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 Abstract  

The lack of a successful p-type semiconductor oxides delays the future 

implementation of transparent electronics and oxide-based photovoltaic devices. In the 

group semiconducting compounds, copper-based oxides present promising electrical, 

optical and manufacturing features that establish this family of materials suitable for p-

type semiconductor applications. In this work, we focused on the growth of cation 

doped Cu2O and intrinsic CuCrO2 thin films, aiming for enhancements of their optical 

and electrical response. Furthermore, we implemented these oxide films into pn 

junction devices, such as solar cells and UV photodetectors. 

In the work on Cu2O, we achieved the incorporation of magnesium up to 17% 

in thin films by aerosol-assisted chemical vapor deposition, resulting in morphology 

changes. Electrical resistivity was reduced down to values as low as 6.6 ohm.cm, due 

to the increase of charge-carrier density up to 1018 cm-3. The incorporation of 

magnesium had additionally an impact on the stability of the Cu2O phase. The 

transformation of Cu2O into CuO under oxidizing conditions is significantly postponed 

by the presence of Mg in the films, due to the inhibition of copper split vacancies 

formation. The integration into pn junctions was successfully achieved using only 

chemical vapor deposition routes, in combination with n-type ZnO. Nevertheless, the 

application of Mg-doped Cu2O in solar cells present a meager photovoltaic 

performance, far from the state-of-the-art reports.  

In the work on CuCrO2, we demonstrate the first fabrication of ZnO/CuCrO2 

core-shell nanowire heterostructures using low-cost, surface scalable, easily 

implemented chemical deposition techniques at moderate temperatures, and their 

integration into self-powered UV photodetectors. A conformal CuCrO2 shell with the 

delafossite phase and with high uniformity is formed by aerosol-assisted chemical 

vapor deposition over an array of vertically aligned ZnO nanowires grown by chemical 

bath deposition. The ZnO/CuCrO2 core-shell nanowire heterostructures present a 

significant rectifying behavior, with a maximum rectification ratio of 5500 at ±1V, 

which is much better than similar 2D devices, as well as a high absorption above 85% 

in the UV region. When applied as self-powered UV photodetectors, the optimized 

heterojunctions exhibit a maximum responsivity of 187 µA/W under zero bias at 374 

nm as well as a high selectivity with a UV-to-visible (374-550 nm) rejection ratio of 68 

under an irradiance of 100 mW/cm2.  
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Résumé 

L'absence d'oxydes semi-conducteurs de type p de haute performance retarde le 

développement de d’électronique transparente et du photovoltaïque à base d’oxydes. 

Dans le groupe des composés semi-conducteurs, les oxydes à base de cuivre présentent 

des caractéristiques électriques, optiques et de fabrication prometteuses qui établissent 

cette famille de matériaux comme bien adaptés aux applications semi-conductrices de 

type p. Dans ce travail, nous nous concentrons sur la croissance de films minces d’une 

part de Cu2O dopée par des cations et d’autre part de CuCrO2, visant à améliorer leurs 

propriétés optiques et électriques.  De plus, nous avons mis en œuvre ces films d'oxyde 

dans des dispositifs de jonction pn tels que des cellules solaires et des photodétecteurs 

UV. 

Dans le travail sur Cu2O, nous avons réalisé l'incorporation de magnésium 

jusqu'à 17% dans des films minces par dépôt chimique en phase vapeur assisté par 

aérosol, entraînant des changements de morphologie. La résistivité électrique a été 

réduite jusqu’à des valeurs de 6,6 ohm.cm, en raison de l'augmentation de la densité de 

porteur de-charges jusqu'à 1018 cm-3. L'incorporation du magnésium a en outre eu un 

impact sur la stabilité de la phase Cu2O. En effet la transformation du Cu2O en CuO en 

conditions oxydantes est considérablement retardée par la présence de Mg dans les 

films, en raison de l'inhibition de la formation d’un type particulier de lacune de cuivre 

(split vacancy). L'intégration dans les jonctions pn a été réalisée avec succès en utilisant 

uniquement des voies de dépôt chimique en phase vapeur, en combinaison avec le ZnO 

de type n. Néanmoins, l'application de Cu2O dopé au Mg dans les cellules solaires 

présente un effet photovoltaïc très faible, loin des meilleures valeurs de l’état de l’art. 

Dans le travail sur CuCrO2, nous démontrons la première fabrication 

d'hétérostructures de nanofils en configuration cœur/coquille ZnO/CuCrO2 utilisant des 

techniques de dépôt chimique adaptées pour des grandes surface, à faible coût, 

facilement implémentées à des températures modérées et leur intégration dans des 

photodétecteurs UV auto-alimentés. Une coquille conforme de CuCrO2 avec la phase 

de delafossite et avec une uniformité élevée a été élaborée par un dépôt chimique en 

phase vapeur assisté par aérosol sur un réseau de nanofils ZnO alignés verticalement, 

obtenu par dépôt par bain chimique. Les hétérostructures ZnO/CuCrO2 coeur-coquille 

présentent un comportement rectificatif significatif, avec un ratio de rectification 

maximal de 5500 à ± 1V, ce qui est bien meilleur que les dispositifs 2D similaires 
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rapportés dans la littérature, ainsi qu'une absorption élevée supérieure à 85% dans la 

région UV. Lorsqu'ils sont appliqués en tant que photodétecteurs UV auto-alimentés, 

les hétérojonctions optimisées présentent une réponse maximale de 187 μA / W sous 

une polarisation nulle et à 374 nm ainsi qu'une sélectivité élevée avec un ratio de rejet 

entre l’UV-et le visible (374-550 nm) de 68 sous irradiance de 100 mW/cm2. 
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Preface 

This doctoral thesis is under the framework of International Doctoral School in 

Functional Materials (IDS-FunMat: https://www.idsfunmat.u-bordeaux1.fr/). It is co-

supervised by Dr. Jean-Luc Deschanvres from LMGP (CNRS, France) and Professor Dr. 

Duy Ngoc Nguyen from Université de Liège (ULg, Belgium); as well co-supervised by Dr. 

Carmen Jimenez (CNRS, France). The main work in this thesis has been conducted in two 

laboratories: LMGP (Laboratoire des Matériaux et du Génie Physique, 

http://www.lmgp.grenoble-inp.fr/) which is expert in deposition and characterization of 

functional thin film materials, and as well in the research group for Solid State Physics, 

Interfaces and Nanostructures (SPIN) (http://www.spin.ulg.ac.be/) in the department of 

Physics of  Université de Liège which is expert in the electrical and optical properties of 

semiconducting materials and systems, with a particular interest in crystalline ultra-thin 

films and engineered nanostructures.  

This PhD thesis focuses on the application of copper-based oxides combined with 

different cations to create pn junction devices, such as solar cells or Ultra-Violet (UV) 

photodetectors. As the title describes, from material to devices, all of the document here 

presented will follow this duality between the material fabrication and its application to 

functional devices.  

Chapter I deals with the introduction to the materials, especially on Cu2O p-type 

semiconductor, explaining in detail the physical and chemical properties of the material, 

reporting on the doped systems already studied and other copper-based materials as 

delafossites, in particularly CuCrO2. In the devices part, we focus on describing transparent 

devices based on oxides materials as thin film transistors (TFT), which was an enabling 

technology for the development of oxide semiconductors.  Then, we focus on the advances 

on pn junction and its possible application on solar cells or UV photodetectors. In both 

cases we present a historical background, explain the working mechanism, and report the 

state-of-the-art devices based on Cu2O, ending with the actual needs of these technologies.  

A next chapter (II) works as a breaking point in the document, since here we 

introduce the deposition method, the different analysis techniques and the numerical model 

to create a pn junction. 
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The main body of the thesis, composed by the following three chapters, explores 

the materials description and their application into functional devices. We start with chapter 

III where we present the preliminary tests on the Cu2O thin films doped with different 

cations, with a particular interest to Sn-doped Cu2O. 

Chapter IV is based on Mg-doped Cu2O study with an extensive analysis on the 

crystallographic structure, microstructural topography, and optical and electrical response 

to understand the dopant effect. In depth study on the thermal stability is also reported. The 

chapter ends with a study on pn junction between Mg-doped Cu2O and ZnO, first with a 

numerical simulation and then by experimental deposition of these structures, and finally a 

solar cells performance results.   

Chapter V starts with an optimization of CuCrO2 delafossite phase deposition by 

aerosol-assisted MOCVD, which is latter applied to a nanostructured UV photodetector 

based on ZnO and CuCrO2. 

The last chapter serves as a conclusion of the work developed. It contains the main 

highlights in terms of results, the new scientific ideas suggested, the problems or open 

questions and finally, we suggest the future work to be developed.  

The thesis’ appendix presents the fitting of EXAFS data from Cu2O and Cu2O:Mg 

thin films. As supplemental materials, XRD PDF files and Raman reference files of the 

different oxides are also present in the appendix 
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1.1 Cuprous oxide (Cu2O) 

The exploration of novel oxide semiconductors has been intensified in the last two 

decades, mostly driven by transparent electronics or solar cells applications. In the p-type 

semiconducting compounds group, cuprous oxide, Cu2O, presents promising electrical and 

manufacturing features that identify it as a suitable candidate for the electronics and energy 

devices 1.  

In the family of the oxide materials, the cuprous oxide has a crystalline cubic 

structure with a lattice parameter of 4.2696 Å. The crystal structure corresponds to the 

space group 𝑃𝑛3̅𝑚, which incorporate a full octahedral symmetry. In the case of considering 

the oxygen atoms as the origin of the body centred cubic (bcc) primitive cell, the 4 copper 

atoms are located in the diagonals in the positions: (
1

4
,

1

4
,

1

4
) , (

3

4
,

3

4
,

1

4
) , (

1

4
,

3

4
,

3

4
) , (

3

4
,

1

4
,

3

4
), 

as represented in the Figure I-1 a). 

 

 

Figure I-1 Crystallographic structure of Cu2O with oxygen atoms as the origin of the bcc cell. 

Oxygen represented in red and Copper in blue. (b) Cu2O atomic structure of 2x2x2 cells. The two 

interpenetrating Cu–O–Cu networks (one light coloured and the other dark coloured). Adapted from Nolan2 

The oxygen atoms are tetrahedrally coordinated by the copper, while the copper 

ones are linearly coordinated by the oxygen ones. The distance between Cu-O neighbouring 

atoms is 1.85 Å, O-O is 3.68 Å and Cu-Cu is 3.02 Å. This structure creates an oxide with 

a density of 6.10 g.cm-3, and a molar mass of 143.09 g.mol-1. In stoichiometry conditions, 

the concentration of copper is twice the concentration of oxygen, 5.05x1022 cm−3 and 2.52 

x 1022 cm−3, respectively.  
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The Cu2O structure has another relevant characteristic, its dichotomy. There are two 

identical and interpenetrating networks of Cu and O atoms inside the crystal, which do not 

have direct chemical bond between them. Both network have an anti-SiO2 structure that are 

stable due to Van-der-Waals forces 3. This is visible in the Figure I-1 b) by the two different 

tones of grey in each network.  

The band gap of the cuprous oxide is 2.17 eV at 4 K, according to experimental 

results 4. This is a direct gap at the centred of the Brillion zone and it is formed by the 

copper 3d10 and 4s0 orbitals which correspond to the valence and conduction band, 

respectively, both with the same parity 5. The following Figure I-2 represents the bands 

structured of Cu2O, where Γ6
+ and Γ7

+ are the conduction and valence band, respectively.  

 

 

Figure I-2 Band structure of Cu2O. Adapted from Brochen et al 6 

At room temperature, the predicted band gap is 2.096 eV 5. On the effective mass 

on both bands, the curvature of the bands predicts a higher effective mass for electrons in 

the conduction band than for the holes in the valence band. Experimental values confirm 

this fact, presenting 0.99 of effective mass for electrons and 0.58 for holes 7. 
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1.1.1 Conductivity in Cu2O 

The p-type behaviour of cuprous oxide arises from the special configuration of the 

valence band, when compared to other oxides. In p-type transparent conductive oxides 

(TCO), the large electronegativity of oxygen creates a strong localized valence band edge 

formed by the 2p levels. Consequently, the hole effective mass is relatively high and the 

mobility of holes is weak. However, in Cu2O the top of the valence band is formed by 3d10 

levels of the Cu+ cation, as visible in the Figure I-3. The existence of this different level 

contributes to a less localization of the holes, which improves the mobility of these charges. 

Due to this fact, in Cu2O mobility values can reach up to 100 cm2.V-1.s-1 in single-crystals 

8, making this material on of the few oxides with high p-type mobility.  

 

 

Figure I-3 Band schematic of Cu or Ag based oxides. a) chemical bond between an oxide ion and a 

cation with closed metal d shell and b) Schematic of where the energy levels of M d10 and O 2p6 are assumed 

to be equivalent Reproduced from H. Kawazoe et al 9 

The conductivity in cuprous oxide appears by polaronic hoping, contrarily to 

classical semiconductors. In this mechanism and considering the p-type behaviour of Cu2O, 

the conduction of holes through the material distorts the crystal lattice, causing a hole-

phonon coupling. Due to the interaction of electronic charges and phonons, traps appear 

that localize the hole. Then, the hole migrates to another site by thermal motion, via 

hopping mechanism 10.  

As an oxide with a band gap of 2.17eV, Cu2O is an insulator in a stoichiometric 

composition. Nevertheless, the origin of the Cu2O p-type conductivity surfaces from 

intrinsic defects present in the material 1. As confirmed by experimental reports, the defects 

can vary in origin, from cation deficiency, interstitial or vacant oxygen, Schottky barrier or 

simply electron-hole defects 11,5. Other types of defects as interstitial copper, Frenkel and 

anti-Frenkel defects seem to be highly unlikely to occur, based on theoretical predictions 3. 
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Here below, in Table I-1, we present the most common types of intrinsic defects that can 

be present in Cu2O 12.  

Table I-1 Intrinsic point defects on Cu2O with respective reaction equation, charge and formation 

enthalpy energy 

Defect point Reaction equation Defect 

Charge 

Formation Enthalpy  

(eV/defect) 

𝑽𝑪𝒖
′  1

2
𝑂2 → 𝑂𝑂

𝑋 + 2𝑉𝐶𝑢
′ + 2ℎ. 

-1 0.41-1.66 13,14 

𝑶𝒊
′′ 1

2
𝑂2 → 𝑂𝑖

′′ + 2ℎ. 
-2 1.94/1.87 14 

𝑽𝑶
..  

𝑛𝑢𝑙𝑙 → 𝑉𝑂
.. + 2𝑒′ +

1

2
𝑂2 

+2 9.9 15 

𝟐𝑽𝑪𝒖
′ + 𝑽𝑶

..  𝑛𝑢𝑙𝑙 → 2𝑉𝐶𝑢
′ + 𝑉𝑂

.. 0 4.58 5 

 

For the generation of holes, the copper vacancies, 𝑉𝐶𝑢
′ , are considered the most 

favourable defect, when compared to interstitial oxygen defects, 𝑂𝑖
′′ . These copper 

vacancies can be formed by oxidation of the Cu2O, which leads to the removal of a copper 

atom, leaving a negatively changed vacancy. As consequence, a hole is introduced in a 

valence band, creating a acceptor level between 0.3 – 0.6 eV above this band 14,16. The 

intrinsic p-type semiconductor behaviour appears from these stable copper vacancies, 

which can be high as 1020 cm−3 in concentration, considering 1 to 3% of all copper atoms 

removed 13. However, since the ionization of these particular defects is incomplete, the free 

holes concentration only reaches 1018 cm−3 at room temperature 5. 

Still, the nature of these level is yet to be completely understand. Indeed, two 

possible copper vacancies can appear in Cu2O: the simple copper vacancy 𝑉𝐶𝑢
′  related to 

the removal of one copper atom, leaving two oxygen atoms with three copper neighbours, 

or the split copper vacancy 𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

 in which the copper disappearance is followed by a 

neighbouring copper atom movement towards the vacancy. In the latter case, the copper 

atom moves into a tetrahedral site with four neighbouring oxygen atoms. This is 

coordination is similar to one in CuO phase. The split vacancy also promotes the change of 

the oxidation state of the dislocated copper from 1+ to 2+ 13. A representation of both defects 

in visible in the Figure I-4. 
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Figure I-4 Structure of a single Cu vacancy in Cu2O. Complete structure, simple vacancy and split 

vacancy. Copper atoms pictured as blue circles and oxygen as red ones. 

The formation energies of both copper vacancies are a controversy topic in the 

literature with different theoretical studies presenting distinct values. In the majority of the 

cases, simple vacancies are more stable than split vacancies, as reported by Raebiger et al 

17, Scanlon et al. 14, Nolan et al. 13, Soon et al. 18, and Isseroff and Carter 16. Nevertheless 

the formation energies are quite distinct: in Nolan’s study, both vacancies energy formation 

are around 0.4eV, while in Scanlon case 𝑉𝐶𝑢is around 0.41eV and 𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

 is 1.24eV. Soon 

et al. present 0.47 eV and 0.78 eV for 𝑉𝐶𝑢 and 𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

, respectively. Isseroff and Carter 16 

present different exchange-correlation functional methods used with a consistent difference 

between the two vacancies of 0.21 ± 0.03 eV, where the simple copper vacancy is more 

stable. In the position of these acceptors levels regarding the valance band, Nolan et al 

reports  0.47 eV for 𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

 and 0.23eV for 𝑉𝐶𝑢 13. 

Different studies report an increase of copper vacancies by post-deposition 

annealing treatments under oxidizing conditions19, 20, 21. At temperatures below 300ºC, the 

Cu2O thin films show a decrease of the resistivity due to the generation of holes19, as well 

as an increase of holes mobility20. Moreover, the transmittance can be further increased in 

these thermal treatments by a partial removal of defect band tail which enlarger the optical 

band gap20. At temperatures higher than 300 ºC, CuO parasitic phase starts to be formed, 

degrading the Cu2O optoelectronic properties21. Cuprous oxide thin films can also be 

annealed at higher temperatures, up to 700 ºC, in reducing atmospheres as vacuum22. In 
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this case, even if the resistivity decreases due to a lower carrier density, the mobility of the 

thin films is improved to values higher than 10 cm2.V-1.s-1. 

1.1.2 Cu2O deposition  

The interest in Cu2O has generated a large number of studies to grow thin films 

using a large variety of techniques, from chemical to physical, under vacuum or at 

atmospheric pressure. In the Figure I-5, the number of publications on Cu2O obtained from 

Scopus are plotted regarding the year, from 2000 to 2017. An increase of “Cu2O” and 

“doped Cu2O” reports are clear in the last 17 years. The expression “copper oxide” shows 

a larger number of publications since it is a general term, including also CuO and Cu4O3.  

A list of different studies developed in the last decade on intrinsic Cu2O are 

presented in Table I-2, with some important parameters highlights.  

Table I-2 - Cu2O literature review with deposition technique temperature, transparency, band gap, 

conductivity and mobility 

Technique 
Temperature 

(ºC) 

Band-gap 

(eV) 

Resistivity 

(Ω.cm) 

Mobility 

(cm2.V-1.s-1) 

Year  

Ref 

Electrodeposited RT 2.0 - - 2011 23 

ALD 225 2.52 125 5 2012 24 

Spray pyrolysis 350 2.2 104 0.2 2014 25 

Electrodeposited RT 2.32 - - 2014 26 

DC magnetron 

sputtering in 

RT 

Annealing @ 280 in air 
2.51 7.3 2.7 2014 20 

DC magnetron 

sputtering 

RT - Annealing @ 475 in 

vacuum 
2.4 149 51 2015 27 

RF magnetron 

sputtering 
RT - 65 - 2016 28 

RF sputtering 
RT - Annealing @700 in 

vacuum 
2.43 104 28 2016 22 

 



Chapter I: Introduction 

10 

 

Figure I-5 Number of publications on “Cu2O”, “doped Cu2O”, “copper oxide”, “cuprous oxide” 

and “copper (I) oxide” are plotted from 2000 to 2017, as obtained from Scopus. 

These different studies show the versatility of Cu2O to be deposited from RT to 350 

ºC using physical and chemical techniques. In terms of electrical properties, the resistivity 

values are in most of the cases close to 100 Ω.cm, with a decrease to 7.3 Ω.cm with air 

annealing, which leads to the formation of CuO at high temperatures 20. The presence of 

oxygen seems to be one of main issues in the preparation of these films due to the formation 

of CuO parasitic phase. In the Figure I-6, the phase diagram of Cu-O for single crystals is 

represented. As one can observe, the Cu2O is unstable at room temperature under 

atmospheric pressure, 736 Torr. Thus, when one deposits thin films of Cu2O, the complete 

prevention of CuO phase is nearly impossible. This main issue can have large impacts on 

electric and optical properties of the films, since both materials present different band-gap 

and point defects.  



Chapter I: Introduction 

11 

 

Figure I-6 Temperature pressure diagram from bulk Cu-Cu2O-CuO crystals. Adapted from Schmidt-

Whitley29 

The appearance of an intermediate phase between CuO and Cu2O is also reported 

in the literature30, paramelaconite, Cu4O3, formed by stacks of two-fold coordinated copper 

atoms and four-fold coordinated copper atoms. Nevertheless, studies on the experimental 

deposition of Cu4O3 thin films are still lacking, as depositions by magnetron sputtering 

show a narrow oxygen flow rate process window31,32,33. Additionally, further optical and 

electrical properties measurements are required to access the possible applications of this 

material.  

1.1.3 Dopants  

The use of extrinsic elements on Cu2O has been widely tested by the literature in 

order to improve electric, optical and magnetic properties. In one first group of elements 

formed by non-metals, Cl- and N-3 are atoms that created a significant impact on the 

properties of Cu2O thin films. Those two elements can substitute the oxygen site and act as 

a donor for the Cl-, and as an acceptor for the N-3. In the Cl- case, it was possible to obtain 

a n-type Cu2O, confirmed by photocurrent-potential measurements and presenting a low 

resistivity of 7 Ωcm 34. Concerning acceptors, N doping seems to have also an effect on 
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electrical properties with a reduction of resistivity down to 15 Ω.cm, and significantly high 

values of mobility, 20cm2.V-1.s-1 35. 

Additionally, metals have also been tested as dopants for Cu2O, experimentally and 

in models. In the group of transition metals, there are different tested elements as: Cd 36, 

Co 37, Mn 38, Ni 39 Ag 40, Fe 40, Cr 40, Al 37, Zn 37,41 and V 37 for different applications as 

ferromagnetic oxide, conductivity improvements or photocatalytic properties.   

Na doping of Cu2O has been the most successful of doping cases with large 

enhancements in conductivity. In a study by Tadatsugu Minami et al.42 resistivity values 

were decrease to 3.95 10-2 Ω.cm in Cu2O films obtained by thermal oxidation of Cu sheets. 

Mobility and charge carrier’s values were also improved up to 100 cm2.V-1.s-1 and 1019 cm-

3, respectively. In the same study, this doped system was implemented for photovoltaic 

applications as p-type absorber layer. 

In 2008, based on first-principle calculations, Nolan et al. 2 suggested the doping of 

cuprous oxide with larger cations than Cu+ in order to increase the band gap, while 

maintaining the cubic structure. These cations, such as Mg2+, Sn2+, Sr2+ or Ca2+ would 

distort the crystallographic lattice and consequently diminish three-dimensional Cu-Cu 

interactions, leading ultimately to a band gap increase. The p-type conductivity would 

appear consequently to the creation of a double copper vacancy. Since the dopants are 

divalent cations, one primary copper vacancy would compensate the dopant presence, 

while a secondary copper vacancy supplies an extra hole 2. Additionally, the use of 

“electronically inert” dopants would avoid the hybridization of the valence band and 

conduction band edge states or the introduction of in-gap state 2. 

In a previous work, the incorporation of Sr had already been achieved, showing 

improvements in the conductivity of the films, however, without any change in the optical 

properties of the material 43.  Thin films of Cu2O:Sr with different strontium concentrations 

were deposited by MOCVD. As main results, Sr can be incorporated up to 14.9% with the 

presence of a parasitic SrCO3 phase for films with more than 5% of Sr. The major impacts 

were on the film morphology and resistivity, both represented in Figure I-7. The film 

surface changed from smooth to granular with the increase of Sr concentration. On the 

electrical properties, Cu2O thin films containing 5-6 %at of Sr  showed resistivity values 

of about 10 Ω.cm, visible in Figure I-7I, which were then decrease to 1 Ω.cm with thermal 

annealing treatments at 200 °C in air. This films show hall carrier density and mobility 

values of 2.8 × 1017 cm-3 and 15 cm2.V-1.s-1, respectively,  as reported in a follow-up study 
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by Brochen et al6. Nevertheless, no significant effect on the band gap or optical properties 

was visible, as shown in Figure I-7II. 

 

Figure I-7 I) Morphology, resistivity and II) Transmittance of Cu2O:Sr thin films from Bergerot et 

al. 43 

 

1.1.4 CuCrO2 - Delafossite 

The Cu2O band gap of 2.17 eV is small  for transparent electronics applications, 

since the transmittance of Cu2O films is low in the visible part of the light spectrum1. 

Suggested by Kawazoe 44, changing the crystallographic structure by introducing other 

cations in Cu2O would increase of the band gap and improve both transparency and 

electrical properties. 

Consequently, a new family of TCO materials emerged, with a delafossite crystal 

structure, such as CuAlO2 
44, CuGaO2 

45, CuFeO2 
46, CuCrO2 

47, CuYO2 
48, or CuScO2 

49. 

Additionally, other non-delafossite phases also appeared as possible materials for p-type 

TCO, such as Cu2SrO2 
50 or (LaO)CuS 51. However, none of these materials combined high 

conductivity, high transparency and low synthesis temperatures, as already achieved by n-

type TCOs 52. Among these two families of materials, CuAlO2 compound shows visible 

transparency around 70% for a 230 nm thick film, with a direct band gap of 3.5eV, yet with 

relatively high resistivity values up to 3 .cm 53. In this cases, the temperatures of 

deposition were higher than 600 ºC, which is impractical for the majority of transparent 

substrates.  

Other particular case is CuCrO2 that has received increasing interest as a promising 

p-type transparent semiconductor 54
, owing to its wide direct band gap energy of 2.8 eV 

combined with its high conductivity, which is typically larger than 200 S.cm-1 when doping 
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with Mg 54–56. The crystallographic structure of the CuCrO2 delafossite phase is represented 

in Figure I-8a), while the number of publications of CuCrO2 in Scopus since 2000 to 2017 

is plotted in Figure I-8b). 

 

Figure I-8 a) CuCrO2 crystalline structure. and b) number of publications of CuCrO2 in Scopus 

since 2000 to 2017 

In comparison with other Cu-based delafossite phases, CuCrO2 is more conductive 

mainly due to the higher delocalization of holes produced by Cu vacancies. This is caused 

by a mixing of Cr d states with O 2p states in the valence band, which creates shallow 

energy transition levels for the holes 57,58. In the last twenty years, CuCrO2 thin films have 

been deposited by a wide variety of physical and chemical deposition techniques, such as 

radio-frequency (RF) sputtering 54,59,60, pulsed-injection metal-organic chemical vapour 

deposition (MOCVD) 61, aerosol-assisted CVD 62, spray pyrolysis 63, sol-gel process 64, and 

atmospheric pressure plasma torch 65. In particular, Farrell et al. 63 reported the growth of 

undoped CuCrO2 thin films by spray pyrolysis with a high conductivity of 12 S.cm-1 

combined with an optical transmittance higher than 55%. Interestingly, metal organic 

precursors that are compatible with aerosol-assisted CVD were used and the nano-

crystallization process of the delafossite phase typically proceeds at temperatures below 

400 °C, without any post-annealing treatments. Similar results were also reported by 

Sánchez-Alarcón et al. 62 In another recent study on magnesium-doped CuCrO2 
66, 

conductivity values achieved a record high of 217 S.cm-1, with transmittance values of 

70%, using a low deposition temperature of 250 ºC by Atomic Layer Deposition (ALD). 

On physical techniques, the work from Barnabé et al. 67 using RF sputtering enable the 
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increase of visible transparency, with a direct optical bandgap of 3.3 eV after annealing at 

600°C. This finding in combination with an effective carrier concentration of about 1021 

cm-3, lead to an high figure of merit of CuCrO2 thin films, up to 1.5 x10-7 Ω-1. 

Additionally, CuCrO2 nanoparticles have been prepared by hydrothermal synthesis 

68. In terms of applications, CuCrO2 thin films have until now been integrated into 

amorphous thin film transistors (TFT) in electronics 69, ozone sensors 70, photocatalytic H2 

production devices 71 and biological devices as antibacterial agent against E coli bacteria 

72. 
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1.2 Devices based on oxide semiconductors   

1.2.1 Transparent electronics  

The development of transparent electronics has increased drastically in the last 

years, being considered one of the trending research topics for new advanced materials73. 

The possibility of creating transparent devices enables a new range of applications that 

starts in transparent displays for current everyday devices, such as phones, tablets and 

computers, but furthermore it can possibly reach smart surfaces as windows, tables or street 

furniture based on glass or other transparent substrates 73. 

The relevance of this research area justified the appearance of large and 

multidisciplinary ongoing European projects as Towards Oxide-Based Electronics (TO-

BE) action from the European cooperation in Science and Technology initiative (COST), 

or the Oxide Materials Towards a Matured Post-silicon Electronics Era (ORAMA) project 

under the European Community's Seventh Framework Programme where the appearance 

of a next-generation nanoelectronics, microelectromechanical and macroelectronics can 

impact greatly different areas from IT technologies, energy systems to microsensing and 

microactuation 74,75.  

Even though the first documented study on transparent conductive oxides (TCO) 

was reported in 1907 with the production of CdO thin film 76, just on the transition to the 

21th century the transparent electronic research gained a relevant importance. The success 

of n-type semiconductor oxides, as Sn-doped In2O3 (indium tin oxide, ITO), Al-doped ZnO, 

and Sb-doped SnO2, enable the implementation of these materials as transparent conductive 

oxides 77. The high transparency combined with a metallic-like conductivity lead to the 

application in devices as organic light-emitting diodes (OLEDs), liquid crystal displays 

(LCDs), or 3rd generation solar cells 77. Furthermore, the semiconductor behaviour of these 

n-type materials allowed the production of transparent thin film transistors (TFTs), due to 

controllable electrical conductivity. Since 2003, when the first transparent TFT based on 

ZnO was discovered 78, the developments lead to the integration in active matrix for organic 

light emitting diodes (AMOLED) technology 73.  Consequently, ultra-thin screens appeared 

in the last decade, allowing a semi-transparent device that consume 90% less of energy 

when compared to LCD and can ultimately use ambient light to increase its energy 

efficiency. 

As the n-type oxide semiconductors materials are already a well-established 

technology, the interest in p-type oxides is increasing significantly, in order to produce 



Chapter I: Introduction 

17 

complementary metal oxide semiconductors (CMOS), enabling  the application of 

extremely compact circuits with smaller power consumption needs, and even other type of 

electronic devices based on p-n junctions 1. A p-type oxide material with a semiconductor 

high performance would improve as well the anode part of an organic light emitting device 

(OLED), because the drain current in the saturation mode would not be influenced by the 

TFT hole current supplies. 

Nevertheless, the performance of these type oxides is fairly poor when compared 

with the n-type materials. The main reason of this difference lies in the low mobility of the 

charge carriers, holes, as a result of the lower mobility of the derived carries in the valence 

band when compared with the derived carriers of the conduction band 1.  

1.2.1.1 Thin Film Transistor  

A fundamental component of the transparent electronics is the thin film transistor 

(TFT), a type of field-effect transistors (FET), composed of stacked layers of different 

materials thin films 79. As it is a FET type, the TFT is composed of three different terminals: 

source, drain and gate, which are related to a junction transistor as emitter, collector and 

base, respectively. This type of transistor differs from a MOSFET in the stacking 

organization of the n-type or p-type component as visible in the Figure I-9. In the bottom 

gate approach here explained, the metal gate in deposited on top of the substrate, forming 

the first layer of the device. Then, a dielectric material covers the metal gate, working as 

isolating layer. The semiconductor material is deposited on top of this isolating layer, being 

referred as body. The source and gate composed of metal material are then deposited on 

two opposed edges of the semiconductor body. This configuration, visible in Figure I-9, 

represents a bottom gate field-effect transistor. Other configurations are also possible as 

top-gate with staggered or coplanar semiconductor bodies. 
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Figure I-9 a) Field-effect transistor FET scheme; b) Characteristic curve of a TFT with current at 

the drain in function of voltage applied between source and drain; c) Image of transparent TFT. Adapted 

from E. Fortunato 73 

The working principle of the device is based on the controlled current flow between 

the source and drain, by the application of a bias voltage at the gate. In the off state of the 

TFT, the passage of current through the semiconductor body is difficult due to the low 

conductivity of this layer. When a positive bias is applied on the gate, the electric field 

created allows the flux of electrons from the source to the drain, due to the appearance of a 

negatively charge region close to the isolate layer. This field-effect is the mechanism 

responsible for the current flow, corresponding to the on-state of the transistor. 

