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CHAPTER 1

Introduction

Contents
1.1 Astrophysical context . . . . . . . . . . . . . . 3

1.1.1 Relevant astrophysical scenarios . . . . . . . . 3
1.1.2 Fermi acceleration mechanism . . . . . . . . . . 10
1.1.3 Cosmic Rays . . . . . . . . . . . . . . . . . . . 13

1.2 Laser-plasma experiments . . . . . . . . . . . . 16
1.2.1 Short laser pulse technology . . . . . . . . . . . 16
1.2.2 Towards collisionless shock experiments . . . . 18

1.3 Outline of the thesis . . . . . . . . . . . . . . . . 21

Tremendous progress in the development of high-energy and/or high-
intensity laser facilities has made it possible to recreate, in the laboratory,
conditions relevant to the study of various astrophysical scenarios. These
developments have paved the way to the field of study central to this
thesis, the so-called Laboratory Astrophysics, which aims at advancing
our understanding of the universe through the experimental exploration of
astrophysically relevant processes as well as by promoting our capabilities
for theoretical and numerical modeling of the physics at hand.

This field is undergoing a phase of growing activity. It can shed light
on the dynamics of particles and electromagnetic fields in remote astro-
physical environments. A deep and detailed understanding of the physics
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Chapter 1. Introduction

behind the most extreme astrophysical processes is of crucial importance
for both the astrophysical systems, for which in situmeasurements are be-
yond our reach, and a full interpretation of the astronomical observations.
In addition, laboratory experiments offer the unique possibility to have
access to astrophysical phenomena in a controlled and well-diagnosed en-
vironment. This is a fundamental step for the validation of the theoretical
models as well as numerical simulation tools.

Over the last two decades, laboratory astrophysics has thus been the
drive and focus of a wide range of studies ranging from warm dense mat-
ter for the investigation of the interiors of planets (Koenig et al., 2005) to
radiative hydrodynamics for our understanding of the physics of super-
novae (Remington et al., 1997) and radiative shocks (Drake, 2005).

Due to the extremely large differences in the spatial and temporal
scales involved in the astrophysical processes and those obtained in the
laboratory, these studies rely on similarity criteria to ensure that the
conditions produced in the experiments are equivalent to those of the
original astrophysical scenario. Hence, similarity criteria have been iden-
tified by Ryutov et al. (1999); Bouquet et al. (2010), and are based
on a proper scaling of various dimensionless parameters (Mach number,
Reynolds number, etc.). The equivalence of astrophysical and laboratory
plasmas is even more easily achieved when considering collisionless, non-
radiative processes (Ryutov et al., 2012). This is the case of, for instance,
magnetic reconnection (Treumann and Baumjohann, 2013), and the so-
called collisionless shocks, the latest being central to this work.

Collisionless shocks have been demonstrated to be ubiquitous in a
wide-range of astrophysical environments that involve a tremendous en-
ergy release over short timescales (e.g. in active galaxy nuclei, pulsar wind
nebulae, supernovae remnants, etc.). They are also held responsible for
the production of non-thermal particles (Cosmic Rays) and high-energy
radiation (e.g. Gamma Ray Bursts), (Kirk and Duffy, 1999).

At a macroscopic level, a shock appears as a discontinuity in the
macroscopic plasma state developing in the presence of fast plasma flows.
In hydrodynamic shock waves, this discontinuity is mediated by colli-
sional effects that dissipate irreversibly the kinetic energy of the fluid
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1.1. Astrophysical context

crossing the shock. The fluid behind the discontinuity region is therefore
compressed, isotropized and strongly heated. In the absence of particle
collisions, plasma micro-instabilities can be responsible for the dissipation
of the flow kinetic energy into thermal energy leading to shock formation.
Several instabilities can develop, following the interaction of a fast plasma
flow with the surrounding medium. Among these, the Weibel instabil-
ity (Weibel, 1959; Fried, 1959) has been identified to play a key role in
various phenomena (Medvedev and Loeb, 1999). In fact, it leads to the
development of strong magnetic fluctuations that eventually lead to the
flow isotropization and, at later times, to particle energization via Fermi-
like acceleration mechanism (Fermi, 1949, 1954). This mechanism is the
foundation of the well accepted paradigm for Cosmic Rays (CRs) produc-
tion: the so-called Diffusive Shock Acceleration (DSA). This model relies
on the presence of strong magnetic turbulence, produced in an initially
unmagnetized or weakly magnetized environment, that scatter the non-
thermal particles and make them cross repeatedly the shock front, the
particles gaining energy at each crossing, see Sec. 1.1.2.

In this Chapter we provide a concise overview of the recent inves-
tigations on Weibel-mediated collisionless shocks. At first we describe
the astrophysical context (Sec. 1.1), presenting the relevant astrophysical
scenarios in Sec. 1.1.1, a simplified model for the particle acceleration
mechanism in Sec. 1.1.2 and describing the CRs spectrum in Sec. 1.1.3.
Then we present the major results of recent experimental campaigns aim-
ing at producing such collisionless shocks on high-energy laser facilities
(Sec. 1.2). In Sec. 1.3, we finally provide a brief overview of the structure
of this thesis.

1.1 Astrophysical context

1.1.1 Relevant astrophysical scenarios

As already mentioned, collisionless shocks are very common in various
astrophysical environments. The origin of these structures is connected
with some of the most powerful and energetic sources currently known:
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Chapter 1. Introduction

relativistic jets from Active Galactic Nuclei (AGN), Gamma Ray Bursts
(GRB), SuperNova Remnants (SNRs), etc. The significant efforts pur-
sued in understanding the physics of collisionless shocks is motivated by
the identification of these structures as responsible for the acceleration of
CRs and for the emission of high-energy radiation from the X- to γ-range.

The material emitted by SNRs generally propagates at non-relativistic
velocity (up to 10% of the speed of light), while in the other above-
mentioned astrophysical contexts, the shocks is driven by relativistic and
even ultra-relativistic flows. Despite this difference, a common description
accurately captures the early phase of shock formation. Indeed, in all
these systems, the interaction of the plasma jets with the surrounding
medium leads to the development of electromagnetic instabilities. The
latter can produce magnetic turbulence strong enough to isotropize the
flows and eventually drive shock formation.

In these extreme scenarios, insight into the accelerated particle dy-
namics can be obtained via indirect astrophysical observations, relying
on the spectrum of the radiation emitted by the high-energy particles,
and by the measurements of the CRs spectrum on Earth (described in
Sec. 1.1.3). We now briefly summarize some of the most typical observa-
tions that provide evidences of the formation of collisionless shocks and
the subsequent particle acceleration.

Evidences of jet emission from AGN are shown in Fig. 1.1: on the
left we show the galaxy Centaurus A and on the right the galaxy Cygnus
A, one of the strongest radio sources in the sky. In both examples, a
fast jet produced by the super-massive black hole at the galaxy core is
observed in the radio wavelengths range. The radiation in the MHz-GHz
frequency range has been associated with synchrotron emission from non-
thermal relativistic electrons having MeV-GeV energies and propagating
in a magnetic field of intensity much larger than the weak interstellar
field BISM ' 2 ÷ 3µG. This suggests that the radiating electrons have
been accelerated at the shock front and that the magnetic field has been
locally amplified, most likely by plasma instabilities. The theoretical and
numerical validation of this explanation has been given in Lemoine (2013),
where a synchrotron-like spectrum is predicted for particles accelerated
at the shock front, up to relativistic energies, and interacting with the
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1.1. Astrophysical context

Figure 1.1: a) The galaxy Centaurus A at different wavelengths.
Figure from: X-ray (NASA/CXC/M. Karovska et al.); Radio 21-
cm image (NRAO/VLA/Schminovich et al.), Radio continuum image
(NRAO/VLA/J. Condon et al.); Optical (Digitized Sky Survey, U. K.
Schmidt Image/STScI). b) The galaxy Cygnus A at different wavelengths.
Figure from: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Radio:
NSF/NRAO/AUI/VLA.

magnetic field micro-turbulence ahead of the shock front.

The observation of this kind of emission is not restricted to shocks pro-
duced by the AGN-jets. Most of the information available have been pro-
vided by SNRs and evidences of a synchrotron spectrum are exceptionally
clear in Young and Type I SNRs. Figure 1.2 reports the X-ray emission in
the range ' 1÷ 6 keV, from the Tycho SNR. The thermal component of
the ejected material is visible mostly in the center of the image in green,
and the non-thermal one, i.e. accelerated at the shock front, corresponds
to the blue rims at the edge of the expanding shock. The observed X-ray
emission requires electrons with energy ' 20 ÷ 30 TeV streaming in a
magnetic field with amplitude B ' 100 µG, i.e. much larger than the
interstellar magnetic field BISM. Other evidences (Reynolds et al., 2012)
suggest that in young SNRs the magnetic field strength may approach
∼ mG levels. Furthermore, the presence of heavy ions in the CRs accel-
erated at the edge of SNRs has been confirmed by the detected γ-rays
emission as discussed by Abdo et al. (2009); Tavani et al. (2010). This

5



Chapter 1. Introduction

Figure 1.2: Tycho SNR emission
as measured by the X-ray Chandra
satellite, Ref. (Warren et al., 2005),
the energy levels of the X-ray emis-
sion have been assigned to colors as:
Red 0.95-1.26 keV, Green 1.63-2.26
keV, Blue 4.1-6.1 keV.

radiation is supposed to have an hadronic origin, being associated with
the production of neutral pions in the interaction of the CR-ions with the
surrounding molecular cloud, and the following decay π0 → 2γ.

A very different range of parameters can be investigated considering
GRBs, that represent the largest known explosions in the universe af-
ter the Big Bang and whose emitted material reaches a Lorentz factor
γjet & 100. Most of the observed GRBs consist of an initial very bright
emission in the γ-range, with duration up to tens of seconds, and a suc-
cessive afterglow emitted at longer wavelengths, that can last for hours
after the main event. The origin of GRBs is uncertain, but an accredited
description relies on the so-called Fireball model (Piran, 1999). This de-
scription envisions the presence of several internal shocks, produced by
relativistic electron-positron shells emitted by a central compact engine,
such as a supernova collapsing in a neutron star or even the binary colli-
sion between two neutron stars. Within this model, the detectable initial
burst of γ-rays (Inverse Compton and synchrotron emission) is considered
a consequence of the interaction between these internal shocks, arising
from their different propagation velocities. The afterglow is considered
to originate at the front of a shock propagating outward (usually called
external shock), due to the interaction of the ejected material with either
the interstellar medium or a progenitor wind. This interaction causes an
emission with a longer duration and at frequency ranging from radio to
soft X-rays. The registered afterglow spectrum has been successfully de-
scribed as synchrotron emission by shock-accelerated electrons streaming
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1.1. Astrophysical context

in a locally amplified magnetic field (Sari et al., 1998).

The level of magnetic field at the shock front, extracted from each of
the above-mentioned indirect observations, indicates that the local mag-
netic field was substantially larger than the interstellar magnetic field,
and this suggests that it has been amplified by the micro-instabilities
produced by the streaming plasma. A first phase of amplification might
be intrinsically connected with the shock front formation, in particular
by the development of the Weibel instability. A successive stage of ampli-
fication might be due to secondary streaming instabilities, driven by the
current of the shock-accelerated particles themselves, which propagate
ahead of the shock front and thus interact with the weakly magnetized
interstellar medium (BISM ∼ µG). For a review on CRs driven instabilities
see Bykov et al. (2013). Two main types of instability have been iden-
tified: a resonant amplification of Alfvén waves with wavelength equal
to the CRs Larmor radius (Skilling, 1975; Achterberg, 1983), and a non-
resonant instability, commonly named Bell instability (Bell, 2004, 2005),
that produces high amplitude waves with shorter wavelengths and circular
polarization. The investigation on the magnetic field amplification is still
an active area of research, since the level of magnetic turbulence has im-
portant implications in both particle acceleration and particle transport
across the Universe.

Up to now we have presented observations related with the magnetic
fields self-generated in the region corresponding to the shock front. How-
ever, large-scale, ordered, magnetic fields might already be embedded in
the jet itself. For instance, Pulsar Wind Nebulas (PWNs), such as the
one in the famous Crab Nebula, are intrinsically highly magnetized and
the signature of an efficient particle acceleration is identified at the ter-
mination shock. In PWNs, the jet is composed mostly of a pair plasma,
emitted with relativistic energy, up to Lorentz factor γwind ' 106. The
typical magnetization, defined as the ratio of the Poynting flux to the
kinetic energy flux in the region ahead of the shock front, is σ & 0.01,
i.e. several orders of magnitude larger than in the interstellar medium
σISM ' 10−9. The magnetic field morphology in these outflows can be
investigated by means of polarization measurements (Montier, L. et al.,
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Chapter 1. Introduction

Figure 1.3: Simplified schematic representation of the characteristic shock
formation mechanisms and dominant particle acceleration processes as a
function of the flow magnetization and velocity. In green the typical
astrophysical scenarios where these shocks take place.

2015). Several observations have demonstrated that in most of the situ-
ations the magnetic field is mainly perpendicular to the jet flows, while
Pudritz et al. (2012) suggest that AGN jets propagate with a magnetic
field parallel to the jet axis at the center of the expelled material and a
surrounding helical field towards the jet edges.

A strong magnetization can play a determinant role in the forma-
tion and evolution of the jets and can also lead to different shock forma-
tion mechanisms. The inclusion of an ordered macroscopic magnetic field
has been the topic of several numerical investigations, considering both
electron-positron plasmas (Sironi and Spitkovsky, 2009; Sironi et al., 2013;
Bret et al., 2017; Plotnikov et al., 2017) and electron-ion plasmas (Sironi
and Spitkovsky, 2011a; Gargaté and Spitkovsky, 2012; Sironi et al., 2013;
Caprioli and Spitkovsky, 2014a; Lemoine et al., 2016). A major result of
the numerical studies is that highly magnetized relativistic shocks (as the
termination shocks of PWNs) do not produce the level of magnetic turbu-
lence required for Fermi-like acceleration. Thus alternative acceleration
mechanisms or alternative ways to produce the magnetic turbulence (not
intrinsic to the shock formation) are currently investigated (Lyubarsky,
2003; Camus et al., 2009; Sironi and Spitkovsky, 2011b).
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1.1. Astrophysical context

In Fig. 1.3, we sketch a summary of the main mechanisms that lead to
shock formation as a function of γshvsh, with vsh the shock velocity and
γsh = 1/

√
1− v2

sh/c
2 the shock Lorentz factor, and the magnetization σ.

On the one hand, at low magnetizations (σ . 10−3 and σ . 3 × 10−5

for pair and electron-ion relativistic plasmas, respectively), the dominant
role in shock formation is played by the Weibel instability, and efficient
acceleration (up to 10% of the flow kinetic energy) via Fermi-like mech-
anism has been demonstrated by means of numerical simulations. On
the other hand, in strongly magnetized plasmas (σ & 0.1), the physics
changes significantly. The shock is sustained by a magnetic barrier (often
referred to as a magnetic reflection shock) that provides the local dissi-
pation and flows isotropization mechanism through Maser Synchrotron
Instability (Alsop and Arons, 1988; Hoshino and Arons, 1991). In this
type of shocks, Fermi mechanism is suppressed and the acceleration re-
lies on the so-called Shock Drift Acceleration (Begelman and Kirk, 1990;
Sironi and Spitkovsky, 2009) in which particles gain energy from the
motional electric field driven by the moving magnetic barrier and are
found to drift along the shock front surface. An analogous acceleration
mechanism (Shock Surfing Acceleration) has been observed in electro-
static shocks developing in magnetized electron-ion flows. In Fig. 1.3,
we also report the dominant acceleration mechanism at play and the
corresponding astrophysical systems. Note however that this simplified
representation does not take into account many parameters, such as the
macroscopic field orientation, that have been demonstrated to affect the
acceleration mechanism by Sironi and Spitkovsky (2009); Caprioli and
Spitkovsky (2014a).

Numerical simulations have been a central tool for obtaining informa-
tion regarding the early stage of shock formation, which is not accessible
by astrophysical measurements. Despite the impossibility to reproduce in
fully kinetic simulations the large-scale astrophysical system in which jets
are produced and propagate, they provide important constrains on the
magnetic field amplification and on the acceleration (on the accelerated
species, fraction of particles, dependence on the external field, etc.) from
first principles. As such, they will also be a central tool for the present
thesis.
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Chapter 1. Introduction

1.1.2 Fermi acceleration mechanism

The most acknowledged model for CRs acceleration relies on the so-called
Fermi mechanism (Fermi, 1954). In his original model, Fermi considered
an already mildly relativistic particle, with 4-momentum pµ = (E/c,p ),
interacting with a galactic cloud streaming toward the particle. Following
the derivation presented by Vietri (2008), we assume the galactic cloud
to have a mass M � m, where m is the particle mass, and velocity
V = −V x̂, forming an angle θ with the particle direction of motion. In
the rest frame of the cloud, the collision can be considered elastic, so
that the particle exits the cloud with unchanged energy and reflected
momentum. Note that the particle-cloud collision does not involve real
binary collisions with the cloud constituents, but rather collective effects.
In particular, the elastic reflection can be the result of repeated deflection
from magnetic turbulence moving with the cloud. In the cloud reference
frame, henceforth identified by the index (c), the particle energy and
momentum px read

E
(c)
1 = γc (E + pV cos θ) , (1.1.1)

p
(c)
x,1 = γc

(
p cos θ + V E

c2

)
, (1.1.2)

with γc = (1 − V 2/c2)−1/2 and p = |p|. After the elastic collision with
the cloud, we obtain E(c)

2 = E
(c)
1 and p(c)

x,2 = −p(c)
x,1. For an observer in the

external reference frame, i.e. where the cloud moves with velocity V, the
final particle energy and momentum are

E2 = γc
(
E

(c)
2 − V p

(c)
x,2

)
, (1.1.3)

px,2 = γc

(
p

(c)
x,2 + V E

(c)
2

c2

)
. (1.1.4)

By expressing the energy E2 as a function of the initial energy E and of
the absolute value of the initial velocity v, we find

E2 = (γc)2E

(
1 + 2V v cos θ

c2 + V 2

c2

)
. (1.1.5)
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1.1. Astrophysical context

Equation (1.1.5) demonstrates the possibility to gain energy from the
interaction with propagating magnetic turbulence. In particular, consid-
ering a typical cloud velocity V � c and averaging over all possible values
of θ, due to the random orientation of the particle-cloud relative veloci-
ties, the second term in brackets vanishes and the increase of the energy
is ∝ (V/c)2. For this reason this process is commonly referred to as the
second order Fermi mechanism. Note that the purely magnetic nature of
the scattering process has been assumed in the cloud rest frame, where
the particle does not gain energy. However, in the external frame, where
electric fields are present due to the coupling of the electric and the mag-
netic fields in the Lorentz transformations, an energy gain is possible. In
this way, part of the magnetized cloud energy is transformed into kinetic
energy of the individual charged particle.

Generally, given the low velocity of the particle cloud, the role of
second order Fermi acceleration is negligible. A more efficient mecha-
nism, that may account for the extremely high energy observed in the
CRs spectrum is the first order Fermi mechanism, first discussed by Bell
(1978); Blandford and Eichler (1987). This model extends the second or-
der Fermi mechanism to a system where a shock propagates through an
unperturbed plasma. Analyzing this situation from the shock front rest
frame (S), considering it as stationary, we observe an incoming flow cross-
ing the shock front with velocity vS

u and a downstream shocked plasma
that moves away from the shock front with velocity vS

d. In presence of
a particle separated from its thermal background and moving from the
upstream to the downstream with a marginally relativistic energy, the
shocked plasma acts as the cloud in the previous model. Hence, once the
particle has bounced back in the upstream region, its energy is increased
as reported in Eq. (1.1.5), where V = vS

u − vS
d. The particle crosses the

shock front and starts the acceleration process only if cos θ ≥ 0, contrar-
ily to the second order Fermi mechanism. Note that the system is com-
pletely symmetric, considering a particle moving from the downstream to
the upstream, for which the condition on the particle propagation direc-
tion is cos θ ≤ 0. In conclusion, in the presence of a propagating shock
front the accelerated particle always see a converging flow, while in the
cloud-particle system the cloud could also move away from the particle.

11



Chapter 1. Introduction

This constrain ensures that the average over all the acceptable angles in
Eq. (1.1.5) does not vanish, so that the energy gain at each front crossing
is ∝ V/c. For this reason, this mechanism is named first order Fermi
acceleration. More recent studies (Gallant and Achterberg, 1999) have
demonstrated that for ultra-relativistic shocks, i.e. γc � 1 in Eq. (1.1.5),
the energy gain predicted by Eq. (1.1.5), ∆E ' (γc)2E, is achieved only
during the first crossing of the shock front, while in the successive ones
the gain is reduced to ∆E ' E.

The estimate of the largest attainable energy is currently a subject of
deep investigation. An obvious limit is given by the interval of time for
which the assumption on the stationarity of the shock front is valid, corre-
sponding to the maximum duration of the acceleration process. However,
a more restrictive limitation relies on the possibility that the particle es-
capes from the discontinuity region, instead of crossing back the shock
front. A simple model to estimate the probability that a particle leaves
the acceleration region has been first given by Bell (1978). This model
considers that, on the one hand, the diffusive motion due to magnetic field
turbulence tends to bring the non-thermal particles back into the shock
front, while, on the other hand, the advection with the background fluid
in the downstream region tends to bring them away from the shock front.
The probability that the particle crosses the shock front leads to the con-
vergence of the accelerated particle spectrum to a power-law f(γ) ∝ γ−p,
with p ' 2.2 in ultra-relativistic shocks, as analytically derived by Kirk
et al. (2000); Keshet and Waxman (2005); Blasi (2013). This power-law
index originates from the assumption of isotropic magnetic turbulence
in both the upstream and the downstream of the shock. This simpli-
fied hypothesis does not consider the self-consistent development of the
magnetic fluctuations during the phase of shock formation and propaga-
tion, that appears in Particle-In-Cell (PIC) simulations (Niemiec et al.,
2006; Spitkovsky, 2008; Martins et al., 2009; Haugbølle et al., 2013; Sironi
et al., 2013). Moreover, the isotropic turbulence assumption has been re-
laxed in Monte-Carlo simulations (Lemoine and Pelletier, 2003; Lemoine
et al., 2006), demonstrating the production of a slightly different slope of
the non-thermal distribution. Yet, numerical studies are in rather good
agreement with the theoretical values, showing a slope of the non-thermal
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1.1. Astrophysical context

spectrum ranging from 2.1 to 2.7.
One of the main open questions with respect to the models proposed

in the literature is related to the so-called injection problem. This con-
cerns the onset of the acceleration mechanism, i.e. the production of
mildly relativistic particles with velocity large enough to start the accel-
eration cycle. The existence of these particles is the starting point of the
models based on the Fermi acceleration mechanism. The most supported
solution of this problem, at least for ions, relies on the so-called thermal
leakage. This model assumes that high energy particles in the tail of the
Maxwellian distribution produced in the downstream region close to the
shock front, have a Larmor radius large enough to cross the shock and
thus start the Fermi process (see Blasi, 2013). However, the characteriza-
tion of the injection process is strictly connected with the physics at the
shock front, that is not yet well understood, and mostly relies on fully
kinetic simulations.

1.1.3 Cosmic Rays

The observation of CRs, by many experimental facilities, provides the
spectrum shown in Fig. 1.4. CRs have been detected over approximately
twelve decades of energy: from fractions of GeV up to 1011 GeV. The
single-particle energy may exceed of several order of magnitude what is
achievable using current accelerators, as pointed out in Fig. 1.4.

CRs are mainly composed of protons with a small fraction (< 10%) of
helium and an even smaller amount of heavier elements. The spectrum is
dominated by light ions up to ∼ 106 GeV, while, at larger energies, heavy
nuclei seem to give a stronger contribution. Indeed, the clear steepening
around ∼ 5×106 GeV [from f(E) ∝ E−2.7 to f(E) ∝ E−3.1], the so-called
knee, could be produced by the superposition of the spectral cut-offs of the
different elements. Precisely, this explanation relies on the assumption of
a rigidity dependent acceleration mechanism (i.e. with maximum energy
Emax ∝ Z the ion charge), so that if a proton is accelerated up to 5× 106

GeV, a fully ionized iron nucleus (ZFe = 26) might reach ' 108 GeV.
This is supported by the analytical and numerical works of Caprioli et al.
(2011, 2017) that demonstrate a heavier chemical composition above the
knee. At even larger energies, a transition from galactic to extra-galactic
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Chapter 1. Introduction

Figure 1.4: All particle CR flux measured by different experiments.
The energies reached by Tevatron and LHC accelerators are reported for
comparison. (Source: Telescope Array Project Commons)
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1.1. Astrophysical context

CRs dominated-spectrum appears, even if this is still the topic of intensive
investigation. Note that for energy . 10 GeV the spectrum bends down,
since the interaction with the magnetized solar wind prevents the low
energy CRs to reach the Earth. See Refs. (Hörandel et al., 2006; Gaisser
et al., 2013; Blasi, 2013) for a more detailed discussion.

Many studies currently aim at the interpretation of the CRs spectrum,
for both the modelization of such an efficient acceleration mechanism and
the description of CRs propagation through the Universe. Collisionless
shocks formed in SNRs are believed to be the sources of most of the
Galactic CRs. However, Fermi-like mechanisms seem not efficient enough
to describe the spectrum of CRs above 108 GeV. Indeed, in the frame-
work of Fermi-like acceleration, protons are expected to reach energies
up to the knee level, and heavier elements up to ' 108 GeV. Therefore,
a model accounting for non-linear secondary effects beyond the simple
Fermi acceleration mechanism has been proposed to explain the observed
particles with much larger energies. For instance, Blasi (2013) has taken
into account the effect of the pressure of the accelerated particles on the
shock compression and the amplification of the magnetic field turbulence
by means of secondary instabilities driven by the accelerated particles
themselves. Indeed, in the presence of stronger magnetic fields, a more
efficient confinement of the particles at the shock front would allow for
a longer acceleration stage. Even considering these secondary effects,
the production of the so-called Ultra-High Energy CRs (E > 109 GeV)
can not be explained, even if AGN and GRBs are considered as proba-
ble sources, because of their exceptional luminosity (see Waxman, 1995;
Vietri, 1995; Blasi et al., 2000; Caprioli, 2015).

When the accelerated CRs escape from the shock front region, they
propagate, before being detected, for a traveling time that can be inferred
from the measurement of the secondary-to-primary-nuclei ratio, usually
Boron over Carbon nuclei (B/C) (Strong et al., 2007). This estimate is
based on the classical assumption of diffusive particle motion. Never-
theless, recent investigations seem to confirm that this is accurate only
far from the CRs source, where the diffusive coefficient depends only on
the particle energy. Close to the CRs source, the description of CRs
propagation have to take into account CRs-driven secondary electromag-
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netic instabilities (Amato and Blasi, 2017). Numerical characterizations
of these secondary instabilities, presented by (Riquelme and Spitkovsky,
2009; Caprioli and Spitkovsky, 2014b), have been performed to inves-
tigate on the maximum level of additional magnetic field amplification.
Furthermore, a system in which current-dominated flows propagate in
a plasma at rest with an ambient magnetic field can be created in the
laboratories with the state-of-the-art laser facilities. This experimental
study is intended to bring a deeper insight into competing processes in
the development of the instability and their role in the slow down and
trapping of high-energy particles close to the sources.

1.2 Laser-plasma experiments

1.2.1 Short laser pulse technology

On Earth plasmas are seldom found in nature but can be produced under
ad hoc experimental conditions. Among them the most important for
this work is the interaction of gas or solid targets with intense lasers.
Already at modest laser intensities, of the order of 1015 ÷ 1016 Wcm−2,
the laser electric field is sufficiently large to ionize an atom in a single
laser period, and in ultra-high intensity laser-matter interaction even solid
targets rapidly become plasmas.

The evolution of laser technologies had a drastic change of paradigm
in the mid 1980s with the introduction of the Chirped Pulse Amplification
(CPA). This is, up to now, at the basis of the most advanced technol-
ogy for the production of ultra-intense pulses. Specifically it enables
for the production of femtosecond-duration pulses with intensity above
1021 Wcm−2. Classical technologies for the production of a high inten-
sity laser pulse require a series of active media, i.e. several consecutive
amplification stages, and are necessarily limited by the damage threshold
of the gain medium. CPA efficiently overcomes this issue. Indeed, as
represented in Fig. 1.5, the laser pulse is stretched out in time by means
of two gratings, before entering in the gain medium. Due to the gratings,
the pulse that undergoes amplification is chirped, i.e. the spectral com-
ponents of the pulse are dispersed in time according to their frequency.
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1.2. Laser-plasma experiments

Figure 1.5: Schematic representation of the Chirped Pulse Amplification
technology. Taken from LLNL S&TR.

Hence, the stretched pulse is amplified without producing any damage
to the optical component, since it has an intensity much lower than the
original one. Finally, the amplified laser pulse is compressed back to its
original time duration (or close to it), exploiting two more gratings placed
in a reverse configuration to the previous one.

Today, the record of intensity has been obtained at the HERCULES
Petawatt Laser at the University of Michigan USA (Yanovsky et al.,
2008), where a CPA-based Ti:Sapphire laser system reached 2×1022 Wcm−2

for a pulse duration of ' 10 fs, for an energy of the order of kiloJoule.
The CPA technology is currently used in many other facilities, such as the
OMEGA-EP laser at the University of Rochester’s Lab and the Gekko
Petawatt laser at the Institute of Laser Engineering in Osaka. Other on-
going projects, such as the Vulcan Petawatt Upgrade at the Rutherford
Appleton Laboratory’s, the APOLLON in France, plan to reach the multi-
Petawatt regime, with an advanced scheme (Optical Parametric Chirped
Pulse Amplification) based on CPA method (Dubietis et al., 1992; Ross
et al., 1997).
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Chapter 1. Introduction

1.2.2 Towards collisionless shock experiments

Laboratory experiments are invaluable to gain insights on astrophysical
phenomena (Remington et al., 1999, 2006; Drake and Gregori, 2012).
They can allow to improve our understanding, in particular, of the early
phase of shock formation for which no information are available from
astrophysical observations. They are also fundamental for testing theo-
retical models and numerical results.

Pioneering experimental investigations on collisionless shocks have
been carried out in the late ’80s (Bell et al., 1988), making use of a
plasma ablated from a dense target irradiated by an intense laser pulse.
In these studies, the limited flow velocity of the laser-ablated plasma al-
lowed the development of electrostatic shocks only. Lately (Kuramitsu
et al., 2012; Ahmed et al., 2013; Morita et al., 2016, 2017), the forma-
tion and evolution of these electrostatic structures have been confirmed
and investigated in more detail, thanks to both the development of laser
technology and improved experimental diagnostics.

Yet, the production of Weibel-mediated collisionless shocks demands
extremely high-power laser facilities, present or soon-available, and has
to this day remained unconfirmed. The typical experimental set-up for
the production of Weibel-mediated shocks consists of two interpenetrat-
ing flows, created by irradiating two solid targets. This configuration
has been theoretically and numerically demonstrated to favor the devel-
opment of the Weibel instability with a typical growth rate ∝ ωp, the
plasma frequency of the species involved in the instability (Bret et al.,
2010b). The interaction region of the two counter-streaming plasmas,
located in the middle of the two laser-irradiated solid foils, will even-
tually become Weibel-unstable and potentially drive the development of
two collisionless shock fronts propagating away from each other with the
shocked (downstream) plasma in between.

This configuration has been first investigated by Woolsey et al. (2001);
Courtois et al. (2004) at the Vulcan laser facility, with the additional
inclusion of an external magnetic field. The typical parameters obtained
in these experiments should match the phase of SNR shock propagation
at roughly 100 years after the supernova event, following the scaling laws
proposed by Ryutov et al. (1999).
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However, these experimental results evidenced the necessity of larger
laser facilities, in order to produce collisionless Weibel-mediated shocks
driven by electron-ion flows. Indeed, shock formation requires the devel-
opment of the ion-Weibel instability to efficiently stop the electron-ion
flows in the interaction region. This instability develops on large time
scales, due to both the large ion mass and the usually low density of the
counter-propagating flows. The plasmas have thus to overlap over dis-
tances of several centimeters. The resulting laser energy that needs to be
transmitted into these large-scale flows is thus large and available only
on today’s most energetic laser systems.

For this reason nowadays, most of the experimental results, aimed at
probing the early phase of instability development, have been obtained at
National Ignition Facility at the Lawrence Livermore National Laboratory
and at OMEGA Laser Facility, using high-energy multi-kiloJoule nanosec-
ond duration lasers operating at modest intensities I . 1016 W/cm2.

Magnetic field generation via the Weibel instability was demonstrated
at the OMEGA laser facility (Fox et al., 2013; Huntington et al., 2015;
Park et al., 2015), where interpenetrating flows with density ' 5 ×
1018 cm−3 and velocity ' 0.3% of the speed of light were created with
the configuration shown in Fig. 1.6. The interaction region is probed
with proton radiography, demonstrating the filamentary structure typi-
cal of the early stage of the Weibel instability. Experiments currently
carried out at NIF allow for higher flow density, up to 1020 cm−3, and ve-
locities, potentially up to 1% of the speed of light. These higher density
and flow velocity are expected to speed up the development of the Weibel
instability, but the possibility to preserve the collisionless regime up to
shock formation is still under investigation (Park et al., 2012; Ross et al.,
2017).

Ultra-intense laser systems with I & 1018 W/cm2 could allow to al-
leviate the limitations of the NIF laser class (multi-kJ and nanosecond
duration) on the accessible density and flow velocity. They might pro-
vide us with a complementary path towards the creation of collisionless,
ultra-fast and high density plasma flows, as will be discussed in Chap. 4.

A configuration analogous to the one investigated at the Vulcan laser
facility by Woolsey et al. (2001); Courtois et al. (2004), has been further
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Figure 1.6: Experimental configuration used at OMEGA laser facility to
drive two counter-streaming plasmas (Huntington et al., 2015) by irradi-
ating two plastic targets with kJ-ns laser pulses. The interaction region
is probed with proton radiography.

studied in ultra-intense (above 1019 W/cm2) laser system (Titan Laser Fa-
cility at the Lawrence Livermore National Laboratory) by Higginson et al.
(2015). In these works, the two counter-propagating fast plasma flows are
produced at the rear side of the target irradiated by an ultra-intense laser,
by means of the Target Normal Sheath Acceleration (TNSA) (Wilks et al.,
2001). However, in this configuration and with the use of such an intense
laser beam, the density of the expanding plasma is . 1017 cm−3, which
yields a very long instability growth time. This complicates reaching
the late stage of the instability development and in particular the shock
formation.

All the above mentioned experimental configurations aimed at probing
the compenetration of non-relativistic or mildly relativistic electron-ion
flows. The typical parameters of these experiments might well match with
SNRs, by making use of the hydrodynamic similarity proposed by Ryutov
et al. (1999). For instance, the typical scale of the experimental campaign
performed at the OMEGA laser facility, i.e. flow velocity vLAB ' 3×10−3 c

and timescale tLAB ' 1 ns, might correspond to the emitted material of
a SNR, streaming at vSNR ' 104 km/s for approximately 1 years. A
region of extension 100µm in the laboratory would thus correspond to
0.3 light-years in the astrophysical system. This scaling has been done

20



1.3. Outline of the thesis

in order to match the SuperNova 1987A at roughly 13 years from its
explosion (Ryutov et al., 1999).

In addition to these preliminary experimental results for electron-ion
flows, the production in the laboratory of pair plasmas collisionless shocks
is currently under investigation. Indeed, the generation of neutral and
high-density electron-positron plasmas has been recently demonstrated
by Sarri et al. (2015). Numerical studies (Lobet et al., 2015; Chen et al.,
2015; Zhu et al., 2016) have then confirmed that soon-available laser fa-
cilities might be able to test pair plasma collisionless astrophysics.

1.3 Outline of the thesis

This thesis aims at describing the processes related to the development of
the Weibel instability and of Weibel-mediated collisionless shocks in the
context of laboratory astrophysics. We will therefore present analytical
models supported by numerical studies for the processes involved in the
instability and shocks development. Fully relativistic kinetic simulations
are presented exploring the feasibility of collisionless shocks in the labo-
ratory. Finally the investigation of astrophysical relevant phenomena will
be discussed. The manuscript is organized as follows:
• Chapter 2 introduces the basic processes as well as summarizes
the analytic and numerical tools exploited throughout this thesis.
Starting from the Vlasov-Maxwell description, we will review the
derivation of relativistic fluid equations, used to describe the linear
theory of the Weibel instability, along with a discussion on the accu-
racy of this approach. We give a general description of collisionless
shocks, computing the Rankine-Hugoniot conditions to define the
shock front. We also provide a brief description of the Particle-In-
Cell (PIC) numerical method that has been central to this project.
• Chapter 3 presents our study on the Weibel instability driven by
two symmetric counter-streaming electron plasmas. We consider
relativistic flows in a uniform flow-aligned external magnetic field,
under both cold plasma assumption and considering thermal effects.
Both the linear and non linear stages of the instability are investi-
gated using analytical modeling and PIC simulations. The different
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mechanisms responsible for the saturation are discussed in detail in
the relativistic cold fluid framework considering a single unstable
mode. Multi-mode and temperature effects are also investigated.
Differences arising due to the dimensionality of the simulations are
highlighted.
• Chapter 4 presents the study of a suitable configuration for lab-
oratory investigations of the ion-Weibel instability driven by a fast
quasi-neutral plasma flow launched into the target via the radiation
pressure of an ultra-high-intensity laser pulse (”Hole-Boring” pro-
cess). After an introduction on the necessary background notions of
laser-plasma interaction, we identify the optimal configuration for
driving the ion Weibel instability and we demonstrate its develop-
ment in a fully 3D simulation. We discuss the origin and the effect
on the Hole-Boring-produced flow of an additional electron instabil-
ity developing at the laser-plasma interaction surface, providing an
analytical model to describe the processes correlated with its mit-
igation. Conditions for the late time evolution of the ion-Weibel-
unstable system into a collisionless shock are also investigated.
• Chapter 5 faces the numerical challenges of PIC simulation, when
ultra-relativistic flows are studied. We report on the techniques that
we have implemented in the PIC code Smilei during this thesis with
the goal of correctly describing the dynamics of ultra-relativistic
pair plasmas. We illustrate the main numerical effects yielding un-
physical results in simulations of relativistic flows and compare the
efficiency of the implemented method in reducing these numerical
artifacts.
• Chapter 6 investigates collisionless shocks in ultra-relativistic pair
plasmas. In particular, we focus on describing the mechanisms and
timing for shock formation. A proper identification of the shock for-
mation time is of major interest for future experiments. We consider
counter-propagating flows both unmagnetized and in the presence
of a perpendicular magnetic field, being the most interesting field
configuration in the ultra-relativistic case.
• Chapter 7 presents our conclusions and perspectives for future
work.
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Chapter 2. Analytical and numerical methods

In this chapter we present the basic theoretical tools that will be used
throughout this manuscript to describe relativistic plasmas and ultra-
intense laser-plasma interaction.

The most complete description of the plasma dynamics relies on a mi-
croscopic kinetic approach, presented in Sec. 2.1. The theoretical models
proposed in this thesis are however based on a relativistic fluid approach,
i.e. on a macroscopic quantities description, and systematically compared
with the kinetic approach. The fundamental equations of the macroscopic
approach are derived, starting from the kinetic description, in Sec. 2.3.
We discuss in Sec. 2.2 the distribution functions that represent the equi-
librium state of a relativistic plasma, then in Sec. 2.4 the linear theory
adequate to characterize linear waves in a plasma, as well as the grow-
ing phase of streaming plasma instabilities. Furthermore, we describe
(Sec. 2.5) the main features of collisionless shocks and we derive the basic
relations for the identification of shock formation, the so-called Rankine-
Hugoniot conditions, that relate the macroscopic state of the shocked
plasma with the unperturbed one.

Details on the numerical methods used in this work are given in
Sec. 2.6. Since this thesis is mainly focused on the physics of relativistic
plasma flows, the limitations of the classical numerical methods will be
discussed in more detail in Chapter 5, along with a description of the tech-
niques that have been implemented and allow for an accurate treatment
of relativistic particle dynamics for the cases of interest here.

2.1 Kinetic description

2.1.1 From Klimontovich to Vlasov equation

The most complete kinetic approach relies on the knowledge of the po-
sition and the momenta of each particle composing the plasma. This
description requires to study the evolution in time of the distribution
function of N particles in total, defined as

fN (t,x1,p1, . . . ,xN,pN) =
∑
i=1..N

δ [x− xi(t)] δ [p− pi(t)] , (2.1.1)
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in the approximation of point-like particles with position xi(t) and mo-
mentum pi(t), and δ the Dirac function. This is the first step toward the
derivation of the so-called Klimontovich-Dupree equation that describes
the evolution in time of fN (t,x1,p1, . . . ,xN,pN), see Krall and Trivelpiece
(1986). Despite the Klimontovich-Dupree equation representing the ex-
act microscopic description of the plasma, it is technically too demanding
to solve the equations of motion for xi(t) and pi(t), for the large number
of particle composing any physical system, for the actual computational
resources. Therefore the kinetic description that we will exploit in the
following, relies on the knowledge of the ensemble averaged particle dis-
tribution function f(t,x,p). This distribution function represents, at a
given time, the particle number density in a volume of the six-dimensional
phase-space dx dp. With this definition, at a fixed time, the distribution
function is normalized as

N =
∫
V
f(x,p) dx dp , (2.1.2)

where N is the total number of particles in the volume V of the 6D-
phase space. Assuming the volume V to move with the particle flow, the
conservation of the number of particles gives

dN
dt =

∫
V

∂f

∂t
dx dp +

∮
∂V
f U · dS = 0 , (2.1.3)

where the second integral has to be computed on the surface ∂V that
underlies the volume V , and U = {dx

dt ,
dp
dt } = {ẋ, ṗ}, where x(t) and p(t)

are the single particle position and momentum, so that U corresponds
to the velocity in the 6D-space. Using Gauss’s theorem to simplify the
second integral, we obtain∫

V

(
∂f

∂t
+∇ · (fU)

)
dx dp = 0 , (2.1.4)

where ∇ = {∂x, ∂p}. Since relation (2.1.4) does not depend on the chosen
volume, the quantity inside the integral has to vanish. This leads to

∂f

∂t
+∇ · (fU) = ∂f

∂t
+ ẋ · ∂xf + ṗ · ∂pf = 0 , (2.1.5)
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assuming that ẋ and ṗ are independent from x and p, respectively. This is
accurate in a classical (non-quantum) plasma, for which the force exerted
on a particle does not depend on its momentum. For an ultra-relativistic
particle, emitting electromagnetic radiation, we should consider the back-
reaction force on the particle due to the electromagnetic emission, the
so-called Radiation Reaction force.

In a classical (non-quantum) plasma, equation (2.1.5) can be simpli-
fied considering that ṗ is equal to the Lorentz force

F = q

(
E + v×B

c

)
, (2.1.6)

where the fields might be externally imposed or self-generated by the
average current and density of the plasma itself. Note that CGS units are
used throughout this manuscript. Equation (2.1.5) can then be rewritten
in the form of the Vlasov equation

∂f

∂t
+ v · ∂xf + q

(
E + v×B

c

)
· ∂pf = 0 . (2.1.7)

Note that this description of the plasma assumes that the dynamics is
dominated by collective effects rather than by local interactions between
neighboring particles. Additional effects due to particle-particle interac-
tion can be accounted for in an ad hoc term appearing on the right side of
the Vlasov equation (∂tf)coll. The latter can be interpreted as a collisional
effect that produces a random scattering of the particles. Here we assume
that its contribution to the particle dynamics is negligible in comparison
with the coherent motion in the mean fields. This is accurate if the typi-
cal scale-lengths of the physical mechanisms of interest are much smaller
than the collisional mean-free-path. From a temporal point of view, this
means that all the characteristic frequencies of the system are larger than
the collision frequency νcoll. The latter is proportional to the cross sec-
tion of Coulomb scattering σcoll. In particular, νcoll = nσcollv, where n
is the plasma density, v is the typical particles velocity and σcoll ∝ E−2

with E the particle kinetic energy, so that νcoll ∝ E−3/2. The collisional
frequency decreases with increasing particle energy.

Therefore, the collisionless assumption is accurate for most of the
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ultra-intense laser produced plasmas, since the strong electromagnetic
fields of the laser give such a high energy to the particles that the rate of
collisions is drastically quenched. The collisionless regime is even more
easily achieved in the astrophysical situations considered for this work, in
which high-velocity plasma flows interact with the very diluted plasma of
the interstellar medium.

2.1.2 The Vlasov-Maxwell model

In order to study the evolution of the distribution function, the Vlasov
equation (2.1.7) has to be coupled with Maxwell’s equations for the de-
scription of the electromagnetic fields

∇ ·E = 4πρ , (2.1.8)
∇ ·B = 0 , (2.1.9)

∇×E = −1
c

∂B
∂t

, (2.1.10)

∇×B = 4π
c

J + 1
c

∂E
∂t

. (2.1.11)

The source terms, charge and current densities, are given by

ρ(t,x) =
∑
s

qsns(t,x) , (2.1.12)

J(t,x) =
∑
s

qsns(t,x)Vs(t,x) , (2.1.13)

where the sum runs over all the plasma species. The total density ns
and the average velocity Vs are obtained averaging over the distribution
function, i.e. by integrating over the momentum space as

ns =
∫
fs(t,x,p) dp , (2.1.14)

Vs = 1
ns

∫
vfs(t,x,p) dp . (2.1.15)

The resulting coupled nonlinear system of equations, Eqs. (2.1.7)-(2.1.11),
constitutes the so-called Vlasov-Maxwell system.
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2.2 Equilibrium distribution functions

According to the principle of maximum entropy, any system tends to
evolve in time towards the configuration that maximizes the specific en-
tropy

S = KB

∫
f(x,p) ln(f(x,p)) dp , (2.2.1)

where KB is the Boltzmann constant.
From Eq. (2.2.1), we can derive the distribution function that repre-

sents the equilibrium state of our system. The maximization has to be
done consistently with some known constraints expressed in terms of av-
erage values of one or more physical quantities. In the following the phys-
ical constraints are given by the number of particles, as in Eq. (2.1.2), the
average momenta and the average energy. To perform the calculations,
each of these quantities should be associated to a Lagrange multiplier, in
the following α, β, η. The maximum of the entropy is obtained imposing
δS = 0 as

δ

∫ [
ln(f(x,p)) + α+ β · p + η

√
1 + p2

m2c2

]
f(x,p) dp = 0 . (2.2.2)

Imposing that this relation is verified for every possible choice of δf(x,p)
leads to a distribution function of the form

f(x,p) ∝ e

(
−η
√

1+ p2
m2c2−β·p

)
. (2.2.3)

The values of η and β can be obtained from the knowledge of the average
momenta and energy, as well as the normalization factor can be derived
from Eq. (2.1.2).

In the following we provide the explicit forms of the non-relativistic
and relativistic distribution functions used in this thesis.

Non-relativistic distribution function

The plasma equilibrium for a species with single particle mass ms and
temperature Ts, in the non-drifting and non-relativistic case, i.e. with
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temperature Ts � msc
2, can be calculated from Eq. (2.2.3) taking the

limit v � c. In this regime, the equilibrium is described by the Maxwell-
Boltzmann distribution function, defined as

fs(v) = n0

(
ms

2πTs

)D/2
e−

1
2
msv2
Ts , (2.2.4)

where the temperature is in units of msc
2 and D is the dimensionality of

the momentum phase-space. We have assumed a uniform distribution in
space, corresponding to the density n0. Therefore we do not specify any
dependence on x of the distribution function.

