
HAL Id: tel-01793458
https://theses.hal.science/tel-01793458v1

Submitted on 16 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modularity, antimodularity and explanation in complex
systems

Luca Rivelli

To cite this version:
Luca Rivelli. Modularity, antimodularity and explanation in complex systems. Philosophy. Univer-
sité Panthéon-Sorbonne - Paris I; Università degli studi (Padoue, Italie). Dipartimento di filosofia,
sociologia, pedagogia e psicologia applicata, 2015. English. �NNT : 2015PA010529�. �tel-01793458�

https://theses.hal.science/tel-01793458v1
https://hal.archives-ouvertes.fr

Università degli Studi di Padova
FISPPA - Dipartimento di Filosofia, Sociologia, Pedagogia e

Psicologia applicata
SCUOLA DI DOTTORATO DI RICERCA IN FILOSOFIA

CICLO XXVI
DOTTORATO DI RICERCA IN FILOSOFIA

Université Paris 1 Panthéon-Sorbonne
IHPST - Institut d’histoire et de philosophie des sciences et des

techniques - UMR 8590
ÉCOLE DOCTORALE 280 - PHILOSOPHIE

DOCTORAT EN PHILOSOPHIE

PhD Thesis (2015)
Modularity, Antimodularity and Explanation in

Complex Systems
PhD Candidate:
Luca Rivelli

Supervisor (Padova): Supervisor (Paris 1):
Fabio Grigenti Philippe Huneman

Thesis Defended on: november 30th, 2015

To my father,
who first opened the doors

of my early curiosity

And to Gino Gerosa,
a real master in opening hearts

and new doors of life
when the old was closing

Modularity, Antimodularity and Explanation in Complex
Systems

Luca Rivelli
2015

Università degli Studi di Padova, Department of Philosophy (FISPPA)

Université Paris 1 Panthéon–Sorbonne, Institute of History and Philosophy of Science
and Technology (IHPST)

1

Abstract

Modularity, Antimodularity and Explanation in Complex Systems

This work is mainly concerned with the notion of hierarchical modularity and its use in
explaining structure and dynamical behavior of complex systems by means of hierarchical
modular models, as well as with a concept of my proposal, antimodularity, tied to the
possibility of the algorithmic detection of hierarchical modularity. Specifically, I highlight
the pragmatic bearing of hierarchical modularity on the possibility of scientific explanation
of complex systems, that is, systems which, according to a chosen basic description, can be
considered as composed of elementary, discrete, interrelated parts. I stress that hierarchical
modularity is also required by the experimentation aimed to discover the structure of such
systems. Algorithmic detection of hierarchical modularity turns out to be a task plagued
by the demonstrated computational intractability of the search for the best hierarchical
modular description, and by the high computational expensiveness of even approximated
detection methods. Antimodularity consists in the lack of a modular description fitting the
needs of the observer, a lack due either to absence of modularity in the system’s chosen basic
description, or to the impossibility, due to the excessive size of the system under assessment
in relation to the computational cost of algorithmic methods, to algorithmically produce a
valid hierarchical description. I stress that modularity and antimodularity depend on the
pragmatic choice of a given basic description of the system, a choice made by the observer
based on explanatory goals. I show how antimodularity hinders the possibility of applying
at least three well-known types of explanation: mechanistic, deductive-nomological and
computational. A fourth type, topological explanation, remains unaffected. I then assess
the presence of modularity in biological systems, and evaluate the possible consequences,
and the likelihood, of incurring in antimodularity in biology and other sciences, concluding
that this eventuality is quite likely, at least in systems biology. I finally indulge in some
metaphysical and historical speculations: metaphysically, antimodularity seems to suggest
a possible position according to which natural kinds are detected modules, and as such, due
to the computational hardness of the detection of the best hierarchical modular description,
they are unlikely to be the best possible way to describe the world, because the modularity
of natural kinds quite probably does not reflect the best possible modularity of the world.
From an historical point of view, the growing use of computational methods for modularity
detection or simulation of complex systems, especially in certain areas of scientific research,
hints at the envisioning of a multiplicity of emerging scientific disciplines guided by a self-
sustained, growing production of possibly human-unintelligible explanations. This, I suggest,
would constitute an historical change in science, which, if has not already occurred, could
well be on the verge of happening.

3

Résumé

Modularité, antimodularité, et explication dans les systemès complexes

Ce travail concerne principalement la notion de modularité hiérarchique et sa utilisation pour
expliquer la structure et le comportement dynamique des systèmes complexes au moyen de
modèles modulaires hiérarchiques, ainsi que un concept de ma proposition, l’antimodularité,
relié à la possibilité de la détection algorithmique de la modularité hiérarchique. Plus pré-
cisément, je mets en èvidence la portée pragmatique de la modularité hiérarchique sur la
possibilité de l’explication scientifique des systèmes complexes, c’est-à-dire, systèmes qui,
selon une description de base choisie par l’observateur, peuvent être considérés comme com-
posés de parties élémentaires discrètes interdépendantes. Je souligne que la modularité
hiérarchique est essentielle même au cours de l’expérimentation visée à découvrir la struc-
ture de ces systèmes. Mais la détection algorithmique de la modularité hiérarchique se révèle
être une tâche affectée par la démontrée intraitabilité computationnelle de la recherche de
la meilleure description modulaire hiérarchique, et par l’excessive cherté computationnelle
même des méthodes de détection approximatifs de la modulairité. L’antimodularité con-
siste en le manque d’une description modulaire aproprièe aux exigences de l’observateur,
manque dû ou à l’absence de modularité dans la description basique choisie du système, ou
à l’impossibilité de produire algorithmiquement une description hiérarchique valide, en rai-
son de les dimensions excessives du système à évaluer en relation à la cherté computationnelle
des méthodes algorithmiques. Je souligne, de plus, que la modularité et l’antimodularité
dépendent du choix pragmatique d’une spécifique description de base du système, choix fait
par l’observateur sur la base de ses objectifs explicatifs. Je montre comment l’antimodularité
entrave la possibilité d’appliquer au moins trois types bien connus d’explication: mécanique,
déductive-nomologique et computationnelle. Un quatrième type, l’explication topologique,
reste par contre indemne. Ensuite j’evalue la présence de modularité dans les systèmes bi-
ologiques, avec ses possibles conséquences, et l’éventualité d’encourir dans l’antimodularité
en biologie et en autres sciences: éventualité assez probable, au moins dans la biologie des
systèmes. Je me permet enfin quelques spéculations métaphysiques et historiques plutôt
libres. D’un point de vue métaphysique, l’antimodularité semble suggérer une position pos-
sible, selon laquelle les espèces naturelles sont modules qui ont été détectés et, en raison de
l’intraitabilité computationnelle de la détection de la meilleure description modulaire hiérar-
chique, il est improbable qu’ils constituent la meilleure façon possible de décrire le monde,
parce que la modularité des espèces naturelles assez probablement ne reflète pas la meilleure
modularité possible du monde. D’un point de vue historique, l’utilisation croissante des
méthodes computationnels pour la détection de la modularité ou pour la simulation de sys-
tèmes complexes, en particulier dans certains domaines de la recherche scientifique, suggère
la possibilité d’imaginer une multiplicité de disciplines scientifiques émergentes, guidées par
une production croissante et auto-alimentante d’explications potentiellement inintelligibles
pour les capacités cognitives humaines. Cela, à mon avis, constituerait un changement his-
torique dans la science, qui, s’il n’a pas déjà eu lieu, pourrait bien être sur le point de se
produire.

5

Abstract

Modularità, antimodularità e spiegazione nei sistemi complessi

Questo lavoro riguarda principalmente il concetto di modularità gerarchica e il suo impiego
nello spiegare la struttura e il comportamento dinamico di sistemi complessi mediante mod-
elli modulari gerarchici, nonché un concetto di mia proposta, l’antimodularità, legato alla
possibilità del rilevamento algoritmico di modularità gerarchica. Nello specifico, evidenzio la
portata pragmatica della modularità gerarchica sulla possibilità di spiegazione scientifica dei
sistemi complessi, cioè sistemi che, secondo una descrizione di base scelta dall’osservatore,
possono essere considerati come composti da parti elementari discrete interrelate. Sottoli-
neo che la modularità gerarchica è essenziale anche nel corso della sperimentazione volta
a scoprire la struttura di tali sistemi. Il rilevamento algoritmico della modularità ger-
archica si rivela essere un compito affetto dalla dimostrata intrattabilità computazionale
della ricerca della migliore descrizione modulare gerarchica, e affetto dal comunque ele-
vato costo computazionale anche dei metodi di rilevamento approssimati della modularità.
L’antimodularità consiste nella mancanza di una descrizione modulare adatta alle esigenze
dell’osservatore, mancanza dovuta o all’assenza di modularità nella descrizione di base del
sistema scelta dall’osservatore, o all’impossibilità di produrre algoritmicamente una sua de-
scrizione gerarchica valida, per le dimensioni eccessive del sistema da valutare in rapporto
al costo computazionale dei metodi algoritmici. Sottolineo che modularità e antimodularità
dipendono dalla scelta pragmatica di una certa descrizione di base del sistema, scelta fatta
dall’osservatore sulla base di obiettivi esplicativi. Mostro poi come l’antimodularità ostacoli
la possibilità di applicare almeno tre tipi noti di spiegazione: meccanicistica, deduttivo-
nomologica e computazionale. Un quarto tipo di spiegazione, la spiegazione topologica, ri-
mane sostanzialmente immune dalle conseguenze dell’antimodularità. Valuto quindi la pre-
senza di modularità nei sistemi biologici, e le sue possibili conseguenze, nonché l’eventualità
di incorrere nell’antimodularità in biologia e in altre scienze, concludendo che questa even-
tualità è abbastanza probabile, almeno in biologia dei sistemi. Infine, mi permetto al-
cune speculazioni metafisiche e storiche piuttosto libere. Dal punto di vista metafisico,
l’antimodularità sembra suggerire una posizione possibile secondo cui i generi naturali sono
moduli che sono stati rilevati, e in quanto tali, a causa dell’intrattabilità computazionale
del rilevamento della migliore descrizione modulare gerarchica, è improbabile che essi siano
il miglior modo possibile per descrivere il mondo, perché la modularità dei generi natu-
rali molto probabilmente non rispecchia la migliore modularità possibile del mondo. Da
un punto di vista storico, il crescente utilizzo di metodi computazionali per il rilevamento
della modularità o per la simulazione di sistemi complessi, in particolare in alcuni settori
della ricerca scientifica, suggerisce la possibilità di immaginare una molteplicità di discipline
scientifiche emergenti, guidate dalla produzione di spiegazioni potenzialmente inintelligibili
dal punto di vista cognitivo umano, produzione che potrebbe iniziare ad autoalimentarsi,
portando potenzialmente ad una crescita inarrestabile. Suggerisco che questo scenario cos-
tituirebbe un cambiamento epocale nel campo della scienza, che, se non è già avvenuto,
potrebbe benissimo essere sul punto di realizzarsi.

7

Mots clés:
modularité, modularité hiérarchique, antimodularité, émergence antimodu-
laire, émergence explicative, systèmes hiérarchiques, quasi-décomposabilité,
systèmes quasi-décomposables, explication scientifique, intelligibilité des
explications, intelligibilité de l’explication, explication, modèles d’explication,
modèles de l’explication scientifique, explication mécanistique, déductive-
nomologique, explication déductive-nomologique, explication computation-
nelle, explication topologique, relativité à l’observateur, systèmes complexes,
détection de la modularité, détection de modularité, émergence faible, im-
prévisibilité des systèmes complexes, imprévisibilité, détection algorithmique
de la modularité, computation, complexité computationnelle, difficulté
calculatoire, simulation informatique, simulation par ordinateur, descriptions,
description, niveaux de decription, niveau de description, mise en œuvre,
implémentation, mécanismes, mécanisme, systèmes dynamiques discrets,
automates cellulaires, espèces naturelles, biologie des systèmes, philosophie
de la biologie, philosophie de la science, philosophie de la computation, sys-
tèmes complexes, science des réseaux, antiréalisme contraint, Herbert Simon,
Herbert A. Simon, H. A. Simon, William Bechtel, Carl Craver, Cory Wright,
Mark A. Bedau, Mark Bedau, Robert Cummins, Michelle Girvan, Mark E.J.
Newman, Carl G. Hempel, Stuart A. Kauffman, Philippe Huneman

Keywords:
modularity, hierarchical modularity, antimodularity, antimodular emergence,
explanatory emergence, hierarchical systems, near-decomposability, nearly-
decomposable systems, scientific explanation, intelligibility of explanations,
intelligibility of explanation, explanation, models of explanation, models
of scientific explanation, mechanistic explanation, deductive-nomological,
deductive-nomological explanation, computational explanation, topological
explanation, models of scientific explanation, relativity to the observer,
complex systems, modularity detection, weak emergence, unpredictability of
complex systems, unpredictability, algorithmic detection of modularity, com-
putation, computational complexity, computational hardness, computational
intractability, intractability, computer simulation, descriptions, description,
levels of decription, level of description, implementation, mechanism, dis-
crete dynamical systems, cellular automata, natural kinds, systems biology,
philosophy of biology, philosophy of science, philosophy of computation,
philosophy of computing, complex systems, network science, constrained
antirealism, Herbert Simon, Herbert A. Simon, H. A. Simon, William Bechtel,
Carl Craver, Cory Wright, Mark A. Bedau, Mark Bedau, Robert Cummins,
Michelle Girvan, Mark E.J. Newman, Carl G. Hempel, Stuart A. Kauffman,
Philippe Huneman

9

IHPST - Institut d’histoire et de philosophie des sciences et des techniques
UMR 8590 Université Paris 1 Panthéon-Sorbonne / CNRS / ENS

13 rue Du Four, 75006 Paris, France

FISPPA - Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia
applicata

Università degli Studi di Padova
Palazzo del Capitanio, Piazza Capitaniato 3, 35139 Padova, Italy

11

Un résumé substantiel en langue française est présent dans l’Appendice de
cette thèse.

Un riassunto sostanziale in lingua italiana è presente nell’Appendice di
quest’opera.

Contents

I Introduction 21

1 Modularity, Antimodularity, Explanation: an Introductory Tour 23
1.1 Modularity . 26

1.1.1 Modularity in complex systems . 27
1.1.2 Modularity, decomposability, and economy of description 28
1.1.3 Modules as repeated similar high-level parts 28
1.1.4 Structural and dynamical modularity . 29
1.1.5 Near-decomposability and Aggregability 29
1.1.6 Modularity in discrete dynamical systems 30
1.1.7 Modularity in computational systems . 31
1.1.8 Hierarchical modularity, levels, robustness and validity 34
1.1.9 Modularity and explanation . 35
1.1.10 Some example applications of modularity in real-life scientific research . . 37

1.2 Algorithmic detection of modularity . 38
1.2.1 Modularity detection In networks and computational complexity 38
1.2.2 Modularity detection In discrete dynamical systems and computational

systems . 40
1.2.3 Some Applications of modularity detection in real-life researches 40

1.3 Computational hardness . 41
1.4 Antimodularity . 42

1.4.1 Antimodular emergence . 44
1.4.2 Antimodularity and models of explanation 45
1.4.3 Antimodularity and functional or mechanistic explanations 46
1.4.4 Antimodularity and the deductive-nomological model 48
1.4.5 Antimodularity and topological explanations 49
1.4.6 Explanation and prediction . 49
1.4.7 Computation and computational explanation 50
1.4.8 Antimodularity, cellular automata and computational explanations 52
1.4.9 High-level modularity as a condition for programming and scientific re-

search . 57
1.4.10 Explanatory emergence . 58
1.4.11 Is it likely to encounter antimodular systems in science? 59

1.5 Some additional reflections on modularity, metaphysics, computing, history of
science . 59
1.5.1 A metaphysical attempt: Modularity as ontology? Constrained antirealism 61
1.5.2 Computational methods in scientific research: a possible historical turning

point? . 63

13

14 Contents

II Modularity 69

Preamble 71

2 A first look at modularity 73
2.1 An informal definition of modularity . 75
2.2 Early concepts related to modularity . 77

2.2.1 Aggregation in dynamical systems . 78
2.2.1.1 Approximate aggregation . 80
2.2.1.2 Aggregation is computationally hard 80

2.2.2 Decomposability . 81
2.2.3 Simon-Ando near-decomposability . 82
2.2.4 Timescales and decomposition in nearly-decomposable systems 85

2.3 Hierarchical modularity . 86
2.4 Generic near-decomposability. 87
2.5 Modularity is relative to the choice of a metric 89
2.6 Summary of the chapter and outlook . 90

3 Modularity and networks 91
3.1 Networks and network science . 92

3.1.1 Random and regular networks . 92
3.1.2 Small-world networks . 93
3.1.3 Scale-free networks . 94

3.2 Modularity in networks . 96
3.2.1 Community and hierarchical structure detection 97

3.2.1.1 The Modularity measure Q . 98
3.2.1.2 Reliability of the detected modular structure and computational

hardness of Q optimization . 100
3.2.1.3 Modularity detection in weighted networks 104
3.2.1.4 The problem of overlapping communities 107
3.2.1.5 community structure and scale-free networks 107

3.2.2 Network motifs and network themes . 109
3.2.3 Network roles . 112
3.2.4 Functional typology of hubs: party hubs and date hubs 118

3.2.4.1 Timescale decoupling and dynamical methods for community de-
tection . 119

3.2.5 Coarse-graining of networks with community structure or recurring mod-
ules . 120

3.2.6 Modularity, small-world networks and information processing 124
3.2.7 Differences between modularity in networks and general modularity . . . 125

3.3 Limitations of algorithmic detection of modularity in networks 126
3.3.1 Time complexity of community structure and hierarchy detection 127

3.3.1.1 Accuracy of community structure detection 130
3.3.1.2 Trade-off between accuracy and speed in community structure

detection . 131
3.3.2 Time complexity of network motifs detection 131
3.3.3 Time complexity of network roles detection 132

3.4 Summary of the survey on modularity detection algorithms 132

4 Modularity of computer programs 135

Contents 15

4.1 Computer programming . 135
4.1.1 Computer programs . 135
4.1.2 The Von neumann architecture . 136
4.1.3 What a program is . 138
4.1.4 Programming languages . 139

4.1.4.1 Low-level languages . 139
4.1.4.2 High-level languages . 139
4.1.4.3 Syntax and semantics of programming languages 141
4.1.4.4 Program semantics and flow charts 141

4.1.5 Program specification and program implementation 141
4.1.5.1 Specification, abstraction and naming 144
4.1.5.2 Kinds of specification . 145

4.1.5.2.1 Kind B: bare specification 145
4.1.5.2.2 Kind A: the aggregate kind 146
4.1.5.2.3 Kind M: the modular kind 146
4.1.5.2.4 Kind C: the kind by convention 147

4.1.6 A common definition of computer program 147
4.2 Program modularity . 148

4.2.1 Subroutines . 148
4.2.2 Structured programming . 149
4.2.3 Object-oriented programming . 150
4.2.4 Program modularity, coupling and cohesion 151

4.3 Reverse Engineering and modularity detection in computer programs 151
4.3.1 Reverse-engineering of program specifications in modular programs . . . 154

4.3.1.1 Specification mining . 158
4.3.2 Program modularity favors program development 160
4.3.3 Inherently antimodular programs . 160
4.3.4 Modularization of computer programs by program slicing 163

5 Modularity in discrete dynamical systems 165
5.1 Discrete Dynamical Systems . 165

5.1.1 Modular/digital and DDSs . 166
5.1.2 A general definition of DDS . 167

5.2 Cellular automata . 168
5.2.1 Stephen Wolfram’s classification of CAs 171
5.2.2 Process modularity in CAs . 173
5.2.3 Self-organization in CAs . 178
5.2.4 Higher-level modularity in CAs . 180

6 Thinking about modularity 185
6.1 Modularity and its properties: summing up . 185
6.2 Structural and dynamical modularity . 186

6.2.1 Structure and process . 186
6.3 Modularity is relative . 190
6.4 Forms of functional modularity . 192
6.5 Modularity of the dynamical model and prediction 197
6.6 Hierarchical levels of descriptions . 198

6.6.1 Abstractions . 198
6.6.2 Preferred languages . 200

16 Contents

6.6.3 Abstraction, aggregation and multiple realizability 200
6.6.4 Transformation of languages by abstraction 201
6.6.5 Descriptions and simulations . 202
6.6.6 Languages and levels of description . 202
6.6.7 Redescriptions . 203
6.6.8 Validity of a redescription . 203
6.6.9 Preferred descriptions . 204
6.6.10 Modular redescriptions, aggregated redescriptions, explanatory redescrip-

tions, robustness and validity . 206
6.6.11 High-level modularity and macrodescriptions 213
6.6.12 Macro level and Micro level . 215
6.6.13 Levels and the specification/implementation relation 216
6.6.14 A meta-consideration on levels of description 219

6.7 Temporal decoupling of hierarchical levels . 220
6.8 Modularity, economy of description, explanation 222
6.9 High-level modularity conditions experimental research and computer program-

ming . 225
6.10 Summary . 229

7 Some issues about modularity in biology 231
7.1 Evolution and modularity . 231

7.1.1 Evolution of modularity in Herbert Simon’s view 232
7.1.2 Modularity as emergent self-organization in complex systems and the role

of natural selection . 234
7.1.3 Evolution and modularity of the genotype-phenotype map 240
7.1.4 Modularity as due to natural selection 242

7.2 A modular functional view of biological systems 243
7.3 A computational view of biological processes . 246

III Models of explanation 251

Preamble 253

8 The deductive-nomological model of explanation 255
8.1 Known problems of the DN model . 258

9 Functions and functional explanation 261
9.1 Functions . 261
9.2 Functional analysis . 263
9.3 Functional explanation of computational systems 264

10 Mechanistic explanation 267

11 The new mechanistic school 269
11.1 Machamer, Darden and Craver’s account of mechanistic explanation 270

11.1.1 Mechanisms and functions . 271
11.1.2 Activities, causes and laws . 271
11.1.3 Diagrams . 271
11.1.4 The working cycle of a mechanism . 272

Contents 17

11.1.5 Hierarchies and Bottoming Out . 272
11.1.6 Mechanism schemata, mechanism sketches, explanation, and scientific the-

ories . 273
11.1.7 Intelligibility and multi-level mechanistic explanation 274

11.2 Becthel and Abrahamsen’s view of mechanistic explanation 275
11.2.1 Main differences between BA and MDC accounts 276
11.2.2 BA’s definition of mechanism . 276
11.2.3 Hierarchical organization of mechanisms 277
11.2.4 Diagrams and simulation in mechanistic explanation 278
11.2.5 Discovering mechanisms: decomposition and localization 279
11.2.6 Testing mechanistic explanations . 280
11.2.7 Generalizing without laws . 281

11.3 Functional analysis and mechanistic explanation 282

12 Philippe Huneman’s topological kind of explanation 285

IV Antimodularity 289

Preamble 291

13 The notion of antimodularity 293
13.1 Problems with the detection of modularity . 293
13.2 A definition of antimodularity . 296
13.3 Antimodular emergence . 299

14 Consequences of antimodularity on explanation 305
14.1 Antimodularity and functional or mechanistic explanations 306
14.2 Antimodularity and the deductive-nomological model 309

14.2.1 Antimodularity and weak emergence hamper DN explanation 310
14.3 Antimodularity and topological explanations . 312
14.4 Explanation and prediction . 314
14.5 Antimodularity and computational explanation 314

14.5.1 Computation and computational explanation 314
14.5.2 Antimodularity, cellular automata and computational explanations . . . 319

14.6 Explanatory emergence . 325

15 Are there antimodular systems in science? 327

Final Remarks 333

16 Summing up 333

Appendix 339

Preamble 339

17 Computer science basics 341
17.1 General notions . 341

18 Contents

17.2 Automata theory . 341
17.2.1 Finite automata . 341
17.2.2 Nondeterministic finite automata . 343
17.2.3 Probabilistic finite automata . 344
17.2.4 Pushdown automata . 344
17.2.5 Turing machines . 344
17.2.6 The halting problem and the Entscheidungsproblem 349
17.2.7 Nondeterministic Turing machines . 350
17.2.8 Linear bounded automata . 350
17.2.9 The Chomsky hierarchy . 351
17.2.10Grammars . 353

17.2.10.1 Context-free grammars . 353
17.2.10.2 Relationships between the expressive power of grammars 354

17.3 The Church-Turing thesis . 355
17.4 Computational complexity . 356

17.4.1 Time complexity . 357
17.4.1.1 The TIME complexity classes 359
17.4.1.2 The EXPTIME complexity class 359
17.4.1.3 P, NP and complexity classes . 359

17.4.1.3.1 The class P . 360
17.4.1.3.2 The class NP and the P = NP problem 360
17.4.1.3.3 NP-completeness . 360
17.4.1.3.4 NP-hardness . 361

17.4.2 Space complexity . 361
17.4.2.1 The SPACE complexity classes 361
17.4.2.2 The class PSPACE . 361
17.4.2.3 The EXPSPACE complexity class 362
17.4.2.4 PSPACE-completeness . 362

17.4.3 Relationships between space and time complexity classes and open problems362
17.4.3.1 Existence of intractability . 363

18 Modularité, Antimodularité, Explication: une visite d’introduction . 365
18.1 Modularité . 369

18.1.1 Modularité dans les systèmes complexes 370
18.1.2 Modularité, décomposabilité, et économie de la description 371
18.1.3 Modules comme pièces de haut niveau similaires répétées 371
18.1.4 Modularité structurelle et dynamique . 371
18.1.5 Quasi-décomposabilité et agrégabilité . 372
18.1.6 La modularité dans les systèmes dynamiques discrets 373
18.1.7 Modularité dans les systèmes computationnels 374
18.1.8 Modularité hiérarchique, niveaux, robustesse et validité 377
18.1.9 Modularité et explication . 379
18.1.10Quelques exemples d’applications de la modularité dans la recherche scien-

tifique réelle . 380
18.2 Détection algorithmique de la modularité . 382

18.2.1 Détection de modularité dans les réseaux et complexité computationnelle 382
18.2.2 Détection de la modularité des systèmes dynamiques discrets et des sys-

tèmes computationnels . 384
18.2.3 Modularité et sciences biologiques: quelque exemple 384

Contents 19

18.3 Difficulté calculatoire . 385
18.4 Antimodularité . 387

18.4.1 Émergence antimodulaire . 388
18.4.2 Antimodularité et modèles de l’explication 390
18.4.3 Antimodularité et explications fonctionnelles ou mécanistes 390
18.4.4 Antimodularité et modèle déductif-nomologique de l’explicaton 393
18.4.5 Antimodularité et explications topologiques 394
18.4.6 Explication et prévision . 394
18.4.7 Computation et explication computationnelle 395
18.4.8 Antimodularité, automates cellulaires et explications computationnelles . 397
18.4.9 La modularité de haut niveau comme une condition pour la programmation

et la recherche scientifique . 403
18.4.10Émergence explicative . 404
18.4.11Est-il probable de rencontrer des systèmes antimodulaires dans la science? 405

18.5 Quelque réflexion supplémentaire sur la modularité, la métaphysique,
l’informatique, l’histoire des sciences . 406
18.5.1 Une tentative métaphysique: Modularité comme ontologie? Antiréalisme

contraint . 407
18.5.2 Méthodes computationnelles dans la recherche scientifique: un possible

tournant historique? . 409

19 Modularità, Antimodularità, Spiegazione: una panoramica introduttiva 415
19.1 Modularità . 419

19.1.1 La modularità nei sistemi complessi . 419
19.1.2 Modularità, scomponibilità ed economia di descrizione 420
19.1.3 Moduli come parti similari di alto livello ripetute 421
19.1.4 Modularità strutturale e modularità dinamica 421
19.1.5 Quasi-scomponibilità e aggregabilità . 422
19.1.6 La modularità nei sistemi discreti dinamici 423
19.1.7 Modularità nei sistemi computazionali . 424
19.1.8 Modularità gerarchica, livelli, robustezza e validità 427
19.1.9 Modularità e spiegazione . 428
19.1.10Modularità e scienze biologiche: qualche esempio 430

19.2 Rilevamento algoritmico della modularità . 431
19.2.1 Rilevamento algoritmico della modularità nelle reti e complessità com-

putazionale . 431
19.2.2 Rilevamento della modularità nei sistemi dinamici discreti e nei sistemi

computazionali . 433
19.2.3 Alcune applicazioni reali nella ricerca scientifica della rilevazione di modu-

larità . 434
19.3 Intrattabilità computazionale . 435
19.4 Antimodularità . 436

19.4.1 Emergenza antimodulare . 437
19.4.2 Antimodularità e modelli della spiegazione scientifica 439
19.4.3 Antimodularità e spiegazioni funzionali e meccanicistiche 439
19.4.4 Antimodularità e modello nomologico-deduttivo 441
19.4.5 Antimodularità e spiegazione topologica 443
19.4.6 Spiegazione e predizione . 443
19.4.7 Computazione e spiegazione computazionale 443

20 Contents

19.4.8 Antimodularità, automi cellulari e spiegazioni computazionali 446
19.4.9 La modularità di alto livello come condizione per la programmazione in

informatica e per la ricerca scientifica . 452
19.4.10Emergenza esplicativa . 453
19.4.11È probabile incontrare sistemi antimodulari nella scienza? 453

19.5 Alcune riflessioni aggiuntive su modularità, metafisica, computazione, storia della
scienza . 454
19.5.1 Un tentativo metafisico: modularità come ontologia? Antirealismo vinco-

lato . 456
19.5.2 Metodi computazionali nella ricerca scientifica: un possibile punto di svolta

storica? . 458

References 465

Part I

Introduction

21

Chapter 1

Modularity, Antimodularity,
Explanation: an Introductory Tour

In this work, I am mainly concerned with the notion of hierarchical modularity in complex
systems, its algorithmic detection and its use in explaining structure and dynamical behavior of
such systems by means of hierarchical modular models. Specifically, I highlight the pragmatic
bearing of hierarchical modularity on the possibility of scientific explanation of complex systems,
that is, systems which can be described as composed of distinct elementary related parts. I stress
that hierarchical modularity must be considered a relative notion, dependent on the choice,
on the part of the observer, of a specific, basic, preferred description of the system, which
consists of a representation of the system as a set of interrelated atomic parts. In such a kind of
description, modularity basically manifests itself as the possibility of decomposing the system into
recognizable, sufficiently defined and persistent subsystems (the modules) each one composed of
parts which are more strongly related to each other than to parts belonging to other modules
or the external environment. Actually, in my view, hierarchical modularity concerns not the
real, physical system per se, but only its possible descriptions and descriptions of descriptions.
These are theoretical models of a system, and I concentrate here on modular descriptions of the
models, leaving mostly aside the thorny question of the relation between model and modeled
phenomenon, namely, the relation between the empirical phenomenon and its first description:
these problems would certainly deserve a thorough separate treatment which cannot be provided
here, albeit in the end my proposal will in some way touch upon even that kind of questions.
After having considered the defining properties of hierarchical modularity, I concentrate on known
algorithmic methods for its detection, that is, algorithms which, given a complex system (under
the form of its preferred description, its description as a set of several interrelated parts), try to
yield a hierarchical, modular re-description of the system. Once detected, hierarchical modularity
appears to be the crucial feature of a system’s description allowing for multi-level functional or
mechanistic explanations of the system, which are important forms of explanation, widely used
in science.
Along these lines, I subsequently focus on the opposite property, the absence of hierarchical
modularity, which I call antimodularity, trying to draw the consequences of its possible manifes-
tation in certain system descriptions. Antimodularity is a complex property, arising in a series
of possible circumstances, whose main features are that of being, like modularity, dependent on
the observer’s choice of a preferred basic description of the system, but also, importantly, that of
being dependent on some computational constraints of possible algorithms employed for modu-
larity detection: most of these algorithms are highly computationally demanding, and there are

23

24 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

even theoretical results about the computational hardness of the search for an optimal modular
description of a system. This computational complexity inescapably hinders the search for mod-
ularity in systems of scientific interest of a large enough size. I propose to call the effect of this
hindrance antimodular emergence, by analogy with some known forms of computational emer-
gence. I conclude that antimodular emergence entails (with some qualification) Mark Bedau’s
weak emergence, which is another form of computational emergence.

After having defined this new type of computational emergence, that is, antimodular emergence,
which is due to the amount of computational complexity algorithms for modularity detection can
manifest in certain cases, I try to draw some possible consequences of antimodular emergence on
the possibility of scientifically explaining systems affected by it.

I take into consideration three classic models of scientific explanation: deductive-nomological,
mechanistic, and computational explanation, plus a novel model, recently proposed by Philippe
Huneman, topological explanation. I conclude that antimodular emergence affects the feasibility
of all these types of explanation, albeit in different ways.

First and foremost, I claim that antimodularity negatively affects mechanistic explanation, a fun-
damental form of explanation in biological sciences. Taking side with Cory Wright and William
Bechtel for an epistemic view of mechanistic explanation (as opposed to an ontic view), I show
how antimodularity compels to single-level-only explanations, neglecting the need, essential for
mechanistic explanations, of multi-level integration. The fact of limiting mechanistic explanation
to the level of description representing the most elementary parts of the system, certainly hin-
ders comprehension: for large enough systems, their mechanistic explanation at this level is too
complex to be understood by human beings. And, understandability is a quality to be sought for
in mechanistic explanation, at least according to William Bechtel and to other authors, too, as
Petri Ylikoski, who considers “cognitive salience” one of the important features of explanations.

For what concerns classic deductive-nomological (DN henceforth) explanations, I show that,
antimodularity entailing weak emergence in complex enough systems1, deductive-nomological
Hempel-style explanation for an antimodular system can not be recurred to, because, if it could,
it would mean that the system is predictable by means of a law, and this is negated by the very
definition of weak emergence, which, as said, is entailed by antimodularity. Thus, a complex
antimodular system is not predictable, at least not predictable arbitrarily ahead of time by
means of an analytical law, and, thus, it cannot be explained by a DN explanation. Anyway,
if we take into consideration a specific type of complex dynamical system, that is, a Cellular
automaton (CA henceforth), then an antimodular process generated by a CA can be explained,
in a way, by producing a possibly very long list of deductions based on the initial condition and
the CA rule (which, as a CA rule, for the Curtis-Hedlund-Lyndon theorem, has the same logical
form of a scientific law), in a way resembling a long list of DN stepwise explanations. In this case
as well, human comprehension is excluded by the possible length of the list, but, if we stick to the
expectations of the post-neopositivistic advocates of the DN model of explanation, understanding
is not required for a good explanation. So, in a way, antimodularity and, consequently, weak
emergence, does not hinder DN explanation, at least in the case of CAs and other systems
whose dynamics follow a universal, law-like rule, and as long as understandability is kept out of
consideration.

I proceed to consider Philippe Huneman’s topological explanation, a non-mechanistic type of
explanation which is based on topological properties of certain abstract descriptions of a system.

1 A qualification which is made clear in section 13.3.

25

I conclude that, being modularity itself, as well as its absence, topological properties, the presence
or absence of modularity does not hinder, but enables the possibility of topological explanation.

I then focus on a third possible type of explanation: CAs and dynamic boolean networks can be
considered computational systems. As such, they can be subject to computational explanation. I
consider the case of trying to computationally explain a CA. To obtain a computational expla-
nation, first the CA’s behavior must be seen as a computation. I endorse an intentional view
of computation, but subject to some mathematical constraints, and I try to delimit the range of
system dynamics which can be seen as computational. Given that some CAs can indeed be seen
as computational, I try to assess the possibility of their computational explanation. As it stands,
to give such an explanation, the CA’s behavior must be reverse-engineered in order to obtain a
specification of the computation it is supposed to perform. But, this task of specification mining
can be computationally hard, and so can fail. Even if a global specification is found, a good
computational explanation amounts to a form of hierarchical modular functional analysis, and
this is obtained by recursively mining specifications of parts of the code or subjecting the system
to other methods for static or dynamic reverse-engineering. Should this process fail for reasons of
computational hardness, or for lack of completeness of the found functional hierarchy, the system
would end up being antimodular. In this case, antimodularity would hinder an understandable
form of computational explanation, for the same reason it affects mechanistic explanation, with
which computational explanation, which is a form of functional analysis, shows a strict affinity.

I subsequently stress the need for hierarchical and high-level modularity not only for a posteriori
explanation of a known phenomenon, but also during the phase of scientific discovery, specifically,
as already noted by James Woodward, during the search for causal relationships between parts
of a mechanism both at low and at a higher level. Likewise I emphasize that multilevel modular
explanation is also essential during the development of computer programs on the part of human
programmers.

I subsume under the concept of explanatory emergence all the results about the unfeasibility
of certain multilevel explanations and on the consequent fading of understandability due to
occurrence of antimodularity, as well as any other case in which a system, for computational
reasons, resists understandable explanation.

I then discuss, by examining some scientific literature, the likelihood for scientific research in
certain areas to incur antimodular emergence, concluding that it is quite likely that some cases
of antimodularity appear, especially in systems biology.

I dedicate the final part of this Introduction to more ample and, possibly, less supported and
risky considerations. First, I sketch a possible metaphysical view that could stem from the
considerations about antimodularity exposed before: I call this view constrained antirealism. It
sees the empirical world we naturally perceive, as well as the world described by science, as
the result of a process of modularity detection, in consequence of which the detected modules
constitute what are commonly known as natural kinds. Given that modularity detection is
constrained by factors of insurmountable computational complexity, and that for this reason
the finding of the best modular description is precluded in principle, it is not likely that the
world’s subdivision in natural kinds corresponds to is best possible subdivision. Full evaluation
of this metaphysical position requires however a wide discussion of a controversial hypothesis,
pancomputationalism, and of variuos positions in philosophy of mathematics, a discussion which
is better left to a subsequent work.

Finally, I take in this chapter some liberty in drawing the possible, alleged consequences on
history of science of a recent and growing recourse to computational methods in science, starting

26 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

with simulation of complex systems: I reflect on the plausibility of simulations as explanations,
especially in cases in which the system is antimodular, and consequently simulation can be
executed, but the underlying dynamical model is unintelligible, because the system is simulated
at a very low-level and a modular, high-level redescription is lacking. I then consider automated
modularity detection, used to find structure in big datasets, based on real cases of data mining
on a corpus of medico-biological literature, in which the automated system discovered important
functional relations which had escaped human examination. Possibly indulging in drawing some
extreme consequences, I conclude by suggesting that this growing use of computational methods
in science could be on the verge of provoking a major paradigm shift in some discipline.

The subject matter of this thesis is multifaceted and not easy to label: being about the conse-
quences of antimodularity, a property of certain systems, on possible scientific explanation of
these systems, it is a work of philosophy of science. Given that the proposed property, antimod-
ularity, depends on certain computational constraints affecting modularity detection, and that I
recommend, in relation with the discussion on computational explanation, an intentional concep-
tion of what computation is, then this is a work of philosophy of computing, in the double sense
of putting certain computational notions to philosophical use, and of proposing a philosophical
reflection on the notion of computation itself. Considered that systems showing antimodularity
are likely to be found amongst biological systems, the long-standing discussion in biology about
modularity, and a host of examples I report from that discipline, it is even a work in philosophy
of biology. Regarding explanation, I explicitly embrace an epistemic position, centered on the
notion of levels of description, which are epistemic devices, so the present work has an epistemo-
logical facet. And, as probably every epistemological position, it has also a metaphysical import,
which I try to sketch towards the end of this chapter. Finally, this dissertation makes use of all
the above mentioned theoretical discussions to shed light on their possible consequences on the
practice of science, broaching the possibility that a major, historical change, possibly a change
of paradigm, is undergoing or on the verge of occurring in science. So, in a sense this is a thesis
of history of science. Although still requiring observation and evidence, I think this historical
hypothesis could give us a hint of the magnitude of the impact that the widespread adoption of
computational methods has had or could be about to have on science as we know it.2

1.1 Modularity

I begin this clarification of the notion of modularity with a historical sketch: modularity appears
to be a basic and widespread concept, that has probably been conceived more than one time, in
partially independent and diverse theoretical and practical fields since long time. Nevertheless,
modern philosophical reflection upon it began in the second half of twentieth century, with the
especially relevant contribution of Herbert Simon. Working in the field of econometrics, he came
to a conception of modularity under the form of hierarchical nearly decomposable systems3, that
is, systems that can be seen, at least as a first approximation, as recursively, hierarchically decom-
posable into sets of robust, partially independent, subsystem. This view on near-decomposability,
which has subsequently influenced many other authors in different fields, is the basic idea which
inspires my proposal on modularity.

2 An in-depth analysis of the notion of hierarchical modularity and antimodularity, as well as a host of
considerations regarding the epistemological implications I just mentioned, are conducted in the main chapters to
follow. I am going to give here a shorter survey of the main contents of the work. I advise the reader that, in what
follows, I will quite often make use of the terms “modularity” and “system” instead of “hierarchical modularity”
and “complex system”, leaving to the context the task of disambiguating their meaning.

3 See the seminal Simon (1962).

1.1. Modularity 27

In this work, I examine a possible conception of modularity in complex systems, and explore
the consequences of the presence of modularity or of its absence (antimodularity) on the expla-
nation of the behavior of such systems. Actually, I do not apply the concept of modularity to
the actual, real systems, but to their descriptions, and to re-descriptions of descriptions, where a
(re)description is understood, preferentially, as a computation taking a description and processing
it in order to yield another description. Taking a widely epistemic stance, if not a fully antirealis-
tic one (a position which will be better explained in section 1.5.1 of this introduction), along the
lines of Cory Wright and William Bechtel’s epistemic position on mechanistic explanations4, I
consider scientific explanations as epistemic devices, based on descriptions of phenomena, related
to human communication, and requiring at least a minimum degree of cognitive intelligibility.
Accordingly, I am interested in defining modularity as a feature of descriptions, which, if present,
allows for certain comprehensive types of explanation. While section II is dedicated to a thor-
ough exposition of modularity and other involved concepts, I give here a schematic explanation
of what I want to propose.

1.1.1 Modularity in complex systems
Proceeding along the lines expressed above, I try to define the property of modularity in complex
systems, as the possibility for a system of this kind to be described as a set of loosely related mod-
ules, that is, a set of well-defined, robust subsystems, with internal parts highly interconnected,
each subsystem partially independent from the external context, being only weakly connected
to other subsystems. I extend this view of modularity to that of the full hierarchical description
of a system in terms of “higher” and “lower” levels of description, each of which is constituted
by modules, and where, except for the lowest level, each of the modules at one level is a macro-
module, that is, it can in turn be seen as internally characterized by a modular organization
of micromodules, and so on recursively. As said, all of this concerns descriptions, not sets of
real-world objects (this is in line with the essence of an epistemic view).

While the macro/micro modularity distinction is of course dependent on the choice of a particular
level of description, the point to highlight here is that the whole hierarchical modular description
turns out to depend, due to the definition itself of modularity, on the observer’s choice of a specific
significant relation between the elementary parts of the system, and this precisely because of the
way the concept of module is defined: a module is a subset of the parts of a whole that are related
to each other in a stronger way than how they are related to parts external to the module they
are in. Recognition of a subset as a module requires thus that a relation between parts is taken
into consideration first, and, depending on which specific relation is considered, the identifiable
modular structure can change.

This definition of hierarchical modularity of course presupposes that a complex system is com-
posed of distinguishable, related, elementary parts, and this in turn is due to the choice of an
atomic, elementary description of the system: the choice of the set of parts and that of the
relation holding between them amounts to the choice, on the part of the observer, according
to her interests, of what I would call a preferred description of the system. Usually, there is
a “natural” lowest-level description of a system in terms of elementary parts, often suggested
by physical properties of the system combined with the researcher’s interests: for example, in
biology a tissue is naturally described as composed of cells, a cell is naturally described as a
complex system composed mostly of interacting macromolecules, and in social sciences a society
is naturally described as composed of individuals. The point to highlight is that hierarchical

4 An epistemic position opposed to an ontic conception of causal explanations. See section 1.1.9, 1.4.3, as
well as Bechtel & Abrahamsen (2005) and Wright (2012).

28 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

modularity is relative to such a choice, depending especially on the choice of the relation holding
between the system’s elementary parts, which usually is a less constrained choice than that of
the parts themselves. For example, in a society we can consider affective ties between individuals,
or, alternatively, we could choose relations of subordination. These two different descriptions of
the system would most probably result in different hierarchical modular descriptions, because
a module is defined as a subsystem of highly interconnected elements weakly connected with
the surrounding environment, and this “connection” is precisely the relation between elementary
parts considered in the chosen preferred description of the system: in the example cases, one
relation is the relation of affective tie, the other that of power influence.

1.1.2 Modularity, decomposability, and economy of description
Modularity manifests as the possibility of decomposing a system5 into recognizable, sufficiently
defined subsystems, each one composed of parts which are more strongly related to each other
than to parts belonging to other modules or to the external environment. It is the presence of
these variations in strength of the relations holding between couples of parts of the system, which
allows for the recognition of modularity: if all parts were fully connected to each other, modules
would not appear, because a module is (informally) defined as a subsystem whose strength
of connection with the rest of the system is lower (on average) than that of the connection
between the module’s internal parts. As noted above, the resulting modularity is relative to
the specific relation between low-level parts which we are taking into consideration. This is a
conception quite similar to the original one by Herbert Simon, that of near decomposability. Near
decomposability allows the original system to be represented as a set of connected subsystems,
and this decomposition can be reiterated until the obtainment of a full hierarchical description.
The crucial point is that the original system, composed of its elementary parts, is thus describable
in a high-level manner, under the form of another system whose parts correspond each one to
one of the original system’s modules. So, the high-level description turns out to be simpler
than the low-level one, because, in the former, entire groups (the modules) of low-level parts are
represented as single high-level parts, and so the parts of the higher level description are fewer in
number than the low-level ones. If the system we are describing this way is static, like for example
the list of the members composing the personnel of an organization, the high-level description
appears usually more economical and perspicuous than the original list. The typical example is
that of organizational charts. In an organizational chart, each group of persons working in the
same office is represented by a single item, labeled with the name of the office. The office name
represents the aggregate name of the group of persons working in the office.

1.1.3 Modules as repeated similar high-level parts
There is a further possible improvement in the economy of description of a complex system if
it is possible to detect in it more subsystems which end up being identical or so similar to be
possibly considered as the repetition of a single template. In this case, apart from the economy of
description due to aggregation mentioned in the preceding section, even the modular description,
which would comprise more than one identical modules, can be simplified by substituting every
occurrence of these modules with a reference to the common template, which is then necessary to
describe only once. This form of modularity is especially useful in engineering, and it is essentially
at the basis of the design of complex artifacts, which are usually composed of identical or almost
identical standard parts, occurring in multiple copies.

5 Of course, with “system” here I mean a description of a system. In what follows, I will often use the term
“system” simpliciter to mean its standard description, usually the “preferred” one.

1.1. Modularity 29

1.1.4 Structural and dynamical modularity
It is easily conceivable that modularity can not only concern the structure of a system, but also
its dynamical functioning: it is conceivable, for example, and even obvious, that modularity
in the structure of a computer program (whose structure is a list of instructions) brings about
modularity in its dynamical execution, because a computer program is not only a list of static
instructions, but it is supposed to be executed, so modularity of the list should be reflected in
the program’s dynamical modularity.

Considering the relation between structural and dynamical modularity, this turns out to be
not always a simple relation: the structural and dynamical aspects can be associated but also
decoupled, albeit in most cases of dynamical systems their modular physical structure induces
a form of modular dynamical functioning, given that in dynamical systems the dynamics is
conducted on the system’s predefined structure and it is thus constrained by it. The relation
between structural and dynamical modularity is not however completely plain and in section 6
of this dissertation I will more deeply consider and discuss it.

1.1.5 Near-decomposability and Aggregability
A form of dynamical modularity first proposed in the early ’60s by Herbert Simon and Albert
Ando6 derives from the system’s near decomposability, and specifically from near-decomposability
of the mathematical model describing the system’s dynamics. This mathematical model is usually
a recurrence relation, or a system of recurrence relations, in which the state of each elementary
part of the system is represented by a variable: this equation represents an update function,
with time as the independent variable, which determines how the state of the system’s parts
varies as time flows, and thus it is a mathematical model of the system’s dynamics. In a system
which is nearly decomposable in Simon’s sense, the variables of this equation, which can be in
great number because they represent the elementary interacting parts of the system, can be
as well subdivided (modulo a certain approximation) into a partition of subsets of variables,
each subset containing variables which influence variables inside other subsets only weakly: this
corresponds to the fact that in a nearly-decomposable system, by definition, the interaction
between certain groups of parts (that is, between the modules) are only weak. This way, each
module’s dynamics can be considered as evolving in time semi-independently from the dynamics
of the other modules, and, accordingly, the equations describing these semi-independent dynamics
turn out to be semi-independent one from the other. These equations governing semi-independent
groups of variables can then be considered functional modules, a modular re-description of the
original mathematical model describing the system’s global dynamics. In nearly decomposable
systems, their modularity determines also a kind of dynamical, or process modularity, under
the form of a decoupling of temporal dynamics between parts of the system: dynamics inside
modules is faster than the dynamic of interactions between modules.

Given the above conditions, in certain favorable cases which depend on the form of the modular
equations, the system’s global dynamics, originally described by the global update function, in
which the state of every elementary part is described by a single variable, can be, modulo a certain
amount of accepted approximation, further re-described under the form of another, simpler global
update function. This update function is simpler than the original one, because in the new
update function each variable represents an aggregate value of all the variables contained in each
of the functional modules described above: the number of variables which must be taken into
consideration to model the global dynamics of the system is thus reduced. When this condition

6 Simon & Ando (1961).

30 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

holds (not every dynamical system is aggregable), the system is said to be aggregable, and this
is evidently another form of economy of description, in this case economy of the mathematical
model, allowed by the presence of modularity. The price to pay is an amount of approximation
which depends on the fact that, in order to successfully aggregate the system’s dynamics, certain
interactions between parts of the system whose strength falls below a chosen threshold, are
considered as null. The approximation could end up as being unacceptable in non-linear systems,
where long-term behavior of the simplified description could diverge too greatly from the actual
behavior of the system. The point to highlight is that, even here, choices on the part of the
observer are involved: the choice of the preferred description (which, however, in many cases,
is already given), and a choice about the approximation, acceptable or not depending on the
observer’s goals.

A quite important problem which affects aggregability is that the latter has turned out to be a
computationally unfeasible task: there are proofs, in Kreinovich & Shpak (2006), and Kreinovich
& Shpak (2008), that aggregability, and even approximate aggregability, already in linear sys-
tems, is NP-hard. This means7 that there is no general algorithmic method that, applied to a
mathematical model of the system’s dynamics, can always produce in a feasible time a plausible
aggregate, simplified version of the model, for models with a big enough number of variables.
In other terms, this means that modularity detection in the dynamical model of a complex sys-
tem is a computationally unworkable task, and so that it is not to be expected, in general, that
dynamical modularity can be found with a general method.

Nevertheless, aggregation can in many cases be found more easily if we have some prior knowledge
which can guide us in the partitioning of variables into semi-independent subsets. For example,
in the case of genetic networks, we could know on empirical grounds that some group of genes
always co-express, and so the variables representing these genes can be grouped together. This
could simplify a lot the task of finding a good aggregation, a task which in principle is, as said,
too demanding.

1.1.6 Modularity in discrete dynamical systems
There are complex cases in which the structural and the dynamical form of modularity are not
easily separable, because some high-level structure of the system, itself “emerges”8 from the
complex low-level dynamics of the system. This is typical of certain complex discrete dynamical
systems, such as certain boolean networks, or some cellular automata. While I dedicate some
sections of chapter 5 to explain the basics of discrete dynamical systems, and more specifically
of a subclass of them, the so-called cellular automata (CAs henceforth), a very short overview
can be given here: such systems are composed of a number of simple parts, each of which, at
any given time, happens to be in a particular state, chosen inside a finite set of possible distinct
states. It is customary to think of each distinct state as a symbol, and to consider the set of
possible symbols as an alphabet (think, in the simplest case, of the 0 and 1 symbols). Not only
symbols are discrete, but so is time: in these discrete systems time proceeds by distinct timesteps,
which we can call t1, t2, and so on. At any given time, the set of the states into which all the
parts of the system happen to be, constitutes the global configuration of the system. The states
of all the parts of the system are synchronously updated at each successive time step according
to some deterministic rule, a rule which can be the same for all the parts of the system (as is
the case in CAs), or different for each part. At a conventional initial moment, let’s call it t0, the

7 See section 1.3.
8 I use the term “emergence” here in an intuitive way, albeit this will be discussed briefly later on and, more

deeply, in the following chapters.

1.1. Modularity 31

system is in the initial configuration. The system’s evolution is the sequence of successive global
configurations it reaches as time goes, starting from the initial configuration. Typical classes
of such systems are, as said, CAs, and a more comprehensive class, that of boolean networks.
The dynamics of such evolution can, for certain systems, be extremely complex, in some cases
demonstrably equivalent to the computational power of universal Turing machines, which are
deemed to be9 the most powerful class of computational systems. For this reason, the behavior in
time of complex systems is, in general, quite difficult to predict, and, in the case of Turing-level
capabilities, it is in principle algorithmically undecidable in general10.

A form of modularity can be induced or appear in certain discrete dynamical systems, either by
imposing on them a specific initial state, or, in some cases, by its spontaneous emergence in the
system after a certain time along its evolution, regardless of the specific initial configuration: a
phenomenon which is a form of self-organization. Modularity in this sense amounts to the fact
that certain subsets of the global configuration of the system come to be partially, or totally,
frozen after a certain time, that is, they come to constitute unchanging or little-changing parts
of the configuration, this way partially isolating other subsets of the configuration, by hindering
the spread of influence from each of these subsets to the others. This, implicitly, imposes a
virtual high-level structure above the original low-level structure, a superstructure which can be
seen as a set of dynamical modules (the unfrozen parts of the configuration) loosely connected
with each other (by means of the residual connection paths which are not interrupted by the
frozen parts). For an example of a discrete network with high-level modularity appearing during
its evolution, see fig. 1.1.

In another, slightly different manner, self-organization can appear, especially in CAs, as the
emergence of highly localized, partially robust, well delimited, only partially changing subcon-
figurations of the global configuration, the so-called gliders, which appear, as it were, to move
across the system’s configuration. An example is in fig. 1.2.

1.1.7 Modularity in computational systems
Being a form of discrete dynamical system, a computational system can of course exhibit mod-
ularity. Common real-world universal computers are highly modular machines already at the
so-called “hardware” level. But another very important form of modularity concerns computer
programs. A program is basically constituted by a lists of instructions which the computer hard-
ware “executes” step by step. Of course, such a list can be devoid of apparent modularity, or
it can instead be structured by the programmer in an obviously modular way, by subdividing
it into disjoint sublists, each of which contains mostly instructions concerning only a limited
set of variables internal to the sublist, except for an “input” and an “output” set of variables
which are accessed also by instructions in other sublists. This way, each of these sublists can
be considered a module, and the limited and controlled transfer of information between different
modules is realized by the input/output variables, which are separate sets of variables that are
the only ones to be accessed and manipulated by parts of the program external to the module:
such a module can be considered a “black box” with a limited set of input and output lines. This
way, the typical property of modules is realized: by considering as the chosen relation between
parts of the list of instructions the relation between an instruction and a variable it acts upon,
it can be easily seen that a sublist of instructions whose internal variables, those not included
in the input and output sets, are of mostly internal use, and are less often or (better) never
manipulated by external disjoint sublists, can be considered a module, endowed with internal

9 Taken the Church-Turing thesis for granted. For an explanation, see the Appendix, section 17.3.
10 As a consequence of the undecidability of the Halting problem. See section 17.2.6.

32 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

Figure 1.1: a partial evolution in time of a discrete network. Time flows from top to bottom, each row
of pixels representing the configuration of the system at each timestep. Each pixel represents the state
of one of the elementary parts of the network, its nodes. Vertical thick lines, black or patterned, which
can be distinguished in the picture, are “frozen” subsets of the configuration. They induce a form of high-
level modularity, by acting as more or less impenetrable “walls”, this way rendering the system nearly-
decomposable into several independent subsystems. (Image taken from Andrew Wuensche’s DDLab Gallery,
http://uncomp.uwe.ac.uk/wuensche/gallery/ddlab_gallery.html).

1.1. Modularity 33

Figure 1.2: gliders in a CA, the so-called Rule 54, according to Stephen Wolfram’s classification (see Wolfram
2002). Time flows from top to bottom, each row of pixels representing the global configuration of the system
at each timestep. Each pixel represents the state of one of the elementary parts of the CA, its cells. Above:
the CA sequence of states. Bottom: after having filtered out repeated background parts of the configuration,
gliders appear more clearly, represented during time by straight lines, depicting the progressive relocation of these
subconfigurations inside the global configuration (Image originally from Andrew Wuensche’s DDLab Gallery,
http://uncomp.uwe.ac.uk/wuensche/gallery/r54_filted.gif, modified).

34 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

cohesion and structurally quite independent from other modules. In a non-modular program,
modification of the program on the part of the programmer can result quite difficult to carry out
and control, because a change in a part of the program could affect potentially very distant parts.
By contrast, given the limited connectivity between modules, especially in the case when only
input and output variables are accessible to external modules, a change internal to the module,
and affecting only internal variables, would not spread indiscriminately to other modules, and so
its effects are easier to control. In general, in computer programming, what is sought for is high
cohesion of modules and low coupling between them.

Modularity in the form of recurring similar or identical parts is at the basis of a related form
of modularity of computer programs, compatible with the one sketched above: if more than one
of the above described modules performs the same input/output function, instead of explicitly
reiterating the module in the form of repeated copies of the sequence of its instructions inside
the program’s instruction list, the module can be written in the list only once, and can simply be
invoked repeatedly in different parts of the program, by “calling” it each time with distinct input
configurations, and by fetching possibly distinct output configurations as the module terminates
its execution. Modules seen this way, as callable subprograms, are often called subroutines or
procedures. This way of structuring programs can improve enormously their reliability, because
testing of each procedure can then be done only once, as the complete system is assembled
starting from the already tested modules.

1.1.8 Hierarchical modularity, levels, robustness and validity
I will try to clarify here the importance of a property of modules which I have only mentioned
until now: robustness. Intuitively, for a modular description of a dynamical system, robustness
means that a module at a higher level must endure a certain range of perturbations at the lower
level, maintaining its distinct identity and persisting despite variation of state in its constituting
components. Or, in certain cases, a robust module should remain the same despite possible
substitutions of some of its low-level components. In modular descriptions of networks11, which
are structural modular descriptions, a module is considered robust when it does not change its
identity despite the adding or subtracting of some links from the underlying low-level compo-
nents12.

In dynamical systems, persistence in the face of variations would of course make a module which
can comprise any random set of lower level components a very robust module: it would not
change despite any change at the lower level! But this would be a trivial kind of robustness.
An explanatory adequate dynamically robust module should be not too evanescent, but neither
should it be fixed in state: it should instead be able to follow, in a coarse-grained manner, the
underlying dynamics. Adequate robustness of modules is essential when producing hierarchical
descriptions of dynamical systems which we want to employ in scientific explanation, because a
high-level module, to be explicative, must be supposed to faithfully track the low-level dynamics,
albeit at a lower temporal and often spatial resolution, or at a lower precision. A module in
the description of a dynamical system, to be useful for scientific explanation, should be robust
to a degree which is chosen by the observer, according to her interests: this is another aspect
of the relativity of hierarchical modularity to the observer’s choice. In any case, a high-level
module should not be too evanescent, otherwise its level of description would be unusable for
explanations, nor should it be too robust, for in this case there would be no explanatory effect

11 See section 1.2.1.
12 Certain network modularity detection algorithms perform this kind of test in order to assess modular

robustness. See section 3.2.1.2.

1.1. Modularity 35

at all: the most robust module in absolute is a completely frozen module, one which stays in the
same state for every possible combination of all the parts of the system, and such a module would
simply constitute a “name” of the overall system (this could be useful in some cases, though, in
order to identify phenomena for the first time).

But, high-level modular redescription in dynamical systems is a complicated matter: the modular
high-level description must not diverge (at least not too much) in its dynamics with respect to the
underlying low-level dynamical evolution of the system at the preferred description. A modular
description must be valid (to use the terminology of scientific computer modeling), in order to
be explanatory useful: it must track with a certain precision, albeit at a coarser-grained scale,
the dynamical evolution of the system. A non-valid modular description is explanatory useless.
This could be better understood with an example. Imagine we run a discrete dynamical system
one time, obtaining a section of its evolution: refer to fig. 1.2. We could immediately devise a
high-level modular representation of this dynamical run by simply taking each one of the diagonal
lines representing a glider trajectory as a module, and then produce a high-level explanation of
the given segment of evolution by mentioning only “glider trajectories” (along the lines of “the
third glider collides with the second and destroys it, continuing toward the leftmost big vertical
column”, and so on. . .). Would that constitute a valid high-level description of the system’s
dynamics? Most probably not, because we would have based our detection of modularity only
on a limited segment of the system’s possible evolution: next time we start the system with
an even slightly different initial configuration, it will with the highest probability produce a
completely different segment of evolution, and the former description would be rendered useless.
The point is, when redescribing such kinds of dynamical systems at a higher level, we must
not seek to redescribe ephemeral, unique patterns of their evolution, but only adequately robust
subsystems which appear in the system’s dynamics with high frequency and regularity: only
this way we could hope to obtain a valid high-level modular description13. In terms which will
be clarified in section 1.4.3, we could likewise say that a module should ideally represent, at
high-level, a function, performed in order to contribute to the overall behavior of the system.
Functional decomposition is not arbitrary: not any arbitrary dissection of a system into random
parts can be considered functional. An arbitrary decomposition, leading to an invalid description,
would not be considered explicative in a functional or mechanistic way.

1.1.9 Modularity and explanation
It appears that modularity is linked with explanation in various and fundamental ways. Already
Herbert Simon’s first papers on nearly-decomposable systems highlight that the formula repre-
senting the aggregate dynamics14 of a nearly-decomposable system is simpler than the formula
of its original dynamics, and this means that aggregability produces economy of description.
Since a scientific explanation of the system’s dynamics (at least a deductive-nomological type of
explanation15) would surely employ this formula, this achieves economy of explanation.

In general, modularity should allow for a form of coarse-graining, understood as the operation
of taking a complex system represented as a set of many parts, partitioning this set in disjoint
subsets, and considering, in place of the original system, another set in which each part corre-
sponds to one of the disjoint subsets. This is basically the same operation, whether effected

13 It can be objected that robustness of high-level modules can be obtained by mapping in a complex and non
immediately evident manner heterogeneous sets of ephemeral low-level subconfigurations to high-level modules.
This, I think, is not a trivial objection, especially given the importance I ascribe to the relativity of modularity. I
will examine this question, which has profound implications, in section 14.5.2.

14 See section 1.1.5.
15 See section 14.2.

36 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

on sets of variables of an equation, as in aggregation, where it brings dynamical modularity, or
on a network, where the original representation can be substituted with a network with fewer
nodes, or in the case of functional and mechanistic explanations16, where a group of interacting
parts or actions can be seen as a whole function, or mechanism, and a group of mechanisms can
be seen as a single super-mechanism, whose parts are the simpler single mechanisms. This in
a way holds also for modularity in computational systems, where a list of instructions can be
rewritten in a higher-level language in which each single high-level instruction corresponds to
an entire sequence of lower-level ones: moreover, that of a high-level programming language is a
very typical example of coarse-graining. In each of these cases economy of description is achieved,
and arguably, understandability of the explanation is greatly eased.

Another form of economy of description is attained in certain modular descriptions when more
copies of a single recurrent module can be substituted by a single citation of the general model
of that module, a form which, in computer programs, corresponds to calling the same subroutine
from different points of the program.

Moreover, considerations of economy or intelligibility aside, modularity is necessary to produce
certain types of explanation. Robert Cummins’ analytical explanatory strategy, that we will
touch upon in section 1.4.3 along with mechanistic explanation, explicitly pleads for a hierarchical
decomposition of the system’s functioning, in order to explain it. Of course, this decomposition is
possible just in the case some form of functional modularity is present in the system, that is, when
the modules to be sought for can legitimately be considered functional modules. Similarly, the
idea of a mechanistic explanation seems to require the finding of a coincidence between two kinds
of hierarchies, that is between a structural and a functional description of the system, at least in
the conception of Mechanism put forth byWilliam Bechtel and his group: for these authors, which
do not see mechanistic explanation as merely reductionistic, it is essential that the explanation be
multilevel, and this corresponds to a hierarchical functional-mechanistic description of the system.
Embracing an epistemic view of explanations17, these same authors quite naturally highlight also
the importance of the cognitive intelligibility of explanations, and this can be achieved by the
modularity of the descriptions employed in explanations.

So, in the first place, it seems that at least explanations of a certain kind, namely mechanistic or
functional explanations, require modularity, even when neglecting issues about the intelligibility
of these explanations.

But, hierarchical modularity allows also for multilevel explanations which certainly enhance
comprehension. Given an appropriate mechanistic hierarchical decomposition, a system can be
described at any desired level of description, with different results on the intelligibility of the
explanation: the more abstract, coarse-grained levels allow for a very simplified explanation,
which usually induces better understanding, while the choice of proceeding down to lower, more
detailed levels, enhances the information on the system conveyed by the explanation, possibly
at the cost of understanding: the most detailed possible explanation is the one which describes
the system in terms of the bottom-level entities18, and, in many cases, the sheer amount of
information contained in such a description could hinder its intelligibility.

16 See section 1.4.3.
17 See section 1.4.3.
18 Bottoming out itself, which corresponds in my terminology to the reaching of the preferred description, is

usually a matter of choice or convention, also according to Bechtel and his co-authors. See sections 1.4.7 and
11.1.5.

1.1. Modularity 37

1.1.10 Some example applications of modularity in real-life scientific
research

I will concentrate here on some brief considerations about the importance of modularity in
biological thinking and researching, because biology is one of the fields in which modularity has
more been at the focus of attention in recent times. An obvious observation is that organisms are
undoubtedly modular at many levels: they are, in a biological view, roughly composed of systems,
organs, cells, macromolecules. It is less obvious if modularity holds at certain intermediate levels
which can be seen as complex systems, comprising many parts: for example, are the genome, the
proteome, or the metabolic network modular?

So, a first question to pose is: does evolution produce modular architectures and dynamics in
organisms? And, if this is the case, has modularity evolved by natural selection or for other
reasons? Outside the possible empirical study of this problem, some a priori considerations have
seemed capable of illuminating it, at least since Herbert Simon’s times. There is a number of
arguments pointing to the conclusion that natural selection should actually conduct to modular
organization19, all these arguments basically stemming from the following line of reasoning: in a
non-modular, completely integrated organism, in which each part potentially affects each other,
evolutionary change in one part could affect and possibly disrupt functions performed by the
other parts, and, given this, the number of evolutionary attempts potentially needed to obtain a
still functional organism after a change in one of its parts would be enormous, so it is arguable
that, if this were the case, natural selection would not have had the time, despite the geological
scale of the actual evolutionary times, to bring about the evolution of complex systems. This
is more or less the general argument for evolution of modularity started in the ’60s by Herbert
Simon20 and adopted, with variations, by many subsequent authors. Starting with works by
Stuart Kauffman in the early ’90s, an alternative (but in my opinion not so dissimilar, see
section 7.1.2) argument has appeared, which, while affirming modularity of biological systems,
denies its direct origin by natural selection: modularity is instead a self-emergent property of a
certain class of dynamical complex systems, a property coinciding with the “freezing” of some of
their dynamical subsystems (see above, section 1.1.6), which arises not by direct selection but in
virtue of the intrinsic, mathematical features of these systems21. The genome (seen as a complex
of interacting parts, that is the genetic regulatory network) of an organism can, according to
Kauffman, be considered, with some approximation, belonging to this class of systems endowed
with a tendency to make modularity emerge spontaneously, a class which turns out to be the
class of most evolvable systems: natural selection’s role would have been that of meta-selecting
the class of evolvable systems on which, then, to operate its finer, analytical selective role,
as classically conceived in Darwinism22, and this class is the class of complex systems which,
spontaneously, show some form of modularity.

Thus, it seems, all considered, that there are reasons for which evolved biological systems should
have preferentially a modular organization. Many of these systems are so complex and com-
posed of so many parts, that detection of their functional modularity, allowing their multi-level
explanation, would be of great help also in understanding those systems.

19 Arguments better analyzed in section 7.
20 With the famous parable of the two watchmakers, see section 7.1.1 and, of course Simon (1962).
21 This kind of explanation supplied by Kauffman can be seen as a form of topological explanation, along the

lines of the model recently proposed by Philippe Huneman. See section 1.4.5 and Huneman (2010).
22 I take the occasion here for a disclaimer: even when talking of natural selection in intentional terms, I

am not advocating considering it as an intentional subject. This is only, obviously, a useful “façon de parler”,
widespread in philosophy and biology.

38 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

In biology, since the late ’90s, some proposals on the possibility of seeing complex biological
systems as composed of functional modules have been directly inspired by the engineer’s view-
point on artificial systems, especially electrical circuits: among the most prominent proposals
about this view are McAdams & Shapiro (1995), and Hartwell, Hopfield, Leibler, & Murray
(1999)23. This view has been applied to genetic and metabolic networks, where the high speci-
ficity of electrical connections between components of an electronic circuit is substituted by the
specificity of the relation between a protein and its ligand, and the whole biological network is
being represented as a digital circuit , which is equivalent (with some differences, taking into
account signal propagation delays) to some boolean network. In these circuits, modules are the
separate instantiations of standard components, connected by wiring, and the complete digital
circuit can be viewed as a hierarchical structure, in which each level is describable as a circuit
of interconnected, modular, repeatable parts, which enable high-level digital modules to realize
virtually any digital circuit, even ones capable of being viewed as computational systems. See
fig. 1.3 for an exemplification of the hierarchical view of an electronic digital circuit.

The modular parts can be, in the case of genetic networks, single genes and, at a higher level,
complex of genes like the operons of bacterial genomes. Such higher level components would
have a functional role, as is the case, for example, of an operon, which controls the produc-
tion of a complex of enzymes carrying out a specific metabolic function. A possible schematic
representation of a “genetic circuit” is reported in in fig. 1.4.

Hartwell et al. (1999) proposed that the linguistic terms (“amplification”, “error correction”,
“coincidence detection”, and so on..) corresponding to mid and high-level functions performed
by modules at intermediate hierarchical levels, come to constitute a vocabulary of terms, essential
for the functional description of biological systems.

1.2 Algorithmic detection of modularity

I examine here known algorithms for modularity detection in certain classes of complex systems,
that is, algorithms which, given a complex system and a preferred elementary description of it,
try to produce a hierarchical modular description of the system.

1.2.1 Modularity detection In networks and computational complexity
I take into consideration, specifically, algorithms for modularity detection in networks, because
network models have emerged as one of the preferred ways of representing complex systems,
especially biological systems, in recent research. A network can in general be seen as a set of
parts, its nodes, connected to each other in various ways through links (a possible graphical
representation of a network is fig. 1.5). There are two main, not incompatible, possible forms
of modularity in networks: community structure and network motifs24. While the first is based
on the typical conception of modularity as weakly connected robust subsystems, the second
coincides with the idea of modules as repeatable standard parts.

In chapter 3 I make a detailed survey of the main proposed methods for detection of the two
types of modularity, with a special attention to their computational feasibility: it turns out
that most of the best algorithms for modularity detection in networks are computationally very
demanding, and there is also a theoretically established limit on their accuracy. To sum up,

23 For a meta-reflection about the methods of biological research, modularity, and the engineer’s approach, see
also Lazebnik (2002).

24 See section 3.

1.2. Algorithmic detection of modularity 39

Figure 1.3: image A: a high-level diagram representing a digital circuit. Except for a few single logic gates
(U4A and U4B), most components are higher-level ones, and can be considered modules performing higher-level
functions. In this case, each of the components labeled U2A, U2B, U3A, U3B is a so-called J-K flip-flop, which
is a type of 1-bit memory cell. Each flip-flop can be seen (image B) as internally composed of a certain number of
simpler elements, namely NAND logic gates. Each of the two-input NAND gates labelled as G1 and G2 in image
B are internally structured as a circuit composed of transistors and resistors, as in image C. Of course, a descrip-
tion at level higher than that of flip-flops is plausible: for example, the whole circuit of image A can be defined as
a module performing the function of a single digit counter, which counts the impulses sent to its input line and
displays the counted number in the display labeled DCD_HEX. As a module, this circuit can be employed as
a standard part in other, larger circuits. (Images A, B and C taken from Wikipedia Commons, respectively
at http://commons.wikimedia.org/wiki/File:4_bit_counter.svg, http://commons.wikimedia.org/wiki/File:JK-
FlipFlop_(4-NAND).PNG and http://commons.wikimedia.org/wiki/File:TTL_npn_nand.svg).

it has been proved that the automated finding of the best modular description of a system
is hindered by an insurmountable computational time complexity: the task is NP-complete25.
Moreover, it turns out that most algorithms for simply approximating the optimal detection of
modularity in networks are themselves highly computationally intensive. In general, it appears
that the algorithmic detection of network modularity is affected by a trade-off between complexity
of the task and dependability of the modular description produced, and for this reason the
identification of approximate but acceptable hierarchical descriptions is algorithmically possible
only for systems of limited size.

25 See section 1.3 and the Appendix, section 17.4.

40 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

Figure 1.4: schematic representation of the genetic circuit generating the λ phage lysis-lysogeny dynamics. (The
phage is a virus affecting bacteria. Image taken from McAdams & Shapiro 1995, p. 652).

1.2.2 Modularity detection In discrete dynamical systems and
computational systems

In accordance with the considerations on dynamical modularity sketched above, I proceed to
consider forms of dynamical modularity in some kinds of discrete, computational dynamical
systems. The possibility of detection of dynamical and computational modularity in these kinds of
systems, which can often be considered computational systems at the Turing machine level, turns
out to be plagued by algorithmic undecidability or, at least, by hardness or high computational
complexity. A first introductory discussion on this question is to be conducted in what follows,
and more thoroughly in later chapters.

1.2.3 Some Applications of modularity detection in real-life researches
Given that functional and structural modularity, even if conceptually distinct, are often related,
methods of automatic modularity detection in networks, which apply to the network structure,
could, if applied to network representations of a biological system, yield an immediately functional
modular description. The frequent coincidence between structural and functional organization in
biological systems is confirmed by many works, notably, among others, by a series of researches
by Zhou and Lipowsky26, in which one of the best methods for modularity detection in networks
is applied to the protein-protein interaction network of yeast, producing a modular description

26 See Zhou & Lipowsky (2004) and Zhou & Lipowsky (2006).

1.3. Computational hardness 41

Figure 1.5: a network with community structure. In this picture, colored discs surround the communities, which
show high density of intra-module links, while external, inter-module links, are more sparse.

comprising 449 modules, which turn out to correspond to already well-known functional subsys-
tems, and which are components of an even higher-level modular description. Another important
work highlighting coincidence between structural and functional modularity in biological systems
is Guimerà & Amaral (2005b), which applies to metabolic networks an algorithm for modularity
detection that identifies modules and then assigns them an alleged functional role based on struc-
tural intra and inter-module connectivity. The identified functional modules have roles which
turn out to to be correlated quite well with the actual biological functions that the metabolites
corresponding to each module actually fulfill in the whole metabolic network. See fig. 1.6.

1.3 Computational hardness

Computational hardness is a pragmatic limitation of certain computational tasks, which basically
consists in the fact that they cannot possibly be brought to completion if the size of their input
data exceeds certain limits27. This means that, in general, the computational task in question,
while executable in principle, could be never brought to an end in human, or even astronomically
feasible time, if the size of the input exceeds a certain magnitude. This is typical, for example,
for problems which have execution time proportional to an exponential function of their size:
even for small sizes of their input, their completion time can grow to unfeasible values, because
exponential functions grow very steeply. So, even if computational hardness is not a limitation
in principle, it certainly is an unsurmountable limitation from a pragmatic point of view. The
most typical classes of computational complexity which can be considered hard are the classes
of the so-called NP-complete and NP-hard algorithmic problems.

27 This is time complexity of the program, which is not the only type of computational complexity. Other
types of complexity and a better treatment of all the subject can be found in section 17.4.

42 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

Figure 1.6: high-level modular representation of a metabolic network. (Image taken from Guimerà & Amaral
2005b).

Some algorithmic tasks which are not to be considered formally hard, can nevertheless be too
computational demanding to be of practical applicability. This happens for example when a task
requires a number of steps which is proportional to some integer power of the input size: for
example, n4, where n is the input size. In these cases, given a sufficiently big input, the program
would take certainly too long to complete for it to be of any practical use.

Computational hardness and computational practical expensiveness are two basic notions upon
which my proposal about antimodularity hinges, as we will see in next section.

1.4 Antimodularity

Given all the above results about computational hardness of algorithmic detection of modularity,
I propose to define the property of antimodularity in general, as the impossibility of obtaining,
by means of algorithmic modularity detection, a useful, valid, hierarchical modular description
of a system. More precisely, a system shows antimodularity when its most feasible and faithful
hierarchical description, yielded by algorithmic means, is too approximate to be a useful high-
level description of the system anyhow, or it is even completely invalid. In these cases, the only
possible hierarchical description comprises only the two trivial hierarchical levels: the level of the
whole system and the level of its single, lowest-level parts: in other words, antimodular systems

1.4. Antimodularity 43

are systems which, intuitively, can be explained by decomposition at one level only, the level of
their elementary, finer parts.

Antimodularity is due to failure of the application of algorithmic methods for modularity detec-
tion, and this in turn can be possibly blamed on two conditions:

1. No intermediate-level modularity can be reasonably supposed in the system, given its
preferred description. That is, roughy stated, the system so described is actually not
modular. I call this case intrinsic antimodularity, meaning that antimodularity is intrinsic
to the given preferred description, no matter how accurate the algorithm for its detection is.
This situation can occur when the system’s parts, according to the preferred description,
are hyperconnected: for example, in a regular network each node is connected to all the
other ones, and so no modularity can ever show up.

2. Regardless of the fact that an actual modular structure is present in the system’s preferred
description or not (like in point 1), antimodularity arises because, given the high number
of parts composing the system’s preferred description, the modularity-detection algorithm
ends up being computationally too expensive to be brought to completion, either because it
is computationally hard28, or, although formally not hard, because it is too computationally
expensive to be brought to an end anyway. I call this last reason simply antimodularity (of
course, intrinsic antimodularity is a case of antimodularity).

The reason behind this antimodularity/intrinsic antimodularity distinction is that, while anti-
modularity could in some case be eliminated by improving the modularity-detection algorithm,
intrinsic antimodularity would still hold in any case, being not due to the inaccuracy or to the
computational cost of the algorithm employed, but to an objective feature of a system, where,
due to the uniform distribution across the system of the strength of the relationship which re-
lates parts, modularity, relative to that chosen relationship between parts, is actually, objectively,
absent.

It could be useful, once in the presence of antimodularity, to have a method to tell if it is
intrinsic antimodularity, or if modularity is present, but it cannot be detected. Being due to
the statistical distribution of the relationship between parts, intrinsic antimodularity, at least
structural intrinsic antimodularity, should be reasonably easy to detect, because intrinsic absence
of modularity can be revealed by statistical surveys of the distribution of certain properties across
a systems. So, it should be quite easy to tell antimodularity and intrinsic antimodularity apart,
at least in certain cases. There are, however, exceptions which will be discussed in section 13.2.

In the light of what we have seen till now, it appears that modularity detection can, in sufficiently
large systems, be actually prevented by problems of computational cost, or even computational
hardness, so a system can be pragmatically considered antimodular, even if in principle it pos-
sesses some modularity, which, however, we are practically unable to automatically detect. An
antimodular preferred description of a system does not possess, at least as far as we can know,
any valid high-level modular description, that is, a description whose parts are endowed with a
sufficient degree of robustness.

The pragmatic aspect of antimodularity, anyway, should not be downplayed as merely pragmatic:
it is a pragmatic impossibility to bring to completion in a feasible time a computer program, but,
especially when the computational hardness of an algorithm has been mathematically proved,

28 See former section.

44 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

this pragmatic hindrance becomes something more compelling, assuming the cogency of a logical
law: there cannot be any hope of rendering the algorithm for optimization of detected modularity,
which is proved to be computationally hard, more computationally feasible. It does not matter
how we try to improve a computationally hard algorithm, or improve the power of the system
on which it runs: its execution time will, at least in certain cases, always overcome any possible
improvement in speed. Optimization of modularity detection can be probably approximated
in more reasonable times, but the trade off between speed and accuracy, which is typical of
approximated algorithms for modularity detection, associated with the high number of parts of
some complex systems, could make the found modularity excessively approximate or, conversely,
make the detection time of a sufficiently precise modular description excessively high, even if the
approximated algorithm is not, from a formal point of view, computationally hard.

So, antimodularity, at least for what concerns the search for the best modular description, which
has been proved to be an NP-complete task, is a pragmatic but at the same time an objective,
unavoidable property of a system, deriving from computational properties which do not depend
on contingent constraints or on a choice made by the observer.

1.4.1 Antimodular emergence
I propose to call the occurrence of antimodularity in a system a case of antimodular emergence,
and to consider it a form of computational emergence. Antimodularity appears indeed quite
similar to a well-known form of emergence: weak emergence, a notion proposed by Mark Bedau
since the mid-’90s. This is a notion of diachronic emergence related to certain properties of
computational systems. I specifically compare my proposed notion of antimodular emergence to
that of weak emergence, concluding that antimodularity entails, with some qualification, weak
emergence, but that the converse does not hold for all systems: there are modular systems which
are, at the same time, weakly emergent. I outline here the basic line of reasoning about the
relationship between antimodularity and weak emergence, a discussion which will be expanded
in section 13.3.

Mark Bedau (1997) introduces the notion of weak emergence (WE henceforth), which, in its
original formulation, applies mostly to discrete dynamical systems:

Macrostate P of S with microdynamic D is weakly emergent iff P can be derived from D
and S’s external conditions but only by simulation.29

Without dwelling here in an explanation of the terms employed in the above definition, it suffices
here to say that I think Bedau’s definition could be safely rephrased as:

A macrostate is weakly emergent iff it can be derived given the preferred, low-level descrip-
tion of the system and the initial state of the system, but only by microsimulation, that is,
by simulating the system’s dynamics step-by step according to its lowest level description
(that is, its preferred description).

It appears that, under most conditions, which will be better specified later on here and in section
13.3, antimodularity entails Bedau’s weak emergence. The argument is, briefly, this: if a system is
antimodular, then by definition this means that its only valid modular description is its preferred,
lowest level description. This implies that the system is not predictable by means of a high-level,

29 Bedau (1997), p.378.

1.4. Antimodularity 45

modular simulation: because, if it were, that would mean that the high-level simulation, in that
it is capable of predicting the system, represents a high-level valid modular description. But, in
an antimodular system, this high-level modular valid description of the system is excluded by the
definition of antimodularity. So, it can be concluded that the dynamics of an antimodular system
is not susceptible to be forecast by any modular high-level simulation: if no other non-modular
prediction method is applicable, then the only way to know how the system’s behavior will evolve
is by simulating the system at the level of its preferred description, that is by microsimulation.
This last circumstance appears equivalent to the above rephrasing I made of Bedau’s weak
emergence definition. So, it seems that antimodularity → weak emergence. This implication is
not absolutely sure, however, for it depends on the circumstance that an antimodular system,
which is not predictable by any high-level modular simulation, be impossible to predict by any
other non-modular means, too. In section 13.3 I will show how certain antimodular systems could
indeed be predicted by non-modular high-level means, and so result being not weakly emergent,
but I will argue that these systems are probably not very interesting in their behavior, and that
in most interesting complex systems, like those computationally capable, antimodularity entails
weak emergence.

The interesting thing is that the opposite implication does not hold: there are weakly emer-
gent systems which at the same time are not antimodular, systems which have valid high-level
modular descriptions. The system remains weakly emergent even in presence of these modular
descriptions, because such high-level descriptions cannot be used to predict the system (a pre-
diction that, if possible, would render the system not weakly emergent, by definition), but can
be used only to explain the system. This can happen for two possible reasons. First, because
such modular descriptions are too vague, too abstract, too high-level to be used to compute a
dynamical simulation of the system: for example, flow-charts which simply summarily describe
the functional role modules fulfill in the system, without providing enough details to allow for
their implementation. These modular high-level descriptions cannot simulate dynamically the
system, so they cannot anticipate in any way its dynamical outcomes, but can be used to explain
the system, conveying a good explanation. Or, in another case, the reason for the system to be
weakly emergent despite having possible high-level modular redescriptions, is that the system,
even if functionally modular at high level, is intrinsically unpredictable, and this is the reason
for its being weakly emergent. This can happen in computationally universal systems, which,
as a consequence of the undecidability of the halting problem (the well-known property proved
by Alan Turing along with his proposal of computational systems in 193630), possess many dy-
namical properties which are intrinsically unpredictable. Real-world universal computers are
usually systems of this kind: they are highly modular, but potentially unpredictable. So, they
are modular and at the same time weakly emergent.

1.4.2 Antimodularity and models of explanation
After having defined this new type of computational emergence, which is due to the amount
of computational hardness which can be manifested in certain cases by modularity detection
algorithms, I try to draw some possible consequences of antimodular emergence on the possibility
of scientifically explaining systems affected by it. I examine two well-known models of scientific
explanation: the functional-mechanistic, and the deductive-nomological (DN, henceforth). I
then evaluate a more debated model of explanation, computational explanation, and another
type of explanation which has been object of recent scrutiny, the mathematical-topological type
of explanation, a form of explanation adequate to explain certain features of complex dynamical

30 As explained in section 17.2.6 of the Appendix.

46 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

systems. I conclude that antimodular emergence affects the feasibility of the first two types of
explanation, as well as computational explanation, albeit differently, and leaves unaffected the
possibility of topological explanation, even constituting an occasion for this kind of explanation.

1.4.3 Antimodularity and functional or mechanistic explanations
I claim that antimodularity negatively affects mechanistic explanation, a fundamental form of
explanation in biological sciences. A brief detour is in order here to describe what this form of
explanation amounts to.

The term mechanistic explanation usually refers nowadays in philosophy to a relatively recent
model of scientific explanation, put forth since the ’90s by several groups of philosophers of
biology and of cognitive science working rather independently, the most prominent exponents of
the two main lines of inquiry in this field being William Bechtel and his collaborators on one
hand, and Carl Craver and his colleagues on the other31. Leaving for the moment aside the
subtle differences between these two main conceptions of mechanistic explanation32, I base here
on Bechtel & Abrahamsen (2005), which is a standard text in the topic. Bechtel and Abrahamsen
(BA henceforth) give a definition of mechanism as:

A mechanism is a structure performing a function33 in virtue of its component parts, com-
ponent operations, and their organization. The orchestrated functioning of the mechanism
is responsible for one or more phenomena34.

The definition above defines a mechanism as what I have along this chapter called a complex
system, that is, a system composed of interacting parts. The point to stress here is that there is
a functional view involved: the global function, which represents the explanandum, is explained
by describing the organization and interactions of the parts which, by means of their dynamical
“orchestrated” functioning, produce the phenomenon. What is needed, according to BA, to
explain a given phenomenon is then to first identify the parts and operations involved in its
production. To this aim, the system as a whole must be subject to two operations, which BA
call structural decomposition and functional decomposition: the first yields the set of elementary
parts of the system, while the second, which in real-world science is often conducted separately
from the first, identifies component operations. A third, desirable operation is localization, which
consists in linking parts with the operations they perform. This way, a mechanistic explanation
is given, according to BA. This low-level kind of explanation is not always the most desirable,
and, as BA highlight, it is important that a hierarchy of mechanisms be considered, and that
explanation be multilevel. According to BA, a mechanism may also involve multiple levels of
organization, being often part of a higher-level, larger part of a larger mechanism: circumstances
external to a given mechanism can be seen as larger overarching mechanisms, while components
of a mechanism can be seen as mechanisms themselves, recursively composed of subparts.

It seems to me this whole conception of mechanisms could be easily rephrased in terms of
modularity, along the lines of the view which I have sketched till now. The result of functional,

31 The two corresponding seminal works are Bechtel & Richardson (1993) and Machamer, Darden, & Craver
(2000).

32 These differences, especially the most significant, between the so-called epistemic view, which I, along with
William Bechtel, endorse, and the ontic view of mechanisms, supported by Carl Craver, will be discussed in
chapter 10.

33 See section 9.
34 Bechtel & Abrahamsen (2005), p. 423.

1.4. Antimodularity 47

structural decomposition and localization is what I have called the preferred description of the
system: the identification of the basic, lowest level parts which the observer has chosen to identify.
BA do not stress, as I do, the dependence of this description on a choice on the part of the
observer, because they consider implicitly that there are natural preferred descriptions of some
systems, and there undoubtedly are, for example in molecular biology, where the molecules (or,
possibly, atoms) are the most natural elementary parts. The main difference with my view is then
that my conception of hierarchical modularity is more general, comprehensive of non-physical,
functional-only, forms of modularity, like that of computations.

That said, along with the definition of antimodularity, it is easy to show how antimodularity com-
pels to single-level-only explanations, neglecting the need, essential for mechanistic explanations,
of multi-level integration. Antimodularity would limit mechanistic explanation to the level of
description representing the most elementary parts of the system, which is the most numerous
and the most complicated level, and this fact certainly hinders comprehension as well: for large
enough systems, their mechanistic explanation at this level is too complex to be understood by
human beings, and understandability is a quality to be sought for in mechanistic explanation,
according to some accounts, notably the ones by William bechtel and his collaborators. Others,
too, deem intelligibility an essential feature of explanations, for example Petri Ylikoski, which
considers “cognitive salience” an important feature of explanations.

It is evident that a mechanistic explanation tries to answer to “how” questions (“how a phe-
nomenon is brought about?”), by showing the way the complex dynamical functioning of a set
of interacting parts produces the phenomenon. The same question can be answered to, also just
from the functional point of view, and this conception, mainly aimed at characterizing expla-
nation in cognitive psychology, has been notoriously advanced by Robert Cummins. In a way
similar to that of mechanistic decomposition, functional analysis begins with a characterization
of the global phenomenon (the disposition; I will dedicate a discussion to this term of art in chap-
ter 9) taken as the overall function to be explained in terms of its component subfunctions. This
is a typical form of so-called role functionalism, in that the concept of function35 is considered
that of a partial role fulfilled by a subsystem in order to bring about the whole functioning of
the overarching system. Seen from an explanatory point of view, the function of a subsystem
is employed in explaining how the overall function, which is the explanandum, is performed
by means of the organized contributions of its subfunctions, which execute their function in a
programmed activity. This position is quite close to a computational view, and it is completely
compatible with it. Actually, Cummins’ functional analysis is the prototype of the typical ex-
planation of cognitive psychology, which mostly consists of functional explanations, often in the
form of computational explanation, that is, the exhibition of a computer program able to produce
the cognitive phenomenon to be explained.

A more thorough characterization of Cummins’ position is given in chapter 9, where the rela-
tionship between purely functional and mechanistic explanation is also better analyzed. What
I would like to highlight here is that Cummins himself, since his earlier works, as in the sem-
inal Cummins (1975), stresses that recursive functional decomposition until a full hierarchy is
obtained is the strategy to seek for in scientific explanations, especially in biological ones. An-
timodularity would completely hinder this goal, allowing for a two-level only explanation: the
highest one, that of the explanandum itself, and, on the other end of the scale, the lowest level,
that of the most elementary functions.

35 The notion of function is to be examined in chapter 9.

48 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

1.4.4 Antimodularity and the deductive-nomological model
In the classic deductive-nomological (DN) view of explanation, stemming from the seminal work
of Carl G. Hempel and Paul Oppenheim36, explanation is seen as a logical deduction of the ex-
planandum from the explanans, and what counts is validity and soundness of the deduction, with
scarce attention directed to the intelligibility of the explanation: such a concern about under-
standability of the explanation would have been considered, in the historical post-neopositivistic
milieu of the time, an inappropriate trespassing of philosophy of science into the territory of
pragmatical, or worse, psychological aspects of scientific explanation. In such a view, all that
matters for an explanation is that it is a correct deduction. Explanation is seen in this model
as depending on the possibility of prediction of the phenomenon by means of a scientific law.
The explanation itself amounts to the description of the logical derivation of the explanandum
from a group of premises constituted by a scientific law and a set of clauses representing initial
conditions of the system to explain.

For what concerns deductive-nomological explanations, I show that, antimodularity entailing
weak emergence in complex enough systems, DN explanation for a complex antimodular system
could not be recurred to, because, if it could, that would mean that the system is predictable,
and this is negated by the definition of weak emergence itself. To clarify: it is excluded by the
definition of a weakly emergent phenomenon that it can be predicted by means of a law which,
given the initial state, determines in which state the system is going to be at any given time, and
that this law has a mathematical expression which can be analytically solved. As said, this is
excluded by the very definition of weak emergence, which basically states that a weakly emergent
phenomenon (in a discrete dynamical system) is one that cannot be predicted, and that it can be
reached only by performing the step-by-step microsimulation at the system’s lowest level. Given
that my notion of antimodularity, under the circumstances expressed in section 1.4.1, entails
weak emergence, it turns out that a complex enough antimodular system cannot be predicted
by an analytically solvable expression. So, no DN explanation of a complex antimodular system
could be based on such an analytically solvable law.

Anyway, if we take into consideration a specific class of systems, namely cellular automata (CAs),
then a weakly emergent process generated by a CA can in a way be explained by producing a
possibly very long list of steps of its evolution, a list which can be seen as a list of deductive
steps inside a formal logical system, in which the premises are constituted by the CA’s initial
configuration and the CA-rule, which gets repeatedly applied first to the initial configuration
and then to the intermediate configuration obtained at each deductive step. Given that every
CA-rule is, by the Curtis–Hedlund–Lyndon theorem37, local and equally valid in any point of
the CA’s lattice, the form of a CA-rule can in this regard be assimilated to the form of a physical
law, which, as a law, holds universally. Accordingly, by this analogy, the production of this list
of consecutive states of the CA could in a way be assimilated to a long DN explanation, which
must consist of a logical deduction of the explanandum starting from given initial conditions and
a law. Even in this case, human comprehension would be hindered by the potential length of the
list, but, according to the theoretical position of post-neopositivistic advocates of the DN model
of explanation, understanding is an inessential feature of explanations, and it is not required
for a good DN explanation. So, in a way, weak emergence and, consequently, antimodularity,
does not hinder DN explanation, at least in the case of CAs and other systems whose dynamics
follow a universal rule. From this considerations are excluded classes different from CAs, for
example boolean networks in general, whose dynamics can follow locally changing rules which

36 Hempel & Oppenheim (1948).
37 See section 14.2.1.

1.4. Antimodularity 49

are not universal. In these cases, the rule to be employed would be the global update rule,
which, being nonlocal, is usually much more complex than a CA-rule, and, as a consequence,
the list of deductions constituting the DN-style explanation of such systems would be even more
unintelligible.

1.4.5 Antimodularity and topological explanations

I now consider consequences of antimodularity on the possibility of explaining a complex sys-
tem by means of what Philippe Huneman calls topological explanation. Huneman describes
topological explanation as “a kind of explanation that abstracts away from causal relations and
interactions in a system, in order to pick up some sort of ‘topological’ properties of that system
and draw from those properties mathematical consequences that explain the features of the sys-
tem they target.”38. Inspired from mathematical topology, the topological properties of a system
are the properties concerning in a way its “shape” which are invariant under possible contin-
uous deformations of the system. These structural properties must not belong to a material
system, but can be parts of an abstract, mathematical space. In my terminology, I would say
that these topological properties do not concern a system, but a description of the system. Now,
topological explanation consists in explaining features of the system by appealing not to causal
events between its parts, like mechanical explanation would do, but by pointing to some topo-
logical features of the system’s representation in this abstract space. This kind of explanation
is not mechanistic, because it does not specify the particular interactions between parts which
give rise to the dynamical phenomenon: the explanation is specifically based on a mathematical,
topological feature, which does all the explanatory work.

Topological explanation could also be based on the presence of modular structure: This can
happen for example when a topological explanation of the robustness of a network’s dynamics to
local perturbations is given by mentioning that the network has a community structure39: this
modular structure ensures that perturbations remain local or channeled, without spreading indis-
criminately at the same speed on the whole network. On the contrary, intrinsic antimodularity
could produce unbounded spread of perturbations across the network.

All in all, not only it seems that antimodular emergence does not hamper topological explanation,
but it actually turns out that intrinsic antimodularity or its absence could indeed allow for certain
topological explanations.

1.4.6 Explanation and prediction

The possibility, highlighted above in section 1.4.1, that there are systems which are functionally
explainable and, at the same time, unpredictable, an example of which is the class of compu-
tationally universal systems, gives a quite remarkable indication, namely that prediction and
explanation are disjoint endeavors: unpredictability does not render, per se, a system unexplain-
able. This is a curious result, because it proofs, in a way, that prediction is not necessary for
explanation, and thus that the deductive-nomological model of explanation, even if it were free
from other downsides, could not be the all-embracing model of explanation for science in gen-
eral. In science certain explanations are acceptable even if they are not based on prediction:
explanations which are functional, or mechanistic.

38Huneman (2010), p. 214.
39 See section 3.2.1.

50 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

1.4.7 Computation and computational explanation
Before assessing, in the next section, the possible consequences of antimodularity on computa-
tional explanations, it is in order some reflection on what a computational explanation is. Specif-
ically, we will be asking if and when a given system, most often a dynamical system, computes
or not, in order to see if it can be given a computational explanation. To this goal, it seems
inevitable to discuss the notion of computation itself.

Since the epochal work of Turing of 1936, which founded computer science, it can seem at a
first glance that the concept of computation is absolutely clear: the work of Turing has indeed
provided a touchstone against which to characterize what computation is. This is certainly
correct: computation has been treated, since its inception with Turing, as an eminently formal
question, deserving a mathematical approach. And this has surely been, I think, the right way
to treat the question, for it has brought to light the essential features of computation: the
properties of computability, its power and limits, which have been detailed in a thorough and
rigorous way that no other approach to the problem of computing could have developed. As
always, a mathematical approach has revealed itself as the most powerful way to highlight all
the facets of an abstract phenomenon and to draw extremely important consequences and new
ideas and models from this analysis: a look at the Appendix40 will suffice to be convinced of
that.

So, does a given system compute? In the wake of what stated above, this seems an easy question,
decidable on formal grounds, but actually, from another point of view, it is not. To see this
difficulty we could resort to imagining someone who launches a program on her computer, and
that to our question “What does this program do?” answered that it computes, simpliciter.
Would that answer make sense to us? Let’s suppose, again, that some programmer wrote for
fun a program by writing down a random list of instructions, and that, for a stroke of luck, the
program, instead of crashing, went on and on, spitting out apparently random strings on the
terminal. Would you count this program as computing? Yes, of course, in a manner of speaking,
it computes. . . but computes what?!? Third case: we have a program running on a very bare-
bone computer, which gives its outputs directly as binary strings: given the string: 00110101 it
spits out 1111, given 01000011 it outputs 1100. Does it compute?

It seems to me that the above examples immediately suggest that recognition of the occurrence
of a computation needs a sort of intentional attribution: it is the attribution of computing, to
what otherwise could be seen as a mere physical transformation of tokens: to say that a given
process computes, we need to specify what it computes. In order to do this, a condition must
be fulfilled: a mapping must be established between the physical configurations of the machine,
which the alleged computation acts upon, and meaningful signs. Only once we do this, are we
in the position to at least try to guess which specific computation the system is performing.

The above mentioned mapping is an interpretation, which maps input and output configurations
to meaningful signs of our language. If we apply this condition to the third example above and
interpret the symbols of the apparently meaningless strings, we recognize that the system is
probably performing multiplications: it suffices to substitute “3” for “0011”, “5” for “0101”, “15”
for “1111” and “4” for “0100”, “3” for “0011”, “12” for “1100”: this is, by the way, an obvious,
base-2 numbering interpretation, but without an interpretation in terms of it, the computation
the system performs would not have probably made much sense.

The interpretation is a mapping, which is itself an algorithmic operation, which, given certain
configurations on input, produces other symbols. This is not something which concerns the prob-

40 Section 17.

1.4. Antimodularity 51

lem of intentionality understood as a philosophical problem. We operate intentional attribution
on the set of configurations resulting from this mapping, which must have been chosen, in their
formal properties, as able to signify something to us. Once the mapping is established, we can
operate a more global intentional attribution, and say which computation the system on the
whole is performing. In my view, only then the system can be seen as computational. Compu-
tation is attribution of computation, to systems which per se, are simply rule-governed discrete
dynamical systems41.

This “intentional”, or “semantic” view of computation (“intentional” or “semantic” with all the
disclaimers stated above) is not a new position, having been embraced by several authors, notably
Jerry Fodor. Such a semantic view is opposed by some others, like Gualtiero Piccinini, who view
computation as definable on purely mechanistic terms, without the need of recurring to any
semantic attribution42.

A problem arises here: given that the attribution of computation depends on the choice of a
mapping, does this mean that any machine, provided a suitable mapping between meaningful
symbols and its states, can be seen as performing computations?

Well, some conditions must be fulfilled: first,the machine must be digital: we are talking of
digital computation here (and this is the dominant paradigm of computation at least since the
’50s). So, to be considered computational, a machine must at least be considered digital, that is
it must possess, and operate on, a finite set of possible stable distinct states. It is these states
that the mapping will connect to symbols. But, in order for this to be possible, these states
must be robust and distinguishable, and a deterministic rule must govern the transition between
stable configurations of these elements. Not every system can fulfill such conditions, which are
not trivial (think of distinguishing stable configurations in a turbulent fluid). But, inside the
view I proposed here of modularity, it is easy to see that all that is required here is for the system
to be a discrete dynamical system (or DDS), that is, a form of functionally modular system (see
section 1.1.6).

The central point is this: to allow us to attribute to a system the execution of a computation,
the following conditions must be satisfied:

a. an algorithmic mapping between linguistic symbols and possible input and output config-
urations of the system must be realized;

b. we must be able to say which is the particular function relating input to output configura-
tions, that is which is the specification of the computation, in order to say what the system
is computing.

Only in case the system is a DDS and this two more conditions are satisfied, the system can be
seen as computing. Only then we will be in the position of saying that a system is performing a
computation.

The order of conditions a and b above is inverted with respect to how a human programmer
operates. In this case what is needed is not an interpretation, but an the establishing of a
norm: in the case of programming, first the specification (point b) is arbitrarily chosen, it is

41 Of course it can be raised a problem here: if the system is considered as already rule-governed, that means
that an original intentional attribution has already been done. It is outside the scope of this work to tackle here
this and other similar thorny questions, analogous to the infamous “kripkensteinian” rule-following problem.

42 See for example Piccinini (2008).

52 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

considered the norm according to which the program will have to operate, and on the basis
of the specification, the programmer chooses the mapping (point a) from symbols to input and
output configurations which he deems best, in order to proceed to the implementation of the
program, that is, the specification of the parts and the structure of the mechanism (the program)
which will, at the end, be able to realize the chosen specification according to the chosen mapping.
Thus, the choice of the mapping determines the choice of the specific structure of the program.
All this series of operations constitutes the implementation of the chosen specification.

Speaking of implementation along the lines of Galton (1993), and Partridge & Galton (1995), I
consider the relation specification-implementation a very universal one: an implementation is the
specifying of a method to “realize”43 a given overall specification. When considering a program,
there is not, however, a unique overarching specification and a single level of implementation, for
the two notions are relative, exactly like those of “higher” and “lower” description level, and that
of function, which44 is the partial role something fulfills relative to the scope of a global function.
Relative in this case means that something which is the implementation of a specification, can in
turn be considered a lower-level specification to be implemented at an even lower level. In other
words, given a specification there is the need to find one possible implementation of it, and in
the style of structured or modular programming, such an implementation will be decomposable
itself into modules. Each module, being a specific input-output function45 constitutes itself, in
turn, a specification, which will be implemented at a lower level, and so on.

It seems sensible to think that the same multi-level abstract hierarchy in which each macro-
component is multiply realizable by sub-components, and so on, underlies the notions of struc-
tured programming, functional decomposition, and hierarchical modular levels of descriptions.

As said, a programmer starts with a specification and tries to implement it. But it is possible to
start with an initially uninterpreted discrete process, aiming to discover what computation, if any,
and how, the process performs. This is a bottom-up path, and is typical of reverse engineering
a computation. The top-down path of starting with a specification of a computation and trying
to recursively decompose the specification, which is a function, into subfunctions, and these in
turn into simpler subfunctions, and so on, in order to say how the specification is brought about,
is instead the path of the computational explanation, which is the functional explanation typical
of cognitive psychology, where the specification, which is the cognitive faculty (the equivalence
cognition/computation is the basic tenet of cognitive psychology), is explained in terms of a
hierarchical functional representation.

1.4.8 Antimodularity, cellular automata and computational explanations
Now we can turn our attention to the problem of the consequences of antimodularity on compu-
tational explanation. As said, this is the typical kind of explanation employed in the cognitive
sciences. However, I will not try here to evaluate what impact could antimodularity have on
these sciences, but only how it could impact a “toy model”: I take as a model of computationally
capable system a cellular automaton (a CA), in order to see how its dynamical behavior could be
explained as something which performs a computation. The idea is that, if the CA is antimod-
ular in its dynamical behavior, the task could be hampered, or even made impossible. If this is
the case, this means that antimodularity could have impact on the possibility of computational
explanation.

43 In a sense closely akin to that of the property of realization in philosophy of mind. I will not scrutinize the
notion here.

44 Recall section 1.4.3.
45 Function in a mathematical sense, see. section 9.

1.4. Antimodularity 53

Let’s thus consider the case of trying to computationally explain a CA. Two basic questions can
be asked here:

• is a CA a computational system?

• if it is, how can we explain the computation it performs?

Regarding the first point, of course a CA, being a discrete dynamical system, respects the con-
ditions stated in the preceding section of this chapter, and can be safely considered a computa-
tionally capable system. But to say that it computes, we must be able to say, in some way, what
it computes: no computational explanation can be applied to it before a mapping is established
between its configurations and symbols meaningful to us. We could try to map the state of its
cell to some sensible symbol, for example we could map those states to “black” and “white”,
but this would lead to “computational” explanations of this sort: “according to the repeated
application of its rule, the CA produces a progressive variation of the state of its cells, which
can, under various conditions, change from white to black”. That does not seem a very useful
explanation. A complete explanation requires a perspicuous specification, that is, the ability to
say what the system computes. Here, the specification is too vague: “progressive variation of
the state of its cells under various conditions”. The exact specification of the CA, seen as an
input/output function, is given by the repeated application of its rule, so a sensible specifica-
tion could be given in terms of the rule of the CA. Now, there are some problems arising here:
usually, most CA rules are described in terms of a“lookup table”, which is an extensional listing
of how the rule determines the value of a cell at the next time step based on the values of the
neighbor cells. Such a table becomes uncontrollably large as the neighborhood of a CA expands.
So, for some CAs, the exhibition of this table would be impossible, or anyway would render a
computational explanation containing it completely meaningless. In two-valued CAs, their rule
can be seen as specifying a boolean expression. So, we could think of simplifying its description
into the form of a boolean expression. This, however, is quite certainly a computationally hard
task, so, it cannot be guaranteed to succeed in all cases.

All the above suggests us that we should try to find higher-level explanations, possibly multilevel
computational explanations, in order to have a more useful explanation. In other words, we must
devise a way to recognize a CA as a computationally-capable machine at a level which is higher
than that of its elementary cells. To obtain that, we could try to see if the CA’s dynamics is able
to produce certain types of dynamical modules, that is, persistent enough high-level structures,
whose behavior at the higher level can be seen as rule-governed, in order to fulfill the condition of
seeing the CA dynamics at this higher level as another discrete dynamical system, a higher-level
one, which can be seen as different from the DDS constituted by the CA and its rule. In other
terms, in order to obtain a useful computational explanation of a CA, a first condition is (i) that
a form of dynamical high-level modularity can be reliably detected in the global dynamics of the
CA. Another condition must hold: (ii) the high-level modular dynamics must successfully track
the low-level dynamics of the CA, without diverging from it. This condition of validity (to use
the terminology of scientific computer modeling) is a quite complex one and is better specified
in sections 2.2.1 and 6.6.8 of this work, but it basically amounts to this: that the dynamics of
the high-level description must not diverge in time from the correspondent dynamics of the CA
at its lowest level of description, that of cells.

It turns out that certain CAs are actually endowed with such a form of higher-level robust
modularity: as we have seen, some CAs can generate gliders (see fig. 1.2), which end up realizing,

54 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

in many cases, predictable interactions one with the other, as in the case of Rule 5446, and
these predictable interactions can be seen as the high-level implementations of boolean functions,
with gliders acting as traveling “bits”. This interpretation in terms of boolean functions could
then allow to build up progressively a multi-level explanation in terms of sensible computations,
much in the way in which computer programs can be described by progressively higher-level
programming languages. This way we would have built a part of the conditions required to
explain by means of a computational explanation a CA.

However, this interpretation in terms of gliders is not always possible: there are certain “chaotic”
CAs, like rule 30 (see fig. 1.7), which never show subconfigurations robust enough to be consid-
ered dynamical modules able to render the high-level representation computationally capable47.

A point must be highlighted here: this impossibility to individuate stable dynamical modules
in a CA, like in the case above or Rule 30, can be seen as a form of intrinsic antimodularity of
the high-level description of the CA. So we can say that antimodularity, in this form, already
prevents the first step, step (i) above, required to provide a computational explanation, a step
which consists in viewing the CA as computationally capable at a high level. So, it seems that,
at least in this form, intrinsic antimodularity actually prevents computational explanation.

However, it is sure that, for certain CAs, their high-level interpretation as computing systems is
possible: there is a complex mapping, devised by Matthew Cook48, with which he has been able
to prove that rule 110, another elementary CA, can be seen as a computational system on the level
of the universal Turing machine. Also the most famous CA, John Conway’s Game of Life, has
been proved to be Turing complete49. So, it is a proved fact that, under certain interpretations,
some CAs can be seen as computing: this first condition can be seen as established, at least for
certain CAs.

But, if we want to give a computational explanation of a system, another condition must be
satisfied: that the system is actually computing, and not just that is computationally capable.
And, to this aim, we should first be able to say what it is computing: that is, we must be able to
express its input/output relationship, its specification. We must note that we are working here in
the reverse-engineering field: we have a machine, the CA, which we know that is computationally
capable, and we should, in order to computationally explain it, produce its specification.

Now, the task of reverse engineering program specifications, apparently is tough. Basically, it is a
matter of producing all the inputs of a program and to observe all the correspondent outputs: it
requires a form of induction. Leaving the finer details to another occasion, I simply note here that
there is a host of problems tied to the fact that Turing machine-level computationally capable
systems are affected by the halting problem, and this renders the above task very difficult if
not impossible: due to the fact that the number of possible input/output couples to be observed
grows exponentially with the maximum size of the input, it is at least a computationally hard task
(see sections 14.5.2 and 17.2.6 for details). There are approximate algorithms for this purpose of
inferring specifications (algorithms for “specification mining”, see section 4.3.1.1) which however
give often too approximated result and cannot reverse-engineer specifications of Turing-machine
level computations.

46 See for instance Martínez, Adamatzky, & McIntosh (2014).
47 Why can’t we contrive a mapping from sets of chaotic configurations to meaningful symbols, this way

rendering even a chaotic CA computationally capable at high-level? An answer implies a discussion on the
complexity of the mapping between system configurations and symbols, a discussion which is developed in section
14.5.2.

48 See Cook (2004).
49 See Rendell (2002).

1.4. Antimodularity 55

Figure 1.7: a chaotic segment of evolution of the elementary CA Rule 30. Time flows from top to bottom, each
row of pixels representing the global configuration of the system at each timestep. Each pixel represents the state
of one of the elementary parts of the CA, its cells.

56 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

But we needed the program’s specification in order to computationally explain it. And this
specification is very hard to infer.

However, a specification in terms of the mere input/output function is not the only way a
specification can be given, and, even if it is the most precise, it is neither the most perspicuous
way to begin with, because a list of input/output couples can be meaningless. So, another,
more perspicuous form in which a specification can be given, is in an aggregate form: a more
or less synthetic way to sum up the whole input/output function. One way to do that is giving
the specification in terms of its decomposition in subfunctions, which is a form of hierarchical
decomposition.

Now, this is the interesting point: if a hierarchical, modular representation of the computation
could be devised by some means, it would be possible to test each module separately to seek for
the specification of only that module, a task which would most likely turn out being more feasible
by order of magnitudes than that of submitting every possible input to the whole program in
order to directly infer the global specification, because a module is identifiable by the very fact
that it should be only loosely or sparsely connected to the other modules, and this translates in
a probable reduction in the number of possible inputs to the module, and a consequent easier
exploration of that module’s input space50.

The fact that it has been possible to find the single specification of each module due to the
system’s decomposability, hopefully allows, if the specification of each module is not too compli-
cated, for a form of aggregation, as discussed in section 4.1.5.1: if we are able to further abstract
the module specification by “naming” it in a meaningful succinct way, giving the module a name
which is representative and explanatory of the function it performs (as for example when we say
that a module performs the “multiplication” operation), then each module’s specification can be
substituted by this more concise definition of what function the module performs. Then a global
specification of the whole system can be given in terms of a description (usually in the graphical
form of a flow chart) of the modular structure of the system as a directed network of connected
modules, where modules are seen as nodes labeled with their succinct “names” representing their
specification, and their input and output connections are the directed links between nodes.

So, this type of explanation seems possible, after all. But it requires that a functional modularity
of the computation can be found , and this, in turns requires two conditions: first, that the system
is actually computationally capable at a high level, and this is not guaranteed: intrinsically
antimodular systems, like CA rule 30, hinted at above, are not even susceptible to be seen as
computationally capable at high level. Second, another condition is that, even if the system is
computationally capable, and actually possesses dynamical modularity, this modularity can be
actually found. This could be hindered by some factors anyway, due to the high computational
cost of the algorithms for modularity detection, or the excessive approximation of the results they
obtain, when they can be obtained in a reasonable time: the obtained hierarchical representations
could be not faithful enough to the actual functional modular organization of the system to be
considered valid modular descriptions, able to sufficiently well characterize the computation
performed.

It seems, thus, that antimodularity can hinder or prevent also the computational kind of expla-
nation.

But, could partial reconstructions of the program’s functional hierarchy still be used in expla-
nations? Well, it seems, intuitively that the functional models so produced would be very con-
strained by ceteris paribus clauses, in order to keep them inside the range of known input/output

50 Even if this is not guaranteed. See section 4.3.1 for a better discussion.

1.4. Antimodularity 57

relations, and, among the known input/output relations, in the range of those which do not
diverge too much, for lack of validity of the modular model, from the actual observed behavior
of the system. So, it seems that an explanation based on them should also be so constrained in
its applicability. It could possibly appear as an acceptable explanation, but it would in a way be
only a post-hoc explanation of the range of behavior of the system actually observed during the
process of modularity detection, and not of all possible behavior.

It may well be that, in computational cognitive science, such a kind of limited explanation
could be accepted, and, moreover, it is likely that there are only explanations of this kind in
some subfields of cognitive psychology. In that science, the task of finding the specification and
the functional relations between modules, is left to human experimentation, and that is most
probably a slower process than automated algorithmic ones.

To conclude this section, I think that also this failure in finding computational explanations of
certain systems can be considered a form of antimodular emergence. This computational emer-
gence regarding computational explanations can be seen as due to two forms of antimodularity:
first, intrinsic antimodularity affecting chaotic systems, which can not even be considered compu-
tationally capable at a higher level of description, and second, antimodularity due to the excessive
computational cost or excessive approximation of modularity detection algorithms.

The consequence of this form of antimodular emergence is that the system affected by it is only
explainable at its lowest level of description, and this would in general not constitute an intelligi-
ble form of explanation, in sufficiently complicated systems. It is to be expected that antimodular
emergence could affect also computational explanation in cognitive and neurosciences, and this
is worth, it seems to me, of further investigation.

1.4.9 High-level modularity as a condition for programming and scientific
research

At least for a computer programmer, the claim by Robert Cummins, which we will encounter in
section 9.2, that functional analysis has an explanatory capacity, is nothing new: a programmer,
at least implicitly, is continually developing partial explanations of how the program under con-
struction works by means of the organized execution of its instructions, and, at a higher level,
of its subroutines or even higher modules. The very act itself of programming starts from the
specification of the whole program (e.g, being “a word processor”), and development proceeds by
analyzing, in a Cummins-like sense, this global function, which is the specification, into smaller
subfunctions which together make up the implementation. In turn, each subfunction gets de-
composed, if possible, in simpler subfunctions, and so on. The actual writing of the program,
the act of writing the sequences of instructions composing each subroutine, usually bouncing up
and down across hierarchical levels, analyzing global functions into smaller subroutines, imple-
menting them and going back to decompose other high-level functions, or of composing them
starting from the simplest subroutines and going up in the hierarchical levels, is almost unfeasible
without a former, at least implicit, explanation, on the part of the programmer herself, of the
whole system in hierarchical terms. This can be seen as a form of functional explanation the way
Cummins understands it. It seems, then, that functional hierarchical explanation is necessary
for computer programming, in computer science.

In empirical science, functional, multilevel explanation is probably essential not only after a
theory or a model of a phenomenon has been devised, that is when explaining an already known
phenomenon, but also in the making of a theory. Interventionistic accounts of causation like

58 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

that of James Woodward51 see a causal relationship as holding between two entities when an
hypothetical variation of the state of one entity, purposefully induced by an experimenter, that
is, an intervention, systematically produces a variation in the state of the other entity: when
this hypothetical circumstance holds, we can say that the two entities are causally related. A
mechanistic account of explanation requires during scientific research the advancement and re-
fining of the mechanical description of a mechanism by progressively discovering all the causal
relations holding between its parts. To do this, the experimenter proceeds by intervening on each
part separately, and seeing if some consequent variation occurs on other parts. But, to properly
identify causal links, intervention on the state of a part requires a temporary, at least virtual,
disruption of the structure of causal links going from other parts of the mechanism towards the
part on which we are intervening: interventions on mechanisms require that the mechanism is
temporarily modified by eliminating some of the connections between its parts. Woodward claims
that the set of equations representing correctly a causal system must be modular, because oth-
erwise, given that detection of causal relationships requires intervention on a part of the system
by temporarily disrupting only the causal influence which bears on that certain part, were the
system completely not modular, this precise disconnection of one causal path would disrupt not
only the part of the equation interested by the intervention, but also other parts of the system.
So, dynamical modularity is always present in a mechanism, at least at the lowest level, that of
the preferred description.

But, the point is, if we want to redescribe a system mechanistically at higher-levels, we could
certainly construe relations between high-level parts as prima facie “high level” causal relations.
In that case, in order to proceed by intervention Woodward-style, modularity is needed also in
the equations representing the system’s dynamics at these higher levels. All considered, this
condition holds if the update function’s52 structure is hierarchically modular, and this in turn
represents the fact that the system is functionally, and probably also, dynamically, and, quite
likely, structurally, hierarchically modular.

The same utility of the presence and of the possible detection of modular structure shows up
in the phase of discovery of complex networks, especially in cases in which the discovery of
links between nodes requires a complex experimental work, like in gene regulatory networks and
other networks of biological interest. Certain recently proposed algorithmic methods, like that in
Clauset, Moore, & Newman (2008)53, could be of great aid in this kind of task because, based on
detected hierarchical modularity in the already discovered partial network, they can probabilis-
tically produce, with a good chance of success, a prediction about where in the network missing
links should probably show up with further observation, thereby fruitfully guiding subsequent
experimentation.

Thus, it seems that hierarchical modularity is important or even essential in the phase of scientific
research and experimental discovery, besides being almost essential, as we have seen in the former
sections, for explanation of an already studied phenomenon.

1.4.10 Explanatory emergence
Given that the lack of understanding due to the presence of antimodular emergence in a system
can seemingly affect most kind of explanations, I propose to generalize the notion with the
following definition:

51 See Woodward (2003), and section 6.9.
52 The function governing the dynamics of a DDS: see section 5.1.
53 Described in section 6.9.

1.5. Some additional reflections on modularity, metaphysics, computing, history of science 59

explanatory emergence is a property of systems or descriptions of them that consists in
the fact that, for absolute or pragmatic computational reasons, they resist understandable
explanations.

This is a more general definition than that of antimodularity, a definition comprising other
possible effects of computational constraints on the explanation of complex systems. In section
14.6, I will explain how I understand the above definition, which does not apply necessarily to
computational tasks, but also to human operated tasks which bear on explanations, and the
possible usefulness of this definition in the current scientific landscape.

1.4.11 Is it likely to encounter antimodular systems in science?
Antimodularity appears to depend on the choice of a relation, which is specified in the preferred
description, between the elementary parts of the system. Antimodularity can occur when, given
this chosen relation, modularity detection according to it turns out to be too computational
demanding to be brought to completion in a feasible time, or when, although modularity de-
tection is successfully completed by means of an approximate algorithm, the produced modular
description appears too approximate to be capable of validly representing the original system.

What is the likelihood that either of these two circumstances can be encountered during scientific
research? It must be stressed that computational complexity of modularity detection concerns
algorithms for detection of modularity which do not employ any other informations about the
systems than those included in their preferred description, that is, the level of their elementary
parts and their relations. By adding constraints on how the elementary parts can be grouped into
modules, the task can be highly simplified. This is equivalent to devising ad hoc algorithms for
modularity detection, and ad hoc algorithms could end up being less computationally demanding
than a general one. Actually, in many cases, this seems exactly what science does: it searches
for empirical constraints to help us choose among the possible theories of the world. This raises
the chance that scientific method can produce modular, intelligible descriptions of phenomena.

But, we must ask if new developments in science can shift the focus on systems of such a
complexity that even the known, empirically found constraints about them could end up being
too few to allow the successful completion of modularity detection on such systems.

In the case of biological systems, we can be actually be reasonably sure that they are modular,
at least at certain levels. There are many arguments, empirical and theoretical, which favor
this conclusion, which are to be treated in section 7.1. Nevertheless, there can be significant
biological systems, like for example interaction networks in the cell metabolism, which can end
up be so huge to possibly produce effects of explanatory or antimodular emergence due to the
high computational cost of the algorithm for data mining or modularity detection in relation to
the size of the system. Another type of situation in which this antimodular emergence can be
expected to show up, is in data mining for modular information in the already existent literature
on certain scientific topics, an example of which is presented in section 1.5.2.

1.5 Some additional reflections on modularity, metaphysics,
computing, history of science

In the above sections, I have outlined the main structure of this work, in which I try to reflect on
the notion of modularity, its relation with description, explanation, computation, understanding,
and to outline the conditions under which modularity manifests itself or, on the contrary, cannot

60 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

be detected. My general aim is to describe the importance of what we could call a “modular
way of thinking” for human knowledge of the world, and specifically the great importance of
modularity on much of scientific conceptualization, especially in the so-called “special sciences”,
which mostly recur to types of explanation, mechanistic or functional explanation, which are the
modular kinds of explanation par excellence: to explain in these two ways, it is necessary to find
a way to describe a system as modular.

I then focused my attention specifically on ways to detect modularity in large complex systems,
stressing the fact that, unfortunately for science, these ways are algorithmically complex and
for this reason they are not guaranteed to give useful results. When a failure in giving modular
descriptions manifests, this is what I call a case of antimodular emergence. This fact hinders, and
possibly prevents in some cases, the possibility of scientific explanation and comprehension of
complex systems large and complicated enough to escape a proper modular explanation, systems
which, due to their sheer size, cannot be grasped cognitively in their non-modular, low level
description, which is their only remaining possible description. I called this condition “explana-
tory emergence”. This is the main goal of this work, which I envision as a work of philosophy
of science, focusing especially on disciplines of biological derivation and their methods, and, at
the same time, on computation, seen as a method for research in these disciplines, but, first of
all, as a promising theoretical framework in the light of which to try to rethink some classically
philosophical conundrums, an attempt which I make when trying to reformulate as computa-
tionally feasible redescriptions what has been traditionally conceived as explanations, and as a
specification/implementation relationship a relationship between levels of organization which has
been traditionally seen as a relation of constitution.

