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Improving the dynamical model of the Moon using
lunar laser ranging and spacecraft data
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ABSTRACT

The main goal of this Ph.D thesis was to improve the dynamical model of the Moon within
the numerically integrated ephemeris (INPOP) and to derive results of scientific value from this
improvement through the characterization of the lunar internal structure and tests of general
relativity.

At first, raw binaries of LLR echoes obtained from the Grasse ILRS station were used to
analyze the algorithm used by the facility, for the computation of a normal point from the full-
rate data. Further analysis shows the dependence of the algorithm on the reported uncertainty
contained within the distributed LLR normal points from Grasse. The importance of the nor-
mal point uncertainty is reflected in the weighted least square procedure used for parameter
estimation, especially in the absence of a standardized algorithm between different LLR ground
stations. The thesis also benefitted in terms of a more dense dataset due to technical improve-
ments and the switch of operational wavelength to infrared at the Grasse LLR facility (Courde
et al., 2017).

The reduction of the LLR observations was implemented within GINS — the orbit deter-
mination software from CNES. The modeling follows the IERS 2010 recommendations for the
correction of all known effects on the light-time computation. The subroutines were verified
through a step by step comparison study using simulated data, with LLR analysis groups in
Paris and Hannover, maintaining any discrepancies in the Earth-Moon distance below 1 mm.
Additionally, correction of the effect due to hydrology loading observed at the Grasse station
was implemented (Mémin et al., 2016). An improved version of the LLR reduction model was
submitted to the space geodesy team of CNES (GRGS).

The lunar dynamical model of INPOP was first developed by Manche (2011). However, due
to the absence of the fluid core within the previous version of INPOP (13c), the residuals ob-
tained after a least-square fit were in the level of 5 cm for the modern day period (2006 onwards).
A detailed comparison of the dynamical equations with DE430 JPL ephemeris helped to identify
required changes within INPOP for the activation of the lunar fluid core. Other modifications
allowed the use of a spacecraft determined lunar gravity field within the dynamical model. The
use of a bounded value least square algorithm during the regression procedure accounted for
variability to well-known parameters from their reported uncertainties. The resulting iteratively
fit solution of INPOP ephemeris then produces a residual of 1.4-1.8 cm, on par with that reported
by Folkner et al. (2014); Pavlov et al. (2016). The new INPOP ephemeris (INPOP17a) is dis-
tributed through the IMCCE website (www.imcce.fr/inpop) with a published documentation
(Viswanathan et al., 2017) in the scientific notes of IMCCE.

Furthermore, on providing tighter constraints on the lunar gravity field from GRAIL-data
analysis within the dynamical model, a characteristic lunar libration signature with a period of
6 years was revealed with an amplitude of ± 5 cm. Several tracks were investigated for the iden-
tification of the unmodeled effect, involving higher degree tidal terms and torque components,
and a new modeling is proposed. A publication is under revision on this subject.

Residuals at the level of a centimeter allow precision tests of the principle of equivalence in

the solar system. The fitted value of the parameter characterizing the differential acceleration

of the Earth and the Moon towards the Sun was obtained with numerically integrated partial

derivatives. The results are consistent with the previous work by Williams et al. (2009, 2012b);

Hofmann et al. (2010); Hofmann and Müller (2016). An article on this work is accepted for
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publication in MNRAS (Viswanathan et al., 2018).



RÉSUMÉ

L’objectif principal de ce travail était d’améliorer le modèle dynamique de la Lune dans les
éphémérides numériques INPOP et d’exploiter cette amélioration en vu d’une meilleure car-
actérisation de la structure interne de la Lune et d’effectuer des tests de la relativité générale.

Dans un premier temps, un travail d’analyse des algorithmes nécessaires aux calculs des
points normaux utilisés pour la construction des éphémérides lunaires a été effectué. L’importance
de l’incertitude du point normal se reflète dans la méthode du moindre carré pondéré utilisée pour
l’estimation des paramètres lors de la construction des éphémérides. En particulier, l’absence
d’un algorithme standardisé entre les différentes stations LLR introduit des biais dans l’estimation
des incertitudes qu’il est important de prendre en compte. La thèse a également bénéficié d’un en-
semble de données plus dense en raison des améliorations techniques et du passage de la longueur
d’onde à l’infrarouge à la station de Grasse (Courde et al., 2017).

Dans un second temps, afin de permettre des analyses multi-techniques combinant mesures
SLR et LLR, la réduction des observations LLR a été introduite dans le logiciel de détermination
d’orbites GINS du CNES, suite aux recommandations de IERS 2010. En outre, la correction
des effets dus au chargement hydrologique observé à la station Grasse a été mise en œuvre et
a fait l’objet d’une première communication poster en 2016 (Mémin et al., 2016). Une version
améliorée du modèle de réduction LLR a été intégrée à la dernière version distribuée du logiciel
GINS par l’équipe de géodésie spatiale (GRGS) du CNES.

Le modèle dynamique lunaire d’INPOP a d’abord été développé par Manche (2011). Cepen-
dant, sans doute en raison de l’absence du noyau fluide dans la version précédente (INPOP13c),
les résidus obtenus après ajustement étaient au niveau de 5 cm pour la période moderne (2006).
Une comparaison détaillée des équations dynamiques avec les éphémérides JPL DE430 a per-
mis d’identifier les changements requis dans INPOP pour l’activation du noyau liquide lunaire.
D’autres modifications ont permis l’utilisation d’un champ de gravité lunaire déterminé par la
mission spatiale GRAIL. Un algorithme de moindres carrés sous contraintes a aussi été utilisé
afin de maintenir les paramètres connus dans des bornes compatibles avec leurs incertitudes. La
solution de l’éphéméride INPOP résultante (INPOP17a) produit alors un résidu de 1,4 à 1,8 cm,
compatible avec ceux publiés par Folkner et al. (2014); Pavlov et al. (2016). L’éphéméride IN-
POP17a est distribuée sur le site de l’imcce (www.imcce.fr/inpop) et une documentation a été
publiée (Viswanathan et al., 2017) dans les notes scientifiques de l’IMCCE.

En outre, en fournissant des contraintes plus sévères dans le modèle dynamique sur le champ
de gravité lunaire à partir de l’analyse des données GRAIL, une signature caractéristique de
libration lunaire avec une période de 6 ans a été révélée avec une amplitude de ± 5 cm. Plusieurs
pistes ont été étudiées pour l’identification de cet effet, impliquant des termes de marée et des
composants de couple à plus haut degré. Une publication est en cours de révision à ce sujet.

Les résidus au niveau d’un centimètre permettent des tests précis du principe d’équivalence

dans le système solaire. La valeur ajustée du paramètre caractérisant l’accélération différentielle

de la Terre et de la Lune vers le Soleil a été obtenue. Les résultats sont conformes aux travaux

antérieurs de Williams et al. (2009, 2012b); Hofmann et al. (2010); Hofmann and Müller (2016)

en améliorant la précision de la détermination. Une interprétation en terme de théorie du dilaton

est proposée. Un article sur ce travail est accepté pour publication dans MNRAS (Viswanathan

et al., 2018).
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2 CHAPTER 1. INTRODUCTION

rate of about 2-3 ms per century. One of the fundamental laws of physics is the
law of conservation of momentum. A loss in the rotational angular momentum
equals the gain in the orbital angular momentum. Hence as the Earth slows
down, the momentum lost is transferred to the Moon’s orbit. This gain results
in the increase of the distance between the Earth and the Moon, as their masses
remain constant. The rate of this outward motion of the Moon amounts to about
3.8 cm/yr. This value is also measurable with the analysis of laser ranging from
the Earth (Williams et al., 2014c), to the lunar retro-reflectors placed on the Moon
by Apollo astronauts during the Cold War inspired Space Race era.

If this outward motion is extrapolated into the past, we see that the Moon was
closer to the Earth, 4.6 billion years ago, when the Earth and Moon were formed.
This suggests the formation of the Moon near or even out of the Earth in the
distant past, considering stronger tidal interaction propelling the Moon outward
at a quicker rate.

1.1.1 Formation and evolution mechanism

How did the Moon form? What theory best explains the origin of the moon? Any
theory of the Moon’s origin, must explain, the Moon’s relatively large mass with
respect to its planet Earth. Mars is the only other terrestrial planet to have a
moon, however its two satellites are relatively very small. The giant planets have
extensive satellite systems, but their moons are usually composed of low-density
rock-ice mixtures unlike our high-density rocky Moon.

A satisfactory theory must also explain the Moon’s peculiar orbit which lies at
5 degrees to the ecliptic plane (plane of the Earth’s orbit around the Sun) which is
itself tilted 23.5 degrees with respect to the Earth’s equatorial plane (see Fig. 1.1).
Furthermore, its mean mass density of about 3344 kg/m3 is much lower than the
Earth’s mean mass density of 5513 kg/m3.

Comparison of the lunar rocks returned from the lunar sample return missions
provides further constraints on the Moon’s history. The oldest rocks on the Moon
solidified about 4.5 billion years ago, which means that the Moon is about as
old as the Earth. An important distinction comes from the similar quantities
of oxygen isotopes in both Moon and Earth rocks, suggesting common ancestry,
instead of the Moon forming elsewhere and then being captured by the Earth’s
gravity. Another key constraint is the compositional differences, with Moon rocks
lacking any detectable water-bearing minerals, or other kinds of volatile elements
with low melting points. Yet when compared to the Earth, the Moon is enriched in
non-volatile substances having high melting points that require high temperatures
and extraordinary heat to vaporize into space.

Fission, capture and co-accretion models (see Fig. 1.2) of lunar origin have all
been studied in great detail for more than a century, but none satisfies both the
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Observations from the Apollo data hinted that a dichotomy in the geologic
processes may have existed between the lunar nearside and far-side. Topographic
data obtained from the laser altimeter on the Apollo 15 probe, showed that there
was a 2-km displacement between the Moon’s center of mass and center of figure
roughly along the Earth-Moon axis (Kaula et al., 1972), suggesting far-side crust
was thicker than that of the nearside.

Electromagnetic-sounding data placed an upper limit of about 500 km on the
core radius (Hood, 1986). The measurement of a weak, induced dipolar magnetic
field as the Moon passes through the Earth’s geomagnetic tail implies the existence
of a high-electrical-conductivity core with a radius of about 340 ± 90 km (Hood
et al., 1999), whereas Shimizu et al. (2013) found a radius of 290 km with an upper
bound of 400 km. Additionally, the analyses of small rotational signatures obtained
from the lunar laser ranging experiment indicate that the energy is currently being
dissipated at the boundary between a molten core and a solid mantle (Williams
et al., 2001), providing an upper limit of 374 km for a Fe-FeS eutectic fluid core
and a 352 km upper limit for a pure Fe composition.

While the available evidence indicates that the Moon possess a small molten
core, the geophysical data could not unambiguously constrain its composition as
none of the well-determined seismic ray paths, collected by the small network of
lunar seismometers, pass through the deepest portion of the lunar interior (Wiec-
zorek, 2009).

Reanalysis of the Apollo-era seismic data using array-processing methods sug-
gests the presence of a solid inner and fluid outer core, with a partially molten
boundary layer (Weber et al., 2011). However, analysis by another group Gar-
cia et al. (2011), reports the remaining inconsistencies within Weber et al. (2011)
and concludes with a lunar model without a solid inner core due to the strong
uncertainties of the different parameters used.

Many of the samples returned contained high concentration of KREEP (potas-
sium (K), rare earth elements (REE) and phosphorous (P)). Lawrence (1998)
provides the surface thorium concentrations obtained from the Lunar Prospec-
tor gamma-ray spectrometer, showing high concentration of heat sources on the
nearside region called Procellarum KREEP Terrane (PKT). A more recent study
by Laneuville et al. (2013), show with the help of thermo-chemical convection mod-
els, that the impact of such localized heat sources in the crust leaves a present-day
temperature anomaly within the nearside mantle with its influence down to the
core-mantle boundary (CMB).

Contributions from GRAIL and LLR

The gravity field of a planet provides a view of its interior and thermal history by
revealing areas of different density. The Gravity Recovery and Interior Laboratory
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(GRAIL) mission placed a pair of satellites in an orbit around the Moon, acting as a
highly sensitive gravimeter, and began mapping the Moon’s gravity in early 2012.
Zuber et al. (2013) provide the lunar gravity field to spherical harmonic degree
and order 420, obtained from the spacecraft-to-spacecraft tracking observations
from the GRAIL mission. The study revealed several new tectonic and geologic
features of the Moon. Impacts have worked to homogenize the density structure
of the Moon’s upper crust while fracturing it extensively. Wieczorek et al. (2013)
show that the upper crust is 35 to 40 kilometers thick and less dense and thus
more porous than previously thought. Andrews-Hanna et al. (2013) show that the
crust is cut by widespread magmatic dikes that may reflect a period of expansion
early in the Moon’s history.

From the 3 months of data collected over the primary mission, two independent
groups at the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center
(GSFC) determined the lunar gravity field (Konopliv et al., 2013; Lemoine et al.,
2013) up to degree and order 660, with comparable estimates and uncertainties
between the groups.

While the high-degree coefficients are very well determined, the solutions for
the low-degree coefficients are very sensitive to the libration model (obtained from
the fit of lunar ephemerides to lunar laser ranging (LLR) data) and to the models of
the non-gravitational acceleration on the GRAIL spacecraft including the empirical
periodic acceleration model (Konopliv et al., 2013). The physical libration model
of the Moon from Williams et al. (2013) consists of a solid crust and mantle plus a
uniform fluid core, without a solid inner core. Williams et al. (2014b) introduced
variations on the models of Weber et al. (2011) and Garcia et al. (2011) to satisfy
the lunar mean density, mean solid moment of inertia, love number and a deep
low-velocity zone constraints to account for a solid inner core surrounded by an
outer fluid core (see Williams et al. (2014b, Table 7-8)) to give a family of lunar
interior models.

A detection of the solid inner core is feasible from very precise measurements
of the lunar gravity field. The axis of rotation of a solid inner core within a liquid
outer core can be different from the axis of the mantle. With an axis of rotation
tilted by a different amount than the mantle, the inner core degree-2 spherical
harmonics would produce variable gravity field as the core rotates. This causes a
time varying C21 and S21 harmonics (when viewed in a mantle-fixed frame) with
a period of 27.212 days (Williams, 2007). The search for variable C21 and S21

harmonics was one of the goals of the GRAIL mission. Though the mission goals
were met, the search for the inner core periodicities did not find results above
the noise level (Williams and Watkins, 2015). The detection of the solid inner
core would provide further constraints to the models of lunar origin and evolution
and answer key questions related to the possible existence of a now-extinct lunar
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dynamo (Wieczorek, 2006; Laneuville et al., 2014).
Combining gravity field with other observational techniques provides synergis-

tic advantage to the problem. Laser-altimeter data from a lunar orbiting spacecraft
(e.g. LRO-LOLA) provides constraints on the body tides (Mazarico et al., 2014)
and LLR provides rotational signatures (Rambaux and Williams, 2011). A study
that combines these constraints (Matsuyama et al., 2016) provide probability dis-
tribution curves to the lunar solid inner core size and liquid core density. This
can then be used to provide constraints on the thermal evolution of the lunar core
and hence providing a link to its evolution. However, Matsuyama et al. (2016) did
not consider the hemispheric asymmetry found by Laneuville et al. (2013); Zhang
et al. (2013), which could influence the estimates of the lunar interior structure
due to the tidal forcing brought by the asymmetry (Qin, 2015).

Thermal evolution models suggest that a portion of the core should have crys-
tallized to form a solid inner core at its center (Zhang et al., 2013; Laneuville
et al., 2013; Scheinberg et al., 2015). Hence, similar to the gravitational torques
of the Earth acting on the lunar mantle, the Earth should also drive a tilt of the
elliptical figure of the solid inner core, forcing it to precess with the 18.6 year
period lunar mantle precession (Dumberry and Wieczorek, 2016). Furthermore,
the gravitational torques exerted by the inner core on the lunar mantle may affect
the Cassini state of the lunar mantle, similar to that expected for Mercury (Peale
et al., 2016). This would in turn be detectable by LLR, provided the accuracy and
time span of the LLR observations permit.

LLR observations continue to bring critical information in terms of libration
sensitive low-degree gravity field coefficients due to its long time span and high ac-
curacy, which would complement the low-degree coefficients of the GRAIL-derived
gravity field models for the detection of the solid inner core of the Moon.

1.2 Tests of general relativity

The year 2015 marked the 100th anniversary of General Relativity Theory (GRT)
(Einstein, 2015). Up to now, GRT successfully described all available observations
and no clear observational evidence against General Relativity was identified. How-
ever, the discovery of Dark Energy that challenges GRT as a complete model for
the macroscopic universe and the continuing failure to merge GRT and quantum
physics indicate that new physical ideas should be searched for. To streamline
this search it is indispensable to test GRT in all accessible regimes and to highest
possible accuracy.

Violations of the Equivalence Principle (EP) are predicted by a number of
modifications of GRT aimed to suggest a solution for the problem of Dark En-
ergy and/or to merge GRT with quantum physics (Damour and Polyakov, 1994;
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Damour and Donoghue, 2010; Damour, 2012). The Universality of Free Fall (UFF),
an important part of the Equivalence Principle, is currently tested at a level of
about 10−13 with torsion balances (Adelberger et al., 2003) and the LLR (Williams
et al., 2012a; Müller et al., 2012). EP violations and time variations in the fun-
damental coupling constants could also be a result of the effects of a scalar field
coupling with the gravitational field (Damour, 1996; Damour and Vokrouhlický,
1996). Therefore, tests of EP and Ġ have great importance due to its wide reach
as sensitive probes towards new physics (Murphy, 2013).

Some other formalisms often used to test gravity in the solar system and to solve
some questions raised by the Dark Matter and the expending universe can also
be tested with the LLR measurements: the modification of the inverse square law
of gravity (Falcon, 2011), additional force represented by Yukawa-type expression
(Adelberger et al., 2003; Müller et al., 2005).

“Measurement of the precession rate can also probe a recent idea (called
Dvali, Gabadadze, Porrati (DGP) gravity) in which the accelerated
expansion of the universe arises not from a non-zero cosmological con-
stant but rather from a long-range modification of the gravitational
coupling, brought about by higher-dimensional effects (Lue and Stark-
man, 2003; Dvali et al., 2003; Dvali et al., 2003). Even though the
lunar orbit is far smaller than the Gigaparsec length-scale characteris-
tic of the anomalous coupling, there would be a measurable signature
of this new physics, manifesting itself as an anomalous precession rate
at about 5 µarcsec.yr−1, roughly a factor of 10 below current LLR lim-
its, and potentially reachable by millimeter quality LLR.” – (Murphy,
2013, p. 8)

Tests of GRT remains as an important tool to streamline the theoretical de-
velopment. While a number of space missions are planned to improve these tests
(MICROSCOPE to test the UFF with the level of 10−15 (Bergé et al., 2015), Gaia
(Hees et al., 2015) and BepiColombo (de Marchi and Congedo, 2017) to provide a
number of high accuracy tests of GRT, EUCLID (Laureijs et al., 2011) to study the
distribution of Dark Matter in our Galaxy and the Universe, etc.), the instrumen-
tation proposed here will lead to study the solar system dynamics for aiming at a
set of advanced GRT tests that are complementary to the planned space-mission
tests.

Finally, direct measurement of Dark matter in the solar system is also proposed
by Nordtvedt et al. (1995) with the detection of its gravitational influence on the
most accurately measured quantity in the solar system, the Earth-Moon distances
(Merkowitz, 2010).
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1.3 Ephemerides and its applications

The 1960’s were a turning point for the generation of ephemerides, before which
analytical models were used for describing the state of the solar system bodies
as a function of time. A team from the Lincoln Laboratory, MIT (Ash, 1965)
introduced the planetary ephemeris program (PEP) on a computer software using
FORTRAN IV language, to improve the planetary and lunar ephemerides using
the results of radar and optical observations. The first laser ranges to the lunar
retro-reflectors were obtained in 1969 after the Apollo landing (Faller et al., 1969).
The change from lunar angular measurements to laser ranges marked a great im-
provement to the observational accuracy driving comparable improvements to the
lunar ephemerides (Bender et al., 1973). Opportunities to test the theory of gen-
eral relativity also surfaced (Shapiro, 1964; Nordtvedt, 1968; Williams et al., 1976;
Anderson et al., 1978).

While the fitting of optical data was long accomplished with analytical the-
ories for the Moon and planets, the improved data required the development of
numerical integration techniques and more comprehensive physical models. In
the late 1970’s the numerically integrated planetary ephemerides were built by
the Jet Propulsion Laboratory (JPL), called the developmental ephemeris (DE96)
(Standish et al., 1976). Since then, there have been many versions of the JPL DE
ephemerides through the present (Newhall et al., 1983; Standish Jr, 1990; Standish,
1998, 2006; Folkner et al., 2009; Folkner et al., 2014). These ephemerides are con-
tinuously fitted to the data gathered from tracking space probes (radar ranging,
flybys and VLBI), optical data (transit, photographic plates and CCD observa-
tions for outer planets) and direct range measurements (LLR). Semi-analytical
theories also emerged to take advantage from both the worlds (Chapront-Touze
and Chapront, 1983), however they lack accuracy when compared with numerically
integrated ephemerides.

Simultaneously, with the growing interest in space sciences, the European
Space Agency (ESA) was actively involved in interplanetary missions and col-
laborated with other national space administrations. With these developments,
the “Intégrateur Planétaire de l’Observatoire de Paris” (INPOP) project was ini-
tiated in 2003 to build the first European planetary ephemeris independently from
JPL. The INPOP project evolved over the years with the first official release in
2008: INPOP06 (Fienga et al., 2008) followed by versions 08-15 (Fienga et al.,
2009; Fienga et al., 2011; Fienga et al., 2014, 2015, 2016a). Through the official
website2 of the“Institut de Mécanique Céleste et de Calcul des Éphémérides” (IM-
CCE), these ephemerides are freely distributed to the users. With the help of
ephemerides, the users can have access to the positions and the velocities of the

2Available at: www.imcce.fr/inpop

www.imcce.fr/inpop
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major planets, Moon and asteroids of our solar system, the libration angles of the
Moon as well as the differences between the terrestrial time TT (time scale used to
date the observations) and the solar system barycentric times (TDB/TCB) (time
scales used in the equations of motion). The ephemerides can be accessed using
CALCEPH (Gastineau et al., 2015) or SPICE (Acton, 1996) toolkit libraries.

In addition to INPOP and DE, another numerical ephemeris are those devel-
oped by the teams at the Institute of Applied Astronomy (IAA) of the Russian
Academy of Sciences (RAS), called the Ephemerides of Planets and the Moon
(EPM) (Pitjeva, 2005, 2013). These ephemerides are based on the same modeling
as the JPL DE ephemerides. The most recent version being EPM2016 (Pavlov
et al., 2016).

As numerical ephemerides are fitted to real observations, the mathematical
model backing the ephemerides follow closely with the real-world processes. This
enables a more realistic simulation of the natural processes allowing comparison
of the real observations with simulated observations. Any remaining differences
(post-fit residuals) between the simulated and the real observations indicate un-
modeled effects within the numerical model provided the amplitude of the differ-
ences are greater than the level of the known accuracy of the real observations
and also considering the absence of modeling errors at the same level. Introducing
model additions/changes based on the detected unmodeled effects continuously
improve the quality of the simulation as well as provide best-fit estimates of the
model parameters.

Traditionally, numerical ephemerides are used to satisfy high accuracy require-
ments for spacecraft navigation and mission planning. Other scientific applications
include (but are not limited to) orbit determination and localization (Fienga et al.,
2016a), reference frame ties (Folkner et al., 1994), gravity field determination (Iess
et al., 2014; Folkner et al., 2017) asteroid mass determination (Kuchynka et al.,
2010), fundamental physics (Bertotti et al., 2003; Williams et al., 2004; Fienga
et al., 2011; Fienga et al., 2016b), solar corona studies (Verma et al., 2013) and
paleoclimate studies (Laskar et al., 2004, 2011).

For this study, we develop on the INPOP planetary and lunar ephemeris, as
a laboratory to perform tests relevant to two of the interests described in the
previous sections: lunar interior structure (Section 1.1) and test of the violation
of the universality of free fall using the principle of equivalence (Section 1.2), in
using LLR observations and a GRAIL-derived gravity field model (Konopliv et al.,
2013).
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1.4 Outline of the thesis

The following describes a brief outline of this thesis:

Chapter (2) discusses the observations used for this study, consisting of lunar
laser ranging (LLR) data acquired between 1969 to 2017 from various LLR stations.
The existing normal point algorithm at the Grasse LLR station is evaluated and an
alternative algorithm is proposed. New LLR observations from the Grasse station
obtained using the IR (1064 nm) wavelength are also included and its benefits are
discussed.

The numerical model for the Earth-Moon system consists of two components:
the reduction model (Chapter 3) and the dynamical model (Chapter 4). The geo-
physical and relativistic effects implemented within the reduction model (GINS
software) are discussed with its impact on the Earth-Moon distance. The dynam-
ical model consists of the INPOP planetary and lunar ephemeris. The lunar part
of the ephemeris is described with the improvement from the previous model (IN-
POP13c).

Chapter (5) describes the processes behind the construction of a lunar ephemeris
followed by the analysis of the post-fit residuals and comparison of the model pa-
rameter estimates with previous LLR analyses. A technical report on the new
INPOP solution (INPOP17a) is published within the “Notes Scientifiques et Tech-
niques de l’Institut de Mécanique Céleste”, Viswanathan et al. (2017).

Chapter (6) applies the results to the study of lunar interior structure and a
strong longitude libration signature of 6 years is detected. Investigation attempts
to correct this signature are discussed and a model is provided. An article on the
study of the lunar interior structure is submitted to the Astronomy & Astrophysics
journal provided in Appendix (C). Chapter (6) also describes a test of the theory
of general relativity with respect to the universality of free fall in the Earth-Moon
system. A discussion on the results obtained is provided. An article on this work
is accepted to the Monthly Notices of the Royal Astronomical Society (MNRAS)
and provided in Appendix (D).

Chapter (7) summaries the achieved goals of this thesis, followed by the con-
clusion and future perspectives.



Chapter 2

Observation: Lunar Laser
Ranging

2.1 Introduction

Lunar Ranging Retro Reflector (LRRR) arrays were part of the scientific payloads
on the three US Manned (APOLLO XI, XIV, XV) and on-board two Soviet Rover
(Lunakhod 1, 2) Lunar missions (hereby referred to as A11, A14, A15, L1 and L2
respectively). These arrays were installed by each respective mission, resulting in
five distinct positions on the near-side of the Moon.

Ground-based telescopes were used to precisely point to the array location on
the lunar near-side, and high energy laser pulses were fired. Initial attempts to ac-
quire the return pulses were made at the Lick Observatory in California, US (Faller
et al., 1969) with an outgoing beam, approximately 2 seconds of arc, corresponding
to a spot diameter of 3.2 km on the lunar surface. Over the next decades, other
ground-based telescopes from various sites joined the list of lunar laser ranging
stations, namely, McDonald (Texas) (Bender et al., 1973), MLRS1 and MLRS2
(Texas) (Shelus, 1985), Haleakala (Hawaii) (Berg et al., 1978), Grasse (France)
(Veillet et al., 1993; Samain et al., 1998; Torre, 2013), Matera (Italy) (Varghese
et al., 1993) and APOLLO (New Mexico) (Murphy et al., 2008). The accuracy of
observations improved over time with improvements in detector electronics, aided
by larger ground-based telescopes, and improved normal point computation algo-
rithms. The most accurate observations are provided by APOLLO station with
a 3.5 m telescope (Murphy et al., 2012; Murphy, 2013) and to some extent the
Grasse station with recently improved detection capabilities in infrared wavelength
(Courde et al., 2017).

Retro-reflectors have the ability to reflect waves in the same direction as the
incident waves, arising from the arrangement of the optical mirrors as a corner
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2.2 Normal Point

2.2.1 Introduction

A normal point is a reduced observation containing the round trip time of the
light pulse at a given time from the spatial reference of the Lunar Laser Ranging
(LLR) station on the Earth to the retro-reflector array on the surface of the Moon,
computed from many individual echoes. A normal point is computed from full-rate
data. The idea is to reduce the data collected from one ranging session (consisting
of several echoes) to one single time delay value, the 2-way light time at some
specific epoch.

The primary advantage of using a normal point over the full-rate data is the re-
duction of the computational complexity achieved through a reduced data volume.
Unlike satellite laser ranging (SLR) where the motion of the artificial satellite is
rapid within each ranging session, high frequency variations (of a few hundred Hz)
within lunar laser ranging are mostly associated with turbulent fluctuations within
the Earth’s upper atmosphere and local pressure-temperature gradients. Using a
single normal point to represent the full-rate LLR data averages out most of these
variations over the 10 minute ranging session. A study on the processes involved
for the identification, filtering and reduction of the full-rate LLR data from the
McDonald LLR station can be found in Abbot et al. (1973).

In order that the normal point well represents the full-rate data, the algorithm
used for the computation of the former must well characterize the distribution of
the latter.

In the case of laser ranging to the lunar retro-reflector arrays from ground-based
stations, the mean of the detection time distribution comprising of the accumu-
lated return pulses, indicates the average difference between the predicted and
observed round-trip time taken by the photon. The photons traverse the sum of
the total calibration path of the set-up and twice the Earth-Moon distance (up-leg
and down-leg). The standard deviation of the detection time distribution is pri-
marily due to the contributions from the orientation of the retro-reflector array or
target and the response function of the detector and timing electronics, while the
shape of the laser pulse fired defines the theoretical minimum (with contributions
from the detector and timing electronics). The contribution from the atmospheric
turbulences become dominant at low elevation angles (around 10○) while LLR is
typically performed at higher elevation angles (30○ to 40○) (Currie and Prochazka,
2014).

The International Laser Ranging Service (ILRS) Herstmonceux Normal Point
algorithm (Pearlman et al., 2002) recommends a tight rejection limit of 2.5-σ for
first photo-electron detection systems. This is because such detection systems often
involve a photo-diode which is highly sensitive to the first-photon that arrives to
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the detector. This arrival triggers an avalanche multiplication phenomenon which
causes the signature of the detector to influence the skew of the expected return
pulse distribution. A scheme for the normal point generation and first-photo bias
at the APOLLO LLR station can be found in Michelsen (2010).

2.2.2 Data format

The historical LLR data spanning over 1969-2016 from all stations is available pub-
licly in the “MINI” format at http://polac.obspm.fr/llrdatae.html. Recent
LLR observations (both in Green and IR wavelength) from Grasse station (2015-
2017) is made available at http://www.geoazur.fr/astrogeo/?href=observations/
donnees/lune/brutes.

Each LLR normal point contains information about the ground station (ITRF
code), targets (lunar reflectors), time of flight of photons (s), observation epoch
(UTC), meteorological measurements at the ground station such as atmospheric
pressure (0.01 mbar), ground temperature (0.1 ○C) and relative humidity (%),
wavelength of the laser used (0.1 nm) and data quality information through the
number of echoes received, signal to noise ratio and the estimated uncertainties
(0.1 ps).

This study uses the MINI format for the normal points. Another format avail-
able is the Consolidated Range Data (CRD) useful for kilohertz ranging applica-
tions, whose description can be found at the ILRS website1.

2.2.3 Existing algorithm at Grasse station

The original code employed at the Grasse station uses a Visual Basic program
allowing a user interface for the control of laser pulse firing, telescope pointing
adjustments and normal point computation based on the Herstmonceux Normal
Point Recommendation (Pearlman et al., 2002).

At the Grasse ILRS station, a fixed temporal detection window of ±50 ns is used
for acquiring the incoming reflected photons after laser firing to the retro-reflectors.
The arrival times of the reflected photons are compared with a semi-analytical
lunar ephemeris provided by the Paris Observatory Lunar Analysis Center (PO-
LAC), accurate to a few centimeters on the lunar orbit2. These differences are
then stacked in time to form an histogram as shown in Fig. (2.1).

This is followed by the determination of the peak of the accumulated return
pulses, identified using a correlation method. The accumulated return pulses are
correlated with a fixed laser pulse shape. The histogram (Fig. 2.3) is intended to

1Available at https://ilrs.cddis.eosdis.nasa.gov/data_and_products/formats/crd.

html
2Available at: http://polac.obspm.fr/lune.html

http://polac.obspm.fr/llrdatae.html
http://www.geoazur.fr/astrogeo/?href=observations/donnees/lune/brutes
http://www.geoazur.fr/astrogeo/?href=observations/donnees/lune/brutes
https://ilrs.cddis.eosdis.nasa.gov/data_and_products/formats/crd.html
https://ilrs.cddis.eosdis.nasa.gov/data_and_products/formats/crd.html
http://polac.obspm.fr/lune.html
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tainty computation, the public distribution of the normal points from such
instances, impact the regression procedures used by LLR analyses groups
(see Section 5.1.2).

As a better practice it is recommended by this study to remove such obser-
vations from the distributed list of normal points.

• Rejection filter scaling
The ILRS recommends a scaling factor of 2.5 for the rejection filter with
systems that detect the first photo-electron. A change in the rejection filter
will directly impact the standard deviation of the filtered residuals (and
therefore the construction of lunar ephemerides as shown in Section 5.1.2)
stored in the normal point, especially when outliers are involved.

Within different versions of the original code available through internal repos-
itories at the Grasse station, variations of this scaling factor is noticed from
2.2 to 2.5 prior to year 2000. Such changes made at the Grasse station are
often internal and the information is not logged for public access.

As a result, one can notice scaling factors being applied independently by
LLR analyses groups (Manche, 2011; Williams et al., 2014a; Pavlov et al.,
2016) while weighting observations during regression, using normal point
uncertainties (see Fig. 5.1.2).

As a better practice it is recommended by this study to:

1. Log changes to algorithm through a publicly accessible domain;

2. Suggested use of a version control tool for all codes impacting publicly
released data.

• Fixed shape of correlator
The Grasse station algorithm uses a fixed shape (see Fig. 2.3) within the
correlation method for separating the return pulse distribution from accu-
mulated noise within the histogram. While this fixed shape approximates to
an ideal laser pulse, return pulse distribution from LLR involves other depen-
dencies such as that from photo-diodes, timing electronics and retro-reflector
orientation (Michelsen, 2010).