Equation (2.2.4) describes a plasma with no drift velocity or in its
own rest frame. The straightforward generalization to the case with drift
velocity V0 reads

fs(v) = n0

(
ms

2πTs

)D/2
e−

1
2
ms(v−V0)2

Ts . (2.2.5)

Maxwell-Jüttner distribution function

In this section we consider a plasma at equilibrium with an arbitrary
large average kinetic energy, i.e. exceeding the rest mass energy of the
particles. This model concerns thermal plasmas with temperature Ts &
msc

2 and plasmas drifting with relativistic velocity. In both cases, the
Maxwell-Boltzmann distribution functions, Eqs. (2.2.4) and (2.2.5), no
longer give an appropriate description, since they predict particles with
velocity exceeding the speed of light.

The relativistically accurate distribution function can be calculated
starting from Eq. (2.2.3). As demonstrated by Juttner (1911); Wright
and Hadley (1975), the resulting equilibrium distribution takes the form
of the so-called Maxwell-Jüttner function, that in the rest frame of the
plasma, i.e. where the plasma has vanishing mean drift velocity, reads

fs (p) = n0
µs

4πK2(µs)
e
−µs

√
1+ p2

m2
sc

2
, (2.2.6)

1The normalization factor in 2D is n02πe−µsµs/(µs + 1) and in 1D n02K1(µs)/µ2
s.
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where the normalization factor has been computed for a 3D momentum
phase-space1, µs = msc

2/Ts with Ts the plasma temperature, Kn is the
modified Bessel function of the second kind of order n and n0 is the
plasma density.

Considering a plasma moving with drift velocity V0, the distribution
function (2.2.6) can be generalized to

fs (p) = nd
µs

4πK2(µs)Γ0
e
−µsΓ0

[√
1+ p2

m2
sc

2−
V0·p
msc2

]
, (2.2.7)

where Γ0 =
[
1− (V0/c)2

]−1/2
and nd is the density in the frame where

the plasma is streaming with velocity V0. The relation between nd and
n0, the density of the plasma in its proper frame, is simply nd = n0Γ0.

In some cases (see e.g. Chap. 6), it can be useful to express the
Maxwell-Jüttner distribution (2.2.6) as function of γ =

[
1 + p2/(m2

sc
2)
]1/2.

This simply requires a change of variable that depends on the dimension-
ality of the system, since p2 = p2

x+p2
y in the 2D case and p2 = p2

x+p2
y+p2

z

in 3D. This change of coordinates in Eq. (2.2.6) leads to

f2D
s (γ) = nd

µ2
s

µs + 1γe
−µs(γ−1) , (2.2.8)

f3D
s (γ) = nd

µs
K2 (µs)

γ
√
γ2 − 1 e−µsγ . (2.2.9)

Note that the dimensionality of the system is defined by the effective
degree of freedom over which the distribution function is isotropized in
the momentum phase-space.

Average quantities

In this paragraph we describe the method used to calculate the average
value of a generic microscopic quantity over a drifting distribution func-
tion. This is necessary to express the relativistic fluid equations that will
be derived in the next section.

The average of a microscopic quantity gRF(p0) in the plasma rest
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2.2. Equilibrium distribution functions

frame (RF) is defined as

〈gRF〉RF = 1
n0

∫
dp0 g

RF(p0) f0(p0) , (2.2.10)

where p0 is the momentum in the plasma rest frame and the distribu-
tion function f0(p0) corresponds to the non-drifting Maxwell-Jüttner,
Eq. (2.2.6), for which the index of species s has been dropped for sim-
plicity. Following Melzani et al. (2013), we can relate 〈gDF〉DF, the av-
erage in the frame where the plasma drifts with velocity V0 (DF), with
its average value in the plasma rest frame. Expressing the single parti-
cle momenta in the drifting frame pd in terms of p0, by means of the
Lorentz transformations, and exploiting the relation dpd/γd = dp0/γ0,
where γ0,d =

[
1 + |p0,d|2/(mc)2]1/2, we obtain

〈gDF〉DF = 1
nd

∫
dpd gDF(pd) fd(pd) = 1

n0Γ0

∫
dp0

γd
γ0
gDF(p0) f0(p0) .

(2.2.11)

This leads to the extremely useful relation

〈gDF〉DF = 1
Γ0

〈γd
γ0
gDF(p0)

〉
RF
, (2.2.12)

which enables us to calculate all average quantities from their average in
the plasma rest frame, by performing the integral over the distribution
function Eq. (2.2.6), which turns out to be analytically more tractable
than using Eq. (2.2.7).

As an example, we exploit this relation to obtain the expression of
the average momentum of the drifting Maxwell-Jüttner, denoting by x

the direction of the drift

Px,d = 〈px,d〉DF = 1
Γ0

〈Γ2
0
[
(px,0 + V0γ0m)

(
γ0 + V0px,0/(mc2)

)]
γ0

〉
RF
,

(2.2.13)
where we used the Lorentz transformations for px,d and γd, and V0 =
〈vx,d〉DF. Since in the plasma rest frame 〈px,0〉RF = 0, we obtain

Pd = h0(µ)mΓ0V0 , (2.2.14)
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where h0(µ) is the normalized enthalpy in the rest frame of the plasma
defined as

h0(µ) = n0〈γ0〉RFmc
2 + P

n0mc2 = 〈γ0〉RF + 1
µ
, (2.2.15)

where we have assumed the thermal pressure tensor component

Πxx = n0〈vx,0px,0〉RF (2.2.16)

to reduce to the scalar P = n0T , since the Maxwell-Jüttner distribu-
tion function is isotropic. Calculating analytically the expression for
the average value of γ0 over a 3D Maxwell-Jüttner, we obtain h0(µ) =
K3(µ)/K2(µ) = k32(µ). Note that, from the definition of the average mo-
mentum Eq. (2.2.14), the drift relativistic factor Γ0 6=

√
1 + P2

d/(mc)2.
Assuming the system to behave as an ideal gas (P = n0T0) with

adiabatic equation of state, the relation between pressure and internal
energy of the system e0 can be written as

P = (Γad − 1)e0 = (Γad − 1)(〈γ0〉0 − 1)n0mc
2 , (2.2.17)

where e0 corresponds to the kinetic energy, since the perfect gas assump-
tion involves non-interacting particles, and Γad is the adiabatic index.
Note that in the non-relativistic limit (T � mc2) the enthalpy takes
the value h(µ) ' 1 + 5T/(2mc2), corresponding to an adiabatic index
Γad = 5/3, while in the ultra-relativistic limit T � mc2, the enthalpy
tends to 4T/(mc2) and Γad = 4/3.

Note that the pressure is a Lorentz invariant P0 = Pd, therefore in
the drifting frame the apparent temperature becomes Td = T0/Γ0. The
other useful average quantities are listed in Table 2.2.1.

2.3 Relativistic hydrodynamic equations

The hydrodynamic approach is based on a description of the plasma in
terms of macroscopic quantities, such as density, temperature, mean ve-
locity, etc. Therefore, this description is accurate for distribution function
close to the equilibrium condition over which the average quantities are
computed.
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2.3. Relativistic hydrodynamic equations

Quantities 〈·〉RF 〈·〉DF

Enthalpy h k32(µ) Γ0k32(µ)

Energy γ k32(µ)− µ−1 Γ0k32(µ)− (Γ0µ)−1

Velocity 0 V0

Momentum 0 k32(µ)mΓ0V0

Γad 1 + (µk32(µ)− µ− 1)−1 1 +
(
µΓ2

0k32(µ)− µΓ0 − 1
)−1

Table 2.2.1: Average quantities on a 3D system in the rest frame of the
plasma (〈·〉RF) and in a frame drifting with velocity V0 (〈·〉DF). Here
k32 = K3(µ)/K2(µ), with Kn the modified Bessel function of the second
kind of order n.

We can derive the relativistic hydrodynamic equations starting from
the Vlasov equation, Eq. (2.1.7), and computing the successive moments,
as detailed in what follows. For a derivation in terms of 4-vector fol-
lows Groot (1980).

Conservation of the number of particles

The zero order moment is obtained by integrating the Vlasov equation,
Eq. (2.1.7), over all momentum components as

∂t

∫
dp f(x,p, t) + ∂x

∫
dp v f(x,p, t) +

∫
dp (F · ∂p) f(x,p, t) = 0 ,

(2.3.1)

being x and v independent variables, and F the Lorentz force, Eq. (2.1.6).
The first integral is simply the definition of the density, Eq. (2.1.12), while,
in the second one, we recognize the average velocity, Eq. (2.1.13). The
last term can be integrated by parts and gives no contribution as ∂pF = 0.
In conclusion, from Eq. (2.3.1) we obtain

∂tn+ ∂x (nV) = 0 , (2.3.2)

that corresponds to the conservation of the particle number.
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Conservation of momentum

The conservation of momentum follows from the calculation of the first
moment of the Vlasov equation, Eq. (2.1.7). Thus, we multiply Eq. (2.1.7)
for p and integrate over dp as

∂t

∫
dp pf(x,p, t) + ∂x

∫
dp pvf(x,p, t) +

∫
dp p (F · ∂p) f(x,p, t) = 0 ,

(2.3.3)

where the underlined notation represents the tensor pv
ij

= pivj and the
derivative of a tensor is defined as(

∂xpv
)
i

=
∑
j

∂jpv
ij
. (2.3.4)

The first integral in Eq. (2.3.3) corresponds to the average momentum
P, as defined in Eq. (2.2.14). The second represents the total pressure
tensor and can be decomposed as nPV + Π, the sum of the kinetic pres-
sure tensor, concerning the overall drift motion of the species, and the
thermal pressure tensor, following from the random motion of the parti-
cles around their average drift velocity. The third integral of Eq. (2.3.3)
can be performed by parts and leads to

∂t (nP) + ∂x (nPV + Π) = nq

(
E + V

c
×B

)
. (2.3.5)

Using the conservation of the number of particles, Eq. (2.3.2), the previous
equation becomes

(∂t + V · ∂x) P = −∂xΠ
n

+ q

(
E + V

c
×B

)
. (2.3.6)

As previously mentioned, the relation between the average momentum
and the average velocity is not straightforward, see Eq. (2.2.14). The
latter equation allows us to write Eq. (2.3.6) as

h0(µ)mΓ0 (∂t + V · ∂x) V = −∂xΠ
n

+ q

(
E + V

c
×B

)
. (2.3.7)
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2.3. Relativistic hydrodynamic equations

This equation can be expressed in a proper conservation form, by writing
the electromagnetic contribution in a different way. We exploit the con-
servation of momentum density of the electromagnetic fields, represented
by the so-called Poynting vector S = E×B (c/4π), as

∂t

(
S
c2

)
− ∂xT = −

(
ρE + J×B

c

)
, (2.3.8)

where T is the Maxwell’s stress tensor

Tij = 1
4π

[
EiEj −

E2δij
2 +BiBj −

B2δij
2

]
. (2.3.9)

Combining Eqs. (2.3.5) and (2.3.8), and considering J = nqV, we obtain

∂t

(
nP + S

c2

)
+ ∂x (nPV + Π−T) = 0 , (2.3.10)

that has the form of a continuity equation for the total momentum density.

Conservation of the energy

The equation for energy conservation is obtained by multiplying the
Vlasov equation, Eq. (2.1.7), for the energy

(
γ mc2) and by integrating

over all momenta as

∂t

∫
dp γf(t,x,p) + ∂x

∫
dp γvf(t,x,p) +

∫
dp γ (F · ∂p) f(t,x,p) = 0 .

(2.3.11)

The first and second integrals are by definition n〈γ〉 and n〈γv〉, respec-
tively. Performing the third integral by parts, we find the energy dissipa-
tion due to the electric field, as expected. To summarize, equation (2.3.11)
becomes

∂t

(
〈γ〉mc2

)
+ ∂x

(
〈γv〉mc2

)
= q〈E · v〉 , (2.3.12)

meaning that the variation in time of the total kinetic energy is balanced
by the flux of the kinetic energy (second term on the left hand side) and by
the energy dissipated by the electric field. The energy flux clearly vanishes
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for a non-drifting thermal plasma at equilibrium, for which 〈γv〉 = 〈p〉 =
0, while for a drifting equilibrium distribution, energy is transported by
the average flow, see Eq. (2.2.14). In a more general situation, in which
the distribution function deviates from a Maxwellian, the energy flux does
not vanish 〈γv〉 6= 0 and it accounts for the total kinetic energy transport,
carried by both average or thermal motion. While in the non-relativistic
case it is possible to separate the term corresponding to the thermal
energy transported by the thermal motion (the so-called heat flux) and
the terms relative to the average motion, in Eq. (2.3.12) both terms are
included in the γ-factor. Nevertheless, it is possible to find an expression
analogous to the non-relativistic one computing the moment of the tensor
pv, appearing in Eq. (2.3.3), necessary to express the pressure tensor Π.

The term on the right side of Eq. (2.3.12) can be written in a con-
servative form exploiting the equation for the conservation of the electro-
magnetic field energy density

∂t

(
E2

8π + B2

8π

)
+ ∂x

(
c

E×B
4π

)
= −E · J = −nq〈E · v〉 . (2.3.13)

Note that here the Poynting vector S appears in the second term on
the left as the flux of the electromagnetic energy density. Combining
Eqs. (2.3.12) and (2.3.13), we obtain

∂t

(
n〈γ〉mc2 + E2

8π + B2

8π

)
+ ∂x

(
n〈γv〉mc2 + c

E×B
4π

)
= 0 , (2.3.14)

where we can insert the average values listed in Table 2.2.1, for the case
of a Maxwell-Jüttner distribution.

Closure of the hydrodynamic equations

The hydrodynamic equations, Eqs. (2.3.2)- (2.3.10) and (2.3.14), derived
from the kinetic description by taking the moments of the Vlasov equa-
tion, do not constitute a closed system. Indeed, each moment of the
Vlasov equation is coupled to the higher order one. Therefore, an addi-
tional equation is required.

In the following of this chapter, we will make use of the equation of
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2.4. Linear Waves and Instabilities

state which defines the relation between internal energy e0, pressure P
and density n.

Obviously in a cold plasma2, the simple closure is P = 0, while for
an isothermal process P = nT , with constant temperature. The closure,
that we will demonstrate to be the most accurate for our investigation,
is the adiabatic one, in which the system is considered isolated, hence
it evolves without exchanging energy with any external source. Within
this approximation a truncation of the hierarchy of the Vlasov equation
moments, is often exploited, assuming high order moments, and in partic-
ular the heat flux, to be vanishing. This corresponds to a closure such as
T ∝ nΓad−1, so that P ∝ nΓad, with Γad the adiabatic index, as already
discussed in Eq. (2.2.17).

2.4 Linear Waves and Instabilities

In this paragraph we derive the key quantity for the description of the
plasma instabilities: the susceptibility tensor. This quantity can be cal-
culated with a perturbative approach, starting from either a kinetic or a
hydrodynamic description of the species constituting the plasma. Here
we will exploit the relativistic fluid equations derived in Sec. 2.3 (for a
kinetic treatment refer to Krall and Trivelpiece (1986)). Note that the
use of the fluid equations, in which the average quantities are calculated
over a drifting Maxwell-Jüttner distribution, allows for much simpler cal-
culations with respect to a kinetic approach with the same distribution
function, in particular in the presence of an external magnetic field as
will be considered in Chap. 3. We will discuss the limit of validity of this
approach in Sec. 2.4.3, by means of a direct comparison with the kinetic
results.

We consider that all space-/time-dependent physical quantities can
be written in the form

ε(x, t) = ε0 + ε1e
−i(ωt−k·x) , (2.4.1)

2We should not confuse the cold approximation with the regime of low-temperature
plasmas, e.g. in electrical discharges. In the context of this thesis, a cold plasma has
a negligible thermal spread so that effectively the momentum distribution is a Dirac
function.
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with |ε1| � |ε0|. Maxwell’s equations (2.1.10) and (2.1.11) become

ik×E(1) = iω

c
B(1) , (2.4.2)

ik×B(1) = 4π
c

J(1) − iω

c
E(1) , (2.4.3)

where (1) refers to the quantity of the order of ε1. The first order pertur-
bation of the current density reads

J(1) =
∑
s

qs(n0sV(1)
s + n(1)

s V0s) . (2.4.4)

Combining Eqs. (2.4.2) and (2.4.3), by taking the curl of Eq. (2.4.2), we
obtain

k(k ·E(1))− |k|2E + ω

c
(4πi
c

J(1) + ω

c
E(1)) = 0 . (2.4.5)

This represents a tensorial relation whose non trivial solution is obtained
as detΞ = 0, where the susceptibility tensor Ξ is

Ξ =


ω2

c2 εxx − k2
y − k2

z
ω2

c2 εxy + kxky
ω2

c2 εxz + kxkz

ω2

c2 εyx + kxky
ω2

c2 εyy − k2
x − k2

z
ω2

c2 εyz + kykz

ω2

c2 εzx + kxkz
ω2

c2 εzy + kykz
ω2

c2 εzz − k2
x − k2

y

 , (2.4.6)

with the permittivity tensor component εij =
[
δij + 4πi

ω σij
]
, and Ji =

σijEj , with σ the conductivity tensor.

In order to find an explicit expression for the components of the con-
ductivity tensor σ, we linearize Eq. (2.3.2) as

− iωn(1)
s + ik · (n(1)

s V0s + n0sV(1)
s ) = 0 , (2.4.7)

assuming an initial flow velocity V0s for the species s. Hence, the per-
turbation in the density becomes

n(1)
s = n0s

k ·V(1)
s

ω − k ·V0s
. (2.4.8)
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Linearizing Eq. (2.3.6), we get

i
[
V0s · k− ω

]
P(1)
s = qs

(
E(1) + V0s

c
×B(1) + V(1)

s

c
×B0

)
− ikΓadn

(1)
s Ts

n0s
,

(2.4.9)

where E0 and B0 are external fields that might be present at time t = 0,
the pressure tensor has been considered isotropic, so that it reduces to
P = nT in the perfect gas approximation, and we consider an adiabatic
closure. This assumption will be discussed further in Sec. 2.4.3.

Exploiting Eqs. (2.4.8) and (2.4.9), we can calculate the first order
current density (2.4.4) and insert it into Eq. (2.4.5). The solution of
detΞ = 0 provides the dispersion relation of all the waves allowed in the
system. In particular, a solution with a complex frequency ω = ωR + iΓ,
from Eq. (2.4.1) reads

ε1(x, t) = ε1e
Γte−i(ωRt−k·x) . (2.4.10)

For Γ < 0 ,this corresponds to an exponentially damped solution, while,
for Γ > 0, it gives an exponentially growing mode, i.e. an instability.

2.4.1 Linear waves in a cold plasma

In this paragraph we provide a simple description of the propagation
of electromagnetic waves in a cold (P = 0), non-magnetized (B0 = 0)
plasma at rest, as done in several textbooks (see Jackson, 1962; Krall and
Trivelpiece, 1986). Neglecting relativistic effects, equation (2.4.9) reduces
to

− iωmsV(1)
s = qsE(1) . (2.4.11)

Therefore, all off-diagonal terms in Ξ, Eq. (2.4.6), vanish and detΞ =∏
i Ξii. Looking for electromagnetic modes propagating along the x-

direction k = kxx̂, both components Ξyy and Ξzz give

ω2 =
∑
s

ω2
ps + k2

xc
2 , (2.4.12)
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with ω2
ps = 4πn0sq

2
s/ms, known as plasma frequency of the s-species. Re-

lation (2.4.12) gives the threshold value for the lowest frequency of the
electromagnetic waves allowed to propagate in a plasma with density n0s.
In the case of electron-proton plasma, since mi � me we can neglect the
contribution of ωpi in the sum in Eq. (2.4.12). Hence, electromagnetic
waves with ω > ωpe propagates, while for ω < ωpe the waves are evanes-
cent, namely the fields decreases exponentially as ∼ e−kxx, considering a
plasma filling the region x > 0.

Note that the component Ξxx gives a different type of solutions. In
particular, longitudinal electrostatic modes with frequency ω = ωps.

2.4.2 Electron Weibel or Filamentation instability

As already mentioned in the previous chapter, the Weibel or Filamenta-
tion instability has been demonstrated to be crucial for collisionless shock
formation in astrophysical plasmas. It has been also often encountered in
studies related to laser-plasma interaction (Huntington et al., 2015; Göde
et al., 2017). In this paragraph, we explain its behavior and we derive its
growth rate in a simple configuration.

AWeibel unstable initial condition requires an anisotropy in the distri-
bution function, that can be produced by a strong temperature anisotropy
(the scenario originally envisioned by Weibel (1959)), or by counter-
streaming flows (also referred to as current-filamentation instability). In
both situations the instability transfers energy from the particles to the
magnetic field and tends to isotropize the particle distribution function.

The Weibel instability has an electromagnetic nature and it can be
triggered by small amplitude electromagnetic fluctuations. As charged
particles get deflected by any fluctuation of the magnetic field perpendicu-
lar to their initial velocity, particles initially moving in opposite directions
will concentrate in spatially separated current filaments, hence amplify-
ing the initial magnetic field perturbation (linear phase), as sketched in
Fig. 2.1. As the self-generated magnetic field amplitude grows, the par-
ticle dynamics is strongly modified by the fields (non-linear phase), and
various saturation mechanisms may set in, as will be discussed in detail
in Chapter 3.
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Figure 2.1: Schematic description of the Weibel instability development.
The particles (in this case electrons) propagating along the x-direction,
enter in a region with magnetic field fluctuations Bz (positive in blue and
negative in red) and get deflected along the y-direction toward the zero
of the magnetic field. Particles accumulate and create current filaments
Jx that increase the initial magnetic fluctuations.

This instability has been the focus of several works considering dif-
ferent configurations and unmagnetized plasmas (Pegoraro et al., 1996;
Califano et al., 1997, 1998; Bret et al., 2010a). Two-dimensional spectra
of the unstable modes have been provided by Bret et al. (2010b), with
particular attention to the competition between transverse, oblique and
longitudinal (driving the so-called two-stream instability) modes. In the
systems investigated in this thesis, the unstable spectrum is dominated
by electromagnetic modes.

For this reason, we derive here the Weibel instability dispersion re-
lation in one of the simplest configuration, that of two cold counter-
streaming electron beams with respective densities n0/2 and drift veloc-
ities V0 = ±V0x̂, in a background of neutralizing ions. We also neglect
the external electromagnetic fields E0 = B0 = 0 and we look for purely
transverse modes, i.e. k = kyŷ, in order to simplify the presentation.
We can model the linear phase of the instability, namely the phase of
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exponential growth, using the linearized relativistic cold fluid equations
[Eqs. (2.4.8)-(2.4.9) in the limit of enthalpy h = 1 and pressure P = 0].
To do so, we need to relate the variation of momentum and velocity, as

msV(1)
s = P(1)

s

Γ0s
− P0s

Γ3
0s

P0s ·P(1)
s

m2
sc

2 , (2.4.13)

so that the current perturbation in Eq. (2.4.4) becomes

J(1) = en0
2meΓ0

∑
s

[
P(1)
s −

P0s
Γ2

0

P0xsP
(1)
xs

m2
ec

2 + V0s
kyP

(1)
ys

ω

]
. (2.4.14)

Inserting Eq. (2.4.14) into Eq. (2.4.5) and expressing the dependence of
the momenta perturbation on the electric field E(1), the tensor Ξ becomes

Ξ =


ω2

c2 − k2
y −

ω2
pe

c2Γ0

(
1

Γ2
0

+ k2
yV

2
0

ω2

)
0 0

0 ω2

c2 −
ω2
pe

c2Γ0
− k2

y 0

0 0 ω2

c2 −
ω2
pe

c2Γ0

 ,
(2.4.15)

where the non-diagonal terms vanish thanks to the symmetry of the prob-
lem. Since detΞ =

∏
i Ξii, we can solve for each component Ξii = 0. For

Ξyy = 0 and Ξzz = 0, we obtain stable waves, while Ξxx allows for a
purely imaginary solution ω = iΓ as

Γ(ky) = 1√
2

√(k2
yc

2 +
ω2
pe

Γ3
0

)2
+ 4

ω2
pe

Γ0
k2
yV

2
0 −

(
k2
yc

2 +
ω2
pe

Γ3
0

)1/2

.

(2.4.16)
This solution corresponds to the growth rate of electron-Weibel transverse
modes with wavenumber ky, leading to a magnetic field Bz.

As a first generalization, we can account for a finite temperature
T � mec

2. In Eqs. (2.4.8)-(2.4.9), we should include the effect of the nor-
malized enthalpy h(µ), with µ = mec

2/T0 and T0 the rest frame plasma
temperature, and the contribution of the first order perturbation of the
pressure term P = nT , in a perfect gas assumption. Proceeding as for
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Figure 2.2: Electron-Weibel instability growth rate Γ as a function of the
wavenumber k, for electron streaming velocity V0 = 0.4 c and temperature
T0 = 0 (dashed dark green line) and T0 = 5×10−3mec

2 (light green line).

the cold case, we obtain the dispersion relation for the purely transverse
electron Weibel modes

ω2

c2 − k
2
y −

ω2
pe

c2Γ0h(µ)

 1
Γ2

0
+

k2
yV

2
0

ω2 − ΓadT0k2
y

meΓ2
0h(µ)

 = 0 , (2.4.17)

and consequently we can derive the growth rate of the instability. In the
limit T0 = 0, we recover the prediction of the cold fluid theory, i.e. the
Ξxx component in Eq. (2.4.15).

A detailed description of the instability growth, of the role of the
temperature and of the application of external fields will be presented in
Chap. 3, as well as the development of the ion instability will be inves-
tigated in Chap. 4. However, in order to have a qualitative idea of the
instability features in this linear phase of growth, we report in Fig. 2.2,
Γ(k) for two counter-streaming beams with V0 = 0.4 c and temperature
T0 = 0 (dashed dark green line). In this cold case the fastest growing
modes have k & ωpe/c (small wavelengths) and the asymptotic growth
rate is Γasymp = (V0/c

√
γ0)ωpe ' 0.38ωpe. In Fig. 2.2, we also show

the growth rate in the case of beam temperature T0 = 5 × 10−3mec
2

(light plain green line). This value has been chosen because we expect
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the growth of modes with k & Γasymp/vth, with vth ∼
√
T0/me, to be

drastically modified. In fact, the transverse motion associated with the
introduction of a temperature, leads to the stabilization of the large-k
(small wavelengths), while does not affect much the growth of the small
wavenumbers.

2.4.3 Discussion on the limit of the fluid approach

The limit of validity of the fluid description is discussed in this section,
in order to justify the use of this approach. We provide here a direct
comparison with the dispersion relation of the Weibel instability derived
from a kinetic approach. For simplicity, we restrict ourselves to the non-
relativistic limit. We consider the same geometry of the previous sec-
tion, with initially two counter-streaming electron flows with drifting-
Maxwellian distribution function, Eq. (2.2.5).

Following Davidson et al. (1972), the dispersion relation for purely
transverse mode (k = kyŷ) reads

ω2

c2 −k
2
y−

ω2
pe

c2 +
ω2
pe

c2 [ae + 1]
[
1 +

√
me

2T0

ω

ky
Z
(√

me

2T0

ω

ky

)]
= 0 , (2.4.18)

where ae = meV
2

0 /T0 measures the anisotropy of the beams and we as-
sume ae � 1 for the case of interest in the following of this work Z(ξ) is
the so-called plasma dispersion function (Fried et al., 1960) defined as

Z(ξ) =
∫ +∞

−∞
dt e

−t2

t− ξ
. (2.4.19)

Note that for the description of the Weibel instability, ξ is purely
imaginary and equal to i

√
me/2T0Γ/ky, with Γ > 0 the growth rate.

The dispersion relation calculated with the fluid approach [Ξxx = 0 in
Eq. (2.4.15)] is recovered in the limit |ξ| � 1. This means that the
thermal velocity has to be much smaller than the typical quantity Γ/k,
analogous of the phase velocity for the case of propagating waves. Indeed,
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for ξ � 1 the function Z(ξ) becomes

Z(ξ) ' i
√
πσe−ξ

2 − 1
ξ

(
1 + 1

2ξ2 + 3
4ξ4 + ...

)
, (2.4.20)

where σ takes finite values in the range [0, 2], (see Fried and Conte, 1961).
Neglecting the last term on the right hand side of Eq. (2.4.20) and insert-
ing this development in Eq. (2.4.18), we obtain the dispersion relation of
the cold fluid approximation.

Note that the limit to recover the fluid dispersion relation Γ/k �√
2T0/me corresponds to the condition for the adiabaticity of the system,

so that T ∝ nΓad−1 with Γad the adiabatic index defined in Eq. (2.2.17).
This means that, during a typical interval of time t ∼ Γ−1, a particle
moving at the thermal velocity is not able to explore a filament wave-
length. The adiabatic closure leads to a pressure term dependence on
the density as P ∝ nΓad , so that its first order perturbation becomes
P(1) = Γadn

(1)T . This factor is in fact considered in the last term on the
right hand side of Eq. (2.4.9).

The presence of the multiplicative factor Γad in the pressure term is
confirmed by the kinetic approach. Indeed, considering the last term
on the right hand side in the expansion (2.4.20) and inserting it in
Eq. (2.4.18), we obtain the dispersion relation

ω2

c2 − k
2
y −

ω2
pe

c2 −
ω2
pe

c2
k2
yV

2
0

ω2

[
1 +

3T0k
2
y

meω2

]
= 0 . (2.4.21)

Comparing it with the results of the fluid description, Eq. (2.4.17), we
obtain the same dispersion relation once performing an additional devel-
opment in the last term of Eq. (2.4.17) [(1 − ε)−1 ' 1 + ε, with ε � 1].
Indeed, within the assumption of purely transverse mode, it is reasonable
to assume that the adiabatic index takes its 1D value, i.e. Γad = 3, since
the instability compresses the flow along the k-direction and all modes
evolve independently in the linear phase.

In the opposite limit |ξ| � 1, the quantity Γ/k is smaller than the
thermal velocity, hence it corresponds to a region of the phase-space where
the distribution function is non-vanishing. Therefore, kinetic effects are
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expected to play an important role. This is usually referred to as kinetic
regime of the instability. In this regime, the fluid description is not ap-
plicable.3 For the sake of completeness, we recall the expansion of the
function Z(ξ) in the limit |ξ| � 1

Z(ξ) ' i
√
πe−ξ2 − 2ξ

(
1− 2ξ2

3 + ...

)
. (2.4.22)

The leading term of the expansion (Z(ξ) ' i
√
πe−ξ2) that is responsible

for the instability growth, derives from the integration around the pole of
the dispersion function. For this reason the instability can not be recov-
ered within the fluid approach in the limit |ξ| � 1. Using Eq. (2.4.22),
the dispersion relation for ω = iΓ becomes a simple second order equation

Γ2 + c2k2
y + ω2

pe − ω2
pe (ae + 1)

(
1−

√
πme

2T0

Γ
ky

)
= 0 . (2.4.23)

As a consequence of this purely kinetic instability regime, the value of
the cut-off wavenumber, maximum unstable mode, is slightly larger than
predicted by the fluid approach.

2.5 Collisionless Shocks

Hydrodynamic shocks are quite well understood and extensively described
in the literature, while there are still many open questions regarding col-
lisionless shocks. While in the previous Chap. 1 we focused on the de-
scription of the late stage dynamics of the particles accelerated at Weibel-
mediated shock fronts, here we discuss mainly the initial phase of shock
formation. This leads to a first general classification of the different type
of shocks developing in collisionless plasmas.

2.5.1 General considerations

Common hydrodynamic shock waves, such as those following detonations
or those produced by supersonic aircraft, can be described as discontin-

3In case one computes, by means of the fluid theory, the Weibel instability growth
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uous steady solutions of the ideal fluid equations which propagate with
velocity larger than the speed of sound in the fluid. The propagation
of such a wave involves an abrupt change in the macroscopic state of
the fluid mediated by collisional effects. In particular, the fluid behind
the discontinuity region (the so-called shock front) is found to be com-
pressed and strongly heated, hence reaching a high pressure state. Indeed,
collisions produce an irreversible conversion of the kinetic energy of the
fluid crossing the shock front into thermal energy. The relations between
the macroscopic quantities that describe the unperturbed fluid and the
ones that characterize the shocked plasma, are the well known Rankine-
Hugoniot conditions (Blandford and McKee, 1976). They can be derived
exploiting the conservation of particle number, momentum and energy at
the shock front, as detailed in Sec. 2.5.2.

In principle, the formation of shocks in the collisionless regime is not
allowed within the fluid description, since no dissipative effects can justify
the macroscopic change of state. However, a shock wave solution becomes
possible in the presence of kinetic effects acting, at the shock front, as
an effective dissipation. Indeed, many numerical and experimental works
have demonstrated the existence of a discontinuous propagating wave in
collisionless plasmas, see (Marcowith et al., 2016) and references therein.
While in usual hydrodynamics shocks, the region where the variation of
macroscopic state takes place has an extension of the order of some λmfp,
the collisional mean-free-path, in collisionless plasma the discontinuity
appears as a transition layer lf � λmfp.

Two main classes of collisionless shocks can be identified: laminar or
turbulent, as first discussed by Tidman and Krall (1971). Laminar shock
waves are formed due to the steepening of finite amplitude waves propa-
gating in the medium. With the linearized fluid equations, described in
Sec. 2.4, we can identify the small amplitude waves allowed to propagate
in the plasma and their characteristic velocities, such as the ion-acoustic,
magnetosonic speed, etc. For a wave with finite amplitude, non-linear
terms in the fluid equations play a fundamental role. Indeed, these terms
allow the crests of the wave to move faster than the zeros, leading to a

rate, in a system with parameters typical of this kinetic regime, the configuration would
be erroneously predicted to be stable.
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progressive steepening of the wave profile. This process creates regions
where the density gradient is so large that dispersive effects are not neg-
ligible and can balance the ongoing steepening. While in hydrodynamic
shocks, collisions at the shock front mediated the macroscopic change of
state, in the laminar collisionless shocks the effective dissipation is due
to the collective interaction between particles and the laminar electro-
magnetic fields of the non-linear wave. Therefore, a classification of the
different types of laminar shocks relies on the nature of the fields at the
shock front. We discriminate between electrostatic shocks, where only
an electrostatic potential mediates the discontinuity, such as in the non-
linear evolution of ion-acoustic waves (Grassi et al., 2016), and strongly
magnetized shocks, in which a magnetic barrier forms as a consequence
of the non-linear evolution of, for instance, magnetosonic waves. In both
cases the dissipation mechanism relies on the reflection of part of the ion
population and on the trapping of part of the electron population entering
in the shock front, as described by Tidman and Krall (1971).

In addition to these class of laminar shocks, turbulent shocks have
been identified in many astrophysical systems. As already mentioned in
the previous Chapter 1, in this case the shock front is the result of plasma
instabilities that generate and amplify turbulent electromagnetic fields.
For instance, the strong magnetic fields produced by the Weibel instabil-
ity (hence, the name Weibel-mediated collisionless shocks) can lead to the
dissipation of the flow kinetic energy and consequently to the isotropiza-
tion of the incoming flow. The dissipation of the flow kinetic energy,
not only involves an increase of the temperature, but also an increase of
the density, since the flow is drastically slowed down. This produces a
narrow region, of the order of tens of c/ωp, the skin depth of the par-
ticles involved in the instability, where the density and the temperature
change abruptly. The level of density accumulation in a non-propagating
structure is limited by fluid constrains on momentum and energy conser-
vation. Therefore, this front might start propagating once enough density
has been accumulated. At this point, the shock is considered fully formed.
The characteristic density and temperature jump, and the expected shock
front velocity, will be discussed in the following paragraph.

While the phase of the instability development has been analytically
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well characterized, a theoretical description of the shock formation stage
is still lacking. Hence, an extensive numerical investigation has been per-
formed in the last decades (Spitkovsky, 2008; Sironi and Spitkovsky, 2009,
2011a; Stockem et al., 2014; Caprioli and Spitkovsky, 2014a; Stockem-
Novo et al., 2015; Bret et al., 2016; Novo et al., 2016; Ruyer et al., 2016;
Bret et al., 2017). These works have successfully described the physics be-
hind shock formation and late stage of shock propagation in both electron-
ion and pair plasma in unmagnetized and magnetized conditions, while
the timing for shock formation is still an open discussion. Part of this
thesis (Chap. 6) focuses on the identification and measurements of the
shock formation time in PIC simulations of relativistic pair plasma flows
in unmagnetized and perpendicular shocks.

2.5.2 Rankine-Hugoniot conditions at the shock front

In this section we will exploit the relativistic hydrodynamics equations to
derive the Rankine-Hugoniot conditions.

The derivation of these relations does not require the knowledge of
the physical mechanisms acting at the shock front. The region where
the discontinuity takes place is usually considered as a “black box”. The
plasma outside of this region is assumed at the equilibrium and char-
acterized by macroscopic quantities such as density, temperature, flow
velocity etc. Making use of the number of particle, momentum and en-
ergy conservations across the shock front, in the rest frame of the shock,
Eqs. (2.3.2), (2.3.10) and (2.3.14) become

∂x (nV) = 0 , (2.5.1)
∂x (nPV + Π−T) = 0 , (2.5.2)

∂x

(
n〈γv〉mc2 + c

E×B
4π

)
= 0 , (2.5.3)

where we have assumed that the shock front is stationary (∂t = 0) in
this frame. In the following, we will refer to the unperturbed region
(upstream) with the index u, and to the shocked one (downstream) with
d. We aim at computing the density jump nd/nu and the shock velocity
vsh.
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We consider an incoming flow with momentum Pu = Pux̂ and tem-
perature Tu, in the presence of an external magnetic field that forms
an angle θ with the axis flow. In order to have an initial equilib-
rium condition, we assume the existence of an electric field that sat-
isfy E + (V×B) /c = 0. Without loss of generality we can assume
B = (Bx, 0, Bz) and E = (0, Ey, 0). Considering a shock front moving
along the x-direction and all quantities to be spatially uniform along the
y-z directions (planar shock), so that their variation is only a function of
x, equations (2.5.1)-(2.5.3) become

nuVu = ndVd , (2.5.4)

nuPuVu + Pu +
E2
y,u +B2

z,u −B2
x,u

8π = ndPdVd + Pd +
E2
y,d +B2

z,d −B2
x,d

8π ,

(2.5.5)

nuh0,uΓuVumc
2 +

VuB
2
z,u

4π = ndh0,dΓdVdmc
2 +

VdB
2
z,d

4π .

(2.5.6)

Note that, following the definition of the derivative of a tensor given
in Eq. (2.3.4), in the presence of both Bx and Bz, an additional equa-
tion has to be considered for Tzx = BzBx/4π, the x-z component of the
Maxwell’s stress tensor defined in Eq. (2.3.9). This equation, following
from Eq. (2.5.2), involves either that the shock front moves along the
oblique field line (PVzx 6= 0) or that the pressure tensor has a non-
vanishing off-diagonal component Πzx.

In order to close the system we need an equation for the magnetic field.
In particular, the conservation of the magnetic flux across the shock front
reads

∂tB−∇× (V×B) = 0 , (2.5.7)

derived from Maxwell-Faraday’s equation (2.1.10) imposing E = V
c ×B.

In the case of a magnetic field along the plasma streaming direction
(B = Bxx̂ and E = 0), equation (2.5.7) predicts that Bx is unchanged
passing from the upstream to the downstream region. This means that
from a fluid point of view a longitudinal magnetic field does not affect the
structure of the shock. This point will be discussed further at the end of
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this section.

Since the fluid predictions for the purely longitudinal case can be
recovered in the unmagnetized limit, in the following we consider a purely
transverse external magnetic field. The variation, across the shock front,
of the magnetic field component perpendicular to the front propagation
direction is

Bz,uVu = Bz,dVd . (2.5.8)

The same compression factor appears in the density, Eq. (2.5.4).

To obtain the analytical solution of the system of equations (2.5.4)-
(2.5.6) and (2.5.8), as will be used in Chap. 6, we express all quantities
in the reference frame of the downstream plasma, by means of Lorentz
transformations. In this way equations (2.5.4)-(2.5.6) and (2.5.8) become

n0,uγ
d
u

(
V d

u + vd
sh

)
= n0,dv

d
sh , (2.5.9)

Bd
z,uγ

d
u

(
V d

u + vd
sh

)
= Bd

z,dv
d
sh , (2.5.10)(

γd
u

)2 (
V d

u + vd
sh

)[
w0,u +

(
Bd
z,u

)2
/4π

]
− vd

sh

[
Pu +

(
Bd
z,u

)2
/8π

]
= vd

sh

[
w0,d − Pd +

(
Bd
z,d

)2
/8π

]
, (2.5.11)(

γd
u

)2
V d

u

(
V d

0 + vd
sh

)[
w0,u +

(
Bd
z,u

)2
/4π

]
+
[
Pu +

(
Bd
z,u

)2
/8π

]
= Pd +

(
Bd
z,d

)2
/8π , (2.5.12)

where the apex d identifies the quantity in the downstream rest frame,
vsh is the shock front velocity, n0,i and w0,i are the rest frame density and
the rest frame non-normalized enthalpy w0 = n0h0mc

2, with h0 defined
in Eq. (2.2.15), for the plasma in the region i = u, d. Equations (2.2.15)
and (2.2.17) can be recast in the more useful form

w0 = n0mc
2 + Γad

Γad − 1P , (2.5.13)

where the enthalpy is directly related to the rest mass energy and to the
pressure, by means of the adiabatic index Γad. Making the approximation
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of cold upstream plasma Pu = 0 and of strong shock γd
u � 1, so that we

can neglect the second terms on the left of Eqs. (2.5.11) and (2.5.12), we
obtain a second order equation for vd

sh whose solution reads

vd
sh
c

=
A+

√
8 (γd

uV
d

u /c)
2
σ(1 + σ)(2− Γad) +A2

4(1 + σ)γd
uV

d
u /c

, (2.5.14)

where A = 2(γd
u − 1)(Γad − 1) + Γadγ

d
uσ, Γad refers to the downstream

plasma and σ = (Bd
z,u)2/4πw0,u is the upstream magnetization.

The compression ratio, computed using the Eq. (2.5.9), reads

∆n =
nd

d
ndu

=
n0,d
γd

un0,u
= 1 + V d

u
vd

sh
. (2.5.15)

The variation in the magnetic field is the same in virtue of Eq. (2.5.10).
In the unmagnetized case (σ = 0), equation (2.5.14) gives a shock

velocity vd
sh/c = (γd

u − 1)(Γad − 1)/(γd
uV

d
u /c), so that the density jump

becomes
∆n = 1 + γd

u + 1
(Γad − 1)γd

u
, (2.5.16)

in agreement with previous works (Gallant et al., 1992; Lemoine et al.,
2016; Novo et al., 2016). Hence, we recover the classical result ∆n ' 3 for
a perfect 2D gas in both the non-relativistic limit (γd

u ' 1 and Td � mc2)
for which Γad = 2 and in the relativistic case (γd

u � 1 and Td � mc2)
for which Γad = 3/2. In a 3D geometry, we obtain ∆n ' 4 with both
Γad = 5/3, typical of the non-relativistic plasma, and Γad = 4/3 for
the relativistic one. For any intermediate situations in 3D, the adiabatic
index can be calculated as reported in Table 2.2.1.

In addition, we can derive the expected downstream temperature as

T d
d

γd
umc

2 =
vd

shV
d

u
c2 (1 + σ)−

V d
u + vd

sh
vd

sh

σ

2 , (2.5.17)

that in the unmagnetized limit becomes T d
d = (Γad − 1)(γd

u − 1)mc2.
In a strongly magnetized case σ ' (γd

u)2 � 1, the terms in
Eqs. (2.5.11) and (2.5.12) that we have previously neglected, should
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be taken into account. In this way, solving a third order equation
for vd

sh leads to a shock velocity that tends asymptotically to c and a
compression ratio that tends to ∆n = 2.

The fulfillment of the Rankine-Hugoniot jump conditions is consid-
ered an essential signature for shock formation, even in the collisionless
regime. Since their derivation is based on a fluid approach, we should in
principle apply these relations only if the plasma, before and after the
shock, has reached an equilibrium. This is necessary for a proper defini-
tion of quantities such as the temperature and the adiabatic index. In the
case of a Weibel-mediated shock the magnetic fields at the shock front
produce isotropization, but thermalization to the equilibrium condition
requires a much longer time due to the absence of collisions. Neverthe-
less these conditions are verified in most of the examples studied in the
literature and in this thesis.

Another criticism on the application of these relations is that no ki-
netic effects are included in the energy balance. A few works on Weibel-
mediated collisionless shocks have tried to theoretically include, in the
energy continuity equation, an ad hoc term corresponding to the high en-
ergy non-Maxwellian tail of particles accelerated by means of first order
Fermi mechanism. However, in previous studies the energy transferred to
the accelerated particles has been demonstrated to remain smaller than
∼ 10% of the initial kinetic energy flow (Sironi et al., 2013). Therefore we
can consider this effect as a negligible contribution. Other kinetic effects
will be discussed in Chap. 6.

Regarding Weibel-mediated pair plasma shocks, the impact of the dif-
ferent kinetic effects, such as the self-consistent evolution of the upstream
plasma dynamics, the high energy non-Maxwellian distribution function
as well as the energy of the Weibel-generated magnetic turbulence, has
been investigated in a more systematic way by means of numerical simu-
lations by Stockem et al. (2012). Indeed, numerical simulations based on
a kinetic approach are of extreme importance to reveal a departure from
the purely hydrodynamic formulation of the RH conditions, as observed
by Bret et al. (2017). This means that, if kinetic effects are important,
the RH conditions marginally apply despite a shock may exist.
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2.6 Numerical Methods

Numerical simulations have become a fundamental tool for the study of
complex systems and non-linear phenomena in many fields of physics.
Regarding plasma physics, several numerical approaches have been de-
veloped in order to describe phenomena in very different regimes, from
the laboratory to astrophysics. In this section we briefly introduce the
two major kinetic numerical approaches (Sec. 2.6.1) and then describe
the Particle-In-Cell method (Sec. 2.6.2), that will be central for the study
performed in this thesis. In Sec. 2.6.2, the numerical algorithms com-
monly implemented in PIC codes are presented, while for a more detailed
description of the code used in this thesis we refer to Dérouillat et al.
(2017) and to Chap. 5.

2.6.1 Kinetic numerical approaches

A kinetic description of the plasma is necessary for a complete characteri-
zation of most of the physical phenomena of interest in this thesis. There-
fore, a numerical code that couples the relativistic Vlasov equation (2.1.7)
with the Maxwell’s equations (2.1.8)-(2.1.11) is the most suitable, in par-
ticular as collisional effects are negligible in most of the scenarios studied
in this work4.

Two major approaches have attracted most of the attention so far: the
so-called Vlasov approach (Cheng and Knorr, 1976), which performs a di-
rect integration of the Vlasov-Maxwell system of equations discretized on
a phase-space grid (Eulerian approach), and the Particle-In-Cell method
(PIC) (Birdsall and Langdon, 2004), in which the distribution function of
each species is sampled using a collection of macro-particles (Lagrangian
approach).

The main advantage of the Vlasov codes is the extremely high reso-
lution of the low density region of the distribution functions, allowing for
a detailed description for instance of acceleration and trapping of a small
fraction of the plasma particles (Grassi et al., 2014, 2016). The price for
this is a great numerical complexity of the algorithms and a consider-

4Particle collisions can however be introduced in Particle-In-Cell codes (see Pérez
et al., 2012; Dérouillat et al., 2017)
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able amount of required computational resources. Moreover, numerical
artifacts as the filamentation of the distribution function into small scale
structures, need to be treated with some care, (see Büchner, 2007). For
these reasons, nowadays most of the kinetic simulations are performed
with PIC codes. This method is based on a discretization of the distri-
bution function that entails a great simplification in term of numerical
algorithms with respect to the Vlasov code. Indeed, instead of finding a
direct solution of the Vlasov partial differential equation, the code solves
a series of ordinary differential equations. As will be clarified in the next
section, the PIC method solves the Vlasov equation following the evolu-
tion of the distribution function along the characteristics of the Vlasov
equation. Nevertheless, because of the sampling of the distribution func-
tion, PIC codes are affected by a higher level of statistical noise with
respect to Vlasov codes. This may put some limits in the description
of low density region and possibly non-thermal tails of the distribution
function.