1.2.1.2 Cu2O based TFT 

As copper oxide is one of the few oxides with high p-type mobility values, TFTs 

were tested using Cu2O as a channel semiconductor. The first publication reporting the 

production of a TFT based on Cu2O was achieved in 2008 by Hosono et al. 8, where a single 

crystal of Cu2O was epitaxially grown on MgO at 700 °C The hole mobility presented a 

high value for Cu2O, 90 cm2V−1s−1. However, even if the TFT shown a p-channel operation 

although, the on-off ratio and the effective mobility were only 6 and 0.26 cm2.V-1.s-1 

respectively 8. The transfer characteristics of the TFT is visible in Figure I-10a). In other 
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follow-up research from 2010 80, the results were substantially improved for Cu2O 

deposited by pulsed laser deposition in pure O2 with a P(O2) = 0.6 Pa. The TFTs present a 

low threshold voltage of −0.8 V, an on-off current ratio of 3x106, a saturation mobility of 

4.3 cm2/V s, and a sub threshold swing of 0.18 V/decade, for films deposited at 500 °C. 

The temperature increase during the deposition increase the concentration of Cu2+ cations, 

which consequently result in the formation of the CuO phase. All the electric properties 

and transistor functions were diminished with the CuO phase increase, as visible in the 

Figure I-10b).  

Other study focuses on the annealing of Cu2O, at lower temperatures from 150 °C 

to 500°C for 7 minutes under a base pressure of 2x10−6 Torr 81. Holes mobility values were 

47.5 cm2V-1.s-1 with a low concentration of charge carriers, 2.95x1014 cm-3 and good 

transmittance of 55%, in the visible region. The morphology of the films is visible in the 

Figure I-10c, where the grains show a homogeneous distribution with a grain size around 

100 nm. The integration of the films in a TFT transistor, with Ni contacts, show the 

possibility of creation a transistor with an on/off  current’s ration of 1.1× 104 and a V 

threshold of -7.5V (Figure I-10d) 81.  

 

 

Figure I-10 Transfer curves of different TFT based on Cu2O produced by different groups a) 

Matsuzaki et al. 8 b) Xiao Zou et al. 80 c) and d) Joonsung Sohn et al. 81 where c) SEM micrograph of a Cu2O 

film annealed at 500 °C 
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Thermal oxidation of Cu metallic films were used to prepare a p-type channel TFTs 

82. The treatment to obtain the Cu2O phase was performed at 200 °C in an oxygen rich 

atmosphere. The final device show a mobility value of 2.2 cm2V-1s-1 for a thickness of 112 

nm, and an on-off ratio of 60. In this study, the oxidation at higher temperature, 250 °C, 

origins the appearance of CuO phase. The same group, Fortunato et al 83, also studied Cu2O 

thin films by reactive RF magnetron sputtering deposited at room temperature. The TFT 

show a field-effect mobility of 3.9 cm2V-1s-1 and an on/off ratio of 200. In Figure I-11a) the 

transfer curve is plotted.  

The first solution-based p-type transistor was achieved in 2013 by sol-gel using spin 

coating, followed by two annealing stages 84. During the first annealing in N2, a thin film 

of metallic Cu was formed, and then oxidized to Cu2O by the second annealing in O2. In 

this device, a CuO layer functioned as an insulator, resulting in a limited on-off ratio of 

100, while the mobility presented to be 2.2 cm2V-1s-1, for films annealed at P(O2)= 

0.04Torr. 

Other possible configurations is a bilayer TFT, composed of two films, enabling 

the production of tuneable devices at low processing temperatures (170 °C) 85. Each layer 

had a different effect on the TFT, since the Cu2O film worked as a capping layer, while the 

SnO on the bottom controlled the upper layer stoichiometry. The final 25 nm bilayered 

structure presented in Figure I-11b), showed a p-type channel performance with a final on-

to off current ratio of 1.5x102 and a threshold voltage of -5.2V.  

 

Figure I-11 Transfer curves of different TFT based on Cu2O produced by Fortunato et al. 83 and b) 

Bilayer FTF of Cu2O and SnO produced by Hala A. Al-Jawhari et al .85 
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1.2.2 Photovoltaics  

This following chapter’s part is based on a previously written chapter for the book 

“Materials for Photovoltaic Solar Cells: Materials for Sustainable Energy Applications: 

Conversion, Storage, Transmission, and Consumption”, (2017). It was written in 

collaboration between: Munoz-Rojas, D., Liu, H., Resende, J., Bellet, D., Deschanvres, J. 

L., Consonni, V. and Zhang, S.  

Recently, the scientific society has been concerned about the need for more energy 

sources. The energy dependence problem has stimulated the search for solutions and this 

has resulted in a significant boost to solar energy due to its future possibilities. So far, the 

silicon-based method has been the most common way of producing solar panels. 

Nevertheless, new other materials have been tested to enhance the photovoltaic capacity to 

produce energy.  

The interest on photovoltaics lead to new scientific projects supported by the 

Horizon 2020 initiative on low-cost and highly efficient solar cells. Two of these projects 

are specific for advanced technologies using new materials as: Cheops, for the development 

of the recent perovskites solar cells 86, or CPVMatch for the research on multi-junction 

solar cell architectures aiming for practical performance of high concentrating 

photovoltaics 87.  

 

1.2.2.1 Solar Cells 

A solar cell is a device capable of transforming light into electricity. Absorption of 

a photon causes the excitation of an electron within the absorbing material. In order to 

work, i.e. to collect the electrons to flow out of the cell generating a current and voltage, 

an asymmetry must be present in the device. This asymmetry is for instance created by 

having a pn junction, formed by two semiconductors with opposite electrical behaviour. As 

it is known, in p-type semiconductor material, the majority carriers are holes, while in n-

type are electrons. In the case of inorganic semiconductors (silicon for example), when n-

type and p-type are in contact so that an interface is created, the excess electrons in the n-

type material will diffuse into p-type material, and the other way around for holes from the 

p-type into the n-type. The consequence of this spontaneous flow is the spontaneous 

generation of an electrical field near the interface, which opposes to a further diffusion of 

electrons into p-type, and holes into n-type material, until  thermal equilibrium is reached 

88. This balancing space is called depletion region, which has a width W0, as presented in 
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Figure I-12. As illustrated below, W0 depends on the carrier concentration of the 

semiconductors and thus the n and p-type materials can contribute differently to the 

depletion region. In Figure I-12 for instance, the p-type semiconductor contributes more to 

W0 since it has a lower carrier concentration than the n-type semiconductor. 

 

Figure I-12  Band structure of an inorganic pn junction with zero bias. 

The depletion layer thickness can be affected by an imposed external bias, as shown 

in Figure I-13. When the applied external electrical field opposes the built-in potential, then 

it is called a forward bias, facilitating electron flow across the junction, as shown in Figure 

I-13a). When the external field is applied in the same direction of the built-in potential, it 

is reverse bias 88, as presented in Figure I-13 b). 
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Figure I-13 a) Forward bias decreases depletion zone and built-in potential; b) Reverse bias 

increases depletion zone and built-in potential. 

Control over the width and built-in potential can be achieved by several methods. 

By combining different semiconductor materials, the depletion zone and built-in potential 

can vary. For a specific material, in the absence of an external electrical bias, the depletion 

width is mainly dependent on carrier concentration and thus doping can modify the 

depletion region width. The built-in potential is associated with the bending of the band 

structure, which is a consequence of the both materials having the same Fermi level once 

connected, as shown in Figure I-12. In p-type material, its Fermi level EFp is closer to the 

valence band, while for n-type, EFn it is closer to the conduction band.  

Introducing a controlled amount of impurities in very pure semiconductors (doping) 

allows to tune the electrical properties of semiconductor. Simple calculations show that in 

an intrinsic semiconductor material, the Fermi level EFi is located in the middle of the band 

gap. By introducing doping elements, donors in n-type, the Fermi level shifts towards the 

conduction band. Contrarily, introducing acceptors leads to shifting of the Fermi level 

towards the valence band, thus obtaining a p-type. As mentioned above, the built-in 

potential is due to the bending of the band structure. 

To mathematically describe the depletion zone, charge neutrality and Poisson 

equation are used 89. For simplicity, the discussion is limited to a 1D model. Thus, equations 

are given as follow: 
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 −
𝑑2𝜓

𝑑𝑥2
=

𝑑𝐸

𝑑𝑥
 =

𝜌(𝑥)

𝜖𝑠
      𝑊𝐷𝑝𝑁𝐴 = 𝑊𝐷𝑛𝑁𝐷 

(I.1) 

ψ is the potential, E is the electric field, 𝜌 is the charge density, x is the distance from the 

junction and s is the dielectric constant. To simplify the model further, we assume an 

abrupt junction where ND, NA are both constant. A boundary condition assumes as well that 

at each end of the depletion zone there is no electrical field. Thus, the electrical profile can 

be solved by equations (I.1), (I.2) and (I.3) and being obtained. 

 
𝐸𝑝(𝑥) = −

𝑞𝑁𝐴(𝑥 + 𝑊𝐷𝑝)

𝜖𝑝
 , 𝑓𝑜𝑟 − 𝑊𝐷𝑝 ≤ 𝑥

≤ 0 

(I.2) 

 𝐸𝑛(𝑥) = −
𝑞𝑁𝐷(𝑊𝐷𝑛 − 𝑥)

𝜖𝑛
 , 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑊𝐷𝑛 

(I.3) 

By integration of equations (I.2) and (I.3), plus a boundary condition, the potential 

for p and n region can be given, as shown in equations (I.4) and (I.5). 

 
𝜓𝑝(𝑥) =

𝑞𝑁𝐴(𝑥 + 𝑊𝐷𝑝)

2𝜖𝑝

2

 𝑓𝑜𝑟 − 𝑊𝐷𝑝 ≤ 𝑥 ≤ 0 

 

(I.4) 

 

𝜓𝑛(𝑥) = 𝜓𝑝(0𝑥) +
𝑞𝑁𝐷(𝑊𝐷𝑛 − 𝑥/2)𝑥

𝜖𝑛
 𝑓𝑜𝑟 0 ≤ 𝑥

≤ 𝑊𝐷𝑛 

 

(I.5) 

Thus, the total potential across the device, also called built in potential ψbi, would 

be the sum of ψp and ψn. qVbi = ψbi= ψp+ψn. With the charge neutrality equation, the 

depletion width on each side can be determined.  

In solar cells, when one or the two semiconductors of the p-junction has a gap 

suitable for visible light absorption,  the illumination of the pn junction creates electron-

hole pairs in the depletion zone, a phenomenon called photovoltaic effect. Due to the built-

in electrical field in this region, the holes will move to the p-type semiconductor, while the 

electrons move to the n-type material. If the circuit is open, the positive charges will 

accumulate in the p-type material and the negative ones in the n-type material, reducing the 

electric field in the depletion zone. However, if we introduce an external load in the system 

(i.e. the circuit is closed), the charges can move outside of the junction, generating an 

electrical current and increasing once again the electrical field in the depletion zone. 

Consequently, the energy produced in the solar cell is dependent on the rate of electron-
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hole generation, bias voltage and all the conduction processes inside and at the borders of 

the cell 90. In Figure I-14, the open and close circuit schemes of the pn junction are 

represented. 

 

 

Figure I-14 a) Carrier movement in pn junction under illumination with no load; b) Carrier 

movement in p-n junction with load. 

The performance of a photovoltaic solar cell can be evaluated using a variety of 

parameters91. One of the first and most important types of analysis is the Power Conversion 

Efficiency (PCE), defined as the ratio of the power produced by the cell (Pprod) with regards 

to the power from the incident light on the cell (Pinc). It is given by: 

 𝜂 =
𝑃𝑝𝑟𝑜𝑑

𝑃𝑖𝑛𝑐
 (I.6) 

The values for the incident light power are usually standardized for light sources 

with an AM 1.5G spectrum and a light flux of 100 mW.cm-2. This solar spectrum is a 

standard value taking into account for example the absorption by H2O or CO2 molecules in 

the atmosphere.  

The produced power is the result of multiplying the obtained current for a particular 

applied voltage. For the calculation of the PCE, the maximum power is considered, as 

indicated in equation (I.7). 

 𝑃𝑝𝑟𝑜𝑑 = 𝐼𝑖 𝑉𝑖 
(I.7) 

where Ii and Vi are the electric current and potential values that give maximum power. Thus, 

IV curves are measured to estimate the maximum power as well as other parameters. The 

IV curves are obtained by measuring the electrical current dependence on the bias voltage 

applied to the terminals of the cell, under illumination. When the applied voltage is zero, 
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the current measured, ISC, corresponds to the short circuit current. This current is described 

as the electric flow produced by the illumination of the cell (photocurrent) with no external 

loads, which strongly depends on the number of photons absorbed and the efficiency with 

which carriers are collected. 

When the bias voltage increases, the electrical current drops, due to the increase of 

the recombination current, opposite to the electric current generated in the cell. When the 

current is annulled, the recombination and photocurrent are equal, and the voltage applied 

is called the open circuit voltage VOC. This voltage depends on the p- and n-type properties 

of the materials and the contacts between the electrodes and the semiconductors on the cell. 

Figure I-15a) represents the variation of the produced power with the bias voltage, while 

the Figure I-15b) shows a typical IV curve. 

 

Figure I-15 - a) Power variation with bias voltage b) IV curve of a solar cell 

Considering the two concepts, VOC and ISC, we can define the PCE based on these 

two parameters: 

 𝜂 =
𝑉𝑂𝐶𝐼𝑆𝐶𝐹𝐹

𝑃𝑖𝑛𝑐
 (I.8) 

where FF is defined as fill factor. 

 𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝐼𝑠𝑐𝑉𝑜𝑐
 (I.9) 
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In Figure I-15b) the power produced by the solar cell is directly related to the area 

of the square whose edges are equal to Vmax and Imax. Therefore, the fill factor can then be 

graphically interpreted as the ratio between the maximum power obtained from the cell and 

the product of the short circuit current and open circuit voltage (power that would be 

obtained from an ideal pn junction, i.e. diode).  

The shape of the IV curve, which can be depicted in the FF value, is strongly 

dependent on the different resistances of the solar cell. The shunt resistance, RSh, is mainly 

responsible for the leakage current troughtout the cell. In this case, the resistance should be 

maximized to prevent recombination of electron-holes in the pn junction, reducing the 

leakage current on the cell. In the IV curve, this maximization is expressed by a smoother 

slope at lower bias voltages. While the series resistance, RS, is the component of resistance 

regarding to the electrodes contacts, bulk resistance or other interfacial barriers (i.e. series 

resistance). The reduction of this type of resistance leads to an increase of electrical current, 

which increases the slope of the IV curve at bias voltages near VOC , thus a more squared 

shape of the curve (i.e. closer to the ideal diode). The control of both resistances is 

fundamental to increase the final PCE of the cell.  

In general, the equation that expresses the dependence of current and voltage can 

be defined as: 

 𝐼 = 𝐼𝑆𝐶 − 𝐼0 (𝑒
𝑞(𝑉−𝐼𝑅𝑆)

𝑛𝑘𝑇 − 1) +
𝑉 − 𝐼𝑅𝑆

𝑅𝑆ℎ
    (I.10) 

where 𝑛  is the non-ideality factor. In practice, because measurements are made 

illuminating a particular cell area, short-circuit current density (JSC, i.e. ISC/illuminated 

area) is commonly quoted when evaluating IV curves. While the evaluation of IV curves 

under illumination is a basic evaluation of cell performance, dark IV curves (i.e. without 

any illumination) are also routinely performed. This measurement allows to evaluate the 

non-ideality factor of the pn junction in the absence of any light induced bias. The 

comparison of RS and RSh for light and dark measurements also provides useful information 

92. 

1.2.2.2 Copper oxide based Solar cells  

 

In order to have solar cells with a higher efficiency/cost ratio, the used materials 

should ideally be abundant and manufactured using low-cost and scalable techniques. In 

this context, there has been a recent drive towards the use of stable inorganic 
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semiconductors based on earth abundant elements, mainly Si, Fe, Cu, O, S, and their 

theoretical capacity of producing enough energy to cover the demand 93. In Figure I-16 the 

annual electricity potential of each material in shown, regarding the materials extraction 

costs. The graphs shows that Cu2O has higher potential and lower extraction costs than 

silicon, therefore being proposed as an interesting energy material.  

 

Figure I-16 Annual electricity potential vs. materials extraction cost for several semiconductors. 

Those with better ratio than the currently used crystalline Si are located in the first quadrant 93  

For application into solar cells, Cu2O is being heavily investigated since Cu is 

abundant, non-toxic and theoretical maximum obtainable efficiencies for Cu2O-based 

single junction cells are high, around 20% 94.However, the low energy band-gap of Cu2O, 

2.17eV, limits the abortion of the blue and green part of the solar spectrum, significantly 

limiting the potential of a single Cu2O-based solar cell. As a solution, copper oxide can be 

used as a PV material by combining several cells of different band gap stacked on top of 

each other, called a tandem cell. Each cell absorbs a different portion of the solar spectrum, 

with band gap decreasing in the direction of light incidence. Therefore each cell absorbs 

photons closer to its band gap, which also results in a lower thermalisation of the electron-

hole pairs generated. Tandem cells allow a theoretical efficiency limit of 42.5% for a two-

cell stack and 47.5% for a three-cell stack tandem cell, as opposed to the Schockley-
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Queisser limit of 31% for a single band gap cell 95. For this purpose, a high efficiency 

Cu2O-based solar cell would be intended for tandem cell implementation.  

The difficulty in obtaining n-type Cu2O is the main factor limiting the maximum 

efficiencies that can be obtained, since it has not been possible to make an efficient 

homojunction of the type n-Cu2O/p-Cu2O. Although there are some reports on n-type Cu2O 

fabricated 96–98, the origin of the n-type character is not well established and the 

homojunction cells prepared with such materials presented very low efficiencies 99,100. 

This fact can be overcome by the use of a different n-type semiconductor that 

presents a band structure compatible with Cu2O to form a heterojunction. ZnO as an n-type 

semiconductor oxide can be combined with Cu2O which will function as p-type absorber 

material. The combination of these two oxide semiconductors has been widely investigated 

for a oxide based solar cell 101, 102, 103. For this junction, a built-in bias of approximately 0.6 

to 0.7 V is expected, which should approximate the achievable open-circuit voltage (VOC) 

104. In a Cu2O/ZnO solar cell, light is absorbed by Cu2O and the generated electrons are 

injected into the ZnO conduction band and extracted, thanks to the high electron mobility 

of ZnO, through the contact towards the external circuit, holes being transported through 

the Cu2O layer to the external circuits as majority carriers, and electrons towards the 

junction as minority carriers. 

The maximum value achieved by functional devices is only 4.12% 105 for an 

intrinsic ZnO/Cu2O junction, which was recently increase to 8.1% in a 

MgF2/ZnO:Al/Zn0.38Ge0.62O/Cu2O:Na heterojunction 106. Also, this record of efficiency 

was achieved by thermal oxidized Cu2O, which produce large grains, in the tens of microns 

range, reducing the fraction of grain boundaries and increasing the mobility. However, this 

technique is not suitable for industrialization, since it requires very high temperatures, 1000 

ºC 107. Thus, the values are still far from predicted efficiency, and using energy intensive 

methods not suitable for large scale production 108. 

There has been an intensive study on ZnO/Cu2O cells fabricated by 

electrodeposition. Although, the initial reports suffered from rather low VOC values, 

engineering of the ZnO/Cu2O and of the Cu2O/contact interface has had a huge impact on 

efficiency, clearly showing that in addition to the bulk properties of the different 

semiconductors used, the interfaces (surface chemistry and morphology) play a key role on 

device efficiency 109,110. By engineering the interfaces, maximum efficiencies of 2.61 % 

and 5% have been achieved for cells prepared by low temperature and high temperature 

approaches, respectively 108,110. 
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In other study, atmospheric pressure spatial atomic layer deposition (AP-SALD) 

was used to deposit Cu2O and applied to ZnO/Cu2O solar cells 103. The low hole 

concentration of electrodeposited Cu2O imposes the use of thick Cu2O films in order to 

have a full depletion layer. The depletion width in a semiconductor depends mainly on the 

carrier concentration and, therefore, synthesizing Cu2O with a higher hole concentration 

would result in higher VOC values for a same cell thickness and higher electric field within 

the Cu2O layer 103. The Cu2O films obtained using AP-SALD presented mobility values 

from 1.5 to 5.5 cm2V-1s-1, for deposition temperatures from 125 to 225 ºC. In terms of 

carrier concentration the films reach up to 1016 cm-3, which is three orders of magnitude 

higher than for electrodeposited films 24. 

Taking advantage of the high carrier concentration of the AP-SALD Cu2O films, a 

Back Surface Field (BSF) cell with the following structure Cu2OSALD/Cu2OED/ZnOED, 

where ED stands for electrodeposited, was implemented 103. In a BSF cell, the top layer, 

with a high carrier concentration, dopes the layer underneath thus contributing to decrease 

the depletion width in the cell, and increasing the electric field within the electrodeposited 

Cu2O layer. In this way, record current densities were obtained for a ZnO/Cu2O cell 

deposited by low temperature, atmospheric methods, while using a Cu2O layer of around 1 

m, as opposed to the standard 3 m for fully electrodeposited devices. Apart from 

enhanced electric field, the use of a thinner Cu2O layer and the nanoparticulated AP-SALD 

Cu2O layer also contributed to a more effective collection of charges generated by photons 

of wavelengths above 450 nm. The obtained VOC was lower than expected, due to the 

nanometric nature of the AP-SALD Cu2O films, from 50 nm to ~250 nm, in Figure I-17, 

which is believed to cause charge recombination. 

 

Figure I-17 a) Cross section SEM images of an SALD-enhanced cell; b) EQE spectra of a thin (∼75 

nm) and thick (∼200 nm) SALD enhanced cell (ZnO/Cu2OED/Cu2OSALD) compared to a 1 μm-Cu2O and 3 

μm-Cu2O fully-ED (ZnO/Cu2O) cell 103 
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1.2.2.3 UV Photodetector based on oxides 

 

Considering the same principles as a solar cells, UV photodetectors can be created 

using high band-gap semiconductors, larger than 3 eV. Over the past years, increasing 

efforts have been dedicated to the development of self-powered nano-sensors thanks to the 

increasing demand of autonomous, wireless, nanoscale engineering devices with various 

functionalities, and to their extensive range of applications 111. A promising path for the 

fabrication of self-powered UV photodetectors is to use the internal built-in potential 

difference of a pn heterojunction at zero bias to prevent the recombination of photo-

generated electron-hole pairs and to generate the photocurrent 112. Other strategies include 

photo-electrochemical cells 113,114 and Schottky metal semiconductor heterojunctions 

112,115,116. 

Owing to its wide direct band gap energy of 3.37 eV and large exciton binding 

energy of 60 meV at room temperature as well as to its high electron mobility around 200 

cm2V-1s-1, ZnO has been considered as a key n-type semiconductor for modern electronics 

and optoelectronics 55,117,118. The combination of p-type CuCrO2 or Mg-doped CuCrO2 thin 

films in transparent pn diodes has previously been achieved with n-type ZnO thin films 

deposited by pulsed laser deposition 119,120 and magnetron sputtering 121. However, the 

resulting transparent p-n diodes presented low rectifying behavior, with the highest 

reported rectification ratio of 75 between the forward current to the reverse current at ±1.5 

V 119. The poor characteristics for such pn heterojunctions were attributed to the large 

lattice mismatch between both oxides and to structural imperfections at grain boundaries 

in the delafossite phase 119,121. 

A promising path for improving the device performances is to introduce 

nanostructured architectures, such as one-dimensional nanowires (NWs), in order to benefit 

from their remarkable chemical and physical properties related to their large surface-to-

volume ratio 122. The possibility to form ZnO nanowires (ZnO NW) using various 

deposition techniques 123–127, including the low-cost, low-temperature chemical bath 

deposition 123, and to take advantage of  their unique properties 122,128 has thus raised even 

more interest. Within the core-shell NW heterostructure configuration, and following the 

type-II band alignment, ZnO NW-based heterojunction devices offer efficient light 

trapping processes through optically guided and radiated modes 129–131, efficient charge 

carrier separation over the small radius of the NW and efficient charge carrier collection 

owing to the high mobility electron pathways provided by the NWs 129,132.  
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ZnO NW based core-shell heterostructures have successfully been integrated into 

gas sensors 133, UV-photodetectors 134, dye-sensitized 135, and extremely thin absorber solar 

cells 136. Among them, the conventional ZnO NW based-UV photodetectors rely on the 

photo-generation of electron-hole pairs upon UV illumination, and on the hole trapping at 

the NW surface through oxygen adsorption-desorption processes while unpaired electrons 

are collected using an applied bias voltage 137. High photoconductive gains and responsivity 

were achieved following that approach, but the long relaxation time and the dependence on 

an external power source both limit their mobility and adaptability. Self-powered UV 

photodetectors made of ZnO NW core-shell heterostructures in combination with wide 

band gap p-type inorganic semiconductors such as GaN 138, CuSCN 139,140, and NiO 141 

have already been reported. These heterostructures operate at zero bias and typically show 

high absorption in the UV part of the electromagnetic spectrum, responsivities as large as 

20 mA/W 140 and UV-to-visible rejection ratios of the order of 100. Fast rise and decay 

times below 1 µs and 10 µs, respectively, have been achieved 139. 

Very recently, self-powered UV photodetectors based on ZnO / Cu2O  core-shell 

NW heterostructures have been shown to exhibit high responsivity in the UV and visible 

parts of the electromagnetic spectrum owing to the 2.2 eV band gap energy of Cu2O 142,143. 

I.Y.Y. Bu used the sol-gel process to fabricate ZnO/CuAlO2 core-shell NW 

heterostructures with a rectification ratio of 4.7 at ±1 V, an open-circuit voltage (Voc) of 

250 mV, and a short-circuit current (Isc) of 6.6 µA 144, however, no responsivity 

measurements were presented. Despite the high p-type conductivity of CuCrO2, its wide 

direct band gap energy and proper type-II band alignment with ZnO, no nanostructured 

heterojunctions including core-shell NW heterostructures have been reported so far. 

1.3 Conclusion 

The state-of-the-art analysis of copper oxides-based thin films and devices lead us 

to foresee two scientific gaps in the literature. Firstly, the possible enhancements of Cu2O 

via cation doping is still unexplored with only a few studies dedicated to the topic, while 

the application of CuCrO2 into active devices, as UV photo-detectors, is at this moment in 

a preliminary stage. 
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In this second chapter, we expose the details of the methodology used in the 

preparation of copper-based oxide thin films, as well as a description of the characterization 

techniques and the numerical simulations adopted throughout this work. The chapter is 

divided in three main parts, with a first section dedicated to material synthesis, annealing 

conditions and devices fabrication. Then, in a second part the characterization techniques 

for morphological, structural and functional properties are developed. The chapter ends 

with the development of the numerical simulations of a pn junction, focusing on the physics 

of the model and the algorithm used for the implementation.  
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2.1 Aerosol-assisted Metal-organic Chemical Vapour 

Deposition 

In the Laboratoire des Matériaux et du Génie Physique (LMGP) in Grenoble, the 

expertise on different types of chemical vapour deposition (CVD) processes has started 

since the early stages of the laboratory. The chemical vapour deposition process is defined 

as a chemical reaction between reacting species, provided as vapours, in the neighbourhood 

of a heated substrate, which results into the deposition of solid by-products on the surface 

1. The possibility of producing different structures as films, powders or fibres, with a large 

variety of materials types as metals, oxides, carbides, silicon or nitrides stablished CVD as 

a powerful and flexible technique for materials production 1.  

A specific variant of the technique, the Metal-organic chemical vapour deposition 

(MOCVD), is based on the deposition of materials starting from metal-organic compounds 

as precursors. These precursor compounds are characterized by organic molecules with 

metallic elements presenting metal-carbon, metal-oxygen-carbon bonds that are 

decomposed by a reactive gas in a thermally-energetic environment, resulting in the 

formation of a solid material. In this case, the possible applications already harnessed in 

the industry are diverse, ranging from optoelectronics (lasers and diodes), 

telecommunications, solar cells or microelectronics (transistors), with a growth use in the 

last years due to its versatility 2.  The broad use of the MOCVD is motivated by the various 

advantages in materials processing, from high purity and molecular homogeneity of the 

films; particle size in sub-micron range with high reactivity and surface area of the 

structures produced. There are also economic advantages since it enables lower 

decomposition temperatures of the precursors, larger processed areas and relatively simple 

apparatus, when compared to MBE or other techniques. Nevertheless, some drawbacks do 

exist and mainly concern the risk associated to the use of chemicals, since the 

environmental impact of the toxicity of reactants and by-products as well as the safety lab 

operators are still an important issue to be addressed 2.  

From the different types of MOCVD techniques available we focused our research 

on Aerosol-assisted Metal-organic Chemical Vapour Deposition (AA-MOCVD) 3. This 

type of CVD process uses an aerosol medium to transport the precursor into the deposition 

chamber. It was developed first and patented at Grenoble by the CEA with the commercial 

name Pyrosol (Pyrolysis of aerosol) 4,5. AA-MOCVD enables the growth of high-quality 
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and homogeneous thin films from fundamental studies to low-cost and large-area-

deposition for industrial applications 6. The use of aerosol-assisted generation places this 

procedure within the liquid source delivery CVD processes and offers the possibility to 

produce films without any vacuum system, at conditions close to atmospheric pressure and 

even in open air 7.  

The process uses a solution-based precursor that is sprayed into micro-size droplets, 

forming the aerosol mist.  This solution can be obtained from a pure liquid precursor, or by 

dissolving solid or liquid precursors in a solvent 3. The formation of an aerosol from a liquid 

solution avoids the use of highly volatile precursors since the first requirement is their 

solubility in the solvent. Moreover, for the deposition of multicomponent materials, 

different precursors can also be mixed, as long as solubility and stability in liquid phase is 

guaranteed. Compared to other types of CVD processes, this precursor’s versatility enables 

the use of more thermally stable and lower price precursors, reducing the final cost of 

materials production. Specifically, in the case used for this work, the aerosol mist is 

generated by an ultrasonic vibration of a piezoelectric transducer at a specific resonance 

frequency (close to 800 kHz) that maximizes the mist quantity. The size of the created 

droplets d can be estimated by the following expression: 

 𝑑 = 𝑘 (
2𝜋𝛾

𝜌𝑙𝑓2
)

1

3

 
(II.1) 

Where f is the excitation frequency of the transducer, k is semi-empirical constant, 

ρl is the density of the liquid and γ the correspondent surface tension 3. The equation (II.1) 

shows that by changing the solvent or the concentration of the solution, the size of the 

droplets can be varied through the value of the viscosity, even if the resonance frequency 

is kept constant. An image of the mist generated by mechanical vibration is shown in Figure 

II-18. 
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.

 

Figure II-18 Droplets in a mist generated vibration 8 

After the creation of the aerosol, the mist is mixed with a carrier inert gas that 

transports the aerosol to the reaction chamber. In the path from the aerosol generation and 

the reaction chamber, a reaction gas is added to the aerosol and heating of the mist can be 

induced by external elements. When the mist arrives to the heated substrate, its temperature 

increases and the solvent is evaporated. Then, the precursor in its gaseous state reaches the 

heated substrate, evaporates, decomposes and deposition occurs 4,6. In the Figure II-19, a 

scheme shows the different steps in a AA-MOCVD process 3, where all the different steps 

in the process of a film deposition from the atomization of the aerosol droplets, the transport 

and heating, evaporation of solvent and precursor, and absorption on the substrate. Other 

possible phenomena are also represented, as powder production or direct spray-pyrolysis 

deposition. 



Chapter II: Experimental procedure and characterization techniques  

51 

 

Figure II-19 Schematic diagram of the AACVD process for the deposition of films and powders from 

Hou and Choy  3.  

The nucleation and growth of the film occurs by thermally-activated surface 

reaction of the precursor with the reactive gas. During the adsorption on the heated 

substrate, the bond between the metal and organic components of the precursor is broken, 

leading to the subsequent interaction between the metal and the reaction gas, which is 

oxygen in the case of this study. This leads to the formation of small nuclei on the substrate, 

while the organic species are released and eliminated from the surface. Consequently, the 

number and size of the adsorbed nuclei increase, which induces the formation of the film 

due to a continuous arrival of metal precursor and reactive gas. Figure II-20 shows the 

process of nucleation and growth of the film.  
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Figure II-20 Aerosol process at the substrate representing the nucleation and growth of the film. 

From Carmalt et al 6.   

