Tests of general relativity using astrometric and radio metric observations of the planets[END_REF].

While the fitting of optical data was long accomplished with analytical theories for the Moon and planets, the improved data required the development of numerical integration techniques and more comprehensive physical models. In the late 1970's the numerically integrated planetary ephemerides were built by the Jet Propulsion Laboratory (JPL), called the developmental ephemeris (DE96) [START_REF] Standish | Jpl development ephemeris number 96[END_REF]. Since then, there have been many versions of the JPL DE ephemerides through the present [START_REF] Newhall | DE 102-A numerically integrated ephemeris of the moon and planets spanning forty-four centuries[END_REF][START_REF] Standish | The observational basis for jpl's de 200, the planetary ephemerides of the astronomical almanac[END_REF]Standish, 1998[START_REF] Standish | Jpl planetary ephemeris de414[END_REF]Folkner et al., 2009;Folkner et al., 2014). These ephemerides are continuously fitted to the data gathered from tracking space probes (radar ranging, flybys and VLBI), optical data (transit, photographic plates and CCD observations for outer planets) and direct range measurements (LLR). Semi-analytical theories also emerged to take advantage from both the worlds [START_REF] Chapront-Touze | The lunar ephemeris ELP 2000[END_REF], however they lack accuracy when compared with numerically integrated ephemerides.

Simultaneously, with the growing interest in space sciences, the European Space Agency (ESA) was actively involved in interplanetary missions and collaborated with other national space administrations. With these developments, the "Intégrateur Planétaire de l'Observatoire de Paris" (INPOP) project was initiated in 2003 to build the first European planetary ephemeris independently from JPL. The INPOP project evolved over the years with the first official release in 2008: INPOP06 (Fienga et al., 2008) followed by versions 08-15 [START_REF] Fienga | Evolution of INPOP planetary ephemerides[END_REF]Fienga et al., 2011;Fienga et al., 2014Fienga et al., , 2015Fienga et al., , 2016a)). Through the official website 2 of the"Institut de Mécanique Céleste et de Calcul des Éphémérides" (IM-CCE), these ephemerides are freely distributed to the users. With the help of ephemerides, the users can have access to the positions and the velocities of the major planets, Moon and asteroids of our solar system, the libration angles of the Moon as well as the differences between the terrestrial time TT (time scale used to date the observations) and the solar system barycentric times (TDB/TCB) (time scales used in the equations of motion). The ephemerides can be accessed using CALCEPH [START_REF] Gastineau | CALCEPH: Planetary ephemeris files access code[END_REF] or SPICE [START_REF] Acton | Ancillary data services of NASA's Navigation and Ancillary Information Facility[END_REF] toolkit libraries.

In addition to INPOP and DE, another numerical ephemeris are those developed by the teams at the Institute of Applied Astronomy (IAA) of the Russian Academy of Sciences (RAS), called the Ephemerides of Planets and the Moon (EPM) [START_REF] Pitjeva | High-precision ephemerides of planets-epm and determination of some astronomical constants[END_REF][START_REF] Pitjeva | Updated iaa ras planetary ephemerides-epm2011 and their use in scientific research[END_REF]. These ephemerides are based on the same modeling as the JPL DE ephemerides. The most recent version being EPM2016 (Pavlov et al., 2016).

As numerical ephemerides are fitted to real observations, the mathematical model backing the ephemerides follow closely with the real-world processes. This enables a more realistic simulation of the natural processes allowing comparison of the real observations with simulated observations. Any remaining differences (post-fit residuals) between the simulated and the real observations indicate unmodeled effects within the numerical model provided the amplitude of the differences are greater than the level of the known accuracy of the real observations and also considering the absence of modeling errors at the same level. Introducing model additions/changes based on the detected unmodeled effects continuously improve the quality of the simulation as well as provide best-fit estimates of the model parameters.

Traditionally, numerical ephemerides are used to satisfy high accuracy requirements for spacecraft navigation and mission planning. Other scientific applications include (but are not limited to) orbit determination and localization (Fienga et al., 2016a), reference frame ties [START_REF] Folkner | Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements[END_REF], gravity field determination [START_REF] Iess | The Gravity Field and Interior Structure of Enceladus[END_REF][START_REF] Folkner | Jupiter gravity field estimated from the first two Juno orbits[END_REF] asteroid mass determination [START_REF] Kuchynka | A ring as a model of the main belt in planetary ephemerides[END_REF], fundamental physics (Bertotti et al., 2003;[START_REF] Williams | Progress in Lunar Laser Ranging Tests of Relativistic Gravity[END_REF]Fienga et al., 2011;[START_REF] Fienga | Tests of GR with INPOP15a planetary ephemerides: estimations of possible supplementary advances of perihelia for Mercury and Saturn[END_REF], solar corona studies [START_REF] Verma | Electron density distribution and solar plasma correction of radio signals using mgs, mex, and vex spacecraft navigation data and its application to planetary ephemerides[END_REF] and paleoclimate studies [START_REF] Laskar | A long-term numerical solution for the insolation quantities of the Earth[END_REF][START_REF] Laskar | La2010: a new orbital solution for the long-term motion of the Earth[END_REF].

For this study, we develop on the INPOP planetary and lunar ephemeris, as a laboratory to perform tests relevant to two of the interests described in the previous sections: lunar interior structure (Section 1.1) and test of the violation of the universality of free fall using the principle of equivalence (Section 1.2), in using LLR observations and a GRAIL-derived gravity field model (Konopliv et al., 2013).

Outline of the thesis

The following describes a brief outline of this thesis: Chapter (2) discusses the observations used for this study, consisting of lunar laser ranging (LLR) data acquired between 1969 to 2017 from various LLR stations. The existing normal point algorithm at the Grasse LLR station is evaluated and an alternative algorithm is proposed. New LLR observations from the Grasse station obtained using the IR (1064 nm) wavelength are also included and its benefits are discussed.

The numerical model for the Earth-Moon system consists of two components: the reduction model (Chapter 3) and the dynamical model (Chapter 4). The geophysical and relativistic effects implemented within the reduction model (GINS software) are discussed with its impact on the Earth-Moon distance. The dynamical model consists of the INPOP planetary and lunar ephemeris. The lunar part of the ephemeris is described with the improvement from the previous model (IN-POP13c).

Chapter (5) describes the processes behind the construction of a lunar ephemeris followed by the analysis of the post-fit residuals and comparison of the model parameter estimates with previous LLR analyses. A technical report on the new INPOP solution (INPOP17a) is published within the "Notes Scientifiques et Techniques de l'Institut de Mécanique Céleste", Viswanathan et al. (2017).

Chapter (6) applies the results to the study of lunar interior structure and a strong longitude libration signature of 6 years is detected. Investigation attempts to correct this signature are discussed and a model is provided. An article on the study of the lunar interior structure is submitted to the Astronomy & Astrophysics journal provided in Appendix (C). Chapter (6) also describes a test of the theory of general relativity with respect to the universality of free fall in the Earth-Moon system. A discussion on the results obtained is provided. An article on this work is accepted to the Monthly Notices of the Royal Astronomical Society (MNRAS) and provided in Appendix (D).

Chapter 2

Observation: Lunar Laser Ranging

Introduction

Lunar Ranging Retro Reflector (LRRR) arrays were part of the scientific payloads on the three US Manned (APOLLO XI, XIV, XV) and on-board two Soviet Rover (Lunakhod 1, 2) Lunar missions (hereby referred to as A11, A14, A15, L1 and L2 respectively). These arrays were installed by each respective mission, resulting in five distinct positions on the near-side of the Moon.

Ground-based telescopes were used to precisely point to the array location on the lunar near-side, and high energy laser pulses were fired. Initial attempts to acquire the return pulses were made at the Lick Observatory in California, US (Faller et al., 1969) with an outgoing beam, approximately 2 seconds of arc, corresponding to a spot diameter of 3.2 km on the lunar surface. Over the next decades, other ground-based telescopes from various sites joined the list of lunar laser ranging stations, namely, McDonald (Texas) (Bender et al., 1973), MLRS1 and MLRS2 (Texas) [START_REF] Shelus | Mlrs: A lunar/artificial satellite laser ranging facility at the mcdonald observatory[END_REF], Haleakala (Hawaii) [START_REF] Berg | High-precision laser distance measurement in support of lunar laser ranging at haleakala, maui[END_REF], Grasse (France) [START_REF] Veillet | Lunar Laser Ranging at CERGA for the ruby period (1981-1986)[END_REF]Samain et al., 1998;[START_REF] Torre | First LLR Observations of Lunokhod 1 with MéO Instrument[END_REF], Matera (Italy) [START_REF] Varghese | Matera laser ranging observatory (mlro): an overview[END_REF] and APOLLO (New Mexico) [START_REF] Murphy | The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections[END_REF]. The accuracy of observations improved over time with improvements in detector electronics, aided by larger ground-based telescopes, and improved normal point computation algorithms. The most accurate observations are provided by APOLLO station with a 3.5 m telescope (Murphy et al., 2012;Murphy, 2013) and to some extent the Grasse station with recently improved detection capabilities in infrared wavelength (Courde et al., 2017).

Retro-reflectors have the ability to reflect waves in the same direction as the incident waves, arising from the arrangement of the optical mirrors as a corner

Normal Point

Introduction

A normal point is a reduced observation containing the round trip time of the light pulse at a given time from the spatial reference of the Lunar Laser Ranging (LLR) station on the Earth to the retro-reflector array on the surface of the Moon, computed from many individual echoes. A normal point is computed from full-rate data. The idea is to reduce the data collected from one ranging session (consisting of several echoes) to one single time delay value, the 2-way light time at some specific epoch.

The primary advantage of using a normal point over the full-rate data is the reduction of the computational complexity achieved through a reduced data volume. Unlike satellite laser ranging (SLR) where the motion of the artificial satellite is rapid within each ranging session, high frequency variations (of a few hundred Hz) within lunar laser ranging are mostly associated with turbulent fluctuations within the Earth's upper atmosphere and local pressure-temperature gradients. Using a single normal point to represent the full-rate LLR data averages out most of these variations over the 10 minute ranging session. A study on the processes involved for the identification, filtering and reduction of the full-rate LLR data from the McDonald LLR station can be found in [START_REF] Abbot | Laser observations of the Moon: Identification and construction of normal points for 1969-1971[END_REF].

In order that the normal point well represents the full-rate data, the algorithm used for the computation of the former must well characterize the distribution of the latter.

In the case of laser ranging to the lunar retro-reflector arrays from ground-based stations, the mean of the detection time distribution comprising of the accumulated return pulses, indicates the average difference between the predicted and observed round-trip time taken by the photon. The photons traverse the sum of the total calibration path of the set-up and twice the Earth-Moon distance (up-leg and down-leg). The standard deviation of the detection time distribution is primarily due to the contributions from the orientation of the retro-reflector array or target and the response function of the detector and timing electronics, while the shape of the laser pulse fired defines the theoretical minimum (with contributions from the detector and timing electronics). The contribution from the atmospheric turbulences become dominant at low elevation angles (around 10 ○ ) while LLR is typically performed at higher elevation angles (30 ○ to 40 ○ ) [START_REF] Currie | Atmospheric effects and ultimate ranging accuracy for lunar laser ranging[END_REF].

The International Laser Ranging Service (ILRS) Herstmonceux Normal Point algorithm [START_REF] Pearlman | The International Laser Ranging Service[END_REF] recommends a tight rejection limit of 2.5-σ for first photo-electron detection systems. This is because such detection systems often involve a photo-diode which is highly sensitive to the first-photon that arrives to CHAPTER 2. OBSERVATION: LUNAR LASER RANGING the detector. This arrival triggers an avalanche multiplication phenomenon which causes the signature of the detector to influence the skew of the expected return pulse distribution. A scheme for the normal point generation and first-photo bias at the APOLLO LLR station can be found in Michelsen (2010).

Data format

The historical LLR data spanning over 1969-2016 from all stations is available publicly in the "MINI" format at http://polac.obspm.fr/llrdatae.html. Recent LLR observations (both in Green and IR wavelength) from Grasse station (2015Grasse station ( -2017) ) is made available at http://www.geoazur.fr/astrogeo/?href=observations/ donnees/lune/brutes.

Each LLR normal point contains information about the ground station (ITRF code), targets (lunar reflectors), time of flight of photons (s), observation epoch (UTC), meteorological measurements at the ground station such as atmospheric pressure (0.01 mbar), ground temperature (0.1 ○ C) and relative humidity (%), wavelength of the laser used (0.1 nm) and data quality information through the number of echoes received, signal to noise ratio and the estimated uncertainties (0.1 ps).

This study uses the MINI format for the normal points. Another format available is the Consolidated Range Data (CRD) useful for kilohertz ranging applications, whose description can be found at the ILRS website1 .

Existing algorithm at Grasse station

The original code employed at the Grasse station uses a Visual Basic program allowing a user interface for the control of laser pulse firing, telescope pointing adjustments and normal point computation based on the Herstmonceux Normal Point Recommendation [START_REF] Pearlman | The International Laser Ranging Service[END_REF].

At the Grasse ILRS station, a fixed temporal detection window of ±50 ns is used for acquiring the incoming reflected photons after laser firing to the retro-reflectors. The arrival times of the reflected photons are compared with a semi-analytical lunar ephemeris provided by the Paris Observatory Lunar Analysis Center (PO-LAC), accurate to a few centimeters on the lunar orbit2 . These differences are then stacked in time to form an histogram as shown in Fig . (2.1). This is followed by the determination of the peak of the accumulated return pulses, identified using a correlation method. The accumulated return pulses are correlated with a fixed laser pulse shape. The histogram (Fig. 2.3) is intended to 20 CHAPTER 2. OBSERVATION: LUNAR LASER RANGING tainty computation, the public distribution of the normal points from such instances, impact the regression procedures used by LLR analyses groups (see Section 5.1.2).

As a better practice it is recommended by this study to remove such observations from the distributed list of normal points.

• Rejection filter scaling

The ILRS recommends a scaling factor of 2.5 for the rejection filter with systems that detect the first photo-electron. A change in the rejection filter will directly impact the standard deviation of the filtered residuals (and therefore the construction of lunar ephemerides as shown in Section 5.1.2) stored in the normal point, especially when outliers are involved.

Within different versions of the original code available through internal repositories at the Grasse station, variations of this scaling factor is noticed from 2.2 to 2.5 prior to year 2000. Such changes made at the Grasse station are often internal and the information is not logged for public access.

As a result, one can notice scaling factors being applied independently by LLR analyses groups (Manche, 2011;Williams et al., 2014a;Pavlov et al., 2016) while weighting observations during regression, using normal point uncertainties (see Fig. 5.1.2).

As a better practice it is recommended by this study to:

1. Log changes to algorithm through a publicly accessible domain;

2. Suggested use of a version control tool for all codes impacting publicly released data.

• Fixed shape of correlator The Grasse station algorithm uses a fixed shape (see Fig. 2.3) within the correlation method for separating the return pulse distribution from accumulated noise within the histogram. While this fixed shape approximates to an ideal laser pulse, return pulse distribution from LLR involves other dependencies such as that from photo-diodes, timing electronics and retro-reflector orientation [START_REF] Michelsen | Normal point generation and first photon bias correction in APOLLO lunar laser ranging[END_REF].

Although the current LLR photon detection rate (typically below 100 photons over 10 minutes ranging session) at the Grasse station is not sufficient to fully characterize lunar reflector orientation signatures (trapezoidal), the detected photon distributions are seldom symmetric (see Fig. 2.5). Hence, employing a fixed symmetric Gaussian distribution is only an approximation to the expected pulse distribution. An alternative is to use the calibration profile of the laser pulse at the Grasse station (see Fig. 2.2) obtained by 2006-2012[START_REF] Bouquillon | Lunar laser ranging: Recent activities of the paris observatory lunar analysis center[END_REF], while those from DE430 give about 2 cm (Folkner et al., 2014). The resulting residuals obtained with DE430 is converted to 2-way light time and compared with that obtained with the original predictions present within the LLR full rate data. As one can notice on Fig.

(2.6), a 5% improvement of the residual dispersion (σ) is noticed on the replaced light-times due to the accuracy of the underlying ephemeris and improved reduction software, used for the prediction.

This study recommends the use of an updated numerical planetary and lunar ephemerides as the prediction model for LLR observations to obtain a tighter spread of LLR residuals during the normal point computation.

Alternate algorithm

Improvements to the normal point algorithm must be effective to remove unwanted signatures within the full rate data. These may include biases introduced by the detection electronics or from the asymmetry of the projection of the ranging object to the plane wave of laser light. [START_REF] Michelsen | Normal point generation and first photon bias correction in APOLLO lunar laser ranging[END_REF] shows the impact of such effects on normal point algorithm for APOLLO LLR data and [START_REF] Kucharski | A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy -a case study with Ajisai[END_REF] proposes methods to remove satellite (Ajisai) signatures in high-repetition rate (few kHz) SLR normal points for millimeter-level applications in geodesy.

For LLR, although the retro-reflectors are aligned to nominally face the earth center at zero libration (variation in the apparent orientation of the Moon), for any given observation, the reflectors are tilted with respect to the plane wave of laser light. This tilt spreads out the return pulse over the time it takes the wave front to pass from the nearest point on the retro-reflector to the farthest. This has a direct impact on the spread of the core of the Gaussian distribution present in the histogram of the residuals. In addition, the characteristics of the background noise (zero mean or non-zero mean) can cause the histogram to skew towards the mean of the noise. Hence it becomes important to completely characterize the components present in this LLR dataset, rightly called as a mixture model.

In this method of normal point calculation we used the Expectation Maximization Approach [START_REF] Gupta | Theory and use of the em algorithm[END_REF]) in order to decipher the characteristics of the skewed normal components present in the LLR return pulses with background noise, and thereafter computed the normal point for the corresponding LLR dataset.

A Python implementation 4 is used for the Mixture Model Fitting and adapted to a three-component mixture sample (returns from IR and/or Green wavelengths and background noise). The Expectation Maximization (EM) algorithm is implemented, for estimating the maximum likelihood of the model parameters (mean CHAPTER 2. OBSERVATION: LUNAR LASER RANGING and variance). In addition we also include the skewness estimate by combining another Python implementation5 based on the study by [START_REF] Azzalini | Statistical applications of the multivariate skew normal distribution[END_REF] for the generation of skewed normal distribution in the maximum likelihood step.

We assume that the mixture model consists of the linear combination of three Gaussian distributions corresponding to the residuals for Green and/or Infrared lasers, along with the background noise (with the sigma of the background noise chosen to be very large when compared to the residuals to represent a near uniform noise). The EM method allows to fit a statistical model in the case where the experimental data has unknown variables. These variables provided us the information about which component has generated each sample in our dataset.

With the EM method, we first assigned each sample to each component of the distribution. After which, we computed MLE estimators of parameters of each component of the mixture. Apart from the mean and variance estimates we also introduced a skewness parameter for our study. For each sample s i we have three coefficients γ (i, 1), γ (i, 2) and γ (i, 3) that represent the fraction of s i that belong to the respective components green, IR or noise.

And,

γ (i, 1) + γ (i, 2) + γ (i, 3) = 1 (2.1)
where γ is the responsibility function.

The probability distribution function (PDF) f corresponding to the components in the mixture model follow a Gaussian distribution given by:

f x p = 1 σ √ 2π e -(x-µ) 2 2σ 2
(2.2)

The PDF of the mixture becomes:

f x p = 3 k=1 π k f k x p (2.3)
If we know the parameters p (from our initial guess), we can compute for each sample and each component the responsibility function defined as:

γ (i, k) = π k f k s i p f s i p (2.4)
where, π k is the probability that the sample belongs to the distribution k described by:

π k = N k N (2.5)
and starting from the effective number of samples for each category (N k ) we can compute the new estimation of parameters:

N k = N i=1 γ (i, k) (2.6)
where, k = 1, 2, 3

N 1 + N 2 + N 3 = N (2.7)
The new mean corresponding to the component k is computed as:

µ new k = 1 N k N i=1 γ (i, k) ⋅ s i (2.8)
Followed by the new variance corresponding to the component k is computed as:

σ 2 new k = 1 N k N i=1 γ (i, k) ⋅ s i -µ new k 2 (2.9)
And the new values of skew are computed as:

ξ new k = 1 N k N i=1 γ (i, k) ⋅ ⎛ ⎝ 4 -π 2 ⋅ E{X} 3 var{X} 3 2 ⎞ ⎠ (2.10)
where,

δ = α √ 1 + α 2 (2.11) E{X} = 2 π δ (2.12) var{X} = 1 - 2δ 2 π (2.13)
where, α is the shape parameter, which regulates the shape of the density function of the skewed normal distribution.

The skewness is introduced into the Eqn. (2.2) through the shape parameter α with the help of the complementary gauss error function (erfc), as:

f new x p = e -(x-µ) 2 2σ 2 erf c -α(x-µ) σ √ 2 σ √ 2π (2.14)
The following steps are iterated until the convergence criteria is achieved:

1. Recomputation of γ (i, k);

2. Estimation of the updated moments.

The maximum variation of the computed moments of the distribution between the i th and (i -1) th iteration to a specified tolerance ǫ forms the basis for the convergence.

The apriori selection for the mean of the distribution is controlled by the calibration setup allowing a good separation in time with different wavelength. The following values were set as the initial conditions for the moments during iterations:

• The mean for the green laser residuals (µ G ) can be expected within ±3 ns from the predicted value.

• The mean for the IR laser residuals (µ IR ) are offset from µ G by +5 ns (set by the Grasse station technical team for ease of separation of the two detection paths).

• The expected standard deviation for Apollo 15 reflector is about 300 ps whereas for all the other reflectors it is about 200 ps.

• The noise variance is expected to be as large as the window of reception, which is about 25 ns.

The algorithm was implemented in parallel to the technical developments and tests conducted at the Grasse station in 2015, when both IR and Green distributions were collected on the same datafile with a 5 ns separation between them. At the time of writing however, LLR ranging at the Grasse station using the two wavelengths are separated into two independent observations. This reduces the number of distribution pertaining to an observation set to two components (observation and noise). The results obtained with the EM algorithm described in the following section considers this update.

Results

Methodology

Observations were simulated as a Gaussian distribution with initialized values of mean (about 0.5 ns) and standard deviation (about 0.3 ns) corresponding to a typical observation from the Grasse LLR station. Noise was introduced as a zeromean Gaussian distribution with a standard deviation of 25 ns with 10 times the number of samples as the observation. Simulations were run over 100 iterations and the average recovery error (% difference between the recovered and simulated mean/standard deviation) in the estimation of the mean and standard deviation obtained from the two algorithms are considered. In each iteration the mean and the standard deviation of the simulated observation was allowed to vary by 50% (from a uniform random distribution), so that a realistic estimation of the recovery error is obtained. To favor comparison between the results obtained with the two algorithms, the same set of seeds are used to initialize the pseudo-random number generator. These simulations were implemented in Python and are made publicly available6 .

Evaluation criteria

The two algorithms: the Grasse station correlation method (Section 2.2.3) and the Expectation Maximization method (Section 2.2.4), are analyzed with the help of different simulated datasets, similar to that encountered with the real observations. A total of six cases are considered for the simulated dataset for the purpose of evaluation. They are as follows:

1. Low photon count (50 photons/session) corresponding to Grasse station operation in 532 nm wavelength (a) 2.5-σ rejection filer (Case 1.a in Each of the above cases are grouped into the following evaluation criteria, so as to compare the performance of the two algorithms (Grasse station and EM algorithms) used for the normal point computation. They are as follows:

• Photon count and rejection filter A tight rejection filter at 2.2-σ to 2.5-σ eliminates the tail of the Gaussian distribution. If a symmetric distribution is expected from the return pulses, the scaling factor in the rejection filter would play no role on the mean value of the distribution, but a significant role on the estimation of the standard deviation.

For low photon count LLR ranging (below 100 detected photons -cases 1.a and 1.b in Table 2.1), it is recommended to set a tight rejection filter in order that outliers are not taken into account for the computation of the normal point, which otherwise would lead to a bias on the average residual and the standard deviation. Hence, with a tight rejection and low photon count, the Grasse station algorithm performs better in recovering both the CHAPTER 2. OBSERVATION: LUNAR LASER RANGING mean and the standard deviation of the simulated distribution compared to the alternate algorithm, by 5 % and 7 % respectively. This is due to the combined effect of the limited number of photon counts and a tight rejection filter, as employed at the Grasse station algorithm. The limited number of photons degrade the quality of the EM fit.

On the other hand, when the photon counts are greater (200 detected photons and above), the alternative algorithm performs better as it is able to characterize the distribution well above the noise floor. The improvement in % error is 2 times on the mean and an order magnitude on the standard deviation as given by the case 3.a within Table (2.1). With the introduction of skew and tighter rejection, the current algorithm used at the Grasse station becomes significantly degraded as indicated by the case 3.c. Currently, at the Grasse LLR station, on an average, about 50 photons/session are obtained with 532 nm laser and about 100 photons/session using 1064 nm laser corresponding to cases 1 and 2 (respectively) within Table (2.1).

• Background noise

The background noise is simulated as a near uniform distribution (simulated with a Gaussian distribution with a large standard deviation of 25ns as compared with the observations) with 10 times more samples than the detected photons. The performance of the algorithm at the Grasse station under background noise is at the expense of strong sample rejection filter, while all samples are retained with the alternate EM algorithm. Moreover, since the rejection filter within the Grasse station is subject to user adjustments, the EM algorithm allows a more autonomous approach with both high or low background noise. When comparing a fixed scaled (2.2-σ) rejection filter of the algorithm used at the Grasse station and a 2 Gaussian EM algorithm, the latter recovers the mean and the standard deviation marginally better (≤ 2%) under strong background noise. The improvement becomes more significant with the EM algorithm when a 3-σ filter is assigned to the Grasse station method.

• Binning effect The effect of binning arises typically in a sparse distribution (for example, but not limited to case 1 in Fig. 2.1), giving rise to gaps and multiple peaks within the histogram of the distribution. About 5-10 % of data obtained from the Grasse station is susceptible to these effects. In the presence of such artifacts, the correlation algorithm fails to distinguish (2-6 % error) between two identical peaks. The EM algorithm does not require binning and hence is not susceptible to this effect.

Gaps within the histogram raises a problem for correlation method, as it suggests a weak correlation due to missing data. However, on adjustment of the bin width, one may notice a strong correlation. This directly affects the peak detection using maximum point of correlation under a fixed bin width, and the rejection scheme employed around the peak thereafter. The EM normal point algorithm is not affected by small data gaps (at few hundreds of ps) which arise as a result of bin width.

• Initial conditions

The EM algorithm requires the initialization of the moments of the Gaussian distributions. The selection of these initial conditions do not affect the outcome of the algorithm due to the inherent iterative approach. The algorithm used by the Grasse station on the other hand relies vastly on the correlation peak (initialized for the application of the rejection filter) which is susceptible to the above mentioned binning effects.

• Symmetry

The current algorithm used at the Grasse station assumes a strong symmetry both in the correlation method and the application of the rejection filter.

The EM algorithm allows the estimation of higher order moments such as skew and kurtosis to be included as parameters within the normal point computation. With increased photon count, the asymmetry of the distribution becomes significant to an extent that the simple average does not coincide with the Gaussian core i.e. for a positive skew, the mean becomes greater than the Gaussian core as one can see in cases 3.b and 3.c within Table (2.1).

When the symmetric correlation method used at the Grasse station is applied on these cases, the error on the moments become significant (up to 12% in case 3.c of Table (2.1)). The skewness is neglected for the low photon count case, as its estimation is found to be uncertain at the chosen low sampling rate.

Inference

The two algorithms are weighted statistically by their performance under different scenarios (Section 2.2.5). The Grasse station algorithm performs well with observations constituting a low photon count under the application of a strong rejection filter though it assumes a strong symmetry through the correlator method and relies heavily on the selection of the scale of the rejection filter. The optimal rejection filter is currently set to 2.2-σ but this value has varied in the past and have affected the uncertainties reported in the distributed normal points. As a first step towards the standardization of normal point computation it is required that the normal point be recoverable from the full rate data by another user. Hence, through the EM algorithm, the user variables within the currently employed normal point algorithm at the Grasse station are minimized. The alternative algorithm is independent from:

• Selection of rejection filter scaling

• User inputs to overcome binning effects

• Symmetry assumptions

The EM algorithm here assumes that the expected distribution follows a Gaussian distribution, with skewness as an optional variable. Though other distributions were not explored for a better fit, under such an event, the EM algorithm can be easily adapted to follow the required distribution. The choice of a functional distribution can be chosen based on the expected response function of the underlying instruments.

Fig.

(2.7) shows the cumulative distribution of the photon count obtained at the Grasse station in 532 nm (2014-2017) and 1064 nm (2015-2017) wavelengths. With a photon count of below 100 photons/session, the Grasse algorithm is preferred, while with the remaining higher photon count (constituting about 6% of Green and 18% of IR LLR data from Grasse) the EM algorithm is optimal.