The above questions, constituting the backbone of my proposal in philosophy of science, are more
deeply discussed, as expected, in the rest of the chapters to come. I will however dedicate the
next two last sections of this chapter to reflections which touch upon some questions which in a
way fall outside the main scope of this work as I have just outlined it.

The first (section 1.5.1) is a reflection on the possible consequences of metaphysical nature
deriving from my view about the nature of explanations, which is an eminently epistemic stance.
I say that this is outside the main scope of this work because I do not want to deeply embed
my discourse about philosophy of explanation in science into a metaphysical context: I am not a
metaphysician, nor my stance is completely antimetaphysical, but I probably have an inclination
toward being always cautious when dealing with strongly metaphysical questions. Along the
lines of Kant, I cannot help but be a little suspicious about strong metaphysical claims, because
they could have very serious consequences, at times, and it is not usually very clear when they
can be considered adequately supported. For this reason, I planned to keep the philosophical
reflection on science which constitutes the main aim of this thesis more or less free from explicit
metaphysical interferences (although I guess this could be judged a highly questionable planning,
and probably one of dubious feasibility).

Nevertheless, some metaphysical consequences of the general approach I adopted and of the
results about computational limits on modular description which I outlined, open, it seems to
me, the door to some fascinating if risky possibility of delineating a peculiar metaphysical stance,
and I do not want to miss the chance to try to briefly envision this stance. I dedicate the next
section to this “experimental” purpose. The sketch presented here is at best rough. What is not
well thought-out here will be better left for a future occasion.

In the section which follows (section 1.5.2) I will indulge in some other possibly rash and unwise
endeavor, that of trying to foresee possible long-term historical consequences of the picture of
computation applied to scientific explanation which I outline in the main line of this work. In this

1.5. Some additional reflections on modularity, metaphysics, computing, history of science 61

case, I want to leave this reflection out of the philosophical-scientific backbone of the thesis, but
not because I think historical reflection is out of place in a work of philosophy of science. Quite
the contrary, actually: frequently, in many parts of the main chapters, I follow, where possible,
lines of historical reconstruction of the most known recent debates which center around the main
questions at stake. I think, indeed, that at least a chronological, if not historical, exposition
of ideas and discussions is eminently important for philosophical writing and reflection, even
in a mostly analytically-informed discipline like philosophy of science. The reason I left these
historical considerations out of the main scope of the present work are thus not a disdain for
history of ideas, philosophy, or science, but the inherently intellectually risky nature of these
reflections, which will become evident in the body of the dedicated section. Nevertheless, I value
such reflections as endowed with a potential of further, probably more rigorous investigation,
which will be better not ignored, at least by my future research.

1.5.1 A metaphysical attempt: Modularity as ontology? Constrained
antirealism

As we have seen, an important and necessary feature of a module is its robustness: a module is
something which must endure a range of perturbations, and on some timescale it must persist
a certain amount of time. Another defining trait of modules is the fact that they enjoy some
amount of independence from the rest of the system and from other modules, and this is due to
an at least partial isolation of the module, to its possessing some form of recognizable boundary.
These are properties that modules share with entities, or with objects, that is, with what can
conceivably be considered the basic ontological components of the world. I would suggest that
this is not a mere coincidence. I think it is plausible to say that our perceptive system operates a
modularity detection on the raw data which impinges on our bodies, in order to yield a description
of the world in terms of entities or objects: objects that we perceive are the modules produced
by this process of module detection. It is as well plausible, I think, to consider the limits of
this modularity detection operated by each organism, in the light of the limits we have seen
as affecting modularity detection algorithms. Of course, there are some major differences here:
first, the perceptive systems are not serial algorithmic computations, like those implemented on
standard computers, and could accordingly be exempted from exhibiting the same computational
complexity. However, if we take for granted a form of physical determinism (at least macroscop-
ical) and the finiteness of perceptual biological systems, the computational equivalence of those
perceptual processes with some algorithm should be quite guaranteed: perceptual systems can
be seen as computational systems. We must then consider that algorithms in certain complexity
classes are inherently intractable, regardless on the computational architecture on which they
are implemented: for example, even if highly parallel architectures are used, like those of neural
networks, EXPTIME problems cannot be successfully tackled, because their required time for
completion grows exponentially, while the amount of parallelism can grow at most linearly54,
and the exponential function grows incomparably faster than any polynomial one. A further
objection can nevertheless be raised: perceptual systems do not need to discover a good modu-
lar structure in an initially unstructured bunch of stimuli, because they are already fine-tuned
to detect a more or less well-known modular structure in a world which is more or less stable:
an organism is adapted to detect some kinds of objects around it, and its perceptual system is
already structured and biased toward detection of those kinds of modules, that is, those kinds
of objects in the world. This fine-tuning has been, in a classic darwinistic view, produced by
natural selection. Such a biased modularity detection process could well be much less computa-

54 Or, possibly, quadratically, or even cubically, if we imagine some futuristic three-dimensional computational
“growing cube”.

62 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

tionally complex than the raw process of finding an initially unknown good modular structure
in a big set of unstructured data, which requires the performing of a NP-complete task, the task
of optimizing the modularity measure Q55. This is, at least, quite likely: perceptual processes
are probably not so computationally hard. There are, however, two rejoinders. The first is that
perceptual processes are not less constrained by computational complexity, at least indirectly,
than modularity optimization is constrained: perceptual processes as they are now have been
achieved through natural selection (at least on darwinistic accounts), and it is this process, the
process of natural selection, which has borne the burden of trying to optimize the modularity
measure Q on an initially perceptually unstructured world. NP-completeness is in some cases
so hard that not even natural selection can be deemed having had enough time to perform an
exhaustive search among the phenotypic space of possible perceptual systems, so it can be argued
that the actual perceptual systems coming out of evolution have indirectly been affected by these
same computational constraints, due to the excessive computational complexity of the task of
the search for the best modular hierarchical description, even for this search during the course of
evolution. The second answer to the former objection stems from this last consideration: quite
possibly because of their lower computational complexity, perceptual processes are less accurate
than algorithmic Q optimization, and this is another way to say that optimal modularity detec-
tion on data coming from the empirical world is not what perceptual systems yield: perception is
indirectly constrained by the computational hardness of modularity detection, in the sense that
it has been rendered more or less unreliable by this computational complexity.

Another hint in this direction is the fact that on an interventionistic account of causality such
as that of James Woodward, which has been adopted as a standard position by some advocates
of mechanistic explanation, for example Carl Craver, modularity of the dynamical equations
governing the system is necessary for separating the variables onto which to intervene during
experimentation in order to discriminate single causes. Along these lines, the mechanistic de-
composition of a phenomenon depends on the possible modularization of its global states. Of
course, identification of the mechanism’s parts, or entities, which are the causally active elements
of a mechanism, depends on the successful bringing about of this piecemeal causal assessment.
So, it seems that the very ontology of a mechanism, the set of its parts, depends upon modular-
izability of its dynamics. This last consideration, in the light of the computational hardness of
modularity optimization, tells us that, quite likely, experimental science, is not and will not be
able to yield the most plausible ontology of the world, not only if conducted step-by-experimental
step by human subjects, but not even if fully automatized: computational hardness of Q opti-
mization or of aggregability of variables in dynamical models56 is impossible to overcome. It
seems quite likely then, that the ontology of mechanisms discovered by science is not the best
possible ontology.

One may ask where this odd view of modularity as ontology positions itself along the realism-
antirealism line, and not only in the standard sense of antirealism about unobservable entities
posited by scientific theories, but in a wider, all-encompassing sense questioning the reality of
even macroscopic, mid-sized object. Moreover, if our carving of the world into sensible pieces
is an effect of the possibility of modularity detection, and if this possibility depends in turn on
computational constraints, it is legitimate to ask whence these constraints derive. However, it is
not in the scope of this thesis to delve into deep metaphysical discussions. So, the most we can
do here is to admit that if we identify modules which are feasibly detectable, given constraints
deriving from computational complexity, then we could say this view is a form or what I would

55 This is a measure of the quality of the modularity detected by an algorithm. Optimizing it means to choose
the best of all the possible hierarchical descriptions of a system. See section 3.2.1.2.

56 See sections 1.1.5 and 2.2.1.

1.5. Some additional reflections on modularity, metaphysics, computing, history of science 63

call constrained antirealism: this is a position which can be certainly considered antirealistic,
because, according to it, it is not known which entities are real per se. Better, in this view, the
question could not even make much sense: the reality of entities, that is their being endowed
with robustness and boundaries, is a result of the modularity detection process, which itself is
constrained by computational complexity. The reality of entities, in this view, is not an intrinsic
feature of entities, but it derives more from the objectiveness of computational constraints on
modularity detection. So, this is certainly a form of antirealism. It is however, antirealism
endowed with objectivity, because the computational constraints it is subject to are objective,
insurmountable57 and, albeit their consequences are of a pragmatical nature, the limitation they
pose are insuperable58. In a sense, we could even deem constrained antirealism a form of realism,
because the absolute objectivity of computational constraints could depose in favor of their
reality, in the sense of independent existence. Constrained antirealism could then be considered
a form of weak realism, although a quite different kind of realism from the typical ones, even the
platonic kind. In a way, I think this could be considered a peculiar kind of kantism, in which the
transcendental conditions take the form of computational constraints.

That said, the question about the nature of these computational constraints remains open: the
discussion which would unfold is very thorny, and touches upon a very actual and problematic
thesis, which is commonly known as the thesis of pancomputationalism. This is the thesis that
the fundamental nature of the world is computational, or informational, and that all the so-
called physical reality consists in the effects of this fundamental computational process. Debates
around this issue are very complex and long-standing, calling into question philosophy of physics
and also philosophy of mathematics. As said, this is not the appropriate place to examine these
problems deeply. To sum up, I can say that my metaphysical position, in contrast with the
choice of most proponents of mechanistic explanation, is not that of scientific realism. This is
the reason I sketched above a more liberal form of explanation than strict mechanism as the
elective model of explanation for complex and computational phenomena, that is, the multilevel
functional explanation based on the recursive specification/implementation relation.

1.5.2 Computational methods in scientific research: a possible historical
turning point?

All the above considerations could suggest an historical thesis. But I suspect that this thesis,
which I would like to propose, could be conceivably accused of being not well supported. The
main reason of my suspicion is that I’m not sure it can be viewed as a historical thesis, concerning
facts of the past: it could well be a thesis about future, incipient historical developments in science.
In any case, it is my impression that there are interesting possible facts related to computational
methods, modularity and antimodularity, very near in time to the present moment, on the verge
of happening, if they have not already occurred.

So, the historical thesis I am about to suggest here is still probably not very supported, yet it
is undoubtedly a quite strong thesis. I am aware that this combination of high impact and low
support is a quite dangerous one. What I would like to do is then, at least for the moment, to give
only a suggestion, or some mere hint, toward the possibility that a major change of paradigm in
science has just happened or could be about to happen. This change of paradigm has occurred
or is about to occur, due to the availability and use, for several purposes, of powerful computing

57 Unless, of course, P=NP. But this seems very unlikely at the moment. For an explanation, see section
17.4.1.3.3.

58 It is not clear if some forms of hardness could be overcome by quantum computing, should quantum
computing machines become feasible.

64 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

machines and algorithms in several aspects of the practice of scientific research. The uses of
computers in science whose consequences I would like to consider here are two uses, belonging
to two different phases of scientific research.

Let’s start with the more evident: computer simulations. Something, I argue, has or is about
to change in science from the moment when complex computer simulations have been or will
come to have been accepted as proper scientific explanations. The point is: since its inception
as Galilean physics until very recent times, modern science has, quite plausibly, taken into
consideration systems which are explainable in relatively simple terms, or which are susceptible
to be described by approximate models which are faithful enough (given the observer’s goals) to
the real empirical phenomenon. In the course of the thesis, I have tried to show that certain
systems, for reasons of computational complexity (reasons which in a sense are pragmatic but
from another point of view are objective) cannot be described in a modular manner. This
antimodularity has the consequence of rendering those systems susceptible of only very low-
level descriptions. The problem is that usually such descriptions don’t allow for a high degree
of understandability, due to the sheer amount of detail they carry. However, in many cases,
computer simulation can nevertheless dynamically model such complex non-modular systems,
making bare prediction feasible, at least prediction via step-by step simulation covering a certain
finite temporal range: such systems are in a way dynamically predictable, but their behavior can
not be explained in an understandable manner. Is this a real problem? Until now, it seems to
have been the case that most scientific explanations have ended up being human-understandable.
Most explanations of natural complex systems have until now, in some measure, been of this kind.
The mechanistic model, of widespread use in biology, has always highlighted the necessity of a
multilevel explanation, which brings with it a potential high degree of understandability. But,
mechanistic models which are affected by antimodularity would not permit multilevel explanation,
and this would render them very difficult to understand, albeit still a possible basis for computer
simulation. Should such kind of low-level very complex mechanistic models be accepted as proper
explanations themselves, without expecting any further improvement in their understandability?

There is a similar case in recent history affecting not empirical science, but mathematics: the
case of computer-assisted proofs: mathematical proofs carried out automatically, at least in part,
by means of computer programs. Such proofs are potentially too long and complex to be verified
by humans. Consequently, since their first appearance, with the demonstration of the four-color
theorem59, computer generated proofs have made a part of the mathematical community raise
objections to their acceptability: one of the possible answers is the proposal to accept as proof
not the proof itself, with its excessively long list of deductive steps, but the program which
generates it. But now the burden of the request for exactness shifts from the generated proof
to the program. A program listing, if not excessively complex, is usually understandable: this
property of programs comes from the fact that programs are generated by human programmers
which (as I highlighted in section 1.4.9), in order to keep control of the developing program
are compelled to build it in a modular way. Thus, human-generated computer programs are
most often modular, and so potentially understandable. This modular understandability does
not warrant the exactness of the program, that is, its conformance to its specification, but
certainly eases a lot its formal verification (the exact proof of the exactness of the program),
which, however, due to the undecidability of the halting problem, cannot be always guaranteed.
So, in certain cases, the computer must be trusted, albeit non demonstrably so, about having
generated a proof without errors. And no human could do better than the machine. Should
mathematicians accept the automated proof, in these cases? The debate is still quite open.

59 Appel & Haken (1976).

1.5. Some additional reflections on modularity, metaphysics, computing, history of science 65

This question dealing with methodology of mathematics is similar but not identical to the one
I raised above in methodology of science about the acceptability of computer simulations as
scientific explanations: the main difference is that in mathematics there is no need for explanation,
but only for proof. Understandability of a proof serves only the goal of proof verification. In
empirical science, however, there is a need for explanation. What is the explanation of a computer
simulated phenomenon, which, due to its being antimodular, cannot be redescribed in a human
understandable manner? Is it the computer program performing the simulation, that constitutes
the explanation?

As we have seen, the very concept of explanation itself is subject to a variety of points of view,
one of which conflates explanation and logical proof. This is what happens in the Hempel-
Oppenheim’s deductive-nomological view of explanation, where explanation is seen as logical
deduction of the explanandum from the explanans, and little to no attention is directed to the
intelligibility of the explanation: a concern about understandability would have been considered
improper, in the post-neopositivistic climate in which the model was proposed, carrying with it
the risk of tainting scientific explanation with pragmatical, or, worse, psychological, whimsical,
concerns. From such a stance, all that should matter for an explanation is that it is a correct
deduction.

So, what about the explanation of a simulated phenomenon? If a discrete dynamical model of a
phenomenon which is employed for its simulation60 ends up being antimodular, this means that
it is susceptible to only a strictly low-level description, and quite probably a very complicated
one. Such a description could however appear as being generable by the reiteration of a very
simple, albeit non-analytically solvable, law or rule (the update rule, see section 1.1.6). Is this
an explanation proper of the model? If the phenomenon, as described by the given model, is
antimodular, we already know by definition that no explanation of it which is more coarse-
grained than this reiteration of a simple law can be given: if we don’t change the model, we
must content ourselves to explain the phenomenon by means of the citation of the system’s
initial configuration, of the update rule and by starting the program on this configuration. The
program acts by repeated, potentially infinite application of the simple rule on the system’s
configuration in order to modify it. If we “unwind” the running of such a simulation, we obtain
a list which reports first the system’s initial state, and then proceeds to cite a long series of
reiterations of the simple rule on the configuration, with each corresponding new configuration
as the result of each application of the rule. This list would, in a way, constitute a form of DN
explanation of the simulation, for it can be assimilated to a formal deduction starting from an
initial statement, which is represented by the initial configuration, and a universal statement,
in this case the simulation’s update rule, which is law-like. So, can we content ourselves with
such an explanation? In the thesis, I advocate for an epistemic view of explanation, epistemic in
the ample sense employed by Cory Wright and William Bechtel61, which entails that to explain
is basically a communicative and cognitive act, and that it requires on the part of the receiver
the possibility of understanding. The above explanation, constituted by a long list of changes
of state, would not certainly be very understandable, by this standard, but this aspect could be
neglected by a supporter of the DN view (let’s leave aside here the DN model’s own well known
flaws, which could render it unacceptable).

In the case of complex biological mechanisms, composed of thousands or even orders of magnitude
more parts, if most modular detection algorithmic methods failed in detecting modularity in such
systems due to their size (antimodular emergence), all we could do is to produce a strictly low

60 I mainly restrict inquiry in this work to discrete systems and precesses.
61 See for example Wright (2012).

66 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

level description of the system, and proceed to simulate its dynamical behavior according to the
various activities the elementary parts of the system are supposed to perform. Today, this is
a quite common method employed in the simulation of complex biological networks, be them
genetic, proteic, metabolic or neural ones, with an already substantial, and ever growing, mass
of researches. What constitutes the explanation of the phenomenon, in these cases? Is it the
program which runs the simulation? But the program, which is usually modular because human-
written, and as such subject to be potentially understood, if the simulated system is really
antimodular, by definition of antimodularity can not constitute a high level modular description
of the phenomenon: the program simulating an antimodular system could be understood in its
own terms as a hierarchical modular program, but not as a description of the simulated system.
It would certainly be an understandable program, but what we would understand of it would be
the fact that it simulates the complex phenomenon by reiterating an enormous number of times
some simple operations, correspondingly precisely to the simple activities of the simple parts of
the system which it is simulating. So, it does not seem to me that the program could be taken as
an explanation: being isomorphic to the low-level dynamical description of the system, it would
not constitute a multilevel computational explanation.

So, what should we view as the explanation of an antimodular computer-simulated phenomenon?
I think it is the whole dynamical simulation which must be taken as explanation, and, given
that the phenomenon is antimodular, the simulation can only be looked at and watched, but
not understood. At least understood in a functional or mechanistic multi-level way. It could
nevertheless be significantly explained in a topological way (see section 1.4.5): by taking into
consideration some general features of the network constituting the model of the complex system,
some conclusion could probably be drawn about some features of the dynamics which occurs, by
simulation, on that model.

So, we return to the question: should low-level very complex mechanistic simulations of such a
kind be accepted as proper explanations themselves, without expecting any further improvement
in their understandability? If the answer is yes, then science has undergone a great historical
change: science could eventually approach systems which, being too complex and interconnected
to be the objects of modularized descriptions, should have been left out of scientific research
before the advent of computer simulation. This has already happened in part, at least since
three decades: just think of all the literature on simulation of complex and chaotic systems
which has flourished since the ’80s. It must be noted that, being most of those simulated
systems, at least in certain regions of their phase spaces, antimodular, the typical explanations
employed in texts about that subject (like, for example, Stuart Kauffman’s works), are statistical
or topological explanations (in the sense employed by Philippe Huneman, see section 1.4.5), a
form of explanation which, as we have seen, is still allowed in antimodular systems.

Another possible way in which computers could revolutionize scientific research, a way of which
a specific form is modularity detection, is in aiding to find a theoretical model. In this case an
algorithm comes to partly substitute the researcher, not in the collection of raw data, but in the
task of devising a theoretical model fitting already available data. And yet, this is not the whole
story, because sometimes it happens that the collection of raw data itself can be automatically
performed. This is especially true in cases in which the object of study is itself a digital object:
study of texts, literature, internet content, internet structure, and so on. In any case, after the
phase of data collection, there comes the need for a theoretical model able to subsume all the
collected data: usually, the model is devised by the human researcher. But what about cases
in which the experimenter is not able to devise such a model? What about cases in which the
amount of data is so enormous that it is not to be expected that any human will be able to discern
a pattern in it, in order to elaborate a theoretical model? Here, too (except in cases when the

1.5. Some additional reflections on modularity, metaphysics, computing, history of science 67

data, albeit complex, can be aggregated in a way which allows for a simple description, like in
statistical mechanics), it is a matter of discerning some structure in the data, some modular
structure of any type, for the data to be susceptible of human-understandable modeling and
explanation. Performing what is called “data mining”, computers have been able in some cases
to validly supplement humans in this task.

I would like to mention here a particularly surprising case. Using a method for community
structure detection (that is, modularity detection62) in networks, Wilkinson & Huberman (2004)
have been able to algorithmically analyze the published research literature about colon can-
cer, and automatically find modules of genes involved in colon cancer in the human genetic
regulatory network, without even having to previously supply the program with the raw data
describing the genetic network: all the necessary data have been automatically “mined” from
the literature. This case is particular because, here, the data themselves are already stored in a
computer-processable format, and they are not ad-hoc structured, even if, ultimately, the data
(the academic literature) actually come from the work of human researchers. But another seri-
ously surprising result is that Wilkinson and Huberman’s system was able to find parts of the
genetic network involved in colon cancer which had eluded the attention (the limited span of
attention) of human researchers: the machine found some new, and probably unattainable by
humans, theoretical model of a phenomenon! Now, in this case, the obtained result is still likely
expressible in human understandable form, precisely because it is a modular description of the
genetic system under observation. But what if a program, by analyzing clinical literature, found
a modular model which joins into modules data of a heterogeneous nature, in a way it is unlikely
any human could come to spontaneously devise? For example, by producing a modular model in
which modules are composed both of genes and of proteins of the proteome, but which are only
correlated in a not simple way? Could this model be still understandable by human researchers?
Otherwise, what if the model, albeit modular, is composed of hundreds of mid-level modules
with no higher-level modular description able to group some of them together? Consider that,
due of its computational complexity, Wilkinson and Huberman’s algorithm is unable to process
networks with more than a few thousand genes. Because of the excessive computational com-
plexity of the high-level modularity detection algorithm, thus, we should resort to a model of the
phenomenon which is not modular at a higher level. Such a model, if valid, could be feasibly used
to perform some later simulation of the observed phenomenon. But the phenomenon will not be
easy to explain by means of the model, since its functional decomposition has been impossible,
and, as it stands, it will be too complex to be understood.

But, let’s speculate further: could it even be possible that the phenomenon itself, uncovered
by the algorithmic data mining, ends up being neither a known phenomenon, nor an easily
understandable one? What about a complex phenomenon which no human would have plausibly
even considered, and which it is difficult for us to even plausibly describe, or name? Even if
beyond human spontaneous intuition or even human comprehension, it can, and most probably
will, be the case that computer programs come to discover such kind of phenomena. But, what
will it be of science then? I think this could go potentially deeper: the task of modularity
detection needs a relation between the parts of the system, in order to asses its modularity, and
this relation and the parts themselves are given together in what I have called the preferred
description: as I argued above63, it is this preferred description, along with the computational
constraints on modularity detection, to determine the “ontology” of the system under observation.
Now, what about the possibility of changing the preferred description from the typical, “natural”
one, to a contrived one? Given the possibility of algorithmic description of complex relations

62 See section 3.2.1.
63 Section 1.5.1.

68 Chapter 1. Modularity, Antimodularity, Explanation: an Introductory Tour

between parts, then even complex, apparently non-natural kinds could potentially be detected
as modules and be made object of science, by letting algorithms associate heterogeneous sets of
real-world properties into parts and relations of a high-level description. A bizarre, completely
different “world” could come out of that description. Such a non-standard description could
even be hierarchically decomposed so as to be understandable, at least in principle. Or, it
could give rise to a such complex hierarchical structure to be useful for explanation only in
principle: due to remapping, a new set of “unnatural kinds” could emerge, and with them, new
disciplines. Of course this modularization must be able to detect sufficiently robust modules,
otherwise that would not constitute a valid modular description of the world. It could, moreover,
be objected that the causal, common natural description of the world populated by causally
cohesive objects is the only possible robust one. The question is open, and I suspect some not
obvious, surprising, valid modularization is possible, and has already been done, namely by the
quantum-level physical description64.

All things considered, pervasive resort to this kind of artificial remapping, or to more familiar
simulations like those described above, could certainly bring about in some scientific areas such
a series of innovations in method and criteria as to constitute a change of paradigm in science,
with the potential to see the rise of new scientific disciplines. The downside is that we will have
to abandon the perspective of science as a path towards a better and better understanding of the
world: the trend would be towards an unprecedented form of scientific “automated explanation”,
possibly unintelligible.

The above is a possible formulation of the historical thesis I wanted to argue for. Maybe it
requires excessive stretch of imagination. And, it is quite clear I did not produce in this work a
sufficiently strong support for this claim. That is because I aimed lower, in this dissertation. I
only tried to clear the ground by proposing a series of definitions and arguing first for a property,
antimodularity, which, if and when occurring in real phenomena, could bring about problems for
certain models of scientific explanation and the need for computer simulation. The conditional
above lacks support for the premise: it is likely that antimodularity occurs especially in certain
complex phenomena, but I have not showed that such a kind of phenomena are so central and
widespread in the scientific literature today. It will have to be seen if this is the case.

But, as a second point, I think it has to be highlighted that the growing need of resorting, when
modularity can be actually found, to finding it via algorithmic means, and so to recur to a kind
of explanation favored by advancements in computational power, could itself favor interest in
particularly complex phenomena, or, in certain cases, bring even about a chance to “see” the
existence of phenomena which could have completely escaped the attention of non-computational
scientific research: automatic discovery of modular structure, where feasible, could produce prima
facie unintelligible modular descriptions, if the machine is able to group parts into modules
by considering contrived, unnatural but possibly significant relations between parts which had
been previously invisible to human understanding. And, from that point on, a trend towards a
more computational, possibly less humanly understandable science, is a trend fueled by positive
feedback: such a science, if these explanations are also used to guide further research, could
advance in ways that are obscure to us.65

64 Probably quantum physical description is not immediately a discrete modularization as the ones which
I consider, which are more compatible with a mechanistic view of systems. Nevertheless, quantum physics
constitutes an alternative valid description of the world, respect to the commonsense one, or to that of classical
physics.

65 In order to keep the discussion inside the topics of philosophy and history of science, I do not dare here to
call this future, possibly human-unintelligible, mostly-computational science, a “posthuman” science, albeit what
I said could probably evoke some legitimate use of that term.

Part II

Modularity

69

Preamble

This major section treats the question of modularity, by first trying, in chapter 2, to give an
informal definition of this notion and to delineate a brief history of the recent philosophical and
scientific reflection on this idea.

It is then highlighted (chapter 3, section 4.2 and chapter 5) the use of the notion of modularity in
three areas: network science, computer programs and discrete dynamical systems. In particular,
focus is posed on the methods for automatic detection of modular structure in these kinds of
systems.

After this review of modularity, in chapter 6 I will try to give some more analytic, even if not
properly formal, general definition of modularity and related concepts, especially hierarchical
descriptions.

In the final chapter of the section (chapter 7) I will discuss the occurrence of modularity in
certain biological systems from a theoretical point of view, along with some example applications
of modularity and related concepts in an empirical special science, namely biology.

71

Chapter 2

A first look at modularity

Modularity is a basic general notion which, upon a little reflection, appears almost universal
in its applicability: at least implicitly, this idea has permeated human knowledge and human
practice since very ancient times.

Typically, a module is seen as a more or less defined unit, possessing an identity as a whole, which
can in some way be connected to other units. Modularity is the property a system possesses when
it is susceptible to be described as a set of interconnected modules.

Examples of modularity abound, both in nature and among man-made objects and organizations.
In architecture, a building is almost always constituted of modules, be them bricks, or window
panes, or prefabricated macro-elements. In an organization, each office can be seen as a module,
interconnected to other offices by some kind of communication channel. In turn, an office can
be seen as a complex system composed by modules in the form of its workers. As a biological
example, an organ is composed of cells, each of which is composed of different macromolecules,
(such as proteins, DNA, RNA) which are polymers, each of which is composed of momomers,
each of which is composed of atoms, each of which is composed of particles, and so (possibly) on.

Depending on the field of human knowledge in which modularity manifests itself, we could discern
two broad conceptions of system modularity: one, which pertains to the construction of man-
made systems and artefacts, is the view that a complex system is built starting from a set of basic
modules, which are to be connected together and possibly recombined in various ways. Often,
modularity in this sense implies the idea that a module is a standard part that can be employed
in many identical or similar copies to constitute a more complex composite object. This view is
typical, for instance, of architecture, of industrial design, and in general of production processes
in which many simple standardized parts (the modules) are assembled together to give rise to the
finished product. An obvious example is that of a building constructed by connecting together
several pre-built concrete part. The same concept applies to many artifacts, as exemplified in
fig. 2.1.

The other conception is that of modularity as a way to describe a system: a modular system can
be described as prima facie decomposable into mostly independent parts.

In describing a system, the property of modularity consisting in the possibility of seeing modules
as similar repeated parts, is sometimes secondary to the other property of modular systems, that
of their susceptibility to be described as sets of semi-independent parts: it would be perfectly
sensible to describe a system as composed of partially independent parts, even if these parts are
all different. Nevertheless, if some of the modules which can be seen as components of a system,

73

74 Chapter 2. A first look at modularity

Figure 2.1: examples of modular artifacts.

2.1. An informal definition of modularity 75

appear to be sufficiently similar, this can lead to an economy of description of the system: it is
sufficient to describe in detail the standard “model” of which these parts are copies or variants
only once, and simply cite the recurrence of its copies in various parts of the system, specifying
where necessary only their difference with respect to their model. Repeatability of similar parts
can make this coarse-grained description of the system simpler than a fully detailed one.

In natural modular systems, especially in biological systems, these aspects of description and
construction, and decomposability and repetition of parts, are most often intertwined, at various
levels1: modules which we employ in describing an organism often coincide with modules which
have arisen during the organism’s development, as a modular way of “constructing” it: a trivial
example is the description of the body of a myriapod (see fig. 2.2) as composed of “metamers”,
that is, modules roughly identifiable as recurring similar parts constituting together the trunk
of the animal, each module supporting a pair of legs, with all the muscular and neural required
subsystems. The similarity of these modules most probably reflects some underlying modularity
of the developmental process, which in turn is due to some form of functional modularity in
the genetic regulatory network underlying ontogeny. This modularity of the genetic network
could also in many cases be seen as the existence of evolutionary modules, groups of genes which
have undergone changes during phylogeny independently from other parts of the genome. The
fact that partially independent parts of an organism can be seen as similar could reflect the
economy of description cited above: the DNA specifies only the general template determining
the structure of a module, and only differences between the variants have to be specified where
necessary. This is typically exemplified by the presence of cellular types: each cellular type is
only a variant of the totipotent original cell, variants specified by the activation of certain groups
of genes. From another point of view, each cellular type is in turn the “template” on the basis
of which a multitude of almost equal cells can be generated, and come to constitute a tissue.

2.1 An informal definition of modularity

From these examples, some properties of modularity appear evident: a module can be either
(i) a single atomic element, or (ii) a subset of the system’s elements. In the latter case, its
members appear more closely and durably related to each other than to elements belonging to
other modules.

It emerges from these intuitive features of modularity, that modularity is a property of wholes
constituted by distinct interrelated parts. It can be argued that this idea of an organized composite
whole is precisely what is captured by the term system: even in its common use, the idea of
system, however vague, presupposes the possibility of distinguishing parts in the whole, and the
fact that these parts are interrelated in some way. This is confirmed by dictionary definitions2.
Another, typical feature of most, even if not all systems, is that they can be seen as dynamical,
that is, characterized by configurations of their parts, or of the condition of their parts, which
change in time.

Modularity can be seen as an intrinsic feature of systems so understood: the elementary parts of
a system are modules themselves, according to the intuitions on modularity sketched above. But
modularity can also appear in the possibility of seeing the system as decomposable in subsystems,
that is proper subsets of the system, each of which, as a subsystem, possesses a form of individual
identity, deriving from the fact that its internal cohesion is high with respect to how strongly its

1 Most of the following will be discussed in later chapters, especially section 7.
2 For example, a system is “an organized or connected group of things” according to the Oxford English

Dictionary, and “a group of related parts that move or work together” according to Merriam-Webster Dictionary.

76 Chapter 2. A first look at modularity

Figure 2.2: a centipede, Lithobius forficatus, shows a sort of modularity in the repetition of similar metamers.

internal parts are connected to parts external to the subsystem: each subsystem is thus a module,
and the whole system, in addition to be constituted by its elementary parts, can also be seen, at
a “higher level”, as constituted by a set of interrelated modules. Speaking of “higher-level”, it
immediately appears, and it will be stressed all along this works, that the idea of modularity is
related to the idea of hierchical levels of description of a system.

We could then envision some informal definitions of modularity and related concepts:

• Amodule must possess the following characteristics:

i. it must have a sufficiently well-defined boundary, that is, a degree of isolation from
the external context

ii. it must be able to retain its unity and identity in a range of external conditions. This
second clause means that a module must possess some sort of robustness in the face
of external perturbations.

• Repetition of identical or similar modules is also a feature which, although not necessary
to speak of modularity, occurs quite often in modular systems: the module can be seen in
this case as a template for the identification or the production of instances of identical or
similar copies of a given structure or element, which recur at various locations inside the
system. The module becomes a standard part.

• Modularity is the fact that a system can be seen as composed of modules, in some way
related or connected one to the other. But the very notion of modularity intuitively entails

2.2. Early concepts related to modularity 77

that a modular system can be quite easily decomposed in the set of its separated modules:
it seems, in general, that the connection between modules must in a way be weaker3 than
the cohesion of the the module, that is, than the strength of the bonds between the module’s
internal components. Such kind of system could be to a first approximation separated into
various parts, coinciding with the modules, without affecting the integrity of each module.
This seems to be a defining characteristic of modularity: even in biology, although an
organism is to be certainly considered a completely integrated system, it stands to reason
that what appear to us as “modules” at a macrosopic level, that is, internal and external
organs, or even the segments of an arthropod’s body4, are, in a way, “deconnectable”.

• Hierarchical structure is another typical property of many modular systems: in many cases,
a system can be seen as composed of a set of modules, each of which in turn can be consid-
ered as comprising other sub-modules, and so on, until only individual atomic elements are
taken into consideration. In its basic occurrence, modularity reveals itself at least at the
lowest level, that of the system’s elementary, atomic, parts5, and at the highest level, that
of the whole: given the informal notion of module under consideration here, it seems clear
that also the system itself can be considered a module, in that it possesses a more or less
stable identity and a more or less defined boundary which circumscribes it, isolating the
system from the external context: this context can often be seen in turn as a supersystem
of which the system under consideration is an internal module.

A general view of modularity reflecting some or all of the above intuitive characteristics is
widespread, from natural sciences, to art, to most human creations. As I will try to argue
later, the presence, in an object under observation, of modularity understood in this wide sense,
is probably a necessary condition for any cognitively feasible scientific endeavor.

2.2 Early concepts related to modularity

Modularity is an ancient concept: modular patterns in art and architecture date back millennia.
The idea of a modular organization has probably been conceived more than once along human
history, in partially independent and diverse theoretical and practical fields. Nevertheless, in
philosophy and in science, an explicit treatment of the question of modularity is more recent,
and at least until even more recent times, the idea of modularity has probably only been taken
for granted, rather than explicitly considered.

A first theoretical reflection on modularity and affine concepts, a reflection which still informs
current conceptions of modularity, can be dated to the beginning of the 1960s, when a mathemat-
ical treatment, rather than a simply qualitative analysis of the concept of modularity, began to
be developed. A series of questions which would lead to theorization about this notion began to
arise in the field of economic sciences first, namely in econometrics.6 A 1953 paper by Ta-chung

3 Weaker by some kind of measure: in most cases strength, conductivity, ease of use, probability of occurring,
temporal frequency of use.

4 See for example fig. 2.2.
5 As clarified in section 6.6 and 1.5.1, I do not see this hierarchical decomposability as ontological, at least in

the commonly accepted sense of “ontological”, but pertaining only descriptions of a system. As a consequence, as
many philosophers concerned with mechanistic explanation, I do not consider the existence of an absolute bottom
level, composed of atoms proper: bottoming-out is relative to the interest of the observer. See also chapter 10.

6 Econometrics is a discipline devoted to the quantitative study, modeling and prediction of macroeconomic
phenomena by means of mathematical, statistical and computational tools. For an introduction see Tinbergen
(1951) and Baltagi (2011).

78 Chapter 2. A first look at modularity

Liu, an economist of the International Monetary Fund7 had focused attention on limitations in
mathematical modeling of macroeconomic phenomena. The paper dealt with the construction
of a mathematical model for gross national product forecasting. It highlighted the impossibility
of separating, on the basis of observational data, the effects produced by some variable among
the myriad ones that in a real economic system actually influence the dependent variable un-
der observation, with the consequent impossibility of building mathematical models representing
such indiscernible variables as distinct terms in their equations. Such limitation would lead to
the construction of inevitably simplified mathematical models, comprising only a few aggregate
variables: usually, a model for macroeconomic forecasting is constituted of a system of equations
describing the change in time of the values of a set of variables representing aggregate economic
quantities, that is, quantities which are sums, or, in general, combinations, of different kinds of
quantities (for example, consumption of goods and consumption of services).

Although the terminology of the time rarely makes use of the term “modular” or any of its cog-
nates, the concept of modularity came actually to be implicitly treated in a series of studies at the
beginning of the 1960s, starting with the seminal works of Herbert Simon and his collaborators.

Simon & Ando (1961) tries to formalize the concept of aggregation and near-decomposability.
In what follows, I will attempt a mostly non-formal explanation of the two concepts, and a
clarification of their relation to a general concept of modularity.

2.2.1 Aggregation in dynamical systems
Let’s consider a dynamical system, that is, a system which, at any given time, is in a certain
state or configuration, that is, in a certain assignment of values to a set V of variables.

If we consider time as proceeding in discrete steps8, the next configuration, that is, the configu-
ration which the system will enter at the next time step, follows a certain dynamics D, that is,
the next configuration is a function D of the current configuration, where current configuration
stands for the current values of the variables of V .

We then consider a subdivision S of the set V of original variables. That is, we divide the
variables into several possibly overlapping groups.

Applying a certain aggregation function, we obtain for each group a single aggregate value that
represents an aggregate of the values of that group’s variables. Thus, each group can be repre-
sented by its aggregate value, computed according to the aggregation function.

Now, we consider the aggregate configuration, which is the set of all the aggregate values9.

The aggregate configuration will have its own dynamics, which is given by a certain function
D′. This function, applied to the current aggregate configuration, gives the next aggregate
configuration.

This way, we have performed on the dynamical system what can be called an operation of
aggregation.

For an operation of aggregation to be valid, a condition, which I will call here the aggregation
condition, must hold: the condition that the corresponding aggregate configuration of the next

7 Liu (1955).
8 Mostly, in the rest of this thesis I will take into consideration systems which are discrete in time and space.

A better specification of this question is carried on in section 5.1.1.
9 Let’s remember that the configuration is the set of values of all variables of V , instead.

2.2. Early concepts related to modularity 79

configuration10 be equal to D′ applied to the current aggregate configuration. In other words,
the condition states that if we applied the dynamics D′ to the current aggregate configuration we
would obtain another configuration which is equal to the corresponding aggregate configuration
of the next configuration11.

For example: if the aggregation function is the mean of the values it applies to, the condition
stated above means that the evolution of the configurations of the means (of the subsets in the
subdivision S of the set V of non-aggregate variables) must be equal to the mean of the original
non-aggregate evolution.

We could rephrase the above example like this:

1. We take the current configuration, that is the configuration at the current time step.
2. We apply its dynamics to it.

10 The next configuration is the set of values of the original (non-aggregate) variables of V at next time
step, a configuration obtained by applying D to those variables’ current values. The corresponding aggregate
configuration of the next configuration is obtained by applying to it the subdivision S, and then calculating each
aggregate value for each of the sets in this subdivision.

11 The above mostly informal exposition could be expressed in a more formalized way:
We consider dynamical systems, that is: systems which, at any given time t, are in a certain state or configu-

ration c(t), which is a certain assignment of values to the elements of a set v of variables:

v = {x1, ...xn}
Given a configuration c(t) in which the system happens to be at time t, that is, the values at time t of the

elements of the set v, the next configuration c(t+1) in which the system will be (that is, the configuration of the
system at time t+ 1) is a certain function D (the dynamics) of the configuration at time t:

c(t+1) = D(c(t))

Since c is a set of values of the variables x1, ...xn, we could write

c(t) = {x1(t), ...xn(t)}

where xi(k) is the value of variable xi at time k . Substituting the values of the variables at time t+ 1 to c(t+1),
we get

{x1(t+1), ...xn(t+1)} = D(x1(t), ...xn(t))

We then consider a subdivision of the set of original variables. That is, we divide the variables into m possibly
overlapping groups.

Applying a certain aggregation function A to the variables of each group, we obtain for each group a single
value that represents an aggregate of the values of that group’s variables. Thus, each group can be represented
by its aggregate value Xi, computed according to the aggregation function A.

Now, we consider the aggregate configuration C, which is the set of values of all the aggregate variables Xi.
The aggregate configuration will have its dynamics D′ :

C(t+1) = D′(C(t))

The following equation, which I call the aggregation condition must hold, for the aggregation to be valid:

A(c(t+1)) = D′(C(t))

that means that, if we take the aggregate configuration at time t and apply to it the aggregate dynamics function
D′, we get the same result that we would get if we made the original non-aggregate system evolve according to
its dynamic D, and then, afterwards, we applied the aggregation function to the whole original set of variables
{x1(t+1), ...xn(t+1)}.

80 Chapter 2. A first look at modularity

3. We obtain the next configuration, that is the configuration at the following time step.
4. We take the current configuration, that is the configuration at the current time step.
5. We subdivide it in several subsets according to a division D.
6. We obtain the aggregate configuration, a set of values each of which is the mean of the

elements of one of the subsets obtained at point 5.
7. We apply another dynamics to the aggregate configuration.
8. We obtain the next aggregate configuration, that is the aggregate configuration at the

following time step.
9. We take the next configuration obtained at point 3.
10. We subdivide it in several subsets according to the division D.
11. We calculate every mean of the elements of this subdivision, obtaining an aggregate con-

figuration.
12. The aggregation condition holds if this last configuration is equal to the configuration

obtained at point 8.

2.2.1.1 Approximate aggregation

The fact that the aggregation condition holds means that the evolution through time of the
aggregate system faithfully copies the aggregate version of the original evolution (where with
“aggregate version of the original evolution” I mean the evolution obtained by calculating each
subsequent configuration of the original system according to its dynamics, and, afterwards, by
aggregating the values of the last of these configurations).

The aggregation condition could in many cases be relaxed: we could demand the aggregated
system’s dynamics to just track the original system’s more or less faithfully, up to a certain
acceptable maximum amount of error, established according to our aims and goals. In other
words, we could demand just an approximated aggregation, which reproduces well enough for
our purposes the behavior of the original system by means of a simplified version of its theoretical
model.

The evolution of the aggregate configurations through the dynamicsD′ can also be seen as another
dynamical system (let’s call it the aggregate system), different from the original non-aggregate
one. We could then see the aggregation condition as stating the fact that the evolutions of these
two systems must not (in a way) diverge with time: More precisely: that the evolution of the
original system, once processed by the aggregation function12, coincides up to a maximum error
with the evolution of the aggregate system. This circumstance can also be rephrased by saying
that the aggregate dynamics is valid. The approximate version of the aggregate condition could
however not hold in non-linear systems, where the evolution of their global configuration can in
time diverge exponentially from the aggregated one.

2.2.1.2 Aggregation is computationally hard

The fact that the aggregation condition holds or not, of course hinges on the choice of an appro-
priate subdivision of the set of the dynamical system’s variables, of an aggregation function and,
depending in turn on these, on the finding of an appropriate, valid, aggregate dynamics.

Unfortunately, the search for a suitable aggregation of variables requires a complete enumeration
of all possible subdivisions of the set of variables, in order to find the one which yields the

12 That is, once gone through a subdivision according to S of each of its configurations, and once each of the
obtained subdivided configurations are processed into aggregate configurations.

2.2. Early concepts related to modularity 81

smallest error13 when employed in an aggregated model of the system’s dynamics. This search
for an optimal subdivision of variables is an extremely demanding task, from a computational
standpoint. Actually, the task has turned out beingNP-complete, as proved in Winker (1992).

More recently, Kreinovich & Shpak (2006), and Kreinovich & Shpak (2008), have also proved
that even approximate aggregability is NP-hard, already in linear systems.

This means14 that we cannot hope to find a general algorithmic method that, applied to a math-
ematical model of the system’s dynamics, can always produce in feasible time a valid aggregate,
simplified, and even approximate version of the model.

This does not mean that aggregated dynamical models can never be found: the problem of
aggregation can in many cases be more easily solved if we have some prior knowledge about the
system which can guide us in partitioning the system’s variables into sensible semi-independent
subsets. An example classically proposed by Herbert Simon, which will be cited in section 2.2.3,
the example of the office cubicles, shows that a plausible aggregation of a dynamical model can
be produced based on prior knowledge of the system’s structure and of dynamical properties of
this structure.

2.2.2 Decomposability
When to a system’s configuration is applied a division which produces a partition, that is a
complete subdivision of the original system into non-overlapping subsets, then we can say that
the system is being decomposed.

In a completely decomposed system, every subsystem is independent from each other: it changes
in time15, but the fact that the system is decomposed, that is, partitioned, means that no influence
can occur between different subsystems.

We can apply an aggregation to such a decomposed system, by substituting to each subsystem
an aggregate value of the values of its internal variables.

If a decomposed system is aggregated this way, and the aggregation condition holds, the system
is said to be decomposable.

The fact that a system is decomposable means that the original system can be seen as a group
of non-interacting, completely independent subsystems, each of which undergoes its evolution
according to its own internal rules. In these cases, the whole dynamical system is equivalent to
another one in which each one of the independent subsystems is substituted by a single variable
which represents the aggregate value of the variables of that subsystem.

It’s easy to see that this notion of a decomposable system quite directly fulfills the intuitive fea-
tures of modularity: the fact that the system is composed of completely independent subsystems,
each of which maintains its own cohesion (in the sense of being independent from all the others
and as such not interfering with, nor being influenced by them), recalls the idea that a module
can be seen as a set of elements, possessing a sufficiently well-defined boundary (in this case the
“boundaries” of the partitions), endowed with some robustness (the fact that, for the aggregation
condition to hold during evolution, the partition of the system must endure). In particular, it is
trivially fulfilled here the property of a modular system to be composed of modules which are
weakly connected each other: the subsystems are in fact completely independent.

13 See sections 2.2.1, 2.2.1.1 and 2.4.
14 See section 17.4.1.1.
15 A subsystem changes according to the part of the dynamics’ function which mentions only its own internal

variables.

82 Chapter 2. A first look at modularity

Given that in the case of a decomposable system, to each subsystem, which is composed of more
than one variable16, is substituted a single variable in the aggregate system, this last system is
composed of less variables than the original one.

In cases of decomposable systems, then, it is sufficient, for the purpose of calculating certain
aggregate values of the system in the future, to perform the calculation not the system’s original
dynamics (which should take into account all the variables of the original dynamical system),
but on the dynamics of the aggregate system. The advantage of calculating the dynamics of the
aggregate system is that its number m of (aggregate) variables is smaller than the number n of
the original variables, and so the computation can be easier than in the original case.17

2.2.3 Simon-Ando near-decomposability
The problem of validly decomposing a system is that of finding an adequate partition of the
variables into a number of groups smaller than the number of variables, an adequate aggregation
function, and, given those, an adequate aggregate dynamics D′. It turns out that only in a
few cases these requirements can be satisfied: namely only when a system is actually composed
of completely independent subsystems. This seems indeed to be a quite special case, because,
usually, interesting systems are not a jumble of different unrelated systems.

But, it turns out that there are many more cases in which a system is nearly-decomposable. This
is the original terminology introduced by Herbert Simon and Albert Ando in 1961 in a paper,
Aggregation of Variables in Dynamic Systems18, which can be probably considered the ancestor
of all the contemporary literature on modularity.

A nearly-decomposable system is a system which can be seen, with some approximation, as a
decomposable system. In order to better explicate this property, I point here to a typical example,
which is made in both Simon & Ando (1961) and Simon (1962):

Let me provide a very concrete simple example of a nearly decomposable system. Consider
a building whose outside walls provide perfect thermal insulation from the environment. We
shall take these walls as the boundary of our system. The building is divided into a large
number of rooms, the walls between them being good, but not perfect, insulators. The
walls between rooms are the boundaries of our major subsystems. Each room is divided by
partitions into a number of cubicles, but the partitions are poor insulators. A thermometer
hangs in each cubicle. Suppose that at the time of our first observation of the system there
is a wide variation in temperature from cubicle to cubicle and from room to room – the
various cubicles within the building are in a state of thermal disequilibrium. When we take
new temperature readings several hours later, what shall we find? There will be very little
variation in temperature among the cubicles within each single room, but there may still be
large temperature variations among rooms. When we take readings again several days later,
we find an almost uniform temperature throughout the building; the temperature differences
among rooms have virtually disappeared.19

16 Excluding the trivial case of a partitioning in which each partition contains a single variable.
17 The fact that the computation of the aggregate dynamics is easier that that of the original one is not

guaranteed, even in the case of completely decomposable systems: this depends on the actual dynamics inside
each module, and could not hold in the case of highly nonlinear dynamics internal to modules. In that case, even
if the aggregate dynamics contains a lower number of distinct variables than the original dynamics, the function
representing the aggregate dynamics could happen be at least as complex as the original dynamics. See also next
section.

18 Simon & Ando (1961).
19 Simon (1962), p. 474.

2.2. Early concepts related to modularity 83

For a depiction of this example, see fig. 2.3. Simon numerically illustrates the example with a
table of data similar to table 2.1.

Figure 2.3: a map showing the office in Simon’s example: the double arrows represent the heat exchange rates
between rooms or their subdivision (the cubicles): thicker arrows mean higher rate of heat exchange between
cubicles in the same room, thinner arrows lower heat exchange rate between different rooms.

A1 A2 A3 B1 B2 C1 C2 C3
A1 100 2
A2 100 100 1 1
A3 100 2
B1 2 1 100 2 1
B2 1 2 100 1 2
C1 2 100
C2 1 1 100 100
C3 2 100

Table 2.1: values of heath exchange rates in the near-decomposable system in Simon’s example. In this and the
following table, different colors indicate the different modules: in the example’s case, the different rooms.

In the table, Ai are the cubicles of room A, Bi are those of room B and Ci the cubicles of room
C. Each point in the table, located at (X,Y) reports the heat exchange rate between cubicle X
and Y . Heat exchange rates among cubicles of the same room are located, due to how the table
is constructed, along the diagonal of the table. Heat exchanges between cubicles belonging to
different rooms are external to the diagonal.

By looking at the values of Simon’s example as represented in table 2.1, it appears immediately
evident that the most intense heat exchange is along the diagonal, that is, among cubicles of the
same room, and that heat exchange between cubicles of different rooms is order of magnitudes
lower. If we decide to approximate the system by considering these lesser rates as null when they

84 Chapter 2. A first look at modularity

fall under a certain threshold which we have conventionally postulated, we obtain a table similar
to table 2.2.

A1 A2 A3 B1 B2 C1 C2 C3
A1 100
A2 100 100
A3 100
B1 100
B2 100
C1 100
C2 100 100
C3 100

Table 2.2: a table representing the decomposable system in Simon’s example, obtained from the original system
by ignoring the values of heath exchange rates which fall below a certain threshold.

In this second table, only heat exchange rates along the diagonal are not-null, which means that
there’s no heat exchange between cubicle of different rooms, that is, that the rooms are com-
pletely independent subsystems. A system composed of independent subsystems is a decomposable
system, in that its aggregate evolution can be exactly described by taking into consideration only
one aggregate value for each of their subcomponents (the modules, in this case represented by
the rooms). The fact that only the diagonal presents non null values is the signature of a
decomposable system, if represented by this kind of tables.

Of course, the second table would exactly describe the system only in case this is exactly decom-
posable, and, as such, constituted of completely independent subsytems. We know this is not
the case for the example of the rooms, in which some heath exchange occurs between different
rooms. But, if this inter-module exchange is sufficiently smaller than the exchanges occurring
among cubicles of the same room, as in the example, we could, at the cost of an acceptably small
error in describing the system’s dynamics, treat the system as if it were decomposable. That is,
we could consider the system a nearly decomposable system.

It must be noted that this presupposition of a near-equivalence between the approximate model
and the original may not hold for nonlinear systems, in which a small approximation in the
equation describing their dynamics could lead to massive divergence of the actual dynamical
evolution of the system from the predicted one. In fact, Simon and Ando explicitly target only
linear systems in the cited papers.

Thus, an extension of this simplification technique to nonlinear systems seems at first prob-
lematic, for these systems can, and probably will, greatly diverge in their asymptotic long-run
dynamical behavior compared to the simplified model. However, some particular classes of non-
linear systems have been shown to be nearly-decomposable. Fisher (1963a) and Fisher (1963b)
proves near-decomposability conditions for certain nonlinear systems used in econometrics. Cale,
O’Neill, & Gardner (1983) proofs that, in modeling certain ecological systems, there are quite
stringent condition a nonlinear system must respect to be considered near-decomposable and,
as such, be treated with an acceptable approximation by means of an aggregate model. In the
same field of ecology, two works, Iwasa, Andreasen, & Levin (1987) and Iwasa, Levin, & An-
dreasen (1989) state the conditions for perfect and approximate aggregation in nonlinear dynam-
ical systems. They find that conditions for perfect aggregation or aggregation with acceptable
approximation are dependent on many factors, including the desired time-scale at which we want
to observe the system’s behavior, and the choice of the features of the system the observer is

2.2. Early concepts related to modularity 85

interested in. In any case, here too, there is a trade-off between aggregation degree20, and the
precision obtained.

However, it seems defensible to say that some nonlinear systems can not allow for any kind of
approximation effected by ignoring weak links between some of their parts, because the approx-
imated model would always diverge from the exact one even in the short run. This could be
the case when, even if the intermodular structural links are weak, the connected modules can
influence each other in a nonlinear way: this can produce a very strong short-term reaction as a
consequence of even a faint variation in the intensity of the interaction, thus making it so that the
presence of the link cannot be ignored: in this case, the system can not be simplified. Prediction
of the dynamical evolution of systems of this kind would almost certainly have to be effected by
using the non-approximated, and as such non aggregated, model, with all its computational cost
in terms of the potentially high number of variables to be considered.

2.2.4 Timescales and decomposition in nearly-decomposable systems
Regarding the original idea of near-decomposability, in their 1961 paper21 Simon and Ando
proved two theorems, which state that:

(a) in a nearly decomposable system the short-run behavior of each of the component
subsystems is approximately independent of the short-run behavior of the other com-
ponents;

(b) in the long run the behavior of any one of the components depends in only an aggregate
way on the behavior of the other components.22

I think the two above properties could be rephrased more perspicuously as:

i. in a nearly decomposable system the fine time-scale internal evolution of each of the mod-
ules can be modeled by ignoring any influences originating form the module’s external
environment, that is, as if the system were completely decomposable;

ii. at a coarser time-scale, the evolution of the systems can be modeled by considering only
its aggregate dynamics, obtained by aggregating the evolution of each module into a single
value.

These properties of a nearly-decomposable system allow for the following treatment of the sys-
tem’s dynamics: when the observer is interested in the behavior of the system at a fine timescale,
the subsystems can be treated as independent modules, and each module studied separately
from the others. When interested in the long run behavior of the system, it is sufficient for the
observer to substitute the system with an aggregate version of it, that is with another dynamical
system in which a single variable represents the aggregate state of each subsystem of the original
system.

In nearly-decomposable systems, there is an evident decoupling between the timescale of the
interesting intra-module interaction and that of the interesting inter-modules interactions. This

20 With “aggregation degree” I mean here the degree of computational simplification of the system’s dynamical
model obtained by simplifying it by considering it decomposable and by aggregating the decomposed system’s
dynamics.

21 Simon & Ando (1961).
22 Simon (1962), p. 474. Those cited here are less formal statements of the same two theorems, as phrased by

Herbert Simon.

86 Chapter 2. A first look at modularity

is an important characteristic of modular systems, and it will be discussed in next section and
further on23

2.3 Hierarchical modularity

It seems clear that, in many cases, the description of a complex as composed of modules loosely
connected together can be applied recursively to the modules themselves, giving rise to the view
of a hierarchical modular system. This seems a view naturally applicable to many kinds of
systems of some interest: biological, sociological, economical, and many others.

In Simon’s case, a decomposable or nearly decomposable system can be naturally and intuitively
seen as a three-levels24 hierarchy: the whole system, which represents the “highest” level, is
composed of its elementary parts, which constitute the “lowest”level. But, being nearly de-
composable, the system can also be seen at an intermediate level of description as constituted
of nearly independent subsystems, the subsystems into which it can be sensibly decomposed or
nearly-decomposed. This kind of decomposition can in certain cases be applied to each subsystem
in turn, and so on, until a reasonable set of “bottom level” elements is found.

Simon (1962), Tries first to characterize hierarchical systems in a more general way. According
to him, hierarchical organization is typical of what he calls “complex systems”, loosely defined
as follows:

Roughly, by a complex system.25 I mean one made up of a large number of parts that
interact in a nonsimple way.26

Simon writes:

By a hierarchic system, or hierarchy, I mean a system that is composed of interrelated
subsystems, each of the latter being in turn hierarchic in structure until we reach some
lowest level of elementary subsystem. In most systems in nature it is somewhat arbitrary as
to where we leave off the partitioning and what subsystems we take as elementary. [. . .] For
certain purposes of astronomy whole stars, or even galaxies, can be regarded as elementary
subsystems. In one kind of biological research a cell may be treated as an elementary
subsystem; in another, a protein molecule; in still another, an amino acid residue.27

23 Especially in section 6.7, 3.2.4.1 and chapter 6.
24 I use here the term “level” in an informal and intuitive way, but I will try to elaborate on the question of

levels in section 6.6.
25 It must be noted that the way Herbert Simon uses the expression “complex system” runs against a well-

established tradition, preceding and following Simon’s proposals, namely, the tradition to see as complex mainly
those systems which can be loosely defined as “chaotic”: that is, systems composed of a usually large number of
parts interacting in nonlinear ways. This are circumstances which impede approaching the system’s behavior in
a “piecemeal” fashion by subdividing it in near-independent subsystems, each one more tractable than the whole.
“Complex system” understood in this “holistic” fashion seems to amount to exactly the opposite of “complex
system” in Simon’s sense. This must be explicitly stated to avoid some misunderstanding in analyzing Simon’s
work.

26 Simon (1962), p. 468. Simon’s text continues this way: “In such systems, the whole is more than the sum of
the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties
of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole. In the
face of complexity, an in-principle reductionist may be at the same time a pragmatic holist.” (p. 468). I think
the position hinted at here is a very interesting attempt to avoid the typical metaphysical conundrums of the
reductionism/antireductionism debate. I will try to propose a somewhat analogue position, based on a certain
kind of pragmatical considerations, in section 14, regarding the explanation of complex systems.

27 Simon (1962), p. 468.

2.4. Generic near-decomposability. 87

It has to be noted that this arbitrariness in stating the “bottom” level is quite parallel to the
analogous question about deciding which “bottom entities” to consider in mechanistic explana-
tions. In fact, it can be argued that the whole conception of mechanistic explanation is a form of
individuation of a hierarchical structure in Simon’s sense and of use of this structure to explain
the functioning of the system. This is not only implicit in the “new mechanistic” line of thought,
an important line of contemporary philosophical reflection which will be expounded in chapter
10: this analogy between mechanistic explanation and Simon’s view is explicitly acknowledged
by some authors, for example by Bechtel & Richardson (1993).

According to Simon, the recursive division of the system into subsystems to form a hierarchy can
be effected, in many cases, by treating the system as nearly-decomposable28 at each hierarchical
level: each level can be seen as constituted of elements, which can be grouped into subsystems
whose internal elements appear more strongly interrelated one to the other than to parts external
to the subsystem. Near-decomposability turns to decomposability by treating the system as if it
were completely decomposable, a simplification which is realized by ignoring the relational links
among elements whose intensity falls under a specified value29.

For example, we could take a population, which at the lowest level of description is composed
of separated individuals. By subdividing the population into subsets individuated by area of
residence, we could obtain an intermediate level of description. At this intermediate level, the
parts are the modules, that is, the local communities, whose internal members present a stronger
affinity between them than members of different communities. These modules, the local commu-
nities, which at this intermediate level can be considered the elementary parts, can be in turn
grouped to form regional communities, each of which is internally constituted of local communi-
ties. And so on, until the whole population is viewed as a single “elementary” part: this is the
highest hierarchcal level.

It is important to highlight that, as a result of this procedure, the detected hierarchy can in this
case be seen as dependent on two choices: (i) the specific relationship among the parts we want
to consider, and (ii) the chosen threshold under which a relation is to be considered null if its
intensity falls below it.

2.4 Generic near-decomposability.

It must be considered that, upon examination, the original notion of near decomposability pro-
posed by Simon and Ando turns out to be a form of modularity of the equations describing the
dynamics: exchange rates are properties of the mathematical expression of the system’s dynam-
ics, that is of its dynamical model. The fact that in certain cases low exchange rate coefficients
can be considered null is a property of the mathematical model. I would call this form of mod-
ularity dynamical model modularity, and will better analyze it in section 6.5. But the notion of
modules as internally strongly connected structures more loosely interrelated one with the other
is more general, and should be applicable also to systems not explicitly modeled by a system of
equations, or to statical hierarchical systems. Actually, a similar criterion can be easily devised
for static modular hierarchies: namely, it is sufficient to substitute a metric of static proximity
or affinity between elements to that of exchange rate30.

28 See section 2.2.3.
29 See section 2.2.3.
30 That modularity detection requires the choice of a particular metric is an essential property of modularity,

which is to be discussed in section 2.5 and 6.3.

88 Chapter 2. A first look at modularity

I would thus like to propose a principle of generic near-decomposability, allowing for the sim-
plification of a system by considering very weak links between its elements as null, a principle
that can be applied to any kind of system which shows variations in magnitude of some relation
whatsoever between its elements. That the hierarchical decomposition effected according to this
criterion turns out to make sense or not, will depend on the relation taken into consideration, and
on the chosen threshold of the relation’s magnitude under which the relation has to be considered
null.

Thus, the idea, highlighted above, of arbitrariness in individuating the bottom level, could seem
to extend to arbitrariness in individuating the levels of the system’s hierarchical structure, when
this structure is detected by considering a nearly-decomposable system as decomposable: this
impression is due to the apparently arbitrary choices of the kind of relation among the system’s
parts, and of a threshold level. But, given that, when considering interesting systems, it is
science to be charged with the decision about which relation to take into consideration and
which threshold can be considered useful for an acceptable approximation of the system, it could
be argued that the arbitrariness here is constrained: after all, science necessarily seeks a certain
degree of precision in modeling a system, a degree which varies according to the contextual
scientific purposes. So, the choice of the simplified model is not completely arbitrary: it is
always based on the trade-off between acceptable precision in science and the computational
effort needed to simulate or explain the system’s dynamics at the highest possible precision (its
non-simplified dynamics) or to fully describe the system at the highest possible level of detail, in
the case of a static system.

Importantly, as we will see, in the case of explanations two other conditions must be highlighted:
(i) it must be taken into consideration also the computational effort needed to find out the
hierarchical description to be used in the explanation, and (ii) it is my contention that we should
also consider our cognitive limits in handling too complex explanations. these two conditions
together raise a whole host of problems and questions which constitute one of the main concerns
of this work, as we will see in later chapters.

Regarding acceptable simplification and the occurrence of near decomposability in systems stud-
ied by science, Simon notes:

In the more general sense, justifications for approximation must be related to the decisions
that depend on the approximating – if the decisions based on the approximate model are
not much “worse” than the decisions based on the more elaborate model according to some
criteria, then we may be justified in using the approximate, simpler model. This considera-
tion is strengthened if, while the improvement of the final decision is very slight, the cost of
working with a larger model is very much greater than that of working with an approximate,
simpler model31.

[. . .] near decomposability is a rather strong property for a matrix to possess, and the
matrices that have this property will describe very special dynamic systems – vanishingly
few systems out of all those that are thinkable. How few they will be depends of course
on how good an approximation we insist upon. If we demand that epsilon32 be very small,
correspondingly few dynamic systems will fit the definition.33

31 Simon & Ando (1961), p. 112-113.
32 Epsilon is the maximum approximation error [my note].
33 Simon (1962), p. 475.

2.5. Modularity is relative to the choice of a metric 89

Although, among randomly generated systems, the odds of finding nearly decomposable ones are
“vanishingly small”, Simon notes that, in actuality, many systems studied by science are in some
way modular:

But we have already seen that in the natural world nearly decomposable systems are far
from rare. On the contrary, systems in which each variable is linked with almost equal
strength with almost all other parts of the system are far rarer and less typical.34

As we will see in section 7.1.1, Simon has other independent reasons, mainly based on abstract
evolutionary considerations, to believe that natural systems, especially biological ones, manifest
modularity, and that non-modular systems are fairly rare. Other reasons can be empirical:
the physical forces in atoms and molecules vary by orders of magnitude at different scales35.
Accordingly , time scales are different: atomic vibration is of a much higher frequency than
molecular one. In this case the choice of the correct hierarchical description is not arbitrary.

Regarding hierarchies, Simon informally introduces the notions of flat hierarchy and span. Ac-
cording to him, a hierarchy as usually understood, is the division of a system in a small or
moderate number of subsystems: such a number is the span. A hierarchical system is flat at a
certain hierarchical level when it has a wide span36. Systems with flat hierarchical levels are not
very easily modeled, because even their modular descriptions are constituted by high numbers
of parts, parts which must all be considered when explaining or simulating the system.

2.5 Modularity is relative to the choice of a metric

It emerges quite clearly fro what has been said until here that a fundamental property of modu-
larity is that of being relative to a relationship holding between parts of a system: modules are
precisely those sets of elements of the system whose internal connections are stronger than those
with the external context. But the nature of these “connections” can change in countless ways:
any relation holding between at least couples of elements can be chosen, and can be considered
a metric: for example, in a social group a first metric can be that of genealogy; a different one
can be that of love relationships, a third one that of party membership, or that of the difference
between two person’s heights. Without loss of generality, we could even conceive ad-hoc all-or-
nothing strange relationships, or even properties of single elements, instead of n-ary relationships,
like fro example that of “being an american actor or being older than one of his uncles”: such a
feature is a property of single elements, but it has an abvious corresponding discrete metric of
proximity between elements, which is that of sharing the property or not.

Of course, given a certain system under observation, changing the relationship taken into con-
sideration the possible corresponding modular structure which can be detected in the system
changes accordingly, often drastically. In many cases, modularity can appear or disappear as the
metric changes.

But, how to choose an adequate metric? In the former section, I claimed that, given that it
is science that we are dealing with, this choice is made according to some criteria of scientific
relevance and opportunity relative to the aims and purposes of the discipline under consideration.
In many cases, a well-established science has a set of intended relationships to base on when

34 ibid.
35 From stronger to weaker: covalent bonds, ionic bonds, hydrogen bonds, intermolecular bonds.
36 I will make use of a slightly revised notion of flat hierarchy in section 6.6, and in section 13.2 when introducing

the definition of antimodularity.

90 Chapter 2. A first look at modularity

considering modularity of the systems it considers37. Albeit affected by these constrains, the
point to highlight is that a specific choice of the relevant relationship or metric is always necessary,
albeit this choice can be implicit. It is this pragmatic dimension bearing on the development of
scientific theories which deserves attention here. In section 13.3 I will argue that there are other,
inescapable constraints, of a computational nature, which bear on the choice of a metric used to
assess modularity.

2.6 Summary of the chapter and outlook

In this chapter, I gradually outlined a notion of modularity starting from intuitive observations
and seminal works in the literature of the past fifty years which started to touch upon concepts
related to modularity. Based on that, I tried to delineate a core set of features which characterize
many forms of modularity, and which will be of use in all the rest of this work: aggregability, near-
decomposability, hierarchical structure and temporal decoupling between dynamics at different
hierarchical levels. Most of these notion will be further discussed and, where possible, generalized,
in chapter 6.

In the next three chapters, I will highlight the importance of the generalized notions of modularity
based on near-decomposability, and of hierarchical descriptions, in three fields of theoretical
research: networks, discrete dynamical systems and computer programs.

37 See section 6.6.9 and the notion of preferred description, a notion which has already been touched upon in
section 1.1.1 of the Introduction.

Chapter 3

Modularity and networks

The concept of modularity, as sketched in the preceding chapter, is readily applicable to networks.
In this section, after introducing the notion of network, which is an abstract device essentially
composed of nodes linked together, and some of the interesting features of networks, I will proceed
to specify how network modularity can be understood.

Intuitively, a modular network can be seen, based on on a general conception of modularity like
that introduced in section 2.1, as a network in which it is possible to identify subsets of nodes
whose elements are more connected to each other than to nodes external to the subset. Although
Simon’s view of near-decomposable systems is inspired by the same intuition, his approach applies
to systems quite different from networks generally intended (even if, as we will see1, the systems
Simon takes into consideration could be considered specific cases of networks), and as a result
not all of the properties of those systems apply to modularity in networks. On the other side,
modularity detection in networks has usually focused (with some exception, as we will see) on
determining modularity in the network structure, and not necessarily in the networks’s dynamic
functioning. Static structure and network dynamic functioning are certainly related, but not
always in a simple way, as discussed in chapter 6. In this section I will take for granted an
intuitive understanding of the fact that a network’s structure can support a dynamics on it: just
think of an electric network and the current flowing on it. For a proper discussion on the relation
between network structure and network dynamics, refer to section 6.2.

While modularity can be intuitively spotted at first sight in the graphical representation of simple
networks, this is no more the case when networks coprise hundreds or thousands of nodes: their
graphical representation would look in most cases as an intricate mess. fortunately, since the
early 2000s, some algorithms for automatic detection of modularity incomplex networks have
been devised. The main concern of this chapter is to describe the features of the best known of
these algorithms, and to highlight their downsides. Resorting to these computational methods
has revealed to be necessary in many special sciences dealing with enormous networks, such
as molecular and cell biology, which, with the advent of automatic methods of experimental
discovery of the molecular networks which make up cells and organisms, have to face enormous
amounts of raw data about the structure of these networks: detection of modularity in these
networks would certainly ease their comprehension and further research.

1 In section 6.2.

91

92 Chapter 3. Modularity and networks

3.1 Networks and network science

Abstractly conceived, a network is a set of items, called vertices or nodes, with connections
between them, called edges.2 The number of edges linked to a node is the degree of that node.
If the edges have a direction (as for example in the case of causal connections), the network is
called a directed network, undirected otherwise.

Network models have been employed in the last few decades for modeling a multitude of systems
of heterogeneous type, ranging from physical complex systems, to computer and communication
networks, to social, organizational, ecological, economical, neural or other biological networks
(mainly genetic, or metabolic, or protein networks).

Depending on the chosen network, which is usually seen as a model of some empirical phe-
nomenon, edges can represent any kind of relation between elements of the system: be it causal
influence, information transmission, parenthood, acquaintance, and so on. Depending on the type
of relation represented, edges can possess a direction, in which case the network is a directed
one.

As said, interest in the properties of networks and their application as models of real phenomena
has gradually increased over the last five decades, under a multitude of approaches, in a varied
spectrum of disciplines, from mathematics (graph theory) to biology, to sociology. All this
heterogeneous literature, according to some, like Börner, Sanyal, & Vespignani (2007), expose
the need for an interdisciplinary but explicitly defined research field: network science, understood
as the study of abstract properties of networks applicable to disparate real-world situations. In
the words of these authors,

Today, the computational ability to sample and the scientific need to understand large-
scale networks call for a truly interdisciplinary approach to network science. Measurement,
modeling, or visualization algorithms developed in one area of research, say physics, might
well increase our understanding of biological or social networks. Datasets collected in biology,
social science, information science, and other fields are used by physicists to identify universal
laws. For example, unexpected similarities between systems as disparate as social networks
and the Internet have been discovered [. . .]. These findings suggest that generic organizing
principles and growth mechanisms may give rise to the structures of many existing networks3.

In what follows I propose a partial reconstruction of the main chronological line of theoretical
achievements in this emerging discipline. I definitely don’t aim here at giving a thorough expo-
sition of all the relevant results, especially the more recent ones, in a field which, albeit young,
is characterized by an already cospicuous and fast-growing literature. I will make a survey of
the main questions and problems, with the aim of highlighting some properties and limitations
which will serve my main considerations and proposals in section 13.

3.1.1 Random and regular networks
Starting in the ’60s, models of random networks have been studied by mathematicians, with
Erdős & Rényi (1960) as the founding paper. Random networks are networks in which the edges
between nodes are distributed at random. These networks serve as a benchmark against which to
compare a given network in order to detect some structure in it: if the network under observation

2 See Newman (2003). Mathematically, networks are graphs: the corresponding theoretical branch is graph
theory.

3 Börner et al. (2007), p. 539.

3.1. Networks and network science 93

reveals statistical properties which are different from those of a random network, then it possesses
some structure4.

During the following two decades, much attention has been posed to random networks as de-
scribed by the Erdős-Rényi model, and also to regular networks: networks in which the degree
of connectivity between nodes is roughly uniform across all network (for example, as in a lattice
of nodes, each of which is connected to all its neighbors).

Random networks and regular networks show fundamentally different statistical properties. Ran-
dom networks possess a low average path length between any two connected nodes: this means
that the number of nodes interposing between any two nodes along the path which connects them
is relatively small, on average. However, the average amount of local connectedness5 between
any two nodes is low: many neighborhoods appear only sparsely connected.

By contrast, in regular networks, there is high average local connectedness, but also high mean
path length between nodes: this is because any node is directly connected only to its neighbors,
so, to reach a given node from a distant one, one has to traverse many intermediate nodes, which
are in turn the neighbors of some other node (see fig. 3.1).

3.1.2 Small-world networks
A more recent seminal paper, Watts & Strogatz (1998), highlights the fact that, previously,
network models had usually been supposed to possess either a completely regular topology or
a completely random one, but that, as models of actual world phenomena, many interesting
networks are not expected to be completely regular: they show a quasi-regular structure char-
acterized by some amount of disorder. Studying mathematical models of networks with these
properties, Watts & Strogatz came to the conclusion that, under appropriate conditions, systems
of this kind show a topology which reveals itself as apt to perform computations.

Specifically, in such non-completely regular networks, nodes are densely linked to each other
locally, and, in virtue of a few long-range “extra” links between some couples of distant elements,
they come to constitute a “small world” (a concept similar to what in pop culture is known as
“6 degrees of separation”): inside the system, communication between nodes (or causal influence,
or in general some type of efficient relation holding between nodes) is easy, because the extra,
longer links, make distant elements appear closer: these longer links decrease the average distance
between nodes, while at the same time the amount of local connectedness remains high as in a
regular network (fig. 3.2).

This kind of topology combines features which in random or regular networks appear conflicting.
Small-world architectures like these seem able to support forms of computation, and have been
found to occur in extremely diverse real cases: for example, continental-wide electrical power
grids, or the nervous system of a simple organism like Caenorhabditis Elegans6.

We will see in section 3.2.6 that the property of being a small-world network is not incompatible
with the property of being modular.

4 See Caldarelli & Catanzaro (2012), pp. 29–30 and Alon (2006), p. 29.
5 Actually, what I here call “local connectedness” is the clustering coefficient. It measures the connectedness

of the neighborhoods of a given node, that is the amount of edges between the nodes of the neighborhood. For
example, given a person, and two of her friends, if the two friends are also friends of each other, the clustering
coefficient is higher than in the case in which the two friends are not friends to each other, but only friends to
the person in question. The coefficient measures, in other words, the “cliquishness” of a circle of close nodes.
Cliquishness is a technical term in graph theory. See Watts & Strogatz (1998), p. 441, fig. 2. See also section
3.2.1.5

6 C. Elegans is a nematode worm which has become a model organism in biology.

94 Chapter 3. Modularity and networks

Figure 3.1: a random network (top) and a regular network (bottom).

3.1.3 Scale-free networks

Another feature typical of certain small-world networks is highlighted in a seminal paper by
Barabási & Albert (1999), who construct a model for networks of a generic nature which, in
contrast to former models, which are mostly static, grow with the addition of new vertices
according to preferential attachment: this is a dynamics of growth of the network’s structure in
which new nodes tend, with a certain probability, to be connected to the nodes with already high

3.1. Networks and network science 95

Figure 3.2: a small-world network, which combines short average distance and high local connectedness. In this
example, links between node 8 and 4 and between 10 and 2 are the "extra" long range links which allow for the
small-world phenomenon by non-linearly reducing the average path length, while the rest of the network roughly
resembles that of a regular network (see fig. 3.1), retaining a high local connectedness.

number of connections, in what could be called a “rich get richer” schema7. With time, some
nodes of such networks emerge as hubs, that is, poles of attraction which get linked-to by many
other nodes. This way, hubs come to assume a degree8 that is much higher than the average
degree of nodes in random or regular networks. This can be seen as a global property of such
kind of networks, that of being scale-free, so called for the reason these networks don’t have a
typical scale. This means that in such networks there is not a typical degree a node can have:
degree varies wildly among nodes, and it is not a more or less uniform parameter across the
network. In other words, contrary to what holds in regular or in most random networks, there is
a certain amount of nodes, the hubs, with a degree much higher than the majority of the other
nodes9.

Scale-free networks are also small-world networks, because they have high local connectedness,
due to the fact that many nodes attach to hubs, and small average path length due to the fact
that nodes attached to the same hub are at most at 2 edges of distance one to the other10.

In interesting, directed real-world networks, such as many genetic regulatory networks, there are
hubs which have a high out-degree towards other nodes: these hubs are genes which regulate
many other ones. The converse may not hold: each gene is regulated by a small number of other
genes. So, the network is scale-free with reference only to its out-degree distribution11.

7 This type of preferential attachment is a dynamics typical of some real-world networks, such as the citation
network of scientific papers: some papers come to get more cited than others, and keep on being cited preferentially,
because their already high number of citation makes them appear more prominent than most other papers.

8which is the number of edges linked to a given node.
9 Technically, scale-free means that the distribution of degrees in nodes does not follow a gaussian curve, but

a power law of the form p(k) ∼ k−γ , where the value of γ stands usually between 2 and 3.
10 See Amaral, Scala, Barthélémy, & Stanley (2000).
11 See Caldarelli & Catanzaro (2012), p. 81.

96 Chapter 3. Modularity and networks

The property of being scale-free endows a network with a certain amount of tolerance to failure
or disruption of a part of its nodes, albeit in scale-free networks this tolerance is obtained at
the cost of increased sensitivity to targeted disruption of certain specific parts of the networks,
such as the hubs12: while targeted destruction of a few hubs would disintegrate the network into
disconnected parts, destruction of nodes chosen at random has a high probability of leaving the
network global structure mostly intact, as showed in fig. 3.3. This kind of resilience is arguably
an essential feature of computing or biological systems, such as the nervous systems or genetic
networks.

Figure 3.3: resilience of a scale-free network to random attacks. Frame A: a scale-free network, with a main hub
highlighted in red and five non-hub nodes colored blue. Frame B: effect of a random attack which ends up hitting
only the five blue non-hub nodes. Frame C : effects of an attack specifically targeting the red hub.

3.2 Modularity in networks

Local connectedness and average path length, as well as the property of being scale-free, are
statistical properties which refer to short or long-range properties of the nodes, or of local ag-
gregates of them, holding, on average, across all the network, but which do no tell much about
the specific structure of the network under consideration, when applied to networks which are
neither completely random nor completely regular: in particular, these properties do not tell us
much about if and how the network is structured into distinguishable or even discrete subnet-
works. Modularity instead is a property which describes the occurrence or absence of this kind
of structure in the network.

12 See Albert, Jeong, & Barabási (2000).

3.2. Modularity in networks 97

3.2.1 Community and hierarchical structure detection
A terminology which has been used in network science to express a property analogous to the
notion of modularity which I exposed in section 6, is that of community structure, which is
“the division of network nodes into groups within which the network connections are dense, but
between which they are sparser”13. The communities are, in other words, “groups of vertices
that have a high density of edges within them, with a lower density of edges between groups”14.
The concept of community structure has been proposed by Michelle Girvan and Mark Newman,
starting from the seminal Girvan & Newman (2002), and subsequently in many other papers.

As can be easily seen, networks endowed with community structure show a property which
coincides quite well with a general conception of modularity, as depicted in section 6: the property
of having subsets of elements, the modules, whose internal elements are more intensely related
to each other than to external ones. In this case, the modules are the communities: the whole
network presents certain subsets of nodes where nodes belonging to a subset are more densely
connected to one another than to nodes belonging to other subsets. The peculiarity here lies in the
relation taken into consideration to assess modularity, which in the case of network communities
is that of the density of interconnections between nodes of the network, while in the general case
can be a relation whatsoever between elements of the system. An example of network with a
community structure is depicted in fig. 3.4.

Figure 3.4: a network with community structure of the type proposed by Newman and Girvan. In this picture,
colored discs surround the communities, which show high density of intra-module links, while external, inter-
module links, are more sparse.

It is certainly interesting, given a network, to assess if it shows any degree of community structure,
by means of some method for community detection. For reasonably large networks, automatic
detection is undoubtedly required, and several algorithms have been proposed for this purpose,

13 Newman & Girvan (2004), p. 193.
14 Newman (2003), p. 193.

98 Chapter 3. Modularity and networks

starting from the classic algorithms proposed in Girvan & Newman (2002) and Newman & Girvan
(2004).

We are not dealing here with detection of only a single set of modules in a given network: in
full accord with Herbert Simon’s conception of hierarchical systems15, the algorithms devised by
Newman and Girvan are able to find a full hierarchical, tree-like, structure of communities and
subcommunities in a network.16, an example of which is in fig. 3.5.

Figure 3.5: a hierarchical structure of communities in a network. White circles are the network’s nodes. Black
dots represent communities, higher-level modules composed of sets of nodes or of other communities, in turn.
Green dashed lines represent "levels" in the hierarchy. The highest one locates the level whose community is the
whole network.

Newman and Girvan’s algorithms start by identifying the highest, coarser level17 of the hierarchy,
composed of a single community coinciding with the whole network, to proceed detecting lower,
progressively finer levels, composed of progressively smaller communities. The lowest, finest
level, is obviously composed of only single-node communities: as highlighted in section 6, a
single atomic element has intuitively all the properties of a module, and can be considered as
such. Thus, the lowest level, that of single-node communities, can be considered a modular
level as well. Together with the highest level, constituted by a single module comprising by the
whole network, these two levels can be considered what I would call the trivial hierarchical levels,
always present in any modular system, and they constitute a flat hierarchy18. The number of
detected hierarchical levels depends on a choice about when to stop the detection: potentially,
all the possible hierarchical levels can be detected this way, but the algorithm can be stopped
at a certain point of its processing, yielding a partial hierarchical description which focuses on a
certain set of modular levels, while ignoring other finer hierarchical levels.

3.2.1.1 The Modularity measure Q

There is a problem with the methods by Newman and Girvan mentioned above, which has
been soon acknowledged by the authors: the algorithms proceed by proposing a succession of

15 See section 2.3.
16 Historically, other methods for detecting so-called hierarchical clustering in data had formerly been de-

veloped, especially by sociologists for social networks, but the method by Girvan and Newman is the first to
be presented as applicable to networks in general, and works on different principles than those on which the
former methods are based: specifically, while cluster detection in sociology usually works by starting with a set
on unrelated nodes and by proceeding to progressively add links to them (a so-called agglomerative method),
the algorithm by Girvan and Newman proceeds by progressively subtracting links from the complete network (a
divisive method). This method overcomes some drawbacks of the agglomerative ones, which, for example, tend to
see nodes which are peripheral to a cluster as single nodes, each constituting a module, while in actuality these
nodes can be considered as naturally belonging to the cluster. See Newman & Girvan (2004), pp. 1–2.

17 I’m using the expression “level” only intuitively here, while I will try to give it a more thorough analysis in
section 6.6.

18 See also section 6.6

3.2. Modularity in networks 99

progressively finer splits of the network (the hierarchical “levels”) into progressively smaller
communities, but they do not give any indication to which of these splits are most representative
of an actual, sensible hierarchical structure of the network19, given that the algorithm, per se,
would produce some division of the network anyway, even when applied to random networks.

To avoid this drawback, starting from Newman & Girvan (2004), these authors propose a measure
of the degree of modularity of a network, which they call Q: this is the quality measure on which
their evaluation of modularity detection is based.

The Q measure has more or less become the standard of reference in network modularity detec-
tion. Ranging continuously from 0 to 1, Q measures the probability that a candidate, alleged
community structure, already detected by an algorithm (be it the algorithm by Newman and
Girvan, or another one) is or is not actually present in the network. This probability is measured
by comparing the density of intra-module links in the network under observation (links between
nodes belonging to the same community) to the expected density of links between those same
nodes, but in a random network20, that is, a network which has been purposely constructed
by completely reconnecting the nodes of the original network, but this time randomly21. The
tacit assumption is that random networks should not display, usually, a significant community
structure, that is, they should not be expected to display a significantly higher density of links
in some subregions than in others. So, the more the amount of intra-module links in a given
modular description of a network proposed by the algorithm is higher than the same amount
in the corresponding random network, and thus the Q value is high, the more this candidate
modular description reflects a genuine community structure present in the actual network under
analysis. In other words, a modular description with a high Q is a good modular description,
which more reliably reflects the real modular structure of the observed network. Q measures
the probability that a community structure detected in the network (not necessarily by Newman
and Girvan’s algorithms, but also by other means) is not an apparent feature of a network: this
is the case when the network, although appearing in some way structured, does not in actuality
differ significantly from a random network. Q is a necessary measure, given that most algorithms
for community detection, because of their internal logic, tend to find some community structure
even in what are known to be random networks.

Given a modular description of a network, Q is a measure of the quality of this candidate modular
description of a network. But from another point of view, we could consider, given a network,
the highest possible value of Q for that network, which is the value of Q for the best possible
modular description of that network, that is, for the modular description, among all the possible
ones, which best reflects a significant modularity present in the network. If we consider this
virtual maximum value of Q for a given network, this value becomes a measure of the amount
of actual community structure in a network: that is, the probability that the given network is
different from a random network in its distribution of links between nodes: if there is community
structure in the network under observation, then the average density of links between its nodes
should significantly vary in different parts of the network.

19 See Newman (2004a), p. 6. and Newman & Girvan (2004), p. 7.
20 See section 3.1.1.
21In the words of its proponents, the quantity Q “[. . .] measures the fraction of the edges in the network that

connect vertices of the same type (i.e., within-community edges) minus the expected value of the same quantity
in a network with the same community divisions but random connections between the vertices. If the number of
within-community edges is no better than random, we will get Q = 0. Values approaching Q = 1, which is the
maximum, indicate networks with strong community structure. (newman:2004evaluating, p. 3. The paper also
includes a formal definition of the Q measure.)

100 Chapter 3. Modularity and networks

It seems clear that, in a way, being Q based on how much the communities are internally more
densely interconnected than how an average random network is connected, or, in other words,
how significantly higher is the density of intra-community connections with respect to the inter-
community ones22, this measure reflects quite well a criterion similar to that used in Herbert
Simon’s original near-decomposability notion23, but applied to the structure of non-weighted
networks, where near-decomposability of the network into communities is allowed by low density
of inter-module connections. In my view, this corroborates the idea that Newman’s and Girvan’s
Q is an acceptable measure of the general amount of modularity possessed by a network, and so
that the quality assessment of a given modular representation of a network can be quite plausibly
based on Q24.

Thus, Q actually helps quite well in identifying the hierarchical structure best describing a given
network: as said above, when trying to detect a hierarchical modular structure in a network,
Newman and Girvan’s algorithms start by detecting the presumed highest hierarchical level of
modularity, to then proceed downward, in order to discover finer and finer hierarchical levels.
The modularity measure Q is employed during this process, to assess the plausibility of the
detected modularity at each hierarchical level: the hierarchical description which best matches
the actual (if there is any) hierarchical structure of the network under observation, is that whose
hierarchical levels coincide with peaks (local maximums) of the Q measure. This is exemplified
in fig. 3.6, which depicts the hierarchical tree of a social network obtained by the algorithm in
Newman & Girvan (2004), where the modular levels in the hierarchy in correspondence of which
Q reaches local peaks are highlighted with dotted red lines: these are the two topmost levels. As
Q goes progressively down after the second peak, the other, finer levels are supposed to be less
and less representative of an actual, substantial modularity present in the original network.

Besides those by Newman and Girvan, many other algorithms for community detection have been
proposed, and I will touch upon some of them in the following sections. A useful, albeit partial,
survey and performance comparison of such algorithmic approaches is Danon et al. (2005).

3.2.1.2 Reliability of the detected modular structure and computational hardness
of Q optimization

As we have seen, a typical problem with hierarchical structure detection is that of the reliability
of the hierarchy obtained by means of some algorithm: how can we be sure that this modular
structure reflects some modularity actually present in the network under observation, and is not
simply an apparent modular structure imposed on a network which, per se, is not modular, or
which has actually a different hierarchical structure?

As mentioned in the previous section, a modularity measure Q has been adopted for the assess-
ment of the quality of the modular structure detected in a network: plausible modular levels
in the hierarchy are those at which Q reaches a peak, which means that that level of modular
description reflects quite plausibly an actual modular structure in the network. This gives, in
a way, a form of guarantee that the detected modularity reflects an actual organization present
in the newtwork. Nevertheless, a problem is raised by the fact that most classic algorithms for
hierarchy detection, like that of Girvan & Newman (2002), directly produce only a single hierar-
chy, dependent on the specific algorithm they use, completely neglecting to produce any possible

22 The latter being on average equal to the expected density of links in a random network, taken as reference.
23 See section 2.2.3.
24 Actually, Q can be in certain circumstances problematic. For example, it can assume negative values when

in a network each node is considered as a module. For such reasons, in some cases alternative measures have
beeen proposed. See for example Danon, Díaz-Guilera, Duch, & Arenas (2005), pp. 4–5 and Massen & Doye
(2005), cited in Danon et al. (2005), p. 3.

3.2. Modularity in networks 101

Figure 3.6: the hierarchical tree of a social network obtained by Newman and Girvan’s algorithm (the topmost,
trivial level comprising the whole network is not shown in the picture). The two dotted red lines highlight the
two modular levels in correspondence of which the modularity measure Q (graph on the right) reaches local peaks.
Image adapted from Newman & Girvan (2004).

alternative hierarchical organization in the network under observation, which could present a
better, higher Q value at every level: it is a fact that, by changing the metric for modularity,
that is, the measure according to which two nodes can be considered more or less strongly con-
nected, or by changing the algorithm for community detection, completely different hierarchies
can come out: compare for example fig. 3.6 with fig. 3.7: the two hierarchies are produced by
different algorithms applied to the same social network. Unlike the first, the second, low-quality
algorithm25 detects a hierarchical modular structure which is not plausibly present int the actual
network. In this case Q is, on average, much lower than in the case of fig. 3.6.

So, while, given a certain algorithm for community detection, the best hierarchical levels which
that algorithm can detect are those that locally maximize Q, in order to find the best possible
hierarchical representation of the observed system, we should instead choose, among all the
possible hierarchical structures detected by every possible algorithm for community detection,
the one that on average maximizes the value of Q. That is, while when keeping fixed the
algorithm for community detection we only need to search for local maximums of Q in order to
chose the best modular representations that that specific algorithm can supply, when we want
the best possible hierarchy ever, we need to find the one which makes the Q value reach not its
local, but its average maximum. This process is called optimization of Q. It implies that any
possible hierarchical description be evaluated, and that the one with the Q curve maintaining on
average the highest values be chosen.

As expected given its nature, it recently turned out, as proved by Brandes et al. (2008), that the
task of optimizing Q is an NP-complete task, and thus that it is quite certainly computationally
intractable26.

25 See Newman & Girvan (2004), p. 9.
26 I will treat the computational complexity of this task and of modularity detection algorithms in section

3.3.1. For the notion of computational complexity in general, see sections 17.4 and 17.4.3.1.

102 Chapter 3. Modularity and networks

Figure 3.7: the hierarchical tree of a social network obtained by Newman and Girvan’s with a purposely chosen
non optimal algorithm. The graph on the right shows the modularity measure Q. Image adapted from Newman
& Girvan (2004).

This means that the task of producing the best modular hierarchical representation of a given
network, that is, the task of determining the hierarchical modular description which best rep-
resents the genuine modular structure of the network, is too computationally intensive to be
feasible, because it would involve finding the hierarchical description which optimizes Q, and
this is a NP-complete problem. So, it is not to be expected that the optimal modular description
of networks larger than a few nodes can be found. This in turn calls for research of approximate
methods.

Actually, most of the algorithms which work by non-optimizing Q, starting with the ones in
Girvan & Newman (2002) and Newman & Girvan (2004), are actually, in a sense, a way to
obtain an approximate solution to the problem of detecting the actual hierarchical structure of
a network. But it would be interesting to try to approximate Q optimization itself, or to find
alternatives to the use of this measure of modularity detection quality.

Questions of this kind have been raised in numerous recent papers, and some of them have put
forth solutions based on quality measures different from the classic modularity measure Q.

A method which directly tries to optimize Q in an approximate manner27 is the one proposed
by Newman (2004b), which is in O(n2), and as such quite fast. A more refined version of the
algorithm, put forth by the same Mark Newman, with Aaron Clauset and Cristopher Moore and
other authors in Clauset, Newman, & Moore (2004), runs even faster, in O(md logn), where m
is the number of edges, n the number of nodes and d the number of levels in the full hierarchy
detected. With some plausible assumption about certain structural properties which frequently
occur in networks which are typical candidate for examination, the algorithm can be considered
as running in O(n log2 n). This is essentially a linear running time, and, as the authors highlight,
this constitutes quite a breakthrough in performance, allowing for the detection of modularity
in networks with millions of nodes. However, these two methods work by considering only local

27 Approximate otimization is performed by following a greedy algorithm. A greedy algorithm accepts at any
given time the local optimum. This heuristic is based on the hope that, this way, the global optimum will sooner
or later be found among these local ones. Of course this is not guaranteed at all.

3.2. Modularity in networks 103

information on individual communities, and lose in precision against the more classic, but way
slower, method of Newman & Girvan (2004), which makes its detection by basing on non-local
information: as highlighted in Newman (2004b) p.3, community structure is a nonlocal quantity,
or at least this holds for the type of community structure detected by Newman and Girvan’s
algorithm. This stems from the fact that their algorithm detects community structure of the
basis of the edge betweenness measure, a measure which gives also information about distant,
and thus non-local, connected nodes28. As we will see in section 3.3.1.2, this trade-off between
accuracy and speed is often present in the choice of an algorithm for community detection.

Clauset, Moore, & Newman (2007) proposed solution is an algorithm which performs the explo-
ration of a statistical sample of the space of every possible hierarchical structure which could be
present in a given network, and which proceeds, by means of a bayesian inference, to identify the
hierarchical structure which best fits the given network. A quite similar, slightly more sophis-
ticated approach to extract a sensible full hierarchical structure from a network has been put
forth in Sales-Pardo, Guimerà, Moreira, & Amaral (2007).

Algorithms based on simulated annealing, which is an optimization procedure based on stochastic
sampling29, are proposed in Guimerà, Sales-Pardo, & Amaral (2004), Guimerà & Amaral (2005a)
and a similar approach in Massen & Doye (2005). They work by employing simulated annealing to
approximately optimize the value of the Q modularity quality of candidate modular descriptions.
Community structure detection by means of such algorithms ends up being very accurate across
a range of typical networks. The downside is that the time complexity is quite high30

Fortunato, Latora, & Marchiori (2004) propose a method fro community detection based not
on the same metric employed by Newman and Girvan, that is edge betweenness, but on a mea-
sure, related to the idealized flow of information inside a network, called information centrality.
This measure as a high value for edges connecting different modules and a low value for intra-
module edges. Fortunato and colleagues claim that their method, although slower, is of precision
comparable to that of the best method by Newman and Girvan.

Another algorithmic method has been suggested by Lancichinetti, Fortunato, & Kertész (2009).
It is an interesting method for, as the authors highlight, it was, at the time of its proposal, the
first family of algorithms for the simultaneous detection of the hierarchical and of the overlap-
ping community structure of a network. Moreover, they claim that the method can be easily
extended to weighted and directed networks. I touch upon the possibility of detecting overlap-
ping communities in section 3.2.1.4, and on the question of weighted and directed networks in
section 3.2.7. What interests us here is the fact that this method is supposed to reliably find a
genuine hierarchical structure in observed networks. It works by varying a continuous parameter,
called α, which specifies the grain of the hierarchical level to put under observation. In other
words, α determines the scale at which modularity is searched for in the observed network, by
determining the size of the communities which are to be taken into consideration: the larger the

28About the notion of edge betweenness: formerly in the text, to avoid too much technicalities, I slightly
simplified the matter by stating that, in Newman and colleagues’ papers, it is the property of density of inter-
connections to be taken into consideration, in order to detect modularity. Actually, they employ the similar but
not identical property of edge betweenness: this is, roughly, a measure of how many nodes a given edge directly
of indirectly gets to connect. In the authors’ words, edge betweenness is “some measure that favors edges that lie
between communities and disfavors those that lie inside communities” (Newman & Girvan, 2004, p. 3) Thus, in
a sense, this measure is the opposite of the modules’ internal connectedness, but this is justified by the “divisive”
method Newman and Girvan algorithms’ employ. For this and other technicalities, consult the original paper.

29 See Kirkpatrick (1984).
30 See section 3.3.1.

104 Chapter 3. Modularity and networks

value of α, the smaller the communities possibly detected31. By tuning α to different interme-
diate values, by way of this “zooming” in and out, the algorithm can produce different-grained
candidates for the levels of a possible hierarchy describing the network under observation. The
paper proposes a way to pinpoint the most “natural” ones among these candidate levels, that is,
the levels which would come to compose a modular hierarchical structure reflecting some kind of
genuine modularity actually present in the network. The basic idea is that a detected candidate
modular description reflects genuine modularity in the network if its detection is stable against
variations in the value of the α parameter, that is, if the same exact candidate modular descrip-
tion gets detected within a large enough range of α values, and not only at a single precise value
of the parameter. In other words, a significant hierarchical level community structure should not
“vanish” only by slightly zooming in or out of it. This seems plausible, but it is based on the
assumption that modularity is a quite “local” property, as acknowledged by the authors, and
that this assumption is plausible is a debatable question, for, as we have seen, according to some,
like Mark Newman, community structure is non-local.

A different concern is that the detected modularity and/or hierarchical structure, being based
on a modularity measure, could reveal itself not as a significant feature of the observed network,
but simply as the effect of chance: as highlighted in Karrer, Levina, & Newman (2008), it has
been showed that in sufficiently large random networks, the likelihood that they are susceptible
to a highly modular description rises32. Karrer et al. (2008) addresses this problem by proposing
a new definition of the quality of a modular description, based not on Q, but on the robustness
of the alleged modular structure to small perturbations of the network structure: a modular
partition of the network is not simply due to chance when it persists while the network structure
is gradually altered by adding or removing links. This method seems to reflect quite directly
the idea, already highlighted in section 6, that a structure, to be considered a module, must
possess some form of robustness to perturbations. Karrer and associates give an algorithm for
assessing the significance of the community structure detected in networks by using this method.
This is especially useful when trying to assess modularity in networks representing data obtained
by empirical observation and measurement, where there’s a high likelyhood of having obtained
data contaminated by noise: some nodes of the network could be the spurious result of noise. If
a detected network modularity shows low robustness to perturbations, it could be argued that
it is too sensitive to noise, and thus could end up not representing faithfully enough an actual
modularity present in the observed phenomenon.

3.2.1.3 Modularity detection in weighted networks

The main difference between the typical approach to modularity in networks and the general
conception of modularity, is that, quite often, the relation taken into consideration for modular-
ity detection in networks is density of connections between nodes, a relation according to which
modules amount to communities of densely interconnected nodes, with sparser connections be-
tween different communities. In this case, the strength of a connection is considered to be an
all-or-nothing property: a connection can only be either present or absent between two nodes.
In other words, only non weighted networks are treated. By contrast, a more general conception
of modularity in networks should concede to consider, for evaluation of modularity, any possible

31 As obvious, extreme values of α yield the trivial hierarchical levels: a large enough α value yields a modular
structure composed of each node as a module, while a small enough value makes the algorithm view the entire
network as a single module.

32 This is due to the fact that the number of possible subdivisions of a network rise extremely fast as a function
of the number of network nodes, so, however unlikely it can be, a subdivisions for which the measure of modularity
is high is actually likely to appear, sooner or later, in the vastness of the space of possible subdivisions, given a
sufficiently large random network. See Karrer et al. (2008).

3.2. Modularity in networks 105

relation between nodes, even continuous-valued relations, and modularity detection should pos-
sibly be based not only on the density of non-weighted connections, but also on their individual
strength.

The oversimplification of network models effected by considering them as non-weighted networks
is often done on purpose, for the reason that in many cases the oversimplified network model
still allows for sufficiently good qualitative analysis, prediction or explanation of the original
phenomenon, while being more computationally tractable than a more realistic model.

Thus, although there are cases in which weighted models are taken into consideration, often
discrete models are prevalent. Indeed, the pioneer papers about community structure detection,
Girvan & Newman (2002) and Newman & Girvan (2004), focus on networks with undirected,
unweighted edges and, in order to asses community structure, they consider a property of edges
they call edge betweenness, which does not consider the weights of edges, but only the presence
or absence of edges between nodes.

However, algorithms for community detection in weighted networks have been put forth, starting
with the seminal Newman (2004a). In this paper, a proposal is made to consider weighted
networks as non-weighted multigraphs, that is networks in which more than one edge can connect
the same two nodes. The basic idea is that a link with a given integer weight W between
two nodes of the network can be represented on the multigraph as W different non-weighted
links between the same two nodes (a simple extension allows for an analogous representation
of non integer values). This way, the weight of an edge between two nodes in the network gets
immediately converted to density of edges between the same nodes in the multigraph. For an
example, see fig. 3.8.

The interesting point in Newman’s idea is that once a weighted network gets converted into a
non-weighted multigraph, and Newman and Girvan’s33, well-known algorithms for community
detection can be applied, with minimal modification, to this multigraph, since it is, in a way,
a form of non-weighted network. Thus, the scope of applicability of the algorithms classically
used for hierarchical modularity detection in non-weighted network is extended to the weighted
network case.

A quite thorough, completely different method for community detection in weighted networks has
been proposed and progressively refined by Haijun Zhou in a series of papers starting in 200334,
a work which culminated in Zhou & Lipowsky (2004). The starting idea, introduced around 2000
by other authors35, is that of a virtual particle stochastically jumping from node n1 to a linked
node n2 of the network, with probability proportional to the weight of the link connecting n1
and n2 and to the number of common nearest neighbor nodes of the two nodes, in what is called,
in analogy with the physical phenomenon, network brownian motion. This way, the particle
measures a kind of distance between two nodes, which is inversely related to the weight of the
link connecting them and to the density of the neighborhood to which the nodes belong. This
metric can be used to distinguish communities as subnets whose internal links are “shorter” than
links connecting to external communities. Zhou’s method is agglomerative36, that is, it starts
by considering the network as constituted of one-node wide modules, and proceeds aggregating
progressively more and more nodes into modules. The choice on which nodes to aggregate is
based on a value which reflects the global structure of the network, which the authors call the
dissimilarity index of each link coupling interconnected nodes, measured according to the above

33 See 3.2.1 and following sections.
34 Zhou (2003a), Zhou (2003b).
35 See references in Zhou & Lipowsky (2004).
36 while the classic method by Girvan and Newman is divisive, see section 3.2.1.

106 Chapter 3. Modularity and networks

Figure 3.8: top: a weighted network. Number along edges represent the weights. Bottom: the same network
represented as a non-weighted multigraph.

mentioned form of virtual distance between nodes measured by the brownian motion of the
particle. The dissimilarity index of communities of nodes is the average of the dissimilarity
indexes of the links connecting its internal nodes. Aggregation proceeds by merging at each step
the two less dissimilar communities37, obtaining this way a dendrogram which represents the
hierarchical modular structure of the network. The dendrogram is then modified in order to try
to optimize the Q modularity value. Each detected module is finally tested for robustness against
perturbation of the network structure, and is assigned a robustness value, integrity, together
with another value, affinity which measures the strength of the intra-module interaction with
respect to inter-module interaction. This robustness evaluation is important, for it allows to
put confidence in the actual presence of the detected community structure in the network under
observation. The algorithm, which, according to the author, outperforms Girvan and Newman’s
classic method, has a time complexity of O(n3) (see section 3.3.1).

Other algorithms for modularity detection in weighted networks have been devised, such as the

37 For the first step, each single node is seen as a community.

3.2. Modularity in networks 107

ones in Arenas, Fernández, Fortunato, & Gómez (2008), Brandes et al. (2008), and Lancichinetti
et al. (2009).38.

3.2.1.4 The problem of overlapping communities

A limitation of classic community detection methods is their incapacity to detect overlapping
communities. As highlighted by Palla, Derényi, Farkas, & Vicsek (2005), many actual real-world
networks are composed of overlapping communities, where a node can be a member of more than
one community: for example, in social networks, the same person can belong to different family,
work and friendship communities, which thus partly overlap.

Many typical algorithms for community detection are capable of revealing only non-overlapping
communities. This limitation affects for example Newman’s and Girvan’s algorithms, and most
of the methods surveyed in Danon et al. (2005). More recently, there have been numerous
attempts to overcome this restriction, and some promising results have been achieved, such as
the pioneering proposal of Palla et al. (2005). The algorithm described there is able to detect
overlapping communities, but it has the downside of running in exponential time39.

A family of algorithms capable of revealing in a more reasonable time a full hierarchy of overlap-
ping communities is proposed in Lancichinetti et al. (2009): this is a method which I already
described in section 3.2.1.240. The general algorithm runs in O(n2 logn), and, as said, according
to the authors, it is capable of being easily extended to weighted networks and to directed ones41.

3.2.1.5 community structure and scale-free networks

As highlighted in Ravasz, Somera, Mongru, Oltvai, & Barabási (2002), scale-free networks, which
grow according to preferential attachment in a stochastic manner, should not in general manifest
community structure, because, as the network grows, hubs come to connect many other nodes
in a way that renders the existence of highly separated communities problematic. To be more
precise, we note that Guimerà et al. (2004) observed a relation between modularity in typical
scale-free networks and the parameters of the growth by preferential attachment through which
they are generated: they tested the amount of modularity in the networks so generated42, and
found that, for networks of fixed size, modularity decreases linearly with the number of links
preferentially attached to nodes at each step of the network’s growth. in other words, the higher
the number of nodes connected to major hubs in the scale-free network, the more connected are
all parts of the network, and the less likely it is that modules (in the form of communities), which
require isolation, could emerge.

Ravasz et al. (2002) note a tension between the fact that scale-free networks are not in general
expected to show modularity and a host of empirical findings which show that biological complex
networks, such as metabolic networks, are scale-free networks and and the same time show
structural and functional modularity. Along these lines, Ravasz, Barabási and colleagues explored
the possibility for scale-free networks to also be modular. They posed their attention on the
clustering coefficient, which is, intuitively, a measure of the amount of interconnectedness between

38See sections 3.2.1.2, 3.3.1 and 3.3.2.
39 I touch the question of computational complexity of community detection in section 3.3.1.
40 As noted by the authors, the concept itself of overlapping communities seems at odd with the idea of

fitting them in a hierarchical organization. They respond by giving a slightly relaxed definition of hierarchy. See
Lancichinetti et al. (2009), p. 6.

41 For the relation between non-weighted and weighted networks, see section 3.2.7.
42 They measured the amount of modularity by assessing the best possible Q, optimized by simulated annealing.

See section 3.3.1.

108 Chapter 3. Modularity and networks

the nodes belonging to the neighborhood of a given node: if all neighboring nodes of a given
node are connected to each other, then the clustering coefficient is 1, and it goes toward zero as
interconnectedness between neighboring nodes decreases. Ravasz and Barabási consider C(N)
the average value of the clustering coefficient in a network composed of N nodes a global measure
of the network’s potential modularity. As shown by Albert and Barbàsi, in general the average
clustering coefficient value in scale-free networks is quite small, and decreases with the increase
of the network size43. On the contrary, Ravasz et al. (2002), studying the metabolic networks
of 43 different organism, observed that in all these cases the average clustering coefficient is
quite high and remains stable as the network’s size increases. Nevertheless, Jeong, Tombor,
Albert, Oltvai, & Barabási (2000) and Wagner & Fell (2001) found that in these biological
networks degree distribution follows a power-law, and thus they are scale-free networks. To solve
this paradox, Ravasz, Barabási and co-workers found a method44 to artificially create scale-free
networks which are also for certain hierarchically modular, and that thus show at the same time
high clustering coefficient and power-law distribution degree. An exemplification of this method
is reported in fig. 3.9: the scale-free network is obtained by iteratively copying certain basic
patterns of connected nodes, as explained in the image caption. The result is a quasi-fractal,
self-similar, hierarchically modular structure which, while growing by a process which is different
from the preferential attachment process typical of scale-free networks, nevertheless turns out
to exhibit the characteristic power-law distribution of node degrees, and thus is actually a scale-
free network45. At the same time the network is hierarchically modular, and, going up the
hierarchy, modules at each hierarchical level are progressively less connected internally, that is,
their clustering coefficient lowers progressively. It appears that in networks of such a kind there
is a particular distribution of the clustering coefficient C which ends up being a form of signature
for this kinds of networks: C is roughly inversely proportional to the degree of a node46. In
other terms, nodes connected to highly “popular” hubs are less connected to each other than
nodes connected to less important hubs: this is obvious, given the way in which the network
has been constructed: highly popular hubs are the central nodes of high-level modules, and
such nodes connect different lower-level modules, where the nodes internal to these lower-level
modules are not directly connected to nodes internal to other, different modules at the same
hierarchical level. This situation is compatible with a form of modularity where important hubs
connect different communities, a properties of hubs which can also be interpreted in terms of
roles they fulfill, in this case “connector” roles (as we will see in section 3.2.3). Ravasz et al.
(2002) observe a distribution of the clustering coefficient C in the metabolic networks of the 43
organism they consider which is very similar to the inverse proportionality to the degree of a node
found in the artificially constructed networks exposed above, a fact which leads these authors
to conclude that the observed biological networks show also roughly the same type of scale-free,
hierarchical modular structure these constructed networks possess. By closely analyzing the
modular structure of the metabolic network of Escherichia coli, they also conclude that, at least
in this organism, the detectable hierarchical structural modularity is strongly correlated with the
functional modularity of its metabolic process, although the coincidence is not perfect: certain
protein synthesis processes cross boundaries of the found structural communities. The authors
also speculate, on the basis of observational data reported in the literature, that the kind of
modular hierarchical structure they proposed is present in the majority of biological network, and
that the construction by multiplication of copies of preexisting modules could be implemented

43 See Albert & Barabási (2002), p. 75.
44 Exposed in Ravasz et al. (2002) and Ravasz & Barabási (2003).
45 While in the example the network is generated by a deterministic iterative process, Ravasz et al. (2002) also

propose a stochastic generative method, which gives similar results in network properties.
46 C(k) ∼ k−1 where k is the degree of a given node.

3.2. Modularity in networks 109

in real biological systems by the fact that evolution often proceeds by gene duplication. I will
treat these and related questions in section 7.

Figure 3.9: exemplification of the method, devised by Ravasz and Barabási, for the construction of a network
which is both scale-free and hierarchically modular. We start (image a) with a basic, internally highly connected,
module composed of five nodes. The second step (image b) consists in producing four copies of this module and
to connect each peripheral node of each copy to the central node of the original module: the composite pattern
so obtained can be considered a module at a higher hierarchical level. In c the process gets iterated to an even
“higher level”, by copying the pattern obtained in b and by connecting peripheral nodes of each copy to the
central node of the b pattern. The process can be repeated indefinitely. This way, a network which is at the same
time scale-free and hierarchically modular is obtained. Such a network has a clustering coefficient following a
distribution which is about inversely proportional to the degree of a node, and each modular hierarchical level is
composed of progressively less connected modules, that is, modules with a progressively lower clustering coefficient.
(Image taken from Ravasz & Barabási 2003).

3.2.2 Network motifs and network themes
Another property of modular systems, distinct from near-decomposability although perfectly
compatible with it, is the property of comprising repeated similar elements47. For a network,

47 See section 6.

110 Chapter 3. Modularity and networks

this property is that of showing network motifs, that is, subgraphs that recur more than one
time in different parts of the network, and whose presence in the network is not due to chance,
that is is not due to the network’s random structure.

The concept of network motif has been introduced in two seminal research papers, partly by
the same authors: Uri Alon, Shai Shen-Orr and Ron Milo of the Weizmann Institute of Science.
The first paper, Shen-Orr, Milo, Mangan, & Alon (2002), is explicitly inspired by a former
work, Hartwell et al. (1999)48, which advocates the search for basic building blocks of biological
systems in the form of recurring functional elementary subsystems, such as negative or positive
feedback loops, or amplifiers, or similar simple functions. Shen-Orr et al. (2002) is the first work
to introduce the term network motif to denote a such a kind of elementary module recurring in
gene regulation networks. A subsequent paper, Milo et al. (2002), generalizes the former work
to any directed network and puts the notion of network motif to test against several types of
networks, from biochemistry, to ecology, to neurobiology.

Network motifs are defined as “patterns of interconnections that recur in many different parts of
a network at frequencies much higher than those found in randomized networks”49.

Detection of network motifs is performed by taking, for each integer n50 all possible n-node
subgraphs of the network and by comparing the number of their occurrences in the network
under observation to the number of the occurrences of the same subgraphs in a sample of random
networks: the types of subgraphs which occur significantly more often in the observed network
with respect to their occurrence in the sample of random networks, are considered network motifs
(we see here a criterion somewhat similar to that employed in the Q measure for evaluating the
quality of a proposed community structure, described in section 3.2.1.1).

Network motifs are simple types of structural modules which recur more than one time in the
network. In directed networks, the directional nature of edges increases the odds that network
motifs identified by purely structural methods like the one cited above are actually functional
units in the network.

Motifs realize the property of modularity which consists in the possibility of reducing the amount
of information needed to specify the whole network: by reducing the specification of the entire
network to a description of the repeated occurrences of the same simple types of building blocks
and their interrelations (in addition to interrelations to other building blocks which do not recur,
but appear only once), a lossless compression of information is achieved, with respect to a
verbatim description of the network which does not distinguish recurring modules: in the first
case, the internal structure of each network motif type is required to be described only once,
regardless of the number of its occurrences in the network. In the second, every occurrence of
the same substructure must be described in its internal details.

Network motifs can also be seen as functional basic “building blocks” of more complex function-
ality: typical examples of network motifs found in biological networks are feed-forward loops and
feedback loops (see fig. 3.10), oscillators, or also elementary graphs performing simple boolean
functions51. In other words, as Levy & Bechtel (2013) highlights, even if in their formal defini-
tion network motifs are seen as structural patterns, the real interest behind their introduction

48 See section 7.
49 Shen-Orr et al. (2002), p. 64.
50 Usually, in these studies, n does not exceed 5, for reasons which will be elucidated in what follows.
51 It must be noted that, quite often, research on genetic or other biological networks is conducted on boolean

simplified models of the actual genetic network, which in itself is not boolean, but admits of intermediate values
of regulation. Usually, the boolean approximation is considered sufficient to assess some qualitative functional
properties of the network. See Alon (2006).

3.2. Modularity in networks 111

lies in seeing them as performing functions (typically, biological functions): they can be seen
as functions in the sense52 that they play a role in bringing on the whole functioning of the
dynamics occurring on the network. Along these lines it seems then plausible53 to consider
network motifs as elementary computational functions which can come to constitute building
blocks of more complex computational networks. Computation-capable networks, understood in
a general sense, are certainly ubiquitous in the living world: genetic, neural, proteic, metabolic
networks can all be considered, under an appropriate interpretation54, computational systems
which process informations55.

Figure 3.10: two typical network motifs. a: feedback loop; b: feed-forward loop.

It turns out that the same repertoire of networks motifs is often present in networks with similar
functionality: for example, Milo et al. (2002) found the same two types of network motifs, the so-
called feed-forward loop and bi-fan, in the genetic networks of both Saccharomyces cerevisae and
Escherichia coli. Two similar types of motif were found in the neuronal network of Caenorhabditis
Elegans56. This similarity in the motif types of the genetic and neuronal network could, according
to the authors, suggest that similar constraints hold in networks with the same basic function:
in this case, the function of performing some kind of information processing. Both the examined
network types, the genetic one and the neuronal one, get information from sensory input, in this
case biochemical signals or sensory neurons, and process it in order to transmit the processed
result to effectors, that is, motor neurons or structural genes. This hypothesis seems corroborated
by the fact that in other types of network with different functions, for example, ecological food
webs, other, different types of motifs recur. On this bases, it has been proposed in Milo et al.
(2004) that the types of motifs present in a network could be used for classification of network
types.

52 See section 9.1.
53 See for example Shen-Orr et al. (2002) and Lee et al. (2002).
54 It is the opinion of many that not every process can be considered, per se, a computation. See sections

14.5.1 and 14.5.2 for a view on the conditions for computation.
55 The idea that many biological networks can be considered computational is widespread. For example,

Hartwell et al. (1999) claims that an organisms, and even a cell, can be seen as a computational system in which
the inputs are environmental measurements and the outputs are behavioral responses: “Indeed, the history of life
can be described as the evolution of systems that manipulate one set of symbols representing inputs into another
set of symbols that represent outputs.” (p. C49). See also section 7.2 and 7.3

56 C. Elegans, a small nematode worm, is one of the few organisms whose nervous system’s wiring has been
completely determined. It consists of 302 neurons, connected by about 5000 synapses. See White, Southgate,
Thomson, & Brenner (1986).

112 Chapter 3. Modularity and networks

Network motifs are recurring modules of usually small size, typically 3 or 4-nodes subnetworks.
There is a relationship between the property of being a small-world network57 and the recur-
rence in that network of network motifs: due to the fact that being small-world entails high
neighborhood clustering, it is to be expected that 3-nodes motifs abound in such networks58.

Actually, search for motifs with more than 5 nodes is usually considered pointless, for the reason
that there are 1,530,84359 different 6-nodes motifs, and thus that their classification would be
hopeless: network motifs are interesting, and can be used as simple, standard building blocks,
precisely because there is a small numbers of types of motifs.

Nevertheless, it is to be expected that higher-level modularity concerning identical recurring
modules could show up at different hierarchical levels in certain networks, so as to constitute a
full hierarchical modular structure: it is possible that, going up in scale, higher-level subnetworks,
larger than network motifs, show up as higher level modules composed of strictly interrelated,
often overlapping, network motifs.

Subnetworks of immediately higher order than network motifs are what Kashtan, Itzkovitz, Milo,
& Alon (2004a) call motifs generalizations. This kind of subnetwork can be seen as an extension
of a basic network motif, obtained by adding more nodes in parallel to those constituting the
original motif. Motifs generalizations appear to perform specific information processing functions,
as confirmed by the analysis of motifs generalizations recurring in gene transcription networks
of E. Coli and S Cerevisiae, and in the neuronal network of C. Elegans. The type of motifs
generalizations which have been found are similar in both genetic networks, but different in the
neuronal one. This seems to corroborate the idea, also proposed by Milo et al. (2004), that
motifs or their generalization can be useful for classifying the type of network and its nature.

Other structures of higher order than network motifs have been defined network themes in Zhang
et al. (2005). They often can be seen as representing integrated complexes which perform a
certain type of function60 in the network. Often, they can be seen as modules in the sense
of clusters densely interconnected internally, and with sparser connections toward the external
world.

Gulbahce & Lehmann (2008) explicitly considers motifs as only the smaller type of composite
modules, putting them in a hierarchy that goes from single nodes, to motifs, composed of a
few nodes, to communities, composed of motifs. Thus, although motif modularity represents
a particular feature of modularity in general, that of repeating occurrences of a single type
of module, analysis in term of motifs can be seen as simply a quite low modular level in the
hierarchical modular description of a network.

3.2.3 Network roles
As discussed in the preceding section, and more in general in chapter 6, structural modularity
in networks appears often related to functional modularity, and functional analysis, as we will
see in section 9.2, consists in identifying the role a functional module fulfills inside the whole
functioning of a system.

Modularity detection can reveal the modular structure of a network, and, since structural modu-
larity can in most cases be considered as at least partially determining a corresponding functional

57 See section 3.1.2.
58 Zhang et al. (2005).
59 See Itzhack, Mogilevski, & Louzoun (2007).
60 See section 9.1.

3.2. Modularity in networks 113

modularity61, each detected structural module can be, at least prima facie, suspected to perform
one of the subfunctions which a functional analysis of the system would individuate. The in-
teresting question is how to individuate the structural modular description which best matches
the functional modularity of the dynamic process running on the network: while community
structure emphasizes the relative independence and isolation of each module, which can be seen
as a partially independent unit, identification of roles depends on the relationships which hold
between functional modules, and thus a functional modular description should be based on the
individuation of communities and of their roles. A role-based description can be more or less
coincident with the community-based one: often, as we will see, in the role-based descriptions,
there are single nodes which act as modules, especially modules which relay communication
between other modules.

While the specific input-output function performed by a module, which can be seen as its role,
can be explicitly characterized by further modular decomposition of the module into functional
subparts, such as network themes and network motifs, oftentimes it is useful to recognize the
high-level function fulfilled by the module, that is, in other words, the type of functional role it
performs inside the overall functioning of the network, in order to give a coarse-grained functional
characterization of the network functioning62. The basic idea is that the type of role depends
on how the module is connected to other modules: for example, intuitively, a module which is
internally simple and stands between two information-processing modules, can be considered a
relay module (or a so-called “connector”), a module which basically conveys information between
two other modules of the networks.

A search for methods of detection of this kind of structural-based functional modularity in
networks was started already in the ’70s in sociological research, well before the idea of modularity
in networks were to be examined in general63. Studying social networks, Lorrain & White
(1971) introduced the notion of structural equivalence between nodes: two nodes are structurally
equivalent when they are replaceable inside the network structure, and this happens when they
are connected to the same elements (see fig. 3.11). The idea behind this notion is that a network
can be partitioned into subnetworks, each of which is constituted by an equivalence class of
structural equivalent nodes, and that such a modular partition could capture, based on this
structural equivalence, an idea of functional equivalence.

It must be noted that this form of detected modularity does not usually coincide with community
structure64, which is defined according to the metric of connectedness between nodes: partitioning
a network by structural equivalence does not, as fig. 3.11 clearly shows, constitute a classical case
of community structure modularity, because it is not based on the classical metric of betweenness
of edges or connectedness of nodes. Nevertheless, the partitioning found according to structural
equivalence constitutes a form of modularity in accord with the general idea of modularity:
it constitutes a modularity detected precisely according to a metric of structural equivalence
between nodes: modules are groups of nodes which are more structurally equivalent than how
they are equivalent to nodes outside the group.

There is, however, a problem with Lorrain & White (1971)’s original formulation of structural
equivalence: the condition it states, that two nodes are structurally equivalent when they are
connected to the same nodes, turns out to be too strong and not really useful, because perfectly
structural equivalent nodes are too rare in real networks.

61 See discussion in section 6.
62 This is more or less what functional explanations tries to accomplish in cognitive psychology: being multiply

realizable, specific functional roles are subsumed under types of roles.
63 As we have seen, this line of research started in the first 2000s with the works of Newman ans Girvan.
64 See section 3.2.1.