The density and the growth rate of each nucleus is the main factor to control the 

size of the grains and stoichiometry of the phase. During all of the process, a group of 

parameters have to be controlled with the aim of enhancing the deposition growth rate and 

the film physical and chemical properties. Regarding the film composition, the nature of 

the precursor solution, the substrate temperature and the oxygen pressure have important 

roles, while the aerosol parameters such as piezoelectric frequency and power, density of 

flux, speed, total pressure and nature of the gases have a more direct effect on the growth 

rate and thickness of the films. 

According to Hou and Choy 3, there are five main advantages to the use of aerosol 

assisted MOCVD, namely (i) larger number of available precursors at a lower price, (ii) 

simplicity of the technique for transport and vaporization of the precursors, (iii) high 

volume transport of the precursor which can increase the deposition rate, (iv) flexibility in 

terms of atmosphere, since it can work from low pressure to open atmosphere and (v) the 

accurate stoichiometric control of multicomponent materials. Nevertheless, the 

stabilization of the aerosol flux and the geometric conditions of its delivery in the chamber 

are large issues for the efficiency of this procedure 7. 

 

2.1.1 Metal-organic Precursors 

The precursors used in the development of this work were all metal-organic species, 

where a metal atom is combined with an organic group, which stabilizes it.  Since the 

organic part is unstable under high temperatures, these precursors have to be decomposed 
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using a heated source. In our case, it is the heating plate below the substrate which fulfils 

this requirement. Different types of precursors where tested, from acetates to 2,2,6,6-

tetramethyl-3,5-heptanedione (TMHD) precursors, all of them betadiketonates. The main 

changes are in the number of organic bonds presents in the precursor and the type of organic 

compound, as well as, the type of bonding, monodendate or bidendate. For all the results 

shown in this work, we will focus on acetylacetonate precursors which derive from the 

acetylacetonate anion (CH3COCHCOCH3
−) which act as a bidendate ligand, sharing 2 

chemical bonding for one shared electronic charge. Normally it is abbreviated as acac, with 

the copper case being commonly referred as Cu(acac)2. As visible in Figure II-21, the 

copper atom is connected to four oxygen atoms, which form 2 six-membered chelate ring. 

 

Figure II-21 Schematic representation of Cu(acac)2 with copper atom represented in blue, oxygen 

in red, carbon in grey and hydrogen in white 9. 

There were various reasons motivating the choice of this type of metal-organic 

precursor, starting from there solubility in different solvents, water, butanol or ethanol, with 

or without using additives. In the case of Cu(acac)2, the decomposition temperature of 284 

°C is slightly lower than the formation of copper oxide phases and lower than the melting 

point of glass, which allows the deposition process to occur in a range between 300 and 

500°C. This precursor presents a complete decomposition into a Cu atom and acac-ligands 

9, which enables the formation of metallic copper, Cu2O or CuO depending on the oxygen 

partial pressure. Additionally, the precursor has a low moisture sensitivity 10, it is generally 

used in the literature, which simplifies the determination of ideal conditions and finally, it 

has a reduced cost (2.96€/g in Sigma-Aldrich) allowing the use of large amounts of 

precursor for dense solutions and long times of deposition.  
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2.1.2 Description of an AA-MOCVD experiment 

The preliminary step in the deposition process is the preparation of the solution. 

Usually based on solvents as butanol or ethanol, the solution is produced by simply mixing 

the precursor and the solvent, followed by a constant stirring. As the precursors used were 

acetylacetonate, ethylendiamine was added to increase the solubility, at a double 

concentration in relation with the total molar concentration of precursors 11. In case of a 

doped materiel, the ratio of precursors indicated is always the fraction between the dopant 

molar concentration and the total molar concentration of all precursors, being presented as 

X/Cu+X.   The stirring lasted 15 hours until a homogenously solution was obtained. The 

temperature of the solution is also increased to 50 ºC to promote the precursor dissolution. 

Figure II-22 a) and b) shows the appearance of the precursors used, Cu(acac)2 and 

Mg(acac)2 for the doped case. Cr(acac)2 was a similar appearance to Cu(acac)2 with a dark 

blue colour, however with larger sized particles. In Figure II-22 c) is shown the solution 

with ethanol as solvent and before the addition of ethylendiamine, while Figure II-22 d) 

depicts the stirring step, already with ethylendiamine as additive.  



Chapter II: Experimental procedure and characterization techniques  

55 

 

Figure II-22  Precursor used in the solution a) Cu(acac)2 and b) Mg(acac)2; solution after the 

addition of the solvent; d) stirring step in the magnetic plate. 

The next step is the preparation of the substrates. In the majority of the cases, 

alkaline earth boroaluminosilicate glass (Corning 1737) and p-type silicon wafer were used 

as substrates, in order to study the different chemical, microstructural, optical and electrical 

properties. Nevertheless, other materials were also tested as glass micro-slides, Au-covered 

silicon wafer, covered glass with different transparent conductive materials as ITO, FTO 

or even Ag nanowires networks. The substrates are cut to fit the dimensions of the holder, 

2.5cm to 7.5cm, visible in Figure II-23.  
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Figure II-23 Metallic holder with Corning glass, Silicon wafer and glass micro-slide as substrates 

in a 2.5cm x 7.5cm holder 

The substrate cleaning procedure consists in mechanical brushing using paper and 

a sequence of lubricant solvents: acetone, isopropanol and de-ionized water, followed by 

an ultrasonic bath in isopropanol for 15 minutes. In order to complete the cleaning step, 

they are rinsed with de-ionized water, dried using azote and placed in the holder 

At this moment, the holder with the substrates is attached to the heating plate, 

visible in Figure II-24b) and the temperature starts to increase, controlled by a 

thermocouple. The scheme of deposition set-up is also visible in Figure II-24a). 
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Figure II-24 a) Scheme of deposition set-up and b) heating plate with substrates supported by a 

metallic holder 

The heating step has nominally a duration of 30 minutes, followed by a stabilizing 

period for 5 minutes, while the plate is rotating. Before the deposition starts, the solution is 

transferred to a vessel and connected to the piezoelectric transducer by a valve. The height 

of the vessel allows the control of the solution quantity on top of the piezoelectric 

transducer, visible in the Figure II-25 a). A piezoelectric transducer, visible in Figure II-25 

b), generates the aerosol mist in a separate vessel, with a frequency of 800 kHz, with a 

controllable power depending on the desirable solution’s consumption. In Figure II-25 b), 

the mist is visible on top of the solution and bellow the connecting glass tube for the mist 

transport. 
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Figure II-25 a) solution vessel with the level of solution visible; b) piezoelectric transducer and 

created mist. 

Argon is used as carrier gas injected on the top of the solution vessel, while O2 is 

used as reaction gas, which enters in the system at a higher position, visible in Figure II-26 

a). The mixture consisting of the mist and the gases is transported to a home-made reactor, 

beginning the deposition on the substrates, placed in a vertical position, Figure II-26 c). In 

the configuration presented here, the mist enters preferably into the chamber from the side, 

which leads to a horizontal flow, however, a vertical flow is also possible. The pressure 

inside the chamber and consequent exhaustion of the mist is controlled by an external pump 

connected to a liquid nitrogen trap to collect the residual solution. The barometer that 

controls the exhaustion is visible in Figure II-26b). 
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Figure II-26 a) Transport of mist, with the inlet of Argon and Oxygen highlighted; b) barometer for 

control of exhaustion; c) window of chamber with visible inlet tube, mist and heating plate.  

At the end of the deposition, the mist generation is stopped, the gas flux is decreased 

and the heating of the plate is switched off. After 1 hour, the films can be removed, and the 

different parts of the equipment are cleaned.  

All the different steps previously described have a direct impact on the film 

properties, in terms of phase, stoichiometry, thickness, homogeneity, grain size, 

microstructural morphology, dopant absorption and carbon residual content. In Table II-3 

we present a summary of the different deposition parameters and the consequent impact on 

the properties of the deposited materials.  
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Table II-3 Deposition parameters and impact of the thin films deposition 

Parameter Impact on  Result in maximal conditions Variation or range 

Solvent Dissolution of precursor 

Evaporation during deposition 

Precursor residue in case of low dissolution 

Residue of carbon species detected in film 

Butanol or Ethanol 

Solution 

Concentration 

Dissolution of precursor 

Amount of precursor in the vapour 

Faster film growth with smaller grains. 

Precursor residues in glass pieces 

From 0.01 mol.l-1to 0.03 

mol.l-1 

Frequency of 

vibration 

Size of the droplets Smaller size of droplets  

 

Around 800 kHz for 

resonance  

Piezoelectric 

Power 

Amount of aerosol generated Denser vapour, faster deposition, smaller grains, lower 

O2 content in the film 

35% to 50% of the 

generator power 

Gas Flux Velocity and concentration of vapour Possible turbulent flow, faster deposition, smaller grains 5 l.min-1 to 10l.min-1 

O2 ratio  Amount of oxygen in the film High O2 content in the film or presence CuO phase 20% to 33% 

Temperature Evaporation of vapour, decomposition 

of precursor and grain growth 

Higher film thickness and grain growth, reduction of 

organic species, possible formation of CuO phase  

300oC to 400oC  

Extraction 

pressure 

Velocity and concentration of vapour Laminar flow, higher deposition speed Pressure of 4~5 mmH2O 

Time Thickness and saturation  Up to 600nm films 1h to 6h 
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2.1.3 Modification of the reactor configuration 

In the middle of the development of this thesis, an incident occurred that lead to 

significant changes in the deposition system. As a consequence, two types of reaction 

configurations were tested. 

The initial configuration, named “vertical configuration”, visible in Figure II-27, 

had a vertical inlet on the aerosol flux, combined with a tilted substrate holder. In this 

configuration, mainly butanol was used as solvent. The problems of this configuration were 

mainly associated to the risk for a macroscopic drop of solvent or a large non-dissolved 

precursor particle to hit the heated substrate and to create an explosion. Additionally, the 

use of butanol in a heated oxygen rich atmosphere could cause auto inflammation, since 

the auto-inflammation point is 343 ºC and the low flammability limit (LFL) is 1.7%. 

 

Figure II-27 Vertical configuration of the reaction; a) scheme with all the components and b) 

photograph 

Therefore, a second configuration, named ‘”horizontal configuration” was tested, 

presented before in the deposition description, where the flux enters in the chamber 

horizontally and the heated substrate holder is kept in a vertical configuration. Moreover, 

the solvent was also changed to ethanol with an auto inflammation point at 363 ºC and a 

LFL at 3.3%.  However, this configuration can impact the laminar flow of the aerosol and 

increase the presence of organic contamination in the films.  

 

2.1.4 Annealing treatment 

The improvements in optical and electric performance of oxide-based materials can, 

in general, be achieved by post deposition annealing treatments 12. In our case, different 

annealing studies were conducted in a traditional box furnace under air. Two main 
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parameters were varied: temperature variation from 200°C to 450 ºC and anneal duration 

from short plateaus of 5 minutes up to 5 hours. Previous tests were conducted under O2 

atmosphere, however, they show similar results as the ones under air. Therefore, the 

annealing treatments here presented were developed under air conditions. Additionally, 

annealing treatments were conducted in a 2-probe stage that allowed the measurement of 

resistance while heating, once again under air. Figure II-28 show both setups used.  

 

Figure II-28 a) Box furnace used for air annealing treatments; b) 2-probe stage used for annealing 

treatments with in situ resistance measurements 

 

2.1.5 Metals Thermal evaporation 

The finalization of some devices as well as the electric analysis of thin films 

required metallization of contacts in order to improve and simplify the measurements. 

Usually, gold or silver contacts were thermally evaporated by Joule effect heating of the 

source in a vacuum chamber using highly pure wires of both metals. The process is based 

on the increase of temperature of these metals by applying an electric current to a 

molybdenum crucible. The metal passes from a solid to liquid and then vapour state that 

travels to the surface of the sample, previously covered by a designed mask. The thermal 

evaporator and the crucible are visible in Figure II-29. 
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Figure II-29 Thermal-evaporator for metals evaporation with b) molybdenum crucible  
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2.2 Techniques of characterization  

In the course of the thesis, a detailed characterization of the synthesized materials 

was conducted using a wide range of standard analysis techniques. Separated in two 

different axes, the first group of techniques relied on thin films characterization, focusing 

on crystallographic, microstructural, optical and electrical properties. In parallel, the 

analysis techniques of the second group were centred on device performance both in 

electrical and optical characteristics.   

 

2.2.1 Morphological, chemical and structural characterization 

2.2.1.1 Visual aspect and Optical Microscope (OM)  

The first elemental analysis of the films was conducted by visual inspection of the 

grown specimen. After the removal of the film from the chamber, different characteristics 

can be detect by the naked eye: thickness of the film and respective gradient, presence of 

oxide powders, dust or other centres of inhomogeneity. Specially, the estimation of 

thickness is accurate from the fringes of refraction in the silicon substrate, covered by 

native SiO2. As a colour chart of Cu2O on SiO2 could not be found in the literature and the 

refractive light is dependent on the refractive index of the material, a colour chart of Si3N4 

was used to estimate the thickness, visible in Figure II-30a). This material has a refractive 

index of 1.98 at 1000nm 13, while Cu2O presents a value of 2.4 14 at the same wavelength.   

 

Figure II-30 a) Colour chart for refracted light on Si3N4, comparable to Cu2O thin films using 

Brigham Young University  Silicon Nitride colour simulator 15; b) Optical microscope setup – Leica DM/LM 

The optical microscope (OM) was occasionally used in this work to have a general 

view of the specimen surface. This technique is based on the magnification of an image 

using optical lenses that creates an amplified micrograph of the sample. The OM allows a 

preliminary view in terms of surface roughness and heterogeneity of the sample, providing 
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an easy way to compare qualitatively different samples. The control of contrast, colors and 

brightness is fundamental to highlight the information provided by the image. The 

equipment used for this analysis was a Leica microscope, visible in Figure II-30 b). It is a 

DM/LM system equipped with a CCD camera and magnifying lenses up to 500 times, that 

can use different polarization of light and interference mode.  

 

2.2.1.2 Scanning Electron Microscope (SEM), Energy dispersive spectroscopy (EDS) 

and Wavelength dispersive X-ray spectroscopy (WDS) 

The imaging of the microstructure of the samples and the determination of their 

physical thickness were obtained using a scanning electron microscope (SEM). This 

technique has a large domain of application especially important in physics, chemistry and 

materials engineering but also in biology or medical science. SEM allows to obtain images 

with high resolution and magnification, showing the topography of the sample, through the 

interaction of electrons emitted by an electron gun with the surface of the material 16. The 

incident electron beam is focused on the surface of the sample by a system of electronic 

lenses, as visible in Figure II-31 a). The interaction between the beam and the surface is 

mainly dependent on the energy of the beam and the atomic number of the atoms in the 

samples, resulting in different types of electrons emission or photons radiation by the 

probed sample. The emitted entities can be X-rays, Auger electrons, primary backscattered 

electrons or secondary electrons, as represented in Figure II-31 b). The detection of 

secondary scattered electrons allows the creation of a scanned image with different 

brightness levels, reflecting the roughness differences of the specimen, determined by the 

amount of electrons detected. In direct comparison with optical microscope, SEM enables 

spatial resolution of the order of nanometres, while the visible-light based microscopy only 

allows resolution higher than 500nm, limited by the diffraction barrier. 
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Figure II-31 a) Scheme of SEM function mode; b) Emitted particles from electron beam interaction 

(from Radiological and Environmental Management of Purdue University 17); c) FEI Quanta 250 equipment 

present in LMGP  

The energy dispersive spectroscopy (EDS) was additionally performed to analyse 

the chemical composition of the sample at the microscopic scale. In this case, the energy 

of the incident electron beam excites electrons located on the atom inner shells, causing 

their injection. Due to the displacement from a higher energy shell electron and consequent 

relaxation of the exited charge, the energy difference is release by an X-ray photon. These 

energies depends on the shell of the electron in each element and can be used to detect 

different elements on the specimen. In general, an energy beam of 5 keV was used to 

quantify the different elements in the film without a significant signal from the substrate. 

The Cu Lα line is at 0.930KeV, while in the case of Mg Kα line is at 1.253 KeV. 

Additionally, elemental maps can be created to observe segregation of elements. The SEM 

and EDS were conducted in a FEI Quanta 250 MEB FEG ESEM tool visible in the Figure 

II-31c). 

Complementary to EDS, Wavelength dispersive X-ray spectroscopy (WDS) was 

also performed in a selected number of samples. This technique, based on the same 

principle as EDS, provide additional information about the elements present in the film in 

a volume of 1µm3. By performing analysis at different acceleration voltages (12, 16, 
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22KeV) it is possible, via software, to determine the composition and the surface mass of 

the film by using software the Stratagem. The equipment used was a CAMECA SX50.  

 

2.2.1.3 Transmission electron microscope (TEM) 

The transmission electron microscope (TEM) operates on the same basic principles 

as the transmission optical microscope but uses electrons as in the SEM case. However in 

this case, the information is obtained through the electrons that cross the sample. Moreover, 

this technique allows to observe the fine structure of the specimen (observation mode), as 

well as the crystallographic characterization (diffraction mode)18. In the observation mode, 

the electrons are captured after passing through the sample and we can obtain an image in 

a sensor located at the focal point. The created images depend mainly on the composition 

density and thickness of the sample. In the diffraction mode, the electrons that pass through 

the sample are diffracted in case the material is crystallized, forming a pattern. The 

comparison of this created pattern with diffraction files already known can be used to 

analyse the crystallographic phase detected ad well as other parameters of the network. A 

scheme of the TEM components is visible in Figure II-32 a). 

 

Figure II-32 a) Scheme of components of a TEM Drawing by Graham Colm, courtesy of Wikimedia 

Commons; b) JEOL JEM 2010 microscope in LMGP 
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The equipment used for TEM imaging was a JEOL JEM 2010 microscope, visible 

in Figure II-32 b) operating at 200 kV (0.19 nm resolution), provided with an EDS system, 

INCA Energy TEM 100 X-Max 65T. Cross-section samples were prepared from films 

deposited on silicon and glued to a copper grid by tripod polishing resulting in a sample 

thickness of about 10 μm. Argon ion beam milling was used until perforation of the 

interface. Automated crystal phase and orientation mapping (ACOM) with precession 

(ASTAR) system implemented in the JEOL 2100F FEG microscope was also used to obtain 

the crystal phase and orientation maps. This method is based on the precession of the 

primary electron beam around the microscope’s optical axis at an angle of 1.16° while 

collecting the electron diffraction patterns at a rate of 100 frames per second with a step 

size of 1 nm. 

 

2.2.1.4 Atomic force microscope (AFM) 

In the group of microscopy analysis, another technique used in this work was atomic 

force microscopy to measure the roughness of the sample. This technique uses mechanic 

interaction of a small tip with the atoms at the surface of the specimen. Located at the end 

of a cantilever, the tip is deflected by peaks and valleys on the film, due to forces of 

attraction or repulsion at the nano-newton scale 19. Two modes were used to scan the thin 

films. In the contact mode, the tip is pressed on the surface of the film and it moves through 

the sample to scan it. The deflection movements of the tip are detected due to a reflection 

of a laser beam illuminating the end of the cantilever, as represented in Figure II-33 a). The 

variation of laser intensity detected by photodiode sensor allows creating a topographic 

map of the sample surface. The second mode, traditionally called tapping-mode, avoids 

possible problems caused by the contact with the sample in the first mode described. In this 

case the tip oscillates over the sample with a specific frequency, causing brief intermittent 

contacts. The changes in amplitude of oscillation permit to reconstruct an image of the 

roughness of the surface. The difference between both modes is represented in Figure II-

33 b). 
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Figure II-33 a) and b) Description of AFM modes of operation( from University of California Santa 

Barbara 20) c) Veeco D3100 AFM in LMGP 

The analysis was performed in Veeco D3100 AFM with 5µm x 5µm images, shown 

in Figure II-33 c), in order to observe grains and the roughness of the films. 

 

2.2.1.5 X-Ray diffraction (XRD) 

The analysis of the crystallographic structure of the thin film was performed by X-

ray diffraction (XRD). The interaction of X-rays with the atoms of a crystal allows a 

suitable probing of the atomic positions and consequentially their arrangement in the crystal 

structure. The interference of reflected X-rays is possible due to the small wavelength of 

these electromagnetic waves, which are comparable to the lengths between crystallographic 

planes, producing diffraction patterns that can be subsequently detected. The variation of 

the incident beam in the sample will satisfy different diffraction conditions determined by 

Bragg’s equation (II.2): 

 2𝑑𝑠𝑖𝑛(𝜃) = 𝑛𝜆 (II.2) 

where 𝑑 corresponds to the distance between crystallographic planes, 𝜃 is the diffraction 

angle of the light, 𝑛 is the order of diffraction and 𝜆is the wavelength used, in  this case 

the Cu K-edge (0,1519 nm). A scheme of the interplanes distances and X-Ray diffraction 

is visible in Figure II-34 a). The detection of the XRD peaks can then be related to the 

lattice parameter and structure of the crystalline material 21, enabling the detection of 

different phases in the sample and differences in lattice size. 



Chapter II: Experimental procedure and characterization techniques  

70 

 

Figure II-34  a) X-Ray diffraction on a crystal, where the crystallographic planes and X-Ray wave-

vectors are represented  22; b) Bruker D8 Advance in LMGP 

The analysis was performed at room temperature using a Bruker D8 Advance 

diffractometer in the Bragg-Brentano (θ-2θ) configuration with Cu Kα1 radiation (0.15406 

nm). The range of the spectrum obtained varied from 20º to 80º in the diffraction angle (2) 

with a scanning rate of 3 degrees per minute. In order to evaluate the grain growth of the 

Cu2O films, the crystallite sizes in the films was estimated using Scherrer’s equation 23: 

 𝐿 =
𝐾𝜆

𝐵 cos (𝜃)
 (II. 3) 

where L is the mean crystallite size, B is the full width at half maximum (FWHM) of the 

intensity peak, K is the Scherrer constant, λ is X-ray wavelength and θ is the Bragg angle. 

 

2.2.2 Spectroscopic and spectrometry techniques  

2.2.2.1 Raman spectroscopy and Photoluminescence  

Concerning the chemical analysis of the films, Raman spectroscopy is a powerful 

tool to access vibrational, rotational, and other low-frequency modes in a material. This 

type of spectroscopy technique relies on the Raman scattering (inelastic) occurring within 

the samples upon illumination with a monochromatic light source. When a high intensity 

monochromatic light, in this case a laser, impinges a material, most photons are scattered 

with the same energy as the incident light. This elastically scattering process is called 

Rayleigh scattering. However, some of the scattered photons, around 1 in 10 millions, have 

a shift of energy in comparison with the original energy. In case of a lower or higher energy 

scattering, this inelastic process is called Raman scattering, with a scheme visible in Figure 

II-35 a). The intensity of photos regarding each energy difference are directly linked to 
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chemical bonds, therefore, a spectrum of Raman light can be obtained 24. In this technique, 

it is usual to use wavenumber, cm-1, instead of wavelength, since we always present the 

shift from the original light source. In the context of Cu2O thin films, this technique was 

key to for the detection of the CuO phase.  

 

Figure II-35 a) Scheme with Rayleigh and Raman scattering representation 25; b) Jobin Yvon/Horiba 

LabRam spectrometer in LMGP 

Raman spectroscopy was carried out with a Jobin Yvon/Horiba LabRam 

spectrometer, shown in Figure II-35 b), covering the range from 50 to 2000 cm-1, with the 

use of different monochromatic lights. In the majority of the analysis, the 488 nm blue line 

of an Ar+ laser with a power of 0.4 mW on the substrate surface was used. The laser was 

focused to a spot size close to 1 µm2 by using a 50x long working distance objective. 

Moreover, photoluminescence measurements were also performed in the same equipment. 

However, in this case, the emission of light from the sample after the excitation occurs due 

to different phenomena, mostly excitons and defects in the material 26. The interest of PL 

measurements for Cu2O thin films is mainly connected to the detection of vacancies of 

copper or oxygen. 
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2.2.2.2 Fourier transform infrared spectroscopy (FTIR) 

Complementary to Raman spectroscopy, Fourier transform infrared spectroscopy 

(FTIR) is a technique that enables the detection of chemical compounds in the films due to 

the absorption of infrared light, which are represented in Figure II-35 a). In this case, an 

infrared beam composed of different wavelengths passes through the film, interacting with 

the different chemical species. If one specific chemical bond has the same energy of the 

infrared light, it will be absorbed. However, the collection of the absorption spectrum is in 

this case based on interferometry. The light beam is separated into two different beams, 

using a Michelson Interferometer, which then will pass through the sample and create an 

interferogram (interference pattern) in the detector. The Fourier transform of the created 

pattern will provide an infrared spectrum, used for the detection of chemical bonds. The 

scheme of this technique is visible in Figure II-36 a). In the analysis of Cu2O films, this 

technique proves to be interesting for the detection of organic species in the material. In 

case of incomplete degradation of the precursors, residual organic substances can indeed 

be present in the film, which can lead to meagre physical properties. Additionally, metal-

oxygen bonds can be detected, confirming the presence of dopants in the films. 

 

Figure II-36 - a) Scheme of FTIR function mode 27; b) Bruker Vertex 70V spectrometer present in 

LMGP 



Chapter II: Experimental procedure and characterization techniques  

73 

Fourier-transform infrared (FTIR) measurements were performed in a Bruker 

Vertex 70V spectrometer, visible in Figure II-36 b), equipped with a CsI beamsplitter and 

working under vacuum. Spectra were recorded with a resolution of 4 cm-1 by accumulating 

64 scans in transmission mode using silicon substrates, transparent to infrared light.  

 

2.2.2.3 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy is a surface technique that analyse the energy of 

bonds between atoms. A monochromatic beam of X-Ray bombards the sample, causing the 

ionization of the atoms. Each ejected electron will be emitted from the atom and by 

measuring its kinetic energy, Ek, and with previously known energy of the X-ray beam, hv, 

the bond energy, Eb, required for the ionization can be determined: 

 𝐸𝑏 = ℎ𝑣 − 𝐸𝑘 (II. 4) 

The binding energy distribution provides quantitative information about the atomic 

composition of the film. Moreover, spectra obtained with the highest resolution can 

additionally probe the nature of the chemical bonds and oxidation state of the atoms 28. 

 

Figure II-37 X-Ray interaction with atoms during XPS analysis b) K-alpha spectrometer at SIAM – 

Synthesis, Irradiation and Analysis of Materials in the Université de Namur 

Integrating the electrons at different energy bonds produces a spectrum where the 

peaks correspond to characteristic orbitals of each element. In the context of this study, 

XPS was fundamental to observe differences in copper oxidation state, in order to detect 

the presence of CuO in the films. This technique is very sensible to the surface (several 

Angströms).  
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The analysis was conducted in SIAM – Synthesis, Irradiation and Analysis of 

Materials in the Université de Namur, using a K-alpha spectrometer, from Thermo 

Scientific, with a X-ray source Al Kα1,2 (1486.6 eV), represented in Figure II-37 b). 

 

2.2.2.4 Extended X-Ray Absorption Fine Structure (EXAFS) 

In order to probe the chemical environment of a single element and obtain the 

interatomic distances, Extended X-Ray Absorption Fine Structure (EXAFS) was 

performed with synchrotron at a large scale instrumental facilities. In a simple 

approximation, EXAFS measures the energy dependence of X-rays absorption by an atom 

near a defined core level. These spectra show oscillations near the band edge that can be 

correlated to different near-neighbour coordination shells and respective distance to these 

neighbours 29. In this case, the analysis was performed at ESRF, in Grenoble, in the BM31 

line, where the Cu K edge line was studied in detail. The use of EXAFS was fundamental 

to observe the neighbouring environment of the Cu+ cation by measuring distances to 

neighbour atoms.  

 

2.2.2.5 UV-VIS-IR transmittance  

The optical characterization of the films was in a large part based on optical 

spectroscopy analysis, where the transmittance was the main analysed property. The 

transmitted part of the light is then collected in an integrated sphere and the detector 

compares the intensity obtained with a previously measured baseline. A representation of 

this technique is shown in Figure II-38 a). Additionally, in the system used, we can 

discriminate between total and direct transmittance.  
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Figure II-38 a) Scheme of light pass in the UV VIS NIR spectrometer; b) Lambda 950 

spectrophotometer from Perkin Elmer present in LMGP 

The measurements from Ultraviolet to near-infrared were conducted in a Lambda 

950 spectrophotometer from Perkin Elmer, visible in Figure II-38 b), in the range of 250 

nm to 2500 nm, presenting a wavelength step of 5nm. The reported average transmittance 

in the visible is defined as the ratio between the integrated transmittance between 390nm 

and 700nm and the wavelength interval.  The spectra were used to calculate the band gap 

by tracing the Tauc plot using the PARAV-V2.0 software, with a given uncertainty of 

0.1eV. 
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2.2.3 Electrical and functional properties of materials and devices 

2.2.3.1 4-Probe 

Combined with optical inspection, the determination of the sheet resistance by 4-

probe measurement is one of the first analyses to be performed in the sample. In this 

approach, the applied current flows between the outer probes while the voltage is measured 

in the inner probes, providing a resistance value based on Ohm’s law. The combination of 

two different conditions allow the conversion of the measured total resistance to sheet 

resistance and finally to resistivity. The first requirement relies on the film thickness to be 

less than half of the constant spacing between the probes; while the second important 

requirement imposes the measuring point to be away from the edges of the film, at least 4 

times the spacing between probes. Under those conditions, the sheet resistance can be given 

by: 

 𝑅𝑆 = 𝐹
𝑉

𝐼
 

(II. 5) 

where RS is the sheet resistance, V the voltage measures, I the current applied and F a 

constant defined as: 

 𝐹 =
𝜋

𝑙𝑛(2)
= 1.442 (II. 6) 

Finally, the resistivity is determined by following equation: 

 𝜌 = 𝑅𝑠 𝑒 (II. 7) 

where ρ is the resistivity and e the thickness of the film. At LMGP, the measurements were 

performed using a Por-4 probe provided by Lucas Lab, Figure II-39 b), with a distance 

between tips of 1.066 mm and connected to a Keithley multimeter, Figure II-39 a).  
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Figure II-39 a) Keithley multimeter and b) 4 probe tips  

 

2.2.3.2 Van der Pauw  

In this case, similarly to 4-probe, the resistivity of the film is analysed by applying 

current to the film and measuring voltage. However, this technique allows a more precise 

determination of resistivity than the previous one described. Instead of a linearly-aligned 

probes, the van der Pauw requires four small ohmic contacts placed on the corners of a 

square on the top of the thin film 30. The extraction of the sheet resistance RS is based on 

the measurement of two different characteristic resistances RA and RB as represented in 

Figure II-40. 

 

Figure II-40 a) Representation of van der Pauw measurements 30 b) Hall Effect potential measuring 

set-up 31. 

While applying the current between two contacts in one direction, the voltage is 

measured in parallel contacts. It is demonstrated that the two measured resistances are 

related to RS by the following expression: 

 𝑒
−

𝜋𝑅𝐴

𝑅𝑆  +  𝑒
−

𝜋𝑅𝐵

𝑅𝑆 =  1 
(II. 8) 
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The numerical resolution of this equation can provide the sheet resistance and 

converted into resistivity, by the expression previously described.  

 

2.2.3.3 Hall Effect measurements 

Complementary to van der Pauw measurements, Hall-effect measurements were 

used to determine the density and the mobility of free charge carriers of the film. The Hall 

Effect is based on the charge build-up in a medium due to magnetic forces. A magnetic 

field, B perpendicular to the film surface, produces a force on moving charges, in an electric 

current I, those charges are deflected in a direction perpendicular to the original movement 

and the magnetic field. The caused force is called Lorentz force, FL. The magnetic part of 

this force can be expressed as: 

 𝐹𝐿 = 𝑒 𝑣 x B (II. 9) 

where e (1.602 x 10-19 C) is the elementary charge, v the velocity of the charge.  The 

perpendicular movement of the charges creates a transversal potential to the electric field 

sense, which can be represented as:  

 𝑉𝐻 =  
 𝐼 𝐵

 𝑒 𝑝 𝑡
 (II. 10) 

where VH is the Hall potential, I is the current, p the carriers density and t is the sample 

thickness. The measured Hall potential can then be used to determine the nature and 

concentration of charge carrier, as well as their mobility µ, as follows:  

 𝑝 =
 𝐼𝐵

𝑑 𝑒|𝑉H|
 

(II. 11) 

 µ  =
|𝑉H|

𝑅S

𝐼𝐵 =
1

𝑒 𝑝 𝑡 𝑅S

 
(II. 12) 

In Figure II-40b), a scheme of VH measurement is represented. The electronic 

transport properties were obtained at room temperature using a Van der Pawn configuration 

and a RH2035 Hall effect measurement setup from Phys Tech equipped with a magnetic 

field of 0,43T. 