Although the current LLR photon detection rate (typically below 100 pho-
tons over 10 minutes ranging session) at the Grasse station is not sufficient
to fully characterize lunar reflector orientation signatures (trapezoidal), the
detected photon distributions are seldom symmetric (see Fig. 2.5). Hence,
employing a fixed symmetric Gaussian distribution is only an approximation
to the expected pulse distribution. An alternative is to use the calibration
profile of the laser pulse at the Grasse station (see Fig. 2.2) obtained by
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2006-2012 (Bouquillon et al., 2013), while those from DE430 give about
2 cm (Folkner et al., 2014). The resulting residuals obtained with DE430
is converted to 2-way light time and compared with that obtained with the
original predictions present within the LLR full rate data. As one can notice
on Fig. (2.6), a 5% improvement of the residual dispersion (σ) is noticed on
the replaced light-times due to the accuracy of the underlying ephemeris and
improved reduction software, used for the prediction.

This study recommends the use of an updated numerical planetary and lunar
ephemerides as the prediction model for LLR observations to obtain a tighter
spread of LLR residuals during the normal point computation.

2.2.4 Alternate algorithm

Improvements to the normal point algorithm must be effective to remove unwanted
signatures within the full rate data. These may include biases introduced by the
detection electronics or from the asymmetry of the projection of the ranging object
to the plane wave of laser light. Michelsen (2010) shows the impact of such effects
on normal point algorithm for APOLLO LLR data and Kucharski et al. (2015)
proposes methods to remove satellite (Ajisai) signatures in high-repetition rate
(few kHz) SLR normal points for millimeter-level applications in geodesy.

For LLR, although the retro-reflectors are aligned to nominally face the earth
center at zero libration (variation in the apparent orientation of the Moon), for
any given observation, the reflectors are tilted with respect to the plane wave of
laser light. This tilt spreads out the return pulse over the time it takes the wave
front to pass from the nearest point on the retro-reflector to the farthest. This has
a direct impact on the spread of the core of the Gaussian distribution present in
the histogram of the residuals. In addition, the characteristics of the background
noise (zero mean or non-zero mean) can cause the histogram to skew towards the
mean of the noise. Hence it becomes important to completely characterize the
components present in this LLR dataset, rightly called as a mixture model.

In this method of normal point calculation we used the Expectation Maximiza-
tion Approach (Gupta and Chen, 2011) in order to decipher the characteristics
of the skewed normal components present in the LLR return pulses with back-
ground noise, and thereafter computed the normal point for the corresponding
LLR dataset.

A Python implementation4 is used for the Mixture Model Fitting and adapted
to a three-component mixture sample (returns from IR and/or Green wavelengths
and background noise). The Expectation Maximization (EM) algorithm is imple-
mented, for estimating the maximum likelihood of the model parameters (mean

4Available at https://github.com/tritemio

https://github.com/tritemio
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and variance). In addition we also include the skewness estimate by combining
another Python implementation5 based on the study by Azzalini and Capitanio
(1999) for the generation of skewed normal distribution in the maximum likelihood
step.

We assume that the mixture model consists of the linear combination of three
Gaussian distributions corresponding to the residuals for Green and/or Infrared
lasers, along with the background noise (with the sigma of the background noise
chosen to be very large when compared to the residuals to represent a near uni-
form noise). The EM method allows to fit a statistical model in the case where
the experimental data has unknown variables. These variables provided us the
information about which component has generated each sample in our dataset.

With the EM method, we first assigned each sample to each component of the
distribution. After which, we computed MLE estimators of parameters of each
component of the mixture. Apart from the mean and variance estimates we also
introduced a skewness parameter for our study. For each sample si we have three
coefficients γ (i,1), γ (i,2) and γ (i,3) that represent the fraction of si that belong
to the respective components green, IR or noise.

And,
γ (i,1) + γ (i,2) + γ (i,3) = 1 (2.1)

where γ is the responsibility function.
The probability distribution function (PDF) f corresponding to the compo-

nents in the mixture model follow a Gaussian distribution given by:

f (x∣p) = 1

σ
√
2π
e−
(x−µ)2

2σ2 (2.2)

The PDF of the mixture becomes:

f (x∣p) = 3

∑
k=1

πkfk (x∣p) (2.3)

If we know the parameters p (from our initial guess), we can compute for each
sample and each component the responsibility function defined as:

γ (i, k) = πkfk (si∣p)
f (si∣p) (2.4)

where, πk is the probability that the sample belongs to the distribution k described
by:

πk = Nk

N
(2.5)

5Available at http://azzalini.stat.unipd.it/SN/skew_normal-py.zip

http://azzalini.stat.unipd.it/SN/skew_normal-py.zip
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and starting from the effective number of samples for each category (Nk) we
can compute the new estimation of parameters:

Nk =
N

∑
i=1
γ (i, k) (2.6)

where, k = 1,2,3
N1 +N2 +N3 = N (2.7)

The new mean corresponding to the component k is computed as:

µnew
k = 1

Nk

N

∑
i=1
γ (i, k) ⋅ si (2.8)

Followed by the new variance corresponding to the component k is computed
as:

σ2 new
k = 1

Nk

N

∑
i=1
γ (i, k) ⋅ (si − µnew

k )2 (2.9)

And the new values of skew are computed as:

ξnewk = 1

Nk

N

∑
i=1
γ (i, k) ⋅ ⎛⎝

4 − π
2
⋅ E{X}3
var{X} 3

2

⎞
⎠ (2.10)

where,

δ = α√
1 + α2

(2.11)

E{X} =
√

2

π
δ (2.12)

var{X} = 1 − 2δ2

π
(2.13)

where, α is the shape parameter, which regulates the shape of the density
function of the skewed normal distribution.

The skewness is introduced into the Eqn. (2.2) through the shape parameter
α with the help of the complementary gauss error function (erfc), as:

fnew (x∣p) = e
− (x−µ)

2

2σ2 erfc (−α(x−µ)
σ
√
2
)

σ
√
2π

(2.14)

The following steps are iterated until the convergence criteria is achieved:

1. Recomputation of γ (i, k);
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2. Estimation of the updated moments.

The maximum variation of the computed moments of the distribution between
the ith and (i − 1)th iteration to a specified tolerance ǫ forms the basis for the
convergence.

The apriori selection for the mean of the distribution is controlled by the cal-
ibration setup allowing a good separation in time with different wavelength. The
following values were set as the initial conditions for the moments during iterations:

• The mean for the green laser residuals (µG) can be expected within ±3 ns
from the predicted value.

• The mean for the IR laser residuals (µIR) are offset from µG by +5 ns (set by
the Grasse station technical team for ease of separation of the two detection
paths).

• The expected standard deviation for Apollo 15 reflector is about 300 ps
whereas for all the other reflectors it is about 200 ps.

• The noise variance is expected to be as large as the window of reception,
which is about 25 ns.

The algorithm was implemented in parallel to the technical developments and
tests conducted at the Grasse station in 2015, when both IR and Green distribu-
tions were collected on the same datafile with a 5 ns separation between them.
At the time of writing however, LLR ranging at the Grasse station using the two
wavelengths are separated into two independent observations. This reduces the
number of distribution pertaining to an observation set to two components (obser-
vation and noise). The results obtained with the EM algorithm described in the
following section considers this update.

2.2.5 Results

Methodology

Observations were simulated as a Gaussian distribution with initialized values of
mean (about 0.5 ns) and standard deviation (about 0.3 ns) corresponding to a
typical observation from the Grasse LLR station. Noise was introduced as a zero-
mean Gaussian distribution with a standard deviation of 25 ns with 10 times the
number of samples as the observation. Simulations were run over 100 iterations
and the average recovery error (% difference between the recovered and simulated
mean/standard deviation) in the estimation of the mean and standard deviation
obtained from the two algorithms are considered. In each iteration the mean and
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the standard deviation of the simulated observation was allowed to vary by 50%
(from a uniform random distribution), so that a realistic estimation of the recovery
error is obtained. To favor comparison between the results obtained with the two
algorithms, the same set of seeds are used to initialize the pseudo-random number
generator. These simulations were implemented in Python and are made publicly
available6.

6Available at: https://github.com/viswanat/NPT

https://github.com/viswanat/NPT
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Evaluation criteria

The two algorithms: the Grasse station correlation method (Section 2.2.3) and the
Expectation Maximization method (Section 2.2.4), are analyzed with the help of
different simulated datasets, similar to that encountered with the real observations.
A total of six cases are considered for the simulated dataset for the purpose of
evaluation. They are as follows:

1. Low photon count (50 photons/session) corresponding to Grasse station op-
eration in 532 nm wavelength

(a) 2.5-σ rejection filer (Case 1.a in Table 2.1)

(b) 2.2-σ rejection filter (Case 1.b in Table 2.1)

2. Medium photon count (100 photons/session) corresponding to Grasse station
operation in 1064 nm wavelength

(a) 2.5-σ rejection filer (Case 2 in Table 2.1)

3. High photon count (200 photons/session) considering future improvements
to photon detection.

(a) 2.5-σ rejection filer with zero skew (Case 3.a in Table 2.1)

(b) 2.5-σ rejection filer with 0.2 skew (Case 3.b in Table 2.1)

(c) 2.2-σ rejection filer with 0.2 skew (Case 3.c in Table 2.1)

Each of the above cases are grouped into the following evaluation criteria, so
as to compare the performance of the two algorithms (Grasse station and EM
algorithms) used for the normal point computation. They are as follows:

• Photon count and rejection filter
A tight rejection filter at 2.2-σ to 2.5-σ eliminates the tail of the Gaussian
distribution. If a symmetric distribution is expected from the return pulses,
the scaling factor in the rejection filter would play no role on the mean value
of the distribution, but a significant role on the estimation of the standard
deviation.

For low photon count LLR ranging (below 100 detected photons - cases 1.a
and 1.b in Table 2.1), it is recommended to set a tight rejection filter in
order that outliers are not taken into account for the computation of the
normal point, which otherwise would lead to a bias on the average residual
and the standard deviation. Hence, with a tight rejection and low photon
count, the Grasse station algorithm performs better in recovering both the
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mean and the standard deviation of the simulated distribution compared to
the alternate algorithm, by 5 % and 7 % respectively. This is due to the
combined effect of the limited number of photon counts and a tight rejection
filter, as employed at the Grasse station algorithm. The limited number of
photons degrade the quality of the EM fit.

On the other hand, when the photon counts are greater (200 detected pho-
tons and above), the alternative algorithm performs better as it is able to
characterize the distribution well above the noise floor. The improvement
in % error is 2 times on the mean and an order magnitude on the standard
deviation as given by the case 3.a within Table (2.1). With the introduction
of skew and tighter rejection, the current algorithm used at the Grasse sta-
tion becomes significantly degraded as indicated by the case 3.c. Currently,
at the Grasse LLR station, on an average, about 50 photons/session are ob-
tained with 532 nm laser and about 100 photons/session using 1064 nm laser
corresponding to cases 1 and 2 (respectively) within Table (2.1).

• Background noise
The background noise is simulated as a near uniform distribution (simulated
with a Gaussian distribution with a large standard deviation of 25ns as com-
pared with the observations) with 10 times more samples than the detected
photons. The performance of the algorithm at the Grasse station under
background noise is at the expense of strong sample rejection filter, while all
samples are retained with the alternate EM algorithm. Moreover, since the
rejection filter within the Grasse station is subject to user adjustments, the
EM algorithm allows a more autonomous approach with both high or low
background noise. When comparing a fixed scaled (2.2-σ) rejection filter of
the algorithm used at the Grasse station and a 2 Gaussian EM algorithm,
the latter recovers the mean and the standard deviation marginally better
(≤ 2%) under strong background noise. The improvement becomes more sig-
nificant with the EM algorithm when a 3-σ filter is assigned to the Grasse
station method.

• Binning effect
The effect of binning arises typically in a sparse distribution (for example,
but not limited to case 1 in Fig. 2.1), giving rise to gaps and multiple peaks
within the histogram of the distribution. About 5-10 % of data obtained
from the Grasse station is susceptible to these effects. In the presence of
such artifacts, the correlation algorithm fails to distinguish (2-6 % error)
between two identical peaks. The EM algorithm does not require binning
and hence is not susceptible to this effect.

Gaps within the histogram raises a problem for correlation method, as it
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suggests a weak correlation due to missing data. However, on adjustment of
the bin width, one may notice a strong correlation. This directly affects the
peak detection using maximum point of correlation under a fixed bin width,
and the rejection scheme employed around the peak thereafter. The EM
normal point algorithm is not affected by small data gaps (at few hundreds
of ps) which arise as a result of bin width.

• Initial conditions
The EM algorithm requires the initialization of the moments of the Gaus-
sian distributions. The selection of these initial conditions do not affect the
outcome of the algorithm due to the inherent iterative approach. The al-
gorithm used by the Grasse station on the other hand relies vastly on the
correlation peak (initialized for the application of the rejection filter) which
is susceptible to the above mentioned binning effects.

• Symmetry
The current algorithm used at the Grasse station assumes a strong symme-
try both in the correlation method and the application of the rejection filter.
The EM algorithm allows the estimation of higher order moments such as
skew and kurtosis to be included as parameters within the normal point com-
putation. With increased photon count, the asymmetry of the distribution
becomes significant to an extent that the simple average does not coincide
with the Gaussian core i.e. for a positive skew, the mean becomes greater
than the Gaussian core as one can see in cases 3.b and 3.c within Table (2.1).
When the symmetric correlation method used at the Grasse station is applied
on these cases, the error on the moments become significant (up to 12% in
case 3.c of Table (2.1)). The skewness is neglected for the low photon count
case, as its estimation is found to be uncertain at the chosen low sampling
rate.

2.2.6 Inference

The two algorithms are weighted statistically by their performance under differ-
ent scenarios (Section 2.2.5). The Grasse station algorithm performs well with
observations constituting a low photon count under the application of a strong re-
jection filter though it assumes a strong symmetry through the correlator method
and relies heavily on the selection of the scale of the rejection filter. The optimal
rejection filter is currently set to 2.2-σ but this value has varied in the past and
have affected the uncertainties reported in the distributed normal points.

As a first step towards the standardization of normal point computation it is
required that the normal point be recoverable from the full rate data by another
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user. Hence, through the EM algorithm, the user variables within the currently
employed normal point algorithm at the Grasse station are minimized. The alter-
native algorithm is independent from:

• Selection of rejection filter scaling

• User inputs to overcome binning effects

• Symmetry assumptions

The EM algorithm here assumes that the expected distribution follows a Gaus-
sian distribution, with skewness as an optional variable. Though other distribu-
tions were not explored for a better fit, under such an event, the EM algorithm
can be easily adapted to follow the required distribution. The choice of a func-
tional distribution can be chosen based on the expected response function of the
underlying instruments.

Fig. (2.7) shows the cumulative distribution of the photon count obtained at the
Grasse station in 532 nm (2014-2017) and 1064 nm (2015-2017) wavelengths. With
a photon count of below 100 photons/session, the Grasse algorithm is preferred,
while with the remaining higher photon count (constituting about 6% of Green
and 18% of IR LLR data from Grasse) the EM algorithm is optimal.

With increased number of detected photons, some of the issues associated with
the Grasse station algorithm (Section 2.2.3) can be avoided with the help of the EM
algorithm. With the constant technological advancements and tests conducted by
the technical team at the Grasse LLR station one can expect a greater photon count
in the near future. Fig. (2.7) also shows the recent (August 2017) high photon
count sessions obtained from the IR detection at Grasse station. In addition,
an effort is in place to study the prospects of LLR pulse train accumulation for
increased photon count. Moreover, as the number of detections increases, the
asymmetry of the distribution of detected photons become evident and appropriate
compensation within the normal point algorithm will be required for millimeter
level LLR accuracy.

2.3 Comparisons between IR and Green LLR data

sample

Non-uniform distributions in the dataset are one contributor to correlations be-
tween solution parameters (Williams et al., 2009). Like one can see on Fig. (2.8),
Fig. (2.9) and Fig. (2.13), about 70% of the data are obtained after reflection on
Apollo XV reflector and on average 40% of the data are acquired at 30○ apart from
the quarter moons.
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In this work, we show how the IR LLR observations acquired at the Grasse
station during 2015-2017 (corresponding to 7% of the total LLR observations ob-
tained between 1969-2017 from all known ILRS ground stations) can help for the
reduction of such heterogeneity.
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to ranging at a very close angle to the Sun (Williams et al., 2009; Courde et al.,
2017).

b. Full Moon phase: During this phase, thermal distortions remain as the primary
challenge, arising due to the over-head Sun heating of the retro-reflector arrays.
This induces refractive index gradients within each corner cube causing a spread
in the return beam, which makes detection more difficult (see Goodrow and
Murphy (2012)). The proportion of this effect is partially linked to the thermal
stability of the arrays. Since the A11, A14 and A15 arrays have a better thermal
stability compared to the L1 and L2 arrays (Murphy et al., 2014), observations
to the latter become sparse during the full Moon phase.

Despite these challenges, LLR observations during the above mentioned phases
of the Moon have been acquired with the IR detection. For the first two years of
1064 nm detection path at the Grasse station, about 32% of observations were in-
deed obtained at 30○ apart from the moon quarters, increasing by 10% the portion
of data sample close from the most favorable periods for tides and EP studies.

This is primarily achieved due to the improved signal to noise ratio resulting
from an improved transmission efficiency of the atmosphere at the IR wavelength
of 1064 nm. In addition, high precision data have also been acquired on the two
Lunakhod reflector arrays during full moon phase.

2.3.2 Spatial distribution

Statistics drawn from the historical LLR dataset (1969-2015) show an observer
bias to range to the larger Apollo reflector arrays (mainly A15). This trend (see
Fig. 2.8) is also present on statistics taken during time periods after the re-discovery
of Lunakhod 1 by Murphy et al. (2011).

This is due to the higher return rate and thermal stability over a lunar day on
the Apollo reflectors, thereby contributing to the higher likelihood of success.

With the installation of the 1064 nm detection path (see Fig. 2.9), as explained
in Courde et al. (2017), the detection of photon reflected on all reflectors is facil-
itated, especially for Lunakhod 2 (L2): about 17% of IR data are obtained with
L2 when only 2% were detected at 532 nm.

Owing to the spatial distribution of the reflectors on the Moon (see Fig. 2.10),
A11 and A14 give sensitivity to longitude librations, A15 gives sensitivity to lati-
tude librations and the Lunokhod reflectors (L1 and L2) give sensitivity both in the
latitude and longitude libration of the Moon. The heterogeneity in the reflector-
wise distribution of LLR data affects then the sensitivity of the lunar modeling
adjustment (Viswanathan et al., 2016) (discussed in Section 5.3.2).

By acquiring a better reflector-wise sample, IR contributes to improve the
adjustment of the Moon dynamical and rotational modeling.
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Chapter 3

Data reduction

During Lunar Laser Ranging (LLR), the observed time of flight (or the equiv-
alent distance traveled by light) includes inherent signatures resulting from the
orbital dynamics, geophysical and relativistic phenomena present in the Earth-
Moon system, in addition to the absolute Earth-Moon distance measurement. The
well-known effects on the Earth-Moon system are modeled within a data analysis
program (called the reduction model) and a simulated station-reflector distance is
computed. The difference of the observed and the computed light-time includes
all the unmodeled and unknown dynamics (and/or measurement error) present
within the observation, the magnitude of which relates inversely to the accuracy
of the model (currently less than 2 cm wrms in one-way light-time (Viswanathan
et al., 2017)). Here after this difference is referred to as the LLR residual.

The reduction model for the LLR data analysis is implemented within a precise
orbit determination and geodetic software - Géodésie par Intégrations Numériques
Simultanées (GINS) (Marty et al., 2011; Viswanathan et al., 2015) maintained
by space geodesy teams at GRGS/OCA1/CNES and written in Fortran90. The
GINS software was chosen as it allows to compare various types of observation
techniques used for geodesy at the OCA station i.e. SLR, LLR, GPS, etc. The
subroutines for the LLR data reduction within GINS are vetted through a step-
wise comparison study conducted among the LLR analysis teams in OCA-Sophia
Antipolis (this study), IMCCE-Paris and IfE-Hannover, by using simulated LLR
data and DE421 (Folkner et al., 2009) as the planetary and lunar ephemeris. The
modeling follows the recommendations of IERS 2010 (Petit and Luzum, 2010). To
avoid any systematics in the reduction model, the upper-limit on the discrepancy
between the teams was set to a 1 mm threshold in one-way light time.

The following sections describe the procedure behind the iterative computation
of the light-time (Section 3.1), the reference frame transformations required during

1Available at : https://www.geoazur.fr/svn/web/gins
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this computation (Section 3.2), the displacements that occur at the two reference
points - Earth station and LLR retro-reflector (Section 3.3) and the necessary
correction to the light-time (Section 3.4) .

3.1 Light-time computation

The major statistical quality of a model requires that the difference between the
model prediction and the observed quantity be minimum. In LLR analysis, the
light-time solution of the observed quantity (i.e. two-way observed light time)
provides the computed or the model prediction (i.e two-way computed light time).

The light-time computation involves iteratively determining the time of reflec-
tion of the laser pulse from the lunar retro-reflectors, with the help of the time
of emission (Te) and the round-trip time, both contained within the observation.
This procedure is split into two legs (or paths) identified by the direction of travel
of light. The up-leg consists of the path traveled by light from the station on the
Earth to the reflector on the Moon, while the down-leg follows the reflected path
in the opposite direction. A schematic is provided in Fig. (3.1).

The station code present within the LLR data files identifies the Earth-based
ground station from which the laser was fired, providing the link to the Interna-
tional Terrestrial Reference Frame (ITRF) coordinates of the Earth station. The
time-stamp of emission (in UTC) allows the interpolation of the station position
from the reference epoch of the ITRF model used. This interpolation is linear and
it accounts for the correction of tectonic plate motion at the Earth station. At
this stage, additional corrections on the station position follow from the effect of
tides and spin, described further in Section (3.3).

The station positions are then transformed from the International Terrestrial
Reference System (ITRS) to the Barycentric Celestial Reference System (BCRS)
and its realization, the International Celestial Reference Frame (ICRF). This is
carried out by a series of both time and coordinate transformations described in
Section (3.2), by the use of Earth Orientation Parameters (EOPs). The EOPs
take into account the irregularities of the Earth’s rotation as a function of time.

The lunar reflector code to which the ranging was performed is provided through
the observation. Fits of LLR data to lunar ephemerides allows the determination of
the reflector coordinates in the seleno-centric reference frame. The Moon’s mantle
unlike Earth’s, is cooler and does not convect to cause an active tectonic plate mo-
tion. Hence, the reflector coordinates are fixed with respect to the seleno-centric
reference frame. The seleno-centric reference frame is transformed to the inertial
(ICRF) reference frame using the Euler angles, estimated with the help of lunar
ephemerides, and in considering the motion of the Moon relative to the Earth and
the position of the Earth relative to the solar-system barycenter (SSB).
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3.2 Reference frame transformation

The light-time solution for LLR analysis and the INPOP planetary and lunar
ephemeris, uses the Solar-System barycentric space-time frame of reference (the
ICRF), a realization of the Barycentric Celestial Reference System (BCRS). The
BCRS is a system of barycentric space-time coordinates for the solar system within
the framework of General Relativity (GR) with metric tensor specified by the
IAU 2000 Resolution B1.3. The BCRS is assumed to be oriented according to
the ICRS axes (Petit and Luzum, 2010). The coordinate time scale used for
INPOP ephemeris is Barycentric Dynamical Time (TDB), defined in terms of the
Barycentric Coordinate Time (TCB) as per the IAU Resolution B2 (1991) and
B1.3 (2000). State vectors of the Sun, the Earth, the Moon and other planets
defined in the BCRS can be extracted from the numerically integrated planetary
and lunar ephemeris (e.g., INPOP or DE) using an ephemeris access library -
CALCEPH (Gastineau et al., 2015).

For the LLR analysis, two coordinate transformations are involved. The trans-
formation of geocentric station coordinates (ITRF) to the Solar-System barycen-
tric coordinates (ICRF), and, the transformation of the lunar reflector coordinates
from the seleno-centric coordinates (LCRF) to the ICRF.

1. ITRF to ICRF transformation
A vector in the ITRF (station coordinates) is first converted to a geocentric
celestial reference frame (GCRF). GCRF has its origin at the geocenter with
its axes aligned with the ICRF.

A detailed description of the transformation between ITRS and GCRS is
given in Petit and Luzum (2010, p. 69) and Manche (2011, p. 103). For
this study, the CIO-based transformation (Petit and Luzum, 2010, p. 71)
was implemented using SOFA subroutines (an example can be found in IAU
SOFA Board, p. 25). The transformation requires input parameters such as,
the terrestrial time (TT ), UT1, Celestial Intermediate Pole offsets (∆X,∆Y )
and the coordinates of the pole (xp, yp).

These input parameters are obtained with the help of Earth Orientation
Parameters (EOP), available publicly through the Earth Orientation Center
website2 in accordance with the IAU2006/2000A precession-nutation model.
Alternatively, the Kalman Earth Orientation Filter (KEOF) EOPs can be
used (Ratcliff and Gross, 2015). For LLR analysis, the latter is preferred as
it includes the LLR observations during the determination of the variation
in latitude (VOL) and UT0 (Pavlov et al., 2016). The EOPs correspond to 0

2http://hpiers.obspm.fr/iers/eop/eopc04/eopc04_IAU2000.62-now

http://hpiers.obspm.fr/iers/eop/eopc04/eopc04_IAU2000.62-now
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h UTC of each date. A 4-point Lagrangian interpolation was used to obtain
the corresponding input parameters at the observation times.

The effect of tidal variations in the Earth’s rotation can either be corrected
directly from the EOP website2 or through the IERS recommended subrou-
tines3. Other corrections to EOPs involve diurnal luni-solar effect on polar
motion, sub-diurnal librations in UT1 and corrections to CIP coordinates to
account for Free Core Nutation (FCN), subroutines for which are publicly
available4. These models were implemented within the software using the
IERS subroutines.

The time coordinate of GCRS is TCG (Geocentric Coordinate Time), which
differs from TT at a constant rate (Petit and Luzum, 2010, Eqn. 10.1). This
transformation was implemented using the SOFA subroutine (TTTCG.F ).

The difference between the Terrestrial Time (TT) to the Barycentric Dy-
namical Time (TDB) is obtained through numerical integration within the
ephemeris (Fienga et al., 2011) or through an approximation via the SOFA
subroutine (DTDB.F ) - with differences between the two choices having a
maximum effect of 0.01 mm on the Earth-Moon distance. The former is
chosen for the implementation within the reduction model. For the pur-
pose of measurement reduction, the difference between International Atomic
Time (TAI) and TDB is needed at the point the measurement is made,
where TT = TAI + 32.184s. The differential equation integrated with the
ephemeris concerning the difference TT − TDB can be found in Manche
(2011, Eqn. 9.24) for INPOP and Folkner et al. (2014, Eqn. 5). The co-
ordinate time scale used for INPOP ephemeris, describing the equations of
motion of solar-system bodies, is TDB. The amplitude of the effect due to
the difference TT − TDB on the Earth-Moon distance reaches up to 45 cm
between 1969 to 2017.

The transformation from GCRF to BCRF also includes a relativistic trans-
formation in order to consider the effect of gravitational potential in the
vicinity due to a change in the coordinate origin. The transformation of a
geocentric position vector r⃗GCRF to r⃗BCRF , expressed in the BCRF, is given
by the following equation with an uncertainty of about 0.01 mm (Moyer,
2003, p. 4-9):

r⃗BCRF = r⃗GCRF (1 − U
c2
) − 1

2

⎛
⎝
V⃗ ⋅ r⃗GCRF

c2
⎞
⎠ V⃗ (3.1)

3http://iers-conventions.obspm.fr/chapter8.php
4http://iers-conventions.obspm.fr/chapter5.php

http://iers-conventions.obspm.fr/chapter8.php
http://iers-conventions.obspm.fr/chapter5.php
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where U is the gravitational potential at the geocenter (excluding the Earth’s
mass), V⃗ is the barycentric velocity of the Earth and c is the speed of light.

The first term of Eqn. (3.1) reduces the geocentric radius of the station by
about 16 cm, while the second term reduces the component of the station
position vector along the Earth’s velocity vector by up to 3 cm (Moyer, 2003,
p. 4-9).

The transformation of r⃗TT (TT-compatible position vector) to r⃗TDB (TDB-
compatible position vector) is then given, with an uncertainty of about
0.01 mm (Moyer, 2003, p. 4-9), by :

r⃗TDB = r⃗TT (1 − U
c2
−LC) − 1

2

⎛
⎝
V⃗ ⋅ r⃗TT

c2
⎞
⎠ V⃗ (3.2)

where LC = 1.48082686741 × 10−8 and c is the speed of light.

The amplitude of the effect due to the relativistic transformation from GCRF
to BCRF on the Earth-Moon distance reaches up to 19 cm between 1969 to
2017.

Using the above mentioned reference frame transformations, one can obtain
the station position in the BCRF for the light-time solution.

2. LCRF to BCRF transformation
The lunar reflector coordinates are given in the seleno-centric frame of ref-
erence (refer to Section (4.3) for lunar frame definitions). The Euler angles
(φm, θm and ψm) are integrated numerically (along with the positions of the
bodies) within the ephemeris, defined here as the precession, nutation and
rotation angle, respectively (see Fig. 3.2).

These Euler angles are used to orient the principal axes (PA) of the lunar
(crust+mantle) coordinate system to the BCRS. A vector in the LCRS (or
PA) frame of reference can be transformed to the BCRS using Euler’s rota-
tion theorem as:

r⃗BCRF =Rz(−φm)Rx(−θm)Rz(−ψm)r⃗PA (3.3)

where,

Rx(α) =
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 cosα sinα
0 − sinα cosα

⎤⎥⎥⎥⎥⎥⎥⎦
Rz(α) =

⎡⎢⎢⎢⎢⎢⎢⎣
cosα sinα 0− sinα cosα 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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(2016) add supplementary periodic correction terms (Λ) to the rotation angle ψm

to compensate unmodeled effects in the longitude libration of the Moon. We avoid
this empirical correction in our model and instead discuss investigation attempts
to improve the lunar dynamical model in (Section 6.1.2).

3.3 Displacement of reference points

For LLR observations, the two points of reference are: the station position linked
with the geocentric frame of reference (ITRF) at a given epoch, and the lunar retro-
reflector coordinates linked with the seleno-centric (LCRF) frame of reference.
These two points of reference undergo displacement due to the effect of tides (Solid,
Ocean and Atmosphere) and loading effects arising from the mass redistribution
due to tides, polar motion, seasonal effects, etc. The following subsections describe
the implemented effects within the LLR reduction model.

3.3.1 Solid tides

Solid tides comprise of the crustal movement due to the gravitational forces pro-
duced by external bodies, thereby causing a displacement of the position coordi-
nates (Earth station or Lunar reflectors). The solid tides produce both vertical and
horizontal displacements in the reference coordinates that can be expressed by the
spherical harmonic expansion and characterized by the Love (h) and Shida num-
bers (l) (Wahr, 1981). The radial component is proportional to the Love number
while the components orthogonal to the radial is proportional to the Shida number.

For the Earth-station displacements caused by the lunar and solar gravita-
tional attraction, the IERS Fortran subroutine (DEHANTTIDEINEL.F) is used,
complete up to degree-3. The modeling follows the description given in Petit and
Luzum (2010, p. 99). The amplitude of the effect due to solid tides on the Earth,
results in the variation of the Earth-Moon distance up to 35 cm between 1969 to
2017.

Similarly, for the Lunar-reflector displacements caused by the gravitational
attraction of the Earth and the Sun, an adaption of the IERS Solid Earth tides
model is used following Petit and Luzum (2010, Eqn. 7.5). The displacement
vector of the reflector due to degree-2 tides is given by:

∆r⃗ = 3∑
j=2

GMjRm
4

GMMoonRj
3
{h2r̂(3(R̂j ⋅ r̂)2 − 1

2
) + 3l2(R̂j ⋅ r̂)[R̂j − (R̂j ⋅ r̂)r̂]} (3.6)
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where,

GMj = gravitational parameter for the Earth (j=2) or the Sun (j=3),

GMMoon = gravitational parameter for the Moon,

R̂j,Rj = seleno-centric unit vector to the Earth/Sun with its magnitude,

Rm =Mean radius of the Moon,

r̂, r = seleno-centric unit vector to the Lunar reflector with its magnitude,

h2 = Lunar degree-2 Love number,

l2 = Lunar degree-2 Shida number,

Higher degree displacement due to solid tides weaken by 2 orders of magnitude
per degree. The impact of degree-3 displacement love numbers on the Earth-Moon
distance for values of h3=0.0233 and l3=0.003 (Weber et al., 2011; Williams et al.,
2014b) is about 1.4 mm and 0.2 mm, respectively (computed using Petit and
Luzum (2010, Eqn. 7.6)). The amplitude of the effect due to solid tides on the
Moon (degree-2), result in the variation of the Earth-Moon distance up to 55 cm
between 1969 to 2017.

3.3.2 Ocean tide loading

The ocean tides are produced by the gravitational pull of the Moon and Sun.
Ocean tides cause a time-variation of the ocean mass distribution. This results
in a time-varying load on the the ocean floor. Since the Earth is not completely
rigid, it deforms under this load (Farrell, 1972). This time-varying deformation of
the Earth is known as ocean tide loading (Schwiderski, 1980). Since the orbits of
both the Sun and the Moon have more than one periodicity due to their orbital
motion and interaction, the ocean tides can be described as a sum of several ocean
tides with each having their own period (Hartmann and Wenzel, 1995).

The 11 main tidal terms usually considered are the semi-diurnal waves M2, S2,
N2, K2, the diurnal waves K1, O1, P1, Q1 and the long-period waves Mf , Mm and
Ssa. By inputing the station positions of interest, the amplitude and phase of the
loading response for these 11 tidal terms are obtained with the ocean tide loading
service5.

Moreover, when the solid Earth and oceans are considered to be a system
without any external forces on it, then the position of its common center of mass
will remain fixed in space. Since the ocean tides cause water mass displacements,
its center of mass will move periodically and must be compensated by an opposite

5http://holt.oso.chalmers.se/loading/

http://holt.oso.chalmers.se/loading/
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motion of the center of mass of the solid Earth. Stations placed on the solid Earth
are subject to this counter-motion. For the analysis of LLR data, this correction
is mandatory and can be enabled within the loading service website given above.