114 Chapter 3. Modularity and networks

Figure 3.11: example of structural equivalence. A network is partitioned into modules (labeled 1, 2, 3, 4), each
of which groups together nodes that are structurally equivalent according to Lorrain & White (1971)’s definition.
For example, module 4 contains nodes which are structurally equivalent because each of them is connected exactly
to the same nodes in module 3. (Image adapted from Guimerà & Amaral 2005a).

The notion of structural equivalence has been accordingly relaxed into various forms of weaker
equivalence that Faust (1988) subsumes under the notion of general equivalence. In these forms,
equivalence is equivalence among types of roles, and this gives a more synthetic functional de-
scription than that based on specific non-recurring roles. Nodes in a network which perform the
same role type are to be considered generally equivalent. As an example, when considering the
hierarchical structure of a military organization, commanders, who only give orders to others,
can be considered generally equivalent, and the same holds for soldiers who receive orders to
execute. In this cases the role types are that of “commander” and “soldier”.

One kind of general equivalence called regular equivalence, widely used in sociology, was proposed
by White & Reitz (1983), who deem it to be the most natural way of detecting social roles: regular
equivalence is the relation that holds among nodes which are connected to nodes belonging to the
same class of regularly equivalent nodes. In other words, whereas only the nodes which are tied
to the same other nodes are considered structurally equivalent, for two nodes to be considered
regularly equivalent, it is sufficient that they are tied to nodes which are regularly equivalent
themselves. For example, two commanders, commanding two disjoint groups of soldiers, are
regularly equivalent, because each commander is tied only to soldiers, while the same commanders
can not be considered structurally equivalent, for they are connected to different soldiers. At
the same time, the equivalence class of soldiers is defined with respect to the equivalence class
of commanders.

All these attempts to individuate the roles of nodes and modules of the network are attempts
to give a functional analysis of the network. Less strict notions of roles, such as that of regular
equivalence, give a more “high-level”, or coarse-grained modular view of the network structure.
This is apparent in fig. 3.12, which compares functional descriptions of the same network, based
on structural equivalence and regular equivalence: the regular equivalence-based one is a higher-
level description than the one based on structural equivalence. In other words, by relaxing the
requirement for equivalence, the function types so detected are more abstract and more multiply
realizable than the corresponding stricter ones65.

Guimerà & Amaral (2005a) argue that, despite the apparent plausibility of regular equivalence,
this notion is not apt to capture functionally interesting roles related to the modular structure
of the network. It is true that, by definition, regular equivalence allows the individuation of
artificial, contrived roles which do not capture any type of actual, plausible functional dynamical

65 Notions of abstraction and multiple realizability are to be better examined in section 6.6.

3.2. Modularity in networks 115

Figure 3.12: progressively coarser-grained functional descriptions of a network. Graph A: the original network,
depicted at its lowest level, the level of single nodes. Graph B: nodes a and b of the original network are structurally
equivalent, and as such are subsumed under a single module. Graph C: regularly equivalent nodes are subsumed
under single modules. It is clear that regular equivalence yields a more abstract view than structural equivalence.

modularity: this could be easily seen in the example network of fig. 3.13, which shows that
roles involved in communication and information processing and information flow in networks
are neglected by regular equivalence, when this equivalence is based on a metric concerning
non-functional properties of nodes, such as color similarity.

Starting from this alleged66 incapability of regular equivalence to capture the functional mod-
ularity of networks, Guimerà & Amaral (2005a) propose an interesting, different definition of
network roles which directly ties roles with the modular structure of a network understood as
its community structure: the idea is that structural network modularity in the form of commu-
nity structure actually reflects a form of functional modularity, and that functional roles can
be attributed to nodes based on their topological properties, that is on how they are connected
with nodes inside and outside their community. Proposed measures of these topological propoer-
ties of nodes are participation coefficient and within-module degree, and node roles are classified
according to the relative values of these two measures: informally, the participation coefficient
measures how much a node belonging to a module is connected to nodes of other modules, and
the within-module degree is a measure of how each node is well connected (so to speak) to the

66 The example produced by Guimerà and Amaral does not seem to me to show a problem which can be
blamed specifically on the notion of regular equivalence: given that any notion of modularity is relative to a
metric, the problem lies here with the metric. In the example given by Guimerà & Amaral (2005a), the chosen
metric, that of equivalence by color, is clearly not relevant in a functional description of the dynamics which a
network can express, and thus it appears an ad-hoc choice aimed at forcedly producing a counterexample.

116 Chapter 3. Modularity and networks

Figure 3.13: an example showing that regular equivalence, as conceived in White & Reitz (1983), does not capture
certain types of functional modularity in networks: in the example, by definition of regular equivalence, white
nodes turn out being regularly equivalent because they are connected only to black nodes, and black nodes are
regularly equivalent for they are connected only to white ones, but the fact of being a white of a black node
does not capture any relevant functional role: interesting functional roles are for example that of being a hub, to
which many other nodes are connected, or to be a relay node, which mediates communication between to larger
modules. The role of hub is fulfilled in the example network by nodes A and B, while the role of relay belongs
to nodes C and D. Regular equivalence, reflected in the color of nodes, does not capture these functional roles.
(Image adapted from Guimerà & Amaral 2005a).

other nodes in its module. Various combination of values of these two parameters allow for the
identification of several types of module roles or node roles: Guimerà and Amaral propose to
distinguish seven main types of functional roles, which they call “universal roles”. First, a main
distinction is operated along the dimension of within-module degree: hubs are nodes which score
higher than a certain threshold on this measure, and non-hubs are nodes which score lower than
this threshold. Further, finer distinctions inside each of these two categories can be made, based
on the value of the participation coefficient. Three type of hubs are individuated, with growing
participation coefficient: provincial hubs, connector hubs and kinless hubs. While provincial hubs
connect other nodes of their module, and connector hubs devote about half of their connections
to communication toward external modules, kinless hubs are not clearly belonging to specific
modules, but rather act as external relay points of communication between different modules.
Non-hub nodes can be finely classified into for categories, ranging from ultra-peripheral nodes,
which are connected only to nodes belonging to their module, to connectors, which connect in-
tra and extra-module node, to kinless nodes, external to modules, but which are not real hubs
because of the limited number of their connections.

The important point to highlight in the proposal by Guimerà and Amaral is that their method of
role classification directly connects the typical notion of structural modularity in networks, that
of community structure, with a notion of functional modularity based on roles, because roles are
defined relative to the detected community structure: as said, according to their definition, roles
are characterized by the values of two parameters, participation coefficient and within-module

3.2. Modularity in networks 117

degree, which are values computed on the basis of the connections of a given node to other nodes
lying within and without its community. Accordingly, Guimerà and Amaral’s method is actually
accomplished in two phases: (i) community detection is operated on the network67; (ii) roles
are assigned to nodes and modules based on measures referring to their connectivity patterns
within their modules and toward the external context. Guimerà and Amaral call this composite
method the production of a “cartographic representation of complex networks”, by analogy with
cartographic representations, in which not only cities and roads connecting them are reported
(where cities are modules and roads their connections), but also classes of relative dimension
and importance of roads and cities (parameters corresponding to roles) are represented in the
map by the size and color of elements: see for example fig.3.14. In this view, functional roles are
relative to the modular structure of the network, and to the dynamics which can be implemented
on such a modular structure: in other words, the network’s structural modularity in the form
of community structure induces a corresponding functional modularity in the form of certain
fulfilled roles, which can explain the networks’ dynamical behavior.

Figure 3.14: “functional cartography” of a metabolic network. Image taken from Guimerà & Amaral (2005b).

That the correlation between community structure and functional modularity proposed by
Guimerà and Amaral can be useful in explaining the network’s dynamics, is a point to be verified,
of course. The authors put this idea to the test in Guimerà & Amaral (2005a) and Guimerà

67 The authors propose a custom method for community detection, based on simulated annealing (and as such
quite computationally intensive), which, according to them, gives particularly good results. See section 3.2.1.2.

118 Chapter 3. Modularity and networks

& Amaral (2005b), by applying it to real-world networks. On the whole, they consider three
artificial networks and biological networks in twelve organisms, comprising bacteria, archaea
and eucaryotes, and find a good correlation between the functional decomposition determined
according to their proposed role types, and the already known functional modularity of these
networks.

Building on the classical notions of structural and regular equivalence Reichardt & White (2007)
propose a generalization of the concept of role, which sees a description in terms of roles as any
way to partition the nodes of a given network into equivalence classes based on their connection
patterns, and to construct, based on the detected roles, simplified networks representing abstract
functional models of the original network (an example of an abstract model is depicted in fig. 3.12,
graph C). From the point of view of this generalized paradigm, the classical notions of structural
equivalence, regular equivalence and also of community structure turn out to be particular ways
of partitioning the set of nodes of a network: for example, community detection is a grouping
of nodes realized according to the density of connection68 between them. Reichardt and White
propose an algorithm for finding the best abstract simplified model of a given network, which
makes use of simulated annealing to find the optimal model, and is thus quite computationally
intensive69. The proposed general conception of roles fits well with the general idea of modularity,
according to which modularity is always relative to a chosen metric, and applies this general idea
to networks: while community detection makes use of the specific metric of connection density,
many other metrics are envisionable, each of which gives rise to different forms of modularity. In
this framework, network modularity can thus be seen as quite a general property70.

3.2.4 Functional typology of hubs: party hubs and date hubs

In functional modular descriptions of networks like the ones expounded above, much importance
is given, as expected, to hubs which connect different modules. A well-known, if debated, dif-
ferentiation of hubs into two main types, especially notable in scale-free networks71 of biological
significance, the distinction between date hubs and party hubs, was proposed first in Han et al.
(2004), inspired by observed properties of the protein-protein interaction network of yeast: while
so-called “party” hubs interact with all their connected nodes in a more or less simultaneous
manner, “date” hubs interact with different connected nodes in different times. Han and col-
leagues, following the idea, discussed in sections 6.7 and 3.2.4.1, that there should be a relevant
decoupling of timescales in modular hierarchical systems, speculated that this distinction in tem-
poral activation between the two types of hubs reflects their topological patterns of connection
inside the network. The idea is that intramodule interactions can be expected to be much more
frequent than inter-module ones, and can be seen as more or less “synchronous” when considered
from the slower time scale of a higher-level point of view. This is reflected in the observation
that party hubs in the yeast protein interactome interact with the nodes connected to them more
or less simultaneously, and so they can be considered as intramodule hubs. On the other hand,
inter-module interactions, while viewed at a high-level, show their specific temporal sequences,
and this is reflected in the fact that date hubs interact with different partners at different times:
date hubs can thus be considered inter-module hubs, that is “higher level” connectors between

68 The formal measure is usually edge betweenness. See section 3.2.1.2.
69 They don’t explicitly specify the time complexity of the algorithm, but state that an exhaustive search

for the best model, instead of the approximate search by simulated annealing, would require exponential time:
this is expected, given that community detection, whose optimization task is, as highlighted in section 3.2.1.2,
NP-complete, is actually a particular case of the general method proposed by Reichardt ad White.

70 See also section 3.2.7 for further discussion.
71 See section 3.1.3.

3.2. Modularity in networks 119

different modules. The hypothesis that this distinction between two classes of hubs based on
properties of their temporal activation can coincide with different functional roles of the hubs in
a functional modular description of the network, was validated in Han et al. (2004) by comparing
the modules which are supposed to be connected by date hubs with already known functional
modules in the yeast’s protein interaction network.

While the proposed theoretical distinction between date and party hubs has since spread in the
literature, it is a distinction which has also been contested: according to Batada et al. (2006)
and subsequent works72, the date/party distinction based on activation rates does not reflect, at
least in the yeast protein interactome, an actual distinction of roles in the functional modular
structure of the network, but is simply due to a sampling bias in the original work by Han and
colleagues. They claim that, contrary to the hypothesis which sees the modular structure of
biological networks as composed of highly segregated modules loosely connected by means of
date hubs, the actual topological structure of these networks resembles more a group of partially
overlapping, highly connected modules.

3.2.4.1 Timescale decoupling and dynamical methods for community detection

Due to the high computational cost of many of the algorithms for hierarchical detection based
on network structure73, different methods based on the dynamical behavior74 of networks have
been proposed. The idea stems from the original discussion by Herbert Simon on the different
timescales of the dynamics in different parts of a system, which show up in a hierarchical modular
structure, as hinted at in section 6.7: intra-modular dynamic interactions between nodes occur
in general at a faster rate than the inter-module ones. Based on this intuition, some methods
for community detection in networks have been presented: the basic idea is that structural
modularity of a network, that is its community structure, bears on the dynamics implemented
on the network, and that, for this reason, it is possible to infer community structure by observing
the network’s dynamics. It must be noted that this approach based on dynamical properties of
the network, is able to make use of information which is not available at all by observing solely
the static structure of the network: dynamics can show properties not directly reducible to those
of the structure on which they run. Consequently, some of these methods produce results which
are more faithful to the modular dynamics that take place in the network, and this can be quite
useful, considered the fact that usually a network model is supposed to represent the structure
of some dynamical system.

A typical approach derives from ideas in the seminal Kuramoto (2003), a work in which a model
for the dynamical interaction of a set of connected oscillators is described. Several works have
built on this approach. Starting from this work, Alex Arenas, Albert Díaz-Guilera and their staff,
have conducted, since the seminal Arenas, Díaz-Guilera, & Pérez-Vicente (2006), studies aimed
at evaluating the relationship between a network’s structure and the dynamics implemented on
it, and at modularity detection in networks by means of timescale decoupling. Their method
is best exposed in Díaz-Guilera (2008), a review of these former works. Community structure
is detected by implementing a dynamics on a network by means of oscillators, each oscillator
corresponding to a node, influencing and influenced by the other oscillators linked to it. The
theoretical model employed by the authors, which is directly derived from Kuramoto’s model,
is too complex to be described here in detail, but it can be summarized: the oscillators are
identical, with the same frequency, with different phases at startup, randomly assigned. When

72 Further discussed in section 7.
73 See the preceding sections.
74 For the relation between structure and dynamics, see section 6.2.

120 Chapter 3. Modularity and networks

able to fully influence each other, two oscillators tend, due to the nature of the interaction, to
become synchronized: that is, the difference between their phases, in a certain time, is reduced to
zero. If the reciprocal influence of the oscillators is weak, synchronization is less easily achieved.
Synchronization between a group of nodes is proportional to the number of links connecting
them. Thus, in a modular network, intra-module synchronization, where link density is high,
will be achieved first, and then, in a sequential manner, synchronization will become to spread
from each module to its external context, until, in the end, all the nodes of the whole network
came up synchronized. This is a manifestation of hierarchical temporal decoupling similar to
what we have already seen in Herbert Simon’s office room example. A similar form of temporal
decoupling can be seen in the temporal activity of different classes of hub nodes, as already
explained in section 3.2.4. “Party” hubs, which are supposed to be inter-module, interact in
a more or less synchronous manner with their connected nodes, while “date” hubs manifest
a slower-rate pattern of interaction with the nodes connected to them, with interactions with
different nodes occurring at different times. This is consisten with the idea that date hubs are
supposed to connect different modules.

Pan & Sinha (2009) found that in real-world modular weighted networks the inter-module con-
nections tend to be weaker than the intramodule ones, and, accordingly, a timescale decoupling
of the synchronization of oscillators can be observed, a decoupling which tends to zero as the rela-
tive strength of inter-module connections becomes of magnitude similar to that of intra-modules
links. This is a very interesting, in intuitive, result, which shows that timescale decoupling is not
a necessary feature of modular networks, and that it can be overcome by certain properties of
the network connections. For example, even if a network is structurally modular, if the dynamics
implemented on it are strongly non-linear, a simple timescale decoupling is not to be expected,
because the non-linearity of inter-module connections can compensate for their sparseness75.

Building on the aforementioned dynamical methods of modularity detection, which as a downside
do not seem to yield a very high precision, Boccaletti, Ivanchenko, Latora, Pluchino, & Rapis-
arda (2007) propose an algorithm which improves accuracy of community detection: it works
by individuating a set of possible modular partitions of the network based on the timescale de-
coupling of synchronization of oscillators, proceeds by evaluating the Q modularity quality of
each candidate modular subdivision so obtained, and chooses the subdivision with the highest
Q value. This way, in a time complexity of only O(n2), the algorithm yields results of accuracy
comparable to those of the best classical methods of community detection, and inferior only to
algorithms based on simulated annealing, which are much more computationally expensive.

3.2.5 Coarse-graining of networks with community structure or recurring
modules

Once high-level modularity is found in a complex network76, it is to be expected that the network
description could be simplified by resorting to a coarse-grained model of the original network:
coarse-graining amounts to constructing a new network, different from the original one, whose
nodes correspond to the modules identified in the original network, and whose edges correspond to
the connections between those modules. In a manner in some way reminiscent of the aggregation
of variables,77 it is this way obtained a network with less nodes and edges than the original.

75I discuss these problems also in section 6
76 that is, once communities, or network motifs or themes, have been detected, and possibly even higher

structures, such as communities of communities, and so on. I’m still using here the notion of “high level” informally.
I carry out a deeper discussion on levels of descriptions in section 6.6.

77 See section 2.2.1.

3.2. Modularity in networks 121

As explained in section 6.8, the simplification obtained by representing the network as a hier-
archical modular system can ease understanding of its structure, understanding which could be
severely limited in the case of a complex network which does not exhibit any obvious modular
structure: a non modular network with a high number of nodes could overload our perceptive
capacities. By looking at a coarse-grained representation of network, in which each module of
the original network is substituted by a single node, the observer can certainly more easily catch
the network structure.

In the preceding sections I introduced two basic forms of network modularity: community struc-
ture and modularity by recurrence of similar substructures, which, in the case of networks, take
the form of network motifs or network themes. Accordingly, coarse-graining of networks can be
performed by basing it on either kind of modularity.

A typical example of coarse-graining by community structure identification can be found in
Newman & Girvan (2004), a seminal paper about network modularity. The authors take into
consideration a social network which represents article coauthorship between a set of physicists:
in this network they identify, by means of their algorithm78, the communities, and thereby come
up with a coarse-grained version of the network, as represented in fig. 3.15. Network structure
appears certainly more understandable by looking at the coarse-grained version.

A more complex, important and more informative form of coarse-graining takes into account not
only communities, but also their function, as well as the structure of the connections between
them, by representing also node-level functional information: inter-module nodes which connect
different modules are identified and functionally classified according to their roles, as already
seen in section 3.2.379.

Another form of coarse-graining is allowed by the identification of recurring similar modules.
Coarse-graining based on this kind of modularity can be exemplified by the method reported in
Itzkovitz et al. (2005), which consists in:

1. identifying network motifs and superstructures composed of motifs, and considering them
as module types, which the authors call CGUs (Coarse-Graining Units); the set of all CGUs,
that is, the set of the types of recurring modules, is called the CGU dictionary;

2. constructing a new network (different from the original) in which each node is a CGU and
edges stand between CGUs. This is the coarse-grained version of the original network.

This is a kind of modularity which differs from the simple recognition of communities: while
community-based coarse-graining allows for a better understanding of the network structure,
a coarse-grained description based on the detection of recurring modules, such as motifs, or
network themes, or higher-level similar structures80, also allows for a form of lossless information
compression of the detailed description of the network. I would like to stress this difference: while
coarse-graining by community detection allows for a simplified representation of the network at
the coarse-grained level, this coarse-grained representation contains less information than the
original network: the detailed structure network of the inside of communities gets lost in the
coarse-grained representation81. To take such level of detail into consideration, we must resort
to the original, fine-grained representation of the network. On the contrary, when we obtain a

78 See section 3.2.1 and 3.2.1.1.
79 See also section 6.4.
80 See section 3.2.2.
81 This is similar to what happens with aggregation of variables in near-decomposable systems, as described

in sections 2.2.3 and 2.4.

122 Chapter 3. Modularity and networks

Figure 3.15: (a) the original network of coauthorship between physicists; (b) detected communities in the original
networks, identified by colors; (c) the coarse-grained representation of the network: colors indicate which commu-
nity of the original network each node in the coarse-grained network represents. Image taken from Newman &
Girvan (2004).

3.2. Modularity in networks 123

coarse-grained description of the network based on the identification of recurring similar modules,
we could in principle come to know the internal details of each module not by looking at the
original fine-grained representation of the whole network, but simply by looking at the internals
of that module’s corresponding type in the CGU dictionary. This means that the coarse-grained
representation virtually contains, in a compressed form, all the information contained in the
original fine-grained representation of the network.

Itzkovitz and colleagues explicitly make an analogy between network modularity detection and
the way82 digital electronic circuits can be reversed engineered in order to view them as composed
of functional blocks, in turn these blocks can be seen as composed of logic gates implementing
boolean functions, and the gates as composed of transistors and other simpler components. In
the same way the coarse-grained network can be seen as constituting a higher-level model of
the original network: in the coarse-grained network, each node, corresponding to a module (a
community of nodes) in the original network, is seen as a black box, equipped with a set of
input and output links. This way, every node can be considered as a unit performing a given
computational function, which transforms in a given way input signals into outputs.

The fact that these modules can be seen as performing computational functions plausibly renders
them, in many cases, modules also in the general sense of being sets whose internal elements
are more densely interconnected to each other than to elements of other modules. The reason
is that it is expectable that to perform an interesting, not completely trivial computation, the
internal complexity of the module, measured in terms of the interconnections between its internal
elements, that is, in terms of variables connected by simple functions, should be higher than the
complexity of its input and output lines: arguably, a module whose internal complexity is on
the same level of that of its external connections, probably amounts to a trivial repeater, a
module which simply copies or its inputs to its outputs, or at most scrambles them, or a module
which reduces information by outputting a lossy representation of its input. The very fact that,
to perform a computation, a function requires to get information from an orderly, structured,
set of inputs in order to produce the processed configuration in a structured set of outputs, in
some way implicitly presupposes that, if the processed information needs not to get lost or to
deteriorate, the set of outputs need not be indiscriminately connected to every other module.
Thus, the density of interconnections between modules has to be limited by channeling outputs
towards specific inputs, along well defined routes. This limited connectivity between modules,
together with the fact that modules perform computational functions, renders quite likely that
most modules show up as being more intensely connected internally than toward other modules.
And this matches the notion which I sketched in section 6, the notion of modules as structures
which are internally strongly connected and more loosely interrelated one with the other.

As said, in Itzkovitz et al. (2005) the authors seek to identify, for a given network, the set of
the types of modules which can usefully coarse-grain the network. These types should ideally be
few in number, with each module internally simple, and such that the coarse-grained description
obtained by substituting parts of the original networks with these modules ends up being as
simple as possible, and, hopefully, simpler than the original network. These required properties
are partly pulling in opposite directions, and for this reason an algorithm is performed to search
for the set of modules which optimize their combination83. Once the set of module types is
found, a coarse-grained representation of the original network is produced, in which each node

82 This is a typical analogy, see also sections 7.2 and 4.3.
83 Time complexity of the algorithm is not explicitly stated in the paper. It is an algorithm making use of

simulated annealing and Monte Carlo procedures, so it makes uses of statistical sampling to simplify the search
inside an otherwise huge search space, and thus it is probably not expected to give absolutely optimal results in
the choice of the module types set.

124 Chapter 3. Modularity and networks

represents a module of some type. The paper highlights the fact that, usually, not all parts of the
original network can be replaced by coarse-grained modules, and some nodes of the coarse-grained
network still come to represent some original nodes.

A quite interesting feature of the algorithm employed by Itzkovitz et al. (2005), is that it
can be recursively applied to the coarse-grained representation, in order to possibly obtain a full
hierarchy of representations of progressively higher level of abstraction based on types of repeated
modules.

The paper reports the application of this algorithm to two real world cases, in order to test
its functionality: coarse graining of an electronic circuit, and of a biological signal transduction
network, a kind of protein-based intracellular information processing network.

The electronic circuit, which originally had 516 nodes and 686 edges, got modularized in terms
of transistors at the base level, of several types of logical gates at a higher one, and in terms
of more complex computational objects84 at two even higher levels, thereby obtaining a coarse-
grained equivalent version composed only of 42 nodes and 56 edges, a higher-level version with
complexity lower than that of the original system by an order of magnitude.

The protein interaction network examined had 94 nodes and 209 edges, and got coarse-grained
by mainly a single, very simple type of network motif85. See fig. 3.16. The paper does not
declare of how many nodes the coarse-grained network is composed, but it appears that the
biological network taken into consideration reveal itself as less modular than the electronic circuit.
Nevertheless, it has to be highlighted that in its coarse-grained representation three signaling
channels can be easily distinguished, and that they turn out to correspond to three homologous
links in the real biological network, which were already known. This approach to modular
hierarchical can thus be considered pretty promising. Other examples of fruitful coarse-graining
of networks can be found in section 7.2.

Community-based coarse-graining and coarse-graining based on detection of recurring modules
are the two possible basic kinds of coarse graining, but mixed approaches, which take the best
of both worlds, are possible: for example, by first performing a coarse-graining based on motifs,
and then by coarse-graining the coarse-grained description, by community structure detection.

3.2.6 Modularity, small-world networks and information processing
A very interesting feature of modular networks showed by Pan & Sinha (2009) is the fact that,
at a moderate degree of modularity, such networks also show the property of being small world
networks86. Having been noted that small-world networks facilitate information processing, this
result seems to corroborate the possibility that natural systems which are known to perform
information processing, or at least systems which can be seen in this way87, can turn out to
be also hierarchical modular systems. Pan and Sinha highlight that, besides being small-world,
these modular networks also possess a feature which, as we have seen in sections 6.7 and 3.2.4.1,
is a well-known signature of hierarchical modular organization: that of manifesting a dynamics
with multiple discrete time-scales characterizing local and system-wide interactions.

84 Such as counters, at the highest level.
85 The algorithm had been slightly modified to take into account that we don’t have complete data about

the actual network, and that recurring motifs in actual networks could turn out not being exactly identical.
Modifications were thus directed towards detection of network motifs of different size approximately sharing a
common network structure.

86 See section 3.1.2.
87 See section 14.5.1.

3.2. Modularity in networks 125

Figure 3.16: (a) coarse-grained version of the signal-transduction network; (b) the three already known signaling
channels; (c) the set of network motifs employed. Image taken from Itzkovitz et al. (2005).

3.2.7 Differences between modularity in networks and general modularity
In section 6 we have informally analyzed a general notion of modularity, while in section 2.2.3
Herbert Simon’s view of the matter has been exposed. There are some notable and often subtle
differences between these conceptions of modularity on the one hand and the idea of modularity
in networks on the other hand.

First, community structure, the most common form of modularity in networks, is detected ac-
cording to a metric of edge betweenness88 which can be informally interpreted as the density of
connections between nodes. Thus this form of modularity is based on a fixed metric. But, as we
know, modularity in general can be based on any metric between elements of the system. This
possibility is raised in networks by Reichardt & White (2007), which propose a more generalized
view of network modularity, based on metrics different from simple density of connections. Their
method of modularity detection consists in a simulated annealing procedure aimed to optimize
a measure of modularity quality, which can be seen as a generalized version of the modularity
quality metric Q89, and community structure is only one type of modularity their general method
can detect. In general, their method allows for detection of roles90 of nodes, where each detected

88 See section 3.2.1.2.
89 See section 3.2.1.1.
90 See section 3.2.3.

126 Chapter 3. Modularity and networks

module corresponds to a role. This framework allows thus for a generalization of the notion of
modularity in networks, rendering it more akin to a general notion of modularity.

But a more basic, notable difference between modularity in networks and the general notion of
modularity, is that in networks the typical metric used to detect modularity is a measure of some
property of nodes and edges, while, in the general case, it should be possible to asses modularity
on the basis of any given property whatsoever of any of the system’s elements or sets of elements.
This peculiarity of network modularity of being typically based on properties of nodes or edges
stems from the fact that the obvious interesting property of a network is that it is a network, and
a network is, essentially, a set of connected nodes and nothing more. However, nothing prevents
us to use edges between nodes in a network to represent a non-purely network relationship:
say, the degree of similarity between certain phenotypic traits in a group of insects species. In
this case, the resulting representation is a network with weighted edges, where nodes represent
species, and edges represent the strength of their phenotypic similarity. On this representation
of a taxonomic zoological network, an algorithm for modularity detection can be applied, and
the found modularity will be a form of modularity defined according to the relation (similarity of
traits, in this case) represented as the edges. But the algorithm will have worked by searching for
modularity according to its standard built-in metric, that is the purely network property about
edges and nodes properties: usually, edges strength, or connection density. By grouping nodes in
modules according to this structural, network property, the algorithm finds a modular structure
that can be viewed as reflecting the modular structure of the represented system.

This shows that network modularity is after all an inclusive notion, if we allow for weighted net-
works, and it is not much less general than modularity as formulated as in the general definition
of section 2.1: the relation represented as the edges between nodes, besides being a structural
network metric proper, can more in general be chosen to represent any given relation whatsoever
between elements of the system. Let’s take a system composed of a number of elements, a system
which is not necessarily a network, and a certain relation R of whatsoever nature between these
elements. In order to perform a detection of the system’s modularity according to this relation
R, a network must be produced in which the relation R is represented by some standard network
relation between its nodes, such as node density or edge betweennes. This network representation
is to be produced by some algorithmic method. By changing which relation of the original sys-
tem is chosen to be represented in the network, the structure of the network representation can
change accordingly, and so its modular structure can change as well, or disappear: this is normal,
since modularity depends on the choice of a specific metric. Once this network representation of
the relation between elements of the systems is obtained, then a network modularity detection
algorithm, which works according to some typical network metric, is applied to the network
representation, and the modularity detected in the network by this algorithm, which constitutes
network modularity detected according to the network metric in the network representation, will
mirror a corresponding modularity present in the represented system, evaluated according to the
chosen relation R holding between elements of the system.

For a very general example, the relation between nodes represented in a network can be the fact
that nodes in the system share or not a certain property. This is exemplified in fig. 3.17 and fig.
3.18.

3.3 Limitations of algorithmic detection of modularity in networks

There are many possible algorithms for the automatic detection of modularity in complex net-
works, which consider modularity under the form of network motifs, of community structure or

3.3. Limitations of algorithmic detection of modularity in networks 127

Figure 3.17: a bare network, which is modular according to the density of reciprocal links between the nodes.
Distinct modules have different colors.

of hierarchical organization. Many of the known algorithms exhibit some limitations, such as a
dubious reliability, a certain amount of computational complexity or a trade-off between speed
and accuracy. The following sections are dedicated to a discussion of these problems.

3.3.1 Time complexity of community structure and hierarchy detection91

As seen in section 3.2.1.2, Brandes et al. (2008) has proved that the task of optimizing the
measure Q of modularity92 is an NP-complete task, and thus quite certainly a computationally
intractable one93. As we have seen94, Q evaluation is necessary in order to asses the reliability
of a detected modular structure, and its optimization is therefore needed to choose the best
modular partition amongst all the possible ones, or, in other words, to infer the most plausible
hierarchical description of a network. Significantly, this limitation of the measure of modularity
due to computational complexity holds for an extension of this measure to weighted networks95.

This renders the idea to find the absolutely best possible hierarchical description of a given
network quite hopeless, and thus we probably should, in many occasions, make do with a method
for modularity detection which does not try to optimize Q, or which does not rely on this measure
of modular detection quality and its optimization. Many of such algorithmic methods have been
examined in sections 3.2.1, 3.2.1.1, 3.2.1.2, and 3.2.1.4. I will now try to assess their usefulness
and feasibility in terms of the time they require for their execution. In my view, this is an
important problem, and I will assess its consequences for scientific research and explanation in
later chapters.

91 The algorithms cited here are discussed in sections 3.2.1 and 3.2.1.2 and 6.2.
92 The measure proposed by Newman and Girvan, see section 3.2.1.
93 See section 17.4.3.1.
94 In section 3.2.1.1.
95 Brandes et al. (2008), p. 178. In the case of weighted networks, the definition of Q, instead of employing

the number of edges, is based on the sum of edge weights.

128 Chapter 3. Modularity and networks

Figure 3.18: a network with the same nodes of the network in fig. 3.17, but which represents, with its connection
structure, a complex property (the property is of being an even number lower than 20, or an odd number higher
than 100), and which is, accordingly, modular. Here, distinct modules are the subset of nodes sharing the property,
and its complement.

Numerous approximate algorithms have been devised for community structure detection. Danon
et al. (2005) make a survey of many algorithms known at the time for the detection of community
structure in complex networks. Each algorithm presents specific strong and weak spots.

Many algorithms for detection of community structure are affected by quite a high time complex-
ity96. The original Newman and Girvan algorithm has a time complexity of O(n3) (with n the
number of nodes in the network under analysis) for sparsely connected graphs, or O(m2n) in the
worst cases, when m, the number of links between nodes, is significantly larger than n. Most of
the other algorithms examined in Danon et al. (2005) are of polynomial complexity, but some
of them are O(n3) and even O(n4), like the method proposed by Fortunato et al. (2004). This
complexity, being polynomial, is theoretically considered a tractable one97. However, it is a quite
high degree polynomial, and networks with more than 104 nodes tend to result hardly tractable.

Although not explicitly stated by the authors in their papers, the method employing simulated
annealing proposed by Guimerà and Amaral98, which is deemed the most accurate for community
detection, has quite high time complexity: this can be inferred by some comments in Danon et
al. (2005), where it is stated that the simulated annealing method is the most accurate of the
examined ones but that it is slower, and that for this reason it cannot (at the time) be run on a

96 See section 17.4.1.1.
97 See section 17.4.
98 Guimerà & Amaral (2005a), mentioned in section 3.2.1.2.

3.3. Limitations of algorithmic detection of modularity in networks 129

networks with more than 105 nodes, with a runtime of several month to be expected when this
method is run on network of about 370.000 nodes. Consider that the other algorithms to which
this method is compared in the paper comprise the ones by Newman and Girvan together with
other ones, all with a time complexity of O(n3), so its time complexity is quite probably higher
than O(n3).

In general, algorithms making use of simulated annealing, for their very nature, are quite intensive
from a computational standpoint, even if they are a more feasible alternative to a brute force
full search of the space of the problem, a search which usually requires exponential time.

The algorithm described in Karrer et al. (2008)99 for measuring the significance of an already
detected community structure has a time complexity dependent on the community detection
algorithm adopted. In Karrer and colleagues’ paper, the algorithm taken into consideration for
community detection is the one proposed in Newman (2006), which runs in O(n2 logn). The
significance assessment meta-algorithm runs slower that that, for it must run Newman’s algorithm
several times, applying a different perturbation to the network structure before each run. Based
on the authors’ qualitative considerations100, it seems plausible that at best only networks with
less than a few million nodes could realistically be so analyzed in the foreseeable future.

The thorough method for detecting full hierarchies described in Lancichinetti et al. (2009)101

runs in O(n2 logn). This is a better runtime than many of the aforementioned algorithms, but
for large enough networks, where 10ˆ6 or more nodes are to be expected, even this method
could become potentially problematic, unless one resorts to a massively parallel implementation,
which, according to the authors, is quite feasible anyway. This algorithm can be easily extended
to weighted networks. Another, different algorithm for native hierarchy detection in weighted
networks is proposed by Zhou & Lipowsky (2004), and it runs in O(n3).

The method put forth by Palla et al. (2005) for the detection of overlapping communities102

runs in exponential time, and it is therefore computationally hard.

The algorithm for evaluation of the best hierarchy fitting a network proposed by Clauset et al.
(2007), is, according to its authors, definitely more computationally intensive than the classic
ones, and realistically applicable only to networks with a number of nodes of the order of a few
thousands103.

Sales-Pardo et al. (2007) describes a quite similar algorithm with the same purpose, which,
according to the authors, has a computational cost which “limits network sizes to ∼ 10, 000”104.

Among the algorithms for detecting communities in directed networks, the one by Leicht &
Newman (2008) is an extension to directed networks of the original method by Girvan & Newman
(2002), and has the same time complexity, that is O(n3).

99 See section 3.2.1.2.
100 They claim that calculation for a network with 5000 nodes takes about a day on a standard (as of 2008)

desktop computer. They also claim that the algorithm is trivially parallelizable, and so could be linearly sped up.
101 See section 3.2.1.4.
102 described in section 3.2.1.4.
103 Clauset et al. (2007), p. 3 and 7. In the paper, there’s no better explicit estimation of the time complexity of

the proposed method . It is noted that an exact algorithm would involve a search through the super-exponential
space of possible hierarchies, which has a cardinality (2n − 3)!!, where !! is a double factorial and n the number
of nodes in the network. This most assuredly makes the exact algorithm intractable. The proposed one, instead,
makes use of a Monte Carlo method, which examines only a statistical sample of this space, ending up being only
a probabilistic estimate of the best hierarchy, but definitely more computationally tractable than the exact one,
albeit still computationally heavier than classic hierarchy detection algorithms.

104Sales-Pardo et al. (2007), p. 15227. The estimation matches quite well that of Clauset et al. (2007), which
is not surprising, given that the algorithms work in a very similar way.

130 Chapter 3. Modularity and networks

An algorithm for community detection in directed weighted networks, based on an alternative
definition of Q, has been put forth in Arenas et al. (2008). In this method, QM if the motif
modularity, defined as the density of motifs inside a community compared to the density of the
same motifs in a random network with the same node characteristics. To assess this modularity
measure, it must be specified which kind of motifs we are interested in: for example, by specifying
as a criterion the density of triangular motifs, the algorithm detects as modules subnetworks
whose nodes are densely connected by triangular, possibly overlapping, motifs. By specifying as
a criterion the betweenness, that is the standard metric for modularity detection, this method
obtains the same modules which would be detected by an algorithm based on Q105. Time
complexity of this method, based on motif modularity is arguably very high, at least if what is
sought-after is the best modular description of the system. This is because optimization of motif
modularity is likely as computationally hard as classic Q modularity, which is NP-complete106.
To the best of my knowledge, the hardness of motif modularity optimization has not been proved
yet, but it seems plausible nevertheless, given the similarity of the two measures as defined in
Arenas et al. (2008).

3.3.1.1 Accuracy of community structure detection

As we have seen107, a problem which affects approximated algorithms like those mentioned in the
preceding sections, is that, as Brandes et al. (2008) proved108, they are not guaranteed to perform
accurately enough to detect the optimal modular representations, because the approximation
degree can vary wildly. This means that we can never be sure that the hierarchical modular
structure found by an approximated algorithm is the best one, at least as long as we base the
assessment of the quality of the modular decomposition on the measure Q, and the network is
not trivially small. But, as we have seen, by its very definition it seems that Q is able to represent
quite naturally the amount of what has since Simon (1962) been considered modularity, so it
can be argued that the assessment of the reliability of the detected modularity should be based
precisely on this measure.

However, appropriateness of the modularity measure Q itself has been put in doubt: it has been
showed, by Fortunato & Barthélemy (2007), that even if optimization of Q were possible (and it
is not, for it is NP-complete), the resulting detected hierarchy, in many cases, would not take into
account small modules as independent communities, and would instead consider them as fused
into bigger ones. In other words, the algorithmically detected modules could actually comprise
other in principle well-defined submodules, too small to be caught by the algorithmic detection.

This resolution limit in community detection seems to be an intrinsic limitation of algorithms
which work by trying to optimize Q, both precisely and by approximation. The only solution
Fortunato ad Barthélemy envision, is to revise every modular description found, by examining
every smaller module found, to see if it comprises even smaller proper modules, or to resort to
a measure of modularity alternative to Q, on which, however, at the time of their paper, there
was no clear consensus109.

105 This way, the algorithm by Arenas et al. (2008) implements modularity detection at different “levels of
abstraction” (to anticipate a terminology which I will introduce in section 6.6).

106 as proved in Brandes et al. (2008).
107 Sections 3.2.1.1, 3.2.1.2, 3.3.2.
108. See also section 3.3.1.
109 The authors even predict that other measures of modularity could manifest their own resolution limits,too.

This has indeed turned up to be the case with the alternative measure proposed by Arenas et al. (2008).

3.3. Limitations of algorithmic detection of modularity in networks 131

3.3.1.2 Trade-off between accuracy and speed in community structure detection

In general, there is a trade-off between efficiency and precision, affecting approximated algorithms
for finding community structure in networks. This seems not completely surprising, given that
the task of Q optimization has turned out being NP-complete: if we adopt Q as a reliable measure
of the plausibility of a detected community structure type modularity (and, as I have argued
in section 3.2.1.1, this seems actually quite plausible, at least if we stick with the conception of
general modularity I tried to reconstruct), then we will suffer the computational limitation in
optimizing Q. We could certainly resort to approximated methods for this optimization, but of
course those methods will most likely yield approximate results. Given that the approximated
methods are usually chosen for their being computationally tractable, and thus much faster, it is
to be expected that they will fall shorter on other criteria, and so it is not surprising there will
be a trade-off between speed and detection accuracy. This trade-off could not be an absolute
law, for newer, more efficient algorithms are continuously researched. Another solution would
be to resort to a method which optimizes parameters different from Q, and whose optimization
is intrinsically faster.

Faster, approximated algorithms than the classic Q-based ones by Newman and Girvan cited in
the former sections have been found, which run much faster, as for example Newman (2004b)
and the even more efficient Clauset et al. (2004), which runs in almost linear time110, but, as
said, the trade-off between speed and accuracy means that quite often these algorithms are less
precise, in identifying actual community structure, than the slower ones: the fast algorithms are
more likely to choose not the most optimized modular partition of the network, and at times
they fail in distinguishing actual modularity from random fluctuation: it is typical that many
algorithms find community structure even in random networks.

Another very fast method, proposed by Wu & Huberman (2004), runs in linear time with respect
to network size, but is not capable of finding a full hierarchical structure, like the classic algo-
rithms by Girvan and Newman: it detects only the smallest modules around nodes, and requires
the number of communities to be known in advance, a property which renders it not really useful
in many cases of modeling of real phenomena, when rarely the number of communities is already
known.

In section 3.2.4.1 I have described some algorithms for community detection based on the network
dynamical properties. The most accurate of these methods, proposed in Boccaletti et al. (2007)
is in O(n2) complexity class, thus less demanding than many classical structural methods, and
producing similar or even better results in terms of accuracy. This is probably, at the moment,
the most promising method with respect to the complexity/accuracy trade-off.

3.3.2 Time complexity of network motifs detection111

The original algorithm for detecting network motifs, as devised by Milo et al. (2002) is extremely
time consuming. The reason is that it involves counting all the occurrences of all 3 or 4-nodes
subnetworks of a given network: this number can be as large as the number of simple combinations
of k elements out of the set of all n nodes in the network, which is equal to n!

k!(n−k)! , and grows
faster than (n

k)k. It is plausible that this limitation could not allow this algorithm to be run

110 These algorithms try to approximate Q optimization by greedy optimization. See section 3.2.1.2 for a better
explanation.

111 The algorithms cited here have been exposed in section 3.2.2.

132 Chapter 3. Modularity and networks

fruitfully on networks of more than 104 nodes112, or even smaller networks, if what is searched
for are motifs of more than 4 nodes.

As a remedy, algorithms that count motifs in a sample of the total network, in order to estimate
the actual total number of motifs and their distribution, have been proposed, starting with
Kashtan, Itzkovitz, Milo, & Alon (2004b).

However, the exact counting of the actual number of motifs in the network would be preferable.
Better feasibility of this task has been achieved with an algorithm proposed by Itzhack et al.
(2007), which is optimized to the point of being 2000 times faster than the classic algorithm for
motifs of 3 or 4 nodes and networks of not less than 50.000 nodes, even faster than the sampling-
based algorithms, while at the same time allowing for accurate analysis, with precise counting of
the motifs, in networks of previously intractable size.

Another algorithm, devised by Grochow & Kellis (2007), takes into account motif symmetry
during the enumeration of motifs, showing an exponential speedup with respect to the original
algorithm proposed in Milo et al. (2002), and even to one of its improved versions. This new
algorithm was capable of discovering a complex 15-nodes motif which occurs several thousand
times in the protein-protein interaction network of Saccharomyces cerevisae. This constitutes
an interesting finding, which results from a performance seemingly unattainable with previous
methods.

3.3.3 Time complexity of network roles detection113

The papers cited in this work which propose algorithms for discovery of network roles do not
explicitly assess the time complexity of these algorithms. However, we know that, as discussed
in section 3.3.1, algorithms making use of simulated annealing are quite intensive from a compu-
tational standpoint, and most of the methods proposed for discovery of network roles make use
of this stochastic techinque: specifically, both Reichardt and White’s method for finding the best
abstract model of a network, and Guimerà and Amaral’s algorithm for community detection,
which is part of their method to produce a functional cartographic representation of a network,
recur to simulated annealing, and can thus deemed to be highly computationally intensive.

3.4 Summary of the survey on modularity detection algorithms

In the last sections we have examined many algorithmic methods for detecting various forms of
modularity in complex networks, ranging from network motifs, to communities, to hierarchies of
motifs and/or communities.

The precision limits of the different proposed algorithms and their computational time complexity
have been highlighted. It turns out that this time complexity level, while being in most cases
polynomial, and as such not theoretically intractable, is often high enough to hinder modularity
detection in networks larger than a certain size. Actually, there are networks which, albeit quite
big, in many cases are of great interest for many scientific disciplines: for example, it is normal to
examine networks with millions of nodes when studying the World Wide Web, or social networks.
In worse cases, depending on the precision of the chosen algorithm, even the modularity degree of
networks with a number of nodes of the order of 104 can turn out to be difficult to analyze. This
limitation could raise some difficulties in systems biology, where networks of such a magnitude

112 See Itzhack et al. (2007).
113 The algorithms cited here have been exposed in section 3.2.3.

3.4. Summary of the survey on modularity detection algorithms 133

(gene transcription networks, metabolic ones, proteic network, or a combination of different
network types) are to be expected.

Nevertheless, it all depends on the precision in modularity detection required: many approximate
algorithms are orders of magnitude faster than the most precise ones, and speed can in some
cases be preferable to precision. Besides, the search for more efficient methods is going on at a
fast pace.

For what concerns community structure detection, even if optimization of the modularity measure
Q has been proved to be an NP-complete task114, there have been attempts to devise algorithms
for its approximate optimization, or to carry out modularity detection based on measures alterna-
tive to Q, such as the dynamical methods: the verdict about the actual feasibility of community
and hierarchy detection on very large networks is still open.

Approaches based on network motifs have showed up as being quite computationally intensive
as well, limiting feasible analysis to networks of the order of 104 nodes, and the sought-for motifs
to no more than 5-nodes ones. Here too, the alternative is to accept a speed/accuracy trade-off
by resorting to sampling methods, which are less accurate than exhaustive ones.

Nevertheless, recent proposals such as that put forth in Grochow & Kellis (2007) have expo-
nentially raised the maximum allowable size of analyzable networks, permitting the search of
functionally meaningful motifs composed of 10-20 nodes. This innovation seems an important
milestone, and here too the question of computational feasibility of a modular functional descrip-
tion in terms of motifs of large complex networks remains open.

114 See section 3.3.1.

Chapter 4

Modularity of computer programs

This chapter highlights the importance of modularity and related notions for computer programs.
In order to clarify some basic concepts concerning computer programming and programs, a quite
substantial introductory section (4.1) has to precede section 4.2, which is the part specifically
dedicated to program modularity.

4.1 Computer programming

Differently from the more theoretical questions regarding the foundations of computation typical
of computer science, whose treatment is dominated by mathematical rigor, in fields affected also
by technical concerns, such as that of information technology, less philosophical attention is usu-
ally directed towards giving rigorous definitions of basic concepts. As a typical consequence, in
these fields there is a lack of widespread consensus about the definition of certain fundamental no-
tions. Some of the notions I will touch upon in this section, like those of program and specification,
belong to this last category. However, I am not about to pursue here a complete philosophical
examination of these subjects, but only to anticipate a series of concepts and questions which
will be of some use in further theoretical parts of this work.

4.1.1 Computer programs

The intuitive notion of a computer program has naturally emerged almost since the original
1936 paper by Alan Turing1 which started computer science by introducing the idea of Turing
machine (TM, henceforth): as we have seen, a universal Turing machine (UTM)2) is a TM which
accepts as input the description of another TM and some data for this TM to act upon. It then
proceeds to execute the same operations this same TM would perform on the given data. The
symbolic description of a TM given as input to the UTM is a complete description of the TM to
be emulated, that is, a complete description of its transition table. The transition table can be
seen as a set of directives which instruct the TM on how to act according to the possible given
circumstances (where a circumstance consists of each particular configuration of the machine,
that is the <current state, current symbol read> couple). In other words, given the read/write
ability of the TM, the transition table constitutes a list of instructions on how to operate on
data.

1 Turing (1936). See section 17.
2 For TMs and UTMs, see section 17.2.5.

135

136 Chapter 4. Modularity of computer programs

A computer program is a generalization of this concept of a list of instructions, applicable to any
universal computational architecture. Computing architectures different from that of the original
UTM have been conceived and physically realized since the late 1940s. All these hardware
architectures have been proved to be computationally equivalent to the UTM, but have usually
the advantage of being faster and easier to program than the Turing machine.

4.1.2 The Von neumann architecture
A typical architecture used in modern computers is the so-called Von Neumann architecture,
named after its origin in seminal works by John Von Neumann and others in the ’40s3. It is a
form of stored-program computer, in which the list of instructions to execute is stored in main
memory alongside the data on which they are supposed to operate. A Central Processing Unit,
or CPU, which, in a way, takes in these machines the place of the Turing machine’s “head”, has
read and write access to a memory that is constituted by an array of cells, each holding a symbol
taken from a fixed alphabet. Usually, the basic alphabet with which the machine works is binary,
comprising only two symbols, typically represented as 0 and 1. This choice of a binary alphabet
has a practical side: it makes it easy to represent those two symbols in an electronic device by
means of a coarse electrical property like the absence or presence of a certain minimum voltage
between two conductors. It has also the advantage, being immediately interpretable as a form
of base 2 numerical representation, of allowing for an easy implementation of boolean logical
functions or arithmetical functions. In modern machines, more than one binary digit (bit) is
usually contained in a single memory cell, so the alphabet from which the symbol contained in
a cell is taken is wider than the typical alphabet of 2-3 symbols used in TM exemplifications: in
a typical modern personal computer, a memory cell contains a string of 8 bits (a byte), which
can represent 256 symbols4. Each cell has a unique numerical address, which identifies it. There
is a sequential ordering of cells derived from this numerical addressing schema. But, unlike
the original TM’s memory (the “tape”), which allows only sequential access, this is a Random
Access Memory (RAM): any memory cell can be accessed at any given moment with a single-step
operation by specifying its address, regardless of the particular position of the cell that the CPU
was scanning at the previous computational step. This is in striking contrast to the TM, where,
to reach a particular cell, the head must move step-by step through the cells that stand between
the current cell and the cell the head is directed to. As it is easy to guess, a Von Neumann
architecture, in virtue of random access memory, is in general faster than the original UTM by
orders of magnitude.

The instruction set, that is, the set of operations the CPU can perform, is fixed by the hardware
specific architecture. Each instruction is represented in memory by a symbol or a string of sym-
bols. A program is typically a sequence of symbols representing these instruction, interspersed
with symbols representing the data on which the instructions are supposed to operate. The pro-
gram is stored in memory in a block of sequentially disposed cells. The instruction set comprises
instructions to fetch data from memory and store them on the CPU internal registers, as well
as instructions to write data stored in registers to a specified memory location. Registers are
limited blocks of memory separated from RAM and internal to the CPU, on whose content the
CPU directly performs operations. The instructions performing these operations are typically a
limited set of logical and arithmetical instructions.

To “run” a program, the CPU, starting initially on the first cell of the sequence of memory cells
containing the program, examines each instruction of the program at a different timestep, and

3 Von Neumann (1945). See also Priestley (2011), §6.1.
4 More symbols can be obtained by combining two or more adjacent cells.

4.1. Computer programming 137

performs the instruction on the data stored in the cell or cells which sequentially follow the cell
in which the instruction under consideration is located. After having completed each instruction,
a special numerical counter, called the program counter, is incremented by a number of steps
sufficient to make it point to the memory address holding the next instruction to be executed. As
a consequence of this increment of the program counter, the CPU comes to virtually “position”
itself over the cell pointed at by the counter (just like the TM head positions over an adjacent cell
on the tape after each operation), and proceeds to execute the instruction contained therein. The
process goes on until some instruction to halt the program is encountered. In absence of specific
instructions in the program manipulating it, the program counter always increments sequentially
at each computational step in order to point to the following next adjacent instruction, so the
program’s representation in memory is scanned and executed sequentially. There are, however,
instructions for manipulating the program counter itself, instructions which thus make the CPU
“jump”, at the next computational step, to the location of any specified non adjacent instruction.
Starting from that cell, the program will go on executing the next computational step. These
jump instructions can be unconditional or conditional: unconditional jumps make the program
execution jump to a certain RAM cell regardless of any other circumstances, while in conditional
jumps, the jump is effected or not depending on the result of some prior logical or arithmetical
operation acting on some data. These conditional jumps, or branches, are operations which
influence the control flow of the program, that is the order in which its instructions are executed.
It is this conditional jump capability the crucial property which gives a computing architecture
the TM-level computational power.

As an example of computer program, the listing reported in fig. 4.1 is a simple commented
program written for a Von Neumann-like architecture. The program is here reported not in its
binary form, but in a symbolic notation, more readable than binary code, which is a form of
assembly language5.

Figure 4.1: the listing of a computer program written in the assembly language of the MOS Technology 6502
microprocessor.

In the listing in fig. 4.1, the first vertical column shows the number of the memory location
containing each instruction6, the second column the symbolic name of the instruction, the third
the arguments of the instruction, that is, the data on which it has to act upon.7. The fourth
column contains an explanatory comment, which is not part of the program.

The following would be the binary representation of this program in RAM8, a representation
which closely matches the actual physical representation of the above program in a computer:

5 For other informations on assembly languages, see section 4.1.4.1. The assembly language in this example
is specific to the MOS Technology 6502, a microprocessor used in many widespread personal computers till the
late ’80s.

6Cell addresses are not consecutive: each instruction would fill a memory cell (at least in the processor
architecture used in the example), but some instructions are necessarily followed by the data they are supposed
to use, and in these cases the data takes another cell or two.

7The numerical values in the listing are in hexadecimal code, which is a form of numerical coding base 16
typically used in information technology, more apt than decimal to represent values stored in bytes.

8In the left colum the memory addresses are reported.

138 Chapter 4. Modularity of computer programs

0000 10101001
0001 00000000
0002 10100000
0003 00000110
0004 10001000
0005 10011001
0006 00000000
0007 00010000
0008 11000000
0009 00000000
000A 11010000
000B 00000100
000C 00000000

4.1.3 What a program is
I have given some examples of a program, but, as somehow expected, it seems there is not a
universally standard accepted definition of computer program.

The Encyclopædia Britannica online gives the following one:

computer program, detailed plan or procedure for solving a problem with a computer; more
specifically, an unambiguous, ordered sequence of computational instructions necessary to
achieve such a solution. The distinction between computer programs and equipment is often
made by referring to the former as software and the latter as hardware9.

According to Piccinini (2008):

In computer science, a program is a list of instructions implemented by a concrete string
of digits; ‘executing a program’ means responding to each instruction by performing the
relevant operation on the relevant data10.

An aspect highlighted in the Encyclopædia Britannica’s definition, is that a program is supposed
to be a procedure for solving a problem. This view of a procedure with a specific purpose
can be considered as stemming from the foundational questions about computation itself, and
namely from the Entscheidungsproblem, which demanded a solution to a problem in the form
of a mechanical procedure: Turing gave the definition, with his abstract machine, of what a
mechanical procedure is, and a program can be seen as a list of instructions which describes the
procedure that has to be performed by the machine to solve a given problem.

To sum up, It seems that a program is, under one aspect a list, under another a procedure, and
that it is also supposed to solve a problem. So, by its nature, a program is not the execution
of a random list of instructions, but it has the feature of being capable, with its execution, to
solve a specific problem: this property can also be rephrased by saying that a program has a
specific function. I think this is its most problematic feature, and it will deserve further analysis
in section 4.1.5.

9 http://www.britannica.com/EBchecked/topic/130654/computer-program
10p. 314.

4.1. Computer programming 139

But, stemming from the very idea of the UTM, there is another facet of the notion of program,
one which is related to programmability: the program, that is, the description of the TM which
is to be emulated by the UTM, is supplied to the UTM as a string of symbols on the tape: for
a universal computing machine, the program to execute is just data. As data, the program itself
can be easily modified to be adapted to different necessities, while the actual mechanism of the
UTM remains fixed. This is a basic distinction which afterwards has come to be known as the
distinction between hardware, that is, the fixed mechanism of the universal machine executing
the program, and software: the program to be executed11

4.1.4 Programming languages
The list of instructions which constitutes the program is expressed as a list of symbols. Apart from
the specific arithmetical coding which was employed by Turing in his 1936 paper to represent the
instructions of the UTM, any coding whatsoever into symbols can be established to this purpose.
Typically, each instruction in the program is represented by a string of alphanumeric symbols.

In computer science, a set of strings constitutes a language12. A program is expressed as a
sequence of elements of a language, that is as a sequence of strings. The language employed in
the description of the program is a programming language.

There is a unbounded number of possible programming languages, but, given a specific computing
machine hardware, there is usually a native language, the so called machine language, or machine
code, which corresponds to the set of elementary instructions directly executable by the hardware
in virtue of its constitution. Machine code is expressed as binary strings13.

4.1.4.1 Low-level languages

Machine code is considered the lowest-level representation of a computer program, and it is
relative to the specific hardware architecture of the machine in question. In general, the class
of low-level languages comprises machine code languages and their slightly more abstract rep-
resentation, the so-called assembly languages. These are languages constituted by symbolic
alphanumeric names which directly stand for the actual machine code instructions, plus some
other strings standing for constants, positions in the program, and other auxiliary structures.
The relation between the assembly code and the corresponding machine code is usually one-to-
one, so the level of detail to be specified when programming in assembly is the same that would
be requested by programming directly in machine code, but the assembly listing of the program,
being a sequence of alphanumeric strings, is more readable than machine code, which is usually
expressed in binary numerical notation14.

4.1.4.2 High-level languages

Actually, a computing machine can execute only programs expressed in its machine code. To
facilitate programming, since the early times of information technology, many high-level languages

11 Usually, with “hardware” we refer to any piece of physical equipment making up a computing machine or
an extended system composed of the computer and its peripherals, and oppose the term to “software”, which
stands for “immaterial”, symbolic data. I think the very difference between the two terms does not stand in their
physical realization, but in the mutability of software with respect to the hardware. I will return on this point in
section 6.6.

12 As explained in the Appendix, section 17.1.
13At least in computers based on a digital two-valued architecture, which are the vast majority of existing

machines. See section 4.1.2.
14 For an example of an assembly program listing, see example in section 4.1.2.

140 Chapter 4. Modularity of computer programs

have been devised. “High-level” means that such a language differs from machine code, in being
a representation of coarser granularity15: a single instruction in a high level language usually
corresponds to more than one machine code instructions.

Given that a computing machine can execute only its machine code, when programs are written
in high-level languages the instructions expressed in the high-level language, the so-called source
code, must be translated to machine code before being executed. There are two main methods
to accomplish this translation:

• compilation;
• interpretation.

Compilation amounts to substituting (usually by means of a program, the compiler) to each high-
level instruction in the source code a corresponding sequence of machine code instructions. This
way, the obtained list of instructions is immediately a machine code list, and as such constitutes
a program directly executable by the hardware. This program obtained by compilation runs as
fast as an identical program written natively in machine code.

Interpretation is instead a more indirect translation: there is a program, the interpreter, which
takes as input the high-level program listing, and, for each high-level instruction it encounters
in the given order, it executes in real-time a predefined program which performs a sequence of
machine code instructions equivalent to the prescribed high-level instruction. This continued
real-time interpretation procedure ends up being orders of magnitude slower than the direct
execution of an equivalent compiled program.

A high level program can be roughly seen as composed of: (i) a set of variables: labeled memory
storage locations which can contain data; (ii) statements which assign data to variables by
evaluating formulas comprising variables and logical or arithmetical operators; (iii) statements
which prescribe some action to perform; (iiii) statements which read data from variables; (iiiii)
conditional statements, which modify the control flow of the program (for example, jumping to
another instruction) on the basis of the value of some variable or formula.

As an example, a program written in Javascript, which is a modern high-level language, can look
like this:

var num1 = 660;
var num2 = 33;
while (num1 > 0)
{

var tmpnum = num1;
num1 = num2 % num1;
num2 = tmpnum;

}
console.log(num2);

This program calculates the greatest common divisor between the numbers stored in variables
num1 and num2. The code between the two curly braces is a block of code. The while statement

15A high-level language can be considered a representation at a higher level of abstraction. I will discuss the
notion of level of abstraction in section 6.6.

4.1. Computer programming 141

evaluates a condition (in this case the condition is true if the value of the variable num1 is
positive) and, if this condition holds, it repeatedly executes the following code block until the
condition ceases to be satisfied. Statements like while are called control flow statements, for they
influence the control flow. Another typical control flow statement in high-level languages is the
for loop construct, which makes the subsequent block of code loop continuously, while a counter
variable increases or decreases inside a prespecified range of values.

4.1.4.3 Syntax and semantics of programming languages

Informally, the syntax of a language is the set of strings which can be accepted as well formed
statements and formulas in that language. Formally, the syntax of a language can be expressed
as a formal grammar16. Most high level languages are context-free languages: languages which
can be generated by a context-free grammar or accepted by a pushdown automaton17.

Informally, the semantics of a high-level language is the sequence of low-level instructions corre-
sponding to the translation into machine code (by means of a compiler or an interpreter) of the
high-level statements and functions of that language.

The semantics of machine language resides in the actual operation performed by the hardware
as a consequence of executing each machine language instruction. Being related to a specific
hardware architecture, machine language needs specification of the hardware it runs onto, to
give it a semantics.

4.1.4.4 Program semantics and flow charts

Intuitively, a general notion of semantics for a program is this: the meaning of a program, seen
as a list of instructions, consists in the computations that a machine can perform when executing
that program.

Flow diagrams, introduced by Goldstin and von Neumann in the late ’40s18, are a graphical
means of representing the sequence of operations a computer carries on when executing a given
program. They are thus a form of high or low-level representation of the program semantics.
Nowadays, they are better known as flowcharts. For an example, see fig. 4.2.

4.1.5 Program specification and program implementation
A program is, as we have seen in section 4.1.3, a procedure aimed at solving a problem. When
undertaking the task of writing of a program, the programmer starts with a first consideration of
the problem the program is supposed to solve. This problem can be expressed in a more or less
detailed way. The description of this problem, or, in other words, of the function the program
will have to fulfill, is called the specification of the program.

This notion of specification is to be remarked here. Informally, a program specification is to be
understood as simply some description of a program’s functionality, that is, a description of what
the program is supposed to do. This can be expressed, as said, as the problem the program is
supposed to solve, or, in a less abstract way, as a description of the precise relationship between
the program’s inputs and its outputs. In different occasions, the specification is given in a variety
of more or less abstract forms.

16For formal grammars, see section 17.2.10 of the Appendix.
17 See section 17.2 of the Appendix.
18See Priestley (2011), §7.9.

142 Chapter 4. Modularity of computer programs

Figure 4.2: a flowchart describing an algorithm which accepts non-null positive input numbers.

4.1. Computer programming 143

A specification does not enter into the details of how the specified requirements are to be fulfilled:
it is the program which specifies how to accomplish the required task.19

Regarding what a specification is, Galton (1993) writes:

In computer science a specification is a more or less precise or exact statement of how a
software system is required to behave. It provides a criterion against which the success or
correctness of the software system can be judged. Minimally, a specification is a functional
specification, that is, it specifies the system as a ‘black box’ in terms of what output it will
deliver when activated by any given input. Nothing is said of, for example, how long it will
take to deliver the output, and the specification is pure in the sense that nothing is said
about how the generation of output from input is to be achieved.

A highly detailed specification can thus be seen as the description of a function, in the mathe-
matical sense of a mapping between elements of two sets: in this case, between possible inputs
and desired outputs implemented by the program.

An implementation of a given specification is a program satisfying the specification20. Of course,
a given specification can be satisfied by more than one program: the same specification can be
implemented in more ways than one. Implementation is the complementary concept of specifi-
cation: for a specification there is an implementation, and an implementation, as such, is the
implementation of a specification.

As said, a specification does not enter into implementational details. According to Galton (1993),
though, this two level (implementation-specification) framework is too rigid: a specification is a
specification with respect to an implementation, and an implementation can be itself seen as a
specification with respect to another, more detailed implementation. Thus, the specification and
implementation levels21 are not absolute, but relative. This stems from the fact that, usually,
during the development process of a program, the so-called implementation of a given specifica-
tion does not initially implement all the details of the final program22, but leaves some details
aside, supplying in their place sub-specifications which in turn will have to be implemented. An
example will clarify this point23: a given specification requires a certain list of strings to be or-
dered alphabetically (a classic sorting task). The implementation can be realized by more than
one possible algorithm. Well known algorithms for this task are the so-called insertion sort and
merge sort. Typically, such algorithms will be at first supplied as the descriptions, in a natural
language, of certain procedures. This kind of description usually does not specify every detail: it
can mention operations in the described procedure, such as “the element gets inserted in a list”
or “the two lists are merged”. Such very high-level descriptions of algorithms, despite being part
of this first proposed implementation, can be seen in turn as specifications themselves, in turn
in need of an implementation. The specification/implementation relation can then be applied
recursively: quite often, further implementation of such lists of operations as the above descrip-
tions of algorithms, is realized in a high-level language. And even a high level language can in
turn be seen as a set of specifications (the high level instructions) in need of implementation,
implementation which will be realized by a lower-level language (usually assembly language24).

19See Colburn (2004).
20 See Bird & Wadler (1988), p. 13.
21 My view on the nature of these “levels” is to be better specified in section6.6.
22 That is, all the details of the program which will eventually be executed in order to perform the wanted

algorithm, implementing the original specification.
23 The example is taken from Galton (1993).
24 See section 4.1.4.1.

144 Chapter 4. Modularity of computer programs

The last, lowest level implementation is usually considered simply an implementation and noth-
ing else. This bottom level is not fixed and established, and depends on a pragmatic choice of
the language (high or low-level) with which to implement the original general specification25.

4.1.5.1 Specification, abstraction and naming

The above considerations suggest that we could envision an entire hierarchy of “levels” each of
which is the specification of the immediately lower level, which constitutes the implementation
of this specification. In turn this lower level is the specification of its underlying level, and so on,
until the “bottom” is reached.

An important point is that a specification is always more abstract than its implementation: it is
a description of a possible implementation which neglects some of the features of the implemen-
tation. More precisely, a specification is a representation which is abstract enough to be multiply
realizable: by ignoring some of the features of its implementation, it leaves open the possibility
that the other facets of the implementation, the ones that it has neglected, vary freely, and this
leaves space to possible different versions of its implementation, versions differing in the features
that are neglected by the specification. A specification ends up representing only the common
features of its possible implementations.

In other words, a specification is basically an abstraction, where the concept of abstraction is to
be understood as a representation which represents only some aspect of an object of observation,
not all its aspects26. Any abstraction can, per se, be a specification: the very fact that it is an
abstraction makes it susceptible to be implemented in more possible particular ways. Of course,
the more abstract a specification is, the higher is the number of its possible implementations. A
specification can then be more or less strict as a function of its degree of abstraction: a very
strict specification does not leave room for many different possible implementations27.

When taken to a high degree of abstraction, that is when ignoring most aspects of its implemen-
tation, the specification can turn out to be so synthetic as to be useful as a simple “name” for
the function realized by its implementation. Abstractions of this kind are “addition”, “printer”,
or similar cases in which a very short expression, which abstracts a crucial feature of a system, is
adequate to “name” the system in an “aggregate” manner: in a way, by naming a crucial feature
of the system, it summarizes in this feature all the complex of activities which constitute the
whole functioning of the system.

There is some exception, though, to this idea that a specification is an abstraction. For example,
this happens when a specification understood as the name of the input/output function of a
program, is constituted by an an arbitrary chosen verbal expression assigned to the program,
as its name, purely by convention. To make an easy example, take Google, the well-known
search engine. What is “Google”? It is the name of a specific program, but this name is not
an abstraction of the input/output function that the program performs, which can legitimately
represent it in an aggregate way: it is a name applied to it by pure convention. On the contrary, a

25 This situation of a choice determining the bottoming out of a recursive hierarchical descent recalls quite
closely (most likely not by chance) analogous situations regarding mechanistic explanation (section 11.1.5) and
modularity detection (section 2.3), and is strictly related to some of the considerations on levels of description
that will be carried out in section 6.6.

26 I will try to clarify the notion of abstraction in section 6.6.
27 I’m speaking here on an informal, intuitive level of the number of possible implementations: it can be

suspected that the number of possible features of any object is infinite (but what kind of infinity?), and on this
basis it can be argued that, for any specification, however abstract, the set of its possible implementations has
always the same cardinality. However, I’m not even trying to embark here in this kind of discussion, which is well
outside the scope of the present work.

4.1. Computer programming 145

very high level abstraction of the function Google performs would banally be the following way of
naming it: “search engine”. This expression could legitimately (and probably does) constitute a
valid aggregate representation of what Google does. The other way of naming Google’s function,
that is, naming this function by calling it “Google” is purely a verbal label attached to the
actual Google specification, with specification intended here in the sense of Google’s input/output
function. Curiously, (and, probably, interestingly), at least in Google’s case this mere “labeling”
of the program specification has (for social reasons, in this case) come gradually to constitute
a specification of Google’s function also in the sense of becoming an abstraction proper of this
function: to see this, it is sufficient to consider that, these days, as an answer to the question
“what are you doing on the web?” one is socially legitimated to answer “I’m googling for. . . ”. In
this case, it seems that the verb “to google” has assumed a functional meaning which represents
a very high abstraction of what the program referred to by the name actually does: “googling”
is now undoubtedly a synthetic way to say something on the lines of “searching the web with a
certain search algorithm, which indexes the text of the web and searches in the indexed data a
set of strings the user has specified. . . , [and so possibly on until the full functional specification is
given]”. But, this “reversion” from the purely conventional label to a form of abstraction occurs
only for social reasons. When the use of a conventional label becomes widespread, the word,
per se apparently devoid of meaning, inherits, legitimately from a social standpoint, due to its
constant association to the function it labels, the functional meaning of this labeled function:
initially, “Google” did not mean anything, now it is a verb and means “searching the web”. This
is an abstraction of the actual function of Google’s program, while originally the same word
stood only for a conventional label.

4.1.5.2 Kinds of specification

Based on considerations and reflections like the ones above about the possible senses of the notion
of specification (input/output function, purpose of the program, “name” of the program or of a
function), and on the most usual ways names get attributed by programmers to functions and
program they write, I have come to a tentative classification of the meaning of “specification”
and “name” of computer programs, which in my opinion can help avoid some misunderstandings
about this notion. I classify specifications into four main “kinds”, as explained in the next
paragraphs.
In the first three of these classes, specifications or names are seen as abstractions of the actual
input/output functions characterizing the set of all their possible implementations. The fourth
class sees a name as something which is actually only a verbal label attached to a set of imple-
mentations. This fourth kind of function and specification naming is a degenerate one, albeit a
quite frequent one in information technology practice, and does not help very much (except by
allowing for some economy of description of programs) in analyzing, understanding and explain-
ing the function of programs, an activity which is very important for programmers, as we will
see in section 4.3.
It must be noted that some of the distinctions below prefigure or constitute the “computational”
equivalent of certain notions of functions belonging to explanation in empirical sciences, and
which are studied by philosophy of science, notions which will be discussed in section 9.

4.1.5.2.1 Kind B: bare specification

• B: bare specification: specification as a mathematical function holding between possible
inputs and the corresponding outputs, provided extensionally as a set of input/output
couples.

146 Chapter 4. Modularity of computer programs

4.1.5.2.2 Kind A: the aggregate kind

• A: aggregate name: an abstract representation of the specification understood as in B. If
this abstraction is of sufficiently high degree, then it can be seen as the “name” of the
specification understood in sense B, and it can act as an aggregate placeholder instead of
the bare specification. There are two ways to obtain this kind of abstraction:

– A1. Autogenous: the name is an abstract way to name the input/output function.
This can be obtained by devising a proper “aggregate value” of the function, for
example by approximating it, or by taking an already at hand name for a well known
function, such as in the case of calling “addition” the function which adds number, or
as in the case of “absolute value”.

– A2. Contextual, or relational: this is a way of naming a function understood as in
point B by citing the role which it fulfills inside a larger context, a context which can
be implicit or explicit. In this case, the specification so understood is indeed an ab-
straction, but it is not an abstraction which picks out some feature of the specification
as function of point B: it is an abstraction which picks out a relational feature of its
implementation, that is the role that at least some of its implementations fulfill inside
a larger system into which they can be in certain circumstances inserted. This is not
an intrinsic feature of the input/output relation. For example, saying that something
is a heart is giving the specification of any system which fulfills the role of pumping
blood in some organism: this way of naming such a kind of system is an abstraction
picking up this relational role of the system.

4.1.5.2.3 Kind M: the modular kind

• M. modular specification. This type of specification is an abstraction in the form of a
modular aggregate representation of the class of its underlying implementations. it can be
of varying degree of abstraction, and, accordingly, is classified into two classes:

– M1. composite name: these specifications are modular abstractions, but their expres-
sion is synthetic enough to allow for their use as aggregate “names” of the classes of
their implementations. Examples: “search engine”, “merge sort”.

– M2. aggregate modular : these specifications are modular abstractions, more complex
and articulated than M1 class and for this reason they cannot be used as names. They
can be of any degree of abstraction. Typical examples are most of the intermediate
levels of hierarchical modular description of a system. This kind of specification can
show any degree of detail, often appearing more naturally as an implementation than a
specification: for example, a program written in a high-level language is a specification
in this sense, with respect to its machine-language implementation, but it is usually
seen already as an implementation of the more global specification of the program.

It is important to note that both M1 and M2 types can in general be seen as possible implemen-
tations of A1 or A2 specifications. Examples: “if negative, then change sign, if positive leave
unchanged” is an M2 specification which can be seen as an implementation of the “absolute
value” A1 specification. “search engine” is an example of a M1 specification which can be seen
as the implementation of an A2 specification. This shows that the A kind is the more abstract
kind of specification.

4.1. Computer programming 147

Another point is that both M1 and M2 kinds can be used as substitute specifications of B
specifications. This happens in the case of analytic formulas standing for mathematical functions:
for example y = 3x+2. In this case, an M2 specification is used in place of the B equivalent (which
cannot be given in a finite form). This is a very important case, which shows the fruitfulness of
a modular approach to the expression of specifications, a fruitfulness which will be highlighted
in the rest of this chapter.

4.1.5.2.4 Kind C: the kind by convention

• C: conventional name: this type of specification acts as a “name” for the class of its imple-
mentations, but it is not an actual aggregate name for it, because it is not an abstraction
of the members of this class in any way, in the sense that it does not pick any feature
of its implementing systems. It can however in part act as a placeholder to be used in a
coarse-grained, apparently more abstract description of a system, even though is does not
possess any explanatory power, because, being simply an arbitrary linguistic expression
which gets associated to the class of its implementations by convention, it does not convey
informations on the features of its implementations. This use of conventional labels can be
recurred to in three different circumstances:

– C1. lazy attribution: a functional module has a perfectly comprehensible specification,
but this is a bit too “complicated” to be summarized in a word or two: the program-
mer or the observer renounces for lack of imagination to recur to an A1, A2 or M1
specification, and, for lack of a better way to name the function by abstraction, simply
attaches it a label whatsoever. Examples: “Firefox” and “Chrome” as names of web
browsers, or “Dolphin” as the name of a file manager.

– C2 forced attribution: the function performed by the module under consideration is
very complicated, and it is not plausible to expect that, with some effort, a sensible
way of summarizing it can be given. So, the observer is compelled to give the function
a purely conventional, concise name. Example: “Julia set”, a fractal named after its
discoverer, without any reference to features of the named function. The set appears
as too complicated to allow for its synthetic description or naming (see fig. 4.3).

– C3: pointless attribution: the attribution of an arbitrary label to a specification is
made for pointless reasons, on a voluntary base, even if a significant abstraction could
have been easily found. Example: “Google” as the name of a search engine. As noted
above with the example of Google, even such a silly use of a name could, for social
reasons, acquire with time a meaning which is in some way explicative of the function
which the implementations of such a specification realize.

4.1.6 A common definition of computer program
The considerations reported above are only a few possible examples taken from a spectrum of
diversified and contrasting theoretical positions which can be found in the literature of philosophy
of computing, about the nature of computer programs and program specifications.

However, it seems in general that a minimum consensual nucleus of the concept of computer
program comes to comprise the properties of list of instructions, programmability, function and
specification. I am going to adhere here to this general conception, by proposing to adopt this
basic definition:

148 Chapter 4. Modularity of computer programs

Figure 4.3: a representation of the Julia set fractal.

a computer program is a modifiable list of instructions, to be executed by a given type of
computing machine, which performs a function described by its specification28.

4.2 Program modularity

4.2.1 Subroutines
Since the beginning of the ’60s, computer programmers started to realize that often, in large
enough programs, there are very similar subsequences of instructions which occur in different
parts of the program. This seems to constitute a waste of memory space and a waste of pro-
gramming time. A first solution was realized with the introduction of instructions which allow
for the definition of subroutines29, parts of the program which can be called from anywhere else
in the program: a call to a subroutine makes the control flow30 jump to the beginning of the
list of instructions constituting the subroutine; then, the subroutine gets executed, and when its

28I’m not going to start in this section a philosophical analysis of the notion of function. This issue will be
treated in section 9. Here, function can be understood both informally, as something the program is supposed to
do, and more formally as the specification of possible input/output couples.

29 I use here the word “subroutine” as a generic term to indicate what in many high-level languages can also
be called “procedure” of “function”.

30 See section 4.1.2.

4.2. Program modularity 149

execution terminates, the control flow of the program returns to the step immediately following
the call instruction. The subroutine can be called any number of times from any part of the
program31, so this constitutes a significant saving of memory and programming time, because it
avoids the need to repeat the writing of the same sequence of instructions in different parts of
the program. A subroutine can be intuitively seen as a kind of “module”, which constitutes a
subprogram implementing a specific functionality independently from the rest of the main pro-
gram. In section 2, I touched upon the concept of modularity in general, trying to make explicit
the properties of what can or can not constitute a module: it can be immediately recognized
that, at least for its being a substantially independent section of code which can be re-used
in different parts of the program, a subroutine comes to constitute a module according to the
general definition given in section 2.1.

4.2.2 Structured programming
Starting in the late sixties, awareness of a potential problem with the high level programming
languages used at the time began to become widespread among computer programmers. Con-
ditional and unconditional jumps in the program sequence risk to make complex programs an
intricate web of references to other, often distant, parts of the program (a form of so-called
“spaghetti code”, in hacker terminology). This has the consequence of making the process of
understanding a program, of discovering errors in it (the so-called “bugs”), modifying the pro-
gram to bring about improvements or extensions, and in general maintaining the program, a very
difficult task: the spread of crisscross references from various parts of the program to other ones
entails that an alteration of one part of the program often requires an alteration of one or more
other parts. The same difficulties arise with comprehension of the program’s structure, and with
developing of complex programs of this kind when they are not written by a single programmer.

A famous 1968 letter from Edsger Dijkstra to Communications of the ACM 32 is considered the
official beginning of the structured programming paradigm, a programming style which stands
in opposition to the style described above, dominant till then, a style criticized for making
indiscriminate use of jumps. Dijkstra states that the use of the GOTO statement (the instruction
which usually stands for a jump in high-level programs) is harmful, and that programmers should
structure their programs in another way. Even the extensive use of subroutines in low-level
programming would probably not free the programmer from the need of resorting to jumps: the
only way to execute a cycle in most machine codes was by the use of a conditional jump based on
the value of a register interpreted as a counter.33 High-level languages, however, usually possess
certain constructs, such as the so-called while loop34 that do not require, when programming in
the high-level language, to recur explicitly to GOTO jumps in order to program a loop (albeit
such a high-level construct when interpreted or compiled gets actually translated into a machine
code loop making use of jumps). The point raised by Dijkstra was that at the time, even with
the expanding use of high-level languages which had already started in the ’60s, the problem of
GOTO was still affecting large-scale programs written in such languages, because, for reasons
tied to acquired bad habits, programmers continued to make extensive use of that statement.
Structured programming instead requires that the programmer makes exclusive use of the high-
level looping statements for the required control flow, as well as extensive use of subroutines
whenever possible. This way, any kind of program can be written without recurring to GOTO

31A subroutine can even be called from inside itself. This constitutes an example of the so-called recursive
programming style.

32 Dijkstra (1968).
33 See the low-level example program in section 4.1.2.
34 See section 4.1.4.2.

150 Chapter 4. Modularity of computer programs

statements. That the approach proposed by Dijkstra can be universally applied, was guaranteed
on the basis of the Böhm-Jacopini theorem, proved in 196635, which states that any flowchart,
that is a graph representing the control flow of a program, is equivalent to another flowchart
constructed by making use only of conditional statements, subroutines calls and loop structures:
namely, the program ends up being made of sequences of non-control instructions, conditional
statements (the so-called if-then constructs), iterations of blocks of instructions by means of for
or while loops, subroutine definitions and calls to subroutines.

Such structured programs show a kind of modular structure due to the separability of blocks of
the program performing different functions: the avoidance of the GOTO statement guarantees
that there are no “links” inextricably tying together distant parts of the program, a circum-
stance which, if present, would not allow for this separation of the program code into partially
independent blocks.

4.2.3 Object-oriented programming
In the structured programming sytle, the program’s structure can be virtually separated into
blocks, and this constitutes a form of program modularity. But each block can still manipulate
variables recurring in other parts of the program, and so the avoidance of GOTO statements does
not guarantee the complete functional separability of blocks of instructions. Program modularity
has continued to improve in different ways in the late ’70s and in the ’80s, with the advent of the
object oriented paradigm. Object oriented programming prescribes to subdivide the program in
a series of modules (objects), each of which encapsulates (the data encapsulation principle) the
variables which it makes internal use of, and hides (the information hiding principle) those same
variables from influences coming from parts of the program external to the object36. This way,
the autonomy of modules increases, as well as the integration between their internal constituent.
This is the realization of what Dijkstra (1982) calls a “separation of concerns”, a circumstance
which renders the program more easily analyzable and modifiable.

It is typical of a software object to implement information hiding by denying direct manipulation
and access of its internal variables to parts of the program external to the object: an external part
of the program can read and set values of these variables only by calling specific subroutines of the
object, which are exposed to “public” use: calling one of the publicly exposed subroutines of an
object constitutes the way to provide inputs to the object, and in turn the called subroutine of the
object provides, after having completed its execution, an output to the part of the program which
had called it. We can then view an object as a “black box” with an input channel and an output
channel, where what stands between the inputs and the outputs (that is, the internal parts of the
box) is not directly linked to other parts of the program: this way, an object can be considered a
separate module, linked to other modules only by its input and output connections. This can be
viewed as realizing the property of the general conception of modularity (as expounded in section
2.1), which consists in considering inter-modules ties as basically weaker than links between the
modules’ internal parts: in most program modules performing interesting computations, it is
arguable that the number of internal interconnections (in the form of instructions accessing
variables in order to read, set, and manipulate the variable’s values) is higher than the number
of input lines. Taking as metric the metric of density of interconnections, the program module
would thus show weaker connectivity toward the external context. Even when this condition
does not hold, it is arguable that a minimally interesting processing of the input on the part of a
module would take a certain amount of time steps, during which the state of the input and output

35 Böhm & Jacopini (1966).
36 Information hiding was first proposed in a seminal work by David Lorge Parnas (Parnas 1972).

4.3. Reverse Engineering and modularity detection in computer programs 151

lines, which are not involved in the internal computation, remains stable. Only when the module
has finished its computation, it produces a new output and returns control to other parts of the
program: during the execution of the module’s internal procedure the state of the rest of the
system remains stable. This makes the case that, at least for a minimally complex computation
performed by the module, on average its input and output variables37 change less frequently
than the module’s internal states change. If we take as a metric of strength of connection the
frequency of information exchange, then the input and output external connections of the module
end up being, on average, more weak than its internal ones. Another way to put it, is that, at
least in classical computer architectures like the von Neumann model38, where computation is
performed by the sequential execution of computing steps, it is most likely that the subroutine
calls, which represent inter-module communication, occur during the program execution definitely
less frequently than the execution of sequences of other instructions, which represent intra-module
interactions between instructions and variables. This can be easily seen as the manifestation, as
also highlighted in sections 2.2.4 and 6.7, of the timescale decoupling between intra-module and
intermodule dynamics, which is a typical signature of modular systems.

This way, the general definition of module is clearly fulfilled by software objects. To assess
software modularity, we could also take into consideration the relation that associates instructions
with the variables they manipulate: in a modular program constructed in accordance to the
object oriented paradigm, variables employed by a module are accessed exclusively from inside
that module, so instructions manipulating the same variables are certainly instructions internal
to the same module. This is the metric which is used in program slicing, a technique for detection
of program modularity, which is described in section 4.3.4.

4.2.4 Program modularity, coupling and cohesion
It seems that in general an increase of modularity means a decrease of the structural dependencies
between modules, together with an increase of internal module cohesion. In the information
technology jargon, these two properties are described as coupling and cohesion respectively, two
terms introduced in the seminal book Yourdon & Constantine (1979)39. Thus, an increase in
modularity means a decrease in coupling together with a simultaneous increase in cohesion.
According to the modular programming paradigm, high cohesion and low coupling is precisely
what is sought for when designing program architectures. All in all, this conception of modularity
employed in software engineering appears quite close to the more general view of the notion
developed by Herbert Simon of modularity as near-decomposability: near decomposability means
that a system is, up to some approximation, decomposable (low-coupling) into highly cohesive
structures.

4.3 Reverse Engineering and modularity detection in computer
programs

As we have seen in section 4.2, usually computer programs are by design structured in a modular
fashion. There are, however, some techniques which aim to detect structural and functional mod-
ularity of already written computer programs, without taking into consideration any information
about the modularity which the programmers could have given to the program structure during
development. Quite often, the reason for this is that such informations have been lost, or have

37 That is, the module’s variables which are accessible via its publicly exposed subroutines.
38 See 4.1.2.
39 See also Laplante (2007).

152 Chapter 4. Modularity of computer programs

been hidden from public knowledge: the examiner is confronted with a working but mysterious
program, possibly not equipped with readable source code but provided only in the machine
code form, and has to infer its internal functioning and, in some cases, even its more general
specification40. There is an established discipline which deals with such daunting tasks: reverse
engineering.

Reverse engineering can in general be seen as the practice of taking an already built technological
device of some sort, and of applying to it a series of analytical techniques aimed at understanding
the nature and functioning of the device, usually in order to reproduce it.

As of today, an organic corpus of literature on the subject in general does not seem to exist. This
is due to various factors, not the least of which is the fact that reverse engineering techniques have
traditionally been employed in military applications, and as such have been often surrounded
by secrecy. Nevertheless, in computer science the subject of reverse engineering of software is
more developed, stemming naturally as an evolution of the problem of debugging, the practice of
finding errors (bugs) in a program, a task which can be seen itself as a form of reverse-engineering.

There has however been some attempt to define the subject matter of reverse engineering in
general: Rekoff (1985), in the context of reverse-engineering of computer hardware, gives the
following definition:

Reverse engineering is defined here as the act of creating a set of specifications for a piece
of hardware by someone other than the original designers, primarily based upon analyzing
and dimensioning a specimen or collection of specimens41.

Here, specification is to be understood as a description of what the piece of hardware does. But,
the process can be also applied to software. In this case the goal is, as Galton (1993) puts it, “to
give an exhaustive characterization of the input/output relation defined by the program”42.

A process of reverse-engineering turns out, unsurprisingly, being the exact reverse of the process
of programming (which is “forward” engineering): while in computer programming one tries to
correctly implement an already given specification, which is usually a very high-level description
of what the program is supposed to do43, or, less often, a formal description of the input/output
function that the program will have to produce44, in reverse engineering the inverse route is
followed: based on the static observation of the code of a program, or on the behavior of the
program consequent to certain inputs applied to it, an attempt is done to infer the specification
that the program implements. But, as explained in section 4.1.5, as noted by Galton, the status
of specification or implementation is relative: a given description can be seen as a specification,
which has to be implemented, but the implementation itself can be seen as a specification with
respect to a possible even more detailed description which constitutes its implementation. The
relation specification/implementation turns then out being a relation between levels of descrip-
tion45, and as such is relative to the choice of those levels. It is then conceivable that reverse

40 That is, even the purpose of the program must at times be inferred, in the form of an at least minimally
useful abstract or partial specification of its input-output function.

41 p. 244.
42 p. 115.
43 As more thoroughly explained in in section 4.1.5.
44 It can be sensibly objected that a full I/O specification is almost never supplied to the programmer, in the

real-world of software development: often, specifications given to the developer by their directors are so vague
that it is difficult to test the resulting program’s compliance with them. I am treating here idealized cases.

45 A more rigorous definition of what I call here “levels of description” will be attempted in section 6.6.

4.3. Reverse Engineering and modularity detection in computer programs 153

engineering can be facilitated by performing it first in a bottom-up direction, across progres-
sively ascending levels of abstraction, in a reverse fashion with respect to functional analysis or
mechanistic functional decomposition46. This way, one of the potential hierarchical structures
describing the program is gradually found.

With regard to reverse engineering of software, Chikofsky & Cross (1990) states:

Reverse engineering is the process of analyzing a subject system to

• identify the system’s components and their interrelationships and
• create representations of the system in another form or at a higher level of abstrac-

tion.47

According to Beck & Eichmann (1993), reverse engineering of software subdivides in:

1. Algorithm recognition: extraction of behavior from the implementation.
2. Design recognition: extraction from the algorithm of the rationale for behavior.

The first point consists in inferring from the program low-level implementation (be it in the form
of the source code, the machine language code, or its dynamical behavior) the algorithm, which
is a representation of what the program does, described at a first more abstract form than the
actual machine code. The second point infers from the algorithm its specification, that is the
actual global input/output function of the program.

As expected, this description of reverse engineering suggests that this is a practice similar in
some way to the search of a hierarchical description of a system, a form of hierarchical modularity
detection: what is sought for is to find progressively higher levels of description of the program.
One could ask why the process of reverse-engineering should follow only this bottom-up direction.
In actuality, reverse engineering can also be applied to systems of which the global specification
is already known, with the purpose of understanding how they work, in order to modify them:
what is sought for in this case of reverse-engineering is in other words an explanation of the
system48, and explanation is, incidentally, what is sought for in science as well. In that case,
the task to carry out is a progressive decomposition of the global function, which is already
known, into a set of subfunctions which, in their coordinated interactions, produce that global
function. This top-down route is precisely what a Cummins-style functional explanation, a type
of explanation which will be expounded in section 9, amounts to: Robert Cummins’ functional
analysis is a way to explain how the system’s global specification (which explains what the system
does) is fulfilled in terms of the organized composition of a number of “less problematic” (as it
were) specifications (functions), which are the specifications of its submodules. When, however,
as in the views on reverse engineering exposed above, the global specification of the system is
not known in advance, then reverse engineering must proceed in a bottom-up fashion in order
to obtain that specification, that is a description of what the system globally does. The global
specification can be given at various, chosen levels of abstraction and degrees of approximation,
as already discussed in section 4.1.5.1, but in its least approximate form it amounts to the full
specification of the input-output function of the program. For a program with an unbounded

46 For these two kinds of analysis employed in mechanistic and functional explanation, see sections 10 and 9.
47 p. 15.
48 This would be a form of functional, and specifically computational explanation. These kinds of explanations

are treated in sections 9.2 and section 14.5.1.

154 Chapter 4. Modularity of computer programs

input size, and for which therefore the exhaustive enumeration of all the input/output couples
constituting this specification is in principle impossible, the problem of inferring its specification
is in its essence the problem of induction, and this summons a constellation of related thorny
problems, the most prominent of which are the “kripkenstein” rule-following paradox introduced
in Kripke (1982) and the problem of the “grue” predicate proposed by Nelson Goodman. This
cluster of riddles could indeed raise a host of questions related to the subject matter of this
work, but discussing them in detail lies outside the limited scope of this treatise, so a thorough
discussion of the problem is left to a better occasion.

4.3.1 Reverse-engineering of program specifications in modular programs
When the observer lacks the overall specification of a given program, in order to obtain this
specification one could think that a direct bottom-up way could be attempted, a way which
works by trying to infer the specification directly from observation of the whole program code or
of the program’s behavior.

Let’s now evaluate this possibility. First, we could try to infer the program specification by
statically examining the program’s code structure, if it is available. For serial von-neumann-like
architectures, this listing is constituted by the source code of the program, possibly expressed in
assembly code. In the worst cases, the actual executable program code, in the form of machine
code, will always be available, and this should in general be easily convertible into assembly
code49. It must be highlighted that reverse engineering of a program’s specification based on the
analysis of its source or assembly code, the so-called static analysis, is hindered by the unsolvabil-
ity of the halting problem50: should it be always possible to infer, following some well-specified
method, the complete specification of any program, that is, its complete input/output mapping,
by just examining the program’s instructions listing, then we would be able to discriminate non-
halting machines from halting ones, because non-halting machines are the ones with an only
partial input/output function: a function whose value is not defined for certain input values (the
values for which the machine never halts, and for which, thus, it does not produce any output).
But, since isolating the set of non halting Turing machines by looking at their code (the machine
representation) has proved to be an impossible task, then in general reverse engineering based
exclusively on code examination is in principle bound to fail. In other words, it cannot exist
an algorithmic method which, applied to a given program whatsoever, guarantees to find its
complete specification by looking at its code, although of course, in many specific cases, with
ad-hoc methods, finding the specification should turn out to be feasible.

A potentially more promising way of trying to infer the program’s global specification is by
subjecting it to dynamic analysis, that is, the observation of the program’s behavior (its output),
as a function of the inputs supplied to it. But, even in this case, we already face a difficulty: given
that some programs certainly never halt when fed with specific inputs, because they enter infinite
loops, then how can the observer come to know that the observed program has not entered an
infinite loop? The possible circumstance that the program is not yielding any output after an

49 See section 4.1.4.1. In principle, static analysis could be based not only on assembly or high-level source
code of the program, but on the binary string constituting the machine-language executable representation of
the program. This is usually unnecessary, given that, based on the specification of the CPU architecture, (see
section 4.1.2) which usually is already known, an assembly listing of the program can be straightforwardly obtained
starting from the machine language executable. If not even the specification of the processor on which the program
is supposed to run is known, then static software reverse engineering is hopeless: a machine language executable
of the program cannot be given any semantics without knowing which computer architecture it is supposed to
run on. In these cases, a reverse engineering of the hardware must precede the software one.

50 See section 17.2.6.

4.3. Reverse Engineering and modularity detection in computer programs 155

inordinate amount of time since supplying it with a certain input, could mean that the program
has indeed entered an infinite loop, but it could very well mean that the computation the program
is performing on that input takes a due (even if inordinate) amount of time. We already know
that this doubt cannot be guaranteed to be dissolved in advance for any observed algorithm by
conducting a static code analysis, because of the undecidability of the halting problem. But, even
when observing a running program, how can the observer know if the program will ever come to
a halt, when limiting the observation only to the program’s inputs and outputs without looking
at the internals of the program? The only hope the observer has to solve this doubt is indeed
by means of observation of the values of the internal variables of the program and its internal
control flow in order to infer if the program’s internal state is progressing in a non-periodic way
toward a possible end, or if it is cycling indefinitely through a set of states. But, even in this case,
it would be practically impossible to assess the entering of a cyclic behavior by observation of the
program’s internal values, in case the period of the loop the program has entered is enormously
long. And this circumstance could not be excluded at all, given that the maximum period of a
looping program is proportional to the number of its possible internal states, which itself is an
exponential function of the number of internal variables employed in the program. Overall, the
one highlighted here is a drastic hindrance to the obtaining of a complete specification by only
looking at the program’s input/output behavior.

But, let’s say that we come to know in some way, possibly by observation of the program code’s
structure, that the specific program under observation is guaranteed to always halt, for any
input51. How could we in this case infer its specification, that is, its complete input/output
function? The simplest idea is again that of subjecting the program to all possible input values,
and of observing the corresponding outputs, in order to infer the complete input/output specifi-
cation. In this case, though, another difficulty must be faced, which is, in its essence, the same
difficulty of scientific induction: the set of all possible inputs can be infinite, or, if finite, this
set is often too vast to let us hope that every possible input gets supplied to the program in
order to allow for an inference of the complete input/output program specification: even in finite
input sets, the number of possible input combinations grows exponentially with the number of
variables constituting the input of the program. For example, if the input is constituted by a
binary representation, let’s say in the form of binary strings of a fixed length, it is a basic result
that the cardinality of the set of binary strings of n bits length is equal to 2n. Except with respect
to programs which can accept only a very limited string length in their input, exploration of the
entire input space is impossible, for it is a O(n2) problem, and thus an intractable one52

However, If a hierarchical, modular representation of the program could be devised by some
means, it would be possible to decompose the program in its modules, and test each module
separately to seek for the specification of only that module. This task would most likely turn
out being more feasible (by order of magnitudes) than that of submitting every possible input
to the whole program in order to directly infer the global specification, which is, as we have
seen, an intractable task. The reason for this simplification is quite obvious: it is known, by the

51 This is not an unreasonable expectation: in many cases examination of a program structure’s can allow for
the proof that the program ends for any input. This is not forbidden by the undecidability of the halting problem.
What Turing’s theorem proves is that it is impossible to expect to find a general method always able, in any case,
to came to the conclusion, by simply observing the code of a given program whatsoever, that the given program
will halt on any input. But, if we study a specific program, we could possibly be able in many cases to decide
if it will ever fail to halt: for a trivial example, if we observe that the program’s code does not comprise any
conditional or unconditional branch, then we can be sure that the program will always halt, because the only
circumstance in which a program does not halt, is when it enters a loop, and a loop needs a jump.

52 For example, exploring the space of 64-bit strings already requires the observation of 1, 84467440737e + 19
cases.

156 Chapter 4. Modularity of computer programs

definition of generic modularity53, that a module is identifiable by the very fact that it should be
only loosely or sparsely connected to the other modules. This translates in a probable reduction
in the number of possible inputs to the module, and a consequent easier exploration of that
module’s input space.

The fact that it has been possible to find the single specification of each module due to the
system’s decomposability, hopefully allows, if the specification of each module is not too compli-
cated, for a form of aggregation, as discussed in section 4.1.5.1. Let’s clarify this scenario. After
having tested a module, we have arrived at inferring its input/output specification. From that
moment on, the module can be treated as a black box whose input-output relation respects this
specification. If we are able to further abstract the module specification by “naming” it in a
succinct way along the lines already highlighted in section 4.1.5.1, giving the module a name
which is representative and explanatory of the function it performs (as for example when we say
that a module performs the “multiplication” operation), then each module’s specification can be
substituted by this more concise definition of what function the module performs. This concise
label which gets attached to a module constitutes in a way the “aggregate value” of the module:
it summarizes under a single description all the operations internal to the modules. If it is pos-
sible to find these kinds of descriptions for all or most modules of the program, then a global
specification of the whole system can be given in terms of a description (usually in the graphical
form of a flow chart) of the modular structure of the system as a directed network of connected
modules, where modules are seen as nodes labeled with their succinct “names” representing their
specification, and their input and output connections are the directed links between nodes. As
better explained in section 4.1.5.1, a module’s name is a form of aggregate representation of the
module’s input-output function, which synthetically represents in some abstract way the func-
tion that the module fulfills, and so the complete description of the modular structure comes to
represent in an aggregate way the overall global specification of the system, as a modular struc-
tural composition of the sub-specifications of each module. Of course, this reconstruction can be
applied in a hierarchical fashion, with multiple hierarchical levels, each of which is an aggregate
description of the underlying one, composed in a structured way by the set of subspecifications,
which are the specifications of each module of the underlying level. The relation between any
two levels is always that between a higher-level specification and a lower-level implementation
of it: any specification at a certain level is an abstraction, in the form of an aggregate modular
description, of the underlying description.

The interesting point of what described above is that the modular structure of the software has
allowed for a succinct and computationally treatable reconstruction of the global specification
of the program. This specification is given not in its explicit, extensional form, that is, the list
of all its possible input/output couples, but in the form of a hierarchical functional explanation.
We were dealing in this section with reverse-engineering of software, but this has given us the
occasion of describing a notion which is exactly similar to the notion of functional explanation
typical of certain scientific disciplines, a notion which will be better expounded in section 9.

It must be noted that the circumstances described above presuppose several conditions:

1. The program has a modular structure.
2. It must be possible to find its modular structure.
3. The single lowest-level modules must be simple enough to render the reverse-engineering

of their single specifications a feasible task.

53 See section 2.4.

4.3. Reverse Engineering and modularity detection in computer programs 157

Let’s analyze the above conditions in detail.

• Condition 1 is often fulfilled, by humanly-written programs, at least if the program
has been designed and developed in a systematic, well-planned way: first, as of today,
except in special cases, almost every programmer writes programs in high-level languages.
These are languages that impose a minimal modular structure, in the form of high-level
constructs acting on program blocks54 even if the program is not purposely written
in a modular fashion. This feature of high-level languages always ensures a minimum
level of modularity which is represented by the two-tier hierarchy of the classical dis-
tinction between low-level language (that is, machine language) and high-level language.
A more rich hierarchical structure is aquired by the program if it has been programmed
in a purposely modular way, especially making correct use of object-oriented languages.
It must be noted, however, that not all object-oriented languages inherently enforce
information hiding, and information hiding is the crucial feature which defines the modular
structure of a program: information hiding ensures that modules are only connected by
dedicated, sparse, ordered input-output channels, allowing to easily isolate each module,
both structurally and functionally, from the rest of the system. And, as highlighted in
section 2.1, isolation is one of the defining properties of modularity. Given that information
hiding is not in many cases automatically enforced by the programming language, the risk
is that in poorly maintained programs, especially after a long maintenance history, the
determination to enforce information hiding is gradually given up by the programmers,
ending up with programs constituted by heaps of cross-referenced, disorganized, entangled
code. In other words, encapsulation and information hiding is violated by the diffuse
access of variables originally internal to a module from outside the module. If this external
violation of the module boundaries becomes too widespread, the modular structure of the
program becomes difficult to detect.

• Condition 2 is that of the feasibility of the detection of the program’s modularity: even
if modularity is present overall, it could be difficult to detect it, and this for various rea-
sons. The first, which has been hinted at above, is that modularity can be not so clear-cut
in a given program: a modular structure must be significantly distinguishable from a ran-
domly connected one. This is easily understandable by analogy with network modularity55:
as we have seen in section 3.2.1.1, the amount of modularity of a network is measurable
by a quantity, the so-called Q, which measures in what degree the network’s modular
structure differentiates from the non-modular structure of a randomly connected network.
Another reason for which the modular structure of a program can end up being unidenti-
fiable, is that the program is too large, and so it is literally impossible to examine it in
its entirety in order to obtain a modular description of it, even by algorithmic methods.
As noted by Tzerpos & Holt (1998), certain algorithms for modularity detection in reverse
engineering run in O(n3), or O(n2), execution times which, although polynomial, could
render the analysis of programs constituted by millions of lines barely tractable, and ac-
tual cases of poorly maintained, ill conceived, tangled programs of this size can exist in the
industry in some cases. Of course, for such huge software systems, an idea of their modular
structure can be obtained by other means than algorithmic modularity detection, but if
their modular structure had degraded in time beyond a certain degree (which is not an

54 See section 4.1.4.2.
55 Actually, an abstraction of the modular structure of a program could be immediately represented by a

directed network, where nodes are the program’s modules and the edges are the input and output inter-module
links connecting them.

158 Chapter 4. Modularity of computer programs

unlikely condition for large software projects) their actual functional modularity could have
faded in such a way as to render the approximate modular description which the system
still allows an overly approximated explanation of the actual program.

• Condition 3 is in some sense the more crucial of the three: it is precisely the possibility that
modules have a more limited span of input combinations than the full program, and thus
that the reverse-engineering of the full input/output specification of each single module
turns out to be an inherently feasible task. This is the circumstance that enables us, once
a modular structure is found, to substitute the low-level original description of the program
with an aggregated high-level functional explanation: if condition 3 fails, that means that
it has been impossible to infer the input/output specification of each module, and thus
that it has been impossible to obtain, as explained in section 4.1.5.1, an appropriate “label”
representing in an aggregate way the function of the module, a label to be employed in the
high-level aggregate modular description of the overall system.
The fact that condition 3 holds is, in actuality, not guaranteed. It can happen, for example,
that the program is composed of many modules, but that each of them takes the full input
of the program in order to process it, each module in a peculiar way, in order to proceed
to a final combination of the results of these separate computations: in this case, the space
of the input configuration of a module has the same size of the space of possible input
configurations of the overall program. If a module has a too wide input channel as in this
case, it is advisable to proceed to a better analysis in order to see if the module itself
is in turn decomposable into smaller modules each of which, it can be hoped, will have
a smaller input channel. But, even in this second iteration, the result is not guaranteed.
In general, it seems that at least the smallest modules, the most low-level ones, must
possess a small set of possible input configurations in order to give us the chance to ex-
ploit the ease in inferring their specifications to the purpose of hierarchically explain the
program in an aggregated way. If this condition of ease in finding the specification of
the smaller modules holds, then it is feasible to produce the specifications of higher-level
super-modules composed of these elementary modules. Specification of the super-modules
would be produced not in the form of their extensional specifications expressed as lists of
input/output couples, but as functional explanations, often expressed as flowcharts. The
bottom-up reconstruction of a full hierarchical modular structure of the program can then
progressively proceed, until in the end the whole structure of the program is given as a
(possibly graphical) hierarchical representation of its functional modularity: this would
not amount to explicitly describing the overall program specification under the form of
its complete input/output mathematical function, but the modular hierarchical functional
representation would probably, on the contrary, constitute a better representation of the
overall specification of the program with respect to an extensional exhaustive listing of its
input/output complete relation, because, contrary to the extensional input/output repre-
sentation, this modular hierarchy gives important insights into how the global specification
is brought about by the coordinated functional interactions of the subsystems of the whole
program. The extensional specification would have only showed in a “brute” way what the
program does, and not much more. An example of hierarchical representation of a software
system is given in fig. 4.4.

4.3.1.1 Specification mining

I describe here another technique to dynamically infer the specification of a program by observa-
tion of a sample of the program’s execution traces, that is, dynamical records of the program’s

4.3. Reverse Engineering and modularity detection in computer programs 159

Figure 4.4: a quite high-level hierarchical representation of a software system: the
Linux graphics stack. (Image attributed to Shmuel Csaba Otto Traian, taken from
https://commons.wikimedia.org/wiki/File:Linux_Graphics_Stack_2013.svg)

executions. This method makes use of data mining techniques. Data mining is a subfield of ma-
chine learning, and consists in the practice of computationally searching for previously unknown
hidden regularities in big amounts of data.

A seminal work, Ammons, Bodík, & Larus (2002) uses machine learning to infer (this is a
form of inductive inference) a probabilistic finite automaton56 (or PFA) which constitutes the
specification. In a later simplification phase, the obtained PFA is scrutinized for edges of its graph
with a below-threshold probability, and such edges are pruned, in order to obtain a deterministic
FSA. This simplification phase is precisely a way of obtaining a modularization by ignoring weak
links in a nearly-decomposable system. This way, a more economic and abstract specification is
obtained.

Specification mining is affected by some serious problems.

First, the specification is produced by a FSA, so specifications realizable by Turing machine-level
algorithms are excluded by definition.

A second point is that it is possible that some algorithms for mining the specifications end up
being computationally expensive, or hard, because some of the tasks involved in the proposed
algorithm are in principle intractable (exponential time on the number of variables considered
in the execution traces), although it seems that the worst cases in which the algorithm takes too
much time are rare, according to Ammons et al. (2002).

The automaton produced by machine learning is moreover not exact, for it is a simplified, approx-
imate, modular form of the hypothetical exact one, so it can eventually, if applied to a non-linear

56 See section17.2.3 in the appendix.

160 Chapter 4. Modularity of computer programs

system, diverge from the program’s behavior, in the long run. Nevertheless, it is the simpli-
fied automaton which is more useful in a possible computational explanation, due to its simpler
structure and consequent high intelligibility. But this simplification of the automaton is possible
only when the specification specifies a computational task which is in principle describable in a
modular way, and it is not highly non linear.

All in all, the method proposed by Ammons et al. (2002) is interesting, given the computa-
tional cost of a full reverse engineering of a specification, but its many limitations make it seem
susceptible of sporadic applicability.

4.3.2 Program modularity favors program development

It appears that program modularity, especially when it is actively planned during development,
greatly favors the feasibility of reverse engineering of the program. Needless to say that program
modularity enhances the ease of development of programs as well: at least mentally, if not in
a written and possibly systematic way, the human programmer who is about to start writing
a program, or who is already in the midst of writing it, continually proceeds, by alternating
between bottom-up aggregation and top down decomposition, to produce schemata and diverse
representations of the program’s hierarchical structure, to mentally travel across the hierarchical
levels of the program and between program modules she is creating in order to constantly clarify
herself what she is about to produce, the relationship with the higher-level specifications and
with the lower-level implementations of the parts of the program on which she is working, how
to refine the modules, test their local functionality, and how to organize the structures at various
levels in order to proceed in the best way to the program construction, including how and when
to proceed to its restructuring, a practice which is sometimes needed.

In other words, the production of a functional hierarchical representation of the program is not
needed only by the reverse engineer who is seeking the best way to explain the functioning of
an initially unknown program, but it is also deeply needed by the creator of the program, who
continually explains to herself the structure and function of what she is creating, while in the very
act of creating it. This undeniable fact, that explanations are important not only a posteriori,
but also during the development process, has an analogy in science, where explanation is needed
not only to explain already happened phenomena, but also in research, during the making of a
scientific model. This circumstance will be better highlighted in section 6.9.

4.3.3 Inherently antimodular programs

If the program is not modularizable because one or more of the conditions 1-3 reported in
section 4.3.1 fails to hold, then we must face, in reverse engineering, the bleak outlook of having
to try to inductively reconstruct the global specification of the program in a direct bottom-
up way, a task which, as we have seen, is in most cases unfeasible. It is true that there are
techniques of machine learning which allow for the probable inference of an approximate version
of the program specification on the basis of a number of observations which is only a polynomial
function (not an exponential one) of the possible input size, like the Probably Approximately
Correct (PAC) learning framework devised by Leslie Valiant. But this method is generally
capable of inferring only quite simple specifications, and cannot work for reverse engineering of
programs implementing complex algorithms57.

57 For PAC learning, see Valiant (2013). I am not going to treat the complex and multifaceted subject of
machine learning and the limitations of its methods in this work.

4.3. Reverse Engineering and modularity detection in computer programs 161

So, inability of describing the modular structure of a program severely hinders the discovery
of its specification. As explained above, reasons for this inability are multiple. As we have
seen, programs written in a high-level language are inherently endowed with a limited form
of modularity, the modularity imposed by the structure of the high-level language. But, can
a program be completely devoid of significant modularity at a higher-level than that? Can a
program be inherently antimodular?58 Of course, it is perfectly possible to purposely produce
contrived examples of programs which, being completely antimodular, implement nevertheless
sensible specifications. There is even a form of diversion in the hacker community, the so-called
art of obfuscated programming which consists precisely in deliberately devising sensible programs
which are very hard to reverse engineer, or, in other words, which are very difficult to understand,
in absence of explanations on the part of the creator of the program59: in most cases, obfuscation
techniques produce inherently antimodular programs, where many parts of the program are
reciprocally cross-accessed by other parts. In these cases, condition 1 in the list of section 4.3.1
gets negated.

But, apart from contrived examples, can a sensible program be completely devoid of modularity?
There are certainly programs which, though written in an apparently linear and ordered way, are
not easily decomposable into modules. The main reason can be that a program of this kind is too
short, when expressed in a preferred programming language, to allow for a further partitioning
of its few instructions into subgroups with a functional autonomous significance, that is, into
modules. In these cases, though, one could suspect that the conciseness of the program could
allow for an easy reconstruction of its specification by observation of its code: after all, a short
program should also result simple to understand in its behavior. Sadly, this is not always the
case: there are programs which are short, not easily modularizable, and with a very complicated
behavior. In these cases, inference of their specification is quite hard to be obtained without
exhaustively producing all of their input/output couples. But this is unfeasible, as we have
seen. For an example of such a kind of program, consider the following listing (written in a
“pseudocode”):

while length of string > 1:
begin loop

print string
if string[1] is "a" then string = string[2:] + "bc"
if string[1] is "b" then string = string[2:] + "a"
if string[1] is "c" then string = string[2:] + "aaa"

end loop

The above code60 takes as input a string s composed of “a”, “b”, or “c” characters, and outputs
sequences of strings such as the one showed in fig. 4.5, which have an apparently unpredictable
behavior:

58 I introduce here informally the term “antimodular”, but I will more explicitly propose and advocate the
introduction of antimodularity in section 13, as a term standing for a complex notion consisting in general in
failure of the detection of modularity in complex systems. This is one of the main notions which I want to put
forth in this work.

59 Other than recreational use, obfuscated programming can also have commercial application, aimed to hinder
possible attemps to reverse-engineer a commercial program. There are also algorithms for producing forms of
obfuscated code.

60 In this notation, string[n] stands for the n-th character in the string, starting from the left, and string[n:]
stands for the string, minus its n leftmost characters. The statements begin loop and end loop are the delimiters
of the interposed block of code, which gets repeatedly executed while the condition above it holds, that is, while
the length of the string is greater than one character. The + sign concatenates two strings.

162 Chapter 4. Modularity of computer programs

Figure 4.5: an example of the output of a string-manipulation program corresponding to the Collatz conjecture.

Almost certainly, the above program cannot be rephrased in a meaningful “aggregate” way,
because it is evidently too short to allow for a sensible functional decomposition which differs
substantially from the natural one, that is, the modular description already provided by its being
expressed in a high-level language, a language which is already a form of “aggregate” description
with respect to machine language61. We will have then, in order to describe what the program
does, to try to infer its specification, that is, precisely to try to understand what the program does
for any input it receives. But the brevity of the program in this case does not help: the length
of its input is in principle unbounded, because it is constituted of strings of any possible length.
So, even an exhaustive enumeration of all the possible input/output couples is precluded, and we
will have to “guess” its specification in other, finite ways. Sadly, though, this particular program
has been proved equivalent to a mathematical procedure whose general outcome is the object of
the Collatz conjecture, an unproved conjecture in number theory, which has resisted proof till
now, and could even end up being undecidable (not provable nor disprovable inside standard
arithmetic). Finding the complete specification of this program would be equivalent to solving
the conjecture, so it is not likely that we could succeed. Even understanding in some sufficiently
complete way the specification, that is, what the program does, would possibly amount to gaining
some insight toward a proof of the conjecture to which it is connected, and, given that this
conjecture has resisted till now any attempt to prove it, the eventuality of understanding this
program seems unlikely.

It seems, then, that reverse-engineering can be severely hindered by the absence of modularity
in programs.

61 See section 4.1.4.2 for a clarification.

4.3. Reverse Engineering and modularity detection in computer programs 163

4.3.4 Modularization of computer programs by program slicing
As we have seen, modularity is typically imposed on the program structure by the programmer
during development, by following certain guidelines of supposedly good program design. I will
use here the term modularization to refer to the reverse-engineering operation of subdividing the
code of an already written program into a set of more or less independent sequences of code
statements. Clearly, a program whose code has been structured in modules during programming
is afterwards naturally modularizable by subdividing it in the set of its modules. But by making
use of some techniques, often even of a program which has not been already explicitly structured
into a modular form by its programmers can be attempted a modularization into more or less
independent functional modules.

There is an enormous literature on detection of modularity in computer programs, and here I
will only explain, as an example, a single technique: the method of program slicing.

In a couple of seminal works, Weiser (1981) and Weiser (1982)62, the author observed program-
mers while debugging unknown programs, and noticed that they routinely subdivide programs
under examination into pieces which do not represent contiguous pieces of code (as usually oc-
curs while programming, when applying modularity often means structuring contiguous code in
modules), but which represent the data flow: these non contiguous pieces of code are the parts of
the code that influence the same particular set of variables. Weiser calls these parts of program
program slices. In his 1981 paper, Weiser defines program slicing as “a decomposition [of the
program] based on data flow and control flow analysis”63, as opposed to traditional program
decomposition into procedures and abstract types. This method allows, by examination of the
source code, for the detection of parts of code, the program slices, each of which amounts to a
module: each slice is identified by a position in the program code listing, and by a certain set
of variables. A given slice contains code which makes use of and influences only the specified
variables. And, no other parts of code outside a given slice modifies or makes use of the variables
pertaining to that slice. This condition coincides with what is required for a module according to
certain conceptions of program modularity, such as object-oriented programming, as highlighted
in section 4.2.3.

In program slicing, basically the code listing of the whole program is “sliced” into a set of non-
overlapping sequences of code instructions, which operate on different sets of correspondingly
non-overlapping variables. This, according to a general definition stemming from the original
Herbert Simon’s intuition about decomposability64, constitutes precisely a form of modularity:
all the statements in the code of a given slide are more closely related to one another (by virtue
of focusing on the same variables) than how any of them is related with any other statement in
the code outside the slice. This condition is perfectly compatible with the general definition of
modularity given in section 2.1.

62The second paper actually predates the first.
63 Weiser (1981), p.352.
64See section 2.2.3.

Chapter 5

Modularity in discrete dynamical
systems

Simply stated, a dynamical system is a system whose state changes in time according to a certain
update rule.

We have already described a specific form of modularity of dynamical systems, aggregability,
in section 2.2.1. Aggregability holds for continuous and discrete dynamical systems, and it
is a form of modularity of the update rule, as will be also clarified in section 6.5. I refer to
those sections for a deeper analysis of aggregability in dynamical systems. In this section I am
concerned with different forms of modularity which can affect dynamical systems, and specifically
discrete dynamical systems: as already stated, this is the class of dynamical systems, taken as
paradigmatic, which I will mainly deal with in this work.

Discrete dynamical systems can also show forms of dynamical modularity different from aggre-
gation, even in the absence of aggregability. I would like to take here in consideration a form of
process modularity, that is, modularity manifesting as the presence of portions of the space-time
evolution of the dynamical system which show some kind of persistent identity and independence
from other portions of the same configuration, and which can therefore be considered modules.
As we will see, this form of modularity can be used to implement a high-level computational
capacity in certain dynamical systems.

In what follows, a discussion on modularity in discrete dynamical systems will be preceded by
some introductory sections on generic discrete dynamical systems and on a subclass of them,
cellular automata.

5.1 Discrete Dynamical Systems

I consider here discrete dynamical systems, or DDSs, that is, dynamical systems in which both
time and the possible states of the system are to be considered discrete. The defining character-
istic of a DDS is simply that it possesses some kind of global state (which can be atomic or a
configuration of atomic states), a state that can change in time at each time step (or timestep)
according to a deterministic update rule, that states which state must follow the current state at
the next timestep.

DDSs can assume many forms: the most obvious types of DDS are the classical computational
architectures, like the Turing machine or the von Neumann architecture, on which common

165

166 Chapter 5. Modularity in discrete dynamical systems

computers are based. These computing architectures are mainly serial in their functioning, but
there is an unbounded variety of possible DDSs, many of them with a much more parallel or
distributed structure: the defining characteristic of a DDS is simply that it possesses some kind
of global state, that can change in time at each time step.

5.1.1 Modular/digital and DDSs
Discrete dynamical systems can show different forms of modularity, but the basic one stems from
their being discrete, or digital systems: it is, I think, arguable that being digital is a form of
modularity.

The notion of digital, despite being apparently clear, can be deemed to be in need of a definition
anyway. We could start with a definition by John Haugeland:

A digital system is a set of positive and reliable techniques (methods, devices) for producing
and reidentifying tokens, or configurations of tokens, from some prespecified set of types.1

It stems from this definition that digital systems deal with distinct, discrete elements (the tokens)
which are endowed with the ability to stably maintain their identity in time, in order to allow
their possible re-identification by means of a “positive” and “reliable” set of techniques. These
last qualifications, as Haugeland highlights, mean that the method for production and reading
of these tokens is a method which “can succeed absolutely, totally, and without qualification”2.
This makes such kind of tokens immediately qualify as modules, at least according to the defini-
tion of module proposed in section 2.1, because tokens of this kind turn out to be well delimited,
independent, and robust entities, where robustness is what enables them to maintain their iden-
tity without risk of weakening in time, and this is the feature that allows for their positive and
reliable re-identification: re-identification implies that some amount of time has passed since a
first identification of the token, and the fact that reidentification can be positive and reliable
entails that the token has not changed overly during this time lapse. Thus, according to the
above definition, digital systems are modular systems.

In addition, it appears from the above definition that a digital system is not only a set of tokens,
but some sort of machine which produces, reidentifies, and that presumably, albeit not explicitly
stated, destroys configurations of tokens. We could add another condition, not explicitly stated
in Haugeland’s definition, which aims to be more general, that is, the condition that the machine
manipulating tokens acts not in a continuous manner, but only in discrete successive steps:
this way, the “machine” constituting a digital system, albeit physically realizable, corresponds
obviously to the implementation of a computational abstract machine, a concept which is indeed
at the basis of the notion of digital computation3. These machines are the object of computer
science, and are kinds of discrete dynamical systems.

In other words, explicitly extended this way with the condition of discrete time, the above
definition of digital system becomes the definition of a DDS: if we see a configuration of tokens
as the current global state of a system, and destroy that configuration to substitute it with
another, different one, we can say that the system has changed of state. If this happens only at
discrete timesteps, and according to some rule, then we have realized a DDS. And, given that,

1 Haugeland (1989), p. 53.
2 ibid..
3 A basic exposition of the theory of digital computation is the Appendix, section 17.

5.1. Discrete Dynamical Systems 167

as argued above, digital systems are modular systems, a DDS is a modular discrete dynamical
system.

This kind of “digital” modularity is common to all DDSs, and it is not particularly interesting. It
is the form of modularity pertaining to the DDS’s preferred description, which is the most natural
description of a system, a concept which I touched upon in section 1.1.1 of the Introduction, and
will be better clarified in section 6.6.

5.1.2 A general definition of DDS
We could reformulate as below all the above considerations in a series of basic definitions of
notions pertaining to discrete dynamical systems4.

• An alphabet is a finite set of symbols. It is beyond the scope of this work to analyze in
detail the notion of symbol. Suffice to say here that a symbol is a type, constituted by
token symbols which can be considered belonging to the same type according to some
easily applicable criterion. Each token symbol is a particular finite configuration of some
matter which happens to be easily recognized and produced, and which tends to remain
unchanged in time, if not influenced by external forces.

• A state is the particular condition, constituted by a certain configuration of token symbols,
in which a DDS is in, at any given moment, and that can change at the next timestep.

• An update rule (or simply a rule, or dynamics) is a function from states to states: it
determines, based on the system’s current state, which state it must change into, at the
next timestep.

• A discrete dynamical system is a system which, at any given time, is in a certain state. Its
state changes at each timestep according to an update rule.

In more formal terms:

a DDS is a system which is, at any given time t, in a certain state or configuration c(t), that is
a certain assignment of values (the instantiation of token symbols) to the elements of a set v of
variables:

v = {x1, ...xn}

Given a configuration c(t) in which the system happens to be at time t, that is, the values at
time t of the elements of the set v, the next configuration c(t+1) in which the system will be at
the next timestep (that is, the configuration of the system at time t+ 1) is a certain function D
(the update rule, or dynamics) of the configuration at time t:

c(t+1) = D(c(t))

Since c is a set of values of the variables x1, ...xn, we could write
4 Equivalent definitions are reported also in section 17.1 of the Appendix, which treats computational ma-

chines.