2.2.3.4 IV and PV measurements 

The characterization of the fabricated devices first involved current-voltage (I-V) 

measurements, which are fundamental to evaluate the quality of the pn junctions. By 

applying a bias voltage between 2 electrodes and sweeping different voltage values, the 

resistance between the two contact points is measured simultaneously, resulting in an 
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electric current calculation. Additionally, if this analysis is performed under a light source, 

we can access to the efficiency of a solar cell, a key performance indicator for such a device. 

The solar simulator is represented in Figure II-41 a). 

The photovoltaic performance of the solar cells was conducted by using a home-

designed holder, represented in Figure II-41 b) and c). This holder is composed of 11 gold 

pogo pins. Each pin contacts a different electrode on the sample, which is upside down. 

The light enters from the top mask that has circular holes with the same area as the metallic 

contacts.  

 

Figure II-41 a) Solar simulator; PV sample holder b) without mask, c) with mask 

2.2.3.5 Responsivity 

The responsivity analysis was used to evaluate the UV selectivity of the 

photodetector. The technique measures the amount of electrical output from the device due 

to an optical environmental input. In this specific case, we measure the current generated 

in the detector per incident radiant power of a specific wavelength. Therefore, the 

responsivity is expressed in Amperes per Watt. The analysis was performed at room 

temperature in the range of 300 to 800 nm using a xenon arc lamp. The short-circuit current 

(ISC) from the sample was recorded every 10 nm across the spectrum and compared to the 

ISC from a calibrated Si-photodiode with a known responsivity. 

 

https://en.wikipedia.org/wiki/Radiant_flux


Chapter II: Experimental procedure and characterization techniques  

80 

2.3 Simulation 

Device modelling was performed to simulate the electrical characteristics of pn 

junctions formed with Cu2O and ZnO. Numerical analysis is a powerful tool to analyse a 

large quantity of different phenomena, providing valued information to improve the 

experimentally grown materials and consequently the applied devices. This study was used 

for a direct comparison with the experimentally fabricated junctions, in order to access 

carrier’s concentrations distributions, size of depletion region and ideal diode behaviour. 

This part of the study was developed at the Université de Liège, using a Fortran program 

originally created within the SPIN laboratory. In this section we explain the basic 

semiconductor equations used in the model, as well as some technical details on the 

procedure leading to the computer program.  

 

2.3.1 Basic equations  

In a first approach, Maxwell’s equations are rewritten to obtain the distribution of 

charges and the electrical potential. In the differential form, we use Gauss's law to relate 

the electric flux leaving a certain volume the electric charge density. In an isotropic 

material, the displacement vector (D) is proportional to the electric field (E) by a scalar 

quantity, the semiconductor permittivity 𝜀𝑠. Therefore, the electric flux equation can be 

simplified as:  

 𝜀𝑠∇ ∙ 𝑬 = 𝜌 (II. 13) 

Subsequently, we have to consider Faraday-Henry’s law of electromagnetic 

induction and the vector potential A relation to the magnetic field B: 

 ∇ x 𝑬 = − 
𝜕𝑩

𝜕𝑡
 

(II. 14) 

 ∇ x 𝐀 = 𝐁  (II. 15) 

 ∇ ∙ 𝐀 = 0 (II. 16) 

The combination of the previous equations considered leads to:   

 ∇ x (𝑬 +
𝜕𝑨

𝜕𝑡
) = 0 

(II. 17) 

This last expression results in a creation of a gradient field, - ∇𝜓, due to the fact 

that the curl of a vector field is equal to zero. Therefore, the electric field is equal to:  
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 𝐄 = −
𝜕𝑨

𝜕𝑡
− ∇𝜓 

(II. 18) 

As a consequence, Gauss's law can be expressed as:  

 ∇ ∙ 𝜀𝑠

𝜕𝑨

𝜕𝑡
+ ∇ ∙ 𝜀𝑠∇𝜓 = −𝜌 

(II. 19) 

Considering the precious definition of A, ∇ ∙A=0, we obtain a final expression for 

the gradient field of: 

 𝜀𝑠 Δ𝜓 =  −𝜌 (II. 20) 

The second side of the equation, the space charge density 𝜌, can also be considered 

in terms of the sum of all charged defects multiplied by the elementary charge q. In the 

group of total defects we count as contributions to the total positive charge the hole 

concentration 𝑝 and the ionized shallow donor concentration 𝑁𝐷, while the negative charge 

incorporates the electron concentration 𝑛, the ionized shallow acceptor concentration 𝑁𝐴, 

and the occupied trap concentration 𝑛𝑡
∗. Putting all terms together, we reach the following 

expression for the total charge density : 

 𝜌 = 𝑞(𝑝 + 𝑁𝐷 − 𝑛 − 𝑁𝐴 + 𝑛𝑡
∗) (II. 21) 

The next part of the model development is connected to how the space charge 

density varies with respect to time which leads to the continuity equations. The application 

of a divergence to the Ampère's circuital law leads to the relation between current density 

and the time derivative of the charge densities. 

 ∇ ∙ (∇ x 𝑯) = ∇ ∙ (𝐉 +  𝜀𝑠

𝜕𝑬

𝜕𝑡
) 

(II. 22) 

Since the application of the divergence operator to the curl of a vector field is equal 

to zero, we can extract that: 

 ∇ ∙ 𝐉 = −∇ ∙ (𝜀𝑠

𝜕𝑬

𝜕𝑡
) 

(II. 23) 

And with some extra manipulation of the (II. 23) equation, we obtain:  

 ∇ ∙ 𝐉 = − 
𝜕𝜌

𝜕𝑡
 

(II. 24) 

We can separate the current density in the sum of the different components, 

electrons and holes and by considering the donor and acceptor dopant as time independent 

we obtain:  

 ∇ ∙ 𝐉𝐧 −  𝑞
𝜕𝑛

𝜕𝑡
= 𝑞 𝑅𝑛 

(II. 25) 

https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law
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 ∇ ∙ 𝐉𝐩 + 𝑞 
𝜕𝑝

𝜕𝑡
= − 𝑞 𝑅𝑝 

(II. 26) 

 −𝑞 
𝜕𝑛𝑡

∗

𝜕𝑡
= − 𝑞 (𝑅𝑛 − 𝑅𝑝) 

(II. 27) 

where 𝑅𝑛 and 𝑅𝑝 are the net recombination or generation rates for electrons and holes. The 

last 2 equations required for the simulations come from the definition of current density, in 

terms of carriers concentration, mobility and difusivity, within a semi-classical 

drift/diffusion model : 

 𝑱𝒏 = 𝑞 𝑛 𝜇𝑛𝑬 + 𝑞 𝐷𝑛 ∇𝑛 (II. 28) 

 𝑱𝒑 = 𝑞 𝑝 𝜇𝑝𝑬 + 𝑞 𝐷𝑝 ∇𝑝 (II. 29) 

where 𝜇𝑛 and 𝜇𝑝 are respectively the electron and hole mobilities. The diffusion constants 

of both charges is defined as 𝐷𝑛 and 𝐷𝑝.  The physical consideration for the model is 

completed by using Boltzmann’s approximations for carrier concentrations in the 

nondegenerate case and Fermi-Dirac occupied level concentration. The equations for the 

electrons, holes and electrons in trap states are expressed as: 

 𝑛 = 𝑁𝑐 𝑒−
𝐸𝑐−𝐹𝑛

𝑘𝑇  
(II. 30) 

 𝑝 = 𝑁𝑣 𝑒−
𝐹𝑝−𝐸𝑣

𝑘𝑇  
(II. 31) 

 𝑛𝑡
∗ =

𝑁𝑡

1 + 𝑔𝑡𝑒−
𝐸𝑡−𝐹𝑡

𝑘𝑇

 (II. 32) 

where Fn, Fp and Ft are the quasi-Fermi energies of electrons, holes and trap states. Ec and 

Ev are the position of the conduction and valence band respectively, while gt is the 

degeneracy factor of the trap states.  

The numerical simulation was then based on this group of equations: the relation 

between the different current densities and the charge carriers and electric field, as well as 

the charge carriers’ density distributions. 

 

2.3.2 Model’s algorithm  

The set of equations presented here above is a system of nonlinear, coupled, partial 

differential equations. Therefore, linearization and discretization of the initial problem into 

a step-sized mesh are required. The system of equations is linearized by a Newton approach 

and the initial values are introduced using a guessed solution. The algorithm chosen to solve 

this model is based on iterative methods that involve a series of corrections to the initial 

https://en.wikipedia.org/wiki/Degenerate_energy_level
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guess. These iterations continue until a defined set of convergence criteria is reached. These 

methods are usually quite efficient for large linear systems, converging rapidly and using 

memory efficiently. Though, the results are inaccurate within the round-off error and the 

convergence is not always obtained. 

The whole problem size depends on the number m of unknown quantities per node 

and the total number of mesh points N, which provides a total number of unknowns that 

can be expressed by the product m×N. In the case of Newton’s method, which is used in 

this framework, the coefficient matrix contains (m×N)2 elements and exhibits a block-

diagonal shape, for which dedicated algorithms are known. The quality of the numerical 

solution to the equation system depends thus on an optimal trade-off between precision and 

size of the linear system. If we consider a large number of mesh points, the quality and 

precision of the solution rises, with an increase in computation time and memory capacity 

requirement. For more specific details, the reader can consider the works by Baert 32 and 

Nguyen 33 where the authors present a full description of the physical considerations and 

the algorithm behind the implemented model.   
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In order to improve the optical and electrical properties of Cu2O films as a p-type 

semiconductor, possible cations as dopant candidates were screened from a large group of 

atoms. This general study allows to narrow down the list of potential dopants and to identify 

the most promising elements to be used in a more in-depth experimental work. 

As it is well known, the properties of a thin film are strongly dependent of the 

synthesis method, therefore, we established the “background line” by performing a study 

on the properties of Cu2O thin films deposited by AA-MOCVD and correspondent 

annealing process as the starting point of the study. Then, using a mixed solution of 

precursors, including the dopant source, the incorporation of the doping species into the 

copper oxide films was investigated. Here, we present in more detail the use of several 

cations as dopant which had an impact on the structural properties as well as on the electric 

response, with a special consideration to Tin as a dopant due to resistivity improvements. 

The study containing the incorporation of Mg is comprehensively reported in the next 

chapter (IV), fully devoted to this cation doping system.  

 

3.1 Intrinsic Cu2O thin films 

The deposition of intrinsic Cu2O by aerosol-assisted MOCVD was preliminarily 

studied in order to obtain the required crystallographic phase, homogeneity, thickness, 

electrical and optical properties. In this first study, the aerosol-assisted apparatus and the 

home-made reactor were assembled as described in configuration 1 in Chapter II. An 
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important optimization work on the deposition of undoped Cu2O deposition by Pulsed 

injection MOCVD (PIMOCVD) was developed previously by L. Bergerot 1. The results of 

that study were used in this research as supporting information for the parameters variation 

in the system. Although the techniques differ substantially, as PI-MOCVD operated under 

vacuum and aerosol-assisted MOCVD is developed at atmospheric pressure; notably, they 

share a few common features such as the composition of the precursors used in solution, as 

well as their concentration and range of temperature during deposition. This comparison 

also provides interesting conclusions for the understanding of the influence of the oxygen 

partial pressure. 

The main studied parameter was the substrate temperature during deposition.  The 

lower temperature value was 300°C, motivated by the temperature at which the Cu(acac)2 

precursor decomposes, namely 284 °C. All other parameters, shown in Table III-4, were 

kept constants as based on the previous work on Cu2O and the AA-MOCVD expertise 

achieved in LMGP. The general impact of each parameters was discussed in Table 1 of 

Chapter II. In the films here presented, the total gas flow, extraction pressure and time were 

fixed at, 7 l.min-1, 4.5 mmH2O and 1 hour to obtain 100 nm thick films.  

Table III-4 Parameters fixed for the deposition of Cu2O 

Parameter Value 

Solvent Butanol  

Solution Concentration 0.02 mol.l-1  

Frequency of vibration 800 kHz 

Gas Flux 7 l.min-1  

O2 ratio  25% 

Extraction pressure 4.5 mmH2O 

Time 1h 

 

Deposition temperature was increased from 300 °C to 375 °C by steps of 25°C. The 

appearance of the films observed directly after the deposition gives basic information 

related to the optical and structural properties. For the lowest temperatures, 300 °C, 325 °C 

and 350 °C, the films showed good homogeneity with a yellow color, as visible in Figure 

III-42 a). The deposition at 375 °C, however, led to the formation of loose powder on top 

of the substrate. The powder formation is expected at high temperature in this process due 

to the starting reaction in homogenous phase, rather than in the heterogeneous phase at the 
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substrate surface. Consequently, powder is formed before the arrival of the precursor at the 

substrate surface. It subsequently settles on the substrate without the required adhesion. 

The presence of loose powder is not adapted for the type of application that we are aiming 

for.  The SEM micrograph of top view and cross-section corresponding to the film 

deposited at 350 °C are visible in Figure III-42 b) and c). The film presents a homogeneous 

surface, with no individual grains resolved at this magnification level; however, a small 

roughness is observed, probably due to a nano-crystalline film. The cross-section confirms 

the homogeneity of the film thickness, with an average thickness in the 100 nm range.  

 

Figure III-42 Results obtained from a Cu2O thin films deposited by AA-MOCVD using a butanol-

based solution and Cu(acac)2 as precursor. a) visual appearance on Si (left part) and glass (right part) 

substrate; b) and c) SEM image of top view and of cross-section, respectively, of film deposited at 350 °C;  

The effect of deposition temperature on films properties were based mostly on XRD 

(Figure III-43 a)) and sheet resistance (Figure III-43 b)). From available crystallographic 

data (pdf number in appendix), it is established that the presence of Cu2O is confirmed in 

all samples. Nevertheless, small shifts on the peak location compared to the theoretical ones 

are observed, which could be related to strain effect. The insert in Figure III-43 a) represents 

the crystallite size of the three deposited films, resulting in a size of 50 nm in the 350 °C 

deposition. The electric properties are significantly influenced by the temperature of 

deposition, both on absolute value and on homogeneity throughout the sample. With the 

increase of temperature from 300 °C to 350 °C, sheet resistance decreases from an average 

value of 60 MΩ/sq to 39 MΩ/sq, which translates to a resistivity decrease from around 600 

Ω.cm to 390 Ω.cm for a 100 nm thick layer. The decrease of resistivity with the temperature 

is related to a higher crystallization, visible in the inset of Figure III-43 d). The crystallite 

size in these films increase up to 50nm with a temperature of deposition of 350°C. 

Additional improvements of resistivity can be related to the increase of oxygen content in 

non-stoichiometric film. Additionally, the dispersion in the measure decreases as indicated 



Chapter III: Cation-doped Cuprous Oxide thin films 

90 

by the standard deviation out of 5 measurements, which decreases from 15 MΩ/sq to 1 

MΩ/sq, denoting a more homogeneous resistivity over the film. This result lead us to fix 

from here now the deposition temperature at 350 °C.  

 

Figure III-43 Cu2O thin films deposited by AA-MOCVD: a) XRD spectra on Si substrate with the 

crystallite size dependence with temperature and b) sheet resistance of films with different temperatures of 

deposition on glass substrate. Reference spectrum of Cu2O: JCPDS n° 04-007-9767 presented in Appendix 

B 

The investigation will therefore aim at optimizing the Cu2O with other parameters. 

It was also observed from this study that most of the effect on the optical properties is due 

to the variation of the film thickness.  

In order to reduce furthermore the sheet resistance of intrinsic Cu2O films, post-

deposition annealing treatments under air were studied. The duration of the post-deposition 

anneal was 1 hour, which is in the same range of time as other previous studies 2,3. The 

temperature varied from 225 °C to 300 °C. The use of pure oxygen instead of air was also 

tested. However, no significant difference was observed in the oxygen case when compared 

to air annealing treatments. The treatment at 225 °C and 250 °C reduced the sheet resistance 
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from 40 MΩ/sq up to 20 MΩ/sqresistivity of  200 Ω.cm)without compromising the 

optical characteristics of the film. The corresponding transmittance is represented in Figure 

III-44 a) and b) and amounts to about 50% in the visible part of the spectrum, the value of 

band gap for these two annealed samples, as determined by was 2.2 eV, consistent with the 

literature work in spray-pyrolysis deposited films 4.  

The use of a higher temperature for the annealing treatment induces the formation 

of the CuO phase at 300 °C, as detected by Raman , using the 488 nm wavelength or blue 

laser,  with the observation of the Ag mode at 290 cm-1 5 (Figure III-44 c)). The formation 

of this parasitic phase leads to a reduction of the average transmittance in the visible range 

(390-700nm), as shown in Figure III-44 a), due to the lower band-gap of CuO of 1.2eV. 

Nevertheless, the sheet resistance decreased compared to the as-deposited film. Further 

considerations about the annealing process will be developed in Chapter IV for the case of 

doped materials 

 
Figure III-44 Effect of annealing treatment on intrinsic Cu2O thin films a) Raman spectra for the 

film annealed at 300 °C, inset shows a zoom of the 200 – 500 cm-1 region; b) Optical direct transmittance of 

films and c) Sheet resistance dependence with temperature of annealing.  
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From these preliminary results we can infer that for the optimized films of pure 

Cu2O, with a thickness of 100 nm, the lowest value of sheet resistance is around 20 MΩ/sq, 

corresponding to a resistivity value of 200 Ω.cm and a transparency of 50% in the visible 

electromagnetic spectrum. 

 

3.2 Cation doped Cu2O thin films: screening different elements 

In the perspective of improving the optical and electrical properties of Cu2O films, 

the incorporation of different cations as potential dopants was systematically studied. The 

elements used in these trials were chosen based on different characteristics, mainly 

theoretical predictions from Nolan6, atomic radius of the cation, compatibility of the 

required precursor with AA-MOCVD. Therefore, we present in Table III-5, the list of 

cations tested, with the respective atomic radius and precursor used.  

Table III-5 List of elements tested with respective radius, coordination number precursor used and 

its molar mass from Sigma Aldrich supplier 6 7. The elements with smaller radius than Cu+ 4-fold coordinated 

are represented in green while the ones with larger radius are represented in blue. 

Cation Atomic 

Number 

Radius (pm) Precursor and molecular mass 

Li+ 3 73(IV) Li(acac) M= 106.05 g.mol-1 

Mg2+ 12 71(IV) Mg(acac)2 M= 258.55g.mol-1 

Ca2+ 20 100(IV) Ca(acac)2 M= 257.15g.mol-1 

Co2+ 27 72(IV) Co(acac)2 M= 356.26g.mol-1 

Ni2+ 28 69(IV) Ni(acac)2 M= 256.91 g.mol-1 

Cu+ 29 60 (II) 74(IV) Cu(acac)2 M=261.76 g.mol-1 

Zn2+ 30 74(IV) Zn(acac)2 M= 263.61g.mol-1 

Sr2+ 38 132 (IV) Sr(acac)2 M= 285.84 g.mol-1 

Cd2+ 48 95 Cd(acac)2 M= 310.63 g.mol-1 

Sn2+/Sn4+ 50 132(VI)/69(IV) Dibutyltin diacetate M= 351.03 g.mol-1 

Ba2+ 56 149(VI) Ba(TMHD)3 M= 503.86 g.mol-1 

La3+ 57 177(VI) La(TMHD)3 M= 688.71g.mol-1 

Er3+ 68 103(VI) Er(TMHD)3 M= 717.06 g.mol-1 

 

The deposition were conducted using a 10% of the dopants precursor molar 

concentration in relation to the total concentration of precursor in solution. The rest of 

deposition parameters were maintained constant as previously described in Table III-4, 
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with the deposition temperature fixed at 350°C. The films were also annealed at 250 °C for 

1 hour under air. 

The preliminary characterization of these films was based on EDS analysis, to 

detect the presence of the dopant, and on sheet resistance measurements, to confirm the 

functional enhancement of the film resistivity. Figure III-45 shows the plot of dopant 

amount in the film in relation to total cations (
𝑋

𝑋+𝐶𝑢
), as well as the sheet resistance values, 

after annealing. The thickness of the films presented similar values, all around 100nm. 

 

Figure III-45 Atomic concentration of dopant atoms in films (left) and sheet resistance (right) in 

relation to the dopant atomic number for each tested element. Dashed blue line represents the optimal sheet 

resistance value of intrinsic Cu2O thin film. Dashed red line represents the limit of detection by EDS. Green 

and blue dopants represent smaller or bigger radius, respectively. 

Among the total group of cations, only Mg, Co, Ni and Sn were detected by EDS 

analysis. However, it is important to state that the Li cation detection is under the limit of 

EDS due to the low atomic weight. Nevertheless, no significant differences in sheet 

resistance were observed with the use of Li.  

From the point of view of electrical properties, the presence of Mg and Sn lowered 

the sheet resistivity to values below 10 MΩ/sq, which present significant improvements 

comparing to 20MΩ/sq of intrinsic Cu2O. In terms of optical appearance and transmittance, 

no significant changes were visible in the transparency with the dopants used at 10% of 

concentration. Therefore, we continue the study focusing on Sn and Mg-doped systems, 

since both of these dopants show improvements of the electric transport properties; they 

were detected by EDS in a relevant amount and their radius were similar to Cu+ cation.  
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Nonetheless, the deposition of Cu2O with cations had an effect on the 

microstructure morphology even in the case of cations not detected or weakly detected by 

EDS. In Figure III-46, the surfaces of the films deposited in the presence of precursors 

doping with Li, Ca, Co, Ni, Zn, Sr and Mg, as well as intrinsic Cu2O for comparison are 

represented. Here are the main observations. 

 Even when no detection by EDS could be achieved, Li precursor creates a film with 

a granular shaped surface and visible porosity between some grains.  

 The presence of Ca(acac)2 during the Cu2O deposition seems to increase the 

porosity of the film; however, these features have been also observed in some 

intrinsic Cu2O films.  

 Both Co and Ni were detected by EDS however with different effects on the 

microstructure. While Ni seems to create a rough surface similar to the intrinsic 

film, the Co presence forms flower-like structures on the top of the surface. These 

structures seem to be Co-rich by EDS analysis, and generally dispersed throughout 

the whole film.  

 The presence of Zn leads to an observable granular structure, with small grains 

better revealed when compared to the Cu2O films.  

 At last, Sr incorporation yields a strongly rougher surface with grain clusters visible, 

which are similar to the previous work by PI-MOCVD 1 and also to the films doped 

with Mg, represented as well in Figure III-46. However, the presence of Sr could 

not be detected by EDS analysis, even if the experiment was reproduced several 

times with different concentrations of the precursor solution.  

Further analysis of the Cu2O growth with the presence of these elements could be 

relevant to understand the origin of these morphological changes. The effect on the 

microstructure could be attributed to different growth mechanisms, not explored in this 

work. 
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Figure III-46 SEM microstructure images of Cu2O films: intrinsic and deposited with precursors 

containing Li, Ca, Co, Ni, Zn, Sr and Mg. 

Only the Cu2O phase could be detected from XRD measurements in Bragg-

Brentano configuration in any case, as shown in the Figure III-47 XRD spectra of Cu2O 

films: intrinsic and deposited with precursors containing Li, Ca, Co, Ni, Zn, SrFigure III-

47. The spectra show peaks corresponding to the crystal planes (111), (200) and (220) 

reference pdf with small shifts in relation to the reference position. 

 

Figure III-47 XRD spectra of Cu2O films: intrinsic and deposited with precursors containing Li, Ca, 

Co, Ni, Zn, Sr. Reference spectrum of Cu2O: JCPDS n° 04-007-97679767 presented in Appendix B 

 

From these results, tin and magnesium were selected as doping elements. In the next 

section we present the characterization of Cu2O films co-deposited with tin. The 
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combination of Sn with Cu2O was not found in the literature, which additionally 

contributed for its interest.  The study on magnesium doped Cu2O films is carried out in 

Chapter IV. A recent study from 2016, Kardarian et al.8, presented the incorporation of Mg 

into Cu2O and their application to solar cells. However, a comprehensive study of the films’ 

properties with the dopant concentration was missing, providing a motivation for a 

systematic work reported in the next chapter (IV).  

 

3.3 Tin doped Cu2O thin films 

Tin oxide presents different oxidation states with different semiconductor 

behaviours:  SnO2, a well-known n-type semiconductor oxide, and SnO that behaves as a 

p-type semiconductor, with resistivity values close to 1 Ω.cm 9. The formation of each 

phase is dependent on the oxygen partial pressure during deposition or annealing treatments 

10, where the transformation from SnO to SnO2 common under oxidizing atmosphere 11. 

The improvements in sheet resistance with the Sn incorporation lead us to yield 

some focus on this cation as a dopant for Cu2O.  To incorporate the dopant in the films, we 

added Di-n-butyltin diacetate to the precursor solution in different concentrations, 0.002, 

0.01 and 0.02 mol.l-1, which corresponds to a Sn/(Cu+Sn) atomic ratio in the solution of 

9%, 33% and 50%, respectively. The other deposition parameters were maintained as 

presented in Table III-4, as in the previous depositions. 

 The increase in concentration from 9% to 33% of Sn precursor in solution induced 

a large impact in the optical appearance, as noticeable in Figure III-48a) and b), leading to 

a large transparency as shown in  Figure III-48 c), and consequently and increase of band-

gap to form 2.2 to 2.8 eV. In this case, we assume that an increase in tin content could lead 

to the formation of SnO or SnO2. Therefore, we have to discard the possibility of creating 

a mixed amorphous phase between the two oxides. However this film showed a larger sheet 

resistance, larger than 100 /sq, which limited the Hall Effect measurements and the 

determination of the semiconductor type. 

In order to determine whether we could combine high transparency with lower 

resistivity, we increased the Sn content furthermore, until both cations had the same 

concentration in solution. This lead to a large increase of transparency as shown in Figure 

III-48 c), with a band-gap of 3.0 eV and at the same time a drastic reduction of the sheet 

resistance to values below /sq as shown in and Figure III-49 a). In terms of cation 

incorporation, the Sn-doped Cu2O films presented a similar Sn atomic concentration of 
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cations, Sn/Sn+Cu, as the cationic ratio of the prepared solution as shown in Figure III-

49b), where measurements were performed by WDS. 

 

Figure III-48 Visual appearance Cu2O thin films a) intrinsic Cu2O and b) Cu2O:Sn; c) Optical 

Transmittance of Cu2O thin films doped with Sn with variation of band-gap.  

 
Figure III-49 a) Sheet resistance and b) EDS quantification of Sn doped Cu2O thin films  

Nevertheless, the high quantity of Sn in the 65% sample lead to the formation of 

SnO2 phase. This was confirmed by the detection of SnO2 peaks of in XRD, visible in 

Figure III-50 a) and the disappearance of all Cu2O active modes in Raman, Figure III-50 

b), where only carbon induced modes are present.  
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Figure III-50 a) XRD and b) Raman quantification of Sn doped Cu2O thin films Reference spectrum 

of Cu2O: JCPDS n° 04-007-9767 presented in Appendix B 

In terms of microstructure view by SEM and represented in Figure III-51 c), the 

50% Cu2O:Sn shows a granular structure surrounded by a glassy matrix that can be 

attributed to the SnO2 phase. The thickness also increases drastically, reaching the 300 nm 

range, Figure III-51 d).  

 

Figure III-51 SEM images of Sn doped Cu2O thin films: a) 10% Cu2O:Sn;  b) 33% Cu2O:Sn;  c) and 

d) 50% Cu2O:Sn top-view and cross-section respectively 
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The presence of SnO2, a well-known n-type semiconductor oxide 12, lead to lower 

resistivity, however with a change of charge sign confirmed by Hall Effect. In this sample, 

the resistivity values were around 0.24 .cm, and the respectively mobility and free-

electrons density was 1.6 cm2.V-1.s-1 and 1.7 x 1019 cm-3. 

As brief conclusions of this dopant, Tin was selected as a promising candidate to 

improve the optical and electrical properties of Cu2O, however, low mobility and formation 

of n-type SnO2 phase were detrimental for the applicability as a p-type transparent 

semiconductor. In a future work, the analysis of this system using lower content of Sn can 

provide an additional route for the enhancement of Cu2O thin films.  

 

3.4 References 

(1)  Bergerot, L. Etude de L’élaboration D’oxyde Transparent Conducteur de 

Type-P En Couches Minces Pour Des Applications À L’électronique Transparente Ou Au 

Photovoltaïque. Université Grenoble Alpes 2015. 

(2)  Figueiredo, V.; Elangovan, E.; Gonçalves, G.; Barquinha, P.; Pereira, L.; 

Franco, N.; Alves, E.; Martins, R.; Fortunato, E. Effect of Post-Annealing on the Properties 

of Copper Oxide Thin Films Obtained from the Oxidation of Evaporated Metallic Copper. 

Appl. Surf. Sci. 2008, 254 (13), 3949–3954. 

(3)  Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. 

Transmittance Enhancement and Optical Band Gap Widening of Cu2O Thin Films after Air 

Annealing. J. Appl. Phys. 2014, 115 (7), 2–7. 

(4)  Ikenoue, T.; Sakamoto, S.; Inui, Y. Fabrication and Characteristics of P-

Type Cu2O Thin Films by Ultrasonic Spray-Assisted Mist CVD Method. Jpn. J. Appl. 

Phys. 2014, 53, 4–7. 

(5)  H. F. Goldstein, Dai-sik Kim, Peter Y. Yu,  and L. C. B. Raman Study of 

CuO Single Crystals. Phys. Rev. B 1990, 41 (10). 

(6)  Nolan, M.; Elliott, S. D. Tuning the Transparency of Cu2O with 

Substitutional Cation Doping. Chem. Mater. 2008, 20 (17), 5522–5531. 

(7)  Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of 

Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32 

(5), 751–767. 

(8)  Kardarian, K.; Nunes, D.; Maria Sberna, P.; Ginsburg, A.; Keller, D. A.; 

Vaz Pinto, J.; Deuermeier, J.; Anderson, A. Y.; Zaban, A.; Martins, R.; Fortunato, E. Effect 



Chapter III: Cation-doped Cuprous Oxide thin films 

100 

of Mg Doping on Cu2O Thin Films and Their Behavior on the TiO2/Cu2O Heterojunction 

Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 27–36. 

(9)  Nguyen, N. D. Electrical Characterization of III-Nitride Heterostructures by 

Thermal Admittance Spectroscopy. Université de Liège, Belgium 2004. 

(10)  Liang, L. Y.; Liu, Z. M.; Cao, H. T.; Yu, Z.; Shi, Y. Y.; Chen, A. H.; Zhang, 

H. Z.; Fang, Y. Q.; Sun, X. L. Phase and Optical Characterizations of Annealed SnO Thin 

Films and Their P-Type TFT Application. J. Electrochem. Soc. 2010, 157 (6), H598–H602. 

(11)  Nose, K.; Suzuki, A. Y.; Oda, N.; Kamiko, M.; Mitsuda, Y. Oxidation of 

SnO to SnO2 Thin Films in Boiling Water at Atmospheric Pressure. Appl. Phys. Lett. 2014, 

104 (9), 4–8. 

(12)  Isono, T.; Fukuda, T.; Nakagawa, K.; Usui, R.; Satoh, R.; Morinaga, E.; 

Mihara, Y. Highly Conductive SnO2 Thin Films for Flat-Panel Displays. J. Soc. Inf. Disp. 

2007, 15 (2), 161–166. 



Chapter IV: Magnesium-doped cuprous oxide thin films 

101 

Chapter IV: Magnesium-doped cuprous oxide 

thin films 

 

4.1 Magnesium-doped cuprous oxide (Cu2O:Mg) thin films ....................... 103 

4.1.1 Introduction ...................................................................................... 103 

4.1.2 Deposition of Cu2O:Mg thin layers by AA-MOCVD ...................... 104 

4.1.3 Structural characterization ................................................................ 104 

4.1.4 Optic and electric characterization ................................................... 112 

4.1.5 Summary .......................................................................................... 116 

4.2 Stability of Magnesium-doped cuprous oxide (Cu2O:Mg) thin films under 

thermal treatments ........................................................................................................ 118 

4.2.1 Introduction ...................................................................................... 118 

4.2.2 Experimental .................................................................................... 119 

4.2.3 Structural characterization ................................................................ 119 

4.2.4 Electric characterization under temperature ..................................... 131 

4.2.5 Discussion ........................................................................................ 137 

4.3 Cu2O:Mg/ZnO heterojunctions .............................................................. 139 

4.3.1 Introduction ...................................................................................... 139 

4.3.2 Simulation of a pn junction formed by Cu2O/ZnO .......................... 140 

4.3.3 Deposition of pn junction formed by Cu2O/ZnO ............................. 144 

4.3.4 Summary .......................................................................................... 157 

4.4 Conclusions ............................................................................................ 157 

4.5 References .............................................................................................. 158 

 



Chapter IV: Magnesium-doped cuprous oxide thin films 

102 

Magnesium has been highlighted in the frame of the elements’ screening as a 

promising dopant for Cu2O from the first electrical resistivity results in Chapter III. The 

following chapter is focused on an in-depth study of the deposition and characterization of 

magnesium-doped cuprous oxide (Cu2O:Mg) thin films. The first part of the chapter 

describes in detail the effect of magnesium on cuprous oxide by varying the concentration 

of the dopant. The main content of this study was published as a peer-review article: 

Resende, J., Jiménez, C., Nguyen, N. D. and Deschanvres, J.-L. (2016), “Magnesium-

doped cuprous oxide (Cu2O:Mg) thin films as a transparent p-type semiconductor” Phys. 