With increased number of detected photons, some of the issues associated with the Grasse station algorithm (Section 2.2.3) can be avoided with the help of the EM algorithm. With the constant technological advancements and tests conducted by the technical team at the Grasse LLR station one can expect a greater photon count in the near future. Fig. (2.7) also shows the recent (August 2017) high photon count sessions obtained from the IR detection at Grasse station. In addition, an effort is in place to study the prospects of LLR pulse train accumulation for increased photon count. Moreover, as the number of detections increases, the asymmetry of the distribution of detected photons become evident and appropriate compensation within the normal point algorithm will be required for millimeter level LLR accuracy.

Comparisons between IR and Green LLR data sample

Non-uniform distributions in the dataset are one contributor to correlations between solution parameters (Williams et al., 2009). Like one can see on In this work, we show how the IR LLR observations acquired at the Grasse station during 2015-2017 (corresponding to 7% of the total LLR observations obtained between 1969-2017 from all known ILRS ground stations) can help for the reduction of such heterogeneity.
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to ranging at a very close angle to the Sun (Williams et al., 2009;Courde et al., 2017). b. Full Moon phase: During this phase, thermal distortions remain as the primary challenge, arising due to the over-head Sun heating of the retro-reflector arrays. This induces refractive index gradients within each corner cube causing a spread in the return beam, which makes detection more difficult (see [START_REF] Goodrow | Effects of thermal gradients on total internal reflection corner cubes[END_REF]). The proportion of this effect is partially linked to the thermal stability of the arrays. Since the A11, A14 and A15 arrays have a better thermal stability compared to the L1 and L2 arrays (Murphy et al., 2014), observations to the latter become sparse during the full Moon phase.

Despite these challenges, LLR observations during the above mentioned phases of the Moon have been acquired with the IR detection. For the first two years of 1064 nm detection path at the Grasse station, about 32% of observations were indeed obtained at 30 ○ apart from the moon quarters, increasing by 10% the portion of data sample close from the most favorable periods for tides and EP studies. This is primarily achieved due to the improved signal to noise ratio resulting from an improved transmission efficiency of the atmosphere at the IR wavelength of 1064 nm. In addition, high precision data have also been acquired on the two Lunakhod reflector arrays during full moon phase.

Spatial distribution

Statistics drawn from the historical LLR dataset show an observer bias to range to the larger Apollo reflector arrays (mainly A15). This trend (see Fig. 2.8) is also present on statistics taken during time periods after the re-discovery of Lunakhod 1 by [START_REF] Murphy | Laser ranging to the lost Lunokhod 1 reflector[END_REF]. This is due to the higher return rate and thermal stability over a lunar day on the Apollo reflectors, thereby contributing to the higher likelihood of success.

With the installation of the 1064 nm detection path (see Fig. 2.9), as explained in Courde et al. (2017), the detection of photon reflected on all reflectors is facilitated, especially for Lunakhod 2 (L2): about 17% of IR data are obtained with L2 when only 2% were detected at 532 nm.

Owing to the spatial distribution of the reflectors on the Moon (see Fig. 2.10), A11 and A14 give sensitivity to longitude librations, A15 gives sensitivity to latitude librations and the Lunokhod reflectors (L1 and L2) give sensitivity both in the latitude and longitude libration of the Moon. The heterogeneity in the reflectorwise distribution of LLR data affects then the sensitivity of the lunar modeling adjustment (Viswanathan et al., 2016) (discussed in Section 5.3.2).

By acquiring a better reflector-wise sample, IR contributes to improve the adjustment of the Moon dynamical and rotational modeling.

Chapter 3

Data reduction

During Lunar Laser Ranging (LLR), the observed time of flight (or the equivalent distance traveled by light) includes inherent signatures resulting from the orbital dynamics, geophysical and relativistic phenomena present in the Earth-Moon system, in addition to the absolute Earth-Moon distance measurement. The well-known effects on the Earth-Moon system are modeled within a data analysis program (called the reduction model) and a simulated station-reflector distance is computed. The difference of the observed and the computed light-time includes all the unmodeled and unknown dynamics (and/or measurement error) present within the observation, the magnitude of which relates inversely to the accuracy of the model (currently less than 2 cm wrms in one-way light-time (Viswanathan et al., 2017)). Here after this difference is referred to as the LLR residual.

The reduction model for the LLR data analysis is implemented within a precise orbit determination and geodetic software -Géodésie par Intégrations Numériques Simultanées (GINS) [START_REF] Marty | Gins: the cnes/grgs gnss scientific software[END_REF]Viswanathan et al., 2015) maintained by space geodesy teams at GRGS/OCA1 /CNES and written in Fortran90. The GINS software was chosen as it allows to compare various types of observation techniques used for geodesy at the OCA station i.e. SLR, LLR, GPS, etc. The subroutines for the LLR data reduction within GINS are vetted through a stepwise comparison study conducted among the LLR analysis teams in OCA-Sophia Antipolis (this study), IMCCE-Paris and IfE-Hannover, by using simulated LLR data and DE421 (Folkner et al., 2009) as the planetary and lunar ephemeris. The modeling follows the recommendations of IERS 2010 (Petit and Luzum, 2010). To avoid any systematics in the reduction model, the upper-limit on the discrepancy between the teams was set to a 1 mm threshold in one-way light time.

The following sections describe the procedure behind the iterative computation of the light-time (Section 3.1), the reference frame transformations required during 44 CHAPTER 3. DATA REDUCTION this computation (Section 3.2), the displacements that occur at the two reference points -Earth station and LLR retro-reflector (Section 3.3) and the necessary correction to the light-time (Section 3.4) .

Light-time computation

The major statistical quality of a model requires that the difference between the model prediction and the observed quantity be minimum. In LLR analysis, the light-time solution of the observed quantity (i.e. two-way observed light time) provides the computed or the model prediction (i.e two-way computed light time).

The light-time computation involves iteratively determining the time of reflection of the laser pulse from the lunar retro-reflectors, with the help of the time of emission (T e ) and the round-trip time, both contained within the observation. This procedure is split into two legs (or paths) identified by the direction of travel of light. The up-leg consists of the path traveled by light from the station on the Earth to the reflector on the Moon, while the down-leg follows the reflected path in the opposite direction. A schematic is provided in Fig. (3.1).

The station code present within the LLR data files identifies the Earth-based ground station from which the laser was fired, providing the link to the International Terrestrial Reference Frame (ITRF) coordinates of the Earth station. The time-stamp of emission (in UTC) allows the interpolation of the station position from the reference epoch of the ITRF model used. This interpolation is linear and it accounts for the correction of tectonic plate motion at the Earth station. At this stage, additional corrections on the station position follow from the effect of tides and spin, described further in Section (3.3).

The station positions are then transformed from the International Terrestrial Reference System (ITRS) to the Barycentric Celestial Reference System (BCRS) and its realization, the International Celestial Reference Frame (ICRF). This is carried out by a series of both time and coordinate transformations described in Section (3.2), by the use of Earth Orientation Parameters (EOPs). The EOPs take into account the irregularities of the Earth's rotation as a function of time.

The lunar reflector code to which the ranging was performed is provided through the observation. Fits of LLR data to lunar ephemerides allows the determination of the reflector coordinates in the seleno-centric reference frame. The Moon's mantle unlike Earth's, is cooler and does not convect to cause an active tectonic plate motion. Hence, the reflector coordinates are fixed with respect to the seleno-centric reference frame. The seleno-centric reference frame is transformed to the inertial (ICRF) reference frame using the Euler angles, estimated with the help of lunar ephemerides, and in considering the motion of the Moon relative to the Earth and the position of the Earth relative to the solar-system barycenter (SSB).

Reference frame transformation

The light-time solution for LLR analysis and the INPOP planetary and lunar ephemeris, uses the Solar-System barycentric space-time frame of reference (the ICRF), a realization of the Barycentric Celestial Reference System (BCRS). The BCRS is a system of barycentric space-time coordinates for the solar system within the framework of General Relativity (GR) with metric tensor specified by the IAU 2000 Resolution B1.3. The BCRS is assumed to be oriented according to the ICRS axes (Petit and Luzum, 2010). The coordinate time scale used for INPOP ephemeris is Barycentric Dynamical Time (TDB), defined in terms of the Barycentric Coordinate Time (TCB) as per the IAU Resolution B2 (1991) and B1.3 (2000). State vectors of the Sun, the Earth, the Moon and other planets defined in the BCRS can be extracted from the numerically integrated planetary and lunar ephemeris (e.g., INPOP or DE) using an ephemeris access library -CALCEPH [START_REF] Gastineau | CALCEPH: Planetary ephemeris files access code[END_REF].

For the LLR analysis, two coordinate transformations are involved. The transformation of geocentric station coordinates (ITRF) to the Solar-System barycentric coordinates (ICRF), and, the transformation of the lunar reflector coordinates from the seleno-centric coordinates (LCRF) to the ICRF.

ITRF to ICRF transformation

A vector in the ITRF (station coordinates) is first converted to a geocentric celestial reference frame (GCRF). GCRF has its origin at the geocenter with its axes aligned with the ICRF.

A detailed description of the transformation between ITRS and GCRS is given in Petit and Luzum (2010, p. 69) and Manche (2011, p. 103). For this study, the CIO-based transformation (Petit and Luzum, 2010, p. 71) was implemented using SOFA subroutines (an example can be found in IAU SOFA Board, p. 25). The transformation requires input parameters such as, the terrestrial time (T T ), U T 1, Celestial Intermediate Pole offsets (∆X, ∆Y ) and the coordinates of the pole (x p , y p ).

These input parameters are obtained with the help of Earth Orientation Parameters (EOP), available publicly through the Earth Orientation Center website2 in accordance with the IAU2006/2000A precession-nutation model. Alternatively, the Kalman Earth Orientation Filter (KEOF) EOPs can be used (Ratcliff and Gross, 2015). For LLR analysis, the latter is preferred as it includes the LLR observations during the determination of the variation in latitude (VOL) and UT0 (Pavlov et al., 2016). The EOPs correspond to 0 h UTC of each date. A 4-point Lagrangian interpolation was used to obtain the corresponding input parameters at the observation times.

The effect of tidal variations in the Earth's rotation can either be corrected directly from the EOP website 2 or through the IERS recommended subroutines3 . Other corrections to EOPs involve diurnal luni-solar effect on polar motion, sub-diurnal librations in UT1 and corrections to CIP coordinates to account for Free Core Nutation (FCN), subroutines for which are publicly available4 . These models were implemented within the software using the IERS subroutines.

The time coordinate of GCRS is TCG (Geocentric Coordinate Time), which differs from TT at a constant rate (Petit and Luzum, 2010, Eqn. 10.1). This transformation was implemented using the SOFA subroutine (T T T CG.F ).

The difference between the Terrestrial Time (TT) to the Barycentric Dynamical Time (TDB) is obtained through numerical integration within the ephemeris (Fienga et al., 2011) or through an approximation via the SOFA subroutine (DT DB.F ) -with differences between the two choices having a maximum effect of 0.01 mm on the Earth-Moon distance. The former is chosen for the implementation within the reduction model. For the purpose of measurement reduction, the difference between International Atomic Time (TAI) and TDB is needed at the point the measurement is made, where T T = T AI + 32.184s. The differential equation integrated with the ephemeris concerning the difference T T -T DB can be found in Manche (2011, Eqn. 9.24) for INPOP and Folkner et al. (2014, Eqn. 5). The coordinate time scale used for INPOP ephemeris, describing the equations of motion of solar-system bodies, is TDB. The amplitude of the effect due to the difference T T -T DB on the Earth-Moon distance reaches up to 45 cm between 1969 to 2017.

The transformation from GCRF to BCRF also includes a relativistic transformation in order to consider the effect of gravitational potential in the vicinity due to a change in the coordinate origin. The transformation of a geocentric position vector ⃗ r GCRF to ⃗ r BCRF , expressed in the BCRF, is given by the following equation with an uncertainty of about 0.01 mm (Moyer, 2003, p. 4-9):

⃗ r BCRF = ⃗ r GCRF 1 - U c 2 - 1 2 ⎛ ⎝ ⃗ V ⋅ ⃗ r GCRF c 2 ⎞ ⎠ ⃗ V (3.1) 48 CHAPTER 3. DATA REDUCTION
where U is the gravitational potential at the geocenter (excluding the Earth's mass), ⃗ V is the barycentric velocity of the Earth and c is the speed of light.

The first term of Eqn. (3.1) reduces the geocentric radius of the station by about 16 cm, while the second term reduces the component of the station position vector along the Earth's velocity vector by up to 3 cm (Moyer, 2003, p. 4-9).

The transformation of ⃗ r T T (TT-compatible position vector) to ⃗ r T DB (TDBcompatible position vector) is then given, with an uncertainty of about 0.01 mm (Moyer, 2003, p. 4-9), by :

⃗ r T DB = ⃗ r T T 1 - U c 2 -L C - 1 2 ⎛ ⎝ ⃗ V ⋅ ⃗ r T T c 2 ⎞ ⎠ ⃗ V (3.2)
where L C = 1.48082686741 × 10 -8 and c is the speed of light.

The amplitude of the effect due to the relativistic transformation from GCRF to BCRF on the Earth-Moon distance reaches up to 19 cm between 1969 to 2017.

Using the above mentioned reference frame transformations, one can obtain the station position in the BCRF for the light-time solution.

LCRF to BCRF transformation

The lunar reflector coordinates are given in the seleno-centric frame of reference (refer to Section (4.3) for lunar frame definitions). The Euler angles (φ m , θ m and ψ m ) are integrated numerically (along with the positions of the bodies) within the ephemeris, defined here as the precession, nutation and rotation angle, respectively (see Fig. 3.2).

These Euler angles are used to orient the principal axes (PA) of the lunar (crust+mantle) coordinate system to the BCRS. A vector in the LCRS (or PA) frame of reference can be transformed to the BCRS using Euler's rotation theorem as:

⃗ r BCRF = R z (-φ m )R x (-θ m )R z (-ψ m )⃗ r P A (3.3)
where,

R x (α) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 cos α sin α 0 -sin α cos α ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ R z (α) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ cos α sin α 0 -sin α cos α 0 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
(2016) add supplementary periodic correction terms (Λ) to the rotation angle ψ m to compensate unmodeled effects in the longitude libration of the Moon. We avoid this empirical correction in our model and instead discuss investigation attempts to improve the lunar dynamical model in (Section 6.1.2).

Displacement of reference points

For LLR observations, the two points of reference are: the station position linked with the geocentric frame of reference (ITRF) at a given epoch, and the lunar retroreflector coordinates linked with the seleno-centric (LCRF) frame of reference. These two points of reference undergo displacement due to the effect of tides (Solid, Ocean and Atmosphere) and loading effects arising from the mass redistribution due to tides, polar motion, seasonal effects, etc. The following subsections describe the implemented effects within the LLR reduction model.

Solid tides

Solid tides comprise of the crustal movement due to the gravitational forces produced by external bodies, thereby causing a displacement of the position coordinates (Earth station or Lunar reflectors). The solid tides produce both vertical and horizontal displacements in the reference coordinates that can be expressed by the spherical harmonic expansion and characterized by the Love (h) and Shida numbers (l) [START_REF] Wahr | Body tides on an elliptical, rotating, elastic and oceanless earth[END_REF]. The radial component is proportional to the Love number while the components orthogonal to the radial is proportional to the Shida number.

For the Earth-station displacements caused by the lunar and solar gravitational attraction, the IERS Fortran subroutine (DEHANTTIDEINEL.F) is used, complete up to degree-3. The modeling follows the description given in Petit and Luzum (2010, p. 99). The amplitude of the effect due to solid tides on the Earth, results in the variation of the Earth-Moon distance up to 35 cm between 1969 to 2017.

Similarly, for the Lunar-reflector displacements caused by the gravitational attraction of the Earth and the Sun, an adaption of the IERS Solid Earth tides model is used following Petit and Luzum (2010, Eqn. 7.5). The displacement vector of the reflector due to degree-2 tides is given by:

∆⃗ r = 3 j=2 GM j R m 4 GM M oon R j 3 h 2 r 3( Rj ⋅ r) 2 -1 2 + 3l 2 ( Rj ⋅ r) Rj -( Rj ⋅ r)r (3.6)
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where, GM j = gravitational parameter for the Earth (j=2) or the Sun (j=3), GM M oon = gravitational parameter for the Moon, Rj , R j = seleno-centric unit vector to the Earth/Sun with its magnitude, R m = Mean radius of the Moon, r, r = seleno-centric unit vector to the Lunar reflector with its magnitude, h 2 = Lunar degree-2 Love number, l 2 = Lunar degree-2 Shida number, Higher degree displacement due to solid tides weaken by 2 orders of magnitude per degree. The impact of degree-3 displacement love numbers on the Earth-Moon distance for values of h 3 =0.0233 and l 3 =0.003 (Weber et al., 2011;Williams et al., 2014b) is about 1.4 mm and 0.2 mm, respectively (computed using Petit and Luzum (2010, Eqn. 7.6)). The amplitude of the effect due to solid tides on the Moon (degree-2), result in the variation of the Earth-Moon distance up to 55 cm between 1969 to 2017.

Ocean tide loading

The ocean tides are produced by the gravitational pull of the Moon and Sun. Ocean tides cause a time-variation of the ocean mass distribution. This results in a time-varying load on the the ocean floor. Since the Earth is not completely rigid, it deforms under this load [START_REF] Farrell | Deformation of the Earth by surface loads[END_REF]. This time-varying deformation of the Earth is known as ocean tide loading [START_REF] Schwiderski | On charting global ocean tides[END_REF]. Since the orbits of both the Sun and the Moon have more than one periodicity due to their orbital motion and interaction, the ocean tides can be described as a sum of several ocean tides with each having their own period [START_REF] Hartmann | The HW95 tidal potential catalogue[END_REF].

The 11 main tidal terms usually considered are the semi-diurnal waves M 2 , S 2 , N 2 , K 2 , the diurnal waves K 1 , O 1 , P 1 , Q 1 and the long-period waves M f , M m and S sa . By inputing the station positions of interest, the amplitude and phase of the loading response for these 11 tidal terms are obtained with the ocean tide loading service5 .

Moreover, when the solid Earth and oceans are considered to be a system without any external forces on it, then the position of its common center of mass will remain fixed in space. Since the ocean tides cause water mass displacements, its center of mass will move periodically and must be compensated by an opposite 52 CHAPTER 3. DATA REDUCTION motion of the center of mass of the solid Earth. Stations placed on the solid Earth are subject to this counter-motion. For the analysis of LLR data, this correction is mandatory and can be enabled within the loading service website given above.

The site displacement due to ocean tide loading (∆c) at a given time (t) is given by : ∆c

= j A cj cos (χ j (t) -φ cj ) (3.7)
where, ∆c = site displacement components (radial, west, south), A cj , φ cj = amplitudes and phases for the loading response at each site, χ j (t) = astronomical argument for the 11 main tidal terms, computed with IERS distributed subroutine ARG2.F

We use the IERS subroutine (HARDISP.F) provided by D. Agnew to compute the ocean tide loading displacements for a site, given the amplitudes A cj and phases φ cj , 1 ≤ j ≤ 11. The amplitude of the effect due to ocean tide loading on the Earth-Moon distance is around 20 cm, with a maximum of 70 cm (based on the station location) between 1969 to 2017.

Atmospheric pressure loading

The diurnal heating of the atmosphere by the Sun, causes surface pressure oscillations at the diurnal (S 1 ), semi-diurnal (S 2 ) and higher harmonics. The result of which induces periodic motions of the Earth's surface. Petit and Luzum (2010) recommend calculating the station displacement due to atmospheric loading using [START_REF] Ray | Barometric tides from ECMWF operational analyses[END_REF] S 1 and S 2 tidal model.

The displacement grid method was implemented to obtain the surface displacement coefficients (A d1 , B d1 , A d2 and B d2 ), in order to compute the site displacement due to S 1 -S 2 atmospheric loading 6 given by:

d(u, e, n)S 1 = A d1 (u, e, n) × cos(ω 1 T ) + B d1 (u, e, n) × sin(ω 1 T ) (3.8a) d(u, e, n)S 2 = A d2 (u, e, n) × cos(ω 2 T ) + B d2 (u, e, n) × sin(ω 2 T ) (3.8b)
where,

u, e, n up, east, north components in mm T = UT1 in days ω 1 , ω 2 = 1 cycle/day, 2 cycle/day corresponding to frequencies of S 1 , S 2 atmospheric tides.

6 http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
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The amplitude of the effect due to atmospheric pressure loading on the Earth-Moon distance reaches up to 0.8 cm between 1969 to 2017.

Rotational deformation due to polar motion

The centrifugal potential caused by the Earth's rotation is given by:

V = 1 2 r 2 ⃗ Ω -(⃗ r ⋅ ⃗ Ω) 2 , (3.9)
where, The first order perturbations (neglecting sub-mm level variations due to m 3 ) in the potential V due to the Earth's rotation is given by [START_REF] Wahr | Deformation induced by polar motion[END_REF]:

⃗ Ω = Ω(m 1 x + m 2 ŷ + (1 + m 3 )ẑ) Ω = mean
∆V (r, θ, λ) = - Ω 2 r 2 2 sin 2θ(m 1 cos λ + m 2 sin λ) (3.10) with, m 1 = x p -x p and m 2 = -(y p -y p ) (3.11)
The Petit and Luzum (2010) mean pole model is given as:

x p (t) = 3 i=0 (t -t 0 ) i × x i p and y p (t) = 3 i=0 (t -t 0 ) i × y i p (3.12)
where t 0 is 2000.0, t is the Julian epoch in years and coefficients x i p and y i p represent the annual pole position (cubic model until 2010.0 and linear model after 2010.0) are tabulated in (Petit and Luzum, 2010, Table 7.7).

The displacements due to ∆V are obtained using the formulation of tidal Love numbers (h 2 = 0.6207 and l 2 = 0.0836) and r = a = 6.378 × 10 6 m [START_REF] Munk | The rotation of the earth; a geophysical discussion[END_REF], to give:

S r = -33 sin 2θ(m 1 cos λ + m 2 sin λ) S θ = -9 cos 2θ(m 1 cos λ + m 2 sin λ) S λ = 9 cos θ(m 1 sin λ -m 2 cos λ) (3.13) 54 CHAPTER 3. DATA REDUCTION
where, S r , S θ and S λ = displacement vectors in mm (positive upwards, south and east, respectively.) m 1 , m 2 = offsets in arc-seconds θ, λ = latitude and longitude of the station, respectively.

The IERS subroutine (IERS CMP 2015.F) was used to obtain the conventional mean pole position and the displacements were computed using Eqn. (3.13). The amplitude of the effect due to the rotational deformation from polar motion on the Earth-Moon distance reaches up to 1.6 cm between 1969 to 2017.

Ocean pole tide loading

The displacement of station position due to the centrifugal effect of the polar motion on the oceans is called ocean pole tide loading. The displacement vector is given in terms of radial, north and east components, u r ,u n and u e , respectively [START_REF] Desai | Observing the pole tide with satellite altimetry[END_REF].

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u r (φ, λ) u n (φ, λ) u e (φ, λ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = K ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (m 1 γ R 2 + m 2 γ I 2 ) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u R r (φ, λ) u R n (φ, λ) u R e (φ, λ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + (m 2 γ R 2 -m 1 γ I 2 ) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u I r (φ, λ) u I n (φ, λ) u I e (φ, λ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (3.14)
where, φ, λ = latitude and longitude m 1 , m 2 = wobble parameters Eqn. (3.11)

K = 4πGa E ρ w H p 3g e H p = 8π 15 1 2 ⋅ Ω 2 a e 4 GM ρ w = density of sea water = 1025 kg m -3 γ = (1 + k 2 -h 2 ) = γ R 2 + iγI 2 = 0.6870 + 0.
0036i Ω = nominal mean Earth's angular velocity a e = equatorial radius of the Earth GM = geocentric gravitational constant g e = mean equatorial gravity G = constant of gravitation
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Coefficients u R and u I are the real and imaginary part of the ocean pole tide deformation parameters from the self-consistent equilibrium model of ocean pole tide [START_REF] Desai | Observing the pole tide with satellite altimetry[END_REF] 7 and they provide the surface deformations with respect to the instantaneous center of mass of the deformed Earth, including the mass of the loading ocean pole tide. The gridded values were first interpolated to the station position and then introduced as displacement vectors as per Eqn. (3.14). The amplitude of the effect due to ocean pole tide loading on the Earth-Moon distance reaches up to 0.1 cm between 1969 to 2017.

Hydrological mass loading

The Earth's surface is deformed in response to temporal variations in the mass distribution of atmospheric, hydrological and oceanic loads imposed on the lithosphere. Apart from the tidal-induced mass variations, non-tidal mass variations with sub-daily to seasonal periods lead to primarily vertical elastic deformations at global, regional and local scales [START_REF] Blewitt | A new global mode of earth deformation: Seasonal cycle detected[END_REF][START_REF] Fu | Seasonal hydrological loading in southern alaska observed by gps and grace[END_REF][START_REF] Bevis | Seasonal fluctuations in the mass of the amazon river system and earth's elastic response[END_REF]. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data.

The astronomical and geodetic observatory OCA, located on the karst plateau of Calern (Caussols, France) has been monitoring the Earth deformation. [START_REF] Gilli | Neotectonics and current hydrologicallyinduced karst deformation. Case study of the Plateau de Calern (Alpes-Maritimes, France)[END_REF] show that the deformations induced at the Calern station by the effects of rainfall and snow-melt is non-negligible. The study concludes by identifying two probable components, a surface and a deep component, while the mechanical effect remained unknown.

A recent study [START_REF] Mémin | Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station[END_REF] aimed at the multi-geodetic characterization of this seasonal signal, shows a strong correlation between GPS observations obtained at the Calern station and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology8 . Two continental hydrology loading models were used, derived from, Global Land Data Assimilation System (GLDAS) and Modern-Era Retrospective analysis for Research and Applications (MERRA).

For the purpose of comparison, LLR residuals obtained from the Calern station between 2002 to 2015 were stacked and averaged by week (see Fig. 3.3). This was then compared with the other geodetic techniques in operation at Calern station. It was noticed that the impact due to hydrology remained as the main driver of the seasonal signal at Calern, with a good correlation of LLR, GPS and the non-tidal loading predictions in the vertical component.

The signal at the Calern station was characterized as seasonal with amplitudes of (8.5 ± 0.5), (1.5 ± 0.5) and (1.5 ± 0.5) in the Up, North and East component, respectively (in mm). 

Corrections to light-time

Atmospheric delay

The observed round-trip light-time in distance inherently contains the effect of an increased propagation path as the laser pulse traverses through the different layers of varying refractive index within the atmosphere. The propagation effects concerning the optical regime are only subject to delays in the neutral atmosphere
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(up to about 100 km). Hence, it must be accounted for within the light-time computation of the observable and along each leg.

The atmospheric delay in the zenith direction is characterized into hydrostatic delay and wet delay. Hydrostatic delay can be accurately determined from surface pressure measurements available within the LLR observations, while the wet delay cannot be estimated accurately from the same information. The elevation dependence of the zenith atmospheric delay is characterized by a mapping function.

This study follows the Petit and Luzum (2010) recommendation with [START_REF] Mendes | Improved mapping functions for atmospheric refraction correction in SLR[END_REF]; [START_REF] Mendes | High-accuracy zenith delay prediction at optical wavelengths[END_REF] as the mapping function -zenith delay pair for the correction of tropospheric optical delays. Fortran subroutines are provided by the IERS as an implementation of the recommended models (FCUL ZTD HPA.F and FCUL A.F).

It is to be noted that the mapping function within [START_REF] Mendes | Improved mapping functions for atmospheric refraction correction in SLR[END_REF] neglects the contribution of horizontal refractivity gradients. [START_REF] Hulley | A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients[END_REF] developed a new technique with the inclusion of horizontal gradients using a threedimensional atmospheric ray tracing (3D ART) with meteorological data (NS and EW gradients) from the Atmospheric Infrared Sounder (AIRS), improving the SLR range residuals by up to 25% while ranging at low elevation angles (10 ○ ). For LLR ranging, the typical elevation angles lie between 30 ○ to 40 ○ where the effect is below 1 mm [START_REF] Currie | Atmospheric effects and ultimate ranging accuracy for lunar laser ranging[END_REF]. While this study [START_REF] Hulley | A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients[END_REF] can be a future improvement to the LLR data analysis community handling modern-day high accuracy data approaching the millimeter level, the ray-tracing technique would increase the computational time due to the large meteorological gridded datasets and become susceptible to temporal interpolation errors due to the availability of the data for each station.