The site displacement due to ocean tide loading (∆c) at a given time (t) is
given by :

∆c =∑
j

Acj cos (χj(t) − φcj) (3.7)

where,

∆c = site displacement components (radial, west, south),

Acj, φcj = amplitudes and phases for the loading response at each site,

χj(t) = astronomical argument for the 11 main tidal terms, computed with IERS

distributed subroutine ARG2.F

We use the IERS subroutine (HARDISP.F) provided by D. Agnew to compute
the ocean tide loading displacements for a site, given the amplitudes Acj and
phases φcj,1 ≤ j ≤ 11. The amplitude of the effect due to ocean tide loading on
the Earth-Moon distance is around 20 cm, with a maximum of 70 cm (based on
the station location) between 1969 to 2017.

3.3.3 Atmospheric pressure loading

The diurnal heating of the atmosphere by the Sun, causes surface pressure oscil-
lations at the diurnal (S1), semi-diurnal (S2) and higher harmonics. The result of
which induces periodic motions of the Earth’s surface. Petit and Luzum (2010)
recommend calculating the station displacement due to atmospheric loading using
Ray and Ponte (2003) S1 and S2 tidal model.

The displacement grid method was implemented to obtain the surface displace-
ment coefficients (Ad1, Bd1, Ad2 and Bd2), in order to compute the site displacement
due to S1-S2 atmospheric loading6 given by:

d(u, e, n)S1 = Ad1(u, e, n) × cos(ω1T ) +Bd1(u, e, n) × sin(ω1T ) (3.8a)

d(u, e, n)S2 = Ad2(u, e, n) × cos(ω2T ) +Bd2(u, e, n) × sin(ω2T ) (3.8b)

where,

u, e, n up, east, north components in mm

T = UT1 in days

ω1, ω2 = 1 cycle/day, 2 cycle/day corresponding to frequencies of S1, S2 atmospheric tides.

6http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html

http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
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The amplitude of the effect due to atmospheric pressure loading on the Earth-
Moon distance reaches up to 0.8 cm between 1969 to 2017.

3.3.4 Rotational deformation due to polar motion

The centrifugal potential caused by the Earth’s rotation is given by:

V = 1

2
[r2∣Ω⃗∣ − (r⃗ ⋅ Ω⃗)2], (3.9)

where,

Ω⃗ = Ω(m1x̂ +m2ŷ + (1 +m3)ẑ)
Ω =mean angular velocity of the Earth’s rotation

m1,m2 = time-dependent offset of the instantaneous rotation pole from the mean

m3 = fractional variation in the rotation rate

r = geocentric distance to the station

x̂, ŷ, ẑ = unit vectors of the station coordinates in the ITRF.

The first order perturbations (neglecting sub-mm level variations due to m3)
in the potential V due to the Earth’s rotation is given by Wahr (1985):

∆V (r, θ, λ) = −Ω2r2

2
sin 2θ(m1 cosλ +m2 sinλ) (3.10)

with,
m1 = xp − xp and m2 = −(yp − yp) (3.11)

The Petit and Luzum (2010) mean pole model is given as:

xp(t) = 3∑
i=0
(t − t0)i × xip and yp(t) = 3∑

i=0
(t − t0)i × yip (3.12)

where t0 is 2000.0, t is the Julian epoch in years and coefficients xip and yip
represent the annual pole position (cubic model until 2010.0 and linear model
after 2010.0) are tabulated in (Petit and Luzum, 2010, Table 7.7).

The displacements due to ∆V are obtained using the formulation of tidal Love
numbers (h2 = 0.6207 and l2 = 0.0836) and r = a = 6.378 × 106 m (Munk and
MacDonald, 1960), to give:

Sr = −33 sin 2θ(m1 cosλ +m2 sinλ)
Sθ = −9 cos 2θ(m1 cosλ +m2 sinλ)
Sλ = 9 cos θ(m1 sinλ −m2 cosλ)

(3.13)
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where,

Sr, Sθ and Sλ = displacement vectors in mm (positive upwards, south and east, respectively.)

m1,m2 = offsets in arc-seconds

θ, λ = latitude and longitude of the station, respectively.

The IERS subroutine (IERS CMP 2015.F) was used to obtain the conventional
mean pole position and the displacements were computed using Eqn. (3.13). The
amplitude of the effect due to the rotational deformation from polar motion on
the Earth-Moon distance reaches up to 1.6 cm between 1969 to 2017.

3.3.5 Ocean pole tide loading

The displacement of station position due to the centrifugal effect of the polar
motion on the oceans is called ocean pole tide loading. The displacement vector
is given in terms of radial, north and east components, ur,un and ue, respectively
(Desai, 2002).

⎡⎢⎢⎢⎢⎢⎢⎣
ur(φ,λ)
un(φ,λ)
ue(φ,λ)

⎤⎥⎥⎥⎥⎥⎥⎦
=K
⎧⎪⎪⎨⎪⎪⎩(m1γ

R
2 +m2γ

I
2)
⎡⎢⎢⎢⎢⎢⎢⎣
uRr (φ,λ)
uRn (φ,λ)
uRe (φ,λ)

⎤⎥⎥⎥⎥⎥⎥⎦
+ (m2γ

R
2 −m1γ

I
2)
⎡⎢⎢⎢⎢⎢⎢⎣
uIr(φ,λ)
uIn(φ,λ)
uIe(φ,λ)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (3.14)

where,

φ,λ = latitude and longitude

m1,m2 = wobble parameters Eqn. (3.11)

K = 4πGaEρwHp

3ge

Hp = (8π
15
)

1

2 ⋅ Ω2ae4

GM

ρw = density of sea water = 1025 kg m−3

γ = (1 + k2 − h2) = γR2 + iγI2 = 0.6870 + 0.0036i
Ω = nominal mean Earth’s angular velocity

ae = equatorial radius of the Earth

GM = geocentric gravitational constant

ge =mean equatorial gravity

G = constant of gravitation
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Coefficients uR and uI are the real and imaginary part of the ocean pole tide
deformation parameters from the self-consistent equilibrium model of ocean pole
tide (Desai, 2002) 7 and they provide the surface deformations with respect to the
instantaneous center of mass of the deformed Earth, including the mass of the
loading ocean pole tide. The gridded values were first interpolated to the station
position and then introduced as displacement vectors as per Eqn. (3.14). The
amplitude of the effect due to ocean pole tide loading on the Earth-Moon distance
reaches up to 0.1 cm between 1969 to 2017.

3.3.6 Hydrological mass loading

The Earth’s surface is deformed in response to temporal variations in the mass
distribution of atmospheric, hydrological and oceanic loads imposed on the litho-
sphere. Apart from the tidal-induced mass variations, non-tidal mass variations
with sub-daily to seasonal periods lead to primarily vertical elastic deformations
at global, regional and local scales (Blewitt et al., 2001; Fu et al., 2012; Bevis
et al., 2005). A perfect understanding of the loading signal observed by geodetic
techniques should help in improving terrestrial reference frame (TRF) realizations.
Yet, discrepancies between crustal motion estimates from models of surface-mass
loading and observations are still too large so that no model is currently recom-
mended by the IERS for reducing the data.

The astronomical and geodetic observatory OCA, located on the karst plateau
of Calern (Caussols, France) has been monitoring the Earth deformation. Gilli
et al. (2010) show that the deformations induced at the Calern station by the effects
of rainfall and snow-melt is non-negligible. The study concludes by identifying two
probable components, a surface and a deep component, while the mechanical effect
remained unknown.

A recent study (Mémin et al., 2016) aimed at the multi-geodetic characteriza-
tion of this seasonal signal, shows a strong correlation between GPS observations
obtained at the Calern station and non-tidal loading predicted deformation due
to atmosphere, ocean and hydrology8. Two continental hydrology loading models
were used, derived from, Global Land Data Assimilation System (GLDAS) and
Modern-Era Retrospective analysis for Research and Applications (MERRA).

For the purpose of comparison, LLR residuals obtained from the Calern station
between 2002 to 2015 were stacked and averaged by week (see Fig. 3.3). This was
then compared with the other geodetic techniques in operation at Calern station.
It was noticed that the impact due to hydrology remained as the main driver of the

7interpolated from equally spaced 0.5 by 0.5 degree global grid available at ftp://tai.bipm.
org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz

8Surface displacement maps were obtained from http://loading.u-strasbg.fr/displ_

maps.php

ftp://tai.bipm.org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz
ftp://tai.bipm.org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz
http://loading.u-strasbg.fr/displ_maps.php
http://loading.u-strasbg.fr/displ_maps.php
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seasonal signal at Calern, with a good correlation of LLR, GPS and the non-tidal
loading predictions in the vertical component.

The signal at the Calern station was characterized as seasonal with amplitudes
of (8.5 ± 0.5), (1.5 ± 0.5) and (1.5 ± 0.5) in the Up, North and East component,
respectively (in mm).

Figure 3.3: Multi-geodetic characterization of the seasonal signal at the Grasse
geodetic reference station, France. Strong correlation between GPS observations
and non-tidal loading predicted deformation due to hydrology. LLR observations
agree reasonably well with GPS and hydrology loading predictions in the U com-
ponent. The estimated amplitude of the effect is (8.5 ± 0.5) mm in the Up compo-
nent. LLR observations lack sensitivity in the other directions and hence are not
provided. Grasse observations are stacked and averaged by month over 13 years.
Used with permission from Mémin et al. (2016).

3.4 Corrections to light-time

3.4.1 Atmospheric delay

The observed round-trip light-time in distance inherently contains the effect of
an increased propagation path as the laser pulse traverses through the different
layers of varying refractive index within the atmosphere. The propagation effects
concerning the optical regime are only subject to delays in the neutral atmosphere
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(up to about 100 km). Hence, it must be accounted for within the light-time
computation of the observable and along each leg.

The atmospheric delay in the zenith direction is characterized into hydrostatic
delay and wet delay. Hydrostatic delay can be accurately determined from surface
pressure measurements available within the LLR observations, while the wet delay
cannot be estimated accurately from the same information. The elevation depen-
dence of the zenith atmospheric delay is characterized by a mapping function.

This study follows the Petit and Luzum (2010) recommendation with Mendes
et al. (2002); Mendes and Pavlis (2004) as the mapping function - zenith de-
lay pair for the correction of tropospheric optical delays. Fortran subroutines
are provided by the IERS as an implementation of the recommended models
(FCUL ZTD HPA.F and FCUL A.F).

It is to be noted that the mapping function within Mendes et al. (2002) neglects
the contribution of horizontal refractivity gradients. Hulley and Pavlis (2007)
developed a new technique with the inclusion of horizontal gradients using a three-
dimensional atmospheric ray tracing (3D ART) with meteorological data (NS and
EW gradients) from the Atmospheric Infrared Sounder (AIRS), improving the
SLR range residuals by up to 25% while ranging at low elevation angles (10○). For
LLR ranging, the typical elevation angles lie between 30○ to 40○ where the effect is
below 1 mm (Currie and Prochazka, 2014). While this study (Hulley and Pavlis,
2007) can be a future improvement to the LLR data analysis community handling
modern-day high accuracy data approaching the millimeter level, the ray-tracing
technique would increase the computational time due to the large meteorological
gridded datasets and become susceptible to temporal interpolation errors due to
the availability of the data for each station.

The amplitude of the correction from atmospheric delay on the Earth-Moon
distance reaches up to 10 m between 1969 to 2017. The uncertainty of the at-
mospheric delay model when compared with ray tracing techniques reaches up
to 2 mm for stations with high water vapor content (Mendes and Pavlis, 2004).
However, at lower elevation angles (below 10○) the contribution from horizontal
gradients dominate, ranging between 7 mm to 14 mm (Hulley and Pavlis, 2007).

3.4.2 Relativistic correction

According to the general theory of relativity, the speed of a light wave depends on
the strength of the gravitational potential along its path (Shapiro, 1964). From
a geometrical point of view, each of the gravitating bodies curve the space-time
fabric in their vicinity. In the solar-system barycentric frame of reference, this is
expressed as Moyer (2003, Eqn. 8-25). This correction is included in the up-leg and
down-leg iterations, from that due to the Sun and the Earth. The amplitude of
the correction from the relativistic deviation of light on the Earth-Moon distance



58 CHAPTER 3. DATA REDUCTION

reaches up to 8 m between 1969 to 2017. The ignored effect of the Moon amounts
to about 0.7 mm (Williams et al., 1996).

Chapter summary

The LLR data reduction model within the GINS software was vetted through a
step-wise comparison study with two other independent LLR groups in Europe.
In addition to the IERS 2010 recommended models, the impact of hydrological
mass loading at Grasse station was analyzed through multi-geodetic techniques.
A seasonal signature due to hydrology loading is characterized and a correction
model is implemented within the reduction software using a model from the EOST
Loading Service. The following chapter (Chapter 4) focuses on the dynamical
model of the lunar ephemeris which provide critical inputs to the reduction software
in terms of lunar orientation and other state vectors.



Chapter 4

Dynamical model

For the LLR analysis, the dynamical model involves the description of the motion
and the orientation of the Moon as it moves along its orbit around the Earth. This
is described with the help of planetary and lunar ephemerides (such as INPOP,
DE and EPM).

This study benefited from the previous work of Fienga et al. (2008); Fienga
et al. (2011); Fienga et al. (2014, 2015, 2016a), Gastineau et al. (2015) and Manche
(2011) on their respective developments on the numerical solution of INPOP since
its inception in 2003. This study develops on the last update of the lunar model
within the INPOP ephemeris (Fienga et al., 2014), elaborates on the improvements
from INPOP13c in Section (4.1), with the description of the lunar orbital interac-
tions (Section 4.2) and the lunar orientation with its extended figure (Section 4.3).

4.1 Improvement from INPOP13c

The dynamical model backing the lunar part of the INPOP planetary and lu-
nar ephemeris is described within this chapter. The two-layer Moon (solid mantle
with a fluid core) was implemented within INPOP by Manche (2011); Fienga et al.
(2014). In the last version: INPOP13c (Fienga et al., 2014) the lunar fluid core
is not activated, and the LLR post-fit residuals in 1-way light light (LT) did not
seem to improve below 4 cm. This is identified as a programming error within the
modeling of the differential equation of the lunar fluid core. Following the correc-
tion of this error, and iteratively fitting the LLR observations, an improvement is
noticed in the post-fit LLR residuals to about 2 cm for the modern day period.

The polar moment of inertia of the Moon was previously implemented as the
sum of two separate components; that of the mantle and the fluid core. This
required input parameters such as the spherical harmonic coefficients C20 and C22

of the lunar mantle and the lunar fluid core, to describe the respective moment of
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inertia tensor. This is reorganized as that of the total Moon and the fluid core. This
modification allowed the use of spacecraft observed gravity field coefficients that
monitor the Moon as a whole, hence providing strong constraints on the lunar
spherical harmonic coefficients used for the Moon within the dynamical model.
The C20 (fluid core) is redefined to the flattening of the lunar fluid core fc through
Eqn. (4.1).

fc ⋅ αc =
[Cc − (Ac+Bc

2
)]

CT

(4.1)

where, αc = Cc

CT
is kept as a fixed value to 7×10−4 (Folkner et al., 2014);

Ac,Bc and Cc are the principle moments of the tensor of inertia of the fluid core;
CT is the polar moment of inertia of the whole Moon.

This redefinition allows for a better determined value of fc ⋅ αc implying that
the existence of a flattening of the lunar core is strong (Williams et al., 2014b).
However, the value of fc would depend on the fraction of the core polar moment
of inertia

Folkner et al. (2014); Pavlov et al. (2016) consider an axisymmetric fluid core
with Ac = Bc = Cc(1−fc), due to the weak sensitivity of LLR to equatorial ellipticity
(Goldreich, 1967; Williams et al., 2014b).

To confirm this assertion of low sensitivity, a triaxial fluid core is implemented

using Rambaux et al. (2007), discussed through Eqn. (4.9), with gc = Bc −Ac

2Ac

.

Due to the strong correlation of the polar (fc) and equatorial (gc) flattening of the
fluid core (correlation coefficient of 0.97) and the above mentioned low sensitivity
of the equatorial flattening to LLR observations (arising from the geometry), it is
difficult to iteratively fit these two parameters together. As a result, gc is kept fixed
to a theoretical value of 4.10−5 (an order small than the value of fc), computed
using a density profile from Dumberry and Wieczorek (2016) and extended to a
triaxial fluid core. An undetectable variation of about 0.5 mm is induced on the
Earth-Moon distance, below the current LLR data accuracy of about 5 mm.

The time-delay tide model accounts for dissipation in the Earth-Moon system.
INPOP13c consisted of three time delays (τ21,E, τ22,E and τM). To account for time
delays shifting across the diurnal and semi-diurnal frequency bands (Williams and
Boggs, 2015b), the two time delays (τ2m,E) were split to associate them with the
Earth’s rotation and the lunar orbit (Folkner et al., 2014).
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4.2 Lunar orbit interactions

In the INPOP17a model, we include the following accelerations perturbing the
Moon’s orbit:

1. Point mass mutual interactions from the Sun, planets and asteroids from
Folkner et al. (2014, Eqn. 27)

2. Point mass mutual interactions from the extended bodies from Folkner et al.
(2014, Eqn. 28) which include :

• the interaction of the zonal harmonics of the Earth through degree 6;

• the interaction between zonal, sectoral, and tesseral harmonics of the
Moon through degree 6 and the point mass Earth, Sun, Jupiter, Saturn,
Venus and Mars;

• the interaction of degree 2 zonal harmonic of the Sun.

3. Interaction from the Earth tides (Folkner et al., 2014, Eqn. 32)
The tidal acceleration from the tides due to the Moon and the Sun are sep-
arated into three frequency bands (zonal, diurnal and semi-diurnal). Each
band is represented by a potential Love number k2m,E with a matching pair
of time delays τXm,E (where subscript X is either associated with the daily
Earth rotation τRm,E or orbital motion τOm,E) to account for frequency de-
pendent phase shifts from an anelastic Earth with oceans. Here the time
delay represents the phase lag induced by the tidal components. Although
the time delay method inherently assumes that the imaginary component
of k2m,E varies linearly with frequency, it reduces the complexity of the dy-
namical model. The diurnal τR1,E and semi-diurnal τR2,E are included as
solution parameters in the LLR analysis, while model values for potential
Love numbers for a solid Earth are fixed to that from Petit and Luzum
(2010, Table 6.3) followed by corrections from the ocean model FES2004
(Lyard et al., 2006). A detailed explanation about the most influential tides
relevant to the Earth-Moon orbit integration can be found in Williams and
Boggs (2016, Table 6).

4.3 Lunar orientation and extended figure

4.3.1 Lunar frame definition

The mantle coordinate system is defined by the principal axes of the undistorted
mantle, whose moment of inertia matrix is diagonal. The time varying mantle
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Euler angles (φm(t),θm(t),ψm(t)) define the orientation of the principal axis (PA)
frame with respect to the inertial ICRF2 frame (Ma et al., 2009) where: φm is
the angle from the X-axis of the inertial frame along the XY plane to the inter-
section of the mantle equator; θm is the inclination of the mantle equator from
the inertial XY plane; and ψm is the longitude from the intersection of the inertial
XY plane with the mantle equator along the mantle equator to the prime meridian.

4.3.2 Time variation of lunar orientation

The angular velocity of the mantle is expressed through the instantaneous rates
of the Euler angles as shown in Newhall et al. (1983), repeated here as:

ωx = φ̇ sin θ sinψ + θ̇ cosψ
ωy = φ̇ sin θ cosψ − θ̇ sinψ
ωz = φ̇ cos θ + ψ̇

(4.2a)

The second derivatives of the Euler angles follows Newhall et al. (1983, Eqn. 3):

φ̈ = ω̇x sinψ + ω̇y cosψ + θ̇(ψ̇ − φ̇ cos θ)
sin θ

θ̈ = ω̇x cosψ − ω̇y sinψ − φ̇ψ̇ sin θ

ψ̈ = ω̇z − φ̈ cos θ + φ̇θ̇ sin θ
(4.2b)

4.3.3 Lunar moment of inertia tensor

The undistorted total moment of inertia of the Moon ĨT is expressed in terms of
C(2,0),M and C(2,2),M using Manche (2011, Eqn. C.6):

ĨT = C̃T

mMR
2

M

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎣
C̃2,0,M − 2C̃2,2,M 0 0

0 C̃2,0,M + 2C̃2,2,M 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(4.3)

where C̃n,m,M is the unnormalized degree n, order m of the Stokes coefficient
Cn,m for the spherical harmonic model of the undistorted Moon and C̃T is the
undistorted polar moment of inertia of the Moon normalized by its mass mM and
radius squared R2

M . Through Eqn. (4.3), we are able to directly use the undistorted
value of C22 from GRAIL derived spherical harmonic model of Konopliv et al.
(2013).
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The moment of inertia of the fluid core Ic is given by:

Ic = αcC̃T

⎡⎢⎢⎢⎢⎢⎢⎣
1 − fc 0 0
0 1 − fc 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣
(Ac +Bc)/2 0 0

0 (Ac +Bc)/2 0
0 0 Cc

⎤⎥⎥⎥⎥⎥⎥⎦
(4.4a)

where αc is the ratio of the fluid core polar moment of inertia Cc to the undistorted
polar moment of inertia of the Moon CT , fc is the fluid core polar flattening and,
Ac and Bc are the equatorial moments of the fluid core.

Here, Eqn. (4.4a) similar to Folkner et al. (2014, Eqn. 39) and Pavlov et al.
(2016, Eqn. 17), assumes an axis-symmetric (Ac = Bc) fluid core for the Moon
while the triaxial equivalent is given in Eqn. (4.9g).

The moment of inertia of the mantle Im has a rigid-body contribution Ĩm and
two time varying contributions due to the tidal distortion by the Earth and spin
distortion as given in Folkner et al. (2014, Eqn. 41). The single time delay model
(characterized by τM) allows for dissipation when flexing the Moon (Williams
et al., 2001; Standish et al., 2003; Folkner et al., 2014). Although in practice the
time delay model fits well the monthly tides, phase shifts at other periods are not
realistic (Williams and Boggs, 2015b). We propose some possible improvements
in Chapter (7).

Finally we have:

Ĩm = ĨT − Ic (4.4b)

4.3.4 Lunar angular momentum and torques

The time derivative of the angular momentum vector is equal to the sum of torques
(N⃗) acting on the body. In the rotating mantle frame, the angular momentum
differential equation for the mantle is given by:

d

dt
Imω⃗m + ω⃗m × Imω⃗m = N⃗ (4.5a)

where,
N⃗ = ∑

A≠M
(N⃗M,figM−pmA) + N⃗M,figM−figE + N⃗CMB (4.5b)

and,

N⃗M,figM−pmA = net torque on the lunar mantle from the point mass body A;

N⃗M,figM−figE = figure-figure interaction between the Moon and the Earth;

N⃗CMB = the viscous interaction between the fluid core and the mantle.
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The motion of the uniform fluid core is controlled by the mantle interior, with the
fluid core moment of inertia (Ic) constant in the frame of the mantle. The angular
momentum differential equation of the fluid core in the mantle frame is then given
by:

d

dt
Icω⃗c + ω⃗m × Icω⃗c = −N⃗CMB (4.6)

˙⃗ωc = I−1c { − N⃗CMB − ω⃗m × Icω⃗c} (4.7)

where ω⃗c is the angular velocity of fluid core and N⃗CMB is the torque arising at
the core-mantle boundary (CMB) due to the relative velocity between the fluid
core and the solid mantle, expanded as:

N⃗CMB = kv(ω⃗c − ω⃗m) + (Cc −Ac)(ẑm ⋅ ω⃗c)(ẑm × ω⃗c) (4.8)

where kv is the coefficient of viscous friction at the CMB and ẑm is a unit vector
aligned with the polar axis of the mantle frame.

4.3.5 Triaxiality of the lunar fluid core

In Eqn. (4.6), the inertial coupling (second term on the RHS of Eqn. (4.8)) between
the fluid core and the mantle is modeled for an axis-symmetric fluid core. Due
to a small value of αc, the additional coupling term arising from a triaxial core
carries only a weak effect while integrating the physical librations through the
Euler angles. We test the impact of the inclusion of the additional inertial coupling
arising from the triaxiality by modifying Eqn. (4.5a) and Eqn. (4.6) to Eqn. (4.9a)
and Eqn. (4.9b) respectively, given by:

d

dt
L⃗ + ω⃗m × L⃗ = N⃗ (4.9a)

with N⃗ here, as the sum of torques on the Moon from point mass mutual interac-
tions (N⃗M,figM−pmA) and from figure-figure interactions N⃗M,figM−figE.

d

dt
L⃗c − (ω⃗c − ω⃗m) × L⃗c = −N⃗C (4.9b)

where,

L⃗ = IT ω⃗m + Ifgh(ω⃗c − ω⃗m) (4.9c)

with,

L⃗c = Ifghω⃗m + Ic(ω⃗c − ω⃗m) (4.9d)
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Ifgh =
⎡⎢⎢⎢⎢⎢⎢⎣
Fc 0 0
0 Gc 0
0 0 Hc

⎤⎥⎥⎥⎥⎥⎥⎦
(4.9e)

and,
N⃗C = kv(ω⃗c − ω⃗m) (4.9f)

The diagonal elements of Ifgh (Fc, Gc and Hc) introduce the triaxial inertial
coupling between the fluid core and the mantle into the angular momentum dif-
ferential equation following Rambaux et al. (2007).

F 2

c = A2

c − (Cc −Bc)2
G2

c = B2

c − (Ac −Cc)2
H2

c = C2

c − (Bc −Ac)2
(4.9g)

A triaxial fluid core modifies Ic in Eqn. (4.4a) to Eqn. (4.9h), with gc as the fluid
core equatorial flattening, given by :

Ic = αcC̃T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − fc)(1 + gc) 0 0

0
(1 − fc)
(1 + gc

1 + gc)
0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9h)

where, fcαc = [Cc − Ac +Bc

2
]/CT ; gc = Bc −Ac

2Ac

The impact of the lunar fluid core equatorial flattening parameter gc was found
to be very weak during the fit to observation. By introducing the triaxial fluid
core equation and refitting the lunar solution, an undetectable variation of about
0.5mm is induced on the Earth-Moon distance, which is about 10 times smaller
than the most accurate LLR data currently available.

4.3.6 External point mass interaction on extended figure
of the fluid core

An additional torque from point mass Earth on the degree-3 figure of the fluid
core (only C32, S32 and C33 spherical harmonics) is modeled through Folkner et al.
(2014, Eqn. 28), with a fixed fluid core radius of 330 km (Weber et al., 2011). This
is introduced as N⃗c,figC−pmA, which appears on the right hand side of Eqn. (4.6),
repeated here, as:

dL⃗c

dt
+ ω⃗m × L⃗c = −N⃗CMB + N⃗c,figC−pmA (4.10)
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This additional torque is only computed as coming from the interaction of the
point mass Earth (while neglecting other bodies) on the lunar fluid core shape
implemented within an internal version of INPOP (S2) to compensate the degree-
3 discrepancy (see Section 6.1.2). A detailed discussion on the introduction of
this effect is provided within Section (6.1.3). For a complete torque balance on the
fluid core, one must also consider the pressure torques generated from the assumed
assymetry of the fluid core, which is absent at the time of writing. A submitted
article (Appendix C) presents the results obtained with this modeling, and is
under revision to consider a complete torque model. INPOP17a (Viswanathan
et al., 2017) does not include this interaction, as it is a work in progress.
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Chapter summary

The model description of the lunar rotation and orbit (within this chapter) is
numerically integrated together with the planet orbits. The obtained orbits are
then adjusted to the LLR data, including those parameters describing the lunar
interior, such as the flattening of the fluid core, viscous friction at core-mantle
boundary, etc. The procedure involved during the adjustment to the model, the
comparison of the estimates obtained after iterative fits, and the post-fit residuals
obtained, are discussed in the next chapter (Chapter 5).
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Chapter 5

Construction of a lunar
ephemeris: INPOP17a

This chapter focuses on the fit of the model to the LLR observations. The reduced
observations (described in Chapter 3) are compared with a simulated dynamical
model (proposed in Chapter 4) that closely follows the motion and orientation
of the Moon under the perturbation of other solar system objects. The simu-
lated dynamical model and the reduction procedure are controlled through several
parameters that function as model variables (Section 5.2). These variables are
then optimized in order to minimize the difference between the simulations and
the observations (also known as residuals), achieved through an iterative weighted
least-squares fit (Section 5.1). Some observations could be more accurate than the
others, in which case they carry more weight during the fit, while few others could
be biased (Section 5.1.2). In cases where one or a set of parameter(s) are better de-
termined through a technique different from LLR (e.g. spacecraft derived), bounds
can be set using the Bounded-value least-squares (Section 5.1.3) fit to provide tight
constraints (Section 5.2.1) to correlated parameters (Section 5.2.2). The resulting
post-fit residuals obtained with the newly constructed lunar ephemeris is provided
(Fig. 5.7) along with two different uncertainty computation (Section 5.1.4) for each
estimated parameter. The estimated parameters are then compared with the pre-
vious release of INPOP (version 13c) and that obtained from other LLR analyses
groups (Section 5.3).

5.1 Fitting procedure

In this section the algorithm used for the adjustments is described. This algorithm
is based on the least-squares (LS) method for which the linearization of the problem
is required. Furthermore, because of the inhomogeneity of the LLR data sample,
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special attention is taken for building an efficient weighting scheme and for de-
biasing the adjustment from systematics. Finally, the LS method is combined with
an optimization method for keeping well-known values inside realistic bounds.

5.1.1 Linearity and convergence

A weighted least-squares (WLS) regression equation is represented by the linear
relation following the Moore-Penrose pseudo-inverse of the matrix Aij (Moore;
Penrose and Todd, 1955) in the following form:

β̂j,n = (A⊺ijWiiAij)−1A⊺ijWiiXi,n−1 (5.1)

where partial derivatives (Aij) with respect to each parameter pj are approxi-
mated by using numerical central differencing of the computed one-way light-time
(C(pj)). The choice of the magnitude of the variation of the parameter (δpj) for
the computation of Aij is such that a linear region of the function C(pj) is ex-
plored. An investigation for the selection of the appropriate δpj was made following

Manche (2011). β̂j,n gives the value of the estimated correction to be added to pj
for the nth iteration and Xi,n−1 are the post-fit residuals (O−C(pj)) from the n−1th
iteration. The WLS procedure (Tapley et al., 2010) (weighted by the matrix Wii,
see Section 5.1.2) is iterated until the χ2 (the goodness of fit, computed as the
normalized sum of squared deviations between observed and theoretical values)
reaches a minimum value, after which numerical noise dominates.

The sensitivity of the observable to each parameter can be characterized by
computing its partial with respect to the computed one-way light-time. Although
not the primary objective of these partial derivatives, they also allow the user
to make a first-guess of: the order of magnitude of the expected corrections, pe-
riodicity, non-linearity and detection limits associated with each parameter over
the desired fit interval. The reflector-wise plot of partial derivatives for all the 47
dynamical model parameters are provided within the Appendix (B.2).

The correlation matrix was computed from the partial derivatives of all the
parameters (both dynamical and reduction model) using a standard python rou-
tine (pandas.dataframe.corr.py) using the Pearson standard correlation coefficient
(Pearson, 1895). A heat-map of the correlation matrix is provided within Ap-
pendix (B.1). Two or more correlated parameters that exhibit similar signature
on the Earth-Moon distance can be hard to be separated in the fit. An instance
of correlated parameters are the equivalence principle violation parameter ∆rEM

and the Earth-Moon barycenter GMEMB, with a correlation coefficient of +0.96
between them. Gravity field coefficients of the Moon also exhibit strong correla-
tion among the different degrees and orders. Hence, we introduced constraints on
the gravity field of the Moon from the GRAIL spacecraft-derived model (Konopliv
et al., 2013), which are further explained in Section (5.2.1).
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The linearity of each parameter was verified about a central value, such that
the partial derivative lies within the linear region of the parameter space. Several
values of δpj were chosen and tested for recovery i.e (simulations were performed
by introducing δpj into the model and recovered using the least-squares fit). All
parameters except the angular velocity component of the lunar core (ωy) exhibit
strong linearity and recovery (by at-least 99.99%) during the simulations. To
solve this problem, the partial derivatives w.r.t the lunar core angular velocity,
were computed at multiple initial conditions during the iterative fit (once about
zero and then subsequently about the non-zero values obtained from the previous
iterations). It was noticed during the LLR iterative fit that, at-least two con-
sequent partial computations were required from a zero initial condition of the
lunar core angular velocity, to achieve a converged solution. JPL LLR team uses
an approximation method involving a linear combination of the core coefficient
of viscous friction and flattening to address this problem (Williams et al., 2013,
Eqn. 2).

5.1.2 Weighting adjustments and biases

The diagonal elements of the weighting matrix (Wii) within Eqn. (5.1) are the
squares of the inverse of the inherent uncertainties (σi) of each observation, com-
puted using the normal point algorithm. LLR station analyses teams continuously
attempt to improve existing algorithms, methods and practices, which result in
the absence of a standardization in the distributed observational uncertainty (see
Section 2.2). Moreover, since the uncertainties are partly tied with the rejection
scheme used in the normal point computation employed at each station (as de-
scribed in Section (2.2.3) for Grasse station), rescaling of the uncertainties becomes
necessary in cases where a lack of clean evolution of the uncertainties is noticed
(as seen in Fig. 5.1 and 5.2).
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Fig. (5.1) shows the estimated biases and the uncertainties within the LLR ob-
servations from APOLLO and Grasse stations. For observations from the APOLLO
station, scaling the uncertainties of the normal points depending on the change of
equipments, or a change in the normal point computation algorithm, is advised.
The recommended scaling of the uncertainties for APOLLO station are distributed
into groups (labeled A to D within Fig. 5.1) and are made publicly available1. It
must be noted that while APOLLO station scales down their LLR uncertainties
by the square root of the corresponding number of echoes detected (Murphy et al.,
2008), uncertainties from Grasse station are recommended to be manually scaled
in the same manner by the user (J.M Torre, personal communication, 2017). LLR
uncertainties indicated within Fig. (5.1) have been scaled down for observations
from Grasse, to allow comparison. The computation of the LLR normal point and
the uncertainty for Grasse station is described in Section (2.2.3).

Unrealistic uncertainties present in observations from Grasse (see Fig. 5.2),
McDonald MLRS2 and Matera between time periods 1998-1999, 1996 and 2010-
2012 respectively, must be rescaled before using them as weights to fit lunar
ephemerides.