Status Solidi A, 213: 2296–2302. Additionally, it is important to report on the work about 

strontium-doped cuprous oxide and the comparison to the magnesium case developed in 

this chapter, which finally led to another publication: Brochen, S., Bergerot, L., Favre, W., 

Resende, J., Jiménez, C., Deschanvres, J. L., & Consonni, V. (2016). “Effect of Strontium 

Incorporation on the p-Type Conductivity of Cu2O Thin Films Deposited by Metal–

Organic Chemical Vapor Deposition”. Journal of Physical Chemistry C, 120(31), 17261-

17267. On the second part of the chapter, we focus on the study of the stability of the 

magnesium-doped cuprous oxide thin films under different oxidizing thermal treatments.  

In the last third section of this chapter, we study the feasibility and the performance 

of an oxide-based pn junction integrating Mg-doped Cu2O films. For the purpose of that 

investigation, the selected n-type semiconductor is ZnO, which is stacked in combination 

with intrinsic and Mg-doped Cu2O thin films. The pn junction study is divided in two 

different parts: numerical simulations and device measurements of experimentally 

deposited films. The ZnO oxide thin films were obtained by chemical methods in 

collaboration with two other PhD students from LMGP: Thomas Cossuet for the PI-

MOCVD and Viet Nguyen in the SALD case. Some results of this study led to a peer-

reviewed publication: Nguyen, V. H., Resende, J., Jiménez, C., Deschanvres, J.-L., Carroy, 

P., Muñoz, D., Bellet, D. and Muñoz-Rojas, D. (2017) "Deposition of ZnO based thin films 

by atmospheric pressure spatial atomic layer deposition for application in solar cells." 

Journal of Renewable and Sustainable Energy 9, no. 2: 021203.  
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4.1 Magnesium-doped cuprous oxide (Cu2O:Mg) thin films 

4.1.1  Introduction 

As previously discussed in Chapter I and III, cuprous oxide (Cu2O) presents 

promising electrical and versatile processing features that establish it as a highly researched 

p-type transparent semiconductor. However, its high absorbance in the visible range 

reduces the application in practical devices. In 2008, based on first-principle calculations, 

Nolan et al. 1 suggested the doping of cuprous oxide with cations larger than Cu+ in order 

to increase the band gap, while maintaining the cubic structure. These cations, such as 

Mg2+, Sn2+, Sr2+ or Ca2+ would distort the crystallographic lattice and diminish the three-

dimensional Cu-Cu interactions. As a consequence, the Cu 3d and 4s partial electronic 

density of states would be changed which could ultimately led to a band gap increase, 

depending on the cation used. The p-type conductivity would simultaneously be enhanced, 

due to the creation of a double copper vacancy. Since the dopants are divalent cations, one 

primary copper vacancy compensates the dopant presence, while a secondary copper 

vacancy supplies an extra hole 1. Additionally, the use of “electronically inert” dopants 

would avoid the hybridization of the valence band and conduction band edge states or the 

introduction of in-gap states 1. Both optical and electrical consequences of Nolan’s 

hypothesis would suggest improvements on the Cu2O application into devices.  

In a previous work, the incorporation of strontium (Sr) had already been achieved, 

showing improvements in the resistivity of the films, up to 1 Ω.cm; but without any change 

in the optical gap energy of the material 2. The lower resistivity of Cu2O:Sr was associated 

to an increase of simple copper vacancies (VCu)−, attributed to a decrease of its formation 

energy with strontium presence 2,3. Moreover, the incorporation of strontium also leads to 

the emergence of a coexisting shallow acceptor level, which is tentatively assigned to large 

size impurity−vacancy complexes 3. 

In this study, we deposited magnesium-doped cuprous oxide (Cu2O:Mg) thin films 

by aerosol-assisted metal-organic chemical vapour deposition (AA-MOCVD). The choice 

of magnesium as dopant was motivated by theoretical predictions on the band gap changes 

1, the ionic radius and the set of deposition conditions which is comparable to that of Cu2O 

4. As discussed extensively in Chapter II, AA-MOCVD is a well-established deposition 

technique for copper-based oxides, using cheap and efficient metal organic precursors and 

allowing the growth at atmospheric pressure, avoiding high vacuum.  
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4.1.2  Deposition of Cu2O:Mg thin layers by AA-MOCVD 

We used a butanol-based solution for the deposition of Mg doped Cu2O thin films 

by AA-MOCVD. The copper precursor was copper acetylacetonate (Cu(acac)2), and the 

molar concentration was fixed at 0.02 mol.l-1 all along this study on magnesium doping. 

To incorporate magnesium in the films, we added magnesium acetylacetonate, Mg(acac)2, 

in different molar concentrations: 0.001, 0.002, 0.004 and 0.013 mol.l-1, corresponding to 

Mg/(Mg+Cu) atomic ratio of 0%, 5%, 9%, 17% and 40%, respectively. All the other 

parameters were maintained as described in the Chapter III, where Cu2O thin deposition 

was optimized. 

The deposition was performed at 350°C in a homemade cold-wall chemical vapour 

deposition chamber on substrates of alkaline earth boroaluminosilicate glass (Corning 

1737) or p-type single crystal silicon wafer (001) oriented. Argon was used as carrier gas, 

with a flow of 6 l.min-1, while O2 was used as reaction gas, with a flow of 2.5 l.min-1. These 

flow-rate values allowed us to maintain a solution consumption rate of 2 ml.min-1. The 

deposition lasted for 60 minutes, resulting in a consumption of 120 ml.  After the 

deposition, the films were annealed at 250°C under air for 1 hours to improve physical 

properties. These conditions were previously optimized on intrinsic cuprous oxide (Chapter 

III), in order to obtain monophasic films with no change in colour. 

 

1.4.1 Structural characterization  

As a primarily qualitative analysis of the samples, the optical appearance of an Mg-

doped Cu2O film (5% in solution) is shown in Figure IV-52. On glass, the coating presents 

a yellow colour, transparent and homogenous throughout the whole sample (area of 4 cm2), 

while on silicon the colour depends on the film thickness. In the case of the sample shown 

in Figure IV-52, the thickness was 77 nm and the surface appears mostly dark blue. In both 

cases, the films adhere to the substrate, resist to water and Scotch-Tape tests. Similar 

appearance is visible in all Cu2O:Mg films. 
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Figure IV-52 Photographs of the Mg doped Cu2O thin film on glass (left) and silicon (right) with a 

thickness of 77nm using a solution prepared with 5% atom of Mg. 

In order to estimate the magnesium incorporation, EDS measurements were 

performed on the films deposited on glass with an acceleration voltage of 5 kV; results are 

represented in Figure IV-53. Higher voltage were previously used to validate the purity of 

the samples. Al and Si detected in the spectra originate from the borosilicate substrate, 

together with Cu, Mg, O and C. As the magnesium content increases in solution, the 

magnesium peak at 1.254eV also intensifies in the EDS spectrum from the thin film  

 

Figure IV-53 EDS spectra obtained at an acceleration voltage of 5 keV of Cu2O:Mg thin films on 

glass. The Mg ratio indicated was quantified by EDS analysis (Table IV-6). The different elements X-Ray 

emission lines are also indicated. 

The magnesium incorporation in each film was quantified from the EDS spectra, 

using the P/B-ZAF method provided by Bruker. The Mg/(Mg+Cu) ratio is presented in 

Table IV-6. The magnesium content in the solid film increases linearly with the content in 

the solution, but the value is about 2.3 times lower than that in the solution, as shown in 
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Figure IV-54. This suggests a more efficient deposition of copper than magnesium under 

the selected deposition conditions. Higher temperature of deposition might increase the 

presence of magnesium as reported previously 4, since MgO polycrystalline films are 

normally deposited at temperatures between 400°C and 500°C. Though, these high 

temperatures must induce the presence of CuO phase 5 or powder deposition on the 

substrates, as reported in Chapter III. 

 

Figure IV-54 Relative atomic Mg content in the deposited Cu2O:Mg films on glass as obtained from 

EDS data compared to the amount in solution. Black dotted line represents the 1:1 relation.  

From this point of the work, we will use the Mg/(Mg+Cu) ratio values provided by 

EDS as nomenclatures, i.e. 17% Cu2O:Mg, for the different films. Inspection of the thin 

film surface by SEM showed the effect of magnesium incorporation on the grain 

morphology (Figure IV-55). In the intrinsic film case, grains are difficult to observe and 

roughness appears low. When the magnesium increases, the morphology becomes granular 

and rough, with grains higher than100 nm for the highest magnesium-rich film (Figure IV-

55 f)).  

The films thicknesses were determined from SEM images of the cross section on 

silicon. For the sake of illustration, a Cu2O film cross section on glass is displayed in Figure 

IV-55 b), with an average thickness of 86 nm. Table IV-6 contains the complete thickness 

measurements by SEM. The film thicknesses ranged between 77 nm and 99 nm, showing 

a variability, intrinsically attributed to the MOCVD system. The magnesium content seems 

independent of the thickness variation.  
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Table IV-6 Mg/(Mg+Cu) atomic ratio in solution and detected by EDS together with the thickness of each film 

Mg/(Mg+Cu) solution (%) Mg/(Mg+Cu) EDS (%) Thickness (nm) 

0 - 86 ± 3 

5 1 ± 1 77 ± 2 

9 3 ± 1 99 ± 9 

17 9 ± 1 82 ± 4 

40 17 ± 1 77 ± 5 

 

Figure IV-55 SEM images of Cu2O:Mg thin films with different Mg content deposited on glass at 

350°C. a) Cu2O intrinsic, b) 1%, c) 3%, d) 9% and e) 17% Cu2O:Mg with respective cross-section. Same 

magnification was used for all the top-view pictures. Top right sample corresponds to a cross-section view 

of intrinsic Cu2O. Grain size enlarges with the increase of Mg content 
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In order to assess the location of magnesium within the Cu2O structure, a highly 

doped 17% Cu2O:Mg sample on silicon was prepared in cross section by the tripod method 

and by grating for TEM observation. The micrograph of Figure IV-56 a) shows randomly 

oriented Cu2O grains deposited on Si substrate covered with native SiO2. In the diffraction 

pattern, only the Cu2O phase was identified, with no MgO or other complex visible. The 

TEM images also allowed us to clarify the crystal morphology of the grain films: the rough 

structures observed in top-view by SEM, defined as grains, are indeed agglomerates of 

smaller crystals with sizes ranging from 10 to 30 nm, as visible in Figure IV-56 c) and d), 

and not a unique crystallite. Spot EDS analysis in TEM confirm the presence of Mg through 

all film without significant segregation in the grain boundaries. Nevertheless, 

quantification of Mg content in relation to Cu was not possible due to the copper grid used 

in the sample apparatus, contaminating the copper signal.  

 

Figure IV-56 HRTEM image of the 17% Mg doped Cu2O thin film: a) cross section view on the 

silicon interface region, b) corresponding diffraction pattern identified as Cu2O structure; c) and d) detail of 

the film top part removed by scratching 
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Cu2O:Mg films were also characterized by AFM, which allows to quantify the 

roughness through the root-mean-square (RRMS) of height deviation, visible in Table IV-7. 

This quantitative technique agrees with the SEM observation indicating higher roughness 

with the increase of Mg content, comparatively to the intrinsic Cu2O film (2.6nm). The film 

with 17% of Mg present the highest value of RRMS of 16nm. The images of the AFM are 

represented in Figure IV-57. 

Table IV-7 Crystallite size, roughness and thickness of the Cu2O:Mg thin films 

Mg/(Mg+Cu) (%) RRMS (nm) Crystallite size (nm) Thickness (nm) 

0 2.6 30 86 ± 3 

1 8.4 32 77 ± 2 

3 11 30 99 ± 9 

9 7.2 29 82 ± 4 

17 16 41 77 ± 5 

 

Figure IV-57 AFM images 2µmx2µm of the Cu2O:Mg thin films – a) Cu2O intrinsic, b) 1%, c) 3%, 

d) 9% and e) 17% Cu2O:Mg. The Z scale is different for each sample. 
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As shown in Figure IV-58, the XRD spectra obtained from Cu2O:Mg films on 

silicon match with those associated to a cubic Cu2O phase. It is important to notice that 

there is no significant visible shift compared to intrinsic Cu2O film. No preferential 

orientation could either be detected. The MgO diffraction pattern, characterized by a main 

peak at 43°, remains undetected as well as other binary oxides of magnesium and copper. 

Nonetheless, it is not possible to discard the presence of other amorphous phases due to the 

high content of Mg detected by EDS. 

The crystallite size was obtained from the analysis of the XRD spectra, by using the 

Scherrer equation 6. The results are shown in Table IV-7. The size of the crystallites varies 

is around 30 nm for all the Mg contents and increases to 41 nm for the highest Mg content 

of 17%. The effect of the magnesium content seems especially visible in the highly doped 

film, 17% Mg, however the crystallite size is a magnitude smaller when compared to the 

structures observed in SEM (Figure IV-55 f)) and AFM (Figure IV-57 e)). This confirm 

the TEM results in Figure IV-56, where the large round structures, visible in SEM, are 

indeed composed of agglomerate smaller polycrystalline grains, in a similar range as the 

crystallite size. 

Figure IV-58 Spectra of the Cu2O:Mg thin films on silicon obtained in a Bragg-Brentano configuration. 

Reference spectrum of Cu2O: JCPDS n° 04-007-9767 presented in Appendix B 

Raman spectroscopy confirmed the formation of the Cu2O phase based on the 

presence of standard associated modes, which were detected in all samples, as represented 

in Figure IV-59 a). The magnesium presence reduced the intensity of the Cu2O Raman 

peaks. Furthermore, fluorescence appeared in the samples with more magnesium, which 
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was evidenced via a change in the base line slope above 800 cm-1; this effect might be 

attributed to the presence of organic impurities or electronic defects in the films 7. 

Additionally, by analysing the peak at 149 cm-1 in Figure IV-59 b), corresponding to the 

T1u mode 8, we can see an increase of the full width at half maximum (FWHM), once again 

confirming the peak broadening with the presence of magnesium.  

Figure IV-59 a) Raman spectra of the Cu2O:Mg thin films on glass; b) FWHM analysis of 149 cm-1 peak 

with the variation of Mg content 

FTIR was used as a complementary technique to Raman, and was performed 

specifically on films deposited on silicon substrates, shown in Figure IV-60a). The spectra 

exhibit a peak at 618 cm-1 corresponding to the stretching band of Cu2O 5. This peak shifts 

gradually to higher wave numbers and its width (FWHM) broadens with the increasing 

incorporation of the dopant, as shown in Figure IV-60 b). The magnesium presence leads to 

the appearance of a second band, at 436cm-1 which can be associated to the Mg–O 

stretching vibration 9, together with a reduction of the Cu2O band intensity. The 

combination of this result with XRD and Raman could indicate that Mg is present inside 

the grain or at the grain boundaries in an amorphous form. Organic bonds from the 

precursor remain undetected. 
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Figure IV-60 a) FTIR spectra of the Cu2O:Mg thin films on silicon. b) FWHM and position analysis of 436cm-

1 peak with the variation of Mg content 

 

1.4.2 Optic and electric characterization  

The visible direct optical transparency was assessed by transmittance measurements 

(Table IV-8). The corresponding data representing three of the films representative of all 

the samples are plotted in 

Figure IV-61. The transmittance in the visible range (390 nm – 700 nm) varies between 

42% and 51%, while the most transparent sample is the Cu2O:Mg film with 17% of 

magnesium. When we compare the transmittance between the undoped and the 17% 

Cu2O:Mg films in the visible range, a similar wavelength dependence is recognized close 

to the absorption edge. Nevertheless, the increase in transparency above 500nm is more 

abrupt for the highly doped Cu2O film than for the others. An improvement of 6% in 
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transparency is observed, even when the thicknesses are comparable, around 80 nm. 

Additionally, the optical band gap values as calculated from the Tauc representation, are 

given in Table IV-8, which also confirm a small increase of 0.2 eV from the intrinsic to the 

highly doped film.  

Table IV-8 Average transmittance in the visible range (390 nm - 700 nm) and respective band gap 

of the Cu2O:Mg thin films on glass 

Mg/(Mg+Cu) 

(%) 

Transmittance  

Visible (%) 

Bandgap  

(eV) 

0 45 2.2±0.1 

1 42 2.3±0.1 

3 46 2.3±0.1 

9 50 2.2±0.1 

17 51 2.4±0.1 

Figure IV-61 Transmittance spectra from 250 nm to 1500 nm of the Cu2O and Cu2O:Mg (1% and 17%) thin 

films on glass. The bare glass substrate transmittance is also represented as reference 

A preliminary analysis of the sheet resistance of as-deposited samples revealed a 

fluctuating results with values ranging from 15 up to 70 M/sq, which corresponds to an 

electrical resistivity in the range of 103-102 .cm, without any clear relation to the Mg 

content. The dependence of the resistivity with respect to the Mg content for films, which 

received a heat treatment at 250°C in air for 1 hour, is represented in Figure IV-62. The 

magnesium incorporation affects the resistivity drastically, inducing a decrease from 202 

.cm to 6.6 .cm for the 17% Cu2O:Mg film. This result agrees with previous results 

obtained by doping with other divalent cations such as Sr2+, presenting values around 10 

.cm 2. Nevertheless the minimum resistivity value is still higher than for N-doped Cu2O 

thin films, with a resistivity value of 2x10-1 .cm 10. 
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Figure IV-62 Electrical resistivity dependence on the magnesium content of Cu2O:Mg thin films after thermal 

annealing. The dotted line is represented as a guide for the eye.  

The origin of this lower resistivity was further investigated by Hall Effect 

measurements using a Van der Pauw configuration for the samples. The results for the 

charge carrier concentrations and the mobility values are plotted Figure IV-63. The Hall 

coefficient was positive for all films, which confirmed the p-type conductivity. 

 
Figure IV-63 Mobility (left vertical axis) and charge-carrier density (right vertical axis) as function 

of the magnesium content in Cu2O:Mg thin films 



Chapter IV: Magnesium-doped cuprous oxide thin films 

115 

On the one hand, as shown in Figure IV-63 the carrier mobility presents a 

decreasing behaviour with Mg content, and varies from 6.8 cm2.V-1.s-1 in the Cu2O film to 

1.1 cm2.V-1.s-1 in the 17% Cu2O:Mg film. On the other hand, the charge carrier density 

increases, ranging from 4.5x1015 cm-3 up to 8.1x1017 cm-3 for an increasing in Mg content 

from 0% to 17%. The two combined properties lead to a general decrease of resistivity, as 

visible in Figure IV-62. 

The values of carrier concentration obtained in this work are higher than those 

found in the literature, which range from 1013 to 1016 11. This fact can be explained by the 

substitution of copper by magnesium, creating copper vacancies 12. Indeed, two possible 

copper vacancies can appear in Cu2O: the simple copper vacancy (𝑉𝐶𝑢 ) related to the 

removal of one copper atom, leaving two oxygen atoms with three copper neighbours; or 

the split copper vacancy (𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

) in which the copper disappearance is followed by a 

neighbouring copper atom movement towards the vacancy 12. In the latter case, the copper 

atom moves into a tetrahedral site with four neighbouring oxygen atoms.  The split vacancy 

is usually associated to highly localized hole, responsible for the change in oxidation of 

copper cation from 1+ to 2+, similar to CuO phase.   

Magnesium as a divalent cation would be incorporated in a tetrahedral position, 

similar to a split copper vacancy, as described by Isseroff and Carter 13. This defect would 

be electrically inert, since the Mg 2+ cation would replace a Cu+ cation and one additional 

Cu+ would be removed, visible in Figure IV- 64. However, this incorporation would reduce 

the formation of Cu based split vacancies and therefore inhibit the nucleation of the CuO 

phase 13. Therefore, during the annealing, more simple copper vacancies are created, 

leading to an increase of the hole concentration without forming the extra CuO 13. Further 

analysis on the stability of Mg-doped Cu2O during thermal treatments would be required 

to confirm the occurrence of this mechanism.  
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Figure IV- 64 Incorporation of Mg in a tetrahedral position of Cu2O crystalline structure. Copper 

atoms pictured as blue circles, oxygen as red ones and magnesium as black ones.  

 

The presence of magnesium in the film also has an additional role, both on grain 

shape and consequently on the carrier mobility of Cu2O. As the amount of dopant inside 

the film is fairly high (17%), it is reasonable to think that a fraction of the magnesium 

content is present at the grain boundary. Therefore, hole scattering is more enhanced at the 

boundaries, reducing the material mobility. As the exact position of Mg in the films was 

not possible to be clarified by the techniques used until now, other analysis as EXAFS and 

XPS are fundamental to probe the chemical environment of the cations (Mg and Cu). These 

results are present in the following section of this chapter. 

 

4.1.3 Summary 

The incorporation of magnesium in cuprous oxide thin films was successfully 

achieved by aerosol-assisted metal-organic chemical vapour deposition under atmospheric 

pressure condition at 350ºC. The use of physicochemical analysis techniques such as FTIR 

and EDS confirmed the presence of magnesium up to 17% in cation concentration, while 

the analysis of XRD and Raman spectra led to the detection of cubic Cu2O material, without 
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the appearance of any magnesium-related phase. Therefore, we can conclude that the 

incorporation of the dopant atom is localized inside the structure or at the grain boundaries 

of the cuprous oxide. However, the exact location of the dopant is still unclear based on 

SEM and TEM micrographs. The presence of Mg affected the microstructure of the film, 

forming agglomerates of grains, reaching sizes in the hundreds of nanometres, which led 

to a higher roughness of the films surface. 

The incorporation of magnesium in Cu2O films had a strong effect on the electrical 

properties, reducing the electrical resistivity to 6.6 .cm, by mainly increasing the charge 

carrier density up to 8.1x1017 cm-3. The doping effect can be attributed to the increase of 

simple copper vacancies, probably by the magnesium presence in a tetrahedral position, 

leading to an increase of the hole concentration, as proposed by Nolan et al. 1. This work 

reports, to our knowledge, the first experimental evidence of a hole concentration increase 

correlated to the addition of a divalent cation in Cu2O, complementary to previous reports 

on lower resistivity 2.  

However, the assessment of the impact of the doping on the optical transparency 

was inconclusive since the bandgap (2.4eV) and the total transparency (51%) only 

improved slightly when comparable with intrinsic Cu2O. 

In conclusion, transparent conductive properties of magnesium-doped cuprous 

oxide were improved when compared to intrinsic Cu2O thanks to a strong reduction of the 

resistivity. Ultimately, the control of the charge carrier density can provide a way to use 

Cu2O in transparent electronic devices in the future. Additionally, the observed reduction 

of electrical resistivity, associated with an increase of charge carrier concentration, can 

enhance the efficiency of Cu2O-based solar cells 11. 
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4.2 Stability of Magnesium-doped cuprous oxide (Cu2O:Mg) 

thin films under thermal treatments  

 

In the second section of this chapter, we will continue the study of Mg incorporation 

in Cu2O, focusing on the dopant impact on the properties of Cu2O under thermal treatments. 

As suggested before, the use of annealing treatments on both intrinsic and Mg-doped Cu2O 

thin films can clarify the influence of the dopant on the copper vacancy generation 

mechanism, both simple and split vacancies, as well as the transformation of Cu2O into 

CuO parasitic phase. 

 

4.2.1  Introduction 

The use of post-deposition annealing treatments on Cu2O have been widely studied 

as a method to increase the free carrier concentration 14. It has been stablished that 

annealing in oxidizing environments promotes the creation of copper vacancies, 𝑉𝐶𝑢, which 

is the main mechanism for the increase of p-type conductivity in the material by the 

generation of holes. The concentration of charge carriers can reach up to 1016 cm-3 15, 

leading to resistivity values as low as 100 Ω.cm in intrinsic Cu2O16. While when annealing 

doped films, the values can increase up to 1018 cm-3, which reduces de resistivity to the 1 

Ω.cm range 3,17.  

Nevertheless, the use of higher temperature promotes the transition from Cu2O thin 

films into tenorite oxide, CuO, which usually starts at temperatures ranging from 250 to 

300 ºC  in an oxidizing atmosphere 18,19. Even if Cu2O is considered an unstable oxide at 

room temperature under air, in fact, the transformation to CuO takes place but it is 

extremely slow, that the system can be considered as thermodynamically stable for the 

main applications 20. At higher temperatures, the conversion of Cu2O into CuO is attributed 

to the diffusion of copper to the surface, which consequently generates copper vacancies. 

As explained in the previous section, simple copper vacancy (𝑉𝐶𝑢) and split copper vacancy 

(𝑉𝐶𝑢
𝑠𝑝𝑙𝑖𝑡

) can be formed during thermal treatments in Cu2O. In the split vacancy, the shifted 

copper becomes 4-fold coordinated, combined with a highly localized hole, which is 

associated to a nucleation centre for CuO phase. Additionally, the diffusion of copper to 

the surface of the film in an oxidizing atmosphere can also lead to the formation of CuO 

due to the direct oxidation of the cation, from Cu+ to Cu2+. In the case of bulk Cu2O, the 
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complete transformation occurs at higher temperature, above 600 ºC 21, due to the low rate 

speed of this phase transformation. Additionally, there is the report of the inverse phase 

transition from CuO to Cu2O by annealing treatments at 425 ºC under vacuum 22.  

In this study, we annealed both intrinsic and doped Cu2O thin film at different 

temperatures, from 250 ºC to 500 ºC in air and we analysed the effect of Mg incorporation 

on the stability of the Cu2O phase. We studied the changes on structural, morphological 

and electrical properties. Such a deeper investigation provide a comprehensive insight into 

the phase transformation and the electronic impact of the Mg incorporation.  

 

4.2.2 Experimental 

For the study on the stability of the Cu2O films under thermal annealing, two 

samples, with and without magnesium, were deposited. Once again, a butanol-based 

solution was used for the deposition by AA-MOCVD. The total concentration of the 

solution was fixed at 0.03 mol.l-1. The first solution was composed of pure Cu(acac)2, while 

in the second one the Mg/Mg+Cu ratio in the solution was fixed at 33%, as it was 

considered the lowest resistivity sample in the previous Mg variation study (17% Mg in the 

films). In order to have a thicker film, the time of deposition was increased to 3 hours and 

the solution consumption rate decreased to 1.5 ml.min-1. The lower solution consumption 

enabled a slow deposition rate, beneficial electrically for thicker films. The other deposition 

parameters were kept constant: 350 ºC for the temperature of the substrates (Corning 1737 

and p-type silicon wafer); Argon flow of 6 l.min-1; O2 flow of 2.5 l.min-1. The study of the 

stability films under thermal annealing was performed in a heating plate under air, coupled 

with in-situ resistance measurements preformed using a 2-probe system. Three stages of 

temperature were chosen, 250 ºC, 350 ºC and 450 ºC, all for 30 minutes, while the heating 

rate was kept constant at 10ºC/min. One additional annealing treatment was performed at 

500 ºC for 30 minutes, only analysed by EXAFS. The temperature bounds were defined as 

follows: the lower limit is set by the preliminary annealing study in Chapter III for undoped 

Cu2O while the upper limit is determined by the major transformation to CuO phase. 

1.4.3 Structural characterization 

The as-deposited films were routinely characterized in order to obtain the Mg 

content in the film, thickness and sheet resistance. The preliminary results are visible in 
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Table IV-9, and follow similar trends as observed before for this system. The films were 

then annealed and characterized from different points of view.  

Table IV-9 General properties of deposited Cu2O and Cu2O:Mg films for the stability study 

Sample Mg/(Mg+Cu) in solution 

(%) 

Mg/Mg+Cu in film 

(%) 

Thickness 

(nm) 

Sheet Resistance 

(M/sq) 

Cu2O 0 0 244 6.3 

Cu2O:Mg 33 18% 164 4.7 

 

The difference in appearance can be evaluated even by the naked eye, as the phase 

change from Cu2O to CuO is accompanied by a change in colour and morphology of the 

films. As the CuO phase presents a darker brown colour, the visual analysis of the films is 

a clear evidence when the films change their phase. In the Figure IV-65, the 8 samples 

studied are represented.  

 
Figure IV-65 Optical appearance of the copper oxide thin films. Cu2O: as deposited (a), 250ºC (b), 

350ºC (c), 450ºC (d); Cu2O:Mg: as deposited (e), 250ºC (f), 350ºC (g), 450ºC (h).  

Initially both films present a yellow colour as-deposited. When the films are 

annealed at 250ºC, no clear difference is visible. However a colour change is detected after 

350ºC, in both cases, especially in the undoped case. At 450ºC, we can see a darker film in 

the intrinsic copper oxide film, while the Mg-doped one present a brown colour, however 

not completely dark and opaque. This fact led us to infer that the magnesium presence has 

an impact in the phase transformation from Cu2O to CuO as compared to undoped Cu2O 

films, since the darker phase is not yet completely visible in the Mg-doped films.  

To follow the phase transformation, the structural properties of the films were 

evaluated by grazing incidence X-ray diffraction (GI-XRD), more sensitive to a phase 
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present in lower proportion. When analysing results obtained from undoped films presented 

in Figure IV-66, only the diffraction peaks corresponding to the Cu2O phase are detected 

in the as-deposited film and on the film annealed at 250ºC. When the annealing temperature 

increases to 350ºC, diffraction peaks at 35.5 ° and 38.7° are detected, which can be 

attributed to the (11-1) and (111), reflection of the CuO phase. For the sample annealed at 

450ºC, the majority of the diffraction peaks are associated to the CuO phase, while a small 

residue corresponding to the Cu2O phase is still visible, mainly diffraction peaks at  36.4°, 

42.3° and 61.3° angles corresponding to the (111) (200) and (220) reflections. 

 
Figure IV-66 GI-XRD spectra of undoped Cu2O thin films on glass corresponding to the as-

deposited and annealed samples. Reference spectrum of Cu2O: JCPDS n° 04-007-9767 and CuO: ICDD n° 

00-048-1548 presented in Appendix B and C 

The GI-XRD spectra of the second set of samples corresponding to films of Cu2O 

doped with magnesium are presented in Figure IV-67. In this case and similarly to the 

intrinsic films, the as-deposited and annealed at 250ºC films present only diffraction peaks 

corresponding to the Cu2O phase. In the film annealed at 350ºC, a small diffraction peak 

attributed to the CuO phase is detected (111) while the intensity of the Cu2O peaks 

decreases. For the film annealed at the higher temperature, 450ºC, the intensity of the CuO 

diffraction peaks is higher, however, the (111) Cu2O diffraction peak at 36.4° is still the 
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most intense. It is worth noting that the Cu2O diffraction peak also shows a shift of 0.42º 

degrees from the original position of 36.42º to 36.84º. This can be an evidence of the change 

in lattice parameter from 4.270 Å to 4.226 Å, decreasing the size of the unit cell.   