2.6.2 Particle-In-Cell code

A Particle-In-Cell code solves the Vlasov-Maxwell system of equa-
tions (2.1.7)-(2.1.11), with the charge and the current density defined
by Eqs. (2.1.12)-(2.1.13). The fundamental idea of this approach is the
discretization of the distribution function fs(t,x,p), with s index of the
species, as a sum of Ns macro-particles, as

fs(t,x,p) =
Ns∑
p=1

wp S
(
x− xp(t)

)
δ
(
p− pp(t)

)
, (2.6.1)

where xp and pp are the macro-particle position and momentum, δ is the
Dirac distribution and S(x) is the shape-function of the macro-particle
centered in its position xp(t). Note that xp and pp denote the trajectory
of the p-th particle in the continuous phase-space. The quantity wp is the
macro-particle “weight”, defined as

wp = ns (xp(t = 0))
Ns (xp(t = 0)) , (2.6.2)
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where ns is the initial density of the plasma at the p-th particle posi-
tion. Clearly a larger number of particle Ns involves a more accurate
description of the local density variation.

Inserting the discrete distribution function, Eq. (2.6.1), into the
Vlasov equation (2.1.7) and considering all macro-particles independently,
we obtain that each p-th particle satisfies the relativistic equations of mo-
tion

dxp
dt = up

γp
, (2.6.3)

dup
dt = qs

ms

(
Ep + up

γp
×Bp

)
, (2.6.4)

where we have introduced up = pp/ms the macro-particle re-
duced momentum and the corresponding relativistic factor is γp =[
1 + |up|2/c2]1/2. It clearly appears that the PIC code integrates the
Vlasov equation along the continuous trajectories of the macro-particles.
The electromagnetic fields, appearing in Eq. (2.6.4), are interpolated at
the particle position as

Ep =
∫

dxS(x− xp) E(x) , (2.6.5)

Bp =
∫

dxS(x− xp) B(x) . (2.6.6)

While the trajectories of the macro-particles are followed in a contin-
uous phase-space, the electromagnetic fields are defined on a discrete spa-
tial grid, and are computed integrating the Maxwell’s equations onto the
grid. Two popular integration schemes can be implemented: the Spec-
tral method and the Finite Difference Time Domain (FDTD) method.
The PIC code Smilei, used throughout this work, relies on the FDTD
method (Taflove, 2005). This allows for a high computational efficiency
and for an advanced parallelization strategy. Different schemes for the
numerical discretization and integration of Maxwell’s equations will be de-
scribed in Chap.5. Each of these is subject to its own Courant-Friedrich-
Lewy (CFL) condition to ensure the algorithm stability. For the standard
solver (so-called Yee scheme), the CFL condition requires the time-step
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to be smaller than
c∆tCFL =

∑
i

1√
∆x−2

i

, (2.6.7)

where ∆xi is the spatial resolution of the grid in the i-th direction and
the sum runs on the spatial directions resolved in the simulation.

The most serious drawback of this integration is a non-exact numer-
ical dispersion relation for the electromagnetic waves in vacuum. This
point will be discussed in detail in Chap.5, along with different types of
solutions, which have been implemented during this thesis in Smilei to
overcome this issue.

In contrast, spectral methods provide a procedure to ensure the dis-
persion relation to be ω = c|k|. A transformation of the electromagnetic
fields in their spatial Fourier components is performed and these quan-
tities are then advanced in time before being transformed back into the
real space. However, the use of a global Fourier transform poses some dif-
ficulties in the code optimization for high-performance computing, for an
efficient parallelization strategy and regarding the scalability on a large
number of processors. Recently a technique to overcome this issue has
been proposed by Vay et al. (2013).

The PIC loop

In a typical PIC simulation, during the stage of the initialization, the
user defines for t = 0 the spatial profiles for the particle density ns,
the mean velocity Vs and the temperature Ts of each species s. The
particle loading then consists in creating in each cell Ns particles (with
Ns the user-defined number of macro-particles per cell), with positions
xp randomly distributed within the cell, and with momenta pp randomly
sampled from the requested distribution function. Once all particles in
the simulation domain have been created, the total charge and current
densities ρ(t = 0,x) and J(t = 0,x) are computed onto the grid and the
initial electric fields are computed from ρ(t = 0,x) by solving Poisson’s
equation (2.1.8). At the end of the initialization stage, all macro-particles
in the simulation have been loaded and the electromagnetic fields have
been computed over the whole simulation grid.
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After this initialization stage, the so called PIC-loop is applied over
a fixed number N of time-steps, each with duration ∆t. The typical
PIC loop over a time-step ∆t proceeds as illustrated in Fig. 2.3. Each
time-steps consists in (i) interpolating the electromagnetic fields at the
particle positions, (ii) computing the new particle velocities and positions,
(iii) projecting the new charge and current densities on the grid, and (iv)
computing the new electromagnetic fields on the grid.

For a complete description of these four steps necessary to advance
from time-step n to time-step n + 1, refer to (Birdsall and Langdon,
2004; Dérouillat et al., 2017). Here we limit ourselves to a brief descrip-
tion of the particle pusher commonly used to advance particle positions
in time. One of the widely used is the so-called Boris pusher (Boris,
1970), a second-order accuracy leap-frog solver. This means that the par-
ticle positions are defined at integer time-steps n, while the velocities are
computed at half-integer n − 1/2 time-steps. Knowing, for each macro-
particle, the electromagnetic fields at its position from the interpolation
Eqs. (2.6.5)-(2.6.6), the advanced particle momentum and position are
computed according to

u
(n+ 1

2 )
p = u

(n−1
2 )

p + qs
ms

∆t

E(n)
p + v

(n+ 1
2 )

p + v
(n−1

2 )
p

2 ×B(n)
p

 , (2.6.8)

x(n+1)
p = x(n)

p + ∆t u
(n+ 1

2 )
p

γp
. (2.6.9)

Lately, Vay (2008) proposed an alternative leap-frog scheme, that reduces
the numerical error introduced by the Boris method when solving rela-
tivistic particle trajectories in the case of E + V×B/c = 0.

Two main methods have been developed to calculate charge and
current projection onto the grid: an energy-conserving and a charge-
conserving algorithm. In the code used for this thesis charge and current
deposition is performed using the charge-conserving algorithm proposed
by Esirkepov (2001). This strategy ensures global and local conserva-
tion of the total charge within the numerical error, at the expense of a
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Figure 2.3: Scheme of the typical Particle-In-Cell loop to advance from
time-step (n) to time-step (n+ 1).

non-perfect energy conservation. Nevertheless violation on energy con-
servation, due to the deposition scheme implemented, is always negligible
in the simulations performed for this thesis. The other approach forces
energy conservation but the non-exact local charge conservation might
lead to the appearance of non-physical effects, due to the local deviation
from Gauss law.

Boundary conditions

For each time-step, after having computed the macro-particle positions
and velocities, boundary conditions are applied to each macro-particle
that has reached the limits of the spatial grid and may be located outside
of the box. Each species may have a different condition for each boundary
of the simulation box: the macro-particles can either loop around the box
(periodic), be stopped (momentum set to zero), suppressed (removed from
memory), reflected (momentum and position follow specular reflection
rules) or thermalized. In the latter case, the macro-particle is set back
inside the simulation box, and its new momentum is randomly sampled
in a Maxwellian distribution (Spohn, 1991) with a given temperature and
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drift velocity, both specified by the user.
Boundary conditions are as well applied to the electromagnetic fields.

We can apply injecting (or absorbing) conditions (Barucq and Hanouzet,
1997), able to inject an electromagnetic wave (e.g. a laser) in the simula-
tion box, and to absorb outgoing electromagnetic waves. In contrast, the
reflective electromagnetic boundary conditions reflect any outgoing elec-
tromagnetic wave reaching the simulation boundary. As already defined
for the particles, periodic boundary conditions correspond to applying
the fields from one boundary of the box to the opposite one.

Parallelization strategies

The PIC method presented above is intrinsically suitable for large scale
parallelization, as it relies only on local computations (in contrast with
spectral methods). The most promising parallelization strategy is based
on a domain decomposition technique, used in all state-of-the-art PIC
codes. The simulation box is split into several small domains, each one
associated to a different processor. Once a particle crosses the border
between two domains, communications between different processors are
required in order to exchange the information relative to the particle
positions and momenta. In addition, information on the electromagnetic
fields at the boundaries of the domain must be exchanged.

The standard protocols, used for the parallelization of most of the
available PIC codes, are the Message Passing Interface (MPI) and the
Open Multi-Processing (openMP) interface that supports shared mem-
ory multiprocessing programming. Recently, a hybrid MPI + openMP
parallelization strategy have been demonstrated to enhance the code per-
formance. In particular, MPI can be used to communicate data between
distinct nodes, while openMP interface is exploited to deal with the com-
putational load within a single node.

This hybrid MPI-OpenMP parallelization has been exploited in
Smilei. A first standard domain decomposition is associated with the
MPI processes. In addition, a second level of decomposition in smaller
sub-domains (usually referred to as patches) is managed by the threads
owned by the MPI process. This improves data locality for a fast memory
access and helps in minimizing load imbalance. Indeed, with the use of
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the openMP dynamic scheduler, if a thread is still busy, treating a patch
with a high number of macro-particles, other threads can in the mean-
while handle the remaining patches. Moreover, Smilei balances the load
between MPI processes by exchanging patches between neighbor MPI
processes, as detailed in Dérouillat et al. (2017). A good scalability of
this parallelization and balancing strategy has been demonstrated up to
several hundred of thousands processors.
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Chapter 3. Electron Weibel Instability in magnetized plasmas

In this chapter we discuss the study of the Weibel instability driven by
two symmetric counter-streaming relativistic electron plasmas in a con-
stant and uniform external magnetic field aligned with the plasma flows.
Understanding the instability evolution in both its linear and nonlinear
phases, and the prediction of the amplitude of the Weibel-generated mag-
netic fields are of primary importance. In particular, these points are still
unclear in the relativistic and magnetized flows configuration considered
in this chapter.

On the one hand, this study gives us a deeper insight into various
astrophysical events where a macroscopic magnetic field might be present,
such as AGN or Microquasar outflows. On the other hand, recent laser-
plasma experiments have been able to produce magnetized flows. In this
experimental context, the introduction of a flow-aligned magnetic field
has been proposed as a way to control and/or direct the high-energy
plasma flows. However, a general concern is related with the stabilizing
effect of the external field on the development of the Weibel instability.
In this chapter, we demonstrate that the strength of the Weibel magnetic
field at saturation is not affected by the external magnetic field. This
result might renew the interest on this experimental investigation.

Part of the results presented in this Chapter have lead to the
publication on Physical Review E (Grassi et al., 2017b).

This Chapter is structured as follows. We first give, in Sec. 3.1, a brief
summary of the extensive works that have been done on the study of the
Weibel instability in different unstable initial conditions. In Sec. 3.2, we
consider a cold relativistic plasma model that allows the study of the evo-
lution of a single unstable mode. The analytic predictions are confirmed
by 1D PIC simulations. In this section, we first present the linear phase
of the instability (Sec. 3.2.1), in which the particles are deflected by the
small amplitude electromagnetic fluctuations perpendicular to their ini-
tial velocity, so that current filaments are produced and amplify the initial
magnetic field perturbations. As soon as the particle dynamics is strongly
modified by the Weibel-generated fields (non-linear phase) various satu-
ration mechanisms may set in. The different mechanisms responsible for
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the saturation are discussed in detail in Sec. 3.2.2, for both unmagnetized
and magnetized cases. The generalization of the previously proposed sat-
uration mechanisms, to account for the presence of an external magnetic
field, is verified by testing against simulations in Sec. 3.2.2.2. We show
that the magnetic field strength at saturation for a given wavenumber is
weakly affected by the external magnetic field.

In the following Sec. 3.3, temperature and multi-mode effects are in-
vestigated in 1D PIC simulations, by seeding the instability from the
electromagnetic fluctuations of a thermal plasma. The linear phase is
described within the framework of the relativistic warm fluid theory in
Sec. 3.3.1.1 and theoretical predictions for the growth rate are compared
to simulations in Sec. 3.3.1.2. In Sec. 3.3.2, we confirm with 1D PIC sim-
ulations that, at large temperatures, the saturation level is unaffected by
the presence of the external magnetic field as in the single-mode analysis,
while at lower (but finite) temperature the competition between different
modes in the presence of an external magnetic field leads to a satura-
tion level slightly lower with respect to the unmagnetized case. On a
longer timescale, 1D simulations show, in most of the cases discussed in
Sec. 3.3.3, that filaments of parallel currents tend to attract each other
and merge, forming larger filaments (late merging phase).

In Sec. 3.4, we compare the results of 1D and 2D simulations. In
the 2D geometry we investigate two possible configurations, i.e. counter-
streaming plasmas with velocity in the simulation plane or perpendicular
to it. We show (Sec. 3.4.2) that the linear phase is not affected by the
different geometry, confirming the results of the 1D study. Indeed, the
main interest of 2D simulations is related with the non-linear stage of the
instability. We studied the late-stage behavior in Secs. 3.4.2 and 3.4.3,
highlighting that saturation and especially the coalescence processes are
affected by the dimensionality. In the perpendicular flows configuration,
saturation is independent from the external field for all temperatures,
and the additional dimension increases the efficiency of the coalescence
processes with respect to the 1D case. On the contrary, in the in-plane
flows configuration, longitudinal modes develop and disrupt the filaments.
In addition, the development of a secondary Weibel instability, appearing
in one particular 2D configuration (flows perpendicular to the simulation
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plane), and the reduced stabilizing effect of the external field for warm
plasmas are investigated in Secs. 3.4.4 and 3.4.5.

Finally, Section 3.5 presents our conclusions.

3.1 State of the art

TheWeibel instability has been at the center of several works and different
configurations have been investigated for unmagnetized plasmas, consid-
ering as initial unstable conditions both counter-streaming plasmas (Pe-
goraro et al., 1996; Califano et al., 1997, 1998; Bret et al., 2010b,a) or
a plasma distribution function with temperature anisotropy (Morse and
Nielson, 1971; Davidson et al., 1972; Palodhi et al., 2009; Stockem et al.,
2010). More recent studies focus on magnetized scenarios, considering
counter-streaming flows in a macroscopic external magnetic fields, per-
pendicular (Novo et al., 2016) or parallel to the plasma flows (Ji-Wei and
Wen-Bing, 2005; Stockem et al., 2007, 2008), and with a general orien-
tation (Bret, 2014; Bret and Dieckmann, 2017). In magnetized plasmas,
the linear phase of the instability in the cold beam approximation is well
characterized. It is known that the instability growth rate is reduced by
the external magnetic field. The effect of the temperature in the linear
phase of the instability has been investigated in the magnetized non rela-
tivistic regime by Bornatici and Lee (1970); Tautz and Schlickeiser (2006)
and in the unmagnetized relativistic one by Bret et al. (2010a).

Regarding the saturation mechanisms at play in the magnetized case,
previous works leave many open questions. In the absence of an external
magnetic field, it has been well established in the literature (Davidson
et al., 1972; Yang et al., 1994; Medvedev and Loeb, 1999; Achterberg
et al., 2007) that, two different mechanisms lead to the saturation of
the Weibel instability. Saturation is expected when the particles trajec-
tory is drastically affected by the Weibel-generated magnetic field, either
producing a gyroradius of the order of the Weibel unstable wavelength
(the so-called Larmor/Alfvén mechanism) or making the particle bounce
in the current filament (the so-called trapping mechanism), as will be
discussed in detail in the following. The generalization of these mech-
anisms to the magnetized plasma case is however not straightforward.
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Indeed, Stockem et al. (2008) suggested that trapping can not be the sat-
uration mechanism in the magnetized case and a detailed investigation
of different processes that might be responsible for saturation has been
carried out by Dieckmann (2009); Dieckmann et al. (2009); Dieckmann
and Bret (2010). Moreover, the possibility to reach saturation via the
Larmor/Alfvén mechanism in magnetized plasma has been questioned
by Bret (2016).

Our studies demonstrate, by properly generalizing the above men-
tioned mechanisms, that the same processes lead to saturation in the
unmagnetized systems and in the one with a flow-aligned magnetic field.
Moreover, saturation mechanisms that are equivalent in the unmagne-
tized case (i.e. trapping saturation estimate can be derived equating the
bouncing frequency in the filament with the Weibel instability growth
rate, or the deflection toward the filament with the filament wavelength),
differ with the application of the external magnetic field. However, the
strength of the magnetic field at saturation is found to be weakly af-
fected by the external field. We provide an analytical prediction for the
saturation level, in good agreement with PIC simulations.

Very few works investigated the saturation phase in finite temper-
ature counter-streaming plasmas. In the non-relativistic regime, Novo
et al. (2015) provides a quasi-linear theory to describe the plasma param-
eters evolution up to saturation. Here, we will focus in particular on the
interplay between different modes in an initial multi-mode configuration,
highlighting the difference between an initial broad spectrum versus a
quasi-single mode one.

3.2 Single unstable mode in cold relativistic flows

3.2.1 Linear phase

3.2.1.1 Relativistic cold fluid theory

We start by an analytical description of the linear phase of the Weibel
instability. This phase can be studied by taking ions at rest, providing a
uniform neutralizing background for the two counter-streaming electron
species (with respective densities n0/2 and drift velocities v0 = ±v0ẑ),
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modeled using the relativistic cold-fluid model described in Sec. 2.3. We
consider a uniform external magnetic field B0 = B0ẑ parallel to the initial
electron drift velocity.

Linearizing the governing equations and considering all space-/time-
dependent quantities φ(t,x) ' φ0 exp

[
− i(ωt− k⊥ · x)

]
, where ⊥ refers

to the direction perpendicular to the flows, we obtain the dispersion rela-
tion for the purely transverse modes, as derived by Ji-Wei and Wen-Bing
(2005); Stockem et al. (2007),

ω2

c2 − k2
⊥ −

ω2
pe

c2γ0

(
1
γ2

0
+

k2
⊥v

2
0

ω2 − Ω2
0

)
= 0 , (3.2.1)

where ω and k⊥ are the frequency and the wavevector of the considered
modes, ωpe =

√
4πe2n0/me is the plasma frequency associated with the

total density n0, and Ω0 = −eB0/(γ0mec) is the cyclotron frequency of
an electron in the external magnetic field B0.

The growth rate of the instability is found from the dispersion relation,
Eq. (3.2.1), looking for solutions with ω = iΓ and Γ > 0. One then obtains
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pe
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(3.2.2)

where k = |k⊥|. In the limit of large wavenumbers c2k2 � Ω2
0 + ω2

pe/γ
3
0 ,

the growth rate takes the maximum and asymptotic value

Γmax =

√
v2

0
c2
ω2
pe

γ0
− Ω2

0 . (3.2.3)

From this, we clearly see that Γ is reduced by the external magnetic field,
as Ω0 > 0. Moreover, from Eq. (3.2.2) we find that, in the presence of an
external magnetic field, filaments with size larger than λstab = 2π/kstab,
with

kstab = γ−1
0

(
v2

0
Ω2

0
− γ0

c2

ω2
pe

)−1/2
, (3.2.4)
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cannot be created. Note that kstab = γ−1
0
(
r2

L − d2
e

)−1/2 with rL = v0/Ω0
the Larmor radius of an electron with velocity v0 transverse to the ex-
ternal magnetic field and de = c

√
γ0/ωpe the relativistic skin-depth. The

growth rate indeed vanishes for k ≤ kstab and only oscillatory solutions
are admitted.

From the above Eqs. (3.2.3) and (3.2.4), we easily find that there is
a critical value of the external magnetic field above which the instability
is quenched. The critical value is found by imposing Ω0 = v0ωpe/(c

√
γ0)

or rL = de, for which Γmax goes to zero and kstab goes to infinity. The
so-called critical magnetic field is given by

Bc = √γ0
v0
c

meωpec

e
. (3.2.5)

Notice also that for B0 > Bc the period of the electron gyration around
B0 is faster than the growth time of the instability computed in the
absence of the external magnetic field. For values of the magnetic field
0 < B0 < Bc, the formation of the filaments is slowed down. This can
be explained considering that, once a particle is deflected in the direction
perpendicular to the initial flow, toward the center of the filament, it
starts gyrating around the external magnetic field. Similar considerations
explain the stabilization of modes with large wavelengths (small-k modes),
Eq. (3.2.4).

Figure 3.1 shows the growth rate Γ(k) for electron flows with velocity
v0 = ±0.9 c and external magnetic field B0 = 0 (light green line) and
B0 = 0.75Bc (dark purple line). For B0 = 0.75Bc, corresponding to a
cyclotron frequency ωc = eB0/meγ0c ' 0.45ωpe, no unstable solutions
are found for k < kstab ' 0.33ωpe/c, as predicted by Eq. (3.2.4). We
recall that without external magnetic field (light green line), the growth
rate in the limit of small wavenumber k2c2 � ω2

pe/γ
3
0 increases linearly

as Γ(k) ' v0γ0k.
In the rest of the chapter, we always consider this large value of the

external magnetic field B0 = 0.75Bc, in order to show that even if the
growth rate is strongly reduced the saturation is not significantly affected.
Notice that for a given value of the external magnetic field, the maximum
growth rate Eq. (3.2.3) still depends on the electron drift velocity (or γ0)
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Figure 3.1: Growth rate of the instability as a function of the wavenum-
ber for the cold plasma case (zero temperature). Analytical values for
the unmagnetized (light green line) and magnetized B0 = 0.75Bc (dark
purple line) cases are computed from Eq. (3.2.2). Circles (squares) cor-
respond to the growth rate measured in 1D3V PIC simulations with a
single-mode seeded perturbation and B0 = 0 (B0 = 0.75Bc).

and is reduced in the relativistic domain with increasing flow velocity.
The growth rate takes its largest value for γ0 = b20 +

√
3 + b40, with b0 =

eB0/(mecωpe). In the unmagnetized case (b0 = 0), this corresponds to
v0 ' 0.82 c.

In addition to the amplification of the magnetic field fluctuations, the
linear theory predicts that Ez, the inductive component of the electric
field in the flow direction, grows as fast as the magnetic field By, see
Eq. (2.4.2). Its amplitude is proportional to Γ(k)By/k and it is phase-
shifted with respect to the magnetic field (the maxima of Ez being located
at the nodes of By). At the first order, there is no total density pertur-
bation, and the electric field Ex due to charge separation appears as a
second order term.

3.2.1.2 Simulation set-up and comparison with theory

The analytical predictions of Sec. 3.2.1.1 for the linear phase of the in-
stability are confirmed by a series of 1D3V PIC simulations. These are
carried out in Cartesian geometry [x = (x, y, z) and considering ∇ = x̂∂x
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Figure 3.2: a) Evolution in time of the magnetic energy (plain line)
and energies associated with the Ez field (dash-dotted line) and Ex field
(dashed line) for the simulation with seeded mode k = 2.0ωpe/c. Light
green lines refer to B0 = 0 and dark purple lines to B0 = 0.75Bc. All
energies are normalized to the total initial flow energy Uk0. b) Spatial
distribution of the magnetic field By (plain line), electric field Ez (dash-
dotted line) and Ex (dashed line) for the simulation without external
magnetic field in the linear phase t ' 12ω−1

p .

in 1D3V]. In the simulations we reach the non-linear phase, discussed in
the following Sec. 3.2.2.2.

We consider two symmetric cold counter-streaming electron beams
with initial drift velocities v0 = ±v0ẑ, with v0 = 0.9 c (γ0 ' 2.3, here-
after mildly relativistic case). Simulations with γ0 = 50 (hereafter highly
relativistic case) have also been performed. The mildly relativistic case
is representative of both situations, unless specified. The system has ini-
tially no net current. A population of immobile ions is taken into account
in order to neutralize the total charge. In this 1D geometry, the Weibel
instability amplifies the perturbations with wavevector k = kx̂, magnetic
field B = Byŷ and inductive electric field E = Ezẑ.

In this Section, a single-mode is seeded as initial condition. This
is done by imposing, at t = 0, a magnetic field perturbation By0(x) =
δ sin(kx), with δ = 10−3 and λ = 2π/k the wavelength of the seeded mode.
We consider wavenumbers in the range 0.2 < kc/ωpe < 15. The extension
of the simulation box is Lx = 10λ and periodic boundary conditions are
used. The resolution in space is ∆x = λ/200 and in time is set to the 95%
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of the CFL condition (c∆t = 0.95 ∆x). The number of macro-particles-
per-cell is Np = 200 for each species.

Figure 3.2 a) shows the evolution in time of the energy in the magnetic
field By (plain lines), electric fields Ez (dash-dotted lines) and Ex (dashed
lines) for the simulation initialized with k = 2ωpe/c. Both unmagnetized
(B0 = 0, light green lines) and magnetized (B0 = 0.75Bc, dark purple
lines) cases are presented. The phase of linear growth of the magnetic
energy can be clearly identified in the interval t = (10 ÷ 18)ω−1

pe [t =
(15 ÷ 28)ω−1

pe ] for the unmagnetized [magnetized] case. The values of
the corresponding growth rates are reported in Fig. 3.1. A very good
agreement with the theory is obtained over the whole range of investigated
k values, for both the unmagnetized and magnetized cases. In particular,
the growth rate of the instability is found to be reduced as B0 is increased.
Similar agreement has been found for γ0 = 50 (not shown).

Figure 3.2 a) also demonstrates the mainly magnetic nature of the
Weibel instability despite Ez growing as fast as the magnetic field By
[Ez ∼ Γ(k)By/k]. During the linear phase, the space-charge electric field
Ex appears as a second order quantity. Indeed, it starts growing at a
later time with respect to the magnetic component and it grows with
twice the growth rate of the instability, see Fig. 3.2 a). The generation of
this electrostatic field is a nonlinear effect, the onset of its growth corre-
sponding to the formation of the current filaments resulting in a charge
separation (Palodhi et al., 2009; Dieckmann, 2009). Therefore, it has a
characteristic wavelength equal to half of the λ of the unstable seeded
mode, as shown in Fig. 3.2 b), for the unmagnetized case. Figure 3.2b)
also shows that the Ez component of the electric field is in counter-phase
with the Weibel generated magnetic field. Therefore, it tends to reduce
the current of the filaments slowing the particles down, as predicted from
the linear theory.

3.2.2 Nonlinear phase and saturation

3.2.2.1 Theoretical considerations

In what follows, we will make use of a single particle dynamics approach.
This allows us to retrieve the saturation level predicted in the absence
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of an external magnetic field, while providing a better understanding of
how these saturation mechanisms operate, and helps us to generalize these
results to the magnetized case.

Let us consider the single particle dynamics in the fields developed
during the linear stage of the instability. Despite the instability having a
dominantly magnetic nature in its linear phase (see Sec. 3.2.1.1), we will
consider the electron dynamics governed by the total magnetic field as
well as by the inductive electric field Ez,

B(t, x) = By0 sin(kx)eΓt ŷ +B0 ẑ , (3.2.6)

E(t, x) = −Ez0
Γ
ck

cos(kx)eΓt ẑ , (3.2.7)

where Γ = Γ(k) and Ez0 ∼ By0. The equations of motion of an electron
in the fields given by Eqs. (3.2.6) and (3.2.7) read

dx

dt
= γ0v0

p̂x(t)
γ(t) , (3.2.8)

dp̂x
dt

= −v̂z(t) Ωy0 sin(kx)eΓt + v̂y(t)Ω0 , (3.2.9)

dp̂y
dt

= −v̂x(t) Ω0 , (3.2.10)

dp̂z
dt

= +v̂x(t) Ωy0 sin(kx)eΓt + Ez0 cos(kx)eΓt , (3.2.11)

where Ωy0 = −eBy0/(γ0mec), Ez0 = eEz0 Γ/(mecγ0v0k). In this sec-
tion, momentum and velocities have been normalized such that p̂i =
pi/(meγ0v0) and v̂i = vi/v0 where the velocity v0 is by definition positive
vz0 = vz(t = 0) = ±v0. No general analytical solution can be given for
this system of equations. Therefore, we first solve the system numerically,
then we derive analytical solutions valid under some approximations.

Typical electron trajectories obtained by numerically solving the sys-
tem of Eqs. (3.2.9)-(3.2.11) are given in Fig. 3.3 for the unmagnetized
case γ0 = 2.3, considering two values of the wavenumber k = 0.35ωpe/c
(Fig. 3.3 a) henceforth referred to as the small-k case and k = 2ωpe/c
(Fig. 3.3 b) henceforth referred to as the large-k case, corresponding to
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Figure 3.3: Typical trajectories of electrons with initial velocity v0 =
+v0ẑ (γ0 = 2.3) in the electromagnetic fields developed during the lin-
ear stage of the instability: a) k = 0.35ωpe/c (small-k), b) k = 2ωpe/c
(large-k). The trajectories are obtained numerically solving Eqs. (3.2.8)-
(3.2.11). No external magnetic field is considered (B0 = 0). In the top
panel the red-blue color map highlights the spatial distribution of the
Weibel generated magnetic field. Blue (red) area corresponds to regions
of positive (negative) By.
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Figure 3.4: Typical trajectories of electrons with initial velocity v0 =
+v0ẑ (γ0 = 50) in the electromagnetic fields developed during the linear
stage of the instability: a) k = 0.125ωpe/c (small-k), b) k = 0.25ωpe/c
(large-k). The trajectories are obtained numerically solving Eqs. (3.2.8)-
(3.2.11). The external magnetic field is B0 = 0.75Bc. In the top panel the
red-blue color map highlights the spatial distribution of the Weibel gen-
erated magnetic field. Blue (red) area corresponds to regions of positive
(negative) By.
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two different saturation mechanisms.
In both cases, we show the trajectories of the electrons with an initially

positive velocity vz0 = v0 > 0, under the effect of the fields given by
Eqs. (3.2.6) and (3.2.7). These electrons will be mainly deflected toward
the magnetic node in kx = π and form a filament, the center of which
being located at kx = π. The numerical results are valid up to the
saturation time t = tsat, at which Bsat = By0e

Γ(k)tsat . In Fig. 3.3, the
dashed areas correspond to t > tsat as deduced in the following section.

The two different behaviors of the particle dynamics depending on
their k values are highlighted in Fig. 3.3. In the small-k case, the electrons
located at the center of the filament kx ∼ π see their longitudinal velocity
vz decreased, even vanishing then changing sign. In contrast, in the large-
k case, all particles reach the center of the filament kx = π with their
velocity along the z-direction mainly unchanged vz ∼ v0. The situation
is totally symmetric if we consider particles with initial velocity −v0, and
the filaments form around kx = 0, 2π.

The same difference between the large-k and the small-k saturation
mechanisms is recovered for the magnetized case. For reasons that will
be clarified in the following section, in Fig. 3.4 we report the trajectories
of electrons with initially γ0 = 50 (instead of γ0 = 2.3 as in Fig. 3.3)
with seeded modes k = 0.125ωp/c (small-k, Fig. 3.4 a) and k = 0.25ωp/c
(large-k, Fig. 3.4 b). The same features observed and discussed previously
characterize the two mechanisms.

Note that in both the unmagnetized and magnetized case, at small-k,
for which the saturation is reached when the particle velocity vanishes,
the particles whose velocity approach the zero are initially located at
kx = π, i.e. around the zero of the initial magnetic field fluctuation.
This suggests that the inductive electric field Ez has a dominant role
in slowing the particles down. Indeed, Bret (2016) concludes that, in
the presence of a strong external field, the Weibel-generated filaments
are not able to stop the flow, since a single particle dynamics study has
been performed assuming a steady saturation stage with fields amplitude
By = Bsat and Ez = 0. The disagreement with our results is caused by
the assumption in (Bret, 2016) on the fields stationarity. On the contrary,
our numerical integration takes into account the exponential growth of
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3.2. Single unstable mode in cold relativistic flows

both the Weibel magnetic field By and the inductive field Ez, so that the
saturation mechanism for which the particles velocity is strongly reduced
can be observed.

Saturation mechanism in the small-k limit

In the small-k limit, saturation will be reached because particles inside the
filament see their longitudinal velocity strongly reduced, hence decreasing
the total current in the filament. In the absence of the external magnetic
field, the saturation level can be recovered by equating the characteristic
size of a filament k−1 with the Larmor radius rL = v0/|Ωy,sat| of an
electron with velocity ±v0 in the Weibel generated magnetic field. Similar
estimates have already been derived in the literature considering that the
saturation arises due to the Alfvén limitation of current (Alfvén, 1939).
Indeed, as described in Appendix 3.A, there exists a maximum value of
the current (Alfvén current) beyond which the longitudinal velocity vz of
a particle initially at the border of the filament vanishes while crossing
the center of the filament, and then reverses, due to the effect of the
self-generated magnetic field. This estimate of the Alfvén limit however
does not account either for the fact that, in the Weibel scenario, the
magnetic fields are continuously and exponentially building up, nor for
the effect of the resulting inductive electric field. However by considering
both these effects, we can show that we obtain the same saturation value
than the (static) Alfvén limit. From Eq. (3.2.7), we see that the inductive
electric field is in counter-phase with the Weibel generated magnetic field,
and has its maximum at the center of the filament. The dynamics of a
particle initially located at the center of the filament kx ∼ π plays a
central role in the saturation of the instability as shown in Fig. 3.3. This
position corresponds to a node of the magnetic field By, so that the
particle dynamics will be marginally affected by the magnetic field. It
will be governed by the electric field Ez, leading to the reduced equation
of motion, from Eq. (3.2.11)

dp̂z
dt

= −Ez0 eΓt . (3.2.12)
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Solving Eq. (3.2.12) and taking for the saturation time the moment in
which the longitudinal momentum vanishes p̂z = 0, allows one to derive
the strength of the magnetic field at saturation as

Bk�
sat = γ0

v0
c

ck

ωp

meωpc

e
. (3.2.13)

This is exactly the same value as obtained from the Alfvén current limi-
tation or Larmor radius saturation. The single particle trajectory numer-
ical solution shows that taking into account only the temporal growth of
the magnetic field By and neglecting the induction field Ez, would over-
estimate the saturation level. Indeed, Eq. (3.2.13) is valid only if one
considers both the fields By and Ez, thus finally justifying the use of the
static condition.

The static Alfvén picture can be generalized to the case with an exter-
nal flow-aligned magnetic field. The calculations that we have performed
in this configuration show that the saturation level increases with respect
to the unmagnetized case. Considering a sinusoidal profile for the current
and the magnetic field, in a 1D configuration, and calculating the field
that corresponds to p̂z = 0 for a particle moving toward the center, the
predicted saturation value is

Bk�
sat = f(A)γ0

v0
c

ck

ωp

meωpc

e
, (3.2.14)

with f(A) = [cos (π/2(1−A))]−1 > 1 for A < 1, and f(A) = 1 for
A ≥ 1, with A = v0/

∣∣Ω0x0
∣∣ and x0 = λ/4 the particle initial position.

Equation (3.2.13) is recovered in the limit A� 1. The detailed derivation
is given in Appendix 3.A.

Saturation mechanism in the large-k limit

In the large-k limit, the particle longitudinal velocity is mainly unchanged
vz ∼ v0 and thus the saturation follows from a different mechanism with
respect to what was discussed for the small-k modes. Saturation is ex-
pected once all particles have been injected inside the filament, whose
center is in kx = π and has an extension of the order of ' π/2 (see
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Figs. 3.3 and 3.4). Thereafter no additional particles can be found to
increase the current and contribute to the instability growth. The cur-
rent of all the particles with velocity v0 in a filament of diameter ∼ λ/2
remains much smaller that the Alfvén limit in the large-k limit. More-
over, the contribution of the inductive field Ez can be neglected in the
limit of large k for which Γ(k)/ck � 1 [see Eq. (3.2.7)]. Indeed, numer-
ically solving Eqs. (3.2.8)-(3.2.11) with or without Ez (not shown) does
not affect the particle trajectories. In the unmagnetized case, neglect-
ing the effect of the electric field and considering vz ∼ ±v0, the system
of Eqs. (3.2.9)-(3.2.11) leads to an ordinary differential equation for the
normalized particle position ξ(t) = kx(t)

d2ξ

dτ2 = −α sin(ξ) exp(τ) , (3.2.15)

with τ = Γt and α = sgn{vz0} v0kΩy0/Γ2, with initial conditions ξ(τ =
0) = kx(t = 0) = ξ0 and dξ/dτ |τ=0 = 0.

Considering a particle initially located at a maximum/minimum of
the magnetic field ξ±0 = π ± π/2, leads to

ξ±(t) = ξ±0 ∓ α [exp(τ)− τ − 1] . (3.2.16)

The particle sees its velocity vx ∝ eτ exponentially increasing with time,
and depending on the sign of vz0, the particle will head toward one or
the other node of the magnetic field, hence spatially segregating particles
with opposite velocities in well separated currents of opposite directions.
Taking the limit τ � 1, one can extrapolate the time τ∗ ∼ ln

(
π/|2α|

)
at

which the particle reaches the node of the magnetic field, and infer from
this the corresponding magnetic field amplitude at saturation Bsat =
By0 exp(τ∗), for the unmagnetized case, leading to

Bk�
sat = π

2
γ0Γ2

0
v0k

mec

e
. (3.2.17)

In the literature (Davidson et al., 1972; Achterberg et al., 2007), the
magnetic field strength at saturation for large-k modes has been also com-
puted by equating the so-called bouncing frequency ωb in the magnetic
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field at saturation with the growth rate of the instability. Computing
the bouncing frequency of an electron in the saturation field given by
Eq. (3.2.17) would indeed give

ωb =
(
ev0kB

k�
sat

γ0mec

)1/2

' Γ . (3.2.18)

While Eq. (3.2.17) leads a prediction similar to Eq. (3.2.18), it highlights
that saturation is obtained because all particles are injected and trapped
into the filament.

The criterion on the bouncing frequency can be generalized in the
presence of an external magnetic field. The bouncing frequency in this
case becomes

Ωb =
√
ω2
b + Ω2

0 , (3.2.19)

with ωb defined in Eq. (3.2.18). Considering that saturation is reached
when the bouncing frequency equates the growth rate of the instability
(Γ approximately the asymptotic value reported in Eq. (3.2.3) for large
k), the expected saturation level would depend on the strength of the
external magnetic field (see Stockem et al., 2008).

To generalize the result of Eq. (3.2.17) in the case of an external
flow-aligned magnetic field, we calculate the magnetic field strength by
considering that saturation occurs when all the electrons participate to
the current filament. As a consequence, we can show that the saturation
level of the instability is independent of the external magnetic field. We
proceed as in the unmagnetized case: (i) we assume that the particle
velocity is not drastically reduced at saturation vz(t) ∼ ±v0, and (ii) we
neglect the effect of the longitudinal field Ez on the particle motion, as
Γ(k)/k � 1 in the large-k limit. Both assumptions are found to be in
good agreement with the numerical solution of Eqs. (3.2.8)-(3.2.11), even
in the presence of Ez. One can write the equations of motion for a particle
initially close to the maximum of the magnetic field, using sin(kx) ' 1,
in the form

d2vx(t)
dt2

= v0ΓΩy0e
Γt − Ω2

0vx . (3.2.20)

Looking for exponentially growing solution vx = vx0e
Γt, as inferred from

80



3.2. Single unstable mode in cold relativistic flows

the unmagnetized case, the particle displacement δx = x−x0 reads δx =
vx0e

Γt/Γ. The saturation level is obtained for δx(tsat) ' λ/4, leading to

Bk�
sat = π

2
γ0
(
Γ2 + Ω2

0
)

v0k

mec

e
. (3.2.21)

In the limit B0 = 0, we recover the result of Eq. (3.2.17). Moreover,
Eq. (3.2.21) predicts that the saturation level does not depend on the
application of the external magnetic field for large-k. Indeed, the growth
rate Γ(k) decreases with the application of the external magnetic field
Eq. (3.2.3), but this variation is exactly compensated by the term Ω2

0 in
Eq. (3.2.21), since the maximum value of the growth rate is Γ2 ∼ Γ2

0−Ω2
0,

with Γ0 the growth rate in the absence of external magnetic field. This
is in contradiction with the estimate obtained considering the bouncing
frequency but it is found to be confirmed by PIC simulations, as will be
shown in the following Sec. 3.2.2.2.

3.2.2.2 Saturation phase in the PIC simulations

In this section we compare the theoretically predicted saturation level
with the 1D3V PIC simulations presented in Sec. 3.2.1.2. The expected
field strength at saturation is shown in Fig. 3.5 as a function of the
wavenumber, for two initial velocities corresponding to γ0 ' 2.3 (mildly
relativistic case) and γ0 = 50 (ultra-relativistic case). We recall that these
1D3V simulations account for a single mode seeded at early time. In order
to measure the saturation level, we perform a Fourier spectrum of By(x, t)
and consider the maximum magnetic field of the given k mode. Each un-
stable mode saturates because of the mechanism that predicts the lowest
saturation value. The maximum magnetic field is found at the intersec-
tion between the curves corresponding to the Alfvén limit Eq. (3.2.14) and
the trapping mechanism Eq. (3.2.21). This can be analytically computed
in the unmagnetized case as

ck∗

ωpe
=

 π

2γ0

(
1− 2

πγ2
0

)
1(

1 + 2v2
0

πc2

)
1/2

. (3.2.22)
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Figure 3.5: Magnetic field strength at saturation. Values predicted by
the "trapping mechanism" Eq. (3.2.21) are shown as dashed line. Values
predicted by the Alfvén limitation mechanism Eq. (3.2.14) are shown as
plain lines for the unmagnetized (light green) and for the magnetized
(dark purple) cases. Circles (squares) are the values measured in PIC
simulations seeded with a single-mode perturbation and B0 = 0 (B0 =
0.75Bc). Two initial flow velocities are considered: a) γ0 = 2.3 (mildly
relativistic case), b) γ0 = 50 (ultra-relativistic case).

For the mildly relativistic case this value is k∗ ' 0.63ωpe/c and for
the ultra-relativistic case k∗ ' 0.14ωpe/c. In the presence of an ex-
ternal magnetic field, the wavenumber at the intersection between the
two curves has been computed numerically and give k∗B0

' 0.60ωpe/c
and k∗B0

' 0.13ωpe/c for the mildly and ultra-relativistic case, respec-
tively. It is clear that the Alfvén limit cannot be the dominant saturation
mechanism for large wavenumbers. This can be easily understood as the
magnetic energy (increasing with k) would exceed the total kinetic energy
of the beams. The saturation would appear for lower values due to the
trapping mechanism. Nevertheless for the modes with small k, the Alfvén
mechanism is responsible for the saturation of the instability.

Figure 3.5 reports the measured saturation level for different unstable
modes, for the two initial velocities in unmagnetized plasma and with
B0 = 0.75Bc. The trapping saturation mechanism is the dominant one
for k > k∗. In this regime the theoretical predictions of Eq. (3.2.21) show
a very good agreement with the simulations, confirming the independence
of the saturation level from the external magnetic field. For wavenumbers
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k < k∗ and B0 = 0, the Alfvén limit accurately reproduces the data.
In the magnetized case two different behaviors are observed for highly
relativistic (γ0 = 50) and mildly relativistic (γ0 ' 2.3) flows. In the
first case the saturation level is slightly increased, as predicted by the
generalized Alfvén limit in a magnetized plasma, Eq. (3.2.14). On the
contrary in the mildly relativistic case Fig. 3.5 a), the saturation level
decreases with the application of B0.

The discrepancy between Eq. (3.2.14) and the numerical simulations
in the mildly relativistic case is due to the fact that the single-mode
analysis does not hold anymore. With the application of the external
magnetic field, the growth rate is decreased, so that the time required
to reach saturation is increased. This results in the harmonics of the
initial k becoming important before the considered seeded mode reaches
its saturation. In particular, we observe the growth of the third harmonic
with a growth rate close to three times the one of the seeded mode ∼
3Γ(k). This prevents the seeded mode reaching its own (independent)
saturation level. This effect is strongly reduced in the ultra-relativistic
limit where in the simulations a much weaker signal for the third harmonic
is observed. Analysis of the mildly relativistic simulations confirms that
the saturation via the Alfvén limit is not reached: the velocity along the
flow direction does not vanish. The total energy that is expected to be
transferred to the magnetic field is instead distributed in the two modes,
the seeded one with wavenumber k and the harmonic at 3k.

In presence of harmonics, the single mode saturation criterion
Eq. (3.2.14) cannot be applied. However we can consider that satura-
tion is associated to a redistribution of kinetic energy into magnetic field
energy, so that the overall level of conversion into one mode and its har-
monics has to be roughly the same as in the single mode case. It is then
useful to calculate the ratio of the magnetic energy density over the kinetic
energy. Indeed, the Alfvén limit Eq. (3.2.13) can also be interpreted as an
energy equipartition relation for the most unstable mode (kc/ωpe ∼ 1),
the equipartition condition being defined as

B2
sat/8π

n0(γ0 − 1)mec2 = 1
2 . (3.2.23)
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Figure 3.6: Spatial distribution of the total current Jz (dashed lines)
in the initial direction of the flows, Weibel-generated magnetic field By
(plain line) and flow-aligned magnetic field Bz (dash-dotted lines) for the
mildly relativistic (γ0 = 2.3) simulation in the small-k limit k = 0.35ωpe/c
in the linear phase. a) unmagnetized case B0 = 0 at t ' 12.5ω−1

pe ,
b) magnetized case B0 = 0.75Bc at t ' 26.5ω−1

pe .

Actually, the saturation level for the most unstable k saturating via the
Alfvén mechanism in Fig. 3.5, gives an energy ratio Eq. (3.2.14), smaller
than 15% for the mildly relativistic case and 10% for the ultra-relativistic
one, roughly independent from the external magnetic field. Similar lev-
els of equipartition were already observed in simulations (Califano et al.,
1998; Medvedev and Loeb, 1999). The predicted equipartition level, cal-
culated with Bsat from Eq. (3.2.14), in the mildly relativistic case for
k = 0.35ωpe/c (representative of the small-k limit) is ∼ 2%. This is much
larger than the value one would obtain considering the single mode sat-
uration (value of Bsat measured in the simulation, reported in Fig. 3.5a)
but it is comparable (1.8%) if the contributions of the two modes (seeded
and third harmonic) are considered.

Since the harmonic is weaker in the ultra-relativistic case, the agree-
ment with the theoretical curve is significantly improved, Fig. 3.5 b). This
confirms that Eq. (3.2.14) is only valid for single mode. In the presence
of higher harmonics the current filament profile evolves from a sinusoidal
shape to a double peaked structure, see Fig. 3.6 b), where current fila-
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Figure 3.7: (x, pz)-phase space distribution at the saturation for the
simulations initialized with a single mode in the mildly relativistic case
γ0 = 2.3. In the small-k limit, k = 0.35ωpe/c: a) B0 = 0, b) B0 = 0.75Bc.
In the large-k limit, k = 2.0ωpe/c: c) B0 = 0 , d) B0 = 0.75Bc.

ments are formed of two consecutive maxima or minima. The electron
density has the same profile as the current Jz, meaning that the particles
are concentrated in the two spikes at the edge of the filament, and the
hypothesis of sinusoidal profile used to derive Eq. (3.2.14) breaks down.
The competition between different modes will be addressed in Sec. 3.3.