Annual mean adjusted weights are given in Fig. (5.3). A sudden dip in the mean
weights in 1987 is due to the change of laser (Ruby to Nd:YAG) at Grasse. Mean
weights between 2005 to 2010 reach a minimum due to the operation of APOLLO
station in the absence of observations from Grasse during the same period. Due
to these necessary adjustments, a smooth evolution on the annual mean RMS of
the post-fit residuals is noticed in Fig. (2.8).

Changes at the ground station, if not accounted for within the ranging cali-
bration procedure, introduces biases in the observations. These biases (as shown
in Fig. 5.1) correspond either with a known technical development at the station
(new equipment, change of optical fiber cables) or other systematics. Any esti-
mated bias can be correlated with a corresponding change in the ground station,
provided the incidents have been logged. In cases where a station log file indi-
cating equipment changes were not available, station bias recommendations from
other LLR analyses groups are followed (Pavlov et al., 2016). A list of known and
detected biases are provided in Table (A.3) and shown in Fig. (5.1) for APOLLO
and Grasse stations.

5.1.3 Bounded-value least square

The bounded-value least-squares (BVLS) algorithm is a generalization of the non-
negative least-squares (NNLS) algorithm, that solves a least squares problem with
upper and lower bounds on the variable (Lawson and Hanson, 1995; Stark and

1Available at http://physics.ucsd.edu/~tmurphy/apollo/151201_notes.txt

http://physics.ucsd.edu/~tmurphy/apollo/151201_notes.txt
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Figure 5.3: Annual mean of weights from different LLR stations after scaling the
uncertainties present within LLR observation (converted to 1-way LT [cm]). The
observations obtained from Grasse during 2010-2017 have an accuracy at nearly
the same level as of APOLLO station.

Parker, 1995).

Given an m by n matrix, A, and a m-vector, B, BVLS computes a n-vector X
that solves the least-squares problem:

Am,n ×Xn,1 = Bm,1 (5.2)

with the inequality constraints,

BND(1, j) ≤X(j) ≤ BND(2, j), with 1 ≤ j ≤ n
For this study, a FORTRAN90 implementation of the BVLS algorithm is used.

The original source code is available publicly2.

The BVLS algorithm allows us to set constraints on parameters well-determined
through other observational methods while allowing adjustments at the level of the
reported uncertainties during the estimation process. The BVLS algorithm was
previously used within planetary ephemeris parameter estimation (Fienga et al.,
2011). It is now extended to the lunar parameter estimation (Viswanathan et al.,
2017) to benefit from spacecraft-derived gravity field constraints for the Moon and
the Earth (see Section 5.2.1).

2http://www.netlib.org/lawson-hanson/index.html

http://www.netlib.org/lawson-hanson/index.html
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5.1.4 Uncertainty

Two sets of uncertainties are computed for each of the estimated parameters. The
following section describes how the two methods (the least squares method and
the re-sampling method) can be used to estimate the uncertainty of the estimated
parameters. The main source of error for numerical ephemerides arise from the
accuracy and biases of the observational dataset. In the case of LLR, one can
notice a gradual shift of the observational accuracy from few meters since its
inception to millimeter capabilities. The least-squares method provides the L2-
norm as the uncertainty, while the re-sampling method highlights the differences
in the goodness of fit (χ2) to the variances and biases of the observational data set.
For the LLR, the L2 norm tends to convey a more optimistic estimate due to the
stability of the solution, while the re-sampling method provides realistic estimates
for those parameters which have a strong dependency on the data distribution
(Busing et al., 1999). These two situations are considered and hence the estimates
of the uncertainties provided throughout this manuscript takes the maximum of
the two methods as a more realistic uncertainty.

Least-squares method

The term (A⊺ijWiiAij)−1 in Eqn. (5.1) corresponds to the covariance matrix. For
reasons of numerical stability (to avoid problems due to multicollinearity) the
matrix inversion is solved by using SVD (singular value decomposition) (Press
et al., 2007). In parallel, the QR decomposition (Press et al., 2007) was also tested,
giving the same results as the SVD. The square root of the diagonal elements of
the covariance matrix gives the standard deviation (1-σ) of each parameter during
the least-squares fit.

Re-sampling method

This method of re-sampling the data set, is employed here for determining the
dependency of the χ2 of the fit to the observational accuracies and biases. By
removing randomly a part of the observational sample used for the fit (Busing et al.,
1999), one can estimate the robustness of the estimated parameters and a more
realistic estimation of the post-fit residuals along with its χ2 (Cook and Weisberg,
1982; Fay, 1985). The number of iterations required for the random re-sampling
along with its percentage of removal was tuned manually. The percentage of data
set to be re-sampled is then set at 5% (refer Fig. 5.4). A selection is performed
from a uniform random distribution and removed from the original data set.

The WLS iterations are then performed on the re-sampled data set. The av-
erage deviation of the resulting estimate, away from that obtained with the full
data set gives the re-sampling uncertainty.
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Earth in the ICRF2 frame of reference, at the start of the integration time
(JD 2451544.5 in TDB).

• Initial conditions of the angular velocities for the lunar fluid core;
This velocity vector (ωc,x, ωc,y, ωc,z) correspond to the angular velocity of the
lunar fluid core with respect to the mantle frame.

• Polar moment of inertia of the Moon;
C/MR2 is the largest component of the inertia tensor of the Moon along the
polar axis, defined in Section (4.3).

• Oblateness of the lunar fluid core;
fc is the oblateness of the lunar fluid core which characterizes the difference
between the equatorial and polar diameters, defined in Section (4.4a).

• Coefficient of viscous friction at the core-mantle boundary;
kv is the coefficient of viscous friction that scales the dissipative effect within
the Moon, due to the relative motion of the lunar mantle and the lunar
fluid core at the lunar core-mantle boundary. This gives rise to a dissipative
torque described in Section (4.8).

• Lunar tidal time delay;
τM allows for the dissipative effect of tides by considering a delayed response
acting on the Moon from both Earth and the Sun (described in Section 4.2).

• Rotational tidal time delays for the Earth;
Similar to the lunar tidal time delay, τR1,E and τR2,E are the diurnal and
semi-diurnal time delays that represent the tidal phase lag induced on the
daily Earth rotation (described in Section 4.2).

• Gravity field coefficients of the Moon;
Cn,m and Sn,m are the Stokes’ coefficients representing the integral functions
of the mass distribution inside the Moon. Their mean values are obtained
from GRAIL-derived GL660b model (Konopliv et al., 2013) and are included
as a constrained fit (Section 5.2.1), with the upper and lower bounds (Sec-
tion 5.1.3) set to the scaled 3 uncertainties from Konopliv et al. (2013).

• Gravity field coefficients of the Earth;
Similar to the Moon, the Earth’s gravity field coefficients are taken from
GGM05C Ries et al. (2016) and are included as a constrained fit (Sec-
tion 5.1.3), with the provided uncertainties. A scaling factor of 20 was applied
for the constrained fit (Section 5.2.1).

3Konopliv et al. (2013) recommends a scaling factor of 40 to the formal uncertainties.
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• Potential Love number for the Moon;
k2,m is the degree-2 lunar potential Love number which is included as a
constrained fit (Section 5.2.1), using the mean value and scaled uncertainty
from Konopliv et al. (2013).

• Equivalence principle parameter;
The parameter ∆(mG/mI)EM introduces an additional acceleration of the
Moon with respect to the Earth, in a direction towards the Sun, due to a
violation of the equivalence principle (EP). This is included as a fit parameter
only for obtaining the sensitivity tests of LLR to EP (Section 6.2). In all
other solutions, it is fixed to its general relativity (GR) value of 0.

Reduction parameters

These parameters are relevant to the reduction of the LLR observations. They are
as follows:

• Lunar reflector coordinates;
The coordinates of the five lunar retro-reflectors (A11, A14, A15, L1 and
L2) provide their position in the seleno-centric frame of reference. The re-
flector coordinates are compared with that obtained from a previous release
of INPOP (version 13c) in Table (A.2).

• Earth station coordinates and velocities;
These correspond to the geocentric coordinates and velocities of the LLR
stations. For some stations (Haleakala, MLRS1) only the positions are fitted,
while their velocities are fixed to ITRF2005 (Altamimi et al., 2007). For
Matera station, both positions and velocities are taken from the ITRF2005
values due to sparse data points. One can notice the strong correlation
(correlation matrix provided in Appendix B.1) between the coordinates and
their velocities for the above mentioned stations due to the lack of data span
(further discussed in Section 5.2.2). MLRS2 and Grasse stations with the
least correlations, provides the maximum data span, followed by APOLLO
station. This enables the coordinates and velocities for these stations to be
determined also from LLR analysis. The estimated coordinates and velocities
for stations are compared with their ITRF2005 value in Table (A.1).

• Vertical displacement lunar Love number;
h2,M is the degree-2 vertical displacement Love number for the Moon. LLR
observations are sensitive to this vertical displacement, however the uncer-
tainty is large due to only 5 retro-reflector points. Its LLR estimated value is
compared with the LRO-LOLA determined value from Mazarico et al. (2014)
in Table (5.5).
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• Bias parameters; These correspond to station specific parameters intended
to absorb the impact of local equipment changes. A list of the station biases
estimated is provided with the corresponding time period in Table (A.3).

5.2.1 Constraints

During the LLR estimation process, while some parameters have strong sensitivity
(5.2) to LLR observations, others maybe better determined through another tech-
nique. The level of sensitivity of a parameter is determined through the impact of
the mean-value of the parameter on the Earth-Moon distance. If the amplitude of
the effect translates to an uncertainty in the Earth-Moon distance below few mm
(at the limit of LLR observational accuracy), the parameter maybe weakly deter-
mined due to the current accuracy of the LLR observations. The plot of the partial
derivatives given in Appendix (B.1) can be helpful to arrive at this decision. In
cases where the parameters fall below this threshold, a constraint is attributed to
each weakly determined parameter (for instance, C(4,0),E) during the estimation
process, from externally derived estimates.

Some other parameters may show high sensitivity (for instance the gravity
field of the Earth and Moon). However this is not the only requirement to be well-
determined by LLR analysis. This is because they have strong correlation between
the different degree/order of the spherical harmonics which is hard to resolve con-
sidering only the distance measurement towards the mean-Earth direction used
in LLR analyses. Hence, estimates from spacecraft-derived gravity field measure-
ments provides synergy to the LLR analysis in terms of spherical harmonics both
for the Earth and the Moon.

For the lunar gravity field model, the study relies on estimates derived from
observations by the GRAIL mission, from Konopliv et al. (2013). A variability at
the level of the uncertainty of the determined parameters is set with the help of
the BVLS algorithm (Section 5.1.3) in the LLR analysis. Due to some unmodeled
effects present in the lunar dynamical model, the constraints on few of the degree-3
spherical harmonic coefficients of the lunar gravity field (C32,S32 and C33) are kept
unbounded for improving the LLR post-fit residual (Williams et al., 2014b; Pavlov
et al., 2016). Recent JPL LLR model attempts to fit 7 third-degree gravity field
coefficients (Williams and Boggs, 2015a). On the other hand, a discussion on the
attempts to identify the source of this effect is provided in Section (6.1.1).

5.2.2 Correlation

Signatures from some parameters in the model maybe absorbed by others dur-
ing the least-squares fit. For instance, the Earth-Moon mass ratio EMRAT and
GMEMB have similar signatures on the Earth-Moon distance (see plot of partials
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in Appendix B.2). Moreover, these two parameters are difficult to be separated
during the fit, using LLR observations alone. This is partly also due to the lesser
sensitivity of LLR observations to EMRAT . Hence, the estimate of EMRAT is
performed routinely during the joint fits of the planetary ephemeris (Fienga, 1999)
which rely on a multitude of observations such as, astrometry, space-craft range
and doppler, VLBI, etc.

Another example is the fit of extended parameters of the lunar fluid core. C20

of the fluid core is expressed in terms of the core flattening (fc) so as to improve
the inversion of the moment of inertia matrix (Ic) in Eqn. (4.7) while solving the
differential equation for the angular velocity of fluid core. Moreover, the value of
fc is sensitive to the choice of the ratio of the polar moment of inertia of the fluid
core to that of the Moon (αc) (Section 5.3). Hence, αc is fixed to a model value
(Williams et al., 2014b). And through Eqn. (4.1), fc ⋅α value is determined better
than fc itself.

Strong correlations between the spherical harmonic coefficients of the lunar
gravity field are noticed. This is overcome by either fixing them to known values
or by applying constraints (Section 5.2.1) during the least-squares fit. A similar
approach is also followed for the zonal harmonic coefficients and ocean tidal time
lags for the Earth.

Station coordinates and velocities are well determined with the help of an exten-
sive geodetic technique. Since, LLR falls short of a worldwide network of stations
due to the complexity of ranging to the Moon, ITRF solutions do not include LLR
observations while resolving station positions (Z. Altamimi, personal communica-
tion, 2016). Hence, in cases where a longer time span of LLR data is available,
the station positions and velocities are fit to LLR data. Table (A.1) provides the
estimated station position and velocities. Resolving the station coordinates using
LLR observations requires ranging at very low elevation angles. This is difficult
due to the increased dispersion of photons while the laser pulse travels through a
greater length of the atmosphere.

The reflector coordinates are fitted to the LLR observations. The estimates for
which have been provided in Table (A.2). Strong correlations between the reflector
coordinates exist, making the reflector coordinate resolution uncertain to the level
of few cm at 1-σ. Observationally, this can be overcome by successive ranging
attempts to multiple reflectors, while minimizing the time interval between them.

Fixed-values corresponding to the Earth (Table 5.1) are taken from the recom-
mendations of Petit and Luzum (2010), when available. Potential love numbers
(k2m,E) are obtained from Petit and Luzum (2010, Table 6.3) followed by cor-
rections from the ocean model FES2004 (Lyard et al., 2006) accounting for most
influential tides (Williams and Boggs, 2016, Table 6). The orbital phase lag τOm,E

values are taken from Pavlov et al. (2016), which were derived by J. Williams (D.
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Pavlov, personal communication, 2017). αC and l2 are fixed to model recommenda-
tions from Williams et al. (2014b). This is due to the strong correlation of αC with
the polar moment of inertia of the Moon, and the inability of LLR to simultane-
ously resolve l2 the horizontal displacement love number and the reflector position
coordinates in the same plane. The parameter EMRAT is determined through a
joint analysis between the lunar and planetary part of the INPOP ephemeris. A
list of fixed parameters for the Earth-Moon system is given in Table (5.1).
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Table 5.1: Fixed parameters for the Earth-Moon system.

Parameter Units INPOP13c INPOP17a DE430 EPM�

Fienga et al. (2014) Viswanathan et al. (2017) Williams et al. (2013) Pavlov et al. (2016)

(EMRAT † − 81.300570) × 106 -0.54 1.87 -0.92 -0.92 (fixed)(RE − 6378.1366) × 104 km 0.0 0.0 -3 -3 (assumed)

(J̇2E − 2.6 × 10−11) year−1 0.4 0.0 0.0 0.0(k20,E − 0.335) -0.0331 0.0 0.0 0.0(k21,E − 0.32) -0.0217 0.0 0.0 0.0(k22,E − 0.30102) 0.0 -0.01902 0.01898 -0.01902(τO0,E − 7.8 × 10−2) × 102 day * 0.0 -1.4 0.0(τO1,E + 4.4 × 10−2) day * 0.0 0.0‡ 0.0(τO2,E + 1.13 × 10−1) × 101 day * 0.0 0.13 0.0(RM − 1738.0) km 0.0 0.0 0.0 0.0(αC − 7.0 × 10−4) - 0.0 0.0 0.0(k2,M − 0.024059) × 103 2.2 0.0 0.0 0.0(l2 − 0.0107) 0.0 0.0 0.0 0.0
†: EMRAT is fit during the joint analysis between the lunar and planetary part.
‡: τO1,E in Folkner et al. (2014) given as -0.0044 is a typographical error (J.G. Williams, personal communication, 2017).
* : INPOP13c uses only two time delays (d−1) for the Earth (τ21,E = 1.239 × 10−2 and τ22,E = 6.9768 × 10−3)
� : refer to the Solution I in Pavlov et al. (2016)
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5.3 Results

In this section we discuss the results obtained with the new lunar dynamical
model of the planetary and lunar ephemeris INPOP17a (Viswanathan et al., 2017).
The parameter estimates and the post-fit residuals are compared with the results
obtained with the previous release - INPOP13c (Fienga et al., 2014), the JPL
ephemeris - DE430 (Williams et al., 2013) and the IAA RAS ephemeris - EPM2016
(Pavlov et al., 2016). We also study the impact of not including the IR LLR data
taken into account for INPOP17a as a way to monitor the improvement brought
by IR wavelength compared to Green data.

5.3.1 INPOP13c vs INPOP17a

This section compares the estimates and the post-fit residuals between the solu-
tions INPOP13c (Fienga et al., 2014) and INPOP17a (Viswanathan et al., 2017).
The changes between these two solutions in terms of the dynamical modeling is
discussed in Section (4.1). In addition, INPOP17a includes 3 years of LLR data
(2014-2016) from APOLLO, Grasse (including Green and IR data sets), Matera
and MLRS2 stations. The gravity field of the Moon used within the dynamical
model of INPOP17a was updated from the model coefficients of LP150Q (Konopliv
et al. (2001)) to that of GL0660b (Konopliv et al. (2013)). The DE430 time delay
model for the tides was updated with 5 time delays (Section 4.2) for INPOP17a.

Comparison of estimates: INPOP13c vs INPOP17a

A description of the procedure used to fit the INPOP13c ephemeris can be found
in Manche (2011, p. 121). A major difference in the fit procedure between the two
independent analyses is that, INPOP17a uses a bounded-value approach (further
described in Section 5.1.3) to constrain correlated parameters (Section 5.2.2) with-
out removing parameters from the fit during successive iterations. On the other
hand, INPOP13c solution followed several selection criteria to include parameters
into the fit during iterations, where the decision is based on the adjustment of
the parameter relative to its uncertainty, degradation of residuals and correlated
parameters (Manche, 2011, p. 126).

Table (5.2) provides the major differences in estimated parameters from the
two solutions (INPOP13c and INPOP17a). With the new solution, a reduction of
the parameter GMEMB is noticed. The geocentric distance of the Moon obtained
with the two solutions and DE430 (Folkner et al. (2014)) is compared in Fig.5.5,
indicating a reduction in the radial difference from ∼2.5 m in INPOP13c to ∼0.19 m
in INPOP17a. The reduction in the bias is a direct consequence of the reduction
in the estimate of GMEMB. A radial difference of ∼0.25 m is also noticed between
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Table 5.2: Comparison of extended body parameters of solution: INPOP13c vs
INPOP17a. Fitted parameters are indicated with their corresponding formal un-
certainties (1-σ)

Parameter Units INPOP13c INPOP17a

(GMEMB − 8.997011400 × 10−10) × 1019 AU3/day2 173 ± 9 4 ± 2(CT /(mMR2) − 0.393140) × 106 −122.2 ± 26 8.2 ± 0.2(C32 − 4.8404981 × 10−6) × 109 4.7 3.9 ± 0.3(S32 − 1.6661414 × 10−6) × 108 2 ± 0.049 1.666 ± 0.006(C33 − 1.7116596 × 10−6) × 108 0.8 ± 0.59 -2.40 ± 0.04(τM − 9 × 10−2) × 104 day 1012 ± 12 -35 ± 3( kv
CT
− 1.6 × 10−8) × 1010 day−1 - 15.3 ± 0.5

(fc − 2.1 × 10−4) × 106 - 42 ± 3(h2 − 3.71 × 10−2) × 103 15.5 ± 2.4 6.8± 0.2

solutions DE430 and DE421 (Williams et al., 2013, Fig. 1). This indicates the
consistency of the lunar orbit obtained with INPOP17a and other teams (see
Section 5.3.3).

With the introduction of the lunar fluid core, the estimate of the total polar
moment of inertia of Moon (CT /mMR2) has increased. Dissipation at the core-
mantle boundary is introduced through the coefficient of viscous friction ( kv

CT
)

which is now a solution parameter. The estimate of the polar flattening fc is
sensitive to the choice of the term αc (the ratio of the fluid core polar moment of
inertia Cc to the undistorted polar moment of inertia of the Moon CT ) fixed as
7 × 10−4. The new estimate of the lunar vertical displacement Love number h2 is
closer to estimates from Mazarico et al. (2014). An overall improvement in the
estimated uncertainty is also noticed.

With the improved lunar interior modeling, the comparison of the Euler angle
rates in Fig. (5.6), becomes closer to the corresponding values from DE430. Small
differences of few milliseconds of arc remain due to the absence of empirical periodic
correction terms in the longitude libration model of INPOP17a, which is present
in DE430 (Williams et al., 2013, p. 9).

Comparison of post-fit residuals: INPOP13c vs INPOP17a

The statistics of the post-fit residuals (in cm of wrms) between the two solutions
are provided in Table (5.3). An overall improvement in the post-fit residuals is
noticed after the introduction of the lunar fluid core in INPOP17a. The major
improvement comes from the correction of a programming error within the imple-
mentation of the lunar fluid core angular momentum equation within INPOP13c
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(see Section 4.1). A small annual variation is visible across post-fit residuals from
all stations in INPOP17a due to the improved residuals (see Fig. 5.7). This signa-
ture corresponds to inaccuracies in the longitude libration modeling of the Moon.
Williams et al. (2013); Pavlov et al. (2016) empirically correct this signature using
supplementary periodic correction terms to the longitude libration of the Moon.
None of the INPOP solutions rely on empirical corrections.

For the common dataset used between the two models, the improvements in the
post-fit residuals have an average of: a factor 4 for observations from APOLLO , a
factor 3 for observations from Matera and a factor 2 for observations from Grasse.
The improvement reaches up to a factor 5 and a factor 4 on the post-fit residuals
obtained for the recent observations of high accuracy from APOLLO and Grasse
stations respectively. Post-fit residuals obtained on older periods prior to 1984
are improved from using the JPL KEOF (Ratcliff and Gross, 2015) EOPs in the
reduction model as recommended by Pavlov et al. (2016). Beyond the common
fit data span, the post-fit residuals continue to exhibit small residuals at the level
of 1.15 cm and 1.47 cm for high quality observations from APOLLO and Grasse
stations, respectively.
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Table 5.3: Comparison of post-fit residuals of LLR observations from ground stations with corresponding time span,
number of normal points available, number of normal points used in each solution after a 3-σ rejection filter. The
WRMS (in cm) is obtained with solutions INPOP13c (1969-2013) and INPOP17a (1969-2017). ‡: Statistics drawn
from Fienga et al. (2014)

Code Station Time span INPOP13c‡ INPOP17a
Available Used WRMS Used WRMS

[cm] [cm]

70610 APOLLO, NM, USA (group A) 2006 - 2010 941 940 4.92 929 1.27
70610 APOLLO, NM, USA (group B) 2010 - 2012 506 414 6.61 486 1.95
70610 APOLLO, NM, USA (re-group C) 2012 - 2013 361 359 7.62 345 1.52
70610 APOLLO, NM, USA (group D) 2013 - 2016 832 - - 800 1.15

01910 Grasse, FR 1984 - 1986 1187 1161 16.02 1161 14.01
01910 Grasse, FR 1987 - 1995 3443 3411 6.58 3407 4.11
01910 Grasse, FR 1995 - 2006 4881 4845 3.97 4754 2.86
01910 Grasse, FR 2009 - 2013 999 990 6.08 982 1.41
01910 Grasse, FR 2013 - 2017 2553 - - 2542 1.47

56610 Haleakala, HI, USA 1984 - 1990 770 739 8.63 728 4.80

07941 Matera, IT 2003 - 2013 83 70 7.62 37 2.37
07941 Matera, IT 2013 - 2015 30 - - 28 2.93

71110 McDonald, TX, USA 1969 - 1983 3410 3302 31.86 3246 18.87
71110 McDonald, TX, USA 1983 - 1986 194 182 20.60 148 16.77

71111 MLRS1, TX, USA 1983 - 1984 44 44 29.43 44 32.73
71111 MLRS1, TX, USA 1984 - 1985 368 358 77.25 356 62.58
71111 MLRS1, TX, USA 1985 - 1988 219 207 7.79 202 11.07

71112 MLRS2, TX, USA 1988 - 1996 1199 1166 5.36 1162 3.81
71112 MLRS2, TX, USA 1996 - 2012 2454 1972 5.81 1939 3.72
71112 MLRS2, TX, USA 2012 - 2015 17 - - 15 2.59

TOTAL 20160 23311
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5.3.2 INPOP17a vs INPOPG

INPOPG refers to an internal solution with the same dynamical model specifi-
cations as of INPOP17a, but without the addition of two years of the new IR
LLR observations (Courde et al., 2017). This allows the separation of the im-
provements brought by the IR LLR data from the overall improvement noticed in
Section (5.3.1).

The IR LLR dataset constitutes 1707 normal points (7% of the total LLR data
till date) from 2 years of operation in IR (1064 nm) wavelength at the LLR station
in Grasse4. A review of the technical developments and accuracy of this new
dataset can be found in Courde et al. (2017). The homogeneity in the distribution
(both spatial and temporal domains) of IR LLR data is described in Section (2.3).
This dataset is weighted at the same level of accuracy as the APOLLO station
normal points during the estimation procedure (see Section 5.1.2).

Comparison of estimates: INPOP17a vs INPOPG

The improvement brought by the addition of IR data on the estimated parame-
ters characterizing the Moon and its inner structure is currently not massive (see
Table 5.5). This is because of the relatively short time span of IR LLR data (2
years) compared to the remaining (47 years) historical LLR data. However, since
the observations have a better temporal distribution in terms of the lunar phase,
an improvement in the uncertainty of the parameter (∆(mG/mI)EM) is expected
with the prolongation of IR data in the near future. This is because tests of equiv-
alence principle (Section 6.2) have maximum sensitivity during the new and the
full Moon, where the past LLR data have been sparse (described in Section 2.3.1).
With the help of the 2 years of IR LLR data, the improvement on the uncertainty
of the EP parameter is about 15%, as provided in Table (6.2). With a larger
time span of IR LLR data, we expect the spatial improvements (Section 2.3.2)
to impact the present imperfections of the dynamical model of the lunar interior
(Section 6.1.1) under the constraints of a high accuracy lunar gravity field.

Comparison of post-fit residuals: INPOP17a vs INPOPG

With the increase of normal points obtained for the L1 reflector (as discussed in
Section 2.3.2), the reflector-wise distribution of LLR data becomes more homoge-
neous, as shown in Fig. (2.8) and Fig. (2.9). This improves the post-fit residuals
obtained for L1 reflector (by 23 % for Grasse) as given in Table (5.4). The effect
of reduction in the spatial distribution bias on the model, brought by the new

4This data is made publicly available on http://www.geoazur.fr/astrogeo/?href=

observations/donnees/luneRG/brutes

http://www.geoazur.fr/astrogeo/?href=observations/donnees/luneRG/brutes
http://www.geoazur.fr/astrogeo/?href=observations/donnees/luneRG/brutes
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IR LLR data from Grasse, can be also seen on the improvement of L1 post-fit
residuals from other stations. Table (5.4) highlights this improvement on the L1
post-fit residuals of APOLLO station (by 15%).
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Table 5.4: Reflector-wise statistics computed using residuals obtained with INPOPG and INPOP17a, within the
fit intervals 01/01/2015 to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by number of
observation from each reflector). Refer to Section (5.3.2) for the description of the solutions.

Grasse APOLLO
LRRR INPOPG INPOP17a % change NPTs INPOPG INPOP17a % change NPTs
A15 0.0183 0.0181 1.1 1018 0.0127 0.0127 0.2 344
A14 0.0203 0.0177 12.8 172 0.0192 0.0177 7.8 176
A11 0.0267 0.0239 10.5 215 0.0185 0.0169 8.7 164
L1 0.0215 0.0166 22.8 265 0.0186 0.0157 15.6 89
L2 0.0246 0.0215 12.6 256 0.0136 0.0137 -0.7 64

WRMS 0.0207 0.0189 TOTAL: 1926 0.0159 0.0149 TOTAL: 837
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5.3.3 INPOP17a vs DE430 and EPM2016

This section compares the estimates of INPOP17a (Viswanathan et al., 2017) with
that from other independent LLR analyses groups (Williams et al., 2013; Pavlov
et al., 2016). The modeling followed by the three groups are similar. However
there exist differences between them, which include: number of fitted parameters
(102 for INPOP17a, 102 for EPM and about 109 for DE430), constraints applied
to the parameters during the fit, independent adjustments to the weighting scheme
used for the fit, empirical corrections to longitude librations to absorb unmodeled
effects, iterative rejection scheme, etc. Some of these differences are kept internal
to the analyses groups and hence requires internal communication for a one to
one comparison. (D. Pavlov, personal communication, 2017) provided some of the
additions and bug-fixes to the work within Pavlov et al. (2016), involving extended
LLR time span, correction of error within ocean loading model, bias additions for
Grasse and adjustment of under-weighted Grasse observations.

Comparison of estimates: INPOP17a vs DE430 and EPM2016

Table (5.1) provides few of the fixed parameters of the above mentioned LLR
analyses groups relevant to the lunar dynamical modeling. For EPM, the solution
used for comparison is Pavlov et al. (2016, Solution I).The parameter EMRAT is a
result of the joint iteration between the lunar and planetary parts of the ephemeris.
This approach of the joint iteration is also followed by DE430 ephemeris (Williams
et al., 2013; Folkner et al., 2014). Pavlov et al. (2016) use the value from DE430
for EMRAT throughout the LLR analysis.

Folkner et al. (2014); Williams et al. (2013) and Pavlov et al. (2016) use
EGM2008 (Pavlis et al., 2008) as the Earth’s gravity field model. INPOP17a
uses a more recent gravity field model GGM05C (Ries et al., 2016) scaled to the
equatorial radius (RE) of the Earth taken from Petit and Luzum (2010, p. 18). RE

from EGM2008/GGM05C is 0.3 m smaller than that given in Petit and Luzum
(2010, p. 18). The values of k22,E and τO2,E were chosen to be closer to a more
recent study (Williams and Boggs, 2016; Pavlov et al., 2016) than Williams et al.
(2013).

Table (5.5) provides the estimates of the extended parameters of the Earth-
Moon system from the LLR analyses groups under comparison. Overall, the esti-
mates from INPOP17a lie within the error bars from DE430. The value of τR1,E

is consistent with DE430, but inconsistent with EPM2016, presumably due to the
communicated ocean tides modeling error in Pavlov et al. (2016). τR2,E is closer
to EPM2016 than DE430 due to: the use of recent values of k22,E and τO2,E from
Williams and Boggs (2016); Pavlov et al. (2016); and, has a smaller impact from
the modeling error in Pavlov et al. (2016) on the semi-diurnal tidal time delay
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τR2,E (from M2 and N2 ocean tides), than on the diurnal tidal time delay τR1,E (
from O1 and Q1 ocean tides) considering the amplitude of the tidal delays within
Williams and Boggs (2016, Table 6).

The uncertainty reported in INPOP17a on the CT /(mmR2) is about 10 times
smaller than from DE430 and EPM2016 due to the use of C22 from GRAIL (Kono-
pliv et al., 2013) as a constraint with the help of Eqn. (4.3), thereby reducing the
degree of freedom from the solution than when using libration β and γ as solu-
tion parameters. The result is that the one could separate the annual dissipation
component from that induced by the additional degree of freedom of the solution
mimicking similar signatures. Although this makes the solution rely strongly on
the spacecraft-derived gravity field at degree-2, it also helps to reveal modeling
inconsistencies at higher degrees as shown in Section (6.1.1).

Three of the degree-3 coefficients (C32, S32 and C33) are included as uncon-
strained fitted parameters (Section 5.2.1) as a method to absorb modeling incon-
sistencies (Section 6.1.1). This approach is also followed by Williams et al. (2013);
Pavlov et al. (2016). We follow the same approach only to facilitate the comparison
of estimates and post-fit residual, while providing a discussion on the attempts to
improve the lunar dynamical model (refer Section 6.1.1). The estimated degree-3
coefficient in Table (5.5) are marginally closer to GRAIL solution (Konopliv et al.,
2013) than DE430 or EPM2016. This could be due to the constraint applied
on degree-2 using Eqn. (4.3). The LLR estimated C32 differences found by the
different LLR analyses teams from the gravity field provided by Konopliv et al.
(2013) have the same magnitude as those between a previous lunar gravity field
model (LP150Q: Konopliv et al. (2001)) and GRAIL (GL0660b: Konopliv et al.
(2013)). However, differences on other degree-3 gravity field coefficients (S32 and
C33) are an order greater. The reasons behind these discrepancies are discussed in
Section 6.1.1.

Other estimates from INPOP17a, linked to the dissipation (τ and kv/CT ) and
core flattening (fc) are also within the uncertainties provided by DE430. How-
ever, these estimates are linked with the choice of the value of core fraction (αc),
currently fixed to 7 × 10−4 (Folkner et al., 2014).