168 Chapter 5. Modularity in discrete dynamical systems

c(t) = {x1(t), ...xn(t)}

where xi(k) is the value of variable xi at time k . Substituting the values of the variables at time
t+ 1 to c(t+1), we get

{x1(t+1), ...xn(t+1)} = D(x1(t), ...xn(t))

5.2 Cellular automata

Cellular automata (CAs henceforth) are a class of discrete dynamical systems which share cer-
tain common characteristics. They are widely studied for their structural simplicity associated
with the surprising variety and complexity of their dynamical behavior. There is an enormous
literature on cellular automata, which highlights their properties under different standpoints.
The two main approaches consist in considering CAs as digital systems, making use of computer
science results to study their computational features, or in considering them as dynamical sys-
tems, resorting to the mathematical tools provided by chaos theory, a theory which studies the
dynamical behavior of discrete and continuous non-linear systems.

It is impossible here to expound the subject of cellular automata in all its facets, so I will limit
the following exposition to a handful of basic properties of CAs which will be of use in the rest
of this work5.

A cellular automaton is a DDS constituted by an array, finite or infinite, of elements, its cells.
The array can be one-dimensional, representable as a row of adjacent cells, or can have any higher-
order dimensionality, and in this case it can be represented as a grid of cells. Most studied CAs
are 1-D or 2-D.

Each cell of the array can be, at any given time, in a possible state (usually called a color),
constituted by a symbol taken from a finite alphabet. The overall state of a set of cells at a given
timestep is constituted by the specific configuration of all the single states of each cell in the set,
and as such is called a configuration.

The update rule of a CA is constituted by the repeated application, for each cell, of a local rule
(the CA rule), which determines the state that the cell will assume at the next timestep (the
cell’s next state) on the basis of the state of all the cells included in a finite neighborhood of the
cell under consideration.

A neighborhood of a given cell is a finite set of cells which are placed at fixed distances from
the reference cell, usually including this cell as well. A neighborhood is characterized by its

5 Cellular automata are, from a theoretical point of view, potentially unbounded in the size of their internal
configurations, but their physical implementations (or simulations on physical conventional computers) are of
course finite in size. While theoretical finite models of cellular automata have slightly different properties than
those of potentially infinite ones, I will not mention these differences in what follows. The situation is similar to
that of most treatises on abstract computational machines, like the Turing machine: while Turing machines have
different properties than the linear bounded automata, which are their finite counterparts, these differences are
usually neglected in introductory texts. In general, where for potentially infinite machines there is uncomputability,
for their finite counterparts there is only computational intractability (this does not always hold, anyway: there
are properties of finite machines which are uncomputable as well).

5.2. Cellular automata 169

radius, that is, the maximum distance from the reference cell at which a cell belonging to the
neighborhood can be placed. Fig. 5.1 depicts a neighborhood of radius 1 in a 1-D cellular
automaton. A typical neighborhood for 2-dimensional CAs is the so-called Moore neighborhood,
represented in fig. 5.2, which has radius 1 and comprises all the adjacent cells of the reference
cell.

Figure 5.1: part of a temporal evolution of a 1-D cellular automaton. Time flows from top to bottom. Each row
of cells represents the state of the automaton at a given timestep, with cells in different states represented by
their being white or colored. The blue rectangle highlights the neighborhood, which in this case has radius 1, of
the cell surrounded by the red frame. The green square highlights the same central cell at the following timestep:
the value of the cell at this step is determined only by the previous values of the cells of its neighborhood, that
is by the values of the cells in the blue rectangle.

The CA rule is a function which maps the configuration of all the cells in the neighborhood of
a given cell to the next state of that cell. Given that a neighborhood is an area of finite radius
which surrounds the cell under consideration, the CA rule is a local rule, which considers only
the state of a limited set of cells of the CA around the reference cell, ignoring distant cells, and it
acts on the value of the reference cell only. This contrasts with the generic conception of update
rule for DDSs stated above6, where the update rule maps global states of the DDS to other
global states. Of course, being a DDS, a CA has itself a global update rule, which is constituted
by the synchronous application of the CA rule to all the cells of the Ca’s array. It is by this
synchronous composition of local rules that all the cells in the CA simultaneously change state
at each timestep, and thus that the global state of the CA changes.

A CA is completely determined by its CA-rule. The rule is a function from configurations of
the neighborood to cell values. The complexity of the rule is thus dependent on the extension of

6 Section 5.1.2.

170 Chapter 5. Modularity in discrete dynamical systems

Figure 5.2: the Moore neighborhood for 2-D cellular automata. The reference cell is at the center, colored in blue.

the neighborhood, other than on the number of colors: the rule must map each of the possible
configurations of the neighborhood to different values of the reference cell. The number of
these configuration-value couples which are necessary for the specification of the rule grows
exponentially with the length of the radius, so the update rule can result highly complex even for
simple CAs7, and CAs with radius larger than a certain size can be computationally intractable
because of the space necessary to hold the rule’s data.

In the case of two-color CAs, a rule could in principle be represented as a logical operation which
combines variables, representing the cells of the neighborhood, in order to yield the next value
of the reference cell. This operation, represented as a logical expression, would certainly be a
more synthetic representation of the rule than its extensional representation in the form of an
explicit list of all its input-output couples. The problem here lies in the fact that, if the logical
expression representing a rule is not already known, it is not easy to obtain such an expression
starting form the extensional representation of the rule: this extensional representation can be
seen as a truth table, and the best known algorithms for converting a truth-table into an analytic
expression, such as the Quine–McCluskey method, work in exponential time depending on the
number of bits in their input (in this case on the number of cells in the neighborhood), so this
conversion is probably computationally unfeasible in CAs with large enough neighborhoods.

The space of all the possible CA rules of a certain radius is huge: there are 2(2(2r+1)) rules for
two-color CAs of radius r. Because of this vastness, and of the possible size of rules with even
a not very big radius, the study of CAs has been mainly conducted on automata of very small
radius: basically, only 1-D automata of maximum radius 2 and 2-D CAs of radius 1 have been
considered for detailed study.

The most famous 2-D CA, and also one of the first to be studied is the so-called Game of Life
(or GOL) CA, invented by John Horton Conway in 1970, first presented in a Scientific Ameri-

7 For example, for a two-color 1-d CA with symmetric neighborhood of radius r, the number of couples needed
in order to specifiy the rule is 2(2r+1).

5.2. Cellular automata 171

can article (Gardner 1970). GOL has revealed to be capable of an enormously varied possible
dynamical behavior, a behavior which changes wildly depending on the initial configuration.

Among 1-D CAs, those of radius 1 and two colors represent a sufficiently restricted class to be the
object of a detailed study: there are only 256 rules with these features, and each rule has only 8
couples of values. This class has been called by Stephen Wolfram the class of elementary cellular
automata, or ECAs. Each ECA is represented by a number from 0 to 255 which corresponds to
a particular base-2 numerical representation of its rule. ECAs are usually individuated by means
of this numerical code.

5.2.1 Stephen Wolfram’s classification of CAs
A CA is a DDS, and as such, during its functioning, it undergoes an evolution in time. An evolu-
tion always starts with the automaton in a certain global state, which is its initial configuration.
The specific evolution the CA will follow depends exclusively on the initial configuration. In
many CAs, even slightly different configurations can give rise to completely different evolutions.
This sensitivity to initial conditions is a manifestation of the non-linearity of most of these dy-
namical systems. As we will see, there are, however, some CAs which do not show this kind
of sensitivity, and which converge toward a typical constant or simply periodic behavior after a
certain number of steps, regardless of the specific initial configuration. Certain other CAs show
instead the same kind of seemingly chaotic behavior independently of the choice of the initial
configuration chosen. In other cases, starting from certain configurations, after a period of seem-
ingly chaotic behavior, the CA settles on a complex, partially ordered behavior in which certain
significant, ordered dynamical structures “emerge” from the preceding chaos. This is a form of
“self organization” which manifests in some CAs. Certain CAs are very flexible and can show any
of the above sketched dynamical regimes, depending on the choice of the initial configuration. In
what follows we will encounter a specific classification of these kinds of of behavior.

Studying ECAs, Stephen Wolfram has famously proposed (in Wolfram 1984) a scheme aimed at
qualitatively classifying the possible dynamical behavior of cellular automata. This well-known
scheme is composed of four classes which, according to Wolfram, can summarize all possible
behavioral types of CAs in general (not only ECAs). Wolfram’s classification is largely based
on intuitions initially deriving from a huge number of “experimental” observations Wolfram had
conducted on simulation of CAs in the course of years. The proposed classes do not have formal
definitions, but are differentiated according to humanly-observed global properties of the CAs’
behavior. Besides, the generalization of this classification to any possible CA is purely inductive.
Nevertheless, this criterion has encountered a huge success in the research field of DDSs, and
numerous formal specifications have been attempted. Many authors believe that the qualitative
classes of behavior described by Wolfram catch every significant qualitative distinction in the
behavior of any complex system. The classification reflects more or less the types of evolution
which I have hinted at above, and can be expressed as follows, closely following Wolfram (2002)8:

• class I: CAs with simple behavior, in which almost all initial conditions lead to very similar
uniform and constant states9;

8 pp. 231-235.
9 What are viewed here as constant states, are actually cycles of period 1: the CA continues its evolution, but

the reached state does continually repeat, so it appears as a stable state which does not change anymore. It must
be noted that, per se, a CA does not have a final state, like automata studied by classic computational theory
have (as explained in section 17.2): a possible criterion to judge a CA has come to a final state is that of cyclic
behavior of period 1 or small period.

172 Chapter 5. Modularity in discrete dynamical systems

• class II: CAs with many different possible final states which in general consist of a certain
limited set of simple structures which are constant or cyclic with short period;
• class III: more complicated behavior, seemingly random and chaotic in most respects, al-
though some ephemeral, small-scale structures are always visible at some scale;
• class IV: a mixture of order and randomness: localized moving dynamical structures appear,
which albeit being simple, interact with each other in very complicated ways.

Fig. 5.3 reports some sample behavior of CAs belonging to the above four classes.

Figure 5.3: examples of dynamical behavior classified according to Wolfram’s qualitative criterion. For each class
two representative ECAs of that class are shown. CAs are 1-D. Time flows from top to bottom. (images generated
with the web app at http://systems-sciences.uni-graz.at/etextbook/sw2/ca_1d.html).

5.2. Cellular automata 173

Wolfram’s classes intuitively follow a growing complexity: class IV is the class of systems mani-
festing the most complex behavior, while class I systems are mostly trivial. Class II systems can
apparently show more varied evolutions, but these are still quite predictable. Class III systems
are completely chaotic, and, while seeming the most complex, it is not possible to discern in the
pattern they produce any sign of sensible order. This type of complexity resembles that of pure
randomness, and as such can be suspected to be a form not of complexity but mere confusion.

It is class IV that which comprises the most interesting CAs. These systems manifest a behavior
which is seemingly capable of maintaining a form of order while undergoing a very complex
dynamics. Systems belonging to this class have been suspected to be able to perform complex
computations, and indeed for some of them it has been proved that they are Turing-complete, that
is, that they are capable to perform computations on the level of universal Turing machines10,
which constitute the most powerful class of known computational systems.

Among the well studied CAs, which certainly belong to class IV, there is Conway’s GOL, which
has been proved Turing-complete in Rendell (2002). Among class IV 1-D CAs, rule 110 has been
demonstrated capable of universal computation by Matthew cook, in Cook (2004). Under which
circumstances CAs can be considered computationally capable is not a simple question, and I
dedicate section 14.5.1 to a reflection on this theme. However, in the next sections of this chapter
some preliminary hint on this problem will be provided.

5.2.2 Process modularity in CAs
CAs belonging to class I, II and IV possess a form of process modularity11, which consists in
the following condition: certain localized and partially isolated subconfigurations of cells of the
CA lattice can appear and persist for a certain amount of time steps without disintegrating,
maintaining during this time a certain distinguishing identity and cohesion. In some cases, some
of these configurations can be so robust as to persist indefinitely in absence of external pertur-
bations, that is, if isolated from other dynamically changing structures. Some of these robust
structures, especially in class IV CAs, can even in certain circumstances endure perturbations
coming from the external context, reconstituting their identity after certain limited interactions.
In other words, these structures appear to possess some form of robustness, both spatial and
temporal. This robustness, together with their recognizable identity and their being localized,
immediately qualifies these subconfigurations of the CA lattice as modules, according to the
defining properties of modules brought forth in section 2.1.

Simple modules, present in most class I , class II and class IV CAs, are “frozen” structures12

and oscillators. An example is in fig. 5.4. A frozen structure, called also a still life, is a
subconfiguration of the CA lattice which does not change in time. Degree of robustness can
vary: certain frozen structures are very robust, and can stand perturbations coming from the
external context without losing their integrity. This way, they act as “impenetrable walls” which
spatially limit the spread of certain perturbations inside the CA lattice. Oscillators do change,
but staying in place and following an oscillatory behavior of limited period.

By looking at fig. 5.4, it appears clearly that certain vertical structures, like in this case the
frozen structure and the oscillator, are endowed with a substantial spatio-temporal uniformity,
which can be seen, at least intuitively, as signaling their enduring identity: precisely because of
this robust identity, these structures can be considered modules. Other structures represented in

10 For Turing machines, see section 17.2.5 of the Appendix.
11 This notion will be better discussed in section 6.2.
12 See the discussion on frozen structures based on Stuart Kauffman’s ideas in section 7.1.2.

174 Chapter 5. Modularity in discrete dynamical systems

Figure 5.4: a 3-D view of a segment of evolution of the 2-D Conway’s Game Of Life CA. Time flows from bottom
to top in the figure: each horizontal plane containing one of the stacked layers of cells represents the 2-D global
configuration of the CA at a given timestep. (Image modified from the original at http://xerol.org/h/img/1246,
attributed to Xerol).

the figure change more drastically in time, and do not, at least at first sight, appear as modules.
Of course recognition of a module’s identity is a relative question, as will be highlighted shortly
in what follows.

In other cases, persisting recognizable subconfigurations of the CA evolution, that is, process
modules, change dynamically during their life, and their enduring identity can be recognized
despite the changes they undergo: in other words, their identity is multiply realizable by a number
of specific configurations. Typically, these changing modular configurations virtually “move”
across the lattice as they change. Classic cases of this kind of modules are the traveling modular
structures which can appear in the evolution of class IV systems, such as the “gliders” (examples
of which are represented in fig. 1.2 of the Introduction, figg. 5.5 and 5.6) or more complex
“spaceships”, such as the spaceship of Conway’s GOL depicted in fig. 5.7.

As an aside, it must be noted that, in each CA, there is a speed of light, which is the maximum
speed that a “traveling” structure can reach. The speed of light is related to the width of
the neighborhood taken in consideration by the rule, and is equal to the maximum radius of
this neighborhood (for rules with symmetric neighborhood there is only one radius value). In
Elementary CAs, which have rules of radius 1, the speed of light is equal to one cell per timestep.
No structure can travel faster than this speed, because this is the maximum distance any possible
influence between cells can reach in a timestep. It is possible, however, that moving structures

5.2. Cellular automata 175

move at a speed well below the speed of light. For example, the spaceship in GOL hinted at
above travels at 2 cells for 5 timesteps, while the gliders travel at 1 cell every 5 timesteps.

Figure 5.5: a part of a temporal evolution of the Conway’s Game Of Life 2-D CA depicting the basic cycle of
a glider, a modular dynamical structure which, if undisturbed, travels across the CA’s array. Time flows from
image 1 to image 5. The glider cycles through four possible configurations (1 to 4) before returning to the initial
configuration (step 5). During this cycle the glider travels diagonally 1 cell.

The form of process modularity described above can also be seen, from a certain standpoint, as a
peculiar form of aggregability: we must note that, in a truly general conception of modularity, a
process of aggregation can consist of any computable function which maps a configuration of the
module’s subparts to the module’s aggregate state, not only of classical arithmetical functions like
those mentioned in Simon’s classic examples. The act of recognizing a changing subconfiguration
of a CA lattice as a persisting module is a form of aggregation: the aggregate state is simply
a placeholder for the presence of the module, when this is actually present: the aggregation
function is a module detector which, when a process module is present in the CA’s evolution,
outputs a certain value, let’s say the position of the central point of the configuration of cells
constituting the module. This position constitutes the aggregate value of the process module, a
value which represents the module in its totality.

Let’s take a look at the spaceship depicted in fig. 5.7: its robustness consists in the possibility

176 Chapter 5. Modularity in discrete dynamical systems

Figure 5.6: a 3-D view of a glider of Conway’s Game Of Life, a 2-D cellular automaton. Time flows from bottom
to top in the figure: each horizontal plane containing one of the stacked layers of cells represents the global
2-D configuration of the CA at a given timestep. The glider’s displacement during time is clearly indicated by
the inclination of the trail, corresponding to a diagonal line passing through the implicit centroid of the glider
(Image taken from Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Glider_trail.png, attributed
to Xerol at en.wikipedia).

5.2. Cellular automata 177

of remaining recognizable as the same spaceship despite the continuous changes of its microcom-
ponents (the CA’s cells which compose it), and in keeping its cohesion in spite of these high-
frequency internal interactions. In this case the aggregation function is any kind of “spaceship
detector”, a function which maps all the possible five internal configurations which correspond
to the given spaceship to the position of its central point in the matrix of another DDS: see fig.
5.8 for a graphic explanation. The new DDS so obtained is a coarser-grained or, in other words,
aggregated version of the first (the CA), and it is the analogous, in this (discrete) case of the
aggregate systems treated by Simon. If the hierarchy individuated in the CA corresponds to an
actual dynamical hierarchical subdivision of the system, then the DDS at the level of “spaceships”
can be studied independently from the other levels13.

It is very important to notice that robustness of a process module of this kind is evidently
dependent on the ability of the module detector to recognize the module in spite of the repeated
changes in time of the module’s micro configurations: one can suspect that, after all, robustness is
“in the eye of the beholder”, instead that in the module. This suggests some crucial considerations
which, although anticipated here, will deserve a more thorough treatment in section 14.5.2. First,
it must be stressed that, as already pointed out in section 2.5 and in many other parts of the
current work, modularity is relative to the choice of a metric between elements of the system. In
this case, the case of process modularity in CAs, the chosen metric is a complex metric which
“groups” together the configurations of the cells which come to actually constitute the module.
For lack of a better way to describe it, we could say that in the case of the example above, this
complex metric is precisely the algorithm which performs the spaceship detection: according to
the relative view of modularity, we could choose another, different algorithm to detect simple
gliders instead of spaceships. The crucial question is: are we free to choose any possible algorithm
for detection of process modules? This, will be argued in section 14.5.2, is not a completely free
choice, depending on three factors: (i) the computational power of the detection algorithm with
respect to the power of the computation we want to attribute to the modular DDS (a complex
question which is not appropriate to summarize here, and which will be treated in section 14.5.1);
(ii) the computational feasibility of the detection algorithm, which must not be too computational
demanding; (iii) the possibility to effectively find the detection algorithm.

Figure 5.7: a “spaceship” of period 5 in Conway’s Game of Life. This macroconfiguration changes cyclically at
each time step through microconfigurations 1 to 5, while moving two pixels to the right for each complete cycle. If
we subsume all the 5 configurations under the same “spaceship” concept, we can see the “spaceship” as a “robust”
configuration.

13 Even in CA’s which produce quite robust macrostructures, this is not always the case: the fact that a “glider
regime” can be maintained throughout the system’s evolution, often depends on the choice of particular initial
conditions. See section 5.2.3.

178 Chapter 5. Modularity in discrete dynamical systems

Figure 5.8: the spaceship detector maps any one of the five internal configurations of the period 5 spaceship to a
cell of the “aggregate” system, another CA in which each cell represents a spaceship. The position of this cell is
the “aggregate” position of the subsystem of the original CA’s dynamical evolution constituting the “spaceship”.
The higher level’s dynamics is decoupled from that of the original CA, because the aggregate position of the
spaceship advances of 2 pixels every 5 timesteps of the original CA.

Besides gliders and spaceships, other important types of modular dynamical structures in certain
class IV CAs have been discovered. Among the most interesting are the so-called glider guns,
which are structures cyclically “firing” new gliders in certain directions. There are also glider
“eaters”, which annihilate gliders colliding with them, and glider reflectors, which make gliders
change direction after a collision.

5.2.3 Self-organization in CAs
Evolutions of CAs of class IV are highly dependent on the specific initial conditions: started
from certain configurations they can display a highly ordered behavior, manly characterized by
the diffuse presence of gliders. Starting from other configurations, their behavior can proceed in
a much more chaotic manner. Fig. 5.9 shows the very different regimes that can be obtained in
the same CA, starting from different initial configurations: the top part of the image depicts a
seemingly chaotic dynamical process, while the lower part shows a very ordered process based
mainly on gliders and their auxiliary structures, like glider guns and eaters: this kind of dynamical
regime is usually called a glider regime.

Certain CAs (it is not clear if Conway’s GOL is among them14), show a particular disposition
to enter spontaneously a glider regime of some sort after a certain period of time: regardless

14 The study of the general properties of the long-term evolution of 2-D CAs is hindered by the enormity of
their state space, with respect to 1-D CAs: even for finite CAs, the number of possible initial states is exponential
on the number of cells, and in 2-D CAs, the number of cells is quadratically higher than that of 1-D CAs of the
same radius, so the cardinality of the state space of fixed radius 2-D CAs is enormously higher than that of the
state space of 1-D CAs with the same radius. As a consequence, it is not easy to survey the possible initial states
of a 2-D CA. It is possible that GOL shows self-organization, but this is not known in general.

5.2. Cellular automata 179

Figure 5.9: two very different dynamical regimes generated in Conway’s GOL by different initial configurations.
Top: chaotic regime. Bottom: glider regime.

180 Chapter 5. Modularity in discrete dynamical systems

of the initial conditions, in most cases, after an initial transient seemingly chaotic phase15, the
CA’s evolution enters some form of glider regime. This is an interesting phenomenon, which
reveals that some complex systems possess the intrinsic capacity to self-organize, that is, to
produce a complex but ordered dynamical structure without external guidance. This is a form of
what can be intuitively described as “computational emergence”, in the sense that some form of
dynamic order emerges spontaneously. Self-organization is a very important phenomenon, for it
guarantees that certain CAs will spontaneously enter regimes which can enable them to perform
computations, as we will see in the next section.

5.2.4 Higher-level modularity in CAs
All the modular dynamical structures appearing in certain CAs described above suggest the
possibility that some form of complex, coordinated, structured process can be realized by a
CA at this modular dynamical level of description16. And computations are typically structured,
dynamical complex phenomena, so it is conceivable that, under certain circumstances, CAs can be
seen as performing computations. Many studies have indeed highlighted the possibility for gliders
and similar dynamical modular structures in CAs to be employed as components of information-
processing higher-level configurations, or, in other words, to be employed as components of
computational virtual machines implemented inside the CA lattice, by means of certain special
configurations which can, under certain circumstances, act as machines performing computations.
As hinted at in section 5.2.1, it has indeed been proved that certain CAs (namely, ECA Rule
100 and Conway’s GOL), are capable of implementing any conceivable type of computation with
these means.

But, a first problem is immediately raised: in what circumstances in general, and how, a given
CA (or a DDS in general) can perform computations? A first answer could be that any DDS
inherently performs computations, because it is a digital dynamical system, which takes an input
configuration of elements (its initial configuration) and, by proceeding step-by-step, transforms
this configuration into successive different configurations. If, by some criterion, we deem this
information processing to have been concluded (typically, when the CA reaches a loop of period
one, that is, a configuration that does not change anymore), then we can take this final config-
uration and consider it the output data of the computational process. Here lies a big problem:
certain circumstances must hold, for a processing of discrete configurations to be considered
a sensible computation: not any processing of tokens can be considered a computation. This
problem is very thorny and, although having been touched upon in section 1.4.7 of the Introduc-
tion, it will be better dealt with in a dedicated section, 14.5.1. Suffice here to say, that, in an
intuitive way, to say that a system is computing is to attribute to that system the execution of
a computation: the same system or process can be considered as computing or not computing
at all, or as performing different computations, depending on how we, in a sense, “interpret”, or
“view” it. Specifically, a mapping between the system’s initial (the input) and final (the output)
configurations on one side, and a set of meaningful symbols on the other, must be established
for us to be in condition to say that the system has performed a certain computation acting on
these meaningful symbols (as said, a more thorough discussion of this problem, which seemingly
involves the notion of intentionality, is to be carried out in chapter 14.5.1).

Along these lines, it is conceivable that even the evolution of a CA can be interpreted as executing
certain computations. In order to do that, a minimum meaningful interpretation must be given

15 See Hanson & Crutchfield (1997).
16 I’m using the expression “level of description” on an intuitive basis. I will try to give it a more complete,

computational characterization in section 6.6.

5.2. Cellular automata 181

of its configurations. For CAs exhibiting glider regimes, as those in Wolfram class IV, the most
natural idea is that of viewing the presence or the absence of a glider at a certain point in time
at a specific location as the presence of a binary 1 or 0 value, and collisions between gliders
as the implementation of logical operations on these values. In other words, the crucial idea is
that of seeing the CA as performing a computation, but a computation at a higher level with
respect to the computation trivially executed by any CA at the level of the application of its rule
to cells. I’m employing here the notion of high-level in the sense intended in computer science
when speaking of high-level and low-level language, which we have already encountered in section
4.1.4.217. In this view, the high-level computation is implemented by the low-level one starting
from particular initial conditions which represent, in the form of gliders and other modular
dynamical structures, the data to be processed and the high-level program to be executed (this
relation between the initial conditions and the computation performed is a complex matter, and
will deserve a separate treatment in section 14.5.1).

To be in condition of considering gliders as bits and their interactions as simple basic computa-
tions, a study of the laws governing glider interaction must be conducted. As has been observed,
in certain class IV CAs, glider interaction is indeed predictable, because it is affected by law-like
regularities simple enough to be synthetically described. But the study of these regularities is
not easy anyway because of many reasons. First, in many cases gliders are not simple to detect:
while the glider in GOL is a well-defined not very complex isolated dynamical structure, in other
cases, like in the examples of class IV rules depicted in fig. 5.3, gliders are embedded in regular
complex backgrounds which require that they be first algorithmically “filtered out” by the glider
detector in order to obtain the glider as an isolated structure. Often gliders have a complex
periodicity, and this filtering requires an adequately complex glider detector. Second, certain
CAs display a wide variety of complex gliders, and the number of their possible interactions
in slightly different circumstances is high, while these different circumstances of interaction can
lead to completely different effects: the outcome of an interaction between two complex gliders
can depend crucially on the relationship between the phases of the colliding gliders, and, for
gliders with long cyclic period, the number of collision circumstances to consider in order to
exhaustively classify all their possible interaction is high. Study of glider interactions can thus
be a daunting task: actually, this is a case of mostly inductive inference, because we must infer
the set of possible outcomes of an interaction between gliders as a function of the circumstances
occurring before the collision. In general, class IV CAs exhibit such a complexity of behavior as
to hinder the possibility of predicting, just by examining the CA rule, the outcome of still unob-
served interactions between gliders: this unpredictability is a form of “emergence” occurring in
these systems, as we will better see in section 13.3. As a consequence, all possible combinations
between the circumstances occurring before and after glider collision must be actually observed
during runs of simulations of the CA under consideration, in order to give a complete theoretical
description of the “laws” governing the glider regime. The number of these combinations being
quite high in many cases, the task is daunting.

Nevertheless, classifications of this kind have in some cases been attempted. General observa-
tions on process modularity in DDS had been conducted since early works by Stuart Kauffman18

in the late ’60s, substantially improved in the ’80s. Pioneering works on the specific analysis of
glider behavior have later been those of James Crutchfield and his staff at the Santa Fe institute,
who proposed algorithmic ways to filter gliders out of their background to study the laws govern-
ing their interactions, an exercise of what they called, by analogy with physics, computational
mechanics, a discipline devoted to study the laws and structures emerging in the space-time

17 A deeper analysis of the notion of levels is to be conducted in section 6.6
18See section 7.1.2.

182 Chapter 5. Modularity in discrete dynamical systems

behavior of complex DDS. In Hanson & Crutchfield (1997), a nearly complete classification of
gliders in ECA Rule 54 is put forth.

Another researcher at the Santa Fe Institute, Andrew Wuensche, developed since the ’90s general
methods for the automatic detection of CA rules able to produce process modular evolutions, and
for the automatic filtering of gliders and other dynamical modules in CAs, even without previous
knowledge of the existence of these structures, as exemplified in fig. 1.2 of the Introduction. In
Wuensche (1999), he stresses that, once a CA has entered a glider regime, its behavior can be
described at a higher level19, exclusively in terms of interaction between gliders and related mod-
ular structures, without any mention of the underlying micro-dynamics that occurs at the level
of single cells and of the application of the CA rule on them: Wuensche stresses that this change
of level of description is analogous to how certain sciences, like chemistry, explain phenomena at
their own level, without mentioning the underlying subatomic phenomena. The point is that of
explaining the behavior of the system making use of modular, “high-level” descriptions. As wil
be better explained in section 6.6, this can be seen as a form of aggregation, analogous to the
original idea of aggregation by Herbert Simon: the CAs dynamics, when inside the glider regime,
can be seen as nearly decomposable into dynamical subconfigurations (the gliders and similar
modules) which allow for an aggregated representation of the system’s dynamics.

This aggregated representation can be naturally thought, as highlighted above, as a computational
description. Andrew Adamatzky and Genaro Juárez Martínez, bringing on at the University of
the West of England a long line of research started by Adamatzky in the ‘90s, have recently given
a complete characterization of the gliders’ behavior in the Rule 54 elementary CA, as reported in
Martínez et al. (2014). They had already proposed in Martínez, Adamatzky, & McIntosh (2006)
to interpret glider-glider collisions as the performing of boolean operations on bits, as exemplified
in fig. 5.10. Once having implemented in this way20 logical functions on a high level description
of the CA, other, subsequent forms of higher-level modularity come naturally, analogously to
computer programs modularity.

Actually, once the level of boolean functions gets implemented in a computational system, it is
easy to proceed, by combination of these logical modules, to the construction of more compu-
tationally complex super-modules, and so on. As I try to clarify in section 4.3, however, while
it is quite easy to purposely construct a modular computation, or computer program, it is less
easy to detect modularity in an already existent program or computational process, of which the
modular structure is unknown. That is, while the practice of modular programming is relatively
easy, the inverse problem, that of modular detection of computational processes, beyond the level
of simple boolean functions, is a practice of reverse-engineering and is less obvious. This has
been better highlighted in section 4.3 and will be more deeply pondered in sections 14.5.1 and
14.5.2.

19 This naive idea of level of description will be better analyzed in section 6.6.
20 The notion of implementation, introduced in section 4.1.5, like many other regarding computation is, I think,

in need of clarification: I attempt such a feat in the section dedicated to computation, 4.1.5.2.

5.2. Cellular automata 183

Figure 5.10: a logical AND function implemented by glider collision in the ECA Rule 54, as proposed by Martínez
et al. (2006). Presence and absence of a glider are banally interpreted as the 1 and 0 boolean values. The
diagonal lines are two gliders on the way of collision. The vertical line represents a third glider, of a different
type, which emerges as effect of the collision and annihilation of the other two gliders: presence or absence of this
glider implements the logical AND, because this glider appears if and only if the other two were present.

Chapter 6

Thinking about modularity

In this chapter I will proceed to some further speculations about modularity, specifically involv-
ing the relation between forms of modularity (structural, dynamical, functional), in order to
proceed to a tentative definition of several concepts related to hierarchical modularity and levels
of description, and to an exposition of how I intend their epistemological and ontological status:
I view modularity as referring to descriptions of a system, and as such as pertaining to repre-
sentations or theoretical models, not to the actual ontology of a system. I will then highlight
in general the importance of modularity for explanation, prediction and experimentation, which
are the most important aspects of scientific research.

6.1 Modularity and its properties: summing up

From all that has been said in the former sections of this work, we can recapitulate some prop-
erties of modularity which appear evident.

A module can be:

• a single atomic element
• a subset of a system’s elements

In the latter case, elements internal to the module appear more closely and durably related to
each other than to elements belonging to other modules.

Intuitively, a module has the following characteristics:

• it has a sufficiently well-defined boundary;
• it has to be able to retain its unity in a range of external conditions:

– that is, it possesses some sort of robustness in the face of external perturbations;
• it can occur in multiple copies;

Tipically, a system is modular when it has the following characteristics:

• a number of its subsytems can be seen as modules;
• the interconnections between modules are weaker than the interconnections between the
elements composing a module;

185

186 Chapter 6. Thinking about modularity

6.2 Structural and dynamical modularity

It is my opinion that Simon’s original exposition of near-decomposability is not so clear-cut, and
that some analytical reflections are now in order, considered how much Simon’s approach has
informed all the subsequent literature on modularity. In particular, some sort of confusion can
possibly arise about modularity of a structure and modularity of a dynamical process.

In his seminal 1962 writing on complex systems, Simon states a general principle of modularity:
a system is hierarchically modular if it is composed of subsytems which are more intensely
connected on the inside, than one another. In his words:

In hierarchic systems we can distinguish between the interactions among subsystems, on
the one hand, and the interactions within subsystems – that is, among the parts of those
subsystems – on the other. The interactions at the different levels may be, and often will
be, of different orders of magnitude.1

Then Simon proceeds to explain near-decomposability. The example he proposes, that of an
office subdivided in rooms and cubicles, could perhaps give rise to some misunderstanding: at
first, it seems that modularity here is reflected in the physical structure and organization of the
office: cubicles in the same room are more interrelated to each other than to cubicles external
to the room, because of their spatial location and because the subdivisions internal to a room
are thinner than walls separating different rooms. This, at first sight, seems to be a case of
structural modularity, based on the relation “being near or separated by a thin diaphragm”: this
relation is strong between cubicles of the same room, and weak between cubicles of different
rooms. Structural modularity is a static concepts: it holds at any time.

But then, the thermal dynamics of the systems are taken into consideration: precisely due
to the structural modularity highlighted above, a temporal scale differentiation occurs in the
systems’ dynamic process: because thinner walls are less thermally insulating, intra-room thermal
exchange turns out being more intense than inter-room exchange, leading to a faster evolution
of the temperature distribution in each room towards thermal equilibrium, faster with respect
to the evolution of the thermal distribution across different rooms. This makes the cubicles in
a single room appear more interrelated one another temporally: the higher speed of evolution of
the room’s subsystem is due to a higher rate or frequency of thermal exchanges between cubicles2.
The relation taken into consideration here is temporal rate of thermal exchange. This is a form of
what I would call process modularity, or dynamical modularity. In the example by Simon, process
modularity turns out to be related to the structural, static modularity of the system, which in
turn is due to the physical structure of the walls and disposition of the rooms.

I will try to sketch here a quite rough, tentative distinction between structural and dynamical
modularity. This analysis could appear to some insufficiently thought-out from a philosophical
standpoint, but it is to be intended here as only a first provisional analysis, based on loose intu-
ition, attempting to kickstart a series of considerations. It is my hope that these considerations
could shed eventually some light on a convoluted group of concepts regarding modularity.

6.2.1 Structure and process
Let’s start with the difference between structure and process.

1 Simon (1962), p. 473-474.
2 What at the aggregate level of thermodynamics appears as a flux rate, at the molecular scale corresponds

to a higher frequency of exchange of fast moving molecules.

6.2. Structural and dynamical modularity 187

An object has a structure (let’s say a shape) which does not change in time: this structure defines
the object’s identity and allows us to recognize the object as precisely that object: should its
structure change significantly enough, we would be in presence of a different object.

An object or an entity can be in different states at different times. A change of state is something
which does not significantly change the structure of the object.

A process is the dynamics of some consecutive changes of state of an object occurring in time.
Processes can be continuous or discrete. To keep things simple, in this work I will mostly treat
discrete processes, that is processes which occur at discrete timesteps, and in which the space of
possible states is discrete as well. Given that a process does not, by definition of change of state,
alter the object’s structure, we could say that the object’s structure supports the process, or that,
in other words, a process occurs on the object’s structure. To give some intuitive example, it
will suffice to think of an electric circuit: the structure of the circuit is given by the electrical
conductive connections between its components, (e.g., metal wires running between switches,
lamps, and so on. . .). This structure, often represented as a schematic diagram, does not change.
But, the circuit itself can be, at different moments in time, in different states. At least, a circuit
can be in one of two different states: a state of electric current flowing (the state “on”) or the
state in which the circuit is not supplied with current, and it is “off”. Or, in other cases, the
circuit can be in one of a continuous set of possible states, in which a state is identified by the
amount of current which is flowing in the circuit. A process occurring on this circuit is the
sequence of changes of state occurring to it.

Some objects can have a structure which shows some degree of modularity: this is a form of
structural modularity, and as such it is usually static (except in the case in which the object
itself is changing). But such objects can often undertake changes of state, that is, they can
support processes. Process modularity can often take place as a spatio-temporal modularity of
the process, that is, of the dynamics of the changes of state occurring on the structure.

Here is the important point: in general, structural modularity does not always coincide with
process modularity, but their interrelation seems intuitively likely: parts more closely interrelated
structurally influence more easily one another, or more rapidly.

An obvious form of structural modularity is modularity based on the geometrical shape of the
system and the spatial relation between its parts. But, attention must be paid here: spatial
and structural modularity do not necessarily coincide: this is quite clear in the case of networks,
for example networks of interconnected computers. In the case of a network, its structure is an
abstract, non-spatial, fixed configuration, in which physically distant nodes (e.g. servers residing
in different continents) can be directly linked structurally, by means of a direct connection be-
tween them without intermediaries: in the abstract structure of the network, these servers would
appear adjacent, even if they are physically far apart. In these cases, it is not the spatial dispo-
sition of the parts which counts, but the topology, that is the abstract structure of connectivity
of the system, which is indeed represented by a network, undestood as a mathematical object.
A network, in general, is an abstract object basically conceivable as a set of elements, the nodes,
linked together. Networks are mathematically studied in graph theory and, in a somewhat more
experimental fashion, in network science3.

Even if not necessarily based on spatial relations4, topological modularity is nevertheless a form
3 Modularity in networks has been extensively treated in chapter 3.
4 Although it could be based on spatial relations. Actually, the spatial structural modularity of an object is

due to the topological structure of the system as it is represented in the common euclidean space, in which the
common metric of euclidean distance is taken as the relation between elements of the system on which to apply
the generic criterion for near-decomposability when assessing modularity.

188 Chapter 6. Thinking about modularity

of structural modularity, because a fixed topological structure is usually assumed5.

What about process modularity in networks? A difference between Simon’s approach and mod-
ularity in networks is that, as we have seen, with his notion of near-decomposability Simon
considers dynamical systems: systems in which evolution in time of their parameters is studied.
Networks, on the other hand, are usually seen as static structures, and search for modularity is
a search for structural modularity, performed by analyzing the network’s fixed structure. For
this reason, since networks, as mathematical objects, lack a dynamical aspect, is seems the main
considerations about timescales in modular hierarchical systems are not immediately transferable
to hierarchical modular networks.

Nevertheless, dynamics can be implemented on a network: in most cases, a network is to be con-
sidered the basic fixed infrastructure on which certain dynamical events take place: this situation
applies, for example, to transport networks, where the dynamics is that of quantities transported
over it, electric power networks, where the dynamics it that of the amounts of current circulating
in the network, genetic networks, whose dynamics is the sequence of activation/deactivation and
transcription of genes, or social networks, which have a dynamics of human interactions.

We could even consider a “topological” representation of the classic near-decomposability example
by Herbert Simon6 by means of a weighted network: this network representation obtains if we
substitute, as in fig.6.1, a node for each cubicle, and a weighted link for the heat exchange rate
between couples of cubicles7: this way, a network comes to represent the structural modularity
of the system in Simon’s example.

Given that a processual dynamics can be easily implemented on a network structure, we could ask
ourselves if networks can show some form of process modularity, or dynamical modularity over
the structural one, and to what extent modules identified according to structural properties can
also be dynamical modules. Dynamical modules are modules whose dynamics derives from, and
affects more strictly and in a more temporally coincident manner, the nodes inside the module
than nodes external to it, giving rise, as in Simon’s example, to dynamics at different timescales
according to their level in the hierarchy: slower timescale at the higher level, faster timescale
at the lower level, the level of its subsystems. As we have seen, in Simon’s example structural
modularity does indeed induce process modularity in the system, and this seems quite likely to
occur in general.

In networks, links between nodes can be abstractly and generally conceived as communication
channels: they channel influences of some kind between nodes. In the case of weighted networks,
the channel itself possesses a degree of “conductivity” of these influences, a degree represented
by its weight, which can vary between different links. Structural modules in the network are then
identified as those subsets of nodes whose elements are linked together by links which are more
conductive than the links the same internal nodes of the subset entertain with nodes of other
subsets. This higher conductivity would certainly correspond to a higher dynamical influence
between nodes of the same structural module, giving rise to a dynamical modularity which
will probably turn out to correspond to the structural modularity found in the system, albeit

5 There have been studies on networks modifying in time: as reported in section 3.1.3, an important one is
Barabási & Albert (1999), which considers a particular modality of growth for networks. However, the typical
community detection algorithms try to detect modularity in a network’s static structure. Besides, many kinds of
networks are by their nature static or with a very slow changing rate: for example, organizational charts, or, in
biology, genetic regulatory networks.

6 Presented by Simon as in fig. 2.3.
7Actually, as explained in section 3.2.1.3, a weighted network is not strictly needed, for we could use, with

some approximation, a non-weighted multigraph, in which high heat exchange rate is represented by more edges
connecting the same nodes, and low rate by less edges.

6.2. Structural and dynamical modularity 189

Figure 6.1: topology, rendered as a weighted network, of the system used as an example for Simon’s near-
decomposability (see section 2.2.3).

190 Chapter 6. Thinking about modularity

with varying degree of coincidence between the two, due to the possibility that non-linearity
in the dynamical behavior of nodes could compensate for difference in link weight. Even in
non-weighted networks, where structural modularity is detected by measuring not the weight of
intra-modular links but their density, higher density of connections between nodes in the same
module should usually mean higher frequency or probability of dynamical influence between them
than between any of them and any external node. Although this is not guaranteed to always be
the case (because non-linearity can interfere), the correlation between a situation of high intra-
module and low intermodule connectedness and the decoupling of dynamical timescales has been
observed in modular networks, as explained in section 3.2.4.1.

Thus, it stands to reason that, in weighted networks, the weaker (compared to those internal to
modules) connections between modules, regardless of the specific nature of the connection, could
lead to an inter-module coordination of the dynamics of different modules which turns out to be
slower than the intra-module dynamics, where certainly communication or reciprocal influence
between nodes in the same module is to be expected as more frequent.

This could be expected also for the reason that a modular network has presumably evolved or
been created with modular structure not by chance, but to allow an optimized performance: it
would not probably make much sense to give weak connections to elements which have to perform
at the same time scale and with high-frequency of interaction: accordingly, it is to be expected
that nodes connected by strong links are supposed to communicate, or influence each other with a
higher frequency of interaction than nodes connected by weaker links. This could extend even to
non-weighted networks with information-processing capabilities, where intermodule connection
are supposed to be used for information transmission at a lower frequency than intramodule
connections. This could allow the extension of Simon’s statements about differences in time
scale according to hierarchical levels, also to boolean networks performing information processing
or computations8.

Pan & Sinha (2009) supports this view. The authors first note that often, in natural information
processing systems like brains, it is desirable that local dynamics occur at a finer time-scale
than global ones, in order to maintain synchrony between local areas processing specific stimuli,
while large-scale synchrony occurs in pathological states, like epilepsy, and it is not a desirable
feature of normal functioning. Pan and Sinha’s study makes then use of a model consisting of a
moderately modular network which also possesses the small-world property9, to show that the
network’s structural modular configuration makes coordination within local clusters occur much
more rapidly than global coordination, thus making the network’s dynamics exhibit the diversity
of timescales typical of hierarchical modular functional organization.

6.3 Modularity is relative

Changing the metric, a system can show a different modularization, or not appear modular at
all. Some examples:

• fig. 6.2 shows a network, which is modular according to the metric measuring density of
reciprocal links between the nodes (this is the typical metric for algorithmic community
detection in networks. See section 3.2.1);

8 Some very important questions can be raised about computation and modularity, questions which i will
touch upon in section 14.5.1.

9 See section 3.1.2.

6.3. Modularity is relative 191

• fig. 6.3 shows a network which is modular according to a metric which measures the
difference of the numbers naming the nodes.

Figure 6.2: a network, which is modular according to the density of reciprocal links between the nodes. Distinct
modules have different colors.

Figure 6.3: a network, which is modular according to the metric which mesures the numerical distance of the
nodes’ names. Distinct modules have different colors.

192 Chapter 6. Thinking about modularity

Figure 6.4: a network which is modular according to a complex property. Distinct modules have different colors.

Besides a metric proper, more in general a relation between elements of the system can be taken
as reference, in order to assess its modularity. Changing relation, a system’s modular structure
can change, or disappear.

A relation can also be the sharing of a property, as in fig. 6.4, where the property is: even
numbers lower than 20, or odd numbers higher than 100.

As can be easily seen, in these three examples, the network has a fixed structure, but in each
case modularity is assessed based on different metrics, and the corresponding modular structures
end up being different.

6.4 Forms of functional modularity

So far, we have treated structural and dynamical (or process) modularity, trying to see if and
when they are related. What about functional modularity? Is it present in complex systems?
And, is it related to structural and process modularity? I will proceed to distinguish several
cases of functional modularity. Some of these distinctions come from the different ways in which
the notion of function can be understood, as highlighted in section 9.

Identification of modules in a given system is an operation which can be effected by way of
structural or functional considerations: for example, a module in a physical mechanism can be
seen as a structural unit in virtue of its being spatially cohesive, in the sense of being composed of
parts which are in some degree spatially grouped together, or as a functional unit in virtue of its
capacity to accomplish a specific function, despite it being possibly constituted of parts spatially
spread over a large area and not pertaining, apparently, to the same substructure. In general,
these two kinds of decomposition depend on the type of relation we take into consideration
between elements of the system in order to proceed to the identification of modules. But it all

6.4. Forms of functional modularity 193

depends also in an essential manner on what conception of “function” we are sticking to when
we talk of “functional modularity”.

Probably, the simplest notion of function is the mathematical or computational one: a function
is a relation between two sets, according to which to each element of the first set corresponds one
element of the second set. It seems natural to claim that for a module to support this form of
function, the system must be dynamical, in that the performing of the function cannot occur in
an exclusively static system10. For a module to perform a function in this mathematical sense, it
must be possible to recognize a set of possible inbound interactions affecting the module, which
are to be considered the inputs, and another set of possible outbound interactions with and toward
other modules, which are to be considered the outputs of the module. It is easier to visualize
this in the case of networks, where the module performing the function must be equipped with
a set of input links and a set of output links. The module’s dynamical performing of a function
consists in this case in the fact that, based on a certain configuration of interactions of variable
magnitude (interactions of whatever nature) applied as an input, the module produces a certain
configuration of interactions toward external modules which constitute the output corresponding
to the given input: this way, it performs its input-output function. This function can often be
considered a computational function, especially in discrete system. More in general, in analogue
systems the module performs a mathematical function.

In networks, mathematical or computational functional modularity appears in its simplest form
in the case of network motifs (see section 3.2.2), which have been seen, since their introduction,
as functional modules performing information processing or control functions11.

From the structural point of view, network motifs manifest in the form of simple, recurring sub-
networks, of wider directed networks: in these networks, because of the directionality, structural
identity between recurring copies of a subnetwork warrants the likelihood that also functional
identity occurs between them, for the functionality is presumed to depend on directionality: as
said, a functional module is to be seen as an entity with input and output links, and the internal
“information processing” is obviously dependent on the direction of information transfer between
the internal nodes.

Functional modularity of motifs can also be seen as a case of Cummins-type functional modularity:
typical network motifs mentioned in papers which analyze biological or computer networks have
often been immediately identified as functional modules: for example, the feed-forward and the
feedback 3-nodes loops12 correspond to typical, long-known functional modules in control theory.
I think this can be characterized as functional modularity as intended by Robert Cummins
(a form of functionality discussed in section 9), because here the function is not the isolated
module’s input-output mapping, but a function which explains certain features of the contextual
higher-level system, that is, a function having a role in the explanation of the overall function
of the global system: for example, certain network motifs contribute to explaining the feature of
maintaining certain properties of the whole system stable by means of control systems based on
negative feedback, as in homeostatis.

10 I don’t see how consideration of modules as mathematical functions in a static structural-only modular
system could make sense, at least for interesting systems outside the abstract, platonic realm of mathematics.
Perhaps, we could consider such possibility in some very particular cases, such as when in a containment hierarchy,
let’s say a tree of “smaller boxes into larger boxes”, a certain branch of the static tree subdivides recursively
according to a certain mathematical function, such as 2n (in the case of a binary tree-shaped branch, with
n corresponding to the hierarchical level inside the subtree). But, I’m not interested in such a kind of static
“functions” here, and I will not take them into consideration. I’m looking here for functions that must be worked
out, or computed, and not which present themselves as already deployed.

11 See for example Milo et al. (2002) and Alon (2006).
12 See section 3.2.2.

194 Chapter 6. Thinking about modularity

In their explanatory role, network motifs realize the property of modularity which consists in
the possibility of reducing the amount of information needed to specify the whole network: by
reducing the specification of the entire network to a description of the repeated occurrences of
the same simple types of building blocks and their interrelations (in addition to interrelations
to other building blocks which do not recur, but appear only once), a lossless compression of
information is achieved in the system’s explanation and description.

It is arguable that the same network motifs can also allow for economy of process description.
This would be realized if structural network motifs showed up to coincide with dynamical simple
modules. There are, as we have seen, a priori reasons to expect that this coincidence holds, but
only empirical research can confirm it in real-world networks.

Several works seem to have confirmed functional-structural coincidence for network motifs. For
example, Mangan & Alon (2003) confirmed that certain types of motifs, namely certain feed-
forward loops, circuits well known in control theory whose function is that of delaying response
to inputs (coherent feed-forward loops) or to accelerate it (incoherent feed-forward loops), ac-
tually perform the theoretically predicted function in models of gene transcription networks
constructed from data reported in known genetic databases, such as of those of Escherichia Coli
and Saccharomyces Cerevisiae. Mangan, Zaslaver, & Alon (2003) also confirms experimentally
this kind of coincidence, showing that the feed-forward loop performs a processing function on
chemical input signals in real-world E. coli.

An important empirical confirmation of functional-structural coincidence for network motifs is
highlighted in Grochow & Kellis (2007): using an innovative and much faster algorithm than
the traditional ones13, these researchers were capable of discovering a complex 15-nodes motif
occurring more than 27,000 times in the protein-protein interaction network of Saccharomyces
cerevisae, and whose occurrences are often overlapping. This motif is overlapping over a limited
set of 29 nodes, a set which turns out to correspond to the core of the transcriptional machinery
of S. cerevisae: in a way, as the authors claim, the algorithm re-discovered the gene transcrip-
tion cellular machinery (a Cummins-style functional complex) based solely on the structural
information provided by the network representation of the cell’s proteins interaction.

At a larger scale than that of motifs, it turns out that motif generalizations and network themes
or other superstructures made of motifs could also plausibly represent kinds of modules fulfilling
specific functions. Going further upward in scale, it is therefore conceivable that the network
communities found by algorithms for community detection14 can be expected to be composed
of, or at least comprise, among other structures, network motifs or higher superstructures. Such
communities should reveal themselves as functional modules, besides being structural ones. This
structural-functional coincidence seems more likely in the case of directed networks, for in this
case the structural module can be seen as a functional module with a specific set of inputs
and outputs. Typical algorithms for finding community structure, however, act on undirected
networks.

Algorithms to detect community modularity in directed networks have been recently proposed15.
An example is the method put forth in Leicht & Newman (2008), which can be considered an
extension to directed networks of the classic algorithm from Girvan & Newman (2002), based on
a modified definition of the modularity measure Q.

13 See also section 3.3.2.
14 As described and discussed at length in sections 3.2.1 and 3.2.5.
15 See section 3.3.1.

6.4. Forms of functional modularity 195

The fact that the algorithm for community detection in directed weighted networks by Arenas et
al. (2008) already described in section 3.3.1 is based on the density of motifs inside communities,
makes it a natural extension of the modular description by means of motifs to descriptions based
on communities which are made of motifs, thereby pointing in the direction of a completely
modular description of the system, both in the sense of modules understood as robust internally
densely connected substructures weakly interconnected with each other, and in the sense of
modules as repeated “building blocks” of the system. In such a kind of description, individual
nodes and links are substituted by a hierarchy of high-level communities linked one to the other
by a few links, where each community is composed by smaller communities, and so on, going
down in description scale, to sub-communities, to motifs and, eventually, to the single nodes of
the original network and links between them. This kind of complete hierarchical structure, as we
will see in section 6.8, can allow for a comprehensive multilevel kind of mechanistic explanation,
which is what is usually sought for in many scientific disciplines. It is in general plausible that
in such a hierarchy each community could be seen as a complex performing a high-level specific
function: in a directed network, if a community or subcommunity is composed of network motifs,
which are detected by a criterion similar to that of motif modularity described above, structural-
functional coincidence in the hierarchy is guaranteed by the fact that motifs are simple functional
building blocks, at least in the sense of a mathematical or logical function, understood as a
relation holding between input and output. A higher-level community composed of motifs can
then be seen as a “black box” with a limited group of links pointing toward it, which represent
the “inputs” and other links coming from it, which would be the “outputs”. Given a structural
decomposition of such a kind, it seems feasible and convenient to give a functional description
of the system in terms of it.

If what we seek is an explanation in terms of the theoretical notions of a given discipline like
biology, which sees functions as etiological16 functions, however, it is not guaranteed that each
of these identifiable functions in the organism turns out to correspond to one of the particular
communities in a hierarchy obtained by structural decomposition of the system: a function in
this etiological sense is, quite vaguely, a function which has revealed as capable of increasing the
organism’s fitness in past generations, and it could very well be a function distributed among
nodes belonging to different and distant structural communities. This could happen, for example,
for neural systems, which often show the “small network” property17, which allow distant parts
of the system to be closely connected, allowing their concerted functioning in order to fulfill a
function. In such cases, a specific functional description in terms of a structural decomposition
obtained by a modularity detection algorithm would end up being not a good explanation, be-
cause the structural decomposition would not coincide with the functional one: mathematical
or computational functions, like those performed by motifs or communities identified with this
method could appear not very “natural”, according to previous knowledge about the observed
system and the current scientific theory involved. For example, according to Mazurie, Bottani, &
Vergassola (2005), based on observations of an integrated network of transcriptional and protein-
protein interaction in Saccharomyces cerevisae, it is not the case that, in general, network motifs
undergo a special evolutionary pressure with respect to other non-recurring subnetworks, so it
seems that they are not functional modules in the sense of complexes fulfilling evolutionary se-
lected functions. Based on considerations by Mazurie and collaborators, it can be argued that
network motifs are not modules, in the sense that often they cannot be seen as basic blocks of
a nearly decomposable systems, for they are “embedded in larger structures and entangled with
the rest of the network”18. There are however opposite stances: for example, Conant & Wagner

16 See section 9.
17 See section 3.1.2.
18 Mazurie et al. (2005), p. 9.

196 Chapter 6. Thinking about modularity

(2003) found that many of the same motifs in the genetic network have evolved repeatedly in
Escherichia coli and S. cerevisae, hinting to their being the product of selective pressure toward
their appearance, and thus that these motifs should represent biologically significant functions.

The settlement of this kind of questions should be referred to further empirical observation and
considerations about compatibility of the candidate modular decomposition with the rest of the
discipline’s knowledge. However, it already seems that in many cases the structural/functional
(in the functionalistic, or Cummins-like sense) decoupling is not very likely or widespread: there
are apparently valid theoretical and empirical reasons in support of the idea that structural
and functional modularity go often together, especially in biological systems. While it is indeed
plausible that, in a certain percentage of cases, the majority of very simple network motifs can
not be seen as subsets of the network representing functions in the functionalistic sense, func-
tionalistic modularity appears in general more likely when larger subnetworks are taken into
consideration, as in the case of communities, especially in directed networks. A corroboration
of this hypothesis comes from findings like that of Guimerà & Amaral (2005b)19. In this work,
coincidence of community modularity and functional modularity is assessed and confirmed for
metabolic networks in twelve organisms, comprising procaryotes and eucaryotes. The method
employed is innovative enough to deserve a short digression: first, community structure in the
metabolic network is detected by a custom algorithm. Then, another algorithm gives each node
of the network a role, based on its linkage inside its module, and its linkage relative to the rest
of the other modules. This two-phase method connects structural properties of nodes relative to
the communities in which they are located with their functional roles in the network’s dynami-
cal functioning. Two main kinds of identified roles are: the role of peripheral nodes, which are
mostly linked to nodes inside their module, and the role of connector hubs, that is, nodes which
realize inter-module connections. Using these categories, Guimerà and Amaral construct what
they call a cartographic representation of complex networks20, a type of representation which
conveys more information with respect to a typical representation based solely on community
structure. An example of such a representation is in fig. 3.14 of section 3.2.3. In this “carto-
graphic” representation, information is given about module size, connection strength between
modules, and about the role certain particular nodes fulfill in the general network connectivity:
for example, singular connector nodes are highlighted, nodes through which important inter-
module connections pass, and other characteristics of certain other node roles. By comparing
this representation with well-known experimental data about the metabolic role of each node in
the complex metabolic chains of the organism under observation, it appears that the structural
“cartographic” representation quite well matches the known metabolic functional subdivision. It
seems, then, that in many cases, a node’s role as detected by the algorithm is quite well related to
an actual functional biological role that the metabolite corresponding to the node actually fulfills
in the whole metabolic network. This correlation can bring to the hypothesis that important
connector nodes, whose elimination would disrupt communication between entire modules, are
actively conserved across species by natural selection. This turns out to be the case, as a further
analysis confirms: different roles are subject to different evolutionary pressures.

To sum up, the method employed by Guimerà and Amaral gives a strong contribution to the
idea that modularity detected by structural observation can coincide with functional modularity.

19 Better described in section 3.2.3.
20 See section 3.2.3.

6.5. Modularity of the dynamical model and prediction 197

6.5 Modularity of the dynamical model and prediction

In dynamical systems, which can be modeled by a set of equations expressing a certain dynamics,
prediction of the system requires solving this formula analytically, or simulating the system by
means of the formula used as a computational model. In the first case, the state of the system
can be calculated at any arbitrary point in time of its evolution, by means of the analytical
solutions to the equations describing its dynamics. However, recourse to simulation is very
frequent because most interesting dynamical systems have a non-linear dynamics which cannot
be usually analytically solved, but which allows only for the calculation of the system’s global
state at the next timestep, starting from a current (initial) condition21.

Prediction of the system can be effected in these cases by a repeated application of the dynamics’
formula for each timestep until the exact time is reached at which we want to predict the state
of the system: prediction at n successive timesteps requires iterated application of the formula
n times. This renders prediction at many timesteps in the future a computationally expensive
task.

For a system composed by an enormous number of elementary parts, this non-aggregate formula
would have to cite the same number of variables, each one tracking the state of a single elementary
part. Such a formula could be difficult to produce, or, if found (possibly by automatic means),
prediction of the system’s behavior in the long run could be difficult to simulate, for the high
number of variables could require a too high computational effort, if we have to calculate the
function for a high enough number of steps.

Fortunately, in certain cases the system turns out to be nearly decomposable, and functional
modularity in the sense of near-decomposability often allows for a more efficient representation
of an acceptable approximation of its dynamics.

The very example made by Herbert Simon of the office room system22 offers a simple illustration
of this property. In that case, near decomposability entails that each single room reaches thermal
equilibrium very rapidly internally (for its internal cubicles are highly thermally coupled), in
such a way that, when considered at the timescale of the whole system, each room can be
represented, with an acceptable degree of approximation, by a single variable which represents
its average temperature. Thus, in place of many variables (each one representing the temperature
of one cubicle), a single one is substituted, by aggregation. This results in a simplification of
the aggregated formula expressing the dynamics of the system, albeit at the cost of a loss of
“resolution”: the new simplified formula does not permit to calculate the temperature of the
specific sub-room cubicles. This is a form of modularity of the mathematical expression of the
dynamical model of a system. We could call this form of modularity dynamical model modularity.

The main point is that, if we are interested in determining some more general parameter of the
system at some point in the future, this prediction can be effected by means of the simplified,
modular, aggregated formula, thus with a more economical computation than the calculation of
the original, non-simplified formula. This saving of computational resources should result in a
saving of the computation’s run time, allowing for a longer-time prediction than when using the
original formula.

That the aggregated formula of a nearly decomposable system is computationally simpler than the
original non-aggregated one, is, however, not guaranteed: in certain cases of nearly-decomposable
systems, the update function representing the dynamics of the aggregate system turns out being

21 See sections 2.2.1 and 5.1.
22 See section 2.2.3.

198 Chapter 6. Thinking about modularity

of complexity comparable to that of the original update function representing the dynamics of
the non-aggregate system. Economy of an aggregated model is reached only when we take as
an aggregated model a simplified model of the original system, a model which approximates
the original system’s dynamics, allowing the aggregated model’s behavior to be faithful to the
behavior of the original system up to an acceptable error. But, in significantly non-linear systems,
any simplified model will diverge in time in an unbounded way with respect to the behavior of the
original system, and thus any chosen threshold of maximum acceptable error would be crossed,
should we let the simplified simulation run for a long enough time. So, in the case of non-linear
systems, dynamical model modularity has a limited scope or timespan of application.

6.6 Hierarchical levels of descriptions

In this section I will sketch, through a series of informal definitions, a framework for the theoret-
ical analysis and systematization of the intuitive notions of description and level of description,
a framework specifically aimed at simplifying reasoning about hierarchical modular descriptions.
While non-formal definitions will be used, these definitions put forth a technical use of the afore-
mentioned terms about descriptions, often inspired by computational notions, a use that is in
some way different from their typical ordinary language meaning.

6.6.1 Abstractions
As is easy to understand, any description requires unavoidably a process of abstraction: it is
simply impossible to describe an object, or a process, in all its aspects, because the number
of aspects is unbounded, even for a simple object23. Each specific description must thus focus
necessarily only on a finite and often small set of aspects of the object or phenomenon to describe,
a set of aspects which is each time chosen according to the aims and purposes of the observer.
In my view, there is always this pragmatic component of descriptions, which intervenes in every
case, also in scientific research, where the relevant aspects to observe and to explain are chosen in
accordance with the observer’s specific needs and with the current expectations of the scientific
discipline in question.

Abstraction is thus a way of considering a phenomenon under some of its aspects, neglecting the
others. An abstraction can be supposed to be a computable procedure: an empirical phenomenon,
constituting raw data, can undergo an algorithmic process of abstraction which operates by
selectively processing only some aspects of these data, yielding an abstract representation of the
phenomenon.

Of course, this could seem a too naive view, because there is probably no such thing as a purely
empirical phenomenon: many well-known philosophical positions, from Kant to a significant part
of current philosophy of science, deny that senses, let alone scientific instruments of observation,
can unbiasedly report real-world phenomena as they are in themselves. Raw data obtained with
scientific observation is already a representation, produced by some form of primary abstraction:
measure itself is such an abstraction. But for a process of abstraction to be seen as a compu-
tational procedure (and this is indeed my proposal), it must already act on representations: as
discussed in section 14.5.1, computations act on representations.

But what is a representation? It is, I propose, itself the result of an abstraction: the output of
a procedure (the abstraction) which, taking as input some data, produces an abstract represen-

23 At least for observable macroscopic phenomena or objects. Probably, this would not hold for theoretical
entities, like elementary particles, which are however unobservable. I do not wish to enter into this problem here.

6.6. Hierarchical levels of descriptions 199

tation of these data, that is a description which focuses on some of their aspects neglecting all
the others. An abstraction is then a computation, acting on abstract representations, yielding
other abstract representations. It seems there is the risk of some infinite regress here: the first
representation, the “bottom level” one, from which all the other are obtained, must not be the
product of an abstraction itself, but must be some form of “raw” data. This is a hard question.
An answer to it would involve defending some specific position on the realism-antirealism axis.
It is not, however, in the scope of this work to embark on such basic questions on the relation
between real, actual objects or processes and their primary, phenomenic representations24. So, I
will take here for granted that, when we speak of empirical phenomena, we are actually already
speaking of representations of some sort.

What I advocate here is an epistemic stance25 about scientific descriptions and explanations,
which sets aside questions regarding the relationship between the real world and its representa-
tions. What interests me here is to reflect on representations and their transformations, which
produce other representations, and on the relationships between properties of the original repre-
sentation, the transformation, and the resulting representation. As better maintained elsewhere
in this work,26 I see science as something dealing with representations in this sense, and specifi-
cally scientific explanation as an eminently communicative and cognitive question27 dealing with
representations.

How an empirical phenomenon is represented, however, is not dependent on a completely free
choice28: each scientific discipline has a basic ontology and its theories deal with the objects
of this ontology and their properties. In other words, each science has its natural kinds. It is
this basic ontology, which is usually already given (at least for well-established sciences29), that
can be further abstracted. But, as stated above, I think this basic ontology must be considered
already a representation. This representation can vary, across specific sub-disciplines of a science,
or across sciences: for example, particle physics deals with subatomic particles, while chemistry
deals with atoms and molecules. In general, each science, or also each specific line of inquiry, has
its basic ontology of elementary entities, properties and operations on them.

Given that it is my intention to consider the transformation of representations as a computa-
tional task, in the digital sense of computation considered by computer science, I will specifically
consider only digital, or in general discrete representations. Reducing the scope of the following
considerations to discrete dynamical processes and systems could be judged to be an oversim-
plification. This could well be the case, but a discussion of this aspect would probably require
entering the very vast debate about the nature of the discrete and the continuous in philosophy
of mathematics, or possibly quarrels just as complex and vast (if not more) about the nature
of computation and the ultimate nature of physical reality30. There is not enough space here
to touch upon these questions. As will become clearer in what follows, I want to argue for the

24 Although, as we said in section 1.5.1, my theoretical position bears in some way on this problem, too.
25in the sense of the word employed by, among others, Cory Wright and William Bechtel, as explained in

section 10.
26 Section 1.5.1.
27 This also contrasts with an “ontic” view of explanation, as highlighted in section 10.
28 For a debate, see, again, section 1.5.1.
29 Of course, in newly emerging sciences or scientific paradigms, one of the first duties is precisely that of

discovering (or “inventing”, according to a less realistic vision) the basic ontology of that scientific branch. And it
is obvious that a scientific ontology is almost never fixed and complete, although in well-established sciences, like
chemistry or molecular biology, the basic ontologies are quite well established. In certain cases, such as psychology,
sometimes the basic ontology is apparently already provided by common-sense notions.

30 Questions such as: is computation constrained by physical limits, or is it a purely mathematical question?
Is physical reality continuous, or at very small scales it shows a basic discreteness? Is reality the result itself of a
computation, as claimed by pancomputationalism?

200 Chapter 6. Thinking about modularity

fact that scientific theories and explanations tend to assume a modular form. In accord with the
epistemic stance announced above, in what follows we will deal only with theoretical models and
their transformations, not with “real” phenomena, and we will assess questions regarding the
modularity of these systems. As I tried to show in section 5.1.1, discreteness is trivially a form of
modularity. Specifically, we will consider here only discrete models, taking them as paradigmatic
cases of modular systems by means of which to try to shed light on the notion of modularity in
general. This “digital” simplification will characterize the rest of this work.

6.6.2 Preferred languages
Every discipline has not only a basic ontology, but also a basic language, understood as a vocabu-
lary constituted of terms referring to the kinds of the basic ontology: terms for types of elementary
entities, their properties, and for operations on them. I call this language the preferred language
of a discipline31.

For example, very roughly stated, the preferred language of chemistry is that of atoms, ions,
molecules as the entities, valency, atomic and molecular weight and other properties of them,
and reactions between the entities; the preferred language of molecular biology is that of bi-
ological macromolecules, their properties, the various kinds of interactions they entertain and
the transformations they undergo, and interactions and operations affecting the complexes con-
stituted by these molecules, up to the cellular level; the language of cognitive psychology is
that of mental representations, certain kinds of relations between them and operations on these
representations, understood as computations.

6.6.3 Abstraction, aggregation and multiple realizability
As intended here in a semi-technical sense, an abstraction is a computable procedure acting on
a representation. This definition is quite liberal, and does not pose per se constraints on what
computable transformations the initial representation can undergo. But, in its ordinary language
sense, and even philosophical, traditional sense, the word “abstraction” certainly involves the idea
of something present in the observed representation being neglected, in order to obtain a more
coarse-grained, less detailed representation. This neglect of information can be effected by simply
discarding certain aspects of the observed representation, or by partitioning the range of their
possible values, and by taking an aggregate value as representing whole subsets of the partition,
or, in general, by transforming the set of the observed representation’s aspects into a smaller set
of aspects, or by aggregating groups of entities of a representation: the point is that the abstract
representation obtained from the original one has less properties than the original one. This
entails that more, different representations described in the detailed, non-abstract way, can end
up, under some abstraction, being represented as the same abstract representation: an abstract
representation represents the set of the representations which differ precisely in the properties
which the abstraction has neglected, while having in common the set of properties that the
abstraction has considered. In other words, an abstraction entails multirealizability: the same
abstract representation can be obtained starting from a set of different basic representations,
which are its realizers. Thus, an operation of abstraction entails that more than one of the

31 A language can also be seen, in a somewhat more formal way, as a collection of types, types which can be
instantiated by tokens. This reminds of similar definitions which were given in sections 5.1.1 and 5.1.2, definitions
pertaining to the concept of “digital”, or “discrete”. We can then see a language as a collection of discrete types
which can be instantiated by certain tokens. In computer science (see section 17.1 of the Appendix) a language,
understood in the discipline’s technical sense is precisely a collection of types: it is a collection of strings, which
are its types (strings which, in turn, can be seen as decomposable in ordered collections of symbols, which are
again types).

6.6. Hierarchical levels of descriptions 201

original representations end up being mapped by the abstraction function into a single “abstract”
representation: an abstraction in the philosophical sense is a function many-to-one32. So, if
we apply an abstraction function to an entire set of representations, the new set of abstract
representations ends up having a smaller cardinality than the original one (at least in the case
of finite sets33).

I propose to call proper abstractions what I described above, that is computable functions which
map representations to representations in a many-to-one fashion.

I want also to include into the category of abstractions what I would call lossless abstractions:
functions which produce elements which are not multiply realizable, that is, functions which
map representations to representations one-to-one34. Examples are the identity function, or
computable functions which produce “abstractions” which are simply different representations
of an object at the same level of detail of the original representation.

It results from the definitions above that an abstraction always produces a set of representations
whose elements have at most (in the case of lossless abstractions) the same degree of detail of
the original representations, and usually less detail, when a proper abstraction is used35.

6.6.4 Transformation of languages by abstraction
A very important point is that, from a given language, another one can be obtained by a process of
abstraction, abstraction understood as a computable procedure which acts on the constituents
of the original language. For example, the language which describes society as a system of
interrelated individuals can, by abstraction, produce another language which describes groups of
individuals, and relations between groups.

A programming language, which to all intents and purposes is a language in the sense intended
here (comprising entities, the variables, and instructions to manipulate the variables), can, by
abstraction, be translated into another, usually higher-level36 computer language. A higher-level
language, as expected, given that it derives from the original one by abstraction, has single
instructions which correspond to sequences of instructions of the original, low-level language. It
is more “abstract” (in the common sense) and coarse-grained than the original one. It is, also,
multi-realizable by more than one lower-level language. For example, a program written in a
high-level language like C, can be compiled, that is translated into, an unbounded set of different
machine-level languages, each corresponding to a different CPU architecture37.

In the technical sense which has been discussed in section 4.1.5, each instruction of a high-level
language constitutes a specification of a more or less elementary computation which can be
implemented in an unbounded number of ways by other languages. As an instance of the use
of a programming language, a specific program written in a high-level language constitutes a
specification which can be implemented in an unbounded number of ways by programs written
in other languages.

32 That is, it is a non-injective function.
33 Of course, in the case of infinite sets this is not guaranteed: it is a basic fact of set theory that the cardinality

of an infinite set obtained from another infinite one by removing a part of its elements can still have the same
cardinality of the original set: for example, if we perform an “abstraction” by ignoring the sign of an integer
number (function “absolute value”), we obtain the set of natural numbers starting from the set of the integers,
but the two sets have the same cardinality.

34 That is, injective functions.
35 Of course, I do not consider as abstractions transformations which “add” detail to a given representation

(whatever that could mean).
36 See section 4.1.4.2.
37 See section 4.1.4.2.

202 Chapter 6. Thinking about modularity

6.6.5 Descriptions and simulations
I consider here the notion of description. We have already introduced the notion of language, a
collection of types of basic entities, their possible properties and possible operations on them.

I propose to view a description as the dynamical description of a phenomenon, expressed in
terms of a given language: what I call a description can supply a theory of the described phe-
nomenon, in the form of a dynamical model, namely a discrete dynamical model (or DDS), which
allows for some (possibly limited) dynamical reproduction, or simulation, of some aspect of the
phenomenon’s dynamics.

A description deals dynamically with entities of a language, where “language” is to be understood
in the sense described in the preceding sections: a description acts on tokens instantiating the
vocabulary of the basic ontology provided by a certain language, and evaluates and transforms
these tokens according to functions and operations chosen among the operations specified by
this same language. From this standpoint, a description coincides with what in section 5.1.1,
following a definition by John Haugeland, was called “digital system”, and basically is a kind of
computationally capable system.

A clarifying example comes immediately to mind: a description so understood is equivalent to
a computer program written in some programming language. Computer programs are a form of
dynamical system, and the “language” in which they are written is formally a language in the
computer science sense recalled above. My definition of description is thus akin to a definition
of computer program, but I understand it as more general, including discrete dynamical systems
which must not necessarily be imagined in the form of the classic computer architectures. In
other words, a description is a specific discrete dynamical system of some sort: it can be a
distributed parallel system like a cellular automaton, or a boolean network, but also a more
classic serial computer, like a specific Turing machine or a specific computer program running
on a von Neumann architecture.

From a more formal, computational standpoint38, a description is a machine acting on strings
of a language, a language produced by a certain abstraction of the original phenomenon.

I call simulation the execution of a run of the machine constituting the description, starting
from a certain initial state. For example, in a CA, the initial state is the global configuration
of the cells of the CA, and a simulation is the evolution of the CA starting from that initial
configuration.

6.6.6 Languages and levels of description
I propose to tie the notion of language in which a description is expressed, to the notion of level
of description, by means of some definition.

A level of description is a set of languages.

Let’s examine some cases relating languages and levels of descriptions.

Two descriptions expressed in the same language are certainly at the same level of description.
But, as we have seen, languages can be transformed by abstraction into other languages. A
lossless abstraction39, which does not reduce the detail of the original language, that is, that
maps, in some computable way, the original language’s terms to the terms of the new language

38 See section 17.1 of the Appendix.
39 A type of abstraction admitted by my definition, as specified in section 6.6.4.

6.6. Hierarchical levels of descriptions 203

in a one-to-one way, produces two languages that are at the same level of description. Intuitively,
this means that, at least in the case of finite languages, the two languages have the same number
of elements. This seems to me to adequately capture the idea of level of description: a level of
description is intuitively a level of detail in which something is described. A language produced
by an abstraction which does not discard possible distinctions expressible in the original language,
maintains the level of detail of that language. Thus, a level of description is an equivalence class
of equally detailed languages.

A proper abstraction, which takes a language and maps its elements many-to-one into another
language, produces a higher-level language, that is, a language which is at a higher level of
description with respect to the original language. The latter can then be seen as the lower-level
language, belonging to a lower level of description. Of course40, a higher level language turns
out being multiply realizable by lower-level ones. This seems to me to capture in a quite faithful
way the intuitive idea of “more abstract” as “higher level”, and “less abstract” as “lower-level”.

Given that the relation between levels is transitive, a hierarchy of levels of description quite
naturally derives from the possibility to iteratively transform languages into other languages by
the repeated application of abstraction functions.

All the above can be extended from languages to descriptions:

• two descriptions are at the same level when they are expressed in the same language, or in
languages at the same level, that is, languages that can be obtained one from the other by
means of a lossless abstraction.

• a description is higher-level (or at a higher level) than the original one when the language in
which it is expressed can be obtained, by means of a proper abstraction, from the language
in which the original description is expressed.

6.6.7 Redescriptions
A description, understood as a machine plus the entities it acts upon, can be in turn re-described:
that is, the description can undergo, in order to yield another description, a set of computable
transformations which can act upon both the language in which it is described, usually by means
of some kind of abstraction function, and on the structure of the machine which manipulates
the entities.

I thus propose to call a redescription any computable function which, fed with a description (in
the form of a certain machine expressed in a certain language), produces another description, in
the form of another machine and another language. The redescription can change the structure
of the machine, the language, or both.

In order to simplify a bit, in what follows I will often call “redescription” not only the computation
which transforms a description into another, but the newly obtained description as well, leaving
to the context the charge of disambiguating between the two uses.

6.6.8 Validity of a redescription
Given that we are dealing with dynamical systems, a redescription must be checked for its validity:
this is a term of art in the field of computer simulation of dynamical systems, which pertains

40 See section 6.6.3.

204 Chapter 6. Thinking about modularity

to the following question: is the simulation accurate in following the dynamics of the simulated
system? For this to be the case, it is necessary that the simulated result does not diverge in time
from the actual dynamical behavior of the simulated system: the error, that is, the difference
between the simulated behavior and the behavior of the actual system must stay inside a limited
range, as time flows.

In our case, we start with a dynamical model, a description, which gets redescribed. The redescrip-
tion is valid if the obtained description’s dynamical behavior does not diverge in time (up to a
chosen maximum error) with respect to the dynamical behavior of the original description. This
condition must be enforced because, given the liberal definition of redescription stated above, a
redescription, in producing a derivate description, could in countless ways, by way of ignoring
functional and relational aspects of the description to redescribe, produce a derived description
which only barely resembles the original one. The point of redescribing is precisely this: if we are
interested in only some aspect among all the aspects of the dynamical behavior of the original
description, we could redescribe it in a way that takes into consideration only that aspect alone,
or that aspect together with some other one which is necessary to consider in order to obtain a
valid redescription.

In general, a redescription ends up being not valid when it simplifies too much, or neglects
altogether, the aspects of the original description which are relevant for the aspect of its behavior
the observer has chosen to focus on. If we were to take a realistic stance toward the observed
original description (an ontic stance41), we could say that these are the causally relevant aspects
of the original phenomenon: check for validity ensures that the redescription is causally relevant
for the phenomenon to be explained. This condition of causal relevance is a condition which must
be assured when producing mechanistic explanations of a phenomenon, mechanistic explanations
which constitute re-descriptions of the observed phenomenon, and that, to be explanatory, must
of course be valid redescriptions42.

The validity condition for redescriptions resembles what I call the aggregation condition for
nearly decomposable systems43. This should not come as a surprise, for aggregation of a nearly
decomposable system is precisely a redescription of the dynamical system. It is carried on in
a way that takes for granted that the system can be treated as if it were decomposable. This
assumption of nearly-decomposability, as seen, introduces an error which must be checked to
remain within certain accepted bounds. When this happens, the aggregation condition, which is
a form of validity condition, holds. An aggregate description of a nearly decomposable dynamical
system is what we will call a modular redescription in section 6.6.10.

6.6.9 Preferred descriptions
As we have seen in section 6.6.2, every discipline has a preferred language with which it formulates
its theoretical descriptions and explanations. These are descriptions, in the sense expounded
above, and can be called the preferred descriptions of a discipline.

Every science or line of inquiry provides such a set of basic descriptions, expressed in the disci-
pline’s preferred language: in every science there is a basic theory, or set of theories, which in
principle describe the dynamical interaction of the entities of the basic ontology. Of course, not
every science has a complete basic theory: this is true, if ever, only for long-established sciences,
when not in a phase of paradigm change. But, the goal of any science is precisely that of finding

41 See section 10.
42 The question of mechanistic explanation is treated in section 10.
43 See section 2.2.1.

6.6. Hierarchical levels of descriptions 205

such a kind of basic theory, and in many sciences a basic theory is in the making, albeit some-
times almost permanently so. Besides, there must not necessarily be a single basic theory, nor a
unifying one: according to many, for example the advocates of the so-called “new mechanistic”
view44, special sciences such as molecular biology do not seek for a single theory composed of
law-like all-encompassing generalizations, but for the discovery of specific mechanisms: in this
case there would not be a basic theory, but a set of preferred descriptions, the descriptions of the
mechanisms. Nevertheless, it can be argued, a form of common basic theory is still present in
these sciences as well: the basic vocabulary of molecular biology is indeed that of organic macro-
molecules, and a basic description of the molecules’ interactions and behavior is shared in the
discipline, albeit in chemico-physical terms. I would call a basic description like this, understood
as kinds of entities plus a theory of their interaction, the preferred description of a discipline.

I propose also to use the term “preferred description” to refer to types of descriptions, relying
on the context to disambiguate: for example, we could say that in network biology a description
in terms of linked nodes is a preferred description of a system such as the genetic regulatory
network of an organism.

But a preferred description can be a specific preferred description, pertaining to specific cases:
I would call for example the genetic regulative network of yeast, when represented as a network
of linked nodes, the preferred description of a single case, from the standpoint of network or
systems biology.

Thus, given a certain specific phenomenon, I would call a preferred description of the phenomenon
any description (description understood as a dynamical machine) making use of the preferred
language of the discipline inside which the phenomenon is taken into consideration: while some
disciplines have all-encompassing preferred descriptions, any specific description can be a pre-
ferred description of some phenomenon.

It is important to note that the notion of preferred description is relative to a discipline: the same
system can be described by different preferred descriptions, when considered from the standpoint
of different disciplines. For example, the same social group is to be described differently by
economics and sociology. As we will see in what follows, the preferred description can also vary
within a discipline according to the hierarchical level of description taken into consideration,
where hierarchical descriptions are feasible.

To sum up, the preferred description of a phenomenon from the standpoint of a certain discipline,
is easy to determine: it is the kind of description which is typically employed in that discipline.
Certain disciplines even appear and define themselves based on the proposal of giving some new
type of description of already studied phenomena.

Some examples of preferred descriptions: in neurosciences, preferred descriptions are certainly
descriptions in terms of nervous systems seen as networks of neurons, possibly hierarchically
organized, whose dynamical functioning produces the observable behavior of an organism. So,
preferred descriptions of specific phenomena will be given in neuroscience as descriptions of neural
mechanisms. From a different standpoint, the standpoint of behaviorism, the same phenomenon
of animal behavior is described in terms of the whole organism interacting with the environment,
and specific preferred descriptions will be patterns of sensory-motor interactions between the
organism and the surrounding environment. To consider a non-empirical science, the preferred
description of a cellular automaton45 is certainly its description in terms of cells and of the local

44 See section 10.
45 See section 5.2.

206 Chapter 6. Thinking about modularity

CA rule acting on them, albeit in certain cases other descriptions can be given of the system (for
example, in terms of gliders).

The purpose of this work is to investigate, taking into consideration the requirements of scien-
tific explanations, the relation between preferred descriptions and their transformations yielding
possible re-descriptions. To this aim, I will stick to a highly-simplified view of science: I will take
into consideration a science which observes phenomena which are already representations, and
moreover, that are discrete, computable representations, representations which are themselves
the product of a computation and can be subject to further computable transformations.

Inside this simplification, scientific disciplines produce preferred descriptions in the form of dis-
crete dynamical models of these observed phenomena, preferred descriptions which are, then
simulable. Of course, incomplete basic theories, or specific mechanistic models, which are the
only theories or models provided in actuality in many fields of real-world special sciences, are
effectively simulable only in a limited range of conditions. But, the presupposition involved here
is only that of an in principle simulability.

6.6.10 Modular redescriptions, aggregated redescriptions, explanatory
redescriptions, robustness and validity

Generalizing the original intuition of near-decomposability and aggregation, we can consider an
aggregate redescription a description, derived from the original description, which makes use
of entities, or variables, each of which represents some form of aggregate behavior of a set of
variables of the original description. While aggregation in Herbert Simon’s examples consists in
aggregating sets of variables by means of a simple arithmetic function, such as the arithmetic
mean, the aggregation operation can conceivably be effected according to any computable func-
tion on the set of variables to aggregate. Actually, any computable proper abstraction can be
seen as an aggregate value, given that a proper abstraction takes a single facet, or a subset of
aspects of an object or phenomenon, and cites this single aspect or this set of aspects as the
distinguishing facet of the phenomenon: if the abstraction is rightly chosen, and it reflects the
relevant aspect (the aspect relevant to the phenomenon’s dynamical behavior46, or other promi-
nent features, according to the observer’s interests) of the phenomenon, then the abstraction
can be considered an aggregated representation of the phenomenon, because its selected aspects
come, in a way, to “stand for” all the other aspects of the phenomenon.

In computational systems, even the subdivision of the system into computational modules, each
module considered as a black-box between input ad output channels, is the product of a form of
aggregation, in the sense that to the detailed description of all the variables involved in the internal
functioning of the module, like in the original description, is substituted a single “variable”, which
is the “name” of the box: this “name” is the specification of the program module: as already
highlighted in section 4.1.5.1, specifications of programs can often be seen as “aggregate” values
of the program they specify. This holds also from the dynamical standpoint: in a program module
seen as a black box, to the dynamical behavior of each variable inside the module is substituted
a single aggregate behavior, which is the function that holds between the inputs and the outputs
of the box: that is, its program specification, which is a way to “name” in an aggregate way the
overall dynamical behavior of the module (however, as I explained in section 4.1.5.1, I think not
all types of program specification can be seen as “aggregate names”).

Any redescription whose machine acts on entities representing aggregates of the entities of the
original description can be seen as an aggregate description. But, usually, we need an aggregate

46 This reflects the concept of validity, which is treated in section 6.6.8.

6.6. Hierarchical levels of descriptions 207

description which tracks significant features of the original descriptions. That is, the aggregate
entities must reflect some “robust” aggregate properties of the corresponding original entities,
relative to the researcher’s interests. For example, describing peoples as family groups, when
interested in a genealogical description, is describing them in genealogically robust terms, while
aggregating them on the basis of their preferred food would not be a robust aggregated descrip-
tion, because it does not reflect any genealogically robust metric (though it would be interesting
from a gastronomical or sociological point of view, probably): aggregated values so measured
would not persist across the analysis of different samples of people, while the family relationships
would. These aggregate values can be seen as representing robust subsets of the set of entities
of the original description.

In general, an aggregate representation of a given representation (I remind that we are always
talking here of operations on representations, never of operations on “real” objects) is a trans-
formation of a language into another one by means of a proper abstraction: in this case, the
aggregation function. A language obtained by proper abstraction from an original one is always,
by definition47 a high-level language with respect to the original one.

So, an important point to note is that an aggregate redescription is always situated at a higher
level of description with respect to the level or the original description. This stems from the fact
that an aggregate redescription is precisely expressed in a language obtained by means of a proper
abstraction, the aggregation, on the original description’s language, and by definition a language
so obtained is a high-level language with respect to the language of the original description.

As we have seen, according to the general definition given in section 2.1, a module is a partially
isolated robust subset of a system possessing a well-defined boundary. Robustness of a module is
its robustness relative to the chosen relation or metric used for the module detection, that is, its
resilience to perturbations of the context in which it is immersed, perturbations measurable by the
chosen metric. A module can be seen as a group of entities possessing, by way of its robustness,
a sort of identity as a group. The module’s identity can be represented by a single placeholder
for the whole module, which can be considered the module’s name. This is what is done when,
for example, a network gets coarse-grained, as described in section 3.2.5: in the coarse-grained
network, a single node corresponds to an entire module of the original network. We could say that
a single node of the coarse-grained network description “names” a module of the original network
description. This name of the module needs not be conventional, but can, better, explicitly reflect
some property which is common to all the elements constituting the module, usually a common
property related to the metric employed in the modularity detection phase. The module’s name
can in any case be considered a robust aggregate value of the elements constituting the module48.
So, a modular coarse-grained redescription can be considered an aggregate robust redescription.

In dynamical systems, this robustness of the aggregate redescription is even more important: if we
want (as we usually want) to make the aggregate system match, or track in some significant way
the dynamical behavior of the original system, without diverging from it too much in time, that
is, if we want the aggregate redescription to be valid, robustness must affect also the aggregate
dynamics: each aggregate entity must be spatio-temporally robust, that is, it must have caught
a functional subdivision of the original description’s processual dynamics into process modules,
where the term functional is to be understood as describing the fact that a part of a system’s
processual dynamics performs a defined role which contributes to the global functioning of the
overall system in a recognizable way (this conforms to the “explanatory role” conception of

47 See section 6.6.4.
48 Because even a purely conventional name reflects the common property of the module’s entities which

consists in belonging to the same module.

208 Chapter 6. Thinking about modularity

functions, as explained in section 9). This role comes to constitute the “name” of the module,
which is an aggregate representation of the function it fulfills in the overall functioning of the
system. Functions so understood constitute a certain machine manipulation on a part of the
original description’s entities: the single function can be seen as a sub-description of the original
description constituted by a specific machine (let’s call it a sub-machine) which operates on a
subset of the original description’s entities. The function this sub-machine operates on this subset
of entities can, as said, be named by the role it fulfills in the overall functioning of the description
to which it belongs, but can also be seen as an input/output function, taking as input a subset
of entities, each one in a certain state at a certain time, and producing a different configuration
of states of these entities at a later time as the output. The whole original description can then
be seen as constituted of a structured set of subdescriptions interacting by means of groups
of entities which they manipulate in turn, and that can be seen as realizing input and output
connections between the functional sub-descriptions49.

When this condition holds, that is, when the original description can be redescribed as a struc-
tured system of sub-descriptions interconnected by dedicated channels, each subdescription un-
derstood as a particular machine fulfilling a certain function on a subset of the description’s
entities, the description is nearly-decomposable. In a nearly decomposable description, there is
functional modularity. The fact that the description is nearly decomposable, means that it is so
redescribable with a certain approximation. This can happen when the functional modularity
detected is not perfect, that is, when isolation between the subdescriptions is not complete, and
some subdescription can interfere with the internal processing of another subdescription by ma-
nipulating some of its internal entities. There is, otherwise, perfect decomposability and perfect
functional modularity when communication between subdescriptions happens only along the ded-
icated input-output channels. To make use of computer terminology we have already introduced
in section 4.2.3, in this case there is perfect data encapsulation and information hiding.

All the above can be better visualized in the case of a description constituted by a computer
program. In this case, we detect its modularity by individuating parts of the code which act on
only a subset of the whole set of variables of the program (this detection of program modularity
can be automated by program slicing, as seen in section 4.3.4). Once these parts are individuated,
the program can be represented as a system constituted of these subroutines interconnected by
well defined input-output channels.

A nearly-decomposable description can be immediately redescribed in an aggregate way: to each
functional sub-description which comprises it (the subroutines in the computer program), can be
assigned in the high-level redescription a single operation of the high-level machine (a high-level
function or instruction in a high-level programming language, for example). To the entities of the
low-level language we can make correspond aggregate entities in the high-level redescription, or,
in certain cases, also the same non aggregated entities. This depends on the degree of validity we
want to attain: when redescribing computer programs in a high-level language, we usually do not
want to introduce approximations in the program’s behavior, but simply to redscribe the same
exact program in a more humanly-understandable and manageable way. In this case the same
detail of data is to be manipulated by the low-level machine and by the high-level one. In case
of descriptions of other kinds of system, this perfect validity is not strictly required, and we can
get by with some acceptable degree of approximation. In this case (the example par excellence
is Simon’s example of the office rooms) we can employ aggregated entities at the higher-level
redescription.

49 This whole process of decomposition into sub-descriptions corresponds to functional analysis (treated in
section 9.2) or functional decomposition as a phase of mechanistic explanation, as expounded in section 10.

6.6. Hierarchical levels of descriptions 209

An important point to make is that, when the higher-level redescription is intended for explana-
tory purposes only, even in the case of computational systems or other systems which in principle
would require perfect validity, we can make use of aggregated entities or aggregated variables
in the high-level description. This is possible because, provided that the functional modularity
represented in the high-level modular redescription is in principle valid, for explanatory purposes
which exclude the actual running of a simulation (of the program), we can abstract from the
actual fine details of the data to be processed, and limit ourselves to only cite, in an aggregate
way, the identity of modules of data. For example, when explaining by means of a flow-chart,
we could indicate the input of an image-processing high-level instruction as “image” or “image
data”, while in an actual running of the same program written in the same high-level language,
the same image processing instruction has to be provided with the actual pixel-by-pixel data con-
stituting the image to be processed. But inside the epistemic conception of explanations which I
put forth, an explanation is to be considered as connected to a communicative act, and this act
does not require, at least in certain circumstances, the convey of all the details which constitute
the actual phenomenon to be explained. So, in the explanatory use of the same program, it is not
necessary to specify the same amount of data, and aggregate values can be used, without losing
in precision. On the contrary, when aggregate data are used inside the simulation operated by
the dynamical model, loss of precision is often consequent.

Even in the exclusively explanatory use, however it is necessary that the proposed high-level
redescription, or, better, its high-level machine, acting eventually on non-aggregated variables,
be valid with respect to the original one. Otherwise, we would not be proposing an adequate
explanation of the original phenomenon (that is, of the original description): an explanation
should exhibit a description which reflects the relevant features of the dynamical description
which has to be explained, and this is ensured precisely by the validity of the redescription: if
this condition does not hold, it means that the redescription does not reflect in a sufficiently
accurate way (or does not reflect at all) the relevant features of the dynamical functioning of the
original description. In a mechanism, these are the causally relevant features, the features which
have to be outlined in order to say that the phenomenon has been explained. A description
which does not catch these features is explanatory irrelevant: it is not an explanation at all.

Thus, the operation of finding a valid modular redescription amounts to the finding of a valid
aggregate redescription, that is, a suitable subdivision of the variables of the original description
into modules, and to the finding of a suitable modular update function (that is the machine acting
on the modular level) which gives as a result a valid redescription, where validity, as said, is to
be understood as explained in section 6.6.8, and means that the new modular redescription must
track in an acceptably faithful way the aggregated dynamical behavior of the original description.
The acceptable degree of approximation of this tracking is, as always, dependent on the purposes
and aims of the researcher.

In the case of aggregate redescriptions, the obtained description can result invalid if our sup-
position of nearly-decomposability, or modularity of the original description, turns out to be
false: this could happen if the redescription we employed to turn the original description into a
modular description is not accurate enough to catch the actual modular structure or modular
dynamics of the original description with sufficient precision, or if this redescription ascribes to
the original description a modular structure which is not there at all.

For example, in the case of networks, as we have seen, the fastest algorithms for community
detection are not very precise, and they could produce modular descriptions which do not reflect
any sensible modularity in the network: most algorithms for community detection, in many
cases, actually “see” modularity even in completely random networks. The obtained modular

210 Chapter 6. Thinking about modularity

description would most probably be deceptive, because if a dynamics were to be implemented
on the structure of the original network, in most cases its dynamical behavior would diverge in
time from the behavior of the modular description, for the reason that it is unlikely that such an
approximate and fortuitous redescription has caught the relevant causal relations of the original
description.

In certain cases, redescriptions which are valid only in a limited range of time with respect to the
starting time of the original description of a dynamical system, or which in general are valid only
in a limited range of certain values of the variables of the original description, can be accepted,
but this must be explicitly stated. In some cases, these partially valid redescriptions are the only
possible ones, as we will see.

A modular redescription, as highlighted above, aggregates in some way more entities of the origi-
nal description in order to make them correspond to a single entity in the modular redescription.
In a purely structural modular redescription, aggregation is simply a matter of finding the com-
munities of low-level entities which will, by aggregation, come to correspond to single entities in
the modular redescription.

In a discrete dynamical system (DDS), however, any entity at any given time is in a possible
state,50 and the aggregation function must take care of this dynamical aspect as well: in a DDS,
all the single states of the variables constituting a module come to be combined in a single
aggregate state, which is the state of the single variable which in the redescription represents the
module. Also, in a discrete dynamical system, the entities in the modular redescription must
be processed by a machine in order to track, inside this redescription, the dynamical behavior
of the original description. In a modular redescription, the dynamical model of the original
description gets itself decomposed into modules, which come to constitute the machine of the
modular redescription. This usually means that, as in the case of programming languages, each
module identified in the machine of the original description is a functional part of the program, a
part that gets treated as an isolated box with inputs and outputs in the machine of the modular
redescription. For example, as we have already seen in section 6.6.10, an entire subroutine of the
original description can be represented by a single high-level instruction in the modular high-level
redescription.

In general, with aggregation, to more entities and/or more single values of the original description
comes to correspond a single entity and/or a single aggregate value in the redescription. It is clear
then, that the operation of aggregation reduces the number of single elements to be taken into
consideration. If the aggregated redescription is adequately valid, then its complexity in terms
of number of involved parts or values is lower than the complexity of the original description. It
must be noted that reduced complexity in the number of parts does not necessarily correspond
to a reduced complexity of the overall description, understood as above as the combination of
variables (that is, symbols representing each one a part) plus a machine acting on them. This is
because a valid redescription could end up dealing with less variables than the original description,
but it is possible that these aggregated variables must undergo, for the redescription to be valid,
a computation at the redescription level which is more complex than the computation operated
on the more numerous parts of the original description by the machine of that description. In
this case, however, the reduction in complexity of the redescription concerns at least the number
of variables.

It is arguable that, especially in redescribing non-linear systems, in the high-level aggregated
redescription there is a trade-off between the complexity of the aggregate machine and the detail

50 As explained in the introduction to DDSs in section 5.1.

6.6. Hierarchical levels of descriptions 211

in the data on which it must act: the less detailed the data, the possibly more complex the
machine must be in order for the whole redescription to be valid.

For purely explanatory purposes, however, we can be confident that a given valid redescription
can be further aggregated both for what concerns its machine’s modular description, and the
data the machine manipulates: it suffices to give a sensible name to each module of the machine
and a sensible name to the type of data it acts on. As in the example above, these names can be
“image processor” and “picture data”. These names can be considered aggregate values, and a
name of a functional module of the machine is a form of specification of the computation which
has to be effected by that module. Different forms of specifications (as described in section
4.1.5.2) can give rise to different explanations with different explanatory value: for example, an
explanation in which a specification of each functional module in a flow-chart is given by means
of a conventional meaningless name (e.g. “FIFO”), and the meanings of these names are not
better specified, ends up being not a very perspicuous explanation, while if the meanings are more
significant (as in “output memory buffer”), the whole explanation acquires more intelligibility.

However, even a more perspicuous naming like the latter, would not probably suffice to render
the modular redescription a runnable simulation: when redescribing computer programs or in
general computational systems, the redescription can be required for two different purposes, not
necessarily separated: simulation and explanation. Simulation means that the description must
be able to run. For example, a modular redescription of a given program in the form of a
translation of the original program in a higher-level language, is supposed to be runnable, to
be able to perform a simulation. This is guaranteed by the fact that the higher-level language
possesses in turn an obvious lower-level implementation, provided by its transformation by means
of a compiler or an interpreter (see section 4.1.4.2), which is its lower-level redescription, and
which is the description which is actually run. Also, the original program possesses a similar,
isomorphic, lower-level implementation able to be run. Thus, the modular redescription of the
original program in terms of the higher level language is able to be run as well, and can be used
for simulation purposes. It could well be used also for explanatory purposes, for example when
the higher-level language is more perspicuous to the observer than the language into which the
original description is written. There are, however, other cases in which a high-level modular
redescription is useless for simulation and useful only for explanatory purposes. This can happen
when the language of the redescription is so abstract that it cannot be implemented without
recurring to informations external to the redescription itself. For example, a modular diagram like
that of fig. 6.5 is such a case. Here, and in all the cases of redescription useful only for explanatory
purposes, the high-level language does not have an already known typical implementation, as
a high-level computer language has: the high-level language provides too little information to
convey an obvious way to implement it. This can be due, for example, to the use of meaningless
labels as the names of the high-level modules, as highlighted above. But also other cases of more
meaningful specifications can be difficult to be correctly implemented, like the case of fig. 6.5,
where the names of the modules give a functional specification, which is however too vague to
allow for an immediate implementation: the abstraction by means of which the redescription
has been obtained has produced a too big loss of information. Can a simulation be run on the
description represented in the image? Not directly on this description: we would first have to
implement the description (that is, translate it, seen as a specification, into another, lower-level
description which implements it) as a real computer hardware, and in order to do this, we would
need further non-obvious informations, external to those provided by the depicted description.

I propose to call a modular redescription useful only for explanatory purposes, an explanatory
redescription.

212 Chapter 6. Thinking about modularity

Figure 6.5: a diagram representing the modular high-level structure of a typical computer (von Neumann archi-
tecture). (Image by Lambtron, taken from https://commons.wikimedia.org/wiki/File:ABasicComputer.gif).

In general, the finding of a valid aggregate redescription, as originally intended by Herbert
Simon51, involves two phases:

i. aggregation of variables;
ii. finding a valid update function describing the aggregate variables’ dynamic behavior.

Step (i) consists in finding a suitable aggregate abstraction of the entities of the original descrip-
tion. Step (ii) consists, mainly, in finding a dynamic update function for the aggregate system,
or, in other words, a machine which, for each aggregate entiy, describes the dynamical behavior
of the aggregate system. This machine acts at the level52 of the aggregate description.

As highlighted above, finding a a valid modular redescription amounts to finding a certain valid
aggregate redescription: in this case, step (i) consists in finding a modular description of a given
system, by means of some algorithm for modularity detection, as for example those described in
section 3 for what concerns network modularity.

But, this two-phase search is not simple: as we have seen in section 2.2.1.2, phase (i) is in
general computationally intractable, while, at least for linear systems, point (ii) is more easy to

51 As described in sections 2.2.1, 2.2.1.1 and 2.2.1.2.
52 “level” understood as explained in section 6.6.6.

6.6. Hierarchical levels of descriptions 213

fulfill. And, actually, as we have seen, also in the case of optimal modularity detection, which
corresponds to phase (i), there is computational intractability concerning optimization of the Q
value of community modularity, as described in section 3.2.1.2.

Of course, that does not mean that modularity detection or aggregation is always unfeasible,
because this intractability affects general algorithms for finding optimal modularity based only
on certain features of the observed system and a chosen metric on these features, in absence of
any further information or constraints about the modular structure of the system. Traditionally,
in empirical science, point (i) is instead conducted not in a general algorithmic manner, but
with the help of some specific information, derived from observation, which can provide some
bias and some constraints which constitute hints as to how to suitably decompose the system
into modules. Nevertheless, for sufficiently large systems, as we will see in section 13.3, this
computational hardness in the search for modularity could hinder scientific research.

6.6.11 High-level modularity and macrodescriptions
I propose to call a modular redescription any valid redescription which consists in a modular
representation of the original description (that is, a description where each element corresponds
to a module of elements of the original description, and where relations between elements cor-
respond to relations between the aforementioned modules), together with a machine acting on
this modular representation in order to validly model the dynamical behavior of the original
description, that is to produce a dynamical behavior of the modular representation which does
not diverge more than an accepted (and chosen) error degree from the dynamical behavior of the
original description, seen in its aggregate (or modularized) form.

This condition of validity holds when the higher-level redescription captures the functional mod-
ularity of the original description, and not only its structural modularity, or a modularity which
is not functionally relevant to the dynamical features of interest for the observer.

It is important to make some observations and give some new definitions here:

1. Every description is modular : in general, any description of which we are talking in this
work is modular. This stems from the fact that, by the definition of description employed
here53, a description is a discrete dynamical system, and discrete dynamical systems are
modular, given that, as highlighted in section 5.1.1, DDS are digital systems, and digital
systems are modular systems.

2. Preferred descriptions are modular : accordingly, even preferred descriptions, in that they
are discrete dynamical systems, are modular: in a preferred description the modules are
the single, atomic entities of the basic ontology of the discipline according to which the
description in question is a preferred description.

3. Trivial modularity: given that any description is intrinsically modular, this modularity is
a trivial modularity for that specific description. Inside a given discipline, the modularity
of the preferred description of that discipline is thus trivial for that discipline: this trivial
modularity represents the lowest modular description level of that discipline, the “bottom”
level54. There is also another trivial level of modular description, always present in any
description: this is the highest level, the one which considers the whole system (the whole

53 See section 6.6.5.
54 Of course this bottom level is dependent on the discipline taken into consideration, as examples made above

have clarified.

214 Chapter 6. Thinking about modularity

description) as a single module. These two levels, the lowest and the highest, can be
considered together the trivial hierarchical levels, which are always present in any modular
system, and they together constitute a flat hierarchy.

4. Modular redescriptions are higher-level: as implied by the definitions given in the former
sections, any modular redescription is situated at a higher level than the original one,
because its ontology is obtained from the original one by a proper abstraction, and a
proper abstraction transforms a language into a higher-level language. Thus, the modular
redescription is at a higher level than that of the original description, and each entity in the
ontology of the modular redescription represents a set of entities of the original system: it
is a macro-entity composed of micro-entities. I thus propose to call a modular redescription
a macrodescription, and its modularity macromodularity.

5. Higher-level modularity is non-trivial: the non-trivial thing about modularity of descrip-
tions lies in their being susceptible of modular re-description: given any description, it is
not guaranteed that it can be redescribed in a modular way. If this obtains, then we can
say that the original description shows a form of high-level modularity (in addition to its
already present low-level, trivial modularity). The non-trivial question is precisely to ask
if some description shows any high-level modularity.
High level modularity, as we will see at length in section 6.8, is important because it allows
for certain types of explanation of the original description, types of explanation which are
precluded in absence of high-level modularity.

6. High-level modularity is relative: of course, like modularity in general, high-level modularity
is relative to a chosen relation between entities of the original description, or chosen prop-
erties of them. We can in general talk of the choice of a metric on the original description,
a metric on the base of which, high-level modularity is assessed: different chosen metrics
give rise to different modular high-level redescriptions. Some metrics do not even allow
for any modular redescription of certain original descriptions. It could be also possible to
talk of abstractions, instead of metrics: in general, modularity can be assessed relative to
a criterion which consists in a computable function which acts as “module detector” (for
an example, see section 5.2.2). We can conceive this function as an abstraction, which
takes groups of entities of the preferred description and subsumes them under a single
placeholder. Such a kind of function constitutes a module detector when the groups that it
selects are indeed modules in the sense of the general definition of module given in section
2.1, that is, when they show a certain degree of robustness.
Modularity is relative to the choice of a metric, but we must consider that, often, the pre-
ferred description itself suggests the choice of a metric, or a limited set of “natural” metrics
according to which to proceed in order to asses modularity. For example, in spatially dis-
tributed systems, a natural metric is euclidean distance: entities placed in spatial proximity
are more likely to be considered part of the same module. For the reason that natural met-
rics are tied to the preferred description, modularity is relative also to the choice of the
preferred description. But, as we have seen, in science the preferred description is usually
imposed by the discipline into which we are working, so this choice is not really free.

7. There are, at least in principle, descriptions which can not be subject to a modular re-
description, that is, which present modularity only at their basic preferred description.
Descriptions of this kind, which I would call antimodular, will be considered in part IV

6.6. Hierarchical levels of descriptions 215

6.6.12 Macro level and Micro level
In accordance with a natural intuition, a single element representing more parts can be thought
of as “composed” (possibly in a complex, non-additive way) by those parts, and as such can be
seen as a “macro” element, whose components are the “micro” parts. In the case of an operation
on entities, a single operation composed of more simpler operations can be considered a “macro”
operation55.

Thus, I call a macroentity the single entity in the modular redescription whose state represents
the aggregate value of the states of the entities constituting a module of the original description.
The latter entities internal to a module will be called microentities.

I will call amacroinstruction a macro-operation composed of elementary operations of the original
description, or some aggregate operation obtained by any whatsoever computable transformation
from a group of elementary operations of the original description.

As it could be probably useful, I will extend this use of “macro/micro” terminology to all the
others concepts concerning descriptions.

The modular description can then be seen as a machine operating on macroentities by means of
macroinstructions. Each macroinstruction can be seen as a functional module, if seen from the
standpoint of the original, low-level description. From the standpoint of the modular redescrip-
tion, the corresponding macroinstruction can be called a macromodule.

Likewise, a modular redescription can be called a macromodular description, or macrodescription
of the original description, which is then a micromodular description, or microdescription.

The whole machine operating in the macromodular description can be called its macrodynamics,
and the machine of the original description is the microdynamics.

The global state of a description at a certain instant in time (we must remember that a description
is a discrete dynamical system) is called its state, and represents the configuration of the values
of all the variables of the description at that moment. The state of the macrodescription is the
macrostate, the corresponding state of the original description is the microstate.

It is quite clear that this conception ofmacro andmicro is completely relative: a macro-something
ismacro only in relation to more micro-somethings: amacrodescription1 is “macro” only because
it is the result of a modular redescription of a given description (let’s saymicrodescription1), and
in turn macrodescription1 could (potentially) be redescribed into another modular redescription,
macrodescription2, which would become a macrodescription with respect to macrodescription1,
while, relatively to this new macrodescription2, macrodescription1 could then be seen as the
microdescription.

The language in which the macrodescription is expressed, the macrolanguage, can be, quite
naturally, seen as a high-level language with respect to the low-level language of the original
description, and this high-level/low-level distinction is as well completely relative. According to
this relativity and to the definition given above56 of level of description as the language into which
a given description is expressed, these high-level and low-level languages constitute a higher level
and a lower level of description, respectively.

The language in which the macromodular description is given is the macrolanguage, the language
of the original description is the microlanguage.

55 “Macro” is even a term of art of computer programming referring to a sequence of elementary instructions
constituting a composite instruction.

56 In section 6.6.6.

216 Chapter 6. Thinking about modularity

The level of the macrodescription is the macro level, and the level of the original description is
the microlevel.

In accordance with the idea of hierarchical modularity exposed in the preceding chapters, we
could see each hierarchical level in a hierarchical modular description as the level of description (in
the technical sense of level of description given above) which derives from a modular redescription
(again, in the technical sense stated above) of the immediately lower hierarchical level.

To better understand all these questions of description, validity of the modular redescriptions
and levels of description, we could resort to some schematic illustration, as those in fig. 6.6, 6.7
and 6.8.

Figure 6.6: a proper abstraction, or aggregation function, which maps entities composing a module of the mi-
crodescription to single entities of the macrodescriptions in the macrolanguage (the macromodules).

Figure 6.7: a valid macrodescription.

6.6.13 Levels and the specification/implementation relation

The macro/micro relation holds between a more abstract representation obtained by abstraction
from a more detailed one, and the more detailed one. The entities and operations at the more
abstract level are, in general, aggregates (aggregated in some computable way) of the entities
and operations of the original, detailed description. As we have seen in section 4.1.5 and 4.1.5.1,

6.6. Hierarchical levels of descriptions 217

Figure 6.8: an invalid macrodescription.

a specification of a computation or a computer program constitutes a form of aggregate rep-
resentation of the computation. In the case of computer programs, or in case a systems gets
described as a computation, we could then see the higher-level description as a specification of
the lower-level one. As explained in section 4.1.5, the relationship specification/implementation
is relative.

It could be useful, at least in certain cases, even outside questions of computer programming, to
see the relation macro/micro as a form of specification/implementation relation. This standpoint
about hierarchical levels of description as standing in the specification/implementation relation,
must obey a condition: that the macromodules capture functional modules of the lower level.
This condition is however already fulfilled if we take for granted, as in the definition given
above, that a modular redescription is a valid functional modular redescription. The coincidence
between detected structural and functional modularity must not be taken for granted, however,
because, as seen in section 6.2, there are cases in which this coincidence does not hold.

All in all, when the macrodescription is a functional valid macrodescription, we can consider the
relationship between it and the microdescription as a relation specification/implementation: the
microdescription implements the specification provided by the macrodescription57.

The specification/implementation relationship which holds between hierarchical levels of descrip-
tions is an epistemic way to view the problem of levels of description, and does not give rise to a
constitutive hierarchy like classical hierarchies describing “layers of reality”, which have a much
more ontological flavor. My framework about levels allows for a more general abstraction hier-
archy, of which a constitutive hierarchy is only a subcase (even the relation between a whole
and a part which constitutes it can be seen as an abstraction, because the whole can be seen as
the property that all of its parts have in common: they have in common the belonging to that
whole). This setting could probably be a problem for some philosophical positions: for example,
a strictly ontic position on mechanism, like Carl Craver’s, could not consent, probably, to assimi-
late the idea of level of description proposed here to the idea of hierarchical level in a mechanistic
explanation: from such a standpoint, the levels of a mechanistic explanation must describe ontic
levels of organization, which do not allow for multiple realizability of the higher level by the lower
level configurations: this can be permitted only during early phases of a research, in which only

57 Without discussing this at length, I think this relation could also be applied between what in philosophy
of mind is usually called the “realization” relationship between a function and its realizers: the function is a
specification and its realizers are its possible implementations.

218 Chapter 6. Thinking about modularity

mechanism sketches or schemata58 are provided, that is, very high-level descriptions which name
some functional modules with a cursory “name”, leaving all the detail of its implementation aside.
But, the ideal of an ontic mechanistic explanation is, once found a description of a mechanism at
a certain level, that of providing full detail of its implementation at the immediately lower level,
and so on in a fully “reductionistic” way59, until a bottom level full implementation is given: for
example, in neurosciences, this would be a neuron-level implementation. My model of levels of
description based on implementation and specification is not so rigid, and allows for a multiple
realization of each level. This renders it more flexible and general, but also more “epistemic”
and liable of “antirealism”. A discussion on this could be due, but I will only touch upon this
question in a moment.

I would like to also highlight that the framework I propose here is different from the conception
of new mechanists, in that it is more liberal. Descriptions and redescriptions can be based
on any relevant feature of a certain phenomenon. The description can fit whatever interest
is moving the observer or the researcher. In many cases, different kinds of abstractions will
produce descriptions which can fit some pre-existing type of explanation: some descriptions
will be seen as phenomenological models, that is, models not of the functionality of a process,
but of the mere process as a sequence, some others as mechanstic models, catching the actual
structure generating a process, some others as completely anti-realistic purely functional models,
highly mutlirealizable by other, less abstract functional models, or even by mechanistic models,
which, as such, will become the most plausible realistic realizers of the abstract function. The
interesting point is that many of these models can be in some cases transformed, by abstraction
or realization (or better, implementation) one into the other, with the only condition that higher
level redescriptions remain valid. This condition of validity ensures that the abstraction is not
meaningless: that some property of the original phenomenon is caught and conserved, that is
has explanatory relevance. But, holding these condition, the choice is quite free. The validity
condition makes, however, this quite free choice constrained by limitations of computational
nature, namely the validity condition and the antimodular emergence (a notion which is clarified
in section 13.3) that shows up when the system is, relative to the chosen metric for modularity
detection, inherently antimodular (that is, that it does not possess modularity relative to that
metric), or when it is too large to allow for the finding of a valid macromodular description, for
reasons of computational complexity of the modularity detection algorithms employed. These
computational limitations constrain the choice of the possible metric, and in a way constrain our
epistemic possibilities. In this sense, the risk of antirealism is reduced by these constraints: if
the position I embrace is antirealistic, then it is a constrained antirealism.60

These constraints ensure that only valid redescriptions are taken into account: only for valid
redescriptions, the realization process is like that of computational implementation, and the
relationship between a description and its higher-level redescription is like that between imple-
mentation and specification. The relation is that of realization of a function: valid redescriptions
produce an implementation hierarchy. Constitutive hierarchies could produce invalid higher-level
redescriptions. For example, a constitutive abstraction, which partitions the system into random
chunks and maps each chunk into a single high-level entity, mapping operations of the lower-level
language into the same operations between these higher-level elements, would most probably not
produce a valid redescription of a system, because the high-level system’s elements do not cor-
respond to functional subsystems of the original system. The validity condition is simply the

58 See section 11.1.6.
59 Reductionistic according to a certain conception of reductionism, widely shared among scientists at least,

even if not among many mechanistic philosophers.
60 Other considerations on constrained antirealism are in 1.5.1.

6.6. Hierarchical levels of descriptions 219

condition to have identified role-functional relevant modules, but the choice of this functional
decomposition is constrained by antimodular emergence.

These constraints can be viewed as an epistemic bias towards cognitively and computationally
treatable descriptions of the world.

6.6.14 A meta-consideration on levels of description

It seems to me that the theoretical framework proposed above could provide a useful and quite
faithful redefinition of the classic concept of “level of description”, a concept which is not in
general, at least in its typical philosophical uses, immediately perspicuous and clear-cut. It is
a concept used mostly in a loose, often metaphorical way. A redefinition like the one above
could hopefully render the concept more analytically treatable, especially because its treatment
can rely on an already well established exact discipline, namely computer science. Even without
trying to apply to this notion of level of description as programming language all the formal
results which can be attributed to formal languages, this reformulation should allow, as we will
see, to translate a series of concepts related to levels of description into more familiar and easier to
handle operations which pertain to computer languages and programs, a point of view which, at
least in the eye of computer literates, can be considered even more “practical” and less abstract
(as strange as it may seem) than reasoning about abstract philosophical objects. Computer
programs, while they are certainly “abstract” objects, are not that abstract when interacted with
under the form of their physical realization in the physical computers we use everyday: their
creation, correction, and modification is certainly a process acting on symbolic representations,
but the fact that computer programs can be dynamically executed, with the consequence that
they actively produce feedback toward the user, renders them some sort of “concretely observable”
phenomenon, and compels the programmer in her continuing process of correcting and refining
a program, to resort to an immediately experimental mindset and method, “experimental” in
the sense proper of scientific investigation. As will be highlighted also in section 6.9, from a
philosophy of science-like standpoint, programming compels to constant “interventions” (in the
sense of the “interventionist” theories of causality61) in order to better highlight new facets of the
behavior of an object that, while being abstract, is so highly manipulable to become “concretely”
present. Along these lines I hope the translation I’m proposing here between epistemological
concepts and computer science concepts could be fruitful.

It appears quite clearly, though, that the highly simplified view of science that I propose here
as a paradigmatic model of science is particularly fit to model certain special sciences which
heavily rely on mechanisms, rather than theories, as they theoretical construct. The very idea of
preferred description is a veritable paradigm of mechanistic description: an organized set of parts
which interact giving rise to some phenomenon, a model which perfectly fits the requirement of
mechanistic explanation as currently conceived in philosophy of science (a topic which is to be
treated in section 10). This kind of description or explanation is surely typical of some special
sciences, primarily biologically-derived disciplines, but also social sciences. Given that the idea
of description as posed here is epistemic, it fits quite well also purely functional explanations,
namely computational explanations, which are used primarily in cognitive sciences. Limitations
of this kind must be taken into account: I do not want to propose this framework as universally
applicable to science in general.

61 For example Woodward (2003). See also a brief discussion on Woodward and his account of causation in
section 6.9.

220 Chapter 6. Thinking about modularity

6.7 Temporal decoupling of hierarchical levels

As noted in section 2.2.4, two theorems demonstrated in Simon & Ando (1961) state that, in
nearly-decomposable hierarchical systems, there is a temporal decoupling between levels in the
hierarchy: the higher we go in the hierarchy, the slower the dynamics turn out to be. This holds
throughout the whole stack of different hierarchical levels, and it is what allows the observer to
focus selectively on different levels and predict that level’s dynamics: dynamics at the selected
level should be, if the hierarchical division in the model is sensible, orders of magnitude slower
than the dynamics at the immediately lower level and faster than the dynamics of the immediately
higher level. In a way, this captures the notion of robustness, which a subsytem has to be endowed
with to be considered amodule: a subsytem is to be considered a module of a hierarchical modular
level if it is robust, that is if it keeps itself more or less stable in an aggregate way against the
much faster changing interactions between the parts inside it.

The presence of decoupling between timescales at different levels is actually a criterion to detect
hierarchical modularity, at least dynamical modularity, a notion which has been analyzed in
section 6.2. Detection of a hierarchy in a dynamical modular system is based on timescale
decoupling: at a lower level, at a finer timescale, the inter-modules dynamics is supposed, by
approximation, as static, while the intramodular dynamics performs its evolution. The fact that
the criterion for hierarchical modularity could be seen as a matter of values of magnitude in
numerical coefficients in a matrix, like in near-decomposability proper, is simply an expression
of the same temporal criterion: coefficients in the matrix represent influence rate (influence
of whatever form, according to each case) between lower-level elements of the system. Rate
is a temporal quantity62: higher rate entails a higher “speed” (or frequency, or probability of
occurrence during a certain time) of exchange of some kind of influence. For this reason, elements
linked by a connection with a high influence rate will interact more rapidly with each other, than
with elements to which they are connected by a lower-rate connection. For this reason, different
modules, that is, elements at a higher scale than the scale of the elements of which they are
composed, interact at a lower rate with each other than the rate of interaction of their intra-
module, lower level elements: this is at the origin of the inter-level temporal scale decoupling in
a hierarchical system.

As we have seen, in a general conception of hierarchical modularity, aggregation must not nec-
essarily consist in the algebraic sum of some quantities, or similar functions such as the mean,
but it can consist in any kind of computable function whatsoever which maps a configuration of
the module subparts to the module aggregate state. As showed in section 5.2.2, in the case of
cellular automata a form of aggregation can in some cases be obtained by subsuming under a
single placeholder all the possible microconfigurations realizing the same process module, as in
the case of gliders or spaceships. In this case the aggregation function is a computable function
that can be described as a “spaceship detector”. It is not an arithmetic or statistical function
like in the classic cases of aggregation, but the placeholder tracking the position of the spaceship
obtained by means of this function can surely be considered the aggregate value of the spaceship’s
constituent cells. Even in this case, for example in the case of the spaceships in Conway’s Game
Of Life, like the one considered in figg. 5.7 and 5.8 of section 5.2.2, the higher level’s dynamics is
decoupled from that of the original CA, because the aggregate position of the spaceship advances
of 2 pixels every 5 timesteps of the low-level original CA.

We could ask ourselves if this timescale decoupling always holds. The answer is trivially negative:
it cannot hold as such in a hierarchy which is only structural, that is a static system without any

62 In terms of slope of a curve which represents a function of time, or in terms of frequency, or probability of
occurring of an event in a given temporal unit.

6.7. Temporal decoupling of hierarchical levels 221

dynamical aspect: for example, a static taxonomy. However, in many systems, especially natural
ones, a dynamics can be implemented on the static structure, and then temporal decoupling can
occur.

But does timescale decoupling always occur in dynamical systems? It seems this decoupling is
at least a very generally applicable property. Here are some examples:

• in a cellular automaton functioning in a glider regime, wich is a long-time regime with
well-definined, modular macro structures such as “gliders” or “spaceships” allowing the
system to be seen, under certain high-level descriptions, as a system performing complex
computations63, the high-speed low level dynamics, because of the multiple realizability of
the gliders, gives rise to a slower dynamics at the glider level. Moreover, given that gliders
are bigger than one cell, that to convey information they must usually travel distances
bigger than their dimension, and that the “speed of light” is fixed64, they will certainly
take a quite long time (a good number of low-level timesteps) to exchange information one
with the other in order to perform even a minimally sensible computation, while at the low
level the configurations realizing the glider level are ever-changing.

• Timescale decoupling holds in modular computer programs, and in the case of modular de-
composition, during reverse-engineering65, (or also during programming66) of a computer
program into modules, the criterion is more or less the same: we identify parts of the pro-
gram that act on a well defined subset of the program’s variables, without affecting other
variables, and treat them as modules or procedures performing a computation according to
a certain specification. During the execution of each program module, values of variables
external to the module do not vary, and, similarly, a new output value gets produced by
the program module only after its internal computation has been completed: while the
internal computation is underway, the whole external program context is to be considered
a fixed context. This is equivalent to the case of a decomposition of the system’s dynam-
ics according to near-decomposability, in which environmental parameters external to the
module are considered fixed, while the module performs its internal dynamics67.

63 See sections 5.2.2 and 14.5.1.
64 As explained in section 5.2.2, the “speed of light” is the maximum speed which can be reached by a “traveling”

dynamical macrostructure in the CA. Each CA-rule has a speed of light, which is related to the width of the
neighborhood of the rule, and is equal to the maximum radius of this neighborhood. In Elementary CAs, which
have rules of radius 1, the speed of light is equal to one cell per timestep.