The signature of the two different saturation mechanisms can be
clearly observed in the PIC simulations. Figure 3.7 shows the phase space
x-pz for the simulations with γ0 = 2.3, for a small-k mode (k = 0.35ωpe/c)
and for a large one (k = 2ωpe/c) with and without external magnetic
field, at the time corresponding to their own saturation. We chose two
modes that saturate at the same value of By but for the two different
mechanisms, the Alfvén limit for small-k and the trapping mechanism
for the large-k. With large wavenumber, Figs. 3.7 c) and 3.7 d), the
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flow kinetic energy associated with the motion along the z-direction is
still large at saturation, and the value of pz is close to the initial one
pz(t = 0) ' ±2.1mec, typical of the trapping mechanism. In the case of
small-k and B0 = 0, the particles responsible for the saturation lie in the
region pz ' 0, Fig. 3.7 a), as expected from the Alfvén limit. As already
discussed, in the mildly relativistic case, adding the external magnetic
field, the harmonics of the seeded mode set in before the mode saturates.
These harmonics are clearly seen in Fig. 3.7 b). The gain of momentum
along the z-direction up to twice the initial value, observed in Fig. 3.7 for
all simulations, is associated with the small fraction of particles trapped
in the region occupied by the filaments flowing in the opposite direction,
as previously observed by D’Angelo et al. (2015) in the case of counter-
propagating electron-positron plasmas.

3.3 Temperature and multi-mode effects

The introduction of an initial temperature has two effects. On the one
hand it affects the single mode growth rate, on the other hand it allows
for the growth of a broad spectrum of magnetic perturbations from the
intrinsic electromagnetic fluctuations of a thermal plasma. In a PIC code
these two effects can not be separated. The modification of the growth
rate can be studied for a single mode and compared with PIC simulations
in the linear phase when all modes grow independently. However, satu-
ration of the instability most often involves multi-mode evolution. We
present the studies of the linear and non-linear phases in the following
sections.

3.3.1 Linear phase

3.3.1.1 Relativistic warm fluid theory

For the sake of analytical tractability, we use the relativistic fluid ap-
proach described in Sec. 2.3, including the thermal pressure of the rela-
tivistic plasma flows. We remind that the limit of validity of this approach
corresponds to the ratio Γ/k being larger than the thermal velocity. This
limit involves the necessity of an adiabatic closure for the system of fluid
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equations, as discussed in Sec. 2.4.3.

We consider two symmetric counter-propagating beams and an exter-
nal magnetic field B0 aligned with the flow velocity. In order to properly
describe a plasma with arbitrary flow velocity and temperature, we use
the Maxwell-Jüttner distribution function defined in Eq. (2.2.7). We re-
call that the normalized enthalpy is h(µ) = k32(µ) = K3(µ)/K2(µ), with
µ = T0/mec

2 the normalized temperature in the plasma rest frame, see
Table (2.2.1). One proceeds as in Sec. 3.2.1 and obtains the dispersion
relation for the purely transverse Weibel modes

ω2

c2 − k
2 −

ω2
pe

c2γ0

(
1
γ2

0
+ v2

0k
2

ω2 − Ω2(k)

)
= 0 , (3.3.1)

where ω2
pe = ω2

pe/h(µ), Ω2(k) = Ω2
0+γ−1

0 Γad(µ)v2
thk

2 with Ω2
0 = Ω2

0/h
2(µ)

and vth = [µh(µ)]−1/2. From Eq. (2.4.17), we derive the growth rate of
the instability

Γ(k) = 1√
2


√√√√(k2c2 +

ω2
pe

γ3
0
− Ω2(k)

)2

+ 4
ω2
pe

γ0
k2v2

0

−

(
k2c2 +

ω2
pe

γ3
0

+ Ω2(k)
)]1/2

. (3.3.2)

In the limit T0 = 0, we recover the prediction of the cold fluid theory,
Eq. (3.2.2). From Eqs. (2.4.17) and (3.3.2), we can deduce the range of
unstable wavenumbers. The main effect of the temperature is to strongly
reduce the instability growth rate at large k. The instability is completely
quenched for wavenumbers larger than

c2k2
cut−off = γ0

2Γadv2
th

[
ω2
pev

2
0

γ0c2 −
ω2
peΓadv

2
th

γ4
0c

2 − Ω2
0

+

√√√√(ω2
pev

2
0

γ0c2 −
ω2
peΓadv2

th

γ4
0c

2 − Ω2
0

)2

− 4
Ω2

0ω
2
peΓadv2

th

γ4
0c

2

 . (3.3.3)
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Figure 3.8: Growth rate of the instability as a function of the wavenum-
ber. Theoretical predictions are computed from Eq. 3.3.2 assuming adi-
abatic closure (plain lines). a) Quasi-cold B0 = 0 (light green lines) and
B0 = 0.75Bc (dark purple lines). b) Warm cases B0 = 0 (light green
lines) and B0 = 0.75Bc (dark purple lines). PIC simulations with B0 = 0
(circles) and B0 = 0.75Bc (squares).

Indeed, the thermal motion of the particles in the direction transverse to
the flow prevents their confinement in the filaments. Figure 3.8 shows
the growth rate of the instability as a function of the wavenumber. The
adiabatic closure has been exploited, with adiabatic index Γad = 3 for
the unmagnetized case and Γad = 2 for the magnetized one. Indeed,
with the introduction of a flow-aligned magnetic field, isotropization is
achieved in the two transverse directions (2D adiabatic index) while in
the unmagnetized case the flow is isotropized only along the direction of
k = kxx̂ (1D adiabatic index).

The range of modes amplified by the instability is clearly dependent
on the temperature: the higher the temperature, the smaller the value of
kcut−off . Qualitatively, the difference between unmagnetized/magnetized
systems can be explained considering that the growth rate of the instabil-
ity decreases with the introduction of B0. In order to allow the instability
to grow, a particle should remain in the region where the filament forms
for a time of the order of Γ−1. The larger the external magnetic field,
the longer the required interval of time. Hence with equal temperatures,
small filaments are less likely to form in the magnetized case, and the
value of kcut−off decreases.
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Note that in Eq. (3.3.1) the magnetic field appears in Ω2
0/h

2(µ).
Therefore qualitatively a large temperature, increasing the enthalpy, can
reduce the efficiency of the external field in quenching the instability. To
properly investigate this effect, a kinetic relativistic approach should be
required, since for Γ ' 0 and finite temperature the fluid approach is not
accurate. In the following Sec. 3.4.5, we provide a description based on
the simulation results.

3.3.1.2 Simulation set-up and comparison with linear theory

In order to investigate the temperature effects and the interplay between
the various growing modes, we present a series of 1D3V simulations
with, at initial time, a broad spectrum of modes seeded exploiting the
intrinsic electromagnetic fluctuations of a finite-temperature plasma at
equilibrium. The two electron populations are uniformly distributed in
space and have a Maxwell-Jüttner distribution function in the momentum
space. The implementation in the PIC code of the relativistic drifting
Maxwell-Jüttner distribution follows the algorithm presented by Zeni-
tani (2015). Two series of simulations are carried out with temperature
T0 ' 3.2× 10−4mec

2 [correspondingly TL ' 10−4(γ0− 1)mec
2 in the lab-

oratory frame] and T0 ' 0.1mec
2 [TL = 3.3× 10−2(γ0 − 1)mec

2] referred
to in the following as quasi-cold case and warm case, respectively. The
length of the simulation box is Lx ' 50 c/ωpe and the cell extension is
∆x = λDe/2, where λDe is the Debye length λDe =

√
TL/(4πn0e2). The

time resolution is c∆t = 0.95∆x and we use 2000 macro-particles-per-cell
per species.

The growth rate of different modes has been extrapolated from PIC
simulations performing a Fourier analysis and measuring the growth of
each mode independently. Results are reported in Fig. 3.8 for the two
temperatures (quasi-cold and warm cases), with and without external
magnetic field (B0 = 0 and B0 = 0.75Bc). Theoretical predictions from
Eq. (3.3.2) are also shown considering the appropriate adiabatic closure
(solid lines). A fairly good agreement is found between PIC simulations
and theory. The deviation from the predicted values in the magnetized
quasi-cold case, appears in a region of the Γ-k space at the limit of valid-
ity of our fluid approach, where kinetic effects might play an important
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Figure 3.9: a) Evolution of the magnetic energy of the field By. b) Spec-
trum of By at t = 30ω−1

pe . c) Spectrum of By at the end of the simula-
tions t = 120ω−1

pe . Quasi-cold simulations (plain lines), warm simulations
(dashed lines), with B0 = 0.0 (light green lines) and B0 = 0.75Bc (dark
purple lines). Spectra are shown after the application of Savitzky-Golay
filter (Savitzky and Golay, 1964) in k−space to reduce the noise.

role, as investigated by Sarrat et al. (2016). Our results nevertheless sug-
gest that the proposed relativistic fluid approach, which gives tractable
solutions for the growth rate, is relevant to model the Weibel instability
in the regimes discussed here.

3.3.2 Nonlinear phase and saturation

We now focus on the non-linear phase and saturation of the instability.
Figure 3.9 a) shows the evolution of the energy U associated with the
Weibel generated magnetic field By normalized to the total initial flow
energy Uk0. In the quasi-cold simulations (plain lines), the saturation
level is modified by the application of the external field B0. For the
magnetized plasma (dark purple line), saturation is reached at tsat,B0 '
25ω−1

pe , identified by the clear change in the slope in Fig. 3.9 a). This stage
corresponds to the saturation of the modes with large wavenumbers k &
10ωpe/c, that grow with the largest rate, see Fig. 3.8 a), and saturate with
a low level of the magnetic field, as predicted by the trapping mechanism,
see Fig. 3.5 a). Indeed, at that time, the amplitude of the oscillations of
the magnetic field By ' 0.12meωpec/e, is consistent with the saturation
predicted for those modes. The saturation of these modes occurs at the
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3.3. Temperature and multi-mode effects

same level of U for the simulation with B0 = 0 (light green line) around
t∗ ' 16ω−1

pe . Note that t∗ < tsat,B0 as expected due to the larger growth
rate in the absence of the external magnetic field.

After this first saturation stage, the magnetized and unmagnetized
cases evolve differently. In Fig. 3.9 a), the two plain lines do not reach
the same level. Even at late time (not shown here), the slow rise in the
magnetized curve ceases, the energy reaches an asymptotic value slightly
lower than the unmagnetized one and remains constant after t ' 300ω−1

pe .
In the unmagnetized plasma, once the large wavenumber modes have

reached saturation, the small-k modes keep growing up to their own sat-
uration level. The growth of small k filaments involves a rearrangement
in large structures of the particles with opposite flow velocity. In the
magnetized case, in order to create filaments with small k, not only the
currents should be redistributed but also the external magnetic field lines,
that during the linear phase are compressed inside the filaments. This
process entails a slowdown in the growth of small-k modes, hence the
very low slope in Fig. 3.9 a). Thus, with the introduction of the external
magnetic field the large-k modes remain stable after their saturation and
this affects the growth of the modes not yet saturated. This is clearly
shown in the spectra of the magnetic field By reported in Fig. 3.9 b) for
all four simulations at t = 30ω−1

pe and at t = 120ω−1
pe . In the quasi-cold

magnetized case the spectrum is dominated by the large-k modes, while
in the unmagnetized case there is a dominant mode with k ' 1.2ωpe/c.

The increase of the initial temperature, limits the range of unsta-
ble wavenumbers due to the temperature effect of stabilizing the large-k
modes, Fig. 3.8 b). In this way, the saturation level becomes again inde-
pendent from the external magnetic field, Fig. 3.9 a) (dashed lines). The
spectrum of By at the saturation is peaked around k ' 0.7ωpe/c for the
unmagnetized case (dashed light green line) and k ' 0.9ωpe/c for the
magnetized case (dashed dark purple line). The peak values are in good
agreement with the k predicted to have the highest saturation level in the
cold single-mode model k∗ = 0.63ωpe/c, Fig. 3.5 a).

To summarize, with initially large temperature the saturation level
does not depend on the application of the external flow-aligned magnetic
field and the spectra are peaked around the optimal value found in the
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cold case, while at low temperature the energy transfer towards small-k
filaments is hampered by the external magnetic field, resulting in a lower
saturation amplitude and a wider distribution in k.

3.3.3 Late merging phase

At later times, after the saturation of the instability, t > 30ω−1
pe referring

to the simulations presented in Fig. 3.9, the so-called merging or coales-
cence of filaments phase governs the dynamics of the system. During this
phase the total energy in the magnetic field remains roughly constant, see
Fig. 3.9 a). The merging of two filaments is the result of the attractive
force between filaments of parallel current. Regarding the spectrum of the
Weibel generated magnetic field, the coalescence of filaments involves a
shift toward small wavenumber modes as it creates structures of increased
transverse size in the current and accordingly in the magnetic field. Sim-
plified models for the coalescence of filaments in cylindrical geometry have
been presented by Medvedev et al. (2005); Achterberg et al. (2007). In
our 1D geometry, the merging of filaments could be quite unexpected.
Indeed, in order to observe the coalescence, the attractive force between
two filaments of parallel current should overcome the repulsive force due
to the filament of opposite current in the middle of them. Thus, a series
of equal positive and negative current filaments would produce a stable
situation, the attractive and repulsive force balancing each other. This
is the case in single-mode simulations, as illustrated in Fig. 3.10, where
the evolution in time of the current Jz of the two counter-streaming elec-
tron beams and the Weibel generated magnetic field By are shown for
k = 2ωpe/c. However, in the case of an initial broad spectrum of un-
stable modes, merging can occur as this balance is not achieved due to
(i) the intrinsic irregularity in the filament spatial distribution and (ii)
the effect of the inductive electric field, as detailed below.

In Fig. 3.11 the evolution in time of Jz and the By are shown for
the unmagnetized quasi-cold simulation. At time t = 0 the total current
vanishes, then the filaments start to develop and the saturation is reached
at t ' 30ω−1

pe . The magnetic energy in Fig. 3.9 a) remains constant after
saturation and events of coalescence are clearly shown in Fig. 3.11.

Coalescence processes, even if in a 1D configuration can be explained
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Figure 3.10: a) Evolution of the current Jz of the two counter-streaming
beams. b) Evolution of the Weibel generated magnetic field By, for the
unmagnetized case with seeded mode k = 2ωpe/c.
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Figure 3.11: a) Evolution of the current Jz of the two counter-streaming
beams. b) Evolution of the Weibel generated magnetic field By, for the
unmagnetized quasi-cold case.
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Figure 3.12: Spectrum of By (plain line) and Ez (dashed line) in the
linear phase t = 10ω−1

pe , for the unmagnetized quasi-cold case. Spectra
are shown after the application of Savitzky-Golay filter (Savitzky and
Golay, 1964) in k-space to reduce the noise.

as follows. In this series of simulations, the instability starts from a broad
spectrum of modes. As already pointed out this leads to an intrinsic ir-
regularity (randomness) in the filament spatial distribution. Furthermore
this entails a difference in the spectrum of the Weibel-generated mag-
netic field By (plain line) and the spectrum of inductive electric field Ez
(dashed line), as shown in Fig. 3.12. This difference in the k-space can be
explained considering a broad spectrum in the magnetic field By in the
linear phase of the instability as

By(x, t) =
∑
n

B̃y0,n sin(knx)eΓ(kn)t , (3.3.4)

the sum running over all wavenumbers. Using Maxwell-Faraday equation
to compute the inductive electric field Ez, we obtain

Ez(x, t) =
∑
n

B̃y0,n
Γ(kn)
ckn

cos(knx)eΓ(kn)t . (3.3.5)

We assume the same amplitude for each mode at early time, so that B̃y0,n
is independent from kn. Due to the factor Γ(k)/k, considering Γ(k) as
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calculated from Eq. (3.3.2), the inductive electric field Ez vanishes at
large k, so that its spectrum peaks at small k.

Despite the amplitude of Ez is smaller than the amplitude of By, it can
play a key role due to the different spectrum with respect to By. Since the
electric field has a peak in the spectrum at small k, i.e. large wavelengths,
it can have opposite effect on two neighbor filaments with opposite cur-
rent, corresponding to a mode with large k. Ez accelerates the particles
of one filament while decelerating the other. The unbalance produced in
the current allows for the merging of the filaments. The attractive force
between two filaments of positive currents, whose particles are acceler-
ated by Ez, exceeds the repulsive force due to the negative filament in
the middle, for which Ez is decelerating, resulting in the coalescence of
the positive currents. In the simulations with single seeded mode, Ez
and By have the same periodicity, see Eqs. (3.2.6) and (3.2.7), so that Ez
tends to slow the electrons of both the counter-streaming beams down.
The filaments form a regular structure of identical positive and negative
filaments, and merging is not be observed, see Fig. 3.10.

At saturation, in all simulations, except in the magnetized quasi-cold
case, the spectra of the magnetic field By have a peak for k . ωpe/c, as
shown in Fig. 3.9 b). The corresponding spectra at the end of the simula-
tion t = 120ω−1

pe , show that the peak is increased, narrower and slightly
shifted toward a lower k. After the saturation the energy in the magnetic
field is constant, Fig. 3.9 a), thus the evolution of the peak is a signa-
ture of the merging events, that transfer energy to the modes with large
wavelengths. In the quasi-cold simulation, the presence of the external
magnetic field produces a broad spectrum of modes at the saturation, that
remains much broader than in the other cases, also at the end of the simu-
lation. The coalescence of filaments is hampered by the external magnetic
field, since an additional energy is required to move the magnetic field
lines. This can be deduced from the comparison between Fig. 3.13 and
Fig. 3.14, corresponding to the simulations initialized with warm plasma
in the unmagnetized and magnetized cases, respectively. Merging events
are observed in the unmagnetized case around t ' 40ω−1

pe , after the sat-
uration stage, while the filamentary structure remains unvaried in the
magnetized case.
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Figure 3.13: a) Evolution of the current Jz of the two counter-streaming
beams. b) Evolution of the Weibel generated magnetic field By, for the
unmagnetized warm case.

0

25

50

x
ω
pe
/c

a)
−1.25

0.00

1.25

J
z /(ecn

0 )

0 40 80 120
tωpe

0

25

50

x
ω
pe
/c

b)

−1.25

0.00

1.25

eB
y /(m

e ω
pe c)

Figure 3.14: a) Evolution of the current Jz of the two counter-streaming
beams. b) Evolution of the Weibel generated magnetic field By, for the
magnetized warm case.
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3.4 2D simulations

In this section we present the results of a series of two-dimensional sim-
ulations that allow to both confirm and extend the main findings of the
previous 1D study.

Two different 2D configurations can be investigated. Considering x-y
as the simulation plane, the electron counter-streaming beams can ei-
ther propagate in the direction perpendicular to the simulation plane
v0 = ±v0 ẑ, or have their drift velocity into it v0 = ±v0 x̂. In the first
configuration, both Bx and By components of the magnetic field are am-
plified by the Weibel instability. The wavevector lies in the simulation
plane, so that only purely transverse modes can be investigated, as in the
1D simulations. In the other case, Weibel modes produce magnetic field
modulations Bz, with wavevector k = ky ŷ. In addition, this configura-
tion accounts for the development of longitudinal modes, with wavevector
parallel to the flow direction. This might be useful to investigate in the
late stage of the instability the competition between transverse, longitu-
dinal and oblique instabilities, as studied analytically in the linear phase
by Bret et al. (2010b).

We expect major differences with the 1D study in the late non-linear
phase, after saturation of the instability. Especially the process of coa-
lescence is known to critically depend on the system geometry.

3.4.1 Simulation set-up

The simulations presented in this section have been carried out in a 2D
geometry and both the above described configurations (corresponding to
initial flow velocity v0 = ±v0x̂1 or v0 = ±v0ẑ, with v0 = ±0.9 c) have
been tested, in the unmagnetized case and with flow-aligned magnetic
field B0 = 0.75Bc. In order to make a comparison with the results of
Sec. 3.3, we use the same temperatures T1 ' 3.2× 10−3mec

2 (quasi-cold
case) and T2 ' 0.1mec

2 (warm case). The resolution in space for the
1This configuration can be affected by numerical Cherenkov emission, as will be

described in Chap. 5. In order to remove this unphysical effect, we used the Friedman
filter with θ = 0.05 and 2-passes current filtering, see Sec. 5.3. The efficiency of these
techniques on this system is discussed in Sec. 5.4.
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simulation initialized with temperature T1 is (c/ωpe)/128, correspond-
ing to ' 0.43λDe,1, and for the simulation initialized with temperature
T2 is (c/ωpe)/32, corresponding to ' 0.1λDe,2. The time resolution is
c∆t = 0.5 ∆x and 50 particles-per-cell per species have been used. The
simulation box extends over (32 c/ωpe×32 c/ωpe) and periodic boundaries
are used for both particles and fields.

3.4.2 Linear phase and saturation

The linear phase of the instability, and in particular the value of the
growth rate, is not affected by the different geometry, as shown in
Fig. 3.15, where the evolution in time of the Weibel-generated magnetic
field energy density is reported for the quasi-cold (left frame) and warm
(right frame) simulations, initialized with flow perpendicular to the sim-
ulation plane (plain lines) and in the simulation plane (dashed lines), for
both the unmagnetized (light green lines) and magnetized (purple lines)
cases. As a reference, we report also the 1D magnetic energy density
(dash-dotted lines). The growth rate values measured in the 2D simula-
tions differ from the corresponding 1D cases by less than 5%.

No evidence of longitudinal modes or instabilities, such as the two-
stream instability, has been found. Indeed, the purely transverse Weibel
instability is expected to be the dominant mode in the unstable spectrum
for symmetric relativistic beams (Bret et al., 2010b).

The warm simulations, Fig. 3.15 b), confirm the 1D result that the
saturation level does not depend on the external magnetic field (com-
pare green and violet lines with the same style). Indeed, at saturation,
happening between (20 ÷ 30)ω−1

pe depending on the configurations, the
same level of Weibel-generated magnetic energy is achieved. Moreover,
the magnetic field strength at the time corresponding to saturation does
not depend on the geometry (compare plain and dashed lines).

The quasi-cold simulations have different evolution in the unmagne-
tized and magnetized case, as already discussed in Sec. 3.3.2 for the 1D
case, and some differences appear depending on the beams propagation
direction, Fig. 3.15 a). In the unmagnetized cases, all configurations lead
to the same magnetic field energy level at saturation. In the presence
of the external magnetic field, a change of slope in the energy growth is
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Figure 3.15: a) Evolution in time of the energy associated with the
Weibel-generated magnetic field in 2D simulations. a) Quasi-cold case.
b) Warm case. Light green lines refer to B0 = 0 and dark purple lines to
B0 = 0.75Bc. Plain lines corresponds to initial flows along z-direction,
dashed lines along the x-direction and dash-dotted lines the 1D cases. All
energies are normalized to the total initial flow kinetic energy Uk0.

evident for U/Uk0 in the range 10−3 ÷ 10−2. This stage corresponds to
the saturation of large-k modes, excited in the initial broad spectrum of
modes characteristic of a low but finite temperature, as in the 1D sim-
ulations. The magnetic field amplitude at this time is ' 0.1meωpec/e,
consistent with the saturation of modes with k & 10ωpe/c, as shown
in the 1D spectrum in Fig. 3.9. After that, modes with higher satu-
ration level, i.e. small-k, can keep growing. The effect of the external
magnetic field in impeding the redistribution of the currents, required
for the growth of the small-k modes, is maximum in the 1D configura-
tion. Indeed, the magnetic energy is still growing at late time and it
does not reach the unmagnetized level. Regarding the 2D simulations,
the effect of the external field is stronger in the case of initial velocity in
the simulation plane (v0 = ±v0 x̂). The saturation level (purple dashed
line t ' 50ω−1

pe ) is slightly smaller than in the unmagnetized case (green
dashed line t ' 30ω−1

pe ). In the other 2D configuration (v0 = ±v0 ẑ) the
two curves reach the same level. Indeed, in this latter configuration, the
redistribution of the current filaments is facilitated by the possibility to
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move in the x-y plane, while the other corresponds to a quasi-1D geom-
etry, in which the redistribution take place only along the y-direction.
Note that, as in 1D, in the warm simulations, modes with k & 10ωpe/c
are stable. Hence, we do not observe any change of slope in the magnetic
energy density growth.

Comparing the saturation levels in Fig. 3.15a-b), we see that the frac-
tion of initial kinetic energy Uk0 transferred to the Weibel-generated mag-
netic field energy U is, with good accuracy, independent from the tem-
perature.

In conclusion, we confirm the main result discussed in the previous
1D study: the temperature and a strong external magnetic field do not
drastically affect the saturation level, despite reducing the growth rate.

3.4.3 Late merging phase

The main differences between the two 2D configurations appear in the late
phase of the simulations, when merging events are usually considered to
govern the dynamics of the system.

For longitudinal beams, the energy in the Weibel-produced magnetic
field decreases after saturation, while it remains constant in the perpen-
dicular flows case. This different behavior is approximately independent
from the temperature, see Fig. 3.15 a-b). As discussed by Medvedev et al.
(2005), the coalescence of two filaments involves a redistribution of the
current filaments and of the magnetic field structures that does not change
the total energy in the electromagnetic fields. This is indeed what hap-
pens in the 2D configuration with perpendicular flows and in 1D, as shown
in Fig. 3.15 by the energy plateau at t & 50ω−1

pe . Moreover, the forma-
tion of large structures is highlighted in Fig. 3.16, where we compare the
current filament distribution Jz(x, y) at saturation (t ' 30ω−1

pe ) and at
the end of the simulation (t = 100ω−1

pe ), for the warm magnetized case,
being representative of all the other cases in which merging events give
the dominant contribution. The limit on the increase of the filament
extension is given by the duration of the simulation and by the box di-
mension. Comparing the filament dimension at t = 100ω−1

pe , in the 1D
case Fig. 3.14 b) with this 2D configuration Fig. 3.16 b), we clearly see
that the efficiency of the coalescence is enhanced by the 2D geometry, es-
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Figure 3.16: Current filament distribution Jz in the magnetized warm
case initialized with v0 = ±v0ẑ, at saturation (t ' 30ω−1

pe ) and at the
end of the simulation (t = 100ω−1
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Figure 3.17: Current filament distribution Jx in the magnetized warm
case initialized with v0 = ±v0x̂, at saturation (t ' 30ω−1

pe ) and at the
end of the simulation (t = 100ω−1
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pecially for the magnetized case for which no redistribution was observed
in the 1D simulation.

In the longitudinal flow configuration, the current filaments are af-
fected by kink-like instabilities, as discussed by Milosavljević and Nakar
(2006). The presence of these longitudinal modes at saturation is shown
in Fig. 3.17 a). This leads to the disruption of the filaments themselves at
late times, Fig. 3.17 b), and to the decrease of the total electromagnetic
energy, as shown in Fig. 3.15.

3.4.4 Secondary Weibel instability

A secondary Weibel instability, growing during the late linear phase of the
main instability, has also been identified. It grows in the case of initially
unmagnetized flows (B0 = 0) and amplifies the magnetic field component
along the electrons propagation direction.

The only simulation that allows for this observation is the one per-
formed in the 2D configuration with flows perpendicular to the simula-
tion plane (v0 = ±v0 ẑ). The main instability amplifies the magnetic field
components Bx and By, while the secondary instability the magnetic field
Bz. The exponential growth of UBz , the energy density associated with
the flow-aligned magnetic field, is illustrated in Fig. 3.18 (plain dark green
lines), along with the electrostatic energy density (dashed dark green line)
and UBx,y associated with theWeibel-generated magnetic field (light green
line), in the unmagnetized case for both temperatures.

The growth rate measured for UBz is in good agreement with twice
that of UBx,y , the main Weibel instability. Indeed, as particularly clear
in the warm case, Fig. 3.18 b), UBz has the same growth than the electro-
static energy, produced as a second order effect because of charge separa-
tion. This suggests that second order effects might also be responsible for
the growth of the flow-aligned magnetic field. Looking at Bz and at the
Jx and Jy distributions in the simulation plane at t = 60ω−1

pe , Fig. 3.19,
a similar pattern is found. We can therefore describe this mode as a sec-
ondary Weibel instability driven by the transverse motion of the particles,
following from the deflection produced by the primary Weibel instability.
From an analytical point of view, we can extend the linearization per-
formed in Sec. 2.4, developing the fluid equations up to the second order.
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3.4. 2D simulations

Figure 3.18: Evolution in time of the energy density associated with the
Bz component (plain dark green line), the electrostatic field components
Ex and Ey (dashed dark green line) and in the Weibel-generated magnetic
fields Bx and By (light green line) for the 2D simulations with initial
plasma flows along the z-direction. a) The unmagnetized quasi-cold case.
b) The unmagnetized warm case.

While the current perturbation at first order appears only along the flow
direction (here J (1)

z ), at the second order we obtain J (2)
x = J

(2)
y 6= 0. In

the Maxwell-Ampère equation, Eq. (2.4.3), this second order current cou-
ples the electrostatic field, growing at twice the primary Weibel growth
rate, with the flow-aligned magnetic field Bz, thus explaining the growth
observed in Fig. 3.18.

This secondary instability is not observed in any of the other unmag-
netized configurations since the reduced geometry of the simulations does
not allow it. Indeed, to observe the growth of the flow-aligned magnetic
field in the 2D longitudinal flows configuration (v0 = ±v0 x̂ ‖ Bx x̂), a 2nd

order current Jz with modulations along y should be present. However
the main Weibel-instability deflects the particle only along the y-direction
(k = ky ŷ), thus producing a second order current J (2)

y . Similarly the
growth of Bz is prevented in the 1D cases.

In all magnetized simulations the secondary instability does not de-
velop. Indeed, the initial energy associated with the flow-aligned external
magnetic field exceeds the saturation value of the secondary instability
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Figure 3.19: a) Flow-aligned magnetic field Bz produced by the sec-
ondary Weibel instability. b) Current filament distribution Jx. c) Current
filament distribution Jy. In the unmagnetized warm simulation initial-
ized with v0 = ±v0 ẑ, during the linear phase of growth of the secondary
Weibel instability, t ' 60ω−1

pe .

observed here. However, in the magnetized simulations, the external mag-
netic field get compressed inside the filaments, following the accumulation
of the particle density. This was clearly observed in 1D simulations with
single seeded mode, where modulations at twice the seeded k appear, as
shown in Fig. 3.6.

3.4.5 Critical magnetic field

The value of the critical magnetic field for which the Weibel instability is
quenched has been derived in Sec. 3.2.1.1 starting from the cold plasma
dispersion relation, Eq. (3.2.5). In this section, we investigate the depen-
dence of this parameter on the temperature. Indeed, as mentioned at the
end of Sec. 3.3.1.1, the external magnetic field appears in the dispersion
relation for finite temperature beams, Eq. (3.3.1), as B0/h(µ), so that a
high temperature, increasing the enthalpy, reduces the effective value of
the external field. Note that the dispersion relation (3.3.1) can not be
used to extract analytically the critical value Bc(µ) for which the growth
rate vanishes (Γ = 0) in finite temperature plasma, since the fluid de-
scription is accurate in the limit Γ/k � vth, where vth is the thermal

104
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Figure 3.20: Weibel-generated magnetic field energy density with B0 =
Bc and initial temperature T = 5× 10−3mec

2 (dash-dotted purple line),
T = 5 × 10−2mec

2 (dashed purple line) and T = 0.5mec
2 (plain purple

line). a) 1D simulations. b) 2D simulations.

velocity. To do so, a relativistic kinetic description of magnetized rela-
tivistic Weibel-instability would be required. To our knowledge, this has
not been derived. Here, we evaluate the dependence of this threshold
on the temperature in the range [0, 0.5]mec

2, by means of 1D and 2D
simulations, keeping unchanged all other parameters.

In Fig. 3.20 we show the results of simulations performed in 1D (left
frame) and 2D with transverse flows (right frame) with external field
equal to the cold case critical field Bc ' 1.36meωpec/e, for temperatures
T0 = 5 × 10−3, 5 × 10−2, 0.5mec

2 in the plasma rest frame. With low
temperature (T0 = 5 × 10−3mec

2, dash-dotted purple lines) the system
is stable, while the Weibel instability is found to grow in the case of
higher initial temperature. The growth rate of the instability in the case
of T0 = 0.5mec

2, extracted from both 1D and 2D simulations, is Γ '
0.15ωpe, in fairly good agreement with the fluid prediction for which the
maximum growth rate is Γ ' 0.18ωpe. The fluid theory is not applicable
at temperature T0 = 5× 10−2mec

2, since with this temperature the limit
ξ � 1 is not satisfied. We remind that the parameter ξ does not depend
exclusively on the temperature, see Sec. 2.4.3. With the inappropriate
use of the fluid theory we would predict the system to be stable.
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3.5 Conclusions

The electron Weibel instability driven by two symmetric counter-
streaming relativistic electron beams in the presence of a flow-aligned
magnetic field has been investigated using both analytical modeling and
PIC simulations.

The linear stage of the instability is modeled using a relativistic fluid
approach accounting for the effect of the electron pressure in the case of
finite temperature plasma flows. This fluid model proves to give tractable
solutions for the growth rate which are found to be in good agreement
with the PIC simulations.

The saturation (non-linear phase) of the instability has also been in-
vestigated. Considering a single growing mode, the mechanisms respon-
sible for saturation in the unmagnetized case have been clarified and a
proper analytical generalization to predict the saturation level in the pres-
ence of the external magnetic field has been obtained. At small wavenum-
bers the dominant role of the Alfvén current-limitation is highlighted. We
show that, in this range, the external magnetic field can slightly increase
the field amplitude at saturation. In the large wavenumber limit, the trap-
ping mechanism (revisited as the injection of particles in the filaments)
leads to the saturation of the instability. The saturation level for large
k modes is predicted to be independent of the strength of the external
magnetic field, as long as the latter remains smaller than the well-known
critical field above which the instability is quenched. Our analysis also
explains why the bouncing frequency argument, which is shown to hold
in the absence of the external magnetic field, does not lead to a correct
prediction for the trapping mechanism saturation level in the presence
of a flow-aligned magnetic field. These theoretical results are in good
agreement with 1D PIC simulations seeded with a single mode.

The saturation and late merging stages have also been numerically
investigated by seeding the instability from broadband thermal fluctua-
tions, in 1D and 2D PIC simulations. In a low temperature plasma, the
average saturation level in the 1D geometry is decreased by the applica-
tion of an external magnetic field, since after the saturation of large-k
modes the external magnetic field hinders the redistribution of energy
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towards small k. For this reason, the Weibel magnetic field spectrum in
a magnetized plasma is much broader than in the unmagnetized case. In
the 2D geometry, especially with perpendicular flows, a similar saturation
level is achieved in the unmagnetized and magnetized case and the capa-
bility of the external field in keeping stable the saturated large-k modes
is much weaker. This highlight the limits of the 1D numerical study and
the importance of multi-dimensional simulations for the non-linear stage
of the instability. Increasing the initial flow temperature, the saturation
level is found to be independent from the external magnetic field in all
configurations. The Weibel magnetic field spectra are found to be peaked
around the wavenumber predicted to have the maximum saturation level
by single mode analysis.

At late times, merging processes have been found to govern the dy-
namics in 1D and 2D simulations with perpendicular flows. The mecha-
nisms that allow for the filament coalescence observed in multi-mode 1D
simulations (and absent in the single-mode ones) have been explained as
following from both, the irregular distribution of filaments growing from
thermal fluctuations and the effect of the small-k inductive electric field.
Filament coalescence is found to be inhibited by the external magnetic
field in 1D simulations, while it is weakly affected in the 2D case when
considering perpendicular flows.

The late time evolution of the 2D in-plane flows configuration
is dominated by kink-like instability that disrupts the filaments and
involves a redistribution of the magnetic energy. This instability can not
be observed in the other configurations in which merging is found to
have a dominant role.

Our results can be applied to astrophysical systems where the Weibel
instability develops in magnetized plasmas and drive the formation of
collisionless shocks. In the context of relativistic laboratory astrophysics,
one of the major experimental issue to investigate the development and
the late stage of the Weibel instability is related with the low density of
the counter-propagating plasma flows that can be produced by means of
laser-plasma interaction. Indeed, a low density involves long time scale
and large interaction length of the plasma flows. A guiding magnetic field
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has been suggested as a way to maintain a high plasma density. A major
concern was thus the potential effect of the external field in stabilizing
the Weibel instability development and, in particular, its effect on the
strength of the produced magnetic field. Our results prove that using a
guiding external magnetic will not strongly modify the level of Weibel-
generated magnetic fields, so that it might be used in experiment to keep a
high density flows, hence fastening the development of plasma instabilities
and potentially of the formation of collisionless shocks.

Appendix

3.A Alfvén limit in the presence of an external
magnetic field

The Alfvén limit defines the maximum (critical) current that a beam
of charged particles can sustain before the particle trajectories, in the
self-generated magnetic field, start limiting the current itself due to the
reduction and/or inversion of particle motion in the flow direction (Alfvén,
1939). The maximum current can be defined in different ways (Alfvén,
1939; Hammer and Rostoker, 1970; Honda, 2000) that, within a factor,
give very similar results. In this Appendix, we follow more closely the
original approach proposed by Alfvén.

The derivation presented here considers a 1D3V geometry and a given
sine-like profile for the current density, in order to be consistent with our
PIC simulations. Generalization to the more realistic 2D(r, z) geometry
and arbitrary profile is straightforward. The critical current for a uniform
cylindrical current in 2D(r, z) geometry is given at the end of this Section.

We assume a sinusoidal profile for the current density Jz, for −π/2 ≤
kx ≤ π/2, as

Jz(x) = −J0 cos(kx) , (3.A.1)

and, consistently with the Ampère’s law, the magnetic field

By(x) = −2πI(0)
1D/c sin(kx) , (3.A.2)
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with I(0)
1D = 2 J0/k the absolute value of the total (areal) current.

Considering this magnetic field and the external (guiding) magnetic
field B0 = B0 ẑ as time-independent, three constants of motion allow
for the description of the dynamics of an electron in these fields: the
electron energy (Hamiltonian) H = mec

2√1 + p2/(m2
ec

2), and the two
components of the electron canonical momentum Π = p− eA/c lying in
the y-z plane. The vector potential A is computed inverting the relation
B = ∇×A, leading to

Ay(x) = B0x , (3.A.3)

Az(x) = 2π
I

(0)
1D
kc

[1− cos(kx)] , (3.A.4)

where we have taken Ay(0) = Az(0) = 0. Considering an electron initially
located at the border of the filament kx0 = π/2, with initial momentum
meγ0v0ẑ (correspondingly H0 = γ0mec

2), one gets

p2
x = m2

ec
2(γ2

0 − 1)− p2
y − p2

z , (3.A.5)

py = −eB0x0
c

(1− x/x0) , (3.A.6)

pz = meγ0v0 − 2πe
I

(0)
1D
kc2 cos(kx) . (3.A.7)

The critical current I(c)
1D is then defined as the minimum current for which

the longitudinal momentum Eq. (3.A.7) vanishes leading to

I
(c)
1D = 1

2π
mec

2

e
min

{
γ0v0k

cos(kx)

}
. (3.A.8)

In the absence of the external magnetic field (B0 = 0, so that py = 0
at all times), this minimum is reached for x = 0, i.e. when the electron
longitudinal momentum vanishes on-axis, leading to

I
(c)
1D = 1

2π
mec

2

e
γ0v0k , (3.A.9)
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that corresponds, using Eq. (3.A.2), to the magnetic field By strength

Bmax = γ0v0k
mec

e
, (3.A.10)

given by Eq. (3.2.13).

In the presence of a guiding magnetic field (B0 6= 0), the electron
initially at the border of the current may not reach its center x = 0
before being turned back under the effect of the guiding magnetic field.
As a consequence, the critical current Eq. (3.A.8) has to be computed
taking x = x∗, with x∗ = 0 if the electron can reach the center of the
current, and x∗ > 0 the turning point of the electron when it cannot reach
x = 0. For large enough external magnetic field [B0 > (γ0v0/x0)mec/e,
correspondingly A ≡ v0/|Ω0x0| < 1], one obtains x∗ as the point for
which px = pz = 0 (all the electron momentum is in py) leading to
x∗ = x0 (1−A). For lower values of the external magnetic field (A ≥ 1),
the electron will eventually reach the center of the filament so that x∗ = 0.
This leads to the critical current

I
(c)
1D = 1

2πf(A) mec
2

e
γ0v0k , (3.A.11)

with f(A) = [cos(π(1 − A)/2)]−1 for A < 1, and f(A) = 1 otherwise,
corresponding to the magnetic field strength

Bmax = f(A) γ0v0k
mec

e
, (3.A.12)

as in Eq. (3.2.14).

A similar derivation can be done in the case of a uniform cylindrical
current with radius R, in 2D(r, z) geometry. The constants of motions are
then given by the Hamiltonian, z-component of the canonical momentum
and canonical angular momentum. One then obtains the critical current

I(c) = I0
γ0v0/c

1− r∗/R , (3.A.13)

with I0 = mec
3/e ' 17 kA, and for which r∗ plays the same role as x∗ in
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the 1D geometry and depends on the external magnetic field as

r∗ = R

2

(√
4 +A2 −A

)
, (3.A.14)

with A = v0/|Ω0R| and Ω0 the cyclotron frequency of an electron in the
external magnetic field B0. In the absence of external magnetic field
A→∞ (r∗ = 0), one recovers the well-known result by Alfvén.

Notice that both Eqs. (3.A.11) and (3.A.13) predict an increase of
the critical current with the application of a guiding magnetic field. The
possibility to exceed the Alfvén limit by applying an external magnetic
field along the flow direction has been already mentioned in (Peratt, 1992,
Par.2.5.2-6).
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In this Chapter we propose a scheme to reproduce, in the laboratory,
the ion Weibel instability and the subsequent collisionless shock forma-
tion, by means of laser-plasma interaction at Ultra-High-Intensity (UHI).

Up to now, most of the studies have focused on the use of high-energy
(multi-kJ and NIF-LMJ class) laser facilities operating at modest inten-
sities (. 1016W/cm2) (Huntington et al., 2015; Park et al., 2015; Ross
et al., 2017), whose main findings have been summarized in Sec. 1.2.2.
On such laser systems, the resulting plasma flows are created by abla-
tion of dense targets, which limits the accessible flow density and velocity
(typically . 0.5% of the speed of light). As a result, the characteristic
length and time over which shock formation can be expected are large
(few centimeters and tens of nanoseconds). This has potentially two
drawbacks. First, it requires the use of large laser systems such as NIF or
LMJ. Second, the effect of particle collisions over such lengths/times may
not be completely negligible. In contrast, UHI laser systems, with peak
intensities beyond 1018 W/cm2, could allow to alleviate these limitations
by providing a complementary path toward the creation of collisionless,
ultra-fast and high-density electron-ion flows.

This work has led to the publication on Physical Review E (Grassi
et al., 2017a).

This Chapter is structured as follows. We first introduce the basic con-
cepts of intense laser-plasma interaction in Secs. 4.1.1 and 4.1.2, and then,
in Sec. 4.1.3, we briefly describe the energy absorption mechanisms that
take place under the investigated conditions. Our proposed scheme relies
on the production of quasi-neutral flows generated by the so-called Ra-
diation Pressure Acceleration (RPA) mechanism, described in Sec. 4.1.4.
The main findings of a scheme previously proposed by Fiuza et al. (2012)
are summarized in Sec. 4.2 in order to highlight the differences with our
proposition.
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In order to optimize the energy transfer from the laser pulse to the
fast ion beam, circular polarized light is commonly considered to be the
optimal driver for RPA. This configuration is indeed expected to reduce
the electron laser energy absorption (Macchi et al., 2005; Robinson et al.,
2009; Schlegel et al., 2009), as reminded in Sec. 4.1.3. In contrast, by
means of PIC simulations, we demonstrate that an S-polarized laser beam
irradiating the target at oblique incidence is the optimal configuration. In
particular, the usual configuration of normal incidence and circularly po-
larized light is affected by surface instabilities which increase drastically
the production of hot electrons and thus modify the characteristics of the
ion flow in the target. A detailed comparison between the different in-
teraction configurations is presented in Sec. 4.3. Furthermore, we notice,
in PIC simulations, that a current generated along the surface, as can be
obtained at non-normal incidence in linear polarization, is always corre-
lated with the mitigation of the surface instabilities (Secs. 4.3.1 and 4.3.3).
We provide, in Sec. 4.3.2, an analytical model for the description of the
surface current and field profiles.

Motivated by these results, in Sec. 4.4, we consider an S-polarized
laser with oblique incidence and we demonstrate with a full 3D simu-
lation that it is possible to drive fast, dense and quasi-cold flows into
the target, and enter in a regime governed by the Ion-Weibel-Instability
(IWI). The possibility to produce, at later times, a collisionless shock is
then investigated in Sec. 4.5.

4.1 UHI laser-plasma interaction

In order to describe the regime of intense laser-plasma interaction, we
start from the definition of the laser intensity I as the cycle-averaged
value of the Poynting vector S modulus:

I = 〈|S|〉 = 〈 c4π |E×B|〉 = c

8π |E0|2 , (4.1.1)

where E0 = B0 are the amplitudes of the laser fields. The relativistic
regime sets in when an electron gains a momentum & mec in a single
oscillation in the laser fields. This can be quantified by means of the
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dimensionless vector potential a0, defined as

a0 = eE0
mecωL

, (4.1.2)

where ωL is the laser frequency. The relativistic laser-plasma interaction
regime requires a0 > 1. To directly relate the laser characteristics with
the parameter a0, we can exploit the following relation:

a0 = 0.85

√
Iλ2

L

1018Wcm−2µm2 , (4.1.3)

where λL is the laser wavelength.
For the reader’s convenience, we remind that, at oblique incidence,

a linearly S-polarized laser pulse has electric field in the plane of the
plasma surface. On the contrary, P-polarized light impinging at an angle
has magnetic field parallel to the surface. In the following of this Chapter,
the parameter δ representing the polarization, is defined so that the vector
potential associated with the fields of a wave propagating along the x-
direction, reads

A(x, t) = A0e
+ikx

(
δ cos(ωLt) ŷ +

√
1− δ2 sin(ωLt) ẑ

)
, (4.1.4)

where linear polarization is obtained for δ = 0 and δ = 1, circular for
±1/
√

2. Other values correspond to an elliptical polarization. As a con-
vention, we will distinguish between S-polarized (δ = 0) and P-polarized
(δ = 1) light even at normal incidence. This is commonly done in 2D
PIC simulations to refer to the laser polarization in the simulation plane
(henceforth considered P-polarization) and out-of-plane (henceforth con-
sidered S-polarization).

4.1.1 Transparent and Opaque Regime

The first parameter that is of interest to describe the interaction of an
intense laser pulse with a gas or a solid, is the cut-off density that allows
for the reflection or the penetration of the laser pulse in the target.

In Section 2.4.1, we have already defined the condition for a wave to
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propagate in a cold, unmagnetized plasma, namely ωL > ωpe. Hence, we
can define the so-called critical density nc as the plasma density for which
ωL = ωpe. In practical units, this condition gives

nc = meω
2
L

4πe2 = 1.1× 1021cm−3
(
λL

1µm

)−2
. (4.1.5)

A plasma with density ne < nc is said underdense, while in the opposite
case overdense. As already mentioned in Section 2.4.1, in the case of
overdense plasma filling the region x > 0 and laser pulse propagating
along the x-direction, the laser fields are exponentially damped ∼ e−kx

and the characteristic length of penetration, along the normal to the
plasma surface, is

` = c√
ω2
pe − ω2

L

, (4.1.6)

that for a strongly overdense plasma reduces to ` ' c/ωpe.