The amplitude of the correction from atmospheric delay on the Earth-Moon distance reaches up to 10 m between 1969 to 2017. The uncertainty of the atmospheric delay model when compared with ray tracing techniques reaches up to 2 mm for stations with high water vapor content [START_REF] Mendes | High-accuracy zenith delay prediction at optical wavelengths[END_REF]. However, at lower elevation angles (below 10 ○ ) the contribution from horizontal gradients dominate, ranging between 7 mm to 14 mm [START_REF] Hulley | A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients[END_REF].

Relativistic correction

According to the general theory of relativity, the speed of a light wave depends on the strength of the gravitational potential along its path [START_REF] Shapiro | Fourth Test of General Relativity[END_REF]. From a geometrical point of view, each of the gravitating bodies curve the space-time fabric in their vicinity. In the solar-system barycentric frame of reference, this is expressed as Moyer (2003, Eqn. 8-25). This correction is included in the up-leg and down-leg iterations, from that due to the Sun and the Earth. The amplitude of the correction from the relativistic deviation of light on the Earth-Moon distance reaches up to 8 m between 1969 to 2017. The ignored effect of the Moon amounts to about 0.7 mm [START_REF] Williams | Relativity parameters determined from lunar laser ranging[END_REF].

Chapter summary

The LLR data reduction model within the GINS software was vetted through a step-wise comparison study with two other independent LLR groups in Europe. In addition to the IERS 2010 recommended models, the impact of hydrological mass loading at Grasse station was analyzed through multi-geodetic techniques. A seasonal signature due to hydrology loading is characterized and a correction model is implemented within the reduction software using a model from the EOST Loading Service. The following chapter (Chapter 4) focuses on the dynamical model of the lunar ephemeris which provide critical inputs to the reduction software in terms of lunar orientation and other state vectors.

Chapter 4

Dynamical model

For the LLR analysis, the dynamical model involves the description of the motion and the orientation of the Moon as it moves along its orbit around the Earth. This is described with the help of planetary and lunar ephemerides (such as INPOP, DE and EPM).

This study benefited from the previous work of Fienga et al. (2008); Fienga et al. (2011); Fienga et al. (2014Fienga et al. ( , 2015Fienga et al. ( , 2016a)), [START_REF] Gastineau | CALCEPH: Planetary ephemeris files access code[END_REF] and Manche (2011) on their respective developments on the numerical solution of INPOP since its inception in 2003. This study develops on the last update of the lunar model within the INPOP ephemeris (Fienga et al., 2014), elaborates on the improvements from INPOP13c in Section (4.1), with the description of the lunar orbital interactions (Section 4.2) and the lunar orientation with its extended figure (Section 4.3).

Improvement from INPOP13c

The dynamical model backing the lunar part of the INPOP planetary and lunar ephemeris is described within this chapter. The two-layer Moon (solid mantle with a fluid core) was implemented within INPOP by Manche (2011); Fienga et al. (2014). In the last version: INPOP13c (Fienga et al., 2014) the lunar fluid core is not activated, and the LLR post-fit residuals in 1-way light light (LT) did not seem to improve below 4 cm. This is identified as a programming error within the modeling of the differential equation of the lunar fluid core. Following the correction of this error, and iteratively fitting the LLR observations, an improvement is noticed in the post-fit LLR residuals to about 2 cm for the modern day period.

The polar moment of inertia of the Moon was previously implemented as the sum of two separate components; that of the mantle and the fluid core. This required input parameters such as the spherical harmonic coefficients C 20 and C 22 of the lunar mantle and the lunar fluid core, to describe the respective moment of 60 CHAPTER 4. DYNAMICAL MODEL inertia tensor. This is reorganized as that of the total Moon and the fluid core. This modification allowed the use of spacecraft observed gravity field coefficients that monitor the Moon as a whole, hence providing strong constraints on the lunar spherical harmonic coefficients used for the Moon within the dynamical model. The C 20 (fluid core) is redefined to the flattening of the lunar fluid core f c through Eqn. (4.1).

f c ⋅ α c = C c -Ac+Bc 2 C T (4.1)
where, α c = Cc C T is kept as a fixed value to 7×10 -4 (Folkner et al., 2014); A c ,B c and C c are the principle moments of the tensor of inertia of the fluid core; C T is the polar moment of inertia of the whole Moon. This redefinition allows for a better determined value of f c ⋅ α c implying that the existence of a flattening of the lunar core is strong (Williams et al., 2014b). However, the value of f c would depend on the fraction of the core polar moment of inertia Folkner et al. (2014); Pavlov et al. (2016) consider an axisymmetric fluid core with A c = B c = C c (1-f c ), due to the weak sensitivity of LLR to equatorial ellipticity (Goldreich, 1967;Williams et al., 2014b).

To confirm this assertion of low sensitivity, a triaxial fluid core is implemented using Rambaux et al. (2007), discussed through Eqn. (4.9), with

g c = B c -A c 2A c .
Due to the strong correlation of the polar (f c ) and equatorial (g c ) flattening of the fluid core (correlation coefficient of 0.97) and the above mentioned low sensitivity of the equatorial flattening to LLR observations (arising from the geometry), it is difficult to iteratively fit these two parameters together. As a result, g c is kept fixed to a theoretical value of 4.10 -5 (an order small than the value of f c ), computed using a density profile from Dumberry and Wieczorek (2016) and extended to a triaxial fluid core. An undetectable variation of about 0.5 mm is induced on the Earth-Moon distance, below the current LLR data accuracy of about 5 mm.

The time-delay tide model accounts for dissipation in the Earth-Moon system. INPOP13c consisted of three time delays (τ 21,E , τ 22,E and τ M ). To account for time delays shifting across the diurnal and semi-diurnal frequency bands (Williams and Boggs, 2015b), the two time delays (τ 2m,E ) were split to associate them with the Earth's rotation and the lunar orbit (Folkner et al., 2014).
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Lunar orbit interactions

In the INPOP17a model, we include the following accelerations perturbing the Moon's orbit:

1. Point mass mutual interactions from the Sun, planets and asteroids from Folkner et al. (2014, Eqn. 27) 2. Point mass mutual interactions from the extended bodies from Folkner et al. (2014, Eqn. 28) which include :

• the interaction of the zonal harmonics of the Earth through degree 6;

• the interaction between zonal, sectoral, and tesseral harmonics of the Moon through degree 6 and the point mass Earth, Sun, Jupiter, Saturn, Venus and Mars;

• the interaction of degree 2 zonal harmonic of the Sun.

3. Interaction from the Earth tides (Folkner et al., 2014, Eqn. 32) The tidal acceleration from the tides due to the Moon and the Sun are separated into three frequency bands (zonal, diurnal and semi-diurnal). Each band is represented by a potential Love number k 2m,E with a matching pair of time delays τ Xm,E (where subscript X is either associated with the daily Earth rotation τ Rm,E or orbital motion τ Om,E ) to account for frequency dependent phase shifts from an anelastic Earth with oceans. Here the time delay represents the phase lag induced by the tidal components. Although the time delay method inherently assumes that the imaginary component of k 2m,E varies linearly with frequency, it reduces the complexity of the dynamical model. The diurnal τ R1,E and semi-diurnal τ R2,E are included as solution parameters in the LLR analysis, while model values for potential Love numbers for a solid Earth are fixed to that from Petit and Luzum (2010, Table 6.3) followed by corrections from the ocean model FES2004 (Lyard et al., 2006). A detailed explanation about the most influential tides relevant to the Earth-Moon orbit integration can be found in Williams and Boggs (2016, Table 6).

Lunar orientation and extended figure 4.3.1 Lunar frame definition

The mantle coordinate system is defined by the principal axes of the undistorted mantle, whose moment of inertia matrix is diagonal. The time varying mantle Euler angles (φ m (t),θ m (t),ψ m (t)) define the orientation of the principal axis (PA) frame with respect to the inertial ICRF2 frame [START_REF] Ma | The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry[END_REF] where: φ m is the angle from the X-axis of the inertial frame along the XY plane to the intersection of the mantle equator; θ m is the inclination of the mantle equator from the inertial XY plane; and ψ m is the longitude from the intersection of the inertial XY plane with the mantle equator along the mantle equator to the prime meridian.

Time variation of lunar orientation

The angular velocity of the mantle is expressed through the instantaneous rates of the Euler angles as shown in [START_REF] Newhall | DE 102-A numerically integrated ephemeris of the moon and planets spanning forty-four centuries[END_REF], repeated here as:

ω x = φ sin θ sin ψ + θ cos ψ ω y = φ sin θ cos ψ -θ sin ψ ω z = φ cos θ + ψ (4.2a)
The second derivatives of the Euler angles follows Newhall et al. (1983, Eqn. 3):

φ = ωx sin ψ + ωy cos ψ + θ( ψ -φ cos θ) sin θ θ = ωx cos ψ -ωy sin ψ -φ ψ sin θ ψ = ωz -φ cos θ + φ θ sin θ (4.2b)

Lunar moment of inertia tensor

The undistorted total moment of inertia of the Moon ĨT is expressed in terms of C (2,0),M and C (2,2),M using Manche (2011, Eqn. C.6):

ĨT = CT m M R 2 M ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 1 0 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ C2,0,M -2 C2,2,M 0 0 0 C2,0,M + 2 C2,2,M 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (4.3)
where Cn,m,M is the unnormalized degree n, order m of the Stokes coefficient C n,m for the spherical harmonic model of the undistorted Moon and CT is the undistorted polar moment of inertia of the Moon normalized by its mass m M and radius squared R 2 M . Through Eqn. (4.3), we are able to directly use the undistorted value of C 22 from GRAIL derived spherical harmonic model of Konopliv et al. (2013).
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The moment of inertia of the fluid core I c is given by: The moment of inertia of the mantle I m has a rigid-body contribution Ĩm and two time varying contributions due to the tidal distortion by the Earth and spin distortion as given in Folkner et al. (2014, Eqn. 41). The single time delay model (characterized by τ M ) allows for dissipation when flexing the Moon (Williams et al., 2001;[START_REF] Standish | Orbital Ephemerides of the Sun, Moon, and Planets[END_REF]Folkner et al., 2014). Although in practice the time delay model fits well the monthly tides, phase shifts at other periods are not realistic (Williams and Boggs, 2015b). We propose some possible improvements in Chapter ( 7).

I c = α c CT ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 -f c 0 0 0 1 -f c 0 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ (A c + B c ) 2 0 0 0 (A c + B c ) 2 0 0 0 C c ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (4.
Finally we have:

Ĩm = ĨT -I c (4.4b)

Lunar angular momentum and torques

The time derivative of the angular momentum vector is equal to the sum of torques ( ⃗ N ) acting on the body. In the rotating mantle frame, the angular momentum differential equation for the mantle is given by:

d dt I m ⃗ ω m + ⃗ ω m × I m ⃗ ω m = ⃗ N (4.5a)
where, The motion of the uniform fluid core is controlled by the mantle interior, with the fluid core moment of inertia (I c ) constant in the frame of the mantle. The angular momentum differential equation of the fluid core in the mantle frame is then given by:

⃗ N = A≠M ( ⃗ N M,f igM -pmA ) + ⃗ N M,f igM -f igE + ⃗ N CM B (4.
d dt I c ⃗ ω c + ⃗ ω m × I c ⃗ ω c = -⃗ N CM B (4.6) ⃗ ω c = I -1 c -⃗ N CM B -⃗ ω m × I c ⃗ ω c (4.7)
where ⃗ ω c is the angular velocity of fluid core and ⃗ N CM B is the torque arising at the core-mantle boundary (CMB) due to the relative velocity between the fluid core and the solid mantle, expanded as:

⃗ N CM B = k v ⃗ ω c -⃗ ω m + C c -A c ẑm ⋅ ⃗ ω c ẑm × ⃗ ω c (4.8)
where k v is the coefficient of viscous friction at the CMB and ẑm is a unit vector aligned with the polar axis of the mantle frame.

Triaxiality of the lunar fluid core

In Eqn. (4.6), the inertial coupling (second term on the RHS of Eqn. (4.8)) between the fluid core and the mantle is modeled for an axis-symmetric fluid core. Due to a small value of α c , the additional coupling term arising from a triaxial core carries only a weak effect while integrating the physical librations through the Euler angles. We test the impact of the inclusion of the additional inertial coupling arising from the triaxiality by modifying Eqn. (4.5a) and Eqn. (4.6) to Eqn. (4.9a) and Eqn. (4.9b) respectively, given by:

d dt ⃗ L + ⃗ ω m × ⃗ L = ⃗ N (4.9a)
with ⃗ N here, as the sum of torques on the Moon from point mass mutual interactions

( ⃗ N M,f igM -pmA ) and from figure-figure interactions ⃗ N M,f igM -f igE . d dt ⃗ L c -(⃗ ω c -⃗ ω m ) × ⃗ L c = -⃗ N C (4.9b)
where,

⃗ L = I T ⃗ ω m + I f gh (⃗ ω c -⃗ ω m ) (4.9c) with, ⃗ L c = I f gh ⃗ ω m + I c (⃗ ω c -⃗ ω m ) (4.9d) I f gh = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ F c 0 0 0 G c 0 0 0 H c ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (4.9e) and, ⃗ N C = k v ⃗ ω c -⃗ ω m (4.9f)
The diagonal elements of I f gh (F c , G c and H c ) introduce the triaxial inertial coupling between the fluid core and the mantle into the angular momentum differential equation following Rambaux et al. (2007).

F 2 c = A 2 c -(C c -B c ) 2 G 2 c = B 2 c -(A c -C c ) 2 H 2 c = C 2 c -(B c -A c ) 2 (4.9g)
A triaxial fluid core modifies I c in Eqn. (4.4a) to Eqn. (4.9h), with g c as the fluid core equatorial flattening, given by :

I c = α c CT ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ (1 -f c ) (1 + g c ) 0 0 0 (1 -f c ) 1 + g c 1 + g c 0 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (4.9h)
where,

f c α c = [C c - A c + B c 2 ] C T ; g c = B c -A c 2A c
The impact of the lunar fluid core equatorial flattening parameter g c was found to be very weak during the fit to observation. By introducing the triaxial fluid core equation and refitting the lunar solution, an undetectable variation of about 0.5mm is induced on the Earth-Moon distance, which is about 10 times smaller than the most accurate LLR data currently available. (2014, Eqn. 28), with a fixed fluid core radius of 330 km (Weber et al., 2011). This is introduced as ⃗ N c,f igC-pmA , which appears on the right hand side of Eqn. (4.6), repeated here, as:

d ⃗ L c dt + ⃗ ω m × ⃗ L c = -⃗ N CM B + ⃗ N c,f igC-pmA (4.10)
This additional torque is only computed as coming from the interaction of the point mass Earth (while neglecting other bodies) on the lunar fluid core shape implemented within an internal version of INPOP (S2) to compensate the degree-3 discrepancy (see Section 6.1.2). A detailed discussion on the introduction of this effect is provided within Section (6.1.3). For a complete torque balance on the fluid core, one must also consider the pressure torques generated from the assumed assymetry of the fluid core, which is absent at the time of writing. A submitted article (Appendix C) presents the results obtained with this modeling, and is under revision to consider a complete torque model. INPOP17a (Viswanathan et al., 2017) does not include this interaction, as it is a work in progress.

Chapter summary

The model description of the lunar rotation and orbit (within this chapter) is numerically integrated together with the planet orbits. The obtained orbits are then adjusted to the LLR data, including those parameters describing the lunar interior, such as the flattening of the fluid core, viscous friction at core-mantle boundary, etc. The procedure involved during the adjustment to the model, the comparison of the estimates obtained after iterative fits, and the post-fit residuals obtained, are discussed in the next chapter (Chapter 5).

Chapter 5

Construction of a lunar ephemeris: INPOP17a

This chapter focuses on the fit of the model to the LLR observations. The reduced observations (described in Chapter 3) are compared with a simulated dynamical model (proposed in Chapter 4) that closely follows the motion and orientation of the Moon under the perturbation of other solar system objects. The simulated dynamical model and the reduction procedure are controlled through several parameters that function as model variables (Section 5.2). These variables are then optimized in order to minimize the difference between the simulations and the observations (also known as residuals), achieved through an iterative weighted least-squares fit (Section 5.1). Some observations could be more accurate than the others, in which case they carry more weight during the fit, while few others could be biased (Section 5.1.2). In cases where one or a set of parameter(s) are better determined through a technique different from LLR (e.g. spacecraft derived), bounds can be set using the Bounded-value least-squares (Section 5.1.3) fit to provide tight constraints (Section 5.2.1) to correlated parameters (Section 5.2.2). The resulting post-fit residuals obtained with the newly constructed lunar ephemeris is provided (Fig. 5.7) along with two different uncertainty computation (Section 5.1.4) for each estimated parameter. The estimated parameters are then compared with the previous release of INPOP (version 13c) and that obtained from other LLR analyses groups (Section 5.3).

Fitting procedure

In this section the algorithm used for the adjustments is described. This algorithm is based on the least-squares (LS) method for which the linearization of the problem is required. Furthermore, because of the inhomogeneity of the LLR data sample, special attention is taken for building an efficient weighting scheme and for debiasing the adjustment from systematics. Finally, the LS method is combined with an optimization method for keeping well-known values inside realistic bounds.

Linearity and convergence

A weighted least-squares (WLS) regression equation is represented by the linear relation following the Moore-Penrose pseudo-inverse of the matrix A ij [START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF][START_REF] Penrose | A generalized inverse for matrices[END_REF] in the following form:

βj,n = (A ⊺ ij W ii A ij ) -1 A ⊺ ij W ii X i,n-1 (5.1)
where partial derivatives (A ij ) with respect to each parameter p j are approximated by using numerical central differencing of the computed one-way light-time (C(p j )). The choice of the magnitude of the variation of the parameter (δp j ) for the computation of A ij is such that a linear region of the function C(p j ) is explored. An investigation for the selection of the appropriate δp j was made following Manche (2011). βj,n gives the value of the estimated correction to be added to p j for the n th iteration and X i,n-1 are the post-fit residuals (O-C(p j )) from the n-1 th iteration. The WLS procedure [START_REF] Tapley | Statistical orbit determination[END_REF] (weighted by the matrix W ii , see Section 5.1.2) is iterated until the χ 2 (the goodness of fit, computed as the normalized sum of squared deviations between observed and theoretical values) reaches a minimum value, after which numerical noise dominates.

The sensitivity of the observable to each parameter can be characterized by computing its partial with respect to the computed one-way light-time. Although not the primary objective of these partial derivatives, they also allow the user to make a first-guess of: the order of magnitude of the expected corrections, periodicity, non-linearity and detection limits associated with each parameter over the desired fit interval. The reflector-wise plot of partial derivatives for all the 47 dynamical model parameters are provided within the Appendix (B.2).

The correlation matrix was computed from the partial derivatives of all the parameters (both dynamical and reduction model) using a standard python routine (pandas.dataframe.corr.py) using the Pearson standard correlation coefficient [START_REF] Pearson | Note on Regression and Inheritance in the Case of Two Parents[END_REF]. A heat-map of the correlation matrix is provided within Appendix (B.1). Two or more correlated parameters that exhibit similar signature on the Earth-Moon distance can be hard to be separated in the fit. An instance of correlated parameters are the equivalence principle violation parameter ∆r EM and the Earth-Moon barycenter GM EM B , with a correlation coefficient of +0.96 between them. Gravity field coefficients of the Moon also exhibit strong correlation among the different degrees and orders. Hence, we introduced constraints on the gravity field of the Moon from the GRAIL spacecraft-derived model (Konopliv et al., 2013), which are further explained in Section (5.2.1).

The linearity of each parameter was verified about a central value, such that the partial derivative lies within the linear region of the parameter space. Several values of δp j were chosen and tested for recovery i.e (simulations were performed by introducing δp j into the model and recovered using the least-squares fit). All parameters except the angular velocity component of the lunar core (ω y ) exhibit strong linearity and recovery (by at-least 99.99%) during the simulations. To solve this problem, the partial derivatives w.r.t the lunar core angular velocity, were computed at multiple initial conditions during the iterative fit (once about zero and then subsequently about the non-zero values obtained from the previous iterations). It was noticed during the LLR iterative fit that, at-least two consequent partial computations were required from a zero initial condition of the lunar core angular velocity, to achieve a converged solution. JPL LLR team uses an approximation method involving a linear combination of the core coefficient of viscous friction and flattening to address this problem (Williams et al., 2013, Eqn. 2).

Weighting adjustments and biases

The diagonal elements of the weighting matrix (W ii ) within Eqn. (5.1) are the squares of the inverse of the inherent uncertainties (σ i ) of each observation, computed using the normal point algorithm. LLR station analyses teams continuously attempt to improve existing algorithms, methods and practices, which result in the absence of a standardization in the distributed observational uncertainty (see Section 2.2). Moreover, since the uncertainties are partly tied with the rejection scheme used in the normal point computation employed at each station (as described in Section (2.2.3) for Grasse station), rescaling of the uncertainties becomes necessary in cases where a lack of clean evolution of the uncertainties is noticed (as seen in Fig. 5.1 and 5.2). The recommended scaling of the uncertainties for APOLLO station are distributed into groups (labeled A to D within Fig. 5.1) and are made publicly available1 . It must be noted that while APOLLO station scales down their LLR uncertainties by the square root of the corresponding number of echoes detected [START_REF] Murphy | The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections[END_REF], uncertainties from Grasse station are recommended to be manually scaled in the same manner by the user (J. M Torre, personal communication, 2017). LLR uncertainties indicated within Fig.

(5.1) have been scaled down for observations from Grasse, to allow comparison. The computation of the LLR normal point and the uncertainty for Grasse station is described in Section (2.2.3).

Unrealistic uncertainties present in observations from Grasse (see Fig. 5.2), McDonald MLRS2 and Matera between time periods 1998-1999, 1996 and 2010-2012 respectively, must be rescaled before using them as weights to fit lunar ephemerides.

Annual mean adjusted weights are given in Changes at the ground station, if not accounted for within the ranging calibration procedure, introduces biases in the observations. These biases (as shown in Fig. 5.1) correspond either with a known technical development at the station (new equipment, change of optical fiber cables) or other systematics. Any estimated bias can be correlated with a corresponding change in the ground station, provided the incidents have been logged. In cases where a station log file indicating equipment changes were not available, station bias recommendations from other LLR analyses groups are followed (Pavlov et al., 2016). A list of known and detected biases are provided in Table (A.3) 

Bounded-value least square

The bounded-value least-squares (BVLS) algorithm is a generalization of the nonnegative least-squares (NNLS) algorithm, that solves a least squares problem with upper and lower bounds on the variable [START_REF] Lawson | Solving Least Squares Problems[END_REF]Stark and Parker, 1995).

Given an m by n matrix, A, and a m-vector, B, BVLS computes a n-vector X that solves the least-squares problem:

A m,n × X n,1 = B m,1
(5.2)

with the inequality constraints,

BN D(1, j) ≤ X(j) ≤ BN D(2, j), with 1 ≤ j ≤ n
For this study, a FORTRAN90 implementation of the BVLS algorithm is used. The original source code is available publicly2 .

The BVLS algorithm allows us to set constraints on parameters well-determined through other observational methods while allowing adjustments at the level of the reported uncertainties during the estimation process. The BVLS algorithm was previously used within planetary ephemeris parameter estimation (Fienga et al., 2011). It is now extended to the lunar parameter estimation (Viswanathan et al., 2017) to benefit from spacecraft-derived gravity field constraints for the Moon and the Earth (see Section 5.2.1).

Uncertainty

Two sets of uncertainties are computed for each of the estimated parameters. The following section describes how the two methods (the least squares method and the re-sampling method) can be used to estimate the uncertainty of the estimated parameters. The main source of error for numerical ephemerides arise from the accuracy and biases of the observational dataset. In the case of LLR, one can notice a gradual shift of the observational accuracy from few meters since its inception to millimeter capabilities. The least-squares method provides the L2norm as the uncertainty, while the re-sampling method highlights the differences in the goodness of fit (χ 2 ) to the variances and biases of the observational data set. For the LLR, the L2 norm tends to convey a more optimistic estimate due to the stability of the solution, while the re-sampling method provides realistic estimates for those parameters which have a strong dependency on the data distribution [START_REF] Busing | Delete-m jackknife for unequal m[END_REF]. These two situations are considered and hence the estimates of the uncertainties provided throughout this manuscript takes the maximum of the two methods as a more realistic uncertainty.

Least-squares method

The term

(A ⊺ ij W ii A ij ) -1 in Eqn.
(5.1) corresponds to the covariance matrix. For reasons of numerical stability (to avoid problems due to multicollinearity) the matrix inversion is solved by using SVD (singular value decomposition) [START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientific Computing[END_REF]. In parallel, the QR decomposition [START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientific Computing[END_REF] was also tested, giving the same results as the SVD. The square root of the diagonal elements of the covariance matrix gives the standard deviation (1-σ) of each parameter during the least-squares fit.

Re-sampling method

This method of re-sampling the data set, is employed here for determining the dependency of the χ 2 of the fit to the observational accuracies and biases. By removing randomly a part of the observational sample used for the fit [START_REF] Busing | Delete-m jackknife for unequal m[END_REF], one can estimate the robustness of the estimated parameters and a more realistic estimation of the post-fit residuals along with its χ 2 [START_REF] Cook | Residuals and Influence on regression[END_REF][START_REF] Fay | A Jackknifed Chi-Squared Test for Complex Samples[END_REF]. The number of iterations required for the random re-sampling along with its percentage of removal was tuned manually. The percentage of data set to be re-sampled is then set at 5% (refer Fig. 5.4). A selection is performed from a uniform random distribution and removed from the original data set.

The WLS iterations are then performed on the re-sampled data set. The average deviation of the resulting estimate, away from that obtained with the full data set gives the re-sampling uncertainty.

Earth in the ICRF2 frame of reference, at the start of the integration time (JD 2451544.5 in TDB).

• Initial conditions of the angular velocities for the lunar fluid core;

This velocity vector (ω c,x , ω c,y , ω c,z ) correspond to the angular velocity of the lunar fluid core with respect to the mantle frame.

• Polar moment of inertia of the Moon; C M R 2 is the largest component of the inertia tensor of the Moon along the polar axis, defined in Section (4.3).

• Oblateness of the lunar fluid core; f c is the oblateness of the lunar fluid core which characterizes the difference between the equatorial and polar diameters, defined in Section (4.4a).

• Coefficient of viscous friction at the core-mantle boundary; k v is the coefficient of viscous friction that scales the dissipative effect within the Moon, due to the relative motion of the lunar mantle and the lunar fluid core at the lunar core-mantle boundary. This gives rise to a dissipative torque described in Section (4.8).

• Lunar tidal time delay; τ M allows for the dissipative effect of tides by considering a delayed response acting on the Moon from both Earth and the Sun (described in Section 4.2).

• Rotational tidal time delays for the Earth; Similar to the lunar tidal time delay, τ R1,E and τ R2,E are the diurnal and semi-diurnal time delays that represent the tidal phase lag induced on the daily Earth rotation (described in Section 4.2).

• Gravity field coefficients of the Moon; C n,m and S n,m are the Stokes' coefficients representing the integral functions of the mass distribution inside the Moon. Their mean values are obtained from GRAIL-derived GL660b model (Konopliv et al., 2013) and are included as a constrained fit (Section 5.2.1), with the upper and lower bounds (Section 5.1.3) set to the scaled3 uncertainties from Konopliv et al. (2013).

• Gravity field coefficients of the Earth; Similar to the Moon, the Earth's gravity field coefficients are taken from GGM05C Ries et al. (2016) and are included as a constrained fit (Section 5.1.3), with the provided uncertainties. A scaling factor of 20 was applied for the constrained fit (Section 5.2.1).

• Potential Love number for the Moon; k 2,m is the degree-2 lunar potential Love number which is included as a constrained fit (Section 5.2.1), using the mean value and scaled uncertainty from Konopliv et al. (2013).

• Equivalence principle parameter;

The parameter ∆(m G m I ) EM introduces an additional acceleration of the Moon with respect to the Earth, in a direction towards the Sun, due to a violation of the equivalence principle (EP). This is included as a fit parameter only for obtaining the sensitivity tests of LLR to EP (Section 6.2). In all other solutions, it is fixed to its general relativity (GR) value of 0.

Reduction parameters

These parameters are relevant to the reduction of the LLR observations. They are as follows:

• Lunar reflector coordinates;

The coordinates of the five lunar retro-reflectors (A11, A14, A15, L1 and L2) provide their position in the seleno-centric frame of reference. The reflector coordinates are compared with that obtained from a previous release of INPOP (version 13c) in Table (A.2).