INPOP17a solution does not fit any additional parameters to empirically cor-
rect for unmodeled libration in longitude such as in Williams et al. (2013, Eqn. 1)
and Pavlov et al. (2016). Williams et al. (2008) mention that a rotation in longi-
tude would be very sensitive to the gravity field coefficients. Moreover, the absence
of higher-degree torques as in the dynamical model, can be masked by small ad-
justments to gravity field (Cappallo, 1980, Appendix E.2). Hence, we prefer to
introduce minimum adjustments to the GRAIL-derived gravity field and to iden-
tify the shortcomings of the current lunar model which causes this unmodeled
libration. By doing this we open the grounds for further research using LLR by
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disentangling similar signatures noticed on the lunar libration arising from the lu-
nar interior. Some of the missing higher-degree torques within the DE430 model
(Folkner et al., 2014) were identified and implemented within an internal solu-
tion of INPOP. The results of introducing a more complete torque up to degree-3
components of the gravity field (Section 6.1.2) show small improvements in the
residuals, while the inconsistencies in the estimates remain.
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Table 5.5: Extended body parameters for the Earth and the Moon. Uncertainties for INPOPG and INPOP17a
(1-σ) are obtained from a 5% jackknife (JK). DE430 uncertainties seem to be inflated (unknown scaling) formal
uncertainties and EPM solutions provide the 1-σ formal uncertainties. †: C32, S32 and C33 are reference values from
the GRAIL analysis by Konopliv et al. (2013). ‡: h2 reference value from LRO-LOLA analysis by Mazarico et al.
(2014). ∗ : derived quantity. Refer to Section 5.3.2 for the description of the solution INPOPG

Parameter Units INPOPG INPOP17a DE430 EPM

(GMEMB − 8.997011400 × 10−10) × 1019 AU3/day2 4 ± 2 4 ± 2 -10 10 ± 5(τR1,E − 7.3 × 10−3) × 105 day 0 ± 4 6 ± 3 6 ± 30 57 ± 5(τR2,E − 2.8 × 10−3) × 105 day 9.2 ± 0.4 8.7 ± 0.3 −27 ± 2 5.5 ± 0.4(CT /(mMR2) − 0.393140) × 106 6.9 ± 0.2 8.2 ± 0.2 2∗ 2∗(C32 − 4.8404981 × 10−6†) × 109 4.1 ± 0.3 3.9 ± 0.3 4.4 4.4 ± 0.1(S32 − 1.6661414 × 10−6†) × 108 1.707 ± 0.006 1.666 ± 0.006 1.84 1.84 ± 0.02(C33 − 1.7116596 × 10−6†) × 108 −1.19 ± 0.04 -2.40 ± 0.04 −3.6 −4.2 ± 0.2(τM − 9 × 10−2) × 104 day −14 ± 5 -35 ± 3 58.0 ± 100 60 ± 10( kv
CT
− 1.6 × 10−8) × 1010 day−1 12.7 ± 0.4 15.3 ± 0.5 4.0 ± 10.0 3.0 ± 2.0

(fc − 2.1 × 10−4) × 106 37 ± 3 42 ± 3 36 ± 28 37 ± 4(h2 − 3.71 × 10−2‡) × 103 6.3 ± 0.2 6.8± 0.2 11.0 ± 6 6 ± 1
Q27.212 − 45 (derived) 3.9 ± 0.5 5.0 ± 0.2 0 ± 5 0 ± 1
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Comparison of residuals: INPOP17a vs DE430 and EPM2016

As one can see on Fig. (5.7), the overall post-fit residuals obtained using INPOP17a
indicate that its model accuracy is at par with other lunar ephemeris such as DE430
and EPM2016. After a successful fit of the model to the observations, ideally the
residuals should only carry the observational uncertainties. Deficiencies in the
model, if above the observational uncertainties, would be visible in the post-fit
residuals. An annual signature is present on all reflectors arising from inconsisten-
cies of the lunar longitude libration model. Williams et al. (2013) suggest the poor
performance of the lunar time delay model for this annual term and recommend
the introduction of an empirical term (cos l′). The amplitude of this effect is about
5 mas for longitude libration or about 1.5 cm in range. Another suggested empir-
ical correction term for the lunar rotational dissipation model with a period of 6
years (F −l) would be only at about 1 mas or about 3 mm in range (Williams et al.,
2001), which is insufficient to explain the 5 cm model inconsistency for degree-3
gravity field discrepancy found in Section (6.1.1).
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Figure 5.7: Post-fit residuals in (cm) vs time (year) obtained with INPOP17a for : a) GRASSE station with the 532
nm wavelength, b) GRASSE station with the 1064 nm wavelength, c) McDonald, MLRS1, MLRS2, Haleakala and
Matera stations, d) APOLLO station. Post-fit residuals here are filtered at 5-σ.

a) GRASSE station with the 532 nm wavelength b) GRASSE station with the 1064 nm wavelenth

c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations d) APOLLO station
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Chapter summary

A successful fit of the lunar ephemeris to LLR observations requires attention to
detail from several key points. Few of these points include the identification and
correction to: irregularities in the uncertainty of each LLR observation, biases
in the observation, regression procedure limitations and parameter uncertainty
computation and its interpretation. Constraints to fit parameters are used when
a better accurate estimate is available. The new estimates and post-fit residuals
are compared with that obtained by other independent LLR analyses groups. The
following chapter (Chapter 6) focuses on the extraction of scientific values from
the analysis/estimates provided within this chapter.
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Chapter 6

Applications

The application of lunar laser ranging observations and its analyses covers a wide
range of scientific disciplines like lunar science, gravitation, geophysics and geodesy.
After the first seven years of operation, a collection of scientific articles pertaining
to these disciplines were put together as proceedings (Ewing, 1976; Mulholland
et al., 1977). The Clementine and Lunar Prospector missions returned global data
sets of lunar gravity, topography, remanent magnetism, mineralogy, and chemical
composition of the surface (Nozette et al., 1994; Binder, 1998). Other lunar mis-
sions include SELENE (Kato et al., 2008), Chandrayaan (Goswami and Annadurai,
2009) and Chang’E (Ouyang et al., 2010). Recent developments were brought by
the GRAIL mission (Zuber et al., 2013) following which a better understanding of
the lunar topography and interior surfaced.

Here we elaborate on the current state-of-the-art in terms of the understanding
of the lunar interior, investigation attempts and a new model (work in progress)
to correct for degree-3 GRAIL-derived gravity field coefficient incompatibility to
the lunar dynamical model, as well as the application of the improved lunar model
to the study of fundamental physics.

6.1 Lunar interior

A better understanding of the structure of the interior of the Moon aids to recover
information on its past history. Planetary geodesy measurements of global param-
eters such as the gravity field and variations in rotation gives key information on its
interiors. The Gravity Recovery and Interior Laboratory (GRAIL) mission (Zuber
et al., 2013), analogous to the GRACE mission in the Earth’s orbit, was able to
map the global gravity field of the Moon (Konopliv et al., 2013; Lemoine et al.,
2014) using differential gravity measurements obtained with a pair of spacecraft
with accurately known relative positions.

101
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The use of GRAIL-derived gravity field data provides significant constraints
during the analysis of LLR observations, and complements the recovery of infor-
mation. This is because while the GRAIL-derived gravity field provides a global
lunar model with a 6-month observation time span, LLR modeling involves differ-
ential equations describing the relative motion of a layered Moon with a larger ob-
servational time span (1969-present). Moreover, the synergistic use of the GRAIL-
derived gravity field with LLR observations allows the user to study the orbital
evolution of the Moon with the help of ephemerides.

6.1.1 Discussion about INPOP17a model

During the iterative fit of the INPOP17A model to the LLR observations, it was
noticed that, in order to maintain the post-fit residuals at the level of 2 cm it was
necessary for a few degree-3 spherical harmonic coefficients (C32, S32 and C33) to
deviate by about 1% from the GRAIL-derived gravity field values (Konopliv et al.,
2013). This was associated by other LLR analysis groups (Williams et al., 2014b;
Pavlov et al., 2016) as unmodeled effects in the physical libration model and an
adjustment to these degree-3 coefficients was suggested to obtain a better LLR fit.

The difference between the value of the spherical harmonic coefficient C32 de-
rived from the Lunar Prospector Mission LP150Q Konopliv et al. (2001) and that
from GRAIL GL0660b Konopliv et al. (2013) is about 4.7 × 10−9, consistent with
the LLR estimates from DE430 (Folkner et al., 2014), EPM2016 (Pavlov et al.,
2016) and INPOP17a (Viswanathan et al., 2017). However, differences (LP150Q-
GL0660b) on the coefficients S32 and C33 are one order of magnitude smaller than
from LLR estimates. Overall, this indicates that the discrepancies on the degree-3
gravity field of the Moon with the current lunar dynamical models are not mission
specific. For GRAIL, the two independent gravity field model from JPL (Kono-
pliv et al., 2013) and GSFC (Lemoine et al., 2013) have 3 orders of magnitude
smaller differences, ruling out analysis specific discrepancies in the 1% deviation
noticed from LLR estimates. Cappallo (1980, Appendix E.2) comments about
the impact of neglecting degree-4 torques, which can be masked by small changes
in the degree-3 coefficients. To study the impact of the neglected components
of torques within the dynamical model, we constrain the INPOP17a model to a
strictly GRAIL-derived lunar gravity field. This is followed by an iterative fit. A
strong 6-year longitude libration signature on all reflectors (expect weakly on A15
reflector due to its central position when viewed from the mean-Earth direction)
with an amplitude of ±5 cm, is then noticed within the post-fit residuals (see Fig.
6.4). A longitude libration signature can be identified in LLR using the phase of
the range signature with respect to the position of the retro-reflector on the surface
of the Moon i.e A11 and L2 located along similar longitudes have the same phase
in the range compared to A14 and L1.
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The following discussion (Section 6.1.2) as well as a new modeling (Section 6.1.3)
was proposed for publication to the Astronomy & Astrophysics journal (see sub-
mitted manuscript in Appendix C).

6.1.2 Investigation attempts

Here we list some of the additions made to the dynamical model of INPOP (internal
version), in order to consider the unmodeled higher-degree components (torque,
Love number and CMB topography) that is expected to compensate the longitude
libration signature noticed.

Fourth degree torque

Within the torques due to interaction of the figure of the Moon with the figure
of the Earth provided by Folkner et al. (2014, p. 18), only the three most signifi-
cant terms are considered. This is an approximation from the complete expansion
of the N⃗22 torque provided in Bois et al. (1992, p. 197). On introducing this
torque component into Eqn. (4.5a) as a higher degree component of N⃗M,figM−figE,
a longitude libration signature with a period of about 3 years with a maximum
amplitude of ±1 mm over 48 years on the 1-way light time range (0.33 mas on lon-
gitude libration) is noticed (see Fig. 6.1). Since the effect is below the uncertainty
of the observations till date, the improvement of the model with the inclusion of
this effect is not noticable within the iterative post-fit residuals and the signature
(indicated within Fig. 6.1) is absorbed.

Fifth degree torque

The fifth degree torque consists of figure-figure interaction exerted by the Earth
(second degree in harmonics) on the Moon (third degree in harmonics). This is
expanded as N⃗23 in Bois et al. (1992, p. 198)1. On introducing this torque compo-
nent into Eqn. (4.5a) as an inter-degree component of N⃗M,figM−figE, a longitude
libration signature with a period of about 3 years with a maximum amplitude of±3 mm over 48 years on the 1-way light time range (1 mas on longitude libration)
is noticed (see Fig. 6.2). Similar to the fourth-degree torque, the signature brought
by the inclusion of the fifth-degree torque is also absorbed during an iterative fit,
without any noticable improvement on the post-fit residuals.

An internal solution was refitted with the introduction of these two torque
components (fourth and fifth degree) with a strictly GRAIL-derived gravity field
model. With the GRAIL constraints on the degree-3 components, the solution

1The first S̃52 on Bois et al. (1992, p. 198) is assumed to be a typographical error, which
should be read as S̃51.
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Figure 6.1: Longitude libration signature of ±1 mm over 48 years on the 1-way light
time range (0.33 mas on longitude libration) with a period of about 3 years (weak)
arising from the introduction of higher order figure-figure interaction (fourth degree
torque) between the Moon and the Earth, as provided by N⃗22 torque in Bois et al.
(1992, p. 197).

produces the same 6 year signature as described in Section 6.1.1. And, on relaxing
the constraints on the degree-3 components (as described in Section 5.2.1), the
resulting solution produced similar post-fit residuals (with differences below 1 mm
on 1-way light time range) with the new estimates being within the uncertainty of
INPOP17a solution.

This implies that the modeled higher degree components (fourth and fifth de-
gree) of the figure-figure torques are not responsible for the noticed discrepancy.

Degree-3 love number for the Moon

Konopliv et al. (2013) provide the value of degree-3 Love number k3 as 0.0089± 0.0021, from the analysis of the GRAIL Primary Mission. The degree-3 love
number estimated by Konopliv et al. (2013) for the Moon, is introduced into the
dynamical model using Manche (2011, Eqn. 4.10), inducing time variations on the
degree-3 gravity field of the Moon.

It was noticed that the maximum amplitude of this effect is about 0.2 mm
over 48 years on the 1-way light time range with a period of 18.6 years. This
implies that the introduction of the degree-3 love number is undetectable with the
current LLR accuracy, and is easily absorbed during an iterative fit of the solution
including this effect.
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Figure 6.2: Longitude libration signature of ±3 mm over 48 years on the 1-way
light time range (1 mas on longitude libration) with a period of about 3 years
arising from the introduction of higher order inter figure-figure interaction (fifth
degree torque) between the Moon and the Earth, as provided by N⃗23 torque in
Bois et al. (1992, p. 198).

Topographic coupling at the core-mantle boundary

An expression for the topographic coupling up to degree-3 (see Appendix B.2) was
derived by (N.Rambaux, personal communication, 2017), developed under the ap-
proximation that the flow of the liquid at the core-mantle boundary is mainly
controlled by the ellipsoidal shape (i.e without correction on higher harmonics)
and conforming with Sasao and Wahr (1981). This extends the lunar core gravity
field coefficients up to degree and order 3, thereby introducing 7 additional param-
eters (without known values) for the lunar core. These parameters are strongly
correlated (0.8 to 0.9) and the plot of the partial derivatives of the core degree-3
spherical harmonics are not sensitive at the current level of the LLR accuracy for
a given core fraction (αc = 7 × 10−4). One could expect a higher sensitivity for
larger values of αc, however, the signature of interest (6 year period on longitude
libration) was not visible on the plot of the partial derivatives of the core gravity
field coefficients.

At the time of writing, the overall impact of this effect (from the degree-3
components) on the 1-way light time remains unknown due to the inability to
perform the fit due to the strong correlation among the lunar core gravity field
coefficients.
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Figure 6.3: Contribution of degree-3 love number on the 1-way light time range.

6.1.3 Degree-3 shape of the lunar fluid core

Folkner et al. (2014); Pavlov et al. (2016) assume that the lunar fluid core rotates
like a rigid body and is constrained by the shape of the CMB at the interior of the
mantle, with a constant core moment of inertia in the frame of the lunar mantle.
Under these assumptions, several constraints to the present lunar ephemerides are
introduced.

Fluid core rotation like an rigid body implies, a simplified flow with a homoge-
neous density distribution. Although the flow is well represented by the model of
Poincaré (1910) through the inertial coupling torque (considering a triaxial fluid
core following Rambaux et al. (2007)), the homogeneous density distribution re-
stricts the introduction of density variations on the fluid core. Gravitational forcing
from external mass anomalies (within the mantle/inner core or CMB-topography)
can cause lateral structure inside the fluid core (Wahr and de Vries, 1989; Dai and
Song, 2008). Mass anomalies on the Moon were detected by the analysis of Lunar
Orbiter data (Muller and Sjogren, 1968) and further studied by GRAIL-derived
gravity field (Melosh et al., 2013; Neumann et al., 2015). Hence, the presence of
such lateral variations in the fluid core would change the potential when reoriented
with respect to the mantle frame and therefore the gravitational torques on the
fluid core can no longer be neglected (Williams et al., 2014b). Furthermore, in the
presence of a laterally varying structure, degree-2 tidal forces excite gravitational
response at non-degree-2 harmonics due to mode coupling effects (Zhong et al.,
2012).

To study the impact of the above mentioned assumptions, in addition to
the inertial and viscous coupling torques, we introduce an external gravitational
torque from the point mass Earth on the lunar fluid core figure (similar to Van
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Hoolst (2007, Eqn. 35)), considering the presence of core lateral variations in-
duced by mass anomalies within the lunar mantle. This refers to the introduction
of Eqn. (4.10) into the lunar core angular momentum equation provided in Sec-
tion (4.3.6).

An internal version of INPOP (S2), introduces this model in order to study
the effect of this torque on the estimates. This solution additionally solves for
lunar core degree-3 components with constraints placed on the lunar gravity field
derived from GRAIL (Konopliv et al., 2013). The post-fit residuals obtained with
solution S2 show small improvements over the INPOP17a model (see Fig. 6.4) with
consistent estimates (see Table 6.1). More importantly, the results indicate strong
consistency with the GRAIL-derived gravity field coefficients without requring any
adjustments. The estimated value of h2 is then compatible with the LRO LOLA-
derived estimate by Mazarico et al. (2014). Additional test solutions linked to this
study can be found in Appendix (C).

It must be noted that the solution S2 does not consider a complete torque
balance within the lunar interior and the results shown are only preliminary. The
submitted paper is under revision which requires further analysis. The new ob-
jective is to consider a three layer (solid mantle, fluid outer core and a solid inner
core) lunar model, with a complete gravitational and pressure torque balance be-
tween the internal layers. This revision (a work in progress) would allow us to
verify if the lunar libration signature absorbed by the torque imbalance (arising
from the introduction of the external gravitational torque alone on the fluid core)
is similar to that introduced from an additional layer such as the solid inner core.

A constant core moment of inertia does not allow tidal deformations of the
lunar fluid core or the core-mantle boundary. Tidal deformations partly affect the
lunar orientation through the responding moment of inertia and its time derivative
(Williams, 2009; Williams et al., 2012a). Le Bars et al. (2011) show the importance
of the tidal distortion of the lunar core-mantle boundary to explain the lunar mag-
netic anomalies with links to the lunar dynamo for the early Moon. Introducing
time variations to the lunar fluid core moment of inertia requires Love numbers
for the fluid core, which are obtained through lunar seismic studies (Weber et al.,
2011; Garcia et al., 2011) and also provided in Williams et al. (2014b, Table 6). At
the time of writing, the impact of the deformations on the fluid core was neglected
within the lunar dynamical model, however a work is in progress to address this
contribution.
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Table 6.1: Comparison between solutions: Extended body parameters for the
Moon. Uncertainties are obtained from a 5% jackknife (JK) test, the least squares
1-σ uncertainties being either consistent or smaller than the JK estimations. ⋆

stands for values fixed to model (GL0660b) values from GRAIL. 17a refers to
the INPOP17a solution and S2 refers to an internal version of INPOP with the
dynamical model described in Section (6.1.3). ‡ indicates that the h2 reference
value is extracted from Mazarico et al. (2014).

Parameter 17a S2

(CT /(mMR2) − 0.393140) × 106 7.3 ± 0.2 5.0 ± 0.2(C32 − 4.8404981 × 10−6) × 109 4.1 ± 0.3 0.0⋆(S32 − 1.6661414 × 10−6) × 108 1.704 ± 0.006 0.0⋆(C33 − 1.7116596 × 10−6) × 108 -1.19 ± 0.04 0.0⋆(τM − 9 × 10−2) × 104 [d] -2 ± 5 -56 ± 5( kv
CT
− 1.6 × 10−8) × 1010 [d−1] 10.2 ± 0.4 17.9 ± 0.4

(fc − 2.1 × 10−4) × 106 41 ± 3 47 ± 3(C32,core + 5.6 × 10−8) × 1010 - -3.0 ± 2(S32,core − 5.0 × 10−8) × 1010 - 5 ± 10(k2,M − 0.024059) × 103 0.0⋆ 0.0⋆(h2 − 3.71 × 10−2)‡ × 103 6.6 ± 0.2 2.3 ± 0.2
l2,m − 1.07 × 10−2 0.0⋆ 0.0⋆

Q27.212 − 45 (derived) 3.2 ± 0.5 6.6 ± 0.3
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6.2 Test of the principle of equivalence

Towards the end of 16th century, the Italian scientist Galileo Galilei conceived an
experiment in which he dropped two objects of different composition and mass
together from the top of the Tower of Pisa. In his theory, as the two objects hit
the ground at exactly the same time, he deduced that in vacuum, and under the
influence of a gravitational field, all bodies are accelerated equally. This is what we
call the Universality of Free Fall (UFF) or the equality of gravitational and inertial
mass. This was later stated by Albert Einstein, as the Equivalence Principle (EP)
which was the central assumption of the General Relativity Theory (GRT).

In the following section we provide a test of the UFF with the help of INPOP
lunar ephemeris, considering the Moon and the Earth as test subjects falling in
the gravitational field of the Sun. The results of this test are provided in Sec-
tion (6.2.3), followed by a discussion (Section 6.2.4) and an interpretation (Sec-
tion 6.2.3). The results presented here are accepted for publication in the Monthly
Notices of the Royal Astronomical Society (see submitted manuscript in Appendix
D).

6.2.1 Context

Among all possibilities to test GRT, the tests of the motion and light propagation
in the solar system were historically the first ones and still provide the highest
accuracies, since the dynamics of the solar system is well understood and supported
by a long history of observational data. In general, tests of GRT can be split
into two groups: tests of the Equivalence Principle (claiming that gravity can
be understood in a geometrical way) and those of the Einstein field equations
(describing how the space-time geometry is influenced by matter). Violations of
the Equivalence Principle are predicted by a number of modifications of GRT aimed
to suggest a solution for the problem of Dark Energy and/or to merge GRT with
quantum physics: e.g., string theory (Damour and Polyakov, 1994; Damour et al.,
2002) or models where some physical constants are dynamical entities (Damour
and Donoghue, 2010; Damour, 2012). The Universality of Free Fall, an important
part of the Equivalence Principle, is currently tested at a level of about 10−13 with
torsion balances (Adelberger et al., 2003) and the LLR (Williams et al., 2012b).

As the Earth and the Moon both fall in the gravitational field of the Sun —
and because they neither have the same compositions, nor the same gravitational
self-energies — the Earth-Moon system is an ideal probe of both the Weak Equiva-
lence Principle (WEP) and the Strong Equivalence Principle (SEP), while torsion
balance (Adelberger et al., 2003) or the MICROSCOPE satellite (Liorzou et al.,
2014) are only sensitive to violations of the WEP.
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6.2.2 Method

In order to test possible violations of GRT in terms of UFF, a supplementary accel-
eration is introduced in the geocentric equation of motion of the Moon, such that
the UFF violation related difference between the Moon and the Earth accelerations
reads (Nordtvedt, 1968):

∆a
UFF ≡ (aM − aE)UFF = aE∆ESM (6.1)

Corrections

LLR EP estimates are sensitive to a variety of effects, including (but not limited
to), solution parameter correlations, choice of parameters in the fit, reduction
model used, artifacts from non-uniform distribution of the data, biases, etc.

In order to estimate ∆ESM with the appropriate accuracy, one should correct
for known supplementary effects along the radial component, such as the solar
radiation pressure (−3.65 ± 0.08 mm cosD) and the thermal expansion (≈ 0.67
mm cosD) of the retro-reflectors (Vokrouhlický, 1997; Williams et al., 2012b). An
empirical correction on the radial perturbation (∆rESM) induced by the UFF test
has to be applied. The UFF additional acceleration would indeed lead to an
additional radial perturbation (∆rESM) of the Moon’s orbit towards the direction
of the Sun given by:

∆rESM = S∆ESM cosD, (6.2)

where S is a scaling factor of about −2.93 × 1010 m and D is the synodic angle. A
correction ∆r = −3.0 ± 0.5 mm cosD (Vokrouhlický, 1997; Williams et al., 2012b)
is then applied and a new corrected value of ∆ESM is then deduced.

6.2.3 Results

As described firstly by Nordtvedt (1968), we consider first the quantity ∆ESM such
as:

∆ESM =
⎡⎢⎢⎢⎢⎣
(mG

mI
)
E

− (mG

mI
)
M

⎤⎥⎥⎥⎥⎦
. (6.3)

where (mG

mI )
E
and (mG

mI )
M

are the ratios between the gravitational and the inertial

masses of the Earth and the Moon respectively.
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Following Williams et al. (2012b), we obtain

aM − aE = − Gµ
r3EM

rEM +GmG
S [rSEr3SE

− rSM

r3SM
] +

+GmG
S

⎡⎢⎢⎢⎢⎣
rSE

r3SE

⎛
⎝(
mG

mI
)
E

− 1⎞⎠ −
rSM

r3SM

⎛
⎝(
mG

mI
)
M

− 1⎞⎠
⎤⎥⎥⎥⎥⎦
, (6.4)

In recombining the previous equation, one shows that the supplementary ac-
celeration induced by the violation of the universality of free fall ∆a

UFF , can be
written such as:

∆a
UFF ≡ (aM − aE)UFF

≈ GmG
S

⎡⎢⎢⎢⎢⎣
rSE

r3SE

⎛
⎝(
mG

mI
)
E

− 1⎞⎠ −
rSM

r3SM

⎛
⎝(
mG

mI
)
M

− 1⎞⎠
⎤⎥⎥⎥⎥⎦

≡ aE∆ESM (6.5)

The results of the estimation of ∆ESM from LLR is provided in Table (6.2).

Supplementary Interpretation

The LLR test of the UFF captures a combined effect of the SEP, from the dif-
ferences in the gravitational self-energies, and the WEP due to compositional dif-
ferences, of the Earth-Moon system. In order to separate the effects of WEP, we
rely on results from laboratory experiments that simulate the composition of the
core and the mantle materials of the Earth-Moon system. One such estimate is
provided by (Adelberger, 2001), that translates to a relative acceleration:

[(mG

mI
)
Earth

− (mG

mI
)
Moon

]
WEP

= (1.0 ± 1.4) × 10−13 (6.6)

The results of the estimation of SEP from LLR is provided in Table (6.3).
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Table 6.2: Comparison of results for the ratio ∆ESM (Column 4) estimated with the solution INPOP17A with LLR dataset between: 1) 1969-
2011 (for comparison with (Williams et al., 2012b; Müller et al., 2012)); 2) 1969-2017 with data obtain only in Green wavelength, 3) 1969-2017
with data obtained with both Green and IR wavelength. Column 5 contains the converted cosD coefficient expressed in mm (see Eqn. 6.2).
Column 6 empirically corrects the radial perturbation for effects related to solar radiation pressure and thermal expansion. Column 7 contains
the ratio ∆ESM derived from Eqn. 6.2 and values of Column 6.

Reference Data Uncertainty estimated converted corrected converted
time span ∆(mG/mI)ESM cosD cosD ∆(mG/mI)ESM

[Year] [×10−14] [mm] [mm] [×10−14]
Williams et al. (2009) 1969-2004 N/A 3 ± 14 -0.9 ± 4.2 2.1 ± 4.2 -7.24 ± 14.3
Williams et al. (2012b) 1969-2011 N/A 0.3 ± 12.8 -0.08 ± 3.75 2.92 ± 3.78 -9.94 ± 12.9
Müller et al. (2012) 1969-2011 3-σ -14 ± 16 4.1 ± 4.69 7.1 ± 4.7 -24.2 ± 16.1
INPOP17A (limited data) 1969-2011 3-σ -3 ± 18 0.88 ± 5.28 3.88 ± 5.30 -13.23 ± 18.08
Hofmann and Müller (2016) 1969-2017 3-σ - - - -3.0 ± 6.6 †

INPOP17A (Green only) 1969-2017 3-σ 5 ± 8.7 -1.47 ± 2.55 1.54 ± 2.60 -5.24 ± 8.87
INPOP17A (Green and IR) 1969-2017 3-σ 8 ± 7.5 -2.35 ± 2.20 0.66 ± 2.25 -2.24 ± 7.69
† SRP correction applied within the reduction model. Thermal expansion of reflectors is not taken into
account (F.Hofmann, personal communication, 2017)



114 CHAPTER 6. APPLICATIONS

Table 6.3: Results of the SEP estimates obtained from the LLR EP numerical
estimates, after removing the WEP component provided by the laboratory exper-
iments from Adelberger (2001); Williams et al. (2009).

Reference Data derived SEP
time span ∆(mG/mI)ESM

[Year] [×10−13]
Williams et al. (2009) 1969-2004 -2.0 ± 2.0
Williams et al. (2012b) 1969-2011 -1.8 ± 1.9
Müller et al. (2012) 1969-2011 -2.4 ± 2.2
INPOP17A (limited data) 1969-2011 -2.3 ± 2.3
INPOP17A (Green only) 1969-2017 -1.5 ± 1.7
INPOP17A (Green and IR) 1969-2017 -1.2 ± 1.6

6.2.4 Discussion

Fits were performed with the difference in accelerations ∆ESM given in Eqn. (6.1)
along with the other fitted parameters presented in Table (5.5). Two different fits
were considered including the Green and the Infrared data sets: INPOP17A (Green
and IR), or just the Green data sets: INPOP17A (Green only). A supplementary
fitted solution was obtained for comparisons to the previous determinations by
Williams et al. (2012b); Müller et al. (2012) which were limited to LLR data sam-
ples up to 2011: INPOP17A (limited data). The results are given in Table (6.2).

The additional acceleration of the Moon’s orbit in the direction of the Sun
correlates with a coefficient of 0.95 and 0.90 with GMEMB and the Earth-Moon
mass ratio (EMRAT), respectively. In all the solutions w.r.t LLR EP estimation,
GMEMB remains as a fit parameter due to its high correlation with the EP pa-
rameter (∆(mG/mI)ESM). EMRAT was estimated from a joint planetary solution
and kept fixed during LLR EP tests due to its weak determination from LLR. This
is reassured using a test solution that fitted EMRAT, while keeping GMEMB as a
fixed parameter, giving an estimate of ∆(mG/mI)ESM = (8±7.0)×10−14. However,
the value of EMRAT obtained with this test solution has an uncertainty of one
order of magnitude greater than that obtained from the planetary fit, consistent
with a similar result by Williams et al. (2009). As a result, EMRAT was not
included as a fit parameter for the estimates provided in Table (6.2), as it resulted
in a degraded fit of the overall solution.

Williams et al. (2012b) show through solutions labeled EP71 and EP72, that
including annual nutation components of the Earth’s pole direction in space, to
the list of fit parameters during the estimation of LLR EP solution, increases
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the uncertainty of the estimated EP parameter (∆(mG/mI)ESM) by 2.5 times.
Moreover, it is to be noted that within Table (6.2), reference solutions: Williams
et al. (2009, 2012b); Müller et al. (2012) use the IERS2003 (McCarthy and Petit,
2004) recommendations within the reduction model, while all INPOP17 solutions
use IERS2010 (Petit and Luzum, 2010) recommendations. The notable difference
between the two IERS models impacting the LLR EP estimation is expected to
be from the precession-nutation of the celestial intermediate pole (CIP) within the
ITRS-GCRS transformation, while other differences can be found within Petit and
Luzum (2010, p. 8).

Eqn. (6.2) shows the dependence of ∆rESM w.r.t the cosine of the lunar orbit’s
synodic angle (cosD), synonymous with the illumination cycle of the lunar phases.
Due to the difficulties involved with ranging to the Moon during the lunar phases
with the maximum value of cosD (during the New and Full Moon phases) as
described in Section (2.3.1), the LLR observations during these phases remain
scarce. The availability of LLR observations from Grasse (in IR) and APOLLO,
contributes to the improvement of this situation, as shown in Fig. (2.12 and 2.14)
compared to Fig. (2.13). This is reflected in the improvement of the uncertainty of
the estimated value of ∆(mG/mI)ESM by 14% for the solution using the complete
LLR dataset.

6.2.5 Perspectives

An observable bias in the differential radial perturbation of the lunar orbit w.r.t the
Earth, towards the direction of the Sun, if significant and not accounted for within
the dynamical model, would result in a false indication of the violation of the
principle of equivalence estimated with the LLR observations. Oberst et al. (2012)
show the distribution of meteoroid impacts with the lunar phase. Peaks within
the histogram in Oberst et al. (2012, p. 186) indicate a non-uniform temporal
distribution with a non-negligible increase in both small and large impacts during
the New and Full Moon phase. Future improvements to the LLR EP estimation
must consider the impact of such a bias that could potentially be absorbed during
the fit by the LLR EP parameter ∆rESM .

Chapter summary

The long time span of LLR observations and its ongoing millimeter level accuracy
allow LLR analyses to identify subtle changes in the lunar orientation and other
state vectors resulting from the dynamics of the lunar interior and/or equations of
motion. A longitude libration signature is induced due to the incompatibility of
few of the degree-3 spherical harmonics of spacecraft-derived gravity field models.
Attempts to investigate the source of the supposed modeling error are provided. A
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new model is proposed and it reduces this incompatibility significantly. Additional
work is required (and is ongoing) to introduce tidal variations on the lunar core
matrix of inertia to model deformations of the fluid core. A test of the univer-
sality of free fall using the INPOP17a model of the Earth-Moon system shows no
violation of the universality of free fall at 10−14. The following chapter (Chapter
7) concludes this study with the future perspectives.



Chapter 7

Conclusion and Perspectives

The observations used for this study consists of lunar laser ranging (LLR) data
(Chapter 2). The study begins with the use of raw observations collected by the
Grasse LLR station situated in the Côte d’Azur region of France. The Grasse
LLR station has acquired LLR range data for nearly three decades (Veillet, 1987;
Veillet et al., 1993; Samain, 1995; Samain et al., 1998; Martinot-Lagarde et al.,
2016) and continues to procure high accuracy LLR observations since the change
of the operational wavelength to IR (1064 nm) (Courde et al., 2017). The fit of
the parameters benefits from the homogeneous distribution of IR in both spatial
and temporal domains when compared to the operation in 532 nm wavelength.
The existing normal point computation algorithm employed at Grasse station was
evaluated under different scenarios describing the various range data obtained, and
an alternative algorithm (Section 2.2.4) is proposed to compensate for its limita-
tions (Section 2.2.3). Statistical analyses are performed on the LLR data (sub-
sets and collective) distribution to quantify its temporal and spatial dependencies
(Section 2.3). Wavelength dependent response of the Lunokhod retro-reflectors
(Courde et al., 2017) requires further study. Internal binaries from Grasse station
indicate insufficient echoes for characterization of components in the calibration
distribution. Future calibration sessions must acquire more echoes for smoother
profiling.

The numerical model consists of two components: the reduction model (Chap-
ter 3) and the dynamical model (Chapter 4). The LLR reduction model computes
the simulated time taken by the laser pulse during the LLR experiment during the
up-leg (station-reflector) and down-leg (reflector-station) paths of the laser pulse,
including all the known geophysical and relativistic effects. This model was im-
plemented within a precise orbit determination and geodetic software: GINS. The
frame of reference was changed to the ICRF to facilitate the accuracy of the numer-
ically integrated ephemerides. A step-wise comparison study was conducted (using
simulated LLR data) between the LLR analyses groups at IMCCE-Paris (Manche,

117
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2011) and IfE-Hannover (Müller et al., 2005), to identify and correct modeling
errors at the 1 mm level using the IERS 2010 (Petit and Luzum, 2010) and DE421
(Folkner et al., 2009) as the reference models. Additionally, the impact of hydrol-
ogy loading at the Grasse station was analyzed through multi-geodetic techniques
(Mémin et al., 2016) and modeled into the reduction software (Section 3.3.6). A
report was submitted to CNES containing the LLR reduction model modifications
in GINS software and libraries along with the code delivery.