65 See section 4.3.
66 In the case of programming it is the programmer which of course plans a hierarchical structure for the

program: she certainly does not detect it. But even the planning is based on temporal decoupling: a subroutine
is supposed to perform a computation which takes only a fraction of time of the whole computation of the higher-
level part of the program which calls the subroutine (in fact, often the subroutine is called repeatedly by this
higher-level module). Another difference when programming with respect to reverse engineering, is that, if one
tried to reverse engineer a discrete dynamical system like a cellular automaton as a computer program (see section
5.2.4 and 14.5.2), it seems unlikely she would encounter proper subroutine calls: in their place, she would find
only repeated sequences of instructions: what a programmer would call “macros”. This is because a non-explicitly-
programmed complex system cannot optimize itself in advance by devising the best way to reduce its redundancy
like a programmer would do, that is, by identifying parts of code likely to repeat, and by confining them into a
subroutine, which will then get repeatedly called during the execution of the computation: of course, this kind
of in-advance planning is not to be expected in a system occurring by chance or in any case never explicitly
programmed by a human.

67 In the case of explicitly programmed code which makes use of repeated calls to the same subroutine, the
entire state of the machine is saved in a memory area called the stack just before any call for a subroutine, to be
retrieved immediately after the subroutine has completed its computation giving back control to the part of the
program which had called it. This way, the entire context external to the subroutine gets “frozen” in the stack
during the execution of the subroutine, and can be thus be safely considered fixed.

222 Chapter 6. Thinking about modularity

Actually, according to many authors, temporal scale decoupling is to be considered a general rule
in hierarchical modular system. Salthe (1985) mentions Simon, von Bertalannffy, Valentine and
others68 as supporting this view.

However, some dynamical systems cannot be decomposed on the basis of the timescale decoupling
criterion, because they simply don’t show different dynamics at clearly distinct timescales: this
occurs in systems whose elements are so interconnected that no significant segregation of subsets
occurs in of them: dynamical influence spreads evenly more or less at the same rate across all
the system, making the systems’ dynamic occur at the same pace everywhere69. The same non-
decoupling of time scales can appear in nonlinear systems: nonlinear interaction between internal
elements of a module and the extra-module environment can trigger disproportionately ample
variations of the extra-module context even following quantitatively small, short-term variations
of the intramodule environment, and this falsifies the assumption that at the finer timescale the
external context can be considered stable. Prediction of those systems’ dynamics would have to
resort to the non-decomposed, non-aggregated exact model, which can be computationally very
complex.

6.8 Modularity, economy of description, explanation

A hierarchical modular system allows for a form of economy in producing its description: by
focusing on a single hierarchical level, or by ignoring details of levels below a certain one, the
information required for a description is reduced. As Simon notes:

If you ask a person to draw a complex object – such as a human face – he will almost
always proceed in a hierarchic fashion. First he will outline the face. Then he will add
or insert features: eyes, nose, mouth, ears, hair. If asked to elaborate, he will begin to
develop details for each of the features – pupils, eyelids, lashes for the eyes, and so on –
until he reaches the limits of his anatomical knowledge. His information about the object
is arranged hierarchically in memory, like a topical outline. When information is put in
outline form, it is easy to include information about the relations among the major parts
and information about the internal relations of parts in each of the suboutlines. Detailed
information about the relations of subparts belonging to different parts has no place in the
outline and is likely to be lost. The loss of such information and the preservation mainly of
information about hierarchic order is a salient characteristic that distinguishes the drawings
of a child or someone untrained in representation from the drawing of a trained artist.70

This can be considered a form of information compression, and specifically a form of lossy
compression: part of the information is discarded, at the cost of a certain approximation in the
produced description, but with the advantage of more ease in producing, communicating, and
understanding it. Or it could be seen as a form of abstraction: a case of partial consideration of
the information present in the system71. Decision on what to discard is analogous to the decision

68 Salthe (1985), p. 72.
69 It can be objected that there must be some temporal decoupling between distant parts, because in physical

systems the speed of information trasmission or of causal influence is limited at best by speed of light. But this
limitation does not hold for idealized dynamical systems of for systems whose time is discretized into time steps
or “clock cycles”, as is typical in digital systems: in a boolean circuit, for example, within a timestep, a signal
can reach every point of the net. In CAs there is a speed of light because they are particular DDS with a local
rule, which limits the spread of perturbations at each timestep, and this renders them partly parallel and partly
serial systems.

70 Simon (1962), p.477. Italic is mine.
71 See section 6.6.1.

6.8. Modularity, economy of description, explanation 223

based on the trade-off between precision in predicting the system’s dynamics and economy of
the system’s description which was hinted to in sections 2.3 and 6.5.

Another form of information compression often allowed by modularity is a lossless compression
consisting in reduction of redundancy: this occurs when multiple identical copies of the same
module recur throughout the system: in this case it is not necessary to separately describe each
of the instances of this recurrent type of module: it suffices to cite the module type and the
locations of its instances (of its tokens) in the system’s structure.

This simplification in describing a hierarchical modular system allows for easier understanding of
the system’s description, while a possible non-modular, non-hierarchical system, that is, a system
which possesses a completely flat hierarchy, would require a description of such a complexity as
to possibly overwhelm our cognitive resources. Herbert Simon highlights this property of the
descriptions of non-modular systems:

The fact then that many complex systems have a nearly decomposable, hierarchic structure
is a major facilitating factor enabling us to understand, describe, and even “see” such systems
and their parts. Or perhaps the proposition should be put the other way round. If there
are important systems in the world that are complex without being hierarchic, they may to
a considerable extent escape our observation and understanding. Analysis of their behavior
would involve such detailed knowledge and calculation of the interactions of their elementary
parts that it would be beyond our capacities of memory or computation.72

Due to its ability to induce economy of description, it can be easily argued that modularity
plays an important role in explanation. Herbert Simon’s first example of a nearly-decomposable
system in his seminal paper73 already contains hints to a link between modularity of a system
and the explanation of its behavior: the modular formula of the system’s aggregate dynamics74,
citing only aggregate variables, is simpler than the original formula taking into account all the
unaggregated variables. If the aggregated formula is employed in the explanation of the system’s
dynamics, a significant economy of explanation can be achieved, and this would surely enhance
the explanation’s intelligibility. The non-aggregate formula would have cited a higher number
of variables. The aggregate formula reduces this complexity by orders of magnitude, renders
explanation more practicable and enhances its understandability.

In general, modularity allows for a coarse-graining of a system, obtained by producing a modular
macrodescription of the system: to each module, composed of a group of entities of the original
preferred description, corresponds a single entity in the macromodular redescription. An example
is given in fig. 3.15 of section 3.2.5. This coarse-graining occurs in two phases: first, we proceed to
detect modularity in the original description, a task which corresponds to finding disjoint subsets
(the modules) of the original description’s entities, identified according to a certain metric on
the original description. We could then replace, inside another, new description, each one of the
found modules with a single entity (its “name”) and replace the relations between entities of
different modules of the original description with relations between the modules, that is, between
single entities of the modular redescription. Since the replacement of a module, which is a group
of entities, with its “name”, constitutes a transformation between languages by means of a proper
abstraction75, the redescription so obtained, that is, the description based on the names of the
modules, is at a level which is higher than the level of the original description. In a dynamical

72 Simon (1962), p. 477.
73 Simon (1962).
74 See section 6.5.
75 See sections 6.6.3, 6.6.4, and 6.6.6.

224 Chapter 6. Thinking about modularity

system, the new high-level relations between entities of the redescription constitute the aggregate
dynamics, and, as discussed in section 6.6.12, they must be chosen so as to obtain a valid coarse-
graining of the original system. If the validity condition holds, a macromodular description76 is
obtained.

A coarse-grained representation is a representation containing less detail than the original one,
and reduction in the detail of a given description is certainly correlated to a better chance for a
human subject to understand it: given that human cognitive resources and capabilities are limited
(this is an experimentally proved fact: namely, our attention span and short-term memory are
quite restricted), they can be easily overwhelmed by too much information. As a consequence,
there is always a trade-off between informativity of a representation and its intelligibility. A well-
chosen level of description is the one which manages to convey the highest possibile information in
a still intelligible way: the goal is that of maximizing these two contrasting parameters together.

It can be objected that understanding is not necessary for explanation: according to a classic
model of scientific explanation, Hempel and Oppenheim’s deductive-nomological model (which
will be introduced in section 8), human intelligibility is not an interesting problem for the philoso-
pher who tries to characterize what an explanation is: explanations are simply linguistic devices
conforming to certain formal requirements. This is in line with the neopositivistically-inspired
view of the proponents of this model, which consider intelligibility a purely psychological question,
and as such devoid of philosophical interest.

Now, it is my opinion that understandability of explanations must be taken into consideration. It
seems to me that the post-neopositivistic, “standard view” neglect of this aspect is on the wrong
side. Inside an epistemic view of explanation like the one I propose here, which sees explanation
as an eminently communicative and cognitive act, understandability of the explanation cannot be
ignored. The same view is certainly shared by authors, like Cory D. Wright and William Bechtel,
who take the same epistemic side regarding mechanistic explanations, and by Robert Cummins
and supporters of functional analysis in general77: all these explanatory practices would not
make much sense, should they produce unintelligible representations. Functional analysis, when
lacking understandability, seems in general devoid of sense as an explanation, because it cannot
be interpreted in an ontic way, as mechanistic explanation could78.

Modularity seems definitely related, through its ability to simplify a description by coarse-
graining, with understanding of a system’s representation: a macromodular representation is
certainly more easily graspable than the original, low-level one: a flow chart, which is a macro-
modular representation of a program, is more easy to understand than the corresponding, appar-
ently unstructured list of lower-level instructions of the program (and this is mainly the reason for
the very existence of flow-charts). A functional high-level representation like the one in fig.3.1479

is certainly more understandable than the corresponding original network composed of a myriad
of macromolecules. Hierarchical representations are, as we will see at once, an even better and
more efficient way to convey a big quantity of information about a system.

But even setting considerations of intelligibility aside, high-level modularity is necessary to pro-
duce some types of explanation. Robert Cummins’s analytical explanatory strategy, as we have
seen in section 9, explicitly requires a hierarchical decomposition of the functioning of a system,

76 See section 6.6.11.
77 These kinds of explanation will be discussed in section III.
78 That does not mean that functional analysis could not make still sense, even if unintelligible, as a formal

redescription of computations, to be used in an automated way: for example by compilers which translate between
programming languages.

79 In section 3.2.3.

6.9. High-level modularity conditions experimental research and computer programming 225

in order to explain it. This is possible only when some form of functional high-level modularity is
actually present in the system, and, if present, when it is detectable80: the subfunctions required
for functional analysis can legitimately be considered functional high-level modules, so a lack
of macromodularity prevents functional analysis and consequently functional explanation. Simi-
larly, the idea of a mechanistic explanation, as highlighted in section 10, requires the finding of a
coincidence between what can be considered a structural and a functional hierarchical modular
descriptions of the system. So, in the first place, it seems that at least explanations of a certain
kind, namely mechanistic or functional explanations, per se require modularity, even when we
ignore issues about the intelligibility of these explanations.

Besides economy of description at each of its higher levels taken singularly, hierarchical modular-
ity also allows for multilevel explanation, which certainly enhances comprehension, by allowing
the fine-tuning to the observer’s needs of the amount of information relayed by the description:
given an appropriate hierarchical decomposition, a system can be described at any desired level
of description, with different results on the intelligibility of the explanation: the more abstract,
coarser-grained levels allow for a very simplified explanation, which usually induces better un-
derstanding, while the choice of proceeding down to lower, more detailed levels, enhances the
amount of detailed information on the system conveyed by the explanation, even if possibly at
the cost of understanding: the most detailed possible explanation is the one which describes the
system in terms of the bottom-level entities81 of its preferred description, and, in many cases,
the sheer amount of information contained in such a description can hinder its intelligibility.
There is always this trade-off between amount of detail and understandability, but hierarchical
modular representations allow also for the understanding of the relations of inclusion (or real-
ization) between the hierarchical levels, and this enables the observer to mentally travel up and
down across levels, in order to produce an internal multi-scale insight of the system’s structure,
a mental model which surely enhances intelligibility of the whole system. This fits well with
the conception of mechanistic explanation82 advocated by William Bechtel and his collabora-
tors, who consider mechanistic explanation as not a merely reductionistic approach, but a type
of explanation which requires the exhibition of the relation between multiple levels of descrip-
tion: a mechanism, which is the object of an investigation, can be usually seen as composed of
sub-mechanisms (that can be considered its modules) and it is itself at least implicitly situated
inside an overarching context, a larger mechanism of which the observed one is a module. The
same authors support an epistemic, cognitive and communicative view of explanations which
highlights the importance of their potential intelligibility, a potentiality which is enhanced by
the multi-level hierarchical structure of the explanation, when this hierarchical description can
be found.

6.9 High-level modularity conditions experimental research and
computer programming

The explanatory capacity of functional analysis according to Cummins’ account, which we will
encounter in section 9.2, is probably nothing new, at least in computer science: any programmer,
even if she does not have to do it explicitly, at least implicitly explains to herself how the program
she is developing works by concerted execution of its subroutines. The act itself of designing a
certain software requires that the programmer knows the specification of the whole program (e.g,
the specification to be “a web browser”), and development proceeds by analyzing (more or less

80 This condition of detectability of modularity will play a central role in my theoretical proposals in part IV.
81 Bottoming out itself is usually a matter of choice or convention, anyway. See section 11.1.5.
82 Detailed discussion of this conception is in sections 11.2.

226 Chapter 6. Thinking about modularity

in Cummins’ sense, as we will see) this global function, which is the specification, into smaller
subfunctions which together make up the implementation of the specification, each of which in
turn gets decomposed, if possible, in simpler subfunctions, and so on. The subsequent practice
of writing the program, that is, the lying down of the sequences of instructions composing each
subroutine, usually starting from the simplest subroutines, constitutes the phase of practical
implementation, which is almost impossible without a former, at least implicit, explanation on
the part of the programmer herself, of the whole system in the above hierarchical terms. And this
can be seen as a form of functional explanation the way Cummins understands it. So, functional
hierarchical explanation is necessary for programming in computer science.

Likewise, in empirical science, it seems that functional, multilevel explanation is essential not
only after a theory about a phenomenon has been devised, when explaining an already known
phenomenon, but also in the making of a theory. A slight digression is needed about a debated
topic in philosophy of science: the basic idea of interventionistic accounts of causation like that by
James Woodward83, is that a causal relation is present between two entities when a hypothetical
variation of the state of an entity, purposefully induced by an experimenter (the intervention),
would produce a variation in the state of the other entity. If this hypothetical circumstance
holds, we can say that the two entities are related by a causal relationship. In a mechanistic
account of explanation84, the aim of the experimenter during scientific research is to advance
and refine the mechanical description of a mechanism by progressively discovering all the causal
relations holding between its parts. If we think of a mechanism as a network of causally related
parts, it is necessary, in order to progressively discover its structure, to proceed by intervening on
each part separately, and see if some consequent variation occurs on other parts. As Woodward
specifies, intervention on the state of a part requires that, temporarily and at least virtually, the
structure of causal links going from other parts of the mechanism towards the part on which we
are intervening, be temporarily disrupted85.

So, interventions on mechanisms require that the mechanism is temporarily modified by eliminat-
ing some of the connections between its parts. This can be represented in a system of equations
which, in discrete dynamical systems86, taken together represent the global update function.

83 See Woodward (2003).
84 I, rather freely, expand here the interventionistic account of causation to interventions on mechanism, by

using a modified terminology with respect to the terminology used by Woodward. For a discussion of models of
mechanistic explanation, see section 10.

85 To clarify with an example: let’s say that in a TV set, there is a LED which is invariably dark when the TV
is turned off, and lighted up when the TV is on. Now, there is a correlation between the status of the TV screen
and the status of the control light. This correlation can be due to two situations: the first is that the control
light receives power from the same power generator which supplies the screen of the TV, or, in other words, that
there is a common cause for the lightening up of the screen and of the LED; the second situation (false, in this
case), is that it is the LED itself the power generator which supplies power to the screen, so there is a casual
connection between the LED and the screen. Of course in this second case, by intervening on the status of the
LED, we would demonstrate, à la Woodward, that this causal relation between LED and screen holds. But, let’s
suppose that the actual situation is the first, that is, that both the LED and the screen have a common power
supply: how should we proceed in order to intervene on the led? If we intervened on it by turning it on and off
with the usual act of turning on and off the whole TV set by acting on the remote control, we would have that,
only apparently we are making an intervention on the LED, because we are not taking into account that the LED
is still connected to the rest of the system as usual. This is not a correct form of intervention, because it would
make appear as if were indeed the LED to cause the screen going on and off. The correct way to intervene would
be, first, to detach the LED’s cables from their usual connections (an action which constitutes a modification of
the causal structure of the system), and then to power the LED separately with, let’s say, a battery, in order to
see if this still produces a variation in the TV screen. With this correct intervention, we would rightly conclude
that it is not the LED to cause illumination of the screen. The correct intervention required a modification of the
causal structure of the system.

86 As said, I mainly concentrate on this class of systems. Woodward does not specifically target such a class,
but I think his arguments can be applied without modification to it.

6.9. High-level modularity conditions experimental research and computer programming 227

Woodard writes:

More generally, a system of equations will be modular if it is possible to disrupt or replace
(the relationships represented by) any one of the equations in the system by means of an
intervention on (the magnitude corresponding on) the dependent variable in that equation,
without disrupting any of the other equations87.

Woodward claims that the set of equations representing correctly (i would say validly) a causal
system, must be modular, because, given that detection of causal relationships requires interven-
tion on a part of the system, and intervention requires temporarily disrupting only the causal
influence which bears on that certain part, were the system completely not modular, this precise
disconnection of one causal path effected during the intervention would disrupt not only the
part of the equation interested by the intervention, but also other parts of the system. With
this claim about modularity, he basically means that modularity in the equations must at least
concern the single variables, and this in turn reflects the fact that modularity should be present
in the system at least at the lowest level, that of the preferred description. This is compatible
with the fact that usually (if we want to avoid metaphysical paradoxes of causation like those
highlighted by Jaegwon Kim on dowward causation88) we should construe as causal the lowest
level. Of course, modularity is usually always present at the lowest levels, because a preferred
description, if it is representing a system as a mechanism, should supply a set of distinct, ele-
mentary parts each of which, as such, is a module per se. But, if we want to redescribe a system
mechanistically at higher-levels, we could certainly construe relations between high-level parts
as prima facie “high level” causal relations89. In that case, in order to proceed by intervention,
Woodward-style, modularity is needed also in the equations representing the system’s dynamics
at these higher levels. All considered, this condition holds if the update function’s structure is
hierarchically modular, and this in turn represents the fact that the system is functionally, and
probably also, dynamically, and, quite likely, structurally, hierarchically modular.

During the phase of discovery, already devised partial mechanistic explanations can suggest and
guide further observation: the researcher needs first to produce roughly sketched explanations,
comprising missing parts or very vaguely-defined modules, in order to guide the research. She
is supposed then to try to progressively refine these models, by getting suggestion precisely
from their incomplete structure in order to guide research towards the areas in which further
experimentation is needed. This will put to test predictions based on these incomplete models,
would conduct to their revision, and to further cycles of model refining. All these phases require
that macromodularity is present and detectable in the system in order to produce all the needed
intermediate explanations.

A similar situation can arise during the construction of a network model, especially for biologically
interesting networks. For example, determination of network structure of the gene regulatory
networks is often effected by the method of gene knockout. Due to the high genetic redundancy in
eukaryotes, knockout of multiple genes is required, but the high number of more than two genes
combinations renders this endeavor unfeasible, as noted in Gulbahce & Lehmann (2008). Other
techniques to assess gene-to-gene interactions can require much experimental effort, and seldom

87 Woodward (2003)., p. 48.
88 See, for instance Kim (1989a) and Kim (1989b).
89 To be clear: i don’t think high-level causation is plausible. But if in describing a mechanism we bottom out

at a certain level which is not the lowest possible level, we would be certainly satisfied with the idea of searching for
causality at that level, as if it were causality proper. For that matter, as can probably appear from considerations
I make in section 9.2 and 1.5.1, I am not a fan of the idea of metaphysical low-level causation either.

228 Chapter 6. Thinking about modularity

complete descriptions of gene regulatory networks can be obtained by this purely bottom-up
approach. A top-down approach could consist in identifying structural modularity in the already
known portion of the network, which is usually quite coincident with functional modularity in
these kinds of networks90, and use this information to infer the role of newly discovered genes
on the basis of the already known functional role of the module to which the newly discovered
gene belongs. Of course, to make use of this methodology, a modular structure must be present
in the network.

A method devised in Clauset et al. (2008) could turn out being very helpful during the research
phase, because, after having detected the hierarchical community structure of a partially dis-
covered network, it can, on the basis of that hierarchy, produce hypothesis on where to look
experimentally for missing links not yet evaluated between two nodes. The method is quite com-
plicated, but it can be synthesized by saying that it has turned out that many topological and
statistical properties of networks are identical in networks which possess hierarchical community
structures belonging to the same set of possible hierarchies. In other words, there are classes of
hierarchies which are substantially equivalent for what concerns many important characterizing
parameters and properties of the networks which are so structured. During the phase of network
discovery, the already discovered partial network can be assessed for hierarchical modularity, and
the typology of this hierarchy is identified. On this basis, the algorithm can predict which links
will be discovered and where, by looking at which couples of nodes which do not result as con-
nected in the partial network are likely to be connected on average in the hierarchies of the same
class. The researcher can then focus experimentation precisely on the couples of nodes which
should be linked according to this prediction, in order to empirically assess the actual linkage
between the two nodes. This way, the rest of the network discovery can be sped up. But, of
course, this method presupposes that a hierarchical modularity is already present in the network.

The two cases above highlight the importance of modularity even in the discovery phase of a
network of scientific interest.

Thus, it seems that hierarchical modularity, at least according to a certain account of causation,
and of mechanistic explanation, is central not only in the explanation of already mechanistically
modeled phenomena, but also, and maybe foremost, in the phase of discovery of the mechanistic
models.

The same necessity for modularity can be expected to arise when analyzing systems not with
the aim to detect causal mechanisms, but functional relations, as is the case in the reverse-
engineering of computational systems, or in cognitive science research: even if in this case the
preferred description is not required to correspond to a physical reality (moreover, in pure cogni-
tive functionalistic psychology à la Fodor, which rejects the type identity theory, the basic natural
kinds of psychology must be functional, and not physical kinds), the counterfactuals which hold
between consecutive computational states or mental representations, which are functional states,
must, if the system is to be considered deterministic (and it usually is supposed to be such),
hold with the same cogency with which counterfactuals supporting causal claims hold91. To

90 See section 6.4.
91 Some clarification is probably due: Jerry Fodor, of course, talks of causal relationships between mental

representations. If some form of physicalism is adopted, however, this opens the door to the well known objection
of the causal exclusion by Jaegwon Kim (see, for instance Kim 1989a and Kim 1989b). I would like to avoid this
problem by granting causal powers only to the “hardware” level in computational systems, and not to higher-level
descriptions. At those higher levels, holds a similar necessity which I would hesitate to call “causality”, because
this term in my opinion brings with it a too heavy metaphysical burden. Besides, when we consider the idealized
computational systems treated by computer science, it does not seem that any sensible idea of causality can be
applied to them. It seems that Robert Cummins was first in expressing a not too dissimilar view, which sees

6.10. Summary 229

all intents and purposes, reverse engineering of computational systems and experimental cogni-
tive psychology act as a kind of interventionistic experimental research on mental faculties or
on computational systems. So, the situation is analogous, and high-level modularity is as well
essential to the discovery of these counterfactual dependencies by interventionistic methods, in a
way corresponding to the case of mechanistic discovery. It seems then that high-level hierarchical
modularity is essential for scientific research in many fields of the special sciences.

6.10 Summary

In this section we have reflected on the notion of modularity, viewed as manifesting itself in
three main possible modalities: structural, dynamical and functional. We have concluded that
structural, dynamical and functional modularity are quite often correlated. We analyzed several
forms of functional modularity in dynamical systems, especially networks, and reflected on the
importance of functional modularity in giving informative and at the same time synthetic rep-
resentation of complex networks, showing this by way of examples. After having declared the
support for an epistemic view of explanation, and introduced a theoretical framework aimed to
facilitate the discussion on the transformation of descriptions of phenomena of interest into modu-
lar hierarchical descriptions, we highlighted several important features of hierarchical modularity
in general: first, hierarchical modularity manifests and is based on a decoupling in the timescales
at different hierarchical levels which allows for simplification of the theoretical description of a
system, a degree of simplification which increases with the degree of abstractness of the modular
level of description. Second, hierarchical modular descriptions are essential to certain forms of
scientific explanations like functional analysis and mechanistic explanation, and certainly the
simplification they permit is essential in giving the produced explanations a high level of intelli-
gibility. Third, it appears that, not only when giving a posteriori scientific explanation based on
an already established theoretical model, but also during the course of the construction of this
model, that is, during the active phase of the experimental research, at least when this research
aims at producing a mechanistic or a functional model of a system, high-level and possibly hier-
archical modularity turns out being an essential condition for the experimentation itself and for
the model which will thereby be constructed.

It seems, in a way, that high-level, hierarchical modularity plays a fundamental role in scientific
explanation, and probably in shaping science itself, and so that the circumstance of encountering
modular systems and descriptions in many scientific areas is to be expected.

programs not as pertaining to causality, in that they are abstract objects. I would like to consider regularities in
these idealized models as explainable in terms of reasons of conventional, or normative, or “grammatical” nature:
it is a condition taken for granted by computer scientists that a Turing machine must obey the constraints of
its idealized physical structure and the instructions of its machine table. This constraint has the same cogency
implied in accepting a grammatical rule: if someone does not want to obey a certain grammar, she is allowed to,
but she would end up simply not speaking that language. No violation of causality would have occurred. We could
obviously conceive, without violating any causality, a Turing machine which does not obey its transition table: it
will simply not be a Turing machine. It is, in other words, a normative question the definition of a mechanism, let’s
say its specification: the condition that circumscribes a mechanism and defines what the mechanism is supposed
to do. A mechanism obeys its specification by convention, simply because if it did not obey the specification, we
would not consider it the same mechanism, precisely because being that mechanism is something which is defined
in a certain conventional way. This is not a causal question, in my opinion, at least, and for sure, at that level of
description: the level of description of the computational mechanism, or of the “mental”. This discussion, though,
borders dangerously on the infamous “kripkensteinian” paradox of rule-following, and this is not the right place
to continue it. I have raised however some related problems in section 14.5.1.

Chapter 7

Some issues about modularity in biology

In this section, I will try to give an overview of the significance of the notion of modularity in
today’s biological thinking.

I highlight first a main problematic area regarding modularity and biology: does evolution pro-
duce modularity, and how? I will try to shed light on the main developments in these investiga-
tions occurred in recent times. I will only marginally touch, for reasons of space, many related
convoluted problems, like the questions raised by the so-called evo-devo approach, which bear
on problems of modularity in the ontogenetic developmental process and its relationship with
phylogeny.

In a second part of the chapter, I highlight the importance of modularity in current biological
research by reporting various examples, drawn from the biological literature (especially systems
biology), of the recent tendency of interpreting biological systems in a primarily modular fashion,
and of different ways to produce modular explanations of biological phenomena.

7.1 Evolution and modularity

A natural question to pose about modularity in biological systems is the question on the rela-
tionship between evolution and modularity: does evolution produce modular architectures and
dynamics in organisms? And, in case of an affirmative answer, has modularity evolved by nat-
ural selection, or for other reasons? There is an obvious observational scientific route to follow
in order to answer such kind of questions, but there also some a priori considerations seemingly
able to shed light on the topic.

A typical line of a priori reasoning in supporting the evolution of modularity is the idea that
modularity improves evolvability, that is, intuitively, the more or less pronounced capacity of
an organism to evolve in the course of phylogenesis. In intellectually pre-evolutionary times,
the complement of this idea was often taken for granted: the idea that organisms constitute
an integrated whole, and that for this reason a change in one part would have resulted in the
breakdown of this complex organization. This was, for example, the position held by Georges
Cuvier at the turning of XIX century1. Given these premises, it stands to reason that the
emergence of evolutionary thinking is to be naturally associated with the weakening of this idea
of complete structural integration of organisms and the emergence of the idea of modularity as
less strict integration between parts of a whole.

1 See for example Schlosser & Wagner (2004), ch. 1.

231

232 Chapter 7. Some issues about modularity in biology

7.1.1 Evolution of modularity in Herbert Simon’s view
Since Herbert Simon’s seminal papers on hierarchical modular organization, it has been argued on
a priori grounds that biological evolution should preferentially produce modular architectures,
both at the phenotypic and at the genotypic level. This conclusion is typically based on the
consideration that evolution would have needed a much longer time to produce the same level of
complexity shown in today’s organisms, were it to work by cumulative, non-modular assembling
of parts into a complex.

To expound this argument, Simon (1962) introduces a kind of parable, the tale of the two
watchmakers, Hora and Tempus, which build watches composed of about 1000 parts. While
Tempus assembles each of his watches one piece at a time as a progressively growing single
complex, Hora makes use of modules: she first assembles subsystems of about ten elements,
which turn out as being stable units, then proceeds to connect such subsystems together to form
larger complexes, and then to connect these complexes together into a super-complex which
constitutes the whole watch. The problem that must be faced is this: if the building process
gets disturbed, the already connected pieces of a still non-completed complex tend inevitably to
detach one from the other. So, should some event interrupt Tempus’ assembling, the aggregate
reached so far would fall completely to pieces. On the contrary, an interruption would destroy
only the last of Hora’s modules, the one still under construction. This way, Hora takes on average
about 4000 times less time than Tempus to assemble a watch, according to an estimate by Simon
which assumes that, on average, the watchmakers get interrupted every 100 pieces mounted. This
advantage is thus obtained by ensuring at each time the presence of stable, robust subassemblies.

Simon’s parable has a fairly transparent analogy in biological evolution: should evolution work by
aggregating parts into progressively larger complexes without relying on potential intermediate
stable forms, the time required for the biological evolution of the complex forms we observe today
would have taken way longer than the time this process has actually required.

What is less clear is if this is an explanation of the emergence of modularity during evolution
as due to natural selection. Simon mentions natural selection, but is not very clear on that: he
reckons that the most “stable” biological forms, that is the modular ones, the biological structures
analogous to Hora’s watches, are the “fittest”2, but he does not make clear the connection between
stability and fitness. The problem is, natural selection acts on each generation based temporally
on local properties of the organisms alive in that moment in time. But the stability Simon talks
of is a cross-generational, phylogenetic stability, not a developmental one, so it is not clear how
this meta-property could be the direct object of natural selection.

We could probably find an answer by looking at the problem from two slightly different point of
view.

First, let’s consider only the phenotypic structure of an organism. It is to be expected that in a
scarcely modular phenotype, which, by definition of modularity, shows a high degree of physical
and functional connectedness between most of its parts, any damage affecting a single part, or
functional mechanism of the organism, could spread its destructive influence indiscriminately to
other, often distant parts or functions, making the organism less resilient or robust to external
perturbations. This lack of robustness bears directly on the organism’s fitness: a non robust
organism is less likely to survive or reproduce than a more robust one, because it is easily
damaged by external perturbations. So, natural selection would certainly favor robustness of the
phenotype, and robustness is particularly present in modular phenotypes. So, natural selection

2 Simon (1962), p. 20.

7.1. Evolution and modularity 233

should directly favor modularity of the phenotype. Thus, in a way, we can already claim that
darwinian evolution should favor modularity, at least at the phenotypic level.

The second point of view is this: It can be argued that phenotype modularity is a consequence
of the modularity of the genotype-phenotype map3. And modularity of this mapping brings
with it greater evolvability: in a scarcely modular organism, there must be genes with a high
degree of pleiotropy. Pleiotropy is the circumstance that a single gene influences many different
phenotypic traits, and thus diffuse pleiotropy is precisely a sign of the non decomposability of
the phenotype-genotype map, that is, of the absence of its modularity. Diffuse pleiotropy means
however that it is frequent that large groups of phenotypic traits co-vary even after a limited
change in a single gene, because this gene has likely a high degree of pleiotropy. In such organisms,
limited genetic changes could then very frequently bring about diffuse, probably even harmful,
widespread effects on the phenotype. In other words, in scarcely modular organisms, changes
in the phenotype occur in clusters of changes, not in single, limited changes, independently of
the amount of genetic change which determined them. This renders the organism less evolvable,
because in these cases variations of the genome produce a smaller range of possible phenotypic
variant than in the case of more modular organisms, where small genetic changes produce small
phenotypic changes, and where for this reason the set of possible phenotypes is more assorted.
Moreover, in the phenotypic space of non-modular organisms, phenotype variants are probably
more different one with respect to the other than in the case of modular organisms: in non-
modular organisms, pleiotropy produces less fine-grained variations on the phenotypes. Acting
on a less varied and more coarse-grained phenotypic space, natural selection has less effectiveness
in optimizing the fitness of the evolutionary lineage, and less freedom in gradually shaping the
form of the phenotype, because the assortment of possible phenotypes is limited. It would, from
a long-term evolutionary point of view, be better for natural selection thus to act on lineages of
organism endowed with modularity, because the “power” of selection in shaping evolution would
be more effective on them than on lineages composed of organisms which are non modular4. Of
course, natural selection can not directly select for the class of lineages. But, as we have seen
above, natural selection can directly selects for modularity in single organisms. This way, on
long, evolutionary times, modular organisms should probably tend to be more abundant than
non modular ones. So, on coarse evolutionary timescales, lineages of modular organism should
tend to be more prevalent than lineages of non modular ones. This way, by acting on single
organisms as a unit of selection, natural selection meta-selects lineages of modular organisms.
We could then say that there is also a meta-selection for modular architectures in biology in
general. In accordance with Simon’s argument, natural selection would probably require much
more time to produce complex stable organisms if it had to act on lineages of non-modular ones.
Should natural selection act on systems where a single modification affecting a part brings about
not only an advantage, but also, at the same time, a lot of potentially disruptive consequences
in other parts of the system, because a component’s influence spreads without any restriction
to all the other components (the analog of Tempus’ case), natural selection would employ much
more time than when acting on systems in which localized changes do not heavily affect other
parts of the system: this second case is the case of modular systems, in which, by definition5,
components of a subsystem can at most strongly affect the subsystem to which they belong,
but, due to the susbsytem’s partial isolation from the other ones, this influence can not inflict
heavy damage to the other subsystems. In this case, each subsystem is stable, or robust, against

3 The genotype-phenotype map is the function which correlates the genes with their phenotypic effects. See
section 7.1.3.

4 It goes without saying that the application here of intentional and apparently teleological terms to natural
selection is only a metaphorical use of the terms.

5 See section 2.1.

234 Chapter 7. Some issues about modularity in biology

external influences: each subsystem is thus a module, and this corresponds to Hora’s case. Any
mutation in the genome can thus affect a limited scope of features of the organism, on which
natural selection will act, leaving intact the previous evolutionary achievements outside that scope.
This way, natural selection can gradually, cumulatively, build upon previously selected adaptive
features, and this reduces the needed evolutionary time by orders of magnitude. Contrary to
what a first reading of Simon’s argument seems to imply, this reduced time is, however, an effect
of natural selection producing the meta-selection of modularity, not a cause of the selection for
modular organisms.

While Simon’s original exposition was dubious, I think that, reformulated as above, his argument
could be seen as an argument for the Darwinian evolution of modularity, that is, for its evolution
as caused by natural selection.

Regarding evolutionary meta-properties, it seems that modularity in general affects evolvability:
as Hartwell et al. (1999) notes, should the function of a certain protein affect every process
in a cell, natural selection would have a hard time in selecting for favorable mutations of the
genes coding for that protein, since any slight modification of the protein would probably affect
positively some process, but negatively many others. This has actually been observed: there
is empirical evidence that proteins which participate in many different cellular processes have
undergone a very slow evolution, if at all. But if a protein’s functionality is restricted only to
some specific sub-process, that would not be the case. In general, isolation of sub-processes
and subsystems inside a larger biological system favors the evolvability of the genes coding for
the subsystem or subprocess. Isolation of a subsystem is attained by limiting its input and
output connectivity from and towards the other subsystems. Such a subsystem can therefore
be considered a module. In cells, isolation of subsystems, that is of complex of macromolecules
performing some specific genetic or metabolic function, can be realized by spatial isolation, or by
exploiting the chemical specificity between proteins or DNA and their ligands: certain molecules
can act as information transmitters only from and toward specific targets, this way limiting
the spread of information between modules. In a modular organism, random mutation during
evolution will often affect only certain specific phenotypic traits, without disrupting or in any
case heavily modifying other vital functions. This way, natural selection would be able to perform
its (alleged6) “fine-tuning”, by being able to “distinguish” singular, partially isolated phenotypic
traits, and, consequently, to positively or negatively “select” the bearers of these traits according
to the fitness advantage these traits confer them.

7.1.2 Modularity as emergent self-organization in complex systems and
the role of natural selection

Albeit indirectly, as we have seen, Herbert Simon based his argument for modularity on the classic
neo-darwinistic ground of evolution seen as shaped mostly if not exclusively by natural selection.
He was writing in the ‘60s, a period dominated by the mainstream view of the New Synthesis.
By the early ’90s, the cultural climate surrounding evolution had significantly changed: natural
selection had been put under threat as the main driving force of phylogenetic change by a series
of competing hypothesis. First, there was genetic drift, that is, genetic change in populations
due to purely random non-selected fluctuations of genic pools, a proposal originally stemming
from Fisher’s work inside the New Synthesis’ development in the first half of XXth century, but

6 I’m absolutely not denying that natural selection has a strong influence on evolution. But I don’t want to
enter here the debate on its relative importance against other factors (environmental or constituted by structural
or path-dependent constraints), a debate which is still quite open.

7.1. Evolution and modularity 235

strongly restated by Motoo Kimura’s neutral theory of molecular evolution7 around the end of
the ’60s. Other alternative factors influencing evolution had been proposed, namely constraints
to the range of the possible variations of organisms, ranging from path-dependent, physical,
developmental, or in general structural inescapable constraints. All these hypothesis based on
constraints constitute a strand of anti adaptationism which stems first from the famous “span-
drels” argument by S.J. Gould and R. Lewontin8 and later, in the late ’90s, from the nascent field
of evolutionary developmental biology (so-called evo-devo)(See Goodman & Coughlin, 2000.),
which sees phylogenesis as the evolution of developmental (ontogenetic) processes.

In this wide historical context, Stuart Kauffman, working in the emerging field of complex sys-
tems, put forth a statistical argument aimed to affirm that the appearance of modularity in the
genome of complex organisms during evolution is due mostly to the emergent self-organizing
properties of a class of complex systems9, on which natural selection can successively act. In the
words of Kauffman: “The essential idea is simple. It is to think of selection as acting on systems
that spontaneously exhibit some particular form of order that is typical of an entire class of sim-
ilar systems”10. And, “In sufficiently complex systems, selection cannot avoid the order exhibited
by most members of the ensemble. Therefore, such order is present not because of selection but
despite it”11. What Kauffman calls “order” means here the dynamical properties of the members
of the class of systems which are “on the border of chaos”, that is, whose dynamics, while being
not chaotic but quite ordered, is nevertheless sufficiently fluid to allow those systems to perform
some form of computation. An example of a class of systems of this kind is class IV of cellular au-
tomata, explained in section 5.2.112. Such a kind of dynamics derives from the fact that, in these
classes of complex systems, the degree of connectedness between the elements of the systems
is neither too low (a fact that would lead to a system composed of isolated subsystems, which
scarcely communicate each other), nor too high, with each element connected on average to all
the others (a condition which would bring to indiscriminate diffusion of perturbations across the
whole systems, that is: to chaos). Such intermediate degree of connection between elements of
the system can be seen as a form of modularity, in which the system is composed of subsystems
connected by a limited number of channels, with these subsystems showing internally a higher
density of connections. Kauffman assimilates the genome of an organism to a complex network
of interacting elements giving rise to the organism’s ontogenetic development13. This network
usually turns out, being on average sparsely connected and its regulative gene-to-gene functions
having on average certain properties, to belong to the class of systems bordering on chaos, which
are modular and capable of computations. Thus, the whole argument proposed by Kauffman
leads to the same conclusion of Simon’s one: namely, that evolution has made modular systems
emerge. But the difference is that, while Simon’s argument relies on the leading role of natu-
ral selection in producing modularity, Kauffman’s view is that ordered, computational, modular
systems constitute precisely the sole kind of systems on which natural selection can act, because
they are the only ones endowed with sufficient evolvability. Natural selection can then act on
systems of that class to choose a specific structure, maintaining a selective role. But the order
typical of the class of systems on which selection acts comes from prior14 general structural and

7 Kimura (1968).
8 Gould & Lewontin (1979).
9 For examples of sef-organization, see section 5.2.3.

10 p. 16.
11 ibid..
12 Kauffman took his examples from a more general class of discrete dynamical systems, boolean networks, of

which CAs are a subclass
13 More on this in the next section.
14 Maybe not only prior, but a priori? I only pose the question here, because a discussion on the nature of struc-

tural constraints in complex systems would require deep involvement in discussions about serious metaphysical

236 Chapter 7. Some issues about modularity in biology

dynamical principles of complex systems which, themselves, do not involve selection. The argu-
ment, which Kauffman had been elaborating on the basis of his former work, dating back to the
late ’60s, is presented in a comprehensive form in a book which was to become very influential,
The Origins of Order: Self Organization and Selection in Evolution15. Kauffman shows, by way
of mathematical considerations and by simulation, that, under reasonable assumptions about
statistical properties of random directed networks which come to represent genotypes16, when
acting of genotypes with a sufficiently high number of genes, natural selection is not completely
free to select whichever genetic trait it deems fit. Complete freedom would subsist only in case
the genome were completely devoid of epistatic relations between genes (as well as, presumably,
devoid of pleiotropic effects): this would be the case in which no gene is regulated by any other,
and each gene gives a completely independent contribute to the organism’s overall fitness. In this
situation, the fitness landscape17 of the organism would be very smooth and continuous, with a
single peak. In such a situation, mutations affecting a genotype in any point of the landscape
would move the genotype toward the peak or away form it. In the first case, these mutations
would be certainly selected, and, as mutation goes on, the evolving genotype would assuredly
climb to the maximum fitness. In other words, there is a smooth path connecting any point of
the adaptive landscape, that is, any given genotype, to the maximum fitness peak. It can be
easily seen that, given these conditions, natural selection would have at its disposal the smooth-
ness of control (the gradualism) required for it to be able to shape the phenotype toward an
increase of its fitness, as is classically required by Darwinism and by the Modern Synthesis as
well: genotypes with such an independence between genes (a form of complete decomposability, in
Simon’s terminology) would thus exhibit the highest degree of evolvability . In another, opposite
ideal case, that in which every genes in the genotype regulates every other, the corresponding
fitness landscape would end up being extremely rugged, with a myriad of quite low local optima,
due to the fact that almost any mutation, affecting an entire cascade of gene regulations, would
likely result in some benefit for some phenotypic aspect, but at the same time will have some
negative effect on some other. In this case, natural selection would almost be unable to control
the positioning of the evolving genotype across the landscape, because most evolving genotypes
would climb to a very close local maximum and get trapped there: natural selection would thus
result almost completely irrelevant. The visible features of the reproducing genotypes would
not, in this case, be a product of natural selection, but of the intrinsic structural features of
hyperconnected random networks. In other words, such hyperconnected genotypes show a severe
lack of evolvability. Kauffman’s thesis is that, given that evolution must allow natural selection
to act upon biological systems, among possible biological systems a class of sufficiently evolvable
ones must have been selected. The optimum for evolvability would be the class of systems with

puzzles, bordering on philosophy of mathematics: a discussion which I will not start here.
15 Kauffman (1993).
16 Quite naturally, in such models a gene correspond to a node, and the regulatory action of a gene upon

another corresponds to a directed link.
17 The fitness lanscape idea, first introduced by Sewall Wright in the 1930s, is a model in which the space

of all possible genotypes is seen as a physical space, in which to each point (to each genotype) is associated a
scalar value, its fitness. Fitness is a complex concepts, but can be very roughly conceived as a measure of the
potential reproductive success of the organism carrying that genotype. If we visualize the space of genotypes as
a two-dimensional surface, and the fitness associated to each point to a height along an axis perpendicular to the
surface, the whole model assumes an aspect similar to that of a geographical landscape, where peaks are point
of maximum fitness, with hills and valleys at progressively lower levels of fitness. Starting from one point of the
landscape, that is from one genotype, any motion away form it constitutes the transition to a genotype which
differs from the one taken at reference. The genotypes immediately surrounding the reference genotypes differ
minimally from it, and the closer ones can be seen as the genotypes differing from the one taken as reference
by only a single point mutation. Given that a genotype is composed of many genes, the space actually used
in the landscape model must be multi-dimensional, with a dimension for each gene. This renders it completely
unsuitable for visualization, but such a space is however treatable by algorithmic means.

7.1. Evolution and modularity 237

a genotype made up of completely independent genes. But such a trivially simple kind of geno-
types would not be able to guide any meaningfully complex ontological development, leading
to very poor organisms in terms of functions. On the other hand, completely interconnected
genetic regulatory networks, besides lacking evolvability, are prone to chaotic dynamics, which
would end up being unapt to guide a coherent developmental process. Kauffman thinks then that
organisms with an intermediate degree of connectivity in their genetic regulatory networks must
be the systems upon which natural selection has acted. The genotypes of these systems are on
the verge of chaos: they are connected enough to yield a rich dynamics, but are at the same time
able to maintain some order in it. This behavior constitutes a form of dynamical modularity, and,
according to Kauffman and many others, they enable their dynamics to realize a form of compu-
tation. These genotypes present high Evolvability, because, due to their limited connectedness
and consequent structural modularity, mutations in one module do not indiscriminately influ-
ence, with a possible disruptive effect, all the other parts of the genetic regulative network, and
useful mutations in one module can accumulate with other, formerly selected useful mutations in
other modules, allowing for a cumulative evolution. Natural selection has thus been able to act
on this class of networks thanks to their evolvability, but the structural and dynamical proper-
ties typical of all members of the class, among which is their intermediate degree of modularity,
which are the properties which enable evolvability, are not themselves specifically selected fea-
tures, sifted by natural selection: they are general features of this class of moderately-connected
random networks,18 features which are due to intrinsic topologico-mathematical19 structural and
dynamical properties of those networks. Thus, the properties of adaptive landscapes mentioned
above, which are those which allow evolvability, derive from intrinsic properties of the genetic
systems they represent: natural selection has been constrained by these preexistent structural
properties to act on the most plausible (plausible from a biological standpoint) class of genotypes,
the class of computationally-enabled modular ones. The task of natural selection has then been
that of selecting among elements of such a class of highly evolvable systems: natural selection
has certainly chosen20 which features of genotypes to allow based on their fitness, but it has not
chosen the features common to all the members of the class of computationally capable evolvable
genotypes.

It is true that the choice of the class itself can be seen as a form of selection, because boolean
networks outside this class show statistical features which are biologically implausible, such as
completely static or completely chaotic behavior. Thus, no organism could be equipped with such
a kind of networks, and, for biology as we know it, the only acceptable class of complex systems
is that of computationally capable genetic networks. But, once that class of networks is selected,
then its typical features, such as, among others, moderate modularity and capacity to transmit
information in a controlled manner between nodes, features which are common on average to all
networks in the class, are already present for structural reasons intrinsic to the class, and could
not even be avoided by natural selection without exiting the class of computational networks:
such features, which constitute a form of order, endure in the course of evolution, not thanks
to, but despite natural selection. This basic idea by Kauffman, the idea of some kind of order
not due to natural selection, an order which is ahistorical and universal among the members
of a class of systems, is not against the letter of Darwin, as Kauffman notes21, but it certainly

18 There is, according to Kauffman’s findings, a “threshold” of connectivity around which a sufficiently fluid
dynamical modularity emerges in random networks.

19 As we will see in section 12, there is a recent philosophical treatment of the scientific explanations which
are based on topological properties.

20 I remind as a disclaimer that I am of course attributing intentional terms to natural selection in a metaphor-
ical way.

21 Kauffman (1993), p. 487.

238 Chapter 7. Some issues about modularity in biology

contradicts the adaptationistic tenet, which sees any major feature of living systems as shaped
by natural selection.

Kauffman’s argument, as said, is a statistical one, based on a sample of simulated dynamics of
random networks: it is not completely decisive, given the absolutely enormous space of possible
complex networks corresponding to genomes. Nevertheless, it is arguable that, in general, evolu-
tion favors computationally-capable moderately modular organisms, even though this could not
hold true for certain classes of cases. Kauffman claims that work of the previous 20 years in the
analysis of regulative genetic networks in many organisms has shown that almost in all cases
that such networks possess the property of being moderately connected and that the regulative
functions between their nodes possess a specific property of boolean functions, which Kauffman
calls canalization22. It is expected for such features to give rise to a dynamic network behav-
ior showing modularity and supporting a form of computation. Since the number of canalizing
functions is only a small subset of all possible boolean functions, and the number of canalizing
functions decreases in an extremely rapid manner as the number of input variables increases, it
is not likely that in a randomly constructed boolean network canalizing functions abound. Thus,
their prevalence in biological networks must be due to some other factor. It is conceivable, ac-
cording to Kauffman that this is an effect of natural selection. But another plausible hypothesis
not involving adaptation is based on the fact that canalizing functions are easier to construct
by means of molecular interactions. Kauffman seems to be biased toward this later explanation,
and this meshes quite well with his general tendency to downplay the role of natural selection,
and to attribute the general properties of biological networks to intrinsic properties of complex
systems and not to natural selection.

A second, although less statistically supported argument by Kauffman23, assigns to natural
selection an actual role in shaping organisms. The argument aims to show that, in boolean
networks of the above mentioned class, characterized by moderate connectivity and by mostly
canalizing gene-to-gene regulatory functions, a form of higher-level, hierarchical, computational
modularity can arise: in such networks, some “frozen” subnetworks can emerge in the network
dynamics. A “frozen” subnetworks is a part of the network whose state (the pattern of active or
inactive nodes), for reasons dependent on its intrinsic structure, stabilizes and does not change
anymore after a fixed time, independently of the state of the rest of the surrounding network.
Frozen subparts of the network are thus impenetrable to dynamic perturbations, and so come to
constitute a kind of variously shaped boundaries which end up partially partitioning the whole
network into more or less separated “unfrozen islands”, which can continue to change of state. It
is in these islands that information processing comes to take place, allowing for the constitution
of a hierarchical chain of information exchange. Natural selection has, in Kauffman’s view, the
power to shape the structure which underlies this hierarchical computational dynamics (which
is a dynamics of gene activation in a genetic regulatory network), by selecting specific gene
mutations. It is this is the actual role of natural selection, in Kauffman’s theory: to shape what

22 Simply put, a boolean function is canalizing if at least one of its arguments possesses a value which “fixes”
the function value to a certain boolean value, regardless of the values of the other arguments. Thus, for example,
the OR function of two varibles p and q is canalizing, because if a is set to True, then the OR output value is set
to True as well, regardless of the value of b; in this case, the same holds when fixing the value of b. In other words,
canalizing functions allow a single variable to fully control the output. This conservation of control on the part of
some input reduces the “chaotic” effect of input variables interactions, which can show up in the non-canalizing
functions, and favors the appearance of a kind of dynamical modularity, as described in section 6.2.

23 Kauffman (1993), ch. 12. With “less supported” I mean here that the argument’s generalizability is not
certain, due to the small numbers of sample simulations which it relies on, with respect to the class of networks
considered. But, on the side of theory confirmation, summing up the results of several research papers in the field,
Kauffman concludes, albeit with caution, that, in genetic regulatory networks of eukaryotic cells his hypothesis
of a “frozen core” of genes, which doesn’t change its activation state, is supported by empirical data.

7.1. Evolution and modularity 239

is freely variable in the genotype dynamics, in the context of fixed structural and dynamical
features which themselves have not been selected, but derive from “mathematical” properties of
complex networks (and, in part, by physico-chemical constraints): selection of different dynamics
of the unfrozen part leads, in the case of genetic regulative networks, to different developmental
paths in the organism’s ontogeny, and thus to different phenotypes24. The fact that selection
acts on dynamically fluid parts of a system which is endowed with other impenetrable frozen
parts prevents the indiscriminate spreading of consequences deriving from a modification in a
fluid part to all or almost all the other fluid parts of the system, thereby obtaining an advantage
which is evidently similar to that obtained through the modular construction method of Herbert
Simon’s Hora watchmaker25: in these genetic networks, the unfrozen, fluid islands, isolated
or moderately connected with other unfrozen island, constitute modules, because their internal
connectivity is higher than the connectivity between islands. Obviously, natural selection can also
shape the frozen part, by modifying the genes which constitute it, but selection cannot directly
prevent dynamically frozen subnetworks from appearing at all in the genetic network: these parts
appear by self-organization and so the feature of having frozen parts intrinsically pertains to the
entire class of boolean networks with moderate connectivity and mostly canalizing functions, and
selection must act on members of this class, for they are the only systems sufficiently flexible to
be evolvable, thanks to their intrinsic network features. To quote Kauffman:

Complex systems, contrary to our naive beliefs, exhibit self-organized behavior. Insofar as
selection tunes the ensemble explored but is unable to avoid its generic properties, those
quasi-universal features may be expected to shine through across the eons and across phyla.26

In my view27, the fact that each unfrozen island is isolated, or that it remains connected to
other islands via a limited number of links, allows us to view such islands as functionally isolated
modules, similar to computational subroutines28 which exchange the inputs, or the results of their
processing, with other subroutines. The fact that in a boolean network this processing happens
mostly in parallel does not, it seems to me, invalidate the analogy of network modularity with
modularity in serial, algorithmic, computation. First, it is of course always possible to find
two completely computational equivalent systems, one parallel and the other serial. Besides
this guaranteed equivalence, it is a fact that only in their idealized form boolean networks are
completely parallel: only in an idealized boolean network all nodes get updated in a completely
synchronous manner. As we will see, in more realistic discrete models (and, of course, much more
so in real genetic networks), signal propagation delays must be taken into account. This way, a
boolean network can be seen as endowed with an aspect of seriality in information exchange inside
and between modules, which renders the network more similar to an algorithmic processor, and
allows to base partly on the temporal scale decoupling29 between hierarchical levels the detection
of its modular hierarchy.

While I think that Herbert Simon’s argument could be interpreted, as I showed in section 7.1.1,
as an argument not completely different in nature from Kaufmann’s one (actually, in a way, in
Simon’s view, natural selection makes emerge as the only viably adaptable systems the modular
ones, although this flexibility of modular systems does not depend in itself on selection, but it is a

24 This kind of process modularity is exemplified by modularity in certain cellular automata, as explained in
section 5.2.2.

25 As we will see in what follows, this line of reasoning is used by other arguments.
26 Kauffman (1993), p. 535.
27 See section 6.
28 See section 4.2.
29 As highlighted in section6.7.

240 Chapter 7. Some issues about modularity in biology

structural independent feature, like in Kauffman’s view), and kauffman’s indeed acknowledges30

that his own argument too can be redescribed in a kind of selectionistic darwinian terms (as
the claim of natural selection meta-selecting classes of genotypes, before31 acting of specific
genotypes of the selected class), it is not my aim here to go further along a discussion on
the equivalence between the two arguments. I only want to note that, in different ways, both
Simon and Kauffman corroborate the hypothesis that evolution is actually likely to bring about
modularity in biological systems.

Other non-darwinian explanations of the emergence of modularity during evolution have been ad-
vanced, and most of them are based on topologico-mathematical structural porperties of certain
classes of complex systems in general. It has been suggested in various works, such as Ravasz et
al. (2002), Solé & Fernández (2003) and Barabási & Oltvai (2004) that modularity could arise
during evolution not because of direct natural selection, but as a by-product of duplication and
diversification of genes in the genome during phylogeny. In particular, Ravasz and colleagues
suggest that gene duplication can intrinsically give rise to the kind of scale-free, autosimilar, hi-
erarchical structure32 which they believe is the typical structure of complex biological networks:
duplication acts in a way similar to their method of construction of such scale-free modular net-
works, and could therefore be a source of modularity in biological networks. Given that there
are well known natural mechanisms which produce duplication an diversification of genes, this
seems a case in which a general topological explanation of the kind mentioned above is seen as
implemented by a specifically biological mechanism.

7.1.3 Evolution and modularity of the genotype-phenotype map
Less concerned than Stuart Kauffman with the intrinsically emergent properties of complex sys-
tems, many different research groups have also engaged the problem of modularity and evolution.
Some serious questions about modularity and evolution have in recent years been raised in the
emerging field of evolutionary developmental biology, also known as evo-devo. This line of study
basically aims to reach a synthesis between evolutionary and developmental biology, two disci-
plines which historically have evolved independently, with a lack of intercommunication: on one
hand evolutionary biology, after the “new synthesis”, has come to take as its pillar population
genetics, a discipline which statistically studies the spreading of alleles in populations, concen-
trating thus on the genetic pool level and its phylogenesis. On the other hand, developmental
biology sees the single genotype as the specification of a program, thus as a mechanical, dynam-
ical system for the gradual construction of the phenotype during ontogeny, and concentrates on
this mechanisms of development which brings from the genetic instructions to the phenotype.
Around the 1990s, times seemed ripe for the creation of a synthesis between the two disciplines,
because it had gradually become clear that the question of how the genotype specifies the phe-
notype could not be ignored anymore by evolutionary biology: following many studies which
showed that natural selection is constrained by features of the developmental process, which is
the unavoidable intermediate process between the genotype and the phenotype in metazoan, evo-
lution had increasingly come to be seen as the evolution of ontogenetic developmental programs.
Evo-devo was supposed to bring about this synthesis by studying the relationship between ontoge-
netic developmental processes and phylogenetic evolution: the study of how evolutionary change
of phenotypes is produced by means of changes in ontogenetic processes during phylogeny, and
how intrinsic properties of these processes constrain evolvability. Evo-devo stresses also that de-

30 Kauffman (1993), ch. 13.
31 “before” in a metaphorical sense: there is actually only a single, as it were, “act of selection”: the differential

survival rate of each genotypic variant at each generation.
32 See section 3.2.1.5.

7.1. Evolution and modularity 241

velopmental processes are non-linear, and that for this reason simple changes in these processes
can bring about unexpected phenotypic new traits, which are the material on which natural
selection can act to produce evolutionary novelty.

Evo-Devo is now a very active field, which, since its inception, has raised some diatribes about
the constraints imposed upon evolvability by the developmental processes, diatribes involving
especially the more orthodox advocates of the New Synthesis, for whom evo-devo does not respect
two fundamental tenets of the traditional neodarwinistic position: first, evo-devo sees evolvability
as constrained by intrinsic, non necessarily selected properties of developmental processes, while
neodarwinism sees evolution as constrained exclusively by natural selection. Second, the non-
linearity of developmental processes negates another point of neodarwinism, which sees the forms
of organisms as susceptible only of gradual inter-generational variations. The strong reason
behind these controversies is that evolutionary constraints deriving from ontogeny could put
in doubt the adaptationistic tenet that sees natural selection as able to freely, gradually mold
phenotypes in an optimal way, by choosing the fittest of them among a nearly continuous range
of phenotypical varieties, being in this way a force able to actively shape organisms during
the course of evolution. This optimality of adaptation due to natural selection could turn out
being impossible in case the developmental process were not linear, a circumstance in which
small genetic change could produce a disproportionate big change in the phenotype, because
reaching optimal adaptation requires the gradual, monotonic evolutionary “climbing” of fitness
towards the maximum peak, and this gradual climbing is possible only in a fitness landscape
which is “smooth”, that is, in which variants are many and vary with graduality, and fitness
of similar variants is similar as well. But this smoothness of the variation of fitness among
variants can be disrupted if the genotype-phenotype mapping is not linear, for in these cases a
small genetic difference can produce a disproportionate phenotypic difference, with a correlated
disproportionate variation of fitness. Another way the shaping power of natural selection can
be hindered is when some specific phenotypic variants, due to certain intrinsic properties of
the developmental process, simply cannot be produced: for example, all adult centipedes sport,
according to the species, a variable number of leg-bearing segments, a number which is in any
case an odd number33: it seems quite likely that this property is not a selected trait, but that
it is due simply to the intrinsic inability of the developmental process in centipedes to produce
an even number of leg pairs. This shows that, at least in some cases, phenotypic variability is
not continuous, and that natural selection can not shape phenotypes in a perfectly gradual and
free fashion. In other words, the possible range of variation that a trait can show, and on which
selection can act, is not comprehensive of every possible variation in the phenotypic space, but
is constrained by developmental factors.

This tension between neodarwinism and developmental biology is the object of a still open debate,
although there are probably reason to downplay it: for a discussion, see Minelli (2009), which
argues that evo-devo is a feasible and fruitful synthesis, and that it is not even the case that
historically the modern synthesis has ignored developmental processes, given that certain works
of J.B.S. Haldane and Julian Huxley show great interest for the relationship between evolution
and development.

The questions raised in evo-devo about modularity are not easy questions: genetic regulative
networks are the engines of cellular functioning and development. It is by means of their inte-
grated dynamics that ontogenetic development of an organism is brought about. It stands to
reason that, consequently, modular structure and modular dynamics of genetic networks could
produce a form of modularity in the organism’s developmental process and, ultimately, in its

33 See Minelli (2000).

242 Chapter 7. Some issues about modularity in biology

phenotype. If modularity actually holds across the genetic and phenotypic levels, in other words,
if the genotype-phenotype map is modular, this would increase evolvability, because a change in
a genetic module would not come to affect, with possible negative consequences on fitness, all
parts of the phenotype, but only some more or less delimited portions of it, enabling natural
selection to discriminate the specific contribution which the modified phenotypic parts bring to
the organism’s fitness, and consequently to select positively or negatively only the genetic module
or modules which generate those phenotypic modules.

7.1.4 Modularity as due to natural selection
A prolific group of researchers working on modularity in evo-devo is the originally Austrian group
centered around Günter P. Wagner, now at Yale. Wagner (1996) downplays the possibility that
modularity is an effect of possible self-organization principles, explicitly focusing on trying to
explain the emergence of modularity in organisms as due to natural selection.

Working inside the Evo-Devo tradition, Wagner sees the evolution of phenotypic modularity as
deriving from the evolution of modularity of the genotype-phenotype mapping function.

In his view, evolution of a phenotypic module is a complex of traits, serving a functional role,
whose member traits are tightly integrated due to pleiotropic effects of the group of genes which
determines the phenotypic module, with relatively few pleiotropic effects of the same genetic
group towards traits external to the phenotipic module in question.

According to Wagner, modularity can evolve by means of two basic modalities. One is parcel-
lation, which takes a group of genes with diffuse pleiotropic effects toward a set of traits, and
prunes some of the pleiotropic influences in order to obtain a partition of genes which produces
a partition of the phenotipic traits. The other modality is integration, by which some unrelated
genes, each of which produces independently a trait, become more integrated by the appear-
ance of new criss-crossed pleiotropic effects between the genes and the traits, thus grouping the
corresponding traits into a module.

Wagner tries to identify the possible selective forces that can produce such effects, and comes up
with a series of candidates, taken from the existing literature: mainly selection for adaptation
rate and a combination of stabilizing and directional selection.

The argument proposing modularity as evolved due to selection for adaptation rate is based on the
consideration that selection for modularity enhances the speed of evolution of the modular class
of organism selected. This argument is affine to the original Simon’s argument, and, apparently,
not completely incompatible with Kauffman’s one on meta-selection of a type of system which is
evolvable. However, according to Wagner, this cause of the evolution of modularity is plausible
only in presence of asexual reproduction, otherwise it would require a too strong amount of
linkage disequilibrium among genes.

Based on the result of simulations and on theoretical considerations, the paper concludes instead
that modularity has probably evolved by natural selection acting on phenotypic traits, and
specifically by a combination of stabilizing and directional selection, which tends to progressively
eliminate pleiotropic effects, producing a progressively more modular genotype-phenotype maps
in evolutionary histories in which selection must act in different ways on two or more traits
originally associated by pleiotropic effects: that is, when variation of one trait in a certain
direction is adaptive, while at the same time stability of the other trait is required, election
tends to favor a progressive decoupling between the two traits, by negatively selecting pleiotropic
effects of genes on these traits.

7.2. A modular functional view of biological systems 243

In Wagner’s theoretical model, modularity arises when in the course of evolution, in different
temporal periods different selection pressure has been exerted on different traits:

characters that tend to be under simultaneous directional selection get integrated into a mod-
ule of phenotypic change, while the characters that rarely adapt to environmental changes
at the same time will be represented by genes that have no or only limited pleiotropic effects
among them(Wagner, 1996, p. 42.)

This position seems to endorse a view of modularity where a form of modularity of the environ-
ment “induces” the emergence of modularity in the organism by natural selection. This view is
supported by a fascinating work by Kashtan & Alon (2005), who, simulating artificial evolution
of neural networks and digital circuits, found that modularity arises in the structure of these
evolved networks, only when the environmental pressures varied in a modular fashion, alternat-
ing between several goals organized in a hierarhical way, while when subject only to a fixed goal,
these systems evolved into a nonmodular structure.

A work by another researcher operating in Evo-Devo, Schlosser (2002), notes how, once some
degree of modularity in organisms has appeared in the course of evolution, from that moment on
modularity tends to self-sustain and self-enhance during the subsequent course of evolution, be-
cause it confers a high probability of producing sufficiently fit variants during phylogenesis when
changing the high-level modular structure of the organism by altering inter-module connections:
this way of making an organism evolve by “tinkering” at a high-level with it, is a possibility
offered only by modularity, and which confers an evolutionary advantage, by raising evolvability:
it is much more “easier” for evolution to find good variants by way of this high-level modular
restructuring than by modifying connections at lower levels (for example intra-module connec-
tions), because the “coarse grained” space of possible genetic modular structures is by orders of
magnitude less vast than the fine-grained space of genotypes of the classic fitness landscape.

It is of particular interest, as highlighted by Schlosser, the fact that genetic module duplication
is a useful mechanisms for producing high-level modular restructuring. The important point is
that it is expected that genetic module duplication in many cases should not produce negative
effects, while at the same time it allows subsequent evolutionary differentiation of the new copy
of the module without disrupting the function which it originally fulfilled, because this function
is still performed by the original copy of the module. As seen in section 7.1.2, Ravasz & Barabási
(2003) noted that duplication and diversification of genes can be seen in itself as a mechanism for
the emergence of modularity by self-organization, without the intervention of natural selection,
leading to the appearance of scale-free modular networks34. The above observations by Schlosser
(2002), however, admit the importance of module duplication in a darwinian context, in which
the main role is that of natural selection. The two views can be seen as partially compatible:
according to Solé & Valverde (2008), it is more likely that natural selection can have the secondary
role of pruning existing links in networks in order to favor the emergence of modular organizations,
while basic modularity itself is a spontaneous byproduct of nodes and links duplication.

7.2 A modular functional view of biological systems

Evolutionary considerations aside, presence of modularity can be prima facie observed in most
biological systems, at least : whole organisms can be considered as composed of organs, and the

34 For scale-free networks, see section 3.2.1.5.

244 Chapter 7. Some issues about modularity in biology

organism’s vital processes can be viewed as brought about by the coordinated activity of func-
tional subsystems and their dynamics. Organs can be seen as composed of cells, cell machinery
as composed of functional molecular complexes and the cell’s dynamical functioning as composed
of modular processes.

The proposal of viewing biological processes and their networks of interactions as dynamically
modular, that is, composed of functional modules35 in a way which closely resembles how engi-
neers see electrical circuits, seems potentially fruitful. This idea, already suggested by Cummins
(1975), has started spreading during the ’90s in genetics and other fields of biology, as the discov-
ery of complex genetic and metabolic networks, composed of hundreds or thousands of interacting
components, started to become gradually more feasible.

In this analogy, the highly specific electrical connections between components of an electronic
circuit are substituted by the connection between the emitter of a proteic signal and the target
site to which the protein binds, with the specificity of the connection guaranteed by the specificity
of the structure of the protein and of its ligand.

McAdams & Shapiro (1995), a widely cited paper by pioneers of this approach, proposes to
assimilate, where possible, genetic regulatory networks to boolean digital circuits, which, as
such, can be described in terms of boolean gates (the elementary modules) and their connections.
Models of digital circuits, unlike purely logical boolean networks, where propagation of data
between parts of the network is idealized as instantaneous, are asynchronous, in that they take
into account the different delays in the propagation of signals between their components. This
can add plausibility to their being used to model biological interaction networks, which are
asynchrounous as well36. Asynchronicity can even have a purposeful, functional role in these
circuits, and thus it is better if their theoretical models take it into account. Subcircuits of these
digital circuits can be viewed as higher-level modules performing higher-level functions, as in the
case of feedback circuits, which carry out regulative functions.

The basic idea at work here, which stems quite naturally from what I have already said about
modularity in general and modularity in networks, is that modules at any level of abstraction
can be seen as standard components, which in networks correspond to network motifs37: the
complete digital circuit can be viewed as a hierarchical structure, each level of which is describable
as a circuit of interconnected standard parts. In the case of genetic networks, for example, the
modules can comprise regulons, operons and single genes. Components at several levels can carry
out several kinds of functions, be them regulatory, purely logical, or a memory function, that
is the ability to store persistently or for a certain time a logical value. Modules of these kinds
are sufficient to realize virtually any type of digital circuit, included computationally capable
systems.

Along these lines, Hartwell et al. (1999) strongly advocates the modular view, in order to improve
scientific research and explanation in cell biology. The paper tries to argue for modularity in
cells under a spectrum of different viewpoints. As we have already seen in the former section,
this work argues that evolution constrains the “design” principles which organisms must obey,
and that these principles are those of modular organization.

35 See section 9.
36 For example, the transcription of a protein and its diffusion to the target sites requires a certain, variable

time. This must be considered when modeling such systems. The same holds for electrical circuits, in which
propagation of current, albeit very fast, is not istantaneous, and the switching time of logical components from
one state to another can be relatively high.

37 See section 3.2.2.

7.2. A modular functional view of biological systems 245

Hartwell and his collaborators specifically stress that modules are functional38 units, and, seeing
functions as something typical of both biological and artificial systems, (as opposed to simple
physical non-biological natural systems), they advocate the description of organisms in terms
of their modular functional organization, following a method that is typical of engineers when
they describe artificial devices. These authors claim that the modular view allows us to describe
the very high level properties of cells as patterns of connections between functional (lower-level)
modules. A functional high-level vocabulary (in terms of functions like amplification, error
correction, coincidence detection, for example) is needed to allow for a description of biological
functions and, in this terms, describe higher functions composed of these.

Albeit conceptually distinct, functional and structural modularity, as discussed in section 6.2
are quite often related. If functional modularity derives from a modular structure present in
the network, then, methods for detection of community structure, like the methods described
in section 3, could be put to use for detecting the functional modularity in the network as well.
That structural and functional modularity overlap to a good extent in biological genetic, proteic,
metabolic networks, is confirmed by several works.

Specifically referring to Hartwell’s hypothesis of functional modularity of biological systems, Zhou
& Lipowsky (2004) and Zhou & Lipowsky (2006) (the latter unpublished), apply Zhou’s well-
known high accuracy agglomerative algorithm for community detection39 to the protein-protein
interaction network of yeast extracted from the DIP database of experimentally determined
protein interactions40. They thus determine that the yeast protein interaction network, which
comprises 2406 nodes (proteins) and 6117 links (protein-protein interactions) possesses an actual,
quite robust hierarchical structural modularity. The specific hierarchical level with highest Q
modularity value, 0.616, which is thus supposed to represent the most plausible subdivision into
communities of the actual network, is then chosen. It is found to be composed of 449 communities
or elementary modules with a number of nodes of the order of 10. The important result is that
each of these communities is found to be coincident with a subnetwork performing an actual
biological function, or a group of biologically related ones. This corroborates the view that there
is an actual overlap between functional and structural modularity in the proteic network of yeast.
Moreover, as further support, former works which had found more limited functional networks
in the yeast protein network41, appear to have often found part of the same modules discovered
by Zhou and Lipowsky’s method. These latter modules are also found to be quite robust against
network perturbations and cohesive, that is, endowed with high integrity and affinity42, and
they succeed in passing various tests, applied to them in order to exclude that the modules are
artifacts. This further corroborates the hypothesis that the found modular description reflects an
actual, significant modularity in the proteic network. Groups of modules among the elementary
ones come to constitute higher-level communities, which in turn have functional significance,
such as what the authors call the fundamental protein production (translation) “factory”, a core
complex of processes related to transport between cellular nucleus and cytoplasm, control of
RNA transcription and splicing, protein synthesis and degradation, ribosome production. For
other functions, such as mRNA modification, cytoplasmic protein transport, DNA processing,

38 The paper seems to endorse a not better specified notion of function as something which has a purpose,
without trying to philosophically problematize it. I guess this position on functions could be assimilated to the
“etiological” conception of biological functions, which is treated in section 9.1.

39 Zhou’s algorithm is described in section 3.2.1.3.
40 The database is located at http://dip.doe-mbi.ucla.edu/dip/Main.cgi. The page claims that it catalogs

experimentally determined protein-protein interaction from a variety of sources, in order to obtain a consistent
set of interactions.

41
42 See description of these features in section 3.2.1.3.

246 Chapter 7. Some issues about modularity in biology

often the complex of required elementary modules cuts across levels, comprising modules from
different levels, while certain essential functions are performed by single elementary modules, like
ATP synthesis. Thus, the global structure of the network can be described as comprising a big
core module, the “protein factory”, and peripheral parts implementing other functions.

7.3 A computational view of biological processes

The aforementioned work by Hartwell and his co-workers43 does not simply claim that biological
processes have a functional modularity, but puts forward, along the lines of a former, more
general hypothesis by physicist J.J. Hopfield44, a stronger proposal: the idea of viewing cellular
processes as computational processes.

Hopfield’s general hypothesis Hopfield (1994) is that the history of evolution can be seen as a
way to select organisms that can make environmental measurements, and, on this basis, make
predictions and generate appropriate behavior. Systems of this kind, in the opinion of Hopfield,
have the essential aspects of computational systems, that is, systems able to manipulate symbols,
where the input symbols are the environmental measurements, and the output ones are the signals
modulating the behavior, be they signals driving muscles or turning genes on, or having another
effect. The computation is what stands between the input and the output: the computation is
the process which generates, starting from the environmental inputs, the symbolic outputs which
are appropriate for the survival of the organism.

It is my opinion that the view of biological processes as computation can be a plausible position,
which is in line with a highly widespread view of most natural processes as computational (from
philosophy of mind to pancomputationalism, a position in philosophy of physics), although I
think this computational view has to be better argued for, rather than taken for granted. I
discuss the conditions for being allowed of talking properly of computation and the fruitfulness
of computational explanation in section 14.5.1.

From the former considerations it appears that, in general, modular representation can be seen as
-tied to a specific language, which has as terms of its vocabulary the names of the basic modules.
Modules’ names are, in a way, names of functions to be used in a high-level functional description
of the system: this is what happens in electronic engineering, where a system can be described
at high-level as composed of transistors, resistors, capacitors, and other components connected
together. The system is of course susceptible to be described at an even higher level, in terms
of amplifiers, voltage comparators, or, in the case of digital circuits, typically in terms of logic
gates, and so on for higher levels. For some example of how engineers describe circuits, see fig.
7.1, fig. 7.2 and fig. 7.3.

An example of a genetic regulatory network represented with a schematism analog to that of
electronic circuits is given in McAdams & Shapiro (1995), and reproduced in fig. 7.4.

Following this route, Lazebnik (2002) strongly stands up in favor of the adoption in biology of
a formal language which, on par with those already utilized by engineers, could allow a precise
modular characterization of biological processes.

Speaking of formal languages, one could be brought by association to think of formal logic, but
also of programming languages. This association would not be completely inappropriate here,
for we could also view (and as we have seen this view is advocated by some authors) digital

43 Hartwell et al. (1999).
44 Which is also co-author of Hartwell et al. (1999).

7.3. A computational view of biological processes 247

Figure 7.1: the schematic of an analog electronic circuit. While the whole circuit can be seen as a module
performing the function of an amplifier, which outputs an amplified signal faithfully following the dynamics of
its input signal, the circuit appears clearly composed of connected sub-modules, that is electronic components:
transistors (Q1, etc.), diodes (D1 and D2), resistors (R1, etc), capacitor (C1 and C2). (Image taken from
Wikipedia Commons, at http://commons.wikimedia.org/wiki/File:Amplifier_Circuit_Small.svg).

circuits as implementations of computations. Specifically, given that each module is supposed to
perform a certain function, this input-output function represents its program specification45. It
is likely that, in the actual system, this computation is implemented by a digital (digital to a first
approximation) circuit which operates with a high degree of parallelism, by means of a network
of interconnected logic gates. This would not hinder the possibility to model it as a computer
program, which, as such, is usually more likely to have a serial structure46: in the worst case,
the computer program would simply take more time than the parallel circuit to perform the
same function, but it is certain that any parallel digital circuit can be considered equivalent to
a class of computer programs. So, we could envision a digital circuit as a computer program.
Modularity in the circuit would correspond to modularity in the program47: each high-level
module in the circuit could be considered as a subroutine performing the specified function. This
view is explicitly endorsed in many works, at least starting from McAdams & Shapiro (1995),
which proposes a three-point method to model genetic regulatory networks:

Consideration of electrical circuit simulations suggests a hybrid approach to genetic circuit
modeling that integrates the following ideas with kinetic models: (i) identify the circuit
connectivity and model point-to-point signal paths, (ii) simplify transcription control logic
by treating it as Boolean logic when justified, and (iii) model the functionality of complex
or nonlinear control elements in specialized subroutines.48

Specifically, the third point advocates the translation of the function of specific circuit modules
into subroutines, that is, into modules of computer programs. It can be noted that, having

45 See section 4.1.5
46 This of course must not necessarily be the case: since the ’80s, highly parallel universal computers have been

devised, for example the Connection Machine, described in Hillis (2015). And, a lower degree of parallelization is
present in most machines today, which are usually multiprocessor.

47 See section 4.2.
48p. 654.

248 Chapter 7. Some issues about modularity in biology

Figure 7.2: image A: a high-level diagram representing a digital circuit. Except for a few single logic gates
(U4A and U4B), most components are higher-level ones, and can be considered modules performing higher-level
functions. In this case, each of the components labeled U2A, U2B, U3A, U3B is a so-called J-K flip-flop, which
is a type of 1-bit memory cell. Each flip-flop can be seen as internally composed of a certain number of simpler el-
ements, namely (image B) NAND logic gates. Each of the two-input NAND gates labelled as G1 and G2 in image
B are internally structured as a circuit composed of transistors and resistors, as in image C. Of course, a descrip-
tion at level higher than that of flip-flops is plausible: for example, the whole circuit of image A can be defined as
a module performing the function of a single digit counter, which counts the impulses sent to its input line and
displays the counted number in the display labeled DCD_HEX. As a module, this circuit can be employed as
a standard part in other, larger circuits. (Images A, B and C taken from Wikipedia Commons, respectively
at http://commons.wikimedia.org/wiki/File:4_bit_counter.svg, http://commons.wikimedia.org/wiki/File:JK-
FlipFlop_(4-NAND).PNG and http://commons.wikimedia.org/wiki/File:TTL_npn_nand.svg).

been the genetic circuit already modeled by a digital circuit (point ii in the quote above), the
transition to a computer simulation of the function is completely lossless, from the point of view
of the precision of the simulation, which perfectly tracks the function implemented by the digital
circuit. This leaves open the possibility that the effective implementation realized in the program
differs from that realized in the digital circuit: there is an unbounded class of different, albeit
completely equivalent, possible algorithmic implementations of the same digital function. This
fact poses some questions about the plausibility of this kind of computational explanation, a
discussion which I defer to section 14.5.1.

McAdams & Shapiro (1995) actually propose a specific example of one of these subroutines: a

7.3. A computational view of biological processes 249

Figure 7.3: a possible dictionary of standard parts for describing a digital circuit at a not very high level. (Image
taken from Wikipedia Commons, at http://commons.wikimedia.org/wiki/File:Circuit_elements.svg).

software object49 representing an operon50. This would be a software module comprising a data
structure and software routines operating on this structure. In such a software module, which
takes into account time delays and inertia of genetic transcription, the transcription activated
by the promoter is dynamically simulated, and the software object can output on request to an
external program a value representing the actual instantaneous level of gene transcription. This
way, the software model reveals itself as able to simulate with high fidelity the corresponding
digital, simplified version, of the biological circuit. And, if simplification into a digital circuit
(point ii in McAdams and Shapiro’s quote above) does not undermine the validity of the model51,
that is, if it is not the case that this simplification introduces excessive approximation with respect
to the observed phenomenon, then we can say that the software model ultimately simulates with
sufficient fidelity the biological phenomenon.

49 See section 4.2.3.
50 an operon is, in bacteria and viruses, a module of genes which controls the production of a complex of

enzymes carrying out a specific metabolic function.
51 For the notion of model validity, see section 6.6.

250 Chapter 7. Some issues about modularity in biology

Figure 7.4: . schematic representation of the genetic circuit generating the λ phage lysis-lysogeny dynamics. (The
phage is a virus affecting bacteria. Image taken from McAdams & Shapiro 1995, p. 652.).

Part III

Models of explanation

251

Preamble

This major section presents four prominent theoretical models of scientific explanation put forth
in philosophy of science in the last seven decades.

Chapter 8 presents the most classic of these proposals, the so-called deductive-nomological model
of explanation, first put forth by Carl Gustav Hempel and Paul Oppenheim in the 1940s. This has
been the first model of explanation in philosophy of science, coming from the logical-empiricist
background, and for this reason leaning toward explanation in physics. Neverheless, inside the
cultural reductionistic milieu of the time, it was originally intended to be applied to science in
general, a fact which has raised many critiques against it starting from the ’70s.

Chapter 9 introduces another classic model of explanation, strongly advocated for by philosophers
of mind, different from the deductive-nomological model and based on functional decomposition,
which is at the basis of computational functionalism in philosophy of mind and of explanation in
the cognitive sciences. This is a model which comes in several flavors, one of the most prominent
of which is the model of functional analysis, proposed by Robert Cummins.

In chapter 10 is expounded one of the main opponents of the deductive-nomological model, the
so-called “new mechanistic” framework of explanation, proposed in a first version since the ’80s
by William Bechtel, Robert Richardson and collaborators, and in an affine model formulated in
a slightly different way by Peter Machamer, Lindley Darden and Carl Craver in the first 2000s.

Finally, chapter 12 introduces a type of explanation come under focus quite recently in philosophy
of science, whose proponent is Philippe Huneman. This is the model of topological explanation,
which considers certain types of explanations of quite frequent use in certain scientific disciplines,
which explain certain features of complex systems in terms of mathematical a-causal properties.

253

Chapter 8

The deductive-nomological model of
explanation

The first, seminal paper on the topic of scientific explanation in philosophy of science is Hempel
& Oppenheim (1948). This first model of explanation emerges from a philosophical context
characterized by the still strong influence on philosophy of science of the logical positivist view.
Hempel himself was coming out of that milieu, and his account of explanation is perfectly in
line with the basic tenets of logical empiricism. First, there is the prevalent interest for physics,
among all sciences: the more fundamental science to which all other are to be reduced, at least
in principle. With physics comes a conception of scientific theories as mostly constituted by
the mathematical expression of laws: universal regularities, which take the form of universally
quantified logical expressions. Of course, another fundamental postulate of that philosophical
position is the distinction analytic/synthetic, or logical/empirical. Theories are eminently seen
as linguistic, syntactic devices, in the form of formal systems, from which predictive statements
can be deduced, statements which will be compared to the empirical observations. All these
ingredients are well visible in Hempel’s definition of explanation. Some quotation will make the
point clear. From Hempel & Oppenheim (1948):

the event under discussion is explained by subsuming it under general laws, i.e., by showing
that it occurred in accordance with those laws, by virtue of the realization of certain specified
antecedent conditions1.

the question “Why does the phenomenon happen?” is construed as meaning “according
to what general laws, and by virtue of what antecedent conditions does the phenomenon
occur?”2.

So far, we have considered exclusively the explanation of particular events occurring at a
certain time and place. But the question “Why?” may be raised also in regard to general
laws. [. . .] Thus, the explanation of a general regularity consists in subsuming it under
another, more comprehensive regularity, under a more general law3.

About the basic pattern of scientific explanation:
1 Hempel & Oppenheim (1948), p.136.
2 ibid., p.136.
3 ibid., p.136.

255

256 Chapter 8. The deductive-nomological model of explanation

We divide an explanation into two major constituents, the explanandum and the explanans4.

By the explanandum, we understand the sentence describing the phenomenon to be ex-
plained (not that phenomenon itself); by the explanans, the class of those sentences which
are adduced to account for the phenomenon5.

the explanans falls into two subclasses; one of these contains certain sentences Cl, C2, ..., Ck
which state specific antecedent conditions; the other is a set of sentences L1, L2, ..., Lr which
represent general laws6.

According to this view, which is usually called the deductive-nomological model of explanation
(DN model, henceforth), an explanation is constituted by a logical deduction of the explanandum
from the explanans.

This kind of explanation must respect, to be a sound explanation, two classes of conditions:
logical conditions and empirical conditions.

The logical conditions are:

• the explanandum must be a logical consequence of the explanans: if the explanandum
cannot be deduced from the explanans, then the explanans is not an adequate ground to
explain the explanandum.
• The explanans must contain at least a general law, which has to be employed in the
derivation of the explanandum.
• The explanans must have empirical content, that is, it must be susceptible to be put to
empirical test.

The empirical condition is that the premises of the argument, that is, the explanans, must be
true.

In this view, there is complete symmetry between explanation and prediction:

[. . .] the same formal analysis, including the four necessary conditions, applies to scientific
prediction as well as to explanation. The difference between the two is of a pragmatic
character. If E is given, i.e. if we know that the phenomenon described by E has occurred,
and a suitable set of statements Cl, C2, . . . , Ck, L1, L2, . . . , Lr, is provided afterwards, we
speak of an explanation of the phenomenon in question. If the latter statements are given and
E is derived prior to the occurrence of the phenomenon it describes, we speak of a prediction.
It may be said, therefore, that an explanation is not fully adequate unless its explanans, if
taken account of in time, could have served as a basis for predicting the phenomenon under
consideration. – Consequently, whatever will be said in this article concerning the logical
characteristics of explanation or prediction will be applicable to either, even if only one
of them should be mentioned. It is this potential predictive force which gives scientific
explanation its importance: only to the extent that we are able to explain empirical facts
can we attain the major objective of scientific research, namely not merely to record the
phenomena of our experience, but to learn from them, by basing upon them theoretical
generalizations which enable us to anticipate new occurrences and to control, at least to
some extent, the changes in our environment7.

4 ibid., p.136.
5 ibid., pp.136-137.
6 ibid., p.136.
7 ibid., p.138.

257

To sum up all the above conditions, we could say that, in general, a scientific explanation,
according to Hempel, must be constituted by a logical deduction of the phenomenon to be
explained, the explanandum, from a group of premises, called collectively the explanans, which
consists of some statements representing certain physical initial conditions and at least a physical
law, in the form of a logical universally quantified expression. If the phenomenon to explain is so
deducible from these premises together with the general law(s), the phenomenon is in this way
explained. It is evident that, given that the universal statement in the explanans represents a
physical law, and that the initial conditions represent certain physical circumstances, a deduction
starting from the explanans is a prediction of some phenomenon. So, we could say that a
phenomenon is explained if it is predicted from certain empirical conditions.

The Hempel-Oppenheim model of explanation, is thus called, appropriately, the deductive-
nomological model of explanation, for it involves a logical deduction from a set of premises
containing at least a law-like statement.

Hempel and Oppenheim do not consider as proper cases of explanation certain ordinary language
explanations, typical on non-scientific discourse, commonly regarded as being of “causal” nature.
They are not explanations because they do not contain laws which allow for prediction:

Many explanations which are customarily offered, especially in pre-scientific discourse, lack
this predictive character, however. Thus, it may be explained that a car turned over on
the road “because” one of its tires blew out while the car was travelling at high speed.
Clearly, on the basis of just this information, the accident could not have been predicted,
for the explanans provides no explicit general laws by means of which the prediction might
be effected, nor does it state adequately the antecedent conditions which would be needed
for the prediction8.

In their seminal 1948 paper, Hempel and Oppenheim admit however causal explanation as legiti-
mate, but they consider complete causal explanation only a special case of deductive-nomological
explanation: proper causal explanation must contain at least a law-like statement, the “causal
law”9:

The type of explanation which has been considered here so far is often referred to as causal
explanation. If E10 describes a particular event, then the antecedent circumstances described
in the sentences C1, C2, . . . , Ck may be said jointly to “cause” that event, in the sense that
there are certain empirical regularities, expressed by the laws L1, L2, . . . , L, which imply
that whenever conditions of the kind indicated by C1, C2, . . . , Ck occur, an event of the
kind described in E will take place. Statements such as L1, L2, . . . , L7, which assert general
and unexceptional connections between specified characteristics of events, are customarily
called causal, or deterministic, laws11.

Hempel and Oppenheim recognize the prevalence of causal explanations in the non-physical,
so-called “special” sciences, such as biology and psychology. As said, in their view, causal
explanations get identified with special cases of DN explanation: the only peculiarity of causal
explanations is that, usually, only the antecedent conditions are explicitly mentioned, and that

8 ibid., pp. 138-139.
9 In the quoted paper, the authors restrict causal laws only to deterministic cases, to avoid complication in

the analysis which would have been brought in by the consideration of statistical laws.
10 E is the explanandum.
11 ibid., p.139.

258 Chapter 8. The deductive-nomological model of explanation

the law is taken for granted. This makes a causal explanation apparently employ only non-
universal, particular statements: a singular event, the explanandum, is explained by a set of
singular events, which are its antecedent conditions, or, in other words, its causes.

8.1 Known problems of the DN model

Traditionally, several external objections have been raised against the DN model of explanation.
The most general ones complain that most explanations, both in ordinary life and in science, are
causal and not deductive-nomological, and thus that the DN type does not outline the necessary
conditions for explanation: a typical counterexample along these lines is that the explanation
“the impact of the car caused the guardrail to bend” is a legitimate explanation of the deformation
occurred to the guardrail, but nevertheless it is not a DN type of explanation, because in it no
law-like regularity appears. A typical rebuttal by DN avocates, which, as we have seen, had been
already anticipated by Hempel and Oppenheim, is that, even in causal explanation, regularities
are implicitly invoked. In the above case the regularity would have been something like “any
solid object hitting with sufficient velocity an iron strip will leave the strip deformed”. This way,
DN advocates, which usually endorse, in accordance with the post-logical empiricist tradition, a
suspicious attitude towards causation, can eschew the question of causation while at the same
time admitting at least certain forms of causal explanation.

There are two harder problems with the DN model, which put in doubt not only its being
necessary, but its being sufficient to characterize any type of explanation.

Explanatory Asymmetry. The first is the problem of the symmetry of the explanation. In certain
cases the laws employed in a DN explanation can be symmetric, like some types of equation,
and as such these laws can allow for a reverse explanation making use of the same statements
employed in the original explanation. However, while the “forward” explanations usually seem
genuine explanations, the reverse ones often do not appear explanations at all, and could even
seem absurd. This would, according to these critiques, reveal a fundamental asymmetry which
appears as an important property of explanations, a property that the DN model completely
overlooks.

For example, it is possible to explain, as prescribed by the DN model, the particular height of
the sea tide at a certain place and time by deducing it from Newton’s laws and the mass of the
moon. Likewise, it is possible, by making use of the same laws in a reverse manner, to deduce
the mass of the moon by measuring the height of tides at certain times and places. But this does
not seem a plausible “explanation” of the particular mass the moon has: it would even seem
absurd to explain the mass of the moon in this way.

This kind of objection is raised, again, by supporters of a primitive notion of causality, who see
the asymmetry of causation as requiring asymmetry in genuine explanations as well.

Explanatory Irrelevance. Another typical problem with DN explanations is that of explanatory ir-
relevance: in certain cases, what appears as a perfectly genuine instance of deductive-nomological
explanation, which ends with the deduction of the explanandum from legitimate law-like state-
ments and initial conditions, results at the same time irrelevant as an actual explanation of the
explanandum. For example, take the following deduction:

1. all samples of salt blessed by a bishop dissolve in water;
2. we put a blessed spoon of salt in water;
3. the salt dissolves in the water.

8.1. Known problems of the DN model 259

This is, formally, a perfectly legitimate DN explanation of why our spoon of salt has dissolved
in the water. Nevertheless, the law-like statement, albeit true, is completely irrelevant for the
explanation of the actual phenomenon.

Advocates of the DN model would answer that the task of distinguishing inside the set of formally
correct deductive-nomological explanations between what is a legitimate explanation of a certain
explanandum and what is not, is only a pragmatic matter, which depends on the aims and
purposes of the researcher who looks for the explanation. All the above counterexamples, are,
in principle, compliant with the DN model of explanation, and can appear as non-legitimate
explanations only in relation to the pragmatic aspects of explanation regarding the expectation
and the needs of the researcher. And, in line with a post-logical empiricist view, the matter of
pragmatic aspects is not something within the scope of philosophy of science.

Understanding. Another question which must not be covered by philosophy of science, according
to this view on explanation, is the question of understanding an explanation. For the DN view,
understanding is indeed completely irrelevant to the status of an explanation: any sound logi-
cal deduction, however complex and unintelligible it can be, constitutes a perfectly legitimate
scientific explanation, if the logical and empirical conditions of DN explanations are fulfilled. Un-
derstanding is something that, according to a neopositivist-inspired, strongly anti-psychologistic
view like that of the advocates of the DN model, concerns only psychology, not philosophy.

In section 6.6.1, I started advocating instead an epistemic stance about explanation, which sees
explanations as essentially linguistic and communicative devices, for which intelligibility is needed.
I will develop such a stance in the following sections and chapters.

Chapter 9

Functions and functional explanation

9.1 Functions

The notion of function is central in many disciplines, ranging from mathematics to computer
science, to biology, to philosophy of mind, but it has no single, unproblematic, widely accepted
meaning. Some brief reflections on this are in order: I will try to schematize in what follows
how the notion of function can be understood in different contexts. It is not my intention to be
thorough nor to delve deeply into the many long-standing debates which surround this notion,
but only to outline some rough distinction which I think will be of possible use in later discussion
in this work.

I will discriminate here between five conceptions of function:

• in mathematics, a function is something that maps a set to another set, with the clause that
each element of the first set gets associated to at most one element of the second set. It is
not necessary to specify the mapping between the sets intensionally, that is by an explicit
rule: the function can be specified extensionally, by showing a set of ordered couples of the
elements of the two sets: these are all and only the couples of elements which are related
through the function.

• in biology, however, when the word function is mentioned, we are probably not dealing with
functions understood as mere input/output relations, but, in general, with functions with
some sort of “teleological” or “causal” flavor: albeit with quite different nuances, functions
are in these cases defined as something which is “for” something else, or something which
is meant to have some desired effect, or which fulfills a certain causal role with respect to
the whole system1. Two main theoretical views of the nature of functions are generally
considered in biology:

1. Causal role functionalism. According to causal role functionalism, a subsystem per-
forms a certain function if it plays a certain role in the causal web that constitutes
the function performed by the whole system. For example, causal role functionalism

1 I’m not going to enter here the long-standing debate about the nature of teleology or intentionality still
underway in philosophy of biology or philosophy of mind: I use here the term “teleological” in a mere metaphorical
sense. The same can be said for the debate about the nature of physicalism (see below), of natural kinds (which
has been touched upon in the Introduction though), and other similar ongoing metaphysical quarrels in the
philosophy of mind or metaphysics of science, which are outside the scope of this work: I will, in what follows,
make a quite instrumental use of the notion of function derived from such philosophical positions.

261

262 Chapter 9. Functions and functional explanation

sees a heart as a subsystem of the body which performs the function of “pumping the
blood”, in order to maintain the organism in life: this is the causal role of the heart in
the web of causes and effects which constitute the vital process of the organism. Other
than a conception of the notion of function, causal role functionalism is also typically
adopted by the metaphysical position known as non-reductive physicalism in philoso-
phy of mind. Roughly put, this is the rather still mainstream view, in philosophy of
mind and in cognitive sciences, started in the late ’60s by Hilary Putnam and later
supported by Jerry Fodor and many other authors. This philosophical position main-
tains that mental states and capacities should be seen essentially as functions, each of
which plays a certain role in the interconnected web of mental functions which consti-
tutes the whole cognitive system: types of mental states are conceived as functional
kinds and not as physical kinds, albeit functional kinds must be in some way realized
by physical kinds: this guarantees that the position is still physicalistic. This way,
psychological explanation of mental phenomena can abstract away from the neurologi-
cal details which implement (or, in other words, which “realize”) the mental functions
mentioned in the explanation. A typical feature of this notion of function is that a
function is multiply realizable2. This means that more than one specific physical sys-
tem can realize that function, that is, can come to occupy the specified causal role in
the causal web constituting the entire system. In other words, there are more possible
ways to perform the same causal role by means of different specific physical systems
or processes: for causal role functionalism in general, what counts for a function is not
the particular way a lower-level system3 realizes it by performing a specific process at
the lower level, but the fact that this lower-level activity takes the right place inside
the web of interconnected causes and effects which constitute the whole system. For
example, the function of being a heart, defined as the function of pumping blood in
the circulatory system of an organism, can be “realized” by a natural heart, but also
by an artificial pump: it is realized by at least two very different (in constitution and
way of functioning) physical systems. The function is thus multiply realizable.

2. The etiological view of functions. In evolutionary biology, the idea of the role of a
subsystem is usually linked with its evolutionary history: the heart has been “selected
for” its ability to pump, precisely because, in past generations, this function has
allowed individuals which were able to perform it to thrive and reproduce better
than those lacking the function. This phylogenetic, or etiological view of biological
functions was started in 1973 by Larry Wright in a seminal paper, and subsequently
developed mainly by Karen Neander and Ruth Millikan4. An explanation based on
the etiologial conception of functions is typically employed in answering to a question
about why a certain phenotypic trait or ability is showed by an organism: the answer

2 Actually, multiple realizability is the defining feature of psychological functionalism, or at least the orig-
inal inspiration which brought Putnam (1967a) and Putnam (1967b) (a reprint of the former) to conceive this
philosophical solution to the mind-body problem. The notion of realizability and the question of non-reductive
physicalism are chock–full of metaphysical caveats and ongoing quarrels, which is not surprising, given that they
belong to what is still considered the dominant positions in philosophy of mind. Understandably, I defer a deeper
analysis to some external work, such as, for a thorough and enlightening exposition of many of these problems,
the excellent Polger (2004).

3 I’m using here the notion of level on a purely intuitive ground, to describe the “concrete” (usually physical)
level that is below the level of functions, which is a “higher” and “abstract” level. The very notion of multiple
realizability of functions asserts this degree of abstraction: the fact that the same function is multiply realizable
by different lower-level systems, means that its identity ignores the details of its realizations, or in other words,
abstracts them away. That said, the notion of levels is definitely in need of a better clarification, a task which is
attempted in section 6.6.

4 See Wright (1973), Millikan (1984), Millikan (1989) and Neander (1991).

9.2. Functional analysis 263

is that the property, which must be genetically determined in some way, has raised,
by performing a certain causal role, the fitness of the ancestors of that organism,
thereby raising the probability of its genetic base to be itself passed on to future
generations, until today. Such a conception of functions allows for the attribution of
a function to a malfunctioning organ: a malfunctioning heart can still be considered
functionally a heart even if it is not currently able to pump blood: its identity as a
heart is guaranteed by the homologous organ in ancestors having been selected in the
past for pumping blood. On the other hand, in a non evolutionary causal role view, a
currently non-functioning heart cannot be considered a heart, in that it does not, at
the present moment, fulfill the role of pumping blood in the system.

• In computer science, a function is defined by showing an algorithm that gets to map a set
of possible inputs to a set of possible outputs. A less detailed or more informal description
of a program’s input/output mapping is called the program’s specification5. This is not
a completely unproblematic notion, as discussed in sections 4.1.3 and 4.1.5. The notion
of computational function, or of program, so understood, contains also some teleological
aspect. I refer to the aforementioned sections for a discussion.

9.2 Functional analysis

According to most secondary accounts6, one of the main proponents of the concept of function
as causal role is Robert Cummins. However, I would like to consider his position as a third,
slightly different flavor of the notion of function, which I will call Cummin’s functionalism or
explanatory-role functionalism. In many of his seminal papers Cummins never talked of causes,
and this seems to me to indicate that it is not advisable to put the potential metaphysical burden
which the concept of cause can bring along, on Cummins’ conception of functions. Moreover, by
his very definition of function, Cummins himself stresses that this notion is conceived in order to
give an account of a certain type of explanation which is often appealed to in explaining complex
systems.7 Cummins writes:

Functional analysis consists in analyzing a disposition into a number of less problematic
dispositions such that programmed manifestation of these analyzing dispositions amounts
to a manifestation of the analyzed disposition. By “programmed” here, I simply mean
organized in a way that could be specified in a program or flow chart.8

Here, by “disposition” Cummins means a certain capacity of the system. While usually linked
to the notion of causality, Cummins gives a non-causal account of the notion of disposition in
Cummins (1974). In that paper, the “realist” conception of dispositions held by D. M. Arm-
strong, which sees a disposition as the possession of a state which is causally responsible for the
disposition’s manifestation in certain circumstances, is explicitly rejected by Cummins, which
sees an object’s disposition in terms of the object’s potential possession of a state, which allows
for an explanation of the disposition by means of an analysis of that state in non-dispositional
terms (something which preludes to Cummins’ subsequent treatment of functional analysis).
This seems to me another reason to distinguish his account of function from generic causal role
functionalism, by calling it “explanatory-role functionalism”: if there is some use of the notion

5 See section 4.1.5.
6 Among them, for example, Couch (2011).
7 This also seems to be the opinion of some commentators, like Amundson & Lauder (1994).
8 Cummins (2000), p. 125.

264 Chapter 9. Functions and functional explanation

of cause in it, this is only as a form of causal explanation. I would rather leave unanswered, at
least here, the question if such a type of explanation captures or not some metaphysically real
characteristic of the explained phenomenon.

In Cummins’ view, the consideration of the wider context in which each functional component is
immersed adds to this kind of functionalism the ability of explaining the system by describing how
its subfunctions act in an organized way: the system can be explained by producing a symbolic
description (as we have seen above, Cummins talks of flow charts9) of the web of functional blocks
which make up the whole system. Like in causal role functionalism, the role which the function
performed by the subsystem under scrutiny plays inside the larger system is what is taken into
consideration. The difference here is that an explanatory role, not the causal one, is considered.
Leaving aside, as announced, this subtle (or not so subtle) metaphysical distinction10, it seems
to me that, however, Cummins-style functions do not entertain relations with the evolutionary
history of the system in the way causal role functions, in their etiological variant, do11. Unlike
etiological explanations, which, as we have seen, are used to answer evolutionary “why” questions,
Cummins-style ones are typically employed for answering questions about how a certain capacity
of the system is brought about: the answer lies in showing how this global capacity can be
expressed in terms of sub capacities and sub-sub capacities, and so on recursively.

9.3 Functional explanation of computational systems

Functional analysis as conceived by Cummins is typically applied in describing and explaining
complex systems, and as such can be, and is, applied to computational systems. In this case, I
think we could assimilate the “disposition” mentioned in Cummins’ above definition with what
in computer science terminology is called the “specification” of the program12, that is, intuitively,
a declaration of what the program is supposed to do. A specification can also be seen as the
function in the mathematical sense, which the system as a whole performs, or calculates. A
specification can in a way be assimilated to a disposition because it defines what the output
value of the program is, in case the input is set to some value: this is indeed quite similar to
the philosophical notion of disposition, which can be stated as some property something would
manifest should certain conditions happen to hold.

In computational systems, functional analysis can then be considered as the decomposition of
the computational system into computational subsystems. Each subsystem can naturally be seen
as a function in the pure computer science sense, but Cummins-style functional analysis adds to

9 See section 4.1.4.4.
10 This distinction can be certainly connected with the quarrel between the so-called ontic and epistemic views

in the philosophy of mechanistic explanations, which I will touch upon in section 10. It can also be related to
more general questions of realism/antirealism in science, which I will not directly engage in this work.

11 Amundson & Lauder (1994) agree in seeing Cummins-style functions as fundamentally different from etiolog-
ical functions. They contrast Cummins’ notion of function with the etiological one by calling the former “function
without purpose”. The same paper argues that this does not mean that Cummins-style functions do not appear
in biological explanations, but that, on the contrary, they very often do. It seems to me that calling functions as
understood by Cummins “without purpose” could be a little misleading, for, as defined by Cummins, functions
do have a form of purpose, albeit a weak type of purpose: namely, the specific sub-capacity, which comes to
compose the global capacity of the whole system. In my view, the only conception of purposeless functions is
the mathematical one, although I think even this lack of “purpose” can be debated, if we understand “purpose”
in a very loose sense: the name itself which can be attributed to certain standard functions (e.g. sin(x)), or the
analytical expression of some functions (e.g. y = 3x2 + 2) can in a way constitute the specification of the function,
and as such could be seen as the capacity or disposition it shows. Probably, completely purposeless functions are
the mathematical functions which cannot be analytically defined nor easily named.

12 The notion of specification is discussed in section 4.1.5.

9.3. Functional explanation of computational systems 265

this the information that these functions play a role in explaining the global function performed
by the whole system.

Applied to computational systems, this ends up being a form or role functionalism, but not of
“causal role” functionalism, because, in abstract computational systems, no notion of causality
is taken into consideration: as Polger (2004) properly highlights, causal role functionalism as
usually intended in philosophy of mind (for example by Jerry Fodor), must, for reasons internal
to that particular theoretical position, maintain that functional properties (such as the mental
properties) are actually endowed with causal powers qua functional properties. A well-known
argument, usually known as the argument from “causal exclusion”, whose major proponent is
Jaegwon Kim13, shows that actual possession of causal powers by these “higher level” functional
properties would be contradictory14. If the argument holds, the higher-level properties end
up being still equipped with causal powers, but not qua higher level properties, because these
causal powers actually belong to the lower level properties which realize the higher level ones.
That means that higher level properties still continue to support counterfactuals, but only in
virtue of their realizers. Some see this as equivalent to declaring the mere epiphenomenality of
higher level properties, and consider this result a problem for special sciences such as cognitive
psychology. I do not think, however, this could turn out to be a problem at all for computer
science: in this field, it is usually considered obvious that software, as such, is not equipped with
causal powers. Causality is not even taken into consideration by computer science, for it is a
notion which, if anything, pertains to empirical science. It is perfectly normal that constructs
in computer languages are declared devoid of causal powers and are not explained in term of
causal features. If something is causal in computers, this manifests only in actual, real-world
computers, at the hardware level: causality, if at all, can be considered operating in electronic
circuits. But computer science does not deal with electronics, but only with abstract logico-
mathematical machines. Nevertheless, explanations which are broadly speaking causal can be
employed in explaining computational systems for the reason that computational systems do
support counterfactuals, in that they deterministically pass from one state to another state at
every timestep. This can be seen as isomorphic to causation15, but I think we would be in a
better position by stating that this regularity in computational systems bears resemblance with
a sort of grammatical regularity16.

The explanatory capacity of functional analysis according to Cummins’ account is probably
13 Many works by Kim treat causal exclusion and cognate arguments, starting from Kim (1989c) and Kim

(1989b).
14 There have been, however many attempts to counter this argument, which I’m not going to treat here.

According to Polger (2004), much discussion around it has been due to terminological and conceptual misunder-
standings.

15 At least to a counterfactual-based account of causation.
16 I think that causality proper plays no role in the idea of computation, basically because computer science

treats, like mathematics, systems which are at least in principle idealized systems, with no consideration of the
notion of causality, a notion which presumably applies to the physical or “real” world. Regularities in these
idealized models are not due to physical or causal constraints, but to other reasons, which in my opinion are, to
simplify a little, of conventional or “grammatical” nature: it is a condition taken for granted by computer scientists
that a Turing machine must obey the constraints of its (idealized) physical structure and the instructions of its
machine table. This constraint has the same cogency implied in accepting a grammatical rule: if someone does
not want to obey a certain grammar, she is allowed to, but she would end up simply not speaking that language,
that’s all. We could obviously conceive, without violating any causality, a Turing machine which does not obey
its transition table: it will simply not be a Turing machine. In computing, causality could at best have (and it
has, probably) a role in the regular functioning of the “hardware”, but computer science does not deal with the
hardware. Or, to put it another way, it is my opinion that “hardware” is a relative concept. The reason for stating
this will come out clearer in section 6.6. I admit the position I sketched here can sounds dangerously affine to
a tentative solution to the hard, long-standing “kripkensteinian” problem of rule-following, but I leave a deeper
analysis of the problem to a later occasion.

266 Chapter 9. Functions and functional explanation

nothing new, at least in computer science: any programmer, even if she does not have to do
it, at least implicitly explains to herself how the program she is developing works by concerted
execution of its subroutines. The act itself of designing a certain software requires that the
programmer knows the specification of the whole program (e.g, the specification to be “a web
browser”), and development proceeds by analyzing (more or less in Cummins’ sense) this global
function into smaller subfunctions, which in turn get decomposed in simpler subfunctions, and
so on. The subsequent practice of lying down the sequence of instructions constituting each
subroutine, usually starting from the simplest ones, is the phase of implementation, which is
usually impossible without a former, at least implicit, explanation of the whole system in the
above terms. And this can be seen as a form of functional explanation the way Cummins
understands it.

Chapter 10

Mechanistic explanation

Although the idea of mechanical explanation, at least for what concerns the modern tradition,
dates back since Hobbes, Descartes and their time, in contemporary philosophy of science the
question of the status and properties of mechanistic explanation has been partially neglected for
almost three decades after WWII. This omission is quite possibly due to the preference accorded
in philosophy of science to the study of explanation in physics, where mechanistic explanations
seldom appear, and to a bias toward observable phenomena and a corresponding suspicion to-
wards causation, seen as a concept liable for metaphysical taint: these are inclinations that
date back to the logical empiricists of the Vienna Circle, and that have been still dominant in
philosophy of science from the beginning of the ’50s until the ’80s. Nevertheless, explanation
of a mechanistic kind has been the main form of explanation employed in most biological and,
later, psychological scientific research lines (for example in molecular biology, or cognitive neu-
rosciences), during a period which includes the same post-war decades in which philosophy of
science has mostly ignored this type of explanatory style.

Especially in the social sciences, however, the notion of mechanisms had began to attract quite
early some amount of methodological and philosophical attention on the part of certain authors.
In particular, Mario Bunge1 criticizes what he calls a descriptivistic view of explanations, that is
the view preferred by logical empiricists and their followers, which proposes to treat phenomena as
black boxes, seeing them only as expressions of (law-like) regularities. This is the view exemplified
by the the deductive-nomological model of explanation2 of Hempel and Oppenheim, typical of
the still neopositivistically-inspired aforementioned post-WWII “received view” in philosophy of
science. As we have seen, in deductive-nomological explanation a correlation between certain
conditions and the outcome to be explained is subsumed under a general law. Bunge attributes
this sort of superficiality of the obtained explanation to the necessity, for the logical empiricist
position, of strictly sticking to the empirical observability of phenomena, with the consequence
of cutting out most intermediate mechanisms between the initial conditions and the outcome,
mechanisms which are quite often unobservable3. According to Bunge,

Descriptivism not only curtails scientific research: it also encourages collecting disjointed
anecdotal material and the blind search for statistical correlations. This strategy may also

1 See Bunge (1997).
2 See section 8.
3 Unobservability of mechanisms holds true not only for microscopic physical or chemical ones, but also

partially for certain macrosopic mechanisms, for example social mechanisms, in which the aggregate interactions
between agents are not directly detectable.

267

268 Chapter 10. Mechanistic explanation

encourage superstitious beliefs rooted in mere coincidences or “synchronies” whereas a de-
mand for a plausible mechanismic explanation would rule them out. Descriptivism enshrines
mysteries instead of turning them into research problems.4

Bunge thinks that only the revealing of the mechanism underlying a given phenomenon can
confer perspicuity and depth to an explanation. For this reason, he started advocating, since the
late ’50s5, the use of mechanistic explanations, especially in the social sciences. In accordance
with his anti-neopositivistic view, he considers, assuming a realistic stance, that only concrete,
physical systems can be mechanisms, anticipating in a way a still open question about the
metaphysical status (ontic or epistemic) of mechanistic explanation, which will be touched upon
in what follows.

According to Bunge6, mechanistic models are more deeply explicative than simply descriptive
theories, because mechanistic explanations employ ontologically finer entities than those superfi-
cially observable. This feature of being more detailed and precise makes them logically stronger
than descriptive theories, and, as such, subject to a higher degree of falsifiability. In the light of
post-popperian fallibilism, according to Bunge, mechanistic models are, for these reasons, to be
preferred to simple descriptive theories.

Also Rom Harré, since at least the end of the ’50s, had began to put forth a notion of scientific
explanation by means of mechanisms7, opposed to explanation by subsumption under a law,
which is the DN kind of explanation.

The basic idea underlying Harré’s and Bunge’s positions is that, as an explanation, while the
DN model8 renders unsurprising a given systematic relationship between a class of certain initial
conditions and a class of certain outcomes by subsuming it under a general law, this correlation
lacks itself an “explanation”: unsatisfied “why?”, and, especially “how?” questions may still be
lingering even in presence of a fully valid DN-type explanation. The description of a mechanism
taking as initial conditions the initial conditions cited in the DN explanation and producing the
phenomenon to be explained (that is, the explanandum), would precisely come to constitute an
explanation of the lawful correlation employed in the DN explanation, an explanation of the
correlation itself 9. This seems a position analogous to that of Robert Cummins, who considers
psychological “laws” as themselves in need of functional explanation.

It thus appears that this vision of mechanistic explanation, as highlighted by Bunge, is, in a
way, compatible with the DN model. It is a deeper form of explanation than the latter, and
can usefully (hopefully) be the complement of a DN-type explanation: the mechanism reveals
itself as the producer, with its functioning, of the law-like regularity cited in the DN explanation.
This relationship between the two types of explanation is plausible, at least in cases in which the
implied mechanism generates a regularity that is sufficiently general to be considered a scientific
law.

4 Bunge (1997), pp.421-422.
5 Beginning with Bunge (1959), Bunge (1963) and Bunge (1964) (cited in Bunge 1997, p. 460).
6 See for example Bunge (1997), p. 460.
7 See Harré (1959).
8 For the DN model, see section 8.
9 In computer science terms, we could say that the correlation between the initial conditions and the ex-

planandum constitutes the “program specification”, that is the specification of the input/output relation, while
the mechanism producing the explanandum is the program which implements the specification (see section 4.1.5).
This is an analogy which I will make use of many times later on.

Chapter 11

The new mechanistic school

In more recent years another group of philosopher has begun to undertake, quite independently
from the aforementioned research line, an attentive analysis of mechanistic explanation, especially
in the biological sciences, as a complete alternative to the deductive-nomological model. This
theoretical line is quite often called the “new mechanistic” position.

This philosophical view of mechanisms is based on the consideration that in biological sciences
there is an almost complete lack of scientific laws, and that, for this reason, it would seem
philosophically inappropriate to forcedly impose the DN model of explanation in these research
fields. In fact, upon inspection of scientific literature, it turns out that, at least since the
inception of molecular biology and genetics, most biological or psycho-biological explanations
proposed in scientific papers have been instead of a mechanistic type. Theoretical refining of the
intuitive characterization of “mechanism” is precisely the object of the new mechanistic school
of thought in the philosophy of science. Authors following these lines do not usually try to
connect mechanistic explanations with DN-type ones, not because they reckon it is not to be
expected that mechanisms come to produce regularities (quite the contrary1), but mainly because
it actually turns out that in biological research scientists almost never refer to biological laws
proper: most biological phenomena are quite specific and bound to specific biological contexts,
and appear likewise to be generated by specific mechanisms: consequently, regularities produced
by these mechanisms are too limited in scope, and not sufficiently general to be considered laws
belonging in the same class of what are more proper scientific laws.

Probably the best known exponents of the new mechanistic current in contemporary philosophy of
science are Lindley Darden, Carl Craver, Peter Machamer, William Becthel and Stuart Glennan.
These authors are apparently differentiated in two groups, and this is evident since the origins of
this line of thought, which stems from two series of seminal papers. Although works by Bechtel
and his associates on the subject had already begun in the early 90’s with Bechtel & Richardson
(1993), it is probably the publication of Machamer et al. (2000) which sparked a growing interest
in the subject.

The two flavors of philosophical reflection on mechanistic explanation stemming from these lines
differ in some seemingly secondary theoretical aspect, which can however have far reaching
consequences. It is not my goal here to produce a detailed analysis of the evolutionary lines of

1 Usually, deterministic mechanisms are taken into account. It could well be, and it is quite possible, that
certain biological mechanisms show intrinsic non-determinism, due to their being based on random phenomena.
An example would be that of natural selection. However, this case depends on the decision to consider natural
selection a mechanism, and this is a highly debated question to date.

269

270 Chapter 11. The new mechanistic school

these two approaches: my purpose is to delineate these two positions in order to discuss them
further in relation to some proposals I intend to put forward in later parts of this work. To this
aim, I will now proceed to give an account of two representative papers, Machamer et al. (2000),
and Bechtel & Abrahamsen (2005), in order to later expose some critical observation coming
from other authors.

11.1 Machamer, Darden and Craver’s account of mechanistic
explanation

According to Machamer, Darden and Craver (MDC henceforth), in many scientific fields, espe-
cially in biology, explanation is given in the form of a description of mechanisms. Notably, in
their seminal Machamer et al. (2000), these authors state that no satisfactory analysis of what
mechanisms are and of their role in science had been carried out yet, at the time of their writing.
They claim that, nevertheless, much of the history of science can be seen as “written with the
notion of mechanism”. In their initial study, they deliberately choose to concentrate on biology
and neurobiology, not excluding (but leaving it as an open question) that explanations based on
mechanisms could characterize other sciences as well.

Machamer, Darden and Craver give a well-known definition of mechanism:

Mechanisms are entities and activities organized such that they are productive of regular
changes from start or set-up to finish or termination conditions2.

In MDC’s philosophy, a mechanism must not be intended only as composed of truly physically
mechanical, “push-pull” terms, but can take many forms in scientific explanations. A mechanism
is meant to explain a phenomenon or process. Descriptions of a mechanism show how termination
conditions are produced by the set-up condition and intermediate stages. This description is an
explanation of the phenomenon3.

Ontologically, MDC see mechanisms as composed of entities, which engage, according to their
specific properties, in certain activities. Division between entities and activities is the main
ontological partition of what mechanisms are composed of. Emphasis is put on the productive
aspect of mechanisms: entities are precisely those things that engage in activities. Entities and
activities are correlatives and interdependent: entities with certain properties are necessary for
having certain activities, and vice versa. Both entities and activities are necessary for what MDC
call an ontically adequate description of a mechanism.

As expected, spatio-temporal properties of mechanism components and of their arrangements
are fundamental for the functioning of the mechanism: “Entities often must be appropriately
located, structured, and oriented, and the activities in which they engage must have a temporal
order, rate, and duration”4.

Mechanisms display a regularity: under the same conditions, they work almost always in the same
way, from set-up to terminating conditions, with productive continuity between stages, without
gaps. This productive continuity is what makes the connection between stages intelligible. It is

2 Ibid., p. 3.
3 Although MDC seem to attribute the status of explanation to descriptions of mechanisms, Carl Craver,

one of the authors, has subsequently stressed in other papers that he sees, in a way expressly informed by
Wesley Salmon’s view, explanations as constituted by the exhibition of the actual, real-world mechanism. MDC
formulation of explanations in terms of descriptions could leave this ontic position implicit.

4 Ibid., p. 3.

11.1. Machamer, Darden and Craver’s account of mechanistic explanation 271

often represented with arrows: A→ B → C. A missing arrow would indicate an explanatory gap
in the productive continuity of the mechanism.

11.1.1 Mechanisms and functions

MDC seem to adhere to a form of causal role functionalism: functions are the roles played by
entities and activities in the context of the mechanism5. They explicitly stress the need for
consideration of the context in order to define a function, a context which must be “taken to
be important, vital, or otherwise significant”. They reject a contrasting view on functions, that
they call “substantivalist”, which considers functions as properties of entities. The position MDC
adopt, which compels to take into consideration the wider context in which entities and activities
play, seems to be a way to prevent reductionism. A mechanism in turn can have a function, if the
mechanism, as a whole, contributes to something in a wider antecedent context which is taken
as important.

11.1.2 Activities, causes and laws

Entities act as causes when they engage in productive activities. MDC state that their view
of mechanisms is in some ways compatible with Wesley Salmon’s causal mechanical philosophy.
Wesley Salmon’ s philosophical position is a very important view about explanations in terms of
causal processes, a view which back in the ’80s broke the orthodoxy of the hempelian model of
explanation and its disdain for causation. Salmon’s position is the original inspiration of most
subsequent philosophical views on mechanistic explanations, especially on the MDC’s side.6.
MDC’s position, along these lines, embraces a fully metaphysical view of causation, seen as
brought about by what they call productive activities.

While in neurobiology and molecular biology there is ample use of mechanisms and scant evidence
of natural laws as traditionally understood in physics, MDC admit that the notion of activity
shares with natural laws the property of being a non accidental regularity, able to support
counterfactuals. It has to be considered part of the definition of mechanism the proviso that its
functioning must occur in a regular way. So, a sort of necessity is implied by a mechanism, but
without the need, according to MDC, to posit some law-like necessity underwriting it.

It is clear that these two combined positions about causation and laws, which see causes as
metaphysically real and not requiring a connection to laws in order to bring about regularity,
stand in complete opposition to the view advocated by supporters of the DN explanation, which
sees causes as just Humean observed regularities and natural laws as warranting the regularity
of causation.

11.1.3 Diagrams

According to MDC, diagrams can be used to describe mechanisms, for they exhibit the spatial and
structural features of the entities, along with the activities, which are usually depicted as arrows.
But they claim that diagrams, while facilitating apprehension, can actually be substituted by
verbal descriptions. This, as we will see, goes against Bechtel and Abrahamsen’s opinion, who
think diagrams are an essential part of mechanism descriptions.

5 A more thorough discussion on this and other conceptions of function has been carried on in section 9.
6Although of such importance in philosophy of science, an analysis of Wesley Salmon’s position is outside the

scope of this work.

272 Chapter 11. The new mechanistic school

11.1.4 The working cycle of a mechanism
Set-up and termination conditions are part of the definition of mechanism.

• Set-up Conditions are idealized static initial conditions, that can be themselves results of a
prior process, and comprise the relevant entities and their activities, structural properties,
orientations and spatial relations, as well as any environmental enabling condition (the
latter often omitted for the sake of simplicity). MDC stress that set-up conditions are not
mere inputs for the mechanism, separated from it. Rather, they are part of the mechanism,
crucial to make the process go on.
• Termination Conditions are conditions describing an idealized static endpoint of the mech-
anism, considered and endpoint depending on the observer goals, or for the reason it consti-
tutes the final stage of what is considered a unitary process. MDC stress that termination
conditions are not outputs of the mechanism, for this would inaccurately suggest something
coming out of it7.
• Intermediate Activities: these are the intervening entities and activities that produce the
termination conditions starting from the set-up conditions. MDC stress that in a complete
description of a mechanism, no gaps leaving specific steps unintelligible should appear
(something they also call productive continuity).

An important remark is that the structure of stages in the process of a mechanism must not
necessarily be linear but can show forks, joins or cycles. MDC also stress that often mechanism
are actually continuous processes, treated as a series of discrete steps only for convenience.

11.1.5 Hierarchies and Bottoming Out
MDC highlight that mechanisms, in explanations, often occur in multi-level hierarchies, where
lower level entities, properties and activities act as component of higher level mechanisms. A
whole mechanism can in turn be seen as a component of a higher-level one.