This derivation is accurate only in the non-relativistic regime. In the
presence of an intense laser pulse (a0 � 1), relativistic effects become
important from the early phase of the interaction and the response of
the plasma can be strongly modified by non linear effects. Indeed, in
the relativistic regime, the dispersion relation (hence the propagation) of
the electromagnetic wave depends on both the plasma parameters and
the wave amplitude itself. However, one of the main features of the rel-
ativistic laser-plasma interaction can be obtained for circularly polarized
plane wave irradiating a cold overdense target at normal incidence. In
this configuration, the relativistic dispersion relation for electromagnetic
waves is equivalent to Eq. (2.4.12) with the replacement me 7−→ meγe,
where γe is the relativistic factor related with the electron motion in the
laser fields, as first derived by Akhiezer A.I. (1956). This is however a
great simplification and should be used with some care. The value of
the relativistic factor γe can be derived by noticing that during the inter-
action with a circularly polarized plane wave γe remains constant. The
main contribution to the relativistic factor is given by the transverse mo-
mentum p⊥, i.e. γe '

[
1 + p2

⊥/(mec)2]1/2. Exploiting the conservation
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of the transverse canonical momentum P, that reads

dP
dt

= d

dt

[
p⊥ −

eA
c

]
= 0 , (4.1.7)

and assuming no laser fields as initial condition p⊥(0) = A(0) = 0, we
obtain

p⊥ =
(
eA0/

√
2c
)

[cosφ, sinφ] , (4.1.8)

with φ = kL ·x−ωLt. Equation (4.1.8) leads to γe =
√

1 + a2
0/2, using the

definition of the vector potential given in Eq. (4.1.4) with δ = ±1/
√

2 for
circular polarization, in normalized units. Therefore, from the relativis-
tic dispersion relation, whose validity is limited to a circularly polarized
plane wave at normal incidence, the relativistic critical density becomes
nREL
c = γenc. This means that a relativistically intense laser pulse can

propagate through a nominally overdense plasma (nc < ne < nREL
c ), a

process known as Relativistic Self-Induced Transparency (RSIT). By con-
trast, in the case of linear polarization, the electron relativistic factor γe
is not constant and its rapidly oscillating component leads to the gener-
ation of harmonics. Despite the analysis being more complicated, it was
demonstrated by Sprangle et al. (1990); Lefebvre and Bonnaud (1995)
that at least for the main frequency a good estimation of the effective
critical density is given by nREL

c = γenc with γe =
√

1 + 〈a2
0/2〉, where

the brackets represent the average on the laser period.
For any realistic laser pulse, i.e. finite spot size and finite duration, the

value of the critical density needs to be evaluated self-consistently with
the density profile modification and pulse shaping at the laser-plasma in-
teraction surface. Refined models to predict the critical density can be
found in Refs. (Goloviznin and Schep, 2000; Siminos et al., 2012, 2016).
In particular, Cattani et al. (2000) found a value of the critical density sig-
nificantly increased once considering that, at the laser-plasma interaction
surface, an electron density peak is produced by means of the pondero-
motive force described in the following Sec. 4.1.2, so that the penetration
of the laser pulse is drastically reduced.
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4.1.2 Ponderomotive Force

In this paragraph, we introduce a fundamental concept for the study of
the laser-plasma interaction, the so-called Ponderomotive Force, namely
the time-averaged force exerted by an electromagnetic wave on a target.
As we explicitly derive in the following, this force is slowly varying with
respect to the fast oscillations of the laser electromagnetic fields and al-
lows to describe the evolution of a single particle cycle-averaged position
and velocity.

We assume the laser pulse to be described by a monochromatic wave
with frequency ωL, modulated with a spatial and a temporal profile as

E(x, t) = <
(
Ẽ(x, t)e−iωLt

)
, (4.1.9)

B(x, t) = <
(
B̃(x, t)e−iωLt

)
, (4.1.10)

where < identifies the real part, and the envelope functions Ẽ(x, t) and
B̃(x, t) vary on a time-scale slower than the laser period tL = 2π/ωL and
on a typical length larger than the laser wavelength λL = ctL. Assuming
the existence of two characteristic time-scales, we can decompose the
single particle motion in the laser fields as

x(t) = xq(t) + xs(t) , (4.1.11)

where xq(t) is the fast oscillating component that describes the quiver
motion around the position of the oscillation center, corresponding to the
slowly varying term xs(t). We derive now the dynamic equation for the
slow component xs(t), that leads us to the definition of the ponderomotive
force in the non-relativistic regime.

Thanks to the assumption of a smooth laser profile in comparison
with the laser wavelength, the electric field of the laser pulse, up to the
first order perturbation, can be expressed as

E(x, t) ' E(xs, t) + (xq(t) · ∇) E(xs, t) . (4.1.12)

Considering xs constant at the lowest perturbation order, the first term on
the right side acts on the fast oscillating component of the single particle
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motion as
d2xq
dt2

= q

m
E(xs, t) , (4.1.13)

whose solution is simply

x̃q = −q
mω2

L
Ẽ(xs) , (4.1.14)

where x̃q follows the notation used in Eqs. (4.1.9)-(4.1.10). To study the
evolution of the slow motion xs(t), we consider the averaged Lorentz force

m
d2xs
dt2

= q
〈
E(x, t) + v

c
×B(x, t)

〉
. (4.1.15)

The electric field contribution reads

〈E(x, t)〉 ' 〈(xq(t) · ∇) E(xs, t)〉 =

= −q
4mω2

L

(
Ẽ∗(xs, t) · ∇

)
Ẽ(xs, t) + c.c. , (4.1.16)

where Ẽ∗ is the complex conjugate (c.c.) of the envelope function and
we used the solution of the equation of motion for xq, Eq. (4.1.14). The
magnetic term of the Lorentz force at the first order perturbation gives〈v

c
×B(x, t)

〉
'
〈vq(t)

c
×B(x, t)

〉
=

= −q
4mω2

L
Ẽ∗(xs, t)×

(
∇× Ẽ(xs, t)

)
+ c.c. , (4.1.17)

where we used the Maxwell-Faraday equation (2.1.10), that in this case
becomes ∇× Ẽ = iωLB̃/c. In conclusion, summing the two contributions
Eqs. (4.1.16) and (4.1.17), equation (4.1.15) becomes

m
d2xs
dt2

= −q2

4mω2
L
∇|Ẽ∗(xs, t)|2 = −q2

4mω2
L
∇〈E(xs, t)2〉 ≡ fp . (4.1.18)

This provides the definition of the ponderomotive force fp.

From Eq. (4.1.18), we see that the ponderomotive force tends to expel
from the region where the laser fields are stronger, particles with both
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positive and negative charge. Obviously the electrons respond much faster
than the ions, due to their large inertia. Thus we usually consider the
direct effect of the ponderomotive force on the ions negligible.

The definition of a relativistic ponderomotive force is not straightfor-
ward and an extensive discussion has been provided by Mulser and Bauer
(2010). Here we just consider the simple case of a laser pulse defined as in
Eqs. (4.1.9)-(4.1.10), for which we can introduce the concept of pondero-
motive potential φp, related with the ponderomotive force in the standard
way fp = −∇φp. Hence, φp corresponds to the cycle-averaged single par-
ticle oscillation energy. Describing the laser pulse propagating along the
x-direction by means of the potential vector A(x, t), as in Eq. (4.1.4),
and exploiting the conservation of canonical momentum Eq. (4.1.7), we
obtain

fp = −mc2∇

[
1 +

〈( qA
mc2

)2 〉]1/2

, (4.1.19)

consistent with the discussion of the previous Sec. 4.1.1.

4.1.3 Electron Heating in overdense target

A research topic that has been matter of intense investigation for the last
50 years, concerns the laser energy absorption in the collisionless regime.
Due to the scaling of the collision frequency with the electron kinetic en-
ergy as νcoll ∝ E−2

kin, the collisional absorption is completely negligible for
intense laser pulses (Wilks and Kruer, 1997; Mulser and Bauer, 2010).
For this reason, in this paragraph, we briefly describe the main mecha-
nisms of collisionless energy absorption, restricting ourselves to overdense
targets. Despite the laser being reflected back in the vacuum during the
interaction with an overdense target, a significant fraction of its energy
may be transferred to the electrons located at the laser-target interaction
surface. Different processes, depending on the laser-plasma interaction
configuration, can directly convert the laser energy into electron kinetic
energy. Much research effort is still devoted to the investigation of the
optimal absorption conditions. In particular, electron heating is strongly
dependent on the plasma density profile and on laser properties, such as
intensity, polarization and angle of incidence. This topic has been inves-
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tigated both experimentally (Popescu et al., 2005; Singh et al., 2015) and
theoretically (Forslund et al., 1975; Kruer and Estabrook, 1985; Brunel,
1987; Wilks et al., 1992; Gibbon, 1994; Cialfi et al., 2016). The study
of Gibbon (1994) identifies the optimal configuration to maximize colli-
sionless electron heating as P-polarized laser with angle of incidence ' 45◦

for intensities above Iλ2
L ∼ 1017Wcm−2µm2.

The typical order of magnitude of the energy acquired by an electron
interacting with an intense laser pulse (a0 > 1) is given by the so-called
ponderomotive scaling as

Eh.e. '

(√
1 + a2

0
2 − 1

)
mec

2 , (4.1.20)

where the factor under the square-root has been already encountered in
Sec. 4.1.1 and in Eq. (4.1.19). This estimation predicts the production of
MeV electrons already at modest intensities widely achievable with the
current laser facilities (a0 ' 4, i.e. Iλ2

L ' 2× 1019 Wcm−2µm2), and elec-
trons with hundreds of MeV are commonly observed in both simulations
and UHI laser experiments.

In the case of an intense laser pulse interacting with a solid target,
as considered in the following of this Chapter, we can assume the plasma
to have a steep profile, since the ponderomotive force can prevent the
thermal expansion of the electrons in the vacuum region. This happens
if the laser intensity is high enough that the radiation pressure exceeds
the plasma thermal pressure, thus it depends on both the laser intensity
and the plasma temperature. Due to the assumption of a step-like profile,
we do not discuss in detail the resonant absorption mechanism (Forslund
et al., 1975), that takes place in the region where the electron density
ne ' nc � n0 with n0 the solid target density. In that region, the
laser fields are responsible for the excitation of resonances, in particular
of electrostatic plasma modes, since ωpe ' ωL. In a finite temperature
plasma, these modes propagate in the direction outward from the target,
where ne . nc, and along their propagation direction they accelerate
a small fraction of electrons in phase with the wave itself. Note that
this mechanism requires an electric field component along the density
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gradient, i.e. a P-polarized laser pulse irradiating the target at non-
normal incidence.

Two dominant mechanisms to produce fast and hot electrons, propa-
gating inside the target, will be observed in the simulations of this Chap-
ter: the so-called Vacuum Heating (or Brunel mechanism) and the J×B
Heating. A simple model for the vacuum heating was proposed by Brunel
(1987). This model considers the dynamics of a single electron dragged
out into the vacuum for about half of a laser period by means of the elec-
tric field component perpendicular to the surface. The electron is then
injected back into the target, with the energy acquired during the oscil-
lation in the vacuum region. Since the laser electromagnetic fields are
evanescent at the laser-plasma interaction surface, thus penetrate only in
a layer of the order of the skin depth ' c/ωpe, the high energy electron
does not feel a strong-enough field to be dragged back into the vacuum
and it freely propagates deep inside the target. This mechanism accounts
for the production of hot electrons as bunches, generated with a frequency
equal to the laser one. In the case of a planar target, in order to have
a component of the electric field perpendicular to the target surface, the
laser has to be P-polarized and have oblique incidence.

At high laser intensities the magnetic component of the Lorentz force
exerted on an electron in the laser fields, becomes comparable to the
one associated with the electric field. Therefore, a heating mechanism
analogous to the previous one is found considering the v×B component
normal to the plasma surface. Indeed, an electron can be dragged across
the vacuum-plasma interface by the magnetic force (thus, the name J×B
Heating (Kruer and Estabrook, 1985)), and get accelerated in the vacuum
region, as explained before. This mechanism is the dominant one for
linear polarization at normal incidence, for which vacuum heating gives
no contribution, as well as for S-polarization at both normal and oblique
incidence. We now report a simple argument to show that the driving
force of the J × B heating is suppressed for circular polarization and
normal incidence.

We consider for simplicity a cold plasma with a step-like density pro-
file, with surface corresponding to the y-z plane at x = 0. The vector
potential of a plane wave propagating along the x-direction can be ex-
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pressed for x > 0, i.e. inside the target, as

A(x, t) = A0e
−x/`s

(
δ cos(ωLt)ŷ +

√
1− δ2 sin(ωLt)ẑ

)
, (4.1.21)

where δ represents the polarization, as in Eq. (4.1.4), and `s ' c/ωpe
is the evanescent penetration length. The Lorentz force, expressed as a
function of the potential vector, reads

Fx(x, t) = − q2

meγec2
∂

∂x

(
|A(x, t)|2

2

)
=

= q2

meγec2
A2

0
2`s

e−2x/`s (1 +
[
2δ2 − 1

]
cos(2ωLt)

)
. (4.1.22)

From the last term in the previous equation, it is clear that this force
accounts for the generation of electron bunches at a frequency 2ωL. Note
that the bunches at ωL produced by the vacuum heating can not be found
due to the assumption of normal incidence. Furthermore, in the case of
circular polarization (δ = ±1/

√
2) only the ponderomotive average term

appears, and the J×B heating is suppressed. This involves a very different
laser-plasma coupling between linear and circular polarization at normal
incidence, as will be clarified in Sec. 4.1.4. Performing a time-average
on the laser period, the term oscillating at 2ωL vanishes and we recover
the ponderomotive force, Eq. (4.1.18), which is independent from the
polarization.

Experimental confirmation of these collisionless heating mechanisms
relies on the measurement of the Coherent Transition Radiation (CTR)
emitted from the rear surface of the target when the fast electron bunches
cross it (Popescu et al., 2005). These observations reveal also that the
temporal coherence of the electron bunches is conserved during the prop-
agation through the target up to ' 1 mm depth.

Moreover, an intensive area of research is dedicated to the study of
target-shaping effects, that have been demonstrated to be able to strongly
increase both the energy and the fraction of the produced fast elec-
trons (Gaillard et al., 2010; Fedeli et al., 2015).
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4.1.4 Radiation Pressure Acceleration

We now focus on the ion dynamics during the interaction of an intense
laser with an overdense target. In the previous section, the ion dynamics
has been neglected since the ion typical response time-scale is ω−1

pi � ω−1
pe .

Therefore, we can assume that the ions are not affected by the fast oscil-
lating laser fields, while they respond to the slowly varying fields gener-
ated, for instance, by large charge separations. This electrostatic field can
be produced either by the fast electrons escaping at the rear target sur-
face (driving the so-called Target Normal Sheath ion acceleration mech-
anism (Wilks et al., 2001)) or by the ponderomotive force that pushes
the electrons inward at the laser-plasma interaction surface. The latter
situation is the topic of this section and it is schematic represented in
Fig. 4.1. The laser ponderomotive force pushes the electrons lying in a
region of extension . c/ωpi and accumulates them, creating a double-
layer structure with the ions following the electrons because of the strong
charge-separation electric field (Schlegel et al., 2009). Thus, the pondero-
motive force applies directly on the electrons but it is effectively exerted
on the whole target. The total pressure exerted by the a plane wave on
the target surface (x = 0) can be computed as the integral of the force
on the skin layer of extension c/ωpe, that gives

Prad =
∫ +∞

0
n0fp,xdx =

∫ +∞

0
n0
mec

2

`s

ω2
L

ω2
pe

a2
0e
−2x/`sdx = 2I

c
, (4.1.23)

where n0 is the plasma density and we exploit the average of Eq. (4.1.22)
in the non-relativistic limit to express the ponderomotive force. The po-
tential vector at the surface A(0) has been computed in the approxima-
tion of perfectly reflecting medium by means of Fresnel formula, giving
|A(0)| = 2a0(mec

2/q)(ωL/ωpe). From Eq. (4.1.1), the intensity can be
written as I = mec

3nca
2
0/2. Note that the integral on the skin layer c/ωpe

can be extended along the whole x-axis since the fields vanish deeper in-
side the target. The quantity Prad is known as radiation pressure and
it accounts for the electromagnetic momentum transferred to the target.
Indeed, it is usually defined as the flow of delivered momentum per unit
of time and surface and computed using the momentum conservation
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theorem Eq. (2.3.8), if the fields are know at the laser-target interaction
surface. We can easily generalize Eq. (4.1.23) to the case of non-perfectly
reflective medium and oblique incidence, by taking into account the reflec-
tivity R of the target, its transmissivity T and its absorption coefficient
A, related as R+ T = 1−A in order to ensure energy conservation.
We obtain

Prad = (1 +R− T ) I cos2(θ)
c

= (2R+A) I cos2(θ)
c

, (4.1.24)

with θ angle of incidence of the wave with respect to the normal of the
target surface.

Due to the effect of the radiation pressure the target surface is put in
motion. If the target has a thickness Lx � c/ωpi, the surface velocity is
found to be a constant and the ions at the front surface are accelerated via
the so-called Hole Boring (HB) mechanism (Daido et al., 2012; Macchi
et al., 2013). The constant surface recession velocity (HB velocity in the
following) can be estimated by balancing the flux of ion momentum with
the laser radiation pressure (Schlegel et al., 2009; Robinson et al., 2009).
Since the HB velocity becomes easily a fraction of c, this balance has to
be computed in the rest frame of the plasma surface.

Following the relativistic model presented by Robinson et al. (2009),
we consider, in the laboratory frame L, the plasma surface (y-z plane at
x = 0) to move with velocity vHB along the x-direction, under the action
of a plane wave with intensity I. In the surface rest frame L′, the ions
of the target are seen to move with velocity −vHB toward the surface,
where they are reflected by the electrostatic potential associated with the
charge separation electric field, created by the ponderomotive force. In
order to balance the momentum flux associated with the reflected ions,
with the radiation pressure we exploit the Lorentz’s transformations for
the wave electromagnetic fields, so that the intensity of the plane wave
becomes I ′ = I(1− β)/(1 + β), with β = vHB/c. The balance thus reads

2I
c

1− β
1 + β

= 2γHBminiv
2
HB , (4.1.25)

with γHB = [1 − β2]−1/2. The HB velocity can be analytically extracted
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from the previous equation and reads

vHB

c
=

√
a2

0
me
mi

nc
n0

1 +
√
a2

0
me
mi

nc
n0

. (4.1.26)

This expression has been confirmed by several numerical studies.
The charge separation electrostatic field created at the laser-plasma

interaction surface, not only set in motion the laser-plasma interaction
surface, but it is also responsible for ions acceleration. Indeed, in the
surface rest frame L′, the HB reflected ions propagate back inside the
target with velocity vHB. This means that, in the laboratory frame L,
the ions are accelerated at velocity ' 2vHB, assuming non relativistic HB
velocity. This simple argument approximately explains the acceleration
mechanism at play.

In the following Sec. 4.1.4.1, we provide an original extension to the
usual calculation of the HB velocity for the case of laser pulse with oblique
incidence. Then we describe the dynamical non-relativistic model of HB
acceleration presented by Macchi et al. (2009) in order to clarify some
aspects of the HB accelerated ions distribution, not accounted for in the
stationary model of Schlegel et al. (2009); Robinson et al. (2009).

4.1.4.1 Hole Boring velocity

In this paragraph, we present the detailed calculation of the Hole-Boring
velocity vHB for the case of a plane wave of intensity I and frequency ω,
irradiating a perfectly reflecting target with an angle θ with respect to the
surface normal. We assume the wavevector to be k = (kx, ky, 0) and the
plasma surface (y-z plane at x = 0) to move with velocity vHB along the x
direction, in the laboratory frame L. Therefore, in the frame co-moving
with the target surface L′, the incident wave wavevector becomes

k′x = γ(kx − βω/c) = γk(cos θ − β) , (4.1.27)

k′y = ky = k sin θ , (4.1.28)
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where k = ω/c, β = vHB/c, γ = (1− β2)−1/2. In L′ the incidence angle θ′

is thus given by

tan θ′ =
k′y
k′x

= sin θ
γ(cos θ − β) . (4.1.29)

In L′ a plane wave of intensity I ′ interacts with an immobile plasma with
incidence angle θ′. Thus, from Eq. (4.1.24), the radiation pressure is

P ′rad = 2I ′

c
cos2 θ′ . (4.1.30)

Exploiting the Lorentz’s transformations for the wave electromagnetic
fields, we obtain I ′ = I(1−β)/(1 +β). In the frame L, since the pressure
is a relativistic invariant P ′rad = Prad, we have

Prad = 2I
c

1− β
1 + β

1
1 + tan2 θ′

= 2I
c

1− β
1 + β

γ2(cos θ − β)2

γ2(cos θ − β)2 + sin2 θ
. (4.1.31)

The HB velocity can now be estimated by balancing the laser radiation
pressure with the flux of ion momentum Pi = n0γβc(2miγβc). Solving
numerically for vHB = βc yields the Hole-Boring velocity as a function of
θ. Note that, from Eq. (4.1.29), we obtain that for β = cos θ the wave
propagates parallel to the surface in the L′ frame, meaning that c cos θ
appears has a natural upper limit for the Hole-Boring velocity. From the
balance of the radiation pressure Eq. (4.1.31) and Pi, in the case of normal
incidence (θ = 0), we recover the well-known result of Eq. (4.1.26).

4.1.4.2 Hole Boring acceleration mechanism

We now present the non-relativistic model for the ion acceleration pro-
posed by Macchi et al. (2009) that takes into account the ion dynamics
in the charge separation layer.

At the initial stage of the laser-plasma interaction Fig. 4.1a), ions are
still at rest, while electrons have penetrated in the target for a distance xd
creating the charge separation field Ex. Assuming the simplified profiles
of Fig. 4.1a) for the surface electric field Ex and for the density of both ions
and electrons, the maximum value of Ex from Poisson’s equation (2.1.8) is
Emax = 4πen0xd, with xd the position of the electron surface. In a steady-
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state condition, the ponderomotive force is balanced by the electrostatic
field in the region xd < x < xs, with xs defined in Fig. 4.1a), so that
fp,x = eEx and 2I/c = Emaxenp0 (xd − xs) /2, with np0 the peak density of
the electron compressed layer. Moreover, imposing charge conservation,
we obtain n0xs = np0(xs − xd). Note that the penetration length of the
ponderomotive force corresponds to xd − xs ' c/(2ωpe). To study the
dynamics of the ions in the region xd < x < xs, we simply have to solve
the equation of motion for the single particle position xi(t):

mi
d2xi
dt2

= eEmax

(
1 + xi(0)− xd

xs − xd

)
. (4.1.32)

Since the trajectories of the ions do not intersect each other, the electric
field is defined by the initial condition. The straightforward solution of
Eq. (4.1.32) reads

xi(t) = xi(0) + eEmax

2mi
t2 . (4.1.33)

This solution predicts all the ions locate in the region xd < x < xs to
accelerate and accumulate in the layer where the laser fields are evanes-
cent. As soon as the ions move toward xs, the electrons follow in order to
keep the balance between the ponderomotive force and Ex, as sketched in
Fig. 4.1b). The trajectory described by Eq. (4.1.33) shows that all ions
reach the position x = xs at the same time ts = [2(xs − xd)mi/eEmax]1/2,
causing a singularity in the ion density, see Fig. 4.1c), and a subsequent
wave-breaking, i.e. a break down of the hydrodynamic description, leading
to injection of the ions inside the target. In addition, the ions reaching
x = xs have a flat velocity distribution in the interval 0 < vx < 2vHB

and numerical simulations have confirmed that the fastest ions penetrate
in the target as a bunch with velocity ' 2vHB. After the injection of
the accelerated ion bunch, the quasi-equilibrium condition of Fig. 4.1a)
is restored and the process repeats itself. Note that the ions initially in
the depletion layer 0 < x < xd are as well accelerated by the charge
separation field but they do not reach the ion singularity for t = ts.

The clear signatures of this acceleration mechanism are the large num-
ber of high energy ions produced (theoretically a density equal to n0) and
the very narrow energy spectrum (within the static model, all particles
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Figure 4.1: Schematically representation of the Hole-Boring acceleration
mechanism, (see Macchi et al., 2009).

get ' 2vHB) in comparison with other acceleration schemes. These fea-
tures arose the interest on this mechanism for envisioned applications
where the localized ion energy deposition (at the so-called Bragg peak)
is required.

Despite this mechanism seems to be the dominant one only for in-
tensity Iλ2 & 1023 Wcm−2µm2 (Esirkepov et al., 2004), a regime dom-
inated by the HB acceleration with present-day laser systems has been
achieved using circularly polarized pulses. This configuration is expected
to suppresses electron heating, as discussed in Sec. 4.1.3, avoiding com-
peting acceleration mechanisms. Indeed, a first experimental proof of
this acceleration mechanism has been given by Palmer et al. (2011), us-
ing weakly overdense hydrogen gas jet targets and circularly polarized
CO2 laser pulses with intensity I ∼ 5× 1015 Wcm−2. The observed accel-
erated ions spectra show a scaling ∝ I/n0, a narrow energy spread ' 4%
around the peak energy values and a large number of accelerated particle
(& 1012 protons/MeV/sr), consistent with HB acceleration.

In the previous model, many effects of the intense laser-plasma inter-
action have been neglected. For instance, electron heating can drastically
reduce the efficiency of the HB mechanism. Indeed, due to the electron
energy absorption, the total radiation pressure on the target is reduced
and the formation of the ion density spike can be counteracted by the
electron thermal pressure. This effect will be highlighted in the PIC sim-
ulations presented in Sec. 4.2. As already said, the use of a circularly
polarized laser pulse at normal incidence is commonly proposed to over-
come this issue. The limited efficiency of this solution in the case of UHI
lasers will be discussed in Sec. 4.3.

Another critical point is the possibility to maintain the opacity of
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the target over a long time, since the propagation of the laser pulse in
the plasma would change completely the interaction regime and would
prevent HB acceleration. As mentioned in Sec. 4.1.1, RSIT may set in
during the interaction with a high-intensity laser pulse. For a deep in-
vestigation of additional effects that might cause the target transparency
during the laser-target interaction, such as electron heating and ion mo-
tion, see Refs. (Siminos et al., 2012, 2016). However, as demonstrated
by Cattani et al. (2000), the non-linear dynamic at the surface, leads to
the production of an electron density peak, which suppresses the laser
penetration and significantly increases the value of the critical density,
i.e. increase the intensity necessary to reach the induced transparency
regime.

Note that operating at the lowest acceptable density n0, hence close to
the RSIT threshold, and with light ions, is beneficial for the acceleration
mechanism since the HB velocity, and therefore the energy of the HB
reflected ions, decreases with increasing n0 and ion mass, as clear from
Eq. (4.1.26). For this reason, in our study, we will use a density slightly
above the critical one. We take into account relativistic effects on nc, as
discussed in Sec. 4.1.1, so that we consider as effective critical density
nREL
c = nc

√
1 + 〈a2

0/2〉, where the brackets represent the average on the
laser period.

4.2 Previous works on UHI laser-driven Weibel
instability

We have already stressed in Chap. 1 the importance of investigating in the
laboratory the Weibel instability and reproducing the phase of collision-
less shock formation. Apart from the experimental configuration under
investigation at NIF and OMEGA facilities presented in Sec. 1.2.2, an
alternative proposition, that relies on the use of UHI laser facilities, has
been discussed by Fiuza et al. (2012). The authors consider an intense
(Iλ2

L ∼ 1020 ÷ 1022 Wcm−2µm2) picosecond-duration linearly polarized
laser interacting with an overdense target at normal incidence. They
demonstrate that the system becomes Weibel unstable due to the hot
electrons propagating into the target and the cold return current, pro-
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duced by induction to maintain charge neutrality and the total electron
current smaller than the Alfvén limit. A first stage in which an electro-
static shock propagates inside the target has been observed to evolve in
a Weibel-mediated shock, once the Weibel-produced magnetic turbulence
become strong enough to overcome the electrostatic potential at the shock
front, (see Ruyer et al., 2015).

The configuration investigated by Fiuza et al. (2012); Ruyer et al.
(2015), i.e. linear polarization and normal incidence, aimed at maxi-
mizing the hot electrons production. This is not the optimal scheme to
produce HB, that will be the focus of our investigation. However, in or-
der to highlight the main features of this interaction configuration and
the differences with our proposition, we first describe the results obtained
by Fiuza et al. (2012); Ruyer et al. (2015). To do that, we reproduce a 2D
simulation with the same parameters of Fiuza et al. (2012); Ruyer et al.
(2015). The same parameters will be used for our study on the optimal
configuration to drive HB, that will be achieved by changing the laser-
plasma interaction scheme (e.g. angle of incidence and polarization). This
allows for a direct comparison between the different laser configurations
discussed in the following Sec. 4.3.

We consider a linearly polarized laser pulse (here a plane wave, i.e.
no transverse laser profile), with the electric field lying in the plane of the
simulation (EL = E0 ŷ), of intensity Iλ2

L ∼ 5 × 1021Wcm−2µm2, corre-
sponding to a0 = 60, irradiating at normal incidence (θ = 0) an overdense
target with density n0 = 49nc and temperature Te = Ti = 1 keV. The
target is assumed completely ionized and constituted of electrons and
protons (mi = 1836me). At t = 0, the plasma fills the region x ≥ 4λL,
up to the right boundary of the simulation box, and has a step-like pro-
file, while the laser has sin2-like ramp of 5 tL duration, with tL the laser
period. The spatial resolution is ∆x = ∆y = λL/320 ' (c/ωpe)/7 and
the box extension Lx = 32λL and Ly = 4λL. The resolution in time is
c∆t = 0.5 ∆x. We use 49 particles per cell per species, for a total of ' 109

particles.
The hot electron bunches, produced by the J × B mechanism, have

relativistic momentum px & 100mec, as shown in Fig. 4.2a). The Weibel
instability magnetic field turbulence develops in the region where these
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Figure 4.2: Interaction with a linearly polarized laser pulse at normal
incidence, at t = 25 tL. a) Electron x-px phase-space. b) Ion x-px phase-
space. c) Electron density. d) Ion density. e) Magnetic field Bz and zoom
in the region 12.5λL < x < 17.5λL and λL < y < 3λL, f) Electric field
Ex. Both Bz and Ex have been averaged over the laser period.

fast electrons have driven a return current, see the inset in Fig. 4.2e)
corresponding to 12.5λL < x < 17.5λL and λL < y < 3λL. Note that the
strong magnetic structures close to the target surface x ' (6.5 ÷ 8)λL,
have a different origin. They are related with an additional instability
developing at the surface, as will be discussed in Sec. 4.3.

The electrostatic shock front is identified by the strong positive Ex
component at x ' 8λL, reported in Fig. 4.2f). Indeed, at that po-
sition, the typical reflection of a small fraction of ions is observed in
the ion phase space x-px, Fig. 4.2b). These ions have momentum
px ' 660mec ' 0.36mic, consistent with the reflection from the elec-
trostatic shock front propagating with velocity ves ' 0.174 c, as measured
in the simulation. However the density of the reflected ions, obtained in-
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tegrating the ion distribution function for px & 500mec, remains always
smaller than 5nc. This is approximately 1/10 of what we can achieve with
the HB mechanism on a target with density n0 = 49nc, therefore we do
not expect the ion-Weibel instability to be efficiently triggered by the ions
reflected at the electrostatic shock front. Note that the electrostatic shock
must propagate inside the target with a velocity larger than the recession
velocity of the target surface, located at ' 6.5λL in Fig. 4.2. Indeed,
the HB velocity measured in the simulation is vHB ' 0.12 c < ves, in good
agreement with the theoretical prediction vth

HB = 0.124 c. At this stage the
electrostatic energy governs the transition between the upstream region
(x & 8λL) and the downstream one (6.5λL . x . 8λL). The two regions
are clearly separated by the abrupt density jump in both electron and ion
density, Fig. 4.2c-d), respectively. The transition to a Weibel-mediated
shock occurs around t ' 50 tL (not shown), consistent with Ruyer et al.
(2015), when the magnetic energy at the shock front becomes larger than
the electrostatic potential.

The Weibel filaments, of size . 0.2λL, observed in both magnetic field
Bz (see inset of Fig. 4.2) and electron density ne in the upstream region
(x & 8λL), are mainly created by the electron currents. The modulations
in the ion density follow from the charge separation electrostatic field
(here Ey) driven by the electron filaments formation, and do not involve
any ion current filaments instability. This is shown in Fig. 4.3a), where
a 1D cut of the current density Jx as a function of y is reported for the
electrons (blue line) and for the ions (red line). On the contrary the
density modulations, as shown in Fig. 4.3b), are even more peaked in the
ions than in the electrons. Both density and current density are taken at
x = 12.5λL for t = 25 tL, the same time shown in Fig. 4.2.

In conclusion, this configuration seems suitable for the investigation
of Weibel-mediated shocks propagation and potentially particle acceler-
ation via e.g. Fermi-like mechanism, while the shock formation follows
from a non-purely Weibel mechanism, i.e. an initial transient stage of
electrostatic shock. However, probing the shock front fields, in a dedi-
cated experiment, would be a challenging task. In particular, it would
be complicated to distinguish between the laser fields and the instability-
produced fields, due to the proximity of the shock front and the laser-

134



4.3. Laser-plasma interaction configurations

Figure 4.3: Interaction with a linearly polarized laser pulse at normal
incidence, at t = 25 tL. a) Current density Jx. b) Density. For the
electrons (blue lines) and ions (red lines) at x = 12.5λL (ahead of the
shock front), see Fig. 4.2.

plasma interaction surface. Moreover, as mentioned above and investi-
gated by Ruyer et al. (2015), ion currents in the region where the Weibel
instability develops, are much weaker than the electronic ones, meaning
that the dynamics is totally governed by the electrons. This contrasts
with the standard astrophysical scenarios in which the ion instability is
considered a key phase of shock formation, (see Lyubarsky and Eichler,
2006). This motivates the investigation of an alternative configuration
able to reproduce fast and neutral electron-ion flows, in which the phase
of ion-Weibel instability can be investigated. The optimal scheme for that
entails a minimization of the hot electron production, otherwise govern-
ing the dynamics as in the presented system, that can be achieved with
a linear S-polarized laser irradiating the target at large incident angle, as
will be demonstrated in the following.

4.3 Comparison between different laser-plasma
interaction configurations

We demonstrate in this section that the optimal laser configuration to cre-
ate a quasi-neutral flow in a dense target by means of the HB acceleration
mechanism, is obtained with linear S-polarization and large incident an-
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gle. This contrasts with the usual choice of normally incidence circularly
polarized laser pulse that would be the first candidate for Hole Boring,
as it is commonly considered to suppress electron heating, as discussed
in Sec. 4.1.3. Indeed, the long time scale of our processes entails a strong
electron heating even with a circularly polarized laser pulse, due to the
deformation of the interaction-surface. Once relativistic hot electrons are
produced, the system follows the same evolution as presented in the pre-
vious Sec. 4.2. As observed in Fig. 4.2, strong magnetic field structures
develop at the surface and can scatter the HB reflected ions, preventing
their penetration deep into the target. In addition, the energy spread of
the HB reflected ions has been demonstrated to increase as the electron
heating increases (Paradkar and Krishnagopal, 2016). This has important
implications in the ion Weibel instability development, i.e. the instability
growth rate decreases with the increase of the HB ions energy spread.
The ideal configuration is given by S-polarization and angle of incidence
θ = 45◦, as it is the configuration that minimize the hot electron pro-
duction and in which the surface instability is efficiently quenched. We
demonstrate that the suppression of the surface instability is linked to
the appearance of a transverse slowly varying electron current layer and
we provide a simple analytical model to explain its generation, Sec. 4.3.2.

The main results of this section are confirmed by 2D and 3D PIC
simulations. Due to the more complicated analysis in the 3D geometry,
we focus first on the 2D simulations in Sec. 4.3.1, then we present the
generalization to the 3D in Sec. 4.3.3.

4.3.1 2D simulations

We present a comparison between 2D3V simulations considering circular
polarization (at normal incidence) and linear polarizations (both P and

1To describe the propagation along x of a plane wave with an angle θ 6= 0, using
periodic boundary condition on y, we need to impose Ly sin θ = NλL, with N integer
number. Therefore, we use a slightly different box dimension Ly for each case. In
detail, at normal incidence Ly = 4λL and N = [1, 2, 3] have been used in the previous
relation for θ = [15◦, 30◦, 45◦], respectively.

2Due to the non-perfect open boundary conditions on the electromagnetic fields at
the boundary from which the laser enters in the box in Smilei, the effective amplitude
of the laser pulse is a0 = [60, 61, 64.2, 70.3] for θ = [0◦, 15◦, 30◦, 45◦], respectively.
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Pol θ vth
HB/c vHB/c Γsurf t

−1
L Th MeV Uh ncMeV nh/nc

C 0◦ 0.124 0.115 1.8 13.9 1.64 0.12
S 0◦ 0.124 0.118 4.1 16.3 3.82 0.23
S 15◦ 0.121 0.114 3.6 15.4 1.95 0.13
S 30◦ 0.112 0.109 −− 17.0 0.41 0.024
S 45◦ 0.098 0.098 −− 12.0 0.06 0.005
P 0◦ 0.124 0.119 3.9 14.1 5.42 0.38
P 15◦ 0.121 0.130 3.5 17.5 5.01 0.29
P 30◦ 0.112 0.135 −− 26.9 3.93 0.15
P 45◦ 0.098 0.127 −− 52.4 1.05 0.02

Table 4.3.1: Theoretical vth
HB, Sec. 4.1.4.1, and measured vHB HB velocity.

Growth rate of the surface instability Γsurf . Hot electron temperature
Th and energy density Uh measured at t = 25 tL in the interval x '
(8÷12.5)λL. The density is computed as nh = Un/Th, in order to compare
with the simulation results shown in Fig. 4.9c-d).

S, varying the angle of incidence). The parameters are the same than
in the simulation presented in the previous Sec. 4.2, namely a0 = 60
and plasma density n0 = 49nc1,2. The main quantities of interest for
the comparison of the different configurations are listed in Table 4.3.1,
and will be discussed in the following paragraphs. We first provide a
description of the numerical observations and then a discussion on the
main features for the different configurations, focusing on the surface
instability and on the electron heating.

Circular polarization at normal incidence

After 25 tL of interaction with a circularly polarized laser pulse, the elec-
tron density and the ion surface density profile give evidence of the gen-
eration of strong corrugations at the surface, as shown in Fig. 4.4a). The
corrugation implies a non-exactly local normal incidence of the laser pulse,
thus a non-negligible contribution of vacuum and J × B heating. This
leads to the production of a large amount of hot electrons that propagate
at relativistic velocity into the target as shown in the electron x-px phase-
space in Fig. 4.4c), even if at early times the hot electron production is
weaker than in the linear case at normal incidence, Figs. 4.5e) and 4.6e).
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Figure 4.4: After 25 tL of interaction with the circularly polarized laser
pulse: a) electron density and surface profile of the ion density (red line),
b) magnetic field Bz averaged on a laser period and surface profile of the
ion density (black line), c) x−px electron phase space, the dashed red lines
identify the x-interval plotted in a-b), the dotted red line corresponds to
the average position of the ion surface.

Indeed, the amount of energy transferred to the fast electrons increases
with time, as the surface corrugations become stronger: in Fig. 4.4c) the
hot electrons located deep inside the target, hence produced at early time,
have lower density and momentum, with respect to those closer to the
surface. The correspondence of the surface rippling with the magnetic
field structures inside the target is highlighted in Fig. 4.4b) and will be
discussed in the following. The surface magnetic field reaches a large
amplitude, the absolute value is Bz,surf ' 40meωLc/e. For comparison
we recall that the laser magnetic field amplitude is BL ' 42.4meωLc/e,
corresponding to ' 4.2× 109 G for λL = 1µm.

Linear polarization

We present in Figs. 4.5 and 4.6 the results of the simulations performed
with an S-polarized and a P-polarized plane wave respectively, with inci-
dence angle θ = 0◦, 15◦, 30◦, 45◦, at t = 25 tL.

At normal incidence (Figs. 4.5a and 4.6a) the magnetic structures
in Bz at the surface form quickly and a strong electron heating is ob-
served (Figs. 4.5i and 4.6i), as expected. The correspondence of the mag-
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Figure 4.5: After 25 tL of interaction with a linearly S-polarized laser pulse
at angle of incidence a,e,i) θ = 0◦, b,f,l) θ = 15◦, c,g,m) θ = 30◦, d,h,n)
θ = 45◦: a-d) Magnetic field Bz averaged on a laser period and surface
profile of the ion density (black line), e-h) x-px electron phase space, i-n)
x− px ion phase-space.

netic field structures and the ion density modulations is highlighted in
Fig. 4.5a (black line). Increasing the angle of incidence (from left to right
in Figs. 4.5a-d and Figs. 4.6a-d), the surface magnetic structures become
weaker. In particular, at large angles θ = 30◦ , 45◦, the development of
the magnetic filaments is completely prevented and a strong positive mag-
netic field is created in a surface layer of thickness ' 0.1λL ' 4.4 c/ωpe
for S-polarization and ' λL ' 44 c/ωpe for P-polarization. At this
time, the unipolar magnetic field amplitude is Bz,unip ' 10meωLc/e and
Bz,unip ' 40meωLc/e for S- and P-polarization, respectively, correspond-
ing to Bz,unip ' (1÷ 4)× 109 G for λL = 1µm.

With the increase of the angle of incidence, there is an evident decrease
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Figure 4.6: After 25 tL of interaction with a linearly P-polarized laser
pulse at angle of incidence a,e,i) θ = 0◦, b,f,l) θ = 15◦, c,g,m) θ = 30◦,
d,h,n) θ = 45◦ : a-d) Magnetic field Bz averaged on a laser period, e-h)
x− px electron phase space, i-n) x-px ion phase-space.

of the fast electron production for both S- and P-polarizations, as shown
in the electron x-px phase-spaces in Figs. 4.5e-h) and 4.6e-h).

From the ion x-px phase-spaces, Figs. 4.5i-n) and 4.6i-n), we see that
the highest density and the minimum momentum spread of the HB re-
flected ions, is obtained for S-polarization and θ = 45◦. However, due to
the decrease of the HB velocity at large angles, as listed in Table 4.3.1,
the reflected ion momentum is lower than at normal incidence.

Discussions on the origin of the surface instability

The formation of the surface density ripplings in circular polarization at
normal incidence, highlighted in Fig. 4.7d), is at the origin of the strong
electron heating that makes us reject this configuration for the long term
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production of the HB ion beam. Understanding the instability origin is
therefore a key step to clarify how we can suppress it.

The correspondence of these corrugations with the strong magnetic
field structures inside the target, at late times, has been evidenced in
Figs. 4.4b) and 4.5a), and is reported for convenience in Fig. 4.7c-d) for
the circularly polarized case.

At small angle of incidence θ = 0◦ , 15◦, the growth of the surface
magnetic filaments is associated with an instability whose typical growth
rate is Γsurf ' 3.5 t−1

L ' 0.08ωpe (see Table 4.3.1 for the detailed val-
ues), measured as described in the following. Since the target inter-
action surface is moving at the velocity vHB, listed in Table 4.3.1, the
growth rate has been measured extracting at different times the total
transverse magnetic energy in a region of extension 0.15λL moving with
vHB. The growth rate follows from the linear fit of the data, as shown
in Fig. 4.8. The instability quickly saturates, after ' 6 tL, with field am-
plitude Bz,surf ' 30meωLc/e. The dimension of the magnetic structures
evolves from ' c/ωpe to ' c/ωpi.

We propose that these magnetic fields correspond to Weibel modes,
produced by the strongly anisotropic electron distribution function at the
laser-plasma interaction surface. Within this model, the surface density
modulations can be seen as a consequence of the current filament forma-
tion. Indeed, the electrons in the filament of positive current, i.e. moving
outward from the target, can not escape in vacuum because of the laser
piston effect, thus accumulating in the high density peak of the modu-
lations. The position of these density peaks actually corresponds to the
node of Bz,surf with positive magnetic field on the top and negative on
the bottom, where a positive current filament is expected. The valleys
of the density modulations, thus correspond to the position of filaments
with particles moving in the positive x-direction. Note that this density
surface corrugation should not be confused with the density modulations
intrinsic of the Weibel instability, that has a wavelength equal to one
half of the Weibel-generated magnetic field (i.e. a density peak for each
current filament, see Fig. 3.2). On the contrary, the surface modulations
(black line in Fig. 4.7d) have wavelength equal to the magnetic field Bz,
as expected from our explanation. The density corrugation is therefore a
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consequence of the development of the electron Weibel instability.
The simulation at P-polarization and normal incidence, reported in

Fig. 4.7a-b), makes us exclude the possibility that the strong magnetic
field modulations are a result of the density modulations. Indeed, in that
case, the density modulations are smoothed by the laser electric fields
oscillations at the surface and the creation of an expanding layer of hot
electrons. However, the magnetic field structures are observed with the
same characteristics (intensity, growth rate and wavelength) than in the
other cases.

In many previous numerical studies, interested on the electron trans-
port in dense targets, strong magnetic structures at the target surface
have been observed, (see Lasinski et al., 1999; Sentoku et al., 2000, 2002;
Adam et al., 2006). These structures have been associated with the
Weibel instability driven by the hot electrons and resulting cold return
current. However, this model can not explain many characteristic features
observed in our simulations: (i) the confinement of these strong magnetic
fields close to the surface, (ii) the much faster growth rate and larger am-
plitude of the surface magnetic fields with respect to the Weibel modes
driven by the hot electrons and resulting cold return current deep into
the target (corresponding to the inset in Fig. 4.2), (iii) the formation of
these magnetic structures in the case of a circularly polarized laser pulse,
for which one would theoretically expect a strong reduction of electron
heating.

To highlight the difference between the surface instability and the
one developing deep into the target along the hot electrons propagation,
it is useful to compare the values of their growth rates. For the surface
instability, i.e. the magnetic structures shown in Figs. 4.5a-b) and 4.6a-
b), we measured in PIC simulations in linear polarization Γsurf & 3.5 t−1

L ,
corresponding to the fit reported in Fig. 4.8. Ruyer et al. (2015) found a
growth for the filaments forming deep inside the target Γin-depth < 0.22 t−1

L ,
with linearly P-polarized laser pulse at normal incidence. The surface
instability grows more than 10 times faster than the in-depth one. This
implies that the mechanism acting at the surface is different from the one
driving the instability deep into the target. An analytical prediction of
the anisotropy rate would rely on a detailed investigation of the electron
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Figure 4.7: Interaction with: (Top panels) linearly P-polarized laser
pulse at normal incidence (as discussed in Sec. 4.2), (Central panels)
circularly polarized laser pulse at normal incidence (same as in Fig. 4.4),
(Bottom panels) S-polarized laser pulse at θ = 45◦ (same as in Fig. 4.5
right column). a-c-e) Electron density. b-d-f) Magnetic field Bz averaged
on a laser period. Red and black lines represent to the ion density profile.
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Figure 4.8: Growth of the surface transverse magnetic energy density,
associated with the surface instability, for normal incidence laser pulse
θ = 0◦ (blue dots) and for θ = 15◦ (red dots). Linear fit of the growing
phase (blue and red lines). a) S polarization. b) P polarization.

dynamics in the compressed layer. This is a longstanding open problem
in laser-plasma physics and goes beyond the scope of this study. We note
(not shown) that the anisotropy is stronger for linear polarization (LP)
than in circular polarization (CP), resulting in a growth rate Γsurf,CP '
0.5 Γsurf,LP.

In previous works, analyzing simulations performed at normal inci-
dence with circular polarization, the origin of the surface density modu-
lations has been associated with different types of instabilities. Here, we
give a brief description of them in order to illustrate why they should not
apply to our study.