The dynamical model consists of a planetary and lunar ephemeris. The lunar
part of the ephemeris describes the motion and orientation of the Moon as it
orbits the Earth. A previous version (13c) of the INPOP lunar ephemeris (Fienga
et al., 2014) was extensively tested and compared with two other independent
lunar ephemerides: DE430 - Folkner et al. (2014) and EPM2016 - Pavlov et al.
(2016). Inconsistencies between the models were identified and corrected during
the comparison (Section 4.1). The fluid core within the new solution is activated.
Additional work is required for alternatives to the time delay model of dissipation
used in lunar ephemerides, as the current model requires empirical corrections on
the longitude librations to account for dissipation effects for periods away from
a month (Williams and Boggs, 2015b). A proposition is to introduce imaginary
Love numbers to account for dissipation.

An improved version of the INPOP lunar ephemeris was constructed through
an iterative weighted least-squares fit (Chapter 5), providing new independent
estimates of the lunar dynamical model. The new post-fit residuals are below 2 cm
in wrms, a factor 5 improvement on the latest high accuracy observation compared
to that obtained from the previous version of INPOP (Section 5.3). Comparison
with the LLR estimates from other analyses groups (Folkner et al., 2014; Pavlov
et al., 2016) show strong consistency at the 2 cm level. The INPOP17a ephemeris
is publicly distributed through the IMCCE website: www.imcce.fr/inpop with a
technical report (Viswanathan et al., 2017).

The construction of a high accuracy lunar ephemeris allows us to probe deeper
into the questions of the lunar interior structure (Section 6.1) and conduct tests
of the universality of free fall (Section 6.2) as described in Chapter (6).

The use of a strictly GRAIL-derived gravity field model (Konopliv et al., 2013)
highlights longitude libration signatures well above the LLR noise floor, arising
from unmodeled effects in the lunar ephemeris (Section 6.1.1). Other LLR anal-
yses groups (DE421/430 and EPM2016) prefer to fit the degree-3 components
away from GRAIL-derived gravity field coefficients. We provide the investigation
attempts to this issue to identify the cause of the low-degree spacecraft-derived
gravity field inconsistency (Section 6.1.2). Additionally, a model is also provided
to compensate this signature (Section 6.1.3). New leads suggest that there may be
a small non-spherical response to tidal forcing due to asymmetric elastic properties

www.imcce.fr/inpop
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between the lunar near-side and far-side. Zhong et al. (2012) propose that this
asymmetry would change the degree-2 tides and introduce a mixed-mode degree-3
response due to the lateral density variations. Further development on the intro-
duction of a three-layer Moon (mantle, outer fluid core and solid inner core) in the
lunar dynamical model is envisioned in the near future due to the availability of
accuracy on the LLR observations. The observational evidence for the presence of
a solid inner core within the Moon would answer to several key questions regard-
ing the now-extinct lunar dynamo (Wieczorek, 2006; Laneuville et al., 2014). For
LLR, this remains as a near possibility.

Estimates of the principle of equivalence (EP) parameter are obtained (Sec-
tion 6.2.3) and show no violation at the level of 10−14. Oberst et al. (2012) show
the distribution of meteoroid impacts with the lunar phase, indicating a non-
uniform temporal distribution during the New and Full Moon phase which could
impact the test of EP. The impact of this effect needs to be characterized to be
considered as negligible at the present LLR accuracy. Thermal expansion of the
retro-reflectors and solar radiation pressure will be included in the reduction model
(instead of the currently employed empirical corrections) for future LLR analysis,
so as to improve the uncertainty of the EP test.

The last four decades saw LLR accuracy move by 2 order of magnitude, down
to a present millimeter level. This was achieved solely through efforts from the
technical teams at various LLR stations who continue to produce high accuracy
observations and make them available to the public. New LLR stations continue to
be commissioned (Munghemezulu et al., 2016; Vasilyev et al., 2016; Dehant et al.,
2017) while a class of next-generation laser retro-reflectors await for their launch,
to the Moon (Ciocci et al., 2017) as well as to Mars (Dell’Agnello et al., 2017).
To this, I recollect a quote by Clive R. Neal from the LPSC (2017) Vision 2050
Workshop: “You can’t be a Martian without being a lunatic first”.
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Table A.1: Fitted values of LLR station coordinates and velocities (expressed in
meters and meters per year respectively), at J2000.0, for different solutions. The
reference values correspond to ITRF2005. ⋆ indicates fixed parameters.

Station Coordinate [m] INPOPG INPOP17a

APOLLO x + 1463998.7870 -0.1269 ± 0.0004 -0.1285 ± 0.0004
y + 5166632.8080 +0.0420 ± 0.0004 +0.0390 ± 0.0004
z - 3435012.8560 -0.0119 ± 0.0014 +0.0099 ± 0.0014
ẋ + 0.0141 +0.0009 ± 0.0001 +0.0011 ± 0.0001
ẏ + 0.0015 +0.0012 ± 0.0001 +0.0016 ± 0.0001
ż + 0.0064 +0.0084 ± 0.0016 +0.0064 ± 0.0016

Grasse x - 4581692.1420 +0.0014 ± 0.0001 -0.0071 ± 0.0001
y - 556196.0800 -0.0006 ± 0.0001 -0.0020 ± 0.0001
z - 4389355.1080 -0.0039 ± 0.0012 -0.0040 ± 0.0012
ẋ + 0.0156 +0.0018 ± 0.0001 +0.0024 ± 0.0001
ẏ - 0.0184 +0.0006 ± 0.0012 +0.0007 ± 0.0012
ż - 0.0089 +0.0048 ± 0.0002 +0.0044 ± 0.0001

Haleakala x + 5466006.6900 +2.9163 ± 0.0019 +2.9168 ± 0.0019
y + 2404427.2460 +1.2864 ± 0.0031 +1.2882 ± 0.0031
z - 2242187.8750 +9.9607 ± 0.0078 +9.9610 ± 0.0078
ẋ + 0.0122 ⋆ - -
ẏ - 0.0622 ⋆ - -
ż - 0.0310 ⋆ - -

Matera x - 4641978.8100 ⋆ - -
y - 1393067.5310 ⋆ - -
z - 4133249.4800 ⋆ - -
ẋ + 0.0180 ⋆ - -
ẏ - 0.0192 ⋆ - -
ż - 0.0140 ⋆ - -

McDonald x + 1330781.4610 -0.0120 ± 0.0142 -0.0146 ± 0.0142
y + 5328755.4550 -0.6717 ± 0.0037 -0.6682 ± 0.0037
z - 3235697.5110 +0.6911 ± 0.0315 +0.6446 ± 0.0315
ẋ + 0.0124 -0.0040 ± 0.0006 -0.0041 ± 0.0006
ẏ - 0.0009 -0.0177 ± 0.0002 -0.0176 ± 0.0002
ż + 0.0053 +0.0343 ± 0.0014 +0.0325 ± 0.0014

MLRS1 x + 1330121.1440 +0.0920 ± 0.0234 +0.0875 ± 0.0234
y + 5328532.2620 +0.0440 ± 0.0204 +0.0369 ± 0.0204
z - 3236146.6030 -0.4753 ± 0.0213 -0.4798 ± 0.0213
ẋ + 0.0124 ⋆ - -
ẏ - 0.0009 ⋆ - -
ż + 0.0053 ⋆ - -

MLRS2 x + 1330021.1090 -0.0119 ± 0.0008 -0.0118 ± 0.0008
y + 5328401.8580 -0.0171 ± 0.0003 -0.0148 ± 0.0003
z - 3236480.7680 -0.0098 ± 0.0018 -0.0129 ± 0.0018
ẋ + 0.0124 +0.0004 ± 0.0004 +0.0005 ± 0.0004
ẏ - 0.0009 +0.0014 ± 0.0001 +0.0015 ± 0.0001
ż + 0.0053 +0.0003 ± 0.0007 +0.0007 ± 0.0007
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Table A.2: Fitted values of selenocentric coordinates of reflectors (in meters). The
reference values are from a previous release of INPOP (Fienga et al., 2014, p. 27).

Reflector Coordinate [m] INPOPG INPOP17a

Apollo 11 x - 1591924.5110 +42.2267 ± 0.0181 +42.1831 ± 0.0181
y - 690802.5820 -103.0306 ± 0.0052 -102.9494 ± 0.0052
z - 21003.7740 -0.1029 ± 0.0118 -0.1035 ± 0.0118

Apollo 14 x - 1652725.8400 -36.1039 ± 0.0196 -36.0924 ± 0.0196
y + 520890.3070 -107.1523 ± 0.0140 -107.0555 ± 0.0140
z + 109730.4800 -0.1173 ± 0.0028 -0.1287 ± 0.0028

Apollo 15 x - 1554674.5700 +3.8976 ± 0.0155 +3.8898 ± 0.0155
y - 98196.2940 -100.6368 ± 0.0068 -100.5489 ± 0.0068
z - 765005.6960 -0.5951 ± 0.0067 -0.6184 ± 0.0067

Lunakhod 1 x + 1330021.1090 -53.0291 ± 0.0149 -52.9913 ± 0.0149
y + 5328401.8580 -71.7348 ± 0.0042 -71.6464 ± 0.0042
z - 3236480.7680 -0.8370 ± 0.0021 -0.8250 ± 0.0021

Lunakhod 2 x - 1114345.4960 +49.3650 ± 0.0145 +49.3269 ± 0.0145
y + 781226.5970 -86.7535 ± 0.0015 -86.6622 ± 0.0015
z - 1076059.3350 -0.6976 ± 0.0083 -0.6982 ± 0.0083
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Table A.3: Estimated values of station biases over different periods (2-way light
time in cm)

Bias # Station Date Bias 2-way light time [cm]
INPOPG INPOP17a

1 APOLLO 2006/04/07 - 2010/11/01 0.24 ± 0.01 -0.24 ± 0.01
2 2007/12/15 - 2008/06/30 -3.86 ± 0.04 -3.90 ± 0.04
3 2008/09/20 - 2009/06/20 2.83 ± 0.07 2.83 ± 0.07
4 2010/11/01 - 2012/04/07 -5.74 ± 0.04 -5.98 ± 0.04
5 2012/04/07 - 2013/09/02 9.18 ± 0.01 9.12 ± 0.01

6 Grasse 1984/06/01 - 1986/06/13 -8.76 ± 0.45 -6.49 ± 0.45
7 1987/10/01 - 2005/08/01 1.32 ± 0.07 2.47 ± 0.07
8 1993/03/01 - 1996/10/01 10.32 ± 0.02 10.38 ± 0.02
9 1996/12/10 - 1997/01/18 17.33 ± 0.06 16.92 ± 0.06
10 1997/02/08 - 1998/06/24 19.49 ± 0.01 19.56 ± 0.01
11 2004/12/04 - 2004/12/07 -5.74 ± 0.31 -7.07 ± 0.31
12 2005/01/03 - 2005/01/06 -5.39 ± 0.01 -6.72 ± 0.01
13 2009/11/01 - 2014/01/01 0.59 ± 0.08 0.34 ± 0.08
14 2015/12/20 - 2015/12/21 - -88.34 ± 0.03
15 2016/06/01 - 2018/01/01 2.52 ± 0.01 2.46 ± 0.01

16 Haleakala 1984/11/01 - 1990/09/01 2.36 ± 0.29 2.55 ± 0.29
17 1984/11/01 - 1986/04/01 -3.76 ± 0.56 -3.61 ± 0.56
18 1986/04/02 - 1987/07/30 13.60 ± 0.02 13.07 ± 0.02
19 1987/07/31 - 1987/08/14 1.92 ± 0.64 1.83 ± 0.64
20 1985/06/09 - 1985/06/10 -12.25 ± 0.09 -13.18 ± 0.09
21 1987/11/10 - 1988/02/18 20.42 ± 0.42 19.49 ± 0.42
22 1990/02/06 - 1990/09/01 15.26 ± 0.11 14.32 ± 0.11

23 Matera 2003/01/01 - 2016/01/01 0.73 ± 7.24 4.62 ± 7.24

24 McDonald 1969/01/01 - 1985/07/01 -37.98 ± 1.20 -37.88 ± 1.20
25 1971/12/01 - 1972/12/05 28.71 ± 0.88 28.21 ± 0.88
26 1972/04/21 - 1972/04/27 88.17 ± 0.71 88.09 ± 0.71
27 1974/08/18 - 1974/10/16 -112.58 ± 0.37 -112.08 ± 0.37
28 1975/10/05 - 1976/03/01 30.48 ± 0.22 28.44 ± 0.22
29 1983/12/01 - 1984/01/17 10.49 ± 1.69 11.06 ± 1.69
30 1969/01/01 - 1971/12/31 2249.64 ± 0.83 2249.19 ± 0.83

31 MLRS1 1983/08/01 - 1988/01/28 39.99 ± 2.01 38.73 ± 2.01



Appendix B

Supplementary materials

B.1 Correlation matrix and partial derivatives

The correlation matrix (given in Fig. B.1) is obtained from the partial derivatives
matrix (Aij) used in Eqn. 5.1 using a standard python routine (pandas.dataframe.corr.py)
which uses the Pearson standard correlation coefficient (Pearson, 1895). The par-
tial derivatives of each parameter is obtained by the central differencing method
using an appropriate δpj (see Section 5.1.1). The plot of the partial derivatives
w.r.t each retroreflector is given in Fig. B.2.
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Figure B.1: Correlation between the parameters of the dynamical model and reduction model.
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graphic coupling at the core-mantle boundary (Rambaux, 2017):

Nx,topo = (πRf)2{(−107
224
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(z,m)

(−45
32
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8
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ABSTRACT

We use the INPOP planetary and lunar ephemeris and fit 48 years (1969-2017) of lunar laser ranging (LLR) data to our model. After
a first validation of our models and procedures by following the DE430 JPL lunar ephemeris, we show that by fitting the integrated
orbit and orientation parameters of the Moon to the LLR observations, we obtain residuals that contain a 6-year signature associated
with a departure of the harmonic degree-3 components of the gravity field of the Moon from the model (GL0660b) derived from
GRAIL observations. More specifically, in the equation of conservation of the angular momentum of the Moon fluid core, we take
into account harmonic-3 degree torques from the Earth, which enables us to estimate the Stokes coefficients C32 = (−5.63±0.02)×10−8

and S 32 = (5.1±0.1)×10−8 of the gravitational potential of the fluid core. The new solution is compatible with both the GRAIL-derived
gravity field (GL0660b), as well as the LOLA-derived vertical displacement lunar Love number (h2).

Key words. Moon, LLR, asymmetric fluid core, numerical ephemeris, INPOP

1. Introduction

The Earth-Moon system is an ideal laboratory for exploring the
mechanism of evolution for the solar system bodies, in particu-
lar from the point of view of the dynamics, the rotation and the
internal structure. Questions related to the scenario of the for-
mation of the Moon by collision between the Earth and a Mars-
like object - such as the amount of impactor material that could
have formed the internal structure of the present Moon - are still
unsolved. A characterization of the inner structure of the Moon
would bring key answers to these questions.

With the exploration of the Moon by the US and the Russian
missions, retro-reflector arrays were installed at the near-side.
Centimetric measurements of the Earth-Moon distances by lu-
nar laser ranging (LLR) have then been obtained for the last 48
years using laser tracking (Bender et al. (1973); Samain et al.
(1998); Murphy (2013)). Moreover, seismological profiles were
obtained during the APOLLO missions and re-analyzed recently
by Weber et al. (2011); Garcia et al. (2011).

The characterization of the inner structure of the Moon can
be investigated by the study of its gravity field and its ro-
tational and orbital dynamics using dedicated space missions
like GRAIL (Zuber et al. (2013); Konopliv et al. (2013)) and
LLR measurements (Williams et al. (2014)). Recent results
about tidal dissipation (Williams & Boggs (2015); Matsuyama
et al. (2016)) were obtained from the construction of lunar
ephemerides (Folkner et al. (2014); Pavlov et al. (2016)).

Since 2006, INPOP (e.g. Fienga et al. (2016)) has become a
reference for space navigation and for scientific research in the
solar system dynamics and in fundamental physics. This letter
gives the main result in term of the degree-3 components of the
gravitational potential of the lunar fluid core obtained with this
new modeling.

2. Lunar Dynamical Model for an Asymmetric Fluid

Core

A description of the dynamical model with the orbit interac-
tions, frame and moment of inertia tensor definitions are pro-
vided in Appendix A. Meyer & Wisdom (2011) proposed a fluid
core flattening parameter fc = 2.09 × 10−4 computed theoreti-
cally for a hydrostatic fluid core with a non-hydrostatic mantle.
The value of fc = (2.0 ± 2.3) × 10−4 from the LLR analysis by
Williams (2009)) suggests a small deviation from the hydrostatic
value, but with large error bars. Previously, this deviation was
associated to the marginal detection of fc and a possible correla-
tion with other parameters during the estimation from the LLR
observations. However, with an improved time span of quality
LLR datasets (Murphy (2013); Courde et al. (2017)) and con-
straints provided by the analysis of GRAIL observations (Kono-
pliv et al. (2013)) on the lunar gravity field and potential Love
number (k2), recent studies (Williams et al. (2014); Pavlov et al.
(2016)) show stronger detection of fc ((2.47 ± 0.04) × 10−4 and
(2.46 ± 1.4) × 10−4, respectively). These estimated values con-
tinue to suggest a small but non-ignorable departure of fc from
its hydrostatic value.

The impact of the C22 parameter is very weak for the lunar
fluid core (Goldreich (1967)). By using a density profile from
Dumberry & Wieczorek (2016) and extending their approach to
a triaxial fluid core case, we estimate a theoretical value of C22

for the fluid core equal to 6.10−9, while the corresponding C20

value of the fluid core is 10 times greater. In using equations for
a triaxial fluid core from Rambaux et al. (2007) and fixing the
theoretical value of C22, an undetectable variation of about 0.5
mm is induced on the Earth-Moon distance (below the current
LLR data accuracy of ≈ 5 mm). Hence, for the scope of this
study, we equate the equatorial moments within the lunar fluid
core inertia tensor, while limiting our discussion to the departure
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of the lunar fluid core from a purely ellipsoidal shape, from that
followed by Folkner et al. (2014) and Pavlov et al. (2016).

The effects of a non-hydrostatic core-mantle boundary
(CMB) topography on the Earth nutations were often ignored,
being considered as of the second order (Dehant & Mathews
(2015)). The impact of considering this departure from a hy-
drostatic case, has been studied by Wu & Wahr (1997), which
introduces a net external gravitational torque on the fluid core
within the dynamical model. This additional torque from the
point mass Earth on the figure of the fluid core (Nc, f igc−pmA) is
modeled through Eqn. 28 from Folkner et al. (2014), which ap-
pears on the right hand side of Eqn. (1), as :

dLc

dt
+ ωm × Lc = −NCMB + Nc, f igC−pmA (1)

It was noticed that among the degree-3 and degree-4 spher-
ical harmonics of the lunar fluid core, only C32 and S 32 induce
perturbations detectable by the LLR data. Moreover, this addi-
tional torque is only computed from the point mass Earth while
neglecting other bodies. For the purpose of comparison only so-
lution S2 (Section 3.4) takes this additional torque into account,
while other solutions (S0a, S0b and S1) neglect this effect.

3. Results

The lunar part of the INPOP ephemeris is generated by fit-
ting numerically integrated orbit and orientation parameters of
the Moon to the LLR observations. A weighted least square
(WLS) regression procedure is used for the fit including weight-
ing scheme, data filtering and bias estimations described in Ap-
pendix B. Table D.2 gives the list of the adjusted parameters of
interest to this study. The reduction model for the LLR data anal-
ysis follows the IERS 2010 recommendations (Petit & Luzum
(2010)), while using KEOF Earth orientation parameters (Rat-
cliff& Gross (2015)) as recommended by a recent study (Pavlov
et al. (2016)). We consider three cases:

– The Solutions 0 with an axisymmetric core fitted to the LLR
observations serves as a validation of our lunar model and
analysis procedure, against the DE430 JPL planetary and
lunar ephemeris analysis described in Folkner et al. (2014)
and EPM IAA RAS ephemeris in Pavlov et al. (2016). Only
532 nm wavelength LLR data are used for matching with
the DE430 and EPM ephemeris. Two different versions were
considered:
a. Solution 0a (S0a) with coefficients C32, S 32 and C33 as

fitted parameters, like in Folkner et al. (2014); Pavlov
et al. (2016);

b. Solution 0b (S0b) with coefficients C32, S 32 and C33 fixed
to values from GL0660b (Konopliv et al. (2013)) derived
from GRAIL observations.

– The Solution 1 (S1) refers to the addition of two years of IR
LLR observations (Courde et al. (2017)) following the same
specification as of S0a.

– The Solution 2 (S2) introduces the modeling of an asymmet-
ric fluid core with the additional harmonic-3 degree torques
from the Earth included in the equation of conservation of
the angular momentum of the lunar fluid core (Eqn. 1).

Solutions by Williams et al. (2014) and Pavlov et al. (2016) addi-
tionally solve for three coefficients to correct for periodic terms
in the integrated physical longitude librations. This approach is
guided by a semianalytical theory (Williams et al. (2001)). None
of our integrated solutions follow this approach.

3.1. S0a: Validation

In S0a, we aim at validating our lunar dynamical model by com-
paring our lunar parameter estimates and LLR residuals, with
that provided by Folkner et al. (2014) and Pavlov et al. (2016).
In Folkner et al. (2014), Pavlov et al. (2016) and S0a, gravity
field coefficients up-to degree and order 6 are used for the Moon
(GL0660b (Konopliv et al. (2013))) and the Earth (GGM05C
(Ries et al. (2016))). Coefficients C32, S 32 and C33 are then in-
cluded in the fit parameters as they improve the overall post-fit
residuals. For S0a, the improvement of the uncertainty compared
to Pavlov et al. (2016), especially in the estimation of the pa-
rameter kv/CT , continues to indicate a strong dissipation mecha-
nism within the Moon, through viscous torques at the fluid core-
mantle boundary.

Differences between GL0660b values and fitted C32, S 32 and
C33 from Folkner et al. (2014), Pavlov et al. (2016) or in S0a, are
several orders of magnitude greater than the mean GRAIL uncer-
tainties (see Konopliv et al. (2013)). These results suggest that
some significant effects impacting the LLR observations, are ab-
sorbed by the adjustment of the degree-3 of the full Moon gravity
field.

3.2. S0b: Asymmetric fluid core and fixed GRAIL gravity field
coefficients

S0b is similar to S0a, but the coefficients of spherical harmon-
ics (including C32, S 32 and C33) are fixed to the GL0660b val-
ues. Post-fit residuals obtained with S0a and S0b are provided
within Fig. 1. On constraining our analysis to GL0660b values,
we noticed a strong 6-year libration period on all reflectors (ex-
cept weakly on A15) with an amplitude of ±5 mm on the post-fit
residuals of S0b (see Fig. 1). Such a degradation of the post-fit
residuals affected by the described 6-year signature can be pro-
posed to be due to the absence of a higher degree figure - point
mass torque in the angular momentum balance equation for the
fluid core, from the assumption of hydrostatic equilibrium within
the dynamical model. We find through S0b that the deviation
from GRAIL degree-3 spherical harmonics impact distinctly the
dissipation terms (τ and kv/CT ) estimated through LLR analy-
ses, as well as the vertical displacement Love number (h2) (see
Table D.3). More generally, S0a and S0b provide fitted values
consistent with Folkner et al. (2014) and Pavlov et al. (2016)
(see tables within Appendix D).

3.3. S1: Addition of the new IR LLR data from Grasse

S1 includes additionally 1707 normal points (7% of the
total LLR data till date) to the solution specifications of
S0a. This new dataset is obtained from 2 years of op-
eration in IR (1064 nm) wavelength at the ILRS station
in Grasse. The new IR LLR data from Grasse is made
publicly available on http://www.geoazur.fr/astrogeo/
?href=observations/donnees/luneRG/brutes. A review
of the technical developments, accuracy and the homogeneity
in the distribution (both spatial and temporal) of this new dataset
can be found in Courde et al. (2017). This dataset is weighted at
the same level as the APOLLO station normal points within the
estimation procedure (see Appendix B).

3.4. S2: Degree-3 components for the fluid core

Eckhardt (1973) has shown the influence of lunar physical libra-
tions of the Moon through its third and fourth degree harmonics
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Table 1. Comparison between solutions: Extended body parameters for
the Moon. Uncertainties are obtained from a 5% jackknife (JK) test, the
least squares 1-σ uncertainties being either consistent or smaller than
the JK estimations.⋆ stands for values fixed to model (GL0660b) values
from GRAIL. ‡ indicates that the h2 reference value is extracted from
Mazarico et al. (2014).

Parameter S0a S2

(CT /(mMR2) − 0.393140) × 106 7.3 ± 0.2 5.0 ± 0.2

(C32 − 4.8404981 × 10−6) × 109 4.1 ± 0.3 0.0⋆

(S 32 − 1.6661414 × 10−6) × 108 1.704 ± 0.006 0.0⋆

(C33 − 1.7116596 × 10−6) × 108 -1.19 ± 0.04 0.0⋆

(τM − 9 × 10−2) × 104 [d] -2 ± 5 -56 ± 5

(
kv

CT
− 1.6 × 10−8) × 1010 [d−1] 10.2 ± 0.4 17.9 ± 0.4

( fc − 2.1 × 10−4) × 106 41 ± 3 47 ± 3

(C32(Core) + 5.6 × 10−8) × 1010 - -3.0 ± 2

(S 32(Core) − 5.0 × 10−8) × 1010 - 5 ± 10

(k2,M − 0.024059) × 103 0.0⋆ 0.0⋆

(h2 − 3.71 × 10−2)‡ × 103 6.6 ± 0.2 2.3 ± 0.2

l2,m − 1.07 × 10−2 0.0⋆ 0.0⋆

Q27.212 − 45 (derived) 3.2 ± 0.5 6.6 ± 0.3

from point mass interactions of the Earth with multiple effects
on the lunar orbital and orientation parameters. S2 tests our hy-
pothesis of a possible departure of the fluid core flattening from a
purely hydrostatic value, by the inclusion of a net external gravi-
tational torque acting on the degree-3 components (C32 and S 32)
of the core.

A first result from S2, through the introduction of the figure
of the fluid core, is the removal of the 6-year signature and the
slight reduction of the residual dispersion (see Fig. 1). Only the
coefficients C32 and S 32 for the fluid core were fitted (along with
other parameters in S0b), due to the large formal uncertainty on
the other degree-3 and degree-4 harmonics from the estimation
procedure. The other degree-3 and degree-4 components of the
fluid core were fixed to 0.

Table 1 provides few of the parameters relevant to the fit of
the lunar dynamical model. We find that the fitted value of verti-
cal displacement Love number (h2) in S2 becomes more compat-
ible with the one obtained through the Lunar Orbiter Laser Al-
timeter (LOLA) derived value (Mazarico et al. (2014)). The dis-
sipation quality factor Q27.212 derived from the tidal time delay
(27.212 days/(2πτM)) notices a small increase from S0a, how-
ever, they remain within the error bar of Williams et al. (2014).
The post-fit residuals obtained with S2 can be found in Appendix
C. A list of the relevant fitted dynamical parameters can be found
within tables provided in Appendix D.

4. Discussion

By considering an additional torque on the lunar fluid core as
described in Section 2, we are able to absorb a 6-year signa-
ture in the LLR residuals, while remaining strictly to GRAIL-
derived (GL0660b) gravity field coefficients and obtaining the
same dispersion of the post-fit residuals (see Fig. 1). The addi-
tional torque has a degree-3 geometry. In this letter, it is modeled
as an external gravitational torque on the lunar fluid core. An al-
ternate origin might also be the pressure torque acting on the
degree-3 interface at the core-mantle boundary. We consider two
additional test solutions (S2b and S2c) for evaluating the robust-
ness of our model and the reliability of our fit. Estimates from
these two test solutions are provided in Table D.2.

S2b includes the potential Love number k2 as a fitted param-
eter to the solution specifications of S2. The resulting estimates
show a larger deviation of fc away from its hydrostatic value,
while the estimates from the other fitted parameters show a con-
sistency within their respective uncertainties. However, this ad-
ditional deviation is due to the correlation between fc, k2 and the
fluid core moment of inertia (Williams et al. (2014)). This in-
dicates that it is advisable to fix the value of k2 to a spacecraft
determined value for reducing the propagation of error to corre-
lated parameters. For this reason, all our solutions (except S2b)
uses GRAIL-derived k2 for a higher reliability.

S2c follows the same solution specifications as S2, except
that the degree-3 components of the gravitational potential (C32

and S 32) of the Moon are included as fitted parameters. On com-
paring the LLR estimates of C32 and S 32, it is noticed that the
differences in percentages to GRAIL values are reduced by a
factor 20 for C32 and a factor 10 for S 32. These results indicate
that the fit of the lunar dynamical model to LLR observations
seems to favor a departure from hydrostatic equilibrium for the
fluid core through its degree-3 figure, in the direction of a bet-
ter consistency with the GRAIL-derived gravity field. A larger
deviation is noticed on the estimated fluid core degree-3 com-
ponents (C32 and S 32) induced by its weak correlation with that
of the full Moon (correlation coefficient of < 0.2). The uncer-
tainty on the LLR estimated harmonic degree-3 components of
the gravity field of the Moon remains at-least 3 order of magni-
tude greater than the uncertainty provided within the GL0660b
model. Hence, it is advisable to fix the Moon gravity field to
model values to avoid weakly determined parameters as well as
correlations during the fit.

S2b and S2c give consistent estimations of parameters re-
lated to the fluid core departure from hydrostatic equilibrium,
in favor of the assumptions used for the S2 construction and
related to the correlation between GRAIL-derived gravity field
harmonic degree-3 components, potential Love number k2 and
the fluid core harmonic degree-3 components (C32 and S 32).

5. Conclusion and future work

In this study, we have tested a possible estimation of the har-
monic degree-3 component of the gravitational potential of the
lunar fluid core through the introduction of the associated ex-
tended figure torques into the lunar fluid core’s angular momen-
tum balance differential equation within the INPOP ephemeris.
This was done with a strictly GRAIL-derived (GL0660b) gravity
field of the Moon. We have shown through our post-fit residuals
(see Fig. 1) that the resulting 6-year signature from the degree-
3 components of the gravitational potential of the lunar fluid
core is absorbed, compared to previous LLR analyses by Folkner
et al. (2014) and Pavlov et al. (2016), which preferred to fit the
degree-3 harmonics of the Moon as well as correct for periodic
terms in the integrated physical longitude librations, for better
post-fit residuals.

We have verified that the degree-3 coefficients of the fluid
core and that of the Moon have a maximum correlation coeffi-
cient of 0.2 over the entire time span of the LLR dataset. The
signature induced on the Earth-Moon distance from these two
set of harmonic coefficients (degree-3 of the lunar fluid core and
that of the Moon) do not have the same effect. The test case S2c
(provided within Appendix D) which fits both these sets of har-
monic coefficients show that the deviation from GRAIL-derived
(GL0660b) values are reduced by a factor of 20 for C32 and a
factor of 10 for S 32.
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Fig. 1. Post-fit residuals (5-σ filtered 1-way light time (m)) obtained with the APOLLO station data vs time (years). Left: S0b with C32, S 32 and
C33 fixed to GRAIL-derived GL0660b values; Center: S0a with C32, S 32 and C33 as fit parameters resulting in deviation from GL0660b values;
Right: S2 with C32, S 32 and C33 fixed to GRAIL-derived GL0660b values, to solve for degree 3 shape of the fluid core.

Estimation of the fluid core flattening ( fc) is significantly
constrained with the synergy between the LLR observations and
a spacecraft-determined gravity field. On constraining our nu-
merical model with a full Moon GRAIL-derived gravity field
model (GL0660b), we show that a small but non-ignorable de-
parture of the fluid core from an ellipsoidal shape can reconcile
the LLR residuals, GRAIL-derived gravity field measurements
and the LRO-LOLA estimations. Future work will address the
problem of the frequency dependencies of the tidal dissipation
effects by a direct integration in the Louville or Poincaré equa-
tions rather than a semi-analytical approach.
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Appendix A: Dynamical model description

Appendix A.1: Lunar orbit interactions:

In our model, we include the following accelerations perturbing
the Moon’s orbit:

1. Point mass mutual interactions from the Sun, planets and as-
teroids (through Eqn. 27 Folkner et al. (2014))

2. Point mass mutual interactions from the extended bodies
(through Eqn. 28 Folkner et al. (2014)) which include :

– the interaction of the zonal harmonics of the Earth
through degree-6;

– the interaction between the zonal, sectoral, and tesseral
harmonics of the Moon through degree-6 and the point
mass Earth, Sun, Jupiter, Saturn, Venus and Mars;

– the interaction of the degree-2 zonal harmonic of the Sun.
3. Interaction from the Earth tides (through Eqn. 32 Folkner

et al. (2014))
The tidal acceleration from the tides due to the Moon and the
Sun are separated into three frequency bands (zonal, diurnal
and semi-diurnal). Each band is represented by a potential
Love number k2m,E with a matching pair of time delays τXm,E

(where subscript X is either associated with the daily Earth
rotation τRm,E or orbital motion τOm,E) to account for fre-
quency dependent phase shifts from an anelastic Earth with
oceans. Here the time delay represents the phase lag induced
by the tidal components. Although the time delay method
inherently assumes that the real component of k2m,E varies
linearly with frequency, it reduces the complexity of the dy-
namical model. The diurnal τR1,E and semi-diurnal τR2,E are
included as solution parameters in the LLR analysis, while
model values for potential Love numbers for a solid Earth
are fixed to that from Table 6.3 in Petit & Luzum (2010) fol-
lowed by corrections from the ocean model FES2004 (Lyard
et al. (2006)). A detailed explanation about the most influen-
tial tides relevant to the Earth-Moon orbit integration can be
found in Table 6 in Williams & Boggs (2016).

Appendix A.2: Lunar orientation and inertia tensor:

1. Lunar frame and orientation.
The mantle coordinate system is defined by the principal
axes of the undistorted mantle, whose moments of inertia
matrix are diagonal. The time varying mantle Euler angles
(φm(t),θm(t),ψm(t)) define the orientation of the principal axis
(PA) frame with respect to the inertial ICRF2 frame (see
Folkner et al. (2014) for details). The time derivatives of
the Euler angles are defined through Eqn. 14 Folkner et al.
(2014).