Descent along the hierarchy must eventually bottom out. This occurs as a matter of convention.
The lowest level of the hierarchy is chosen by the researchers based on a subjective evaluation: the
lowest level is the one which is considered by the scientist or the scientific community fundamental,
or for which it is not considered interesting trying to further analyze it by decomposing it in
smaller parts (for example, in molecular biology, the bottom level is usually considered that of
macromolecules, or at most, smaller molecules and ions). Of course, this makes the bottom level
relative to a scientific area, and, in a given area, what is considered bottom level can historically
change due to changes in the discipline. This view is perfectly compatible with my view on
levels of description which was expounded in section 6.6, where the bottom level is what I called
preferred description. There are, however some relevant differences on the metaphysical status of
descriptions between my position and the one proposed by MDC, which is definitely more ontic.

Bottoming-out involves identifying bottom level activities beside bottom level entities. Specif-
ically, in molecular biology and neurobiology, MDC think bottom level activities can be so
categorized:

7 I find these elucidations by MDC somewhat problematic: it seems obvious that “output”, despite its ety-
mology, does not necessarily refer to something which is put out of something else considered as a context, and
in the same way, input is not necessarily something that must be pushed inside some contextual border. For
example, in a computational system any internal configuration which occurs at the end or at the beginning of the
computation can be considered input or output. These considerations could, for example, be applied to inputs
and outputs of cellular automata, as sketched in section 5.2 and 5.2.4.

11.1. Machamer, Darden and Craver’s account of mechanistic explanation 273

• geometrico-mechanical activities (the activities familiar from modern XVII century mech-
anism: pushing, pulling, turning and such);
• electro-chemical activities: attracting, repelling, bonding and breaking (as, for example, in
enzyme activity);
• energetic activities: activities involving thermodynamic phenomena.
• electro-magnetic activities: these are activities at times used to bottom out mechanisms
in molecular biology and neurobiology (es. the conduction of electrical impulses by nerve
cells).

11.1.6 Mechanism schemata, mechanism sketches, explanation, and
scientific theories

According to MDC, a mechanism schema “is a truncated abstract description of a mechanism
that can be filled with descriptions of known component parts and activities”8. Often scientists
provide only mechanism schemata, for in their research they are typically interested in types of
mechanisms, omitting the details that make up a specific mechanism, or they do not intend to
provide complete descriptions of mechanisms at all levels in a hierarchy.

I think it should be noted how in their definition of mechanism schema MDC have felt the need
to specify that the latter is an “abstract description”. It seems safe to infer that their concern
is that of distinguishing the metaphysical status of description from that of mechanism. This is
due to the plausible claim, that seems corroborated by other interpreters of their philosophical
position, that MDC consider mechanisms as real, actual structures existing in the world9, and
not as representations of a mechanistic form. A schema is a description of a mechanism, and the
actual mechanism which it describes is said to instantiate the schema. An explanation proper
is constituted not by the abstract schema, but by the actual, real-world mechanism: “When
instantiated, mechanism schemata yield mechanistic explanations”10. This point of view (in my
opinion a counterintuitive view), that considers the actual mechanism and not a representation
of it, as the explanation, is typical of MDC, and especially evident in Carl Craver’s explicitly
ontic view of mechanistic explanations, which can be contrasted with an epistemic view, typical
of other authors, as William Bechtel and colleagues.

Differently detailed schemata come from different degrees of abstraction, an operation consisting
in removing details from an exemplary specific case11: abstraction deals with the amount of
detail included in the schema seen as a description of some real instance of a mechanism.

The generality of a schema is the scope of the scientific domain in which a mechanism that
instantiates it can be found.

MDC stress that abstraction degree and scope are orthogonal properties: narrow scope and high
abstraction can coexist, and vice versa.

Regarding scientific theories, MDC see them as occurring in some sciences in the form of mecha-
nism schemata: in neurobiology and molecular biology, often the term “theory” actually refers to
“hierarchically organized mechanism schemata of variable, though generally less than universal,
scope.”12 According to MDC, in these disciplines mechanism schemata play indeed many of the

8 Machamer et al. (2000), p. 15.
9 and, consequently, as realizers of their own explanation.

10 Ibid., p.17.
11 I have treated at length the notion of abstraction in section 6.6.
12 Ibid., p. 16.

274 Chapter 11. The new mechanistic school

roles traditionally attributed to theories in other scientific fields. In MDC’s words, mechanism
schemata

“are discovered, evaluated, and revised in cycles as science proceeds. They are used to
describe, predict, and explain phenomena, to design experiments, and to interpret experi-
mental results.”13

As theories, mechanism schemata can allow for predictions on the basis of their structure and
properties.

At the same time, schemata also provide a “blueprint” for designing experiments to put them to
test:

“A technician can instantiate a schema in an experiment by actually choosing physical
instantiations of each of the entities and the set-up conditions and letting the mechanism
work. While the mechanism is operating, the experimenter may intervene to alter some part
of the mechanism and observe the changes in a termination condition or what the mechanism
does. Changes produced by such interventions can provide evidence for the hypothesized
schema”14.

Sketches are mechanism abstractions different from schemata. They are incomplete schemata,
that is, mechanism abstractions which, due to a current lack of knowledge, lack some details: for
example, it can happen that bottom-out entities cannot be provided, or productive continuity is
interrupted by missing stages, usually substituted by black boxes. A sketch thus serves to guide
further research, and it can either be abandoned in the light of new findings, or become a schema.

11.1.7 Intelligibility and multi-level mechanistic explanation
MDC state that the mechanistic world view brings with it some expectations about how phe-
nomena must be rendered intelligible:

“intelligibility consists in the mechanism being portrayed in terms of a field’s bottom out
entities and activities.”ˆ

A mechanistic explanation renders a phenomenon intelligible by showing how it is produced by
bottom entities and activities, i.e. by elucidating the explanandum (the termination conditions)
by means of the set-up conditions and the intermediate entities and activities. This can be seen
as in line with Bunge’s recommendations for a proper explanation cited above15, which advocate
for the need to explicitly represent the intermediate dynamics (the mechanism) which stand
between the initial conditions and the phenomenon to be explained, intermediate events which
in the DN explanation are concealed under the expression of a law.

Description of a plausible mechanism for generating a phenomenon, according to MDC, is enough
to render a phenomenon intelligible. They stress that intelligibility is a property of mechanistic
explanation which is independent from the correctness of the proposed explanation: even in cases

13 Ibid., p. 16.
14 Ibid., p. 17.
15 Section 10.

11.2. Becthel and Abrahamsen’s view of mechanistic explanation 275

of wrong explanations, the fact that the wrong description shows how plausibly the mechanism
works, is sufficient, according to MDC, to render the phenomenon intelligible.

Classical models of inter-theoretical reduction, in which properties and entities of the lower levels
and the laws that govern them explain higher ones through the identification of corresponding
terms in the two levels and the logical derivation of higher-level laws from the lower-level ones16,
cannot, according to MDC, accommodate the prevalent multi-level character of explanations in
molecular biology and the neurosciences, where intelligibility stems from describing entities and
activities at multiple levels: a multi-level description is required to put an entity or an activity
in relation to its context, and this putting-in-context is in turn required, for allowing a proper
understanding of the entities or of the activities.

Thus, it is not reduction per se to be important for intelligibility in molecular biology and
neurosciences, but rather the integration of different levels into productive relations.

A comment is due about the fact that this MDC’s view of intelligibility as based on a depiction of
the mechanism in terms of its bottom level components seems to highlight the merits of a reductive
kind of explanation: although it is specified that the bottom level is dependent on an arbitrary
choice, the above claim by MDC seems to downplay the legitimacy of explanations which do not
explain in terms of lower-level components: despite MDC’s frequent appeal to the importance of
multi-level integration, it seems that intelligibility is for them specifically tied to the description of
the bottom level entities and activities. Explanations which remain more abstract, and do not go
to the bottom, would lack intelligibility, according to their account. It could be probably said that
such explanations remain simply mechanism schemata, without becoming proper mechanistic
explanations. Due to MDC’s ontic account of explanation, a proper explanation must in fact
be constituted by the real-world, actual entities and activities that produce the explanandum
and, as such, these entities and activities cannot be higher-level abstract entities17. Of course,
a mechanistic explanation has to be based on the description of bottom-level parts by its very
nature, but, as we will see in the next section, in the slightly different account of mechanistic
explanation by Bechtel and Abrahamsen, a stronger emphasis can be posed on the possibility of
rendering an explanation perspicuous through the consideration of multiple hierarchical levels,
without tying intelligibility mainly to specification of the bottom level.

11.2 Becthel and Abrahamsen’s view of mechanistic explanation

Like MDC, William Bechtel and Adele Abrahamsen (BA henceforth), in Bechtel & Abrahamsen
(2005), a paper which they themselves plausibly recognize as their most mature characterization
of mechanisms18, highlight that the DN model of explanation cannot be applied to all scientific
areas: in life sciences, most explanations do not appeal to laws, and even if a law could be
provided, it would not explain the phenomenon, for that would simply amount to expressing
generalizations on certain properties of a class of phenomena that would not satisfy the biologist’s
need for explanation. Instead, it appears that in biological literature the most frequent type of
explanation is by mechanism.

16 As in the model of intertheoretic reduction typical of the standard view exposed in Nagel (1961).
17 Although it could be objected that in certain disciplines bottom level entities are still abstract entities.

This is true for disciplines, as cognitive psychology, whose basic kinds are not physical but functional. It must
be considered that bottom level choice is relative to the discipline and to the interests of the observer. This is
something completely analogous, although on a more “ontic” side, to my idea of preferred description, explained
in section 6.6.

18 It is the seminal paper they still cite in their most recent publications. See for example Bechtel & Abrahamsen
(2010).

276 Chapter 11. The new mechanistic school

BA cite the example of a “law” which states that, under specified conditions, in the last phase
of cellular respiration the ratio of oxygen molecules consumed to ATP molecules produced does
not exceed 1:3. They stress that this ceteris paribus generalization would not satisfy a biologist’s
need for explanation, for it would not answer the question about why this generalization holds:
The law would itself require an explanation, an explanation that would be provided by the
description of a mechanism.

Explaining by means of mechanisms amounts to explaining why by explaining how.

11.2.1 Main differences between BA and MDC accounts
Acknowledging that in recent times a number of other philosophers (most notably Machamer,
Darden and Craver) have advanced proposals for the philosophical treatment of mechanistic
explanation, BA note that these approaches partly overlap theirs but also differ in terminology,
scope and emphasis. Specifically, they claim that their approach differs to that of MDC in the
following features:

• MDC take a dualistic metaphysical approach based on entities and activities, while BA
prefer talking of parts and operations, where operation is preferred over activity in order
to draw attention on the involvement of parts in these operations (i.e. as when an enzyme
operates on a substrate so as to catalyze changes in the substrate).

• MDC’s characterization of mechanisms as productive of regular changes from set-up to
termination conditions raises worries, on BA’s part, that focus could be shifted mainly on
linear processes in which the initial state is stable, while mechanisms, according to BA,
when embedded in a larger mechanism network, are continuously responsive to contextual
conditions. Moreover, it seems that MDC definition, with its stress on the path between
an initial and a final condition, could overlook the fact that most interesting mechanisms
are not linear chains of operations, but can comprise feedback loops which render their
behavior complex.

• MDC’s account of mechanistic explanation, as already hinted at, is ontic, while BA’s
approach is epistemic, a difference which has been hinted at, in sections 11.1.6 and 11.1.7.

11.2.2 BA’s definition of mechanism
A mechanism is a structure performing a function in virtue of its component parts, compo-
nent operations, and their organization. The orchestrated functioning of the mechanism is
responsible for one or more phenomena19.

It is immediately clear that BA’s approach to mechanisms is functional. We have already out-
lined20 the main accounts of the notion of function and functional explanation, the most promi-
nent of which is Robert Cummins’ functional analysis. As will become clear in the following
sections, BA’s approach constitutes in a way an extension of Cummins’ view of purely functional
analysis.

BA stress that the choice of the component parts is dependent on which phenomenon the atten-
tion of the observer is posed on, and that an operation requires at least a part: an operation

19 Bechtel & Abrahamsen (2005), p. 423.
20 See section 9.

11.2. Becthel and Abrahamsen’s view of mechanistic explanation 277

typically occurs between two parts, where one part initiates the operation, and can thus be
considered the active part, and another part, the passive one, is changed by the operation.

A change can consists in an alteration of the position or a change of other properties of a part,
and can even result in the transformation of a part of a certain kind into a part of another kind.

11.2.3 Hierarchical organization of mechanisms
Operations can be organized simply by temporal sequence, but biological mechanisms tend to
exhibit more complex forms of organization. Mechanisms may involve multiple levels of organi-
zation:

• a mechanism is often part of a a higher-level, larger mechanism;
• with respect to a certain operation, different parts have different roles; mechanism compo-
nents are spatially and temporally organized;
• operations are precisely timed, to achieve an orchestrated effect.

According to BA, it is crucial, over supplying a specification of the component parts and opera-
tions of a mechanism, also to specify external circumstances in which a mechanism operates. In
general, this is another instance of the hierarchical encapsulation of mechanisms: external circum-
stances can be understood as larger overarching mechanisms, while components of a mechanism
can be seen as mechanisms themselves. This shows that mechanistic explanation can be “recur-
sive”, and that the multilevel character of mechanistic explanations is quite essential.

This is in striking contrast with the the traditional model of reductionistic explanation, as pro-
posed in Nagel (1961). In the traditional reductionistic view, there is recursive explanation, but
the bottom level must, at least in principle, be able to explain all phenomena at all other levels,
by means of reduction of all the high-level concepts and laws to low-level ones. By contrast,
according to BA, in mechanistic explanation, mechanisms at different levels in the hierarchy
account for different phenomena: an explanation at a given level is not replaced by a possible
explanation at a lower level.

It is true that going down a level yields a form of reduction, but, seemingly, in BA’s account
this is simply a mereological reduction: a high-level part is replaced by its lower level component
parts. While going up to a higher level provides a wider perspective, that puts the former level
into the context of a larger mechanism which modulates the functioning of the lower one.

It appears, thus, that BA’s position shows a significant antireductionistic nuance, albeit, judging
by other works by the authors, it seems that they do not go as far as embracing the so-called
“nonreductive physicalistic” position, which explicitly refuses reductive explanation which defer
the explanatory work to lower levels21. It seems instead that BA simply advocate the necessity
for multilevel explanations, which, according to them, are different from pure reductionistic
explanations. I think it must be noted, though, that other philosophers and many scientists do
consider the typical mechanistic explanation given in life sciences as a form of reduction. For
example, Wimsatt (1976) claims that scientists in general consider the mechanistic explanations
that they produce as paradigmatically reductionistic. The fact is, in its common use in the special
sciences, reduction probably refers primarily to mereological reduction, while in philosophy of
science the term has mostly referred to intertheoretical reduction, which is a completely different
matter.

21 That is, for example, the position held by Jerry Fodor.

278 Chapter 11. The new mechanistic school

11.2.4 Diagrams and simulation in mechanistic explanation
The DN model of explanation22 assumes that explanations make use of propositional, linguistic
representations, and resorts to logic as a tool for reasoning about these representations: according
to the DN model, an explanation takes the form of a more or less formalized logical argument, in
which the premises are a set of laws and some contextual initial condition, while the conclusion
is an observational statement.

Consideration of cognitive aspects of the human subject is completely left out of such a model
of explanation, and it is even actively refused, under the influence of the standard, post-
neopositivistic theoretical view which sees psychology as completely antithetic to philosophy.

In an opposite way, BA are concerned with cognitive limitations, because they are committed to
a conception of explanation which sees explaining as an eminently cognitive and communicative
task. Along this lines, while DN explanation are purely linguistic devices, mechanistic explana-
tion can make use of graphical representation in the form of figures and diagrams. BA claim
that, moreover, when giving mechanistic explanations this use of diagrams is prevalent over the
simply verbal description.

BA support this conclusion by referencing cases in contemporary biological literature and history
of science. According to them, verbal labels and captions associated with figures in that kind of
literature usually provide only a secondary commentary, while the core of the explanatory work
is performed by the graphical representation: specific of a diagram is its capacity to make use
of space, color and shape to convey information, preserving the spatial layout and organization
of the described mechanism. Even when information about the specific spatial layout of the
mechanism is absent or irrelevant, spatial dispositions of blocks representing operations in the
diagram can be used to separate or relate them conceptually. A diagram can also, by making
use of one of the spatial dimensions, or by means of arrows or other graphic expedients, inform
about the temporal orders of operations.

Against the DN model of explanation, BA argue that, if diagrams convey information not easily
conveyed explicitly by linguistic representations, deductive inference would not capture the real
reasoning required for understanding how a mechanism gives rise to the observed phenomenon,
and so that the DN model alone is insufficient: only the apprehension of the mechanism would
yield a satisfactory explanation, an this is eased by the use of diagrams in mechanistic explana-
tions. This, according to BA, matches well with results in cognitive psychology showing that
for efficient reasoning it is essential to coordinate modes of representation and procedures of
inference. These considerations on cognitive efficiency are again in striking contrasts with the
theoretical position supporting the DN model which, as we have seen in section 8.1, completely
neglects the cognitive aspects related to explanation and its understanding.

According to BA, simulation is a privileged mode of reasoning about a mechanism, that allows
to compensate the staticity of diagrams and to reason about temporal features in a mechanism.

There are, according to BA, two kinds of simulations:

• mental animation can be carried out by a human subject as an activity consisting in
inferring the subsequent states of parts of the system starting from the system’s present
state. However, mental animation is a cognitive activity which shows itself as only partially
isomorphic to the operation of the physical system, due to some cognitive limitations in
evaluating multiple operations occurring simultaneously.

22 See section 8.

11.2. Becthel and Abrahamsen’s view of mechanistic explanation 279

• Simulation by non purely mental models, which can overcome cognitive limitations:

– scale models;
– mathematical models;
– computational models: this is what BA call, in a more recent paper23, Dynamic
Mechanistic Explanation (DME).

To sum up, in BA’s words

Representation and inference in mechanistic explanation is quite different from represen-
tation and inference in nomological explanation. While it is possible to give a linguistic
description of a mechanism, the linguistic account is not privileged. Frequently diagrams
provide a preferred representation of a mechanism. Inference involves a determination of
how a mechanism behaves, and this is typically not achieved via logical inference but by
simulating the activity of a mechanism, either by animating a diagram or by creating mental,
computational, or scale model simulations24.

11.2.5 Discovering mechanisms: decomposition and localization
Models of mechanistic explanation seem more fit than the traditional DN model of explanation
for taking into account the phase of scientific discovery. In the received view in philosophy of
science, discovery is not investigated at all: according to Reichenbach’s traditional distinction
between the context of discovery and the context of justification, justification can be studied
philosophically because it is a logical problem, while discovery is a psychological process and
as such not interesting at all for a neopositivistically-inspired antipsychologistic philosophy of
science.

For BA, discovery of mechanisms is on the contrary a natural object of study for philosophy,
since, according to them, the concept itself of mechanism implies the idea of identifying the
working parts and operations and the organization of the system which generates a phenomenon.
This is an implicit view of the task of discovering a mechanism, a task which requires two phases:
decomposition and localization.

Decomposition consists in taking the mechanism apart, physically or conceptually. Decomposition
can be functional or structural. The two types are usually undertaken by different researches
in different fields, while integration of functional and structural aspects into a complete account
usually comes later:

• functional decomposition consists in decomposing the system into component operations.
This is performed by discovering which lower-level operations contribute to the overall
functioning of the mechanism under scrutiny. Often, operations act on, and transform,
substrates. So, a successful functional decomposition will identify the operations and their
corresponding substrates, that is the passive parts, while structural decomposition (next
point below) will identify the active parts performing the operations.
• Structural decomposition consists in decomposing the system into component parts. What
BA highlight is that structural decompositions should identify specifically the active parts,
that is, the parts that actually perform the operations already found by the functional

23 Bechtel & Abrahamsen (2010).
24 Bechtel & Abrahamsen (2005), p. 432.

280 Chapter 11. The new mechanistic school

decomposition (the parts which Carl Craver calls working parts). Only the working parts
count in a correct structural decomposition, as it is obvious that there is an infinite number
of other possible structural decompositions that don’t pinpoint working parts (like, for
example, cutting the system arbitrarily into cubes).

Nevertheless, according to BA, it is possible to perform a structural decomposition indepen-
dently from a functional one, identifying what are likely working parts on the basis of other
non-functional considerations, and refining that partitioning to gradually converge on one that
gives working parts. This structural decomposition independent from the functional one occurs
especially at the beginning of a research.

Afterwards, having performed the two decompositions above, a phase of localization is needed.
Localization amounts precisely to the linking of operation with parts. This is the stage that
concludes mechanistic explanation.

As said, functional and structural localization can, and usually are, carried out separately by
different researchers. A strong corroboration of the correctness of the decomposition done comes
precisely from the independence of the two types of decompositions: “linking a component oper-
ation with an independently identified component part provides evidence that both really figure
in the mechanism”25, while failure to do so can cast doubts on the adequacy of the decomposition
done.

It must be noted that, although structural/functional decomposition duality seems in some way
to mirror MDC’s entity/activity dualism (structural decomposition identifies entities, functional
decomposition identifies activities), the overlapping is not complete: functional decomposition,
according to BA, also identifies some parts, the passive substrates; however these passive parts
do not fulfill MDC’s vision of parts as mostly active promoters of activities.

Different experimental methods are involved in decomposition: decomposition in practice involves
a variety of experimental procedures. BA highlight the importance of two main methods:

• Inhibition of a component to observe its effect on the global behavior of the mechanism26;
• recording of internal states of the mechanism in a variety of conditions (for example, when
neuroimaging techniques such as functional MRI are applied to the study of the brain).

A third crucial factor for mechanistic explanation is the discovery of the mechanism’s organization.
Often this organization is nonlinear, and this usually requires relying on computational modeling
to highlight the often surprising complex behavior a kind of non-linear organization can bring
about, such as self organizing behavior27. Much philosophical work, according to BA, is yet to
be carried out regarding this area of mechanistic explanation.

11.2.6 Testing mechanistic explanations
In the DN model, testing a hypothesis entails making predictions by deducing consequences of
the known laws, and experimentally testing if those predictions hold. This method presents

25 Ibid., p. 434.
26 This method amounts to a form of intervention on a variable of the observed system. According to some

accounts of causality, like that of James Woodward, intervention is the basic method to detect causal links. I will
argue in section 6.9 that modularity of the system is necessary for this kind of method to be applied.

27 I discussed self-organizing behavior in section 5.2.3.

11.2. Becthel and Abrahamsen’s view of mechanistic explanation 281

some well known shortcomings, namely underdetermination of theory by data and confirmation
holism.

The two problems are related. The first, that of underdetermination of theories, can occur in two
forms. One occurs when a theory is confirmed by experimentally observing the actual happening
of some of its consequences. Since the same set of consequences can logically descend from an
infinite number of different sets of premises, the given theory is actually been confirmed together
with the infinite other theories which would give rise to the same consequences tested, so it is
impossible to tell which of them is the right theory.

The other form of underdetermination of theories, also known as credit assignment, stems from
the observation made by Pierre Duhem around 1914 that, while testing a scientific hypothesis,
a negative experimental result leaves undetermined which hypothesis must thus be rejected as
the culprit. This happens because, even if apparently a single hypothesis has been put to
test, actually an unbounded number of auxiliary hypothesis regarding initial conditions and
background beliefs have been implicitly checked together with the main one, and being impossible
to explicit them all, it’s impossible to decide which is the one to reject28.

BA claim that, although itself affected by such problems, the testing of mechanistic explanations
mitigates them, because testing of a mechanism is more informative than testing of a hypothesis
under the DN model: due to the fact that the experimenter, when setting out to test a model
of a mechanism, typically focuses on specific components and not on the mechanism as a whole,
the experimental failings of his expectations are diagnostic, for such experimental results target
specific components and operations, and are certainly those parts to be in need of revision as a
consequence of such experimental negative verdicts: the underdetermination is canceled by the
fact that the experimenter already knows, at least in a general way, which specific part or parts
of the mechanism, in case of failure, have been responsible for the failure.

In BA’s account, the testing of mechanistic explanation, rather than simply consisting in pos-
tulating a complete mechanism and putting it to test, typically begins with an oversimplified
account of the mechanism, a sketch, in which only a few components and aspects of their orga-
nization are specified, a mechanism sketch which is to be repeatedly revised and filled in, over
time.

11.2.7 Generalizing without laws
An obvious expectation in science is that explanations and theories can be generalized beyond
the specific cases around which they have been initially constructed. Generalization is achieved
automatically in the DN model, because laws are represented as universal conditional statements.
In contrast, mechanism models can be highly specific, and a generalization of a mechanistic
explanation seems less likely, for it is strongly bound to a specific context. Nevertheless, BA
think that some generalization is possible. To account for it, they employ a concept of similarity
modeled after certain well-known researches in cognitive psychology29, in order to apply it to
similarity between mechanistic models. The idea is this: often, instances of objects falling
under an ordinary-language concept, rather than sharing some common distinctive properties,
present a varying degree of similarity toward one prototypical item, sharing instead only a “family

28 Willard van Orman Quine famously expanded this thesis in his seminal Quine (1951) paper, by claiming
that the totality of scientific and logico-mathematical knowledge is a web of interconnected statements which can
be confirmed or disconfirmed only together as a whole. This conclusion by Quine is known as the problem of
confirmation holism.

29 This concept of similarity stems from the famous works on the psychology of membership recognition in
categories conducted by Eleanor Rosch and colleagues since the ’70s.

282 Chapter 11. The new mechanistic school

resemblance” à la Wittgenstein between them. In an analogous way, different mechanisms can
exhibit similarities of varying degree between them. In the words of BA:

Different mechanisms may exhibit similarity relations to each other without being exactly the
same. For example, mechanisms of protein synthesis may be similar in different organisms–or
different cell types in the same organism–without being identical. Certain memory encod-
ing mechanisms,to take another example, may be similar across some delimited range of
species.30

According to BA, generalization is then facilitated by the individuation, in certain areas of
research, of model systems, which are specific exemplar of mechanisms31 on which, typically,
research focuses at the outset of the investigation of an area, often for reasons not necessarily
tied to their being typical systems, but more often tied to ease of study. These model systems,
after research has consolidated, usually begin to be taken as a common point from which to try to
generalize explanation to other similar mechanisms, by gradually modifying the model system’s
explanation: it is in this way, completely different from the method of generalization typical of
the DN model, that generalization is brought about in mechanistic explanation.

11.3 Functional analysis and mechanistic explanation

To begin with functional decomposition, here the strategy is to start with the overall func-
tioning or behavior of the mechanism and figure out what lower-level operations contribute
to achieving it. These operations are characterized differently in different domains, but
often involve transformations to some substrate. The biochemical system that performs
metabolism in cells, for example, catabolizes glucose to carbon dioxide and water. The
component operations are then characterized in terms of individual chemical reactions on a
series of substrates.32

Abstracting from the material nature of the operations and substrates cited in the above example,
we could conceive functional decomposition as the analysis of which are the operations (that
is, capacities, in Cummins’ terms, or dispositions when referred to computational systems) that
contribute, in an organized way, to the functioning of the whole system. Bechtel and Abrahamsen
go on:

As another example, in the domain of information processing systems, representations play
roles comparable to substrate and product, and information processing activities are the
operations (e.g., moving or altering representations).33

When taking into consideration computational operations which act on substrates, it is easy to
see that in this case, according to the view of computationally capable, or digital systems which
I proposed in section 5.1.1, the substrates are the symbol tokens (or input representations, to
use an expression more typical of computational cognitive science), and the operations are the
operations performed on these tokens by the computational machine.

30 Bechtel & Abrahamsen (2005), p. 438.
31 Such as, for example, the giant squid axon, for the study of neural transmission, where the large size of the

axon facilitated experimentation.
32 Bechtel & Abrahamsen (2005), p. 433.
33 Ibid.

11.3. Functional analysis and mechanistic explanation 283

The peculiarity of mechanistic explanations with respect to Cummins’ functional decomposition
is that, when applied to real-world systems, mechanistic explanation does not limit itself to func-
tional decomposition: it must also perform structural decomposition, which seeks identification of
the structural components34 of the system which are supposed to perform the functions described
by functional decomposition.

The third phase is that of linking functional operations with structural parts, and this is called
localization. This is often necessary to corroborate the two former types of decomposition, which
in actual scientific research are in many cases carried on separately, at least at the beginning of
a research paradigm.

But when trying to mechanistically explain a computational system (or, for that matter, a high-
level psychological or any other kind of abstract system, like an electronic circuit35), only the
functional characterization is possible, and in this case it seems there is coincidence between
Cummins’ functional analysis and the mechanistic conception of explanation36.

It is true, though, that even functional decomposition as understood by BA does not seem
to coincide completely with the classic role functionalism which is usually adopted in “special”
sciences like cognitive psychology: BA’s flavor of functionalism seems more tied to the realizers of
the functions, at least for what concerns the parts. Of course this can be further debated, given
that bottoming out, and so the identification of the lowest level, is contingent on the researcher’s
interests, and as such could bring to the identification of the lowest level with a quite “high”, quite
abstract level. But even when so, it seem this kind of functionalism is of a more “reductionistic”
way, with respect to role functionalism, because it expects a low (and possibly very low) degree
of multiple realizability, given that parts performing operations, that is the active parts, are
expected to be uniquely identified during the phase of structural decomposition. This is probably
what makes BA’s model of explanation a proper “mechanistic” one.

34the working parts, in the words of Bechtel & Abrahamsen (2005).
35 Although it could sound strange, an electronic circuit, as usually conceived by electrical engineering, is a

functional mechanism, not a physical one: basic building blocks are identified, each with a characteristic input-
output (digital or analog) function. The actual physics underlying electronics is taken in consideration only when
designing a single elementary component. This view is explicitly shared by Cummins (1975). I further discuss
the question in relation to modularity in section 7.2.

36 Albeit mechanisms, as conceived by certain authors, namely Carl Craver, seem less of an epistemic type and
more of an ontological nature that in the conception of William Bechtel and colleagues.

Chapter 12

Philippe Huneman’s topological kind of
explanation

Philippe Huneman has recently proposed (in Huneman 2010 and Huneman 2015) to recognize
in scientific literature, especially in certain special sciences, a type of explanation, topological
explanation, which differs from the types of explanation classically taken into consideration.

Topological explanation is a non-mechanistic type of explanation based on topological proper-
ties of certain abstract descriptions of a system. Specifically, Huneman describes topological
explanation as follows:

a kind of explanation that abstracts away from causal relations and interactions in a system,
in order to pick up some sort of “topological” properties of that system and draw from those
properties mathematical consequences that explain the features of the system they target1.

An idea drawn from topology in mathematics, topological properties are, intuitively, those prop-
erties of a system of interrelated parts regarding, so to speak, the system’s “shape”, that are
invariant under any possible continuous deformation of the system. What I called here “shape”
must not necessarily be material, but can pertain to an abstract, mathematical space. In the
terminology I adopt in this work2, It could be said that topological properties do not concern
a system, but certain descriptions of the system. Topological explanation would consist in
explaining features of the system by appealing not to causal events between its parts, like me-
chanical explanation would do3, but by pointing to some topological features of the system’s
representation in this abstract space, features which can be called also “structural” in the sense
of pertaining to mathematical structures. Accordingly, topological explanations could be also
called “structural explanations” (Huneman 2015).

In the words of the proponent, these properties are topological in a very broad sense. Huneman
cites many examples of types of topological properties, most of which are properties of quite
abstract representations: geometrical spaces, phase spaces, networks, representing parts of a
system, behaviors of a system, capacities, or in general features correlated to the system.

1Huneman (2010), p. 214.
2 As explained in section 6.6.
3 As Huneman highlights, the relationship between mechanistic and topological explanation is not simple. See

Huneman (2010), Huneman (2015) and later on in this section.

285

286 Chapter 12. Philippe Huneman’s topological kind of explanation

A Topological property is topological in that it specifies the invariance of the system with respect
to certain classes of continuous transformations. Topological properties can be also properties
of networks, like the mean degree of connectivity, the fact of being scale-free, or small world, or
being modular or non-modular4. A network possessing such a kind of property does not lose
or acquire such a property as a consequence of certain types of transformations (for example,
a modular network does not change its modular structure if some nodes get simply displaced
without changing their connections, because modular structure is not dependent on the spatial
position of its nodes, but on how they are connected).

Huneman (2010) proposes as example of topological explanation a study by Richard Lensky and
colleagues (reported by Wilke, Wang, Ofria, Lenski, & Adami 2001), in which two populations of
bacteria are considered, populations with very different internal distribution of fitness: population
A, which comprises a limited percentage of individuals with high fitness, and population B,
composed mostly of individuals with more or less the same fitness, albeit lower than the maximum
fitness of individuals of A: see fig. 12.1.

Figure 12.1: fitness distributions of two populations A and B of bacteria, as reported in Wilke et al. (2001) (image
taken from Huneman 2010, originally belonging to Wilke et al. 2001).

When populations A and B are are put in competition in an environment inducing high mutation

4 See section 3.

287

rate (lower graph in fig. 12.1), in an apparently counterintuitive way population B tends to
prevail. This is explainable in a topological way by merely mentioning the shape of the two curves
representing population fitness, without the need to consider any empirical or other structural
property of the system: high probability of mutation, shifting individuals along theX axis, makes
highly fit individuals of population A easily “fall” from the steep peak of high fitness, while for
members of population B, shift along the X axis lets them remain more or less on the same
fitness “plateau”, where fitness is on average higher than the level of fitness on the hillside of the
high peak of population A.

As it appears clearly from the examples, this kind of explanation appeals to certain features
of certain abstract representations of a system, features which are not causal or empirical, but
purely structural and topological, in order to explain certain other properties of the system so
represented.

As said, topological features, as understood in this kind of explanation, can range from the shape
of curves, as in the examples above, to other general non-causal properties of the representation,
such as the distribution of the density of its parts, to the fact that the representation shows some
form of modularity or not. On the basis of the presence or absence of similar, purely structural,
topological properties, certain dynamical properties of a network can be explained, such as, for
example, the fact that perturbations spread indiscriminately or not: spread of perturbation is
greater in small-world networks5 with respect to networks which do not have this property.

What is interesting in topological explanations, as Huneman (2015) highlights, is that in such
a kind of explanation it is the topological facts to be explanatory, and not the processes of
the system which instantiate these topological properties. From a mechanistic standpoint this
relation between processes and topological properties is peculiar: it is precisely for reasons due
to certain topological, mathematical features of the system, that certain mechanistic processes
(mechanistic in the sense of being dynamical interactions of parts) occur in a certain way. While
in science usually mathematics is used in a descriptive way, as a mean to obtain economical
descriptions of phenomena, in this case the role of mathematical facts is explanatory. In the
words of Philippe Huneman:

Yet what happens with structural explanations in general is that mathematics are rather
explanatory: mathematical properties are the reason why some facts happen in nature as
outcomes or features of the activities of the hypothesised entities. The mathematics not only
represent the mechanisms’ settings and functioning, they also explain why a set of mecha-
nisms is constrained in a specific way, necessarily yielding a range of outcomes that possess a
given property. This includes a weak, epistemic claim, stating that without the mathematics
we would never know that some outcomes are possible, some impossible and some necessary.
But it also means the stronger, metaphysical, claim that in some cases the reason why some
systems are displaying a constant or regular behavior of some sort (e.g., with a specific
steady state, a typical outcome, or inversely, an absence of some particular outcome etc.)
is a mathematical—in the present context, topological—fact: such fact grounds counterfac-
tual dependences between sets of possible initial states and sets of end-states. Correlatively,
this implies that what makes a difference regarding several sets of systems—for instance,
stable and instable communities in the ecological example above—is a topological property;
such property is instantiated by all mechanisms in the considered systems, but it’s only in
virtue of the fact that they instantiate this property that those are themselves explanatory
of anything. Topology being about invariance through a class of continuous transformations,
topological explanations are explanations in which the possibility and impossibility of some

5 See section 3.1.2.

288 Chapter 12. Philippe Huneman’s topological kind of explanation

systems to reach some sets of final states or behaviors is explained by the topological fact
which they instantiate, specifying which states are topologically equivalent and which are
not, hence are not likely to be reached by the system.6

It appears clearly the the kind of explanation discussed above can not actually be assimilated to
any of the classical types of explanation, some of which (deductive-nomological, mechanistic and
functional) we have discussed in the previous sections. It seems thus that topological explanation
is a legitimate kind of scientific explanation. Surely, topological explanation is not germane to
causal types of explanation, like explanation as understood in the “new mechanistic” sense.
Nevertheless, Huneman stresses that these two kinds of explanation can be interrelated in non
simple ways. Topologies can in certain cases pose constraints on mechanisms: for example,
if a dynamics is implemented on a network, the network’s topological, structural features will
constrain the mechanisms which take place on this structure (a question similar to those which
I have touched upon in section 6.2.1).

In certain cases, mechanistic and topological explanations condition one another. I would like to
propose this example: in a self-organizing CA7, the CA starts with a nearly blank lattice and its
intrinsic topology (the connectivity structure) given by the CA rule and the neighborhood which
it takes into consideration. By the time its dynamical process begins to self-organize, however,
and some “frozen” structures in its lattice appear, the fact that some of this structures act as
“walls” impenetrable to external perturbations, provides a new topology to the system, a topology
which now “channels” the activity of the non-frozen parts of the lattice: moving particles can
now connect distant parts of the lattice only by flowing through the interstices between the
frozen structures. In this case, the mechanism has changed the high-level topological structure
of the system, and in turn this change in topology constrains the successive dynamics of the
mechanism.8

6 Huneman (2015), pp. 5-6.
7 See sections 5.2.2 and 5.2.3.
8 I refer to Huneman (2015) for a more thorough treatment of the relationship between topological and

mechanistic explanation.

Part IV

Antimodularity

289

Preamble

This major section treats the question of antimodularity, a notion which I propose in order to
capture the idea of our inability, in certain circumstances, to describe a system as modular.
In a way, antimodularity is thus the opposite of modularity, but it is not simply its negation:
antimodularity, as we will see, can be understood in different pragmatic and epistemic ways,
tied to questions of computation, and its relation with modularity is not a relation of simple
opposition.

I first proceed, in chapter 13, to give an informal definition of antimodularity.

In chapter 14, I discuss the consequences of the occurrence of antimodularity on the possibility
of scientific explanation of systems affected by this property.

In section 14.6 I advance the notion of explanatory emergence, based on a generalization of the
reasons generating antimodularity to other circumstances affecting cases of algorithmic detection
of features of complex systems.

Finally, in chapter 15 I briefly discuss the likelyhood of the actual occurrence of antimodularity
in real-world science.

291

Chapter 13

The notion of antimodularity

13.1 Problems with the detection of modularity

As we have seen in several of the preceding sections, detection of structural and functional high-
level modularity is essential for the study and modelization of complex systems. In section 6.9 we
have discussed the need to outline a modular structure in an observed phenomenon or process,
just in order to model it and progressively refine its models.

Usually this detection of the modularity of a phenomenon is carried out by means of the exper-
imental method typical of science, which, albeit based on the same principles in general, gets
realized in multifarious ways according to each particular discipline and the particular research
paradigm. The experimental method proceeds in a piecemeal fashion, sometimes realizing vast
series of experiments in which the initial conditions vary only slightly, in order to separate the
effects of what, in the preferred description of the discipline (the description level typical of a
given dicipline, as proposed in section 6.6.9), are single entities or variables.

Typically, in the case of certain special sciences, especially biology-derived disciplines, the goal
of the experimental study is that of decomposing a system into its elementary, causally relevant
parts, in order to proceed to a mechanistic explanation1 of the system. When dealing with
very complex, or very large systems, decomposition can become a daunting task: decomposition
proceeds, as said, piecemeal, by means of several experiments each of which, in the most lucky
cases, gets at most to distinguish a handful of parts constituting the system. But, usually,
especially for functional decomposition, even more than one experiment is needed in order to
assess the function of a single part. Some of these research endeavors go on for decades in
hundreds or thousands of teams around the world before the entire line of research is able to
produce a sufficiently detailed functional and even structural description of the observed system.
It will suffice to think of research in the neurosciences, for which even the ascertaining of the
anatomy of the central nervous systems has required decades.

There are cases, and these cases have become more and more numerous in recent times, where
the lowest-level modularity, the preferred description of the system, has been at least in most
part provided, but we lack a clear model of its higher-level functional modularity. As we have
seen in section III, an intrinsic requirement of certain types of scientific explanation, namely of
mechanistic and functional explanations, is that the system to be explained be considered from
the standpoint of multiple hierarchical levels of description, and that the explanation take into

1 See section 10.

293

294 Chapter 13. The notion of antimodularity

account the relation between these levels. So, it would be important to be able to produce of
a given system not only a single modular description, but an entire spectrum of descriptions
at different levels of abstraction, that is, what in section 6.6 I called modular redescriptions, or
macromodular descriptions of the systems (actually, of its preferred description, which is already
given).

In complex or very large systems (large as described by their lowest level, preferred description),
this detection of hierarchical modularity is usually unfeasible with non-automatic means, due to
the sheer number of parts and relationships between them to take into consideration. Besides,
process modularity would be unfeasible in non-linear systems even if their number of parts were
small, because non linearity hinders the possibility of prediction of the system by means of
analytically solvable equations.

To compensate these difficulties, as we have seen in several of the preceding sections, many
algorithmic methods have been devised to detect structural and dynamical modularity in different
types of complex systems.

However, most of the known algorithms for modularity detection can end up being an insufficient
solution, in case of very large complex systems: the problem with many of these methods resides
in their computational cost, which can result so high as to render an unfeasible task the detec-
tion of hierarchical modularity in complex system of a certain size. Some systems of scientific
interest can be affected by this impracticality of their macromodular description, at least when
a sufficiently accurate macromodular description is needed.

The computational cost of most algorithms for modularity detection derives indirectly from the
computational hardness of optimal modularity detection in general and in specific applications.
First, as we have seen in section 2.2.1.2, there is the NP-hardness of aggregability, as proved by
Winker (1992). This means that detection of modularity in the dynamical model of a system is
a computationally unworkable task, and so it is not to be expected, in general, that dynamical
modularity can be found by means of a universal method which can guarantee to produce in
feasible time a plausible aggregate, simplified version of the model. Not even an approximate
one, as proved in Kreinovich & Shpak (2008).

There is also, in the somewhat more specific field of networks, as explained in section 3.2.1.2, the
NP-completeness of optimal community structure detection, proved by Brandes et al. (2008).
This result means that the task of producing the best modular2 hierarchical description of a
given network, the one which represents more faithfully a genuinely robust modular structure
actually present in the network (and not an apparent modularity due to random fluctuations in
the connectivity of nodes), is too computationally intensive to be feasible. For this reason, it is
not in general to be expected that the optimal modular description of a network can be found,
at least by algorithmic methods, when the network comprises more than a certain number of
nodes.

The computational hardness results cited above have spurred the search for algorithms which
approximate the search for the optimal detection of modularity. Actually, most of the algorithms
for modularity detection in networks described in section 3 approximate the search for the best
possible modular redescription, or for the best possible hierarchical description of a given network.
These algorithm produce more or less plausible modular redescriptions which are quite certainly
not the optimal ones, optimal in the sense of being the most faithful to the real actual modular
structure (if any) imposed on the network by the distribution of the connectivity between its
nodes.

2 Modularity in the sense of community structure.

13.1. Problems with the detection of modularity 295

Even if approximate, most of the algorithms for network modularity detection are, as discussed
in section 3.3.1, still quite computationally intensive: even if their time complexity is polynomial,
the degree of the polynomial can be quite high, for example O(n3), or even O(n4) (with n the
number of nodes in the network), and so practical applicability of these algorithms can result
difficult on networks with a sufficiently high number of nodes. There are faster algorithms, but
in general all these methods suffer from a speed/accuracy trade-off3, which makes the faster
algorithms unacceptably inaccurate for certain applications.

In networks, there are also forms of functional modularity, like modularity based on network
motifs and descriptions based on network roles, which can be quite difficult to detect as well, as
highlighted in sections 3.3.2 and 3.3.3. These two forms of modular description, especially the
role-based one, are extremely effective in giving a perspicuous representation of the functional
organization of a network, a kind of representation especially useful in scientific applications of
network science, like in the case of biological networks.

All the above results of computational hardness or at least of high computational expensiveness
affecting the algorithmic detection of modularity entail that a sufficiently faithful detection of
structural and functional modularity in certain large complex systems is not guaranteed at all,
at least when search for modularity is conducted in absence of further prior information about
the system which can usefully constrain this search.

The problem is that, in certain cases, even in scientific research, especially in nascent fields, the
researcher lacks such prior information, and must thus recur to purely algorithmic modularity
detection. Even when some constraint can be imposed on the search for modularity, in certain
occasions the sheer size of the system under observation can render the task computationally
too expensive: this can be especially true for extremely large systems of biological interest, like
genetic or metabolic networks.

Modularity detection can thus, in sufficiently large systems, be actually prevented by problems
of computational cost, if not computational hardness. Whenever this occurs, a system can be
pragmatically considered antimodular, even if in principle it possesses some modularity, because
to all intents and purposes we are practically unable to automatically detect its modularity:
its preferred description appears devoid, at least as far as we can know, of any valid high-level
modularity: that is, there is no known macromodular redescription of it whose parts are endowed
with a sufficient degree of robustness.

Limitations of modularity detection due to computational complexity are not in principle limita-
tions: it is true that, in principle, we could obtain the optimal modular description of a network.
We should not downplay, however, these aspects of computational hardness as merely pragmatic.
Especially in cases in which the computational hardness of an algorithm has been established
by formally proving it, this pragmatic hindrance becomes something more compelling, assuming
the cogency of a logical law: the algorithm for optimization of detected modularity has been
proved computationally hard (NP-complete, actually) and there cannot be any hope of render-
ing it more computationally feasible4. Computational hardness in the form of NP-hardness or
NP-completeness is a completely objective fact which entails a pragmatical infeasibility of the
performing of certain computations on certain inputs. Although pragmatical, such a kind of
infeasibility is far from being negligible. No matter how we try to improve a computationally
hard algorithm, or we augment the power of the system on which it runs: its execution time

3 See section 3.3.1.2.
4 At least, given that no proof of P = NP has ever been devised, and that, according to most computer

scientists, this possibility is extremely unlikely. See section 17.4.3.1 of the Appendix.

296 Chapter 13. The notion of antimodularity

will, at least in certain cases, always overcome any possible improvement in speed5. Optimal
modularity detection can be probably approximated in more reasonable times, but the trade
off between speed and accuracy, which is to be expected in approximated algorithms for mod-
ularity detection, could, associated with the high number of parts of some complex systems,
render the detected modularity excessively approximate or, conversely, make the detection time
of a sufficiently precise modular description excessively high when we require a certain degree
of precision, even if the approximated algorithm employed is not, from a formal point of view,
computationally hard. So, even if this limitation of optimal modular detection is only pragmatic,
it affects optimal modularity detection and the scientific practices tied to it in an essentially
objective, unavoidable way: for all practical purposes, there is little difference between a task
which is in principle uncomputable in general and one which is computable, but is in general
computationally hard.

13.2 A definition of antimodularity

In the wake of the results of computational unfeasibility of modularity detection decribed in the
former section, I propose to introduce a property, antimodularity, which captures some of these
difficulties.6

Antimodularity is a property of complex systems which I propose to define as the general im-
possibility of obtaining, by means of algorithmic detection of modularity, a sufficiently valid and
useful hierarchical modular description of a system.

There is antimodularity when the most faithful hierarchical description of a system, obtained
by algorithmic means which are practically feasible, is nevertheless invalid from a dynamical
standpoint or, if somehow valid, too approximate to be useful anyway with respect to the purposes
and aims of the researcher or the requirements of the scientific discipline in question.

When a system shows antimodularity, its only possible hierarchical description can comprise
only the two trivial hierarchical levels, the highest and the lowest one, and the system presents
a flat hierarchy7. In other words, antimodular systems are systems which can be described in a
modular way and explained by decomposition at only one level of description, the level of their
elementary, finer parts, which usually is the level of their preferred description.

As defined above, antimodularity stems from the algorithmic impossibility of detecting modular-
ity in a system. But, this impossibility can correspond to two circumstances: the actual absence
of any modularity in the system or only the pragmatical impossibility to detect a modularity
which is indeed present. It would be useful to distinguish these two circumstances. I propose
the following terminology:

i. Intrinsic Antimodularity (IA, henceforth): this is the condition in which antimodularity
obtains because the system is actually, objectively, devoid of any robust high-level modular
structure, given its preferred description. In other words, antimodularity is intrinsic to the

5 We are talking here, in the case of exponential growth of the time required for the computation, of times
needed to bring to completion a computation on certain data which are on the scale of the age of the universe or
even higher order of magnitude. No possible technological improvement could speed such algorithms up in such
a way as to render them computable in a reasonable time.

6A terminological disclaimer: in what follows I will often use the terms “modularity” and “antimodularity”
as referred to systems, when in actuality, inside a theoretical framework like the one proposed in section 6.6,
we are talking not of systems, but of descriptions of systems, and not of modular descriptions but of modular
redescriptions of descriptions. Usually, when talking of a “system” I will talk of its preferred description.

7 See section 6.6.11.

13.2. A definition of antimodularity 297

given preferred description, no matter how accurate the algorithm for its detection is.
Systems intrinsically antimodular can be for example uniformly connected systems, like
regular networks (described in section 3.1.1), where there is not enough variability in the
connection density in different parts of the network to constitute subnetworks which are
more connected internally than towards the external context, that is to constitute modules.
In such networks modularity is objectively absent. Objective absence of process modularity
can occur in dynamical systems whose evolution in time is so chaotic that it does not allow
for the formation of sufficiently robust, non-evanescent structures which can legitimatley
be considered modules.
Given the above definition of antimodularity, it is evident that intrinsic antimodularity is
a case of (generic) antimodularity.

ii. Antimodularity (AM, henceforth): this is generic antimodularity, as defined above in this
section: it derives, regardless of the actual absence of modularity in the system’s preferred
description (point i), from the excessive computational cost of the task of detecting high-
level modularity in such a preferred description. It usually arises due to the too high number
of parts in the system’s preferred description, a circumstance which makes the employed
modularity-detection algorithm end up being computationally too expensive to be brought
to completion, either because it is computationally hard, or, although formally not hard,
because it is too computationally expensive to be brought to an end anyway. I would call
this circumstance simply antimodularity. We could call it also epistemic antimodularity (or
EA), epistemic because it stems from our ignorance of the actual presence of modularity in
the system, but I will make use of this distinction between antimodularity and epistemic
antimodularity only were necessary.

It is very important to stress here that antimodularity is, like modularity, relative to the choice of
a metric: this is the metric according to which modularity of the preferred description is assessed.
The metric is usually a property of the preferred description’s entities, or a relationship between
them, or, as described in section 6.6.11, in general any computable abstraction which detects
modules of some kind in the preferred description. Antimodularity is relative to this metric in
that it manifests itself as the failure of modularity detection conducted according to the metric.
Like in the case of modularity, changing this metric, antimodularity can show up or disappear.
It is as well evident that, given that often preferred descriptions naturally suggest a possible set
of plausible metrics for modularity detection, then antimodularity, like modularity, is relative to
the choice of the preferred description. In scientific research, however, the choice of the preferred
description is not very free, being usually more or less constrained by the scientific discipline in
question.

The reason behind the above distinction between antimodularity and intrinsic antimodularity
is that, while antimodularity could in some case be eliminated by improving the algorithm for
modularity detection algorithm, intrinsic antimodularity cannot be so eliminated, for it is not
a consequence of the inaccuracy or computational cost of the algorithmic method used, but an
objective feature of (the preferred description of) a system, in which modularity is objectively
absent. Moreover, intrinsic antimodularity can have different consequences than generic anti-
modularity for what concerns certain types of scientific explanation, as we will see further on in
section 14. Intrinsic antimodularity can have a different effect than generic antimodularity on
our capacity to predict the general properties of a phenomenon’s dynamics: for example, certain
intrinsically antimodular dynamical systems should manifest a highly chaotic behavior, due to
the extreme facility of transmission of perturbations inside them, which in turn is due to their
high uniform connectivity. In these cases, knowing that the system, which appears antimodular,

298 Chapter 13. The notion of antimodularity

is actually intrinsically antimodular can allow the observer, in presence of other informations
about the non-linearity of connections, to predict at least this general feature of its dynamical
behavior.

It would then be auspicable to have an algorithmic method to discriminate between intrinsically
antimodular systems and systems which appear antimodular due to the computational cost of
modularity detection on them. It is plausible to think that, as it is often due to the statisti-
cal distribution of the connections between entities of a system’s preferred description, intrinsic
antimodularity should be easier to detect than antimodularity, for this general feature can be
revealed on a statistical survey of certain statistical parameters of the systems. But, not every
case of intrinsic antimodularity can be due to this evident uniformity of connections: especially
dynamical antimodularity can arise at a higher level of description also in systems which ap-
parently sport modularity at the preferred description, or even at higher levels: for example, a
computer program implementing the simulation of a cellular automaton can be perfectly modu-
lar in its structure composed of subroutines, while the dynamics of the CA it simulates can be
completely chaotic, when the chosen CA is a member of class III8.

So, it seems that in general it is not always simple to tell modularity and intrinsic antimodularity
apart.

It can nevertheless be feasible in some cases, especially for certain types of systems, to have
some hint on the actual presence or absence of modularity in the system, especially structural
modularity, without having to try to detect modularity with a dedicated algorithm (should
we recur to an algorithm for modularity detection, we could incur in antimodularity due to
the algorithm’s computational cost). This can happen when the system (as is the case with
regularly hyperconncted systems) has some statistical structural property, detectable at a low
computational cost, which is however usually correlated with the presence of modularity or
intrinsic antimodularity. For example, the fact that a network is scale-free9 can be detected by
simply examining the distribution of the degree of its nodes. Now, being scale-free can suggest a
structure with different functional roles, in a dynamical network: in a scale-free network certain
nodes, the highly connected ones, act as hubs, to which non-hubs nodes are connected. Thus,
being scale-free implies for a network that some role differentiation exists between its nodes, and
this, as discussed in section 3.2.3 is an important form of modularity.

In networks, it is also quite feasible to assess the presence of some kind of community modularity,
without recurring to proper modularity detection, with its high computational cost: this general
assessment of modularity can be effected by comparing the given network with a set of its
randomized versions, where a randomized version is obtained by rewiring in a completely random
manner all the links of the original network, but taking care that each node maintains the same
number of connections (the same degree) that it has in the original network10. Given that a
randomized network should not have, on average, modularity, it can then act as a “null model”,
and comparison of the original network with its randomized version should give, on average, a
significant difference if the original network has, intrinsically, some actual modular structure,
but should produce a not very significant difference for a network which does not, actually, have
modularity, that is, for an intrisically antimodular network.

So, in networks at least, it should be quite feasible to decide if, in presence of antimodularity
regarding community structure, we are confronting intrinsic antimodularity or antimodularity
due to the computational cost of the modularity detection algorithm.

8 For Stephen Wolfram’s, classification of CAs, see section 5.2.1.
9 See section 3.1.3.

10 See, for example Maslov & Sneppen (2002).

13.3. Antimodular emergence 299

13.3 Antimodular emergence

I propose to call the occurrence of antimodularity, that is, the unavailability of a valid modular
description due to the computational complexity of the task of modularity detection, a case of
antimodular emergence, and to consider it a form of computational emergence: it seems indeed
sensible to compare the occurrence of antimodularity to a form of emergence, in that descriptions
showing antimodularity possess some of the proposed features of weak emergence, a well-known
“metaphysically weak” type of emergence, put forth in some works since the mid-90s by Mark
Bedau, which is a notion of diachronic emergence related to certain properties of computational
systems. I specifically evaluate here the relation between my proposed notion of antimodularity
and that of weak emergence, concluding that antimodularity, under certain circumstances, entails
weak emergence, although, as we will see, the converse does not hold for all systems: there are
modular systems which are, nevertheless, weakly emergent.

The notion of weak emergence (WE, henceforth) is introduced in the seminal Bedau (1997). In
this paper Mark Bedau makes use of a particular terminology, and an explanation of the terms
he employs is briefly needed. He states:

Weak emergence applies in contexts in which there is a system, call it S, composed out of
“micro-level” parts; the number and identity of these parts might change over time. S has
various “macro-level” states (macrostates) and various “micro-level” states (microstates).
S’s microstates are the intrinsic states of its parts, and its macrostates are structural prop-
erties constituted wholly out of its microstates. Interesting macrostates typically average
over microstates and so compress microstate information. Further, there is a microdynamic,
call it D, which governs the time evolution of S’s microstates. Usually the microstate of a
given part of the system at a given time is a result of the microstates of “nearby” parts of
the system at preceding times; in this sense, D is “local”.11

It immediately appears that these terms in Bedau’s original definition can be considered having
the same meaning of the technical terms I introduced in section 6.6. In particular, the terms
“micro-level” “macro-level”, “microstate”, “macrostate”, “microdynamic”, have substantially the
same meaning in my definitions and in Bedau’s understanding of the terms: it clearly appears
that what Bedau calls “system” can be interpreted as being a preferred description, playing as
usual the role of the microdescription, which is governed by a microdynamics acting on microen-
tities, the “micro-level parts”. The global configuration of the microentities is the microstate.
There is a macrostate, which is “constituted wholly out of its microstates”: this means that a
macrostate can be seen as obtained by aggregation, that is, by proper abstraction, from a set of
microstates. Indeed, it is specifically stated that the aggregation acts as a sort of “average” on
the set of microstates from which it is obtained, compressing the original information carried by
the microstates. Thus, it is made explicit that the abstraction from microlevel to the macrolevel
is a proper abstraction. Bedau, in a footnote, further specifies that the macrostate can be in-
tended in a very liberal way, as a property of sets of microstates, a property of sets of other
macrostates, a pattern in the system’s microevolution or macroevolution, or many other kinds of
even more complex abstraction. Albeit not explicitly stated by Bedau, it can be assumed, I think,
that these abstractions must be computable, otherwise I don’t see how it could be determined
when the macrostate is achieved. Bedau adds another specification, that the system is usually
governed by a “local” dynamics. This is better understandable if we consider what he has in
mind: further on, Bedau provides examples of weakly emergent processes, examples based on

11 Bedau (1997), p.377.

300 Chapter 13. The notion of antimodularity

cellular automata. It seems that the notion of weak emergence is particularly fit to describe the
behavior of certain CAs. It is not explicitly stated, though, that WE applies only to discrete
dynamical systems (DDSs). However, since in this work, as I already stated, it is my intention
to consider only DDSs, it is legitimate here to compare the notion of WE to a property which I
attribute by definition only to DDSs: namely, antimodularity.

Bedau (1997) proceeds to define the notion of weakly emergent macrostate as follows :

Macrostate P of S with microdynamic D is weakly emergent iff P can be derived from D
and S’s external conditions but only by simulation12.

Based on the above terminological considerations, I think Bedau’s definition could be safely
rephrased as:

A macrostate is weakly emergent iff it can be derived given the preferred, low-level descrip-
tion of the system and the initial state of the system, but only by microsimulation, that is,
by simulating the system’s dynamics step-by step according to its lowest level description
(that is, its preferred description).

The condition “only by microsimulation” (“only by simulation” in Bedau’s text) in the above
statement of weak emergence basically means, as clarified by Bedau at length, that the sys-
tem’s dynamics, and in specific the occurrence of the property seen in an aggregate way as the
macrostate of interest, cannot be predicted in any way with respect to the actual microdynamics
of the system: the macro-outcome of this dynamics cannot be anticipated, but to know if a cer-
tain macrostate will be ever achieved, we will have to patiently let the system’s microdynamics
itself run step-by-step until the macrostate (if any) is achieved. Any other anticipation of the
outcomes of the system’s dynamics representing the chosen macrostate, is excluded by WE’s
definition.

The condition of underivability of the macrostate except that by microsimulation entails that,
if the dynamics of a weakly emergent system is expressed as a set of difference equations, these
cannot be analytically solved, because, it they could, we would have a method to obtain the
global microstate of the system at any point in time whatsoever, regardless of the distance
of this moment from the current time. Applying to the thereby predicted microstate or to a
predicted set of microstates the abstraction which produces the macrostate from microstates,
we would obtain a composite function by means of which we could see if the macrostate holds
at any moment in time. This way, we would have the possibility of anticipating the actual
system’s microdynamics, by means of a series of controlled tests of the global microstate of
the system at time intervals coarser than the single timesteps of the microsimulation. This
possibility would negate the very definition of WE, so it is excluded by the fact that the system
is, by hypothesis, weakly emergent. More in general, the condition of underivability except that
by microsimulation, means that there cannot be any possible theoretical “shortcut” between the
initial state of the system and the macrostate. So, no aggregate valid macrodescription can be
given which is capable of macrosimulation13, at least of the particular run of the system starting
from a given initial state which ends in the wanted macrostate, because, if an aggregate valid

12 Bedau (1997), p.378.
13 It is not excluded by WE definition, however, that a macrodescription not useful for immediate simulation

(an explanatory redescription, a concept I introduced in section 6.6.10) could be given. See the rest of the current
section.

13.3. Antimodular emergence 301

macrodescription producing this macrostate in the run of its simulation could be given, obviously
by means of this macrodescription we could derive the macrostate. But this goes against the
definition of WE, according to which if the macrostate is WE then it can be derived only by the
microdescription, and by no other means.

It could seem that, if no aggregate valid macrodescription capable of macrosimulation can be
given, no macromodular redescription can be given either, because a macromodular redescription
is precisely a form of aggregate valid macrodescription. And if no macromodular redescription can
be given of the system, this means that the system is, by definition, antimodular. Yet, this further
implication does not hold. There is a caveat here, already highlighted in the former paragraph:
the macrodescriptions excluded by WE’s definition are those capable of simulation. But there
are macrodescriptions, as highlighted in section 6.6.10, which are modular, but incapable of
simulation: they cannot be run in any obvious way because the specification they provide of
the potential DDS dynamics is too vague to be implemented in an obvious way. These are
what I called explanatory redescriptions, which can be useful only for explanatory purposes. To
this class belong for example mechanism sketches or schemata14, which do not provide enough
information to allow for their immediate implementation. However, even if simulations on them
cannot be run, these descriptions can be extermely useful for explanatory purposes, because their
high abstractness gives them a high intelligibility.

Another example of a system which is WE but that can nevertheless be redescribed in a modular
high-level way is that of a machine capable of universal computation15: in such a machine,
most dynamical global properties are in general undecidable16 in the long-run, so in general its
macrostates are not predictable except by making the machine run. This fulfills the definition of
Weak Emergence given by Mark Bedau. Nevertheless, such machines can be in most cases easily
described by means of a hierarchical modular multi-level description: the high-level descriptions
act as explanatory devices (as computational explanations, as discussed in section 14.5.1), but
do not render the system predictable, because they inherit the same Turing-completeness and
with it the general undecidability, and thus unpredictability, of all the other valid description
levels17.

It appears then that antimodularity, which consists in the impossibility of obtaining a modular
valid high-level redescription at whatsoever level of abstraction, is not implied by WE, even if
the two conditions present a strong affinity. This affinity manifests also in the liberality of the
admitted abstractions, and in relativity with respect to the chosen abstraction: detection of the
macrostate in Bedau’s WE definition is based on an abstraction, and, as Bedau notes, the choice
of this abstraction, which individuates a corresponding macrostate, is very free. And WE is
relative, by its very definition, to the chosen macrostate: a system can manifest weak emergence
relative to a certain macrostate and not to another. This is completely analogous to the choice
of a metric relative to which assessment of modularity is performed, in the theoretical framework
I propose in this work18.

I would like to show now that while WE does not entail antimodularity, the converse implication
holds under certain conditions, that is, that under certain specific conditions, antimodularity
entails Bedau’s weak emergence.

14 See section 11.1.6.
15 That is, a machine equivalent to a Universal Turing machine, and as such capable of any computation, if

the Church-Turing thesis holds. See section17.2.5 and 17.3 of the Appendix.
16 See section 17.2.6.
17 See a further discussion later on in this section.
18 Of course, Bedau’s conception predates this work, so it is certainly my framework which can have been

inspired by his: credit goes to Bedau’s work.

302 Chapter 13. The notion of antimodularity

The argument is this: if a system is antimodular, then by definition this means that its only
valid modular description is its preferred, lowest level description. This implies that the system
is not predictable by means of a high-level, modular simulation: because, if it were, that would
mean that the high-level simulation, in that it is capable of predicting the system, represents
a high-level valid modular description (otherwise, were this modular high-level description not
valid, it would have been useless for the prediction, because its alleged predicted outcome would
have diverged from the actual outcome of the system). But, in an antimodular system, this high-
level modular valid description of the system is excluded by the definition of antimodularity. So,
it can be concluded that the dynamics of an antimodular system is not susceptible to be forecast
by any modular high-level simulation: if no other non-modular prediction method is applicable,
then the only way to know how the system’s behavior will evolve is by simulating the system
at the level of its preferred description, that is by microsimulation, as Bedau would say. This
last circumstance appears equivalent to the above rephrasing I made of Bedau’s weak emergence
definition. So, it seems that antimodularity → weak emergence.

The above conclusion, that antimodularity implies weak emergence is not absolutely sure, how-
ever, for it depends, as noted above, on the circumstance that an antimodular system, which
is not predictable by any high-level modular simulation, be impossible to predict by any other
non-modular means, too. This can be suspected to not always hold: for example, an antimod-
ular discrete dynamical system could perhaps be predicted by analytically solving its update
function19. If this were the case, this would go against the possibility that the system is weakly
emergent, for this analytical solution would provide a method for the derivation of any state of
the system at any time, without going through its step-by step low-level simulation. Such a kind
of antimodular, non-weakly emergent system, if composed of a large amount of parts, could end
up being simply predictable, because its update function is analytically solvable, but at the same
time could result completely unintelligible to us due to the excessive number of parts involved
in its lowest-level description, which, because of antimodularity, is the only modular description
available. I am not sufficiently able here to disprove this eventuality, however it seems to me at
least unlikely that systems of this kind are very frequently encountered. In case they were, we
would be presented frequently with very curious cases: systems which are perfectly predictable in
detail by analytical, mathematical means, but regarding which, of their predictable behavior, we
cannot possibly give, due to their antimodularity, any functional explanation at any sensible high
level, for the reasons, better explicated in section 14.1, that antimodularity hinders high-level
mechanistic and functional explanation.

Another possibility would be that of antimodular systems of which it is possible to give an aggre-
gate valid redescription whose language deals with aggregated quantities or entities, but whose
machine is not modular: such a redescription would constitute a valid high-level redescription
which is nevertheless not actually modular : it aggregates only the entities, or ranges of their
values, not the functions. This kind of non-modular aggregate redescription is not excluded by
the antimodularity of the system (which holds by hypothesis). So, the possibility of a system
which is antimodular and that at the same time is predictable at a high level, and thus is not
weakly emergent (because predictability through high-level aggregate valid redescriptions goes
against the definition of weak emergence) is not excluded20.

Actually, there certainly are examples of discrete dynamical systems whose update functions are
19 Dynamical systems are governed by update functions. See section 5.1.
20 One could think that an ideal gas model like those used in statistical mechanics amounts exactly to such

a kind of system: it is perfectly predictable in its aggregate macrostates like temperature, pressure and volume,
but we would not be able to understand, due to the sheer amount of particles it involves, its low level detailed
mechanical explanation.

13.3. Antimodular emergence 303

analytically solvable or which are redescribable in an aggregate non-modular way, but it can be
suspected that they could not be systems capable of complex computations: any system compu-
tationally powerful enough is intrinsically unpredictable, because of the undecidability of various
properties of the system. So, if it is predictable, the system is certainly not much computationally
capable: it would be a trivially periodic system, a system similar to those classified by Stephen
Wolfram as in class 1 or 221. The interesting systems considered unpredictable are usually also
those that are known as computationally capable, such as the Game of Life CA, introduced by
John Conway, which has been proved as potentially equivalent to a universal Turing machine,
and which, maybe not incidentally, is the CA used as an example of a weakly emergent system
in Bedau (1997).

Another objection to the claim that antimodularity implies weak emergence is that it is not
completely clear, from the analysis of Mark Bedau’s texts, if he intends the impossibility for weak
emergent outcomes to be reached by any means except microsimulation, as an in principle or only
a pragmatical impossibility. Antimodularity by definition is considered at least a pragmatical
impossibility, due to computational hardness. Should Bedau’s weak emergence be considered
due to an in principle high-level unpredictability, then I think the only option to interpret it,
given that in its typical form it concerns discrete dynamical systems, is to view weak emergence
as a form of undecidability related to the undecidability of the halting problem22, and this is
actually a juxtaposition which Mark Bedau himself proposes: in dynamical systems which are
capable of universal computation, most of their macrostates are weakly emergent for reasons tied
to the undecidability of the halting problem. This holds true, for example, for systems which
have been proved to be Turing-complete, like some cellular automata in Wolfram Class IV, for
example ECA rule 11023.

In light of the above considerations, we could, I think, safely suppose that in most interesting
cases antimodularity → weak emergence. A point to highlight is, as we have seen above, that
the opposite implication does not hold: there are weakly emergent systems which are not an-
timodular, that is, systems which do have valid high-level modular descriptions, even if only
explanatory, and not useful for prediction. It can then be asked: if the system has high-level
valid redescriptions, but it is nevertheless weakly emergent, that means that is is not predictable:
but, why none of these high-level modular description can be used for prediction? The answer
could be that they can not because they are too abstract, too vague: they are the kind of modular
redescriptions which I called explanatory redescriptions in section 6.6.10. But, the reason can
also be that these high-level redescription are not useful for prediction because the system is in-
herently unpredictable: this occurs when the system has the power of a universal Turing machine,
which, as is well-known, is affected by unpredictability of its evolution due to the algorithmic
undecidability of the halting problem24: that is, there is no general method to forecast most
macroproperties of the outcome of the computation of a universal Turing machine, except that
by executing it. And, this is exactly the situation of weak emergence: weak emergence compels
to execute the computation step-by-step at its lowest level.

So, we could have weakly emergent systems which are nevertheless explainable at a high func-
tional level. I would like to call this circumstance, which is different from antimodular emergence,
Turing emergence.

21 See Wolfram (2002) and section 5.2.1.
22 See section 17.2.6.
23 see section 5.2.1 for a better explanation.
24 See section 17.2.6.

304 Chapter 13. The notion of antimodularity

The fact that an unpredictable system can be functionally explainable at a high level ceases to
be surprising if we think of this example: take a language interpreter25 I1 that is capable of
interpreting a Turing-complete language L1 (most programming languages are turing complete),
and write in L1 another language interpreter I2 for another Turing-complete language L2. This
way, any program written in L2 will be first interpreted by the I2 interpreter, then in turn
the execution of the I2 program will have to be interpreted by the intepreter I1. Now, the
interpreter I1 could certainly be written in a multi-level modular fashion, making heavy use of
subroutines and procedures, hierarchically organized. Its hierarchical modular description could
be then used as an explanation of the functioning of the I2 interpreter. But, the I2 interpreter,
being the interpreter of a Turing-complete language (the language L2), is in general inherently
undecidable in most of the macroproperties of its dynamical functioning: in other words, I2 is
inherently unpredictable. Nevertheless, its functional structure can be explained by the multi-
level modular hierarchical functional description of I1. Thus, we have a system, I2, which is at
the same time inherently unpredictable and explainable at a high-level.

25 See section 4.1.4.2.

Chapter 14

Consequences of antimodularity on
explanation

In section 6.8 we have highlighted the contribution a modular description of a system can give to
the possibility of explaining it. First, it allows for economy of description by means of abstraction:
the observer can choose according to her needs the right level of abstraction, that is, of detail, at
which to describe the system of interest: by choosing a proper abstraction, attention can focus on
the level of detail needed for the purposes of the research in question. This favors intelligibility
of the description, because the cognitive system of the observer is not overwhelmed by excessive
details. In certain cases, economy of description can be obtained by lossless compression in a
modular description, when certain modules recur more times inside the description. This also
favors understandability. In general, more abstract, coarser-grained modular descriptions, in
which to each function is substituted the indication of its role, are more intelligible than low-
level microdescriptions, which provide too much information about the implementation. Besides
favoring intelligibility of the explanation, which inside the epistemic view of explanation I propose
here is an explanatory virtue, hierarchical modularity turns also out as being simply necessary for
certain types of explanation, namely functional and mechanistic explanation, in that it provides
them with the possibility of multi-level description of a system, and description of the interrelation
between levels: multiple level integration, as we have seen in sections 10 and 9, is a necessary
feature of functional and mechanistic explanations.

Given that modularity has such a significant influence on the possibility of scientific explanation of
certain systems, it is natural to wonder what could be the consequences of antimodularity on the
possibility of scientific explanation. I take into consideration two well-known models of scientific
explanation: functional-mechanistic and deductive-nomological explanation. I then proceed to
evaluate a more debated model of explanation, computational explanation, and another modality
of explanation which has been recently object of scrutiny, that can be called the mathematical-
topological explanation: this is a non-causal form of explanations apt to explain in many cases
certain properties of complex dynamical systems.

The conclusions drawn are that antimodular emergence affects the feasibility of the first two
types of explanation, the functional-mechanistic and the deductive-nomological, as well as com-
putational explanation, albeit in different ways, but leaves intact and even enables, in certain
cases, the topological kind of explanation.

305

306 Chapter 14. Consequences of antimodularity on explanation

14.1 Antimodularity and functional or mechanistic explanations

I claim that antimodularity negatively affects mechanistic explanation, a fundamental form of
explanation in biological sciences. A brief detour is in order here to remind what this form of
explanation amounts to.

As exposed in section 10, the term mechanistic explanation usually refers nowadays in philosophy
to a relatively recent model of scientific explanation, put forth since the ’90s by several groups of
philosophers of biology and of cognitive science. Referring the reader to that section for discussion
of the subtle differences between the two main conceptions of mechanistic explanation, a general
definition of mechanism could be given as:

A mechanism is a structure performing a function1 in virtue of its component parts, com-
ponent operations, and their organization. The orchestrated functioning of the mechanism
is responsible for one or more phenomena2.

The definition above defines a mechanism as what I would call a complex system, that is a
system composed of interacting parts. The point to stress here is that there is a functional view
involved: the global function, which represents the explanandum, is explained by describing the
organization and interactions of the parts which, by means of their dynamical “orchestrated”
functioning, produce the phenomenon. What is needed to explain a given phenomenon is then
to first identify the parts and operations involved in its production. To this aim, the system as a
whole must be subject to two operations, structural decomposition and functional decomposition:
the first yields the set of elementary parts of the system, while the second identifies component
operations. The third phase is localization, which consists in linking parts with the operations
they perform. This way, a mechanistic explanation is given. This synthetic account sums up
the position held by William Bechtel and collaborators: specifically, here I will refer to the
position of William Bechtel and Adele Abrahamsen (see section 10). This low-level-only kind
of explanation is not always the most desirable: it is important that a hierarchy of mechanisms
be considered, and that explanation be multilevel, reflecting a possible hierarchical organization
of the mechanism. A mechanism may involve multiple levels of organization, being often part of
a higher-level, larger mechanism: going up in the hierarchy, circumstances external to the larger
mechanism can in turn be seen as larger overarching mechanisms, and so on, while, traversing the
levels top-down, components of a mechanism can be seen as mechanisms themselves, recursively
composed of subparts.

I think this whole vision could be easily rephrased in terms of modularity, along the lines of
the vision which I have sketched in the preceding parts of this work: the representation of
the mechanism resulting from the composite process of functional decomposition, structural
decomposition and localization, is what I have called the preferred description of the system: the
identification of the basic, lowest level parts which the observer has chosen to identify. Bechtel and
Abrahamsen do not stress, as I do, the dependence of this description on a choice on the part of
the observer, because they consider implicitly that there are quite natural preferred descriptions
of some systems, as there undoubtedly are, for example in molecular biology, where the molecules
(or, possibly, atoms) are the most natural elementary parts. The main difference between my view
and the view of Bechtel and Abrahamsen is then that my conception of hierarchical modularity is
more general, comprehensive of forms of modularity which are non-physical but functional-only,
like the modularity of computations.

1 See section 9.
2 Bechtel & Abrahamsen (2005), p. 423.

14.1. Antimodularity and functional or mechanistic explanations 307

That said, taking into account the definition of antimodularity given in section 13.2, it is easy to
show how antimodularity compels to single-level-only explanations, neglecting the need, essential
for mechanistic explanations, of multi-level integration: by definition, antimodularity allows the
production of only the two trivial modular descriptions of a system, the lowest level (the preferred
description) and the highest-level one. Although for an essential mechanistic explanation these
two levels could be sufficient, a more rich hierarchy is certainly wished for in general, in the
case of mechanistic explanations, where, as highlighted in section 6.8, the possibility of a rich
hierarchical description allows the fine-tuning of the level of detail to the needs of the researcher
by means of the choice of the adequate level of description, at the adequate degree of abstraction:
the observer will tend to choose coarser levels to have a bird-eye view of the system, in order
to gradually proceed towards finer and lower levels, which reveal gradually the implementation
details. In other cases, proceeding bottom-up, the observer, after a first low-level description,
the typical preferred description, will probably need to partition the set of elementary parts in
functional subsystems, modules representable as elements of a higher-level description, in order
to catch at once the role that each subsystem plays in the overall functioning of the system.
Especially in very large and complex systems, this operation will probably need to be iterated
more times up towards higher levels, or the whole hierarchy traversed up-and down until a
sufficiently articulated comprehension of the system is formed in the mind of the observer. As
stressed in section 6.9, this gradual exploration of the multi-level structure of a system is necessary
also in the phase of scientific discovery, in the phase of construction of the mechanistic model
of the system by repeated observation and experimental manipulation of the phenomenon to
explain.

All the above processes of gradual comprehension and construction of a mechanistic explanation
of a system are severely hindered by the presence of antimodularity: antimodularity would limit
mechanistic explanation to the level of description representing the most elementary parts of the
systems, typically the preferred description of a certain discipline, which is the level with the
highest number of parts and thus the most complicated level of description.

This fact could certainly hinder comprehension as well: for large enough systems, their mecha-
nistic explanation at this level is too complex to be understood by human beings, at least too
complex to allow for a complete comprehension of the whole description at once. And, unfor-
tunately, antimodularity will hit precisely large systems, because it is due (at least in one of
its possible forms) to the excessive size of the system: the system is too large for automatic
modularity detection methods for us to be able to obtain a valid enough modular redescription
of it in a reasonable time. As said, inside my epistemic view of explanation, understandability
is a quality to be sought for in mechanistic explanation, and on this point other authors agree,
notably William Bechtel, Cory Wright and collaborators. Antimodularity damages this needed
intelligibility of mechanistic explanations.

One could then hope to understand the preferred description of an antimodular system piecemeal.
But, the absence of modularity hinders precisely this possibility: in a non modular system all
parts are inextricably interconnected, and the system can be fully comprehended only in a
“holistic” way, at least if the required comprehension is comprehension of it as a mechanism.

An important distinction must however be made. According to the definition given above of
antimodularity, this property comes in two flavors: intrinsic antimodularity and antimodularity
simpliciter. In the case of intrinsic antimodularity, the system cannot be decomposed at all in
high-level modules, because it objectively lacks modularity, at least relative to the metric for
modularity detection taken into consideration. In this case, not even piecemeal comprehension is
to be expected, because to understand or explain the functioning of a subsystem it is necessary to

308 Chapter 14. Consequences of antimodularity on explanation

succeed in sufficiently isolating the subsystem from the rest of the system: the subsystem must
possess a sufficient functional autonomy. But this is precisely what is precluded by intrinsic
antimodularity: in an intrinsically antimodular system, functions are distributed across the
whole system. For the same reason, in such a kind of system, its experimental study in order to
construct a high-level model of it is severely hampered, because this process requires the same
type of isolation of subsystems in order to study them separately by intervening on them3.

In the other possible case, that in which the systems shows simply antimodularity, the impact
on mechanistic explanation is more subtle: the net effect of simple antimodularity is that we
cannot practically obtain a modular description of the system by means of general algorithmic
methods (like those for modularity detection in networks described in section 3). But, if the
system is antimodular but not intrinsically antimodular, we could hope to obtain its modular
description in other ways. One could be the piecemeal, slow, experimental fashion traditionally
used in science. If the system shows antimodularity but it is actually modular, that is, it is not
intrinsically antimodular, then it is in principle possible that this method could actually find its
modular structure. It does not seem to me, however, that the likelihood that this could happen
without any supplemental information on the system’s possible modularity is high: without any
other hint, the brute experimental research would in many cases simply apply the method that
would have been applied by an algorithm for modularity detection, only in a manual way. If this
is the case, it is easily realizable that there is not much hope that, where an algorithm has failed,
its manual step-by step execution could succeed! To make a very simple example, let’s take a
social network, of which we want to assess modularity based on a metric of friendship. The
network is too large, and modularity detection on it has proved unfeasible. It is thus affected by
antimodularity. But what about proceeding by discovering the friendship relations one by one,
starting from one person and proceeding to reach other, connected persons? To asses modularity
we could observe the mean connectedness of adjacent nodes. But network modularity in the form
of community structure4 is not a local property, because it is based on the assessment of edge
betweenness, a metric which gives also information about distant, non-local nodes. So, we would
have to wait the complete discovery, one node at a time, of the whole network’s structure, before
being sure to have all the data needed to detect the proper community structure. And, after
having obtained a description of the complete structure, we will still have to run a method for
community detection on it. It does not seem, then, that we would have gained anything over the
direct automated application of the algoritmhic method. This does not mean that, if actually
present, community structure cannot be detected, even if antimodularity affects the system: it
could be probably detected with the aid of information external to the bare description of the
network’s structure, which can guide and constrain the detection of modularity. For example,
knowing which language is spoken by each individual, would allow for a preliminar approximate
coarse-graining of the network structure, based on the hypothesis that the probability for two
persons to become friends is higher when they share a common language, and so on the plausible
conclusion that a possible modular structure of friendship relationships on the network should
follow at least partially the partition of the population into linguistic communities. But this is
information which is external to the original preferred description, that instead represents the
network simply in terms of connected persons. Thus, it is not impossible that methods different
from the algorithmic detection based only on the properties of the representation could detect
modularity even if the system shows antimodularity, but this can happen when these methods
can appeal to information external to the representation.

In actuality, however, when in presence of already collected data which make up a complex
3 As seen in section 6.9.
4 See sections 3.2.1 and 3.2.1.2.

14.2. Antimodularity and the deductive-nomological model 309

representation of a scientifically interesting phenomenon, in many cases algorithms for modularity
detection are applied to these data. This is becoming more and more frequent in the study of
biological networks, like metabolic networks, and a paradigmatical case of application is Guimerà
& Amaral (2005b), with fig. 3.14 in section 3.2.3 representing an example of algorithmically
detected modularity obtained by the methods proposed by these authors.

It is evident that a mechanistic explanation tries to answer to “how” questions (“how a phe-
nomenon is brought about?”), by showing the way by which the complex dynamical functioning
of a set of interacting parts produces the phenomenon. The same question can be answered to,
also just from the functional point of view, and this conception, mainly aimed at characterizing
explanation in cognitive psychology, has been notoriously advanced by Robert Cummins. In a
way similar to that of mechanistic decomposition, functional analysis begins with a characteri-
zation of the global phenomenon (the disposition5) taken as the overall function to be explained
in terms of its component subfunctions. This is a typical form of so-called role functionalism, in
that the concept of function6 is considered that of a partial role fulfilled by a subsystem in order
to bring about the whole functioning of the overarching system. Seen from an explanatory point
of view, the function of a subsystem is employed in explaining how the overall function, which
is the explanandum, is performed by means of the organized contributions of its subfunctions,
which fulfill their roles in a programmed activity. This position is quite close to a computational
view, and it is completely compatible with it. Actually, Cummins’ functional analysis is the
prototype of the typical explanation of cognitive psychology, which mostly consists of functional
explanations, often in the form of computational explanation, that is, the exhibition of a computer
program able to produce the cognitive phenomenon to be explained.

A more thorough characterization of Cummins’ position is given in chapter 9, and in section
11.3, where the relationship between purely functional and mechanistic explanation is also better
analyzed. What I would like to highlight here is that Cummins himself, since his earlier works,
as in the seminal Cummins (1975), stresses that the strategy to seek for in scientific explana-
tions, especially in biological ones, is recursive functional decomposition until a full hierarchy
is obtained. Antimodularity would completely hinder this goal, allowing for a two-level only
explanation: the highest one, that of the explanandum itself, and, on the other end of the scale,
the lowest level, that of the most elementary functions.

14.2 Antimodularity and the deductive-nomological model

In the classic deductive-nomological (DN) view of explanation, stemming from the seminal work
of Carl G. Hempel and Paul Oppenheim7, which we have already discussed in section 8, expla-
nation is seen as logical deduction of the explanandum from the explanans, and little attention
is directed to the understandability of the explanation: a concern about intelligibility of the ex-
planation would have been considered, in the historical post-neopositivistic milieu of the time,
an inappropriate trespassing of philosophy of science into the territory of pragmatical, or worse,
psychological aspects of scientific explanation. In the DN model of explanation, all that matters
for an explanation is that it is a valid and sound deduction. Explanation is seen in this model
as depending on the possibility of prediction of the phenomenon by means of a scientific law.
The explanation itself amounts to the description of the logical derivation of the explanandum
from a group of premises constituted by a scientific law and a set of clauses representing initial
conditions of the system.

5 A discussion on this term of art is in chapter 9.1.
6 The notion of function is better examined in chapter 9.
7 Hempel & Oppenheim (1948).

310 Chapter 14. Consequences of antimodularity on explanation

14.2.1 Antimodularity and weak emergence hamper DN explanation
I claim here that antimodularity hampers, at least partially, also the production of sensible DN
explanations. In order to support this claim, it is first necessary to show that antimodularity,
under certain circumstances, entails another property of complex systems, Mark Bedau’s weak
emergence (orWE). This has been already showed in section 13.3, and the circumstances in which
this implication is valid have been specified. Let’s consider here the case of an antimodular system
for which such circumstances hold: antimodularity entailing WE, such an antimodular system
will end up being weakly emergent as well.

I want to argue, then, that WE hampers DN explanation. If a phenomenon is weakly emergent,
then a DN type of explanation citing an analytically solvable law could not be recurred to in order
to explain it, because, if it could, that would mean that the phenomenon is predictable, and this
is negated by the definition of weak emergence itself, as reported in section 13.3. To clarify: it is
excluded by the definition of a weakly emergent phenomenon that it can be predicted by means
of a law which, given the initial state, determines in which state the system is going to be at any
given time, and that this law has a mathematical expression which can be analytically solved.
As showed in detail in section 13.3, this is excluded by the very definition of weak emergence,
which basically states that a weakly emergent phenomenon (in a discrete dynamical system)
is one that cannot be predicted, and that can be reached only by performing the step-by-step
microsimulation at the system’s lowest level.

So, no DN explanation of a weakly emergent process could be based on such a type of analytically
solvable law, because otherwise any weakly emergent phenomenon could be anticipated and
predicted, in a way, by making use of the analytical solution of this law (as explicated in section
13.3), and this would go against the definition of weakly emergent process. But we are dealing
here with a process which is antimodular by hypothesis, and in conditions that entail WE, so
the process is WE by hypothesis, and thus its explanation cannot be based on an analytically
solvable law.

Actually, DN explanation requires in the explanans the exhibition of a law which allows to
deduce, from the initial conditions, the explanandum. But, if the system to be explained is
weakly emergent, such a law can not be expressed as an analytically solvable expression: in
general, the WE definition excludes that the emergent macrostate can be predicted by means of
a law in this sense.

Lacking this kind of analytically solvable law, we should reflect on what kind of law could be
employed in a DN explanation of a weakly emergent process.

Given that each discrete dynamical system is governed by a global update function, this is
plausibly the law we have available and that we could employ in the DN explanation. In a
discrete dynamical system (or DDS), this update function maps each possible global state to its
next state. Given that the global state of a DDS is constituted by the configuration of the states
of each of its elementary parts, the global update function must, in its representation, cite all
the elementary parts of which the system is composed. This is explicitly possible only for finite
DDS, whose configurations are composed of a finite number of parts. Moreover, the number of
couples (currentstate, nextstate) is proportional to an exponential function of the number of
elementary parts: for example, in a boolean system in which each elementary part can be in one
of two possible states, the number of possible global states is given by 2n, with n the number of
elementary parts. For a system composed of even a small number of parts, the update function
would become very complicated, at least if it is expressed in the extensional form which consists
in explicitly listing all the possible (currentstate, nextstate) couples: as said, the number of

14.2. Antimodularity and the deductive-nomological model 311

these couples is proportional to an exponential of the number of parts of the system. For a
boolean system with 50 parts, the list of this couples comprises 1,12589990684e+15 elements, a
completely unmanageable number. Besides, an extensional form like this would not satisfy the
requirements that a law must have in the DN model of explanation, as conceived by its authors:
for Hempel and Oppenheim, the law must be expressed in a universally-quantified expression,
which does not mention any individual constant8. But an extensional listing of all the possible
(currentstate, nextstate) couples does not seem to have this universally purely quantified form:
the listing could at most be rephrased as an enormous conjunction of component clauses like
“for each current state S, if S is equal to a certain configuration C, then the next state is . . . ”.
This does not seem to have the required purely universal form, because at least it contains many
constants: all the possible specific configurations, each of which must be cited in a component of
the alleged “law”. So, it would not be possible to use this form of expression of the update rule
in a DN explanation, because this violates the requirements of such a kind of explanation.

Any extensional representation of couples of discrete configurations like the representation of
the update rule cited above, is theoretically expressible also in an “algebraic form”: for boolean
DDSs, this would be a logical boolean expression, for example an expression in conjunctive normal
form, or disjunctive normal form. However, transformation of the extensional expression into the
algebraic formula could turn out being difficult: even if a boolean expression can be obtained
from the extensional representation, this expression could end up being huge. To enhance its
manageability, the formula must be reduced to its minimal equivalent boolean expression. The
problem is that this reduction is computationally hard: the most used precise algorithms, such
as the Quine–McCluskey method, work in a time proportional to an exponential of the input
size.

A third problem with such a formula, even if it can be obtained, is that it would not qualify as a
“law” which can be cited in a DN explanation according to Hempel and Oppenheim’s standards,
because the boolean expression representing the update function of a finite DDS would have,
as said, to cite all the parts of the DDS in order to consider the global configuration, or state,
of the DDS. Such a law-like expression would have to be expressed in a form such as “for any
configuration of n parts among all possible configurations of n parts, the next configuration
is equal to (p1 OR p2) AND (p2 OR p4) [. . .]”, where n is the finite number of parts of the
system. Thus, such an expression would quantify over the finite scope constituted by the set of
all possible configurations of n parts, which, in the case of boolean systems, is constituted by
2n configurations. In doing so, such an expression would refer to a finite scope, the scope of the
possible configurations of the parts of that finite DDS. This violates the requirement that a law
employed in a DN explanation must be have a non-limited scope. In other words, a generalization
for a specific DDS is a generalization concerning a finite, particular system, and this rules out
such a generalization as a legitimate law to be used in a DN explanation, by the strict standards
conceived by DN explanation proponents, as explicitly stated in Hempel & Oppenheim (1948).

To sum up, a DN explanation cannot be applied to a finite DDS, if its update function cannot
be analytically solved, and it must be expressed in the form of an explicit (current global state,
next global state) map, thus quantifying over a finite scope, the scope of all possible global states.

Now, a DDS which is affected by WE, would for sure lack analytical solvability of its update
function. However, not every DDS must represent its update function as an explicit global
state to global state map. There is, actually, a class of DDSs whose update rules usually are
quite synthetic: this is the class of cellular automata, whose update rule is local, taking into
consideration only a neighborhood of limited radius around each elementary part (a cell) of the

8 See Hempel & Oppenheim (1948).

312 Chapter 14. Consequences of antimodularity on explanation

system. Of course, even for finite CAs the global update rule is not local, but in CAs the global
update rule can be obtained by reiteration over each single cell of the more synthetic, local, CA
rule: this is how the next state is computed starting from the current state in a CA9. Moreover,
CA rules, besides being local, are invariant in all points of the CA’s lattice: there is actually a
theorem, the Curtis–Hedlund–Lyndon theorem, which guarantees that any local rule invariant in
all points of a discrete lattice defines a cellular automaton, and vice-versa10. These features make
the CA rule obey the condition, required for DN explanations, of being non-limited in scope, and
in this regard, associated with its locality, the form of a CA-rule can in a way be assimilated to
the form of a physical law, which is the typical example11 of a law of the type required for DN
explanations: the CA law could be expressed as “for any point in the CA lattice, given certain
conditions of the cells adjacent to the cell at that point, then [. . .]”, which is a universal form
similar to the “for any point in space, given certain conditions of the particles within a certain
distance from the particle at that point, then [. . .]” of a possible physical law.

Of course, by definition of WE, for a CA showing WE, its CA rule cannot be analytically
projected at any moment in time farther than the next timestep, so the rule must be applied
step-by-step. A WE process generated by a CA could then, in a way, be explained by a possibly
very long list of steps of its evolution, a list which can be seen as a list of deductive steps inside a
formal logical system, in which the premises are constituted by the CA’s initial configuration plus
the CA-rule, a rule which is repeatedly applied, subsequently, to each intermediate next state
obtained by the former application of the CA rule, and where the conclusion of the deduction
is constituted by a certain required state of the CA, the state which corresponds to the WE
macrostate. Accordingly, by this analogy, the production of this list of consecutive states of the
CA and application on them of the CA rule, could in a way be assimilated to a sort of long DN
explanation of the WE macrostate, given that a DN explanation consists of a logical deduction
of the explanandum starting from given initial conditions and a law: the initial condition is the
initial global state of the CA and the law is the CA rule.

Even in this case, human comprehension would be hindered by the potential length of the list.
According to the theoretical position of post-neopositivistic advocates of the DN model of expla-
nation, however, understanding is an inessential feature of explanations, and it is not required
for a good DN explanation. So, in a way, weak emergence and, consequently, antimodularity,
does not essentially hinder DN explanation, at least in the case of CAs and other systems whose
dynamics follow a universal rule.

But antimodularity of a DDS can hamper DN explanation of the system in general: basically,
only a sort of DN-like explanation could be allowed, and only for CAs. And, even in that case,
intelligibility of such a potentially extremely long explanation could end up being next to null.

14.3 Antimodularity and topological explanations

I proceed in this section to consider the consequences of antimodularity on the possibility of
explaining a complex system by means of a type of explanation recently identified by Philippe
Huneman, who proposes to call it topological explanation. We have already considered this
kind of explanation in section 12. As better explained there, topological explanation occurs
when certain features of certain abstract representations of a system, features which are purely

9 See also section 5.2.
10See Hedlund (1969) and Arcaya & Romero (2007).
11 It is not surprising that almost all examples of legitimate laws given by the DN explanation proponents are

of physical laws, given the logical empiricist background of the authors.

14.3. Antimodularity and topological explanations 313

topological, are employed in order to explain certain other properties of the represented system.
Topological features can be for example the shape of a curve, or a modular or nonmodular
structure of a description. In this kind of explanation, it is not causal features of the system
which result explanatory relevant, but what does the explanatory work are purely formal, abstract
geometrico-mathematical, topological properties indeed, of some representation of the system. In
section 12 we have already seen an example, taken from Huneman (2010), of such a kind of
explanation, based on curves representing the fitness distribution of two bacterial populations. I
would like here to make two other examples, centered on certain topological properties of network
representations.

We will take into consideration a possible topological explanation of the type of dynamics oc-
curring on a network. Let’s suppose the dynamics reveals itself as being chaotic. This could
be topologically explained by mentioning the non-modular structure of the network: in a non-
modular network all nodes are connected on average with the same intensity to all other nodes,
and this could explain the chaotic dynamics ensuing12. This is not a mechanistic explanation,
because it does not specify the particular causal interactions between nodes which give rise to
the chaotic dynamics: it mentions only a mathematical, topological feature, that of the network
being extremely connected, that is, antimodular. Now, this kind of explanation requires that
the network is actually antimodular, that is, that it is intrinsically antimodular. Detection of
intrinsic antimodularity, as suggested in section 13.2, is feasible in certain cases, so it could be
possible to determine if we can recur to a kind of topological explanation based on intrinsic
antimodularity.

Topological explanation could also have recourse to the mention of a modular structure: for
example, this can be the case when robustness of a network’s dynamics to local perturbations
is explained, topologically, by mentioning the network’s modular structure: a modular structure
ensures that perturbations remain local or get channeled towards specific target parts of the
network, often with different intra-module and inter-module diffusion rate, without spreading
indiscriminately across the whole network13. But, let us suppose that we do not find modularity
in the network, and so that it results antimodular. Again, we could exclude, in certain cases, by
algorithmic means simpler than proper modularity detection, that this is intrinsic antimodularity.
In this case, even if the network results to us antimodular because of the limitations of algorithmic
modularity detection, and thus we cannot give of it a proper functional hierarchical explanation,
we could still, by knowing that the network has some modularity even if we cannot precisely detect
it, explain by topological explanation certain features of its dynamics, such as its robustness, by
merely citing the fact that the network is modular.

So, if a network shows antimodularity, this means that we cannot have available a sufficiently
precise modular description to be used for a mechanistic, functional, multi-level explanation.
That does not mean that fast algorithms for detection of the simple presence or absence of
modularity cannot suggest that the network has some degree of modularity anyway or that
it completely lacks it, and this mere information could allow for the supply of a topological
explanation, albeit not of a mechanistic one.

To sum up, it seems that antimodular emergence does not hinder the possibility of topological
explanation, but that in reality the presence or absence of intrinsic antimodularity is precisely one
of the features which can typically allow for the production of certain topological explanations.

12 Usually dependent on other factors as well, such as the average degree of nodes, and the type of connections.
See section 7.1.2 and Kauffman (1993).

13 See, for example, Maslov & Sneppen (2002), and section 3.2.4.1.

314 Chapter 14. Consequences of antimodularity on explanation

14.4 Explanation and prediction

The circumstance that an unpredictable system can be at the same time functionally explainable
at high-level, a circumstance which occurs in modular, computational, sufficiently powerful sys-
tems, and which I have called Turing emergence in what precedes, is an interesting fact, because
it shows that prediction and explanation, contrary to the expectation of post-neopositivistic
philosophers like Hempel, are disjoint: while unexplainability (that is, antimodularity) in many
interesting conditions entails undpredictability (weak emergence), unpredictability does not ren-
der, per se, a system unexplainable. This is a curios result, for it proofs, in a way, that prediction
is not necessary for explanation, and thus that the deductive-nomological model of explanation,
even if it were free from other shortcomings, at least it would not be a model of explanation
comprehensive enough, leaving room for explanations which are not based on prediction: expla-
nations which are functional, or mechanistic, but cannot be considered also DN, except by using
as a “law” the very functioning itself of the mechanism, or of the global function. But this would
be excluded by the requirements of DN explanations, which we have seen in section 14.2.1: a DN
explanation could not accept as a law a mechanism. If we, however, consider DN explanations
as simply a higher-level type of mechanistic explanation, which is, in a way, a specifciation of
a mechanism, where the mechanism implements this specification (in a way similar to Mario
Bunge’s view,cited in section 10), then we could unify the two types of explanations, mechanistic
and DN one, into a single type. The DN explanaiton would simply be a more “high-level” type of
explanation, specifying the “what”, while the mechanistic explanation would describe the “how”.
See section 10 for a discussion.

14.5 Antimodularity and computational explanation

14.5.1 Computation and computational explanation
In the next sections I will try to reflect on the possible consequences of antimodularity on
computational explanation, by evaluating the circumstances under which a dynamical system
can be explained by means of a computational explanation. In order to do this, it is necessary to
try to clarify what a computational explanation is. But, to this aim, it can seem natural to ask
first what a computation is. Indeed, while this concept seems generally undisputed, a minimum
of reflection can make it appear a little problematic.

The fact is, since its inception with Turing, computation has been considered a purely formal
question. This, I think has been a good way to treat it, because logico-mathematical methods
have allowed to prove fundamental results on computation which no other approach could have
discovered, providing a formal framework with a capacity of pervasiveness in all fields of human
knowledge which maybe only mathematics has had before. The formal approach to computation
has brought to light the essential features of computational facts: the properties of computability,
its power and limits, have been detailed, and continue to be, in a thorough and rigorous way that
no other approach to the problem of computing could have developed. So, isn’t computation
precisely a question of mathematics? Of course it is. Nevertheless, given a computational system,
one could ask a simple question: does it compute? In the wake of what stated above, this can
seem an easy question, decidable on formal grounds, but from another point of view it is not.

To see this difficulty, let’s imagine that, for fun, a programmer wrote a computer program con-
stituted by a list of randomly chosen instructions, and that, for some improbable circumstances,
the randomly produced program does indeed run without crashing, producing an output for
each input it is fed with. Another programmer enters the room and asks to the first programmer

14.5. Antimodularity and computational explanation 315

What does it compute?, receiving as answer Well. . . it computes!. Would that answer satisfy the
second programmer? Or, let’s think of another program which spits out unrecognizable binary
strings, or even decimal numerical strings, when fed with other numbers: what does it compute?
Without knowing anything of the program structure, we could say that what it computes could
be anything: from trigonometric functions to derivative of the probability distribution of some
demographical model. Wouldn’t it be more sensible not to say that it computes, in the sense of
processing some meaningful information, but that, for the moment, it simply is a digital process?

The point I would like to highlight is that, at least from an intuitive standpoint, recognizing
that something computes requires the ability to explain what it computes, that is, the ability to
provide a specification of the program, in terms of a meaningful explanation of what function is
computed. It is my contention that a computation properly intended must be distinguished from
a mere manipulation of symbols, that is, from a mere digital processing: a computation in the
meaningful sense needs to be, as such, a meaningful digital processing. And, perhaps surprisingly,
I think that at this point a purely formal conception of computation can be recovered, after having
apparently refused it, in order to define what a meaningful computation is.

To clarify the question, let’s start with mere digital processing: a digital process is simply the
formal manipulation of tokens. Following John Haugeland, I will call a mere digital processing
a syntactic engine: a digital process, acted by a “machine” in the sense of theoretical computer
science. But, processing performed by a syntactic engine achieves the status of meaningful com-
putation, (or meaningful “information processing”) when the types of the tokens it manipulates
are given a meaning, and the operations it performs on these tokens are given a meaning as well.
This attribution of meaning, though, must not be seen as something “vague”, or irreducibly
“mental” or irreducibly not mechanical, but, it can be simply reduced to a formal, computable
mapping of some sort. And this is how, in my view, the problem of intentionality can be avoided
and a purely formal syntactic vision of computation is gaining back again a central position:
the attribution of meaning is simply the computable association between some set of meaningful
symbols (of which nothing is said about their meanings and how they acquire them) and the
set of symbols manipulated by the digital process. Of course, the problem of intentionality has
been simply deferred, here: we start with the idea of a set of already meaningful symbols, which
are furthermore perfectly legitimate discrete symbols candidate for a perfectly legitimate kind
of computation understood as digital processing. By means of a computable function acting on
them, we map (the encoding) in some way this set of symbols to the set of symbols constituting
the possible input configurations of the syntactic engine, which we wanted to “endow” with mean-
ing. Correspondingly, the possible output configurations of the syntactic engine must be mapped
in some way to the set of meaningful symbols (the decoding). That is all that is needed to turn
the digital process performed by the syntactic engine into a meaningful computation: by way
of this mapping, the inputs and the outputs of the syntactic engine come to assume a meaning,
and as a consequence, the relationship (the specification) between its input and its outputs gets
a meaning: and this meaning is precisely the computation the whole system, so mapped, per-
forms. This is for example the case in which we can describe the specification as “it is an image
processor”. But before the mapping, the same syntactic machine was simply to be described as
“it is a transformation matrix such and such. . . ”. These mappings, this encoding and decoding
of an input and of an output, can be seen as operations of abstraction as understood in section
6.6.1. Once the mapping is established, we can operate a global intentional attribution, and say
what computation the system, provided with the mapping, is performing. Only then the system
can be seen as computational. Computation is attribution of computation, to systems which per
se, are simply rule-governed discrete dynamical systems14.

14 Of course it can be raised a problem here: if the system is considered as already rule-governed, that means

316 Chapter 14. Consequences of antimodularity on explanation

This intentional, or semantic, view of computation is not a new position: in 1980 Jerry Fodor
wrote: “To think of a system (such as the nervous system) as a computer is to raise questions
about the nature of the code in which it computes and the semantic properties of the symbols
in the code. In fact, the analogy between minds and computers actually implies the postulation
of mental symbols. There is no computation without representation”15.

But, a clarification is crucial here, in order to avoid misunderstandings. I am not saying (and
Fodor neither) that computation is an intrinsically intentional, or semantic process, whatever
that could mean: there is no doubt that a computing machine is an absolutely formal, syntactic
engine: it operates transformations of its internal configurations according to the form of these
configurations, not according to any “intentional content” whatsoever. The “semantic” or “in-
tentional” attribution is external to the machine, and acted by the observer on the purely formal
tokens which the machine processes. Such a semantic view is opposed by some authors, like
Gualtiero Piccinini, who view computation as definable on purely mechanistic terms, without
the need of recurring to any semantic attribution16.

The idea of devising a map between meaningful symbols and configurations of a machine in
order to say what it computes, is however not usually the way a programmer works: when
designing a program, the programmer starts with an idea of what the computation must do, and
proceeds to write the corresponding program guided by this idea. It is this idea that specifies
what the program must do, and it is accordingly called, as a term of art, program specification.
It can be considered the function which the program, or the computation, computes. When
programming in a structured or modular style, the programmer then proceeds to analyze the
supposed specification into sub-functions, and to implement them one by one, in turn subdividing
them into smaller functions, until only single instructions are found.

So, given such a mapping and the fact that we choose the mapping, does this mean that any
machine can be seen as a machine which is computing? Let’s clarify things up: first, we are talking
about digital computation here, the kind of computation classically studied in computation theory
since the works of Alan Turing, Alonzo Church, Emil Post, and others in the 1930s. So, to be
considered computational, a system must at least be considered digital, that is it must possess,
and operate on, a finite set of possible stable distinct states. To this aim we must be able to
robustly distinguish discrete configurations of the machine, and this is not always feasible (think
of distinguishing stable configurations in a turbulent fluid), so not every system is so conceivable.
And, the process must susceptible to be viewed as characterized by a deterministic rule that
makes it pass from one stable configuration to another. Conditions for the occurrence of such a
possible interpretation of a system are not trivial, and have been the object of subtle philosophical
analysis. In the terms of the theoretical framework I propose in this work, though, it is easy to
state these conditions: the system must be a modular redescription, as defined in section 6.6.1017.
Specifically, a system, to be computationally capable, must be a DDS.

that an original intentional attribution has already been done. It is outside the scope of this work to tackle here
this and other similar thorny questions, analogous to the infamous “kripkensteinian” rule-following problem.

15 Fodor (1981).
16 See for example Piccinini (2008).
17 Along these lines about the possibility of redescribing any system as digital, a famous extended debate,

stemming from Putnam (1988), and getting to Chalmers (1996) (through Searle 1990) has tried in the past decades
to define the condition for distinguishing computational mechanisms from other systems. While a detailed analysis
of this discussion would be very interesting, this problem is slightly different from ours because it touches also the
relationship between the real, physical, continuous world and its discrete models, a relationship which I purposely
left out of my philosophical analysis, which considers only systems which are already digital. For this reason, and
for reasons of space, i leave it to another occasion. Suffice to say here that, against a purely “intentional” view of
computation like the one outlined by Putnam, Chalmers argues that to be computational, a system must possess
what in the framework I proposed would be described as some form of functional modularity.

14.5. Antimodularity and computational explanation 317

To put all the above more analytically, I would like to highlight some points of my position:

1. In order to compute, a system or mechanism must possess computational capability. As said,
in order to be computationally capable, a system must be susceptible to be seen as digital,
or discrete, and deterministic. This is mainly represented by the class of systems which I
referred to informally in section 5.1, the discrete dynamical systems (DDS henceforth).

Note that computational capability is different from computation: a computationally capable
mechanism, per se, is not computing anything, although it could, under the following condition.

2. In my view, computation is attribution of computation, and this is an intentional question,
requiring that a computationally able mechanism be interpreted as performing a specific
computation, that is, requiring that it be possible to answer to the question “what is this
mechanism computing?”. To this aim, two important sub-conditions must be satisfied:

a. an algorithmic mapping between linguistic symbols and possible input and output
configurations of the system must be realized;

b. we must be able to say which is the particular function relating input to output
configurations, that is which is the specification of the computation, in order to say
what the system is computing.

It must be noted that, again, for a programmer, the two points a and b above get accomplished
in the inverted order: when a programmer writes a program, what is needed is not an interpre-
tation, but the establishing of a norm: first the specification18 (point b) is arbitrarily chosen and
considered the norm to which the program will have to conform, and then on the basis of the
specification, the programmer chooses the mapping (point a) from symbols to input and output
configurations which he deems best, in order to proceed to the implementation of the program,
that is, the specification of the parts and the structure of the program which will, at the end, best
be able to realize the chosen specification according to the chosen mapping. Thus, the choice
of the mapping determines the choice of the specific structure of the program. All this series of
operations constitutes the implementation of the chosen specification.

I take the occasion here, speaking of implementation, to express that, along the lines of Galton
(1993), and Partridge & Galton (1995), I consider the relation specification-implementation a
very universal one: an implementation is the act of specifying a method to “realize”19 a given
overall specification. When considering a program, there is not, however, a unique overarching
specification and a single level of implementation, for the two notions are relative, exactly like
those of “higher” and “lower” description level20, and that of function, which21 is the partial
role something fulfills relative to the scope of a global function. Relative in this case means that
something which is the implementation of a specification, can in turn be considered a lower-level
specification to be implemented at an even lower level. Actually, I see the relation between levels
of description, inside the theoretical framework which I propose in section 6.6, as a relation
specification/implementation. In other words, given a specification there is the need to find
one possible implementation of it, and in the style of structured or modular programming, such

18 A term of art in computer science. See section 4.1.5.
19 In a sense closely akin to that of the property of realization in philosophy of mind. I will not scrutinize the

notion here, but see Polger (2004) for a good discussion, and section 9.1.
20 See section 6.6.
21 Recall section 14.1 and section 9.

318 Chapter 14. Consequences of antimodularity on explanation

an implementation will be decomposable itself into modules, which, structured in a system of
modules, implement the specification. Each module, being a specific input-output function22

constitutes itself, in turn, a specification, which will be implemented at a lower level, and so on.
I tried to give a finer-grained classification of the types of specification in section 4.1.5.2.

It seems to me plausible to say that the same abstract structure underlies the notions of struc-
tured programming, functional decomposition, and hierarchical levels of modular descriptions.
All of these visions are isomorphic to a hierarchy in which each macro-component is multiply
realizable by sub-components, and so on23.

Following the same lines, it must be highlighted that, in this view of the recursive decomposability
of system representations, there is not an absolute bottoming out: using the terminology I
introduced earlier, the bottoming out coincides with the description of the system according
to the preferred description, which is anyway the product of an intentional choice itself. Of
course, there are preferred descriptions that are more “natural” than others, like the description
corresponding, to remain in the field of computing, to the so-called “hardware” level. I would
like to stress that even the apparently physical, resistant, hardware level, is only the preferred
description we make of a mechanism: the choice operated at point 1 above24.

In the examples which I gave above, the ones not involving the act of actively programming,
we start with an uninterpreted discrete process and aim to discover what computation, if any,
and how, the process performs. This is the path of reverse engineering of a computational or of
an allegedly computational process. Actually, the process is instead, usually, that of “forward”
engineering: since a computation is almost always something which is designed by a human
programmer, the programmer starts with an idea of what the computation she is about to imple-
ment must do, and proceeds to write the corresponding program. In this case, the programmer
starts with the global computational function of the program in mind, its specification, which
can be a vague idea, or, in better cases, the exact specification of all the possible input-output
couples. This can be considered the function which the program, or the computation, com-
putes. The programmer who wants to follow a structured or modular programming style, then
proceeds to analyze the supposed specification into sub-functions, and to implement them one
by one, if possible subdividing them in turn into smaller subfunctions. But there is also top-
down reverse engineering: cases in which, given an already existing system which performs a
known computation, it has to be determined how this computation is brought about. This is an
attempt to Cummins-style functional decomposition, the functional explanation par excellence,
which we have encountered in section 9.2, and it is the path usually followed when giving com-
putational explanations: its main scientific application is in computational cognitive psychology,
where the specification is the cognitive faculty constituting the phenomenon to explain, and the
researcher tries to infer its computational implementation. When she succeeds, she is able to offer
a computational explanation of the psychological faculty, in terms of a hierarchical, functional
representation of the computation to be explained.

22 function in a mathematical sense, see. section 9.
23 Multiple realization does not hold everywere, though: for example, when modelling with network models

biological complex systems, it is not always sure that a function, say regulation of the lac operon, is multiply
realizable: most probably its multiple realizability is only minimal, with slight differences between individuals
or species: the reason is that regulation of the lac operon is a very specific notion. Of course, more general or
abstract functions can be more multiply realizable: the paradigmatic case is that of mental functions.

24 It must be stressed that this is not an arbitrary choice, but it is exposed to some constraints, of causal, or,
from another point of view, normative nature: this is a very thorny question which, as I said, continues to be at
the center of a passionate debate, starting from the famous example by Hilary Putnam of the computing “rock”,
and involving the infamous “kripkensteinian” paradox of rule-following.

14.5. Antimodularity and computational explanation 319

14.5.2 Antimodularity, cellular automata and computational explanations
After having assessed the possible consequences of antimodularity on various types of scientific
explanation, I turn to consider a fourth possible type of explanation: computational explanation.
Here, however, i will focus not on computational explanation as it is typically applied, that
is, in explaining psychological phenomena, but on the assessment of the possible effectiveness
of computational explanation in explaining the behavior of certain cellular automata: this will
serve as a paradigmatic highly simplified model aimed to highlight certain general problems that
can be encountered in trying to computationally explain antimodular systems.

In section 14.5.1, I have already expressed the three conditions according to which, in my view,
a system can be considered computational. If CAs and dynamic boolean networks can be consid-
ered computational systems, they could then be subject to computational explanation, which is
the form of functional decomposition employed in explaining computer programs, and, notably,
psychological faculties in cognitive psychology.

I consider the case of trying to computationally explain a CA. There are two basic questions at
stake here:

• is a CA a computational system?

• if it is, how can we explain the computation it performs?

So, can a CA be considered a computational system? Of course, at its natural, preferred descrip-
tion, that of the cells and of its CA-rule, a CA is trivially computationally capable (condition 1
stated in section 14.5.1), given its nature of a discrete system evolving in time according to some
specified rule.

However, its functioning cannot be explained by means of a computational explanation before
an adequate mapping between its configurations and meaningful symbols of some type can be
supplied, and, based on this mapping, a meaningful description of the input/output it performs
is given (condition 3 of section 14.5.1)25. If we wanted to begin to computationally explain what
a CA computes at its preferred description level, that of its cells, without giving it a particularly
significant interpretation, we could say for example that, “according to the repeated application
of its rule, the CA produces a progressive variation of the state of its cells, which can, under
various conditions, change from white to black”. Here the mapping of the cells’ state to linguistic
symbols would be to the terms “white” and “black”, and this is not very significant to start with.
But, the specification given is not very specified indeed: “progressive variation of the state of
its cells under various conditions”. What about rendering the specification more perspicuous?
Now, the specification is given by the repeated application of the CAs rule. So, if we could
recognize as meaningful the specification of the rule itself, then we could immediately give a
modular computational explanation, modular in the sense of citing the repeated calling of the
same function, which in this case is the CA rule. Now, a CA rule, at least in CAs whose cells have
only two possible states, is a map between binary configurations. As such, it realizes a boolean
function, and so it could be meaningfully expressed as one. Actually, there are some simple CA
rules26 whose boolean functions are known. For example, we could explain by computational

25 I partially overlook here a further problem: how a CA, which has a potentially non-halting evolution, can be
considered an input-output “black box”. This is again a matter of convention, depending on the chosen symbolic
mapping.

26 The class of so-called elementary CAs, according to Stephen Wolfram’s classification. For further details
about these and many other questions regarding CAs, see section 5.2.

320 Chapter 14. Consequences of antimodularity on explanation

explanation what a CA governed by rule 3027 does, by saying “the CA produces a progressive
variation of the state of its cells, which will follow the pattern of the repeated application, to each
cell q, of the boolean function p XOR (q OR r), where p and r are q’s adjacent cells”. Would this
“explanation” be really explicative? Is it intelligible? According to the standards given in section
14.5.1, this is a perfect computational explanation. But who is capable to perform mentally the
simulation of the CA in order to understand what “the repeated application, to each cell q, of
the boolean function p XOR (q OR r)” means? Although this in not always the case for CAs,
take into account that rule 30 is notorious for producing a sort of chaotic behavior: given an
example of one of its typical evolutions like that of fig. 14.1, who would claim that the above
explanation can be considered satisfying?

But, even if we accepted explanations like the one above as useful, the possibility of expressing a
CA rule as a boolean expression fades as the rule becomes more complex. This is due to two rea-
sons: first, usually the CA-rule is not supplied as an explicit boolean expression, but as a lookup
table28, and, it must be also considered that the complexity of CA rules grows exponentially
with the number of cells the rule takes into consideration, thus rules can become immeasurably
more complex than simple rules like rule 30. Given that, even if a boolean expression can, in
principle, be deduced from the CA-rule table, its boolean expression can be huge, depending on
the lookup table. It is then necessary, in order to use it as an explanation, to find the minimal
boolean expression corresponding to the lookup table, but this turns out to be a computationally
hard task29.

All the above suggests us that we should seek higher-level explanations, possibly multilevel
computational explanations, in order to have a useful explanation. To obtain that, we should
be able to recognize the CA as a computationally-capable machine at a level higher than that
of its elementary cells. So, we must search inside the CA’s dynamics certain classes of modules,
that is, persistent enough macrostructures, whose behavior at the macrolevel can be seen as rule-
governed. These are the basic modules which we are to use as the high-level computationally
capable system we are looking for, a high-level system which can be seen as different from the
DDS constituted by the CA and its rule. In other terms, in order to obtain a useful computational
explanation of a CA, a first condition is (i) that the CA dynamics be plausibly considered as a
computation at a level which is higher than that of its elementary cells: a form of dynamical
macromodularity must be detected in the global dynamics of the CA. At this point another
condition must hold: (ii) the high-level modular dynamics must successfully track the low-level
dynamics of the CA, without diverging from it. This condition of validity (to use the terminology
of scientific computer modeling I adopted in section 6.6) is a quite complex one and is better
specified in sections 2.2.1 and 6.6.8, but it basically amounts to this: that the dynamics of the
high-level description must conduct, after a certain amount of time, to the same state, described
at high-level, which would have been reached by the low-level description after the same amount
of time. In other words, that the dynamics of the macrodescription must not diverge in time
from the correspondent microdynamics.

Fortunately, certain CAs are endowed with such a form of higher-level robust modularity30:
there are CAs which can generate gliders (see fig. 1.2), which end up realizing, in many cases,

27 Again, see section 5.2.
28 Similar to truth tables in boolean logic. See, again, section 5.2.
29 The most used precise algorithms, like the Quine–McCluskey method, are exponential time.
30 Actually, glider-based modularity is not so roubust: it holds given certain conditions in the initial configu-

ration, and gliders are not very robust to perturbation. Nevertheless, in certain systems this form of dynamical
modularity is sufficient to enable the system to perform computations. See sections 5.2.2 and 5.2.3 for an in-depth
discussion.

14.5. Antimodularity and computational explanation 321

Figure 14.1: chaotic segment of evolution of the elementary CA Rule 30. Time flows from top to bottom, each
row of pixels representing the global configuration of the system at each timestep. Each pixel represents the state
of one of the elementary parts of the CA, its cells.

322 Chapter 14. Consequences of antimodularity on explanation

predictable interactions one with the other, as in the case or Rule 5431, and these predictable
interactions can be seen, as we have discussed in section 5.2.4, as the high-level implementations
of boolean functions, with gliders acting as traveling “bits”.

This interpretation in terms of gliders is not always possible, however: certain “chaotic” CAs,
like rule 30, never show (see again fig. 14.1) subconfigurations robust enough to be considered
dynamical modules able to render the high-level representation computationally capable. A brief
aside must be made here. A possible objection to this alleged incapacity of rules like Rule 30
to perform computations could be raised: why can’t we contrive a mapping from sets of chaotic
configurations to meaningful symbols, this way rendering even a chaotic CA computationally
capable at high-level? An answer implies a discussion on the complexity of the mapping between
system configurations and symbols, a discussion which cannot be fully developed here. Basically,
I agree with Martin Schüle32 on the following constraint: that the mapping between symbols and
system configurations must not be so complex as to require a too powerful computation in order
to do the mapping. Schüle argues, rightly, in my opinion, that, should we require Turing machine-
level computations (which is the class of most powerful computations) to do the mapping from
chaotic configurations to meaningful symbols, then we could suspect that the actual computation
which the resulting system we will thereby be able to see as performing, could in actuality not
have been carried out by the CA with its mapped configurations, but almost exclusively by the
mapping itself, which, as said, would be a Turing machine-level computation. The constraint to
impose is then that the computation required to do the mapping should be less powerful (that
is, the machine required to compute it should be of lower degree in the Chomsky hierarchy33)
than the computation we require the system to do, once the mapping is established.

There is an important point here: this impossibility to individuate, without an unacceptable
complex mapping, stable dynamical modules in a CA (like in the case above or Rule 30) can be
seen as a form of intrinsic antimodularity of the high-level description of the CAs. This is where
antimodularity, in this form, already prevents this first step required to provide a computational
explanation, the step which allows the CA to be seen as computationally capable at a high level.
So, it seems that, at least in this form, intrinsic antimodularity actually prevents computational
explanation.

But what about CAs which actually can be viewed as computationally capable at a high level? It
is actually sure that, for certain CAs, mostly in Wolfram class IV34, their high-level interpretation
as computing systems is possible: there is a complex mapping, devised by Matthew Cook35,
with which he has been able to prove that rule 110, another elementary CA, can be seen as
a computational system on the level of the universal Turing machine, that is, of the highest
computational power. Also the most famous CA, John Conway’s Game of Life, has been proved
to be Turing complete36.

So, it is a proved fact that, under certain interpretations, some CAs can be seen as computing.
But, as I highlighted in section 14.5.1, if we want to give a computational explanation of a system,
another condition must be satisfied: that the system is actually computing, and not just that
is computationally capable. To fulfill this condition, we must first be able to say what it is
computing: that is, we must be able to express its input/output relationship, its specification.
We must note, though, that we are here in the position not of software engineering, where one

31 See for instance Martínez et al. (2014), and section.
32see Schüle (2014).
33 See section 17.2.9 of the Appendix.
34 See section 5.2.1.
35 See Cook (2004).
36 See Rendell (2002).

14.5. Antimodularity and computational explanation 323

starts with a specification in order to implement it, but that we are working in the reverse-
engineering field: we have a machine, the CA, which we know that is computationally capable,
and we should, in order to computationally explain it, produce its specification.

We should then attempt the reverse engineering of the specification. This is not an easy task, as
explained in section 4.3.1: the set of all possible inputs can be infinite, or, if finite, is often too
vast to allow for every possible input to get supplied to the program, in order to allow for an
inference of the complete program specification. Even in finite input sets, the number of possible
input combinations grows exponentially. So, we encounter here an obstacle: it is hard to obtain
the exact specification of an unknown program. Actually, if the program operates a computation
of Turing-machine level, it is even in principle impossible to be sure in advance if we will be ever
able to complete the reverse-engineering of its specification, because that would be equivalent
to solving the halting problem: if a program never halts for a certain input we will not be able
to complete the reverse-engineering of its specification, but for the undecidability of the halting
problem we cannot know in advance if it never halts for certain inputs37. This means that doing
the reverse-engineering of the specification of a potentially Turing-complete CA is more or less
a hopeless task.

But we needed the program’s specification in order to computationally explain it. And this
specification is very hard to infer.