• Earth station coordinates and velocities; These correspond to the geocentric coordinates and velocities of the LLR stations. For some stations (Haleakala,MLRS1) only the positions are fitted, while their velocities are fixed to ITRF2005 [START_REF] Altamimi | ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[END_REF]. For Matera station, both positions and velocities are taken from the ITRF2005 values due to sparse data points. One can notice the strong correlation (correlation matrix provided in Appendix B.1) between the coordinates and their velocities for the above mentioned stations due to the lack of data span (further discussed in Section 5.2.2). MLRS2 and Grasse stations with the least correlations, provides the maximum data span, followed by APOLLO station. This enables the coordinates and velocities for these stations to be determined also from LLR analysis. The estimated coordinates and velocities for stations are compared with their ITRF2005 value in Table (A.1).

• Vertical displacement lunar Love number; h 2,M is the degree-2 vertical displacement Love number for the Moon. LLR observations are sensitive to this vertical displacement, however the uncertainty is large due to only 5 retro-reflector points. Its LLR estimated value is compared with the LRO-LOLA determined value from Mazarico et al. (2014) in Table (5.5).

• Bias parameters; These correspond to station specific parameters intended to absorb the impact of local equipment changes. A list of the station biases estimated is provided with the corresponding time period in Table (A.3).

Constraints

During the LLR estimation process, while some parameters have strong sensitivity (5.2) to LLR observations, others maybe better determined through another technique. The level of sensitivity of a parameter is determined through the impact of the mean-value of the parameter on the Earth-Moon distance. If the amplitude of the effect translates to an uncertainty in the Earth-Moon distance below few mm (at the limit of LLR observational accuracy), the parameter maybe weakly determined due to the current accuracy of the LLR observations. The plot of the partial derivatives given in Appendix (B.1) can be helpful to arrive at this decision. In cases where the parameters fall below this threshold, a constraint is attributed to each weakly determined parameter (for instance, C (4,0),E ) during the estimation process, from externally derived estimates. Some other parameters may show high sensitivity (for instance the gravity field of the Earth and Moon). However this is not the only requirement to be welldetermined by LLR analysis. This is because they have strong correlation between the different degree/order of the spherical harmonics which is hard to resolve considering only the distance measurement towards the mean-Earth direction used in LLR analyses. Hence, estimates from spacecraft-derived gravity field measurements provides synergy to the LLR analysis in terms of spherical harmonics both for the Earth and the Moon.

For the lunar gravity field model, the study relies on estimates derived from observations by the GRAIL mission, from Konopliv et al. (2013). A variability at the level of the uncertainty of the determined parameters is set with the help of the BVLS algorithm (Section 5.1.3) in the LLR analysis. Due to some unmodeled effects present in the lunar dynamical model, the constraints on few of the degree-3 spherical harmonic coefficients of the lunar gravity field (C 32 ,S 32 and C 33 ) are kept unbounded for improving the LLR post-fit residual (Williams et al., 2014b;Pavlov et al., 2016). Recent JPL LLR model attempts to fit 7 third-degree gravity field coefficients (Williams and Boggs, 2015a). On the other hand, a discussion on the attempts to identify the source of this effect is provided in Section (6.1.1).

Correlation

Signatures from some parameters in the model maybe absorbed by others during the least-squares fit. For instance, the Earth-Moon mass ratio EMRAT and GM EM B have similar signatures on the Earth-Moon distance (see plot of partials in Appendix B.2). Moreover, these two parameters are difficult to be separated during the fit, using LLR observations alone. This is partly also due to the lesser sensitivity of LLR observations to EM RAT . Hence, the estimate of EM RAT is performed routinely during the joint fits of the planetary ephemeris [START_REF] Fienga | Observations Astrometriques des Planetes et Ajustement des Theories Analytiques de leur Mouvement[END_REF] which rely on a multitude of observations such as, astrometry, space-craft range and doppler, VLBI, etc.

Another example is the fit of extended parameters of the lunar fluid core. C 20 of the fluid core is expressed in terms of the core flattening (f c ) so as to improve the inversion of the moment of inertia matrix (I c ) in Eqn. (4.7) while solving the differential equation for the angular velocity of fluid core. Moreover, the value of f c is sensitive to the choice of the ratio of the polar moment of inertia of the fluid core to that of the Moon (α c ) (Section 5.3). Hence, α c is fixed to a model value (Williams et al., 2014b). And through Eqn. (4.1), f c ⋅ α value is determined better than f c itself.

Strong correlations between the spherical harmonic coefficients of the lunar gravity field are noticed. This is overcome by either fixing them to known values or by applying constraints (Section 5.2.1) during the least-squares fit. A similar approach is also followed for the zonal harmonic coefficients and ocean tidal time lags for the Earth.

Station coordinates and velocities are well determined with the help of an extensive geodetic technique. Since, LLR falls short of a worldwide network of stations due to the complexity of ranging to the Moon, ITRF solutions do not include LLR observations while resolving station positions (Z. Altamimi, personal communication, 2016). Hence, in cases where a longer time span of LLR data is available, the station positions and velocities are fit to LLR data. Table (A.1) provides the estimated station position and velocities. Resolving the station coordinates using LLR observations requires ranging at very low elevation angles. This is difficult due to the increased dispersion of photons while the laser pulse travels through a greater length of the atmosphere.

The reflector coordinates are fitted to the LLR observations. The estimates for which have been provided in Table (A.2). Strong correlations between the reflector coordinates exist, making the reflector coordinate resolution uncertain to the level of few cm at 1-σ. Observationally, this can be overcome by successive ranging attempts to multiple reflectors, while minimizing the time interval between them.

Fixed-values corresponding to the Earth (Table 5.1) are taken from the recommendations of Petit and Luzum (2010), when available. Potential love numbers (k 2m,E ) are obtained from Petit and Luzum (2010, Table 6.3) followed by corrections from the ocean model FES2004 (Lyard et al., 2006) accounting for most influential tides (Williams and Boggs, 2016, Table 6). The orbital phase lag τ Om,E values are taken from Pavlov et al. (2016), which were derived by J. Williams (D. Pavlov, personal communication, 2017). α C and l 2 are fixed to model recommendations from Williams et al. (2014b). This is due to the strong correlation of α C with the polar moment of inertia of the Moon, and the inability of LLR to simultaneously resolve l 2 the horizontal displacement love number and the reflector position coordinates in the same plane. The parameter EMRAT is determined through a joint analysis between the lunar and planetary part of the INPOP ephemeris. A list of fixed parameters for the Earth-Moon system is given in Table (5.1). 

Results

In this section we discuss the results obtained with the new lunar dynamical model of the planetary and lunar ephemeris INPOP17a (Viswanathan et al., 2017).

The parameter estimates and the post-fit residuals are compared with the results obtained with the previous release -INPOP13c (Fienga et al., 2014), the JPL ephemeris -DE430 (Williams et al., 2013) and the IAA RAS ephemeris -EPM2016 (Pavlov et al., 2016). We also study the impact of not including the IR LLR data taken into account for INPOP17a as a way to monitor the improvement brought by IR wavelength compared to Green data.

INPOP13c vs INPOP17a

This section compares the estimates and the post-fit residuals between the solutions INPOP13c (Fienga et al., 2014) and INPOP17a (Viswanathan et al., 2017). The changes between these two solutions in terms of the dynamical modeling is discussed in Section (4.1). In addition, INPOP17a includes 3 years of LLR data (2014-2016) from APOLLO, Grasse (including Green and IR data sets), Matera and MLRS2 stations. The gravity field of the Moon used within the dynamical model of INPOP17a was updated from the model coefficients of LP150Q [START_REF] Konopliv | Recent gravity models as a result of the Lunar Prospector mission[END_REF]) to that of GL0660b (Konopliv et al. (2013)). The DE430 time delay model for the tides was updated with 5 time delays (Section 4.2) for INPOP17a.

Comparison of estimates: INPOP13c vs INPOP17a

A description of the procedure used to fit the INPOP13c ephemeris can be found in Manche (2011, p. 121). A major difference in the fit procedure between the two independent analyses is that, INPOP17a uses a bounded-value approach (further described in Section 5.1.3) to constrain correlated parameters (Section 5.2.2) without removing parameters from the fit during successive iterations. On the other hand, INPOP13c solution followed several selection criteria to include parameters into the fit during iterations, where the decision is based on the adjustment of the parameter relative to its uncertainty, degradation of residuals and correlated parameters (Manche, 2011, p. 126). Table (5.2) provides the major differences in estimated parameters from the two solutions ( INPOP13c andINPOP17a). With the new solution, a reduction of the parameter GM EM B is noticed. The geocentric distance of the Moon obtained with the two solutions and DE430 (Folkner et al. (2014)) is compared in Fig. 5.5, indicating a reduction in the radial difference from ∼2.5 m in INPOP13c to ∼0.19 m in INPOP17a. The reduction in the bias is a direct consequence of the reduction in the estimate of GM EM B . A radial difference of ∼0.25 m is also noticed between 
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(τ M -9 × 10 -2 ) × 10 4 day 1012 ± 12 -35 ± 3 ( kv C T -1.6 × 10 -8 ) × 10 10 day -1 - 15.3 ± 0.5 (f c -2.1 × 10 -4 ) × 10 6 - 42 ± 3 (h 2 -3.71 × 10 -2 ) × 10 3
15.5 ± 2.4 6.8± 0.2 solutions DE430 and DE421 (Williams et al., 2013, Fig. 1). This indicates the consistency of the lunar orbit obtained with INPOP17a and other teams (see Section 5.3.3).

With the introduction of the lunar fluid core, the estimate of the total polar moment of inertia of Moon (C T m M R 2 ) has increased. Dissipation at the coremantle boundary is introduced through the coefficient of viscous friction ( kv C T ) which is now a solution parameter. The estimate of the polar flattening f c is sensitive to the choice of the term α c (the ratio of the fluid core polar moment of inertia C c to the undistorted polar moment of inertia of the Moon C T ) fixed as 7 × 10 -4 . The new estimate of the lunar vertical displacement Love number h 2 is closer to estimates from Mazarico et al. (2014). An overall improvement in the estimated uncertainty is also noticed.

With the improved lunar interior modeling, the comparison of the Euler angle rates in Fig. (5.6), becomes closer to the corresponding values from DE430. Small differences of few milliseconds of arc remain due to the absence of empirical periodic correction terms in the longitude libration model of INPOP17a, which is present in DE430 (Williams et al., 2013, p. 9).

Comparison of post-fit residuals: INPOP13c vs INPOP17a

The statistics of the post-fit residuals (in cm of wrms) between the two solutions are provided in Table (5.3). An overall improvement in the post-fit residuals is noticed after the introduction of the lunar fluid core in INPOP17a. The major improvement comes from the correction of a programming error within the implementation of the lunar fluid core angular momentum equation within INPOP13c (see Section 4.1). A small annual variation is visible across post-fit residuals from all stations in INPOP17a due to the improved residuals (see Fig. 5.7). This signature corresponds to inaccuracies in the longitude libration modeling of the Moon. Williams et al. (2013); Pavlov et al. (2016) empirically correct this signature using supplementary periodic correction terms to the longitude libration of the Moon. None of the INPOP solutions rely on empirical corrections.

For the common dataset used between the two models, the improvements in the post-fit residuals have an average of: a factor 4 for observations from APOLLO , a factor 3 for observations from Matera and a factor 2 for observations from Grasse. The improvement reaches up to a factor 5 and a factor 4 on the post-fit residuals obtained for the recent observations of high accuracy from APOLLO and Grasse stations respectively. Post-fit residuals obtained on older periods prior to 1984 are improved from using the JPL KEOF (Ratcliff and Gross, 2015) EOPs in the reduction model as recommended by Pavlov et al. (2016). Beyond the common fit data span, the post-fit residuals continue to exhibit small residuals at the level of 1.15 cm and 1.47 cm for high quality observations from APOLLO and Grasse stations, respectively. 
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INPOP17a vs INPOP G

INPOP G refers to an internal solution with the same dynamical model specifications as of INPOP17a, but without the addition of two years of the new IR LLR observations (Courde et al., 2017). This allows the separation of the improvements brought by the IR LLR data from the overall improvement noticed in Section (5.3.1).

The IR LLR dataset constitutes 1707 normal points (7% of the total LLR data till date) from 2 years of operation in IR (1064 nm) wavelength at the LLR station in Grasse4 . A review of the technical developments and accuracy of this new dataset can be found in Courde et al. (2017). The homogeneity in the distribution (both spatial and temporal domains) of IR LLR data is described in Section (2.3). This dataset is weighted at the same level of accuracy as the APOLLO station normal points during the estimation procedure (see Section 5.1.2).

Comparison of estimates: INPOP17a vs INPOP G

The improvement brought by the addition of IR data on the estimated parameters characterizing the Moon and its inner structure is currently not massive (see Table 5.5). This is because of the relatively short time span of IR LLR data (2 years) compared to the remaining (47 years) historical LLR data. However, since the observations have a better temporal distribution in terms of the lunar phase, an improvement in the uncertainty of the parameter (∆(m G m I ) EM ) is expected with the prolongation of IR data in the near future. This is because tests of equivalence principle (Section 6.2) have maximum sensitivity during the new and the full Moon, where the past LLR data have been sparse (described in Section 2.3.1). With the help of the 2 years of IR LLR data, the improvement on the uncertainty of the EP parameter is about 15%, as provided in Table (6.2). With a larger time span of IR LLR data, we expect the spatial improvements (Section 2.3.2) to impact the present imperfections of the dynamical model of the lunar interior (Section 6.1.1) under the constraints of a high accuracy lunar gravity field.

Comparison of post-fit residuals: INPOP17a vs INPOP G

With the increase of normal points obtained for the L1 reflector (as discussed in Section 2.3.2), the reflector-wise distribution of LLR data becomes more homogeneous, as shown in Table (5.4). The effect of reduction in the spatial distribution bias on the model, brought by the new IR LLR data from Grasse, can be also seen on the improvement of L1 post-fit residuals from other stations. Table (5.4) highlights this improvement on the L1 post-fit residuals of APOLLO station (by 15%). 

INPOP17a vs DE430 and EPM2016

This section compares the estimates of INPOP17a (Viswanathan et al., 2017) with that from other independent LLR analyses groups (Williams et al., 2013;Pavlov et al., 2016). The modeling followed by the three groups are similar. However there exist differences between them, which include: number of fitted parameters (102 for INPOP17a, 102 for EPM and about 109 for DE430), constraints applied to the parameters during the fit, independent adjustments to the weighting scheme used for the fit, empirical corrections to longitude librations to absorb unmodeled effects, iterative rejection scheme, etc. Some of these differences are kept internal to the analyses groups and hence requires internal communication for a one to one comparison. (D. Pavlov, personal communication, 2017) provided some of the additions and bug-fixes to the work within Pavlov et al. (2016), involving extended LLR time span, correction of error within ocean loading model, bias additions for Grasse and adjustment of under-weighted Grasse observations.

Comparison of estimates: INPOP17a vs DE430 and EPM2016

Table (5.1) provides few of the fixed parameters of the above mentioned LLR analyses groups relevant to the lunar dynamical modeling. For EPM, the solution used for comparison is Pavlov et al. (2016, Solution I).The parameter EMRAT is a result of the joint iteration between the lunar and planetary parts of the ephemeris. This approach of the joint iteration is also followed by DE430 ephemeris (Williams et al., 2013;Folkner et al., 2014) [START_REF] Pavlis | The EGM2008 Global Gravitational Model[END_REF] as the Earth's gravity field model. INPOP17a uses a more recent gravity field model GGM05C (Ries et al., 2016) scaled to the equatorial radius (R E ) of the Earth taken from Petit and Luzum (2010, p. 18). R E from EGM2008/GGM05C is 0.3 m smaller than that given in Petit and Luzum (2010, p. 18). The values of k 22,E and τ O2,E were chosen to be closer to a more recent study (Williams and Boggs, 2016;Pavlov et al., 2016) than Williams et al. (2013).

Table (5.5) provides the estimates of the extended parameters of the Earth-Moon system from the LLR analyses groups under comparison. Overall, the estimates from INPOP17a lie within the error bars from DE430. The value of τ R1,E is consistent with DE430, but inconsistent with EPM2016, presumably due to the communicated ocean tides modeling error in Pavlov et al. (2016). τ R2,E is closer to EPM2016 than DE430 due to: the use of recent values of k 22,E and τ O2,E from Williams and Boggs (2016); Pavlov et al. (2016); and, has a smaller impact from the modeling error in Pavlov et al. (2016) on the semi-diurnal tidal time delay τ R2,E (from M2 and N2 ocean tides), than on the diurnal tidal time delay τ R1,E ( from O1 and Q1 ocean tides) considering the amplitude of the tidal delays within Williams and Boggs (2016, Table 6).

The uncertainty reported in INPOP17a on the C T (m m R 2 ) is about 10 times smaller than from DE430 and EPM2016 due to the use of C 22 from GRAIL (Konopliv et al., 2013) as a constraint with the help of Eqn. (4.3), thereby reducing the degree of freedom from the solution than when using libration β and γ as solution parameters. The result is that the one could separate the annual dissipation component from that induced by the additional degree of freedom of the solution mimicking similar signatures. Although this makes the solution rely strongly on the spacecraft-derived gravity field at degree-2, it also helps to reveal modeling inconsistencies at higher degrees as shown in Section (6.1.1).

Three of the degree-3 coefficients (C 32 , S 32 and C 33 ) are included as unconstrained fitted parameters (Section 5.2.1) as a method to absorb modeling inconsistencies (Section 6.1.1). This approach is also followed by Williams et al. (2013); Pavlov et al. (2016). We follow the same approach only to facilitate the comparison of estimates and post-fit residual, while providing a discussion on the attempts to improve the lunar dynamical model (refer Section 6.1.1). The estimated degree-3 coefficient in Table (5.5) are marginally closer to GRAIL solution (Konopliv et al., 2013) than DE430 or EPM2016. This could be due to the constraint applied on degree-2 using Eqn. (4.3). The LLR estimated C 32 differences found by the different LLR analyses teams from the gravity field provided by Konopliv et al. (2013) have the same magnitude as those between a previous lunar gravity field model (LP150Q: [START_REF] Konopliv | Recent gravity models as a result of the Lunar Prospector mission[END_REF]) and GRAIL (GL0660b: Konopliv et al. (2013)). However, differences on other degree-3 gravity field coefficients (S 32 and C 33 ) are an order greater. The reasons behind these discrepancies are discussed in Section 6.1.1.

Other estimates from INPOP17a, linked to the dissipation (τ and k v C T ) and core flattening (f c ) are also within the uncertainties provided by DE430. However, these estimates are linked with the choice of the value of core fraction (α c ), currently fixed to 7 × 10 -4 (Folkner et al., 2014).

INPOP17a solution does not fit any additional parameters to empirically correct for unmodeled libration in longitude such as in Williams et al. (2013, Eqn. 1) and Pavlov et al. (2016). [START_REF] Williams | De421 lunar orbit, physical librations, and surface coordinates[END_REF] mention that a rotation in longitude would be very sensitive to the gravity field coefficients. Moreover, the absence of higher-degree torques as in the dynamical model, can be masked by small adjustments to gravity field (Cappallo, 1980, Appendix E.2). Hence, we prefer to introduce minimum adjustments to the GRAIL-derived gravity field and to identify the shortcomings of the current lunar model which causes this unmodeled libration. By doing this we open the grounds for further research using LLR by disentangling similar signatures noticed on the lunar libration arising from the lunar interior. Some of the missing higher-degree torques within the DE430 model (Folkner et al., 2014) were identified and implemented within an internal solution of INPOP. The results of introducing a more complete torque up to degree-3 components of the gravity field (Section 6.1.2) show small improvements in the residuals, while the inconsistencies in the estimates remain. 

(f c -2.1 × 10 -4 ) × 10 6 37 ± 3 42 ± 3 36 ± 28 37 ± 4 (h 2 -3.71 × 10 -2 ‡ ) × 10 3 6.3 ± 0.2 6.8± 0.2 11.0 ± 6 6 ± 1 Q 27.212 -45 (derived)
3.9 ± 0.5 5.0 ± 0.2 0 ± 5 0 ± 1
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Comparison of residuals: INPOP17a vs DE430 and EPM2016

As one can see on Fig.

(5.7), the overall post-fit residuals obtained using INPOP17a indicate that its model accuracy is at par with other lunar ephemeris such as DE430 and EPM2016. After a successful fit of the model to the observations, ideally the residuals should only carry the observational uncertainties. Deficiencies in the model, if above the observational uncertainties, would be visible in the post-fit residuals. An annual signature is present on all reflectors arising from inconsistencies of the lunar longitude libration model. Williams et al. (2013) suggest the poor performance of the lunar time delay model for this annual term and recommend the introduction of an empirical term (cos l ′ ). The amplitude of this effect is about 5 mas for longitude libration or about 1.5 cm in range. Another suggested empirical correction term for the lunar rotational dissipation model with a period of 6 years (F -l) would be only at about 1 mas or about 3 mm in range (Williams et al., 2001), which is insufficient to explain the 5 cm model inconsistency for degree-3 gravity field discrepancy found in Section (6.1.1). 

CHAPTER 5. CONSTRUCTION OF A LUNAR EPHEMERIS: INPOP17A
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Chapter summary

A successful fit of the lunar ephemeris to LLR observations requires attention to detail from several key points. Few of these points include the identification and correction to: irregularities in the uncertainty of each LLR observation, biases in the observation, regression procedure limitations and parameter uncertainty computation and its interpretation. Constraints to fit parameters are used when a better accurate estimate is available. The new estimates and post-fit residuals are compared with that obtained by other independent LLR analyses groups. The following chapter (Chapter 6) focuses on the extraction of scientific values from the analysis/estimates provided within this chapter.
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CONSTRUCTION OF A LUNAR EPHEMERIS: INPOP17A

Chapter 6

Applications

The application of lunar laser ranging observations and its analyses covers a wide range of scientific disciplines like lunar science, gravitation, geophysics and geodesy.

After the first seven years of operation, a collection of scientific articles pertaining to these disciplines were put together as proceedings [START_REF] Ewing | Scientific Applications of Lunar Laser Ranging[END_REF]Mulholland et al., 1977). The Clementine and Lunar Prospector missions returned global data sets of lunar gravity, topography, remanent magnetism, mineralogy, and chemical composition of the surface [START_REF] Nozette | The Clementine Mission to the Moon: Scientific Overview[END_REF][START_REF] Binder | Lunar Prospector: Overview[END_REF]. Other lunar missions include SELENE [START_REF] Kato | The japanese lunar mission selene: Science goals and present status[END_REF], Chandrayaan [START_REF] Goswami | Chandrayaan-1: India's first planetary science mission to the moon[END_REF] and Chang'E [START_REF] Ouyang | Primary scientific results of chang'e-1 lunar mission[END_REF]. Recent developments were brought by the GRAIL mission (Zuber et al., 2013) following which a better understanding of the lunar topography and interior surfaced.

Here we elaborate on the current state-of-the-art in terms of the understanding of the lunar interior, investigation attempts and a new model (work in progress) to correct for degree-3 GRAIL-derived gravity field coefficient incompatibility to the lunar dynamical model, as well as the application of the improved lunar model to the study of fundamental physics.

Lunar interior

A better understanding of the structure of the interior of the Moon aids to recover information on its past history. Planetary geodesy measurements of global parameters such as the gravity field and variations in rotation gives key information on its interiors. The Gravity Recovery and Interior Laboratory (GRAIL) mission (Zuber et al., 2013), analogous to the GRACE mission in the Earth's orbit, was able to map the global gravity field of the Moon (Konopliv et al., 2013;[START_REF] Lemoine | GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data[END_REF] using differential gravity measurements obtained with a pair of spacecraft with accurately known relative positions.

CHAPTER 6. APPLICATIONS

The use of GRAIL-derived gravity field data provides significant constraints during the analysis of LLR observations, and complements the recovery of information. This is because while the GRAIL-derived gravity field provides a global lunar model with a 6-month observation time span, LLR modeling involves differential equations describing the relative motion of a layered Moon with a larger observational time span (1969-present). Moreover, the synergistic use of the GRAILderived gravity field with LLR observations allows the user to study the orbital evolution of the Moon with the help of ephemerides.

Discussion about INPOP17a model

During the iterative fit of the INPOP17A model to the LLR observations, it was noticed that, in order to maintain the post-fit residuals at the level of 2 cm it was necessary for a few degree-3 spherical harmonic coefficients (C 32 , S 32 and C 33 ) to deviate by about 1% from the GRAIL-derived gravity field values (Konopliv et al., 2013). This was associated by other LLR analysis groups (Williams et al., 2014b;Pavlov et al., 2016) as unmodeled effects in the physical libration model and an adjustment to these degree-3 coefficients was suggested to obtain a better LLR fit.

The difference between the value of the spherical harmonic coefficient C 32 derived from the Lunar Prospector Mission LP150Q [START_REF] Konopliv | Recent gravity models as a result of the Lunar Prospector mission[END_REF] and that from GRAIL GL0660b Konopliv et al. ( 2013) is about 4.7 × 10 -9 , consistent with the LLR estimates from DE430 (Folkner et al., 2014), EPM2016 (Pavlov et al., 2016) and INPOP17a (Viswanathan et al., 2017). However, differences (LP150Q-GL0660b) on the coefficients S 32 and C 33 are one order of magnitude smaller than from LLR estimates. Overall, this indicates that the discrepancies on the degree-3 gravity field of the Moon with the current lunar dynamical models are not mission specific. For GRAIL, the two independent gravity field model from JPL (Konopliv et al., 2013) and GSFC [START_REF] Lemoine | High-degree gravity models from GRAIL primary mission data[END_REF] have 3 orders of magnitude smaller differences, ruling out analysis specific discrepancies in the 1% deviation noticed from LLR estimates. Cappallo (1980, Appendix E.2) comments about the impact of neglecting degree-4 torques, which can be masked by small changes in the degree-3 coefficients. To study the impact of the neglected components of torques within the dynamical model, we constrain the INPOP17a model to a strictly GRAIL-derived lunar gravity field. This is followed by an iterative fit. A strong 6-year longitude libration signature on all reflectors (expect weakly on A15 reflector due to its central position when viewed from the mean-Earth direction) with an amplitude of ±5 cm, is then noticed within the post-fit residuals (see Fig. 6.4). A longitude libration signature can be identified in LLR using the phase of the range signature with respect to the position of the retro-reflector on the surface of the Moon i.e A11 and L2 located along similar longitudes have the same phase in the range compared to A14 and L1.

The following discussion (Section 6.1.2) as well as a new modeling (Section 6.1.3) was proposed for publication to the Astronomy & Astrophysics journal (see submitted manuscript in Appendix C).

Investigation attempts

Here we list some of the additions made to the dynamical model of INPOP (internal version), in order to consider the unmodeled higher-degree components (torque, Love number and CMB topography) that is expected to compensate the longitude libration signature noticed.

Fourth degree torque

Within the torques due to interaction of the figure of the Moon with the figure of the Earth provided by Folkner et al. (2014, p. 18), only the three most significant terms are considered. This is an approximation from the complete expansion of the ⃗ N 22 torque provided in Bois et al. (1992, p. 197). On introducing this torque component into Eqn. (4.5a) as a higher degree component of ⃗ N M,f igM -f igE , a longitude libration signature with a period of about 3 years with a maximum amplitude of ±1 mm over 48 years on the 1-way light time range (0.33 mas on longitude libration) is noticed (see Fig. 6.1). Since the effect is below the uncertainty of the observations till date, the improvement of the model with the inclusion of this effect is not noticable within the iterative post-fit residuals and the signature (indicated within Fig. 6.1) is absorbed.

Fifth degree torque

The fifth degree torque consists of figure-figure interaction exerted by the Earth (second degree in harmonics) on the Moon (third degree in harmonics). This is expanded as ⃗ N 23 in Bois et al. (1992, p. 198) 1 . On introducing this torque component into Eqn. (4.5a) as an inter-degree component of ⃗ N M,f igM -f igE , a longitude libration signature with a period of about 3 years with a maximum amplitude of ±3 mm over 48 years on the 1-way light time range (1 mas on longitude libration) is noticed (see Fig. 6.2). Similar to the fourth-degree torque, the signature brought by the inclusion of the fifth-degree torque is also absorbed during an iterative fit, without any noticable improvement on the post-fit residuals.

An internal solution was refitted with the introduction of these two torque components (fourth and fifth degree) with a strictly GRAIL-derived gravity field model. With the GRAIL constraints on the degree-3 components, the solution (1992, p. 197).

produces the same 6 year signature as described in Section 6.1.1. And, on relaxing the constraints on the degree-3 components (as described in Section 5.2.1), the resulting solution produced similar post-fit residuals (with differences below 1 mm on 1-way light time range) with the new estimates being within the uncertainty of INPOP17a solution.

This implies that the modeled higher degree components (fourth and fifth degree) of the figure-figure torques are not responsible for the noticed discrepancy.

Degree-3 love number for the Moon Konopliv et al. (2013) provide the value of degree-3 Love number k 3 as 0.0089 ± 0.0021, from the analysis of the GRAIL Primary Mission. The degree-3 love number estimated by Konopliv et al. (2013) for the Moon, is introduced into the dynamical model using Manche (2011, Eqn. 4.10), inducing time variations on the degree-3 gravity field of the Moon.