 

Figure IV-67 GI-XRD spectra of the Mg doped Cu2O thin films on glass corresponding to the as-

deposited and annealed samples. Reference spectrum of Cu2O: JCPDS n° 04-007-9767 and CuO: ICDD n° 

00-048-1548 presented in Appendix C and D 

In order to evaluate the phase formation of CuO regarding the structural 

modifications, the films of intrinsic Cu2O were observed by SEM; the morphology of films 

is visible in Figure IV-68. The cross-section of the as-deposited film inserted in the figure 

shows a homogeneous layer with an average thickness of 244nm. When observed in top-

view, this film shows a porous surface and grains are hardly visible, which remains after 

the annealing at 250°C (Figure IV-68 b)). The increase of temperature in the thermal 

treatment leads to changes in the film annealed at 350°C, where small grains are now visible 

and the porosity seems to be reduced. In the film annealed at 450°C, larger grains are 

visible, in the 100nm range, forming a rougher structure when compared to previous 

samples. 
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Figure IV-68 SEM micrographs of Cu2O thin films: as deposited (a), 250ºC (b), 350ºC (c), 450ºC 

(d); Cross-section image visible on image a) 

The SEM micrographs Mg-doped Cu2O films are presented in Figure IV-69, the 

cross-section of the as-deposited sample inserted in Figure IV-69 a) shows a rougher and 

more irregular layer, with an average thickness of 167nm. This irregular morphology is 

also detected in the top view imaging of the original Mg-doped Cu2O film, where a rough 

surface with larger grains is visible (Figure IV-69 a)). As in the intrinsic films, the sample 

annealed at 250°C shows the same morphology as the as-deposited film. When the thermal 

treatment is performed at 350°C, small grains start to appear on the top of the original 

viewed morphology hinting at a size smaller than 100 nm and apparently only formed at 

the surface. At the sample annealed at 450°C, a widespread of grains occurs with 

approximate size below 100nm, but in a different way compared to the undoped Cu2O 

films, as they cover here all the surface. The rough surface of the film is maintained even 

with the presence of the recently formed grains. 
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Figure IV-69 SEM micrographs of Mg doped Cu2O thin films: as deposited (a), 250ºC (b), 350ºC 

(c), 450ºC (d); Cross-section image visible on image a) 

The direct comparison between the effects of the annealing on the two sets of 

samples establishes differences in terms of growth of the secondary phase, CuO. As already 

stated before in the Mg content study, the main differences in the as-deposited intrinsic and 

doped Cu2O films are related to the roughness of the film, visible in top view but also in 

the cross-section. Combining SEM images with XRD results, the formation of CuO is 

associated to the formation of smaller and brighter grains at the surface. The formation of 

these grains occurs in a unlike way for the two samples annealed at 350ºC, since in the 

intrinsic case the newly formed grains seem to be generalized on the surface of the film, 

while in the Mg doped films the grains are only formed in a fraction of the visible surface. 

For the Cu2O:Mg films it is necessary to perform the thermal treatment at 450ºC to obtain 

a look like that of the undoped annealed at 350ºC, consisting in small grains covering 

completely the surface of the film. Moreover, the Cu2O undoped films annealed at 450ºC 

show different shape and larger size of the CuO formed grains, consistent with a higher 

degree of phase transformation, previously visible in the GI-XRD results.  



Chapter IV: Magnesium-doped cuprous oxide thin films 

125 

STEM was used to analyse the grains on the surface of Cu2O:Mg film annealed at 

350°C. However, the identification of CuO phase by the diffraction pattern on the formed 

grains was not obtained. Moreover, EDS was performed punctually using spot analysis in 

STEM to identify the local distribution of Mg. Mappings for each element obtained from 

the Cu2O:Mg film annealed at 350°C are presented in Figure IV-70. This analysis confirms 

the presence of Mg through all film without significant segregation in the grain boundaries, 

not easily distinguished. However, the dopant (Figure IV-70c)) appears to present a 

gradient with the thickness, being preferably located at the interface with the substrate, in 

the first 100 nm of the film. 

 

Figure IV-70 a) Bright-field STEM image of Cu2O:Mg thin film annealed at 350°C b-e) 

Corresponding EDS-STEM elemental mapping of the b) Si, c) Mg, d) Cu, and e) O elements, respectively. f) 

Superimposition of the corresponding EDS-STEM maps of the Si, Mg, Cu and O elements. The 250 nm scale 

bar is valid for all images. 

Raman spectroscopy was used to clarify the early stage of phase transformation in 

these sets of samples. This technique is complementary to XRD analysis, but allows for a 

more local analysis. Raman spectra of as-deposited and annealed Cu2O thin films are 

represented in Figure IV-71 a) and b), for the undoped and doped samples respectively. 

The comparison of the two oxides is based on the appearance of a peak at 348 cm-1, which 

is attributed to the Bg
1 mode of CuO without correlation to Cu2O. This is the only peak 

independent of Cu2O, since the others at 298 cm-1 (Ag) and 628 cm-1 (Bg
2) are also visible 
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in the Cu2O. For the intrinsic Cu2O, the Bg
1 mode is barely detected in the film annealed at 

350°C, but the most intense are that attributed to Cu2O phase. When annealing at 450°C, 

the Raman spectrum changes drastically and only peaks of CuO are visible, since all the 

distinctive modes of Cu2O disappear. On the Mg doped Cu2O set of samples, the detection 

of CuO is only visible at 450°C, and even at this temperature, the majority of Cu2O peaks 

are still observed.  

 

 
Figure IV-71 Raman spectra of the Cu2O thin films on glass: a) intrinsic Cu2O; b) Mg doped Cu2O.  

The FTIR measurements were performed on films deposited on Si substrate to 

guarantee a transparency to infrared. In this case, only the as-deposited and the annealed 

(350°C) films were probed. Figure IV-72 shows the different spectra, with the bonds related 

to Cu2O, CuO and MgO phases indicated. As already described in the previous section, 

Mg-O are detected in the Mg doped films. The main difference in this group of samples is 

the detection of a bond (478 cm-1) related to CuO phase on the films annealed at 350°C 

which confirm the trend visible previously in GIXRD and Raman.  
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Figure IV-72 FTIR spectra of the Cu2O thin films deposited on Si. Set of samples attributed to 

intrinsic and Mg doped Cu2O, both as deposited and annealed at 350°C. 

 

XPS provides the means of analysing the composition and the oxidation state of 

elements at the surfaces, probing the top 10 nm of a film. The surface of the as-deposited 

samples and those annealed at 250°C were probed by XPS in order to determine the Cu 

oxidation state (Cu+ in Cu2O or Cu2+ in CuO). The Cu oxidation state was analysed by the 

Cu 2p1/2 spectra. The XPS results of the as-deposited and 250°C annealed samples are 

presented in Figure IV-73. The presence of Cu+2 is clearly identified when the doublet is 

accompanied by satellites at 940-945 eV 23. The Cu+1 state or Cu0 presents a doublet at 932 

eV with a low FWHM 23. For the Cu2O as-deposited sample, the satellites at 940-945 eV 

indicate the presence of Cu+2. After the thermal treatment at 250°C, the intensity of Cu2+ 

satellite increases and the Cu 2p3/2 peaks are additionally deformed, indicating an increase 

of CuO at the surface of the material. For the samples containing Mg, both as deposited 

and annealed at 250°C, satellites are not visible confirming that the films at the surface are 

formed only of deposited and annealed at 250°C, the peaks observed are only attributed to 

the presence of Cu2O. 
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Figure IV-73 a) Cu 2p XPS spectra obtained for the Cu2O thin films deposited on glass 

corresponding to intrinsic and Mg doped Cu2O, both as deposited and annealed at 250°C. b) Reference 

spectra of metallic Cu, Cu2O and CuO adapted from “www.xpsfitting.com”  

 

A complementary technique to XPS that allows to probe the full thickness of the 

sample and gives information about the chemical environment is EXAFS. This technique 

is available thanks to Synchrotron facilities in ESRF Grenoble. The two sets of Cu2O 

samples were analysed and the Cu-K edge was registered. Two extra samples of Cu2O and 

Cu2O:Mg were annealed at 500°C for 30 minutes and analysed exclusively by this method, 

in order to have a complete CuO film. Athena software enables the treatment of the X-ray 

absorption near edge structure (XANES) raw data into EXAFS 24. After applying a 

background removing, the representation of the Fourier transformations in k2 from 2 to 14 

Å-1 are presented in Figure IV-74. Each of the visible peaks can be attributed to a direct 

neighbour of Cu atom and the respective distance. Figure IV-74 a) shows the spectra related 

to Cu2O undoped samples, annealed up to 500°C. Several changes are visible between the 

as-deposited and the annealed sample at 500°C in the neighbour distance comprised 

between 1 and 4 Å. We will present here the hypothesis of the change induced by the 

oxidation of Cu2O into CuO from the changes in the EXAFS spectra. In the first peak 

corresponding to a neighbour distance between 1 and 2 Å and identified as the oxygen first 

neighbour (Cu-O 1st) for Cu2O and CuO, we observe a change of intensity of the peak 
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combined with a small shift to the right with the high temperature annealing, above 450°C. 

These modifications are connected with the increasing number of O neighbouring atoms 

between the Cu2O and CuO, changing from 2 to 4, as well as a small increase of Cu-O 

distance, from 1.85Å in Cu2O to 1.95Å in CuO. In the second peak corresponding to a 

neighbour distance between 2 - 4 Å and attributed to cooper neighbouring atoms (Cu-Cu 

1st), small changes start to appear as a decrease of intensity of the peak with the lower 

temperature annealing. At temperatures higher than 450°C, with the transformation into 

CuO, this peak splits into two parts, possibly attributed to copper neighbours of higher 

order (1st , 2nd and 3rd), as well as 3rd order oxygen neighbours.  

In the case of Cu2O:Mg, presented in Figure IV-74 b), similar considerations can 

be inferred for this system, since the first peak also increases in height, and the second peak 

splits into two. However, it is important to refer the differences in spectrum related to 

Cu2O:Mg annealed at 450°C. In this case, there is an intermediate state for both peaks, Cu-

O 1st and Cu-Cu 1st, not detected before for the intrinsic Cu2O system.  

In Figure IV-75, the spectra of the Cu2O and Cu2O:Mg group of samples were fitted 

using the combination of Cu2O and CuO pure EXAFS spectra provided by the boundaries 

samples of undoped Cu2O films and using the Athena software. This allowed to quantify 

the amount of each oxide depending on the annealing temperature. Until the annealing 

treatment at 350°C, both films present similar quantities of Cu2O, more than 85%; however 

the annealing stage at 450°C, shows drastic differences between the intrinsic and doped 

Cu2O. While in the Cu2O film, more than 95% of the film is already CuO, in the Mg -doped 

Cu2O a majority of 60% of the film is still Cu2O. This indicates a delayed or partially 

inhibited transition from Cu2O to CuO in the presence of the dopant. In the case of 

annealing at 500°C both films are mostly CuO, however with some residue of Cu2O in the 

Cu2O:Mg case. 

The preliminary fitting of the Cu2O and CuO pure EXAFS spectra using Arthemis 

software is presented in Appendix B.  
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Figure IV-74  EXAFS raw data from Athena – a) Cu2O and b) Cu2O:Mg 
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Figure IV-75  Fitting of EXAFS spectra from both Cu2O group of thin films using pure Cu2O and 

CuO EXAFS spectra 

 

4.2.3 Electric characterization under temperature 

We use the monitoring of the electrical properties as an additional way to follow 

the transformation of Cu2O into CuO in situ during the annealing step. As a matter of fact, 

the annealing at 250°C has been used previously to decrease the sheet resistance of our 

materials, but a complete evaluation of the effect during the annealing was still then 

lacking. We specifically devote this section to the task. For this study, the same as-

deposited sample was cut in several pieces for the different annealing temperatures and the 

experiments were conducted with in-situ sheet resistance measurements using a 2-probe 

system. This setup allows us to observe the sheet resistance variation during the heating 

and cooling process, as well as the effect during the annealing step at a given temperature. 

The following graphs, presented in Figure IV-76 a) and b), show this variation for the three 

annealing temperatures, in the case of undoped and doped films, respectively. To compare 

the results we use the resistance at any time normalized by the initial value, given for each 

set of samples at the initial point of the curve. The sheet resistance values given for each 

curve correspond to the values obtained after annealing. 
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Figure IV-76 Normalized sheet resistance of the Cu2O thin films during the 3 different annealing 

steps: 250°C, 350°C and 450°C. a) Intrinsic Cu2O films; b) Mg doped Cu2O   

In the Cu2O samples and considering only the final sheet resistance, the most 

efficient annealing approach is the one performed at 250°C, since we obtain a lowering of 

the resistance during the annealing step, as well as a lower resistance value after the 

treatments are finished. The total reduction of the resistance with the annealing is 13%, 

leading to final sheet resistance of 5.5 MΩ/sq. These results corroborates the selection of 

the temperature for the optimization of temperature. Annealing at 350°C provokes an 

increase of resistance during the thermal stage, leading to a final resistance higher than the 

original film (57%). Finally, the annealing at 450°C leads to an even larger increase of 

resistance during the treatment, potentially attributed to the formation of CuO. The sample 

annealed at 450°C presents the worst electrical response.  

We describe now the behaviour during the annealing step at constant temperatures, 

where the sheet resistance changes in different ways, picture in Figure IV-76 a). On the one 

hand, at 250°C we observe a constant decrease of resistance, while on the other hand, at 

350°C and 450°C, the resistance initially decreases during the heating ramp, but 

immediately increases from the beginning of the thermal step. The decreases in resistance 

can be explained by a mechanism associated to the formation of copper vacancies at lower 

temperature, increasing the density free carriers and reducing the resistivity of the film. The 

increase of the resistance is related to the phase transformation from Cu2O to CuO at higher 

temperature, which leads to a general increase of resistivity of the film.  

Concerning the Mg doped films, presented in Figure IV-76b), we observe a 

different overall trend that contrasts with the intrinsic Cu2O samples. The most efficient 

annealing treatment concerning the decrease of sheet resistance is the one performed at 

450°C, with a reduction of 84% on sheet resistance, resulting in a film with 0.7 MΩ/sq. For 
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the three selected temperatures, we obtain a more conducting film than the original one 

after the thermal treatment. Additionally, if we analyse now the resistance behaviour during 

each step, it is observed that there is a decrease of resistivity for both 250°C and 350°C.  

This phenomenon can be attributed to copper vacancies generation, as previously stated for 

the intrinsic Cu2O. In the 450°C annealing curve, we have a slight increase of resistance 

during the thermal stage at the fixed temperature, probably related to the phase 

transformation from Cu2O to CuO, but nonetheless, this film present the lowest resistivity 

value after the annealing.  

Using the variation of the resistivity during the heating and cooling down stages of 

the annealing treatment is possible to extract the activation energy in the two Cu2O types 

of film. The Arrhenius plots of resistivity in logarithmic scale for the intrinsic and doped 

Cu2O films are shown in Figure IV-77 a), b) and c) for the three annealing temperatures. 

The values of sheet resistance were converted into resistivity to correlate this results to Sr-

doped Cu2O previously studied 3. In a general analysis of all the annealing treatments, the 

slopes of the intrinsic Cu2O films are larger than the Cu2O:Mg films, during both heating 

and cooling stages, represented by the guided triangles in Figure IV-77 b). In the case of 

intrinsic Cu2O samples and for the films annealed at 250°C and 350°C the slopes during 

heating and cooling are similar; however, for the annealing at 450°C, the slope increases 

in the cooling process, especially at high temperatures (Figure IV-77c)). This phenomenon 

can be attributed to the higher quantity of CuO, formed at high temperature, which changes 

the resistivity behaviour under temperature variation. The samples containing magnesium 

present a different characteristic than that of undoped ones, in particular on the heating part. 

There is clearly a change of slope at around 170°C - in the graph at 2.25 (1000/K) - for all 

3 annealing curves. By taking this into consideration, we separate the heating ramp of the 

annealing into different sections, one from room temperature to 170°C, and other from 

170°C until the designated annealing temperature.  
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Figure IV-77 Dependence of the resistivity of the Cu2O thin films with temperature during the 3 

different annealing treatments: a) 250°C, b) 350°C and c) 450°C. Grey and red triangles visible in b) to help 

the visualization of different slopes; d) activation energies for each sample during heating and cooling.  

Similar to previous studies on Cu2O resistivity variation with temperature25, the 

linearization of these curves allow us to analyse through the use of an Arrhenius equation, 

needed to extract the activation energies.  

 𝜌 = 𝜌0𝑒
𝐸

𝑘𝑏𝑇 

 

(IV.1) 

where ρ is the resistivity, ρ0 a constant, E is the activation energy and kb is the Boltzmann 

constant. In order to obtain this linearization, we depreciate the impact of the mobility 

dependence with temperature, which allows us to attribute the activation energy to the 

defects present in the film. The energies obtained from this fittings are plotted in the Figure 

IV-77d). We have calculated the energy obtained from curves under heating and cooling, 

but also taking into account the second slope visible in the Cu2O:Mg samples for 

temperatures higher than 170°C. For the variation of resistivity of undoped Cu2O films 
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under heating, the increase of slope with the temperature of annealing leads to values 

varying from 220 and 240 mV, which are normally attributed to the formation energy of 

simple cooper vacancies, VCu
-, in theoretical 1 and experimental 26 studies. This effect is 

more evident in the activation energy obtained from the cooling step, reaching a value of 

273 mV for the film annealed at 450°C.  

As described before, in the Mg-doped Cu2O system, two different regimes are 

visible, with a temperature transition around 170°C. In the low temperature regime, the 

activation energy varies between 162mV and 176mV, while at higher temperature, the 

activation energy increases with the temperature, from 209mV to 250mV. This value is 

represented in Figure 27d) as Cu2O:Mg heating curve. The variation for temperatures 

higher than 170°C and labelled as Cu2O:Mg heating (2nd energy) leads to energies 

comparable with the heating activation energy for the intrinsic case (~170 mV). For the 

energy obtained from the cooling curves, we observe lower activation energies, below 

160mV, which decrease down to 117mV, after the annealing treatment at 450 °C. This 

value is lower than that of the simple copper vacancy and it is comparable with the 

secondary defect observed in Cu2O:Sr 3 with an ionization energy of 133mV, as well as 

acceptor levels detected in Nitrogen doped Cu2O at an energy of 121 meV27. 

To complete the characterization of the electrical properties of the samples and to 

evaluate the effect of the annealing on the mobility and free charge carrier concentrations, 

the samples were analysed by ex situ Hall Effect. All samples showed p-type behaviour. 

Figure IV-78 shows the resistivity of the two group of films, measured at room temperature.  



Chapter IV: Magnesium-doped cuprous oxide thin films 

136 

 
Figure IV-78 Resistivity dependence on the temperature of the annealing treatments for Cu2O and 

Cu2O:Mg thin films.  

As previously observed in the resistance measurements, the resistivity of the 

intrinsic Cu2O shows a minimum in the film annealed at 250°C, followed by a drastic 

increase up to 1000 Ω.cm. Concerning the 18% Mg doped film, the lowest point is visible 

at 450°C, with a value in the 10 Ω.cm range.  

Figure IV-79 a) and b) shows the effect of the annealing temperature on mobility 

and charge carrier density, respectively, of the intrinsic and Mg-doped Cu2O films. It was 

not possible to perform the Hall Effect characterization on the Cu2O film annealed at 450°C 

due to high resistivity values. Concerning the mobility of Mg-doped Cu2O films an increase 

from 1 to 4 cm2.V-1.s-1 with annealing temperature is observed; while in the undoped case, 

the mobility is maintained roughly constant around 9 cm2.V-1.s-1. The free charge carrier 

density, associated mainly to holes, varied with the two group of samples. On the one hand, 

the Cu2O showed a maximum of charge-carriers density of 6x1016 cm-3 at 250°C, followed 

by a decrease when annealed at higher temperature. While on the other hand, the Mg-doped 

Cu2O films show a general increase of charge carries, presenting the higher value for the 

film annealed at 450°C, close to 2x1017 cm-3. 
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Figure IV-79 a) Mobility and b) charge carriers density dependence on the temperature of the 

annealing treatments for Cu2O and Cu2O:Mg thin films.  

 

1.4.4 Discussion  

The effect of magnesium incorporation on the stability of the Cu2O phase under 

different annealing treatments was studied in order to clarify the mechanism of CuO 

formation. Apart from the surface oxidation detected by XPS on samples as-deposited or 

annealed at 250°C, the temperature of the formation of CuO is similar, starting below 350 

ºC, in both intrinsic and Mg doped films. This was confirmed by XRD, Raman, EXAFS 

and indirectly by resistance measurements. However, the formation of CuO occurs in a 

different way between the two sets of films. In intrinsic Cu2O films at high temperature, 

the formation of grains attributed to CuO is generalized at the surface of the film, while in 

the Mg-doped films the grains are only formed on a fraction of the surface. This leads to a 

difference of resistivity behaviour at 350 ºC; a significant reduction of resistivity is caused 

in the doped samples, while the intrinsic films become more resistive when the CuO phase 

is present. When the annealing temperature increases to 450°C, the undoped Cu2O films 

show a dominant content of CuO, increasing drastically its resistivity. In the opposite way, 

the magnesium-doped Cu2O films maintained a higher fraction of Cu2O combined with 

low resistivity values in the 10 Ω.cm range.  

The different behaviours between the two sets of samples led us to deduce two 

distinct mechanisms for the CuO formation. On the one hand, the intrinsic Cu2O starts to 

form CuO by oxidation at the surface and interior of the film. At the surface the Cu+ cations 

are easily oxidized into Cu2+ in contact with oxygen forming new grains of CuO phase. 

Though in the film, the formation of split copper vacancies induces the formation of Cu2+ 

centres, which creates CuO nucleation centres inside the grains. In a first stage, the split 



Chapter IV: Magnesium-doped cuprous oxide thin films 

138 

copper vacancies leads to an inefficient generation of free holes due to the highly localized 

character of this defect, which later contributes for a large increase of resistivity by the 

formation of the parasitic phase throughout the film.  The electric transport measurements 

confirm this hypothesis, due to the increase of resistivity during the annealing stage at 

350°C. 

On the other hand, in the presence of Mg, the transformation seems to start at the 

surface of the film, while in the interior of the film, simple copper vacancies are the major 

defects to be created, facilitated by the presence of the dopant. The large creation of simple 

copper vacancies increases the number of free charge carriers and consequently reduces the 

resistivity. As suggested by Isseroff and Carter, doping with Mg can prevent the formation 

of split vacancies for a single cation vacancy, since the divalent cation would assume a 

position similar to a split copper vacancy in the crystallographic structure13. This fact seems 

to be confirmed by the low resistivity of the films, even when the surface is covered by the 

CuO phase. Additionally, the XRD shift detected after the annealing at 450°C can suggest 

an activation of this mechanism by the changes in crystallographic structure. The inhibition 

to create split vacancies would reduce the parasitic centres inside the film, being the main 

mechanism for conduction loss during the annealing stages. 

Furthermore, the first activation energy associated to Cu2O:Mg of 165mV can be 

compared to the energy value of a large size impurity−vacancy complex found previously 

in the Sr-doped system 133mV3.  One type of defect that can explain this energy is a 

clustering of a second simple vacancy with the dopant, [MgCu − 2·VCu]−,which has been 

suggested by Isseroff and Carter 13. 

The use of EXAFS by synchrotron radiation at ESRF in Grenoble was additionally 

fundamental to clarify the crystallographic changes with the presence of the dopant as well 

as the mechanism for phase transformation between Cu2O and CuO. Nevertheless the 

creation of a crystallographic model to fit the data is still ongoing. The combination of these 

stability results with the changes in conductivity previously discuss can provide a way to 

better apply this material both in solar cells and electronics, or even new copper oxide-

based devices.    
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4.3 Cu2O:Mg/ZnO heterojunctions 

4.3.1 Introduction 

The lack of a stable n-type semiconductor Cu2O thin film, diminished drastically 

the possibility of solar cells production based on copper oxide homojunctions. This fact can 

be overcome by the use of a different n-type semiconductor that present a band alignment 

compatible with Cu2O to form a heterojunction. ZnO, as an n-type semiconductor oxide, 

can be combined with Cu2O, which in this case work as p-type absorber material, due to 

the lower band-gap. The maximum theoretical efficiency of a ZnO/Cu2O solar cells is as 

high as 20%28, however the maximum value achieved by functional devices is only 4.12% 

29 for an intrinsic ZnO/Cu2O junction [2], which was recently increase to 8.1% in a 

MgF2/ZnO:Al/Zn0.38Ge0.62O/Cu2O:Na heterojunction30. Besides, this record of efficiency 

was achieved by thermal oxidized Cu2O, a process that creates large grains in the tens of 

microns range, reducing the fraction of grain boundaries and increasing the mobility. 

However, this technique is not suitable for large scale production, since it requires very 

high temperatures, around 1000 ºC 31. Therefore, the use of chemical deposition techniques 

for the deposition of Cu2O combined with the possibility of depositing ZnO at low 

temperature pave the way for future implementation of a cost-efficient oxide based solar 

cells. 

The Mg-doped Cu2O study, previously discussed, provided two essential results 

that can have a significant impact in the electrical behaviour of pn junctions. On the one 

hand, the presence of the cation contributed to a higher stability of the Cu2O phase, reducing 

the appearance of CuO parasitic phase. This phase is reported to reduce the performance of 

an oxide-based solar cell, due to the creation of highly conductive paths in the grains 

boundaries that short-circuit the device32.   

On the other hand, the Cu2O:Mg thin films showed a high charge-carrier density, 

up to 8x1017 cm-3, due to a doping mechanism based on copper vacancy assisted cation 

incorporation. The larger density of charge carriers (holes) can have an important 

contribution to an increase of efficiency on a Cu2O based solar cell, by reducing the size of 

the depletion region 33. This enables a higher electric field and charge collection throughout 

the cell, by reducing the number of charges lost due to recombination and higher reflection 

in the back electrode 33.   
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As proof of concept, we first simulated a pn junction of intrinsic and Mg-doped 

Cu2O on n-type ZnO in a semi-classical approach using numerical simulations based on a 

finite-difference scheme. For the experimental part, we fabricated these structures by 

combining the Mg-doped Cu2O thin films with ZnO, deposited by pulsed injection metal 

organic chemical vapour deposition (PI-MOCVD) and by spatial atomic layer deposition 

(SALD), in order to study the rectifying response of these structures. More specifically, 

two different structures were studied, pn and np, in order to understand the electric and 

optical impact on the device. The study is completed by photovoltaic tests to evaluate the 

possible application of these structures into solar cells. 

 

4.3.2 Simulation of a pn junction formed by Cu2O/ZnO  

Formerly to the fabrication of pn junctions experimentally, we decided to simulate 

the band structure and consequent diode response of these two materials. The simulations 

of this semiconductor device were based on a mathematical model, using the so-called basic 

semiconductor equations. The semiconductors must be non-degenerated, with a general 

behaviour, without any particular assumptions, derived from Maxwell-Boltzmann 

statistical relations and Maxwell’s equations. A numerical solution of the system of basic 

semiconductor equations is then obtained through a finite-differences method. The 

simulation was a semi-classical approach to the problem, where we took into account the 

conservation of charge and mass34. The equations are solved in the steady-state regime 

where the applied voltage is constant, which additionally allows to solve the system in 

reverse and forwards bias situations.  

The group of parameters selected for the two semiconductors were based other 

works 35,36, properties of samples fabricated and measured in our labs and general 

assumptions for pn junctions. We assumed a thickness between 200 nm and 1 m for each 

film, with values for band-gap energy, mobility, permittivity and effective mass referred in 

the literature 35,36. The concentration of defects, both in the interface and trap states was 

assumed as minimum at a level of 1010 cm-3, to avoid significant contributions to the 

simulation, while the capture cross section  and radiative recombination coefficient were 

based on pn junctions formed by group IV semiconductors 37. Therefore, in Table IV-10, 

all the different fixed parameters for the simulation are represented.  
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Table IV-10 List of constant unvaried during the simulations  

Material Cu2O ZnO 

Band Gap (eV) 2,17 3,4 

Defects interface (cm-3) 1x1010 1x1010 

Defects traps (cm-3) 1x1010 1x1010 

Mobility electrons (cm2.V-1.s-1) 1 10 

Mobility holes (cm2.V-1.s-1) 1 10 

Relative permittivity 18,1 10,8 

Electrons effective mass  0,99 0,3 

Holes effective mass  0,58 0,5 

Capture cross section (cm2) 1x10-12 1x1012 

Radiative recombination coefficient (cm3.s-1) 1x10-11 1x10-11 

 

Here, we discuss two main simulations where the varied parameters are the 

acceptors concentrations in the p-type semiconductors to simulate intrinsic and doped 

conditions for Cu2O. Considering the previous deposited Cu2O:Mg films, we defined the 

density of acceptors to be from 5x1015cm-3 to 8x1018cm-3 in intrinsic and doped cases, 

respectively. For ZnO, we used well establishing values from materials previously obtained 

in Grenoble LMGP 38, around 1019cm-3 38. Additionally, the size of the simulated device 

was adapted to the width of the depletion region between the two cases. These parameters 

are represented in Table IV-11 and Table IV-12. 

Table IV-11 Simulation A - parameters simulating the intrinsic case: Cu2O and ZnO films                 

 
Cu2O ZnO 

Thickness (m) 2 2 

Acceptors density (cm-3) 5x1015 1x1010 

Donors density (cm-3) 1x1010 1x1019 

 

Table IV-12 Simulation B - parameters simulating the doped case: Cu2O:Mg and ZnO films                 

 
Cu2O:Mg ZnO 

Thickness m) 0.2 0.2 

Acceptors density (cm-3) 8x1017 1x1010 

Donors density (cm-3) 1x1010 1x1019 
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The band diagram and charge concentrations for simulation A are plotted in Figure 

IV-80. In the Cu2O case, the band diagram shows the formation of a depletion region mostly 

on the Cu2O side, as the concentration of acceptors is lower, compared to the donors on 

ZnO. Consistently to what was suggested in the literature 33, this region is larger than 1 m 

in intrinsic Cu2O reaching up to 3m in weakly, non-intentionally, doped Cu2O, 1014 cm-

3. The concentration of electrons and holes in Figure IV-80b) represents the expected 

profile of majority carriers in both semiconductors, holes in Cu2O and electrons in ZnO, 

with an abrupt variation especially in the n-type side case. 

 

Figure IV-80 a) Band diagram and b) defects concentration of simulation A Cu2O thin film with low 

density of acceptors. Depletion region is represented at yellow in figure a)  

When we increase the density of acceptors in the Cu2O side, in order to produce a 

highly doped film, the size of the depletion region is drastically reduced. As represented in 

Figure IV-81a), when the acceptors concentration reaches about 1018 cm-3, the region 

depleted in the device shrinks to a width below 100nm, with a visible small fraction on the 

ZnO side. This confirms the predictions that a highly-doped Cu2O would reduce the 

depletion region for several hundreds of nanometres. Also, as expected, the position of the 

Fermi level is closer to the valence band of Cu2O. 

 

Figure IV-81 a) Band diagram and b) defects concentration of simulation B - Cu2O:Mg thin film 

with high density of acceptors on ZnO  
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By applying a bias voltage to the model, we can predict the diode behaviour of the 

system, as well as the deformation in the band diagram. In Figure IV-82a), the band 

diagram of Cu2O:Mg/ZnO structure is shown under an applied bias of +2.0V. In this case, 

the depletion region is reduced severely, which results in a total current density passing 

through the junction of 90 A.cm-2, as shown in Figure IV-82b). 

 

Figure IV-82 a) Band diagram and b) Current Density throughout the device of simulation B 

Cu2O:Mg thin film with high density of acceptors on ZnO thin film under an applied bias of +2.0V 

The J-V curve of the two simulated diodes are shown in Figure IV-83. For weak 

applied voltages, 0 to 1.2V, the low value of the current is caused by the limitation of the 

numerical simulation. In the rectifying part, above 1.2V, we observe an exponential curve 

that follows the expected diode equation:  

 𝐽 = 𝐽0 (𝑒
𝑞(𝑉−𝐽𝐴𝑅𝑠)

𝑛𝑘𝑏𝑇 − 1) (IV.2) 

where J is the current density, J0 the reverse current density, q the electron charge, V the 

applied voltage, A the contact area, RS the series resistance, n the non-ideality factor, kb the 

Boltzmann’s constant and T the absolute temperature.  

Even if the slope are the same and represent a non-ideality factor of 1, it is important 

to refer the differences in series resistance. In the Cu2O case, we observe a change in slope 

at higher applied voltages, caused by the higher series resistance of the Cu2O layer. This 

fact is originated by the lower density of charge carriers in the oxide and the large width of 

this junction, which results in an increase of the total resistance.  
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Figure IV-83 JV curve of both simulated diodes Cu2O/ZnO and Cu2O:Mg/ZnO between 0 and 2V 

 

4.3.3  Deposition of pn junction formed by Cu2O/ZnO 

The fabrication of all oxide pn junctions were performed in two different 

architectures using a different technique for the deposition of n-type ZnO. In both cases, 

the oxide films were deposited on an ITO covered glass (15 Ω/sq) used as bottom electrode 

and finished by two gold contacts thermally evaporated with a diameter of 3 mm. In some 

specific cases, silver paste was also used to form metallic electrode, due to short-circuit in 

the evaporated contacts. 

In the first structure, visible in Figure IV-84a), the initial layer consisted in a ZnO 

film deposited by Pulsed Liquid Injection Metal Organic Chemical vapour deposition (PI-

MOCVD) at 400°C into an Annealsys MC-200 reactor. The optimization of PI-MOCVD 

for the deposition of ZnO films have been previously by Thomas Cossuet. These films of 

intrinsic ZnO films present a resistivity of 10-1 Ω.cm. Afterwards, intrinsic and Mg-doped 

(18%) Cu2O films were deposited by AA-MOCVD at 350°C, as described previously for 

the stability study, for 3 hours in order to achieve thickness values close to 300nm. In order 

to increase the free carrier’s density in 18% Cu2O: Mg, an annealing at 250°C for 2 hours 

was performed in the complete device.  