However, a specification in the form of the mere extensional listing of the input/output function,
is not the only way a specification can be given. Moreover, this is not the most perspicuous
way to give a specification, even if it is the most precise: a list of input/output couples can be
meaningless. Another, more perspicuous form in which a specification can be given, is in an
aggregate form: a more or less synthetic way to sum up the whole input/output function. There
are several ways to aggregate a specification, which I try to classify in section 4.1.5.2: I refer the
reader to that detailed treatment, but suffice to say here that one of these ways is that of giving
the specification in terms of its decomposition in subfunctions. This could be seen as a form of
hierarchical decomposition.

There is a big advantage in being able to produce a hierarchical, modular representation of a given
specification of a computation: if such a representation could be devised by some means, it would
be possible to put to test each module separately in order to seek for the specification of only that
module. This task would most likely turn out being more feasible by order of magnitudes than
that of submitting every possible input to the whole program in order to directly infer the global
specification, because a module is identifiable by the very fact that it should be only loosely
or sparsely connected to the other modules, and this translates in a probable reduction in the
number of possible inputs to the module, and a consequent easier exploration of that module’s
input space38.

The fact that it has been possible to find the single specification of each module due to the
system’s decomposability, hopefully allows, if the specification of each module is not too compli-
cated, for a form of aggregation, as discussed in section 4.1.5.1: if we are able to further abstract
the module specification by “naming” it in a meaningful succinct way39, giving the module a
name which is representative and explanatory of the function it performs (as for example when
we say that a module performs the “multiplication” operation), then each module’s specification
can be substituted by this more concise definition of what function the module performs. Then

37 See details in section 4.3.1.
38 Even if this is not guaranteed. See section 4.3.1 for a better discussion.
39 This could be done along the lines which are highlighted in section 4.1.5.1.

324 Chapter 14. Consequences of antimodularity on explanation

a global specification of the whole system can be given in terms of a description (usually in the
graphical form of a flow chart) of the modular structure of the system as a directed network of
connected modules, where modules are seen as nodes labeled with their succinct “names” repre-
senting their specification, and their input and output connections are the directed links between
nodes.

The interesting point of what is described above is that the modular structure of the software,
if present, has allowed for a succinct and computationally treatable reconstruction of the global
specification of the program. This specification is given not in its explicit, extensional form, that
is, the list of all its possible input/output couples, but in the form of a hierarchical functional
explanation. We were dealing in this section with reverse-engineering of software, but this has
given us the occasion of describing a notion which is exactly similar to the notion of functional
explanation typical of certain scientific disciplines, a notion which is better expounded in section
9. Computational explanation, as employed, for example, in cognitive psychology, is exactly a
type of functional analysis.

So, this type of explanation seems possible, after all. But it requires that a functional modularity
of the computation can be found, and this, in turn, requires two conditions:

1. that the system is actually computationally capable at a high level: this is not guaranteed,
because intrinsically antimodular systems, like the CA Rule 30 hinted at above, are not
even susceptible to be seen as computationally capable at high level;

2. that, even if the system is computationally capable, and actually possesses dynamical
modularity, this modularity can be actually found. This finding could however be hindered
by some factors: even if the computationally capable process is modular, how could we
recursively decompose its still unknown implementation into modules? There are dynamical
methods to infer program modularity from the observation of the program’s behavior (I
refer to section 4.3 for a partial survey on such methods). However, most of them are
affected by strong limitations, due to too high computational time complexity, or limitations
in principle, due the the halting problem, on what can be reconstructed, and for these
reasons these methods are able to operate only a partial, approximate reconstruction of the
program’s dynamical, functional modularity, which is the representation which can be used
as computational explanation. To sum up all these conditions, here again antimodularity
can appear, in the form of a pragmatic impossibility, due to the excessive computational
cost of the modularity detection algorithm, or of its excessive use of approximated methods
for modularity detection (resorted to in order to eschew computational cost), which makes
the algorithm unable to produce a valid modular description of the computation, but only
a partial one.

But, could partial reconstructions of the program’s functional hierarchy still be used in expla-
nations? Well, it seems, intuitively, that the functional models so produced would be very con-
strained by ceteris paribus clauses, in order to keep them inside the range of known input/output
relations, and to not make their lack of validity emerge. So, it seems that an explanation based
on them should also be so constrained in its applicability. It could appear as an acceptable
explanation, but it would possibly, depending on the degree of its lack of completeness, possess
low predictive power about response of the program to novel inputs, because in the worst cases
such a hierarchical model would in a way be only a post-hoc explanation of the behavior of the
system already observed during the process of modularity detection.

14.6. Explanatory emergence 325

It may well be that, in computational cognitive science, such a kind of limited explanation
could be accepted, and, moreover, it is likely that there are only this kind of explanations in
some subfields of cognitive psychology. In that science, the task of finding the specification and
the functional relations between modules, is left to human experimentation, and that is most
probably a slower process than algorithmic ones.

To conclude this section, I propose to consider this failure of computational explanation due to
antimodularity, a form of computational emergence. This computational emergence regarding
computational explanations can be seen as due to two forms of antimodularity: the first occurs
when the system is too chaotic to be recognized as modular, and it lacks the features needed to
be considered computationally capable at a higher (or at an adequate) level of description. The
second, when the system is too complex to be decomposed, by recursive specification mining and
subsequent program modularity detection, into a valid, that is, non-partial functional hierarchy
able to computationally explain the system.

When this form of antimodular emergence shows up, the system, even if it is actually modular,
cannot be described as modular, and thus it is only explainable at its lowest level. In the
case of a CA, this would be the cell level. But, as we have seen in the example above, this
would probably not constitute an intelligible form of explanation. When the system showing
antimodular emergence is an actual program, written in a known programming language, then it
can be represented under the form of the ordered listing of the programming language instructions
constituting it, but this list cannot be sensibly decomposed into modules in order to better explain
it in a more intelligible way.

Maybe the most notable consequence that a form of antimodular emergence afflicting compu-
tational explanation can be expected to have, is upon the possibility of explanation of certain
cognitive phenomena, both in cognitive science and in neurosciences. This could well be the
object of further study.

14.6 Explanatory emergence

Given that lack of understanding due to the presence of antimodularity in a system can seemingly
affect most kind of explanations, I propose the following definition:

explanatory emergence is a property of systems or descriptions of them that consists in
the fact that, for absolute or pragmatic computational reasons, they resist understandable
explanations.

This definition is much more general than that of antimodularity, and, in it, the term compu-
tational can be understood in a very wide sense, including procedures which, although not per-
formed by computational machines, are performed by following “algorithmic” methods, where
algorithmic is to be understood, in a loose sense, as a more or less precisely defined method which
has to be executed with an acceptable degree of rigor.

This is still a sketched definition, but the main idea behind it is to capture difficulties in explaining
complex phenomena not necessarily due to impediments to modularity detection, nor necessarily
to lack of modularity alone, but due to any automatic or manual procedure, whose product is
a representation supposed to be essential for the scientific explanation of some phenomenon,
which requires too much time to be feasibly brought to an end, or which, while susceptible to be
completed in a reasonable time, produces nevertheless too approximate results to be of use for
scientific explanation.

326 Chapter 14. Consequences of antimodularity on explanation

Such a broad definition would cover, for example, cases like the identification, by experimental
observation, of the detailed mechanisms of some complex phenomena, such as the reconstruction
of gene regulatory networks, or of the functional organization of nervous systems, which can
require long and tedious series of piecemeal experimental observations, often conducted in the
course of decades. Of course, this definition covers also all cases of antimodular emergence, and
other computational methods in general, such as methods of data mining, which can be necessary
in certain research areas, like genetics or cell biology, to extract, (to mine) valuable information
(not only modular structure) from huge datasets which have already been collected and are
already available.

Chapter 15

Are there antimodular systems in
science?

Antimodularity appears to depend on the choice of a relation between the elementary parts of a
system, a relation which is used to assess the system’s modularity1. When assessing modularity by
means of an algorithm for modularity detection, antimodularity can occur in two cases: (i) when,
given this chosen relation, modularity detection according to it turns out to be too computational
demanding to be brought to completion in a feasible time, or (ii) when, although modularity
detection is successfully completed by means of an approximate algorithm, the produced modular
description appears too approximate to be capable of validly representing the original system.

A brief parenthesis must be opened here: it might seem that the two cases above forget to take
into consideration the third possibility of intrinsic antimodularity. Actually, this is not the case:
let’s say we know that a system is intrinsically antimodular. How can this antimodularity show
up, when performing modularity detection on the system? There are two possibilities: a) the
system is too large for the algorithm to complete the detection in a feasible time, and we stop
the algorithm before it ends its task, or we even renounce launching it, for we know, based on
the system’s size, that it would take too long; b) the algorithm comes to a natural stop in a
reasonable time, but it produces a modular structure which is not valid, in terms of dynamical
tracking of the original system. Now, the intrinsic antimodularity of the system could show up
in either of these cases: in the first implicitly, in the second through the fact that the algorithm
has not been able to find a sufficiently valid modular redescription of the system. Given that we
know that the system is intrinsically antimodular, we can attribute the algorithm inability to the
presence of intrinsic antimodularity: being devoid of modularity, it is normal that the algorithm
has failed in finding a minimally valid modular description.

Now, it seems to me, we must evaluate the likelihood that circumstances such as the one ex-
pressed above (i and ii) can be encountered during scientific research. It must be stressed that
computational complexity of modularity detection concerns algorithms for detection of modular-
ity which do not employ any other information about the systems than those included in their
preferred description, that is, the level of their elementary parts and their relations. By adding
constraints on how the elementary parts can be grouped into modules, the task can be highly
simplified. This is equivalent to devising ad hoc algorithms for modularity detection, and ad
hoc algorithms could turn out being less computationally demanding than generic ones. For
example, as already highlighted in section 1.1.5, in the case of the search for modularity in a

1 I am talking of system here, but I am of course actually talking of its preferred description.

327

328 Chapter 15. Are there antimodular systems in science?

genetic network, the added information about groups of genes which always co-express could
ease the task of grouping genes into modules. Upon brief reflection, it seems this is exactly what
science does: it searches for empirical constraints to help us choose among the possible theories
of the world, which, per se, if unconstrained, are unbounded in number. It is then likely, it
seems, that scientific research produces modular descriptions of the empirical phenomena which
it observes. Or at least it has until now proceeded this way. Could new developments in science
make research focus on systems of such a complexity that even the known, empirically found
constraints about them end up being too few to allow the successful completion of modularity
detection on such systems?

Let’s see: if these are biological systems, there are interesting arguments which aim to prove that
evolution must have produced modular systems, as explained in section 7.1. If these arguments
hold, I think intrinsic antimodularity can be considered quite unlikely in biology. But, I also
think that while Kauffman’s argument and similar ones appear convincing2, it seems to me that
arguments based on natural selection3 are weaker, because the role of natural selection in shaping
organisms, and so in shaping something so clear-cut as modular structures, has been in the last
decades seriously questioned (it’ s a long-standing debate into which I do not want here to explic-
itly take side). Nevertheless, most biological systems appear, to a close inspection, undisputably
modular. The brain itself is very different from a mere bunch of interconnected neurons, and
possesses a clear modular and functional organization, with clearly distinguishable parts, segre-
gated connections between them, preservation of mapping between modules, and other evident
features revealing a high degree of modularity. The cell also appears highly modular, but here
modularity of certain complex networks of interacting elements is certainly less evident, and, as
we have seen when considering some case studies, it is now normal to recur to computational
methods for detecting modularity in such systems, for example in the genetic regulatory network.
Systems of this kind are the preferred object of a recent biological discipline, systems biology. I
suspect that this discipline could soon focus its research on systems of such a complexity that
the algorithm for their modularity detection could fail, due to the computational complexity of
the required task. There are signs of this: certain studies explicitly admit that the size of the
system, upon which modularity detection has been tested, had to be of limited size, because
otherwise the algorithm would have taken too much time. For example, Sales-Pardo et al. (2007)
acknowledge:

The computational cost of this step, the slowest one in our algorithm, limits network sizes
to ∼ 10, 000 nodes. However, the cost can be reduced by using faster, but less accurate,
methods for ordering the matrix, such as principal component analysis4.

Here we see the trade-off between accuracy of modularity detection and its cost. These are
already cases of antimodularity at work.

Another type of scientific endeavor in which, it seems to me, antimodular emergence or explana-
tory emergence is around the corner, is in data mining of the already existing scientific literature5:
this is a type of meta-research which, due to the sheer size of the data to process, could well be
affected by antimodular emergence, or in general, explanatory emergence.

To give a provisional conclusion, there are signs that antimodular emergence, and in general
explanatory emergence, are around the corner in certain scientific fields. And there is the risk

2 See section 7.1.2.
3 Section 7.1.4.
4 Sales-Pardo et al. (2007), p. 15227.
5 See an example of this kind of research in section 1.5.2.

329

that, once appeared, they can be there to stay. This phenomena could well hurt scientific
research, but are at the same time the sign that science has recently expanded, with the aid of
powerful computational methods, into new territories: the fact that these same methods begin
to show intrinsic limitations in their power is the consequence of the expansion of the scope
of science that they have allowed to begin with. Further theoretical and empirical research is
needed to confirm or reject the hypothesis that these forms of computational emergence can
damage scientific research: algorithms are continually improved, devising ways to circumvent, at
least partially, computational intractability. But intractability results are absolutely objective
limitations and it cannot be envisioned any way to definitely escape them.

Final Remarks

331

Chapter 16

Summing up

Before bringing this work to an end, I think a summing up is due of all the long line of inquiry
and reasoning which structures it: the scope covered has been vast, and quite certainly too vast
to have been covered adequately. A brief rehearsal of the path followed could certainly better
outline the main ideas that I intended to convey.

In this work, I was mainly concerned with the notion of hierarchical modularity in complex sys-
tems, its algorithmic detection and its use in explaining structure and dynamical behavior of such
systems, an explanation provided by means of hierarchical modular representations. Specifically,
I highlighted the pragmatic influence of hierarchical modularity on the possibility of scientific
explanation of complex systems. Inside a proposed epistemic stance toward explanation and de-
scriptions, I consider a system what, according to a chosen basic description, can be considered
as composed of elementary, discrete, interrelated parts.

I applied the notions of modularity and explanation mainly to descriptions, that is, theoretical
models of empirical systems, leaving aside for the moment the thorny question of the relationship
between an empirical system and its theoretical model. In my view, which regards scientific
explanation as an epistemic matter, which involves human understanding and communication,
descriptions are chosen by the researcher according to her explanatory aims and purposes: this
highlights a pragmatic aspect which in my opinion is constantly present in scientific explanation.

Modularity, a well known notion since his first conceptualization by Herbert Simon in the 1960s,
basically manifests itself as the possibility of decomposing the system into recognizable, suffi-
ciently defined and persistent subsystems (the modules) each one composed of parts which are
more strongly related to each other than to parts belonging to other modules. Hierarchical mod-
ularity manifests as the possibility of describing a system as a full hierarchy of levels, each level
composed of loosely interrelated modules, and each module in turn possibly decomposable into
sub-modules belonging to the lower level.

Algorithmic detection of hierarchical modularity has turned out being plagued by an in prin-
ciple computational intractability (NP-completeness) affecting the search for the best possible
hierarchical description of a system, and in any case by a quite high computational cost of the
known approximate algorithms, circumstances which hinder the applicability of techniques of
modularity detection to systems exceeding a certain size.

I proposed the notion of antimodularity, which consists in the lack of a feasible or reliable
hierarchical modular description, a lack due either to absence of modularity in the system’s
basic description, or to the impossibility, due to the size of the system under assessment and the

333

334 Chapter 16. Summing up

computational cost of algorithmic methods, to algorithmically obtain a hierarchical automatic
modular description which fits the needs of the observer.

It must be stressed that both modularity and antimodularity are relative to the choice, on the
part of the observer, of a particular description of the system: varying the basic description of
the system, its modular structure can consequently vary.

I also showed that antimodularity, in systems complex enough, entails a form of so-called compu-
tational emergence, namely Mark Bedau’s weak emergence, which amounts to the impossibility of
predicting the outcome of a complex system’s dynamics without resorting to the slowest, lowest
level simulation of the system.

I assessed the consequence of antimodularity on four models of scientific explanation, namely
mechanistic explanation in the epistemic sense of William Bechtel and Cory D. Wright, the
classic Hempel-Oppenheim deductive-nomologic model, the computational explanation typically
employed in cognitive psychology, and a so-called topological type of explanation, recently pro-
posed by Philippe Huneman. I concluded that antimodularity, by impeding the obtainment of
a full hierarchical description, negates the possibility of multi-level explanation, thus damaging
understandability of the explanation by allowing only for description of the system at the lowest
level, the level of elementary parts, a description which, in sufficiently wide systems, can result
unintelligible because of the sheer number of interrelated parts which it describes.

As a consequence, antimodularity mostly damages mechanistic and computational explanations,
which rely on multiple interrelated levels of descriptions and require intelligibility. By entailing
weak emergence, antimodularity impedes deductive-nomological explanations, which rely instead
on the availability of a law allowing for prediction of the system. Nevertheless, some antimodular,
weakly emergent complex systems, such as cellular automata, which possess a law-like rule hold-
ing everywhere inside the system, could be explained by a sort of reiterated deductive-nomological
explanation, which, quite likely, would lack understandability due to the high number of virtually
meaningless reiterations of the law-like rule constituting it. Topological explanation, on the other
hand, seems to be immune from consequences of antimodularity, which, being a topological kind
of property itself, should even in certain cases enable this kind of explanation.

I subsumed under the concept of explanatory emergence all the results about the unfeasibility of
certain multilevel explanations due to antimodular emergence, and on the consequent fading of
understandability due to occurrence of antimodularity.

It must be stressed that hierarchical and high-level modularity is needed not only for a posteriori
explanation of a known phenomenon, but also during the phase of scientific discovery, specifically,
as already noted by James Woodward, during the search for casual relationships between parts
of a mechanism either at low and and at a higher level, and in general in planning and guiding
ongoing research towards the most useful scopes. Likewise, multilevel modular explanation is
also essential during the development of computer programs on the part of human programmers.
Modularity in networks has also showed being potentially of great aid in guiding the progressive
discovery of the structure of very large networks, like networks (genetic, metabolic, proteic) of
crescent biological importance and at the focus of attention of systems biology.

After having assessed the possible consequences of antimodularity on some sciences, I discuss,
by examining some scientific literature, the likelihood for scientific research to incur antimodular
emergence, concluding that it is quite likely that some cases of antimodularity appear, especially
in systems biology.

335

The above summarizes the main line of reasoning I wanted to follow, as it has been unfolded
in the former chapters. This constitutes the main scope of the present work, which is mainly a
work of philosophy of science.

However, I think it is worth mentioning here some preliminar, or, better, experimental reflections
I put forth at the end of chapter 1, which, albeit probably a little hasty, manifest I think a great
potential of further, refined, future development.

First, I sketch, without entering full discussion, a possible metaphysical view that could stem
form the considerations of antimodularity exposed before: I call this view constrained antirealism.
It sees the empirical world we naturally perceive, as well as the world described by science, as
the result of a process of modularity detection, whose detected modules constitute what are
commonly known as natural kinds. The main point is this: given that modularity detection
is constrained by factors of insurmountable computational complexity, and that for this reason
the finding of the best modular description is in principle precluded, it seems not likely that
the world’s actual subdivision in natural kinds could correspond to is best possible subdivision.
I briefly debate also an evolutionary objection based on adaptation of perceptual systems as
warranting natural kinds: I claim that neither science nor natural selection could have had the
time, even on the geological scale, to produce an optimal ontology of the world, because this task
is in principle computationally intractable.

From a more metaphysical point of view, we could produce other considerations. In the course
of the analysis I carried out here, modularity has turned out to be an almost all-encompassing
notion: the very idea of modules has revealed to be universal, at least in most human epistemic
activities: it is very difficult to perceive, to communicate, to understand and gain knowledge
without making use of modular models of the real phenomena we are talking about. For its
universality and its main features (those of being in a certain degree delimited, distinct, partially
isolated from the context, and at the same time related with other modules), it is possible
that the idea of module conflates in many ways with that of object. In this case, modularity,
probably, can be seen as conflating with ontology. But, I would refrain from such a facile
identification, if only for the reason that doing metaphysics has always seemed to me a rather
risky business. My personal inclination goes towards, if not a radically antimetaphysical position,
a light metaphysical stance. In this view, I tried to propose in section 1.5.1 a vision which, instead
of reducing modularity to ontology, tries to reduce ontology to modularity detection an to its
limits: this way, a heavily ontological question seems to be relieved of its weight and brought in a
more epistemological terrain. As said, this is only a roughly sketched position: it defers a serious
discussion of epistemological (or, rather, ontological) constraints on our possible perception and
detection of modularity to other ongoing debates, such as those on the nature of mathematical
facts and that on pancomputationalism. It may well be that such a move is a bad one, that
renders my position well more heavy than it seems. As said, all these questions will have to be
pondered in another occasion.

Metaphysical considerations aside, in section 1.5.2, I took some liberty in drawing the possible,
alleged consequences on history of science of a recent and growing recourse to computational
methods in scientific research, starting with the simulation of complex systems: I reflected on
the plausibility of simulations as explanations, especially in cases in which the system is anti-
modular, and, consequently, simulation can be executed, but the underlying dynamical model is
unintelligible, because, due to antimodularity, the system must be simulated at the lowest possi-
ble level for lack of a modular high-level redescription. I then considered automated modularity
detection used in order to find structure in big datasets, basing the discussion on real cases of
data mining on a corpus of medico-biological literature, in which the automated system discov-

336 Chapter 16. Summing up

ered important functional relations which had escaped human examination. Possibly indulging
in drawing some bold consequence, I concluded by suggesting that this growing use of computa-
tional methods in science could have already provoked, or can well be on the verge of provoking a
major shift in certain disciplines: especially in some fields, related to biology, new techniques for
automatic collection of data have started to produce huge databases of experimental data which
are badly in need of being scrutinized in search of an interesting macrostructure (mainly modular
macrostructure), which does not show up by itself, given the sheer amount of records involved.
Computer and programs can come to the aid, operating a sort of “Baconian” method, and while
this could open a host of unforeseen and exciting discoveries, I suspect it could also come with
some side effect: such a partially automated science could soon involve a problem of at least par-
tial loss of intelligibility with respect to the human observer, unintelligibility affecting both the
theoretical explanation so obtained, and, given the role of theories and models in guiding further
experimentation, the path which that research could begin to follow, which is a path which could
even begin to appear to us progressively obscure. While I think it is still early to see the shape of
things to come, it seems to me that the mere envisioning of this change in scientific research as
happening, constitutes a novel, unprecedented, and potentially game-changing situation which
philosophy of science and history of science should not forget to point their attention on.

The subject matter of this work is multifaceted and not easy to label: being about the conse-
quences of antimodularity on possible scientific explanations of certain systems, it is a work of
philosophy of science. Given that the proposed property, antimodularity, depends on certain
computational constraints affecting modularity detection, and that I recommend, in relation
with the discussion on computational explanation, an intentional conception of what computa-
tion is, then this is a work of philosophy of computing, in the double sense of putting certain
computational notions to philosophical use, and of proposing a philosophical reflection on the
notion of computation itself. Considered that systems showing antimodularity are likely to be
found amongst biological systems, the long-standing discussion in biology about modularity, and
a host of examples I report from that discipline, it is in a way even a work of philosophy of
biology. Finally, it doesn’t refrain to draw some metaphysical and historical conclusions from
the discussed notions and their consequences, consequences in which computing and computers
play a role of ever increasing importance.

Appendix

337

Preamble

In the first chapter of this Appendix, section 17, I will try to give a concise characterization of
some basic classic concepts and questions which make up the subject of Computer Science (CS).
A basic knowledge of this subject is required, to allow a better comprehension of the arguments in
the former theoretical philosophical chapters. I have tried to conform to standard terminology,
so the reader who is already well acquainted with the subject matter can safely ignore this
appendix. I am going to pass over many subtleties and fundamental mathematical results which
do not concern us here, trying to give an essential but precise enough account. Should the
reader find this exposition lacking in clarity or incomplete, my suggestion is to consult one of the
many good introductory graduate-level books to the field of computation theory or theoretical
computer science1.

The second chapter, section 18, is a substantial overview of the contents of the thesis for readers
of French, basically equivalent to chapter 1.

The third chapter, section 19, is an analogous overview of the contents of the thesis for readers
of Italian.

1 For example Sipser (2012), or Lewis & Papadimitriou (1998), which I’m partly following. For the part on
computational complexity, also Garey & Johnson (1979), Bovet, Crescenzi, & Bovet (1994), and Arora & Barak
(2009).

339

Chapter 17

Computer science basics

17.1 General notions

A state is the particular condition in which a machine is in, at any given moment.

An alphabet is a finite set of symbols1.

A string is a finite sequence of symbols taken from a given alphabet.

A language is a set of strings.

An abstract machine is a theoretical (often formal) model of a a computing machine, used in
mathematical arguments on the limits and possibilities of computation. Starting as a represen-
tation of a material mechanism, such a model neglects any physical limitation of the device, to
present the core mechanism in an idealized way, free of time, space and other physical limitations.
The paradigmatic example of an abstract machine is the so-called Turing machine, as presented
by Alan Turing (1936), which I am going to explain later in the chapter.

Historically, the theory of computation begins with the aforementioned work by Turing, in which
the author proposed an abstract machine model2, while outlining a mathematical theory of the
computational capacity of this machine along with a theory of the limits of its computational
ability. This work set up the theoretical framework in which much of the subsequent work
in the field would have been carried on: a framework in which much importance is placed
upon the demonstration of the computational ability of a class of machines, but equally upon
demonstrations of its computational limits. I will dedicate some brief paragraphs in this chapter
to some different types of machines classified by computer scientists3.

17.2 Automata theory

17.2.1 Finite automata
A Finite Automaton (FA) is an abstract machine with a finite set of states, a finite set of possible
input symbols (the input alphabet), and a transition table. The state the machine is currently

1 I’m not analyzing in this section the notion of symbol. Some reflection on the nature of symbols is carried
out in section 5.1.2.

2 this abstract machine, the Turing machine, is to receive due treatment later in the chapter.
3 I will not treat here many type of abstract machines, the knowledge of which is not necessary for the rest of

the dissertation. For example, I will skip over nondeterministic deterministic pushdown automata, for the reason
that their exposition is not necessary here.

341

342 Chapter 17. Computer science basics

in, is called the current state. If certain conditions hold (basically, activation of some input),
the machine can switch from the current state to one of the available states (the next state),
according to the instructions contained in the transition table, which pairs current states with
possible inputs, dictating which next state the machine will enter. There are two special states:
the initial state and the final (or accept) state.

During the machine’s functioning, a finite sequence of symbols taken from the input alphabet is
presented to it. When the input sequence is completed, if the machine turns out to be in the
final state, it is said that it accepts its input, otherwise that it does not accept it. Every specific
different machine characterizes the strings of symbols which it accepts. As we have seen, in CS
terminology, a series of finite strings of symbols is called a language. The set of strings of the
input alphabet accepted by a specific machine is called the recognized language of that machine.
A specific automaton recognizes only one language.

A FA can typically be described by a state diagram, like the one in fig. 17.1.

Figure 17.1: state-diagram of a finite automaton.

The machine represented in this diagram can be fed with finite input strings from the alphabet
{0,1}. The diagram can be read as follows: the machine starts in state S0 (the initial state). If
it receives a 1, it switches to state S1 (arrow labeled with “1”). If it receives 0, it switches to
state S0 (arrow labeled with “0”, pointing to S0 itself: in this case, the machine remains in state
S0). And so on for other states and inputs. The state S1, drawn as a circle with a double border,
represents the final state. It turns out that this particular machine accepts strings ending with 1
or with an even number of 0 ’s, for only in these cases it ends up resting on the S1 state after the
input sequence is over (if it received an odd number of 0 ’s it would rest on S2 instead, which is
not an accept state). In other words, the machine accepts the language constituted by the finite
strings composed by “1”or “0” symbols and comprising an even number of 0 ’s or ending with 1.

As typical in the theory of computing, a special importance is placed upon the class of compu-
tations that a FA can perform. This is equivalent to inquiring on which languages the class of
FAs can accept. FAs can accept a class of languages which are called regular languages. These
are quite simple languages, and many obvious strings do not belong to them. For example, a
language Ld containing strings of any length, each string composed by two same-length sequences
of two kinds of symbols (say, for example aaaabbbb, or 111111000000) is not a regular language,
in that there is no FA that can recognize it4. Intuitively, this limitation comes from the fact that,

4 I omit the proof here. See Sipser (2012), p. 80.

17.2. Automata theory 343

to accept a string of such a form, it must be checked if the substring composed of symbols of
the second type is of equal length to the substring composed of symbols of the first type. Since
the input is to be presented to the machine sequentially, this means that in order to perform
this check, the automaton must “count” the symbols of the first substring, store this number,
then count the symbols of the second substring, and compare this new number with the former,
accepting the string if they are equal. Given that no limitation in principle is placed on the total
length of the strings composing the language Ld, it turns out that the machine has to keep “in
memory” at least the first number, and given that this number can grow arbitrarily, and that
to keep a stable information inside the machine this has to be encoded in a machine state, this
means that this kind of language cannot be recognized by any automaton with a finite number
of states, thus not by any FA.

Intuitively, the set of languages recognized by a machine characterizes its computational capabil-
ity: in the case of FA, there are strings which it cannot recognize, however complex the structure
of the FSA can be conceived. But, as we will see, there are other, more capable kinds of machines,
which can recognize these languages. As we will see, there is a hierarchy of machines , called the
Chomsky hierarchy, in which the FAs are the least powerful ones.

An obvious variation on the FA model is a finite automaton with outputs. There are two classical
form of finite machines with outputs: Moore machines and Mealy machines. Their difference is
not relevant in this context. Suffice to say that they are finite automata in which a transition, in
addition to putting the automaton in a new state, produces one or more output symbols. The
difference with classic FAs resides in the fact that these automata, seen from an external point of
view, can produce an output before the input sequence is completed, acting this way as functions
that process the input string into one or more output strings. These finite machines with output
have the same exact computational capability of FAs, and, used as recognizers, will recognize
exactly the same languages.

17.2.2 Nondeterministic finite automata
The machines I described until now are deterministic, in the sense that, for each state the machine
is in, given a certain input symbol, the transition table dictates exactly one and only one state
(the next state) which the automaton is bound to switch to.

By contrast, in a Nondeterministic Finite Automaton (NFA), given a certain input, the transition
table can5 suggest more than one next state to which the automaton should switch. The state
diagram of a typical NFA is thus characterized by different arrows with the same symbol as label
starting from the same state and going to different next states. For example, see fig. 17.2.

To be able to execute its computation, when faced with two or more possible next states, the
automaton “splits” in two or more “copies” of itself, each of which will switch into one of the
different next states. This splitting occurs again whenever the transition table gives more than
one next state. This way the machine follows all the possibilities in parallel. The process can be
visualized as a ramified graph: fig. 17.3.

When the next presented symbol does not appear on any of the arrows exiting the state a copy
of the machine is in, then that copy “dies” along with its branch of the computation, while the
other copies go on processing. If any copy of the machine turns out to be in the accept state
after the last input symbol is given, the input string has been accepted.

5 NFAs are a generalization of FAs, so any FA is an NFA, in which the transition table happens to give only
one next state for each condition.

344 Chapter 17. Computer science basics

Figure 17.2: state-diagram of a nondeterministic finite automaton.

NFAs don’t show more computational power than simple FAs: they recognize the same languages,
the regular languages. This means that, for every NFA, there is an equivalent FA. But, the
structure of the NFA is simpler: the FA requires more states.

17.2.3 Probabilistic finite automata
Probabilistic finite automata (PFAs) are a generalization of NFAs, in which the transitions from
a state to another are associated with a probability (fig. 17.4).

17.2.4 Pushdown automata
A pushdown automaton (PA) is a nondeterministic finite state machine equipped with an unlim-
ited stack. The stack is a form of memory, in which only the element on top is visible. The
heap of elements stacked one on another is pushed down when a new element is added at the
top. Conversely, to access an element down along the stack, the topmost element must be re-
moved, making the next element come to light, an so on, till the wanted element emerges. This
implements a so-called Last In, First Out (LIFO) type of memory.

The automaton can, as possible actions triggered triggered by particular input and state config-
urations, add or remove an element from the top of the stack, and also begin actions according
to the visible element at the top. Fig. 17.5 is a typical schematization of a PA.

Pushdown automata can recognize a broader class of languages than regular languages: the
class of so-called context-free languages6, which is a proper superset of regular languages. Thus,
push-down automata are computationally more capable than FA and NFA. As we will see, the
class of context-free languages is not the more comprehensive class of languages, yet: there are
languages which the PAs cannot recognize. The limitations in computational ability for the PAs
derives from the fact that their memory, although unbounded, can be read only at the top, and
old items can be recovered from the stack only after having erased newer ones. This limitation
is absent in the most capable kind of computational machines, the Turing machines, which are
about to be explained in the next section.

17.2.5 Turing machines
From an historical point of view, in the mathematical community worldwide there had been, since
the late XIX century until about the end of the 1930’s, a wide and diversified debate about the

6 See section 17.2.10.

17.2. Automata theory 345

Figure 17.3: representation of the computational process of a NFA receiving the input string 010110.

346 Chapter 17. Computer science basics

Figure 17.4: state-diagram of a probabilistic finite automaton.

foundations of mathematics. In the context on this debate Alan Turing set out to try to respond
to an open question, the Entscheidungsproblem. Posed in 19287 by David Hilbert, one of the
most influential mathematicians of the time and probably the main agent of the then-underway
phase of the foundational debate, the Entscheidungsproblem (a German expression which stands
for problem of the decision) is the quest to devise a general mechanical procedure to detect if
a given statement expressed in the language of a formal system is or is not a theorem of that
system: that is, if the statement has or has not a derivation inside that formal system8. It seems
clear that the search for a solution to this problem requires as a necessary step the refining of an
intuitive notion such that of a mechanical method, or mechanical procedure or a task that can
be performed “by finitely many operations” (as in Hilbert & Ackermann 1928).

In his seminal 1936 paper9 Turing proposed an abstract machine model, in order to formally
define the notion of a computational task, a notion that, according to his analysis, ends up
corresponding to the kind of mechanical method required by the Entscheidungsproblem. As
mentioned above, in the words of Hilbert and in the expectations of the mathematical community
of the time, this idea of mechanical procedure had been until then evoked as an intuitive notion:
the notion of a task which can be carried on by a human subject following a finite list of simple
well-defined rules that do not require resorting to intuition or ingenuity. Thus, aiming at attaining
a more rigorous characterization of the concept of mechanical task, Turing proposed the abstract
model of a machine. This model, the so-called10, afterward, Turing Machine (TM henceforth),
is basically a finite state machine11, which in addition can read and write a symbol at a time on

7 In Hilbert & Ackermann (1928).
8 To be precise, the question posed by Hilbert is that of the existence of a general mechanical method to

demonstrate if a given formula expressed in the language of first-order logic (FOL) is or is not a logically valid
formula of FOL, that is, the problem concerns the truth of a formula. By the completeness theorem for FOL,
proved by Kurt Gödel (1930), it follows that the question is equivalent to asking for a method to detect if a FOL
formula has or has not a proof (i.e. a syntactical derivation) inside the FOL formal system. After that result, in
general the problem has been understood as the quest for this second syntactical formulation.

9 Turing (1936).
10 By Alonzo Church.
11 although coming last in this exposition, historically, the Turing machine comes first, as the first attempt to

17.2. Automata theory 347

Figure 17.5: schematic representation of a pushdown automaton.

348 Chapter 17. Computer science basics

an infinite linear access memory, usually represented as a tape, that is a linear row of cells, each
containing one symbol taken from a finite alphabet12. A typical Turing machine is sketched in
fig. 17.6.

Figure 17.6: schematic representation of a Turing machine.

To access the tape, which is usually considered devoid of symbols at the onset, the machine
is supplied with a read/write scanner/printer (the “head”) which can move along the tape one
step at a time, in either directions. The machine can assume a finite number of internal states,
according to a transition table, which determines, at each computational step, based on the
current state and current symbol on the tape under the head’s position, which action must the
machine undertake: that is, which symbol it is to write at the same tape position, and which
direction to move the head one step afterwards.

The transition table is formally constituted by a finite list of quintuples, each one so composed:

< Sta, Sym,Nsta,Nsym, Stepdir >

where Sta stands for the current state of the machine, Sym for the symbol on the tape cell under
the current head position, Nsta stands for the state which the machine is bound to assume next,
Nsym for the symbol it is bound to write on the tape at the current head position (overwriting
the former symbol), and where Stepdir, which can assume only two values, stands for which
direction the machine has to move one step along the tape after having accoplished the state
change and the writing of the new symbol.

The ordered couple <Sta, Sym > is called the configuration of the machine. The configuration
unequivocally determines the behavior of the machine at the current step of the computation.

formalize the concept of a calculating machine. The other classes of machines have been studied later by other
authors, in the endeavor of ascertaining the limits of different classes of possible machines.

12 for reasons of space and pertinence, I am giving here only a shallow exposition of the concept of Turing
machine and of the Church-Turing thesis. It is up to the reader, with the help of a myriad of sources, to proceed
in case to a deeper analysis of these questions, which, as a matter of common knowledge, are among the deepest
of modern philosophical, mathematical and scientific thought.

17.2. Automata theory 349

The machine halts, as a matter of convention, when it reaches a particular state designated as
the end state, or alternatively when there is no entry in the transition table corresponding to the
actual configuration.

A specific transition table characterizes a specific TM: there are as many TMs as possible transi-
tion tables, and in fact the two terms are usually taken to be interchangeable. This means that
there are countably infinite TMs.

As it happens, in his fundamental paper Turing devised a method to encode the transition table
of a TM into a string of symbols on the tape. This encoding constitutes the description of a
Turing machine. It usually consists in a (possibly very large) integer number. He was also able to
present the transition table of a specific machine, which is called the Universal Turing Machine
(UTM), which can simulate any other machine whose description it gets as input on the tape,
followed by the actual data on which the simulated machine is supposed to act on. To be able to
simulate a machine means to execute exactly the same sequence of operations on the tape that
that machine is supposed to execute. Thus, the UTM ends up being the only TM really needed
for, in that it can simulate any other machine, that is it can implement any algorithm.

It’s is evident that a major innovation in TMs is the presence of a bidirectional read-write
memory. This allows for some computation which is outside the reach of more constrained
machines, such as the NFAs. Employed as language recognizers, TMs can recognize a proper
superset of context-free languages: the class of Turing-recognizable languages. This is the most
comprehensive class of language that can be recognized by a machine13. Nevertheless, there are
limits to the computational capabilities of Turing machines, as we will soon see.

17.2.6 The halting problem and the Entscheidungsproblem
It turns out, and the proof is in the aforementioned paper by Turing, that the Entscheidungsprob-
lem has an answer, and this answer is in the negative. To come to this conclusion, Turing had
to set the stage by demonstrating three auxiliary theorems. The first one refers to a special
property of Turing machines: it can happen that a machine, during its computations, never
reaches an end state (or, equivalently, a configuration not specified in its transition table) so it
never comes to a halt. The problem of determining if this is bound to happen, is known as the
halting problem.

One of the theorems in Turing’s paper is an indirect14 proof that the answer to this question is
negative: it is not possible to determine for all cases if a Turing machine is going to ever come to
a stop: it can in general not be determined if this is bound to happen or not. Thus, the Turing
machine shows the highest computational ability, but it is affected by a fundamental limitation
itself.

More formally, the problem can be so stated: it is the request to find a general computable
procedure to determine if any arbitrarily selected TM comes to a halt, given: a) the specification
(the transition table) of that TM, and b) an arbitrarily selected input for that TM. I stressed
the word “general”, to highlight the fact that the theorem does not state that it is impossible

13 This is true only if the Church-Turing thesis holds. For a discussion of the thesis, see section 17.3.
14 Actually, the theorem proved by Turing (in section 8 of the paper) is about the impossibility of finding a

mechanical procedure to discriminate, using their description, between TMs that write a finite number of certain
symbols on the tape (called by Turing, with a somewhat curios terminology, “circular machines”, and TMs that
go on forever printings symbols of a certain type on the tape (called “circle-free machines”). He also proves a
second theorem which states that there’s no algorithm to decide, given a a TM’s ’description, if the machine, will
ever print a “0” on the tape. Neither of these arguments proofs the halting problem directly (which, by the way,
was named “halting problem” later, by Davis. See Copeland 2004, p. 40, n. 61), but they entail it.

350 Chapter 17. Computer science basics

to contrive an ad hoc method able to predict, based on its transition table, if a specific, given
machine halts on a specific, given input: the theorem states that it does not exist a general,
systematic, fixed computational method which is always applicable without ad hoc modifications,
which is able, based on examination of the transition table of a given machine however chosen
and the combined examination of a given input however chosen, to ascertain if that machine will
ever come to a halt when provided with that input. The word “computable” means executable
by a Turing machine.

In synthesis, the theorem states that there isn’t any single, fixed Turing machine capable of
predicting if any however chosen Turing machine will come to an halt on any however chosen
input.

Towards the end of the paper, Turing also proved that a logical consequence of the former the-
orem is that the Entscheidungsproblem gets a negative response as well: there is not a general
effective mechanical method to know in advance, without having to produce a proof, if a certain
mathematical statement is provable or not. This result put an end to a long quest in the founda-
tions of mathematics, but it opened at the same time a new field of logico-mathematical research.
Even though Turing has arguably not been the first to give an answer to the Entscheidungsprob-
lem15, his work is the one which opened two whole new paradigms: the theory of computation
and its application, information technology16.

17.2.7 Nondeterministic Turing machines

As in the nondeterministic finite automata (see section), in a nondeterministic Turing machine
(NTM), the table of transitions can provide more than one next state for each couple. Accordingly,
the machine splits in more than one copy to proceed with a parallel computation. The machine
halts if every branch of the spawned tree has halted, or as soon as an accept state is reached.

NTMs don’t possess higher computational capability than deterministic TMs: for every NTS
there is an equivalent TM. There is nevertheless a difference between a NTM and the corre-
sponding TM: the first can execute certain types of computations more quickly than the second.
This intorduces the subject of computational complexity, which is to be treated later in this
chapter.

17.2.8 Linear bounded automata

We have seen that a Turing machine has a potentially infinite memory (the tape) available. But,
of course, actual physical machines can make use not of an infinite, but only of a large, possibly
very large amount of memory. A nondeterminstic TM with a finite amount of memory is a
Linear Bounded Automaton (LBA). It can recognize a proper subset of the Turing-recognizable
languages, the so-called context-sensitive languages. This class is a proper superset of context-free
languages.

15 A couple of papers by the American logician Alonzo Church, which a few months later was to be Turing’s
PhD tutor at Princeton, actually predate Turing’s work on the unsolvability of the Entscheidungsproblem: Church
(1936a) and Church (1936b). In the section about the “Church-Turing” thesis I will give some hints about the
relationship between Church’s and Turing’s work. See also Copeland (2004).

16 The influence of Turing’s seminal work on the birth of information technology is disputed. According to
some, his influence begins only in the ’50s. ’See for example Daylight (2012) and Daylight (2013) and Haigh
(2013).

17.2. Automata theory 351

17.2.9 The Chomsky hierarchy

We have seen that ability to recognize larger and larger sets of languages means a progressively
higher computational capacity of the recognizing machine. This hints at a hierarchy of expressive
power of languages and correspondent computational capability of machines. Such a hierarchy
has been brought forth by Noam Chomsky (1956) in a seminal paper which has founded a branch
of theoretical linguistics, in which he proposes the formalization of the notion of grammar of a
language. In this context, the term grammar refers, of course, to a formal concept. I will delve
a little into the subject in section 17.2.10. Suffice to say here that a grammar is an abstract
device that generates languages. So, for each type of grammar, a different class of languages
is generated. And, as we now, every class of languages has some abstract machine that can
recognize it. The Chomsky hierarchy is depicted in fig. 17.7 in the form of a Venn diagram.

Figure 17.7: the Chomsky hierarchy.

352 Chapter 17. Computer science basics

The Chomsky hierarchy has been integrated by the successive discovery of some more machine
types with intermediate computational capabilities with respect to the classes appearing in the
original hierarchy. A more complete hierarchy is shown in fig. 17.817.

Figure 17.8: an extended Chomsky hierarchy.

The notable thing in this hierarchy is the presence of two top tiers: recursively enumerable
languages and recursive languages. Recursive languages are those that are decidable by a TM
that always halts, a machine also called a decider. The name derives from the fact that this
machine can decide if a given string belongs to a recursive language or not, that is, it is going to
halt and give an answer whether the string belongs to the language, or not. There is, moreover, a

17 There are more possible hierarchies: a number of machines and languages with intermediate computational
ability, with which we are not concerned here, have been demonstrated in the literature.

17.2. Automata theory 353

superclass of the recursive languages, which is the class of those languages for strings of which a
TM can only guarantee to halt and give a (positive) answer only in case the string does belong to
that language, otherwise the machine never halts. Since it never halts, but we cannot determine,
as an effect of the halting problem if it will actually ever halt, this lack of a response in the case
of a non-halting machine does not constitute a definite negative answer, so we cannot say that
the machine decides, but only that it recognizes a language. Due to the same halting problem
consequences, there is no general effective method to distinguish the class of always terminating
machines from the class of all TMs, so the distinction drawn in this hierarchy is not easily
applicable.

17.2.10 Grammars
We have seen the automata described above18 as language recognizers: given a string in input, the
automaton accepts or refuses such string. Strings which are elements of the language recognized
by the automaton are accepted, the other refused19. But, given a specific language, that is, a
set of strings which is recognized by an automaton, how could the strings of this language be
produced?

Languages are produced by formal structure called grammars.

Informally, grammars are devices for producing, given a “start” signal, and an internal starting
string, an output string through progressive string construction steps which are not determined,
but nevertheless are constrained by certain rules. These rules, called production rules, can be
seen as rules of string rewriting, where a string can be obtained by starting from another string
and substituting parts of it with other strings. An example rule:

V → exV

In the above expression, V is a placeholder (a variable) for any string. Thus, the rule above is a
rule for substituting the string corresponding to the variable V with the string exV . In the case
V stood for “ample”, the resulting string would be “example”.

When the process (the derivation) comes to a halt20, the constructed string is supplied as output.
Such a string belongs to the language that is characterized by that certain grammar. By repeated
application of this process, a grammar can generate all the strings belonging to a certain language,
and only them.

17.2.10.1 Context-free grammars

Context-free languages, which are recognized by PAs21 are generated by context-free grammars.
Here is an example of a context-free grammar (let’s call this grammar G):

V = {S, a, b}

18 Section 17.2.
19 Of course, in the case of TMs testing if a string belongs to a recursively enumerable language, the machine

can in some cases simply not halt, without explicitly refusing the string.
20 The process halts, because a grammar always defines a set of terminal symbols, that is, symbols which do

not appear on the left side of any production rule, but appear on the right side of some rule: when the string
under processing ends up being composed by terminal symbols only, the process cannot apply any rule, and halts.

21 See section 17.2.4.

354 Chapter 17. Computer science basics

Σ = {a, b}

R = {S → aSb, S → ”}

where V is the alphabet, that is, the set of possible symbols, Σ is the set of terminal symbols,
and R is the set of production rules. The symbol ” on the right side of the second production
rule stands for the empty string.

A possible derivation in G is:

S ⇒ aSb⇒ aaSbb⇒ aabb

A context-free language is so called, because the production rules of its grammar allow for substi-
tuting with other strings certain substrings embedded inside a string, without taking into account
the remaining content of the main string that surrounds them. For example, a rule like:

A→ aA

can be applied indifferently to the string abcAAdef or to ghiAAjkl, resulting in

abcaAaAdef

and

ghiaAAjkl

respectively: the two different contexts abcA[...]def and ghi[...]Ajkl are not taken into account
when evaluating the applicability of the rule, and make no difference in the results of its appli-
cation.

17.2.10.2 Relationships between the expressive power of grammars

Besides regular and context-free languages, there are other classes of languages which are more
difficult to recognize. Correspondingly, they require other types of grammars. The following
equivalences between the generative power of grammars and the recognition power of automata
hold22:

• Regular languages, which are recognized by FAs, can be seen as generated by the so-called
regular grammars.
• Context-free languages, which can be recognized by PAs, are generated by context-free
grammars.
• Context-sensitive languages, which can be recognized by LBAs, are generated by context-
sensitive grammars.

22 See also fig. 17.7.

17.3. The Church-Turing thesis 355

• Recursively enumerable languages, which can be recognized by TMs, are generated by
unrestricted grammars.

The scale of grammatical power outlined above is a hierarchy: that is, every grammar type is
properly included in the more powerful one. So, regular grammars are also context-free grammars,
which in turn are also context-sensitive ones, which in turn are also unrestricted grammars.

For example, the context-free grammar

V = {S,M,A,B}, Σ = {a, b} and R = {S → aMb,M → A,M → B,A → aA,B → bB,A →
”, A→ ”}

generates the language constituted by the strings of the form aMb, where M is a string of a’s
or a string of b’s. This is a regular language, and as such can be recognized by a FA. But, it is
easy to see that the grammar G in the example above generates the language composed of all
possible strings consisting in a sequence of n a’s, followed by a sequence of n b’s. As it happens,
this language is a proper context-free language: it is not regular, for it cannot be recognized by
a FA, but requires a PA as a recognizer.

17.3 The Church-Turing thesis

As hinted above, not only Turing, but other mathematicians had undertaken the search for a
solution do the Entscheidungsproblem, and more than one came to the conclusion of its unsolv-
ability. In doing so, more than a formal model of computation has been conceived. The first
one to come up with such a model was Alonzo Church in 1936, a few months before Turing’s
solution. Other solutions to the halting problem came later. A remarkable fact, though, is that
all such solutions have been proved to be mathematically equivalent: Turing himself proved, in
the appendix of his 1936 paper, that his definition of computable functions is mathematically
equivalent to Church’s one, the so-called lambda calculus. So, it appears that all attempts under-
taken till now to formally characterize the intuitive notion of mechanical or effective procedures
have ended up identifying the same set of functions, the computable ones (called also recursive
functions). This gives support to the idea that the informal notion of mechanical method has
indeed been captured by the known formal models of computation, for otherwise it would be
expected that one of its formal characterization could result non-equivalent to the others, being
more comprehensive.

The proved equivalence between all the formal models of computation means also that all of
them have the same basic limitations: they cannot solve problems that the Turing machine
cannot solve (such as the halting problem). Any system with the same capabilities of the Turing
machine is said to be Turing-complete, and Turing completeness characterizes the notion of
Turing-computability. So, all formal models of computation have been shown to be equivalent,
and characterize the same concept of computability: no model of computation which models the
notion of mechanical procedure is able to solve the halting problem and other uncomputable
problems.

This equivalence is the basic idea behind the so-called Church-Turing thesis (CTT henceforth).
Simply stated, the Church-Turing thesis is the statement that the set of all possible mechanical
procedures coincides with the set of possible computations effected by a Turing machine.

356 Chapter 17. Computer science basics

As appears from what we’ve seen before, this thesis has not been proven in a formal sense, nor it
is provable, for it amounts to a statement which equates an informal notion with a formal one23.
Nevertheless, the thesis is almost universally accepted, and in the rest of this dissertation I will
implicitly assume that it holds. I won’t go here into a detailed analysis of the thesis, around
which a heated debate has coalesced and is still alive24. Suffice to say that the problematic
aspect of the CTT resides in its equating a notion, that of effective procedure, which can be
seen as a basic capability of human cognition, to the capabilities of a machine. This opened up
the possibility of Artificial Intelligence (AI), a field which has started to flourish precisely in the
post-WWII years after Turing’s formulation of computation had settled and had been generally
accepted,25 and which has not ceased to be the subject, along with its cognate psychological
hypothesis, the Computational Theory of Mind (CTM), of a harsh debate.

Another common conception (or, possibily, misconception) about the CTT is that it states a
physical upper limit to the computational capabilities of any system, namely, that no physical
system can be expected to effect computations which cannot be effected by a Turing machine:
that is, it can’t physically26 exist a possible machine (or, in general, a physical system mecha-
nistically explainable) which can solve Turing-unsolvable problems, such as the halting problem.
This controversial variant of the thesis is usually defined the Physiscal Church-Turing Thesis
(PCCT), and it is itself object of a current debate.27

17.4 Computational complexity28

The uncomputability of the halting problem reveals an in principle limitation of computation:
it shows that some hypothetical procedure, of which a sensible formal definition can indeed be
given, cannot actually be executed by the Turing machine. This is an absolute limitation, which
shows the boundaries of what is computable (assuming of course that CTT holds). Among the
procedures which are computable, there are nevertheless some that undergo a more practical
limitation: they cannot be carried out by a physical machine in a plausible time or with the

23 The thesis is seen by many as a definition, and probably it had been so intended by some of its early
proposers. For example, Church (1936a) described his intents this way: “The purpose of the present paper is to
propose a definition of effective calculability, which is thought to correspond satisfactorily to the somewhat vague
intuitive notion in terms of which problems of this class are often stated, and to show, by means of an example,
that not every problem of this class is solvable.”. A more recent paper which tries to transform the doubts about
the truth of the CTT into doubts about the adequacy of a definition is Soare (1996).

24 See for example Copeland (2004) and Copeland (2008).
25 Turing himself is not innocent in this regard: he accepted the idea that the mind can be simulated by a

machine, and went so far as proposing, in Turing (1950) a standard method (the so-called Turing test) to check
if artificial intelligence has been achieved.

26 This limitation does not apply to abstract models of machines, for a few purely theoretical machines have
been devised, that can hypothetically execute tasks which are not performable by conventional Turing machines.
These are so-called models of hypercomputation. However, according to many, it’s impossible to build such
machines in the physical world. Here too, an ardent debate is underway. See, for opposite views on the subject,
Copeland (2002) and Davis (2004). It can be noted that such machine models do not purport to capture the
notion of a finite mechanical procedure, for they presuppose in various ways actual infinity, so the CTT is not
violated.

27 See for example Deutsch (1985) and Piccinini (2011).
28 The subject of computational complexity is by no means analyzable in depth in the bounded space of this

chapter. The variety of complexity classes brought to light by research in this field in the last fifty years is
overwhelming. There is even a blog, Complexity Zoo, attendend by the MIT computer scientist Scott Aaronson,
in which it is attempted a systematic record of all the classes and theorems found in the literature to date:
https://complexityzoo.uwaterloo.ca/index.php?title=Complexity_Zoo&oldid=6292. For these reasons, I will only
highlight here some of the major complexity classes and the (often problematic) relationship between them. For
a deeper explanation of the subject, see Sipser (2012), Garey & Johnson (1979), Bovet et al. (1994), Fortnow &
Homer (2003) and Arora & Barak (2009).

17.4. Computational complexity 357

expenditure of a plausible amount of resources. In the mid-60s, after the field of information
technology had already started to mature, many computational machines had been realized, and
computer programming had already been collecting a series of standard algorithms and relative
problems, a seminal paper by Hartmanis & Stearns (1965) started29 the theoretical study of these
practical limitations, which had not been taken into account in defining the absolute possibilities
of computation: there are computational procedures, many of which would be of practical avail,
that could in principle be carried out, but for which the amount of time or memory required to
bring them to completion would end up being unbearably large: for example, for a procedure
which takes something like 2n steps to finish, with n the size of the input string, the actual
execution of such computation on an input of size 93 bits would take about 30 billions years,
assuming a plausible computer hardware (for today’s standards) which can perform 10 billions
of operations for second. Consider that the universe, according to current cosmological theories,
has existed for about 13.8 billion years. Moreover, a tiny increase in the input size, from 92
to 93 bits, would mean an increase in computational time of another 30 billion years, for the
computational time doubles for every bit: this computation would go well past the end of the
predicted remaining life of the universe.30 It is clear that even technological breakthroughs
able to accelerate the computing hardware of some orders of magnitude could not resolve the
feasibility of computations of this kind, the execution time of some of which can grow much faster
than an exponential function. The study of this kind of problems is the study of computational
complexity.

This limitation to the feasibility of some computations, which is not an absolute one, seems to
be still pretty much an insuperable one. The only possible way of overcoming it would be to find
another procedure, which bears the same results of the original one, but that can be computed
in a time which varies according to a much less steep function of the input size: for example,
a quadratic function, or, even better, a linear one. The answer to this quest is in certain cases
negative: there seem to be computable procedures that are not transformable into slower-growing
ones. That is, as we will see, there seems to be a class of problems whose computational solution
is inherently intractable.

17.4.1 Time complexity

To measure the time complexity of a halting computation, the number of steps a deterministic
Turing machine31 goes on before halting is taken into consideration. The actual number of steps
is a function f(n) of the size n of the input.32 We are interested in the behavior of this function
relative to a large input size, in order to find a method for classifying algorithms with similar
complexity into complexity classes. To reach this goal, we consider an approximate estimate of
the number of required steps: this way, algorithms with similar execution time will be classified in
the same class. A method of approximation adequate to this end, is that of asymptotic analysis,
which takes into account the asymptotic limit of the function as the input size approaches very
high values.

For example, let’s suppose that an algorithm’s execution time is a polynomial function of n, the
input size:

29 Some early work had preceded this paper. Notably, Yamada (1962). See also Fortnow & Homer (2003).
30 At least according to some current cosmological model.
31 Except where specified otherwise, deterministic TMs will be taken as the reference computational model in

this section dedicated to computational complexity.
32It can be any function, including a costant one.

358 Chapter 17. Computer science basics

f1(n) = 6n3 + 2n2 + 3n+ 20

For large enough values of n, say, for example, n = 500, the value of this function will be:

f1(500) = 6 · 5003 + 2 · 5002 + 3 · 500 + 20 = 750, 501, 520

The term 6n3 alone amounts to 750,000,000, so it is evident that, for sufficiently large values of
n, the other terms of lesser degree end up having a negligible influence on the total value of the
function. It could then be reasonable to approximate the function by reducing it to an expression
comprising only the highest-degree term of f1:

f1(n) = 6n3

With an analogous argument, it can be shown that for sufficiently large values of n, even the
contribution of the coefficient becomes irrelevant with respect to the value of the cubed variable.
So, we take into consideration only the highest degree term, with coefficient one:

f(n) = n3

Similar polynomial functions which actually grow at a different rate, such as, for example,

f2(n) = 2n3 + n2 + 4n

when undergoing the same kind of simplification would end up being approximated by the same
n3 function.

Other functions would not. For example,

f3(n) = 3n + 8n4 + 12n

would be approximated by:

f(n) = 3n

It seems clear that f1 and f2 belong to the same time complexity class, while f3 does not: it will
grow faster than any function belonging to the class f(n) = n3.

The notation for time complexity is the so-called big-O notation33. For example, for an algorithm
whose execution time grows as the function f1 or f2, we will write:

f(n) = O(n3)

while for an algorithm whose execution time grows as the function f3 we would write:
33 The “small o” notation and some subtle technicalities are beyond the scope of this simple introductory

section.

17.4. Computational complexity 359

f(n) = O(3n)

The time complexity expressed in big-O notation represents an upper bound to the value of the
time required for computation. In other words, it is the “ceiling” function which any function
whose approximated form has that big-O form will not surpass for inputs large enough. For
example, stating that a certain algorithm has O(n6) time complexity, means that its execution
time will not grow faster than n6 for inputs large enough.

Bounding functions of the form of the form O(2n), or O(2nk)34 are exponential bounds, while
those of the form O(nc) are called polynomial bounds. There also typical slower-growing bounds,
such as O(nlog(n)), O(log(n)) and O(n). The latter is called linear time.

17.4.1.1 The TIME complexity classes

The Time complexity class TIME(f(n)), is defined as the class of all languages decidable by a
computation whose total run-time is bounded by a given function f(n). For example, language
deciders bounded by f1 and f2 above are in TIME(n3), while those bounded by f3 are in
TIME(3n).

17.4.1.2 The EXPTIME complexity class

The class EXPTIME is the set union of all the classes TIME(2nk). That is, it contains problems
solvable by programs whose execution time can grow exponentially with input size.

It has been proved35 that P 6= EXPTIME. This means that not all problems have solutions
bounded by a polynomial time growth, and so that there are problems which, despite being
solvable, are inherently hard to solve, for they require too much time to finish36.

17.4.1.3 P, NP and complexity classes

It has been noted that a classification of time complexity coarser than TIME is usually suffi-
cient to distinguish between problems whose solution can be computed in a feasible time, and
intractable ones.

The classes taken into consideration by this coarser classification are classes of algorithmically
solvable decision problems. Decision problems in general consist in ascertaining if a given object
belongs or not to a given set37.

Since a decision problem, if it can be solved38 is solved by an algorithm, a class of solvable
problems identifies the class of the algorithms able to solve them. A class of problems also
identifies a class of algorithms which can be used to verify the correctness of a purported already-
found solution to the problem.

34 For k>0.
35 See Sipser (2012), p. 343.
36 See later section on intractability.
37 Typically, as we have seen, the ascertaining if a given string belongs or not to a given language.
38 Unlike, for example, the halting problem.

360 Chapter 17. Computer science basics

17.4.1.3.1 The class P The class P (“P” as “Polynomial”) is the class of all problems whose
algorithmic solutions terminate in a time bounded by a polynomial function: for example, f1
and f2 above belong to this class. In general, any problem whose solution’s time complexity is of
the form O(nk), is in the class P. Evidently, for plausible values of k, programs belonging to this
class can be computed quite easily. According to the so-called Cobham’s thesis, only programs
which are in P are tractable, that is, can terminate in a useful time. This is only a thesis, and
it is not accepted by everyone: the reason is that there are programs in P that are of sufficient
complexity (for example O(n100)) to be considered intractable. The class P is a class of problem
solvers, that is programs that have the task to find the solution to a problem.

17.4.1.3.2 The class NP and the P = NP problem A question which is different to
the search for a solution is the verification of the fact that an already found solution is indeed a
solution.

The class NP (“NP” as “Nondeterministic Polynomial”) is the class of all solutions which can be
algorithmically verified in a polynomial-bounded time by a nondeterministic Turing machine.

Note that all problems in P are also in NP: if a solution can be found in polynomial time,
the verification of that solution is the polynomial algorithm used to find it. This means that
P ⊆ NP . But it is a well-known open problem if P ⊂ NP or not. It is universally assumed
that the inclusion is proper, that is, that there are problems in NP which are not in P. I have
implicitly assumed this hypothesis throughout this text. The problems which are not in P are
problems whose possible algorithms to find a solution grow faster than polynomial time, to wit,
algorithms of at least exponential time complexity.

It must be noted that, even if a problem were not in P, that does not necessarily mean that a
more than polynomial time is always needed to identify a solution to the problem: for many
algorithms, this usually happens only for a subset of the inputs: other cases can often be solved
with a polynomial time computation.

17.4.1.3.3 NP-completeness It is a longstanding an fundamental puzzle of computer sci-
ence whether it is the case that P = NP or not. As yet, there has not been any proof or disproof
of the P = NP hypothesis.

There are problems in NP, the so-called NP-complete problems, such that, if it were found that
they can be solved by an algorithm running in polynomial time, this finding would entail that
for all the other problems in NP for which a polynomial time algorithm is not yet known, one
could be found too. And conversely, if one of the members of NP is shown to be intractable, with
no possible solution to it which runs inside polynomial time, then the NP-complete problem is
unsatisfiable too.

The reason for this is that any known problem in NP is reducible to one of the NP-complete
problems39,40.

Problems for which the best algorithms known today still run in more than polynomial time, had
been known at least since the last 60’s. But only in the 70’s their study became intensive, and
led to the demonstration, achieved independently in North America by Stephen Cook (1971) and

39The reduction must be effected in polynomial time. Reducible, applied to a decision problem, means that
the algorithm to solve it can be substituted by the algorithm to solve another decision problem. Of course, the
aim is to find an easier (in computing resources) problem to which to reduce a given harder one.

40 See also, later in this section, the explanation of NP-hardness.

17.4. Computational complexity 361

in the Soviet Union by Leonid Levin (1973), of NP-complete problems (the so-called Cook-Levin
theorem).

From the fact that it is not known at all if P = NP or not, it is inferrable that NP-complete
problems are among the ones for which an equivalent algorithm in P has not yet been found,
and seems hard to find, so, they probably lie outside of P. In other words, they are among the
“hardest” problems in NP.

A typical NP-complete problem is the so-called SAT, that is the problem of finding a variable
assignment which satisfies a given boolean formula41. To find the assignement of variables
which would render a given boolean expression true, one must, in the worst cases, produce
every combination of the variables’ values, and the number of these combinations if 2n, with
n the number of variables involved. Thus, it is evident that such a computational task has an
exponential bound, and so it is computationally hard.

17.4.1.3.4 NP-hardness The property for an algorithm that any problem in NP is reducible
to it, is called NP-hardness. The NP-complete problems are those NP-hard problems which are
inside NP. There are other problems which are NP-hard but lie outside NP.

17.4.2 Space complexity
Analogously to time complexity, the space complexity of a halting Turing machine computation
is the maximum number of cells on the tape the machine scans before halting, which is a function
f(n) of the input size n. We use here too a big-O notation to indicate the bounding function of
the computation space, writing:

f(n) = O(n3)

for an algorithm which scans a number of cells on the tape approximately bounded by a function
which grows as the third power of the input size.

Space complexity is in a way independent42 from time complexity, because space can be reused,
unlike time (a cell on the tape can be read/written more than one time, without space complexity
growing as a consequence). For example, the SAT problem mentioned above, has O(n) space
complexity, that is, it can be solved in linear space, while, being NP-complete, the problem
cannot probably be solved neither in linear time nor in polynomial time.

17.4.2.1 The SPACE complexity classes

The Space complexity class SPACE(f(n)) is defined as the class of all languages decidable by a
computation of a TM whose total memory scanned is bounded by a given function f(n). For
example, language deciders bounded in space by f(n) = n5 are in SPACE(n5), while those
bounded by f(n) = 2n are in SPACE(2n).

17.4.2.2 The class PSPACE

The class PSPACE is the class of all programs whose algorithmic solutions use up to a polynomial
bounded amount of cells in the tape of a deterministic Turing machine.

41 See Sipser (2012), p.272.
42 Not completely independent: see the later section on the relationships between complexity classes.

362 Chapter 17. Computer science basics

There is also a class NPSPACE, but it has been proved (Savitch’s theorem43) that PSPACE =
NPSPACE.

17.4.2.3 The EXPSPACE complexity class

The class EXPSPACE is the set union of all the classes SPACE(2nk). That is, it contains
problems solvable by programs whose memory consumption can grow exponentially with input
size.

It has been proved44 that PSPACE 6= EXPSPACE. This means that not all problems have
solutions bounded by a polynomial space growth, and so that there are problems which, despite
being solvable, are inherently hard to solve, for they use up too much memory45.

17.4.2.4 PSPACE-completeness

A language is PSPACE-complete if it is in PSPACE and every other problem in PSPACE is
reducible to it in polynomial time. As for NP-completeness, the PSPACE-complete problems are
the most diffucult in PSPACE to solve.

17.4.3 Relationships between space and time complexity classes and open
problems

Having catalogued several complexity classes, we could ask if they are related in some way. It
turns out that they are, but the exact relation is an open problem.

It has been proved46 that:

1. P ⊆ PSPACE

2. NP ⊆ PSPACE

3. PSPACE ⊆ EXPTIME

Result 1, intuitively, stems from the obvious fact that, moving one step at a time, a TM cannot
use up more space than that allowed by the number of steps along the tape it has effected till
then.

Result 2 comes from the theorem that NP ⊆ NPSPACE. But, for Savitch’s theorem,
PSPACE = NPSPACE. So, NP ⊆ PSPACE.

To explain informally result 3, a little more complex argument is needed. Imagine that a TM
which is in PSPACE,47 observed after having halted, ends up having visited m cells of space.
The total configuration of a TM is determined by the position of the head on the tape, the
current state of the machine, and the whole sequence of non-blank symbols written on the tape.
A halting TM cannot repeat any of its configurations during its run, otherwise it would not halt:
it would loop forever. The total number c of possible non-repeating configurations is a function
of the maximum number m of non-blank cells the machine will have used up by the time it halts.

43 See Sipser (2012), p. 306.
44 See Sipser (2012), p. 340.
45 See later section on intractability.
46 For the formal proofs, see Sipser (2012), p. 308.
47 That means that its used space is a function in O(nk), with k ≥ 0.

17.4. Computational complexity 363

The number a of possible different configurations the machine can actually have run through
during its computation is then at most c, and c is a function of m, a function which belongs
to O(2O(m)), that is to O(2O(nk)), given that we have supposed the machine is in PSPACE48.
So, the time (the k steps) the machine has been running before halting is at most equal to
this number, a, of possible assumed configurations, because each computational step necessarily
changes the machine total configuration, so it “needs” a non-visited configuration. This means
that the maximum time the machine can have run before halting is bounded by a O(2O(nk))
function. In other words, that the time complexity of the machine is EXPTIME. So, given that
the machine was supposed to be in PSPACE, we have the theorem 3 above. In other words, if
we let a program expand its used memory even with a linear growth rate, we cannot expect it
to necessarily complete its task in less than an exponential time. This is quite obvious: there
are programs, like simple solvers for SAT49, which make an exahaustive search on the space
of possible boolean variable assignements, where the memory required grows linearly with the
number n of boolean variables considered, while the number of possible combinations of their
values grows as 2n. Result 3 can be viewed as meaning that there are problems in PSPACE
that are also in EXPTIME, and we can suspect that among them are the PSPACE-complete,
for reasons analogous to those mentioned in the preceding section about NP-completeness.

To sum up the relations between the classes we have taken into consideration so far:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

The problematic status of the statement above must be highlighted: it is not known if any of the
inclusions in the statement above is a proper inclusion. But, we know50 that P 6= EXPTIME.
So, at least one of the inclusions is strict, but nobody till now have been able to prove which.
There is, however, widespread consensus in the computer science community, that all the inclu-
sions are proper.

17.4.3.1 Existence of intractability

When I talked about NP-complete and PSPACE-complete problems, I mentioned that such
problems, for what we know, are probably inherently computationally hard, even if a proof of
this fact has not been supplied yet. But, there is always the possibility that such problems end
up being actually in P, given that we don’t know the actual status of the inclusion relations
between the various complexity classes. As we have seen, there are, though, two known strict
inclusions:

4. P ⊂ EXPTIME

5. PSPACE ⊂ EXPSPACE

48 For a machine with 2 symbols in the alphabet, the number of possible configurations on a tape with m
written symbols is 2m. The number of possible total configurations of the machine is then this number multiplied
for the number of possible states of the machine and for the number of different positions of the head on the
tape. If the machine has visited m cells by the end of its computation it cannot have positioned its head in more
than m positions. So, the total number of configurations that the machine can have been in, is in O(2m). But m
is a function in O(nk), so the total number of configurations the machine could have assumed before halting is
O(2O(nk)).

49 See above, in the section on NP-completeness.
50 see section above on EXPTIME.

364 Chapter 17. Computer science basics

Theorem 4 means that there are decision procedures for some problems which take strictly more
than polynomial time, and theorem 5 that there are decision procedures for some problems which
take strictly more than polynomial space.
These are indeed problems which are intractable, in the sense that the algorithms that solve
them run necessarily in O(2nk) time or space. This means that not only faster and more frugal
algorithms for those problems have not been found yet, but that they can not be found.
These procedures are computable only in principle, but not in practice, for we would run out of
space or time well before being able to see them produce a response. This is a practical limitation,
but which itself holds in principle, so it is an absolute practical limitation.

Problems which are complete for their classes are instead only suspected of intractability. Never-
theless, given that there’s no hint that anybody is about to prove that P = NP , we can consider
such kind of problems intractable as well. Hundreds of well known computational problems in
various fields have been proved to be NP-complete, or PSPACE-complete, so they are to be
considered hard.

It is to be remembered though, that the assignment of an algorithm or problem to an intractable
class, often means only that intractability manifests only in the worst cases, depending on the
inputs.

Chapter 18

Modularité, Antimodularité, Explication:
une visite d’introduction .

Ce travail concerne principalement la notion de modularité hiérarchique dans les systèmes com-
plexes, sa détection algorithmique et sa utilisation pour expliquer la structure et le comportement
dynamique de ces systèmes au moyen de modèles modulaires hiérarchiques. Plus précisément,
je mets en èvidence la portée pragmatique de la modularité hiérarchique sur la possibilité de
l’explication scientifique des systèmes complexes, c’est-à-dire, systèmes qui, selon une description
de base choisie par l’observateur, peuvent être décrits comme composés de parties élémentaires
discrètes interdépendantes. Je souligne que la modularité hiérarchique doit être considéré une
notion relative, dépendante du choix, de la part de l’observateur, d’une particulière, fondamen-
tale, description préférée du système, qui consiste en une représentation du système comme un
ensemble de parties atomiques interdépendantes. Dans un tel type de description, la modularité
se manifeste essentiellement comme la possibilité de décomposition du système en sous-systèmes
reconnaissables, suffisamment définis et persistants (les modules) chacun composé de pièces qui
sont plus fortement liées les unes à les autres que à pièces appartenants à d’autres modules ou
à l’environnement externe. En fait, de ce point de vue, la modularité hiérarchique ne concerne
pas le système réel, physique, en soi, mais seulement ses possibles descriptions et descriptions de
descriptions. Ce sont des modèles théoriques d’un système, et je me concentre ici sur les descrip-
tions modulaires des modèles, laissant souvent de côté l’épineuse question de la relation entre
le modèle et le phénomène modélisé, à savoir, la relation entre le phénomène empirique et sa
première description: ces problèmes mériteraient certainement un traitement séparé approfondi
qui ne peut être fourni ici, bien que à la fin, ma proposition saura en quelque sorte toucher même
ce genre de questions.
Après avoir examiné les propriétés définissantes de la modularité hiérarchique, je me concentre
sur les méthodes algorithmiques connu pour sa détection, c’est-à-dire, des algorithmes qui, à
partir d’un système complexe (sous la forme de sa description préférée, à savoir, sa description
comme un ensemble de plusieurs parties interdépendantes), tentent de donner une re-description
hiérarchique modulaire du système. Une fois détecté, la modularité hiérarchique semble être la
caractéristique essentielle de la description d’un système qui permet l’explication fonctionnelle
ou mécanique multi-niveau du système. Ce sont des formes importantes d’explication, largement
utilisés en science.
Dans cet ordre d’idées, je me concentre ensuite sur la propriété inverse, l’absence de modularité
hiérarchique, que j’appelle antimodularité, en essayant de tirer les conséquences de sa possible
manifestation dans certaines descriptions de systèmes. L’antimodularité est une propriété com-

365

366 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

plexe, découlant d’une série de circonstances possibles, et ses caractéristiques principales sont celle
d’être, comme la modularité, dépendente du choix de la part de l’observateur d’une description
de base préférée du système, mais aussi, surtout, celle d’être dépendante de certaines contraintes
computationnelles qui affectent les possibles algorithmes employées pour la détection de la mod-
ularité: la plupart de ces algorithmes sont très exigeants en termes de coût computationnel, et
il y a même des résultats théoriques sur l’intraitabilité computationelle de la recherche d’une
description modulaire optimale d’un système. Cette complexité de calcul entrave inévitablement
la recherche de modularité dans des systèmes d’intérêt scientifique d’une taille suffisante. Je
propose d’appeler l’effet de cette entrave émergence antimodulaire, par analogie avec certaines
formes connues de l’émergence computationnelle. Je conclus que l’émergence antimodulaire im-
plique (avec quelques réserves) le weak emergence de Mark Bedau, qui est une autre forme de
l’émergence computationnelle.

Après avoir défini ce nouveau type d’émergence computationnelle, c’est-à-dire l’émergence anti-
modulaire, qui est due à la complexité computationnelle que les algorithmes pour la détection
de la modularité peuvent manifester dans certains cas, je tente de tirer quelques conséquences
possibles de l’émergence antimodulaire sur la possibilité d’expliquer scientifiquement les systèmes
qu’elle affecte.

Je prends en considération trois modèles classiques de l’explication scientifique: déductive-
nomologique, mécaniste, et explication computationnelle, plus un modèle nouveau, récemment
proposée par Philippe Huneman, l’explication topologique. Je conclus que l’émergence
antimodulaire affecte la faisabilité de tous ces types d’explication, quoique de manières
différentes.

Tout d’abord, je prétends que l’antimodularité affecte négativement l’explication mécanistique,
une forme fondamentale d’explication dans les sciences biologiques. Prenant côte avec Cory
Wright et William Bechtel pour une vue épistémique de l’explication mécaniste (par opposition
à une vue ontique), je montre comment l’antimodularité oblige à recourir à un seul niveau
d’explication seulement, en négligeant la nécessité, essentielle pour obtenir des explications mé-
canistes, de l’intégration multi-niveaux. Le fait de limiter l’explication mécanistique au niveau
de la description représentant les parties les plus élémentaires du système, entrave certainement
la compréhension: pour systèmes suffisamment grands, leur explication mécanistique à ce niveau
est trop complexe pour être comprise par les êtres humains. Et, l’intelligibilité est une qualité à
rechercher dans l’explication mécaniste, du moins selon William Bechtel et autres auteurs aussi,
comme Petri Ylikoski, qui considère la “saillance cognitive” une des caractéristiques importantes
de l’explications.

Pour ce qui concerne les explications déductives-nomologiques classiques, je montre que,
l’antimodularité entraînant l’émergence faible dans des systèmes suffisamment complexes, il
est impossible de recourir à l’explication déductive-nomologique (DN désormais) Hempel-style
pour un système antimodulaire, car, si l’on pouvait, cela voudrait dire que le système est
prévisible au moyen d’une loi, ce qui est nié par la définition même de l’émergence faible qui,
comme on a dit, est impliquée par l’antimodularité. Ainsi, un système antimodulaire est pas
prévisible, du moins pas prévisible arbitrairement à l’avance au moyen d’une loi analytique,
et, par conséquent, il ne peut pas être expliquée par une explication DN. De toute façon, si
nous prenons en considération un type spécifique de système dynamique complexe, à savoir un
automate cellulaire (CA désormais), dans ce cas un processus antimodulaire généré par un CA
peut être expliqué, en quelque sorte, par la production d’une liste potentiellement très longue
de déductions basée sur la condition initiale et la règle du CA (qui, comme une règle de CA,
pour le théorème Curtis-Hedlund-Lyndon, a la même forme logique d’une loi scientifique), d’une

367

manière qui ressemble à une longue liste de explications DN pas à pas. Dans ce cas aussi, la
compréhension humaine est exclue par la longueur éventuelle de la liste, mais, si l’on se conforme
aux attentes des défenseurs post-neopositivistes du modèle DN d’explication, la compréhension
n’est pas requise pour une bonne explication. Ainsi, d’une certaine manière, l’antimodularité,
et par conséquent l’émergence faible, n’entrave pas l’explication DN, au moins dans le cas des
CA et d’autres systèmes dont la dynamique suivre une règle universelle ressemblante à une loi
scientifique, et à condition que la compréhensibilité ne soit prise pas en considération.

Je procède à considérer le modèle topologique de l’explication de Philippe Huneman, un type
non-mécaniste d’explication qui est basé sur les propriétés topologiques de certaines descriptions
abstraites d’un système. Je conclus que, étant la modularité elle-même, ainsi que son absence,
une propriété topologique, la présence ou l’absence de modularité ne gêne pas, mais, au contraire,
permet l’explication topologique.

Je me concentre ensuite sur un troisième type d’explication possible: les CA et les réseaux
booléens dynamiques peuvent être considérés comme des systèmes computationnels. Comme
tels, ils peuvent être sujets à explication computationnel. Je considère le cas d’essayer d’expliquer
un CA computationnellement. Pour obtenir une explication computationnelle, d’abord le com-
portement du CA doit être vu comme une computation. Je souscris à une vue intentionnelle
de la computaiton, mais soumise à certaines contraintes mathématiques, et j’essaye de délimiter
le champ des dynamiques de système qui peuvent être considérées comme computationnelles.
Consideré que certains CA peuvent en effet être considérés comme computationnels, je cherche
à évaluer la possibilité de leur explication computationnelle. Pour donner une telle explication,
le comportement du CA doit être soumis à rétro-ingénierie afin d’obtenir une spécification de
la computation qu’il est censé effectuer. Mais, cette tâche de specification mining peut être
computationnellement intraitable, et ainsi peut échouer. Même si une spécification globale se
trouve, une bonne explication computationnelle équivaut à une forme d’analyse fonctionnelle
modulaire hiérarchique, et cela est obtenue par extraction récursive des spécifications des parties
du code ou traitement du système par autres méthodes statiques ou dynamiques d’ingénierie in-
verse. Si ce processus échoue pour des raisons d’intraitabilité computationnelle, ou par manque
d’exhaustivité de la hiérarchie fonctionnelle trouvée, le système finirait par être antimodulaire.
Dans ce cas, l’antimodularité intrinsèque entraverait une forme compréhensible d’explication
computationnelle, pour la même raison qu’elle affecte l’explication mécanistique, avec laquelle
l’explication computationnelle, qui est une forme d’analyse fonctionnelle, montre une affinité
stricte.

Je ensuite souligne la nécessité de la modularité de haut niveau hiérarchique non seulement pour
les explications a posteriori d’un phénomène connu, mais aussi lors de la phase de la découverte
scientifique, en particulier, comme déjà indiqué par James Woodward, pendant la recherche de
relations causales entre pièces d’un mécanisme, soit à bas niveau et a un niveau supérieur. De
même, je souligne que l’explication modulaire multi-niveaux est également essentielle lors du
développement de programmes informatiques de la part des programmeurs humains.

Je subsume sous le concept d’émergence explicative tous les résultats sur l’infaisabilité de certaines
explications à plusieurs niveaux et sur la disparition de compréhensibilité qui en résulte, dû à
la survenue d’antimodularité, ainsi que tout autre cas dans lequels un système, pour des raisons
computationnel, résiste un’explication compréhensible.

Je discute ensuite, en examinant une certaine littérature scientifique, la probabilité pour la
recherche scientifique dans certains domaines d’encourir l’émergence antimodulaire, et je conclus
qu’il est assez probable que certains cas d’antimodularité apparaissent, en particulier dans la
biologie des systèmes.

368 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

Je dédie la dernière partie de ce chapitre à des considérations plus amples mais, probablement,
moins soutenues et risquées. Tout d’abord, je esquisse une éventuelle vue métaphysique qui
pourrait découler de le considérations sur l’antimodularité exposées avant: j’appelle ce point
de vue antiréalisme lié (constrained antirealism). Cette position voit le monde empirique que
nous percevons naturellement, ainsi que le monde décrit par la science, comme le résultat d’un
processus de détection de modularité, en conséquence duquel les modules détectés constituent ce
qui est communément connu sous la dénomination des espèces naturelles.

Consideré que la détection de la modularité est limitée par des facteurs de complexité de calcul
insurmontables, et que pour cette raison, la découverte de la meilleure description modulaire est
en principe exclue, il est peu probable que la subdivision du monde en espèces naturelles corre-
sponde à sa meilleure subdivision possible. L’évaluation complète de cette position métaphysique
nécessiterait cependant un large débat sur une hypothèse controversée, le pancomputationalism,
et sur plusieurs positions en philosophie des mathématiques, ce qui constitue une discussion qui
est préférable de laisser à une recherche ultérieure.

Enfin, je prends dans la dernière partie du chapitre une certaine liberté en tirant les possibles
conséquences présumées d’un recours récente et croissante à méthodes computationnelles dans
la science, sur l’histoire de la science. En commençant par la simulation de systèmes complexes,
je réfléchis sur la plausibilité des simulations comme explications, en particulier dans les cas où
le système est antimodulaire, et par conséquent la simulation peut être exécuté, mais le modèle
dynamique sous-jacente est inintelligible, parce que le système est simulé à un niveau très bas et
une redescription modulaire de haut niveau manque ou est trop approximative pour être utile
comme explication.

Je considère ensuite la détection automatisée de modularité, utilisée pour trouver une structure
dans des grands ensembles de données, basant ces considérations sur des cas réels d’exploration
de données sur un corpus de littérature médico-biologique, dans lequel le système automatisé a
découvert des relations fonctionnelles importantes qui avaient échappé à l’examination humaine.

Peut-être me permettant de tirer quelques conséquences extrêmes, je conclus en suggérant que
cette utilisation croissante des méthodes computationnels dans la science pourrait être sur le
point de provoquer un changement de paradigme majeur dans certaine disciplines.

L’objet de cette thèse est multiforme et pas facile à classer: étant au sujet de les conséquences
de l’antimodularité, une propriété de certains systèmes, sur la possible explication scientifique
de ces systèmes, il est une œuvre de philosophie de la science.

Consideré que la propriété proposée, l’antimodularité, dépend de certaines contraintes computa-
tionnelles qui affectent la détection de la modularité, et que je recommande, en relation avec la
discussion sur l’explication computationnelle, une conception intentionnelle de la computation,
alors ceci est une œuvre de philosophie de l’informatique ou de la computation, dans le double
sens d’appliquer certaines notions computationnelles à la réflexion philosophique, et de proposer
une réflexion philosophique sur la notion de computation elle-même.

Considéré que les systèmes montrant antimodularité sont susceptibles de se trouver parmi les
systèmes biologiques, de la discussion de longue date en biologie à propos de la modularité, et
d’une foule d’exemples que je prends de cette discipline, ceci est même un travail de philosophie de
la biologie. En ce qui concerne l’explication, je embrasse explicitement une position épistémique,
centrée sur la notion de niveaux de description, qui sont des dispositifs épistémiques, de sorte
que le présent travail a un aspect épistémologique.

18.1. Modularité 369

Et, comme probablement toutes les position épistémologique, ella a également une portée méta-
physique, que je tente d’esquisser vers la fin de ce chapitre1.

Enfin, cette thèse fait usage de toutes les discussions théoriques mentionnées ci-dessus pour faire
la lumière sur leurs conséquences possibles sur la pratique de la science, faisant allusion à la
possibilité que un changement historique majeur, peut-être un changement de paradigme, est en
cours ou sur le point de se produire dans la science.

Donc, dans un sens, cela est une thèse d’histoire des sciences. Bien que nécessitant encore
l’observation et la preuve, je pense que cette hypothèse historique pourrait nous donner une
indication de l’ampleur de l’impact que l’adoption généralisée de méthodes de calcul a eu ou
pourrait être sur le point d’avoir sur la science telle que nous l’avons connue.

18.1 Modularité

Je commence cette clarification de la notion de modularité avec une esquisse historique: la mod-
ularité semble être un concept de base et généralisée, qui a probablement été conçu plus d’une
fois, dans des domaines théoriques et pratiques partiellement indépendants et diversifiés, depuis
longtemps. Néanmoins, la réflexion philosophique moderne sur la modularité a commencée dans
la seconde moitié du XXe siècle, avec la contribution particulièrement pertinente de Herbert
Simon. Oeuvrant dans le domaine de l’économétrie, Simon est venu à une conception de la mod-
ularité sous la forme du systèmes hiérarchiques quasi-décomposables2, c’est à dire des systèmes
qui peuvent être vus, au moins en première approximation, comme des systèmes hiérarchique-
ment décomposable de manière récursive en ensembles de sous-systèmes robuste et partiellement
indépendants. Ce point de vue sur la quasi-décomposabilité, qui a ensuite influencé de nom-
breux autres auteurs dans différents domaines, est l’idée de base qui inspire ma proposition sur
la modularité.

Dans ce travail, j’examine une conception possible de la modularité dans les systèmes complexes,
et j’explore les conséquences de la présence de modularité ou de sa absence, l’antimodularité3

sur l’explication du comportement de ces systèmes. En fait, je n’applique pas la notion de mod-
ularité aux systèmes réels, mais à leurs descriptions et re-descriptions de descriptions, où une
(re)description est comprise, de préférence, comme une computation qui prend une description
et la traite de manière à donner une autre description. En prenant une position largement
épistémique, si pas une pleinement antirealistique (une position qui sera mieux expliquée dans la
section 18.5.1 de cette chapitre), selon la position de Cory Wright et William Bechtel sur les expli-
cations mécanistes4, je considère les explications scientifiques comme des dispositifs épistémiques,
basés sur des descriptions des phénomènes, liés à la communication humaine et nécessitants au
moins d’un minimum de intelligibilité cognitive. En conséquence, je suis intéressé à définir la
modularité comme une caractéristique des descriptions, qui, si elle est présente, permet certains
types d’explication. Quoique c’est la section II à être consacrée à un exposé complet de la mod-
ularité et des autres concepts impliqués, je donne ici une explication schématique de ce que je
propose dans la thèse.

1 Et vers la fin du chapitre d’introduction dans le texte en Anglais.
2 Voir la séminale Simon (1962).
3 La propriété de l’antimodularité n’est pas, comme nous allons voir, simplement absence de modularité.
4 Conception épistémique opposée à une conception ontique de l’explication mécaniste. Voir la section 18.1.9,

18.4.3, ainsi que Bechtel & Abrahamsen (2005) et Wright (2012).

370 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

18.1.1 Modularité dans les systèmes complexes

Procédant le long des lignes exprimées ci-dessus, j’essaie de définir la propriété de la modularité
dans les systèmes complexes, comme la possibilité pour les systèmes de ce genre d’être décrits
comme un ensemble de modules faiblement liés, c’est à dire, un ensemble de sous-systèmes
robustes et bien-définis, avec leurs pièces internes fortement interconnectées, et chaque sous-
système partiellement indépendant du contexte externe, étant seulement faiblement connecté
à d’autres sous-systèmes. J’étends cette vue de la modularité à celle de la pleine description
hiérarchique d’un système en termes de niveaux “supérieurs” et “inférieurs” de description, dont
chacun est constitué par modules, et où, à l’exception du niveau le plus bas, chaque des modules
est un macromodule, c’est à dire, il peut être considéré à son tour comme caractérisé par une
organisation interne modulaire de micromodules, et ainsi de suite, de manière récursive. Comme
on a dit, tout cela concerne les descriptions, et non pas des ensembles d’objets du monde réel (ce
qui est conforme à l’essence d’une vue épistémique).

Bien que la distinction macro/micro à l’égard de la modularité dépende bien sûr du choix d’un
niveau particulier de description, le point à souligner ici est que l’ensemble de la description
modulaire hiérarchique se révèle dépendre, en raison de la définition même de modularité, du
choix de la part de l’observateur d’une relation significative particulière entre les parties élémen-
taires du système, et ce précisément en raison de la façon dont le concept de module est défini:
un module est un sous-ensemble des parties d’un tout qui sont reliées les unes aux autres d’une
manière plus forte que la façon dont elles sont reliées à des parties externes au module où elles
se trouvent. La reconnaissance d’un sous-ensemble en tant que module, nécessite donc qu’une
relation entre les parties soit prise en considération en premier lieu, et, en fonction de la relation
spécifique considérée, la structure modulaire identifiable peut changer.

Cette définition de la modularité hiérarchique présuppose bien entendu qu’un système complexe
soit composé de pièces élémentaires distinctes et reliées, et cela, à son tour, est dû au choix
d’une description élémentaire atomique du système: le choix de l’ensemble des pièces et celui
de la relation entre eux consistent en le choix, de la part de l’observateur, selon ses intérêts,
de ce que je voudrais appeler une description préférée du système. Habituellement, il y a une
description “naturelle” du plus bas niveau d’un système en termes de pièces élémentaires, souvent
suggérée par les propriétés physiques du système combinées avec les intérêts du chercheur: par
exemple, en biologie, un tissu est naturellement décrit comme composé de cellules, une cellule est
naturellement décrite comme un système complexe composé principalement de macromolécules
interagissantes, et dans les sciences sociales la société est naturellement décrite comme composée
d’individus. Le point à souligner est que la modularité hiérarchique est relative à un tel choix,
étant notamment en fonction du choix de la relation entre les parties élémentaires du système
(qui généralement est un choix moins contrainte que ce des parties elles-mêmes), que la structure
modulaire hiérarchique va dependre. Par exemple, dans une société, nous pouvons considérer
les liens affectifs entre les individus, ou, alternativement, nous pourrions choisir des relations de
subordination. Ces deux différentes descriptions du système entraînerait très probablement à
deux différentes descriptions modulaires hiérarchiques, parce qu’un module est défini comme un
sous-système d’éléments fortement interconnectés entre eux et faiblement liés à l’environnement,
et cette “connexion” est précisément la relation entre les parties élémentaires considérée dans
la description préférée choisie du système: dans les cas d’exemples, une des descriptions est la
relation de lien affectif, l’autre celle de pouvoir d’influence.

18.1. Modularité 371

18.1.2 Modularité, décomposabilité, et économie de la description
La modularité se manifeste comme la possibilité de décomposer un système5 dans sous-systèmes
reconnaissables et suffisamment définis, chacun composé de pièces qui sont plus fortement liées les
unes aux autres que à parties appartenantes à d’autres modules ou à l’environnement extérieur.
C’est la présence de ces variations d’intensité des relations entre les couples de parties du sys-
tème, ce qui permet la reconnaissance de la modularité: si toutes les parties fussent également
reliées les unes aux autres, les modules n’apparaîtraient pas, car un module est (informellement)
défini comme un sous-système dont la force de liaison avec le reste du système est inférieur (en
moyenne) à celle de la connexion entre les parties internes du module. Comme indiqué ci-dessus,
la modularité est obtenue par rapport à la relation spécifique entre les parties de bas niveau
que nous prenons en considération. Cela est une conception tout à fait semblable à l’originale
proposée par Herbert Simon, celle de quasi-décomposabilité. La quasi-décomposabilité permet
au système d’origine d’être représenté comme un ensemble de sous-systèmes connectés, et cette
décomposition peut être réitérée jusqu’à l’obtention d’une description hiérarchique complete. Le
point crucial est que le système original, composé de ses parties élémentaires, est donc descriptible
dans une manière de haut niveau, sous la forme d’un autre système dont les parties correspondent
chacune à l’un des modules du système d’origine. Ainsi, la description de haut niveau se révèle
être plus simple que celle du niveau bas, parce que, en la description de haut niveau, des groupes
entiers (les modules) de pièces de bas niveau sont représentés comme parties de haut niveau
individuelles, et en conséquence les parties du niveau supérieur sont moins nombreuses que celles
de bas niveau. Si le système que nous décrivons en cette façon est statique, comme par exemple
la liste des membres composant le personnel d’une organisation, la description de haut niveau
apparaît généralement plus économique et plus claire que la liste originale. L’exemple typique
est celui des organigrammes. Dans un organigramme, chaque groupe, constitué des personnes
qui travaillent dans le même bureau, est représenté par un seul élément, étiqueté avec le nom
du bureau. Le nom du bureau représente le nom agrégé du groupe de personnes qui travaillent
dans le bureau.

18.1.3 Modules comme pièces de haut niveau similaires répétées
Il y a une autre amélioration possible de l’économie de description d’un système complexe, s’il
est possible d’y déceler plusieurs sous-systèmes qui résultent identiques ou tellement similaires à
être éventuellement considérés comme la répétition d’un modèle unique. Dans ce cas, en dehors
de l’économie de description due à l’agrégation6, même une description modulaire qui comprît
plus d’un des modules identiques, pourrait être simplifiée en remplaçant chaque occurrence de
ce type de modules avec une référence au modèle commun, qui ne sera alors nécessaire de décrire
qu’une seule fois. Cette forme de modularité est particulièrement utile dans l’ingénierie, et elle
est essentiellement à la base de la conception d’objets complexes qui sont généralement composés
de pièces standards identiques ou presque identiques, qui se présentent en plusieurs exemplaires
dans l’objet.

18.1.4 Modularité structurelle et dynamique
Il est facilement concevable que la modularité peut concerner pas seulement la structure d’un
système, mais aussi son fonctionnement dynamique: il est concevable, par exemple, et même

5 Bien sûr, avec «système» ici, je veux dire une description d’un système. Dans ce qui suit, je vais sou-
vent utiliser le terme “système” simpliciter, pour signifier sa description standard, généralement sa “description
préférée”.

6 Mentionné dans la section précédente.

372 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

évident, que la modularité dans la structure d’un programme d’ordinateur (dont la structure est
une liste d’instructions) produit une modularité dans l’exécution dynamique du programme, car
un programme d’ordinateur est non seulement une liste d’instructions statiques, mais il est censé
être exécuté, donc la modularité de la liste devrait être reflété dans la modularité dynamique du
programme.

La relation entre la modularité structurelle et la modularité dynamique ne se révèle être pas tou-
jours une relation simple: les aspects structurels et dynamiques peuvent être associés mais aussi
découplés, bien que dans la plupart des systèmes dynamiques leur structure physique modulaire
induit une forme de fonctionnement dynamique modulaire, étant donné que dans les systèmes dy-
namiques leur dynamique est effectuée sur la structure prédéfinie du système et cette dynamique
est donc contrainte par la structure du système. La relation entre la modularité structurelle et
la modularité dynamique est cependant pas complètement claire, et dans la section 6 de cette
thèse je vais plus profondément l’examiner et la discuter.

18.1.5 Quasi-décomposabilité et agrégabilité
Une forme de modularité dynamique proposée en début des années ’60 par Herbert Simon et
Albert Ando7 dérive de la quasi-décomposabilité du système, et plus particulièrement de la
quasi-décomposabilité de son modèle mathématique décrivant la dynamique du système. Ce
modèle mathématique est généralement une relation de récurrence, ou un système de relations
de récurrence, dans lequel l’état de chaque partie élémentaire du système est représenté par une
variable: cette équation représente une fonction de mise à jour qui détermine comment l’état
des pièces du système varie au cours du temps, et il est donc un modèle mathématique de la
dynamique du système. Dans un système qui est quasi-décomposable au sens de Herbert Simon,
les variables de cette équation, qui peuvent être en grand nombre, parce qu’elles représentent
les parties élémentaires interagissantes du système, peuvent être divisées (modulo une certaine
approximation) dans une partition de sous-ensembles de variables, où chaque sous-ensemble est
constitué des variables qui n’influencent que faiblement les variables à l’intérieur des autres sous-
ensembles: cela correspond au fait que dans un système quasi-décomposable, par définition, les
interactions entre certains groupes de parties (c’est-à-dire, entre le modules) sont faibles, tandis
que les interactions entre le parties composantes le même module sont plus fortes. De cette
façon, la dynamique de chaque module peut être considérée comme évoluante dans le temps en
manière semi-indépendante de la dynamique des autres modules, et, en conséquence, les équa-
tions décrivantes ces dynamiques semi-indépendantes se révèlent être l’une semi-indépendante
de l’autre. Ces équations régissantes groupes semi-indépendants de variables, peuvent alors être
considérées comme des modules fonctionnels, une re-description modulaire du modèle mathéma-
tique original décrivant la dynamique globale du système. La modularité des systèmes quasi-
décomposables détermine aussi une sorte de modularité dynamique, ou de processus, sous la
forme d’un découplage de la dynamique temporelle entre les parties du système: la dynamique
à l’intérieur des modules est plus rapide que la dynamique des interactions entre le modules.

Étant données les conditions décrites ci-dessus, dans certains cas favorables qui dépendent de la
forme des équations modulaires, la dynamique globale du système, initialement décrite par la
fonction de mise à jour globale (dans laquelle l’état de chaque partie élémentaire est décrit par
une variable) peut être, modulo une certaine imprécision acceptée, re-décrite à nouveau sous la
forme d’une autre, plus simple fonction globale de mise à jour. Cette fonction de mise à jour
est plus simple que celle d’origine, parce que dans la nouvelle fonction de mise à jour chaque
variable représente une valeur agrégée de toutes les variables contenues dans chacun des modules

7 Simon & Ando (1961).

18.1. Modularité 373

fonctionnels décrits ci-dessus: le nombre des variables qui doivent être prises en considération
pour modéliser la dynamique globale du système est ainsi réduit. Lorsque cette condition subsiste
le système est dit aggregable (pas tous les systèmes dynamiques sont aggregable), et cela est
évidemment une autre forme de économie de description permise par la présence de modularité,
dans ce cas économie du modèle mathématique. Le prix à payer est un montant d’imprécision qui
dépend du fait que, afin d’agréger avec succès la dynamique du système, certaines interactions
entre les parties du système dont la force est inférieure à un seuil choisie, sont considérées comme
nulles. L’approximation pourrait se reveler inacceptable dans les systèmes non-linéaires, où le
comportement à long terme de la description simplifiée pourrait diverger trop du comportement
réel du système. Le point à souligner est que, même ici, des choix de la part de l’observateur
sont impliqués: le choix de la description préférée (qui, cependant, dans de nombreux cas, est
déjà donnée), et un choix sur le degré d’imprécision, acceptable ou non en fonction des objectifs
de l’observateur.

Un problème très important qui affecte l’agrégabilité est que cette propriété s’est avérée être
une tâche computationelle infaisable: il y a des preuves, dans Kreinovich & Shpak (2006) et
Kreinovich & Shpak (2008), que l’agrégabilité, et même l’agrégabilité approximative, déjà en
systèmes linéaires, est NP-hard. Cela signifie8 que, pour un modèle mathématique de la dy-
namique du système avec un grand nombre de variables, il n’y a pas aucune méthode générale
algorithmique qui peut toujours produire dans un temps possible une plausible version agregée
simplifiée du modèle. En d’autres termes, cela signifie que la détection de modularité dans le
modèle dynamique d’un système complexe est une tâche computationelle infaisable, et que l’on
ne doit pas s’attendre que la modularité dynamique peut être trouvée avec une méthode générale.

Néanmoins, l’agrégation peut dans de nombreux cas être trouvée plus facilement si nous avons
une certaine connaissance qui peut nous guider dans la répartition des variables en sous-ensembles
semi-indépendants. Par exemple, dans le cas des réseaux génétiques, nous pourrions savoir sur des
bases empiriques qu’un certain groupe de gènes manifestent toujours co-expression, et donc les
variables qui représentent ces gènes peuvent être regroupées. Cela pourrait simplifier beaucoup
la tâche de trouver une bonne agrégation, une tâche qui est en principe, comme on a dit, trop
exigeante d’un point de vue computationnel.

18.1.6 La modularité dans les systèmes dynamiques discrets
Il y a des cas complexes dans lesquels la forme structurelle et la forme dynamique de modularité
ne sont pas facilement séparables, car une structure de haut niveau du système, elle-même
“émerge”9 à partir des dynamiques complexes de bas niveau du système. Cela est typique de
certains systèmes dynamiques discrets complexes, tels que certains réseaux booléens, ou certains
automates cellulaires. Alors que je dédie certaines sections du chapitre 5 à expliquer les bases
des systèmes dynamiques discrets, et plus particulièrement d’une sous-classe d’entre eux, le soi-
disants automates cellulaires (CA désormais), un très court aperçu peut être donné ici: ces
systèmes sont composés d’un certain nombre de pièces simples, dont chacune, à un moment
donné, se trouve dans un état particulier, choisi parmi un ensemble fini d’états distincts possibles.
Il est d’usage de considérer chaque état distincte comme un symbole, et d’examiner l’ensemble
des symboles possibles comme un alphabet (pensons, dans le cas le plus simple, aux symboles
0 et 1). Non seulement les symboles sont discrets, mais le temps est discret aussi: dans ces
systèmes discrets le temps procède point par point, par time steps distinctes, que nous pouvons

8 Voir la section 18.3.
9 J’utilise le terme «émergence» ici d’une manière intuitive, alors que cette question sera examinée brièvement

plus tard dans ce chapitre et, plus profondément, dans les chapitres majeurs de cette thèse.

374 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

appeler t1, t2, et ainsi de suite. À un moment donné, l’ensemble des états dans lesquels toutes
les parties du système se trouvent être, constitue la configuration globale du système. Les
états de toutes les parties du système sont mis à jour en synchronie à chaque pas de temps
successif selon une règle déterministe, une règle qui peut être la même pour toutes les parties
du système (comme cela est le cas dans les CA) ou différente pour chaque partie. À un moment
initial conventionnel, appelons-le t0, le système est dans la configuration initiale. L’évolution
du système est la séquence de configurations globales successives il atteint à mesure que le
temps passe, à partir de la configuration initiale. Les classes typiques de tels systèmes sont,
comme on a dit, les CA, et une classe plus large, celle des réseaux discrèts. La dynamique de
cette évolution peut, pour certains systèmes, être extrêmement complexe, et, dans certains cas,
cette capacité dynamique peut résulter manifestement équivalente à la puissance de calcul des
machines de Turing universelles, qui sont réputées être10 la classe la plus puissante des systèmes
informatiques. Pour cette raison, le comportement dans le temps des systèmes complexes est, en
général, assez difficile à prédire, et, dans le cas de capacités de niveau Turing, il est en principe
algorithmiquement indécidable en général11.

Une forme de modularité peut être induite ou apparaître dans certains systèmes dynamiques
discrets, soit en leur imposant un état initial spécifique, ou, dans certains cas, par sa émergence
spontanée dans le système après un certain temps le long de son évolution, quel que soit la spéci-
fique configuration initiale: un phénomène qui est une forme d’auto-organisation. La modularité
dans ce sens se résume au fait que certains sous-ensembles de la configuration globale du système
viennent à être partiellement ou totalement gelés après un certain temps, c’est-à-dire, ils viennent
à constituer des parties immuables ou peu changeantes de la configuration globale du système,
et de cette façon ils viennent à isoler partiellement autres sous-ensembles de la configuration, en
empêchant la propagation de l’influence de chacun de ces sous-ensembles vers les autres. Cette
isolation, implicitement, impose une structure virtuelle de haut niveau au-dessus de la structure
originale de bas niveau, une superstructure qui peut être vue comme un ensemble de modules
dynamiques (les parties non gelées de la configuration) lâchement reliés entre eux (au moyen de
les chemins résiduels de connexion qui ne sont pas interrompus par les parties gelées). Pour un
exemple d’un réseau discret avec une modularité de haut niveau apparaissant au cours de son
évolution, voir fig. 18.1.

D’un manière légèrement différente, l’auto-organisation peut apparaître, en particulier dans les
CA, comme l’émergence de sous-configurations de la configuration globale très localisées, par-
tiellement robustes, bien délimitées, et seulement partiellement changeantes, c’est-à-dire les soi-
disants planeurs (gliders), qui apparaissent, pour ainsi dire, se déplacer dans la configuration du
système. Un exemple est la fig. 18.2.

18.1.7 Modularité dans les systèmes computationnels
Étant une forme de système dynamique discret, un système computationnel peut bien sûr présen-
ter modularité. Les ordinateurs universels ordinaires du monde réel sont des machines hautement
modulaires déjà au niveau que l’on appelle le “matériel” (le “hardware”). Mais une autre forme
très importante de modularité concerne les programmes informatiques. Un programme est essen-
tiellement constitué par une liste d’instructions que le matériel informatique “exécute” pas à pas.
Bien sûr, une telle liste peut être dépourvue de modularité apparente, ou elle peut plutôt être
structurée par le programmeur d’une manière évidemment modulaire, en la subdivisant en sous-
listes disjoints, dont chacune contient principalement des instructions concernantes seulement un

10 Prise la thèse de Church-Turing pour acquis. Pour une explication, voir l’Appendice, section 17.3.
11 Comme une conséquence de l’indécidabilité du problème de l’arrêt. Voir la section 17.2.6.

18.1. Modularité 375

Figure 18.1: une évolution partielle dans le temps d’un réseau discret. Le temps s’écoule de haut en bas, chaque
rangée de pixels représentante la configuration du système à chaque pas de temps. Chaque pixel représente l’état
de chacune des parties élémentaires du réseau, son nœuds. Les lignes verticales épaisses, noires ou à motifs,
qui peuvent être distinguées dans l’image, sont des sous-ensembles “gelés” de la configuration. Ils induisent une
forme de modularité de haut niveau, en agissant comme “murs” plus ou moins impénétrables, et en cette façon
ils rendent le système quasi-décomposable en plusieurs sous-systèmes indépendants. (Image tirée de la Galerie
DDLab de Andrew Wuensche, http://uncomp.uwe.ac.uk/wuensche/gallery/ddlab_gallery.html).

376 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

Figure 18.2: planeurs dans un CA, la soi-disant Règle 54, selon la classification de Stephen Wolfram (voir Wolfram
2002). Le temps s’écoule de haut en bas, chaque rangée de pixels représentante la configuration globale du système
à chaque pas de temps. Chaque pixel représente l’état de chacune des parties élémentaires du CA, ses cellules.
Ci-dessus: la séquence d’états du CA. Bas: après avoir filtré les parties récurrentes du fond de la configuration,
les planeurs apparaissent plus clairement, représentés au cours du temps par des lignes droites, représentantes
la délocalisation progressive de ces sous-configurations à l’intérieur de la configuration globale (image originaire
provenante de la Galerie DDLab de AndrewWuensche, http://uncomp.uwe.ac.uk/wuensche/gallery/r54_filted.gif,
modifié) .

18.1. Modularité 377

ensemble limité de variables internes à la sous-liste, à l’exception d’une ensemble de variables
d’“input” et d’une ensemble de variables d’“output” qui sont accessibles aussi par des instruc-
tions appartenantes à d’autres sous-listes. De cette façon, chacune de ces sous-listes peut être
considérée comme un module, et le transfert limité et contrôlé d’informations entre les différents
modules est réalisé par les variables d’input/output, c’est-à-dire des ensembles distincts de vari-
ables qui sont les seules à être accessibles et manipulables par parties du programme externes au
module: un tels module peut être considéré comme une “boîte noire” avec un ensemble limité
de lignes d’entrée et de sortie. De cette façon, la propriété typique des modules est réalisée: en
considérant comme le rapport choisi entre les parties de la liste des instructions la relation entre
une instruction et une variable sur laquelle elle agit, il peut être facilement vu que, quand en
une sous-liste d’instructions les variables internes, celles qui ne figurent pas dans les ensembles
d’entrée et de sortie, sont d’usage essentiellement interne, et sont moins souvent ou (mieux) ja-
mais manipulées par des sous-listes disjointes externes, cette sous-liste d’instructions peut être
considérée comme un module, doté de cohésion interne et structurellement plutot indépendant
des autres modules. Dans un programme non-modulaire, la modification du programme de la
part du programmeur peut resulter assez difficile à mettre en oeuvre et à controller, car un
changement dans une partie du programme pourrait affecter pièces du programme potentielle-
ment très lointaines. Par contre, compte tenu de la connectivité limitée entre les modules, en
particulier dans le cas où seulement les variables d’entrée et de sortie sont accessibles aux modules
externes, un changement interne à un module, et affectant seulement les variables internes, ne se
répande pas indistinctement à d’autres modules, et donc son effets sont plus faciles à contrôler.
En général, dans la programmation de l’ordinateur, ce qui est recherché est l’haute cohésion
interne des modules et un couplage faible entre eux.

La modularité sous forme de des parties similaires récurrentes ou identiques est à la base d’une
forme connexe de modularité des programmes informatiques, compatible avec celle esquissé ci-
dessus: si plus d’un des modules remplit la même fonction d’entrée/sortie, au lieu d’explicitement
le réitérer, sous la forme de copies répétées de la séquence de ses instructions à l’intérieur de la
liste du programme, le module peut simplement être appelé à plusieurs reprises dans différentes
parties du programme, chaque fois avec des configurations d’entrée distinctes, et en recevant
par le module des configurations de sortie éventuellement distinctes lorsqu’il termine son exécu-
tion. Modules vu de cette façon, comme des sous-programmes appelables, sont souvent appelés
sous-programmes ou procédures. Cette façon de structurer les programmes peut améliorer con-
sidérablement leur fiabilité, parce que les tests de chaque procédure peut alors être fait qu’une
seule fois, en tant que le système complet est assemblé à partir de modules déjà testés.

18.1.8 Modularité hiérarchique, niveaux, robustesse et validité

Je vais essayer ici de clarifier l’importance d’une propriété des modules que j’ai simplement
mentionné, jusqu’ici: la robustesse. Intuitivement, pour une description modulaire d’un système
dynamique, robustesse signifie qu’un module au niveau supérieur doit résister à une certaine
gamme de perturbations au niveau inférieur, en conservant son identité distincte et en persistant
malgré la variation d’etat de ses composants constituants de bas niveau. Ou, dans certains cas,
un module robuste devra rester le même, malgré les substitutions possibles de certains de ses
composants de bas niveau. Dans les descriptions de réseaux modulaires12, qui sont descriptions
modulaires structurelles, un module est considéré comme robuste quand il ne change pas son
identité malgré la soustraction ou l’ajout de certains liens entre les sous-jacents composants de

12 Voir la section 18.2.1.

378 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

bas niveau13.

Dans les systèmes dynamiques, un module qui peut subsumer un ensemble aléatoire quel que soit
des composants de niveau inférieur serait un module très robuste, car il manifesterait une grande
persistance face à des variations: il ne changerait jamais malgré tout changement au niveau
inférieur! Mais ce serait une sorte de robustesse banale. Un module dynamique suffisamment
robuste du point de vue explicatif ne doit pas être trop évanescent, ni il devrait avoir son etat
fixé: Il devra plutôt être capable de suivre, d’une manière grossière, les dynamiques sous-jacentes.
Une robustesse adéquate de modules est essentielle au moment de la production de descriptions
hiérarchiques des systèmes dynamiques que nous voulons employer pour l’explication scientifique,
parce que un module de haut niveau, pour être explicatif, doit être censé suivre fidèlement la
dynamique de bas niveau, bien que à une résolution temporelle, et souvent spatiale, inférieure,
ou à une précision inférieure. Un module dans la description d’un système dynamique, pour être
utile pour l’explication scientifique, devrait être robuste à un degré qui est choisi par l’observateur,
selon ses intérêts: cela est un autre aspect de la relativité de la modularité hiérarchique au choix
de l’observateur. En tout cas, un module de haut niveau ne doit pas être trop évanescent, sinon
son niveau de description serait inutilisable pour des explications, et il ne devrait pas être trop
robuste, car dans ce cas il n’y aurait pas du tout d’effet explicatif: un module le plus possible
robuste est gelé, c’est un module qui reste dans le même etat pour toutes les combinaisons
possibles de toutes les parties du système, et il constituerait simplement un “nom” global de
l’ensemble du système (cela puisse être utile dans certains cas, afin d’identifier les phénomènes
pour la première fois).

Mais, la redescription modulaire de haut niveau dans les systèmes dynamiques est une affaire
compliquée: la dynamique de la description modulaire de haut niveau ne doit pas diverger (au
moins pas trop) par rapport à la sous-jacent évolution dynamique de bas niveau de la description
préférée du système. Une description modulaire doit être valide (pour reprendre la terminolo-
gie de la modélisation computationnelle scientifique), afin d’être explicativement utile: elle doit
suivre avec une certaine précision, mais à une échelle de plus gros grain, l’évolution dynamique du
système. Une description modulaire non valide est explicativement inutile. Ceci peut être mieux
comprise par un exemple. Imaginez que nous fassions fonctionner un système dynamique discret
une seule fois, afin d’obtenir une partie de son évolution, comme en fig. 18.2. Nous pourrions
immédiatement élaborer une représentation modulaire de haut niveau de cette course dynamique,
en prenant simplement comme un module chacune des lignes diagonales représentantes les tra-
jectoires des planeurs, et donc nous pourrions produire une explication de haut niveau du ce
segment de l’évolution en ne mentionnant que “trajectoires de planeur” (quelque chose du genre
de “le troisième planeur entre en collision avec le deuxième et le détruit, continuant vers la grande
colonne verticale de gauche”, et ainsi de suite . . .). Pourrait-cela constituer une description de
haut niveau valide de la dynamique du système? Très probablement non, parce que nous avons
basé notre détection de modularité seulement sur un segment limité de l’évolution possible du
système: la prochaine fois que l’on commence la dynamique du système avec une configuration
initiale même légèrement différente, on aurait la plus grande probabilité de produire un segment
complètement différent d’évolution, et l’ancien description serait rendus inutiles. Le point est,
quand on redécrit ces types de systèmes dynamiques à un niveau supérieur, il ne faut pas chercher
à redécrire des motifs éphémères, des configurations uniques, de leur évolution, mais seulement
des sous-configurations suffisamment robustes, et qui apparaissent dans la dynamique du sys-
tème à haute fréquence et régularité: seulement de cette façon nous pourrions espérer obtenir

13 Certains algorithmes de détection de modularité dans les réseaux effectuent ce genre de test afin d’évaluer
la robustesse modulaire. Voir la section 3.2.1.2.

18.1. Modularité 379

une description modulaire de haut niveau valide14. En des termes qui seront précisés dans la
section 18.4.3, nous pourrions de même dire qu’un module devrait idéalement représenter, à haut
niveau, une fonction, exécutée dans le but de contribuer au comportement global specifique du
système. La décomposition fonctionnelle n’est pas arbitraire: toute dissection arbitraire d’un
système en n’importe quelles parties ne peut être considérée comme fonctionnelle. Une décom-
position arbitraire, conduisant à une description non valide, ne serait pas considéré explicative
d’une manière fonctionnelle ou mécaniste.

18.1.9 Modularité et explication
Il semble que la modularité soit liée à l’explication en diverses et fondamentales façons. Déjà
les premiers articles de Herbert Simon sur les systèmes quasi-décomposables soulignent que la
formule qui représente la dynamique agrégée15 d’un système quasi-décomposable est plus simple
que la formule de sa dynamique d’origine, ce qui signifie que l’agrégabilité produit économie de
description. Puisque une explication scientifique de la dynamique du système (au moins le type
déductive-nomologique d’explication16) emploierait sûrement cette formule, on obtient ainsi une
forme d’économie d’explication.

En général, la modularité devrait permettre une forme de description “à gros grain” (“coarse-
grained”), comprise comme l’opération de prendre un système complexe représenté comme un
ensemble de nombreuses parties, de partitionner cet ensemble en sous-ensembles disjoints, et de
considerer, à la place du système d’origine, un autre ensemble dans lequel chaque partie corre-
spond à chacun des sous-ensembles disjoints de l’ensemble original. Cela est fondamentalement
la même opération, qu’elle soit effectuée sur des ensembles de variables de l’équation, comme
dans l’agrégation, où elle apporte modularité dynamique, ou sur un réseau, où la représentation
originale peut être substituée par un réseau avec moins de noeuds, ou dans le cas des explications
fonctionnelles et mécanistiques17, où un groupe de pièces ou d’actions en interaction peut être
considéré comme une fonction entière, ou un mécanisme entier, et un groupe de mécanismes peut
être considéré comme une seule super-mécanisme, dont les parties sont les mécanismes simples.
Cette situation s’applique également, dans un sens, à la modularité dans les systèmes informa-
tiques, où une liste d’instructions peut être réécrite dans un langage de haut niveau dans lequel
chaque instruction de haut niveau correspond à une sequence d’instructions de niveau inférieur:
de plus, un langage de haut niveau est un exemple très typique de description “à gros grain”.
Dans chacun de ces cas, une économie de description est atteinte, et, sans doute, l’intelligibilité
de l’explication est grandement facilitée.

Une autre forme d’économie de description est obtenue dans certaines descriptions modulaires
lorsque plusieurs copies récurrentes du meme module peuvent être remplacées par une seule
citation du modèle général de ce module, une forme de modularité qui, dans des programmes
informatiques, correspond à l’appel du même sous-programme de différents points du programme.

Considérations d’économie ou d’intelligibilité à part, la modularité est nécessaire pour produire
certains types d’explication. La stratégie explicative analytique de Robert Cummins, que nous
allons aborder dans la section 18.4.3 et l’explication mécaniste aussi, explicitement plaident, afin

14 On peut objecter que la robustesse de modules de haut niveau peut être obtenue par une correspondance com-
plexe et pas immédiatement évidente entre groupes hétérogènes de sous-configurations éphémères de bas niveau
et modules de haut niveau. Ceci, je pense, est pas une objection banale, surtout compte tenu de l’importance que
je prête à la relativité de la modularité. Je vais examiner cette question, qui a des implications profondes, dans
la section 14.5.2.

15 Voir la section 18.1.5.
16 Voir la section 18.4.4.
17 Voir la section 18.4.3.

380 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

de produire une explication, la décomposition hiérarchique du fonctionnement du système. Bien
sûr, cette décomposition est possible seulement dans le cas où une certaine forme de modular-
ité fonctionnelle est présente dans le système, c’est-à-dire, lorsque les modules recherchés peut
légitimement être considérés comme des modules fonctionnels. De même, l’idée d’une explication
mécanistique semble exiger la découverte d’une coïncidence entre deux types de hiérarchies, à
savoir entre une description structurelle et une description fonctionnelle du système, au moins
dans la conception du mécanisme proposé par William Bechtel et son groupe: pour ces auteurs,
qui ne voient pas l’explication mécaniste comme simplement réductionniste, il est essentiel que
l’explication soit à plusieurs niveaux, ce qui correspond à une description fonctionnelle mécaniste
hiérarchique du système. En adoptant une vue épistémique de l’explication18, ces mêmes auteurs
tout naturellement soulignent également l’importance de l’intelligibilité cognitive des explications,
et cela peut être réalisé par la modularité des descriptions employées dans les explications.

Donc, en premier lieu, il semble qu’au moins les explications d’un certain type, à savoir les
explications mécanistiques ou fonctionnelles, nécessitent de la modularité, même si on néglige la
question de l’intelligibilité de ces explications.

Mais, la modularité hiérarchique permet également des explications à plusieurs niveaux qui
augmentent certainement la compréhension. Étant donnée une décomposition hiérarchique mé-
caniste appropriée, un système peut être décrit à n’importe quel niveau de description souhaité,
avec des résultats différents sur l’intelligibilité de l’explication: les niveaux à grains grossiers plus
abstraits permettent une explication très simplifiée, ce qui induit généralement une meilleure
compréhension, tandis que le choix de procéder à des niveaux inférieurs, plus détaillées, améliore
l’information sur le système véhiculée par l’explication, probablement au détriment de la com-
préhension: l’explication la plus détaillée possible est celle qui décrit le système en termes des
entités de plus bas niveau19, et, dans de nombreux cas, la quantité d’informations contenues dans
une telle description pourrait entraver son intelligibilité.

18.1.10 Quelques exemples d’applications de la modularité dans la
recherche scientifique réelle

Je vais me concentrer ici sur quelques brèves considérations sur l’importance de la modularité
dans la recherche et la pensée biologique, parce que la biologie est l’un des domaines dans lesquels
la modularité a plus été au centre de l’attention ces derniers temps. Une observation évidente
est que les organismes sont sans aucun doute modulaires, à de nombreux niveaux: ils sont, dans
une vue biologique, composée de systèmes, d’organes, de cellules, de macromolécules. Il est
moins évident si la modularité est présente à certains niveaux intermédiaires qui peuvent être
vus comme des systèmes complexes, comprenant de nombreuses régions: par exemple, sont le
génome, le protéome, ou les réseaux métaboliques modulaires?

Donc, une première question à poser est: Est-ce que l’évolution produit des architectures et
des dynamiques modulaires dans les organismes? Et, si tel est le cas, a la modularité évolué
par la sélection naturelle ou pour d’autres raisons? En dehors de l’étude empirique possible de
ce problème, certaines considérations a priori ont semblé capable de l’éclairer, au moins depuis
l’époque de Herbert Simon. Il y a un certain nombre d’arguments pointant à la conclusion
que la sélection naturelle devrait effectivement conduire à l’organisation modulaire. Tous ces
arguments sont essentiellement issus de la ligne de raisonnement suivante: dans un organisme

18 Voir la section 18.4.3.
19 Le niveau plus bas de description, qui correspond dans mon terminologie à la description preferée, est

généralement une question de choix ou d’une convention, aussi selon Bechtel et ses co-auteurs. Voir les sections
18.4.7 et 11.1.5.