It was noticed that the maximum amplitude of this effect is about 0.2 mm over 48 years on the 1-way light time range with a period of 18.6 years. This implies that the introduction of the degree-3 love number is undetectable with the current LLR accuracy, and is easily absorbed during an iterative fit of the solution including this effect. Figure 6.2: Longitude libration signature of ±3 mm over 48 years on the 1-way light time range (1 mas on longitude libration) with a period of about 3 years arising from the introduction of higher order inter figure-figure interaction (fifth degree torque) between the Moon and the Earth, as provided by ⃗ N 23 torque in Bois et al. (1992, p. 198).

Topographic coupling at the core-mantle boundary

An expression for the topographic coupling up to degree-3 (see Appendix B.2) was derived by (N. Rambaux, personal communication, 2017), developed under the approximation that the flow of the liquid at the core-mantle boundary is mainly controlled by the ellipsoidal shape (i.e without correction on higher harmonics) and conforming with [START_REF] Sasao | An excitation mechanism for the free ' core nutation[END_REF]. This extends the lunar core gravity field coefficients up to degree and order 3, thereby introducing 7 additional parameters (without known values) for the lunar core. These parameters are strongly correlated (0.8 to 0.9) and the plot of the partial derivatives of the core degree-3 spherical harmonics are not sensitive at the current level of the LLR accuracy for a given core fraction (α c = 7 × 10 -4 ). One could expect a higher sensitivity for larger values of α c , however, the signature of interest (6 year period on longitude libration) was not visible on the plot of the partial derivatives of the core gravity field coefficients.

At the time of writing, the overall impact of this effect (from the degree-3 components) on the 1-way light time remains unknown due to the inability to perform the fit due to the strong correlation among the lunar core gravity field coefficients. 2016) assume that the lunar fluid core rotates like a rigid body and is constrained by the shape of the CMB at the interior of the mantle, with a constant core moment of inertia in the frame of the lunar mantle. Under these assumptions, several constraints to the present lunar ephemerides are introduced.

Fluid core rotation like an rigid body implies, a simplified flow with a homogeneous density distribution. Although the flow is well represented by the model of [START_REF] Poincaré | Sur la précession des corps déformables[END_REF] through the inertial coupling torque (considering a triaxial fluid core following Rambaux et al. (2007)), the homogeneous density distribution restricts the introduction of density variations on the fluid core. Gravitational forcing from external mass anomalies (within the mantle/inner core or CMB-topography) can cause lateral structure inside the fluid core [START_REF] Wahr | The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations[END_REF][START_REF] Dai | Detection of motion and heterogeneity in Earth's liquid outer core[END_REF]. Mass anomalies on the Moon were detected by the analysis of Lunar Orbiter data [START_REF] Muller | Mascons: lunar mass concentrations[END_REF]) and further studied by GRAIL-derived gravity field [START_REF] Melosh | The Origin of Lunar Mascon Basins[END_REF][START_REF] Neumann | Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements[END_REF]. Hence, the presence of such lateral variations in the fluid core would change the potential when reoriented with respect to the mantle frame and therefore the gravitational torques on the fluid core can no longer be neglected (Williams et al., 2014b). Furthermore, in the presence of a laterally varying structure, degree-2 tidal forces excite gravitational response at non-degree-2 harmonics due to mode coupling effects [START_REF] Zhong | Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior[END_REF].

To study the impact of the above mentioned assumptions, in addition to the inertial and viscous coupling torques, we introduce an external gravitational torque from the point mass Earth on the lunar fluid core figure (similar to Van Hoolst (2007, Eqn. 35)), considering the presence of core lateral variations induced by mass anomalies within the lunar mantle. This refers to the introduction of Eqn. (4.10) into the lunar core angular momentum equation provided in Section (4.3.6).

An internal version of INPOP (S2), introduces this model in order to study the effect of this torque on the estimates. This solution additionally solves for lunar core degree-3 components with constraints placed on the lunar gravity field derived from GRAIL (Konopliv et al., 2013). The post-fit residuals obtained with solution S2 show small improvements over the INPOP17a model (see Fig. 6.4) with consistent estimates (see Table 6.1). More importantly, the results indicate strong consistency with the GRAIL-derived gravity field coefficients without requring any adjustments. The estimated value of h 2 is then compatible with the LRO LOLAderived estimate by Mazarico et al. (2014). Additional test solutions linked to this study can be found in Appendix (C).

It must be noted that the solution S2 does not consider a complete torque balance within the lunar interior and the results shown are only preliminary. The submitted paper is under revision which requires further analysis. The new objective is to consider a three layer (solid mantle, fluid outer core and a solid inner core) lunar model, with a complete gravitational and pressure torque balance between the internal layers. This revision (a work in progress) would allow us to verify if the lunar libration signature absorbed by the torque imbalance (arising from the introduction of the external gravitational torque alone on the fluid core) is similar to that introduced from an additional layer such as the solid inner core.

A constant core moment of inertia does not allow tidal deformations of the lunar fluid core or the core-mantle boundary. Tidal deformations partly affect the lunar orientation through the responding moment of inertia and its time derivative (Williams, 2009;Williams et al., 2012a). Le [START_REF] Bars | An impact-driven dynamo for the early Moon[END_REF] show the importance of the tidal distortion of the lunar core-mantle boundary to explain the lunar magnetic anomalies with links to the lunar dynamo for the early Moon. Introducing time variations to the lunar fluid core moment of inertia requires Love numbers for the fluid core, which are obtained through lunar seismic studies (Weber et al., 2011;Garcia et al., 2011) and also provided in Williams et al. (2014b, Table 6). At the time of writing, the impact of the deformations on the fluid core was neglected within the lunar dynamical model, however a work is in progress to address this contribution. Table 6.1: Comparison between solutions: Extended body parameters for the Moon. Uncertainties are obtained from a 5% jackknife (JK) test, the least squares 1-σ uncertainties being either consistent or smaller than the JK estimations. ⋆ stands for values fixed to model (GL0660b) values from GRAIL. 17a refers to the INPOP17a solution and S2 refers to an internal version of INPOP with the dynamical model described in Section (6.1.3). ‡ indicates that the h 2 reference value is extracted from Mazarico et al. (2014).

Parameter 17a S2 (C T (m M R 2 ) -0.393140) × 10 6 7.3 ± 0.2 5.0 ± 0.2 (C 32 -4.8404981 × 10 -6 ) × 10 9 4.1 ± 0.3 0.0 ⋆ (S 32 -1.6661414 × 10 -6 ) × 10 8 1.704 ± 0.006 0.0 ⋆ (C 33 -1.7116596 × 10 -6 ) × 10 8 -1.19 ± 0.04 0.0 ⋆ (τ M -9 × 10 -2 ) × 10 4 [d] -2 ± 5 -56 ± 5 ( kv C T -1.6 × 10 -8 ) × 10 10 [d -1 ]
10.2 ± 0.4 17.9 ± 0.4 (f c -2.1 × 10 -4 ) × 10 6 41 ± 3 47 ± 3 (C 32,core + 5.6 × 10 -8 ) × 10 10 --3.0 ± 2 (S 32,core -5.0 × 10 -8 ) × 10 10 -5 ± 10

(k 2,M -0.024059) × 10 3 0.0 ⋆ 0.0 ⋆ (h 2 -3.71 × 10 -2 ) ‡ × 10 3 6.6 ± 0.2 2.3 ± 0.2 l 2,m -1.07 × 10 -2 0.0 ⋆ 0.0 ⋆ Q 27.212 -45 (derived)
3.2 ± 0.5 6.6 ± 0.3

Test of the principle of equivalence

Towards the end of 16 th century, the Italian scientist Galileo Galilei conceived an experiment in which he dropped two objects of different composition and mass together from the top of the Tower of Pisa. In his theory, as the two objects hit the ground at exactly the same time, he deduced that in vacuum, and under the influence of a gravitational field, all bodies are accelerated equally. This is what we call the Universality of Free Fall (UFF) or the equality of gravitational and inertial mass. This was later stated by Albert Einstein, as the Equivalence Principle (EP) which was the central assumption of the General Relativity Theory (GRT).

In the following section we provide a test of the UFF with the help of INPOP lunar ephemeris, considering the Moon and the Earth as test subjects falling in the gravitational field of the Sun. The results of this test are provided in Section (6.2.3), followed by a discussion (Section 6.2.4) and an interpretation (Section 6.2.3). The results presented here are accepted for publication in the Monthly Notices of the Royal Astronomical Society (see submitted manuscript in Appendix D).

Context

Among all possibilities to test GRT, the tests of the motion and light propagation in the solar system were historically the first ones and still provide the highest accuracies, since the dynamics of the solar system is well understood and supported by a long history of observational data. In general, tests of GRT can be split into two groups: tests of the Equivalence Principle (claiming that gravity can be understood in a geometrical way) and those of the Einstein field equations (describing how the space-time geometry is influenced by matter). Violations of the Equivalence Principle are predicted by a number of modifications of GRT aimed to suggest a solution for the problem of Dark Energy and/or to merge GRT with quantum physics: e.g., string theory (Damour and Polyakov, 1994;[START_REF] Damour | Violations of the equivalence principle in a dilaton-runaway scenario[END_REF] or models where some physical constants are dynamical entities (Damour and Donoghue, 2010;[START_REF] Damour | Theoretical aspects of the equivalence principle[END_REF]. The Universality of Free Fall, an important part of the Equivalence Principle, is currently tested at a level of about 10 -13 with torsion balances (Adelberger et al., 2003) and the LLR [START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF].

As the Earth and the Moon both fall in the gravitational field of the Sunand because they neither have the same compositions, nor the same gravitational self-energies -the Earth-Moon system is an ideal probe of both the Weak Equivalence Principle (WEP) and the Strong Equivalence Principle (SEP), while torsion balance (Adelberger et al., 2003) or the MICROSCOPE satellite (Liorzou et al., 2014) are only sensitive to violations of the WEP.

Method

In order to test possible violations of GRT in terms of UFF, a supplementary acceleration is introduced in the geocentric equation of motion of the Moon, such that the UFF violation related difference between the Moon and the Earth accelerations reads (Nordtvedt, 1968):

∆a U F F ≡ (a M -a E ) U F F = a E ∆ ESM (6.1)

Corrections

LLR EP estimates are sensitive to a variety of effects, including (but not limited to), solution parameter correlations, choice of parameters in the fit, reduction model used, artifacts from non-uniform distribution of the data, biases, etc. In order to estimate ∆ ESM with the appropriate accuracy, one should correct for known supplementary effects along the radial component, such as the solar radiation pressure (-3.65 ± 0.08 mm cosD) and the thermal expansion (≈ 0.67 mm cosD) of the retro-reflectors (Vokrouhlický, 1997;[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF]). An empirical correction on the radial perturbation (∆r ESM ) induced by the UFF test has to be applied. The UFF additional acceleration would indeed lead to an additional radial perturbation (∆r ESM ) of the Moon's orbit towards the direction of the Sun given by:

∆r ESM = S∆ ESM cos D, (6.2)
where S is a scaling factor of about -2.93 × 10 10 m and D is the synodic angle. A correction ∆r = -3.0 ± 0.5 mm cos D (Vokrouhlický, 1997;[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF] is then applied and a new corrected value of ∆ ESM is then deduced.

Results

As described firstly by Nordtvedt (1968), we consider first the quantity ∆ ESM such as:

∆ ESM = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ m G m I E - m G m I M ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (6.3) where m G m I E and m G m I M
are the ratios between the gravitational and the inertial masses of the Earth and the Moon respectively. CHAPTER 6. APPLICATIONS Following [START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF], we obtain

a M -a E = - Gµ r 3 EM r EM + Gm G S r SE r 3 SE - r SM r 3 SM + +Gm G S ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ r SE r 3 SE ⎛ ⎝ m G m I E -1 ⎞ ⎠ - r SM r 3 SM ⎛ ⎝ m G m I M -1 ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (6.4)
In recombining the previous equation, one shows that the supplementary acceleration induced by the violation of the universality of free fall ∆a U F F , can be written such as:

∆a U F F ≡ (a M -a E ) U F F ≈ Gm G S ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ r SE r 3 SE ⎛ ⎝ m G m I E -1 ⎞ ⎠ - r SM r 3 SM ⎛ ⎝ m G m I M -1 ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ≡ a E ∆ ESM (6.5)
The results of the estimation of ∆ ESM from LLR is provided in Table (6.2).

Supplementary Interpretation

The LLR test of the UFF captures a combined effect of the SEP, from the differences in the gravitational self-energies, and the WEP due to compositional differences, of the Earth-Moon system. In order to separate the effects of WEP, we rely on results from laboratory experiments that simulate the composition of the core and the mantle materials of the Earth-Moon system. One such estimate is provided by (Adelberger, 2001), that translates to a relative acceleration:

m G m I Earth - m G m I M oon W EP = (1.0 ± 1.4) × 10 -13 (6.6)
The results of the estimation of SEP from LLR is provided in Table (6.3). 

∆(m G m I ) ESM cos D cos D ∆(m G m I ) ESM [Year] [×10 -14 ] [mm] [mm] [×10 -14 ]

Discussion

Fits were performed with the difference in accelerations ∆ ESM given in Eqn. (6.1) along with the other fitted parameters presented in Table (5 The additional acceleration of the Moon's orbit in the direction of the Sun correlates with a coefficient of 0.95 and 0.90 with GM EM B and the Earth-Moon mass ratio (EMRAT), respectively. In all the solutions w.r.t LLR EP estimation, GM EM B remains as a fit parameter due to its high correlation with the EP parameter (∆(m G m I ) ESM ). EMRAT was estimated from a joint planetary solution and kept fixed during LLR EP tests due to its weak determination from LLR. This is reassured using a test solution that fitted EMRAT, while keeping GM EM B as a fixed parameter, giving an estimate of ∆(m G m I ) ESM = (8±7.0)×10 -14 . However, the value of EMRAT obtained with this test solution has an uncertainty of one order of magnitude greater than that obtained from the planetary fit, consistent with a similar result by Williams et al. (2009). As a result, EMRAT was not included as a fit parameter for the estimates provided in Table (6.2), as it resulted in a degraded fit of the overall solution. [START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF] show through solutions labeled EP71 and EP72, that including annual nutation components of the Earth's pole direction in space, to the list of fit parameters during the estimation of LLR EP solution, increases the uncertainty of the estimated EP parameter (∆(m G m I ) ESM ) by 2.5 times. Moreover, it is to be noted that within Table (6.2), reference solutions: Williams et al. (2009[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF]; Müller et al. (2012) use the IERS2003 (McCarthy and Petit, 2004) recommendations within the reduction model, while all INPOP17 solutions use IERS2010 (Petit and Luzum, 2010) recommendations. The notable difference between the two IERS models impacting the LLR EP estimation is expected to be from the precession-nutation of the celestial intermediate pole (CIP) within the ITRS-GCRS transformation, while other differences can be found within Petit and Luzum (2010, p. 8).

Eqn. (6.2) shows the dependence of ∆r ESM w.r.t the cosine of the lunar orbit's synodic angle (cos D), synonymous with the illumination cycle of the lunar phases. Due to the difficulties involved with ranging to the Moon during the lunar phases with the maximum value of cos D (during the New and Full Moon phases) as described in Section (2.3.1), the LLR observations during these phases remain scarce. The availability of LLR observations from Grasse (in IR) and APOLLO, contributes to the improvement of this situation, as shown in Fig . (2.12 and 2.14) compared to Fig. (2.13). This is reflected in the improvement of the uncertainty of the estimated value of ∆(m G m I ) ESM by 14% for the solution using the complete LLR dataset.

Perspectives

An observable bias in the differential radial perturbation of the lunar orbit w.r.t the Earth, towards the direction of the Sun, if significant and not accounted for within the dynamical model, would result in a false indication of the violation of the principle of equivalence estimated with the LLR observations. [START_REF] Oberst | The present-day flux of large meteoroids on the lunar surface-A synthesis of models and observational techniques[END_REF] show the distribution of meteoroid impacts with the lunar phase. Peaks within the histogram in Oberst et al. (2012, p. 186) indicate a non-uniform temporal distribution with a non-negligible increase in both small and large impacts during the New and Full Moon phase. Future improvements to the LLR EP estimation must consider the impact of such a bias that could potentially be absorbed during the fit by the LLR EP parameter ∆r ESM .

Chapter summary

The long time span of LLR observations and its ongoing millimeter level accuracy allow LLR analyses to identify subtle changes in the lunar orientation and other state vectors resulting from the dynamics of the lunar interior and/or equations of motion. A longitude libration signature is induced due to the incompatibility of few of the degree-3 spherical harmonics of spacecraft-derived gravity field models. Attempts to investigate the source of the supposed modeling error are provided. A new model is proposed and it reduces this incompatibility significantly. Additional work is required (and is ongoing) to introduce tidal variations on the lunar core matrix of inertia to model deformations of the fluid core. A test of the universality of free fall using the INPOP17a model of the Earth-Moon system shows no violation of the universality of free fall at 10 -14 . The following chapter (Chapter 7) concludes this study with the future perspectives.

Chapter 7

Conclusion and Perspectives

The observations used for this study consists of lunar laser ranging (LLR) data (Chapter 2). The study begins with the use of raw observations collected by the Grasse LLR station situated in the Côte d'Azur region of France. The Grasse LLR station has acquired LLR range data for nearly three decades [START_REF] Veillet | La distance Terre-Lune {à} quelques centim{è}tres pr{è}s[END_REF][START_REF] Veillet | Lunar Laser Ranging at CERGA for the ruby period (1981-1986)[END_REF][START_REF] Samain | Le laser lune millimetrique et nouvelles methodes de datation optique[END_REF]Samain et al., 1998;[START_REF] Martinot-Lagarde | Laser enhancements for Lunar Laser Ranging at 532nm[END_REF] and continues to procure high accuracy LLR observations since the change of the operational wavelength to IR (1064 nm) (Courde et al., 2017). The fit of the parameters benefits from the homogeneous distribution of IR in both spatial and temporal domains when compared to the operation in 532 nm wavelength. The existing normal point computation algorithm employed at Grasse station was evaluated under different scenarios describing the various range data obtained, and an alternative algorithm (Section 2.2.4) is proposed to compensate for its limitations (Section 2.2.3). Statistical analyses are performed on the LLR data (subsets and collective) distribution to quantify its temporal and spatial dependencies (Section 2.3). Wavelength dependent response of the Lunokhod retro-reflectors (Courde et al., 2017) requires further study. Internal binaries from Grasse station indicate insufficient echoes for characterization of components in the calibration distribution. Future calibration sessions must acquire more echoes for smoother profiling.

The numerical model consists of two components: the reduction model (Chapter 3) and the dynamical model (Chapter 4). The LLR reduction model computes the simulated time taken by the laser pulse during the LLR experiment during the up-leg (station-reflector) and down-leg (reflector-station) paths of the laser pulse, including all the known geophysical and relativistic effects. This model was implemented within a precise orbit determination and geodetic software: GINS. The frame of reference was changed to the ICRF to facilitate the accuracy of the numerically integrated ephemerides. A step-wise comparison study was conducted (using simulated LLR data) between the LLR analyses groups at IMCCE-Paris (Manche, 2011) and IfE-Hannover [START_REF] Müller | Potential Capabilities of Lunar Laser Ranging for Geodesy and Relativity[END_REF], to identify and correct modeling errors at the 1 mm level using the IERS 2010 (Petit and Luzum, 2010) and DE421 (Folkner et al., 2009) as the reference models. Additionally, the impact of hydrology loading at the Grasse station was analyzed through multi-geodetic techniques [START_REF] Mémin | Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station[END_REF] and modeled into the reduction software (Section 3.3.6). A report was submitted to CNES containing the LLR reduction model modifications in GINS software and libraries along with the code delivery.

The dynamical model consists of a planetary and lunar ephemeris. The lunar part of the ephemeris describes the motion and orientation of the Moon as it orbits the Earth. A previous version (13c) of the INPOP lunar ephemeris (Fienga et al., 2014) was extensively tested and compared with two other independent lunar ephemerides: DE430 -Folkner et al. ( 2014) and EPM2016 - Pavlov et al. (2016). Inconsistencies between the models were identified and corrected during the comparison (Section 4.1). The fluid core within the new solution is activated. Additional work is required for alternatives to the time delay model of dissipation used in lunar ephemerides, as the current model requires empirical corrections on the longitude librations to account for dissipation effects for periods away from a month (Williams and Boggs, 2015b). A proposition is to introduce imaginary Love numbers to account for dissipation.

An improved version of the INPOP lunar ephemeris was constructed through an iterative weighted least-squares fit (Chapter 5), providing new independent estimates of the lunar dynamical model. The new post-fit residuals are below 2 cm in wrms, a factor 5 improvement on the latest high accuracy observation compared to that obtained from the previous version of INPOP (Section 5.3). Comparison with the LLR estimates from other analyses groups (Folkner et al., 2014;Pavlov et al., 2016) show strong consistency at the 2 cm level. The INPOP17a ephemeris is publicly distributed through the IMCCE website: www.imcce.fr/inpop with a technical report (Viswanathan et al., 2017).

The construction of a high accuracy lunar ephemeris allows us to probe deeper into the questions of the lunar interior structure (Section 6.1) and conduct tests of the universality of free fall (Section 6.2) as described in Chapter (6).

The use of a strictly GRAIL-derived gravity field model (Konopliv et al., 2013) highlights longitude libration signatures well above the LLR noise floor, arising from unmodeled effects in the lunar ephemeris (Section 6.1.1). Other LLR analyses groups (DE421/430 and EPM2016) prefer to fit the degree-3 components away from GRAIL-derived gravity field coefficients. We provide the investigation attempts to this issue to identify the cause of the low-degree spacecraft-derived gravity field inconsistency (Section 6.1.2). Additionally, a model is also provided to compensate this signature (Section 6.1.3). New leads suggest that there may be a small non-spherical response to tidal forcing due to asymmetric elastic properties between the lunar near-side and far-side. [START_REF] Zhong | Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior[END_REF] propose that this asymmetry would change the degree-2 tides and introduce a mixed-mode degree-3 response due to the lateral density variations. Further development on the introduction of a three-layer Moon (mantle, outer fluid core and solid inner core) in the lunar dynamical model is envisioned in the near future due to the availability of accuracy on the LLR observations. The observational evidence for the presence of a solid inner core within the Moon would answer to several key questions regarding the now-extinct lunar dynamo [START_REF] Wieczorek | The Constitution and Structure of the Lunar Interior[END_REF][START_REF] Laneuville | A long-lived lunar dynamo powered by core crystallization[END_REF]. For LLR, this remains as a near possibility.

Estimates of the principle of equivalence (EP) parameter are obtained (Section 6.2.3) and show no violation at the level of 10 -14 . [START_REF] Oberst | The present-day flux of large meteoroids on the lunar surface-A synthesis of models and observational techniques[END_REF] show the distribution of meteoroid impacts with the lunar phase, indicating a nonuniform temporal distribution during the New and Full Moon phase which could impact the test of EP. The impact of this effect needs to be characterized to be considered as negligible at the present LLR accuracy. Thermal expansion of the retro-reflectors and solar radiation pressure will be included in the reduction model (instead of the currently employed empirical corrections) for future LLR analysis, so as to improve the uncertainty of the EP test.

The last four decades saw LLR accuracy move by 2 order of magnitude, down to a present millimeter level. This was achieved solely through efforts from the technical teams at various LLR stations who continue to produce high accuracy observations and make them available to the public. New LLR stations continue to be commissioned [START_REF] Munghemezulu | Design of the timing system for the new lunar laser ranger proposed for the matjiesfontein space geodetic observatory in the great karoo, south africa: preliminary results[END_REF][START_REF] Vasilyev | On the accuracy of lunar ephemerides using the data provided by the future russian lunar laser ranging system[END_REF][START_REF] Dehant | Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science[END_REF] while a class of next-generation laser retro-reflectors await for their launch, to the Moon [START_REF] Ciocci | Performance analysis of nextgeneration lunar laser retroreflectors[END_REF] as well as to Mars [START_REF] Dell'agnello | Inrriedm/2016: the first laser retroreflector on the surface of mars[END_REF]. To this, I recollect a quote by Clive R. Neal from the LPSC (2017) Vision 2050 Workshop: "You can't be a Martian without being a lunatic first".

Introduction

The Earth-Moon system is an ideal laboratory for exploring the mechanism of evolution for the solar system bodies, in particular from the point of view of the dynamics, the rotation and the internal structure. Questions related to the scenario of the formation of the Moon by collision between the Earth and a Marslike object -such as the amount of impactor material that could have formed the internal structure of the present Moon -are still unsolved. A characterization of the inner structure of the Moon would bring key answers to these questions.

With the exploration of the Moon by the US and the Russian missions, retro-reflector arrays were installed at the near-side. Centimetric measurements of the Earth-Moon distances by lunar laser ranging (LLR) have then been obtained for the last 48 years using laser tracking (Bender et al. (1973); Samain et al. (1998); Murphy (2013)). Moreover, seismological profiles were obtained during the APOLLO missions and re-analyzed recently by Weber et al. (2011); Garcia et al. (2011).

The characterization of the inner structure of the Moon can be investigated by the study of its gravity field and its rotational and orbital dynamics using dedicated space missions like GRAIL (Zuber et al. (2013); Konopliv et al. (2013)) and LLR measurements (Williams et al. (2014)). Recent results about tidal dissipation (Williams & Boggs (2015); Matsuyama et al. (2016)) were obtained from the construction of lunar ephemerides (Folkner et al. (2014); Pavlov et al. (2016)).

Since 2006, INPOP (e.g. Fienga et al. (2016)) has become a reference for space navigation and for scientific research in the solar system dynamics and in fundamental physics. This letter gives the main result in term of the degree-3 components of the gravitational potential of the lunar fluid core obtained with this new modeling.

Lunar Dynamical Model for an Asymmetric Fluid Core

A description of the dynamical model with the orbit interactions, frame and moment of inertia tensor definitions are provided in Appendix A. Meyer & Wisdom (2011) proposed a fluid core flattening parameter f c = 2.09 × 10 -4 computed theoretically for a hydrostatic fluid core with a non-hydrostatic mantle.

The value of f c = (2.0 ± 2.3) × 10 -4 from the LLR analysis by Williams (2009)) suggests a small deviation from the hydrostatic value, but with large error bars. Previously, this deviation was associated to the marginal detection of f c and a possible correlation with other parameters during the estimation from the LLR observations. However, with an improved time span of quality LLR datasets (Murphy (2013) (2.46 ± 1.4) × 10 -4 , respectively). These estimated values continue to suggest a small but non-ignorable departure of f c from its hydrostatic value. The impact of the C 22 parameter is very weak for the lunar fluid core (Goldreich (1967)). By using a density profile from Dumberry & Wieczorek (2016) and extending their approach to a triaxial fluid core case, we estimate a theoretical value of C 22 for the fluid core equal to 6.10 -9 , while the corresponding C 20 value of the fluid core is 10 times greater. In using equations for a triaxial fluid core from Rambaux et al. (2007) and fixing the theoretical value of C 22 , an undetectable variation of about 0.5 mm is induced on the Earth-Moon distance (below the current LLR data accuracy of ≈ 5 mm). Hence, for the scope of this study, we equate the equatorial moments within the lunar fluid core inertia tensor, while limiting our discussion to the departure Article number, page 1 of 8 A&A proofs: manuscript no. Viswanathan_AA_lettre_submit of the lunar fluid core from a purely ellipsoidal shape, from that followed by Folkner et al. (2014) and Pavlov et al. (2016).

The effects of a non-hydrostatic core-mantle boundary (CMB) topography on the Earth nutations were often ignored, being considered as of the second order (Dehant & Mathews (2015)). The impact of considering this departure from a hydrostatic case, has been studied by Wu & Wahr (1997), which introduces a net external gravitational torque on the fluid core within the dynamical model. This additional torque from the point mass Earth on the figure of the fluid core (N c, f igc-pmA ) is modeled through Eqn. 28 from Folkner et al. (2014), which appears on the right hand side of Eqn. (1), as :

dL c dt + ω m × L c = -N CMB + N c, f igC-pmA (1) 
It was noticed that among the degree-3 and degree-4 spherical harmonics of the lunar fluid core, only C 32 and S 32 induce perturbations detectable by the LLR data. Moreover, this additional torque is only computed from the point mass Earth while neglecting other bodies. For the purpose of comparison only solution S2 (Section 3.4) takes this additional torque into account, while other solutions (S0a, S0b and S1) neglect this effect.