The existence of a Rayleigh-Taylor-like instability, on the surface of
a thin foil (thickness . λL) interacting with an intense laser, has been
demonstrated and theoretically described by Sgattoni et al. (2015); Elias-
son (2015). By means of 3D PIC simulations at normal incidence, it was
shown that in circular polarization the instability leads to a pattern of
hexagonal-like structures, while in linear polarization the density ripplings
are smoothed along the polarization direction. Indeed, the motion of the
electrons oscillating in the laser electric field "washes out" the instability,
leaving elongated structures with wavevector perpendicular to the laser
electric field. This mechanism can not apply to our observations for the
following reasons.
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Even though this instability explains the formation of the surface den-
sity rippling, it does not provide a motivation for the magnetic structures
formation at the surface. Moreover, in our case the development of Bz,surf
is not quenched by the electron oscillations in the laser field, i.e. in P-
polarization at normal incidence Fig. 4.6a). In addition, the typical scale
of the rippling in the Rayleigh-Taylor-like instability is ' λL, while our
simulations suggest that the structures keep increasing their dimension
from c/ωpe up to c/ωpi. For the parameters used in the simulations pre-
sented up to now λL ' c/ωpi, therefore in order to discriminate between
the two scales at late time, a simulation with density n0 = 16nc has been
performed. The surface structures reach extension ' 1.7λL ' c/ωpi. The
model of Rayleigh-Taylor-like instability requires the foil to accelerate
under the radiation pressure action (being intended for accelerating thin
target in the light sail regime) and its generalization to the constant HB
velocity case is not straightforward.

In another recent proposition, Wan et al. (2016) provides a description
of the surface density modulations as a result of the coupling between
the transverse oscillations of the electrons in the laser electric field and
the quasi-static ion density fluctuations. This model is not intended for
the high intensity exploited in our simulations, and does not involve the
formation of any magnetic field structures. Note that this mechanism
comes into play only if the trajectories of the particles under the action
of the laser electric field component is described in the simulation, hence
it can not be observed in 2D simulations in S-polarization for which EL =
Ezẑ. This argument makes clear that the surface instability observed in
our simulation has a different origin.

In conclusion, we exclude these two surface instabilities as dominant
mode in our systems. There might be however a complex interplay be-
tween them and the Weibel instability driven by the surface distribution
function anisotropy.

Discussions on electron heating

In the case of S-polarization, the laser field components responsible for
the J × B heating, i.e. Ez and By, have a maximum amplitude at nor-
mal incidence. Thus we expect the amount of laser energy transferred to
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the electron population to decrease at large angles, consistent with the
simulation results, see Fig. 4.5. In P-polarization, contrarily to what we
observe in Fig. 4.6, considering the laser field components responsible for
the electron heating, we expect the hot electron production to increase at
large angles of incidence. Indeed, in previous studies (Gibbon, 1994), the
heating in P-polarization was demonstrated to have a maximum around
θ ' 40◦ ÷ 50◦, due to a combination of radiation pressure and ablative
expansion that create a smooth density profile at the laser-plasma in-
teraction surface. We should note that the intensity of the laser pulse
considered for our purposes is much larger than the one used by Gibbon
(1994), i.e. Iλ2

L . 1018 Wcm−2µm2. Furthermore, in a 2D simulation per-
formed with the parameters investigated by this author (a0 = 0.27 and
density n0 = 2nc) no surface instability producing the strong magnetic
structures observed in our case, is found.

This leads us to the investigation of a possible correlation of the sur-
face instability, and its stabilization at large incidence angles, with the
hot electron production. To do that, we measure the hot electron tem-
perature, energy density and density, as reported in Fig. 4.9 and Ta-
ble 4.3.1. We consider an electron distribution ∝ e−γ/Th , with Th the hot
electron temperature. The values reported in Table 4.3.1 correspond to
fit for γ & 20, averaging in the interval 8λL < x < 12.5λL, as shown
in Fig. 4.9a-b). Analogously, the hot electron energy density has been
computed integrating in the same x-γ region. The hot electron densities
reported in Table 4.3.1 have been extracted assuming Uh ' nhTh, and
are in good agreement with the curves shown in Fig. 4.9c-d) in the region
8λL < x < 12.5λL. The ponderomotive scaling Eq. (4.1.20) would pre-
dict a hot electron temperature ' 20÷25 MeV3, fairly consistent with our
observations. In both S- and P-polarizations, the energy density trans-
ferred to the electron decreases with the angle of incidence, despite the
temperature increases for P-polarization. Indeed, the hot electrons den-
sity nh (for γ & 20) is strongly reduced at large angles, as reported in
Figs. 4.9c-d).

3The value of the electron temperature depends on the parameter a0, that, in the
simulations, varies with the angle of incidence in the range [60, 70.3], due to numerical
issues with the boundary conditions, as stated in the footnote at the beginning of
Sec. 4.3.1.
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Figure 4.9: (Top row) Electron energy distribution as a function of γ
at t = 25 tL averaged in the interval 8λL < x < 12.5λL. (Bottom row)
Density of the hot electron population (γ0 & 20). a-c) S-polarized plane
wave. b-d) P-polarized plane wave. With θ = 0◦ (blue lines), θ = 15◦ (red
lines), θ = 30◦ (green lines), θ = 45◦ (yellow lines). Circular polarized
plane wave at normal incidence is reported in all frames (blue dashed
lines.) Black dotted lines correspond to the typical fit to extract the
temperature reported in Table 4.3.1.

These measurements, as well as the differences with respect to Gib-
bon (1994), suggest an active role of the surface instability enhancing
the electron heating at normal incidence in P-polarization, where the
instability-produced magnetic field can sum up with the laser one in-
creasing the J×B efficiency. On the contrary, Bz,surf is not expected to
increase the heating at normal incidence in S-polarization, since the laser
field responsible for the J×B heating are Ez and By. The decrease of hot
electron density in the case of large angle of incidence and P-polarization
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Figure 4.10: a) Electron current density Jy,e. b) Ion current density Jy,i.
c) Electric field Ey averaged on a laser period. After 93 tL of interaction
with the linearly S-polarized plane wave at θ = 45◦.

can be associated with the unipolar surface magnetic field. Indeed, elec-
trons with γ < 50 can remain trapped in the unipolar magnetic field
Bz,unip at the surface, having a Larmor radius (rL < 0.2λL) smaller than
the extension of Bz,unip (' λL). Note that, despite Bz,unip has roughly the
same intensity of Bz,surf created by the instability at normal incidence,
in the unipolar magnetic field particles remain trapped more easily than
in the modulated one.

To conclude, we observe that with S-polarization and θ = 45◦, the hot
electron production is weaker (both density and temperature have lower
values) in comparison with the case of circularly polarized light, reported
as dashed lines in Fig. 4.9.

Discussions on the surface stabilization

Another point to be further discussed is related to the stabilization of the
surface. In order to avoid the formation of the surface magnetic struc-
tures, a large angle of incidence is required, as highlighted in Figs. 4.7e-f)
for S-polarization and θ = 45◦ (see also Figs. 4.5 and 4.6).

The suppression of the surface Weibel-like instability is correlated with
the growth of a transverse electron current Jy. In the fast ignition context,
the formation of a current sheet along the interaction surface has been
already observed in PIC simulations at non-normal incidence (Vshivkov
et al., 1998; Nakamura et al., 2004; Kato et al., 2004).
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The stabilizing role of this current is clear in a framework in which
the surface structures correspond to Weibel-amplified field Bz,surf with
wavevector ky. In this situation, a coherent motion along the y-direction
would prevent the particles confinement in the filaments, removing the
feedback mechanism for the instability growth.

We consider the 2D simulation performed with an S-polarized laser
pulse irradiating the target at θ = 45◦, reported in Figs. 4.7e-f). As shown
in Fig. 4.10a), the electrons form a double layer current Jy, negative
toward the vacuum and positive slightly deeper inside. A net motion
along the y-direction, excludes the formation of the localized filaments
of electronic current Jx required to amplify Weibel modes at the surface.
The electron currents Jy produces and confines the positive magnetic field
in the thin layer at the surface, as in Fig. 4.7f). In turn, an electric field
Ey is generated by induction, Fig. 4.10c). This tends to slow the electrons
down and is responsible for the ion motion in the positive y-direction, as
shown by the Jy,i component in Fig. 4.10b). Note that the polarity of the
surface fields depends on the choice of the laser propagation direction,
determined by ±θ. Indeed, as will be clarified by the analytic model
presented in Sec. 4.3.2, the electron dynamics at the surface is related to
the absorption of electromagnetic momentum in the direction parallel to
the target surface.

4.3.2 Model for the current at the surface

Considering the model case of an electromagnetic plane wave with in-
tensity I(t) obliquely incident at an angle θ on the planar x-y surface of
a medium with reflectivity R ≤ 1, filling the x > 0 region, the flow of
electromagnetic momentum P through the surface has two components:

(Px, Py) =
(

(1 +R)I
′

c
cos2 θ′ , (1−R)I

′

c
sin θ′ cos θ′

)
, (4.3.1)

where the prime refers to the frame moving with the surface. These
relations are obtained starting from Fresnel formulas for the laser elec-
tromagnetic fields at the surface, by calculating the flow of momentum
at the surface using Maxwell’s stress tensor. The longitudinal component
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Px corresponds to the standard radiation pressure on the surface which
drives the Hole Boring action, Eq. (4.1.24), while the Py component de-
scribes the transfer of momentum to electrons in the direction parallel to
the surface, giving rise to a current in the skin layer. In turn, this current
generates a magnetic field and, by induction, an electric field which coun-
teracts the acceleration of the electrons along the surface and transfers
the absorbed momentum to ions.

In order to provide a model to describe the current and field dis-
tributions, we introduce the ponderomotive force in the skin layer fp '
P exp(−2x/`s)/(`s/2), where `s is an appropriate screening length for the
electromagnetic fields in the plasma, and we use cold fluid equations for
the plasma electrons that reads

∂tJsy =
ω2
pe

4π Esy −
e

me
fpy , (4.3.2)

∂xBsz = −4π
c
Jsy , (4.3.3)

∂xEsy = −1
c
∂tBsz , (4.3.4)

where the suffix “s” means that all fields are slowly varying on the tempo-
ral scale of the pulse profile, so that the displacement current is negligible.
We also neglected the contribution of the ion current to Bsz because of
the large mass difference with the electrons.

Combining the previous equations, we obtain an inhomogeneous
Helmholtz equation for the electric field component Esy:(

∂2
x −

ω2
pe

c2

)
Esy = − 4πe

mec2 fpy . (4.3.5)

The particular solution of Eq. (4.3.5) can be obtained as a Laplace trans-
form in space:

Êsy(s, t) = − 4πe
mec2

1
s2 − ω2

pe/c
2 f̂py(s, t) , (4.3.6)

Esy(x, t) =
∫ ∞

0
Êsy(s, t)esxds . (4.3.7)
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In the definition of the ponderomotive force, we consider `s ' c/ωpe, see
Eq. (4.1.6), consistent with the relatively weak absorption in a highly
overdense plasma, and a general time-dependence fpy(0, t). Therefore,
adding the homogeneous solution to the one computed from Eq. (4.3.7),
we obtain

Esy(x, t) = − 4πe
3meω2

pe

fpy(0, t)
(
e−2ωpex/c − 3

2 (1− C) e−ωpex/c
)
, (4.3.8)

where C is a constant that will be fixed by the boundary condition and
we have reasonably assumed the same time-dependence in both particular
and homogeneous solutions.

Solving for the magnetic field Bsz and for the current Jsy, exploiting
Eqs. (4.3.3) and (4.3.4), we obtain

Bsz = 4
3
ω2
pe

en0c

(
e−ωpex/c − e−2ωpex/c

)∫ t

0
fpy(0, t′)dt′ , (4.3.9)

Jsy = 4
3
eωpe
mec

(
e−ωpex/c − 2e−2ωpex/c

)∫ t

0
fpy(0, t′)dt′ , (4.3.10)

where we have assumed at the surface Bsz(x = 0) = 0, imposing C =
−1/3. This corresponds to a positive magnetic field Bz, an electric field
Ey for x > 0 and a bipolar current structure. These profiles are coherent
with the simulation results.

A more general boundary condition, for the electric and magnetic
fields at the surface (x = 0), corresponds to a radiative boundary E(x =
0) = B(x = 0), i.e. considering the emission of an electromagnetic wave
propagating in vacuum. This case can be solved with the same approach
presented before, just replacing the integration constant C with a function
of time C(t). The solution, for t & ω−1

pe , corresponds to vanishing electric
field Esy and magnetic field Bsz at x = 0, thus justifying the assumption
made in the presented model.

The maximum value of the magnetic field Bsz, from the solution ob-
tained in Eq. (4.3.9), is found at x = (c/ωpe) ln 2, and considering a
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flat-top profile I(t) = I0Θ(t), it reads

Bmax
sz '

π

6 a
2
0
t

tL
(1−R) sin(2θi)

meωLc

e
. (4.3.11)

Even for very small absorption (1−R . 10−2), this value becomes compa-
rable with the simulation results. Moreover, this simple estimate shows
that already at sub-relativistic intensities a0 ' 1 the field may rapidly
reach values comparable to the laser field BL = a0meωLc/e. However,
saturation will occur when the cyclotron frequency ωc ' ωrel

pe = ωpe/
√
γe,

which for a relativistic electron corresponds to the gyroradius becoming
smaller than the relativistic skin depth (a criterion similar to the Alfvén
limit for a current beam). This leads to the saturation value

Bsat
zs '

√
γe
meωpec

e
= √γe

√
n0
nc

meωLc

e
. (4.3.12)

For our parameters and considering γe ' a0, this yields Bsat
zs '

58meωLc/e, fairly close to the value observed in the simulation.4

Notice that this purely fluid model can not account for kinetic effects,
such as the small amount of fast electrons that leave the surface and prop-
agate freely inside the target. However, the fluid motion of the surface
has a dominant effect in our configuration, and the main features of the
fields distribution at the surface are well described.

4.3.3 3D simulations

The analysis of the previous Secs. 4.3.1 and 4.3.2 suggests S-polarized
laser at 45◦ of incidence as optimal configuration. The 2D simulations
however confirm the stabilization of the surface instability only along the
direction in which the current is produced (in our configuration Jy). A
3D study is therefore required to investigate the possible instability devel-
opment along the other transverse direction (here z). In this sections, we
comment on the 3D simulations carried out in the optimal configuration
(S-polarized laser at 45◦) and in circular polarization at normal incidence,

4At the timestep presented in Figs. 4.5 and 4.6 the surface magnetic field has not
yet reached its maximum amplitude.
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Figure 4.11: Magnetic field component at the laser plasma interaction
surface at t = 36 tL. For a S-polarized plane wave with θ = 45◦, a) By
at x ' 6λL, in the electron compressed layer, b) Bz component averaged
along the z-direction. For a circularly polarized plane wave with θ = 0◦,
c) By and d) Bz at x ' 6.7λL, in the electron compressed layer.

to confirm our previous findings. The simulations have been performed
with the same physical parameters than used in the 2D simulations. We
reduce the box extension to (48× 2.5× 2.5)λL, the spatial resolution to
dx = dy = dz = λL/64 and the time resolution to dt = 0.95 dtCFL, de-
fined in Eq. (2.6.7). We use 8 particles-per-cell per species, for a total of
' 1.3× 109 particles. The target surface at t = 0 corresponds to the y-z
plane located at x = 2λL. The angle θ is defined with respect to the z-
axis. Periodic boundary conditions are used along the y and z directions
for fields and particles.
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Using a circularly polarized plane wave at normal incidence strong
magnetic field modulations appear at the surface. This is illustrated
in Fig. 4.11c-d), where we show the y-z plane located at x ' 6λL for
t = 36 tL. Due to the 3D geometry, the modulations have wavevector k =
(0, ky, kz) and both magnetic field components By and Bz are amplified
by the surface instability. Surface modes are mostly transverse, meaning
that the By component has a dominant wavevector kz, and the same for
Bz-ky, as deducible from Fig. 4.11c-d). On the contrary, for S-polarization
and θ = 45◦, the current along the y-direction stabilizes the modes with
wavevector ky, producing the positive magnetic fields Bz, shown in the x-
y plane in Fig. 4.11b) for t = 36 tL. The instability in the By component
is still present, Fig. 4.11a), but the field strength is somewhat smaller
than in circular polarization.

The stabilization in both y- and z-directions might be achieved using
two lasers, in order to drive the currents Jy and Jz. However, simulations
performed with two lasers are found to be very sensitive to the relative
phase between the two pulses. In addition, to remain closer to a possi-
ble experimental configuration, the use of two intense lasers should be
avoided.

In conclusion, the 3D simulations confirm the 2D result that S-
polarized laser incidence at 45◦ is the optimal condition to stabilize the
surface.

4.4 Ion-Weibel Instability in solid target

In this Section, we demonstrate the possibility to investigate the ion-
Weibel instability (IWI) driven by a fast quasi-neutral plasma flow
launched into the target via the radiation pressure of an UHI laser pulse
(Hole-Boring process, see Sec. 4.1.4.2).

In the frame co-moving with the surface, the background plasma
and the Hole-Boring reflected beam constitute two neutral counter-
propagating beams with velocity ' (±vHB) and ideally equal density n0.
The large plasma density entails a fast growth rate, while the large drift
velocity, vHB & 0.1c, ensures the Weibel instability to be the dominant
mode in the unstable spectrum (Bret et al., 2010b). In the presence of
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two counter-streaming electron-ion plasmas, the instability evolution fol-
lows a first phase in which electrons turn unstable while the large inertia
of the ions keeps their trajectories weakly affected by the magnetic tur-
bulence. On a longer timescale, IWI develops in a background of warm
electrons, and the magnetic field grows up to an amplitude large enough
to efficiently deflect the ions. The progressive deceleration of the ion flow
produces an increase of the density that eventually leads to the formation
of a shock front, as will be demonstrated in Sec. 4.5.

We first present an analytical derivation of the IWI growth rate in
Sec. 4.4.1, and a study of the IWI saturation in Sec. 4.4.2. Motivated
by the possibility of an experimental investigation, we present a full 3D
simulation of laser-plasma interaction up to the development of the IWI,
in Sec. 4.4.3. The results are compared with the analytical studies of the
Secs. 4.4.1 and 4.4.2.

4.4.1 IWI growth rate

The linear phase of the IWI can be investigated using a relativistic fluid
approach, as discussed in Sec. 2.4.2 and tested in Secs. 3.2 and 3.3.

Here, we consider two counter-streaming proton beams with veloc-
ity v = ±v0x̂, density n± = n0/2 and temperature T± = T0, so that
µ(T±) = mic

2/T± = µ0. The neutralizing background is provided by
thermalized electrons with density n0, zero average velocity and temper-
ature Te, with the corresponding enthalpy h(µe), with µe = mec

2/Te.
Linearizing the fluid equations coupled with Maxwell’s equations, as dis-
cussed in Sec. 2.4.2, for both the electron and the ion populations, and
looking for purely transverse unstable modes, we obtain the dispersion
relation

ω2

c2 − k
2
y −

ω2
pi

h(µ0)γ3
0c

2 −
ω2
pi

h(µ0)γ0c2
k2
yv

2
0

ω2 − T0k2
y

mih(µ0)γ0

−
ω2
pe

h(µe)c2 = 0 ,

(4.4.1)

where ω2
p e,i = 4πn0q

2
e,i/me,i and for simplicity we assumed k = kyŷ.

As already stated in Sec. 2.4.3, the use of fluid equations is accurate
if the thermal velocity is smaller than Γ/k, with Γ the instability growth
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Figure 4.12: Growth rate as a function of the wavenumber, for the ion-
Weibel-instability driven by two ion flows with velocity v0 = ±0.11 c and
temperature T0 = 1 keV. The electrons are assumed thermalized, so that
v0,e = 0, with temperature Te = T0 (red line) and Te � 500 keV (blue
line).

rate and k the wavenumber. In many cases the electron population does
not satisfy this condition. This is particularly true for the electrons heated
by an intense laser pulse. Hence, in this case, the use of a kinetic approach
is required for the electrons. Therefore, we derive the dispersion relation,
where the contribution of the ions is computed within a fluid approach
[limit of ξ � 1 in Eq. (2.4.18), leading to Eq. (2.4.21)] and the electrons
contribution is obtained by means of the kinetic theory [limit ξ � 1 in
Eq. (2.4.18) leading to Eq. (2.4.23)]. Thus, from the dispersion relation
in the kinetic regime Eq. (2.4.23), recalling that ae = mev

2
0/T0 = 0 for

a zero average velocity and that the last term in bracket vanishes in the
limit of a large temperature, we obtain:

ω2

c2 − k
2
y −

ω2
pi

h(µ0)γ3
0c

2 −
ω2
pi

h(µ0)γ0c2
k2
yv

2
0

ω2 − T0k2
y/(mih(µ0)γ0) = 0 . (4.4.2)

This is similar to Eq. (4.4.1), but the electron contribution has disap-
peared from the dispersion relation, as already discussed by Lyubarsky
and Eichler (2006); Achterberg and Wiersma (2007).

In order to highlight the role of the thermalized electron background,
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both dispersion relations, Eqs. (4.4.1) and (4.4.2), have been numerically
solved for ω = iΓ, with Γ > 0, to obtain the IWI growth rate ΓIWI. Fig-
ure 4.12 shows ΓIWI(k), for protons streaming with velocity v0 = ±0.11 c,
with initial temperature T0 = 1 keV, and electrons with Te = T0 (red line)
and Te � 500 keV (blue line). If the electrons have a temperature large
enough that a kinetic description is required [leading in the limit ξ � 1
to Eq. (4.4.2), whose solution corresponds to the blue line in Fig 4.12],
the growth rate is larger with respect to the case of quasi-cold electron
background, correctly treated with the fluid approach [red line, solution
of Eq. (4.4.1)]. This can be explained as follows. During the linear phase
of growth of the ion instability, the electrons are put in motion, along the
ion streaming direction, by the electric field generated by induction due to
the Weibel-magnetic field amplification. As already explained in Sec. 3.2,
in the linear phase of the instability, the inductive electric field tends to
slow down the particles responsible for the instability, in this case the
ions, thus accelerating the electrons. Therefore, the electron background
forms current filaments that tend to screen the ion currents, thus slow-
ing down the growth of the instability. The efficiency of the screening
depends on the size of the filaments and on the electron temperature.
In particular, the screening increases at small wavenumbers and for low
electron temperatures. Indeed, in Sec. 3.2.2.1, we pointed out that the
inductive electric field component is stronger for small-k modes (large
wavelengths), thus producing a stronger screening current and in turns
reducing the growth rate, consistent with Fig. 4.12. In addition, we ex-
pect a less efficient screening if the background of electrons has a high
temperature. Indeed, an electron with large thermal velocity can easily
escape from the filament, while the electrons of a cold background would
remain confined in the ion filaments, producing a current that efficiently
screens the ion one. Moreover, this involves a shift toward low wavenum-
bers of the mode with the maximum growth rate, with the increase of
the electron temperature. These qualitative arguments are in agreement
with Fig. 4.12.

Note that cutoff value of the unstable k (at k ' 43ωpi/c in Fig. 4.12),
is determined by the ion temperature and roughly independent from the
electron one, as can be calculated from the dispersion relation imposing
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Figure 4.13: Magnetic field strength at saturation as a function of the
wavenumber, for the ion-Weibel-instability driven by two cold ion flows
with velocity v0 = ±0.11 c. Alfvén mechanism (green line) and trapping
mechanism (darkest red line). Predicted saturation level accounting for
the screening currents of the electron thermalized background, i.e. trap-
ping mechanisms with ion current multiplied by the κ factor in Eq. (4.4.3),
with Te = [1, 10, 102, 5 × 102, 103, 5 × 103] keV (from blue to red). The
dots report the values measured in 2D simulations with counter-streaming
cold ions and background electrons with temperature equal to the line of
the same color. The black diamond corresponds to the magnetic field
obtained at the end of the 3D simulation presented in Sec. 4.4.3.

ω = 0.

4.4.2 IWI saturation

In this paragraph we briefly discuss the saturation of the ion Weibel in-
stability. The same physical mechanisms, that have been investigated in
depth for the electron Weibel instability in Sec. 3.2.2, can be assumed
to take place. A straightforward generalization, with the substitution
me −→ mi in Eqs. (3.2.13) and (3.2.17), gives the green and darkest red
curves in Fig. 4.13. The green curve corresponds to the Alfvén saturation
mechanism, for which the forward velocity of the particles contributing
to the instability approximately vanishes at saturation. The darkest red
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curve represents the trapping mechanism, which corresponds to the in-
jection of all ions into the current filaments. These saturation conditions
however apply only for a purely ion driven instability, completely neglect-
ing the role of the electrons in the instability evolution and saturation.
This might be correct if the electrons are warm enough that no screening
of the ion currents is produced.

At lower temperature, a simplified analytic model to take into account
the electron screening effect, in cylindrical current filaments, was proposed
by Achterberg et al. (2007). The inductive electric field responsible for
the electron motion is estimated by means of the linearized fluid theory.
It is found that the reduction of the current in a filament is quantified by
the screening factor:

κ = Ii,e
Ii

= 2I1

(
ωpe

ch(µe)
r0

)
K1

(
ωpe

ch(µe)
r0

)
, (4.4.3)

where Ii,e and Ii are the total and the ion currents, respectively, I1 and
K1 are the modified Bessel functions and r0 is the filament radius.

In order to test this model and assess the efficiency of the screening
at saturation, a series of 2D simulations have been performed varying
the temperature of the electron background. In Fig. 4.13, we report the
saturation values (dots) measured in the simulations with electron tem-
perature [0, 1, 10, 102, 5 × 102, 103, 5 × 103] keV and initially cold ions,
streaming with velocity v0 = ±0.11 c. These values are compared with
the theoretical prediction of the trapping mechanism, multiplying the ion
currents by the screening factor κ of Eq. (4.4.3), (curves and dots of the
same color correspond to the same electron temperature). In all these
tests the dominant mode is in the range k ' 10 ÷ 25ωpi/c, where satu-
ration is expected to occurs via the trapping mechanism. Increasing the
electron temperature (from blue to red) the dominant mode shift toward
lower k, coherent with the shift of the fastest growing mode discussed
in the previous Sec. 4.4.1. As predicted by the trapping mechanism, at
saturation the ions velocity is not drastically reduced and the region in
between two filaments is depleted, i.e. complete injection of the ions in
the filaments is achieved. The largest saturation value is obtained for the
highest temperature, i.e. for a minimum screening by the electrons. How-
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ever, even in this case, the magnetic field strength is slightly lower than
in the purely ion situation (no electron contribution, corresponding to
the darkest red line). The reported saturation values are in good agree-
ment with the theoretical prediction, once accounting for the electron
screening.

Therefore, referring to Fig. 4.13, we can consider the Alfvén limit
(green line) and the trapping mechanism (darkest red curve) as the upper
limits for the field strength at saturation that can be achieved in any
realistic situations.

4.4.3 IWI in solid target

Motivated by the results of the previous Secs. 4.3.1 and 4.3.3, we per-
formed a full 3D simulation considering a S-polarized laser irradiating
the target at 45◦. Due to the efficient quenching of the surface instability
with this large angle of incidence, the surface profile remains approxi-
mately flat and HB can be driven for a long time.

We present here the results of the 3D simulation carried out with
plane wave intensity IλL ' 6.8 × 1021 Wcm−2µm2, corresponding to a
normalized laser vector potential a0 = 70, for duration such that the
IWI fully develops. All parameters have been defined in Sec. 4.3.3. This
corresponds to an experimental set-up for soon available laser facilities.
The configuration investigated in this work is pictured in Fig. 4.14a).

Figure 4.14b) highlights the filamentary structures in both the mag-
netic field Bz and the ion current Jx,i at t = 65 tL, in the region of
overlapping between the reflected HB beam and the background plasma,
corresponding to 8λL . x . 16λL. The density in this region is roughly
' 2n0, as shown in Fig. 4.14c). We define the laser-plasma interaction
surface as the first x > 0 where 〈ni(x)〉y,z = 2n0, with 〈ni(x)〉y,z the ion
density averaged along the y and z directions. The surface moves with
velocity vsim

HB ' 0.11 c, in good agreement with the theoretical value of
vHB ' 0.098 c.

The growth rate of the magnetic energy UB ∝ e2Γt has been measured
in the simulation considering a layer in the overlapping region of extension
' 0.2λL moving at vsim

HB . For the growth rate and the dominant mode, we
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Figure 4.14: a) Schematic presentation of the investigated set-up. The
incident angle θ of the S-polarized laser pulse is defined in the x-y plane.
b) Ion Weibel instability from radiation pressure driven flows in a 3D PIC
simulation with realistic ion mass. Magnetic field Bz and slice in the y-z
plane at x = 14λL of the ion current Jx,i at t = 65 tL. c) Ion density
〈ni(x)〉y,z averaged over the y-z plane. The laser pulse (not shown) prop-
agates along the x > 0 direction, and the laser-plasma interaction surface
at this time is located at x ' 10λL.

obtain
Γsim

IWI ' 0.034 t−1
L ; ksim

IWI ' 2ωL/c , (4.4.4)

corresponding to a filamentary structure with wavelength λsim
IWI ' 0.5λL.

The resolution in the spectrum depends on the extension of the box, in
this simulation we have ∆ksim

y,z = 2π/Ly,z = 0.5ωL/c.
These observations are consistent with the development of the IWI.

To compare with the theoretical model discussed in Sec. 4.4.1, we need
first to measure the temperature of both electron and ion populations. To
characterize the thermalized electron background, we report in Fig. 4.15b)
the electron distribution as a function of the transverse momentum fe(py),
in the overlapping region at early time of interaction, t = 14 tL. Three
temperatures can be identified: from the fit we obtain Te,1 ' 530 keV,
Te,2 ' 1.4 MeV and Te,3 ' 14.5 MeV. Similar values are found along px
and pz. The HB ions transverse temperature is measured by means of a
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Figure 4.15: a) Ion distribution function fi(py) of the HB reflected beam.
b) Electron distribution function fe(py). Integrated in the overlapping
region 3.2λL < x < 3.8λL at t = 14 tL. Dashed red lines correspond to
the fit performed to extract the plasma temperature.

Gaussian fit as shown in Fig. 4.15a). We obtain T sim
i,HB ' 14.2 keV. The

ion background temperature corresponds to the initial one, Ti = 1 keV.
With these high temperatures, the electrons need to be treated with

the kinetic approach in the limit of ξ � 1, discussed in Sec. 4.4.1. In
order to compare the value of the dominant unstable mode observed in
the 3D simulation, Eq. (4.4.4), with the analytical prediction reported in
Fig. 4.12 (blue line), we express ksim

IWI in units of the ion skin depth as
ksim

IWI ' 8.7ωpi/c, where ωpi2 = 4π(2n0)e2/mi is the plasma frequency in
the overlapping region, where the density is 2n0, and ∆ksim ' 2ωpi/c.
Therefore, the ksim

IWI is approximately the one with maximum growth rate,
see Fig. 4.12 (blue line).

The growth rate reported in Fig. 4.12 (blue line), obtained consider-
ing two counter-propagating ion beams both with temperature Ti = 1 keV
(initial temperature), would predict for the dominant mode observed in
the simulation Γ(ksim

IWI) ' 0.076ωpi ' 0.11 t−1
L . Nevertheless, the observed

growth in the 3D simulation, Eq. (4.4.4), is ∼3 times slower than theoret-
ically expected. This is due to the assumption of equal low temperature
(Ti = 1 keV) of the two ion counter-propagating beams, while, as we
already said, the HB reflected beam has a temperature larger than the
initial one. Note that the instability would be completely quenched in the
case of two counter-streaming beams with Ti ' 14.2 keV, as confirmed
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by PIC simulations. To our knowledge no relativistic analytical theory
exists for co-penetrating plasmas with different temperatures. Therefore,
to obtain the value of the growth rate in this configuration, we performed
an additional 2D simulation with counter-streaming ions with tempera-
tures Ti1 = 1 keV and Ti2 = 14.2 keV and thermalized background of hot
electrons. This simulation confirms the result of the 3D analysis. The
dominant mode is k ' 2ωL/c and the growth rate Γ ' 0.043 t−1

L , in good
agreement with the values reported in Eq. (4.4.4).

In Sec. 3.3.1.2, we have demonstrated that increasing the beam tem-
perature the growth rate of the modes with k � kmax, where kmax is the
mode with the maximum growth rate, is weakly affected, but the max-
imum value of Γ can be drastically reduced. Therefore, we expect the
dominant mode to grow slower than predicted by the theory with low
temperature (Ti = 1 keV) ion beams. Moreover, Tzoufras et al. (2006)
have associated the decrease of the growth rate, in a configuration with
counter-streaming electron beams with two different temperatures, with
the different pinching of the high/low temperature beam, under the action
of the Weibel-generated magnetic field.

Our analysis confirms that the structures highlighted in Fig. 4.14b)
follow from the IWI driven, deep inside the dense target, by the interac-
tion of the HB accelerated ion flow with the background plasma.

In the 3D simulation at t ' 65 tL, the IWI-generated magnetic field
strength is Bsim

z ' 3meωLc/e (Bsim
z ' 3 × 108 G for λL = 1µm ). To

compare it with the theoretical prediction shown in Fig. 4.13, we recall
that the dominant mode in units of ion skin depth is ksim

IWI ' 8.7ωpi/c
and the magnetic field amplitude is Bsim

z ' 7 × 10−3micωpi/e, see the
black diamond in Fig. 4.13. This value is close to the magnetic field
amplitude at saturation predicted for electron temperature Te = 500 keV.
This means that we are already in a late stage of the instability, close to
saturation, with a significant part of the ions trapped in the filaments
whose current is partially screened by the thermalized electrons.

4.4.4 Finite spot 2D simulation

An additional 2D simulation has been performed at the optimal config-
uration (S-polarization and θ = 45◦), considering a Gaussian transverse
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laser profile5 in order to investigate the finite laser spot size effects. This
is clearly highly relevant for an experimental investigation. We expect the
target surface under the effect of the laser radiation pressure to get bent
as the radiation pressure onto the target is not uniform. This changes
the local angle of incidence, with possible effects on the production of
hot electrons. Moreover, the radiation pressure decreases radially around
the laser propagation axes being proportional to the intensity of the laser
pulse, thus produces HB accelerated ions with different velocity at differ-
ent position. The spread in the ion energy spectrum can be detrimental
for the development of the IWI. As discussed in the previous Sec. 4.4.3, a
high temperature of the reflected beam decreases the growth rate of the
instability. Nevertheless, the simulation with Gaussian transverse laser
profile gives similar results to the plane-wave one and confirms (i) the
generation of the surface current, with the corresponding static magnetic
field and the stabilizing effect on the surface instability, as well as (ii) the
formation of current and magnetic filaments in the overlapping region.

The simulation has been performed with the same physical parameters
of Sec. 4.3.1. The simulation box has been increased to 64 × 128λL, the
resolution has been reduced to dx = dy = λL/64. We used 49 particles-
per-cell per species, for a total of ' 2.5 × 109 particles. The laser focal
spot is 10µm (defined as 1/e2 in intensity).

In the electron current Jy,e, shown in Fig. 4.16a), we observe the
bipolar structure predicted by Eq. (4.3.10). This produces and confines
the positive magnetic field in the skin layer, as shown in Fig. 4.17. The
ion current Jy,i, see Fig. 4.16b), is directed along the positive y-direction,
i.e. in the direction predicted by momentum conservation, except in the
region y < 45λL, where the intensity gradient in the transverse direction,
due to the finite spot causes the local ponderomotive force to be in the
negative y direction.

The IWI-driven magnetic filaments inside the target are clearly visible
in the insert of Fig. 4.17. The amplitude and the characteristic wavelength
confirm the observation of the previous 3D simulation.

5The corresponding 3D simulation would have been extremely costly from a com-
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Figure 4.16: a) Electron current Jy,e, and zoom of the highlighted region.
b) Ion current Jy,i. After 85 tL of interaction with S-polarized laser with
transverse spot size 10µm and angle of incidence θ = 45◦.

Figure 4.17: Magnetic field Bz (not averaged) and zoom of the high-
lighted region. After 85 tL of interaction with S-polarized laser with trans-
verse spot size 10µm and angle of incidence θ = 45◦.
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Figure 4.18: 2D3V simulation with reduced ion mass mi = 100me of
collisionless shock formation. a-b) Ion distribution in px-py at t = 30tL

and t = 515tL, respectively. c) Ion density ni(x, y) and d) 〈ni(x)〉y at
t = 515 tL.

4.5 Weibel-mediated shock in solid target

The situation described above is known to be the early stage of Weibel-
mediated collisionless shock formation. After the saturation phase, the
Hole Boring reflected ions may remain confined in the overlapping region
where the magnetic field has developed strong and large-wavelength mod-
ulations. As more and more ions get injected and then trapped in this
region, its density starts increasing. With this mechanism the density in
the overlapping region evolves from ∼ 2n0 to the expected value calcu-
lated from the Rankine-Hugoniot conditions (RH), see Sec. 2.5.2. The
fulfillment of these conditions and the isotropization of the downstream
plasma identify the shock front formation.

To be able to reach shock formation, with reasonable computational

putational point of view.
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resources, we performed a 2D simulation with artificially reduced ion to
electron mass ratio mi = 100me which allows us to follow the system
evolution for longer times while clearly separating the electron and ion
time-scale. It was shown that while it affects the time of shock forma-
tion, this does not affect the overall physics at hand (see Spitkovsky, 2008;
Stockem-Novo et al., 2015; Ruyer et al., 2016). Reducing the ion mass
while keeping unchanged the other parameters, gives a Hole Boring veloc-
ity vHB = 0.28 c, in good agreement with that measured in the simulation
vsim

HB ' 0.29 c.
Figures 4.18a-b) show, at 30 tL and 515 tL respectively, the phase

space px-py of a region with extension ' λL initially close to the sur-
face, moving at vsim

HB . In Fig. 4.18a) (before shock formation) we clearly
identify the background plasma distribution, centered around px ' 0,
and the HB-reflected beam, centered around px ' 71mec, corresponding
to ∼ 2vsim

HB . Figure 4.18b) shows at t = 515 tL isotropization of the ion
distribution function around the momentum px ' 30mec corresponding
to vHB. Full thermalization is not yet reached as the measured ion tem-
perature T sim

i ' 1.1mec
2 is lower than Ti = (γHB − 1)mic

2 ' 4.5mec
2,

obtained considering that all the drift kinetic energy is dissipated into
thermal energy, and derived in Eq. (2.5.17). Nevertheless, a density jump
(up to 3n0), consistent with the Rankine-Hugoniot prediction for a non-
relativistic two-dimensional flow, is observed in Figs. 4.18c-d), suggesting
that the shock is formed. Furthermore, in Figs. 4.18c-d), the shock front
located around x ' 250λL and with characteristic width ' 50λL, corre-
sponding to ∼ 50 ion skin depths, moves with a velocity vsim

sh = 0.42 c,
consistent with RH prediction vsh ' 0.43 c.

Note that in this configuration the shock front is created deeper in-
side the target with respect to the configuration previously investigated
by Fiuza et al. (2012); Ruyer et al. (2015) (see Sec. 4.2), far from the
target surface, so that there is a clear distinction between the role of the
laser-plasma interaction and the evolution of the IWI up to the resulting
shock formation.

A theoretical investigation of the shock formation time for mildly rela-
tivistic electron-ion flows can be found in (Ruyer et al., 2016), while other
works focused on the relativistic regime (relativistic factor of the ion flows
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γ > 10) (Stockem-Novo et al., 2015; Bret et al., 2016). Following Ruyer
et al. (2016), we can define an isotropization parameter

aiso = 〈vxpx〉
〈vypy〉

− 1 , (4.5.1)

where 〈vipj〉 correspond to the averaged pressure tensor components,
Eq. (2.2.16), accounting for both the average flow contribution and the
thermal spread. In (Ruyer et al., 2016) the time for which a good
isotropization level (aiso = 1) is achieved is theoretically predicted and as-
sumed to be the shock formation time tf . However, their measurements
of the shock formation time in PIC simulations of symmetric counter-
streaming flows suggest that a shock is fully formed for aiso . 0.1, so that
their model marginally underestimate the shock formation time. Indeed,
for our flow velocity and density, with this model, a shock is expected
to be formed (aiso = 1) after ' 130 tL of interaction between the HB
reflected beam and the background plasma. At this time, we measure
asim

iso ' 1.5, in good agreement with the theoretical model. We can there-
fore consider this tf as a lower limit for the shock formation time, even
if in the simulation the isotropization parameter becomes asim

iso . 0.1 only
at tsimf ' 350 tL.

4.5.1 Range of parameters to reach shock formation

For a future investigation on the scaling down of the parameters used
in this Chapter to observe IWI and IWI-driven collisionless shocks, we
provide here a discussion on the range of acceptable parameters, with
realistic ion mass. As mentioned in Sec. 4.4, a HB velocity vHB & 0.1 is
advisable, so that the IWI is the dominant mode in the unstable spectrum.
This gives a first constrain: the laser field normalized amplitude a0 and
the target density n0 should lye on the right of the black plain line shown
in Fig. 4.19a), where we report the value of the HB velocity, obtained in
Eq. (4.1.26), for the case of normal incidence laser pulse as a function of
(a0, n0). Moreover, to avoid the target transparency to the laser light, we
need a density above the effective critical density (black dashed line in
Fig. 4.19a) computed following the model of Cattani et al. (2000), that as
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Figure 4.19: a) Hole Boring velocity as a function of the laser fields
normalized amplitude a0 and of the target density n0, for the case of
normal incidence laser pulse, obtained in Eq. (4.1.26). The plain black
line corresponds to vHB = 0.1 c and the dashed black line to the effective
critical density as derived by Cattani et al. (2000). b) Shock formation
time, following the model of Ruyer et al. (2016). Both quantities are
computed for an electron-proton target (mi = 1836me).

mentioned in Sec. 4.1.1, take into account the ponderomotive-produced
electron density spike at the laser-plasma interaction surface.

In the literature most of the simulation of Weibel-mediated electron-
ion collisionless shocks driven by two counter-streaming beams exploit
an artificially low ion to electron mass ratio. The correct scaling to
recover the time formation with realistic ion mass is still a matter of
debate (see Kato and Takabe, 2008; Stockem-Novo et al., 2015; Ruyer
et al., 2016; Bret et al., 2016). We assume the scaling proposed by Ruyer
et al. (2016), since it was tested for mildly relativistic flows. This pre-
dicts tf ∝ (mi/me)0.9 tL. Thus, considering the realistic proton mass
(mi = 1836me) the shock observed in Fig. 4.18 should form after
' 4× 103 tL, corresponding to ' 13 ps for λL = 1µm.

In conclusion, from Fig. 4.19b), we see that the duration of the laser
pulse required to achieve shock formation, in the range of acceptable
laser-target parameters (in between the two black lines) is in the range
(2 ÷ 6) × 103 tL, corresponding to (6.5 ÷ 19.5) ps for a laser wavelength
λL = 1µm.
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4.6 Conclusions

In this Chapter, we have demonstrated the possibility to efficiently drive
the ion-Weibel instability in the collisionless regime on UHI laser facilities.
Motivated by an experimental investigation, the ion-Weibel instability
development has been identified in realistic mass ratio simulation, in a
3D geometry and accounting for transverse laser finite-size effects. We
have also provided a detailed characterization of the ion-Weibel instability
driven by the HB beam by means of comparisons with analytical models
and additional simplified numerical studies, for both the growth rate and
the Weibel-generated magnetic field amplitude at saturation.

We have identified the optimal experimental configuration that (i)
minimize the production of hot electrons, (ii) mitigate the surface insta-
bility and (iii) maximize the time over which the Hole Boring process is
efficient. These conditions are required in order to obtain a dynamics
dominate by the ion-Weibel instability and are best satisfied with the
use of an S-polarized laser pulse irradiating the target at a large angle of
incidence (45◦).

We have evidenced the nature of the surface instability as electron
Weibel-like modes driven by the anisotropy in the electron compressed
layer. Then we have correlated the instability mitigation with a slowly-
varying laser-driven electron surface current, described by means of an
analytical fluid model. The suppression of the instability leads to an
increase of the time during which the laser can act as a piston, and to a
remarkable reduction of the hot electron energy, already after a few laser
cycles.

The development of the surface instability has important implications
for Hole Boring and Radiation Pressure Acceleration experiments, which
are not limited to the focus of this work on collisionless astrophysics.
Indeed, despite the current belief that, with circular polarization and
normal incidence, these acceleration mechanisms would benefit from UHI
(i.e. large a0, to increase the energy of the accelerated particles), we have
demonstrated that maintaining the Hole Boring process over a long time
is ensured only if the surface instability is efficiently suppressed.

The physical situation obtained with our configuration is dominated
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by ion instabilities and it has been demonstrated to potentially lead to
Weibel-mediated collisionless shocks. This situation relates to most of
the astrophysical scenarios where neutral electron-ion flows are emitted
from central sources.

The ion-Weibel instability stage will be accessible and will give im-
portant information on the stage of shock formation, with soon available
laser systems, e.g. L4 for ELI in Czech Republic (over 1 kJ in 150 fs),
or the LFEX in Japan and Petal in France (both delivering multi-kJ
picosecond pulses), while the full shock formation is still out of reach
experimentally. In particular, an experimental observation and charac-
terization of the development of ion-Weibel instability, will allow to test
the current theoretical models and to estimate the shock formation time,
shock magnetization level and finally extract information regarding the
particle acceleration, relevant to Cosmic Rays physics.
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Numerical Cherenkov attenuation
methods
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This chapter is devoted to the presentation of some numerical tech-
niques that we have studied and implemented in the PIC code Smilei to
correctly describe the dynamics of ultra-relativistic particles. The stan-
dard PIC method indeed faces strong limitations when trying to model
plasma flows drifting at relativistic speed in the simulation box. The
advanced techniques discussed in this Chapter help to overcome these

173



Chapter 5. Numerical Cherenkov attenuation methods

limitations. They are therefore of extreme importance for the charac-
terization of the physics relevant to ultra-energetic astrophysical events
such as Gamma-Ray-Bursts and jets from Active Galactic Nuclei, or the
dynamics of particles accelerated in collisionless shocks. Furthermore, a
relativistic approach is necessary for the investigation of UHI laser-matter
interaction. Indeed, with the advent of UHI laser systems, a broad class
of relativistic non-linear phenomena need to be characterized in detail
by means of PIC simulations. For instance, the Laser Wake-Field Ac-
celeration (LWFA) mechanism (Esarey et al., 2009) requires an accurate
description of the high-energy electrons injected in the accelerating field.
Actually, many of the techniques presented in this chapter have been
developed or inspired from simulations of LWFA.

These developments are in part presented in Dérouillat et al. (2017).

This Chapter is structured as follows. We begin with a general pre-
sentation of the numerical effects that lead to unphysical results in sim-
ulations of relativistic streaming plasmas (Sec. 5.1), along with a brief
overview of the numerical methods proposed in the literature to reduce
these numerical artifacts and improve the stability and accuracy of the
simulation. Then in Sec. 5.2, we detail the classical FDTD method (Yee
scheme) and a refined FDTD scheme (4th-order scheme, different from
what is usually proposed in the literature) developed as a part of this
thesis work. Both schemes have been implemented in Smilei. The dis-
crepancy between the dispersion relations for electromagnetic waves on
the numerical grid and the theoretical value in a continuum becomes
extremely important in simulations of UHI laser-created plasma and/or
relativistic flows. The major effects of this numerical issue and of the
improved FDTD scheme are highlighted using simulations of relativistic
streaming plasmas in Sec. 5.2.3.

Complementary filtering techniques, that have been demonstrated in
several numerical studies to enhance the simulation accuracy, are de-
scribed in Sec. 5.3. We have implemented them in Smilei and tested in
PIC simulations (Sec. 5.3.3), in order to find the optimal value of the fil-
ter parameters and FDTD scheme for the simulations of interest for this
work. In Sec. 5.4, we provide a study of the different methods on a system
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composed of two counter-propagating ultra-relativistic electron-positron
beams, as investigated in Chap. 6, to ensure the absence of numerical
artifacts on the Weibel instability development. Finally we present our
conclusions in Sec. 5.5.

5.1 Numerical grid-Cherenkov instability

The Finite-Difference Time-Domain (FDTD) method (Taflove, 2005)
(presented in the next Sec. 5.2) is often employed in PIC codes as a
standard numerical solver for the Maxwell’s equations. In particular, the
classical Yee scheme, with a second order discretization of the numerical
derivative on the computational grid, is appropriate for the description of
a wide range of physical systems, but it is affected by numerical disper-
sion especially for the electromagnetic waves propagating along the main
axes.