2. Lunar moment of inertia tensor.
The undistorted total moment of inertia of the Moon ĨT is
given by:

ĨT =
C̃T

mMR2
M

















1 0 0
0 1 0
0 0 1

















+



















C̃2,0,M − 2C̃2,2,M 0 0

0 C̃2,0,M + 2C̃2,2,M 0
0 0 0



















(A.1)

where C̃n,m,M is the unnormalized degree-n, order m of the
Stokes coefficient Cn,m for the spherical harmonic model of
the undistorted Moon and C̃T is the undistorted polar mo-
ment of inertia of the Moon normalized by it’s mass mM and
radius squared R2

M
. Through Eqn. (A.1), we are able to di-

rectly use the undistorted value of C22 (Manche (2011)) from

GRAIL-derived spherical harmonic model of Konopliv et al.
(2013). The moment of inertia of the fluid core Ic is given
by:

Ic = αcC̃T
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0 Bc 0
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(A.2a)

where αc is the ratio of the fluid core polar moment of inertia
Cc to the undistorted polar moment of inertia of the Moon
CT , Ac and Bc are the equatorial moments of the fluid core
and fc is the fluid core flattening given as:

fcαc = [Cc −
Ac + Bc

2
]/CT (A.2b)

The moment of inertia of the mantle Im has a rigid-body con-
tribution Ĩm and two time varying contributions due to the
tidal distortion of the Earth and spin distortion as given in
Eqn. 41 of (Folkner et al. (2014)). The undistorted moment
of inertia of the mantle is obtained using the tide free second
degree gravity field coefficients from GRAIL, given by:

Ĩm = ĨT − Ic (A.2c)

The single time delay model (characterized by τM) allows for
dissipation when flexing the Moon (Williams et al. (2001),
Standish (2003), Folkner et al. (2014)).

3. Lunar angular momentum and torques.
The time derivative of the angular momentum vector is equal
to the sum of torques (N) acting on the body. In the rotating
mantle frame, the angular momentum differential equation
for the mantle is given by:

d

dt
Imωm + ωm × Imωm = N (A.2d)

where N is the sum of torques on the lunar mantle from
the point mass body A (NM, f igM−pmA), figure-figure interac-
tion between the Moon and the Earth (NM, f igM− f igE) and the
viscous interaction between the fluid core and the mantle
(NCMB).
The motion of the uniform fluid core is controlled by the
mantle interior, with the fluid core moment of inertia (Ic)
constant in the frame of the mantle. The angular momentum
differential equation of the fluid core in the mantle frame is
then given by:

d

dt
Icωc + ωm × Icωc = −NCMB (A.2e)

with

NCMB = kv

(

ωc − ωm

)

+
(

Cc − Ac

)(

ẑm · ωc

)(

ẑm × ωc

)

(A.2f)

where kv is the coefficient of viscous friction at the CMB and
ẑm is a unit vector aligned with the polar axis of the mantle
frame. The second part on the right-hand side of Eqn. (A.2f)
is the inertial torque on an axis-symmetric fluid core.

Appendix B: Reduction model and fitting procedure

The reduction model for the LLR data analysis has been
implemented within a precise orbit determination and geodetic
software: GINS (Viswanathan et al. (2016)) maintained by space
geodesy teams at GRGS/OCA/CNES and written in Fortran90.
The modeling follows the recommendations of IERS 2010 (Petit
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Fig. B.1. Annual mean of weights from different LLR stations after ad-
justments to the uncertainties present within the LLR observation (con-
verted to 1-way LT [cm]).

& Luzum (2010)). A detailed description of the reduction model
used for this study is provided in Manche (2011).

The observations are weighted after adjustments to the un-
certainties present within the LLR observations. The annual
weights used for the observations from each of the LLR stations
can be found in Figure B.1.

A filtering scheme is enforced during the iterative fit of the
parameters based on a 3-σ filter (σ recomputed at each itera-
tion). Changes in the ground station introduce biases in the resid-
uals. These biases correspond either with a known technical de-
velopment at the station (new equipment, change of optical fiber
cables) or systematics. Any estimated bias can be correlated with
a corresponding change in the ground station, provided the inci-
dents have been logged.

Appendix C: Post-fit residuals

Appendix D: Solution estimates comparison
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Table C.1. LLR observations from ILRS ground stations with corresponding time span and number of normal points available, with the new IR
dataset from Grasse in bold.

Code Station Time span Normal points S2 WRMS

[yyyy/mm/dd] Available Used [cm]

70610 Apache Point, NM, USA (group A) 2006/04/07 - 2010/10/30 941 929 1.27
70610 Apache Point, NM, USA (group B) 2010/12/01 - 2012/04/05 506 486 1.95
70610 Apache Point, NM, USA (re-group C) 2012/04/07 - 2013/09/01 361 345 1.52
70610 Apache Point, NM, USA (group D) 2013/09/30 - 2016/11/25 832 800 1.15

01910 Grasse, FR (693.8 nm Ruby laser) 1984/04/07 - 1986/06/12 1187 1151 14.19
01910 Grasse, FR (532.0 nm Nd:YAG laser) 1986/03/22 - 2005/07/30 8312 8110 3.22
01910 Grasse, FR (532.0 nm MeO laser) 2009/11/11 - 2017/02/07 1898 1831 1.42
01910 Grasse, FR (1064.0 nm Nd:YAG laser) 1989/09/23 - 1992/02/08 13 13 2.27
01910 Grasse, FR (1064.2 nm MeO laser) 2015/03/11 - 2017/02/19 1707 1673 1.43

56610 Haleakala, HI, USA 1984/11/13 - 1990/08/30 770 728 4.96

07941 Matera, IT 2003/02/22 - 2015/06/25 113 64 2.63

71110 McDonald, TX, USA 1969/08/20 - 1985/06/30 3604 3392 18.96

71111 MLRS1, TX, USA 1983/08/02 - 1988/01/27 631 513 20.44

71112 MLRS2, TX, USA 1988/02/29 - 2015/03/25 3670 3108 3.52

TOTAL 1969/08/20 - 2017/02/19 24545

a) GRASSE station with the 532 nm wavelength b) GRASSE station with the 1064 nm wavelenth

c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations c) APOLLO station

Fig. C.1. Post-fit residuals in (cm) vs time (year) obtained with Solution 2 (S2) specification (Section 3.4) for : a) GRASSE station with the 532
nm wavelength, b) GRASSE station with the 532 nm wavelength, c) McDonald, MLRS1, MLRS2, Haleakala and Matera stations, d) APOLLO
station. Post-fit residuals are filtered at 5-σ.
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Table D.1. Fixed parameters for the Earth-Moon system.

Parameter Units S0a DE430 EPM

(EMRAT † − 81.300570) × 106 1 -1 -1

(RE − 6378.1366) × 104 km 0.0 -3 0.0

(J̇2E − 2.6 × 10−11) year−1 0.0 0.0 0.0
(k20,E − 0.335) 0.0 0.0 0.0
(k21,E − 0.32) 0.0 0.0 0.0
(k22,E − 0.30102) -0.01902 0.01898 -0.01902

(τO0,E − 7.8 × 10−2) × 102 day 0.0 -1.4 0.0

(τO1,E + 4.4 × 10−2) day 0.0 0.0‡ 0.0

τO2,E + 1.13 × 10−1) × 101 day 0.0 0.13 0.0
(RM − 1738.0) km 0.0 0.0 0.0

(αC − 7.0 × 10−4) 0.0 0.0 0.0
(k2,M − 0.024059) 0.0 0.0 0.0
(l2 − 0.0107) 0.0 0.0 0.0
†: EMRAT is fit during the joint analysis between the lunar and planetary part.
‡: τO1,E in Folkner et al. (2014) given as -0.0044 is a typographical error.

Table D.2. Extended body parameters for the Earth and the Moon. Uncertainties for S0a (1-σ) are obtained from a 5% jackknife (JK), while other
solutions (DE430 and EPM) are assumed as (1-σ) formal uncertainties. †: C32, S 32 and C33 are reference values from the GRAIL analysis by
Konopliv et al. (2013). ‡: h2 reference value from LRO-LOLA analysis by Mazarico et al. (2014).

Parameter Units S0a DE430 EPM

(GMEMB − 8.99701140 × 10−10) × 1019 AU3/day2 −2 ± 1 -10 10 ± 5

(τR1,E − 7.3 × 10−3) × 105 day 1 ± 4 6 ± 30 57 ± 5

(τR2,E − 2.8 × 10−3) × 105 day 9.3 ± 0.4 −27 ± 2 5.5 ± 0.4

(CT /(mMR2) − 0.393140) × 106 7.3 ± 0.2 2 (derived) 2 (derived)

(C32 − 4.8404981 × 10−6†) × 109 4.1 ± 0.3 4.4 4.4 ± 0.1

(S 32 − 1.6661414 × 10−6†) × 108 1.704 ± 0.006 1.84 1.84 ± 0.02

(C33 − 1.7116596 × 10−6†) × 108 −1.19 ± 0.04 −3.6 −4.2 ± 0.2

(τM − 9 × 10−2) × 104 day −2 ± 5 58.0 ± 100 60 ± 10

(
kv

CT
− 1.6 × 10−8) × 1010 day−1 10.2 ± 0.4 4.0 ± 10.0 3.0 ± 2.0

( fc − 2.1 × 10−4) × 106 41 ± 3 36 ± 28 37 ± 4

(h2 − 3.71 × 10−2‡) × 103 6.6 ± 0.2 11.0 ± 6 6 ± 1
Q27.212 − 45 (derived) 3.2 ± 0.5 0 ± 5 0 ± 1

Table D.3. Comparison between solutions: Extended body parameters for the Earth, Moon and mass parameters for the Earth-Moon system.
Uncertainties (1-σ) are obtained from a 5% jackknife (JK). †: C32, S 32 and C33 are reference values from the GRAIL analysis by Konopliv et al.
(2013). ‡: h2 reference value from LRO-LOLA analysis by Mazarico et al. (2014).

Parameter Units S0b S1 S2 S2b S2c

(GMEMB − 8.99701140 × 10−10) × 1019 AU3/day2 7 ± 4 4 ± 2 6.0 ± 0.5 7.2 ± 0.5 6.1 ± 0.5

(τR1,E − 7.3 × 10−3) × 105 day -7 ± 7 6 ± 3 3 ± 9 -12 ± 14 6 ± 4

(τR2,E − 2.80 × 10−3) × 105 day 16.0 ± 0.8 8.7 ± 0.3 10.0 ± 0.9 11.5 ± 0.9 9.6 ± 0.3

(CT /mMR2
M
− 3.93140 × 10−1) × 106 -0.6 ± 0.2 8.2 ± 0.2 5.0 ± 0.2 9.0 ± 0.5 5.1 ± 0.2

(C32 − 4.8404981 × 10−6†) × 109 fixed 3.9 ± 0.3 fixed fixed 0.2 ± 0.3

(S 32 − 1.6661414 × 10−6†) × 108 fixed 1.664 ± 0.006 fixed fixed 0.189 ± 0.006

(C33 − 1.7116596 × 10−6†) × 108 fixed -2.39 ± 0.04 fixed fixed fixed

(τM − 9 × 10−2) × 104 day 298 ± 7 -34 ± 3 -56 ± 5 -17 ± 7 -56 ± 5

(
kv

CT
− 1.6 × 10−8) × 1010 day−1 -33 ± 1 14.9 ± 0.5 17.9 ± 0.4 14 ± 1 18.1 ± 0.2

( fc − 2.1 × 10−4) × 106 36 ± 5 42 ± 3 47 ± 3 97 ± 6 48 ± 3

(h2 − 3.71 × 10−2‡) × 103 3.6 ± 0.5 6.8 ± 0.2 2.3 ± 0.2 1.4 ± 0.1 2.7 ± 0.2

(k2,M − 0.024059) × 103 fixed fixed fixed -1 ± 1 fixed

(C32(Core) + 5.6 × 10−8) × 1010 NA NA -3 ± 2 -3 ± 2 61 ± 40

(S 32(Core) − 5.0 × 10−8) × 1010 NA NA 5 ± 10 23 ± 10 -33 ± 60
Q27.212 − 45 (derived) −8.9 ± 0.2 5.0 ± 0.2 6.6 ± 0.3 4 ± 0.25 6.6 ± 0.3
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ABSTRACT

We present here the new INPOP lunar ephemeris, INPOP17a. This ephemeris is obtained
through the numerical integration of the equations of motion and of rotation of the Moon,
fitted over 48 years of Lunar Laser Ranging (LLR) data. We also include the 2 years of infrared
(IR) LLR data acquired at the Grasse station between 2015 and 2017. Tests of the universality
of free fall are performed. We find no violation of the principle of equivalence at the (-3.8 ±
7.1) × 10−14 level. A new interpretation in the frame of dilaton theories is also proposed.

Key words: Moon, ephemerides, gravitation

1 INTRODUCTION

The Earth-Moon system is an ideal tool for carrying out tests of

general relativity and more particularly the test of the universality

of free fall (Nordtvedt 1968a; Anderson et al. 1996). Since 1969, the

lunar laser ranging (LLR) observations are obtained on a regular

basis by a network of laser ranging stations (Faller et al. 1969;

Bender et al. 1973), and currently with a millimeter-level accuracy

(Samain et al. 1998; Murphy 2013). Thanks to this level of accuracy

at the solar system scale, the principle of the universality of free fall

(UFF) can in theory be tested. However, at these accuracies (of

1 cm or below), the tidal interactions between the Earth and the

Moon are complex to model, especially when considering that the

inner structure of the Moon is poorly known (Wieczorek 2007;

Williams & Boggs 2015). This explains why the UFF test is only

possible after an improvement of the dynamical modeling of the

Earth-Moon interactions.

Recently, thanks to the GRAIL mission, an unprecedented de-

scription of the shape of the lunar gravity field and its variations

were obtained for the 6 months of the duration of the mission (Kono-

pliv et al. 2014; Lemoine et al. 2014). This information is crucial

for a better understanding of the dissipation mechanism over longer

time span (Matsumoto et al. 2015; Williams & Boggs 2015; Mat-

suyama et al. 2016). Furthermore, since 2015, the Grasse station

which produces more than 50 % of the LLR data, has installed a

new detection path at 1064 nm (IR) ranging wavelength leading to a

significant increase of the number of observations and of the signal

to noise ratio (Courde et al. 2017).

Together with these new instrumental and GRAIL develop-

ments, the Moon modeling of the INPOP planetary ephemeris was

⋆ E-mail: viswanathan@geoazur.unice.fr

improved. Since 2006, INPOP has become a reference in the field of

the dynamics of the solar system objects and in fundamental physics

(Fienga et al. 2011, 2016).

The INPOP17a version presented here also benefits some of

the planetary improvements brought by the use of updated Cassini

deduced positions of Saturn. The planetary and lunar Chebyshev

polynomials built from INPOP17a have been made available on the

INPOP website1 together with a detailed technical documentation

(Viswanathan et al. 2017).

Since 2010, thanks to the millimeter-level accuracy of the LLR

measurements and the developments in the dynamical modeling of

the Earth-Moon tidal interactions, differences in acceleration of

Earth and Moon in free fall towards the direction of the Sun could

reach an accuracy of the order of 10−14 (Merkowitz 2010; Williams

et al. 2012). With the improvement brought by GRAIL, addition of

IR LLR observations and the recent improvement of the dynamical

modeling of INPOP17a, one can expect to confirm or improve this

limit.

In this paper, we first present (see section 2.1) the statistics

related to the IR dataset obtained at the Grasse station since 2015.

In section (2.2), we introduce the updated dynamical model of the

Moon as implemented in the INPOP planetary ephemeris including

contributions from the shape of the fluid core. In section (2.4), we

explain how we use the IR data to fit the lunar dynamical model

parameters with the GRAIL gravity field coefficients as a supple-

mentary constraint for the fluid core description.

Finally in section (3) we describe how we test the UFF and

give new constraints. In addition, we present a generalization of

the interpretation in terms of gravitational to inertial mass ratios of

1 Available at: http://www.imcce.fr/inpop

© 2018 The Authors
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UFF constraints, based on recent developments in dilaton theories

(Hees & Minazzoli 2015; Minazzoli & Hees 2016). Hinged on this

generalization, we deduce that from a pure phenomenological point

of view, one cannot interpret UFF violation tests in the Earth-Moon

system as tests of the difference between gravitational and inertial

masses only.

2 LUNAR EPHEMERIDES

The new INPOP planetary ephemerides INPOP17a (Viswanathan

et al. 2017) is fitted to LLR observations from 1969 to 2017, in-

cluding the new IR LLR data obtained at the Grasse station.

2.1 Lunar Laser Ranging

The principle of the LLR observations is well documented (Murphy

et al. 2012; Murphy 2013). Besides the lunar applications, the laser

ranging technique is still intensively used for tracking Earth orbiting

satellites, especially for very accurate orbital (Peron 2013; Lucchesi

et al. 2015) and geophysical studies (Jeon et al. 2011; Matsuo et al.

2013).

Non-uniform distributions in the dataset are one contributor

to correlations between solution parameters (Williams et al. 2009).

Like one can see on Fig. (1), Fig. (2) and Fig. (3), about 70 % of the

data are obtained after reflection on A15 reflector and on an average

40 % of the data are acquired within 30◦ of the quarter Moons.

In this study, we show how the IR LLR observations acquired

at the Grasse station between 2015 and 2017 (corresponding to 7 %

of the total LLR observations obtained between 1969 and 2017 from

all known ILRS ground stations) can help to reduce the presence of

such heterogeneity.

2.1.1 Spatial distribution

Statistics drawn from the historical LLR dataset (1969-2015) show

an observer bias to range to the larger Apollo reflector arrays (mainly

Apollo 15). This trend (see Fig. 1 and Fig. 3) is also present on statis-

tics taken during time periods after the re-discovery of Lunokhod

1 by Murphy et al. (2011). This is due to the higher return rate and

thermal stability over a lunar day on the Apollo reflectors, thereby

contributing to the higher likelihood of success.

With the installation of the 1064 nm detection path (see Fig.

3), as explained in Courde et al. (2017), the detection of photon

reflected on all reflectors is facilitated, especially for Lunokhod 2

(L2): about 17 % of IR data are obtained with L2 when only 2 %

were detected at 532 nm.

Owing to the spatial distribution of the reflectors on the Moon,

Apollo 11 and 14 give sensitivity to longitude librations, Apollo

15 gives sensitivity to latitude librations and the Lunokhod reflec-

tors give sensitivity both in the latitude and longitude libration of

the Moon. The heterogeneity in the reflector distribution of LLR

data affects then the sensitivity of the lunar modeling adjustment

(Viswanathan et al. 2016). By acquiring a better uniformity in the

reflector sampling, IR contributes to improve the adjustment of the

Moon dynamical and rotational modeling (see section 2.5).

2.1.2 Temporal distribution

The full and new Moon periods are the most favorable for testing

gravity, as the gravitational and tidal effects are maximum. This was

partially demonstrated by Nordtvedt (1998). On Fig. (2) are plot-

ted the distributions of normal points relative to the synodic angle

for APOLLO (in capitals, abbreviation for Apache Point Observa-

tory Lunar Laser-ranging Operation, while Apollo refers to the US

manned lunar missions) and Grasse station obtained at 532 nm and

1064 nm. About 25 % of the APOLLO data sample and almost 45

% of the Grasse 532 nm data sample are obtained within 30◦ of the

quarter Moons. This can be explained by two factors:

(i) New Moon phase

As the pointing of the telescope onto the reflectors is calibrated

with respect to a nearby topographical feature on the surface of the

Moon, the pointing itself becomes a challenge when the reference

points lie in the unlit areas of the Moon. Also, as the New Moon

phase occurs in the daylight sky, the noise floor increases and the

detector electronics become vulnerable due to ranging at a very

close angle to the Sun (Williams et al. 2009; Courde et al. 2017).

(ii) Full Moon phase

During this phase, thermal distortions remain as the primary chal-

lenge, arising due to the over-head Sun heating of the retro-reflector

arrays. This induces refractive index gradients within each corner

cube causing a spread in the return beam, which makes detection

more difficult. The proportion of this effect is partially linked to

the thermal stability of the arrays. Since the A11, A14 and A15

arrays have a better thermal stability compared to the L1 and L2 ar-

rays (Murphy et al. 2014), observations to the latter become sparse

during the full Moon phase (where A and L indicates Apollo and

Lunokhod retro-reflectors, respectively).

Despite these challenges, LLR observations during the above men-

tioned phases of the Moon have been acquired with the IR detection.

After the first two years of 1064 nm detection path at the Grasse

station, the observations obtained within the 30◦ of the quarter

Moons are reduced to 32 %, effectively increasing by around 10 %

the portion of data sample close from the most favorable periods

(new and full Moon) for tides and UFF studies.

This is primarily achieved due to the improved signal to noise

ratio resulting from an improved transmission efficiency of the atmo-

sphere at the IR wavelength of 1064 nm. In addition, high precision

data have also been acquired on the two Lunokhod reflector arrays

during full Moon phase.

In section (3), we will see how the IR LLR data help to improve

the results related to the UFF tests.

2.1.3 Observational Accuracy of the LLR observations

APOLLO observations are obtained with a 3.5 m telescope (under

time sharing) at the Apache Point Observatory, while Grasse obser-

vations are obtained with a 1.5 m telescope dedicated for SLR and

LLR. A larger aperture is beneficial for statistically reducing the

uncertainty of the observation (Murphy 2013), which translates to

millimeter level accuracies for APOLLO. One can notice in Fig. (4)

that the current lunar ephemerides have a post-fit residual scatter

(RMS) of about 1-2 cm for the recent observations while the LLR

normal point accuracy is given to be at least two times smaller.

This calls for an improvement of the Earth-Moon dynamical mod-

els within highly accurate numerically integrated ephemerides (see

section 2.5).
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the Moon and the Earth (NM, f igM− f igE , using Folkner et al. (2014,

Eqn. 44)) and the viscous interaction between the fluid core and the

mantle (NCMB).

The motion of the uniform fluid core is controlled by the mantle

interior, with the fluid core moment of inertia (Ic) constant in the

frame of the mantle. The angular momentum differential equation

of the fluid core in the mantle frame is then given by:

d

dt
Icωc + ωm × Icωc = −NCMB (2d)

NCMB = kv
(

ωc − ωm

)

+
(

Cc − Ac

) (

ẑm · ωc

) (

ẑm × ωc

)

(2e)

where kv is the coefficient of viscous friction at the CMB and ẑm
is a unit vector aligned with the polar axis of the mantle frame. The

second part on the right-hand side of Eqn. (2e) is the inertial torque

on the axis-symmetric fluid core.

2.3 Reduction model

The reduction model for the LLR data analysis has been imple-

mented within a precise orbit determination and geodetic software:

GINS (Marty et al. 2011; Viswanathan et al. 2015) maintained

by space geodesy teams at GRGS/OCA/CNES and written in For-

tran90. The subroutines for the LLR data reduction within GINS is

vetted through a step-wise comparison study conducted among the

LLR analysis teams in OCA-Nice (this study), IMCCE-Paris and

IfE-Hannover, by using simulated LLR data and DE421 (Folkner

et al. 2009) as the planetary and lunar ephemeris. The modeling

follows the recommendations of IERS 2010 (Petit & Luzum 2010).

To avoid any systematics in the reduction model, the upper-limit on

the discrepancy between the teams was fixed to 1 mm in one-way

light time.

From each normal point, the emission time (in UTC) and the

round trip time (in seconds) are used to iteratively solve for the

reflection time in the light-time equations. A detailed description is

available in Moyer (2003, Section 8 & 11) for a precise round-trip

light-time computation.

A detailed description of the reduction model used for this

study is provided in Manche (2011).

2.4 Fitting procedure

For APOLLO station observations, scaling the uncertainties of

the normal points depending on the change of equipments, or

a change in the normal point computation algorithm, is advised

(see http://physics.ucsd.edu/~tmurphy/apollo/151201_

notes.txt). Unrealistic uncertainties present in observations from

Grasse, McDonald MLRS2 and Matera between time periods 1998-

1999, 1996 and 2010-2012 respectively, are rescaled.

During the fitting procedure, bounds are used (Stark & Parker

1995) for limiting the variability of the estimated parameters, while

considering the parameter correlation and variance within the nor-

mal matrix. For the gravity field coefficients (including C2,0,M and

C2,2,M ), the bounds are placed using the uncertainties provided by

GRAIL (after scaling the formal uncertainties by a factor 40, fol-

lowing the recommendation by Konopliv et al. (2013)) with their

values centered on the GRAIL gravity field estimates.

Additional details of the weighting scheme and the fitting pro-

cedure used for the construction of INPOP17a solution can be found

in Viswanathan et al. (2017). A filtering scheme is enforced during

the iterative fit of the parameters. At each iteration, the residuals

Figure 5. Post-fit residuals in (cm) vs time (year) obtained with INPOPG+IR

specification (sec. 2.5) for McDonald, MLRS1, MLRS2, Haleakala and

Matera stations

Figure 6. Post-fit residuals in (cm) vs time (year) obtained with INPOPG+IR

specification (sec. 2.5) for GRASSE station with the Green wavelength

Figure 7. Post-fit residuals in (cm) vs time (year) obtained with INPOPG+IR

specification (sec. 2.5) for GRASSE station with the IR wavelength

are passed through a 3-σ filter (where σ is recomputed at each

iteration).

2.4.1 Biases

Changes in the ground station introduces biases in the residuals.

These biases correspond either with a known technical develop-

ment at the station (new equipment, change of optical fiber cables)

or systematics. Any estimated bias can be correlated with a cor-

responding change in the ground station, provided the incidents

have been logged. A list of known and detected biases are given in

Viswanathan et al. (2017).

2.5 Results

Table (5) gives the list of the adjusted parameters related to the lunar

interior when Table (4) provides a list of the fixed parameters. The

fitted coordinates of the Moon reflectors and of the LLR stations

can be found in Viswanathan et al. (2017). As the LLR observations

are not included in the construction of the ITRF (Altamimi et al.

2016), small corrections to the LLR station coordinates help for

the improvement of LLR residuals during the construction of the
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Table 1. Comparison of post-fit residuals of LLR observations from ground stations with corresponding time span, number of normal points available, number

of normal points used in each solution after a 3-σ rejection filter. The WRMS (in cm) is obtained with solutions INPOP13c (1969-2013) and INPOP17a

(1969-2017). INPOP13c statistics are drawn from Fienga et al. (2014).

INPOP13c INPOP17a

Code Station Time span Available Used WRMS Used WRMS

[cm] [cm]

70610 APOLLO, NM, USA (group A) 2006 - 2010 941 940 4.92 929 1.27

70610 APOLLO, NM, USA (group B) 2010 - 2012 506 414 6.61 486 1.95

70610 APOLLO, NM, USA (re-group C) 2012 - 2013 361 359 7.62 345 1.52

70610 APOLLO, NM, USA (group D) 2013 - 2016 832 - - 800 1.15

01910 Grasse, FR 1984 - 1986 1187 1161 16.02 1161 14.01

01910 Grasse, FR 1987 - 1995 3443 3411 6.58 3407 4.11

01910 Grasse, FR 1995 - 2006 4881 4845 3.97 4754 2.86

01910 Grasse, FR 2009 - 2013 999 990 6.08 982 1.41

01910 Grasse, FR 2013 - 2017 3351 - - 3320 1.51

56610 Haleakala, HI, USA 1984 - 1990 770 739 8.63 728 4.80

07941 Matera, IT 2003 - 2013 83 70 7.62 37 2.37

07941 Matera, IT 2013 - 2015 30 - - 28 2.93

71110 McDonald, TX, USA 1969 - 1983 3410 3302 31.86 3246 18.87

71110 McDonald, TX, USA 1983 - 1986 194 182 20.60 148 16.77

71111 MLRS1, TX, USA 1983 - 1984 44 44 29.43 44 32.73

71111 MLRS1, TX, USA 1984 - 1985 368 358 77.25 356 62.58

71111 MLRS1, TX, USA 1985 - 1988 219 207 7.79 202 11.07

71112 MLRS2, TX, USA 1988 - 1996 1199 1166 5.36 1162 3.81

71112 MLRS2, TX, USA 1996 - 2012 2454 1972 5.81 1939 3.72

71112 MLRS2, TX, USA 2012 - 2015 17 - - 15 2.59

TOTAL 1969 - 2017 25289 20160 24089

Table 2. Grasse LLR data retro-reflector statistics computed using post-fit residuals obtained with INPOPG and INPOPG+IR, within the fit intervals 01/01/2015

to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by the number of normal points from each reflector).

Grasse

LRRR INPOPG INPOPG+IR % change NPTs

A15 0.0183 0.0181 1.1 1018

A14 0.0203 0.0177 12.8 172

A11 0.0267 0.0239 10.5 215

L1 0.0215 0.0166 22.8 265

L2 0.0246 0.0215 12.6 256

WRMS 0.0207 0.0189 9.5 1926

Table 3. APOLLO LLR data retro-reflector statistics computed using post-fit residuals obtained with INPOPG and INPOPG+IR, within the fit intervals

01/01/2015 to 01/01/2017 (with a 3-σ filter), with the WRMS in m (RMS weighted by the number of normal points from each reflector).

APOLLO

LRRR INPOPG INPOPG+IR % change NPTs

A15 0.0127 0.0127 0.2 344

A14 0.0192 0.0177 7.8 176

A11 0.0185 0.0169 8.7 164

L1 0.0186 0.0157 15.6 89

L2 0.0136 0.0137 -0.7 64

WRMS 0.0159 0.0149 6.7 837

lunar ephemerides. The Earth Orientation parameters (EOP) and

the modeling of the Earth rotation are however kept fixed to the

IERS convention (see section 2.3).

The solution INPOPG with an axis-symmetric core fitted to

LLR observations serves as a validation of our lunar model and

analysis procedure, against the DE430 JPL planetary and lunar

ephemeris analysis described in Folkner et al. (2014) and EPM

IAA RAS ephemeris in Pavlov et al. (2016). Only 532 nm wave-

length LLR data are used for matching with the DE430 and

EPM ephemeris. In Folkner et al. (2014); Pavlov et al. (2016)
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Figure 8. Post-fit residuals in (cm) vs time (year) obtained with INPOPG+IR

specification (sec. 2.5) for APOLLO station

and INPOPG, gravity field coefficients up-to degree and order 6

are used for the Moon (GL0660b from Konopliv et al. (2013))

and the Earth (GGM05C from Ries et al. (2016) for INPOP17a

ephemeris and EGM2008 from Pavlis et al. (2012, 2013) for

DE/EPM ephemerides). Coefficients C32, S32 and C33 are then

included in the fit parameters as they improve the overall post-fit

residuals. For INPOPG, the improvement of the formal uncertainty

compared to Pavlov et al. (2016), especially in the estimation of

parameter kv/CT indicates a strong dissipation mechanism within

the Moon, through viscous torques at the fluid core-mantle bound-

ary. Overall, INPOP uncertainties are consistent with EPM (Pavlov

et al. 2016) published values. DE (Williams et al. 2013; Folkner

et al. 2014) uncertainties are greater than INPOP and EPM, and

should therefore be considered as more realistic.

Differences between GL0660b values and fitted C32, S32 and

C33 from Folkner et al. (2014), Pavlov et al. (2016) or in INPOPG,

are several orders of magnitude greater than the mean GRAIL un-

certainties (see Konopliv et al. (2013)). These results suggest that

some significant effects impacting the LLR observations, are ab-

sorbed by the adjustment of the degree-3 of the full Moon gravity

field.

The solution INPOPG+IR refers to the addition of two years of

IR LLR observations (Courde et al. 2017) described in section (2.1)

and built in following the same specification as of INPOPG.

This dataset is weighted at the same level as the APOLLO

station normal points within the estimation procedure (see section

2.4).

The first outcome from the introduction of the IR data sets is

the improvement of the post-fit residuals obtained for L1 reflector

as one can see on Tables (2 and 3) and on Figures (5 to 8). This is

due to the increase of normal points obtained for this reflector as

discussed in section (2.1.1).

The second conclusion is that because of only two years on

data, the improvement brought by the addition of IR data on the

estimated parameters characterizing the Moon and its inner struc-

ture is significant, especially for those quantifying the dissipation

mechanism such as Q27.212 and τM with a decreasing uncertainty

or
kv
CT

and fc with a significant change in the fitted value (see Table

5).

A significant global improvement is noticeable when one com-

pares post-fit residuals obtained with INPOPG and with INPOPG+IR

with those obtained with INPOP13c as presented in Fienga et al.

(2014) or in Tables 2 and 3. Finally one should notice in Table (1)

the 1.15 cm obtained for the post-fit weighted RMS obtained for the

3 years of the last period of the APOLLO data (group D) as well as

that for the IR Grasse station.

3 TEST OF THE EQUIVALENCE PRINCIPLE

3.1 Context

Among all possibilities to test General Relativity (GR), the tests of

the motion of massive bodies as well as the propagation of light in

the solar system, were historically the first ones, and still provide the

highest accuracies for several aspects of gravity tests (see Joyce et al.

(2015); Berti et al. (2015); Yunes et al. (2016) for recent overviews

of constraints on alternative theories from many different types of

observations). This is in part due to the fact that the dynamics of

the solar system is well understood and supported by a long history

of observational data.

In GR, not only do test particles with different compositions

fall equally in a given gravitational field, but also extended bodies

with different gravitational self-energies. While a deviation from

the former case would indicate a violation of the Weak Equivalence

Principle (WEP), a deviation from the latter case would be a sign of

a violation of the Strong Equivalence Principle (SEP) (Will (2014)).

Violations of the Equivalence Principles are predicted by a number

of modifications of GR, often intending to suggest a solution for

the problems of Dark Energy and Dark Matter Capozziello & de

Laurentis (2011); Joyce et al. (2015); Berti et al. (2015) and/or to put

gravity in the context of Quantum Field Theory Kostelecký (2004);

Woodard (2009); Donoghue (2017). The Universality of Free Fall

(UFF), an important part of the Equivalence Principle, is currently

tested at a level of about 10−13 with torsion balances (Adelberger

et al. 2003) and LLR analyses (Williams et al. 2012).

As the Earth and the Moon both fall in the gravitational field

of the Sun — and because they neither have the same compositions,

nor the same gravitational self-energies — the Earth-Moon system

is an ideal probe of both the WEP and the SEP, while torsion balance

(Adelberger et al. 2003) or MICROSCOPE (Liorzou et al. 2014) are

only sensitive to violations of the WEP.