The second structure used to test the pn junction response was inversed due to the 

deposition temperatures of the processes, visible in Figure IV-84b). The Cu2O was first 
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deposited, followed by a layer of ZnO, in this case by Spatial Atomic Layer Deposition 

(SALD), visible in Figure IV-84b). The n-type semiconductor was deposited at 200°C with 

diethylzinc ((C2H5)2Zn; DEZ) and water vapour (H2O) as precursors for zinc and oxygen, 

respectively. N2 was used as carrier gas for both precursors. The distance between injector 

and substrate was set to 100 µm, while the sample oscillates under the injector at 8-12 cm/s. 

The SALD ZnO thin films present resistivity values of 5 x 10-2 Ω.cm, with a mobility close 

to 2 cm2.v-1.s-1. More details of ZnO deposition by SALD are available in Nguyen et al. 

(2017) 38.  

 

Figure IV-84 pn structures created for Cu2O based pn junction study: a) 1st – glass/ ITO / ZnO 

(MOCVD) / Cu2O / metal/; b)2nd – glass/ ITO / Cu2O / ZnO (SALD) metal. Direction of illuminated light 

represented by brown arrows  

The use of different thin films staking order was constructed to understand the 

impact of ZnO as absorbing layer. Since the n-type film presents a higher band gap of 3.4 

eV in the UV range, the change of order under solar illumination could increase the light 

absorption, 1st structure, which can result in higher efficiency of the cell. 

The use of two separate technique is then justified by the temperatures required to 

deposit each film. As ZnO by MOCVD was to be deposited at 400°C, it is not possible to 

process it after Cu2O due to formation of CuO, previously discussed. Additionally, ZnO is 

stable at 350°C, temperature used for Cu2O deposition, so we would preserve the general 

properties of the film. Nevertheless, it is important to report the possible slight changes in 

charges carries concentrations or mobility of ZnO during heating before the Cu2O 

deposition. The ZnO deposited by SALD allow the use of lower temperatures, 200°C, 

where Cu2O is still stable, therefore the inverse structure could be fabricated.  

 

4.3.3.1 1st Structure: ZnO (PI-MOCVD) and Cu2O:Mg (AA-MOCVD) 

A photograph of the first structure is shown in Figure IV-85, where the ITO 

uncoated layer is visible in the edge, used for bottom contact. The ZnO film covers the rest 
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of the transparent part of the device, while the central square of Cu2O was masked during 

deposition. Finally, the structure is completed by a circular Au contact of with 3mm 

diameter, thermally evaporated.   

 

Figure IV-85 Photograph of the first structure: glass / ITO / ZnO (MOCVD) / Cu2O / Au.  

The general morphology of the layer stack before device fabrication is visible by 

SEM micrograph, presented in Figure IV-86. The two top-view images of Cu2O and 

Cu2O:Mg heterostructures, Figure IV-86 a) and c) respectively, show a granular structure, 

however the grains are more visible in the Mg-doped case. Regarding the cross-section 

images, Figure IV-86 b) and d), the ZnO film has a thickness of 360nm in both doped and 

intrinsic case. In the p-type semiconductor a slight difference in thickness in detected, with 

the Cu2O presenting 260 nm while the Cu2O:Mg shows a thicker layer of 330 nm. 

 

Figure IV-86 SEM micrograph of the top and cross section of a heterostructure of ZnO and Cu2O 

(a) and b)) and Cu2O:Mg (c) and d)) 
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Complementary analysis was done in parallel by WDS, where the presence of Mg 

in Cu2O film was quantified as 18% in total number of cations, (Mg/Cu+Mg). The EDS 

elemental mappings of ZnO/Cu2O:Mg junction are presented in Figure IV-87, showing the 

interface between Zn and Cu in this architecture.  

 

Figure IV-87 SEM micrograph of the cross section and mappings obtained by EDS of the 

Cu2O:Mg/ZnO junction 

The XRD of the pn junction is visible in Figure IV-88 a). The peaks of Cu2O and 

ZnO are detected, confirming the presence of the two oxides in the device. The 

transmittance spectrum of the Cu2O:Mg/ZnO junction is represented in Figure IV-88 b) 

with additional spectra of the glass, ITO and ZnO film. The graph shows a decrease of 

transmittance with each added layer as expected. Up to the deposition of the ZnO film, the 

structure is still highly transparent in the visible range of the spectrum, with a total 

transmittance of 76%. This is due to the wide band gap energies of both ITO and ZnO films, 

which are higher than 3.3 eV. The deposition of a 330nm layer of Cu2O reduces drastically 

the transmittance to 35%, especially in the blue range. The fringes visible are due to 

refractive phenomena of each film’s thickness and between the different films. The 

absorption of each curve is directed associated to the material present in the structure, 

therefore, the ITO has a band-gap to 4.2, ZnO of 3.4eV and Cu2O of 2.2eV. 
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Figure IV-88 a) XRD spectra of Cu2O:Mg and Cu2O:Mg/ZnO structure b) Transmittance spectra of 

Corning glass, ITO covered glass, ZnO/ITO film and the whole structure: Cu2O:Mg/ZnO/ITO   

The rectifying behaviour of the pn junction is presented in the Figure IV-89 and the 

results are summarized in Table IV-13. The Cu2O:Mg/ZnO diode showed an improved 

non-ideality factor of 1.6 when compared with that of the undoped Cu2O/ ZnO diode, 16.2. 

This is mainly due to the lower leakage current in the Cu2O:Mg/ZnO case, while the values 

of the current density at 1V are more similar in both diodes.   
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Figure IV-89 JV characteristic of pn junction ZnO/Cu2O (intrinsic and Mg doped). Current density 

presented in absolute value 

A post annealing treatment was performed in order to increase the carrier 

concentration in the Cu2O films and therefore, increase the diode response of the devices. 

The annealing was performed at 250°C for 2 hours, in order to avoid any CuO formation. 

In Figure IV-90, the diode response between -1V and 1V is clearly visible. In terms of non-

ideality factor, there were no significant variations in any diodes. Nevertheless after 

annealing there was an increase of current in forward and reverse sense. This fact may be 

attributed to the high concentration of holes in Cu2O, which leads to a lower sheet 

resistance. 
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Figure IV-90 JV characteristic of pn junction between ZnO and Cu2O (intrinsic and Mg doped) with 

and without the anneal step at 260°C. ). Current density presented in absolute value 

The comparison of the results obtained for the two kinds of Cu2O films, intrinsic 

and Mg doped, confirm the electrical improvement of the Cu2O/ZnO pn junction using 

magnesium as a dopant, especially in terms of reverse current.  

 

4.3.3.2 2nd Structure: Cu2O:Mg (AA-MOCVD) and ZnO (SALD)   

In Figure IV-91, the second structure is represented, where in this case, the Cu2O 

film covers the majority of the device part of the device, with a small edge for ITO contact. 

The Cu2O was masked, leaving a central circle of during deposition of ZnO by SALD. As 

in the previous structure, the metallic contact was ensured by a circular gold film of 3mm 

diameter.  
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Figure IV-91 Photograph of the second structure: glass / ITO / Cu2O / ZnO (SALD) / Au. Size of 

2.5cm by 1.5cm  

The quality of the films and interface was evaluated by SEM cross section, 

presented in Figure IV-92. In the Figure IV-92a) are visible the 3 different oxide films, 

where the thickness are 130 nm for the ITO electrode film, 240 nm for the Cu2O film and 

170 nm for the ZnO film. In the Mg-doped Cu2O case, Figure IV-92b), the p-type layer is 

larger, with 375nm, similar to what was reported before in the 1st structure. The films show 

a good quality adhesion between the different layers, with highly dense layers. 

 

Figure IV-92SEM micrograph of the ZnO/Cu2O junction; a) intrinsic Cu2O and b)Cu2O:Mg 

The rectifying behaviour of the pn junctions is presented in Figure IV-93, the 

ZnOMOCVD JV curves were also included for comparison. As the structures are inversed, 
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the JV curves are also symmetric. The JV curve shows a typical rectifying shape with a 

leakage current density of 1x10-3 A.cm-2 at +1 V. The ratio between the current at +1V and 

-1V (RR±1V) is 177, for the intrinsic Cu2O case, while the doped film shows a lower value 

of 109. In this structure, both diodes are similar, presenting comparable parameters to the 

Cu2O:Mg/ZnO junction by MOCVD, reported in Table IV-13. Nevertheless, higher current 

density values are reported for the SALD case in the forward bias regime.  

 

Figure IV-93 JV characteristic of pn junction ZnO/Cu2O (intrinsic and Mg doped) with ZnO 

obtained by SALD (dot curves) and MOCVD (lines). ). Current density presented in absolute value 

The diode parameters were extracted by fitting the experimental curve with the 

typical diode equation, considering the series and shunt resistances as follows: 

 
𝐽 = 𝐽0 (𝑒

𝑞(𝑉−𝐽𝑅𝑠)

𝑛𝑘𝐵𝑇 − 1) +
𝑉 − 𝐽𝑅𝑆

𝑅𝑆ℎ
 

 

(IV.3) 

where J is the current density, J0 is the reverse current density, q is the electron charge, V 

is the applied voltage, RS is the series resistance, n is the non-ideality factor, kB is the 

Boltzmann’s constant, T is the absolute temperature, and RSh is the shunt resistance. In the 

case of the first structure ZnO/Cu2O, RS, RSh, and J0 could not be extracted by the fitting to 

the implicit equation. Only n was determined by the ideal diode equation. The fitted 



Chapter IV: Magnesium-doped cuprous oxide thin films 

153 

parameters of the different experimental diodes are shown in Table IV-13. The comparison 

of all diodes led us to conclude that the ones where SALD ZnO is deposited on top of Cu2O, 

show better parameters in general. The non-ideality factor obtained is as low as 2.0, with a 

rectifying ratio (RR±1V) above 100 for both intrinsic and Mg-doped Cu2O. Nevertheless, 

even if the series resistance is low compared to the ZnO MOCVD cases, being favourable 

for a diode, the shunt resistance is also lower, which increases the possibility of short-

circuit and reduces the global performance of the device.  

Table IV-13 Parameters obtain from fittings of pn junctions using equation 1 

Structure Conditions J (1V) 
mA.cm-2 

RR 
±1V 

n Rs 

Ω.cm2 
RSh 

kΩ.cm2 

J (0V) 

A.cm-2 

1st 

ZnOMOCVD/Cu2O 

As deposited 80 2.43 16. - - - 

Annealed 

250°C 

190 2.86 15 - - - 

1st  

ZnOMOCVD/Cu2O:Mg 

As deposited 33 90.0 2.6 8.0 8.0 0.4 

Annealed 

250°C 

64 88.4 2.7 4.0 7.4 1.2 

2st 

Cu2O/ZnOSALD 

As deposited 130 170 2.0 3.5 1.9 2.7 

2st  

Cu2O:Mg/ZnOSALD 

As deposited 110 109 2.0 4.3 1.4 2.7 

 

These experimental results are difficultly comparable to the simulated junctions, 

especially due to diverse rectifying behaviour, and the current density values obtained. 

Nevertheless, the effect of a more conductive Cu2O is the similar in both cases, leading to 

a reduction of the sheet resistance. This fact is particularly visible in the 

ZnOMOCVD/Cu2O:Mg heterojunctions, since a reduction of sheet resistance is clear after the 

annealing treatment at 250°C.  

Cu2O/ZnO diodes from other studies show similar results in terms of non-ideality 

factor and rectifying ration. Heterojunction of Cu2O and ZnO deposited by RF sputtering 

showed in dark IV curves with an non-ideality factor larger than 2.0, reaching up to 3.8 

with annealing treatments 39. These results are similar to the ones here reported, mainly 

the1st structure. In other work between these two oxides deposed by RF magnetron 

sputtering 40, the ratio between the current at -1V and +1V is marginally higher than 100, 

comparable to the best diodes reported in our work.  

4.3.3.3 Photovoltaic performance of the pn junctions 

The goal of these structures is the implementation into solar cells. Therefore 

photovoltaic performances were analysed under AM 1.5G illumination conditions. In 
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Figure IV-94 are plotted the JV curves under illumination. There were six different pn 

junctions tested: Cu2Oas-dep/ZnOMOCVD, Cu2O250°C/ZnOMOCVD, Cu2O:Mgas-dep/ZnOMOCVD, 

Cu2O:Mg250°C/ZnOMOCVD, CuO2/ZnOSALD and Cu2O:Mg/ZnOSALD. All of them showed 

measurable photovoltaic responses except the Cu2O/ZnOMOCVD pn junctions, neither as-

deposited nor annealed. The relevant photovoltaic parameters of the four working solar 

cells as open-circuit voltage (VOC) and short-circuit current density (JSC), fill-factor (FF) 

and efficiency (η) are represented in Table IV-14. In the MOCVD-grown case, the structure 

with the as-deposited film showed a VOC of 221mV that was drastically decreased after 

annealing, down to 21.4mV. Even if the annealing temperature used was below the 

formation of CuO, the thermal treatment seem to short-circuit part of the cell, reducing the 

overall VOC. Additionally, the current density values are quite low, below 1 A/cm2, 

resulting in efficiency values far below 0.01%.  

In the SALD cases, the current density values increased around 3 orders of 

magnitude for both p-type layers, when compared to the previous case. The Cu2O cell 

shows a current density of 0.79 mA.cm-2, the highest measured in these experimental 

results. In the case of Mg doped Cu2O, the VOC is the highest found, 379 mV, with a reduced 

JSC of 0.16 mA.cm-2. Overall, even with the presence of photovoltaic effect, the efficiency 

of the cells produced are unable to pass the 0.1% mark. 

Table IV-14 Parameters of the different solar cells created. Open-circuit voltage (VOC), short-circuit 

current density (JSC), fill factor (FF) and efficiency (η)  

Sample VOC  

V 

Jsc  

mA.Cm-2 

FF 

% 

η  

% 

1st  

MOCVD 

Cu2O:Mg 

As-deposited 0,221 -2,5 x10-4 25,3 <0,01 

Annealed 250°C 0,021 -2,3 x10-5 23 <0,0001 

2nd – 

SALD 

Cu2O 0,194 -0,79 25,8 0,04 

Cu2O:Mg 0,380 -0,16 24 0,02 
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Figure IV-94 JV curves under AM 1.5G illumination of different pn junctions a) Cu2O:Mg/ZnO 

(MOCVD) as deposited and annealed at 250°C; b) Cu2O/ZnO (SALD) with Cu2O and Cu2O:Mg as-deposited. 

In the two cells prepared by SALD, we can extract the highest values of JSC and 

VOC for us obtained, 0.8 mA.cm-2 and 380mV, respectively. Considering the physical and 

chemical deposition techniques of thin films, the values of photovoltaic performance are in 

the range of other studies on Cu2O. In a study by H Akinaga et al.39, the deposition by 

magneton sputtering of Cu2O and ZnO thin films led to the formation of a solar cell with 
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0.4mA.cm-2 and 300 mV of JSC and VOC, respectively. The thickness of the oxide layers is 

also in the hundreds of nanometres, as in our study, however, the metals used for contacts 

are different, based on different layers of Pt, Al and Au. Other study by S. Jeong et al. 41, 

Cu2O thin films (280nm) were deposited by MOCVD on ZnO thin films (130nm) in this 

case deposited by RF sputtering, presenting a comprehensive analysis on the temperature 

dependence of the PV parameters. The direct comparison of the PV response at room 

temperature shows VOC and JSC values of 300mV and 1 mA.cm-2. They attributed these 

meagre PV results to an interface recombination mechanism that is the dominant carrier 

transport mechanism in these solar cells. 41.  

The use of spray-pyrolysis to deposit Cu2O was also found in the literature, however 

in this case combined with TiO2, as n-type oxide layer 42. The open circuit voltage was 

reported to be up to 350 mV, while the short circuit current density reached a maximum of 

0.4 mA.cm-2. From the same group was also reported in 2016 a study with the incorporation 

of Mg in Cu2O, deposited also by spray-pyrolysis 43. In this case, the current density value 

reached up to 0.9 mA.cm-2, with a VOC in the same 350 mV range 43. The JSC improvement 

on the solar cells was attributed to a higher photo-conductivity of cuprous oxide with the 

Mg incorporation. 

 In a recent work (2017), developed in the SPIN lab at the University de Liege by 

Y. Malier under a Master Thesis internship, undoped and Mg-doped Cu2O thin films were 

prepared by radio-frequency magnetron sputtering. Pn junctions were then arranged in 

combination with ZnO:Al. Similar results were reported in terms of diode behaviour, 

nevertheless, the current-voltage characteristics of pn junctions created together with 

ZnO:Al presented a high leakage current. Moreover, the junctions could only be used as 

photodiodes as no electrical power could be harnessed upon solar illumination.  

These previous reports using sputtering or chemical vapour techniques are 

drastically supplanted by two other techniques for the growth of Cu2O: electrodeposition 

and thermal oxidation. Both techniques enable the growth of Cu2O with mobility values 

higher than 10 cm2.V-1.s-1. In the case of electrodeposition of Cu2O in combination with 

ZnO, several studies report short-current density values higher than 1 mA cm−2  44, 45, 46. A 

study by T. Buonassisi and R.G. Gordon47 reports efficiency values as high as 2.85%, with 

VOC and JSC of 622 mV and 7.25 mA cm−2, respectively. Finally, the use of thermal 

oxidation of copper sheets is at this moment the best technique to obtain Cu2O base solar 

cells. Various studies by T. Minami 30,31,48–52 show the highest values in terms of 
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photovoltaic parameters, with short-current density of 10 mA.cm-2 49, open-circuit voltage 

of 1.1V 30 and efficiency of 8.1% 30, using sodium-doped Cu2O. 

Future studies on these pn junction could also be performed to access the 

applicability of Cu2O/ZnO structures for photocatalysis in water splitting processes.  

 

4.3.4 Summary 

The integration of Cu2O, intrinsic and Mg-doped, into pn junctions was successfully 

achieved using only chemical vapour deposition approaches. Rectifying behaviour was 

observed in the junctions created, even with significantly more modest performance when 

compared to numerically-simulated devices. The Mg doping effect was especially visible 

in films deposited on MOCVD-grown ZnO, reducing the leakage current on the device. 

When ZnO was the last oxide to be deposited by SALD, both intrinsic and doped films 

showed similar electrical responses.  

The idea of this approach was to enable fast, scalable and low-cost technology 

aiming for full oxide-based solar cells. Nevertheless, photovoltaic performances presented 

here are obviously far for the best literature devices. The use of AA-MOCVD to produce 

Cu2O limits strongly the mobility of these thin films, more than one order of magnitude 

below the thermally-oxidized Cu2O films. The impact of this low mobility is strongly 

visible on the current density values and as consequence the fill factor and efficiency. 

Additionally, an increase of current density in the diodes annealed at 250 °C, did not lead 

to improvements in PV performance, as proposed.  

 

4.4 Conclusions 

A comprehensive study on the impact of magnesium incorporation in cuprous oxide 

thin films was developed in this chapter. The presence of the dopant was confirmed up to 

17% concentration using aerosol-assisted metal-organic chemical vapour deposition under 

atmospheric pressure condition at 350ºC. As main influences, the films showed a higher 

roughness, a lower electrical resistivity (6.6 .cm), concentration of holes up to 8.1x1017 

cm-3 and a higher stability of the Cu2O phase under oxidizing environment. The magnesium 

presence seems to change the mechanism of copper vacancies generation, blocking the 

formation of split copper vacancies. This leads to a reduce transformation of Cu2O into 

CuO. 
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The creation heterojunctions between Cu2O and ZnO showed a diode-like 

behaviour of the devices using both intrinsic and Mg-doped Cu2O. Additionally, 

photovoltaic response was also detected under AM 1.5G illumination. The PV performance 

is similar to other structures deposited by conventional physical and chemical techniques, 

however far from the state-of-the art Cu2O solar cells, grown by thermal oxidation of 

cooper metallic sheets.  
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In this chapter we describe the deposition of CuCrO2 thin films by aerosol-assisted 

MOCVD, with optimization regarding the cations’ concentration ratio. This work has been 

developed in collaboration with Aissatou Ndong during her master internship at LMGP. In 

a second part, we investigated the application of this p-type material into a UV 

photodetector on ZnO nanowire array. This study has been developed in collaboration with 

Thomas Cossuet, PhD student of LMGP, specialized in ZnO nanowires growth. The device 

work has been recently submitted as a peer-review article to ACS Applied materials and 

Interfaces with the name: “ZnO / CuCrO2 Core-Shell Nanowire Heterostructure for Self-

Powered UV Photodetectors”.  
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5.1 Deposition and characterization of CuCrO2 films  

5.1.1 Introduction 

The lack of improvements in transparency of Mg-doped Cu2O thin films lead us to 

test an alternative approach, the p-type delafossite phase CuCrO2. The intrinsic higher 

band-gap of 2.8eV 1 and the lower resistivity of 0.1 Ω.cm 2, when compared to Cu2O, can 

enable the application of this material into transparent semiconductor devices. A detailed 

presentation of the state of art of this material can be found in section I.1.4. In the study 

here presented, we optimize the deposition of CuCrO2 thin films by AA-MOCVCVD. The 

deposition conditions were based on a particular study by Farrell et al. 3, which reports the 

growth of undoped CuCrO2 thin films by spray pyrolysis. This work showed the nano-

crystallization of the delafossite phase at temperatures below 400 °C, without any post-

annealing treatments. Interestingly, the metal organic precursors and solvent used by Farrell 

et al. 3 are compatible with aerosol system in LMGP, based on a piezoelectric transducer.     

 

5.1.2 Experimental 

Using the AA-CVD reactor in configuration 2 previously described in Chapter II, 

the experimental parameters of the solution and deposition are presented in Table V-15.The 

precursors used were copper acetylacetonate, Cu(acac)2, and chromium acetylacetonate, 

Cr(acac)3, with ratio between Cu and the total concentration of cations (Cu/Cu+Cr) varied 

from 40% to 60% for a total concentration of precursors of  0.02 mol.l-1 in ethanol. For this 

study, the time was increased to 90 minutes and the temperature to 400 °C in order to 

reproduce literature study 4. Argon with a flow rate of 6 l.min-1 was used as carrier gas, 

while O2 with a flow rate of 1.5 l.min-1 was used as reaction gas as in Cu2O case. These 

flow-rate values allowed us to maintain a solution consumption rate of 2 ml.min-1, resulting 

in a total solution consumption of 180 ml.  
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Table V-15 Parameters fixed for the deposition of CuCrO2 

Parameter Variation 

Solvent Ethanol  

Solution Concentration 0.02 mol.l-1  

Frequency of vibration 800 kHz 

Temperature 400 °C 

Gas Flux 7.5 l.min-1 

O2 ratio  20% 

Extraction pressure 4,5 mmH2O 

Time 90 minutes 

5.1.3 Characterization of CuCrO2 films 

The CuCrO2 films present an optical appearance completely different to Cu2O films, 

as presented in the Figure IV-52. The visual inspection of the film shows clearly the 

difference of phase, compared to Cu2O (Figure IV.1), since the gap energy is higher, so the 

film is more transparent in the visible range. Nevertheless, due to the absorption in the far-

end of the visible range, a light grey color is observed when deposited on glass. As seen 

before, a good homogeneity throughout the whole sample (area of 4 cm2 in each substrate) 

is obtained by this AA-MOCVD method. The film deposited on Silicon shows a thickness 

dependent color, in this case is close to100 nm, creating a light blue color film.  

 

Figure V-95 Photographs of the CuCrO2 thin film on glass (left) and silicon (right) with a thickness 

of 95nm  

The atomic concentration of cations in the as-deposited sample was quantified by 

Wavelength dispersive X-ray spectroscopy (WDS) allowing to establish the efficiency of 

both cations deposition during the CVD process at 400 °C. The copper to total cations ratio 

(Cu/Cu+Cr) in obtained in the film as a function of the cationic concentration in the solution 
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is plotted in Figure V-96, together with the film thickness obtained by WDS. The films are 

Cr-rich, suggesting a more efficient deposition of chromium than copper under the selected 

deposition conditions. Additionally, a similar trend was observed by J. Crepelliere et al. 5 

using a pulsed-injection MOCVD system; where it was found a deficit in  Cu content into 

films deposited from solution with atomic concentration of Cu/(Cu+Cr) from 40% to 60% 

. In terms of films thickness, the values vary from 73 to 170 nm with a large increase for a 

cationic concentration in solution of 60%. For practical reasons in the readability of the 

text, from this point of this chapter, we will use the Cu/(Cu+Cr) ratio values obtained by 

WDS to name the different films deposited, shown in Table V-16. 

Table V-16 Cu/(Cu+Cr)  ratio in solution and detected by WDS together with the measured thickness  

Cu/(Cu+Cr) solution (%) Cu/(Cu+Cr) WDS (%) Thickness (nm) 

40 24 ± 1 73  

50 46 ± 1 95   

60 56 ± 1 170  

 

Figure V-96 Relative Cu/(Cu+Cr) content as obtained from EDS quantification analysis compared 

to the amount in solution. Black dotted line represents the 1:1 relation. Variation of thickness with the 

Cu/(Cu+Cr) ration in solution is represented too.  
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The thin film surface was analyzed by SEM to observe the microstructural effects 

due to copper content variation. The surface morphology of these three samples are 

represented in Figure V-97. In the sample with the lowest Cu content, 24%, elongated 

grains with a rough surface are visible. Similar results are reported in the literature for 

previous MOCVD2 or spray pyrolysis studies6, in which a lower content of Cu origins 

needle-shaped structures. With the increase of Cu content, the grains become rounded 

shaped and densely packed, as already reported2. For illustration, the 46% atom Cu film 

cross section is displayed in the  

Figure IV-55, with an average thickness of 95 nm. 

 
Figure V-97 SEM images of CuCrO2 thin films deposited on glass at 400°C. Same magnification 

was used for all the top-view pictures (50000x) with the same scale for all the images. Cu/Cu+Cr ratio: a) 

24%, b) 46% with the respective cross-section and c) 56%  

XRD characterization, shown in Figure IV-58, was performed in Bragg-Brentano 

configuration on films deposited on glass. For the lowest Cu content, i.e. 24% of Cu 

content, no XRD peaks are detected, which lead us to conclude the presence of an 

amorphous or nano-crystalline phase.  For the films with a higher Cu content, 46% and 

56%, the XRD spectra is marked by the presence of the (012) and (110), diffraction peaks 

with various intensity at 36.4° and 62.4°, respectively. These diffraction peaks are 

attributed to the rhombohedral delafossite phase according to the 04-010-3330 file of the 

International Center for Diffraction Data (ICDD). The relatively small intensity and broad 

width of these peaks may reveal a low degree of crystallinity of the CuCrO2 thin film. This 

can be attributed to the deposition temperature of 400 °C, which is typically close to the 

lowest crystallization temperature of the delafossite phase 7. The crystallite size is estimated 

to be between 18 and 20nm in the two samples, as deduced from the (012) peak at 36.4° 

using the Scherrer’s equation 8.  
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Figure V-98 XRD spectra in the Bragg-Berentano configuration of the CuCrO2 thin films on glass. 

Reference spectrum of CuCrO2: ICDD n° 04-010-3330  

 The phase identification study was completed with Raman spectroscopy 

measurements. Concerning the analysis of Raman experiment let us recall that the 

delafossite ABO2 compounds crystallize in a rhombohedral structure (space group R-3m 

or D3d 
9). The 4 atoms of the primitive cell give rise to 12 zone center vibrational modes, 9 

of them being optical modes and 3 being acoustic modes. The distribution of the different 

atoms in special Wyckoff positions is as follows: A and B atoms are in special positions 3a 

and 3b, respectively, the oxygen atoms in special position 6c. According to the method of 

nuclear site group analysis 10 and after subtraction of the three acoustic modes (A2u + Eu) 

of the total representation of the crystal, the irreducible representations associated to the 

optical modes can be expressed as:  

 Γ𝑜𝑝𝑡  =  𝐴1𝑔  +  𝐸𝑔  +  2 𝐴2𝑢  +  2 𝐸𝑢 (V. 1) 

where A1g and Eg are Raman-active modes and A2u and Eu modes are infrared (IR)-active 

modes. It should be noted that vibrational modes coming from A and B atoms are IR-active 

only and have no contribution to the Raman spectrum, which means that only oxygen atoms 

move in the Raman modes. The Raman spectra obtained with a wavelength of 488 nm are 

presented in Figure V-99. In coherence with the XRD results, the spectrum obtained from 

the film with the lowest Cu content does not present well-defined Raman peaks. In the two 

spectra registered from the films with higher Cu content, two Raman modes at 457 and 707 



Chapter V: CuCrO2 delafossite thin films 

169 

cm-1 are detected that can be assigned to the modes Eg and A1g 
11 of the CuCrO2 phase, 

respectively. The first mode, weakly observed on the decreasing tail of the Rayleigh line at 

107 cm-1, corresponds to an infrared-active mode Eu of the CuCrO2 phase 12. Other 

additional modes of weak intensity particularly a in the 520-650 cm-1, also occur in the 

CuCrO2 thin film spectrum. Such additional modes, can be assigned to defect-induced 

modes, have already been reported at 536 and 586 cm-1 11 , and 538, 557, 623 and 668 cm-

1 13. The comparison of our spectrum with IR spectra of the CuGaO2 and CuAlO2 delafossite 

compounds from Pellicer-Porres et al. 14,15 indicates that the CuCrO2 additional modes in 

the 520-650 cm-1 range very close to those of the three Eu and A2u CuGaO2 and CuAlO2 

modes, as it is already the case for the first Eu mode at 107 cm-1 (122 and 144/149 cm-1 in 

CuGaO2 and CuAlO2, respectively). Owing to the very weak Raman signal of the additional 

modes, we cannot accurately symmetry assign them, but they are very likely IR modes. The 

presence of these modes, normally Raman-inactive in the CuCrO2 Raman spectrum, 

indicates relaxed selection rules generated by a local symmetry breaking probably due to 

the presence of defects in the structure, such as Cu vacancies or oxygen interstitials. 

Moreover, the Raman spectra of both the CuCrO2 thin films also emphasize the presence 

of carbon-based residual species, related to the by-products of the organic ligand of the 

AA-CVD precursors through the observation of the D- and G-bands characteristic of C-C 

bonds pointed at 1356 and 1600 cm-1. 

 

Figure V-99 Raman spectra of the CuCrO2 thin films on glass 

The optical total transmission of the CurCrO2 films were scanned. The data 

corresponding to the three films are plotted in Figure V-100 a). The transmittance in the 
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visible range (390 nm – 700 nm) varies between 60% in the thinner case to 38% in the 56% 

Cu/(Cu+Cr). The thicker film show a lower transmittance, even in the near infra-red region. 

This fact is common of CuCrO2 films, due to high reflectance16. Comparing with Cu2O 

films, the transmittance is slightly higher, especially for the 46% Cu content film.  In terms 

of absorption edge, we calculated the direct band-gap for the different films, represented in 

Figure V-100 b). The two samples with higher Cu shows a value close to 3.2eV, while the 

24% film has a value higher, which is attributed to the amorphous phase discussed 

previously.  

 
Figure V-100 a) Transmittance spectra from 250 nm to 2000 nm of the CuCrO2 thin films on glass. 

The bare glass substrate transmittance is also represented as reference. b) Direct band-gap obtained from 

the transmittance spectra 

Finally, the samples were electrically characterized. The electrical resistivity values 

obtained by Van der Pauw measurements are plotted in Figure V-99. We have also included 

the values of undoped Cu2O thin films previously presented in this manuscript and that of 

Cr2O3 deposited in LMGP. The increase of Cu content affects the resistivity drastically, 

inducing a decrease from 100 .cm, obtained for the film containing 24% of Cu, to the 

lowest value of 0.1.cm, obtained for a film containing 56% of Cu. This value is lower 

than that obtained for pure Cu2O.  



Chapter V: CuCrO2 delafossite thin films 

171 

 
Figure V-101 Resistivity values obtained for the CuCrO2 thin films as a function of copper content. 

Resistivity values for Cr2O3 and Cu2O films are also represented 

The origin of this lower resistivity was then investigated by Hall Effect 

measurements using a Van der Pauw configuration. Unfortunately, the hall coefficient sign 

was unable to be determined. As reported by the literature6, the mobility values of CuCrO2 

are below 1cm2.V-1.s-1, which are under the limit of the Hall Effect system used. 

Considering the mobility values in a 0.1cm2.V-1.s-1 range, the density of free holes would 

vary from 1018 cm-3 in the 24% Cu film and up to 1021 cm-3 in the richest Cu content film. 