Results

The lunar part of the INPOP ephemeris is generated by fitting numerically integrated orbit and orientation parameters of the Moon to the LLR observations. A weighted least square (WLS) regression procedure is used for the fit including weighting scheme, data filtering and bias estimations described in Appendix B. Table D.2 gives the list of the adjusted parameters of interest to this study. The reduction model for the LLR data analysis follows the IERS 2010 recommendations (Petit & Luzum (2010)), while using KEOF Earth orientation parameters (Ratcliff & Gross (2015)) as recommended by a recent study (Pavlov et al. (2016)). We consider three cases:

-The Solutions 0 with an axisymmetric core fitted to the LLR observations serves as a validation of our lunar model and analysis procedure, against the DE430 JPL planetary and lunar ephemeris analysis described in Folkner et al. (2014) and EPM IAA RAS ephemeris in Pavlov et al. (2016) 2013)) derived from GRAIL observations. -The Solution 1 (S1) refers to the addition of two years of IR LLR observations (Courde et al. (2017)) following the same specification as of S0a. -The Solution 2 (S2) introduces the modeling of an asymmetric fluid core with the additional harmonic-3 degree torques from the Earth included in the equation of conservation of the angular momentum of the lunar fluid core (Eqn. 1).

Solutions by Williams et al. (2014) and Pavlov et al. (2016) additionally solve for three coefficients to correct for periodic terms in the integrated physical longitude librations. This approach is guided by a semianalytical theory (Williams et al. (2001)). None of our integrated solutions follow this approach.

S0a: Validation

In S0a, we aim at validating our lunar dynamical model by comparing our lunar parameter estimates and LLR residuals, with that provided by Folkner et al. (2014) and Pavlov et al. (2016).

In Folkner et al. (2014), Pavlov et al. (2016) and S0a, gravity field coefficients up-to degree and order 6 are used for the Moon (GL0660b (Konopliv et al. (2013))) and the Earth (GGM05C (Ries et al. (2016))). Coefficients C 32 , S 32 and C 33 are then included in the fit parameters as they improve the overall post-fit residuals. For S0a, the improvement of the uncertainty compared to Pavlov et al. (2016), especially in the estimation of the parameter k v /C T , continues to indicate a strong dissipation mechanism within the Moon, through viscous torques at the fluid coremantle boundary.

Differences between GL0660b values and fitted C 32 , S 32 and C 33 from Folkner et al. (2014), Pavlov et al. (2016) or in S0a, are several orders of magnitude greater than the mean GRAIL uncertainties (see Konopliv et al. (2013)). These results suggest that some significant effects impacting the LLR observations, are absorbed by the adjustment of the degree-3 of the full Moon gravity field.

S0b: Asymmetric fluid core and fixed GRAIL gravity field coefficients

S0b is similar to S0a, but the coefficients of spherical harmonics (including C 32 , S 32 and C 33 ) are fixed to the GL0660b values. Post-fit residuals obtained with S0a and S0b are provided within Fig. 1. On constraining our analysis to GL0660b values, we noticed a strong 6-year libration period on all reflectors (except weakly on A15) with an amplitude of ±5 mm on the post-fit residuals of S0b (see Fig. 1). Such a degradation of the post-fit residuals affected by the described 6-year signature can be proposed to be due to the absence of a higher degree figure -point mass torque in the angular momentum balance equation for the fluid core, from the assumption of hydrostatic equilibrium within the dynamical model. We find through S0b that the deviation from GRAIL degree-3 spherical harmonics impact distinctly the dissipation terms (τ and k v /C T ) estimated through LLR analyses, as well as the vertical displacement Love number (h 2 ) (see Table D 

Parameter S0a S2

(C T /(m M R 2 ) -0.393140) × 10 6 7.3 ± 0.2 5.0 ± 0.2 (C 32 -4.8404981 × 10 -6 ) × 10 9

4.1 ± 0.3 0.0 ⋆ (S 32 -1.6661414 × 10 -6 ) × 10 8 1.704 ± 0.006 0.0 ⋆ (C 33 -1.7116596 × 10 -6 ) × 10 8 -1.19 ± 0.04

0.0 ⋆ (τ M -9 × 10 -2 ) × 10 4 [d] -2 ± 5 -56 ± 5 ( k v C T -1.6 × 10 -8 ) × 10 10 [d -1 ]
10.2 ± 0.4 17.9 ± 0.4 ( f c -2.1 × 10 -4 ) × 10 6 41 ± 3 47 ± 3 (C 32 (Core) + 5.6 × 10 -8 ) × 10 10 --3.0 ± 2 (S 32 (Core) -5.0 × 10 -8 ) × 10 10 -5 ± 10 (k 2,M -0.024059) × 10 3 0.

0 ⋆ 0.0 ⋆ (h 2 -3.71 × 10 -2 ) ‡ × 10 3 6.6 ± 0.2 2.3 ± 0.2 l 2,m -1.07 × 10 -2 0.0 ⋆ 0.0 ⋆ Q 27.212 -45 (derived)
3.2 ± 0.5 6.6 ± 0.3 from point mass interactions of the Earth with multiple effects on the lunar orbital and orientation parameters. S2 tests our hypothesis of a possible departure of the fluid core flattening from a purely hydrostatic value, by the inclusion of a net external gravitational torque acting on the degree-3 components (C 32 and S 32 ) of the core.

A first result from S2, through the introduction of the figure of the fluid core, is the removal of the 6-year signature and the slight reduction of the residual dispersion (see Fig. 1). Only the coefficients C 32 and S 32 for the fluid core were fitted (along with other parameters in S0b), due to the large formal uncertainty on the other degree-3 and degree-4 harmonics from the estimation procedure. The other degree-3 and degree-4 components of the fluid core were fixed to 0.

Table 1 provides few of the parameters relevant to the fit of the lunar dynamical model. We find that the fitted value of vertical displacement Love number (h 2 ) in S2 becomes more compatible with the one obtained through the Lunar Orbiter Laser Altimeter (LOLA) derived value (Mazarico et al. (2014)). The dissipation quality factor Q 27.212 derived from the tidal time delay (27.212 days/(2πτ M )) notices a small increase from S0a, however, they remain within the error bar of Williams et al. (2014). The post-fit residuals obtained with S2 can be found in Appendix C. A list of the relevant fitted dynamical parameters can be found within tables provided in Appendix D.

Discussion

By considering an additional torque on the lunar fluid core as described in Section 2, we are able to absorb a 6-year signature in the LLR residuals, while remaining strictly to GRAILderived (GL0660b) gravity field coefficients and obtaining the same dispersion of the post-fit residuals (see Fig. 1). The additional torque has a degree-3 geometry. In this letter, it is modeled as an external gravitational torque on the lunar fluid core. An alternate origin might also be the pressure torque acting on the degree-3 interface at the core-mantle boundary. We consider two additional test solutions (S2b and S2c) for evaluating the robustness of our model and the reliability of our fit. Estimates from these two test solutions are provided in Table D.2.

S2b includes the potential Love number k 2 as a fitted parameter to the solution specifications of S2. The resulting estimates show a larger deviation of f c away from its hydrostatic value, while the estimates from the other fitted parameters show a consistency within their respective uncertainties. However, this additional deviation is due to the correlation between f c , k 2 and the fluid core moment of inertia (Williams et al. (2014)). This indicates that it is advisable to fix the value of k 2 to a spacecraft determined value for reducing the propagation of error to correlated parameters. For this reason, all our solutions (except S2b) uses GRAIL-derived k 2 for a higher reliability.

S2c follows the same solution specifications as S2, except that the degree-3 components of the gravitational potential (C 32 and S 32 ) of the Moon are included as fitted parameters. On comparing the LLR estimates of C 32 and S 32 , it is noticed that the differences in percentages to GRAIL values are reduced by a factor 20 for C 32 and a factor 10 for S 32 . These results indicate that the fit of the lunar dynamical model to LLR observations seems to favor a departure from hydrostatic equilibrium for the fluid core through its degree-3 figure, in the direction of a better consistency with the GRAIL-derived gravity field. A larger deviation is noticed on the estimated fluid core degree-3 components (C 32 and S 32 ) induced by its weak correlation with that of the full Moon (correlation coefficient of < 0.2). The uncertainty on the LLR estimated harmonic degree-3 components of the gravity field of the Moon remains at-least 3 order of magnitude greater than the uncertainty provided within the GL0660b model. Hence, it is advisable to fix the Moon gravity field to model values to avoid weakly determined parameters as well as correlations during the fit.

S2b and S2c give consistent estimations of parameters related to the fluid core departure from hydrostatic equilibrium, in favor of the assumptions used for the S2 construction and related to the correlation between GRAIL-derived gravity field harmonic degree-3 components, potential Love number k 2 and the fluid core harmonic degree-3 components (C 32 and S 32 ).

Conclusion and future work

In this study, we have tested a possible estimation of the harmonic degree-3 component of the gravitational potential of the lunar fluid core through the introduction of the associated extended figure torques into the lunar fluid core's angular momentum balance differential equation within the INPOP ephemeris. This was done with a strictly GRAIL-derived (GL0660b) gravity field of the Moon. We have shown through our post-fit residuals (see Fig. 1) that the resulting 6-year signature from the degree-3 components of the gravitational potential of the lunar fluid core is absorbed, compared to previous LLR analyses by Folkner et al. (2014) and Pavlov et al. (2016), which preferred to fit the degree-3 harmonics of the Moon as well as correct for periodic terms in the integrated physical longitude librations, for better post-fit residuals.

We have verified that the degree-3 coefficients of the fluid core and that of the Moon have a maximum correlation coefficient of 0.2 over the entire time span of the LLR dataset. The signature induced on the Earth-Moon distance from these two set of harmonic coefficients (degree-3 of the lunar fluid core and that of the Moon) do not have the same effect. The test case S2c (provided within Appendix D) which fits both these sets of harmonic coefficients show that the deviation from GRAIL-derived (GL0660b) values are reduced by a factor of 20 for C 32 and a factor of 10 for S 32 .

Article number, page 3 of 8 Estimation of the fluid core flattening ( f c ) is significantly constrained with the synergy between the LLR observations and a spacecraft-determined gravity field. On constraining our numerical model with a full Moon GRAIL-derived gravity field model (GL0660b), we show that a small but non-ignorable departure of the fluid core from an ellipsoidal shape can reconcile the LLR residuals, GRAIL-derived gravity field measurements and the LRO-LOLA estimations. Future work will address the problem of the frequency dependencies of the tidal dissipation effects by a direct integration in the Louville or Poincaré equations rather than a semi-analytical approach.

1. Point mass mutual interactions from the Sun, planets and asteroids (through Eqn. 27 Folkner et al. ( 2014)) 2. Point mass mutual interactions from the extended bodies (through Eqn. 28 Folkner et al. (2014)) which include :

the interaction of the zonal harmonics of the Earth through degree-6; the interaction between the zonal, sectoral, and tesseral harmonics of the Moon through degree-6 and the point mass Earth, Sun, Jupiter, Saturn, Venus and Mars; the interaction of the degree-2 zonal harmonic of the Sun. 3. Interaction from the Earth tides (through Eqn. 32 Folkner et al. ( 2014))

The tidal acceleration from the tides due to the Moon and the Sun are separated into three frequency bands (zonal, diurnal and semi-diurnal et al. (2006)). A detailed explanation about the most influential tides relevant to the Earth-Moon orbit integration can be found in Table 6 in Williams & Boggs (2016).

Appendix A.2: Lunar orientation and inertia tensor:

1. Lunar frame and orientation. The mantle coordinate system is defined by the principal axes of the undistorted mantle, whose moments of inertia matrix are diagonal. The undistorted total moment of inertia of the Moon ĨT is given by:

ĨT = CT m M R 2 M         1 0 0 0 1 0 0 0 1         +          C2,0,M -2 C2,2,M 0 0 0 C2,0,M + 2 C2,2,M 0 0 0 0          (A.1)
where Cn,m,M is the unnormalized degree-n, order m of the Stokes coefficient C n,m for the spherical harmonic model of the undistorted Moon and CT is the undistorted polar moment of inertia of the Moon normalized by it's mass m M and radius squared R 2 M . Through Eqn. (A.1), we are able to directly use the undistorted value of C 22 (Manche (2011)) from GRAIL-derived spherical harmonic model of Konopliv et al. (2013). The moment of inertia of the fluid core I c is given by:

I c = α c CT         1 -f c 0 0 0 1 -f c 0 0 0 1         =         A c 0 0 0 B c 0 0 0 C c         (A.2a)
where α c is the ratio of the fluid core polar moment of inertia C c to the undistorted polar moment of inertia of the Moon C T , A c and B c are the equatorial moments of the fluid core and f c is the fluid core flattening given as:

f c α c = [C c - A c + B c 2 ]/C T (A.2b)
The moment of inertia of the mantle I m has a rigid-body contribution Ĩm and two time varying contributions due to the tidal distortion of the Earth and spin distortion as given in Eqn. 41 of (Folkner et al. (2014)). The undistorted moment of inertia of the mantle is obtained using the tide free second degree gravity field coefficients from GRAIL, given by:

Ĩm = ĨT -I c (A.2c)
The single time delay model (characterized by τ M ) allows for dissipation when flexing the Moon (Williams et al. (2001), [START_REF] Standish | JPL planetary ephemeris DE410 Interoffice Memorandum[END_REF], Folkner et al. (2014)). 3. Lunar angular momentum and torques.

The time derivative of the angular momentum vector is equal to the sum of torques (N) acting on the body. In the rotating mantle frame, the angular momentum differential equation for the mantle is given by:

d dt I m ω m + ω m × I m ω m = N (A.2d)
where N is the sum of torques on the lunar mantle from the point mass body A (N M, f igM-pmA ), figure-figure interaction between the Moon and the Earth (N M, f igM-f igE ) and the viscous interaction between the fluid core and the mantle (N CMB ). The motion of the uniform fluid core is controlled by the mantle interior, with the fluid core moment of inertia (I c ) constant in the frame of the mantle. The angular momentum differential equation of the fluid core in the mantle frame is then given by:

d dt I c ω c + ω m × I c ω c = -N CMB (A.2e)
with

N CMB = k v ω c -ω m + C c -A c ẑm • ω c ẑm × ω c (A.2f)
where k v is the coefficient of viscous friction at the CMB and ẑm is a unit vector aligned with the polar axis of the mantle frame. The second part on the right-hand side of Eqn. (A.2f) is the inertial torque on an axis-symmetric fluid core. Table D.3. Comparison between solutions: Extended body parameters for the Earth, Moon and mass parameters for the Earth-Moon system.

Uncertainties (1-σ) are obtained from a 5% jackknife (JK). † : C 32 , S 32 and C 33 are reference values from the GRAIL analysis by Konopliv et al. (2013). ‡ : h 2 reference value from LRO-LOLA analysis by Mazarico et al. (2014).

Parameter Units S0b S1 S2 S2b S2c

(GM EMB -8.99701140 × 10 -10 ) × 10 19 AU 3 /day 2 7 ± 4 4 ± 2 6.0 ± 0.5 7.2 ± 0.5 6.1 ± 0.5 (τ R1,E -7.3 × 10 -3 ) × 10 5 day -7 ± 7 6 ± 3 3 ± 9 -12 ± 14 6 ± 4 (τ R2,E -2.80 × 10 -3 ) × 10 5 day 16.0 ± 0.8 8.7 ± 0.3 10.0 ± 0.9 11.5 ± 0.9 9.6 ± 0.3 (C T /m M R 2 M -3.93140 × 10 -1 ) × 10 6 -0.6 ± 0.2 8.2 ± 0.2 5.0 ± 0.2 9.0 ± 0.5 5.1 ± 0.2 (C 32 -4.8404981 × 10 -6 † ) × 10 9 fixed 3.9 ± 0.3 fixed fixed 0.2 ± 0.3 (S 32 -1.6661414 × 10 -6 † ) × 10 8 fixed 1.664 ± 0.006 fixed fixed 0.189 ± 0.006 (C 33 -1.7116596 × 10 -6 † ) × 10 8 fixed -2.39 ± 0.04 fixed fixed fixed (τ M -9 × 10 -2 ) × 10 4 day 298 ± 7 -34 ± 3 -56 ± 5 -17 ± 7 -56 ± 5 ( k v C T -1.6 × 10 -8 ) × 10 10 day -1 -33 ± 1 14.9 ± 0.5 17.9 ± 0.4 14 ± 1 18.1 ± 0.2 ( f c -2.1 × 10 -4 ) × 10 6 36 ± 5 42 ± 3 47 ± 3 97 ± 6 48 ± 3 (h 2 -3.71 × 10 -2 ‡ ) × 10 3 3.6 ± 0.5 6.8 ± 0.2 2.3 ± 0.2 1.4 ± 0.1 2.7 ± 0.2 (k 2,M -0.024059) × 10 3 fixed fixed fixed -1 ± 1 fixed (C 32 (Core) + 5.6 × 10 -8 ) × 10 10 NA NA -3 ± 2 -3 ± 2 61 ± 40 (S 32 (Core) -5.0 × 10 -8 ) × 10 10 NA NA 5 ± 10 23 ± 10 -33 ± 60 Q 27.212 -45 (derived) -8.9 ± 0.2 5.0 ± 0.2 6.6 ± 0.3 4 ± 0.25 6.6 ± 0.3

INTRODUCTION

The Earth-Moon system is an ideal tool for carrying out tests of general relativity and more particularly the test of the universality of free fall (Nordtvedt 1968a;Anderson et al. 1996). Since 1969, the lunar laser ranging (LLR) observations are obtained on a regular basis by a network of laser ranging stations (Faller et al. 1969;Bender et al. 1973), and currently with a millimeter-level accuracy (Samain et al. 1998;Murphy 2013). Thanks to this level of accuracy at the solar system scale, the principle of the universality of free fall (UFF) can in theory be tested. However, at these accuracies (of 1 cm or below), the tidal interactions between the Earth and the Moon are complex to model, especially when considering that the inner structure of the Moon is poorly known [START_REF] Wieczorek | Treatise on Geophysics[END_REF]Williams & Boggs 2015). This explains why the UFF test is only possible after an improvement of the dynamical modeling of the Earth-Moon interactions.

Recently, thanks to the GRAIL mission, an unprecedented description of the shape of the lunar gravity field and its variations were obtained for the 6 months of the duration of the mission (Konopliv et al. 2014;[START_REF] Lemoine | GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data[END_REF]). This information is crucial for a better understanding of the dissipation mechanism over longer time span (Matsumoto et al. 2015;Williams & Boggs 2015;Matsuyama et al. 2016). Furthermore, since 2015, the Grasse station which produces more than 50 % of the LLR data, has installed a new detection path at 1064 nm (IR) ranging wavelength leading to a significant increase of the number of observations and of the signal to noise ratio (Courde et al. 2017).

Together with these new instrumental and GRAIL developments, the Moon modeling of the INPOP planetary ephemeris was ⋆ E-mail: viswanathan@geoazur.unice.fr improved. Since 2006, INPOP has become a reference in the field of the dynamics of the solar system objects and in fundamental physics (Fienga et al. 2011(Fienga et al. , 2016)).

The INPOP17a version presented here also benefits some of the planetary improvements brought by the use of updated Cassini deduced positions of Saturn. The planetary and lunar Chebyshev polynomials built from INPOP17a have been made available on the INPOP website1 together with a detailed technical documentation (Viswanathan et al. 2017).

Since 2010, thanks to the millimeter-level accuracy of the LLR measurements and the developments in the dynamical modeling of the Earth-Moon tidal interactions, differences in acceleration of Earth and Moon in free fall towards the direction of the Sun could reach an accuracy of the order of 10 -14 (Merkowitz 2010;Williams et al. 2012). With the improvement brought by GRAIL, addition of IR LLR observations and the recent improvement of the dynamical modeling of INPOP17a, one can expect to confirm or improve this limit.

In this paper, we first present (see section 2.1) the statistics related to the IR dataset obtained at the Grasse station since 2015. In section (2.2), we introduce the updated dynamical model of the Moon as implemented in the INPOP planetary ephemeris including contributions from the shape of the fluid core. In section (2.4), we explain how we use the IR data to fit the lunar dynamical model parameters with the GRAIL gravity field coefficients as a supplementary constraint for the fluid core description.

Finally in section (3) we describe how we test the UFF and give new constraints. In addition, we present a generalization of the interpretation in terms of gravitational to inertial mass ratios of UFF constraints, based on recent developments in dilaton theories (Hees & Minazzoli 2015;Minazzoli & Hees 2016). Hinged on this generalization, we deduce that from a pure phenomenological point of view, one cannot interpret UFF violation tests in the Earth-Moon system as tests of the difference between gravitational and inertial masses only.

LUNAR EPHEMERIDES

The new INPOP planetary ephemerides INPOP17a (Viswanathan et al. 2017) is fitted to LLR observations from 1969 to 2017, including the new IR LLR data obtained at the Grasse station.

Lunar Laser Ranging

The principle of the LLR observations is well documented (Murphy et al. 2012;Murphy 2013). Besides the lunar applications, the laser ranging technique is still intensively used for tracking Earth orbiting satellites, especially for very accurate orbital (Peron 2013;Lucchesi et al. 2015) and geophysical studies [START_REF] Jeon | [END_REF]Matsuo et al. 2013).

Non-uniform distributions in the dataset are one contributor to correlations between solution parameters (Williams et al. 2009). Like one can see on In this study, we show how the IR LLR observations acquired at the Grasse station between 2015 and 2017 (corresponding to 7 % of the total LLR observations obtained between 1969 and 2017 from all known ILRS ground stations) can help to reduce the presence of such heterogeneity.

Spatial distribution

Statistics drawn from the historical LLR dataset show an observer bias to range to the larger Apollo reflector arrays (mainly Apollo 15). This trend (see Fig. 1 and Fig. 3) is also present on statistics taken during time periods after the re-discovery of Lunokhod 1 by [START_REF] Murphy | Laser ranging to the lost Lunokhod 1 reflector[END_REF]. This is due to the higher return rate and thermal stability over a lunar day on the Apollo reflectors, thereby contributing to the higher likelihood of success.

With the installation of the 1064 nm detection path (see Fig. 3), as explained in Courde et al. (2017), the detection of photon reflected on all reflectors is facilitated, especially for Lunokhod 2 (L2): about 17 % of IR data are obtained with L2 when only 2 % were detected at 532 nm.

Owing to the spatial distribution of the reflectors on the Moon, Apollo 11 and 14 give sensitivity to longitude librations, Apollo 15 gives sensitivity to latitude librations and the Lunokhod reflectors give sensitivity both in the latitude and longitude libration of the Moon. The heterogeneity in the reflector distribution of LLR data affects then the sensitivity of the lunar modeling adjustment (Viswanathan et al. 2016). By acquiring a better uniformity in the reflector sampling, IR contributes to improve the adjustment of the Moon dynamical and rotational modeling (see section 2.5).

Temporal distribution

The full and new Moon periods are the most favorable for testing gravity, as the gravitational and tidal effects are maximum. This was partially demonstrated by Nordtvedt (1998). On Fig.

(2) are plotted the distributions of normal points relative to the synodic angle for APOLLO (in capitals, abbreviation for Apache Point Observatory Lunar Laser-ranging Operation, while Apollo refers to the US manned lunar missions) and Grasse station obtained at 532 nm and 1064 nm. About 25 % of the APOLLO data sample and almost 45 % of the Grasse 532 nm data sample are obtained within 30 • of the quarter Moons. This can be explained by two factors:

(i) New Moon phase

As the pointing of the telescope onto the reflectors is calibrated with respect to a nearby topographical feature on the surface of the Moon, the pointing itself becomes a challenge when the reference points lie in the unlit areas of the Moon. Also, as the New Moon phase occurs in the daylight sky, the noise floor increases and the detector electronics become vulnerable due to ranging at a very close angle to the Sun (Williams et al. 2009;Courde et al. 2017). (ii) Full Moon phase During this phase, thermal distortions remain as the primary challenge, arising due to the over-head Sun heating of the retro-reflector arrays. This induces refractive index gradients within each corner cube causing a spread in the return beam, which makes detection more difficult. The proportion of this effect is partially linked to the thermal stability of the arrays. Since the A11, A14 and A15 arrays have a better thermal stability compared to the L1 and L2 arrays (Murphy et al. 2014), observations to the latter become sparse during the full Moon phase (where A and L indicates Apollo and Lunokhod retro-reflectors, respectively).

Despite these challenges, LLR observations during the above mentioned phases of the Moon have been acquired with the IR detection.

After the first two years of 1064 nm detection path at the Grasse station, the observations obtained within the 30 • of the quarter Moons are reduced to 32 %, effectively increasing by around 10 % the portion of data sample close from the most favorable periods (new and full Moon) for tides and UFF studies. This is primarily achieved due to the improved signal to noise ratio resulting from an improved transmission efficiency of the atmosphere at the IR wavelength of 1064 nm. In addition, high precision data have also been acquired on the two Lunokhod reflector arrays during full Moon phase.

In section (3), we will see how the IR LLR data help to improve the results related to the UFF tests.

Observational Accuracy of the LLR observations

APOLLO observations are obtained with a 3.5 m telescope (under time sharing) at the Apache Point Observatory, while Grasse observations are obtained with a 1.5 m telescope dedicated for SLR and LLR. A larger aperture is beneficial for statistically reducing the uncertainty of the observation (Murphy 2013), which translates to millimeter level accuracies for APOLLO. One can notice in Fig. (4) that the current lunar ephemerides have a post-fit residual scatter (RMS) of about 1-2 cm for the recent observations while the LLR normal point accuracy is given to be at least two times smaller. This calls for an improvement of the Earth-Moon dynamical models within highly accurate numerically integrated ephemerides (see section 2.5).

the Moon and the Earth (N M, f igM-f igE , using Folkner et al. (2014, Eqn. 44)) and the viscous interaction between the fluid core and the mantle (N C M B ).

The motion of the uniform fluid core is controlled by the mantle interior, with the fluid core moment of inertia (I c ) constant in the frame of the mantle. The angular momentum differential equation of the fluid core in the mantle frame is then given by:

d dt I c ω c + ω m × I c ω c = -N C M B (2d) N C M B = k v ω c -ω m + C c -A c ẑm • ω c ẑm × ω c (2e)
where k v is the coefficient of viscous friction at the CMB and ẑm is a unit vector aligned with the polar axis of the mantle frame. The second part on the right-hand side of Eqn. ( 2e) is the inertial torque on the axis-symmetric fluid core.

Reduction model

The reduction model for the LLR data analysis has been implemented within a precise orbit determination and geodetic software: GINS [START_REF] Marty | Gins: the cnes/grgs gnss scientific software[END_REF]Viswanathan et al. 2015) maintained by space geodesy teams at GRGS/OCA/CNES and written in For-tran90. The subroutines for the LLR data reduction within GINS is vetted through a step-wise comparison study conducted among the LLR analysis teams in OCA-Nice (this study), IMCCE-Paris and IfE-Hannover, by using simulated LLR data and DE421 (Folkner et al. 2009) as the planetary and lunar ephemeris. The modeling follows the recommendations of IERS 2010 (Petit & Luzum 2010).

To avoid any systematics in the reduction model, the upper-limit on the discrepancy between the teams was fixed to 1 mm in one-way light time.

From each normal point, the emission time (in UTC) and the round trip time (in seconds) are used to iteratively solve for the reflection time in the light-time equations. A detailed description is available in Moyer (2003, Section 8 & 11) for a precise round-trip light-time computation.

A detailed description of the reduction model used for this study is provided in Manche (2011).

Fitting procedure

For APOLLO station observations, scaling the uncertainties of the normal points depending on the change of equipments, or a change in the normal point computation algorithm, is advised (see http://physics.ucsd.edu/~tmurphy/apollo/151201_ notes.txt). Unrealistic uncertainties present in observations from Grasse, McDonald MLRS2 and Matera between time periods 1998[START_REF] Fienga | Observations Astrometriques des Planetes et Ajustement des Theories Analytiques de leur Mouvement[END_REF], 1996and 2010-2012 respectively, are rescaled. During the fitting procedure, bounds are used (Stark & Parker 1995) for limiting the variability of the estimated parameters, while considering the parameter correlation and variance within the normal matrix. For the gravity field coefficients (including C 2,0, M and C 2,2, M ), the bounds are placed using the uncertainties provided by GRAIL (after scaling the formal uncertainties by a factor 40, following the recommendation by Konopliv et al. (2013)) with their values centered on the GRAIL gravity field estimates.