In this paper, we implemented the equations given in Williams

et al. (2012) and introduce in the INPOP fit, the differences between

the accelerations of the Moon and the Earth.

The aim of this work is first to give the most general constraint

in terms of acceleration differences without assuming metric theo-

ries or other types of alternative theories (section 3.3). In a second

step (section 3.4), we propose two interpretations : one following the

usual formalism proposed by Nordtvedt (see, e.g., (Nordtvedt 2014)

and references therein), and the other following the dilaton theory

(Damour & Polyakov 1994; Hees & Minazzoli 2015; Minazzoli &

Hees 2016).

3.2 Method

In order to test possible violations of GR in terms of UFF, a sup-

plementary acceleration is introduced in the geocentric equation of

motion of the Moon, such that the UFF violation related difference

between the Moon and the Earth accelerations reads (Nordtvedt

1968b):

∆a
UFF ≡ (aM − aE )

UFF = aE∆ESM (3)

∆ESM is estimated in the LLR adjustment together with the other

parameters of the lunar ephemerides given in Table (5). In what

follows, we shall name ∆ESM “UFF violation parameter”. ESM

stands for the three bodies involved, namely the Earth, the Sun and

the Moon respectively. As we shall see in Sec. 3.4.2, some theoreti-

cal models induce a dependence of the UFF violation parameter on

the composition of the Sun, in addition to the “more usual” depen-
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dence on the compositions and on the gravitational binding energies

of the Moon and the Earth.

In order to estimate ∆ESM with the appropriate accuracy, one

should correct for supplementary effects such as the solar radiation

pressure and thermal expansion of the retro-reflectors (Vokrouh-

lický 1997; Williams et al. 2012). An empirical correction on

the radial perturbation (∆rEM ) induced by the UFF test has to

be applied. For instance, with some simplifying approximations

(Nordtvedt (2014)), one can show that the UFF additional accelera-

tion would indeed lead to an additional radial perturbation (∆rEM )

of the Moon’s orbit towards the direction of the Sun given by:

∆rEM = S∆ESM cos D, (4)

where S is a scaling factor of about −3 × 1010 m (Williams et al.

2012) and D is the synodic angle. A correction ∆r = 3.0 ± 0.5 mm

(Vokrouhlický 1997; Williams et al. 2012) is then applied in order

to correct for solar radiation pressure and thermal radiation of the

retro-reflectors, and a new corrected value of∆ESM is then deduced

(see Table 6).

3.3 Results

Fits were performed including in addition to the previous fitted pa-

rameters presented in Table (5), the UFF violation parameter∆ESM

given in Eqn. (3). Two different fits were considered including 532

nm and 1064 nm data sets (solution labeled INPOPG+IR), or just the

532 nm data sets (solution labeled INPOPG). A supplementary ad-

justment was also performed for a better comparison to the previous

determination from other LLR analysis groups, which were limited

to a data sample up to 2011 (labeled as limited data). Results are

given in Table (6).

The additional acceleration of the Moon orbit in the direction of

the Sun correlates with a coefficient of 0.95 and 0.90 with GMEMB

and the Earth-Moon mass ratio (EMRAT), respectively. In all the

solutions w.r.t LLR EP estimation, the gravitational mass of the

Earth Moon barycenter (GMEMB) remains as a fit parameter due

its high correlation with the EP parameter (∆ESM ). EMRAT was

estimated from a joint planetary solution and kept fixed during

LLR EP tests (for all INPOP solutions in Table 6) due to its weak

determination from LLR.

A test solution that fitted EMRAT, with GMEMB as a fixed

parameter, gives an estimate of∆ESM = (8±7.0)×10−14. However,

the value of EMRAT estimated from an LLR only solution has an

uncertainty of one order of magnitude greater than that obtained

from the joint planetary fit. This is also consistent with a similar

result by Williams et al. (2009). As a result, EMRAT was not

included as a fit parameter for the estimates provided in Table (6),

as it resulted in a degraded fit of the overall solution.

Williams et al. (2012) show that including annual nutation

components of the Earth pole direction in space, to the list of fitted

parameters during the estimation of LLR EP solution, increases

the uncertainty of the estimated UFF violation parameter (∆ESM )

by 2.5 times. Moreover, it is to be noted that within Table (6), the

solutions by Williams et al. (2009, 2012); Müller et al. (2012) use the

IERS2003 (McCarthy & Petit 2004) recommendations within the

reduction model, while all INPOP17 solutions use IERS 2010 (Petit

& Luzum 2010) recommendations. The notable difference between

the two IERS models impacting the LLR EP estimation is expected

to be from the precession-nutation of the celestial intermediate pole

(CIP) within the ITRS-GCRS transformation Petit & Luzum (2010,

p. 8).

Eqn. (4) shows the dependence of∆ESM w.r.t the cosine of the

lunar orbit synodic angle, synonymous with the illumination cycle

of the lunar phases. Due to the difficulties involved with ranging to

the Moon during the lunar phases with the extreme values of cos D

(New and Full Moon) as described in section (2.1.2), the LLR ob-

servations during these phases remain scarce. The availability of IR

LLR observations from Grasse, contributes to the improvement of

this situation, as shown in Fig. (2). This is reflected in the improve-

ment of the uncertainty of the estimated value of ∆ESM by 14 %,

with solutions including the IR LLR data.

Using both IR and green wavelength data, and empirically

correcting for the radial perturbation for effects related to solar

radiation pressure and thermal expansion, our final result on the

UFF violation parameter is given by (see, also, Table 6)

∆ESM = (−3.8 ± 7.1) × 10−14 (5)

The continuation of the IR observational sessions at Grasse

will help to continue the improvement in the ∆ESM estimations.

An observable bias in the differential radial perturbation of

the lunar orbit w.r.t the Earth, towards the direction of the Sun,

if significant and not accounted for within the dynamical model,

would result in a false indication of the violation of the principle

of equivalence estimated with the LLR observations. Oberst et al.

(2012) show the distribution of meteoroid impacts with the lunar

phase. Peaks within the histogram in Oberst et al. (2012, p 186)

indicate a non-uniform temporal distribution with a non-negligible

increase in both small and large impacts during the New and Full

Moon phase. Future improvements to the LLR EP estimation must

consider the impact of such a bias that could potentially be absorbed

during the fit by the LLR UFF violation parameter ∆ESM .

3.4 Theoretical interpretations

3.4.1 Nordtvedt’s interpretation: gravitational versus inertial

masses

Although equations of motion are developed at the post-Newtonian

level in INPOP (Moyer 2003), violations of the UFF can be cast

entirely in the Newtonian equation of motion with sufficient accu-

racy. As described by Nordtvedt (Nordtvedt 1968b), a difference of

the inertial (mI ) and gravitational (mG) masses would lead to an

alteration of body trajectories in celestial mechanics according to

the following equation:

aT = −

(

mG

mI

)

T

∑

A,T

GmG
A

r3
AT

rAT , (6)

where rAT = xT − xA and G is the constant of Newton.

Following Williams et al. (2012), the relative acceleration at

the Newtonian level between the Earth and the Moon due to the

attraction of the Sun reads

aM − aE = −
Gµ

r3
EM

rEM + GmG
S

[

rSE

r3
SE

−
rSM

r3
SM

]

+

+GmG
S

[

rSE

r3
SE

((

mG

mI

)

E

− 1

)

−
rSM

r3
SM

((

mG

mI

)

M

− 1

)

]

, (7)

with µ ≡ mG
M
+ mG

E
+

((

mG

mI

)

E
− 1

)

mG
M
+

((

mG

mI

)

M
− 1

)

mG
E

.
(

mG

mI

)

E
and

(

mG

mI

)

M
are the ratios between the gravitational and

the inertial masses of the Earth and Moon respectively.

With ephemerides, the first term of Eqn. (7) does not lead to

a sensitive test of the UFF, because it is absorbed in the fit of the
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parameter mG
M
+ mG

E
(Williams et al. 2012, e.g.), while the last

term, does. At leading order, one can approximate both distances

appearing in this last term as being approximately equal. One gets

∆a
UFF ≡ (aM − aE )

UFF

≈ GmG
S

[

rSE

r3
SE

((

mG

mI

)

E

− 1

)

−
rSM

r3
SM

((

mG

mI

)

M

− 1

)

]

≈ aE

[((

mG

mI

)

E

− 1

)

−

((

mG

mI

)

M

− 1

)]

≡ aE∆ESM (8)

with

∆ESM =

[(

mG

mI

)

E

−

(

mG

mI

)

M

]

. (9)

One recovers Eqn. (3). Therefore, in this context, constraints on

∆ESM can be interpreted as constraints on the difference of the

gravitational to inertial mass ratios between the Earth and the Moon.

Furthermore, the LLR test of UFF captures a combined effect

of the SEP, from the differences in the gravitational self-energies,

and the WEP due to compositional differences, of the Earth-Moon

system. In general, one has:

∆ESM = ∆
WEP
ESM

+ ∆SEP
ESM

(10)

In order to separate the effects of WEP, we rely on results from

laboratory experiments that simulate the composition of the core and

the mantle materials of the Earth-Moon system. One such estimate

is provided by Adelberger (2001), that translates to the following

mass ratios difference:

∆
WEP
ESM

=

[(mG

mI

)

E
−
(mG

mI

)

M

]

WEP
(11)

= (1.0 ± 1.4) × 10−13 (12)

It is also possible to deduce the Nordtvedt parameter (η) defined as:

∆
SEP
ESM

= ηSEP

[(

|Ω|

m c2

)

E

−

(

|Ω|

m c2

)

M

]

(13)

≈ ηSEP × (−4.45 × 10−10) (14)

where Ω and mc2 are the gravitational binding and rest mass ener-

gies respectively for the Earth and the Moon (subscripts E and M

respectively). The value of−4.45×10−10 is obtained from Williams

et al. (2009, Eqn. 7).

However, all metric theories lead to a violation of the SEP

only. Therefore, for metric theories, it is irrelevant to try to separate

violation effects of the WEP and SEP, as the WEP is intrinsically

respected.

3.4.2 Dilaton theory and a generalization of the Nordtvedt

interpretation

Starting from a general dilaton theory, a more general equation

governing celestial mechanics than (6) has been found to be (Hees

& Minazzoli 2015; Minazzoli & Hees 2016)

aT = −
∑

A,T

GmG
A

r3
AT

rAT (1 + δT + δAT ) , (15)

The coefficients δT and δAT parametrize the violation of the UFF.

In this expression the inertial mass mI
A

writes in terms of the grav-

itational mass mG
A

as mG
A
= (1 + δA)m

I
A

(Hees & Minazzoli 2015;

Minazzoli & Hees 2016). Of course, since mG
A
/mI

A
= 1 + δA, one

recovers Eqn. (6) when δAB = 0 for all A and B. From Eqn. (15),

one can check that the gravitational force in this context still satisfies

Newton’s third law of motion:

mI
AaA =

GmI
A

mI
B

r3
AB

rAB (1 + δA + δB + δAB) = −mI
BaB . (16)

In the dilaton theory, the δ coefficients are functions of “dila-

tonic charges” and of the fundamental parameters of the theory

(Damour & Donoghue 2010; Hees & Minazzoli 2015; Minazzoli

& Hees 2016). However, in what follows, we will consider the

phenomenology based on the δ parameters independently of its the-

oretical origin, as a similar phenomenology may occur in a different

theoretical framework.

In general, δT can be decomposed into two contributions: one

from a violation of the WEP and one from a violation of the SEP:

δT = δ
WEP
T + δSEP

T , with δSEP
T = η

|ΩT |

mT c2
, (17)

The quantity δSEP
T

depends only on the gravitational energy content

of the body T . On the other hand, δWEP
T

depends on the compo-

sition of the falling body T (Damour & Donoghue (2010); Hees &

Minazzoli (2015); Minazzoli & Hees (2016)). In some theoretical

situations (see e.g. Damour & Donoghue (2010)), if δWEP
T

, 0,

then δWEP
T

≫ δSEP
T

, such that one can have either a clean WEP

violation, or a clean SEP violation.

Like the parameter δWEP
T

, δAT depends on the composition

of the falling bodies. However, unlike δWEP
T

, it also depends on the

composition of the body A that is source of the gravitational field in

which the body T is falling (Hees & Minazzoli (2015); Minazzoli &

Hees (2016)). As a consequence, the relative acceleration of two test

particles with different composition cannot only be related to the

ratios between their gravitational to inertial masses in general (i.e.

mG
A
/mI

A
= 1+ δA). This contrasts with the usual interpretation (see

for instance Williams et al. (2012)). However, with some theoretical

models, δWEP
T

is much greater than δAT (Damour & Donoghue

(2010); Hees & Minazzoli (2015); Minazzoli & Hees (2016)).

At the Newtonian level, the relative acceleration between the

Earth and the Moon reads

aM − aE = −
Gµ

r3
EM

rEM + GmG
S

[

rSE

r3
SE

−
rSM

r3
SM

]

+GmG
S

[

rSE

r3
SE

(δE + δSE ) −
rSM

r3
SM

(δM + δSM )

]

, (18)

with µ ≡ mG
M
+ mG

E
+ (δE + δEM )mG

M
+ (δM + δEM )mG

E
. As

discussed already in the previous subsection, the first term of Eqn.

(18) does not lead to a sensitive test of the UFF, because it can

be absorbed in the fit of the parameter mG
M
+ mG

E
(e.g. Williams

et al. 2012), while the last term, does. At leading order, one can

approximate both distances appearing in this last term as being

approximately equal. One therefore has

∆a
UFF ≡ (aM − aE )

UFF

≈ GmG
S

[

rSE

r3
SE

(δE + δSE ) −
rSM

r3
SM

(δM + δSM )

]

≈ aE [(δE + δSE ) − (δM + δSM )]

≡ aE∆ESM (19)

where ∆aUFF is the part of the relative acceleration between the
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Earth and the Moon that violates the UFF. Once again, one recov-

ers Eqn. (3) — although its theoretical interpretation is different

compared to the previous subsection.

When δSM = δSE , and especially when δSM = δSE = 0, one

recovers the usual Eqn. (9). But it is not the case in general because

the composition of the Sun may affect the dynamics in some cases

as well. Therefore, in a more general context than in section (3.4.1),

constraints on ∆ESM cannot be uniquely interpreted as constraints

on the difference of the gravitational to inertial mass ratios between

the Earth and the Moon.

As a consequence, from a pure phenomenological point of

view — or, equivalently, from an agnostic point of view — one

shouldn’t interpret ∆ESM in terms of gravitational to inertial mass

ratios only. Indeed, a more general expression of the UFF violating

parameter is given by

∆ESM = [(δE + δSE ) − (δM + δSM )] , (20)

where one can see that the Sun’s composition may affect the dy-

namics as well, through the coefficients δSE and δSM .

(Otherwise, see a discussion on how to decorrelate the dilaton

parameters from planetary ephemeris in (Minazzoli et al. 2017)).

4 DISCUSSION

As emphasized in section (3.4.1), metric theories lead to a violation

of the SEP only. Hence, it is tempting to use Eqn. (13) in order

to convert the result on ∆ESM in Eqn. (5) into a constraint on the

Nordtvedt parameter ηSEP — when considering a metric theory

prior.

However, such a conversion would not give a clean constraint

on the actual Nordtvedt parameter ηSEP . The reason is that, since

ηSEP depends on the post-Newtonian (pN) parameters, one should

also fit the extra pN parameters in the Einstein-Infeld-Hoffmann

(EIH) equations of motion, at the same time in both the Lunar

and the planetary ephemeris — because the latter is used in the

derivation of the former. Hence, unless a global fit of the various pN

parameters and ∆ESM is done at the same time for the whole solar

system solution, the conversion of ∆ESM into ηSEP through Eqn.

(13) does not give a constraint on the actual Nordtvedt parameter

ηSEP , but on another parameter that we shall call η instead – and

that is simply defined by Eqn. (13).

Despite this fact, the result on ∆ESM that is given in Eqn. (5)

can nevertheless be interpreted in terms of fundamental physics,

because a whole subset of theories predict a large domination of

the WEP over the SEP in ∆ESM (Damour & Donoghue 2010;

Minazzoli & Hees 2016) — meaning that one would have a violation

of the UFF while the pN parameters would be either equal to their

value in general relativity, or their difference with respect to their

value in general relativity would be negligible at the present level

of experimental accuracy.

However, in order to separate the SEP and WEP contributions

to ∆ESM in a general case — or to determine the Nordtvedt param-

eter ηSEP when considering a metric theory prior — one would

need to consider the whole solar system simultaneously in a consis-

tent parametrized pN framework. This interesting study is left for a

future work.

Nevertheless, an internal test on the impact of the extra pN

parameters γ and β in the EIH equations under their known limits

(taken from Bertotti et al. (2003) and Fienga et al. (2015), respec-

tively) show no significant impact on our results, due to the little

sensitivity of these parameters to the LLR data. Hence, η repre-

sents a good quantitative approximation of the Nordtvedt parameter

ηSEP , as deduced from testing the UFF with LLR data only. More-

over, since UFF constraints are often reported in terms of η, this

quantity can still be used in order to compare the sensitivity of the

various Lunar ephemeris solutions with respect to testing the UFF.

The estimates of η are reported in Table (6).

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present an improvement in the lunar dynamical

model of INPOP ephemeris (version 17a) compared to the previous

release (version 13c). The model is fitted to the LLR observations

between 1969-2017, following the model recommendations from

IERS 2010 (Petit & Luzum 2010). The lunar parameter estimates

obtained with the new solution are provided in Table (5) with com-

parisons to that obtained by other LLR analyses groups. The im-

provement brought by the new IR LLR data from Grasse station on

the parameter estimates is characterized. The post-fit LLR residu-

als obtained with INPOP17a are between 1.15 cm to 1.95 cm over

10 years of APOLLO data and 1.47 cm over 2 years of the new

IR LLR data from Grasse (Viswanathan et al. 2017). Our solution

benefits also of the better spatial and temporal distribution of the

IR Grasse data with an improvement of 14% of the UFF tests and

better estimations of the Moon dissipation parameters.

We take advantage of the lunar ephemeris improvements to per-

form new tests of the universality of free fall. A general constraint

is obtained using INPOP, in terms of the differences in the acceler-

ation of the Earth and the Moon towards the Sun. In addition to the

Nordtvedt interpretation of Nordtvedt (1968b) (provided in section

3.4.1), we propose an alternative interpretation and a generalization

of the usual interpretation from the point of view of the dilaton the-

ory (Damour & Polyakov 1994; Hees & Minazzoli 2015; Minazzoli

& Hees 2016) (provided in section 3.4.2). We obtain an estimate

of the UFF violating parameter ∆ESM = (−3.8 ± 7.1) × 10−14,

showing no violation of the principle of equivalence at this level.

Future work may further allow to separate between the SEP and the

WEP contributions to ∆ESM by studying the whole solar system

simultaneously in a consistent parametrized pN framework — see

discussion in Sec. 4.

Thermal expansion of the retro-reflectors and solar radiation

pressure are currently employed as empirical corrections following

Vokrouhlický (1997); Williams et al. (2009). Future LLR analysis

will consider an implementation of these effects within the reduction

procedure, so as to improve the uncertainty of the EP test. Oberst

et al. (2012) show the distribution of meteoroid impacts with the

lunar phase, indicating a non-uniform temporal distribution during

the New and Full Moon phase which could impact the test of EP.

The impact of this effect needs to be characterized during the EP

test, to be considered as negligible at the present LLR accuracy.

The use of a strictly GRAIL-derived gravity field model (Kono-

pliv et al. 2013) highlights longitude libration signatures well

above the LLR noise floor, arising from unmodeled effects in lu-

nar ephemeris (Viswanathan 2017). Other LLR analyses groups

(Folkner et al. 2009, 2014; Pavlov et al. 2016) prefer to fit the

degree-3 components away from GRAIL-derived gravity field co-

efficients. Extra periodic terms on the longitude libration present in

the DE430 lunar model are not considered within this paper. Instead,

a work is in progress to further improve the lunar dynamical model

and to identify the cause of the low-degree spacecraft-derived lunar

gravity field inconsistency with that from the analysis of LLR data.
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Table 4. Fixed parameters for the Earth-Moon system.

Parameter Units INPOP DE430 EPM

(EMRAT † − 81.300570) × 106 1.87 -0.92 -0.92

(RE − 6378.1366) × 104 km 0.0 -3 0.0

( ÛJ2E − 2.6 × 10−11) year−1 0.0 0.0 0.0

(k20,E − 0.335) 0.0 0.0 0.0

(k21,E − 0.32) 0.0 0.0 0.0

(k22,E − 0.30102) -0.01902 0.01898 -0.01902

(τO0,E − 7.8 × 10−2) × 102 day 0.0 -1.4 0.0

(τO1,E + 4.4 × 10−2) day 0.0 0.0‡ 0.0

τO2,E + 1.13 × 10−1) × 101 day 0.0 0.13 0.0

(RM − 1738.0) km 0.0 0.0 0.0

(αC − 7.0 × 10−4) 0.0 0.0 0.0

(k2,M − 0.024059) 0.0 0.0 0.0

(l2 − 0.0107) 0.0 0.0 0.0

†: EMRAT is fitted during the joint analysis between the lunar and planetary part.
‡: τO1,E in Folkner et al. (2014) given as -0.0044 is a typographical error.

Table 5. Extended body parameters for the Earth and the Moon. Uncertainties for INPOPG and INPOPG+IR (1-σ) are obtained from a 5 % jackknife (JK),

while other solutions (DE430 and EPM) are assumed as (1-σ) formal uncertainties. †: C32, S32 and C33 are reference values from the GRAIL analysis by

Konopliv et al. (2013). ‡: h2 reference value from LRO-LOLA analysis by Mazarico et al. (2014). ∗ : derived quantity

Parameter Units INPOPG INPOPG+IR DE430 EPM

(GMEMB − 8.997011400 × 10−10) × 1019 AU3/day2 4 ± 2 4 ± 2 -10 10 ± 5

(τR1,E − 7.3 × 10−3) × 105 day 0 ± 4 6 ± 3 6 ± 30 57 ± 5

(τR2,E − 2.8 × 10−3) × 105 day 9.2 ± 0.4 8.7 ± 0.3 −27 ± 2 5.5 ± 0.4

(CT /(mMR2) − 0.393140) × 106 6.9 ± 0.2 8.2 ± 0.2 2∗ 2∗

(C32 − 4.8404981 × 10−6†) × 109 4.1 ± 0.3 3.9 ± 0.3 4.4 4.4 ± 0.1

(S32 − 1.6661414 × 10−6†) × 108 1.707 ± 0.006 1.666 ± 0.006 1.84 1.84 ± 0.02

(C33 − 1.7116596 × 10−6†) × 108 −1.19 ± 0.04 -2.40 ± 0.04 −3.6 −4.2 ± 0.2

(τM − 9 × 10−2) × 104 day −14 ± 5 -35 ± 3 58.0 ± 100 60 ± 10

(
kv

CT
− 1.6 × 10−8) × 1010 day−1 12.7 ± 0.4 15.3 ± 0.5 4.0 ± 10.0 3.0 ± 2.0

( fc − 2.1 × 10−4) × 106 37 ± 3 42 ± 3 36 ± 28 37 ± 4

(h2 − 3.71 × 10−2‡) × 103 6.3 ± 0.2 6.8± 0.2 11.0 ± 6 6 ± 1

Q27.212 − 45 (derived) 3.9 ± 0.5 5.0 ± 0.2 0 ± 5 0 ± 1

Table 6. Comparison of results for the value of ∆ESM (Column 4) estimated with the solution INPOP17A fitted to LLR dataset between: 1) 1969-2011 (for

comparison with Williams et al. (2012); Müller et al. (2012); 2) 1969-2017 with data obtained only in Green wavelength, 3) 1969-2017 with data obtained with

both Green and IR wavelength. Column 5 empirically corrects the radial perturbation from effects related to solar radiation pressure and thermal expansion of

retro-reflectors using Eqn. (4), with a value ∆r = 3.0 ± 0.5 mm (Williams et al. 2012). Column 6 contains the value of ∆ESM after applying the corrections

of Column 5. Column 7 contains the parameter η obtained using Eqn. (13). See discussion in Sec. 4.

Reference Data Uncertainty estimated corrected corrected Parameter

time span ∆ESM cos D ∆ESM η
‡

[Year] [×10−14] [mm] [×10−14] [×10−4]

Williams et al. (2009)† 1969-2004 N/A 3.0 ± 14.2 2.8 ± 4.1 -9.6 ± 14.2 2.24 ± 3.14

Williams et al. (2012) 1969-2011 N/A 0.3 ± 12.8 2.9 ± 3.8 -9.9 ± 12.9 2.25 ± 2.90

Müller et al. (2012)⋆† 1969-2011 3-σ -14 ± 16 - - -

INPOP17A (limited data) 1969-2011 3-σ -3.3 ± 17.7 4.0 ± 5.2 -13.5 ± 17.8 3.03 ± 4.00

Hofmann & Müller (2016)† 1969-2016 3-σ - - -3.0 ± 6.6 0.67 ± 1.48

INPOP17A (Green only) 1969-2017 3-σ 5.2 ± 8.7 1.5 ± 2.6 -5.0 ± 8.9 1.12 ± 2.00

INPOP17A (Green and IR) 1969-2017 3-σ 6.4 ± 6.9 1.1 ± 2.1 -3.8 ± 7.1 0.85 ± 1.59

⋆: SRP correction not applied
†: Thermal expansion correction not applied
‡: derived using

|ΩE |

mE c2 −
|ΩM |

mM c2 = -4.45×10−10 (Williams et al. 2012, Eqn. 6)
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A., Mariey, H., Métris, G., Rigard-Cerison, R., Samain, E., Torre, J.-M., and
Viot, H. (2016). Laser enhancements for Lunar Laser Ranging at 532nm. Results
in Physics, 6:329–336.

Marty, J., Loyer, S., Perosanz, F., Mercier, F., Bracher, G., Legresy, B., Portier,
L., Capdeville, H., Fund, F., Lemoine, J., et al. (2011). Gins: the cnes/grgs gnss
scientific software. In 3rd International Colloquium Scientific and Fundamental
Aspects of the Galileo Programme, ESA Proceedings WPP326, volume 31.

Matsuyama, I., Nimmo, F., Keane, J. T., Chan, N. H., Taylor, G. J., Wieczorek,
M. A., Kiefer, W. S., and Williams, J. G. (2016). GRAIL, LLR, and LOLA
constraints on the interior structure of the Moon. Geophysical Research Letters.

Mazarico, E., Barker, M. K., Neumann, G. A., Zuber, M. T., and Smith, D. E.
(2014). Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.
Geophysical Research Letters, 41(7):2282–2288.

McCarthy, D. D. and Petit, G. (2004). IERS conventions (2003).

Melosh, H. J. (2014). New approaches to the Moon’s isotopic crisis. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 372(2024):20130168–20130168.

Melosh, H. J., Freed, A. M., Johnson, B. C., Blair, D. M., Andrews-Hanna, J. C.,
Neumann, G. A., Phillips, R. J., Smith, D. E., Solomon, S. C., Wieczorek,



BIBLIOGRAPHY 171

M. A., and Zuber, M. T. (2013). The Origin of Lunar Mascon Basins. Science,
340(6140):1552–1555.
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Résumé
L’objectif principal de ce travail était d’améliorer le modèle
dynamique de la Lune dans les éphémérides numériques
INPOP et d’exploiter cette amélioration en vu d’une meilleure
caractérisation de la structure interne de la Lune et d’effectuer
des tests de la relativité générale.

Dans un premier temps, un travail d’analyse des algorithmes
nécessaires aux calculs des points normaux utilisés pour
la construction des éphémérides lunaires a été effectué.
L’importance de l’incertitude du point normal se reflète
dans la méthode du moindre carré pondéré utilisée pour
l’estimation des paramètres lors de la construction des
éphémérides. En particulier, l’absence d’un algorithme
standardisé entre les différentes stations LLR introduit des
biais dans l’estimation des incertitudes qu’il est important de
prendre en compte. La thèse a également bénéficié d’un en-
semble de données plus dense en raison des améliorations
techniques et du passage de la longueur d’onde à l’infrarouge
à la station de Grasse (Courde et al., 2017).

Dans un second temps, afin de permettre des analyses multi-
techniques combinant mesures SLR et LLR, la réduction
des observations LLR a été introduite dans le logiciel de
détermination d’orbites GINS du CNES, suite aux recom-
mandations de IERS 2010. En outre, la correction des
effets dus au chargement hydrologique observé à la station
Grasse a été mise en œuvre et a fait l’objet d’une première
communication poster en 2016 (Mémin et al., 2016). Une
version améliorée du modèle de réduction LLR a été intégrée
à la dernière version distribuée du logiciel GINS par l’équipe
de géodésie spatiale (GRGS) du CNES.

Le modèle dynamique lunaire d’INPOP a d’abord été
développé par Manche (2011). Cependant, sans doute
en raison de l’absence du noyau fluide dans la version
précédente (INPOP13c), les résidus obtenus après ajuste-
ment étaient au niveau de 5 cm pour la période moderne
(2006). Une comparaison détaillée des équations dy-
namiques avec les éphémérides JPL DE430 a permis
d’identifier les changements requis dans INPOP pour
l’activation du noyau liquide lunaire. D’autres modifica-
tions ont permis l’utilisation d’un champ de gravité lunaire
déterminé par la mission spatiale GRAIL. Un algorithme de
moindres carrés sous contraintes a aussi été utilisé afin de
maintenir les paramètres connus dans des bornes compat-
ibles avec leurs incertitudes. La solution de l’éphéméride
INPOP résultante (INPOP17a) produit alors un résidu de 1,4
à 1,8 cm, compatible avec ceux publiés par Folkner et al.
(2014); Pavlov et al. (2016). L’éphéméride INPOP17a est
distribuée sur le site de l’imcce (www.imcce.fr/inpop) et une
documentation a été publiée (Viswanathan et al., 2017) dans
les notes scientifiques de l’IMCCE.

En outre, en fournissant des contraintes plus sévères dans le
modèle dynamique sur le champ de gravité lunaire à partir de
l’analyse des données GRAIL, une signature caractéristique
de libration lunaire avec une période de 6 ans a été révélée
avec une amplitude de ± 5 cm. Plusieurs pistes ont été
étudiées pour l’identification de cet effet, impliquant des
termes de marée et des composants de couple à plus haut
degré. Une publication est en cours de révision à ce sujet.

Les résidus au niveau d’un centimètre permettent des tests
précis du principe d’équivalence dans le système solaire.
La valeur ajustée du paramètre caractérisant l’accélération
différentielle de la Terre et de la Lune vers le Soleil a été
obtenue. Les résultats sont conformes aux travaux antérieurs
de Williams et al. (2009, 2012b); Hofmann et al. (2010); Hof-
mann and Müller (2016) en améliorant la précision de la
détermination. Une interprétation en terme de théorie du dila-
ton est proposée. Un article sur ce travail est accepté pour
publication dans MNRAS (Viswanathan et al., 2018).

Mots Clés
Lune, éphémérides, structure interne de la Lune, principe
d’équivalence, Télémétrie laser lune, GRAIL

Abstract
The main goal of this Ph.D thesis was to improve the dy-
namical model of the Moon within the numerically integrated
ephemeris (INPOP) and to derive results of scientific value
from this improvement through the characterization of the
lunar internal structure and tests of general relativity.

At first, raw binaries of LLR echoes obtained from the Grasse
ILRS station were used to analyze the algorithm used by
the facility, for the computation of a normal point from the
full-rate data. Further analysis shows the dependence of the
algorithm on the reported uncertainty contained within the
distributed LLR normal points from Grasse. The importance
of the normal point uncertainty is reflected in the weighted
least square procedure used for parameter estimation, es-
pecially in the absence of a standardized algorithm between
different LLR ground stations. The thesis also benefitted in
terms of a more dense dataset due to technical improve-
ments and the switch of operational wavelength to infrared at
the Grasse LLR facility (Courde et al., 2017).

The reduction of the LLR observations was implemented
within GINS — the orbit determination software from CNES.
The modeling follows the IERS 2010 recommendations for
the correction of all known effects on the light-time compu-
tation. The subroutines were verified through a step by step
comparison study using simulated data, with LLR analysis
groups in Paris and Hannover, maintaining any discrepancies
in the Earth-Moon distance below 1 mm. Additionally, cor-
rection of the effect due to hydrology loading observed at the
Grasse station was implemented (Mémin et al., 2016). An
improved version of the LLR reduction model was submitted
to the space geodesy team of CNES (GRGS).

The lunar dynamical model of INPOP was first developed
by Manche (2011). However, due to the absence of the
fluid core within the previous version of INPOP (13c), the
residuals obtained after a least-square fit were in the level of
5 cm for the modern day period (2006 onwards). A detailed
comparison of the dynamical equations with DE430 JPL
ephemeris helped to identify required changes within INPOP
for the activation of the lunar fluid core. Other modifications
allowed the use of a spacecraft determined lunar gravity
field within the dynamical model. The use of a bounded
value least square algorithm during the regression procedure
accounted for variability to well-known parameters from their
reported uncertainties. The resulting iteratively fit solution of
INPOP ephemeris then produces a residual of 1.4-1.8 cm,
on par with that reported by Folkner et al. (2014); Pavlov
et al. (2016). The new INPOP ephemeris (INPOP17a) is dis-
tributed through the IMCCE website (www.imcce.fr/inpop)
with a published documentation (Viswanathan et al., 2017) in
the scientific notes of IMCCE.

Furthermore, on providing tighter constraints on the lunar
gravity field from GRAIL-data analysis within the dynamical
model, a characteristic lunar libration signature with a period
of 6 years was revealed with an amplitude of ± 5 cm. Several
tracks were investigated for the identification of the unmod-
eled effect, involving higher degree tidal terms and torque
components, and a new modeling is proposed. A publication
is under revision on this subject.

Residuals at the level of a centimeter allow precision tests of
the principle of equivalence in the solar system. The fitted
value of the parameter characterizing the differential accel-
eration of the Earth and the Moon towards the Sun was ob-
tained with numerically integrated partial derivatives. The re-
sults are consistent with the previous work by Williams et al.
(2009, 2012b); Hofmann et al. (2010); Hofmann and Müller
(2016). An article on this work is accepted for publication in
MNRAS (Viswanathan et al., 2018).
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