 

5.1.4 Conclusion on CuCrO2 thin films 

The growth of CuCrO2 thin films by AA-MOCVD was achieved with noteworthy 

results in terms of transparency and resistivity, comparable with the literature 4,5. The films 

prepare with an equimolar solution of both precursor showed a stoichiometry of 46% of Cu 

content, close to the ideal ratio for CuCrO2. They present a good compromise of optical and 

electrical properties, with a transmittance of 60% and resistivity values close to 10 Ω.cm. 

This film ratio was then selected to be tested for devices application.  

  



Chapter V: CuCrO2 delafossite thin films 

172 

5.2 ZnO/CuCrO2 Core-Shell Nanowire Heterostructure for 

Self-Powered UV Photodetectors 

 

5.2.1 Introduction 

CuCrO2 presents a high interest as p-type semiconductor because of its high 

conductivity, and its wide direct band gap energy. A state of art of this material has been 

resumed in section I.1.4. Besides, it presents a suitable type-II band alignment with ZnO. 

The combination of CurCrO2 with ZnO has allowed to develop UV-sensor also discussed 

in section I.2.7. Nevertheless, nanostructured heterojunctions consisting in core-shell 

heterostructure based on ZnO nanowires (NW) have been ever reported so far. The use of 

nanowire arrays can improve the performance of a photo-electrical device, due to an 

increase of surface-to-volume ratio 17, enhanced light trapping processes 18–20, efficient 

charge carrier separation and collection over the  nanowire, caused by the high mobility 

electron pathways in the monocrystalline NW 18,21. In this work, we present the first 

fabrication of a ZnO/CuCrO2 core-shell NW heterojunction using surface scalable chemical 

deposition techniques, and its integration into a self-powered UV photodetector.  

 

5.2.2 Experimental  

The growth of ZnO NW with controlled length and diameter has been developed 

and studied at LMGP in previous works22. ZnO NW arrays were grown by chemical bath 

deposition (CBD) on commercial 130 nm-thick ITO /glass substrates (Delta Technologies). 

The ITO/glass substrates were initially cleaned in an ultrasonic bath of acetone and then in 

a beaker containing isopropanol for 15 min each to remove any contaminants. Then, a ZnO 

seed layer was deposited onto the ITO thin layer by dip coating based on sol-gel reactions. 

This ZnO layer is required to control the nucleation, growth and structural morphology of 

ZnO NWs 23. A 0.375 mol.l-1 equimolar solution of zinc acetate (Zn(CH3COO)2·2H2O) and 

monoethanolamine (MEA) dissolved in absolute ethanol was used. More details can be 

found in Cossuet et al. 24. A two-step heat treatment was subsequently performed at 300 °C 

for 10 minutes and at 500 °C for 1 h to remove residual organic compounds and to 

crystallize the ZnO seed layer, respectively. The Chemical Bath Deposition (CBD) of ZnO 

NWs was achieved on the ZnO seed layer/ITO/glass substrate by using a 0.03 mol.l-1 



Chapter V: CuCrO2 delafossite thin films 

173 

equimolar solution of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and 

hexamethylenetetramine [C6H12N4] dissolved  in deionized water. The substrates were 

placed face down into a sealed beaker filled with the equimolar solution and heated at 90 

°C for 3 hours in a regular oven. After the growth, the substrates were rinsed with deionized 

water, and dried with nitrogen 25. 

The deposition of the CuCrO2 thin films in the form of a semiconducting shell 

covering the ZnO NW arrays was achieved by AA-MOCVD. The solution-based process 

was identical to the one explain in Section 1.2 in this chapter. The main parameters are 

resumed in Table V-15. Corning glass and ZnO/ITO covered glass were also used as 

substrates in order to obtain details on the film properties and compare the thin film with 

the nanowire configuration. The ZnO film used were deposited by Pulsed Liquid Injection 

Metal Organic Chemical vapor deposition (PI-MOCVD) at 400 °C into an Annealsys MC-

200 reactor similar to the case presented in the Chapter IV.3. Both copper and chromium 

precursors were equimolar in concentration. The deposition was performed for 1 h at 400 

°C. The solution consumption rate of 2 ml.min-1, resulting in a total solution consumption 

of 120 ml. Circular silver contacts with a diameter of 0.5 mm defining the size of the self-

powered UV photodetector were deposited by thermal evaporation on top of the ZnO / 

CuCrO2 core-shell NW heterostructures. 

 

5.2.3 Structural characterization of core-shell structures 

The morphologies of the ZnO/CuCrO2 core-shell NW heterostructures at different 

elaboration step are shown in Figure V-102 by top-view and cross-sectional FESEM 

images. At left, SEM images show the ZnO NWs with a mean length around 800 nm and 

a mean diameter in the range of 35 to 65 nm. They grow vertically on the 40 nm-thick 

polycrystalline ZnO seed layer to form a dense array of about 53 NW/µm2. They typically 

nucleate on the c-axis oriented grains of the seed layer, and subsequently elongate along 

the polar c-axis 23. Following the deposition of the CuCrO2 shell, the smooth surface and 

hexagonal shape of ZnO NW is transformed into a rougher surface and rounded 

morphology over the whole NW array, as seen in Figure V-102 c). Consequently, the 

ZnO/CuCrO2 core-shell NW heterostructures have a broader apparent diameter in the range 

of 50 to 200 nm and are separated each other by a decreased mean distance. The CuCrO2 

shell follows the elongated shape of the ZnO NWs with high uniformity and conformity, 

from their bottom to their top, as shown in Figure V-102 d). Top-view and cross-sectional 
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FESEM images of the final whole self-powered UV photodetectors made of ZnO/CuCrO2 

core-shell NW heterostructures, including the thermo-evaporated Ag contact, are presented 

in Figure V-102 e) and f). The Ag contact forms a rough thin film and appears to cap the 

ZnO/CuCrO2 core-shell NW heterostructures, by mostly covering their top and slightly 

their vertical sidewalls to an approximate depth of about 300 nm.  

 
Figure V-102 FESEM images at different steps during the fabrication  of the core-shell 

heterostructure: a) Top-view and b) cross-sectional of ZnO NW arrays grown on ITO/glass substrate,  c) 

Top-view and d) cross-sectional of CuCrO2/ ZnO NW heterostructures, and  e) Top-view and f) cross-

sectional of CuCrO2/ ZnO  NW heterostructures covered with the Ag contact. The 500 nm scale bar is valid 

for images (a-d) and 1µm for f) only. 

The Grazing incidence X-Ray diffraction (GIXRD) patterns spectra of the CuCrO2 

thin film on glass substrate, of the ZnO NW arrays on ITO/glass substrate, and of the ZnO 

/ CuCrO2 core-shell NW heterostructures on ITO/glass substrate, are presented in Figure 

V-103. The GIXRD pattern of the CuCrO2 thin film is marked by the presence of the (012), 

(104), (110), and (116) diffraction peaks with various intensity at 36.4°, 40.9°, 62.4° and 

71.5°, respectively. Due to the Grazing Incidence technique, more peaks are visible than in 

the previous study of section (V.1), however low degree of crystallinity of the CuCrO2 thin 

film is similar. The GIXRD pattern of the ZnO NW arrays is dominated by the intense 

(0002) diffraction peak at 34.4º, revealing that ZnO NWs are crystallized in the wurtzite 

phase. Additionally, (101̅0) , (101̅1), (101̅2),  (112̅0) , and (101̅3)  diffraction peaks 

occurring at 31.8, 36.3, 47.6, 56.7, 62.9° are attributed to the polycrystalline ZnO seed layer 

according to the 00-036-1451 ICDD file. The GIXRD pattern of the ZnO/CuCrO2 core-
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shell NW heterostructures on ITO/glass substrates show the presence of many diffraction 

peaks, which combine the features of each semiconductor in the stacking as discussed 

above, i.e. the ITO thin layer, ZnO seed layer and NWs, as well as the CuCrO2 shell. The 

two main (012) and (110) diffraction peaks of the CuCrO2 shell at 36.4° and 62.4° overlap 

with the diffraction peaks of the ZnO seed layer and very likely exhibit a relatively small 

intensity. Nevertheless, it should be noted that the long tail of the (012) diffraction peak at 

36.4° is very likely related to the CuCrO2 shell. 

 

Figure V-103 a) GIXRD patterns of the CuCrO2 thin film deposited on glass substrate, of ZnO NW 

arrays grown on ITO/glass substrate, and of ZnO/CuCrO2 core-shell NW heterostructures grown on 

ITO/glass substrate.  

Raman scattering spectra of the CuCrO2 thin film, ZnO NW arrays and of the core-

shell NW heterostructures are presented in Figure V-104. In the CuCrO2 thin film case, we 

observe a similar spectrum to the previous section (V.1), with Raman, IR-active and defect 

induced modes visible in the spectrum. In the ZnO NW case, the correlated ZnO Raman 

lines occur at 99 cm-1 (E2
low), 334 cm-1 (E2

high-E2
low), 439 cm-1 (E2

high), 587 cm-1 (E1(LO) 

)low), 1106 cm-1 (2LO), and 1160 cm-1 (2A1(LO), E1(LO); 2LO) 26. The remaining Raman 
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peaks as identified by the dark open circles are attributed to the ITO thin layer and its 

correlated phonon modes at 591 and 1102 cm-1 also occur in the corresponding Raman 

spectrum. On the core-shell NW structure, the Raman lines at 458 cm-1 (Eg), 709 cm-1 (A1g), 

and the additional defect-induced modes, particularly those at ~106, 207 and 754 cm-1, are 

direct evidence of the CuCrO2 shell crystallized in the delafossite phase 3,12,11. Moreover, 

the Raman spectra of both the CuCrO2 thin film and the ZnO/CuCrO2 core-shell NW 

heterostructures also emphasize the presence of carbon-based residual species, related to 

the by-products of the organic ligand of the deposition technique, through the observation 

of the D- and G-bands characteristic of C-C bonds pointed at 1356 and 1600 cm-1. 

 

Figure V-104 Raman scattering spectra of the CuCrO2 thin film deposited on glass substrate, of ZnO 

NW arrays grown on ITO/glass substrate, and of ZnO/CuCrO2 core-shell NW heterostructures grown on 

ITO/glass substrate. The CuCrO2 defect-induced modes are indicated by a green star. 

A detailed local investigation of the structural morphology and of the chemical 

composition of the ZnO/CuCrO2 core-shell NW heterostructures is presented from Figure 

V-105 to Figure V-107, by TEM and HRTEM imaging, EDS-STEM mapping, and 

Automated crystal phase and orientation mapping with precession (ASTAR) mapping, 

respectively. The TEM image in Figure V-105 a) confirms that the polycrystalline CuCrO2 
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shell uniformly covers the ZnO NW with a high degree of uniformity and conformity. The 

CuCrO2 shell is found to be about 35 nm-thick. The selected area electron diffraction 

(SAED) pattern in Figure V-105 b) is assigned to the delafossite phase of the CuCrO2 shell, 

which is in agreement with the GIXRD patterns and Raman spectra. The HRTEM image 

of the ZnO/CuCrO2 interface recorded at the top of the ZnO NW in Figure V-105 c) shows 

no epitaxial relationship between the ZnO NW and the CuCrO2 shell. The absence of 

heteroepitaxy is likely due to the large lattice mismatch between ZnO and CuCrO2. 

 

Figure V-105 a) TEM image of a ZnO/CuCrO2 core-shell NW heterostructure. b) Corresponding 

SAED pattern identifying the CuCrO2 rhombohedral delafossite phase along with a theoretical diffraction 

pattern of the present phase as computed with the software JEMS. c) Corresponding HRTEM image of the 

ZnO / CuCrO2 interface recorded close to the top face of the ZnO NW. 

EDS-STEM elemental maps showing the spatial distribution of the Zn, Cu, Cr and 

O elements within the ZnO/CuCrO2 core-shell NW heterostructure are presented in Figure 

V-106.  
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Figure V-106 a) Bright-field STEM image of a ZnO/CuCrO2 core-shell NW heterostructure. b-e) 

Corresponding EDS-STEM elemental maps of the b) Zn, c) Cu, d) Cr, and e) O elements, respectively. f) 

Superimposition of the corresponding EDS-STEM maps of the Zn, Cr, and Cu elements. The 100 nm scale 

bar is valid for all images. 

The Zn element signal is clearly of significance only in the core of the 

heterostructure, corresponding to the ZnO NW. In contrast, the presence of Cu and Cr 

elements is confirmed in all the heterostructure, as expected from a conformal coating. The 

related signals are more intense in the part surrounding the Zn elements, according to 

geometrical effect related to the core-shell configuration of the heterostructure. The O 

element signal is detected in all the ZnO/CuCrO2 core-shell NW heterostructure. All in all, 

the superimposed EDS-STEM elemental map in Figure V-106 f) together with Figure V-

102 d) and Figure V-105 a) provide strong evidence that AA-CVD is a highly relevant 



Chapter V: CuCrO2 delafossite thin films 

179 

technique for the conformal deposition of thin films on high aspect ratio nanoscale 

structures.  

ASTAR maps representing the crystalline phase and orientation of the ZnO/CuCrO2 

core-shell NW heterostructures are shown in Figure V-107 a) and Figure V-107 b), 

respectively, to overcome the inherent spatial localization on the nanometer scale of the 

HRTEM imaging. Basically, the few nanometer-sized incident electron beam was 

precessed and scanned over the ZnO/CuCrO2 core-shell NW heterostructure 27,28. At each 

location, the recorded experimental electron diffraction pattern was compared with a 

complete set of theoretical diffraction patterns, namely the so-called templates computed 

for all possible crystalline phases and orientations, and fitted to identify the involved 

crystalline phase and orientation. From the present approach, the CuCrO2 shell in Figure 

V-107 a) is found to be composed of small nano-grains, in the 5 to 10 nm range, with the 

exclusive delafossite phase grown on both the top face and along the vertical sidewalls of 

the ZnO NWs. This correlates very well with the identified phases, and it shows a lower 

size of the grains when compared to thin films deposited on glass, with a crystallite size 

around 20nm.  

 

Figure V-107 a) ASTAR map representing the crystalline phases of a ZnO/CuCrO2 core-shell NW 

heterostructure, the ZnO and CuCrO2 crystal phases being represented in red and green, respectively. The 

insets are the electron diffraction patterns collected at the points designated by A and B on the corresponding 

map, in which the open circles represent the theoretical electron diffraction patterns of wurtzite ZnO and 

rhombohedral CuCrO2. b) Corresponding ASTAR map representing the crystalline orientations of the 

ZnO/CuCrO2 core-shell NW heterostructure, along the X- and Y-axes as indicated in the inset. The color 

scales for wurtzite ZnO and rhombohedral CuCrO2 are given in the insets. 



Chapter V: CuCrO2 delafossite thin films 

180 

No other crystalline phase is identified in the local analysis. On the one hand, the 

orientation maps on the ZnO NW, as presented in Figure V-107 b), confirm the oriented 

growth along the c-axis. In contrast, the nano-grains composing the CuCrO2 shell present 

a broad orientation distribution, where neither epitaxial relationship with the ZnO NW nor 

strong preferential orientations (i.e., texture) are revealed. However, when the growth axis 

is considered, it is revealed that the grains on the top face of the ZnO NWs (see X-

orientation map) and on their vertical sidewalls (see Y-axis orientation map) are both close 

to the [011̅0] to [101̅0] orientations. Additionally, the CuCrO2 nano-grains on the top face 

of the ZnO NW indicates that a columnar growth regime has proceeded. Their elongated-

grain shape strongly contrasts with the grain morphology on the vertical sidewalls of the 

ZnO NW, which is formed by much smaller grains, further indicating that a distinct growth 

regime may have taken place. 

 

5.2.4 Electrical characterization of core-shell heterostructures 

A schematic representation of the self-powered UV photodetector made of 

ZnO/CuCrO2 core-shell NW heterostructures covered with the Ag contact is presented in 

Figure V-108 a) together with the corresponding energy band diagram in Figure V-108 b).  

 

Figure V-108 a) Schematic of the self-powered UV photodetector based on ZnO/CuCrO2 core-shell 

NW heterostructures. b) Corresponding energy band diagram. 

Basically, the working principle of the photodiode is based on the UV illumination 

from the glass substrate side, where the incident photons pass through the ITO thin layer 

with the band gap energy higher than 4.2 eV 29. These photons are first absorbed in the ZnO 

NWs and afterward in the CuCrO2 shell, leading to the photo-generation of electron-hole 

pairs possibly in both layers and at the interface. By taking into account the positions of the 

conduction band minimum and of the valence band maximum, the pn heterojunction 
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between ZnO and CuCrO2 generates a depletion layer with staggered gaps. The electron 

affinities of ZnO and CuCrO2 have typically been reported as 4.0 eV and 3.0 eV 1, 

respectively, while their band gap energy are about 3.37 and 2.8 eV 9, respectively. The 

successive type II band alignments efficiently favours charge carrier separation and 

collection and thus prevents the recombination of photo-generated electron-hole pairs, thus 

resulting in the creation of the photocurrent.  

The dark J-V characteristic of the self-powered UV photodetector made of Zn 

/CuCrO2 core-shell NW heterostructures is shown in Figure V-109 and reveals a high 

rectifying behaviour with a reverse current density below 2 x 10-4 A/cm2 at -1 V, and a 

forward current density of 0.9 A/cm2 at +1 V.  

 

Figure V-109 J-V measurements under darkness conditions of the self-powered UV photodetector 

made of ZnO/CuCrO2 core-shell NW heterostructures. The value of the rectification ratio at ± 1 V is 5500. 

The rectifying ratio between the forward current density to the reverse current 

density at ±1 V is as high as 5500, which is considerably larger than the ratio of 70 at ±1.5 

V for the diode made of ZnO/CuCrO2 thin films as reported by Tonooka et al. 30. The JV 

tests also performed on planar films showed a lower diode response, pictured in Figure V-

110. In this case, the diode behavior was detected for higher applied voltages, larger than 

2V, with significantly lower rectifying ratio, around 20 at ±5 V. 
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Figure V-110 J-V measurements under darkness conditions of ZnO/CuCrO2 core-shell NW and 

planar heterostructure. SEM cross section of both devices are also represented.  

As already stated before for other materials 31, employing nanostructured 

heterojunction configuration strongly enhance their performances as compared to thin film 

configuration. The device response drastically increases due to a higher surface-to-volume 

ratio, resulting in a large interface between the two semiconductors. The total area of the 

heterojunction was estimated to increase by a factor of at least five considering the NW 

density, average diameter and covered sidewalls by the CuCrO2 shell. The single crystalline 

nature of ZnO NWs can also improve the electrical conduction as a result of their high 

mobility and of the absence of grain boundaries. The diode parameters for the ZnO/CuCrO2 

core-shell NW array were extracted by fitting the experimental curve with the typical diode 

equation, considering the series and shunt resistances as follows: 

 
𝐽 = 𝐽0 (𝑒

𝑞(𝑉−𝐽𝐴𝑅𝑠)

𝑛𝑘𝐵𝑇 − 1) +
𝑉 − 𝐽𝐴𝑅𝑆

𝐴𝑅𝑆ℎ
 

(V.2) 

where J is the current density, J0 is the reverse current density, q is the electron 

charge, V is the applied voltage, A is the contact area, RS is the series resistance, n is the 

non-ideality factor, kB is the Boltzmann’s constant, T is the absolute temperature, and RSh 

is the shunt resistance. The non-ideality factor n of the diode is found to be 2.2, indicating 

a good diode behaviour. The relatively large shunt resistance of 6.5 kΩ is correlated with 
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the small reverse current density at -1 V, which can be attributed to the conformal CuCrO2 

shell and to the high mobility in the ZnO NW. Moreover, the series resistance of 0.5 Ω 

originates from the quality of the metallic contact and from the high conductivity of the 

CuCrO2 shell 32. Overall, the fitted values of J0, n, RS and RSh as well as the rectification 

ratio of the ZnO/CuCrO2 core-shell NW heterostructures reveal the high quality of the pn 

heterojunction.  

The absorption spectrum of the ZnO/CuCrO2 core-shell NW heterostructures as 

deduced from total transmittance and direct reflectance measurements together with the 

responsivity of the corresponding self-powered UV photodetector are shown in Figure V-

111.  

 
Figure V-111 Responsivity and absorption measurements of the self-powered UV photodetector 

made of ZnO/CuCrO2 core-shell NW heterostructures, as well as absorption measurements of the ZnO NW 

array deposited by CBD on ITO/glass and of the CuCrO2 thin film deposited on glass.  

An absorption higher than 85 % below 400 nm is obtained in the UV region. This 

is due to the wide band gap energies of both oxides, which are higher than 2.8 eV, and to 

the antireflective character of the nanostructured NW array 33. The responsivity of the self-

powered UV photodetector (i.e., the photo-generated current per unit incident light power) 

shows only one peak centred around 374 nm, which very well correlates with the 3.37 eV 

band gap energy of ZnO and confirms that the photo-generation of charge carriers 
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predominantly occurs in the ZnO NWs. The maximum responsivity of 1.87 x 10-4 A/W at 

374 nm is achieved, followed by a sharp drop to 1.49x10-5 A/W at 400 nm. Subsequently, 

it gradually decreases to reach values lower than 10-6 A/W above 650 nm. Furthermore, the 

responsivity drop correlates well with the absorption drop observed for ZnO NWs on 

ITO/glass substrates without the CuCrO2 shell, as shown in Figure V-111. In other words, 

the CuCrO2 shell very likely acts mainly as a hole transporting materials and does not 

significantly contribute to the responsivity signal. The UV-to-visible rejection ratio (374-

550 nm) of 68, highlights that the device acts as a suitable selective UV photodetector. The 

rejection ratio is comparable to other ZnO core-shell NW heterostructure based-UV 

photodetectors, such as ZnO / CuSCN devices34,35. 

Moreover, JV measurements of the UV photodetector made of ZnO/CuCrO2 core-

shell NW heterostructures under darkness and AM 1.5G illumination conditions are shown 

in Figure V-112. 

 

Figure V-112 JV measurements under darkness and under AM 1.5G illumination conditions of the 

self-powered UV photodetector made of ZnO/CuCrO2 core-shell NW heterostructures. 

The suitable photovoltaic effect with an open-circuit voltage (VOC) and short-circuit 

current density (JSC) of 16 mV and 37 µA/cm2, respectively, reveal that the ZnO/CuCrO2 

heterojunction is able to properly separate and collect the photo-generated charge carriers, 



Chapter V: CuCrO2 delafossite thin films 

185 

which demonstrate that this UV photodetector offers self-powering capabilities. The higher 

specific surface area of the heterojunction is expected to enhance light trapping  processes 

in the ZnO NW arrays, as well as to exhibit a larger total volume of depletion region and 

longer carrier lifetime 36. However, the VOC of 16 mV is fairly low, especially when 

compared to other delafossite phase material like CuAlO2, which presents a VOC of 250 mV 

when combined with ZnO NWs 37. The use of a CuAlO2 layer filling the ZnO NW arrays 

and thus planarizing the electrical contact may account for the improvement of the PV 

performances. The reduced PV performances of our device may also be explained by the 

CuCrO2 properties themselves, especially the anisotropy of its electronic properties 38, and 

its typical low hole mobility. The present findings reveal that an all-oxide core-shell NW 

heterotructure grown by chemical deposition techniques appear as a promising candidate 

as self-powered UV photodetectors.  

5.2.5 Conclusions on the core-shell heterostructures 

An original core-shell heterostructure made of ZnO NWs covered with a conformal 

CuCrO2 shell was successfully achieved through a low-cost surface scalable chemical 

fabrication route. The structural morphology of the CuCrO2 grains shows a columnar grain 

growth at the top of the ZnO NWs, while it consists of smaller nano-grains on their vertical 

sidewalls. Although no epitaxial relationships occur as revealed by ASTAR maps, the 

different grain morphology obtained on the different ZnO faces implies distinct growth 

mechanisms taking place in each case. This heterostructure successfully works as a diode, 

with a rectification ratio as high as 5500 at ±1 V, which is much better than similar planar 

diodes. It further exhibits a high absorption above 85% in the UV region. Moreover, the 

device presents a maximum responsivity of 187 µA/W under zero bias at 374 nm and a 

high UV-to-visible rejection ratio (374-550 nm) of 68 together with a PV effect under 

standard AM1.5G illumination. The combination of the high rectification ratio, of the high 

absorption in the UV region, and of the significant responsivity offers promising 

possibilities for the use of this heterostructure as a self-powered UV photodetector. 

Eventually, the use of CBD and AA-CVD at temperatures below 500 °C is favorable for 

the implementation of all oxide-based self-powered UV photodetectors with reduced costs 

and large scale production. 
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5.3 Conclusions 

The growth of CuCrO2 thin films and consequent implementation into a 

nanostructured photodetector was successfully achieved in this work. The delafossite phase 

was obtained at temperature compatible with glass substrate and different n-type 

semiconductor oxides, enable by the chemical deposition using organic precursors. The 

focus on a different copper-based oxide with a large band-gap than Cu2O was fundamental 

to show the possible application of this delafossite material in transparent or UV-light 

oriented devices, other than transparent electronics.  
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6 Chapter VI - Conclusions and future 

perspectives  

 

In the work here presented, we successfully prepared two different copper-based 

oxides thin films, aiming on the electrical and optical enhancements, and we integrated 

them into pn junctions for energy and light sensing devices.  

After a preliminary screening of different cations as possible p-type dopants for 

Cu2O, the incorporation of magnesium in cuprous oxide thin films was successfully 

achieved by aerosol-assisted metal-organic chemical vapour deposition under atmospheric 

pressure condition at 350 ºC. The magnesium content could be increased up to 17% 

concentration in cubic Cu2O phase without the appearance of any magnesium-related 

phase. The incorporation had a strong effect on the electrical properties, reducing the 

resistivity to 6.6 .cm, by increasing the charge carrier density up to 8.1x1017 cm-3. This 

result was attributed to the increase of simple copper vacancies, induced by the presence of 

magnesium in a tetrahedral position, leading to an increase of the hole concentration, as 

calculated by Nolan et al.  

Post-deposition annealing treatments in oxidizing conditions are commonly 

performed on Cu2O thin films to enhance electrical and optical properties; nevertheless, 

parasitic CuO phase usually starts to be formed in the films at 300 ºC. The dopant presence 

in the films had a substantial impact on the stability of the Cu2O phase under these 

oxidizing conditions. The Mg-doped Cu2O thin films exhibit a reduced amount of CuO 

phase than the intrinsic Cu2O films when compared on the same thermal treatments 

conditions. This fact is due to a different CuO formation mechanism between intrinsic and 

doped thin films. As suggested by Isseroff and Carter, doping with Mg can prevent the 

formation of split vacancies for a single cation vacancy, since the divalent cation would 

assume a position similar to a split copper vacancy in the crystallographic structure. 

Consequently, the reduction of split cooper vacancies leads to lower concentration of CuO 

nucleation centres, which inhibits the formation of the parasitic phase in the bulk of the 

film. Moreover, the reduce presence of CuO phase in the Mg-doped Cu2O has 
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advantageous consequences for thin films properties, showing a lower resistivity and higher 

transparency than the intrinsic Cu2O.  

Concerning the doped Cu2O material, a comprehensive analysis of other dopants, 

especially Sn, Ni and Co, could be required to understand the impact of these divalent 

cations in a broader way. The use of other deposition techniques, using chemical or physical 

routes, would possibly provide a more efficient way to incorporate these elements, which 

posed substantial challenges for the constraints of the AA-MOCVD technique. A 

comprehensive study on the temperature-dependent Hall Effect on the Cu2O:Mg thin films 

could also clarify the energy level of different acceptors. Moreover, other strategies can be 

explored to improve the conduction properties of Cu2O thin films, combining it with other 

conductive materials. 

The combined finding about the material stability and the higher conductivity of 

Cu2O:Mg led to the application of these thin films to pn junctions formed with ZnO, an 

n-type transparent conducting oxide. The structures showed diode-like behaviour with 

rectification ratios in the 100 range and photovoltaic response with an open-circuit voltage 

values up to 300mV. Nevertheless, the solar cells showed low current density values, below 

1mA.cm-2 due to intrinsic characteristics of the CVD-prepared films. Low carrier mobility 

and presence of carbon species hinder the path to junction improvement. These 

observations stress that the need of using supplementary techniques, as thermal oxidation 

of metallic copper or electrodeposition in the perspective of Cu2O:Mg-based solar cell 

design.  

As the increase of transparency of Cu2O could not be reached in the previously 

described work, other copper-based oxide systems with a larger band-gap were considered. 

Therefore, the p-type semiconductor alloy CuCrO2 was developed and thin films were 

successfully deposited by aerosol-assisted metal-organic chemical vapour deposition. 

These materials exhibit optical and electrical properties similar to state-of-the-art reports, 

with a direct band-gap of 3.2eV and resistivity values of 0.1 Ω.cm.  

As a consequence, this delafossite material was implemented into an original core-

shell heterostructure in combination with ZnO towards application as a UV 

photodetector. This heterostructure functionally operates as a diode, with a rectification 

ratio as high as 5500 at ±1 V, denoting larger improvements compared to diodes with 

similar junctions under planar architecture, which present rectification ratio below 100. It 

further exhibits optical absorption above 85% in the UV region.  
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Moreover, the device presents a maximum responsivity of 187 µA/W under zero 

bias at 374 nm and a high UV-to-visible rejection ratio (374-550 nm) of 68 together with a 

PV response under standard AM1.5G illumination. The combination of the high 

rectification ratio, high absorption coefficient in the UV region, and of the remarkable 

responsivity offers promising possibilities for the application of such a heterostructure as a 

self-powered UV photodetector. Further optimization of this core-shell device can be 

achieved with the variation of nanowires size and diameter, CuCrO2 shell thickness or even 

the use of another delafossite material. Moreover, different applications as gas sensor or 

water splitting device would deserve some attention in the near future. 

In conclusion, this research work was dedicated to the synthesis and 

characterization of copper-based oxides with the constant aim of ultimately incorporating 

them into opto-electric systems, fulfilling the initial intention, “from material to devices”. 
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7.1 A – EXAFS  Data Fittings  

 

In order to identify the EXFS spectra with the crystallographic structure of the 

material, a theoretical EXAFS spectra is created by Arthemis software, using the 

crystallographic parameters of the oxide and the variation of EXAFS parameters and then 

fitted by comparison to optimize the simulation. The list of variable parameters, presented 

in Table A-17, are related to the number of neighboring atoms (N), distance to the 

neighboring atom (R), change in half-path length (ΔR), energy shifts depending on the 

atom type (ΔE), mean squared displacement (σ2) and passive electron reduction factor 

(S0
2).  

In our case, we will fixed the N and S0
2 to theoretical values. Only the two first 

interaction paths will be used for Cu2O, corresponding to Cu-O 1st and Cu-Cu 1st first 

neighbors. N will be 2 for Cu-O and 12 for Cu-Cu. We will use three first interaction paths 

will be used for CuO, corresponding to Cu-O 1st, Cu-Cu 1st and Cu-Cu 2nd first neighbors. 

N will be 4 for all of them. The passive electron reduction factor (S0
2) was fixed to 0.813 

that allows to fit the Cu-O 1st peak for both phases and it is in agreement with the literature 

3. For this study we select the as-deposited Cu2O film and the film annealed at 450°C which 

is similar to that annealed at 500°C, showing that the transformation of Cu2O into CuO is 

finished for this sample. The preliminary fittings of the EXAFS characterization with the 

theoretical EXAFS model is visible in Figure A-113.  

 

Table A-17 Fitting parameters of EXAFS data by Arthemis 

Oxide 
Neigouring 

atom to Cu 
Order N S0

2 σ2 ΔE R ΔR 

Cu2O 
O 1st 2 0.813 0.0055 7.9 1.84880 0.018 

Cu 1st 12 0.813 0.01450 7.9 3.01910 0.04500 

CuO 

O 1st 4 0.813 0.00225 0 1.94750 0.00000 

Cu 1st 4 0.813 0.00400 0 2.88440 0.01921 

Cu 2nd 4 0.813 0.00500 0 3.07080 0.01744 
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Figure A-113 Preliminary fitting of the Cu k-edge represented in k2 and the used parameter for a) 

as deposited Cu2O film and b) CuO reference obtained by oxidation of Cu2O at 450°C during 30 minutes. 

Experimental spectra in blue lines and fitted data in red lines. Green line represents the k window used (1-4) 

 The fitting of these two extreme spectra in the EXAFS study seem to correspond 

well with the crystallographic order of both copper oxides. The k2 fitted curve show a good 

agreement with the experimental one, which led to a correct Fourier transform fitting in the 

distance to the neighboring atom plots.  
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7.2 B – PDF X-Ray Files 

Copper (I) oxide – Cuprous Oxide - Cuprite - Cu2O 

 

  



Appendix 

199 

Copper(II) oxide – Tenorite - CuO 
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Copper Chromium oxide – CuCrO2 
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7.3 C – Raman spectrum of Cu2O powder 
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