Additional details of the weighting scheme and the fitting procedure used for the construction of INPOP17a solution can be found in Viswanathan et al. (2017). A filtering scheme is enforced during the iterative fit of the parameters. At each iteration, the residuals 

Biases

Changes in the ground station introduces biases in the residuals. These biases correspond either with a known technical development at the station (new equipment, change of optical fiber cables) or systematics. Any estimated bias can be correlated with a corresponding change in the ground station, provided the incidents have been logged. A list of known and detected biases are given in Viswanathan et al. (2017). (5) gives the list of the adjusted parameters related to the lunar interior when Table (4) provides a list of the fixed parameters. The fitted coordinates of the Moon reflectors and of the LLR stations can be found in Viswanathan et al. (2017). As the LLR observations are not included in the construction of the ITRF (Altamimi et al. 2016), small corrections to the LLR station coordinates help for the improvement of LLR residuals during the construction of the The solution INPOP G with an axis-symmetric core fitted to LLR observations serves as a validation of our lunar model and analysis procedure, against the DE430 JPL planetary and lunar ephemeris analysis described in Folkner et al. (2014) and EPM IAA RAS ephemeris in Pavlov et al. (2016). Only 532 nm wavelength LLR data are used for matching with the DE430 and EPM ephemeris. In Folkner et al. (2014); Pavlov et al. (2016) Differences between GL0660b values and fitted C 32 , S 32 and C 33 from Folkner et al. (2014), Pavlov et al. (2016) or in INPOP G , are several orders of magnitude greater than the mean GRAIL uncertainties (see Konopliv et al. (2013)). These results suggest that some significant effects impacting the LLR observations, are absorbed by the adjustment of the degree-3 of the full Moon gravity field.

Results

Table

The solution INPOP G+IR refers to the addition of two years of IR LLR observations (Courde et al. 2017) described in section (2.1) and built in following the same specification as of INPOP G .

This dataset is weighted at the same level as the APOLLO station normal points within the estimation procedure (see section 2.4).

The first outcome from the introduction of the IR data sets is the improvement of the post-fit residuals obtained for L1 reflector as one can see on Tables (2 and3) andon Figures (5 to 8). This is due to the increase of normal points obtained for this reflector as discussed in section (2.1.1).

The second conclusion is that because of only two years on data, the improvement brought by the addition of IR data on the estimated parameters characterizing the Moon and its inner structure is significant, especially for those quantifying the dissipation mechanism such as Q 27.212 and τ M with a decreasing uncertainty or k v C T and f c with a significant change in the fitted value (see Table 5).

A significant global improvement is noticeable when one compares post-fit residuals obtained with INPOP G and with INPOP G+IR with those obtained with INPOP13c as presented in Fienga et al. (2014) or in Tables 2 and3. Finally one should notice in Table (1) the 1.15 cm obtained for the post-fit weighted RMS obtained for the 3 years of the last period of the APOLLO data (group D) as well as that for the IR Grasse station.

TEST OF THE EQUIVALENCE PRINCIPLE

Context

Among all possibilities to test General Relativity (GR), the tests of the motion of massive bodies as well as the propagation of light in the solar system, were historically the first ones, and still provide the highest accuracies for several aspects of gravity tests (see Joyce et al. (2015); Berti et al. (2015); Yunes et al. (2016) for recent overviews of constraints on alternative theories from many different types of observations). This is in part due to the fact that the dynamics of the solar system is well understood and supported by a long history of observational data.

In GR, not only do test particles with different compositions fall equally in a given gravitational field, but also extended bodies with different gravitational self-energies. While a deviation from the former case would indicate a violation of the Weak Equivalence Principle (WEP), a deviation from the latter case would be a sign of a violation of the Strong Equivalence Principle (SEP) (Will ( 2014 2015) and/or to put gravity in the context of Quantum Field Theory Kostelecký (2004); [START_REF] Woodard | [END_REF]; Donoghue (2017). The Universality of Free Fall (UFF), an important part of the Equivalence Principle, is currently tested at a level of about 10 -13 with torsion balances (Adelberger et al. 2003) and LLR analyses (Williams et al. 2012).

As the Earth and the Moon both fall in the gravitational field of the Sun -and because they neither have the same compositions, nor the same gravitational self-energies -the Earth-Moon system is an ideal probe of both the WEP and the SEP, while torsion balance (Adelberger et al. 2003) or MICROSCOPE (Liorzou et al. 2014) are only sensitive to violations of the WEP.

In this paper, we implemented the equations given in Williams et al. (2012) and introduce in the INPOP fit, the differences between the accelerations of the Moon and the Earth.

The aim of this work is first to give the most general constraint in terms of acceleration differences without assuming metric theories or other types of alternative theories (section 3.3). In a second step (section 3.4), we propose two interpretations : one following the usual formalism proposed by Nordtvedt (see, e.g., (Nordtvedt 2014) and references therein), and the other following the dilaton theory (Damour & Polyakov 1994;Hees & Minazzoli 2015;Minazzoli & Hees 2016).

Method

In order to test possible violations of GR in terms of UFF, a supplementary acceleration is introduced in the geocentric equation of motion of the Moon, such that the UFF violation related difference between the Moon and the Earth accelerations reads (Nordtvedt 1968b):

∆a U F F ≡ (a M -a E ) U F F = a E ∆ ES M (3) 
∆ ES M is estimated in the LLR adjustment together with the other parameters of the lunar ephemerides given in Table (5). In what follows, we shall name ∆ ES M "UFF violation parameter". E SM stands for the three bodies involved, namely the Earth, the Sun and the Moon respectively. As we shall see in Sec. 3.4.2, some theoretical models induce a dependence of the UFF violation parameter on the composition of the Sun, in addition to the "more usual" depen-dence on the compositions and on the gravitational binding energies of the Moon and the Earth.

In order to estimate ∆ ES M with the appropriate accuracy, one should correct for supplementary effects such as the solar radiation pressure and thermal expansion of the retro-reflectors (Vokrouhlický 1997;Williams et al. 2012). An empirical correction on the radial perturbation (∆r E M ) induced by the UFF test has to be applied. For instance, with some simplifying approximations (Nordtvedt (2014)), one can show that the UFF additional acceleration would indeed lead to an additional radial perturbation (∆r E M ) of the Moon's orbit towards the direction of the Sun given by:

∆r E M = S∆ ES M cos D, (4) 
where S is a scaling factor of about -3 × 10 10 m (Williams et al. 2012) and D is the synodic angle. A correction ∆r = 3.0 ± 0.5 mm (Vokrouhlický 1997;Williams et al. 2012) is then applied in order to correct for solar radiation pressure and thermal radiation of the retro-reflectors, and a new corrected value of ∆ ES M is then deduced (see Table 6).

Results

Fits were performed including in addition to the previous fitted parameters presented in The additional acceleration of the Moon orbit in the direction of the Sun correlates with a coefficient of 0.95 and 0.90 with GM EMB and the Earth-Moon mass ratio (EMRAT), respectively. In all the solutions w.r.t LLR EP estimation, the gravitational mass of the Earth Moon barycenter (GM EMB ) remains as a fit parameter due its high correlation with the EP parameter (∆ ES M ). EMRAT was estimated from a joint planetary solution and kept fixed during LLR EP tests (for all INPOP solutions in Table 6) due to its weak determination from LLR.

A test solution that fitted EMRAT, with GM EMB as a fixed parameter, gives an estimate of ∆ ES M = (8±7.0)×10 -14 . However, the value of EMRAT estimated from an LLR only solution has an uncertainty of one order of magnitude greater than that obtained from the joint planetary fit. This is also consistent with a similar result by Williams et al. (2009). As a result, EMRAT was not included as a fit parameter for the estimates provided in Table ( 6), as it resulted in a degraded fit of the overall solution. Williams et al. (2012) show that including annual nutation components of the Earth pole direction in space, to the list of fitted parameters during the estimation of LLR EP solution, increases the uncertainty of the estimated UFF violation parameter (∆ ES M ) by 2.5 times. Moreover, it is to be noted that within Table (6), the solutions by Williams et al. (2009Williams et al. ( , 2012)); Müller et al. (2012) use the IERS2003 (McCarthy & Petit 2004) recommendations within the reduction model, while all INPOP17 solutions use IERS 2010 (Petit & Luzum 2010) recommendations. The notable difference between the two IERS models impacting the LLR EP estimation is expected to be from the precession-nutation of the celestial intermediate pole (CIP) within the ITRS-GCRS transformation Petit & Luzum (2010, p. 8).

Eqn. (4) shows the dependence of ∆ ES M w.r.t the cosine of the lunar orbit synodic angle, synonymous with the illumination cycle of the lunar phases. Due to the difficulties involved with ranging to the Moon during the lunar phases with the extreme values of cos D (New and Full Moon) as described in section (2.1.2), the LLR observations during these phases remain scarce. The availability of IR LLR observations from Grasse, contributes to the improvement of this situation, as shown in Fig. (2). This is reflected in the improvement of the uncertainty of the estimated value of ∆ ES M by 14 %, with solutions including the IR LLR data.

Using both IR and green wavelength data, and empirically correcting for the radial perturbation for effects related to solar radiation pressure and thermal expansion, our final result on the UFF violation parameter is given by (see, also, Table 6) ∆ ES M = (-3.8 ± 7.1) × 10 -14

(5)

The continuation of the IR observational sessions at Grasse will help to continue the improvement in the ∆ ES M estimations.

An observable bias in the differential radial perturbation of the lunar orbit w.r.t the Earth, towards the direction of the Sun, if significant and not accounted for within the dynamical model, would result in a false indication of the violation of the principle of equivalence estimated with the LLR observations. [START_REF] Oberst | The present-day flux of large meteoroids on the lunar surface-A synthesis of models and observational techniques[END_REF] show the distribution of meteoroid impacts with the lunar phase. Peaks within the histogram in Oberst et al. (2012, p 186) indicate a non-uniform temporal distribution with a non-negligible increase in both small and large impacts during the New and Full Moon phase. Future improvements to the LLR EP estimation must consider the impact of such a bias that could potentially be absorbed during the fit by the LLR UFF violation parameter ∆ ES M .

Theoretical interpretations

Nordtvedt's interpretation: gravitational versus inertial masses

Although equations of motion are developed at the post-Newtonian level in INPOP (Moyer 2003), violations of the UFF can be cast entirely in the Newtonian equation of motion with sufficient accuracy. As described by Nordtvedt (Nordtvedt 1968b), a difference of the inertial (m I ) and gravitational (m G ) masses would lead to an alteration of body trajectories in celestial mechanics according to the following equation:

a T = - m G m I T A T Gm G A r 3 AT r AT , (6) 
where r AT = x Tx A and G is the constant of Newton. Following Williams et al. (2012), the relative acceleration at the Newtonian level between the Earth and the Moon due to the attraction of the Sun reads

a M -a E = - Gµ r 3 E M r E M + Gm G S r SE r 3 SE - r S M r 3 S M + +Gm G S r SE r 3 SE m G m I E -1 - r S M r 3 S M m G m I M -1 , (7) 
with

µ ≡ m G M + m G E + m G m I E -1 m G M + m G m I M -1 m G E . m G m I E and m G m I M
are the ratios between the gravitational and the inertial masses of the Earth and Moon respectively.

With ephemerides, the first term of Eqn. ( 7) does not lead to a sensitive test of the UFF, because it is absorbed in the fit of the

INPOP17a and fundamental physics tests 9

parameter m G M + m G E (Williams et al. 2012, e.g.), while the last term, does. At leading order, one can approximate both distances appearing in this last term as being approximately equal. One gets

∆a U F F ≡ (a M -a E ) U F F ≈ Gm G S r SE r 3 SE m G m I E -1 - r S M r 3 S M m G m I M -1 ≈ a E m G m I E -1 - m G m I M -1 ≡ a E ∆ ES M (8) 
with

∆ ES M = m G m I E - m G m I M . (9) 
One recovers Eqn. (3). Therefore, in this context, constraints on ∆ ES M can be interpreted as constraints on the difference of the gravitational to inertial mass ratios between the Earth and the Moon. Furthermore, the LLR test of UFF captures a combined effect of the SEP, from the differences in the gravitational self-energies, and the WEP due to compositional differences, of the Earth-Moon system. In general, one has:

∆ ES M = ∆ W E P ES M + ∆ SE P ES M (10) 
In order to separate the effects of WEP, we rely on results from laboratory experiments that simulate the composition of the core and the mantle materials of the Earth-Moon system. One such estimate is provided by Adelberger (2001), that translates to the following mass ratios difference:

∆ W E P ES M = m G m I E - m G m I M W E P (11) 
= (1.0 ± 1.4) × 10 -13 (12)

It is also possible to deduce the Nordtvedt parameter (η) defined as:

∆ SE P ES M = η SE P |Ω| m c 2 E - |Ω| m c 2 M ( 13 
)
≈ η SE P × (-4.45 × 10 -10 ) (

where Ω and mc 2 are the gravitational binding and rest mass energies respectively for the Earth and the Moon (subscripts E and M respectively). The value of -4.45×10 -10 is obtained from Williams et al. (2009, Eqn. 7). However, all metric theories lead to a violation of the SEP only. Therefore, for metric theories, it is irrelevant to try to separate violation effects of the WEP and SEP, as the WEP is intrinsically respected.

Dilaton theory and a generalization of the Nordtvedt interpretation

Starting from a general dilaton theory, a more general equation governing celestial mechanics than (6) has been found to be (Hees & Minazzoli 2015;Minazzoli & Hees 2016)

a T = - A T Gm G A r 3 AT r AT (1 + δ T + δ AT ) , (15) 
The coefficients δ T and δ AT parametrize the violation of the UFF. In this expression the inertial mass m 

In the dilaton theory, the δ coefficients are functions of "dilatonic charges" and of the fundamental parameters of the theory (Damour & Donoghue 2010;Hees & Minazzoli 2015;Minazzoli & Hees 2016). However, in what follows, we will consider the phenomenology based on the δ parameters independently of its theoretical origin, as a similar phenomenology may occur in a different theoretical framework.

In general, δ T can be decomposed into two contributions: one from a violation of the WEP and one from a violation of the SEP: Like the parameter δ W E P T , δ AT depends on the composition of the falling bodies. However, unlike δ W E P T , it also depends on the composition of the body A that is source of the gravitational field in which the body T is falling (Hees & Minazzoli (2015); Minazzoli & Hees (2016)). As a consequence, the relative acceleration of two test particles with different composition cannot only be related to the ratios between their gravitational to inertial masses in general (i.e. m G A /m I A = 1 + δ A ). This contrasts with the usual interpretation (see for instance Williams et al. (2012)). However, with some theoretical models, δ W E P T is much greater than δ AT (Damour & Donoghue (2010); Hees & Minazzoli (2015); Minazzoli & Hees (2016)).

At the Newtonian level, the relative acceleration between the Earth and the Moon reads

a M -a E = - Gµ r 3 E M r E M + Gm G S r SE r 3 SE - r S M r 3 S M +Gm G S r SE r 3 SE (δ E + δ SE ) - r S M r 3 S M (δ M + δ S M ) , (18) 
with µ ≡ m G M + m G E + (δ E + δ E M )m G M + (δ M + δ E M )m G E .
As discussed already in the previous subsection, the first term of Eqn. (18) does not lead to a sensitive test of the UFF, because it can be absorbed in the fit of the parameter m G M + m G E (e.g. Williams et al. 2012), while the last term, does. At leading order, one can approximate both distances appearing in this last term as being approximately equal. One therefore has

∆a U F F ≡ (a M -a E ) U F F ≈ Gm G S r SE r 3 SE (δ E + δ SE ) - r S M r 3 S M (δ M + δ S M ) ≈ a E [(δ E + δ SE ) -(δ M + δ S M )] ≡ a E ∆ ES M ( 19 
)
where ∆a U F F is the part of the relative acceleration between the Earth and the Moon that violates the UFF. Once again, one recovers Eqn.

(3) -although its theoretical interpretation is different compared to the previous subsection.

When δ S M = δ SE , and especially when δ S M = δ SE = 0, one recovers the usual Eqn. ( 9). But it is not the case in general because the composition of the Sun may affect the dynamics in some cases as well. Therefore, in a more general context than in section (3.4.1), constraints on ∆ ES M cannot be uniquely interpreted as constraints on the difference of the gravitational to inertial mass ratios between the Earth and the Moon.

As a consequence, from a pure phenomenological point of view -or, equivalently, from an agnostic point of view -one shouldn't interpret ∆ ES M in terms of gravitational to inertial mass ratios only. Indeed, a more general expression of the UFF violating parameter is given by

∆ ES M = [(δ E + δ SE ) -(δ M + δ S M )] , (20) 
where one can see that the Sun's composition may affect the dynamics as well, through the coefficients δ SE and δ S M .

(Otherwise, see a discussion on how to decorrelate the dilaton parameters from planetary ephemeris in (Minazzoli et al. 2017)).

DISCUSSION

As emphasized in section (3.4.1), metric theories lead to a violation of the SEP only. Hence, it is tempting to use Eqn. ( 13) in order to convert the result on ∆ ES M in Eqn. ( 5) into a constraint on the Nordtvedt parameter η SE P -when considering a metric theory prior.

However, such a conversion would not give a clean constraint on the actual Nordtvedt parameter η SE P . The reason is that, since η SE P depends on the post-Newtonian (pN) parameters, one should also fit the extra pN parameters in the Einstein-Infeld-Hoffmann (EIH) equations of motion, at the same time in both the Lunar and the planetary ephemeris -because the latter is used in the derivation of the former. Hence, unless a global fit of the various pN parameters and ∆ ES M is done at the same time for the whole solar system solution, the conversion of ∆ ES M into η SE P through Eqn. (13) does not give a constraint on the actual Nordtvedt parameter η SE P , but on another parameter that we shall call η instead -and that is simply defined by Eqn. (13).

Despite this fact, the result on ∆ ES M that is given in Eqn. (5) can nevertheless be interpreted in terms of fundamental physics, because a whole subset of theories predict a large domination of the WEP over the SEP in ∆ ES M (Damour & Donoghue 2010;Minazzoli & Hees 2016) -meaning that one would have a violation of the UFF while the pN parameters would be either equal to their value in general relativity, or their difference with respect to their value in general relativity would be negligible at the present level of experimental accuracy.

However, in order to separate the SEP and WEP contributions to ∆ ES M in a general case -or to determine the Nordtvedt parameter η SE P when considering a metric theory prior -one would need to consider the whole solar system simultaneously in a consistent parametrized pN framework. This interesting study is left for a future work.

Nevertheless, an internal test on the impact of the extra pN parameters γ and β in the EIH equations under their known limits (taken from Bertotti et al. (2003) and Fienga et al. (2015), respectively) show no significant impact on our results, due to the little sensitivity of these parameters to the LLR data. Hence, η represents a good quantitative approximation of the Nordtvedt parameter η SE P , as deduced from testing the UFF with LLR data only. Moreover, since UFF constraints are often reported in terms of η, this quantity can still be used in order to compare the sensitivity of the various Lunar ephemeris solutions with respect to testing the UFF. The estimates of η are reported in Table (6).

CONCLUSIONS AND FUTURE WORK

In this paper, we present an improvement in the lunar dynamical model of INPOP ephemeris (version 17a) compared to the previous release (version 13c). The model is fitted to the LLR observations between 1969-2017, following the model recommendations from IERS 2010 (Petit & Luzum 2010). The lunar parameter estimates obtained with the new solution are provided in Table ( 5) with comparisons to that obtained by other LLR analyses groups. The improvement brought by the new IR LLR data from Grasse station on the parameter estimates is characterized. The post-fit LLR residuals obtained with INPOP17a are between 1.15 cm to 1.95 cm over 10 years of APOLLO data and 1.47 cm over 2 years of the new IR LLR data from Grasse (Viswanathan et al. 2017). Our solution benefits also of the better spatial and temporal distribution of the IR Grasse data with an improvement of 14% of the UFF tests and better estimations of the Moon dissipation parameters.

We take advantage of the lunar ephemeris improvements to perform new tests of the universality of free fall. A general constraint is obtained using INPOP, in terms of the differences in the acceleration of the Earth and the Moon towards the Sun. In addition to the Nordtvedt interpretation of Nordtvedt (1968b) (provided in section 3.4.1), we propose an alternative interpretation and a generalization of the usual interpretation from the point of view of the dilaton theory (Damour & Polyakov 1994;Hees & Minazzoli 2015;Minazzoli & Hees 2016) (provided in section 3.4.2). We obtain an estimate of the UFF violating parameter ∆ ES M = (-3.8 ± 7.1) × 10 -14 , showing no violation of the principle of equivalence at this level. Future work may further allow to separate between the SEP and the WEP contributions to ∆ ES M by studying the whole solar system simultaneously in a consistent parametrized pN framework -see discussion in Sec. 4.

Thermal expansion of the retro-reflectors and solar radiation pressure are currently employed as empirical corrections following Vokrouhlický (1997); Williams et al. (2009). Future LLR analysis will consider an implementation of these effects within the reduction procedure, so as to improve the uncertainty of the EP test. [START_REF] Oberst | The present-day flux of large meteoroids on the lunar surface-A synthesis of models and observational techniques[END_REF] show the distribution of meteoroid impacts with the lunar phase, indicating a non-uniform temporal distribution during the New and Full Moon phase which could impact the test of EP. The impact of this effect needs to be characterized during the EP test, to be considered as negligible at the present LLR accuracy.

The use of a strictly GRAIL-derived gravity field model (Konopliv et al. 2013) highlights longitude libration signatures well above the LLR noise floor, arising from unmodeled effects in lunar ephemeris (Viswanathan 2017). Other LLR analyses groups (Folkner et al. 2009(Folkner et al. , 2014;;Pavlov et al. 2016) prefer to fit the degree-3 components away from GRAIL-derived gravity field coefficients. Extra periodic terms on the longitude libration present in the DE430 lunar model are not considered within this paper. Instead, a work is in progress to further improve the lunar dynamical model and to identify the cause of the low-degree spacecraft-derived lunar gravity field inconsistency with that from the analysis of LLR data.

L'objectif principal de ce travail était d'am éliorer le mod èle dynamique de la Lune dans les éph ém érides num ériques INPOP et d'exploiter cette am élioration en vu d'une meilleure caract érisation de la structure interne de la Lune et d'effectuer des tests de la relativit é g én érale.

Dans un premier temps, un travail d'analyse des algorithmes n écessaires aux calculs des points normaux utilis és pour la construction des éph ém érides lunaires a ét é effectu é. L'importance de l'incertitude du point normal se refl ète dans la m éthode du moindre carr é pond ér é utilis ée pour l'estimation des param ètres lors de la construction des éph ém érides. En particulier, l'absence d'un algorithme standardis é entre les diff érentes stations LLR introduit des biais dans l'estimation des incertitudes qu'il est important de prendre en compte. La th èse a également b én éfici é d'un ensemble de donn ées plus dense en raison des am éliorations techniques et du passage de la longueur d'onde à l'infrarouge à la station de Grasse (Courde et al., 2017).

Dans un second temps, afin de permettre des analyses multitechniques combinant mesures SLR et LLR, la r éduction des observations LLR a ét é introduite dans le logiciel de d étermination d'orbites GINS du CNES, suite aux recommandations de IERS 2010. En outre, la correction des effets dus au chargement hydrologique observ é à la station Grasse a ét é mise en oeuvre et a fait l'objet d'une premi ère communication poster en 2016 (M émin et al., 2016). Une version am élior ée du mod èle de r éduction LLR a ét é int égr ée à la derni ère version distribu ée du logiciel GINS par l' équipe de g éod ésie spatiale (GRGS) du CNES.

Le mod èle dynamique lunaire d'INPOP a d'abord ét é d évelopp é par Manche (2011). Cependant, sans doute en raison de l'absence du noyau fluide dans la version pr éc édente (INPOP13c), les r ésidus obtenus apr ès ajustement étaient au niveau de 5 cm pour la p ériode moderne (2006).

Une comparaison d étaill ée des équations dynamiques avec les éph ém érides JPL DE430 a permis d'identifier les changements requis dans INPOP pour l'activation du noyau liquide lunaire. D'autres modifications ont permis l'utilisation d'un champ de gravit é lunaire d étermin é par la mission spatiale GRAIL. Un algorithme de moindres carr és sous contraintes a aussi ét é utilis é afin de maintenir les param ètres connus dans des bornes compatibles avec leurs incertitudes. La solution de l' éph ém éride INPOP r ésultante (INPOP17a) produit alors un r ésidu de 1,4 à 1,8 cm, compatible avec ceux publi és par Folkner et al. (2014); Pavlov et al. (2016). L' éph ém éride INPOP17a est distribu ée sur le site de l'imcce (www.imcce.fr/inpop) et une documentation a ét é publi ée (Viswanathan et al., 2017) dans les notes scientifiques de l'IMCCE.

En outre, en fournissant des contraintes plus s év ères dans le mod èle dynamique sur le champ de gravit é lunaire à partir de l'analyse des donn ées GRAIL, une signature caract éristique de libration lunaire avec une p ériode de 6 ans a ét é r év él ée avec une amplitude de ± 5 cm. Plusieurs pistes ont ét é étudi ées pour l'identification de cet effet, impliquant des termes de mar ée et des composants de couple à plus haut degr é. Une publication est en cours de r évision à ce sujet.

Les r ésidus au niveau d'un centim ètre permettent des tests pr écis du principe d' équivalence dans le syst ème solaire. La valeur ajust ée du param ètre caract érisant l'acc él ération diff érentielle de la Terre et de la Lune vers le Soleil a ét é obtenue. Les r ésultats sont conformes aux travaux ant érieurs de Williams et al. (2009de Williams et al. ( , 2012b););[START_REF] Hofmann | Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant[END_REF]; Hofmann and M üller (2016) en am éliorant la pr écision de la d étermination. Une interpr étation en terme de th éorie du dilaton est propos ée. Un article sur ce travail est accept é pour publication dans MNRAS [START_REF] Viswanathan | The new lunar ephemeris INPOP17a and its application to fundamental physics[END_REF].
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Abstract

The main goal of this Ph.D thesis was to improve the dynamical model of the Moon within the numerically integrated ephemeris (INPOP) and to derive results of scientific value from this improvement through the characterization of the lunar internal structure and tests of general relativity.

At first, raw binaries of LLR echoes obtained from the Grasse ILRS station were used to analyze the algorithm used by the facility, for the computation of a normal point from the full-rate data. Further analysis shows the dependence of the algorithm on the reported uncertainty contained within the distributed LLR normal points from Grasse. The importance of the normal point uncertainty is reflected in the weighted least square procedure used for parameter estimation, especially in the absence of a standardized algorithm between different LLR ground stations. The thesis also benefitted in terms of a more dense dataset due to technical improvements and the switch of operational wavelength to infrared at the Grasse LLR facility (Courde et al., 2017).

The reduction of the LLR observations was implemented within GINS -the orbit determination software from CNES. The modeling follows the IERS 2010 recommendations for the correction of all known effects on the light-time computation. The subroutines were verified through a step by step comparison study using simulated data, with LLR analysis groups in Paris and Hannover, maintaining any discrepancies in the Earth-Moon distance below 1 mm. Additionally, correction of the effect due to hydrology loading observed at the Grasse station was implemented (M émin et al., 2016). An improved version of the LLR reduction model was submitted to the space geodesy team of CNES (GRGS).

The lunar dynamical model of INPOP was first developed by Manche (2011). However, due to the absence of the fluid core within the previous version of INPOP (13c), the residuals obtained after a least-square fit were in the level of 5 cm for the modern day period (2006 onwards). A detailed comparison of the dynamical equations with DE430 JPL ephemeris helped to identify required changes within INPOP for the activation of the lunar fluid core. Other modifications allowed the use of a spacecraft determined lunar gravity field within the dynamical model. The use of a bounded value least square algorithm during the regression procedure accounted for variability to well-known parameters from their reported uncertainties. The resulting iteratively fit solution of INPOP ephemeris then produces a residual of 1.4-1.8 cm, on par with that reported by Folkner et al. (2014);Pavlov et al. (2016). The new INPOP ephemeris (INPOP17a) is distributed through the IMCCE website (www.imcce.fr/inpop) with a published documentation (Viswanathan et al., 2017) in the scientific notes of IMCCE. Furthermore, on providing tighter constraints on the lunar gravity field from GRAIL-data analysis within the dynamical model, a characteristic lunar libration signature with a period of 6 years was revealed with an amplitude of ± 5 cm. Several tracks were investigated for the identification of the unmodeled effect, involving higher degree tidal terms and torque components, and a new modeling is proposed. A publication is under revision on this subject.

Residuals at the level of a centimeter allow precision tests of the principle of equivalence in the solar system. The fitted value of the parameter characterizing the differential acceleration of the Earth and the Moon towards the Sun was obtained with numerically integrated partial derivatives. The results are consistent with the previous work by Williams et al. (2009[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF][START_REF] Hofmann | Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant[END_REF]; Hofmann and M üller (2016). An article on this work is accepted for publication in MNRAS [START_REF] Viswanathan | The new lunar ephemeris INPOP17a and its application to fundamental physics[END_REF].
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  Fig. (2.8), Fig. (2.9) and Fig. (2.13), about 70% of the data are obtained after reflection on Apollo XV reflector and on average 40% of the data are acquired at 30 ○ apart from the quarter moons.

  angular velocity of the Earth's rotation m 1 , m 2 = time-dependent offset of the instantaneous rotation pole from the mean m 3 = fractional variation in the rotation rate r = geocentric distance to the station x, ŷ, ẑ = unit vectors of the station coordinates in the ITRF.