In general, in FDTD schemes, the numerical dispersion gives an un-
physical reduction of the electromagnetic wave phase velocity in vacuum,
that is in addition not isotropic, as will be illustrated in Sec. 5.2.2. As a
consequence, in the simulation, ultra-relativistic particles might have a ve-
locity larger than the numerical phase velocity of electromagnetic waves.
This leads to the unphysical emission of Cherenkov-like radiation. This
is a purely numerical artifact, generally known as numerical Cherenkov
instability (NC) (Godfrey, 1974), which arises from the discretization of
the Maxwell’s equations onto the computational grid 1. The numeri-
cal Cherenkov radiation can be emitted in the presence of relativistic
streaming particles in 2D simulations, when the particle velocity is in
the simulation plane, or in the 3D geometry. Note that 1D simulations
are intrinsically Cherenkov-free, as the Cherenkov emission propagates
obliquely with respect to the relativistic particles stream. In particular,
numerical effects are stronger for high-frequency small-wavelength elec-
tromagnetic waves, for which the discretization leads to larger numerical
errors.

In addition to the Cherenkov-like radiation emission, the time and
1Note that in the limit of infinitely small cell size, this instability is completely

suppressed and the numerical dispersion relations tends to the physical one.
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space discretization leads to the development of the so-called finite-grid
instability. Unstable modes arise at the intersection in the (ω-k) space of
the plasma characteristic modes with the electromagnetic waves. These
intersections do not exist in the physical dispersion relation and might
appear due to both aliased longitudinal modes and numerical disper-
sion of the electromagnetic waves. A detailed analysis of the coupling
between electrostatic, both admitted and aliased, modes and electromag-
netic modes, for drifting plasmas, is reported in (Xu et al., 2013; Meyers
et al., 2015).

A strong Cherenkov radiation emission and the appearance of unphys-
ical amplified modes can drastically affect the dynamics of the system and
the physical results of the simulation. Several techniques to inhibit the
growth of this instability (henceforth considered as grid-Cherenkov insta-
bility) have been proposed.

Several methods based on high order algorithms for the FDTD
Maxwell solver have been demonstrated to delay the development of the
instability (Pukhov, 1999; Vay et al., 2011; Cowan et al., 2013; Lehe et al.,
2013) (for a review see (Nuter et al., 2014)). Since the electromagnetic
waves numerical dispersion relation is strictly connected with the numer-
ical stencil used in the FDTD solver, the emission of radiation and the
position in the (ω-k) space of the unstable modes can be modified by
implementing different schemes. These techniques are usually associated
with filtering strategies in order to dump the unphysical emitted radiation
and/or smooth the current density profile at small wavelengths (as de-
scribed in Sec. 5.3). It will be shown that the instability can be efficiently
mitigated, by shifting, with the adequate FDTD solver, the unphysical
radiation in a region of the (ω-k) where the filters can be applied without
impacting the physics. Moreover, the so-called magic timestep has been
identified by Vay et al. (2011); Xu et al. (2013). It corresponds to the op-
timal value of the time resolution that drastically reduces the instability
growth rate for different schemes. In the 2D simulations performed with
Smilei, this magic timestep corresponds to c∆t = 0.5 ∆x. 2

2Note that this value is obtained for the so-called uniform field interpolation, in-
dependently from the type of FDTD solver, see Sec. 5.2. With other interpolation
schemes, a magic timestep still exists but it takes a different value (see Godfrey and
Vay, 2013).
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Figure 5.1: Representation of the staggered Yee-grid. The location of all
fields and current densities follows from the standard convention to define
charge densities at the cell nodes.

Filtering methods and the use of the magic timestep can efficiently
suppress radiation emitted at large wavenumbers. However, Cherenkov
instability with lower growth rate might appear in the small-k region,
where filtering methods risk to alter the physics. Some advanced tech-
niques have been proposed by Godfrey and Vay (2014); Li and other
(2017), inspired by spectral code methods, but will be not discussed here.

5.2 The Finite Difference Time Domain solver

5.2.1 Computational stencil

As already mentioned, Maxwell’s equations are solved in Smilei us-
ing the FDTD approach, as well as refined methods based on this al-
gorithm (Nuter et al., 2014). In these methods, the electromagnetic
fields are discretized onto a staggered grid, the Yee-grid, that allows for
spatial-centering of the discretized curl operators in Maxwell-Faraday and
Maxwell-Ampère equations, Eqs. (2.1.10) and (2.1.11). Figure 5.1 sum-
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marizes at which points of the Yee-grid the electromagnetic fields, as well
as charge and currents density, are defined. Similarly, time-centering of
the time-derivative in Eqs. (2.1.10) and (2.1.11), is ensured by considering
the electric fields as defined at integer time-steps n and magnetic fields at
half-integer time-steps (n+ 1

2). Note that recomputing the magnetic fields
at integer time-step (n) is however necessary for diagnostic purposes, and
most importantly when computing the Lorentz force acting on the macro-
particles. It should also be noted, as briefly discussed in Sec. 2.6.2, that
a leap-frog scheme is used to advance the particles in time, so that their
positions and velocities are defined at integer (n) and half-integer (n− 1

2)
time-steps, respectively.

To advance the electromagnetic fields, Maxwell-Ampère equation,
Eq. (2.1.11), is solved first, giving the advanced electric fields

E(n+1) = E(n) + ∆t
[
(∇×B)(n+ 1

2 ) − J(n+ 1
2 )
]
, (5.2.1)

where ∆t is the time resolution. Then, Maxwell-Faraday equation,
Eq. (2.1.10), is computed, leading to the advanced magnetic fields

B(n+ 3
2 ) = B(n+ 1

2 ) −∆t (∇×E)(n+1) . (5.2.2)

Before discussing the discretization of the curl-operator in more details, it
is worth noting that solving Eqs. (2.1.10) and (2.1.11) is sufficient to get
a complete description of the advanced electromagnetic fields. Indeed,
it can be shown that this conserves a divergence-free magnetic field if
Gauss’ equation, Eq. (2.1.9), is satisfied at time t = 0. Similarly, Poisson’s
equation, Eq. (2.1.8), is verified as long as it is satisfied at time t = 0 and
the charge deposition algorithm fulfills the charge conservation equation

∂tρ+∇ · J = 0 . (5.2.3)

This motivated the use of Esirkepov’s projection scheme mentioned in
Sec 2.6.2, (see Esirkepov, 2001).

We now discuss in more details the discretization of the curl-operators
in Eqs. (5.2.1) and (5.2.2). To do so, let us focus on the equations for
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the electric and magnetic fields Ex and Bx discretized on the staggered
Yee-grid

(Ex)(n+1)
i+ 1

2 ,j,k
− (Ex)(n)

i+ 1
2 ,j,k

∆t = (Jx)
n+ 1

2
i+ 1

2 ,j,k
+ (∂yBz)

(n+ 1
2 )

i+ 1
2 ,j,k
− (∂zBy)

(n+ 1
2 )

i+ 1
2 ,j,k

,

(5.2.4)

(Bx)
(n+ 3

2 )

i,j+ 1
2 ,k+ 1

2
− (Bx)

(n+ 1
2 )

i,j+ 1
2 ,k+ 1

2
∆t = (∂∗zEy)

(n+1)
i,j+ 1

2 ,k+ 1
2
−
(
∂∗yEz

)(n+1)
i,j+ 1

2 ,k+ 1
2
.

(5.2.5)

The partial derivatives in space are discretized as follows. In the Maxwell-
Ampère equation, the partial derivative in x (similarly in y and z) reads

(∂xF )i,j,k =
F
i+ 1

2 ,j,k
− F

i−1
2 ,j,k

∆x , (5.2.6)

where ∆x is the cell extension. Equation (5.2.6) corresponds to the
usual curl-operator discretization of the FDTD method. In the Maxwell-
Faraday equation, the partial derivatives can be modified using an ex-
tended stencil. The spatial derivative in the x-direction (similarly in the
y and z directions) reads

(∂∗xF )i,j,k = αx

F
i+ 1

2 ,j,k
− F

i−1
2 ,j,k

∆x + ηx

F
i+ 3

2 ,j,k
− F

i−3
2 ,j,k

∆x (5.2.7)

+ βxy

Fi+ 1
2 ,j+1,k

− F
i−1

2 ,j+1,k

∆x +
F
i+ 1

2 ,j−1,k
− F

i−1
2 ,j−1,k

∆x


+ βxz

Fi+ 1
2 ,j,k+1

− F
i−1

2 ,j,k+1

∆x +
F
i+ 1

2 ,j,k−1
− F

i−1
2 ,j,k−1

∆x

 ,
the set of parameters αx, ηx, βxy and βxz depends of the type of solver
used. The standard FDTD solver is recovered for αx = 1, ηx = βxy =
βxz = 0. Figure 5.2 shows the computational stencil used to compute the
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Figure 5.2: Computational stencil used to advance the field F solving the
Maxwell-Faraday equation Eq. (5.2.7), considering an x-y plane at fixed
z position identified by the index k. The parameter βxz is not present,
since it appears in the planes with k ± 1.

derivative of the field F , in order to highlight the role of the parameters in
Eq. (5.2.7). Note that the extended stencil is applied only to the Maxwell-
Faraday equation, so that the charge-conserving scheme, related with the
resolution of the Maxwell-Ampère equation, can be easily implemented.
A comparison between different extended stencils, proposed by Pukhov
(1999); Vay et al. (2011); Cowan et al. (2013); Lehe et al. (2013), has
been provided by Nuter et al. (2014).

In some of the proposed numerical schemes the electromagnetic waves
propagate at velocity larger than the light speed. This is done by Lehe
et al. (2013) with a particular setting of the parameters in Eq. (5.2.7) or,
as in (Nuter and Tikhonchuk, 2016), explicitly in the Maxwell-Ampère
equation, keeping the standard Yee scheme. This removes completely
numerical Cherenkov, since the light speed appears anyway as the upper
limit for the particle velocity. It might however cause unphysical effects
in the plasma-wave coupling.

For our purpose we will compare the Yee and Cowan scheme, for
which the parameters in Eq. (5.2.7) are listed in Table 5.2.1 assuming a
2D geometry and an equal resolution along the axes ∆x = ∆y. Moreover,
we implemented and tested an additional scheme, henceforth referred to
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5.2. The Finite Difference Time Domain solver

as 4th-order scheme, with αx 6= 0, ηx 6= 0 (whose values are reported in
Table 5.2.1), βxy = 0 and βxz = 0. The reason of these choices and the
difference with the 4th-order method presented in the literature will be
clarified in the following Sec. 5.2.2.

5.2.2 Numerical dispersion relation

In this section we derive the 2D numerical dispersion relation for a
monochromatic plane wave, propagating in the x-y plane, so that the
wavevector is k = (kx, ky, 0), with fields described as

(A)N
I,J = A0e

i(ωN∆t−kxI∆x−kyJ∆y) , (5.2.8)

where A0 is the field amplitude and ω is the frequency. Solving the dis-
cretized Maxwell’s equations for the propagation of this electromagnetic
wave in vacuum, we obtain

sin2 (ω∆t
2
)

c2∆t2 =
sin2

(
kx∆x

2

)
∆x2

[
αx + 2βxy cos(ky∆y) + ηx(1 + 2 cos(kx∆x))

]
+

sin2
(
ky∆y

2

)
∆y2

[
αy + 2βyx cos(kx∆x) + ηy(1 + 2 cos(ky∆y))

]
.

(5.2.9)

Taking the limit (∆t, ∆x, ∆y) −→ 0, equation (5.2.9) leads to the correct
dispersion relation ω = c|k|. Moreover, developing at first order in ∆t, ∆x
and ∆y, the parameters in Eq. (5.2.9) are found to satisfy α+2β+3η = 1,
in order to avoid unphysical damping of the waves.

From Eq. (5.2.9), we derive ω(kx, ky) as

ω(kx, ky) = 2
∆t sin−1

∆t

√√√√sin2
(
kx∆x

2

)
∆x2 δx +

sin2
(
ky∆y

2

)
∆y2 δy

 , (5.2.10)
where δx and δy correspond to the first and second terms in the square
brackets in Eq. (5.2.9), respectively. Note that equation (5.2.10) corre-
sponds to the numerical dispersion relation of electromagnetic waves in
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Scheme α β η ∆tCFL

Yee 1 0 0 1/
√

2
Cowan 3/4 1/8 0 1

4th order (diagonal) 5−2σ
4 0 2σ−1

12 1/
√

2

4th order (on axes) 5−σ
4 0 σ−1

12

[
2−

√
5/2
]1/2

Table 5.2.1: Parameters to compute the space derivative in Eq. 5.2.7,
considering ∆x = ∆y = ∆, so that we can drop the index as αx = αy = α
for all parameters. In the 4th order scheme σ = ∆t2/∆2.

vacuum.
The parameters for the 4th order scheme, reported in Table 5.2.1, have

been chosen in order to achieve 4th order accuracy in the phase velocity
vφ = ω/|k|. Assuming ∆x = ∆y = ∆ in Eq. (5.2.9), and developing for
ω∆t� 1, kx∆� 1 and ky∆� 1 up to the 4th order, we obtain

ω2

k2
x + k2

y

' 1+ 1
12ω

2∆t2−
(

1
12 + η

)
k4
x + k4

y

k2
x + k2

y

∆2−2β
k2
xk

2
y

k2
x + k2

y

∆2 . (5.2.11)

From Eq. (5.2.11), we can compute the values of α, β and η so that the
terms at 2nd order vanish. To do so with the lowest computational cost,
we assume β = 0, so that α+3η = 1, and the parameters for the 4th-order
scheme are derived for both propagation along the diagonal (kx = ky) and
along the main axes (kx 6= 0 and ky = 0, or vice-versa), see Table 5.2.1.
Note that with the parameters optimized for wave propagation along
the axes, the dispersion relation allows off-axes superluminal numerical
electromagnetic waves propagation (vφ & c).

With the analogous choice of β 6= 0 and η = 0, it would have been
possible to achieve 4th accuracy along the diagonal but not along the main
axes. Considering both β 6= 0 and η 6= 0, other solutions at 4th order
can be found. However, this would increase the computational cost of
each derivative, since it would add 4 points for the computation of each
derivative with respect to the proposed scheme. Moreover, additional
cells (usually called ghost cells) have to be added at the border of the
simulation domain, or of the parallel domain treated by each processor,
in order to ensure that the full macro-particle charge and current densities
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5.2. The Finite Difference Time Domain solver

are correctly projected onto the simulation grid. The number of ghost cells
is defined by the order of the Maxwell’s equations discretization scheme,
and by the shape function of the macro-particles. 3Increasing the number
of ghost cells and the number of computation for each derivative might
cause a significant increase of the simulation time.

As reported in Table 5.2.1, the parameters for the 4th order scheme
depend on the ratio ∆t/∆. Therefore, in each simulation, they will be
defined after the choice of the time and space resolution.

In the literature, the higher order accuracy in the FDTD scheme is
obtained considering only the derivative in the curl of the numerical res-
olution of the Maxwell-Faraday equation, Eq. (5.2.7). Therefore, the
already tested 4th-order scheme (Xie et al., 2002; Wilson et al., 2008) is
achieved with parameters α = 9/8, η = 1/24 and β = 0. This is different
from what we propose here, since we obtain the 4th-order accuracy in
the phase velocity expression and our parameters are optimized for each
choice of ∆t/∆.

As already mentioned in Sec 2.6.2, FDTD solvers are subject to the
Courant-Friedrich-Lewy (CFL) condition. For the standard Yee solver,
the CFL condition has been reported in Eq. (2.6.7). For the other
schemes, it can be derived from Eq. (5.2.9), imposing sin2 (ω∆t

2
)
< 1

for every choice of the wavevector. For the schemes that will be exploited
in the following, the CFL conditions are listed in Table 5.2.1.

In Fig. 5.3, we compare the numerical phase velocity vφ of electro-
magnetic waves propagating in vacuum as a function of the wavevector,
as obtained for the different schemes, using Eq. (5.2.10). We consider
the propagation along the main axes kx (Fig. 5.3a) and along the diag-
onal (Fig. 5.3b) for the Yee scheme (dark red lines), the Cowan scheme
(green lines) and the 4th-order scheme (dark blue lines). The parameters
of the 4th-order scheme have been optimized for propagation along the
main axes or along the diagonal, accordingly. We consider time-resolution
∆t = 0.95∆tCFL (dash-dotted lines) and the magic time-step c∆t = 0.5∆
(plain lines).

For propagation along the main axes, the Cowan scheme is found to
3The standard Yee scheme, for instance, uses 4 ghost cells per dimension (2 on each

side), while the 4th order scheme implemented here requires 6 ghost cells per dimension.
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∆t = 0.95∆tCFL

Figure 5.3: Numerical phase velocity vφ for electromagnetic waves prop-
agating in vacuum, computed from Eq. (5.2.10), for the Yee scheme (dark
red lines), the Cowan scheme (green lines) and the 4th-order scheme (dark
blue lines). With ∆t = 0.95∆tCFL (dash-dotted lines) and ∆t = 0.5∆
(plain lines). a) Propagation along the main axes. b) Propagation along
the diagonal. Note that for the 4th-order scheme we used the correspond-
ing optimal parameters for each case.

have the lowest deviation from the speed of light, close to the CFL. How-
ever, its efficiency is reduced by decreasing the time resolution. Indeed,
using the magic timestep Yee and Cowan schemes give the same results
(green and red lines are overlapped). With resolution equal to the magic
timestep, the 4th-order scheme is the optimal of the investigated schemes.

For propagation along the diagonal, it is well known that the Cowan
scheme is not competitive with the classical Yee scheme. The 4th-order
gives a slight improvement close to the CFL and a significant one at the
magic timestep. Notice that the 4th-order scheme is weakly sensitive to
the variation of time resolution, since the parameters are optimized once
the values of ∆t and ∆ have been set in the simulation.

Despite the deviation of the numerical phase velocity from the theoret-
ical one increases while decreasing the time resolution, as will be shown in
the next Sec. 5.2.3, the grid-Cherenkov instability growth rate decreases
at ∆t = 0.5∆, meaning that the value of the time-step has a stronger
impact than the choice of the FDTD stencil.
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5.2.3 PIC simulations of a streaming thermal plasma

In order to compare the strength of the numerical artifacts that affect
the different computational schemes, a series of 2D3V PIC simulations
has been performed considering a thermal plasma flowing at relativistic
velocity.

We consider an electron-positron beam, with initial temperature
T = 10−4mec

2, moving along the x-direction with γ0 = 10, correspond-
ing to v0 ' 0.995 c, in a periodic box of extension (256× 64) c2/ω2

p, with
ωp the plasma frequency of a single species with density n0. We used 16
particle-per-cell per species and a resolution ∆x = ∆y = (1/8) c/ωp '
2λDe, where the Debye length in normalized units is λDe =

√
T/n0.

We tested different time resolutions equal to ∆t = 0.95 ∆tCFL and
c∆t = (0.4, 0.5, 0.6) ∆x. As shown in Fig. 5.4a) for the Yee scheme
and Fig. 5.4b) for the 4th-order scheme, using c∆t = 0.5 ∆x (plain lines),
the growth of the electromagnetic energy density due to the numerical in-
stability is significantly slowed down, in agreement with Vay et al. (2011);
Xu et al. (2013). Both larger and smaller time resolutions lead to a faster
development of the instability.

In Fig. 5.4c-d) the spectrum of the magnetic field component Bz
is shown for the Yee and 4th-order schemes, respectively, using c∆t =
0.5 ∆x, at t = 130ω−1

p , when the emitted radiation reaches its maximum.
To verify that these modes correspond to the numerical Cherenkov emis-
sion, we highlight (green lines) the modes that are excited by the particle
streaming at v0, i.e. the modes with phase velocity vφ = ω/kx = v0.
These curved are thus obtained by looking at the modes that satisfy
Eq. (5.2.10) with ω = v0kx.

The interaction of the streaming plasma with the numerical
instability-produced radiation, yields to the unphysical heating of the
plasma flows. In the context of astrophysical studies, such as investi-
gated in Chap. 6, the corresponding spread in the distribution function
drastically affects the development of streaming instability and in partic-
ular the formation of collisionless shocks. Despite the amplitude of the
NC radiation is approximately the same for the two FDTD schemes, see
Fig. 5.4, using the 4th-order one the radiation is emitted at larger values
of kx. Therefore, we expect a small-wavelength filter to reduce the insta-
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Figure 5.4: Electromagnetic energy density evolution in time in 2D3V
simulations of streaming pair plasma (γ0 = 10) for : a) the Yee scheme
(red lines) and b) 4th-order scheme (blue lines) with different time reso-
lution ∆t = 0.4 ∆x (dotted lines), ∆t = 0.5 ∆x the magic timestep (plain
lines), ∆t = 0.6 ∆x (dash-dotted lines) and ∆t = 0.95 ∆tCFL (dashed
lines). Spectrum of the magnetic field Bz generated via the NCI at
t = 130ω−1

p in the simulations with timestep ∆t = 0.5 ∆x for: c) the Yee
scheme, d) the 4th-order scheme. Green lines are the modes predicted to
be NC unstable, i.e. satisfying Eq. (5.2.10) with ω = v0kx.
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bility more efficiently in this case than with the Yee scheme, as will be
verified in the following section.

This suggests that the combined use of the 4th-order scheme and fil-
tering techniques, with appropriate parameters, is the optimal choice to
reduce the NC emission and consequently the unphysical heating of the
streaming flow.

5.3 Time and Current Filtering

Filtering techniques have been proposed and demonstrated in many works
to improve the stability of the simulation. In particular, in Smilei PIC
code we make use of a time-filtering on the electric fields, as suggested
by Greenwood et al. (2004), and a spatial-filtering on the current density,
as in (Vay et al., 2011). These filters reduce the radiation at large k and
high frequency, thus they should not alter the physics of interest in the
simulations.

Both filtering methods can be used together or separately and have
allowed to satisfactorily reduce the numerical grid-Cherenkov instability
when dealing with relativistic drift of electron-positron plasmas in the
framework of collisionless shock studies (see Chap. 6).

5.3.1 Implementation in Smilei of the Friedman filter

Specifically we implemented in Smilei the Friedman temporal fil-
ter (Friedman, 1990), that consists in replacing the electric field in the
Maxwell-Faraday solver Eq. (5.2.2) by a time-filtered field

En =
(

1 + θ

2

)
En −

(
1− θ

2

)
En−1 + 1

2 (1− θ)2 θĒn−2 , (5.3.1)

where Ēn−2 = En−2 +θĒn−3 and θ is a tuning parameter that determines
the strength of the filter. Its value can be chosen in the range 0 ≤ θ ≤ 1,
with the unfiltered scheme recovered for θ = 0. Note that the Maxwell-
Ampère equation remains unchanged and the particle pusher uses the
original unfiltered fields.

The dispersion relation computed in Sec. 5.2.2 is modified by the time
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Figure 5.5: Temporal Friedman filter implemented in Smilei. Filter
response for increasing filter strength (from red to blue lines) in the range
θ = [0.025, 0.4], from Eq. (5.3.3): a) amplitude, b) phase.

filtering operation. In particular, Eq. (5.2.9) becomes

sin2 (ω∆t
2
)

c2∆t2 = H(ω)f(kx, ky) , (5.3.2)

where f(kx, ky) corresponds to the left hand side of Eq. (5.2.9). The
function H(ω) describes the response of the time-filtering:

H(ω) = 1− 2θ sin2(ω∆t/2)
eiω∆t − θ

. (5.3.3)

From Eq. (5.3.2), we obtain that the phase velocity of the waves depends
on |H(ω)|, i.e. the amplitude of the filter response, while the phase of
the filter introduces a negative imaginary part in ω(k), which describes
the attenuation of the large-k modes. Therefore, the optimal filter would
have an amplification factor equal to the unity and no phase shift in the
low-k region. These conditions are well satisfied by the Friedman filter,
for which the response is shown in Fig. 5.5 for different values of θ.

Since we have modified the dispersion relation, as reported in
Eq. (5.3.2), the CFL conditions must be consistently recomputed. A
detailed study has been performed by Greenwood et al. (2004). It was
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Figure 5.6: Current density filter implemented in Smilei, corresponding
to N = 1÷6 (from dark red line to dark blue line) successive applications
of the binomial filter of Eq. (5.3.7).

shown that the stability of the system is ensured by ∆tFF
CFL, the CFL-

timestep in the presence of Friedman filter, equal to

∆tFF
CFL =

√
1 + θ

1 + 3θ ∆tCFL , (5.3.4)

with ∆tCFL the CFL condition for the applied stencil. Despite that, the
filter behavior changes drastically at a time resolution below the stability
threshold given by Eq. (5.3.4). Greenwood et al. (2004) introduce the so-
called practical limit, maximum time-resolution to be used, is ∆tFF

CFL =
fprac−lim∆tCFL with

f2
prac−lim =


1+θ
1+3θ for θ . 0.1168 ,
(θ−1)(θ−4−3

√
2−θ)

2(θ+2)2 for 0.1168 . θ . 0.3028 ,
1
2 for 0.3028 . θ . 0.5 .

(5.3.5)

5.3.2 Implementation in Smilei of the current filter

A multi-pass bilinear filter on the current density has also been imple-
mented, following Vay et al. (2011). Each pass consists in a 3-point spatial
averaging of the current in all spatial dimensions. The filtered current

189



Chapter 5. Numerical Cherenkov attenuation methods

density Jfi , defined at location i on a one-dimensional grid, is computed
before solving Maxwell’s equation as

Jfi = 1
2Ji + Ji+1 + Ji−1

4 . (5.3.6)

To characterize the filter effect, we assume the current Ji ∝ eikx and the
filtered current Jfi ∝ g(k)eikx, where g(k) is the filter gain, i.e. the filter
response as a function of the wavenumber. Inserting these definition in
Eq. (5.3.6), we obtain the filter gain

g(k) = 1
2 + 1

2 cos(k∆x) ' 1− 1
4(k∆x)2 +O

(
(k∆x)4) . (5.3.7)

The response for successive applications of the binomial filter [from 1,
dark red line, to 6, dark blue line] is shown in Fig. 5.6b).

Note that sharper cutoff in k might be obtained with a compensation
factor depending on the number of applications, as detailed in (Birdsall
and Langdon, 2004) and tested by Vay et al. (2011). However the use of
the standard multi-pass binomial filter proved sufficient for our study, see
next Sec. 5.3.3.

5.3.3 PIC simulations of a streaming thermal plasma

The same simulations presented in Sec. 5.2.3 have been performed apply-
ing the temporal and current filtering techniques described in the previous
Secs. 5.3.1 and 5.3.2. We present here the results obtained with initial
time resolution c∆t = 0.5 ∆x, i.e. considering the magic time-step.

In Fig. 5.7, we compare the total electromagnetic energy emitted
because of NCI with the use of the Yee scheme (left frame) and the
4th-order scheme (right frame). We apply the Friedman filter with
θ = 0, 0.01, 0.025, 0.05 (from dark to light color plain lines). The dashed
lines correspond to the simulations performed with 2-pass current filter
with θ = 0 (no Friedman filter, dark dashed lines), and θ = 0.025 (light
dashed lines).

With the use of the 4th-order scheme the time filtering is more efficient
and the instability growth is substantially delayed. Already with a weak
filter (θ = 0.05), it is possible to study the evolution of a streaming
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Figure 5.7: Electromagnetic energy density growth due to NCI in 2D3V
simulations of streaming pair plasma (γ0 = 10) for : a) the Yee scheme
and b) 4th-order scheme, with time resolution ∆t = 0.5 ∆x, and time-filter
parameter θ = 0, 0.01, 0.025, 0.05 (from dark to light lines). Dashed lines
correspond to θ = 0 (dark lines) and θ = 0.025 (light lines), with 2-pass
binomial current filter.

plasma with γ0 = 10 up to a couple of 103 ω−1
p , without being affected by

numerical unphysical effects.
The application of the current filter further improves the stability, in

particular considering the 4th-order scheme. As already mentioned, we
expect both filtering techniques to reduce the instability growth of the
4th-order scheme more than of the Yee scheme, since the emission in that
case is confined at larger k, as evidenced in the spectra in Fig. 5.4c-d).

5.4 Test on the Weibel Instability

In this section we test the impact of the different numerical techniques
on a physical system of interest for this thesis, i.e. the development of
the Weibel instability. In particular, we want to verify that the filtering
methods do not modify the Weibel instability growth rate as well as the
saturation time and field amplitude.

We present a series of 2D3V simulations performed with two counter-
propagating relativistic pair plasmas, streaming along the x-direction
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Figure 5.8: Electromagnetic energy density evolution in time in 2D3V
simulations of two counter-streaming relativistic pair plasmas (γ0 = 10)
during the linear and saturation stage of the Weibel instability. Black
dashed lines correspond to the theoretical growth rate. a) Yee scheme
and b) 4th-order scheme, with time resolution ∆t = 0.5 ∆x, and temporal-
filter parameter θ = 0, 0.01, 0.025, 0.05 (from dark to light lines) with no
current filter, θ = 0 (dark red and blue dashed lines) and θ = 0.025 (light
red and blue dashed lines) with 2-passes binomial current filter.

with γ0 = 10 and temperature T = 10−4mec
2. Each species has

density n0 = 0.5 and time is in units of the plasma frequency is
ωp = [4π(2n0)e2/me]1/2. The numerical parameters are the same than
Sec. 5.2.3. We used 16 particles-per-cell per species and a resolution
∆x = ∆y = (1/8) c/ωp, the periodic box has extension (256× 64) c2/ω2

p.
This is the physical configuration investigated in Chap. 6.

Figure 5.8 shows the evolution of the electromagnetic energy. The
Weibel instability develops much faster than the grid-Cherenkov one.
It reaches saturation after ' 40ω−1

p , when the radiation emitted via
Cherenkov instability is expected to be still very weak, as seen in Fig. 5.7
where the maximum of the numerical instability, in the absence of any
filtering, is obtained at t ' 130ω−1

p .
The higher level of electromagnetic energy at t . 20ω−1

p , in the case
without filtering (dark red and blue lines), is due to the presence of nu-
merical Cherenkov, and these electromagnetic fluctuations are reduced
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with the filters application. These small differences appearing at early
time, do not affect the development of the Weibel instability the typi-
cal growth rate (dashed black lines) is recovered with all applied filters.
Moreover, both saturation level and time do not change with the appli-
cation of the filters. Note that the two dashed curves, obtained with the
2-pass current filter and θ = 0 and θ = 0.025, are overlapped.

Analogous tests have been performed with the parameters considered
in Chap. 3, in particular γ0 = 2.3, confirming the accuracy of the filtering
techniques in those simulations.

5.5 Conclusions

The main limitations of the standard PIC method in describing relativis-
tic streaming plasma have been highlighted, along with the techniques
that have been implemented in Smilei to reduce these numerical arti-
facts.

Both the proposed advanced stencil for the numerical resolution of
the Maxwell’s equations and the temporal and spatial filters improve the
simulation stability. Even though more advanced techniques exist and are
still developed, this rather simple approach proves sufficiently accurate
for our studies.

We have discussed the impact of these techniques on two physi-
cal benchmarks: a free streaming thermal plasma and two counter-
propagating flows. We have been able to properly describe the dynamics
of an ultra-relativistic streaming pair plasma with γ0 = 10 up to a couple
of thousand plasma times. Moreover, in simulations initiated with over-
lapped beams, we verified that both numerical Cherenkov instability and
filters do not alter the development of the Weibel instability. Indeed, with
and without filtering, the theoretically expected growth rate is recovered,
the saturation time and field amplitudes are not modified.

These filtering techniques together with the proposed advanced FDTD
scheme have proved to be particularly helpful in mitigating numerical
Cherenkov in the relativistic flows configuration presented in this thesis
(in both Chaps. 3 and 6) and have made possible for Smilei to operate
in the regime of relativistic astrophysics, as will be presented in the next
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Chap. 6 and in (Plotnikov et al., 2017).
In particular these techniques allow to properly describe both a sim-

ulation initialized with relativistic streaming plasma and a configuration
with laser-produced relativistic flows, and follow in both cases the devel-
opment of instabilities and shocks.

Tests considering an external flow aligned magnetic field have shown
a strong growth of the numerical instability. With the parameters of
interest for the simulations presented in Sec. 3.4, we have been able to
efficiently remove the numerical artifacts with the implemented filtering
techniques. However, we are currently working on the implementation of
complementary techniques. In particular, the Godfrey modified interpo-
lation scheme (Godfrey and Vay, 2014) could help to perform flow aligned
magnetic field simulations over long times, which is challenging with the
current version of the code.

In addition, a collaboration between the Smilei development team
and the Lawrence Berkeley National Laboratory has been recently started
to couple Smilei with the open source library PICSAR (Vincenti and
Vay, 2017). This coupling will allow Smilei to use HPC-relevant spectral
methods to solve Maxwell’s equations.
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Collisionless shocks in magnetized
relativistic pair plasmas
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In many astrophysical scenarios that have been considered relevant
sources of high-energy radiation and particle acceleration, such as PWNs,
microquasar jets and GRBs, collisionless shocks are believed to develop
following from the propagation of relativistic pair plasma flows. As dis-
cussed in Chap. 1, only indirect observations are up to now available to
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confirm the existence of shock waves and accelerated particles, and theo-
retical investigations as well as numerical simulations are central to this
field of study. This has in particular motivated several works presenting
first principle simulations of counter-streaming pair plasma flows (Gallant
et al., 1992; Nishikawa et al., 2005; Lemoine et al., 2006; Spitkovsky, 2008;
Sironi and Spitkovsky, 2009; Sironi et al., 2013; Bret et al., 2014; Lemoine
et al., 2016). The main findings of these studies will be summarized in
Sec. 6.1.

In parallel, the development of the laser facilities might lead in a near
future to the production of collisionless shocks in pair plasmas. Up to
now, the main experimental results on the investigation of the Weibel
instability and Weibel-mediated collisionless shocks have been obtained
in electron-ion flows, as summarized in Sec. 1.2.2. However a recent
experiment (Sarri et al., 2015) was able to demonstrate the generation of
neutral and high-density electron-positron plasmas and numerical works
testing the optimal experimental configuration on the future-available
laser facilities have already started (Chen et al., 2015; Lobet et al., 2015;
Zhu et al., 2016).

The experimental and numerical approaches give complementary
insights into the physics of relativistic collisionless shocks, with respect
to the astrophysical observations. In particular, in experimental and
numerical studies, we can directly investigate the amplification and/or
generation of magnetic fields in magnetized or initially unmagnetized
plasmas, so as to extract information related to the production of
accelerated particles.

The study presented in this Chapter aims at numerically identifying
the shock formation time in relativistic pair plasma shocks, both ini-
tially unmagnetized and considering an external field perpendicular to
the plasma flows. This latter configuration is the most interesting when
considering ultra-relativistic shocks due to Lorentz transformations and
field compression at the shock front.

The knowledge of the shock formation time is especially important
for the design of experiments, and also for the planning of large-scale
3D simulations. The definition of the time of shock formation is not
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straightforward. In contrast with previous studies (Bret et al., 2014),
our definition of the formation time follows from the investigation of the
temporal evolution of two complementary quantities: (i) the compression
factor of the downstream region, (ii) the anisotropy of the downstream
plasma phase-space. As shock formation implies both a compression con-
sistent with the Rankine-Hugoniot (RH) conditions and isotropization of
the flows, the shock formation time is here defined as the maximum of
the two measurements.

An extensive paper discussing, but not limited to, the results
presented in this Chapter has been submitted (Plotnikov et al., 2017).

This chapter is structured as follows. After a brief overview of pre-
vious numerical and theoretical works on relativistic pair plasma shocks
(Sec. 6.1), we present in Sec. 6.2 the set-up of the simulations presented in
this chapter. We then consider the unmagnetized case in Sec. 6.3 and the
magnetized one in Sec. 6.4. For both configurations, we first describe the
mechanism behind shock formation (Secs. 6.3.1 and 6.4.1), paying special
attention to the measurements of the jump condition and its comparison
with the RH predictions. We then discuss the measurement of the shock
formation time (Secs. 6.3.2 and 6.4.2). Finally we briefly comment on
the acceleration efficiency (Secs. 6.3.3 and 6.4.3) to benchmark the code
capabilities in treating the late stage of the shock evolution. We present
our conclusions in Sec. 6.5.

6.1 Brief overview of previous works

In this section we summarize recent investigations on pair plasma colli-
sionless shocks, focusing mainly on the early stage of shock formation.
For a detailed review see (Marcowith et al., 2016) and references therein.

For unmagnetized counter-streaming pair plasma flows the Weibel in-
stability has been identified as responsible for shock formation in various
numerical works, e.g. (Nishikawa et al., 2005; Spitkovsky, 2008). Once
the Weibel instability reaches the saturation stage, both species (elec-
trons and positrons) can be drastically slowed down, e.g. via the Alfvén
saturation mechanism discussed in Chap. 3. Particles start accumulating
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in the unstable region producing a density larger than the overlapping
value. Bret et al. (2014) suggest that a simple estimate of the shock
formation time tf might be given by the time required to reach the RH
density jump, assuming that all particles are effectively stopped in the
overlapping region at the instability saturation. Within this picture, at
saturation the density in the overlapping region is simply twice the initial
upstream density and a compression of ' 3 in a 2D geometry and ' 4 in
a 3D geometry (as predicted by the RH conditions for relativistic flows)
should be achieved after twice (three times) the saturation time tsat for a
2D (3D) case. This gives the estimate of the shock formation time pro-
posed by Bret et al. (2014): tf ' NDIMtsat, with NDIM the dimensionality
of the system.

The estimate of the saturation time requires the knowledge of the
initial magnetic field fluctuation amplitude Binit, the magnetic field at
saturation (t = tsat) being

Bsat = BiniteΓtsat =⇒ tsat = 1
2Γ ln

(
B2

sat
B2

init

)
, (6.1.1)

where Γ is the Weibel instability growth rate. Even if the growth rate
is a function of the wavenumber, in the following we will consider its
maximum asymptotic value as derived in Eq. (3.2.3). Generalizing it for
the case of two counter-streaming pair plasma with density n0, velocity
v0 and Lorentz factor γ0 = [1−v2

0/c
2]−1/2, we obtain Γ ' (2v0/c

√
γ0)ωpe,

with ωpe the single species plasma frequency at the upstream density n0.
The analysis of the thermal plasma magnetic field fluctuation amplitude
and spectrum has been carried out by Bret et al. (2013). This study
provides an estimate of the initial fluctuation Binit, leading to a saturation
time

tsat = 1
2

√
γ0

2v0/c
ln
[

4
15

√
6
π
n0

(
c
√
γ0

ωpe

)3 mc2

T0

]
ω−1
pe , (6.1.2)

where we remind that T0 is the temperature defined in the upstream
plasma rest frame. From this relation, the shock formation time can be
computed, as mentioned above, using tf ' NDIMtsat.
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The level of electromagnetic fluctuations depends on the number of
particles in a volume related to the electron skin-depth ∝ (c/ωpe)3 in
Eq. (6.1.2). In PIC codes, this level is much larger than in any real physi-
cal systems because of the reduced number of macro-particles. To account
for this, the following replacement has to be considered in Eq. (6.1.2):

n0

(
c

ωpe

)3
→ Nppc

(
NDIM∏
i

∆x̃i

)−1

,

where Nppc is the number of particle-per-cell and ∆x̃i is the space resolu-
tion along the i-th direction normalized to c/ωpe. Note that this relation
does not account for the effect of the order of the shape function, used
during the interpolation/projection phase of the PIC loop. Neither does it
account for the effect of filtering methods often necessary to run long time
simulations with relativistically drifting plasmas (see Chap. 5). Both high
order interpolation and filtering indeed reduce the initial thermal noise
in PIC simulations, thus increasing the saturation time. Nevertheless,
as this factor appears with a logarithmic dependency, equation (6.1.2)
actually gives a good estimate for the saturation time of the Weibel in-
stability.

Considering the shock formation time tf ' NDIMtsat then gives an
estimate of the minimum required time to build-up the RH predicted
density jump. In fact, as we will highlight by means of PIC simulations
in the following Secs. 6.3.2 and 6.4.2, the typical formation time is
significantly longer than this value.

In the case of magnetized plasmas, the physics behind shock formation
depends critically on the initial magnetization of the upstream region

σ = B2
0

8πn0γ0mc2 , (6.1.3)

where m = me− = me+ is the electron/positron mass, B0 is the external
magnetic field, n0 is the unperturbed upstream plasma density and γ0 is
its Lorentz factor. All quantities are defined here in the downstream rest
frame (here corresponding to the simulation frame, as will be make clear
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in Sec. 6.2).
Several studies have investigated the dependence of the shock forma-

tion mechanism and of the late acceleration stage on the field orientations
considering both pair plasmas (Sironi and Spitkovsky, 2009) and electron-
ion plasmas (Caprioli and Spitkovsky, 2014a). However, a configuration
with the external magnetic field transverse to the plasma flows has ma-
jor interest for ultra-relativistic shocks. Indeed, in the downstream rest
frame, due to the compression of the perpendicular magnetic field com-
ponent at the shock front [as described by the RH conditions, Eq. (2.5.8)]
and to the Lorentz transformation, the magnetic field seen by the up-
stream flow is mostly perpendicular. In the perpendicular pair plasma
shock configuration, as demonstrated by means of PIC simulations (Gal-
lant et al., 1992; Sironi and Spitkovsky, 2009; Sironi et al., 2013), the
Weibel instability is responsible for shock formation for magnetization
σ . 10−3 while at large value (σ & 0.1) the macroscopic magnetic field,
compressed in the overlapping region, is strong enough to make the par-
ticles gyrate and accumulate in the downstream region, thus isotropizing
the flow and forming a shock front by means of the Maser-Synchrotron
Instability (Alsop and Arons, 1988; Hoshino and Arons, 1991). The dif-
ference between the two processes will be illustrated in Sec. 6.4.1, along
with a comparison against the unmagnetized case, discussed in Sec. 6.3.

The Weibel instability in the presence of a perpendicular magnetic
field should be studied in more detail, focusing on the investigation of
both the linear growth and the saturation level. Indeed, as we have
shown in Chap. 3, the generalization of the unmagnetized saturation
mechanisms to the magnetized case is not straightforward. However,
since the Weibel instability is responsible for shock formation only in
the weakly magnetized cases, we expect a marginal modification of
the instability development with respect to the unmagnetized case, for
which growth rate and saturation level are known. Therefore, Novo
et al. (2016) suggests that shock formation in the weakly magnetized
case should be reached at the same time than predicted by Bret et al.
(2014) using Eq. (6.1.2). Regarding the highly magnetized case, Novo
et al. (2016) suggests that the shock is formed after several gyrations of
the particles located at the leading edge of the overlapping region in the
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compressed magnetic field. The particle dynamics seems however more
complicated than suggested by these authors, so that a deeper analysis
is still lacking.

The late phase of pair plasma shocks propagation and particle accel-
eration was also investigated by means of PIC simulations (Spitkovsky,
2008; Sironi and Spitkovsky, 2009; Sironi et al., 2013). As already
discussed in Sec. 1.1.2, the Diffusive Shock Acceleration paradigm,
based on the first order Fermi acceleration mechanism, is believed to
give a dominant contribution to the accelerated particle spectrum in
several astrophysical scenarios. Indeed, a non-thermal component with
power-law (dN

dγ ∝ γ−2.5), in good agreement with the analysis of the
astrophysical observations (dN

dγ ∝ γ
−2.7), has been often observed in PIC

simulations of unmagnetized and weakly magnetized shocks. Fermi-like
acceleration is suppressed for σ & 0.1, as the shock formation is not
accompanied by the generation of turbulent magnetic fields required
to trigger the Fermi acceleration cycle, as will be further discussed in
Sec. 6.4.3.

In this Chapter, we will consider the same configuration than investi-
gated in these previous studies (Spitkovsky, 2008; Sironi and Spitkovsky,
2009; Sironi et al., 2013). We will however focus our attention on the early
phase of shock formation, as well as on the fulfillment of the Rankine-
Hugoniot conditions once the shock is formed. The shock formation time
as well as the downstream density, temperature and shock velocity are
indeed important observable when considering the production of collision-
less shocks in laboratory experiments.

6.2 Simulation set-up

The series of 2D3V PIC simulations presented in this Chapter aims at
investigating collisionless shocks driven by two counter-streaming rela-
tivistic electron-positron plasma flows.1 The simulation method consists

1One of these simulations, for unmagnetized flows was also presented as a physics
highlight in (Dérouillat et al., 2017), presenting the PIC code Smilei.
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Figure 6.1: Sketch of the simulation set-up. The upstream pair plasma
drifts in the positive x-direction. An external homogeneous magnetic field
B0 is initialized in the out-of-plane direction. An electric field E0 is as
well initialized, in the simulation box in the direction perpendicular to
the flow. The produced shock propagates from the right to the left side
of simulation box.

in initializing a single plasma drifting in the positive x-direction. A re-
flecting boundary condition is applied at the right border of the simulation
box for both fields and particles, hence creating a counter-penetrating re-
flected flow. The reflected beam mimics a flow with velocity −v0 x̂. This
allows to greatly reduce the computational cost of the simulation.

The simulation set-up is schematically presented in Figure 6.1. The
interaction between the incoming and wall-reflected flow eventually pro-
duces a collisionless shock that propagates in the negative x-direction.
In this way, the shocked (downstream) plasma has no average velocity,
as it corresponds to the center-of-mass frame of the system composed of
the incoming and wall-reflected flow. Therefore, the simulations are per-
formed in the downstream rest frame, allowing for the direct use of the
Rankine-Hugoniot conditions, derived in Sec. 2.5.2.

We consider a plasma flow with velocity v0 ' 0.995 c, corresponding
to γ0 = 10, and rest-frame temperature T0 = 10−4mc2. A first set of
simulations run up to 500ω−1

pe , with ωpe the plasma frequency of a single
species with density n0. We consider a box extension Lx = 1216 c/ωpe
(from −Lx/2 to +Lx/2) and Ly = 128 c/ωpe (from −Ly/2 to +Ly/2).
The plasma fills the entire box. The reflecting right boundary of the
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simulation is located at the right edge xwall = Lx/2 = 608 c/ωpe. The
spatial resolution is set to ∆x = ∆y = (1/4) c/ωpe and the timestep
to c∆t = 0.5 ∆x. All relativistic scales are properly resolved since ωpe >
ωrel
pe = ωpe/

√
γ0, and the transverse box size was chosen in order to observe

several relativistic skin depth c/ωrel
pe . We use 25 particles-per-cell per

species, leading to a total of ' 108 particles. We present simulations
performed with unmagnetized flows and with magnetization in the range
σ = [10−5, 10].

A second set of simulations has been performed, for a reduced num-
ber of cases, up to a longer time t = 2 × 103 ω−1

pe , in order to study
particle acceleration and its dependence on the magnetization. We have
performed three simulations with σ = [0, 10−4, 0.1]. In these cases, we
consider a simulation box of (2048 c/ωpe × 64 c/ωpe), we increase the res-
olution ∆x = ∆y = (1/16) c/ωpe and we use 16 particles-per-cell per
species for a total of ' 109 particles. With these parameters the number
of particles in a region of extension c/ωpe is larger than in the first set of
simulations, so that these longer simulations better resolve the dynamics
of the accelerated particles.

For the magnetized simulations, the external uniform magnetic field
B0 is imposed in the out-of-plane z-direction. As demonstrated by Sironi
et al. (2013), this configuration allows to describe the 3D particle dy-
namics in a 2D3V PIC simulation, in particular the scattering and ac-
celeration process. The analogous configuration with B0 = B0 ŷ, would
not properly resolve the motion of the particles across different magnetic
field lines, thus underestimating the accelerating efficiency in the weakly
magnetized case. To provide an initial equilibrium condition, an electric
field E0 = −(v0/c)×B0 is imposed at t = 0 in the whole box.