Figure 3

 3 Figure 3.3: Multi-geodetic characterization of the seasonal signal at the Grasse geodetic reference station, France. Strong correlation between GPS observations and non-tidal loading predicted deformation due to hydrology. LLR observations agree reasonably well with GPS and hydrology loading predictions in the U component. The estimated amplitude of the effect is (8.5 ± 0.5) mm in the Up component. LLR observations lack sensitivity in the other directions and hence are not provided. Grasse observations are stacked and averaged by month over 13 years. Used with permission from Mémin et al. (2016).

  4a) where α c is the ratio of the fluid core polar moment of inertia C c to the undistorted polar moment of inertia of the Moon C T , f c is the fluid core polar flattening and, A c and B c are the equatorial moments of the fluid core. Here, Eqn. (4.4a) similar to Folkner et al. (2014, Eqn. 39) and Pavlov et al. (2016, Eqn. 17), assumes an axis-symmetric (A c = B c ) fluid core for the Moon while the triaxial equivalent is given in Eqn. (4.9g).

  5b) and, ⃗ N M,f igM -pmA = net torque on the lunar mantle from the point mass body A; ⃗ N M,f igM -f igE = figure-figure interaction between the Moon and the Earth; ⃗ N CM B = the viscous interaction between the fluid core and the mantle.

  4.3.6 External point mass interaction on extended figure of the fluid core An additional torque from point mass Earth on the degree-3 figure of the fluid core (only C 32 , S 32 and C 33 spherical harmonics) is modeled through Folkner et al.
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 5 Fig.(5.1) shows the estimated biases and the uncertainties within the LLR observations from APOLLO and Grasse stations. For observations from the APOLLO station, scaling the uncertainties of the normal points depending on the change of equipments, or a change in the normal point computation algorithm, is advised. The recommended scaling of the uncertainties for APOLLO station are distributed into groups (labeled A to D within Fig.5.1) and are made publicly available 1 . It must be noted that while APOLLO station scales down their LLR uncertainties by the square root of the corresponding number of echoes detected[START_REF] Murphy | The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections[END_REF], uncertainties from Grasse station are recommended to be manually scaled in the same manner by the user (J.M Torre, personal communication, 2017). LLR uncertainties indicated within Fig.(5.1) have been scaled down for observations from Grasse, to allow comparison. The computation of the LLR normal point and the uncertainty for Grasse station is described in Section (2.2.3).Unrealistic uncertainties present in observations from Grasse (see Fig.5.2), McDonald MLRS2 and Matera between time periods1998-1999, 1996 and 2010- 2012 respectively, must be rescaled before using them as weights to fit lunar ephemerides.Annual mean adjusted weights are given in Fig. (5.3). A sudden dip in the mean weights in 1987 is due to the change of laser (Ruby to Nd:YAG) at Grasse. Mean weights between 2005 to 2010 reach a minimum due to the operation of APOLLO station in the absence of observations from Grasse during the same period. Due to these necessary adjustments, a smooth evolution on the annual mean RMS of the post-fit residuals is noticed in Fig. (2.8).Changes at the ground station, if not accounted for within the ranging calibration procedure, introduces biases in the observations. These biases (as shown in Fig.5.1) correspond either with a known technical development at the station (new equipment, change of optical fiber cables) or other systematics. Any estimated bias can be correlated with a corresponding change in the ground station, provided the incidents have been logged. In cases where a station log file indicating equipment changes were not available, station bias recommendations from other LLR analyses groups are followed(Pavlov et al., 2016). A list of known and detected biases are provided in Table(A.3) and shown in Fig. (5.1) for APOLLO and Grasse stations.
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Figure 5

 5 Figure 5.3: Annual mean of weights from different LLR stations after scaling the uncertainties present within LLR observation (converted to 1-way LT [cm]). The observations obtained from Grasse during 2010-2017 have an accuracy at nearly the same level as of APOLLO station.

  is fit during the joint analysis between the lunar and planetary part. ‡ : τ O1,E inFolkner et al. (2014) given as -0.0044 is a typographical error (J.G.Williams, personal communication, 2017). * : INPOP13c uses only two time delays (d -1 ) for the Earth (τ 21,E = 1.239 × 10 -2 and τ 22,E = 6.9768 × 10 -3 ) : refer to the Solution I inPavlov et al. (2016) 

  Fig. (2.8) and Fig. (2.9). This improves the post-fit residuals obtained for L1 reflector (by 23 % for Grasse) as given in

  Figure 5.7: Post-fit residuals in (cm) vs time (year) obtained with INPOP17a for : a) GRASSE station with the 532 nm wavelength, b) GRASSE station with the 1064 nm wavelength, c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations, d) APOLLO station. Post-fit residuals here are filtered at 5-σ. a) GRASSE station with the 532 nm wavelength b) GRASSE station with the 1064 nm wavelenth c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations d) APOLLO station

Figure 6 . 1 :

 61 Figure 6.1: Longitude libration signature of ±1 mm over 48 years on the 1-way light time range (0.33 mas on longitude libration) with a period of about 3 years (weak) arising from the introduction of higher order figure-figure interaction (fourth degree torque) between the Moon and the Earth, as provided by ⃗ N 22 torque in Bois et al.(1992, p. 197).

Figure 6 . 3 :

 63 Figure 6.3: Contribution of degree-3 love number on the 1-way light time range.

  Folkner et al. (2014); Pavlov et al. (

  .5). Two different fits were considered including the Green and the Infrared data sets: INPOP17A (Green and IR), or just the Green data sets: INPOP17A (Green only). A supplementary fitted solution was obtained for comparisons to the previous determinations by[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF];Müller et al. (2012) which were limited to LLR data samples up to 2011: INPOP17A (limited data). The results are given in Table (6.2).

  ; Courde et al. (2017)) and constraints provided by the analysis of GRAIL observations (Konopliv et al. (2013)) on the lunar gravity field and potential Love number (k 2 ), recent studies (Williams et al. (2014); Pavlov et al. (2016)) show stronger detection of f c ((2.47 ± 0.04) × 10 -4 and

Fig. 1 .

 1 Fig. 1. Post-fit residuals (5-σ filtered 1-way light time (m)) obtained with the APOLLO station data vs time (years). Left: S0b with C 32 , S 32 and C 33 fixed to GRAIL-derived GL0660b values; Center: S0a with C 32 , S 32 and C 33 as fit parameters resulting in deviation from GL0660b values; Right: S2 with C 32 , S 32 and C 33 fixed to GRAIL-derived GL0660b values, to solve for degree 3 shape of the fluid core.

Fig. C. 1 .

 1 Fig. C.1. Post-fit residuals in (cm) vs time (year) obtained with Solution 2 (S2) specification (Section 3.4) for : a) GRASSE station with the 532 nm wavelength, b) GRASSE station with the 532 nm wavelength, c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations, d) APOLLO station. Post-fit residuals are filtered at 5-σ.

  Fig. (1), Fig. (2) and Fig. (3), about 70 % of the data are obtained after reflection on A15 reflector and on an average 40 % of the data are acquired within 30 • of the quarter Moons.

Figure 5 .Figure 6 .

 56 Figure 5. Post-fit residuals in (cm) vs time (year) obtained with INPOP G+IR specification (sec. 2.5) for McDonald, MLRS1, MLRS2, Haleakala and Matera stations

Figure 8 .

 8 Figure 8. Post-fit residuals in (cm) vs time (year) obtained with INPOP G+IR specification (sec. 2.5) for APOLLO station

  )). Violations of the Equivalence Principles are predicted by a number of modifications of GR, often intending to suggest a solution for the problems of Dark Energy and Dark Matter Capozziello & de Laurentis (2011); Joyce et al. (2015); Berti et al. (

r

  I A writes in terms of the gravitational mass m G A as m G A = (1 + δ A )m I A (Hees & Minazzoli 2015; Minazzoli & Hees 2016). Of course, since m G A /m I A = 1 + δ A , one recovers Eqn. (6) when δ AB = 0 for all A and B. From Eqn. (15), one can check that the gravitational force in this context still satisfies Newton's third law of motion: AB (1 + δ A + δ B + δ AB ) = -m I B a B .

  the gravitational energy content of the body T. On the other hand, δ W E P T depends on the composition of the falling body T (Damour & Donoghue (2010); Hees & Minazzoli (2015); Minazzoli & Hees (2016)). In some theoretical situations (see e.g. Damour & Donoghue (2010)), if δ W one can have either a clean WEP violation, or a clean SEP violation.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  . . . 49 3.3 Multi-geodetic characterization of the seasonal signal at the Grasse geodetic reference station, France. Strong correlation between GPS observations and non-tidal loading predicted deformation due to hydrology. LLR observations agree reasonably well with GPS and hydrology loading predictions in the U component. The estimated amplitude of the effect is (8.5 ± 0.5) mm in the Up component. All the marked regions for APOLLO correspond to logged changes at the station. For Grasse station, regions -A1, A2 and C have unrealistic (near-zero) uncertainties due to suspected rejection filter scaling issues within the normal point algorithm as addressed in Section (2.2.3). . . . . . . . . . . . . . 73
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	.1)

Table 5 .

 5 1: Fixed parameters for the Earth-Moon system.

	Parameter	Units	INPOP13c	INPOP17a	DE430	EPM
	(EM RAT † -81.300570) × 10 6 (R E -6378.1366) × 10 4 ( J2E -2.6 × 10 -11 ) (k 20,E -0.335) (k 21,E -0.32) (k 22,E -0.30102) (τ O0,E -7.8 × 10 -2 ) × 10 2	km year -1 day	Fienga et al. (2014) Viswanathan et al. (2017) Williams et al. (2013) Pavlov et al. (2016) -0.54 1.87 -0.92 -0.92 (fixed) 0.0 0.0 -3 -3 (assumed) 0.4 0.0 0.0 0.0 -0.0331 0.0 0.0 0.0 -0.0217 0.0 0.0 0.0 0.0 -0.01902 0.01898 -0.01902 * 0.0 -1.

Table 5 .

 5 2: Comparison of extended body parameters of solution: INPOP13c vs INPOP17a. Fitted parameters are indicated with their corresponding formal uncertainties (1-σ)

	Parameter (GM EM B -8.997011400 × 10 -10 ) × 10 19 AU 3 /day 2 Units (C T (m M R 2 ) -0.393140) × 10 6 (C 32 -4.8404981 × 10 -6 ) × 10 9 (S 32 -1.6661414 × 10 -6 ) × 10 8 (C 33 -1.7116596 × 10 -6 ) × 10 8	INPOP13c INPOP17a 173 ± 9 4 ± 2 -122.2 ± 26 8.2 ± 0.2 4.7 3.9 ± 0.3 2 ± 0.049 1.666 ± 0.006 0.8 ± 0.59 -2.40 ± 0.04

Table 5 .

 5 3: Comparison of post-fit residuals of LLR observations from ground stations with corresponding time span, number of normal points available, number of normal points used in each solution after a 3-σ rejection filter. The WRMS (in cm) is obtained with solutionsINPOP13c (1969-2013) and INPOP17a (1969-2017). ‡ : Statistics drawn fromFienga et al. (2014) 

	Code	Station	Time span		INPOP13c ‡	INPOP17a
				Available Used WRMS Used WRMS
						[cm]		[cm]
	70610 APOLLO, NM, USA (group A)	2006 -2010	941	940	4.92	929	1.27
	70610 APOLLO, NM, USA (group B)	2010 -2012	506	414	6.61	486	1.95
	70610 APOLLO, NM, USA (re-group C) 2012 -2013	361	359	7.62	345	1.52
	70610 APOLLO, NM, USA (group D)	2013 -2016	832	-	-	800	1.15
	01910 Grasse, FR		1984 -1986	1187	1161	16.02	1161	14.01
	01910 Grasse, FR		1987 -1995	3443	3411	6.58	3407	4.11
	01910 Grasse, FR		1995 -2006	4881	4845	3.97	4754	2.86
	01910 Grasse, FR		2009 -2013	999	990	6.08	982	1.41
	01910 Grasse, FR		2013 -2017	2553	-	-	2542	1.47
	56610 Haleakala, HI, USA	1984 -1990	770	739	8.63	728	4.80
	07941 Matera, IT		2003 -2013	83	70	7.62	37	2.37
	07941 Matera, IT		2013 -2015	30	-	-	28	2.93
	71110 McDonald, TX, USA	1969 -1983	3410	3302	31.86	3246	18.87
	71110 McDonald, TX, USA	1983 -1986	194	182	20.60	148	16.77
	71111 MLRS1, TX, USA	1983 -1984	44	44	29.43	44	32.73
	71111 MLRS1, TX, USA	1984 -1985	368	358	77.25	356	62.58
	71111 MLRS1, TX, USA	1985 -1988	219	207	7.79	202	11.07
	71112 MLRS2, TX, USA	1988 -1996	1199	1166	5.36	1162	3.81
	71112 MLRS2, TX, USA	1996 -2012	2454	1972	5.81	1939	3.72
	71112 MLRS2, TX, USA	2012 -2015	17	-	-	15	2.59
		TOTAL			20160		23311

Table 5 .

 5 4: Reflector-wise statistics computed using residuals obtained with INPOP G and INPOP17a, within the fit intervals 01/01/2015 to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by number of observation from each reflector). Refer to Section (5.3.2) for the description of the solutions.

	Grasse

Table 5 .

 5 5: Extended body parameters for the Earth and the Moon. Uncertainties for INPOP G and INPOP17a(1-σ) are obtained from a 5% jackknife (JK). DE430 uncertainties seem to be inflated (unknown scaling) formal uncertainties and EPM solutions provide the 1-σ formal uncertainties. † : C 32 , S 32 and C 33 are reference values from the GRAIL analysis byKonopliv et al. (2013). ‡ : h 2 reference value from LRO-LOLA analysis byMazarico et al. (2014). * : derived quantity. Refer to Section 5.3.2 for the description of the solution INPOP G

	Parameter (GM EM B -8.997011400 × 10 -10 ) × 10 19 AU 3 /day 2 Units (τ R1,E -7.3 × 10 -3 ) × 10 5 day (τ R2,E -2.8 × 10 -3 ) × 10 5 day (C T (m M R 2 ) -0.393140) × 10 6 (C 32 -4.8404981 × 10 -6 † ) × 10 9 (S 32 -1.6661414 × 10 -6 † ) × 10 8 (C 33 -1.7116596 × 10 -6 † ) × 10 8 (τ M -9 × 10 -2 ) × 10 4 day ( kv C T -1.6 × 10 -8 ) × 10 10 day -1	INPOP G 4 ± 2 0 ± 4 9.2 ± 0.4 6.9 ± 0.2 4.1 ± 0.3 1.707 ± 0.006 1.666 ± 0.006 INPOP17a 4 ± 2 6 ± 3 8.7 ± 0.3 8.2 ± 0.2 3.9 ± 0.3 -1.19 ± 0.04 -2.40 ± 0.04 -14 ± 5 -35 ± 3 12.7 ± 0.4 15.3 ± 0.5	DE430 -10 6 ± 30 -27 ± 2 2 * 4.4 1.84 -3.6 58.0 ± 100 4.0 ± 10.0	EPM 10 ± 5 57 ± 5 5.5 ± 0.4 2 * 4.4 ± 0.1 1.84 ± 0.02 -4.2 ± 0.2 60 ± 10 3.0 ± 2.0

Table 6 .

 6 2: Comparison of results for the ratio ∆ ESM (Column 4) estimated with the solution INPOP17A with LLR dataset between: 1) 1969-2011 (for comparison with[START_REF] Williams | Lunar laser ranging tests of the equivalence principle[END_REF] Müller et al., 2012)); 2) 1969-2017 with data obtain only in Green wavelength, 3) 1969-2017 with data obtained with both Green and IR wavelength. Column 5 contains the converted cos D coefficient expressed in mm (see Eqn. 6.2). Column 6 empirically corrects the radial perturbation for effects related to solar radiation pressure and thermal expansion. Column 7 contains the ratio ∆ ESM derived from Eqn. 6.2 and values of Column 6.

	Reference	Data	Uncertainty	estimated	converted corrected	converted
		time span				

Table 6 .

 6 3: Results of the SEP estimates obtained from the LLR EP numerical estimates, after removing the WEP component provided by the laboratory experiments fromAdelberger (2001);Williams et al. (2009).

	Williams et al. (2009) Williams et al. (2012b) Müller et al. (2012) INPOP17A (limited data) Hofmann and Müller (2016) 1969-2017 1969-2004 1969-2011 1969-2011 1969-2011 INPOP17A (Green only) 1969-2017 INPOP17A (Green and IR) 1969-2017 † SRP correction applied within the reduction model. Thermal expansion of reflectors is not taken into N/A 3 ± 14 -0.9 ± 4.2 2.1 ± 4.2 N/A 0.3 ± 12.8 -0.08 ± 3.75 2.92 ± 3.78 3-σ -14 ± 16 4.1 ± 4.69 7.1 ± 4.7 3-σ -3 ± 18 0.88 ± 5.28 3.88 ± 5.30 -13.23 ± 18.08 -7.24 ± 14.3 -9.94 ± 12.9 -24.2 ± 16.1 3-σ ----3.0 ± 6.6 † 3-σ 5 ± 8.7 -1.47 ± 2.55 1.54 ± 2.60 -5.24 ± 8.87 3-σ 8 ± 7.5 -2.35 ± 2.20 0.66 ± 2.25 -2.24 ± 7.69
	account (F.Hofmann, personal communication, 2017)

  S0b) with coefficients C 32 , S 32 and C 33 fixed to values from GL0660b(Konopliv et al. (

	. Only
	532 nm wavelength LLR data are used for matching with
	the DE430 and EPM ephemeris. Two different versions were
	considered:
	a. Solution 0a (S0a) with coefficients C 32 , S 32 and C 33 as
	fitted parameters, like in Folkner et al. (2014); Pavlov
	et al. (2016);
	b. Solution 0b (

Table 1 .

 1 Viswanathan et al.: Possible degree-3 geometry of the lunar fluid core constrained with GRAIL and LLR Comparison between solutions: Extended body parameters for the Moon. Uncertainties are obtained from a 5% jackknife (JK) test, the least squares 1-σ uncertainties being either consistent or smaller than the JK estimations. ⋆ stands for values fixed to model (GL0660b) values from GRAIL. ‡ indicates that the h 2 reference value is extracted fromMazarico et al. (2014).

	.3). More generally, S0a and S0b provide fitted values
	consistent with Folkner et al. (2014) and Pavlov et al. (2016)
	(see tables within Appendix D).
	3.3. S1: Addition of the new IR LLR data from Grasse
	S1 includes additionally 1707 normal points (7% of the
	total LLR data till date) to the solution specifications of
	S0a. This new dataset is obtained from 2 years of op-
	eration in IR (1064 nm) wavelength at the ILRS station
	in Grasse. The new IR LLR data from Grasse is made
	publicly available on http://www.geoazur.fr/astrogeo/
	?href=observations/donnees/luneRG/brutes. A review
	of the technical developments, accuracy and the homogeneity
	in the distribution (both spatial and temporal) of this new dataset
	can be found in Courde et al. (2017). This dataset is weighted at
	the same level as the APOLLO station normal points within the
	estimation procedure (see Appendix B).
	3.4. S2: Degree-3 components for the fluid core
	Eckhardt (1973) has shown the influence of lunar physical libra-
	tions of the Moon through its third and fourth degree harmonics

  ). Each band is represented by a potential Love number k 2m,E with a matching pair of time delays τ Xm,E (where subscript X is either associated with the daily Earth rotation τ Rm,E or orbital motion τ Om,E ) to account for frequency dependent phase shifts from an anelastic Earth with oceans. Here the time delay represents the phase lag induced by the tidal components. Although the time delay method inherently assumes that the real component of k 2m,E varies linearly with frequency, it reduces the complexity of the dynamical model. The diurnal τ R1,E and semi-diurnal τ R2,E are included as solution parameters in the LLR analysis, while model values for potential Love numbers for a solid Earth are fixed to that from Table6.3 inPetit & Luzum (2010) followed by corrections from the ocean model FES2004(Lyard 

Table 1 .

 1 Comparison of post-fit residuals of LLR observations from ground stations with corresponding time span, number of normal points available, number of normal points used in each solution after a 3-σ rejection filter. The WRMS (in cm) is obtained with solutionsINPOP13c (1969-2013) and INPOP17a (1969-2017). INPOP13c statistics are drawn fromFienga et al. (2014).

	INPOP13c	INPOP17a

Table 2 .

 2 Grasse LLR data retro-reflector statistics computed using post-fit residuals obtained with INPOP G and INPOP G+IR , within the fit intervals 01/01/2015 to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by the number of normal points from each reflector).

			Grasse		
	LRRR	INPOP G	INPOP G+IR	% change NPTs
	A15	0.0183	0.0181	1.1	1018
	A14	0.0203	0.0177	12.8	172
	A11	0.0267	0.0239	10.5	215
	L1	0.0215	0.0166	22.8	265
	L2	0.0246	0.0215	12.6	256
	WRMS	0.0207	0.0189	9.5	1926

Table 3 .

 3 APOLLO LLR data retro-reflector statistics computed using post-fit residuals obtained with INPOP G and INPOP G+IR , within the fit intervals 01/01/2015 to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by the number of normal points from each reflector).

			APOLLO		
	LRRR	INPOP G	INPOP G+IR	% change NPTs
	A15	0.0127	0.0127	0.2	344
	A14	0.0192	0.0177	7.8	176
	A11	0.0185	0.0169	8.7	164
	L1	0.0186	0.0157	15.6	89
	L2	0.0136	0.0137	-0.7	64
	WRMS	0.0159	0.0149	6.7	837

lunar ephemerides. The Earth Orientation parameters (EOP) and the modeling of the Earth rotation are however kept fixed to the IERS convention (see section 2.3).

  Table (5), the UFF violation parameter ∆ ES M given in Eqn. (3). Two different fits were considered including 532 nm and 1064 nm data sets (solution labeled INPOP G+IR ), or just the 532 nm data sets (solution labeled INPOP G ). A supplementary adjustment was also performed for a better comparison to the previous determination from other LLR analysis groups, which were limited to a data sample up to 2011 (labeled as limited data). Results are given inTable (6).

D'autres modifications ont permis l'utilisation d'un champ de gravité lunaire déterminé par la mission spatiale GRAIL. Un algorithme de moindres carrés sous contraintes a aussi été utilisé afin de maintenir les paramètres connus dans des bornes compatibles avec leurs incertitudes. La solution de l'éphéméride INPOP résultante (INPOP17a) produit alors un résidu de 1,4 à 1,8 cm, compatible avec ceux publiés parFolkner et al. (2014);Pavlov et al. (2016). L'éphéméride IN-POP17a est distribuée sur le site de l'imcce (www.imcce.fr/inpop) et une documentation a été publiée(Viswanathan et al., 2017) dans les notes scientifiques de l'IMCCE.En outre, en fournissant des contraintes plus sévères dans le modèle dynamique sur le champ de gravité lunaire à partir de l'analyse des données GRAIL, une signature caractéristique de libration lunaire avec une période de 6 ans a été révélée avec une amplitude de ± 5 cm. Plusieurs pistes ont été étudiées pour l'identification de cet effet, impliquant des termes de marée et des composants de couple à plus haut degré. Une publication est en cours de révision à ce sujet.Les résidus au niveau d'un centimètre permettent des tests précis du principe d'équivalence dans le système solaire. La valeur ajustée du paramètre caractérisant l'accélération différentielle de la Terre et de la Lune vers le Soleil a été obtenue. Les résultats sont conformes aux travaux antérieursde Williams et al. (2009de Williams et al. ( , 2012b););[START_REF] Hofmann | Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant[END_REF];Hofmann and Müller (2016) en améliorant la précision de la détermination. Une interprétation en terme de théorie du dilaton est proposée. Un article sur ce travail est accepté pour publication dans MNRAS[START_REF] Viswanathan | The new lunar ephemeris INPOP17a and its application to fundamental physics[END_REF].iii

Available at: www.imcce.fr/inpop

Available at https://ilrs.cddis.eosdis.nasa.gov/data_and_products/formats/crd. html

Available at: http://polac.obspm.fr/lune.html

Available at https://github.com/tritemio

Available at http://azzalini.stat.unipd.it/SN/skew_normal-py.zip

Available at: https://github.com/viswanat/NPT

Available at : https://www.geoazur.fr/svn/web/gins

http://hpiers.obspm.fr/iers/eop/eopc04/eopc04_IAU2000.62-now

http://iers-conventions.obspm.fr/chapter8.php

http://iers-conventions.obspm.fr/chapter5.php

http://holt.oso.chalmers.se/loading/

interpolated from equally spaced 0.5 by 0.5 degree global grid available at ftp://tai.bipm. org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz

Surface displacement maps were obtained from http://loading.u-strasbg.fr/displ_ maps.php

Available at http://physics.ucsd.edu/ ~tmurphy/apollo/151201_notes.txt

http://www.netlib.org/lawson-hanson/index.html

Konopliv et al. (2013) recommends a scaling factor of

to the formal uncertainties.

This data is made publicly available on http://www.geoazur.fr/astrogeo/?href= observations/donnees/luneRG/brutes

The first S52 onBois et al. (1992, p. 198) is assumed to be a typographical error, which should be read as S51 .

Available at: http://www.imcce.fr/inpop ©
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Appendices

Adjustments to reference points (Fienga et al., 2014, p. 27).

Reflector [START_REF] Pearson | Note on Regression and Inheritance in the Case of Two Parents[END_REF]. The partial derivatives of each parameter is obtained by the central differencing method using an appropriate δp j (see Section 5. 

APPENDIX B. SUPPLEMENTARY MATERIALS

graphic coupling at the core-mantle boundary [START_REF] Rambaux | [END_REF]:

Appendix C

Article submitted to A&A: under revision & Luzum ( 2010)). A detailed description of the reduction model used for this study is provided in Manche (2011).

The observations are weighted after adjustments to the uncertainties present within the LLR observations. The annual weights used for the observations from each of the LLR stations can be found in Figure B.1.

A filtering scheme is enforced during the iterative fit of the parameters based on a 3-σ filter (σ recomputed at each iteration). Changes in the ground station introduce biases in the residuals. These biases correspond either with a known technical development at the station (new equipment, change of optical fiber cables) or systematics. Any estimated bias can be correlated with a corresponding change in the ground station, provided the incidents have been logged. year -1 0.0 0.0 0.0 (k 20,E -0.335) 0.0 0.0 0.0 (k 21,E -0.32) 0.0 0.0 0.0 (k 22,E -0.30102) -0.01902 0.01898 -0.01902 (τ O0,E -7.8 × 10 -2 ) × 10 2 day 0.0 -1.4 0.0 (τ O1,E + 4.4 × 10 -2 ) day 0.0 0.0 ‡ 0.0 τ O2,E + 1.13 × 10 -1 ) × 10 1 day 0.0 0.13 0.0 (R M -1738.0) km 0.0 0.0 0.0 (α C -7.0 × 10 -4 ) 0.0 0.0 0.0 (k 2,M -0.024059) 0.0 0.0 0.0 (l 2 -0.0107) 0.0 0.0 0.0 † : EMRAT is fit during the joint analysis between the lunar and planetary part. ‡ : τ O1,E in Folkner et al. (2014) given as -0.0044 is a typographical error.

Table D.2. Extended body parameters for the Earth and the Moon. Uncertainties for S0a (1-σ) are obtained from a 5% jackknife (JK), while other solutions (DE430 and EPM) are assumed as (1-σ) formal uncertainties. † : C 32 , S 32 and C 33 are reference values from the GRAIL analysis by Konopliv et al. (2013). ‡ : h 2 reference value from LRO-LOLA analysis by Mazarico et al. (2014).

Parameter

Units S0a DE430 EPM

day -1 10.2 ± 0.4 4.0 ± 10.0 3.0 ± 2.0 ( f c -2.1 × 10 -4 ) × 10 6 41 ± 3 36 ± 28 37 ± 4 (h 2 -3.71 × 10 -2 ‡ ) × 10 3 6.6 ± 0.2 11.0 ± 6 6 ± 1 Q 27.212 -45 (derived)

3.2 ± 0.5 0 ± 5 0 ± 1

Appendix D

Article submitted to MNRAS day -1 12.7 ± 0.4 15.3 ± 0.5 4.0 ± 10.0 3.0 ± 2.0 ( f c -2.1 × 10 -4 ) × 10 6 37 ± 3 42 ± 3 36 ± 28 37 ± 4 (h 2 -3.71 × 10 -2 ‡ ) × 10 3 6.3 ± 0.2 6.8± 0.2 11.0 ± 6 6 ± 1 Q 27.212 -45 (derived)

3.9 ± 0.5 5.0 ± 0.2 0 ± 5 0 ± 1