In order to avoid spurious effects (e.g. upstream heating) due to the
grid-Cherenkov numerical instability, the temporal Friedman filter (with
θ = 0.1) and the binomial current filter (using 3 passes), described in
Sec. 5.3, have been applied. A discussion on the effects of the filtering on
the shock structure is reported in Appendix 6.A.
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6.3 Unmagnetized shock

We present here the results of the unmagnetized simulations. We de-
scribe first the mechanism driving shock formation (Sec. 6.3.1), then we
discuss the shock formation time (Sec. 6.3.2) and we conclude showing
the production of accelerated particles (Sec. 6.3.3). This will be our refer-
ence case in order to understand the effect of the external perpendicular
magnetic field. It also allows to introduce the definition of all important
quantities.

6.3.1 Shock structure

Figure 6.2 presents the characteristic magnetic field Bz (panel a) and elec-
tron density (panel b) structures of a fully formed Weibel-mediated shock,
at t = 500ω−1

pe , as well as the evolution in time of the density profile 〈ne〉y
averaged along the y-direction (panel c), between t = 50ω−1

pe (yellow line)
and t = 500ω−1

pe (black line). At early time (yellow line), the overlapping
region of the incoming and the reflected flows has density ne ' 2n0. This
region becomes Weibel-unstable which results in the creation of magnetic
field structures that eventually become strong enough to stop the incom-
ing flow and lead to an increase of the downstream density (from orange
to dark lines). The density jump reaches nsim

d ' 3.18n0, measured in
the downstream at t = 500ω−1

pe , averaging over a region starting from
xwall − 108 c/ωpe to xwall − 8 c/ωpe. The filamentary structures in both
the magnetic field (panel a) and the electron density (panel b), character-
istic of the development of the Weibel instability, are still present at late
time (t = 500ω−1

pe ) in the region before the shock front, that is located
at x ' 400 c/ωpe (black line in panel c). Note that closer to the shock
front the filaments become turbulent. Their size and field amplitude in-
crease, while in the downstream their amplitude decays due to the flow
isotropization. In the simulation, the shock propagates toward the left
with a velocity vsim

sh ' 0.46 c. The RH conditions predict a shock velocity
vsh = c (Γad − 1)(γ0 − 1)/(γ0v0) ' 0.45 c [Eq. (2.5.14)] with adiabatic
index Γad = 3/2 appropriate for a 2D isotropization at relativistic tem-
perature, in good agreement with the value observed in the simulation.
The density jump measured in the simulation (nsim

d /n0 ' 3.18) is also in
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Figure 6.2: Shock structure for initially unmagnetized flows (σ = 0)
at t = 500ω−1

pe . a) Weibel-generated magnetic field Bz. b) Elec-
tron density. c) Electron density averaged along the y-direction at
t = [50, 100, 200, 300, 400, 500]ω−1

pe , light to dark lines.

good agreement with the RH conditions, Eq. (2.5.15), that would predict
nd/n0 = 1 + (γ0 + 1)/[γ0(Γad − 1)] = 3.2.

6.3.2 Shock formation time

As shock formation involves both a compression consistent with Rankine-
Hugoniot conditions and isotropization of the flow, we define the shock
formation time as the maximum of two measurements

tsimf = max{tsimdens, t
sim
iso } , (6.3.1)

where tdens is the compression time for which the density jump in the
downstream has reached a value consistent with the RH conditions,
and tiso is the isotropization time. To compute tiso, we introduce the
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isotropization parameter

aiso = 〈vxpx〉
〈vypy〉

− 1 , (6.3.2)

where 〈vipj〉 corresponds to the pressure tensor component averaged over
a given spatial region in the downstream, Eq. (2.2.16), accounting for
both the average flow contribution and the thermal spread. In the simu-
lation, we consider that isotropization is achieved if, for all time t > tsimiso ,
|aiso(t)| < 0.04.

The measure of tsimdens is given by the time for which the density
jump in the downstream has reached the 95% of the value measured
in the downstream at the end of the simulation. We average on the
measurements obtained considering the downstream layers of extension
[20, 15, 10, 5] c/ωpe located 8 c/ωpe to the left of the right boundary
of the simulation box. For the unmagnetized simulation, we obtained
tsimdens = (146± 5)ω−1

pe .

In order to measure tsimiso , we study the time evolution of the px-py elec-
tron phase-space, presented in Fig. 6.3 for t = [20, 30, 90, 500]ω−1

pe (from
the left to the right) for the electrons located close to the right boundary
of the simulation box, in the region 580 c/ωpe < x < 600 c/ωpe. The initial
stage for which two counter-streaming beams with px ' ±10mc are still
distinguishable, is shown for t = 20ω−1

pe . At t = 30ω−1
pe , the upstream flow

is still centered around px ' 10mc but starts spreading in the y-direction,
i.e. acquiring a momentum py 6= 0 due to the development of the Weibel
instability. The reflected beam is centered around px ' −10mc and
it has a larger spread in both px and py, having traveled through the
unstable region for a longer time. At this stage the isotropization param-
eter defined by Eq. (6.3.2) is still large aiso ' 5.5 and we are far from
shock formation. A high level of isotropization aiso ' 0.09, is reached at
t ' 90ω−1

pe , as shown in Fig. 6.3 c), with the electron downstream dis-
tribution function almost centered around zero. Indeed, looking at the
evolution of aiso(t), we obtain tsimiso ' 100ω−1

pe .
Following the definition in Eq. (6.3.1), the shock formation time is

tsimf ' 145ω−1
pe .
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Figure 6.3: Isotropization process in unmagnetized counter-streaming
pair plasma flows: px-py phase-space of the downstream electron in the
region 580 c/ωpe < x < 600 c/ωpe for t = [20, 30, 90, 500]ω−1

pe (from left
to right).

At later times, the isotropization parameter aiso keeps decreasing. At
the end of the simulation t = 500ω−1

pe , corresponding to Fig. 6.3 d), we
measure aiso = 0.014 and the temperature is T sim ' 4.53mc2. This
value is in excellent agreement with the prediction of the RH conditions,
T = 1

2(γ0 − 1)mc2 ' 4.5mc2, and we conclude that thermalization is
achieved at t = 500ω−1

pe . Note that analogous results are obtained for the
positron population (not shown).

The shock formation time predicted by Eq. (6.1.2), making use of the
relation to apply it for these 2D simulation parameters, is tf = 2 tsat '
30ω−1

pe . This substantial underestimates the value extracted from the
simulation. Indeed in the model proposed by Bret et al. (2014), all parti-
cles are considered to be trapped in the overlapping region at the time in
which the instability saturates, so that at ' 2 tsat the RH density jump is
predicted to be achieved in a 2D simulation. As discussed in Sec. 3.2.2,
in order to efficiently slow down the particles contributing to the instabil-
ity, the Alfvén saturation mechanism has to take place. This mechanism
has been demonstrated to be the dominant one for wavenumbers k < k∗,
Eq. (3.2.22) and Fig. 3.5, which, for the flow velocity investigated in this
section, corresponds to k∗ ' 0.44ωpe/c.
In order to measure the wavenumber at saturation ksim

sat , we performed an
additional 2D simulation with two counter-streaming pair plasma flows,
already overlapped at t = 0, with otherwise identical parameters. The
instability reaches saturation at tsimsat ' 20ω−1

pe , with dominant wavenum-
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ber ksim
sat ' 0.8ωpe/c. The flow velocity along the x-direction at tsat is

still large, meaning that saturation is achieved via the trapping mech-
anism described in Sec. 3.2.2. Therefore to efficiently stop the flow in
the overlapping region, an additional amount of time is required to al-
low for merging events, that decrease the wavenumber down to k . k∗.2

Note that the saturation time observed in the simulation (tsimsat ' 20ω−1
pe )

is however in fairly good agreement with the prediction of Eq. (6.1.2),
tsat ' 15ω−1

pe . Yet, with our method to extract the shock formation time,
an interval longer than 2 tsat is required to build-up a proper downstream
region.

6.3.3 Particle acceleration

Finally, a longer simulation, up to t = 2 × 103 ω−1
pe , has been performed

to observe the production of a supra-thermal tail in the downstream par-
ticle energy distribution, as shown in Fig. 6.4. Around t = 500ω−1

pe ,
the downstream distribution function has relaxed to an isotropic thermal
distribution, that closely follows the 2D Maxwell-Jüttner distribution,
Eq. (2.2.8), with temperature predicted by the RH condition (dashed
black line). This stage corresponds also to Fig. 6.3d). At later times, a
supra-thermal tail, characteristic of first order Fermi acceleration at the
shock front, appears in the energy spectrum, Fig. 6.4. The non-thermal
component, in the far downstream region, is found to follows a power-law
steeper than observed in previous works dN

dγ ∝ γ−2.5 (Spitkovsky, 2008),
corresponding to the guide-line reported in the figure (dash-dotted black
line). However, the spectrum (dashed green line) at the latest timestep
(t = 2× 103 ω−1

pe ) closer to the shock front (500 c/ωpe < x < 600 c/ωpe) is
in good agreement with the expected power-law. This means that parti-
cles are still being accelerated at the shock front, so that additional time
is required to observe the good power-law dependence in the far down-
stream. Indeed, in the previous numerical work (Spitkovsky, 2008) the
simulations run for much longer time (up to 104 ω−1

pe ) and the slope has

2Note also that the phase space reported in Fig. 3.7a) reveals that a small amount
of particles keep a forward velocity (up to ' 2 v0) even if saturation follows the Alfvén
mechanism. An estimate of the time to reach the RH density jump should also account
for these particles that can escape from the overlapping region.
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Figure 6.4: Electron energy distribution in the downstream region
(800 c/ωpe < x < 900 c/ωpe) for different times t > 450ω−1

pe . The
shock is already formed and the thermal part of the energy distribu-
tion closely follows the (2-dimensional) thermal Maxwell-Jüttner distri-
bution (Eq. (2.2.8)) with temperature T = 4.5mc2 expected from RH
conditions (dashed black line). The non-thermal component in the elec-
tron energy distribution at t = 2 × 103 ωpe closer to the shock front
500 c/ωpe < x < 600 c/ωpe (green dashed line) is in good agreement the
power law γ−2.5 (dot-dashed guide line).

been observed to flatten with time, up to the achievement of the scaling
∝ γ−2.5.

6.4 Magnetized perpendicular shock

We now present a series of 2D simulations performed considering an ex-
ternal magnetic field perpendicular to the plasma flows and to the shock
propagation direction. We aim at identifying the shock formation time,
and its dependence on the magnetization.

To do so, we first describe the mechanisms leading to shock formation
for different magnetizations in Sec. 6.4.1, and we compare the theoreti-
cally predicted jump conditions with the PIC simulation results. This will
reveal kinetic effects that the hydrodynamic formulation, used to derive
the RH conditions, does not take into account, such as the emission of
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Figure 6.5: Shock structure for initially weakly magnetized flows
(σ = 10−4) at t = 500ω−1

pe . a) Weibel generated magnetic field Bz.
b) Electron density. c) Electron density averaged along the y-direction at
t = [50, 100, 200, 300, 400, 500]ω−1

pe , from light to dark lines.

electromagnetic waves in the strongly magnetized case. Section 6.4.2 dis-
cusses the shock formation time, following the same procedure than used
for the unmagnetized simulation of the previous Sec. 6.3.2. Following the
evolution of the shocks up to late times, we investigate the efficiency of the
acceleration mechanism varying the initial magnetization in Sec. 6.4.3.

6.4.1 Formation mechanisms and jump conditions

The mechanism behind shock formation is different in the unmagnetized
and strongly magnetized cases.

The Weibel instability has been confirmed to be responsible for the
strong magnetic fields observed in the early phase of shock formation,
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in the absence of external magnetic field, in Sec. 6.3 and in many
previous numerical studies (Nishikawa et al., 2005; Spitkovsky, 2008).
This mechanism is found to be efficient for magnetization lower than
σ = 10−3, for ultra-relativistic pair plasma flows. Indeed, the structures
of the magnetic field and density, shown in Fig. 6.5 for the case of
σ = 10−4, are similar to those observed in the unmagnetized case
reported in Fig. 6.2. In particular, in this weakly magnetized case, the
average density compression Fig. 6.5c) follows the same evolution than
in the unmagnetized case, Fig. 6.2c). Weibel-generated filaments in the
magnetic field Bz and in the electron density are clear in Fig. 6.5a-b).
The region where these filamentary structures are observed, usually
referred to as the precursor of the shock front, is shorter than in the
unmagnetized case. This is because the external magnetic field bends the
particle trajectories in the precursor, thus reducing their penetration in
the upstream region, ahead of the shock front. This bending also leads to
Weibel-generated magnetic filaments with a stronger oblique component
than in the unmagnetized case. The extension of the precursor and the
intensity of the magnetic field in that region have important implications
on the Fermi-like acceleration mechanism, that requires a particle
to repeatedly cross the shock front thanks to its diffusive motion in
the magnetic field turbulence. A detailed discussion on the precursor
extension is reported in (Plotnikov et al., 2017).

At large magnetization (σ & 0.1), as soon as a particle gets reflected
at the right boundary of the simulation box, it starts gyrating around
the external and compressed magnetic field. The dissipation, intrinsic
to shock formation, follows from the emission of large-amplitude electro-
magnetic waves by means of the Maser-Synchrotron Instability (Sprangle
et al., 1977; Hoshino and Arons, 1991). These waves are emitted from
the leading edge of the cyclotron ring at the shock front, due to the
coherent bunching of the particles during their Larmor gyration. The
magnetic field and electron density structures are shown in Fig. 6.6a-b).
The radiation emitted at the shock front corresponds to electromagnetic
extraordinary modes (i.e. k ⊥ B0 and E ⊥ B0) and produces the mod-
ulations observed in the magnetic field ahead of the shock front. These
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Figure 6.6: Shock structure for initially highly magnetized flow (σ = 0.1)
at t = 500ω−1

pe . a) Weibel generated magnetic field Bz. b) Elec-
tron density. c) Electron density averaged along the y-direction at
t = [50, 100, 200, 300, 400, 500]ω−1

pe , from light to dark lines.

modes have a plane wave-like structure far from the shock front (corre-
sponding to the waves emitted at early times) while, closer to the shock
front, their structure is less regular. This is the result of the filamenta-
tion of the electron density ahead of the shock front and of the corruga-
tion of the shock front itself. The filamentary structures observed in the
electron density corresponds to the reaction of the incoming background
plasma to the electromagnetic large-amplitude waves emitted from the
shock front. This filamentation does not indicate the Weibel instability

3Note that the magnetic field that is theoretically predicted to suppress Weibel
purely transverse modes, derived by Novo et al. (2016), corresponds to a magnetization
σ ' 200, much larger than the transition value (σ ' 10−2) above which the shock is
driven by the compression of the external field.
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Figure 6.7: a) Density compression ratio nd/n0, b) shock front velocity
vsh as a function of the upstream flow magnetization σ. Theoretical pre-
dictions from Eqs. (2.5.14) and (2.5.15) (black lines) and values measured
in PIC simulations at t = 500ω−1

pe (red dots).

development. Indeed, the external magnetic field B0 is strong enough to
suppress the precursor beam. Almost no particle of the reflected beam
are found ahead of the shock front, hence avoiding the amplification of
Weibel modes3. The precursor, in the highly magnetized case, has a
purely electromagnetic nature.

The evolution in time of the average density 〈ne〉y, shown in
Fig. 6.6c), is different from the unmagnetized and weakly magnetized
cases. Indeed, the shock front is sharper than in the Weibel-mediated
shocks and it is characterized by an overshoot region, where a density
hump is formed, followed by a flat density profile that well satisfies the
RH conditions, as will be now discussed into more details.

We now compare the RH predictions for the density jump nd/n0
Eq. (2.5.15) (black line in Fig. 6.7 a), and shock propagation velocity
vsh (black line in Fig. 6.7 b) with the results of PIC simulations (red
dots). In the simulations, the downstream density nd has been measured
at t = 500ω−1

pe , considering the average along the x-direction in the re-
gion 500 c/ωp < x < 600 c/ωp and along the whole y-axes. For σ . 10−3,
the compression ratio keeps its unmagnetized limit nd/n0 ' 3.2 and the
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simulations results are in very good agreement with the ideal RH pre-
dictions. A gradual deviation occurs for intermediate magnetizations
(10−3 < σ < 5 × 10−2), for which the measured compression ratio is
approximately 3% lower than theoretically expected.

The slightly larger value at σ = 0.1 is related with the strong x-modes
emission at the shock front, that reduces the energy transferred to the
downstream plasma. This is not accounted for in the fluid picture of
the RH conditions and it has been demonstrated to increase the density
compression and slow down the shock front in comparison with the RH
predictions, (see Gallant et al., 1992). However, in the 1D configuration
investigated by Gallant et al. (1992), the wave emission is much stronger,
and consequently the deviation from the RH density jump is more im-
portant, than in the 2D case tested here, where two-dimensional effects
reduces the coherence of the cyclotron loop responsible for the waves emis-
sion. While the wave emission can affect the density jump, the upstream
filamentation seems to have no significant influence on the shock front, at
least up to t = 500ω−1

pe . A good agreement with the ideal RH prediction
is recovered for large magnetization (σ > 0.1).

Similarly, the shock velocity has been measured in the simulations fol-
lowing the position of the shock front xsh, defined by ne(xsh) = 2.8n0.4

These measurements are in good agreement with the theoretical predic-
tions, as shown in Fig. 6.7b). The shock propagates slightly faster than
theoretically expected, in the intermediate regime (10−3 < σ < 5× 10−2)
for which the density is found to be lower than predicted by the RH
conditions.

6.4.2 Shock formation time

In order to quantify the shock formation time, we first discuss the evo-
lution of the px-py phase-space, then measure the shock formation time
with the same method discussed in Sec. 6.3.2 for the unmagnetized case.

In Fig. 6.8, we report the downstream px-py electron phase-space for
σ = 10−4, 5 × 10−3, 1, at t = [20, 30, 90, 500]ω−1

pe . We remind that the
4Note that this density value is reached at the shock front even in the highly mag-

netized cases, for which the RH predicted density jump is smaller than 2.8n0, thanks
to the density overshoot observed in Fig. 6.6.
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external magnetic field is in the z-direction, transverse to the plasma flow
that is along the x-axes. The case with σ = 10−4 (σ = 1) is representa-
tive of all other weak (strong) magnetizations investigated in this work,
while in the simulation with σ = 5 × 10−3 we can identify a mixed be-
havior characteristic of the transition between the two shock formation
mechanisms.

For σ = 10−4 and σ = 5 × 10−3 (left and middle columns), two
counter streaming cold beams are present at t = 20ω−1

pe . A slight shift
in the py direction seen for the case σ = 5 × 10−3 is the result of the
beam rotation in the external field B0, while both beams are centered
in py ' 0 for σ = 10−4. This configuration quickly becomes Weibel
unstable, and at t = 30ω−1

pe the phase-space distribution of the two beams
appear to be strongly modified, and in particular broader. However,
two distinct beams can still be identified and the anisotropy parameter
remains large, as reported in the figure. At t = 90ω−1

pe , the distribution
is almost fully isotropized, and the anisotropy parameter has strongly
decreased down to aiso ' 0.036 and aiso ' 0.13 for σ = 10−4 and σ =
5×10−3, respectively. At much larger times, t = 500ω−1

pe , the px-py phase
space assumes a Maxwell-Jüttner like distribution and thermalization has
been achieved. The temperature measured at the end of the simulation
(t = 500ω−1

pe ) is T sim ' 4.58mc2 for the weakly magnetized case, in
good agreement with the RH prediction T ' 4.50mc2. For σ = 5 ×
10−3 the final temperature is T sim ' 4.78mc2. This is slightly higher
than expected from the RH conditions (T ' 4.48mc2) and confirms the
departure from the RH conditions observed earlier as a deviation in the
density compression observed at intermediate magnetization.

The evolution is different in the highly magnetized case (σ = 1). At
t = 20ω−1

pe , the particles start gyrating in the compressed magnetic field
and create a cold ring-shaped structure in the px-py phase-space, which
quickly turns unstable with respect to the Maser-Synchrotron Instabil-
ity (Hoshino and Arons, 1991). This instability quickly heats up the flows
and a much broader ring-like structure is observed at t = 30ω−1

pe . Yet,
the anisotropy parameter for these two early times remains larger than
the threshold value considered for shock formation (|aiso| < 0.04). The
distribution function keeps evolving up to isotropization (tsimiso ' 65ω−1

pe ),
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achieved before the time corresponding to the third frame (t = 90ω−1
pe )

for which |aiso| ' 0.01. This value keeps decreasing at later times.
Notice that the distribution function maintains a ring-like structure,
i.e. the region around px ' py ' 0 in the phase-space is somewhat
depleted of particles and a complete relaxation toward a Maxwellian in
not observed in the simulation. This means that, even if isotropization
is quickly achieved, thermalization requires a longer times than in the
unmagnetized and weakly magnetized cases. However, the temperature
measured at the end of the simulation is T sim ' 4.0mc2, just slightly
larger than the one predicted by the RH conditions T ' 3.7mc2.

We now discuss the shock formation time extracted from our PIC
simulations. In Fig. 6.9, we report the measurements of tsimdens, the time to
achieve 95% of the late time density jump, and tsimiso , the time after which
|aiso| < 0.04, for all magnetizations. The gray area highlights the shock
formation time as tsimf = max{tsimdens, t

sim
iso }.

For weakly magnetized counter-propagating flows, the results are in
good agreement with the unmagnetized case. In particular, for σ < 10−3,
the shock formation time is determined by the time required for the den-
sity to accumulate in the downstream, since tdens > tiso, while isotropiza-
tion is achieved at earlier times (tsimiso . 100ω−1

pe ). Note that the observed
tsimdens is systematically larger than the value predicted by Eq. (6.1.2), cor-
responding to the dashed line in Fig. 6.9, for the reasons explained in
Sec. 6.3. However, its constant behavior is well reproduced.

In the strongly magnetized cases, on the contrary, the downstream
density accumulation predicted by the RH conditions is reached very
quickly tsimdens ' (30 ÷ 50)ω−1

pe , due to the particles gyration in the com-
pressed magnetic field and to the lower value of the density jump, see
Fig. 6.7. However isotropization requires longer times. Notice that the
scaling of the shock formation time with the magnetization, for σ > 10−2,
is weaker than σ−2/3, as would be expected considering the Maser-
Synchrotron Instability growth rate (Sprangle et al., 1977). It is also
weaker than σ−1/2, as expected considering the gyration time of the par-
ticles in the external field, i.e. the inverse of the cyclotron frequency
ωc = eB0/mγ0c. This highlights an open question that deserves further
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Figure 6.9: Shock formation time tf as a function of the magnetization σ.
Values measured in the PIC simulations (red dots), considering the ac-
cumulation of the density up to 95% of the RH prediction, Eq. (2.5.15),
averaging on the values measured for different extensions of the down-
stream region, equal to [20, 15, 10, 5 ] c/ωpe located 8 c/ωpe to the left of
the right boundary of the simulation box. The dashed black line corre-
sponds to the theoretical expectation from Eq. (6.1.2), (Bret et al., 2014;
Novo et al., 2016).

investigations.
In conclusion in the weakly magnetized regime, the shock formation

is determined by the measurements on the RH density jump, while in
the case of highly magnetized flows, the strong external magnetic field
accounts for a fast accumulation of particles in the downstream, and
isotropization is achieved only at later times, determining the time of
shock formation.

6.4.3 Particle acceleration

We now discuss the efficiency of particle acceleration in perpendicular
shocks. The isotropization process, intrinsic to shock formation, leads to
a thermal spectrum with temperature close to the one predicted by the
RH conditions. At late times, as already observed in the unmagnetized
case Sec. 6.3.3, if Fermi-like acceleration takes place, a high-energy non-
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thermal component appears in the spectrum, with the typical power-law
dN/dγ ∝ γ−2.5. The acceleration efficiency of the shocks as a function
of the magnetization can be measured by the extent of the non-thermal
tail and its high-energy cut-off. This topic has been widely investigated
in the literature and the results presented here are in good agreement
with Sironi et al. (2013). A more detailed study on the kinetic aspects of
particle transport and acceleration will be presented in (Plotnikov et al.,
2017).

We present now the downstream electron energy spectra, well behind
the shock front, considering the downstream region 800 c/ωpe < x <

900 c/ωpe. These results are extracted from the additional simulations,
described in Sec. 6.2, that run up to 2×103 ω−1

pe . In Fig. 6.10 the evolution
in time of the electron spectrum is shown for σ = 10−4, representative
of the weakly magnetized case, and σ = 0.1, representative of the highly
magnetized one.

In the weakly magnetized case, at the earliest time shown, the distri-
bution function is well fitted by a 2D Maxwell-Jüttner distribution, de-
fined in Eq. (2.2.6), with a temperature in good agreement with the value
expected from the RH jump conditions (black dashed line), as already
found in the shorter-time simulation presented in Sec. 6.4.2. At later
times, a non-thermal power-law component develops. The dot-dashed
guide-line follows the dN/dγ ∝ γ−2.5 scaling, that closely reproduce the
accelerated particle spectrum. The maximum energy of the accelerated
particles extends with time. At the end of the simulation, it reaches
γsim

end ' 150, for a total energy transmitted to the accelerated particles
equal to the 2% of the total energy in the downstream. It has been al-
ready demonstrated by Sironi et al. (2013) that the maximum energy
increases with time as γmax ∝

√
t, due to the magnetic field scattering in-

volved in the acceleration process. The saturation of this maximum level
weakly depends on the magnetization, as γmax ∝ σ−1/4÷σ−1/2, (see Sironi
et al., 2013; Plotnikov et al., 2017). Longer simulation times would be
necessary to allow a more precise investigation of the saturation process
in the weakly magnetized case.

At high magnetization (σ = 0.1), in Fig. 6.10, the width of the ther-
mal part of the distribution function narrows with respect to the weakly
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Figure 6.10: Evolution in time (t > 450ω−1
pe ) of the electron energy

distribution in the downstream region (800 c/ωpe < x < 900 c/ωpe) for
σ = 10−4 (left frame) and σ = 0.1 (right frame). The shock is already
formed for both magnetizations. The 2D thermal Maxwell-Jüttner dis-
tributions [Eq. (2.2.8)] with temperature T ' 4.50mc2 and T ' 4.27mc2

expected from RH conditions for σ = 10−4 and σ = 0.1, respectively,
are reported (black dashed lines). A supra-thermal tail appears at later
times, in the weakly magnetized case, the dot-dashed guide line goes as
the power law γ−2.5.

magnetized case, as predicted by the RH conditions, Eq. (2.5.17). No
supra-thermal component is observed. This follows from the mechanism
behind shock formation, i.e. particles gyration in the compressed mag-
netic field and x-modes emission, which does not allow for the production
of the magnetic field turbulence required for the Fermi acceleration mech-
anism.

In conclusion, we confirm that relativistic pair plasma shocks are good
accelerators only below the magnetization threshold σ ' 10−3, while some
open questions have been identified and more detailed ongoing studies on
particle acceleration will be presented in (Plotnikov et al., 2017).
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6.5 Conclusions

In this Chapter we focused on the early phase of shock formation in rela-
tivistic pair plasma. A proper measurements of the shock formation time
is important for the planning of future experiments and large-scale simu-
lations. Both initially unmagnetized flows and the case with an external
magnetic field perpendicular to the flows have been investigated. A sys-
tematic survey of the Rankine-Hugoniot conditions has been performed
for magnetization σ ≤ 10. This work is included in the more extensive
study presented in (Plotnikov et al., 2017).

We have identified a new operating definition for the shock formation
time, that requires both compression and isotropization of the flows as
predicted by the RH conditions. With this method the shock formation
time is found to be longer than previously stated by Bret et al. (2014);
Novo et al. (2016), for all magnetizations. The measurements of the shock
formation time reveal that, in the unmagnetized and weakly magnetized
cases, the isotropization requires longer time than the compression up to
the RH density jump, while the opposite is observed at large magnetiza-
tions.

This Chapter also demonstrates the ability of the PIC code Smilei
to correctly treat ultra-relativistic astrophysical scenarios, thanks to the
development presented in Chap. 5. The accuracy of the presented simula-
tions has been verified by comparing our results with the theoretical RH
predictions and with previous works on particle acceleration in relativistic
pair shocks.

The astrophysical applications of the present study range from AGN,
GRBs and PWNs. We confirm that at large magnetization, as expected
in PWNs, Fermi-like acceleration is not efficient enough to explain the
astrophysical observations, while at low magnetizations, as the one of the
interstellar medium, the observed non-thermal tails are coherent with the
astrophysical spectra.
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Appendix

6.A Effect of the numerical filtering techniques

The relativistic stream of particles along the x-axes in a two-dimensional
simulation performed in the x-y plane produces spurious grid-Cherenkov
instability, as described in Chap. 5. This can critically affect the results
of the simulation.

The tests performed in the previous Sec. 5.4 (two counter-streaming
already overlapped pair plasma flows) show that, for the parameters con-
sidered in this Chapter (in particular γ0 = 10), the development of the
Weibel instability is much faster than the typical growth of the numerical
instability. The tests shown in Fig. 5.8 seem to suggest that no filter-
ing techniques are required, since no difference in the Weibel evolution
are observed with/without the application of the filters. However, in the
simulation of this chapter, the upstream plasma flows freely for long time
before interacting with the counter-propagating reflected beam, similar to
the test performed in Sec. 5.2.3 (note that the moving injector technique is
not yet available in Smilei). Therefore, a strong Cherenkov-like emission
can be produced and can dramatically heat up the upstream flow before
it interacts with the counter-propagating beam. Following the results of
the previous Chapter, in all the simulations presented in this Chapter, we
applied a Friedman filter with θ = 0.1 and 3-passes of current filtering.
Section 5.4 has demonstrated that these filtering do not affect the Weibel
evolution, both the typical growth rate and the magnetic filed amplitude
at saturation, while efficiently quenching the Cherenkov-like emission in
the upstream streaming plasma, as demonstrated in Sec. 5.2.3. In this
Section, we compare the results of unmagnetized simulations performed
without filtering and with θ = 0.3, i.e. a stronger Friedman filter than
the one applied in Sec. 6.3. Figure 6.11 summarizes the main findings,
at a time much after shock formation t = 500ω−1

pe , for the simulation
without filtering (green lines), with Friedman filter with θ = 0.1 (blue
lines) and θ = 0.3 (red lines). In the presence of Cherenkov radiation
(i.e. without the application of the filter) the density jump is reduced
and the shock propagates slightly faster than in the other cases, as shown
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Figure 6.11: Effect of the Cherenkov radiation and of the Friedman filter
on the shock front and plasma distribution function: a) Electron density
〈ne〉y. b) Electron distribution function fe(px) in the upstream. c) Elec-
tron distribution function fe(px) in the downstream. At t = 500ω−1

pe , for
the simulation performed with no filtering (green lines), Friedman filter
with θ = 0.1 (blue lines), Friedman filter with θ = 0.3 (red lines).

in the average electron density (left frame). This is a consequence of the
strong heating of the upstream region, as shown by comparing the distri-
bution functions fe(px) (central frame) for the three cases. The upstream
heating changes the interaction conditions of the two counter-propagating
flows. The spread in px of the downstream distribution is however un-
affected (right frame). The same result has been observed for the other
momentum component in the downstream (not shown). The increase of
the parameter θ of the Friedman filter does not alter substantially the
dynamics.

In the case of highly magnetized shock, the amplitude of the waves
emitted at the shock front are drastically reduced by the application
of strong filters. Figure 6.12 presents the results of the simulation
performed with σ = 0.1 and Friedman filter with θ = 0.3, so that it can
be compared with Fig. 6.6. The strong filtering reduces the modulation
of the magnetic fields ahead of the shock front and completely suppress
the density filamentation. The overshoot in the density is more peaked.

Plotnikov et al. (2017) performed a systematic comparison of PIC
simulations performed with Smilei (FDTD-based) and Shockapic, the
latter relying on pseudo-spectral methods to solve Maxwell’s equations.
In particular, a comparison between Smilei and Shockapic results is pre-
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Figure 6.12: Damping effect of the filtering techniques on the electromag-
netic wave precursor of a magnetized shock (σ = 0.1) at t = 500ω−1

pe . a)
Weibel generated magnetic field Bz. b) Electron density. c) Electron den-
sity averaged along the y-direction at t = [50, 100, 200, 300, 400, 500]ω−1

pe ,
from light to dark lines. Friedman filter θ = 0.3 and 3-passes current
filter. To be compared with Fig. 6.6, obtained with a weaker Friedman
filter (θ = 0.1).

sented for σ = 2 × 10−3. The level of electromagnetic waves in the pre-
cursor has larger amplitude in the simulation performed with the spectral
code Shockapic than in the simulation performed with Smilei for both
θ = 0.1 and θ = 0.3.

Even if the early shock formation stage and the evolution up to t =
500ω−1

pe does apparently not depend on the presence of the emitted waves,
they should not be removed by the filtering techniques in order to capture
their potential effects on the shock long-term evolution. In particular, this
electromagnetic precursor has been demonstrated to be important in the
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case of electron-ion flows (see Lyubarsky, 2006; Sironi and Spitkovsky,
2011b).

Nevertheless an overall good agreement was found in between the two
codes over a wide range of magnetizations.
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CHAPTER 7

Conclusions and perspectives

7.1 Conclusions

The work presented in this thesis belongs to the general framework of
Laboratory astrophysics. Motivated by the present or forthcoming ex-
perimental capabilities, we addressed various aspects of the physics re-
lated, but not restricted, to collisionless shocks driven by mildly and
ultra-relativistic plasma flows, in configurations of interest for both the
astrophysics and the laser-plasma interaction (LPI) communities.

The approach used throughout this thesis relied on both analytical
modeling and high-performance, first principles kinetic numerical simu-
lations. On the analytical side we have developed different models to im-
prove our understanding and prediction capabilities of various processes
relevant to astrophysics and LPI, from the Weibel instability to the gener-
ation of large sheath magnetic field at the laser-plasma interaction surface
when using a laser at oblique incidence. On the numerical simulation side,
we have made an extensive use of the Particle-In-Cell code Smilei, and
also developed and implemented new modules to enhance its capabilities
in dealing with ultra-relativistic flows.

We have investigated three physical configurations: (i) two counter-
streaming electron beams in an external flow-aligned magnetic field
(Chap. 3), (ii) two counter-streaming ultra-relativistic pair plasma flows
(Chap. 6) and (iii) a regime dominated by the ion-Weibel-instability
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driven by the Radiation-Pressure on a dense target (Chap. 4).

The interest toward the first configuration follows from recent ex-
periments that consider counter-streaming electron-ion flows in the pres-
ence of an initially external magnetic field perpendicular to the plasma
flows (Higginson et al., 2015). The analogous configuration with flow-
aligned magnetic field has not received much experimental attention up
to now due to the common belief that the stabilizing effect of the external
field would decrease the Weibel-generated magnetic field strength. The
investigated configuration (symmetric and homogeneous electron beams
in a neutralizing ion background with flow-aligned magnetic field) has
been modeled by means of a relativistic fluid approach, accounting for
temperature effects. This method has proved able to predict the lin-
ear phase of the development of the Weibel instability, in good agreement
with the results of fully kinetic (PIC) simulations. The limit of validity of
this approach, beyond which a kinetic treatment is required, has been dis-
cussed. The use of a fluid model has the advantage to give more tractable
solutions with respect to the analytical kinetic approach, in particular in
the presence of an external magnetic field. In parallel to the analytical
investigation, we relied on a systematic comparison between the analyt-
ical and the numerical simulation results to confirm the accuracy of the
fluid model.

This study helped shading new light on the processes responsible for
the instability saturation. While this has been done in this thesis in detail
(with and without external B-field) for the electron Weibel instability,
we are currently generalizing our approach to also clarify the processes
behind the saturation of the ion-Weibel instability.

We provided the analytical generalization of the existing models
for the unmagnetized electron Weibel instability saturation, to account
for the external field, and, as for the linear phase of the instability, we
confirmed our predictions by comparing them with PIC simulations.
Following these results, our study suggests that a guiding magnetic
field could be used to focus the plasma flows in a situation of counter-
propagating ablative or TNSA plasmas to observe a faster growth of
Weibel-generated magnetic fields. Indeed, it would be optimal for an

228



7.1. Conclusions

experimental investigation to keep a high plasma density, hence speeding
up the development of the instabilities and potentially the formation
of collisionless shocks, while not strongly modifying the amplitude of
the Weibel magnetic fields at saturation. Further numerical studies
should investigate the required strength of the external field to efficiently
collimate the flows.

Clearly, PIC simulations appear as a central tool to describe most of
the UHI laser-plasma interaction processes as well as the non-linear rela-
tivistic physics behind shock formation. The PIC code Smilei, used and
further developed during this work, is a recent1 open-source project co-
developed by both physicists and high-performance computing experts.
This tight collaboration led to a versatile tool that benefits from the most
advanced parallelization techniques. We have presented (Chap. 5) our
main contribution to the development of Smilei, i.e. the implementation
of techniques that allow for the correct treatment of relativistic particle
flows, mitigating the so-called numerical Grid-Cherenkov instability. The
use of advanced FDTD scheme combined with temporal and spatial fil-
tering strategies, has allowed for an accurate description of the dynamics
of ultra-relativistic streaming pair plasmas. More advanced techniques
and HPC-relevant spectral methods are currently under development in
Smilei, so that the code will be able to deal with configurations with
stronger numerical artifacts.

Our developments have opened Smilei to the ultra-relativistic
astrophysics community. In particular, we initiated a collaboration
with astrophysicists from the Institut de Recherche en Astrophysique et
Planétologie (Toulouse, France). Chapter 6 presents part of the results
obtained during this collaboration. In this study we investigated the
interaction between counter-streaming ultra-relativistic pair plasmas.
We considered both initially unmagnetized and magnetized flows,
focusing on the so-called perpendicular shocks, of particular importance
for relativistic astrophysical shocks such as in the Pulsar Wind Nebulae.
Our study particularly focused on the identification and measurement of
the shock formation time, defined as the time for which both compression

1Development started on 2013, slightly before the beginning of this thesis.
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and isotropization of the flows are achieved. Even though the mecha-
nisms behind shock formation and the late stage of particle acceleration
were previously investigated, a reliable definition for the shock formation
time was not presented before. The knowledge of this quantity is of
interest for the planning of laboratory and numerical investigation and
our constraining definition led to a shock formation time longer than
the one proposed by previous studies. We further highlight that these
two conditions are reached at different times and, depending on the flow
magnetization, either isotropization or compression is established first.

Most of present-day experiments of laser-generated plasmas are only
capable of producing counter-propagating electron-ion flows. The weakly
relativistic velocity, characteristic densities and temperatures of these
flows make them properly scalable to the typical SNRs emitted mate-
rial. In this work, we proposed a complementary approach that relies on
the use of UHI laser facilities, such that the produced flows are faster and
denser than in current experiments. These flow characteristics involve a
larger growth rate and stronger saturation magnetic fields, beneficial for
the experimental investigation.

By means of large-scale 3D simulations, we have demonstrated that
mildly relativistic, dense quasi-neutral plasma flows can be produced via
the Radiation Pressure Acceleration, and open up a regime governed by
the ion-Weibel instability. The required laser energy of the order of kJ will
be achievable on soon-available facilities such as ELI in Czech Republic,
LFEX in Japan and PETAL in France. This study could also provide
information regarding to the open questions related to the magnetic field
generation or amplification by means of Weibel instability in astrophysical
conditions.

Particular care has been taken in the identification of the experimental
configuration most relevant to the astrophysical scenario, i.e. dominated
by the ion-Weibel instability. We have identified the optimal experimental
configuration to limit the development of competing instabilities, as linear
S-polarized laser irradiating the target at large-angle oblique incidence.
This configuration allows for the mitigation of a surface instability, i.e.
the electron-Weibel instability at the laser-plasma interaction surface. We
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have observed the correlation of the suppression of the surface instability
with the generation of a strong transverse current and associated magnetic
field in the skin layer, which we identified as following from the transverse
momentum absorption at oblique incidence.

The identification of the optimal laser-plasma configuration has a
much broader interest than the collisionless astrophysics investigated in
this thesis, e.g. it is relevant to Hole Boring and Radiation Pressure
Acceleration experiments. In particular, using UHI laser pulses, only in
this interaction configuration can the Hole Boring acceleration process
operate over a long time.

With our scheme, we can investigate the ion-Weibel instability driven
by electron-ion flows with densities and flow velocities different from those
currently studied on high-energy (low intensity) laser systems, such as
OMEGA, NIF or LMJ. Having two complementary approaches can also
be useful for the validation of the numerical simulations and the theoreti-
cal models in different regimes. In both cases, an experimental assessment
of the early stage of shock formation will be extremely helpful to extract
information regarding the shock magnetization level and finally the par-
ticle acceleration efficiency with application to Cosmic Rays physics.

7.2 Future perspectives

This PhD work focused on collisionless laboratory astrophysics, and in
particular, to the production of Weibel-mediated collisionless shocks using
laser-produced plasma flows. The exploration of the fundamental micro-
physics behind collisionless shock formation and magnetic field amplifi-
cation is one of today’s hot topics. Indeed, it is at the center of a Discov-
ery Science program2 which aims at reproducing astrophysically relevant
plasmas on the high-energy, nanosecond, laser system NIF (Lawrence Liv-
ermore National Laboratory, CA) in the US. At the French level, reduced
experiments have been carried out on laser facilities at LULI and an ex-
perimental campaign at LMJ has been designed (even though it was not
granted laser time at this date).

Clearly, the production of this type of collisionless shocks would be
2goo.gl/v2XYmt
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an experimental breakthrough. A first step in this direction was the pos-
sibility to drive (and diagnose) the early phase of ion-Weibel instability
in counter-streaming plasmas (Fox et al., 2013; Huntington et al., 2015).
PIC simulations of counter-streaming flows suggest that the stage of shock
formation might be achievable using high-energy facilities. These simu-
lations however relied on artificially reduced electron-to-ion mass ratio
in order to perform the simulation up to shock formation with a reason-
able amount of computer resources. The recent work performed by Ruyer
et al. (2016) has however shown that the generalization to the realistic
mass ratio is not straightforward, and may strongly delay the time of
shock formation. As a result, centimeter-scale plasma flows evolving on
several nanoseconds need to be considered. This places NIF as the best,
if not unique, facility on which collisionless shock formation may be ob-
tained. At the same time, this opens questions about the possibility to
maintain the collisionless regime over such a long interaction duration. A
recent study has been started at the CEA DAM Ile de France to investi-
gate this issue (Gremillet et al., 2017).

Let us note also that the use of external magnetic fields in experiments
planned at NIF or LMJ is currently being considered. To our knowledge,
most configurations envisioned today consider a perpendicular orientation
of the external magnetic field. Our work on the Weibel instability sug-
gests that using a longitudinal, guiding magnetic field could help maintain
a higher expanding plasma density, hence shortening the time of shock
formation without impacting much the strength of the Weibel-generated
magnetic field, required to mediate shock formation.

In this work, we also investigated a complementary approach that,
instead of relying on high-energy NIF-LMJ class laser systems, makes
use of UHI picosecond laser facilities. Our study proved that probing
the ion-Weibel instability might be possible on soon-available multi-kJ,
sub-picosecond UHI facilities. Achieving this regime would already be a
tremendous experimental achievement, and is proved to rely on a good
control of the laser-plasma interaction physics in order to reduce elec-
tron heating and prevent electron-driven instabilities to govern the over-
all plasma dynamics. To reach shock formation would however require
longer interaction times (of the order of few tens of picoseconds). The
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required laser energy would be beyond what will be achievable in a near
future, in particular due to the use of oblique incidence that put strin-
gent constraints on the laser focal spot size. It is our understanding that
only a deeper knowledge of the surface instability, taking place during the
initial stage of the laser-driven Hole-Boring, can help us alleviate these
constraints.

A more detailed investigation of this surface instability has been
started over the last few months. This study is of extreme importance not
only for laboratory astrophysics, but for laser-plasma interaction in gen-
eral. Indeed, both electron heating and kinetic effects at the laser-plasma
interaction surface have proved to have great impact on, for instance, the
relativistic self-induced transparency (Siminos et al., 2012, 2016). These
studies have however been conducted in a 1D geometry and do not ac-
count for the effect of the surface instability. Our ongoing work on the
surface instability is therefore relevant to various applications, from ion
acceleration to fast-ignition.

Let us note also that, in the scenario proposed here, the effect of parti-
cle collisions should be more carefully addressed. As a first attempt, the
use of Radiation-Pressure-driven flows, allowing to reach much higher
flow velocities (×30 with respect to what is achievable at NIF) with a
flow density increase of the order of ×50 the density achievable at NIF,
would suggest that the collisionality of our system is much less than that
investigated at NIF, due to the scaling of the collision mean-free-path
λmfp ∝ v4/n. However, a recent work by Bhadoria et al. (2017) demon-
strated that collisions might play a non negligible role in Radiation-
Pressure-driven Hole-Boring. These collisions arise from the interplay
between the ions and the cold and dense electron return current. While
this return current should be strongly suppressed in the scenario envi-
sioned in this work (hot electron production is strongly reduced in our
laser-plasma interaction configuration), a more careful study of particle
collisions under the conditions presented here should be considered.

The possibility to produce stable counter-propagating pair plasma
flows, in future experimental facilities, opens the Laboratory Astrophysics
to a wide range of new studies, with many astrophysical implications. In
these future experimental investigations our measurements of the shock
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formation time could be tested and important information regarding open
questions highlighted in our study could be answered. For instance, the
maximum energy reached by the particles accelerated at the shock front,
that still represents a challenging numerical task, could be investigated
as a function of the magnetization and compared with the astrophysical
observations.

Throughout this thesis, beyond the theoretical and analytical efforts
done, extensive use of massively parallel, high-performance simulations
has been made. Our simulation capabilities have strongly relied on the
use and development of the open-source Smilei PIC code.

An on-going effort has allowed to open Smilei to the relativistic as-
trophysics community. Furthermore developments are still carried on,
in particular, aiming at providing the user community with additional
filtering techniques (see Godfrey and Vay, 2014) and advanced physics
modules, such as a moving particle injector, Monte-Carlo routines to ac-
count for strong field QED processes, etc.

However, one of the major weaknesses of the present available PIC
codes, for simulations of interest for this work, is that electron-ion colli-
sionless shocks are still computationally challenging to reproduce, due to
the large difference of temporal scale for the two populations. In our sim-
ulations, with the available computing power, we could reach the phase
of shock formation from the early stage of the instability only using an
artificially reduced ion-to-electron mass ratio. As previously stated, the
reliability of this type of studies is still a matter of intense numerical and
theoretical investigation. One possible solution relies on the recent de-
velopment of high-performance hybrid codes, which treat the ions kinet-
ically, while electrons are assumed to be a neutralizing fluid. The hybrid
method has allowed the investigation of larger and longer simulations with
respect to the full PIC approach (Gargaté and Spitkovsky, 2012; Caprioli
and Spitkovsky, 2014a). The shock propagation has been followed up to
the formation of the accelerated particle non-thermal spectrum and up
to the development of secondary instabilities driven by the accelerated
particles themselves. Indeed, a collaboration initiated in France over the
last three years (the MACH project3) aims at providing the community

3goo.gl/isbsvG
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with a massively parallel MHD code coupled to a PIC treatment of the
kinetic species.

However, while these hybrid tools are most interesting to investigate
the late stage of the shock evolution, they are not able to capture the
physics at the laser-plasma interaction surface, where, as demonstrated
in this work, kinetic effects on the electron dynamics play a fundamental
role. Therefore, the planning of experimental campaigns should mostly
rely on massively parallel PIC simulations. In that sense, the strong
effort made to provide the scientific community with an HPC-relevant,
multi-purpose, and reliable PIC code is still necessary.
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