18.1. Modularité 381

non-modulaire, totalement intégré, dans lequel chaque partie affecte potentiellement toutes les
autres, un changement évolutif dans une partie pourrait affecter et éventuellement perturber
les fonctions exercées par les autre parties, et, compte tenu de cela, le nombre de tentatives
d’évolution potentiellement nécessaires pour obtenir un organisme encore fonctionnel après un
changement dans l’un de ses parties serait énorme, et il est donc plausible soutenir que, si tel fût
le cas, la sélection naturelle n’aurait eu pas le temps, en dépit de l’échelle géologique des temps
de l’évolution sur cette planète, pour réaliser l’évolution de systèmes biologiques complexes. Cela
est plus ou moins l’argument général pour l’évolution de la modularité proposé dans les années
60 par Herbert Simon20 et adopté, avec variations, par de nombreux auteurs ultérieurs. À partir
des œuvres de Stuart Kauffman dans les années ’90, un argument alternatif (mais à mon avis
pas si dissemblable, voir la section 7.1.2) est apparu, qui, tout en affirmant la modularité des
systèmes biologiques, nie sa origine directe par la sélection naturelle: la modularité est plutôt
une propriété auto-émergente d’une certaine classe de systèmes complexes dynamiques, propriété
coïncidante avec la “congélation” de certains de leurs sous-systèmes dynamiques (voir ci-dessus,
la section 18.1.6), qui n’apparaît pas par sélection directe, mais en vertu des caractéristiques
intrinsèques, mathématiques, de ces systèmes21. Le génome (vu comme un ensemble de parties
interagissantes, c’est-à-dire le réseau de régulation génétique) d’un organisme peut, selon Kauff-
man, être considéré, avec une certaine approximation, appartenant à cette classe de systèmes
dotés d’une tendance à faire émerger la modularité spontanément, une classe qui se révèle être la
classe des systèmes les plus évolvables: le rôle de la sélection naturelle aurait été celui de opérer
une méta-sélection de la classe des systèmes évolvables sur laquelle, alors, réaliser son rôle sélec-
tive analytique plus fin, comme classiquement conçu dans le darwinisme22, et cette classe est la
classe de systèmes complexes qui, spontanément, montrent une certaine forme de modularité.

Ainsi, il semble, tout considéré, qu’il y a des raisons pour lesquelles les systèmes biologiques
évolué doivent avoir de préférence une organisation modulaire. Beaucoup de ces systèmes sont
si complexes et composés de si nombreuses parties, que la détection de leur modularité fonc-
tionnel, permettant leur explication à plusieurs niveaux, serait d’une grande aide aussi pour la
compréhension de ces systèmes.

En biologie, depuis les fin des années ’90, certaines propositions sur la possibilité de voir des
systèmes biologiques complexes comme composés de modules fonctionnels ont été directement
inspirées par le point de vue de l’ingénieur sur les systèmes artificiels, notamment les circuits
électriques: parmi les propositions les plus éminentes au sujet de cette vue, sont McAdams &
Shapiro (1995) et hartwell:1999from23. Ce point de vue a été appliqué aux réseaux génétiques et
métaboliques, où la grande spécificité des connexions électriques entre les composants d’un circuit
électronique est substituée par la spécificité de la relation entre une protéine et son ligand, et
l’ensemble du réseau biologique est représenté comme un circuit numérique, ce qui est équivalent
(avec quelques différences, tenant en compte le temps de propagation des signaux) à des réseaux
booléens. Dans ces circuits, chaque module est un spécimen d’un composant standard, reliés
aux autres modules par câblage, et le circuit numérique complet peut être considéré comme
une structure hiérarchique, dans laquelle chaque niveau est descriptible comme un circuit de
pièces modulaires, interconnectées, et reproductibles, qui permettent aux modules numériques

20 Avec la célèbre parabole des deux horlogers, voir la section 7.1.1 et, évidemment, Simon (1962).
21 Ce genre d’explication fournie par Kauffman peut être considérée comme une forme d’explication topologique,

selon le modèle récemment proposé par Philippe Huneman. Voir la section 18.4.5 et Huneman (2010).
22 Je saisis l’occasion ici pour un avertissement: même quand j’écris de la sélection naturelle en termes inten-

tionnels, je ne prône pas de la considérer comme un sujet intentionnel. C’est seulement, de toute évidence, une
utile “façon de parler”, largement courant en biologie.

23 Pour une méta-réflexion sur les méthodes de la recherche biologique, la modularité et l’approche de
l’ingénierie, on peut aussi voir lazebnik:2002radio.

382 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

de haut niveau de réaliser pratiquement tout circuit numérique, même ceux susceptibles d’être
considérés comme des systèmes computationnels. Voyez fig. 18.3 pour une exemplification de la
vue hiérarchique d’un circuit électronique numérique.

Les pièces modulaires peuvent être, dans le cas des réseaux génétiques, les gènes individuels
et, à un niveau supérieur, des complexes de gènes comme les opérons des génomes bactériens.
Tels composants de plus haut niveau auraient un rôle fonctionnel, comme dans le cas, par exem-
ple, d’un opéron, qui contrôle la production d’un complexe d’enzymes effectuant une fonction
métabolique spécifique. Une possible représentation schématique d’un “circuit génétique” est
montrée dans la fig. 18.4.

Hartwell et al. (1999) propose que les termes linguistiques (“amplification”, “correction
d’erreurs”, “détection de coïncidence”, et ainsi de suite ..) correspondants à des fonctions de
mi-niveau et de haut niveau réalisées par des modules à des niveaux hiérarchiques intermédiaires,
constituent un vocabulaire de termes, essentiel pour la description fonctionnelle des systèmes
biologiques.

18.2 Détection algorithmique de la modularité

J’examine ici des algorithmes pour la détection de modularité dans certaines classes de systèmes
complexes, c’est-à-dire, algorithmes qui, étant donné un système complexe et une description
élémentaire préférée de celui-ci, essayent de produire une description modulaire hiérarchique du
système.

18.2.1 Détection de modularité dans les réseaux et complexité
computationnelle

Je prends en considération, en particulier, algorithmes pour la détection de modularité dans
les réseaux, parce que les modèles basés sur des réseaux ont émergé, dans la recherche récente,
comme l’un des moyens privilégiés de représenter des systèmes complexes, en particulier les
systèmes biologiques. Un réseau peut en général être considéré comme un ensemble de pièces, ses
nœuds, reliés entre eux de différentes manières au travers des liens (une potentielle représentation
graphique d’un réseau est fig. 18.5). Il y a deux principaux formes possibles de modularité dans
les réseaux, qui ne sont pas incompatibles: structure de communauté et modularité basée sur le
motifs de réseau24. Alors que la première est basée sur la conception typique de la modularité
comme sous-systèmes robustes lâchement connectés, la seconde coïncide avec l’idée du modules
comme pièces standard reproductibles.

Dans le chapitre 3 je produis une vue d’ensemble sur les principales méthodes proposées pour la
détection des deux types de modularité dans les reseaux, avec une attention particulière à leur
faisabilité computationnelle: il se trouve que la plupart des meilleurs algorithmes de détection
de modularité dans les réseaux sont très exigeants du point de vue computationnel, et il y a
aussi une limite théorique sur leur exactitude. Pour résumer, il a été prouvé que le constat
automatisé de la meilleure description modulaire d’un système est entravé par une complexité
insurmontable du temps de calcul: la tâche est NP-complete25. En outre, il se trouve que la
plupart des algorithmes pour simplement approximer la détection optimale de modularité dans
les réseaux, sont eux-mêmes fortement intensifs du point de vue computationnel. En général, il
semble que la détection algorithmique de la modularité du réseau est affecté par un compromis

24 Voir la section 3.
25 Voir la section 18.3 et la section 17.4 de l’Appendice.

18.2. Détection algorithmique de la modularité 383

Figure 18.3: image A: un diagramme de haut niveau représentant un circuit numérique. Sauf pour quelques
portes logiques simples (U4A et U4B), la plupart des composants sont de plus haut niveau, et peuvent être
considérés des modules effectuants des fonctions de niveau supérieur. Dans ce cas, chacun des composants
étiquetés U2A, U2B, U3A, U3B est un soi-disant flip-flop J-K, qui est un type de bascule ou de cellule de mémoire
à 1 bit. Chaque bascule peut être vue (image B) comme composée à l’intérieur d’un certain nombre d’éléments
plus simples, à savoir portes logiques NAND. Chacune des portes NAND à deux entrées étiquetées comme G1
et G2 dans l’image B sont structurées en interne comme un circuit composé de transistors et des résistances,
comme dans l’image C. Bien sûr, une description au niveau plus élevé que celui de bascules est plausible: par
exemple, l’ensemble du circuit de l’image A peut être défini comme un module assurant la fonction d’un compteur
de chiffres, qui compte les impulsions envoyés à sa ligne d’entrée et affiche le nombre compté dans l’affichage
marqué DCD_HEX. En tant que module, ce circuit peut être utilisé comme un élément standard dans d’autres,
plus grands circuits. (Images A, B et C prises à partir de Wikipedia Commons, respectivement à les adresses
http://commons.wikimedia.org/wiki/File:4_bit_counter.svg, http://commons.wikimedia.org/wiki/File:JK-
FlipFlop_(4-NAND).PNG et http://commons.wikimedia.org/wiki/File:TTL_npn_nand.svg).

entre la complexité de la tâche et la fiabilité de la description modulaire produite, et pour
cette raison l’identification de descriptions hiérarchiques approximatives mais acceptables, est
algorithmiquement possible uniquement pour les systèmes de taille limitée.

384 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

Figure 18.4: représentation schématique du circuit génétique générant la dynamique du cycle lysogénique dans
le phage λ. (Le phage est un virus qui affecte les bactéries. Image prise à partir de McAdams & Shapiro 1995,
p. 652).

18.2.2 Détection de la modularité des systèmes dynamiques discrets et des
systèmes computationnels

En accord avec les considérations sur la modularité dynamique esquissées ci-dessus, je passe à en-
visager des formes de modularité dynamique dans certains types de systèmes dynamiques discrets
computationnels. La possibilité de détection de modularité dynamique et computationnelle dans
ces types de systèmes, qui peuvent souvent être considérés comme des systèmes informatiques
au niveau de la machine de Turing, se révèle être atteinte par l’indécidabilité algorithmique ou,
au moins, par un complexité computationnelle importante. Une première discussion préliminaire
sur cette question va être menée dans ce qui suit.

18.2.3 Modularité et sciences biologiques: quelque exemple

Compte tenu du fait que la modularité fonctionnelle et la modularité structurelle, même si con-
ceptuellement distinctes, sont souvent liées, les méthodes de détection automatique de la mod-
ularité dans les réseaux, qui appliquent à la structure du réseau, pourraient, lorsque appliquées
à la représentation sous forme de réseau d’un système biologique, donner une description mod-
ulaire immédiatement fonctionnelle. La coïncidence fréquente entre l’organisation structurelle
et l’organisation fonctionnelle dans les systèmes biologiques est confirmée par de nombreux ou-

18.3. Difficulté calculatoire 385

Figure 18.5: un réseau avec une structure de communauté. Dans cette image, disques colorés entourent les
communautés, qui montrent haute densité de liens intra-modules, tandis les liens externes inter-modules sont plus
rares.

vrages, notamment, entre autres, par une série de recherches par Zhou et Lipowsky26, dans
lequelles l’une des meilleures méthodes pour la détection de la modularité dans les réseaux est
appliquée au réseau des interactions protéine-protéine de la levure. Cette application produit une
description modulaire comprenant 449 modules, qui se révèlent correspondre à des sous-systèmes
fonctionnels déjà bien connus, qui sont des composants d’une description modulaire de niveau
encore plus élevé. Un autre travail important qui souligne une coïncidence entre modularité
structurelle et fonctionnelle dans les systèmes biologiques est Guimerà & Amaral (2005b), qui
applique aux réseaux métaboliques un algorithme de détection de la modularité qui identifie
les modules, et après il leur attribue un rôle fonctionnel présumé sur la base de la connectivité
structurelle intra et inter-module. Les modules fonctionnels identifiés ont des rôles qui se révèlent
être corrélés très bien avec les fonctions biologiques réelles que les métabolites correspondants
à chaque module effectivement accomplissent dans l’ensemble du réseau métabolique. Voir fig.
18.6.

18.3 Difficulté calculatoire

La difficulté calculatoire est une limitation pragmatique de certaines tâches computationnelles,
qui consiste essentiellement dans le fait qu’elles ne peuvent pas éventuellement être menées à
leur terme si la taille de leurs données d’entrée dépasse certaines limites27. Cela signifie que,
en général, la tâche de calcul en question, tandis que exécutable en principe, ne pourrait pas

26 Voir zhou:2004network et zhou:2006yeast.
27 Cela est la complexité temporelle du programme, qui n’est pas le seul type de complexité calculatoire.

Autres types de complexité et un meilleur traitement de tous ces sujets peuvent être trouvés dans la section 17.4
de l’Appendice.

386 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

Figure 18.6: représentation modulaire de haut niveau d’un réseau métabolique. Image prise à partir de Guimerà
& Amaral 2005b).

être amenée à une fin en temps humaines, ou même en temps astronomiquement possibles, si la
taille de l’input dépasse une certaine ampleur. Cette situation est typique, par exemple, pour
des problèmes qui ont des temps d’exécution proportionnels à une fonction exponentielle de
leur taille: même pour les petites tailles de leur inputs, les temps d’achèvement du programme
pourrait atteindre des valeurs irréalisables, car les fonctions exponentielles augmentent leur valeur
très vite. Donc, même si la dureté de calcul est seulement une limitation en principe, elle est
certainement une limitation insurmontable d’un point de vue pragmatique. Les classes les plus
typiques de complexité de calcul qui peuvent être considérées comme difficiles, sont les classes des
problèmes algorithmiques soi-disants “NP-complets” (“NP-complete”) et “NP-difficiles” (“NP-
hard”) .

Certaines tâches algorithmiques qui ne doivent pas être considérées formellement difficiles, peu-
vent néanmoins être trop exigeantes computationnellement, pour être d’application pratique.
Cela se produit par exemple quand une tâche nécessite d’un certain nombre de pas qui est pro-
portionnel à une certaine puissance entière de la taille de l’input: par exemple, n4, où n est la
taille de l’input. Dans ces cas, étant donné un input suffisamment grand, le programme prendrait
certainement trop long à terminer pour être d’une quelconque utilité pratique.

La difficulté calculatoire et le haut coût computationnel pratique sont deux notions sur lesquelles

18.4. Antimodularité 387

ma proposition sur l’antimodularité se base, comme nous le verrons dans la prochaine section.

18.4 Antimodularité

Compte tenu de tous les résultats ci-dessus à propos de la difficulté calculatoire de la détection
algorithmique de la modularité, je propose de définir la propriété de l’antimodularitè en général,
comme l’impossibilité d’obtenir, au moyen d’une détection algorithmique de la modularité, une
description modulaire hiérarchique utile et valide d’un système. Plus précisément, un système
montre antimodularité lorsque sa description hiérarchique la plus réaliste et fidèle, donnée par
des moyens algorithmiques, est quand même trop approximative pour être une description utile
de haut niveau du système, ou lorsque elle est même non valide du tout. Dans ces cas, le seul
possible description hiérarchique ne comprend que le deux niveaux hiérarchiques banals: le niveau
de l’ensemble du système et le niveau de ses parties élémentaires du niveau plus bas: en d’autres
termes, les systèmes antimodulaires sont des systèmes qui, intuitivement, peut être expliqués par
décomposition à un seul niveau, le niveau de leurs pièces les plus fines et élémentaires.

L’antimodularité est due à l’échec de l’application de méthodes algorithmiques pour la détection
de la modularité, et cet échec, à son tour, peut être éventuellement imputé à deux conditions:

1. Pas de modularité de niveau intermédiaire peut être raisonnablement supposée dans le
système, étant donnée sa description préférée. Autrement dit, le système ainsi décrit en
fait n’est pas modulaire du tout. Je nomme ce cas antimodularité intrinsèque, ce qui signifie
que l’antimodularité est intrinsèque à la description donnée préférée, quoi que soit le degré
de précision de l’algorithme pour sa détection. Cette situation peut se produire lorsque les
parties du système, selon la description préférée, sont hyperconnectées: par exemple, dans
un réseau régulier chaque nœud est connecté à tous les autres, et donc pas de modularité
peut jamais apparaître.

2. Indépendamment du fait qu’une structure modulaire réelle est présente dans la description
préférée du système ou non (comme au point 1), l’antimodularité se produit parce que, étant
donné le nombre élevé de pièces composants la description préférée du système, l’algorithme
pour la détection de modularité finit pour être computationellement trop coûteux pour être
porté à son accomplissement, soit parce qu’il est computationnellement difficile (hard)28,
ou, bien que formellement pas difficile, parce qu’il est de toute façon computationnellement
trop coûteux pour être terminé dans un temps raisonnable. J’appelle cette dernière rai-
son tout simplement antimodularité (bien sûr, l’antimodularité intrinsèque est un cas de
antimodularité).

La raison derrière cette distinction entre antimodularité intrinsèque et antimodularité tout-court,
est que, tandis que l’antimodularité pourrait dans certains cas être éliminée par l’amélioration
de l’algorithme de détection de la modularité, l’antimodularité intrinsèque persisterait encore,
en tout cas, parce que elle n’est pas due à l’imprécision ou au coût calculatoire de l’algorithme
utilisé, mais à une caractéristique objective du système, où, en raison de la distribution uniforme
à travers le système de l’intensité de la relation qui concerne ses pièces, la modularité, par rapport
à cette relation choisie entre les pièces, est, en fait, objectivement absente.

Il pourrait être utile, une fois en présence d’antimodularité, d’avoir une méthode pour déter-
miner si elle est antimodularité intrinsèque, ou si une forme de modularité est présente, mais

28 Voir la section précédente.

388 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

elle ne peut pas être détectée. En raison de la distribution statistique de la relation entre les
parties, l’antimodularité intrinsèque, au moins l’antimodularité intrinsèque structurelle, devrait
être relativement facile à détecter, car l’absence intrinsèque de modularité peut être révélée par
des enquêtes statistiques sur la répartition de certaines propriétés à travers un système. Donc, il
devrait être assez facile de distinguer l’antimodularité et l’antimodularité intrinsèque, au moins
dans certains cas. Il y a, cependant, des exceptions qui sont discutées dans la section 13.2.

À la lumière de ce que nous avons vu jusqu’à maintenant, il semble que la détection de la
modularité peut, en systèmes assez grands, être effectivement empêchée par des problèmes de
coût de calcul, ou même par l’impossibilité formelle de terminer la computation en un temps
raisonnable, de sorte qu’un système peut être pragmatiquement considéré antimodulaire, même
si en principe il possède une certaine modularité, qui, cependant, nous sommes pratiquement
incapables de détecter automatiquement. Une description préférée antimodulaire d’un système
ne possède, au moins pour autant que nous pouvons le savoir, aucune description modulaire valide
de haut niveau, c’est-à-dire une description dont les parties sont dotées d’un degré suffisant de
robustesse.

L’aspect pragmatique de l’antimodularité, de toute façon, ne doit pas être minimisé comme sim-
plement pragmatique: il est une impossibilité pragmatique de mener à terme dans un temps
réalisable un programme d’ordinateur, mais, surtout lorsque la complexité calculatoire d’un al-
gorithme a été mathématiquement prouvée, cette entrave pragmatique devient quelque chose
de plus puissant, avec la force d’une loi logique: il ne peut y avoir aucun espoir de rendre
l’algorithme d’optimisation de la modularité détectée plus docile, lorsque il est prouvé être com-
putationellement complexe. Peu importe comment nous essayons d’améliorer un algorithme com-
putationnellement complexe, ou d’améliorer la puissance du système sur lequel il fonctionne: son
temps d’exécution défera, au moins dans certains cas, toute amélioration possible de la vitesse.
L’optimisation de la détection de modularité peut être probablement approchée en des temps
plus raisonnables, mais le compromis entre vitesse et précision, qui est typique des algorithmes
approchés pour la détection de la modularité, associé avec le nombre élevé de parties de certains
systèmes complexes, pourrait rendre la modularité détectée trop approximative ou, au contraire,
rendre trop élevé le temps de détection d’une description modulaire suffisamment précise, même
si l’algorithme approchée n’est pas proprement difficile d’un point de vue calcolatoire formel.

Donc, l’antimodularité, au moins pour ce qui concerne la recherche de la meilleure description
modulaire, une recherche qui a été révélée être une tâche NP-complet, est un fait pragmatique,
mais dans le même temps elle est une propriété objective inévitable d’un système, découlant de
propriétés absolues de la computation qui ne dépendent pas de contraintes incidentales ou d’un
choix fait par l’observateur.

18.4.1 Émergence antimodulaire

Je propose d’appeler l’apparition de l’antimodularité dans un système, un cas d’émergence anti-
modulaire, et de la considerer comme une forme d’émergence computationnelle. L’antimodularité
apparaît en effet tout à fait semblable à une forme bien connue de l’émergence: l’émergence
faible (weak emergence), une notion proposée par Mark Bedau depuis le milieu des années 90.
Cela est une notion d’émergence diachronique liée à certaines propriétés des systèmes compu-
tationnelles. Je compare spécifiquement ma notion proposée d’émergence antimodulaire à celle
de l’émergence faible, et je conclus que l’antimodularité implique, avec quelques reservations,
l’émergence faible, mais que l’implication réciproque ne vaut pas pour tous les systèmes: il y a
des systèmes modulaires qui sont, en même temps, faiblement émergents. Je décris ici la ligne de

18.4. Antimodularité 389

base du raisonnement sur la relation entre l’antimodularité et l’émergence faible, une discussion
qui sera élargie dans la section 13.3.

Mark Bedau (1997) introduit la notion d’émergence faible (WE désormais), qui, dans sa formu-
lation originale, s’applique principalement aux systèmes dynamiques discrets:

Le macroétat P de S avec microdynamique D est faiblement émergent ssi P peut être dérivé
de D et des conditions externes de S, mais seulement par simulation.29

Sans nous attarder ici à une explication des termes employés dans la définition ci-dessus, il suffit
ici de dire que à mon avis la définition de Bedau pourrait être reformulée en toute sécurité
comme:

Un macroétat est faiblement émergent ssi il peut être dérivé à partir de la description
préférée, du bas niveau, du système et de son état initial, mais uniquement par microsimula-
tion, c’est-à-dire la simulation de la dynamique du système pas à pas à son plus bas niveau
de description (le niveau de sa description préférée).

Il semble que, dans la plupart des conditions, (qui sont mieux précisées ci-dessous et dans la
section 13.3), l’antimodularité implique l’émergence faible de Mark Bedau. L’argument est,
brièvement, ceci: si un système est antimodulaire, alors, par définition, cela signifie que sa
seule description modulaire valide est son description préférée, c’est-à-dire sa description au plus
bas niveau. Ceci implique que le système ne soit pas prévisible au moyen d’une simulation
modulaire de haut niveau: parce que, si cela était, cela voudrait dire que la simulation de haut
niveau, en ce qu’elle est capable de prédire le système, représente une description modulaire de
haut niveau valide. Mais, dans un système antimodulaire, cette description modulaire valide
de haut niveau du système doit être exclue, par la définition de antimodularité. Donc, on
peut conclure que la dynamique d’un système antimodulaire n’est pas susceptible d’être prévue
par aucune simulation modulaire de haut niveau: si aucune autre méthode de prédiction non-
modulaire est applicable, alors la seule façon de savoir comment le comportement du système
va évoluer est par simulation du système au niveau de sa description préférée, c’est-à-dire par
micro-simulation. Cette dernière circonstance semble équivalente à la reformulation que j’ai faite
ci-dessus de la définition d’émergence faible de Bedau. Donc, il semble que antimodularité →
émergence faible. Cette implication n’est pas absolument sûre, cependant, car elle dépend de
la circonstance qu’un système antimodulaire donné, qui par définition d’antimodularité ne peux
pas être prévisible par aucune simulation modulaire de haut niveau, soit également impossible de
prédire par tout autre moyen non modulaire. Dans la section 13.3 je montre comment certains
systèmes antimodulaire pourrait en effet être prédits par moyens de haut niveau non modulaires,
et ainsi résulter antimodulaires mais pas faiblement émergents. Toutefois, je vais soutenir que
ces systèmes ne sont probablement pas très intéressants dans leur comportement, et que dans les
systèmes complexes les plus intéressants, comme ceux capable de computation, l’antimodularité
implique l’émergence faible.

La chose intéressante est que l’implication opposée ne tient pas: il existe des systèmes faiblement
émergents qui en même temps ne sont pas antimodulaire, c’est-à-dire des systèmes qui ont des
descriptions modulaires de haut niveau valides. Le système reste faiblement émergent même en
présence de ces descriptions modulaires, parce que telles descriptions de haut niveau ne peuvent
pas être utilisées pour prédire le système (une prédiction qui, si possible, rendrait le système non

29 Bedau (1997), p.378.

390 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

faiblement émergent, par définition), quoique elles puissent être utilisé pour expliquer le système.
Cette situation peut se produire pour deux raisons possibles. D’abord, pour la raison que telles
descriptions modulaires sont trop vagues, trop abstraites, trop de haut niveau pour être utilisées
pour calculer une simulation dynamique du système: par exemple, des organigrammes qui tout
simplement décrivent sommairement les rôles fonctionnels que les modules remplissent dans le
système, sans fournir assez de détails pour permettre leur mise en œuvre, leur implémentation.
Ces descriptions de haut niveau modulaires ne peuvent pas simuler dynamiquement le système,
de sorte qu’elles ne peuvent pas anticiper de aucune manière ses résultats dynamiques, mais elles
peuvent être utilisés pour expliquer le système, véhiculant une bonne explication. Dans un autre
cas, la raison pour laquelle le système est faiblement émergent malgré ses possibles redescriptions
modulaires de haut niveau, est que le système, même si fonctionnellement modulaire à un niveau
élevé, est intrinsèquement imprévisibles, et cela est la raison de son être faiblement émergent.
Cette situation peut se produire dans les systèmes computationnels universels, qui, comme une
conséquence de l’indécidabilité du problème de l’arrêt (la propriété bien connue prouvée par Alan
Turing avec sa proposition de systèmes informatiques en 193630), possèdent de nombreuses pro-
priétés dynamiques qui sont intrinsèquement imprévisibles. Les ordinateurs universels du monde
réel sont généralement des systèmes de ce genre: ils sont très modulaire, mais potentiellement
imprévisibles. Donc, ils sont modulaires et en même temps faiblement émergents.

18.4.2 Antimodularité et modèles de l’explication
Après avoir défini ce nouveau type d’émergence computationnelle, qui est dû à la difficulté calcula-
toire qui peut se manifester en certains cas dans des algorithmes pour la détection de modularité,
je tente de tirer quelques conséquences possibles de l’émergence antimodulaire sur la possibilité
d’expliquer scientifiquement les systèmes qui en souffrent. Je examine deux modèles bien connus
de l’explication scientifique: l’explication fonctionnelle-mécaniste et celle déductive-nomologique
(DN, désormais). Je évalue ensuite un modèle plus débattu d’explication, l’explication compu-
tationnelle, et un autre type d’explication qui a été l’objet d’une analyse récente par Philippe
Huneman, l’explication mathématique-topologique, une forme d’explication adéquate pour expli-
quer certaines caractéristiques des systèmes dynamiques complexes. Je conclus que l’émergence
antimodulaire affecte la faisabilité des deux premiers types d’explication, ainsi que des expli-
cations computationnelles, quoique différemment, et laisse intacte la possibilité d’explication
topologique, constituant l’émergence antimodulaire elle-même une opportunité pour ce genre
d’explication.

18.4.3 Antimodularité et explications fonctionnelles ou mécanistes
Je soutiens que l’antimodularité affecte négativement l’explication mécanistique, une forme fon-
damentale d’explication dans les sciences biologiques. Un bref détour est nécessaire ici pour
décrire ce que cette forme d’explication représente.

Le terme explication mécanistique se réfère généralement dans la philosophie de la science de
nos jours à un modèle relativement récent de l’explication scientifique, proposé depuis les années
’90 par plusieurs groupes de philosophes de la biologie et des sciences cognitives plutôt indépen-
damment. Les représentants les plus éminents des deux lignes principales d’enquête dans ce
domaine sont William Bechtel et ses collaborateurs d’une part, et Carl Craver et ses collègues
de l’autre31. Laissant pour le moment de côté les différences subtiles entre ces deux principales

30 Comme expliqué dans la section 17.2.6 de l’Appendice.
31 Les deux œuvres séminales correspondantes sont Bechtel & Richardson (1993) et Machamer et al. (2000).

18.4. Antimodularité 391

conceptions de l’explication mécaniste32, je me base ici sur Bechtel & Abrahamsen (2005), qui est
un texte standard dans le sujet. Bechtel et Abrahamsen (BA désormais) donnent une définition
du mécanisme comme ceci:

Un mécanisme est une structure remplissante une fonction33 en vertu de ses parties com-
posantes, de ses operations composantes, et de leur organisation. Le fonctionnement or-
chestrée du mécanisme est responsable d’un ou de plusieurs phénomènes34.

La définition ci-dessus définit un mécanisme comme quelque chose de semblable à ce que j’appelle
un système complexe, c’est-à-dire un système composé de parties en interaction. Le point à
souligner ici est qu’il y a une vue fonctionnelle impliquée dans l’explication mechaniste: la
fonction globale, qui représente l’explanandum, est expliquée en décrivant l’organisation et les
interactions des parties qui, au moyen de leur dynamique “orchestrée”, produisent le phénomène.
Ce qui est nécessaire, selon BA, pour expliquer un phénomène donné, est alors d’abord d’identifier
les pièces et les opérations impliquées dans sa production. Dans ce but, le système dans son
ensemble doit être soumis à deux opérations, qui BA appellent décomposition structurelle et
décomposition fonctionnelle: la première identifie l’ensemble de pièces élémentaires du système,
tandis que la seconde, qui, dans le monde de la science réelle est souvent menée séparément
de la première, identifie les opérations composantes. Une troisième opération souhaitable est la
localisation, qui consiste à relier les pièces avec les opérations qu’elles effectuent. De cette façon,
une explication mécaniste est donnée, selon BA. Ce bas niveau d’explication n’est pas toujours le
plus souhaitable, et, comme BA soulignent, il est important qu’une hiérarchie de mécanismes soit
considérée, et que l’explication soit multiniveaux. Selon BA, un mécanisme peut aussi impliquer
de niveaux multiples d’organisation, étant le mechanisme observé souvent partie d’un mécanisme
plus large de niveau supérieur: les circonstances extérieures à un mécanisme donné peuvent être
vu comme des mécanismes généraux globals, tandis que les composantes d’un mécanisme peut
être considérées comme mécanismes elles-mêmes, elles-mêmes composées, de manière récursive,
des sous-parties.

Il me semble que toute cette conception de mécanismes pourrait facilement être reformulée en
termes de modularité, le long des lignes de la position que je viens d’esquisser jusqu’à maintenant.
Le résultat de la décomposition fonctionnelle et structurelle et de la localisation est ce que
j’ai appelée la description préférée du système: l’identification des éléments de base, au plus
bas niveau, que l’observateur a choisi d’identifier. BA ne stressent pas, comme je le fais, la
dépendance de cette description d’un choix de la part de l’observateur, parce qu’ils considèrent
implicitement qu’il existe des descriptions préférées naturelles de certains systèmes, et il y en a
sans aucun doute, par exemple en biologie moléculaire, où les molécules (ou, éventuellement, les
atomes) sont le parties élémentaires les plus naturelles. La principale différence avec mon point
de vue est alors que ma conception de la modularité hiérarchique est plus générale et inclusive de
formes de modularité non-physiques et exclusivement fonctionnelles, comme celles concernantes
la computation.

show how antimodularity compels to single-level-only explanations, neglecting the need, essential
for mechanistic explanations, of multi-level integration. Antimodularity would limit mechanistic
explanation to the level of description representing the most elementary parts of the systems,

32 Ces différences, surtout les plus importantes, entre la soi-disante vue épistémique, soutenue par William
Bechtel (et que je soutiens aussi), et la vue ontique de mécanismes, soutenue par Carl Craver, sont discutées au
chapitre 10.

33 Voir la section 9.
34 Bechtel & Abrahamsen (2005), p. 423.

392 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

which is the most numerous and the most complicated, and this fact certainly hinders comprehen-
sion as well: for large enough systems, their mechanistic explanation at this level is too complex
to be understood by human beings, and understandability is a quality to be sought for in mech-
anistic explanation, according to some accounts, notably the ones by William bechtel and his
collaborators. Others, too, deem intelligibility an essential feature of explanations, for example
Petri Ylikoski, which considers “cognitive salience” an important feature of explanations.

Cela dit, il est facile de montrer comment lantimodularité oblige à avoir recours à un seul
niveau d’explication, et à négliger la nécessité, indispensable pour les explications mécanistes,
de l’intégration multi-niveau. L’antimodularité limiterait l’explication mécaniste au niveau de
description représentant les parties les plus élémentaires du système, qui est description la plus
nombreuse et la plus compliquée, et ce fait entrave certainement la compréhension: pour sys-
tèmes suffisamment grands, leur explication mécanistique à ce niveau est trop complexe pour
être comprise par les êtres humains, et la compréhensibilité est une qualité à rechercher dans
explication mécanistique, selon certains témoignages, notamment ceux de William Bechtel et ses
collaborateurs. D’autres auteurs, aussi, jugent l’intelligibilité une caractéristique essentielle de
l’explication, par exemple Petri Ylikoski, qui considère la “saillance cognitive” une caractéristique
importante des explications.

Il est évident qu’une explication mécanistique tente de répondre aux questions “comment” (“Com-
ment un phénomène est provoqué?”), au moyen de la description de la façon dont le complexe
fonctionnement dynamique d’un ensemble de pièces en interaction produit le phénomène. La
même question peut être répondue aussi juste du point de vue fonctionnel, et cette conception,
visante principalement à caractériser l’explication en psychologie cognitive, a été notoirement
avancé par Robert Cummins. D’une manière similaire à celle de la décomposition mécanique,
l’analyse fonctionnelle commence par une caractérisation du phénomène global (la disposition35)
pris comme la fonction globale qui doit etre expliquée en termes de ses sous-fonctions com-
posantes. Ceci est une forme typique de ce qu’on appelle fonctionnalisme du rôle, où la notion
de fonction36 est considérée comme celle d’un rôle partiel rempli par un sous-système afin de
contribuire à la production de l’ensemble de fonctionnement du système global. D’un point
de vue explicatif, la fonction d’un sous-système est employée à expliquer comment la fonction
globale, qui est l’explanandum, est effectuée au moyen des contributions de ses sous-fonctions
organisées, qui exécutent leur fonction dans une activité programmée. Cette position est assez
proche d’une vue informatique, et il est complètement compatible avec elle. En fait, l’analyse
fonctionnelle de Cummins est le prototype de l’explication typique de la psychologie cognitive,
qui se compose principalement d’explications fonctionnelles, souvent sous la forme d’explication
computationnelle, c’est-à-dire sous la forme de l’exposition d’un programme informatique capable
de produire le phénomène cognitive à expliquer.

Une caractérisation plus approfondie de la position de Cummins est donnée dans le chapitre 9,
où la relation entre l’explication purement fonctionnelle et l’explication mécaniste est également
mieux analysée. Ce que je voudrais souligner ici est que Cummins lui-même, depuis ses premières
œuvres (comme dans le séminal Cummins (1975)), souligne que la décomposition fonctionnelle
récursive afin d’obtenir une hiérarchie complète, est la stratégie à chercher dans les explications
scientifiques, en particulier dans les explications biologiques. L’antimodularité empêcherait com-
plètement cet objectif, en permettant seulement une explication à deux niveaux: le plus élevé,
celui de l’explanandum lui-même, et, sur l’autre extrémité de l’échelle, le niveau le plus bas, celui
des fonctions les plus élémentaires.

35 Je dédie une discussion à ce terme technique dans le chapitre 9.
36 La notion de fonction est examinée dans le chapitre 9.

18.4. Antimodularité 393

18.4.4 Antimodularité et modèle déductif-nomologique de l’explicaton
Dans le vue déductive-nomologique classique (DN) de l’explication, issue de l’ouvrage fondamen-
tal de Carl G. Hempel et Paul Oppenheim37, l’explication est considérée comme une déduction
logique de l’explanandum à partir de l’explanans, et ce qui compte est la validité et la correction
de la déduction, avec peu d’attention dirigée vers l’intelligibilité de l’explication: une telle préoc-
cupation à propos de la compréhensibilité de l’explication aurait été considérée, dans le milieu
historique post-neopositiviste de cette époque là, une intrusion inappropriée de la philosophie
des sciences dans le territoire des aspects pragmatiques ou pire, psychologiques de l’explication
scientifique. Dans une telle perspective, tout ce qui compte pour une explication c’est qu’elle
soit une déduction correcte. Dans ce modèle, on voit l’explication en tant que fonction de la
possibilité de prédiction du phénomène au moyen d’une loi scientifique. L’explication consiste
en une description de la dérivation logique de l’explanandum d’un groupe de prémisses constitué
par une loi scientifique et un ensemble de clauses représentant les conditions initiales du système
à expliquer.

Pour ce qui concerne les explications déductive-nomologiques, je montre que, puisque
l’antimodularité implique l’émergence faible dans les systèmes antimodulaires suffisamment
complexes, on ne peut pas recourir à l’explication DN pour un système antimodulaire complexe,
parce que, si cela était possible, cela voudrait dire que le système est prévisible, et la prévisibilité
est nié par la définition d’émergence faible soi-mème. Pour clarifier: il est exclu par la définition
d’un phénomène faiblement émergent qu’il peut être prédit par l’intermédiaire d’une loi qui,
étant donné l’état initial, détermine l’état dans lequel le système va être à un moment donné,
et que cette loi a une expression mathématique qui peut être résolu analytiquement. Comme
on a dit, cela est exclu par la définition même de l’émergence faible, ce qui indique simplement
qu’un phénomène faiblement émergent (dans un système dynamique discret) est celui qui
ne peut pas être prédit, et qu’il ne peut être atteint que par l’exécution pas à pas de la
microsimulation au plus bas niveau du système. Étant donné que ma notion de antimodularité,
dans les circonstances exprimées dans la section 18.4.1, implique l’émergence faible, il se trouve
qu’un système antimodulaire assez complexe ne peut être prédit par une expression susceptible
d’une solution analytique. Donc, aucune explication DN d’un système antimodulaire complexe
pourrait être fondée sur une telle loi analytiquement résoluble.

Cependant, si nous prenons en considération une classe spécifique de systèmes, à savoir les
automates cellulaires (CA), alors un processus faiblement émergent généré par un CA peut dans
un sens être expliqué par la production d’une liste, potentiellement très longue, des étapes de son
évolution, une liste qui peut être considérée comme une liste d’étapes déductives à l’intérieur d’un
système logique formel, dans lequel les prémisses sont constituées par la configuration initiale
de l’AC et par la règle du CA, qui est appliquée de façon répétée, premier à la configuration
initiale, et ensuite à chaque configuration intermédiaire obtenue à chaque étape déductive. Étant
donné que toutes les règle-CA sont, par le théorème de Curtis-Hedlund-Lyndon38, locales et tout
aussi valides en tout point de la matrice du CA, la forme d’un règle-CA peut dans cet égard
être assimilée à la forme d’une loi physique, qui, en tant qu’une loi, est valide universellement
partout. En conséquence, par cette analogie, la production de cette liste d’états consécutifs du
CA pourrait d’une façon être assimilée à une longue explication DN, qui doit se composer d’une
déduction logique de l’explanandum à partir de prémisses constituees par les conditions initiales
données et une loi. Même dans ce cas, la compréhension humaine serait entravée par la longueur
potentielle de la liste, mais, selon la position théorique des défenseurs post-neopositivistes du

37 Hempel & Oppenheim (1948).
38 Voir la section 14.2.1.

394 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

modèle DN d’explication, la compréhension est un élément inessentiel des explications, et elle
n’est pas nécessaire pour une bonne explication DN. Donc, en un sens, l’émergence faible et,
par conséquent, l’antimodularité, n’entravent pas l’explication DN, au moins dans le cas des
automates cellulaires et d’autres systèmes dont la dynamique universelle suit une règle universelle.
De cette considérations sont exclus des classes différentes de sistèmes dynamiques discrets, par
exemple les réseaux booléens en général, dont la dynamique peut suivre localement de règles
changeantes localement qui ne sont pas universelles. Dans ces cas, la règle que doit être utilisée
serait la règle de mise à jour globale, qui, étant non locale, est généralement beaucoup plus
complexe qu’un règle-CA, et, en conséquence, la liste des déductions constituante l’explication
selon le style déductif-nomologique de telles systèmes serait encore moin intelligible.

18.4.5 Antimodularité et explications topologiques
Je considère maintenant les conséquences de l’antimodularité sur la possibilité d’expliquer un sys-
tème complexe par le biais de ce que Philippe Huneman appelle explication topologique. Huneman
décrit l’explication topologique comme un type d’explication qui fait abstraction des relations
causales et des interactions dans un système, dans le but de repérer quelque sorte de propriété
“topologique” afin de tirer de cette propriété des conséquences mathématiques qui expliquent
certaines caractéristiques du système39. Inspirées de la topologie mathématique, les propriétés
topologiques d’un système sont les propriétés concernantes d’une manière sa “forme” qui sont
invariantes par rapport à les possibles déformations continues du système. Ces propriétés struc-
turelles ne doit pas appartenir à un système matériel, mais peuvent concerner un espace mathé-
matique abstrait. Dans ma terminologie, je dirais que ces propriétés topologiques ne concernent
pas un système, mais une description du système. L’explication topologique consiste à expli-
quer les caractéristiques du système en pointant certaines caractéristiques topologiques de la
représentation du système dans cet espace abstrait, et pas au travers des événements causales
entre ses parties, comme l’explication mécaniste ferait: l’explication est spécifiquement basée sur
une propriété mathématique, topologique, qui fait tout le travail explicatif.

L’explication topologique pourrait aussi être fondée sur la présence d’une structure modulaire.
Cette situation peut arriver par exemple si une explication topologique de la robustesse de la
dynamique d’un réseau à des perturbations locales est donnée en mentionnant que le réseau a
une structure de communauté40: cette structure modulaire assure que les perturbations restent
locale ou canalisées, sans se propager sans discernement à la même vitesse sur l’ensemble du
réseau. Au contraire, l’antimodularité intrinsèque pourrait produire une propagation illimitée
des perturbations sur le réseau.

Tout bien considéré, non seulement il semble que l’émergence antimodulaire n’entrave pas
l’explication topologique, mais il resulte que l’antimodularité intrinsèque ou son absence
pourraient en effet rendre possible certaines explications topologiques.

18.4.6 Explication et prévision
La possibilité, évoquée plus haut dans la section 18.4.1, qu’il existe des systèmes qui sont fonc-
tionnellement explicable et, dans le même temps, imprévisible, dont un exemple est la classe
de systèmes computationnels universels, donne une indication tout à fait remarquable, à savoir
que la prédiction et l’explication sont des entreprises disjointes: l’imprévisibilité ne rend pas, en
soi, un système inexplicable. Ce résultat est curieux, car il épreuves, en quelque sorte, que la

39 Voir Huneman (2010).
40 Voir les sections 18.2.1 et 3.2.1.

18.4. Antimodularité 395

prédiction n’est pas nécessaire pour l’explication, et donc que le modèle déductif-nomologique
de l’explication, même s’il fût exempte d’autres inconvénients, ne pourrait pas être le modèle
général de l’explication scientifique. En science certaines explications sont acceptables même si
elles ne sont pas fondées sur la prévision: explications qui sont fonctionnels, ou mécaniste.

18.4.7 Computation et explication computationnelle
Avant d’évaluer, dans la section suivante, les conséquences possibles de l’antimodularité sur les
explications computationnelles, une réflexion sur ce qu’est une explication computationnelle est
nécessaire. Plus précisément, nous allons demander si et quand un système donné, le plus souvent
un système dynamique, effectue une computation ou non, afin de voir si l’on peut lui donner
une explication computationnelle. Pour cet objectif, il semble inévitable de discuter la notion de
computation elle-même.
Quand est-ce qu’un certain système compute? Depuis les travail de Turing de 1936, qui a fondé
la science informatique, il peut sembler à première vue que le concept de computation est tout
à fait clair, et que cela est une question facile, décidable par des moyens formels. Le travail de
Turing a en effet fourni une pierre de touche contre laquelle caractériser ce que la computation est.
La computation a été traité, depuis sa création avec Turing, comme une question éminemment
formelle, qui mérite une approche mathématique. Et cela a sûrement été, je pense, la bonne façon
de traiter la question, car elle a mis en lumière les caractéristiques essentielles de la computation,
sa puissance et ses limites, détaillées d’une manière approfondie et rigoureuse qu’aucun autre
approche du problème de la computation aurait pu développer.
Néanmoins, la question “Quand est-ce qu’un certain système compute?”, d’un autre point de
vue, n’est pas une question facile. Pour voir cette difficulté nous pourrions recourir à imaginer
quelqu’un qui lance un programme sur son ordinateur, et que à notre question “Qu’est-ce que ce
programme a fait?” répondît qu’il compute, tout court. Aurait cette réponse du sens pour nous?
Supposons, encore une fois, qu’un certains programmeur a écrit, pour s’amuser, un programme
constitué par une liste aléatoire d’instructions, et que, par un coup de chance, le programme,
au lieu de se planter, a marché, produisant des chaîne de caractères apparemment aléatoires sur
l’écran. Considéreriez-vous ce programme comme accomplissant une computation? Bien sûr,
dans une manière de parler, il compute. . . mais il compute quoi?!? Troisième cas: nous avons
un programme en cours d’exécution sur un ordinateur très primitif, qui produit directement de
chaînes binaires: à partir de la chaîne 00110101, il produit 1111, à partir de 01000011 il produit
1100. Est-il en train de computer?
Il peut être immédiatement suggéré que la reconnaissance de l’occurrence d’une computation a
besoin d’une sorte d’attribution intentionnelle: c’est-à-dire, l’attribution de computation, à ce qui
autrement pourrait être considérée comme une simple transformation physique de symboles: pour
dire qu’un certain processus compute, nous avons besoin de spécifier ce qu’il calcule. Pour faire
cela, une condition doit être remplie: une correspondance doit être établie entre les configurations
physiques de la machine, sur lequelles le calcul présumé agit, et des signes significatifs. Seulement
une fois que nous faisons cela, nous sommes dans la position d’au moins essayer de deviner
quelle computation spécifique le système est en train d’exécuter. Cette correspondance est une
interprétation, qui associe configurations d’entrée et de sortie à des signes significatifs de notre
langue. Cette correspondance est elle-même une opération algorithmique , qui, à partir de
certaines configurations en entrée, produit d’autres symboles.
Cela est quelque chose qui ne concerne pas le problème de l’intentionnalité vu comme un problème
philosophique. Nous opérons une attribution intentionnelle sur l’ensemble des configurations ré-
sultantes de la correspondance choisie entre configurations de la machine et signes linguistiques,

396 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

configurations dont les propriétés formelles doivent avoir été choisies, par le biais de cette cor-
respondence, comme capable de signifier, quelque chose pour nous. Une fois la correspondance
(l’interprétation) est établie, nous pouvons opérer une attribution intentionnelle plus globale, et
essayer de dire quelle computation le système dans son ensemble accomplit. À mon avis, seule-
ment alors le système peut être considéré comme computationnel. La computation est attribution
de computation, à des systèmes qui, en soi, sont tout simplement des systèmes dynamiques dis-
crets régi par des règles41.

Ce point de vue “intentionnel” ou “sémantique” de la computation (“intentionnel” ou “séman-
tique” avec tous les avertissements indiqués ci-dessus) n’est pas une nouvelle position, après avoir
été adopté par plusieurs auteurs, notamment Jerry Fodor. Ce point de vue sémantique est con-
testé par certains auteurs, comme Gualtiero Piccinini, qui considèrent la computation comme
définissable sur le plan purement mécaniste, sans la nécessité de recourir à toute attribution
sémantique42.

Un problème se pose ici: consideré que l’attribution de calcul dépend du choix d’une correspon-
dance, est-ce que cela signifie que n’importe quelle machine, une fois fourni une correspondance
appropriée entre des symboles significatifs et les etats de la machine, peut être considérée comme
une machine qui effectue des computations? Il me semble que certaines conditions doivent
être remplies. Premièrement, la machine doit être numérique: nous parlons de computation
numérique ici. Donc, pour être considérée comme computationnelle, une machine doit au moins
être considérée comme numérique, c’et-à-dire qu’elle doit posséder un ensemble fini d’états pos-
sibles distinctes et stables sur lesquels elle ira operer. Ce sont ces états qui vont être mis en
correspondance avec les symboles. Mais, pour que cela soit possible, ces états doivent être ro-
bustes et tels que l’on peut les distinguer, et, en outre, une règle déterministe doivent régir la
transition entre configurations stables de ces éléments. Il n’est pas garanti que tout système
puisse remplir ces conditions, qui ne sont pas banales (pensez à des configurations distinctes
stables dans un fluide turbulent). Mais, à l’intérieur de la vue de la modularité que je propose
ici, il est facile de voir que tout ce qui est nécessaire ici est que le système soit un système discret
dynamique (ou DDS), et un DDS constitue une forme de système fonctionnel modulaire (voir
section 18.1.6).

Le point central est que pour nous permettre d’attribuer à un système l’exécution d’une compu-
tation, les conditions suivantes doivent être remplies:

a. une correspondance algorithmique doit être réalisée entre des symboles linguistiques et des
configurations possibles d’entrée et de sortie du système;

b. nous devons être en mesure de dire quelle est la fonction input/output particulière, c’est-
à-dire quelle est la spécification de la computation, afin de dire ce que le système compute.

Seulement dans le cas où le système est un DDS et ce deux autres conditions sont remplies, le
système peut être considéré comme computationnel. Seulement alors nous serons en position de
dire que le système effectue une computation.

L’ordre des conditions a et b ci-dessus est inversée par rapport à la façon dont un programmeur hu-
main travaille. Dans ce cas, ce qui est nécessaire est pas une interprétation, mais l’établissement

41 Bien sûr, il peut être soulevé un problème ici: si le système est considéré comme déjà régi par des règles, ça
signifie qu’une attribution intentionnelle originale a déjà été faite. Il est hors de la portée de ce travail d’aborder
ici cette question et d’autres questions épineuses semblables, analogues au problème “kripkensteinian” de suivre
une règle.

42 Voir par exemple Piccinini (2008).

18.4. Antimodularité 397

d’une norme: dans le cas de la programmation, d’abord la spécification (point b) est arbitraire-
ment choisi. Elle va être considérée comme la norme selon laquelle le programme devra opérer,
et sur la base de la spécification, le programmeur choisit la correspondance (point a) qu’il juge la
meilleure entre symboles et configurations d’entrée et de sortie, afin de procéder à la implémenta-
tion (la mise en œuvre) du programme, c’est-à-dire à la spécification des pièces et de la structure
du mécanisme (le programme) qui sera, à la fin, en mesure de réaliser la spécification choisie
selon la correspondance choisie. Ainsi, le choix de la mise en correspondance détermine le choix
de la spécifique structure du programme. Tout cette série d’opérations constitue l’implémentation
de la spécification choisie.

Parlant de l’implémentation le long des lignes de Galton (1993) et Partridge & Galton (1995),
je considère la relation spécification-implémentation comme une relation universelle: une implé-
mentation est la description d’une méthode de “réaliser”43 une spécification d’ensemble. Lors de
l’examen d’un programme, il n’y a pas, cependant, une spécification globale unique et un seul
niveau d’implémentation , pour la raison que les deux notions sont relatives, exactement comme
celles des niveaux de description “supérieur” et “inférieur”, et celle de fonction, qui44 est le rôle
partiel que quelque chose remplit par rapport au cadre d’une fonction globale. Relative, dans
ce cas, signifie que quelque chose qui est l’implémentation d’une spécification, peut à son tour
être considérée comme une spécification de niveau inférieur qui doit être mise en œuvre à un
niveau encore plus bas. En d’autres termes, compte tenu de la spécification, il est nécessaire de
trouver un mode de réalisation possible de cette spécification, et dans le style de programmation
structurée ou modulaire, une telle mise en oeuvre sera elle-même susceptible d’etre décomposée
en modules. Chaque module, étant une fonction spécifique d’entrée-sortie45 constitue lui-même,
à son tour, une spécification, qui sera mise en œuvre à un niveau inférieur, et ainsi de suite.

Il semble raisonnable de penser que le même hiérarchie abstraite multi-niveau dans laquel chaque
macro-élément est multréalisable par des sous-composantes, et ainsi de suite, sous-tend les no-
tions de programmation structurée, décomposition fonctionnelle, et les niveaux modulaires hiérar-
chiques de description.

Comme on a dit, un programmeur commence avec une spécification et essaie de la mettre en
œuvre. Mais il est possible de commencer avec un processus discrèt non interprété, et essayer
de découvrir quelle computation, et comment, le processus effectue. Ceci est un chemin de bas
en haut, et il est typique de la rétro-ingénierisation d’une computation. Le chemin inverse, de
haut en bas, consistant à commencer avec la spécification d’une computation et à essayer de
décomposer de façon récursive la spécification, qui est une fonction, en sous-fonctions, et ceux-ci
à leur tour en sous-fonctions plus simples, et ainsi de suite, afin de dire comment la spécification
(la fonctio globale) est realisée, est plutôt le chemin de l’explication computationnelle, qui est
l’explication fonctionnelle typique de la psychologie cognitive, où la spécification, qui est la faculté
cognitive (l’équivalence cognition/calcul est le principe de base de la psychologie cognitive), est
expliquée en termes d’une représentation fonctionnelle hiérarchique.

18.4.8 Antimodularité, automates cellulaires et explications
computationnelles

Maintenant, nous pouvons considérer le problème des conséquences de l’antimodularité sur
l’explication computationnelle. Comme on a dit, l’explication computationnelle est typiquement

43 Dans un sens étroitement apparenté à celui de la propriété de réalisation en philosophie de l’esprit. Je ne
vais pas examiner la notion ici.

44 Voir la section 18.4.3.
45 “Fonction” dans un sens mathématique, voir section 9.

398 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

le genre d’explication utilisé dans les sciences cognitives. Cependant, je ne vais pas évaluer ici quel
impact pourrait l’antimodularité avoir sur ces sciences, mais seulement la façon dont elle pour-
rait avoir un impact sur un “modèle-jouet”: je prends ici un automate cellulaire (un CA) comme
un modèle de système computationnellement capable, afin de voir comment son comportement
dynamique pourrait être expliqué comme quelque chose qui effectue une computation. L’idée
est que, si le CA est antimodulaire dans son comportement dynamique, cette tâche explicative
pourrait être entravée, voire rendue impossible. Si tel est le cas, cela signifie que l’antimodularité
pourrait avoir un impact sur la possibilité d’explication computationnelle.

Prenons donc le cas d’essayer d’expliquer computationnellement un CA. Deux questions fonda-
mentales peuvent être posées ici:

• Est un CA un système computationnel?

• S’il est un système computationnel, comment pouvons-nous expliquer la computation qu’il
effectue?

En ce qui concerne le premier point, bien sûr un CA, étant un système dynamique discret,
respecte les conditions énoncées dans la section précédente de ce chapitre, et peut donc être
considéré sans doute comme un système capable de calcul. Mais pour pouvoir dire qu’il compute,
nous devons être en mesure de dire, d’une certaine façon, ce qu’il calcule: aucune explication de
calcul peut être appliquée avant que la correspondance entre ses configurations et des symboles
significatifs pour nous est établie. Nous pourrions essayer de faire correspondre l’état de chaque
cellule du CA à un symbole sensible. Par exemple, nous pourrions faire correspondre ces états à
«noir» et «blanc», mais cela conduirait à des explications “computationnelles” du genre suivant:
“selon l’application répétée de sa règle, le CA produit une variation progressive de l’état de ses
cellules, qui peuvent, sous diverses conditions, changer du blanc au noir”. Cela ne semble pas
une explication très utile. Une explication complète nécessite d’une spécification claire, à savoir
la capacité de dire ce que le système calcule. Ici, la spécification est trop vague: “variation
progressive de l’état de ses cellules dans diverses conditions”. La spécification exacte du CA,
vue comme une fonction d’entrée/sortie, est donnée par l’application répétée de sa règle, donc
une spécification raisonnable pourrait être donnée en termes de la règle du CA. Mais il y a
des problèmes qui se posent ici: généralement, la plupart des règles-CA sont décrites en termes
d’une “table de correspondance”, qui est une liste extensive décrivante la façon dont la règle
détermine la valeur d’une cellule à la prochaine étape sur la base des valeurs de les cellules
voisines. Une telle table devient incontrôlablement grand à mesure que le voisinage d’un CA
élargit. Donc, pour certains CA, l’exposition de cette table serait impossible, ou de toute façon
rendrait complètement dénuée de sens une explication de calcul qui la cite. Dans les CA à deux
valeurs, la règle peut être considérée comme indiquante une expression booléenne. Donc, nous
pourrions penser de simplifier sa description sous la forme d’une expression booléenne. Ceci,
cependant, est très certainement une tâche computationellement complexe, donc, il ne peut pas
être garanti de réussir dans un temps raisonnable dans tous les cas.

Tout ce qui précède nous suggère que nous devrions essayer de trouver des explications compu-
tationnelles de niveau supérieur, et, encore mieux, multi-niveaux, afin d’obtenir une explication
plus utile. En d’autres termes, nous devons trouver un moyen de reconnaître un CA comme
une machine computaionellement capable à un niveau qui est plus élevé que celui de ses cellules
élémentaires. Pour obtenir cela, nous pourrions essayer de voir si la dynamique du CA est en
mesure de produire certains types de modules dynamiques, à savoir, structures de haut niveau
suffisamment persistantes, et dont le comportement au niveau supérieur peut être vu comme

18.4. Antimodularité 399

régi par des règles, afin de remplir la condition de pouvoir voir la dynamique du CA à ce niveau
plus élevé comme un autre système dynamique discret, de niveau supérieur, différent de la DDS
constitué par le CA et sa règle. En d’autres termes, afin d’obtenir une explication computation-
nelle utile d’un CA, une première condition est (i) qu’une forme de modularité dynamique de
haut niveau puisse être détectée de manière fiable dans la dynamique globale du CA. Une autre
condition doit être remplie: (* ii) la dynamique modulaires de haut niveau doit réussir à suivre*
correctement la dynamique de bas niveau du CA, sans diverger de celle-ci. Cette condition de
validité (pour reprendre la terminologie de la modélisation informatique scientifique) est une
condition assez complexe et elle est mieux spécifié dans les sections 2.2.1 et 6.6.8 de ce travail,
mais elle revient essentiellement à ceci: que la dynamique de la description de haut niveau ne
doit pas diverger, à mesure que le temps passe, de la dynamique correspondante du CA à son
plus bas niveau de description, la description en termes des cellules du CA.

Il se trouve que certains CA sont effectivement dotés d’une telle forme de modularité robuste
de niveau supérieur: comme nous l’avons vu, certains CA peuvent générer des planeurs (voir
fig. 18.2) qui finissent par réaliser, dans de nombreux cas, des interactions l’un avec l’autre qui
sont prévisibles, comme dans le cas de la Règle 54 46, et ces interactions prévisibles peuvent être
considérées comme les implémentations de haut niveau de fonctions booléennes, avec le planeurs
agissants comme des “bit” itinérants. Cette interprétation en termes de fonctions booléennes
pourrait alors permettre de construire progressivement une explication à plusieurs niveaux en
termes de computations sensées, plus ou moins de la manière dont les programmes informatiques
peuvent être décrits par des langages de programmation progressivement de plus haut niveau.
De cette façon, nous aurions construit une partie des conditions requises pour expliquer le CA
au moyen d’une explication computationnelle.

Toutefois, cette interprétation en termes de planeurs n’est pas toujours possible: il y a certains
automate cellulaires “chaotique”, comme la Règle 30 (voir fig. 18.7), qui ne montrent jamais des
sous-configurations suffisamment robustes pour être considérées modules dynamiques en gré de
rendre la représentation de haut niveau computationnellement capable47.

Un point doit être souligné ici: cette impossibilité d’individualiser modules dynamiques stables
dans un CA, comme dans le cas ci-dessus de la Règle 30, peut être considérée comme une forme
d’antimodularité intrinsèque de la description de haut niveau du CA. Donc, nous pouvons dire
que l’antimodularité, sous cette forme, empêche déjà la première étape, l’étape (* i) ci-dessus,
nécessaire pour fournir une explication computationnelle, une étape qui consiste à considérer
le CA comme computationnellement capable à un niveau élevé de description. Donc, il semble
que, au moins dans cette forme, l’antimodularité intrinsèque empêche effectivement l’explication
computationnelle*.

Cependant, il est certain que, pour certains CA, leur interprétation de haut niveau comme
systèmes computationnels est effectivement possible: il y a une correspondance complexe, conçu
par Matthew Cook48, avec laquelle il a été en mesure de prouver que la Règle 110, un autre
CA élémentaire, peut être considéré comme un système computationnel au niveau de la machine
de Turing universelle. Aussi le plus célèbre CA, le jeu de la vie de John Conway, a été prouvé
être Turing-complet49. Ainsi, il est un fait avéré que, sous certaines interprétations, certains CA

46 Voir par exemple Martínez et al. (2014).
47 Pourquoi ne peut-on pas arranger une correspondance entre des ensembles de configurations chaotiques et

des symboles significatifs, afin de rendre même un CA chaotique capable de computation à haut niveau? Une
réponse implique une discussion sur la complexité de la correspondance entre les configurations du système et les
symboles, une discussion qui est développée dans la section 14.5.2.

48 Voir Cook (2004).
49 Voir Rendell (2002).

400 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

Figure 18.7: un segment chaotique de l’évolution du CA élémentaire Règle 30. Le temps coule de haut en bas,
et chaque rangée de pixels représente la configuration globale du système à chaque pas de temps. Chaque pixel
représente l’état de l’une des parties élémentaires du CA, ses cellules.

18.4. Antimodularité 401

peuvent être considérés comme effectuant des computations: cette première condition peut être
considérée comme établie, au moins pour certaines automates cellulaires.

Mais, si on veut donner une explication computationnelle d’un système, une autre condition doit
être remplie: que le système en fait compute, et pas seulement qu’il est capable de computation.
Et, à cet effet, nous devons d’abord être en mesure de dire ce que il est en train de computer:
c’est-à-dire, nous devons être en mesure d’exprimer la relation d’entrée/sortie du système, sa
spécification. On doit constater que nous travaillons ici dans le champ de la rétro-ingénierie:
nous avons une machine, le CA, que nous savons être computationnellement capable, et nous
devons, dans le but de l’expliquer computationnellement, produire sa spécification.

Mais, la tâche d’appliquer l’ingénierie inverse aufin d’obtenir la spécification d’un programme,
est apparemment difficile. Essentiellement, c’est une question de produire toutes les entrées d’un
programme et d’observer toutes les sorties correspondantes: cette tache nécessite d’une forme
d’induction. Laissant les détails les plus fins à une autre occasion, je constate simplement ici
qu’il y a une multitude de problèmes liés au fait que les systèmes computationnellement capables
au niveaux de la machine de Turing sont touchés par le problème de l’arrêt, ce qui rend la tâche
ci-dessus très difficile, voire impossible: en raison du fait que le nombre de couples possibles
d’entrée/sortie à observer croît exponentiellement avec la taille maximale de l’entrée, elle est au
moins une tâche computationnellement difficile (voir les sections 14.5.2 et 17.2.6 pour plus de
détails). Il existe des algorithmes approximatifs qui visent à inférer des spécifications (algorithmes
de “specification mining”)50) qui, toutefois, donnent souvent des résultat trop approximatifs,
et ne sont pas capable de rétro-ingénieriser des spécifications du computations à niveau de la
machine de Turing.

Mais nous avons besoin de la spécification du programme afin de pouvoir expliquer computation-
nellement. Et cette spécification est très difficile à déduire.

Cependant, une spécification en termes de la fonction d’entrée/sortie brute n’est pas la seule
façon dont une spécification peut être donnée, et, même si elle est la plus précise, cette façon
n’est pas le moyen le plus clair pour donner une spécification, parce que une liste de couples
d’entrées/sortie peut être incompréhensible. Donc, une autre forme, plus transparente, dans
laquel une spécification peut être donnée, est une forme agrège: une façon plus ou moins syn-
thétique de résumer l’ensemble de la fonction d’entrée/sortie. Une manière d’obtenir une telle
agrégation c’est de fournir la spécification en termes de sa décomposition en sous-fonctions, qui
est une forme de décomposition hiérarchique.

Ceci est le point intéressant: si une représentation hiérarchique modulaire de la computation pût
être conçu par n’importe quels moyens, il serait possible de tester chaque module séparément
pour chercher de determiner la spécification uniquement de ce module, une tâche qui très prob-
ablement se révélerait être plus faisable par ordres de grandeur que celle d’examiner toutes les
entrées possibles pour l’ensemble du programme et les sorties correspondantes, afin de déduire
directement la spécification gobale. La raison de cette simplification est qu’un module est identi-
fiable par le fait même qu’il devrait être relié aux autres modules seulement de manière lâche ou
faiblement, ce qui se traduit par une réduction probable du nombre d’entrées possibles pour le
module, et, en conséquence, par une exploration plus facile de l’espace d’entrée de ce module51.

Le fait qu’il a été possible de trouver la spécification unique de chaque module en raison de la
décomposabilité du système, permet, si les spécifications de chaque module ne sont pas trop
compliquées, une forme d’agrégation, tel celle discutée dans la section 4.1.5.1: si nous sommes en

50 Voir la section 4.3.1.1.
51 Même si cela n’est pas garanti. Voir la section 4.3.1 pour une meilleure discussion.

402 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

mesure d’abstraire la spécification du module en le nommant d’une manière succincte significative,
en appelant le module avec un nom qui est représentatif et explicatif de la fonction que le
module remplit (comme par exemple lorsque nous disons qu’un module effectue l’opération de
“multiplication”), alors la spécification de chaque module peut être remplacée par cette définition
plus concise de la fonction que le module effectue. Dans ce cas, une spécification globale de
l’ensemble du système peut être donnée en termes d’une description (généralement sous la forme
graphique d’un diagramme) de la structure modulaire du système comme un réseau orienté
des modules connectés, où les modules sont vus comme des nœuds étiquetés avec leurs “noms”
succincts représentants leur spécifications, et leurs connexions d’entrée et de sortie sont les liens
orientés entre les noeuds.

Donc, ce type d’explication semble possible, après tout. Mais elle exige qu’une modularité fonc-
tionnelle computationnelle puisse effectivement être trouvée, et cette condition, à son tour, exige
deux autres conditions: d’abord, que le système est en fait computationnellement capable à haut
niveau, et ça n’est pas garanti: les systèmes intrinsèquement antimodulaires, comme le CA Règle
30 mentionné au-dessus, ne sont même pas susceptible d’être considérés comme computationnelle-
ment capable à un niveau élevé de description. Deuxièmement, une autre condition est que, même
si le système est capable de computation, et il possède effectivement une modularité dynamique
de haut niveau, cette modularité puisse être effectivement trouvé. Cette condition pourrait être
entravée par certains facteurs, en raison du coût computationnel élevé des algorithmes pour la
détection de modularité, ou de l’imprécision excessive des résultats qu’ils obtiennent, lorsque
ces résultats peuvent être obtenus dans un délai raisonnable: les représentations hiérarchiques
obtenues pourraient ne pas être suffisamment fidèles à l’organisation fonctionnelle modulaire
réelle du système pour constituer des descriptions modulaires valides, capables de caractériser
en maniére suffisamment precise la computation effectuée.

Il semble, par conséquent, que l’antimodularité peut entraver ou empêcher l’explication computa-
tionnelle aussi.

Mais, pourraient des reconstructions partielles de la hiérarchie fonctionnelle du programme être
quand même utilisées dans les explications? Il semble, intuitivement que les modèles fonctionnels
ainsi produits seraient très limités par des clauses ceteris paribus, afin de les tenir à l’intérieur de
la gamme des relations d’entrée/sortie connues, et, parmi les relations d’entrée/sortie connues,
dans la gamme de ceux qui ne diverge pas trop, par manque de validité du modèle modulaire, par
rapport au comportement réel observé du système. Il semble donc qu’une explication basée sur
des modèle partiaux devra être limitée dans son applicabilité. Elle pourrait apparaître comme
une explication acceptable, mais ce ne serait dans un sens qu’une explication post-hoc de la
gamme du comportement du système effectivement observée au cours des processus de détection
de la modularité, et pas une explication de tous les comportements possibles.

Dans les sciences cognitives computationnelles, un tel type d’explication limitée pourrait bien
être acceptée, et, de plus, il est probable qu’il y a seulement explications de ce genre dans certains
sous-champs de la psychologie cognitive. Dans cette science, la tâche de trouver la spécification
et les relations fonctionnelles entre les modules, est laissée à l’expérimentation humaine, et cela
est probablement un processus plus lent que les processus algorithmiques automatisés.

Pour conclure cette section, je pense que cet échec à trouver des explications computationnelles
de certains systèmes peut être considéré comme une forme de émergence antimodulaire. Cette
émergence computationnelle concernant les explications computationnelles peut être considéré
comme due à deux formes d’antimodularité: d’abord, l’antimodularité intrinsèque qui affecte les
systèmes chaotiques, systèmes qui ne peuvent même être considérés comme de systèmes capable

18.4. Antimodularité 403

de computation à un haut niveau de description. La seconde, c’est une antimodularité due au
coût excessif de calcul ou à l’imprécision excessive des algorithmes de détection de la modularité.

La conséquence de cette forme d’émergence antimodulaire est que le système affecté par elle est
explicable seulement à son plus bas niveau de description, et cela en général ne va pas constituer
une forme intelligible d’explication, dans des systèmes suffisamment compliquées. Il est à prévoir
que l’émergence antimodulaire pourrait affecter l’explication computationnelle dans les science
cognitives et les neurosciences aussi, et en raison de cela il vaut la peine, il me semble, de proceder
à l’investigation.

18.4.9 La modularité de haut niveau comme une condition pour la
programmation et la recherche scientifique

Au moins pour un programmeur informatique, l’affirmation par Robert Cummins52 que l’analyse
fonctionnelle a une capacité explicative, n’a rien de nouveau: un programmeur, au moins im-
plicitement, développe continuellement des explications partielles de la façon dont le programme
en cours de construction fonctionne au moyen de l’exécution organisée de ses instructions, et, à
un niveau supérieur, de l’exécution organisée de ses sous-programmes ou des modules de niveau
encore plus haut. L’action de la programmation elle-même commence à partir de la spécifi-
cation de l’ensemble du programme (par exemple, “être un logiciel de traitement de texte”),
et le développement procède en analysant, dans un sens à la Cummins, cette fonction globale,
qui est la spécification, dans les petites sous-fonctions qui forment ensemble la mise en œuvre
(l’implémentation) de la spécification. À son tour, chaque sous-fonction se décompose, si possible,
dans des sous-fonctions plus simples, et ainsi de suite. L’écriture réelle du programme, l’acte
d’écrire les séquences d’instructions qui composent chaque sous-programme, généralement en
sautillant entre les différents niveaux hiérarchiques, en analysant des fonctions globales en petits
sous-programmes, en faisant leur mise en œuvre et en revenant à décomposer les autres fonctions
de haut niveau, ou en les composant à partir des sous-routines simples, et ainsi de suite à traver
les niveaux hiérarchiques, est une action presque impossible sans une explication précédent, au
moins implicite, de la part du programmeur il-même, de l’ensemble du système en termes hiérar-
chiques. Cela peut être vu comme une forme d’explication fonctionnelle façon Cummins. Il
semble que l’explication fonctionnelle hiérarchique est donc nécessaire pour la programmation de
l’ordinateur, en informatique.

Dans la science empirique, l’explication fonctionnelle à plusieurs niveaux est probablement es-
sentielle non seulement après une théorie ou un modèle d’un phénomène a été mis au point,
c’est-à-dire lorsque on explique un phénomène déjà connu, mais aussi dans la fabrication d’une
théorie. Interpretations interventionnistes de la causalité comme celle de James Woodward53

considerent qu’une relation de cause à effet entre deux entités est presènte lorsque une variation
hypothétique de l’état d’une entité, délibérément induite par un expérimentateur (une inter-
vention) produit systématiquement une variation de l’état de l’autre entité: si cette circonstance
hypothétique tient, nous pouvons dire que les deux entités sont en relation causale. L’explication
mécaniste exige, pendant la recherche scientifique, d’ameliorer et de raffiner graduellement la de-
scription mécanique d’un mécanisme en découvrant progressivement toutes les relations causales
présentes entre ses parties. Pour cela faire, l’expérimentateur procède en intervenant sur chaque
partie séparément, et en observant si une certaine variation conséquente se produit sur d’autres
parties. Mais, pour identifier correctement les liens de causalité, l’intervention sur l’état d’une
partie nécessite une perturbation temporaire, au moins virtuelle, de la structure des liens de

52 Voir la section 9.2.
53 Voir Woodward (2003), et la section 6.9.

404 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

causalité allant de d’autres parties du mécanisme vers la partie sur laquelle nous intervenons:
les interventions sur les mécanismes nécessitent que le mécanisme soit temporairement modifié
en éliminant certaines des connexions entre ses parties. Woodward affirme que l’ensemble des
équations représentant correctement un système causal, doit être modulaire, parce que sinon,
puisque la détection de liens de causalité nécessite une intervention sur une partie du système
en perturbant temporairement seulement l’influence causal qui porte sur cette certaine partie, si
le système fût complètement non modulaire, cette déconnexion d’un trajet précis de causalité ne
perturberait pas seulement la partie de l’équation intéressée par l’intervention, mais également
d’autres parties du système d’équations. Ainsi, la modularité dynamique est toujours présente
dans un mécanisme, au moins au niveau le plus bas, le niveau de la description préférée.

Mais, le point est, si nous voulons redécrire un système en maniere mécaniquste à haut niveau,
nous pourrions certainement interpréter les relations entre des parties de haut niveau comme
prima facie des relations causales “de haut niveau”. Dans ce cas, afin de procéder par intervention
façon Woodward, la modularité est également nécessaire dans les équations représentantes la
dynamique du système à ces niveaux haut. Tout bien considéré, cette condition est vérifiée si la
structure de la fonction de mise à jour54 est hiérarchiquement modulaire, ce qui représente à son
tour le fait que le système est fonctionnelment, et probablement aussi, de façon dynamique, et,
très probablement, structurellement, hiérarchiquement modulaire.

La même utilité de la présence d’une structure modulaire et de sa détection faisable, est présente
dans la phase de découverte de réseaux complexes, en particulier dans les cas où la découverte
de liens entre les nœuds nécessite d’un travail expérimental complexe, comme dans le cas du
réseaux de régulation gènetiques et d’autres réseaux d’intérêt biologique. Certaines méthodes
algorithmiques récemment proposées, comme celle dans Clauset et al. (2008)55, pourraient être
d’une grande aide dans ce genre de tâche, car, sur la base de la modularité hiérarchique détec-
tée dans la portion du réseau déjà partiellement découverte, elles peuvent produire en manière
probabiliste, avec une bonne chance de succès, une prédiction sur les endroits où, dans le réseau,
des liaisons manquantes devraient probablement se présenter avec plus d’observation. De cette
manière, cet algorithmes peuvent guider utilement l’expérimentation ultérieure.

Tout bien considéré, il semble que la modularité hiérarchique est important, voire essentiel, dans
la phase de la recherche scientifique et de la découverte expérimentale, en plus d’être presque
indispensable, comme nous l’avons vu dans les sections précédentes, pour l’explication d’un
phénomène déjà étudié.

18.4.10 Émergence explicative
Consideré que le manque de compréhension en raison de la présence dans un système de
l’émergence antimodulaire peut apparemment affecter la plupart de types d’explication, je me
propose de généraliser la notion avec la définition suivante:

l’émergence explicative est une propriété de systèmes ou de leurs descriptions qui consiste
dans le fait que, pour des raisons computationnelles absolues ou pragmatiques, ce systèmes
ou descriptions résistent à toute explication compréhensible.

Ceci est une définition plus générale que celle de l’antimodularité, car elle comprend d’autres
effets possibles des contraintes calculatoires sur l’explication des systèmes complexes. Dans

54 La fonction régissant la dynamique d’un DDS: voir la section 5.1.
55 Décrit dans la section 6.9.

18.4. Antimodularité 405

la section 14.6, j’explique comment je comprends la définition ci-dessus, qui ne convient pas
nécessairement à des tâches de calcul automatique, mais aussi à des tâches humaines qui portent
sur des explications, et l’utilité éventuelle de cette définition dans le paysage scientifique actuelle.

18.4.11 Est-il probable de rencontrer des systèmes antimodulaires dans la
science?

Dans ce qui précède, j’ai proposé d’envisager une notion, l’antimodularité, qui correspond à
l’impossibilité d’obtenir une description modulaire d’un système à un niveau plus élevé que celui
de sa description préférée choisie, qui se trouve au plus bas niveau, et j’ai essayé d’analyser les
raisons de l’apparition de l’antimodularité.

L’antimodularité semble dépendre du choix d’une relation, qui est spécifiée dans la description
préférée, entre les parties élémentaires du système. L’antimodularité peut se produire lorsque,
compte tenu de cette relation choisie, la détection de la modularité selon elle se révèle être
trop exigeantedu point de vue computationnel pour être menée à bien en un temps possible,
ou lorsque, bien que la détection de la modularité est terminée avec succès au moyen d’un
algorithme approximatif, la description modulaire ainsi produite semble trop approximative pour
être capable de représenter validement le système d’origine.

Quelle est la probabilité que l’un de ces deux circonstances peuvent être rencontrées lors de
la recherche scientifique? Il faut souligner que la complexité calculatoire de la détection de
modularité concerne algorithmes pour la détection de modularité qui n’emploie pas d’autres
informations sur les systèmes que celles incluses dans les description préférées de ces systèmes,
c’est-à-dire dans le niveau de leurs parties élémentaires et de leurs relations. En ajoutant des
contraintes sur la façon dont les pièces élémentaires peuvent être regroupés en modules, la tâche
peut être très simplifiée. Ceci est équivalent à concevoir des algorithmes ad hoc pour la détection
de la modularité, et des algorithmes ad hoc pourrait finir par être moins exigeants que les
algorithmes d’ordre général pour la détection de modularité. En fait, dans de nombreux cas, cela
semble exactement ce que la science fait: elle recherche les contraintes empiriques pour nous aider
à choisir parmi les théories possibles du monde. Cela augmente la probabilité que la méthode
scientifique puisse produire descriptions modulaires intelligibles des phénomènes.

Mais, nous devons nous demander si les nouveaux développements de la science peuvent déplacer
l’accent sur des systèmes d’une telle complexité que même les contraintes à leur sujet qui ont
eté empiriquement trouvées, pourraient finir par être trop peu pour permettre la réussite de la
détection de modularité sur de tels systèmes.

Dans le cas des systèmes biologiques, nous pouvons être raisonnablement sûr qu’ils sont modu-
laires, au moins à certains niveaux. Il existe de nombreux arguments, empiriques et théoriques,
qui favorisent cette conclusion, qui sont traités dans la section 7.1. Néanmoins, il peut y avoir
des systèmes biologiques importants, comme par exemple, des réseaux d’interaction dans le
métabolisme de la cellule, qui peut finir par être tellement énormes qu’il produisent éventuelle-
ment des effets d’émergence explicative ou antimodulaire en raison du coût computationnel élevé,
par rapport à la taille du système des algorithmes pour l’extraction de données ou, plus spéci-
fiquement, pour la détection de la modularité. Un autre type de situation dans lequel on peut
prevoir que cette émergence antimodulaire peut se manifester, est dans l’extraction de données
au sujet de la modularité de certains systèmes à partir de la littérature déjà existante sur certains
sujets scientifiques, dont un exemple est présenté dans la section 18.5.2.

406 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

18.5 Quelque réflexion supplémentaire sur la modularité, la
métaphysique, l’informatique, l’histoire des sciences

Dans les sections ci-dessus, je l’ai souligné la structure principale de ce travail, dans lequel je
tente de réfléchir sur la notion de modularité, sa relation avec la description, l’explication, la com-
putation, la compréhension, et de définir les conditions dans lesquelles la modularité se manifeste
ou, au contraire, ne peut pas être détectée. Mon objectif général est de décrire l’importance de
ce que nous pourrions appeler une “façon modulaire de penser” pour la connaissance humaine
du monde, et plus particulièrement la grande importance de la modularité sur une grande partie
de la conceptualisation scientifique, en particulier dans les soi-disantes “sciences spéciales”, qui
recourent principalement à types d’explication, mécanistes ou fonctionnelles, qui sont les types
modulaires d’explication par excellence: pour expliquer dans ces deux manières, il est nécessaire
de trouver une façon de décrire un système comme modulaire .

J’ai alors concentré mon attention spécifiquement sur les moyens de détecter la modularité dans
des grands systèmes complexes, insistant sur le fait que, malheureusement pour la science, ces
moyens sont algorithmiquement complexes et pour cette raison ils ne sont pas garantis de donner
des résultats utiles. Quand un manque à donner des descriptions modulaires apparaît, cela
est ce que j’appelle un cas d’émergence antimodulaire. Ce fait entrave et parfois, empêche ,
la possibilité d’explication scientifique et la compréhension des systèmes suffisamment grandes
et complexes pour échapper à une explication modulaire appropriée, systèmes qui, en raison
de leur taille, ne peuvent pas être saisi cognitivement sous la forme de leur description non-
modulaire à bas niveau, qui est la seule description possible qui leur reste. J’ai appelé cette
condition “émergence explicative”. Tel est l’objectif principal de ce travail, que je conçois comme
une œuvre de philosophie de la science, en se concentrant en particulier sur les disciplines de
dérivation biologique et leurs méthodes, et, dans le même temps, sur la computation, vue comme
une méthode pour la recherche dans ces disciplines, mais, tout d’abord, comme un cadre théorique
prometteur, à la lumière duquel essayer de repenser certaines énigmes classiques de la philosophie,
une tentative que je fais en essayant de reformuler comme redescriptions computationellement
possibles ce qui a été traditionnellement conçu comme des explications, et comme une relation
spécification/mise en œuvre la relation entre niveaux d’organisation qui a été traditionnellement
considérée comme une relation de constitution.

Les questions ci-dessus, constituent l’épine dorsale de ma proposition en philosophie des sciences,
sont plus profondément discutées dans les autres chapitres. Maintenant, je vais consacrer les
deux prochaines dernières sections de ce chapitre, à des réflexions au sujet de certaines questions
qui en un sens ne concernent pas la matière principale de ce travail comme je la viens de résumer.

La première (section 18.5.1) est une réflexion sur les conséquences possibles de nature méta-
physique découlant de mon point de vue sur la nature des explications, qui est un point de vue
éminemment épistémique. J’ai dit que cette réflexion est en dehors du champ principal de ce
travail parce que je ne veux pas immerger profondément dans un contexte métaphysique mon
discours sur la philosophie de l’explication dans la science: Je ne suis pas un métaphysicien, ni
ma position est complètement anti-métaphysique, mais j’ai probablement une inclinaison vers
l’être prudent losrque on traite avec des questions vivement métaphysiques. Le long des lignes
de Kant, je ne peux pas éviter d’être un peu méfiant au sujet des revendications métaphysiques
fortes, car elles pourraient avoir parfois des conséquences graves, et il n’est pas très clair quand ces
revendications peuvent généralement être considérées suffisamment justifiées. Pour cette raison,
je comptais de tenir la réflexion philosophique sur la science qui constitue l’objectif principal de
cette thèse plus ou moins libre d’interférences métaphysiques explicites (bien que je suppose que

18.5. Quelque réflexion supplémentaire sur la modularité, la métaphysique, l’informatique,
l’histoire des sciences 407

cela pourrait être jugé une planification très discutable, et probablement une projet de faisabilité
incertaine) .

Néanmoins, certaines conséquences métaphysiques de l’approche générale que j’ai adopté et des
résultats au sujet du contraintes computationnelles sur la description de la modularité dont j’ai
parlé, ouvrent, il me semble, la porte à certains fascinantes (bien que risquées) possibilités de
délimiter une position métaphysique particulière, et je ne veux pas manquer la chance d’essayer
d’envisager brièvement cette position. Je consacre la section suivante pour ce but “expérimental”.
L’esquisse fournie ici est au mieux approximative. Ce qui est pas bien pensé ici sera mieux laissé
pour une prochaine occasion.

Dans la section suivante (section 18.5.2) je me permets quelque autre initiative, éventuellement
imprudente, celle de prévoir des éventuelles conséquences historiques à long terme derivants de
la relation entre computation et explication scientifique qui je décris dans la principale ligne
de ce travail. Dans ce cas aussi, je veux laisser cette réflexion en dehors de l’épine dorsale
philosophico-scientifique de la thèse, mais la raison pour ce choix n’est pas que je pense que la
réflexion historique ne soit pas à sa place dans un ouvrage de philosophie des sciences. Bien
au contraire, en fait: souvent, dans de nombreuses parties des principaux chapitres, je longe,
si possible, les lignes de la reconstruction historique des débats récents plus connus autour des
grandes questions en jeu. Je pense, en effet, que l’exposition des idées et des discussions au moins
du point de vue chronologique, sinon historique, est éminemment importante pour l’écriture et
la réflexion philosophique, même dans une des disciplines essentiellement analytiques comme
la philosophie de la science. La raison pour laquelle je laisse ces considérations historiques en
dehors du cadre principal de ce travail n’est donc pas un mépris pour l’histoire des idées, de
la philosophie ou de la science, mais la nature intrinsèquement intellectuellement risquée de ces
réflexions, qui deviendra évident dans le corps de la section dédiée. Néanmoins, je juge telles
réflexions comme dotées d’un potentiel de produire recherches plus rigoureuses, qui sera mieux
de ne pas ignorer, au moins par mes recherches avenir.

18.5.1 Une tentative métaphysique: Modularité comme ontologie?
Antiréalisme contraint

Comme nous avons vu, une des caractéristiques importantes et nécessaires d’un module est sa
robustesse: un module est quelque chose qui doit endurer toute une gamme de perturbations,
et qui doit persister dans un certain laps de temps (selon quelque échelle de temps). Un autre
trait caractéristique de modules est qu’ils jouissent d’une certaine quantité d’indépendance du
reste du système et d’autres modules, et cela est du à un certain isolement, au moins partiel, du
module, à savoir au fait que le module posséde une certaine forme de frontière reconnaissable.
Ce sont des propriétées que les modules partagent avec les entités, ou avec les objets, c’est-à-
dire avec ceux qui peuvent éventuellement être considérées comme le composantes ontologiques
de base du monde. Je dirais que celle-ci n’est pas une simple coïncidence. Je pense qu’il est
plausible de dire que notre système perceptif fonctionne par une détection de modularité sur les
données brutes qui empiète sur nos corps, afin de donner une description du monde en termes
d’entités ou d’objets: les objets que nous percevons sont les modules produit par ce procédure
de détection de modules. Il est plausible, je crois, prendre en considération les limites de cette
détection de modularité effectuée par chaque organisme, à la lumière des limites que nous avons
vu qui affectent les algorithmes de détection de la modularité. Bien sûr, il y a des différences
majeures: premièrement, les systèmes perceptifs ne sont pas des algorithmes en série, comme
ceux mis en œuvre sur les ordinateurs standard, et pour cette raison les systèmes perceptifs
pourraient presenter une complexité computationnelle inférieure. Cependant, si nous prenons

408 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

pour acquis une forme de déterminisme physique (au moins macroscopique) et la finitude de
systèmes biologiques de perception, l’équivalence computationnelle de ces processus perceptifs
avec un algorithme devrait être assez garantie: les systèmes perceptifs peuvent être vus comme
des systèmes computationnels. Nous devons alors considérer que les algorithmes dans certaines
classes de complexité sont intrinsèquement difficiles, indépendamment de l’architecture de calcul
sur laquelle ils sont mis en œuvre: par exemple, même si des architectures hautement paral-
lèles sont utilisées, comme celles des réseaux de neurones, les problèmes de classe EXPTIME ne
peuvent être traitées avec succès, parce que les temps nécessaire pour leur achèvement croît de
façon exponentielle, tandis que la quantité de parallélisme peut croître au plus linéairement56,
et la fonction exponentielle croît incomparablement plus rapide que n’importe quel polynôme.
Un autre objection peut néanmoins être soulevée: les systèmes perceptifs n’ont pas besoin de
découvrir une bonne structure modulaire dans un tas initialement non structuré de stimuli, parce
que les systèmes perceptifs sont déjà adaptés à détecter une plus ou moins bien connue structure
modulaire dans un monde qui est plus ou moins stable: un organisme est adapté à détecter
certains types d’objets dans le milieu environnant, et son système de perception est structuré et
déjà biaisé vers la détection de ces types de modules, à savoir ces sortes d’objets dans le monde.
Ce réglage fin a été, dans une vue darwiniste classique, produit par la sélection naturelle. Un
tel processus biaisé de détection de modularité pourrait bien être beaucoup moins computation-
nellement complexe que le processus brute de trouver un bonne structure modulaire initialement
inconnue dans un grand ensemble de données non structurées, ce qui nécessite l’exécution d’une
tâche NP-complete, la tâche de l’optimisation de la mesure de modularité Q57. Ceci est, au
moins, tout à fait probable: les processus perceptifs ne sont probablement pas si complexe du
point de vue computationnel. Il y a, cependant, deux répliques. La première est que les processus
de perception ne sont pas moins limités par la complexité computationnelle, au moins indirecte-
ment, que l’optimisation de la modularité: les processus perceptifs comme ils sont maintenant,
ont eté obtenus par la sélection naturelle (au moins selon les explications darwinistes), et il est
ce processus, le processus de la sélection naturelle, qui a porté le fardeau d’essayer d’optimiser la
mesure de modularité Q sur un monde perceptif initialement non structuré. La NP-complétude
est dans certains cas si difficile à traiter que pas même la sélection naturelle peut être réputée
avoir eu assez de temps pour effectuer une recherche exhaustive parmi l’espace phénotypique des
systèmes perceptifs possibles, de sorte qu’il peut être soutenu que les systèmes de perception
réels sortis de l’Evolution ont indirectement été affectée par ces mêmes contraintes computa-
tionnelles. C’est-à-dire, la complexité computationnelle de la tâche de recherche de la meilleure
description hiérarchique modulaire est excessive, même pour une recherche effectuée au cours de
l’évolution. La deuxième réponse à la première objection découle de cette dernière considération:
très probablement en raison de leur complexité de calcul inférieure, les processus perceptifs sont
moins précis que l’optimisation algorithmique de Q, et ceci est une autre façon de dire que la
détection de la modularité optimale sur les données qui proviennent du monde empirique, est pas
la fonciton que les systèmes de perception biologique effectuent: la perception est indirectement
limitée par la difficulté calculatoire de la détection de modularité, dans le sens qu’elle est rendue
plus ou moins peu fiable par les effets de cette complexitè.

Un autre indice en cette direction est le fait que selon une interpretation interventionniste de la
causalité comme celui de James Woodward, qui a été adoptée en tant que position standard par
certains défenseurs de l’explication mécaniste, par exemple Carl Craver, la modularité des équa-
tions dynamiques qui régissent le système est nécessaire pour séparer les variables sur lesquelles
intervenir lors de l’expérimentation, afin de discriminer les causes simples. Le long de ces lignes,

56 Ou, éventuellement, quadratiquement, ou au plus cubique.
57 Q est une mesure de la qualité de la modularité détecté par un algorithme. Optimisation, cela signifie de

choisir le meilleur de toutes les descriptions possibles d’un système hiérarchique. Voir la section 3.2.1.2.

18.5. Quelque réflexion supplémentaire sur la modularité, la métaphysique, l’informatique,
l’histoire des sciences 409

la décomposition mécanique d’un phénomène dépend de la modularisation possible de ses états
globaux. Bien sûr, l’identification des parties, ou des entités du mécanisme, qui sont les élé-
ments causalement actifs d’un mécanisme, dépend du succès de cette évaluation de causalité par
petits bouts. Il semble donc que l’ontologie même d’un mécanisme, l’ensemble de ses parties,
dépende de la modularizabilité de sa dynamique. Cette dernière considération, à la lumière de
la difficulté calculatoire de l’optimisation de la modularité, signifie que, très probablement, la
science expérimentale n’est pas et ne sera pas capable de produire l’ontologie du monde la plus
plausible, non seulement si l’expérimentation est menée par petits bouts par des sujets humains,
mais pas même si elle est entièrement automatisée: la complexité de calcul de l’optimisation de
Q ou de l’agrégabilité des variables dans les modèles dynamiques58 est impossible à surmonter.
Il semble alors assez probable que l’ontologie de mécanismes découverts par la science ne soit pas
la meilleur ontologie possible.

On peut se demander où cette étrange position qui voit la modularité comme ontologie se po-
sitionne le long de la ligne réalisme-antiréalisme, et pas seulement dans le sens classique de
l’antiréalisme sur les entités non observables posées par les théories scientifiques, mais dans une
sens plus large, qui englobe tout et s’interroge sur la réalité même des objets macroscopiques de
taille moyenne. En outre, si notre action de découper le monde en morceaux sensés est un effet de
la possibilité de la détection de modularité, et si cette possibilité à son tour dépend de contraintes
computationnelles, il est légitime de se demander où ces contraintes dérivent. Cependant, il est
pas dans le champ d’application de cette thèse de se plonger dans des discussions métaphysiques
profondes. Donc, le plus que nous pouvons faire ici est d’admettre que si nous identifions mod-
ules qui sont réalistement détectable, compte tenu des contraintes découlantes de la complexité
computationnelle, nous pourrions dire que ce point de vue est une forme de ce que je qualifierais
antiréalisme contraint: cela est une position qui peut être considérée antiréalistique, parce que,
selon elle, on ne peut pas savoir quelles entités sont réelles en soi. Mieux, dans ce point de vue,
la question ne pourrait même avoir beaucoup de sens: La réalité des entités, c’est-à-dire leur
être doué de robustesse et frontières, est le résultat du processus de détection de la modularité,
qui est lui-même contraint par la complexité computationnelle. La réalité des entités, dans cette
vue, ne constitue pas une caractéristique intrinsèque des entités, mais elle dérive davantage de
l’objectivité des contraintes computationnelles qui affectent la détection de la modularité. Cela
est une forme d’antiréalisme, certainement. Toutefois, il est antiréalisme doté d’objectivité, parce
que les contraintes computationnelles auquelles cette position est soumise, sont objectives et,
bien que leurs conséquences sont de nature pragmatique, le limitations qu’ils posent sont in-
surmontables59 . Dans un sens, nous pourrions même juger l’antiréalisme contraint une forme
de réalisme, parce que l’objectivité absolue des contraintes computationnelles pourrait déposer
en faveur de leur réalité, dans le sens d’une existence indépendante. L’antiréalisme contraint
pourrait alors être considéré comme une forme de réalisme faible, qui est une tout autre sorte de
réalisme de ceux typiques, même du genre platonique. Dans un sens, je pense que cela pourrait
être considéré comme une sorte particulière de kantisme, dont les conditions transcendantales
prennent la forme de contraintes computationnelles.

18.5.2 Méthodes computationnelles dans la recherche scientifique: un
possible tournant historique?

Toutes les considérations ci-dessus pourraient suggérer une thèse historique. Mais je soupçonne
que cette thèse, que je voudrais proposer, pourrait éventuellement être accusée de ne pas être

58 Voir les sections 18.1.5 et 2.2.1
59 Sauf, bien sûr, que P = NP. Mais cela semble très peu probable pour le moment. Pour une explication, voir

la section 17.4.1.3.3.

410 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

bien soutenue. La principale raison de ce soupçon est que je ne suis pas sûr qu’elle puisse être
considéré comme une thèse historique, concernante des faits du passé: elle pourrait bien être une
thèse sur l’avenir, sur des développements historiques naissants dans la science. En tout cas, il
me semble que il y a des faits possibles intéressants, liés à des méthodes computationnels, à la
modularité et à l’antimodularité, qui sont très proche dans le temps à l’instant présent et sur le
point de se produire, s’ils n’ont pas déjà eu lieu.

Donc, la thèse historique que je suis sur le point de suggérer ici n’est encore, probablement, très
soutenue per le faits, et elle est sans aucun doute une thèse assez forte. Je suis conscient que
cette combinaison de fort impact et de faible soutien est assez dangereux. Ce que je voudrais
faire est alors, au moins pour le moment, de donner seulement une suggestion, ou un simple
soupçon, vers la possibilité qu’un changement de paradigme majeur dans la science vient de se
produire ou pourrait être sur le point de se produire. Ce changement de paradigme a eu lieu ou
est sur le point de se produire, grace à la disponibilité et à l’utilisation, à des fins diverses, de
puissants machines computationnelles et algorithmes, dans plusieurs aspects de la pratique de la
recherche scientifique. Les utilisations de l’ordinateur dans la science dont je voudrais considérer
les conséquences ici sont deux types d’utilisation, appartenant à deux phases différentes de la
recherche scientifique.

Commençons avec le type le plus évident: la simulations informatique. Quelque chose, je dirais,
a été ou est en train de changer dans la science depuis le moment où des simulations informa-
tiques complexes ont eté, ou seront, acceptée comme des explications scientifiques adéquates. Le
point est: depuis sa création comme physique galiléenne jusqu’à une époque très récente, la
science moderne a, plausiblement, prise en considération systèmes qui sont explicables en ter-
mes relativement simples, ou qui sont susceptibles d’être décrit par des modèles approximatifs
suffisamment fidèles, selon les objectifs de l’observateur, au véritable phénomène empirique. Au
cours de la thèse, j’ai essayé de montrer que certains systèmes, pour des raisons de complexité
computationnelle (raisons qui dans un sens sont pragmatiques, mais d’un autre point de vue
sont objectives) ne peuvent pas être décrits en manière modulaire. Cette antimodularité à pour
conséquence de rendre ces systèmes susceptibles seulement de descriptions de bas niveau. Le
problème est que ces descriptions généralement ne permettent pas un haut degré de clarté, en
raison de l’énorme quantité de détails qu’ils portent. Cependant, dans de nombreux cas, la
simulation informatique peut néanmoins modéliser dynamiquement ces systèmes non modulaires
complexes, rendant possible la prédiction, au moins la prédiction par simulation étape-par-étape
qui recouvre une certaine gamme temporelle finie: ces systèmes sont, d’une manière dynamique,
prévisibles, mais leur comportement ne peut pas être expliqué d’une manière compréhensible.
Est-ce un vrai problème? Dans la science, jusqu’à nos jours, il semble que les explications sont
effectivement intelligibles. La plupart des explications de systèmes complexes naturels, jusqu’à
maintenant, dans une certaine mesure sont explications intelligibles. Le modèle mécaniste, de
plus en plus utilisé en biologie, a toujours souligné la nécessité d’une explication multi-niveaux,
qui apporte avec elle un haut degré potentiel de intelligibilité. Mais, les modèles mécanistes
qui sont touchés par l’antimodularité ne permettent pas l’explication à plusieurs niveaux, et ce
fait rend ces modèles mécanistes antimodulaire très difficile à comprendre. Néanmoins, ils sont
encore une base possible pour la simulation numérique. Doivent ces modèles mécanistes très com-
plexes de bas niveau être acceptés comme explications appropriées eux-mêmes, sans s’attendre
une amélioration de leurs intelligibilité?

Qu’est-ce qui constitue l’explication du phénomène, dans ces cas? Est-il le programme exécutant
la simulation? Le programme, en général, est modulaire, parce il est écrit par le programmeur,
et, en tant que telle, il est potentiellement facile à être entendu, mais si le système simulé est
vraiment antimodulaire, par définition d’antimodularité ce programme ne peut pas constituer

18.5. Quelque réflexion supplémentaire sur la modularité, la métaphysique, l’informatique,
l’histoire des sciences 411

une description modulaire de haut niveau du phénomène: le programme simulant un système
antimodulaire pourrait être compris dans ses propres termes comme un programme modulaire
hiérarchique, mais pas comme une description du système simulé. Certes, il serait un programme
compréhensible, mais ce que nous comprendrions serait le fait qu’il simule le phénomène complexe
en réitérant un nombre énorme de fois certaines opérations simples, précisément les activités
simples des pièces élémentaires du système qu’il simule. Il ne me semble pas que le programme
pourrait être considéré comme une explication: étant isomorphe à la description dynamique de
bas niveau du système, il ne constituerait pas une explication computationnelle multi-niveau.

Alors, que devons-nous considérer comme explication d’un phénomène antimodulaire simulé par
ordinateur? Je pense qu’il est l’ensemble de la simulation dynamique qui doit être pris comme
explication, et, étant donné que le phénomène est antimodulaire, la simulation ne peut être que
regardée et observée, mais pas entendue en détail. Au moins elle ne peut pas être comprise
de manière fonctionnelle ou mécaniste multi-niveau. Elle pourrait néanmoins être expliquée de
façon significative d’une manière topologique (voir la section 18.4.5): en prenant en considéra-
tion certaines caractéristiques générales du réseau constituant le modèle du système complexe,
une conclusion pourrait probablement être tirée à propos de certaines fonctionnalitées de la
dynamique qui se produit, par simulation, sur ce modèle.

Donc, nous revenons à la question: faut-il accepter des simulations mécanistes complexes de
très bas niveau comme des explications appropriées eux-mêmes, sans s’attendre des nouvelles
améliorations de leur intelligibilité? Si la réponse est oui, alors la science a subi un grand
changement historique: la science pourrait éventuellement aborder les systèmes qui, étant trop
complexes et interconnectés pour être les objets de descriptions modulaires, auraient du être
laissés en dehors de la recherche avant l’avènement de la simulation informatique. Cela a déjà
eu lieu en partie, au moins depuis trois décennies: il suffit de penser toute la littérature sur la
simulation des systèmes complexes et chaotiques qui a prospérée depuis les années 80. Il faut
noter que, puisque la plupart de ces systèmes simulés ést antimodulaire, au moins dans certaines
régions de leurs espaces de phase, les explications typiques utilisées dans les textes sur ce sujet
(comme, par exemple, les œuvres de Stuart Kauffman), sont explications de nature statistique
ou topologique (dans le sens employé par Philippe Huneman, voir la section 18.4.5), une forme
d’explication qui, comme nous l’avons vu, est possible dans les systèmes antimodulaires.

Une autre façon possible dont les ordinateurs pourraient révolutionner la recherche scientifique,
une manière qui est une forme spécifique de détection de modularité, est l’aide à la recherche
du’un modèle théorique. Dans ce cas, un algorithme remplace en partie le chercheur, pas dans
le recueil des données brutes, mais dans la tâche de concevoir un modèle théorique approprié
pour de données deja disponibles. Et pourtant, cela n’è pas toute l’histoire, parce que, parfois,
il arrive que même la récolte de données brutes peut être effectuée automatiquement. Cela
est particulièrement vrai dans les cas où l’objet de l’étude est lui-même un objet numérique:
étude de textes, d’une littérature, du contenu ou de la structure de l’internet, et ainsi de suite.
En tout cas, après la phase de récolte des données, la nécessité d’un modèle théorique capable
de subsumer toutes les données recueillies survient: généralement, le modèle est conçu par le
chercheur humaine. Mais qu’en est-il des cas dans lesquels l’expérimentateur est incapable de
concevoir un tel modèle? Qu’en est-il des cas dans lesquels la quantité de données est si énorme
qu’il ne doit pas être attendu que tout être humain ne sera capable de discerner un motif en ces
données, afin d’élaborer un modèle théorique? Ici aussi (sauf dans les cas où les données, bien que
complexes, peuvent être agrégées d’une manière qui permet une description simple, comme en
mécanique statistique), c’est une question de discerner une certaine structure dans les données,
une structure modulaire de quelque type, afin que les données soient susceptible de modélisation

412 Chapter 18. Modularité, Antimodularité, Explication: une visite d’introduction .

et d’explication compréhensible par l’homme. En effectuant ce qui est appelé “data mining”, les
ordinateurs ont pu, dans certains cas, supplémenter les êtres humains dans cette tâche.

Je voudrais mentionner ici un cas particulièrement surprenant. En utilisant une méthode de
détection de la structure de communauté (c’est-à-dire, une forme de détection de modularité60)
dans les réseaux, Wilkinson & Huberman (2004) ont pu analyser algorithmiquement la littérature
de recherche publiée sur le cancer du côlon, et de trouver automatiquement dans le réseau
de régulation génique humaine des modules de gènes impliqués dans le cancer du côlon, sans
même avoir à fournir préalablement le programme avec les données brutes décrivant le réseau
génétique: toutes les données nécessaires ont été automatiquement “extraites” de la littérature.
Ce cas est particulier parce que, ici, les données elles-mêmes sont déjà entreposées dans un
format exploitable par l’ordinateur, et elles ne sont pas structurée ad-hoc, même si, en fin de
compte, les données (la littérature académique) proviennent réellement du travail des chercheurs
humains. Mais un autre résultat sérieux surprenant est que le système de Wilkinson et Huberman
a été capable de trouver des parties du réseau génétique impliquées dans le cancer du côlon,
qui avait échappé l’attention (la capacité limitée de l’attention) des chercheurs humaines: la
machine trouva une nouvelle modèle théorique, probablement impossible à atteindre par les
humains, d’un phénomène! Maintenant, dans ce cas, le résultat obtenu est encore susceptible
d’être exprimable sous une forme compréhensible, précisément parce qu’il est une description
modulaire du système génétique sous observation. Mais que faire si un programme, par l’analyse
de la littérature clinique, trouve un modèle modulaire qui regroupe en modules des données de
nature hétérogène, d’une manière qu’il est peu probable tout être humain ne pourrait venir de
concevoir spontanément? Ce modèle pourrait-il être encore compréhensible par des chercheurs
humaines? Ou, qu’en est-il des cas dans lequels le modèle, bien que modulaire, est composé
de centaines de modules de niveau intermédiaire sans aucune description modulaire de niveau
supérieur capable de grouper ensemble certains d’entre eux? Considérons que, en raison de sa
complexité computationnelle, l’algorithme de Wilkinson et Huberman est incapable de traiter
des réseaux avec plus de quelques milliers de gènes. En raison de la complexité computationnelle
excessive de l’algorithme de détection de la modularité de haut niveau, dans les cas de systèmes de
taille suffisante nous devrions recourir à un modèle du phénomène qui n’est pas doté, à un niveau
supérieur, de modularité visible. Un tel modèle, s’il est valide, pourrait être faisablement utilisé
pour effectuer des simulations du phénomène observé. Mais il ne sera pas facile d’expliquer
le phénomène au moyen du modèle, puisque la décomposition fonctionnelle du modèle a été
impossible, et il sera probablement trop complexe pour être compris.

Mais, nous allons spéculer: pourrait-il être possible que le phénomène lui-même, decouvert
par l’exploration algorithmique des données, finisse par être ni un phénomène connu, ni un
phénomène facilement compréhensible? Qu’en est-il d’un phénomène complexe qui personne au-
rait même plausiblement considéré, et qu’il est difficile pour nous même de plausiblement décrire,
ou de nommer? Même si au-delà de l’intuition spontanée humaine ou même de la compréhension
humaine, il sera probablement le cas que des programmes informatiques ira découvrir ce genre de
phénomènes. Mais, que sera-t-il de la science alors? Je pense que cela pourrait aller potentielle-
ment plus profond: la tâche de détection de modularité a besoin d’une relation entre les parties
du système, afin d’évaluer sa modularité, et cette relation et les parties sont donnés ensemble
dans ce que j’ai appelé la description préférée: comme je l’ai soutenu ci-dessus61, il est cette
description préférée, avec les contraintes computationnelles sur la détection de la modularité,
à déterminer l’“ontologie” du système sous observation. Mais, est-ce qu’il y a la possibilité de
changer la description préférée de celle typique, “naturel”, à une description “artificiel”? Compte

60 Voir la section 3.2.1.
61 section 18.5.1

18.5. Quelque réflexion supplémentaire sur la modularité, la métaphysique, l’informatique,
l’histoire des sciences 413

tenu de la possibilité de description algorithmique des relations plutôt complexes entre les parties,
alors même des espèces complexes, non-naturelles pourraient être détectées en tant que modules,
et être faites objet de la science. Un “monde” bizarre, complètement différent, pourrait sortir
de cette description. Une telle description non-standard pourrait même être hiérarchiquement
décomposée de façon à être compréhensible, du moins en principe. Ou, elle pourrait donner lieu
à une structure hiérarchique si complexe pour être utile pour l’explication seulement en principe:
en raison de remappage, un nouvel ensemble de “espèces artificiels” pourrait émerger, et avec eux,
des nouvelles disciplines. Bien sûr, cette modularisation doit être capable de détecter des mod-
ules suffisamment robustes, autrement elle ne constituerait pas une description modulaire valide
du monde. En outre, on pourrait objecter que la causalité, la description naturelle commune du
monde peuplé par des objets causalement cohésifs, est la seule description robuste possible. La
question est ouverte.

Tout considéré, un recours généralisé à ce genre de remappage artificiel, ou à des simulations
plus familières, comme celle décrites ci-dessus, pourrait certainement apporter dans certains
domaines scientifiques une telle série d’innovations dans la méthode et les critères pour constituer
un changement de paradigme dans la science, avec la possibilité de l’émergence de nouvelles
disciplines scientifiques. Un inconvénient est que l’on devrait abandonner la perspective de
la science comme un chemin vers une compréhension progressivement meilleure du monde: la
tendance serait vers une forme sans précédent d’“explication scientifique automatisée”, peut-être
inintelligible.

Ce qui précède est une formulation possible de la thèse historique que je voulais soutenir. Peut-
être qu’elle exige une imagination excessive. Et, il est bien clair que je ne produis dans ce
travail un support suffisamment solide pour cette affirmation. Ici, J’ai simplement essayé de
préparer le terrain en proposant une série de définitions et d’argumenter en premier pour une
propriété, l’antimodularité, qui, lorsqu’elle survînt dans des phénomènes réels, pourrait avoir
comme conséquences des problèmes pour certains modèles d’explication scientifique et la nécessité
de recourir à la simulation numérique. L’énoncé conditionnel ci-dessus manque de soutien pour
la prémisse: il est probable que l’antimodularité se produise surtout dans certains phénomènes
complexes, mais je n’ai pas montré qu’un tel type de phénomènes soit vraiment central et répandu
dans la littérature scientifique aujourd’hui. Il aura à voir si cela est le cas.

Mais, je pense en outre qu’il doit être souligné que la necessité croissante de recourir, lorsque
une modularité puisse être effectivement trouvée, à sa recherche via moyens algorithmiques, et
ainsi de recourir à une forme d’explication favorisée par les progrès dans la puissance de calcul,
pourrait elle-même favoriser l’intérêt vers des phénomènes particulièrement complexes, ou, dans
certains cas, apporter même une chance de «voir» l’existence de phénomènes qui pourraient
avoir complètement échappé l’attention de la recherche scientifique non-computationnelle: la
découverte automatique de la structure modulaire, lorsque elle soit possible, pourrait produire
descriptions modulaires de prime abord inintelligibles, si la machine est capable de grouper les
pièces en modules en considérant des relations entre les parties du systeme, relations artificielles
mais peut-être significatives, qui avaient été jusqu’alors invisible à la compréhension humaine.
Et, à partir de ce moment, une tendance vers une science plus computationnelle, peut-être moins
compréhensible, serait une tendance alimentée par rétroaction positive: une telle science, si ces
explications sont également utilisées pour guider des recherches ultérieures, pourrait évoluer de
manières obscures pour nous.

Chapter 19

Modularità, Antimodularità,
Spiegazione: una panoramica
introduttiva

In questo lavoro, rivolgo l’attenzione principalmente al concetto di modularità gerarchica nei sis-
temi complessi, al suo rilevamento algoritmico e al suo uso nello spiegare la struttura e il compor-
tamento dinamico di tali sistemi mediante modelli modulari gerarchici. Specificamente, evidenzio
la portatata pragmatica della modularità gerarchica sulla possibilità di spiegazione scientifica di
sistemi complessi, cioè sistemi che possono essere descritti come composti di parti elementari
discrete interrelate. Sottolineo che la modularità gerarchica deve essere considerata una nozione
relativa, dipendente dalla scelta, da parte dell’osservatore, di una specifica descrizione preferita
di base del sistema, che consiste in una rappresentazione del sistema come un insieme di parti
atomiche interrelate. In tale tipo di descrizione la modularità fondamentalmente si manifesta
come la possibilità di decomporre il sistema in sottosistemi riconoscibili, sufficientemente definiti
e persistenti (i moduli) ognuno composto da parti che sono più fortemente correlate tra loro
che rispetto a parti appartenenti ad altri moduli o all’ambiente esterno al modulo. In effetti,
secondo questa concezione, la modularità gerarchica non concerne il sistema reale, fisico, di per
sé, ma solo le sue possibili descrizioni e le possibili descrizioni di descrizioni. Le descrizioni sono
modelli teorici di un sistema, e mi concentro qui sulle descrizioni modulari dei modelli, lasciando
per lo più da parte la spinosa questione della relazione tra modello e fenomeno, cioè il rapporto
tra il fenomeno empirico e la sua prima descrizione: questi problemi meritebbero certamente un
trattamento distinto più approfondito che non può essere fornito qui, anche se, alla fine, la mia
proposta toccherà in qualche modo anche questo tipo di questioni.

Dopo aver considerato le proprietà che definiscono la modularità gerarchica, mi concentro sui
metodi algoritmici noti per il suo rilevamento, cioè, algoritmi che, dato un sistema complesso
(sotto forma della sua descrizione preferita, la sua descrizione cioè come un insieme di diverse parti
correlate), cercano di produrre una re-descrizione modulare gerarchica del sistema. Una volta
rilevata, la modularità gerarchica sembra essere la caratteristica fondamentale della descrizione
di un sistema che consente spiegazioni a più livelli, spiegazioni funzionali o meccanicistiche del
sistema, le quali sono importanti forme di spiegazione, ampiamente utilizzate nella scienza at-
tuale.

Lungo queste linee, mi concentro in seguito sulla proprietà opposta, l’assenza di modularità
gerarchica, che io chiamo antimodularità, cercando di trarre le conseguenze della sua possibile

415

416 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

manifestazione in alcune descrizioni del sistema. L’antimodularità è una proprietà complessa,
risultante da una serie di possibili circostanze, le cui caratteristiche principali sono quella di
essere, come la modularità, dipendente dalla scelta da parte dell’osservatore di una descrizione
di base preferita del sistema, ma anche, soprattutto, quella di essere dipendente da alcuni vincoli
computazionali riguardanti possibili algoritmi utilizzati per il rilevamento della modularità: la
maggior parte di questi algoritmi sono computazionalmente molto impegnativi, e ci sono an-
che risultati teorici sulla intrattabilità computazionale della ricerca della descrizione modulare
ottimale di un sistema. Questa complessità computazionale ostacola inevitabilmente la ricerca
di modularità in sistemi di interesse scientifico di sufficienti dimensioni. Propongo di chiamare
l’effetto di questo ostacolo emergenza antimodulare, per analogia con alcune forme conosciute di
emergenza computazionale. Concludo che l’emergenza antimodulare comporta (sotto determi-
nate condizioni) l’emergenza debole (weak emergence) di Mark Bedau, che è un’altra forma di
emergenza computazionale1.

Dopo aver definito questo nuovo tipo di emergenza computazionale, cioè l’emergenza antimod-
ulare, che è dovuta all’eccessiva complessità computazionale che algoritmi per la rivelazione
della modularità possono manifestare in taluni casi, provo a trarre alcune possibili conseguenze
dell’emergenza antimodulare sulla possibilità di spiegazione scientifica dei sistemi affetti da essa.

Prendo in considerazione tre modelli classici di spiegazione scientifica: deduttivo-nomologica,
meccanicistica, e spiegazione computazionale, oltre a un nuovo modello, la spiegazione topologica,
recentemente proposto da Philippe Huneman. Concludo che l’emergenza antimodulare colpisce
la fattibilità di tutti questi tipi di spiegazione, anche se in modi diversi.

Prima di tutto, sostengo che l’antimodularità influisce negativamente sulla spiegazione mecca-
nicistica, una forma fondamentale di spiegazione nelle scienze biologiche. Schierandomi con Cory
Wright e William Bechtel per una concezione epistemica della spiegazione meccanicistica (op-
posta ad una concezione ontica), mostro come l’antimodularità costringa a spiegazioni basate su
descrizioni ad un solo livello, un livello di descrizione basso, obbligando a trascurare l’esigenza,
essenziale per le spiegazioni meccanicistiche, dell’integrazione multi-livello. Il fatto di limitare
la spiegazione meccanicistica al livello di descrizione che rappresenta le parti più elementari del
sistema ostacola certamente la comprensione: per sistemi abbastanza ampi, la loro spiegazione
meccanicistica a questo livello è troppo complessa per essere compresa da esseri umani. E la com-
prensibilità è una qualità da ricercare nel spiegazione meccanicistica, almeno secondo William
Bechtel ed altri autori, come Petri Ylikoski, il quale considera la “salienza cognitiva” una delle
caratteristiche importanti delle spiegazioni.

Per quanto riguarda le classiche spiegazioni nomologico-deduttive (DN d’ora in poi) , evidenzio
che, dal momento che, in sistemi abbastanza complessi2, l’antimodularità comporta l’emergenza
debole, questo significa che non si può ricorrere alla spiegazione deduttivo-nomologica à la Hempel
per un sistema antimodulare, perché, se si potesse, vorrebbe dire che il sistema è prevedibile me-
diante una legge, e questo è negato dalla definizione stessa di emergenza debole, che, come detto,
è implicata dall’antimodularità. Così, un sistema antimodulare complesso non è prevedibile, al-
meno non prevedibile arbitrariamente in anticipo mediante una legge analitica, e, quindi, non
può essere spiegato da una spiegazione DN. In ogni caso, se prendiamo in considerazione uno
specifico tipo di sistema dinamico complesso, vale a dire un automa cellulare (CA d’ora in poi),

1 Qui e nel seguito userò il termine “emergenza” per tradurre il termine inglese “emergence”. Non si tratta
di una traduzione priva di problemi, perché, anche se ormai diffuso in ambito filosofico come traduzione di
“emergence”, il termine “emergenza” in Italiano è chiaramente molto più spesso usato per veicolare il significato
di stato di urgenza e pericolo, che corrisponde alla traduzione del termine inglese “emergency”. Si tenga quindi
conto di questo potenziale equivoco.

2 Una condizione che viene chiarita nella sezione 13.3.

417

un processo antimodulare generato da un CA può essere spiegato, in un certo senso, producendo
un elenco potenzialmente molto lungo di deduzioni basato sulle premesse della condizione iniziale
del CA e della sua regola (che, come regola CA, per il teorema di Curtis-Hedlund-Lyndon, ha la
stessa forma logica di una legge scientifica), in modo simile ad un lungo elenco di spiegazioni DN
passo-passo. In questo caso, la comprensione umana è impedita dalla possibile lunghezza della
lista, ma, se ci atteniamo alle aspettative dei sostenitori post-neopositivisti del modello DN di
spiegazione, la comprensione non è necessaria per una buona spiegazione. Quindi, in un certo
senso, l’antimodularità e, di conseguenza, l’emergenza debole, non ostacolano la spiegazione DN,
almeno nel caso dei CA e di altri sistemi la cui dinamica segue una regola universale legisimile,
e finché il problema della comprensibilità è ignorato.

Procedo a prendere in considerazione la spiegazione topologica di Philippe Huneman, un tipo di
spiegazione non meccanicistica che si basa su proprietà topologiche di certe descrizioni astratte
di un sistema. Concludo che, essendo la modularità essa stessa una proprietà topologica, così
come la sua assenza, la presenza o l’assenza di modularità non ostacolano, ma consentono la
spiegazione topologica.

Mi concentro quindi su un terzo possibile tipo di spiegazione: CA e le reti booleane dinamiche
possono essere considerati sistemi computazionali. Come tali, essi possono essere soggetti a spie-
gazione computazionale. Considero il caso di cercare di spiegare computazionalmente un CA. Per
ottenere una spiegazione computazionale, prima il comportamento del CA deve essere visto come
una computazione. Condivido una concezione intenzionale della computazione, soggetta però ad
alcuni vincoli matematici, e cerco di delimitare il campo della dinamica dei sistemi che possono
essere visti come computazionali. Dato che alcuni CA possono in effetti essere visti come com-
putazionali, cerco di valutare la possibilità di una loro spiegazione computazionale. Così com’è,
per dare una tale spiegazione, il comportamento del CA deve essere retro-ingegnerizzato al fine
di ottenere la specifica del calcolo che dovrebbe eseguire. Ma, questo compito di estrazione delle
specifiche (specification mining) può essere computazionalmente difficile, e così può fallire. An-
che se viene trovata una specifica globale, una buona spiegazione computazionale costituisce una
forma di analisi funzionale modulare gerarchica, e questo si ottiene estraendo ricorsivamente le
specifiche di parti del codice o sottoponendo il sistema ad altri metodi per reverse-engineering
statico o dinamico. Se questo processo non riesce per motivi di complessità computazionale ecces-
siva dell’algoritmo di estrazione delle specifiche, o per mancanza di completezza della gerarchia
funzionale trovata, il sistema finisce per risultare antimodulare. In questo caso, l’antimodularità
ostacolerebbe una forma comprensibile di spiegazione computazionale, per la stessa ragione che
essa colpisce la spiegazione meccanicistica, con cui la spiegazione computazionale, che è una
forma di analisi funzionale, mostra una stretta affinità.

Successivamente sottolineo la necessità della modularità di alto livello gerarchico, e non solo per
spiegazioni a posteriori di un fenomeno noto, ma anche durante la fase della scoperta scientifica,
in particolare, come già notato da James Woodward, durante la ricerca di relazioni causali tra
parti di un meccanismo sia a basso livello che ad un livello superiore. Analogamente Sottolineo
che la spiegazione modulare multilivello è ugualmente essenziale durante lo sviluppo di programmi
informatici da parte dei programmatori umani.

Sussumo sotto il concetto di emergenza esplicativa tutti i risultati sulla impossibilità pratica,
dovuta a vincoli computazionali, di ottenere certe spiegazioni multilivello e sul conseguente
affievolimento della comprensibilità dovuto al verificarsi di antimodularità, nonché qualsiasi altro
caso in cui un sistema, per motivi computazionali, risulta refrattario alle spiegazioni comprensi-
bili.

Discuto poi, esaminando materiale tratto della letteratura scientifica, la probabilità che la ricerca

418 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

scientifica in certe aree si imbatta effettivamente nell’emergenza antimodulare, concludendo che
è abbastanza probabile che alcuni casi di antimodularità appaiano, in particolare in biologia dei
sistemi.

Dedico la parte finale di questa introduzione a considerazioni più ampie e, probabilmente, ris-
chiose perché meno corroborate. In primo luogo, abbozzo una possibile visione metafisica che
potrebbe derivare dalle considerazioni circa l’antimodularity esposte in precedenza: chiamo
questo punto di vista antirealismo vincolato. Questa concezione vede il mondo empirico che
naturalmente percepiamo, così come il mondo descritto dalla scienza, come risultato di un pro-
cesso di rilevamento della modularità, in conseguenza del quale i moduli rilevati costituiscono
quelli che sono comunemente definiti come generi naturali. Dato che il rilevamento modularità
è vincolato da fattori di insormontabile complessità computazionale, e che per questo motivo il
reperimento della migliore descrizione modulare in linea di principio è escluso, non è probabile
che suddivisione del mondo in tipi naturali corrisponda alla migliore suddivisione possibile. La
valutazione completa di questa posizione metafisica richiede tuttavia una vasta discussione di
un’ipotesi controversa, il pancomputazionalismo, e di varie posizioni in filosofia della matematica,
una discussione che è meglio lasciare ad un lavoro successivo.

Infine, mi concedo al termine di questa introduzione una certa libertà nel trarre alcune possi-
bili, presunte conseguenze sulla storia della scienza di un ricorso recente e crescente ai metodi
computazionali nelle scienze, a partire dalla simulazione di sistemi complessi: rifletto sulla plau-
sibilità delle simulazioni come spiegazioni, soprattutto nei casi in cui il sistema è antimodulare, e
di conseguenza la simulazione può essere eseguita, ma il modello dinamico di fondo è incompren-
sibile, perché il sistema viene simulato a un livello molto basso e una ridescrizione modulare, di
alto livello, manca o è troppo carente. Considero poi il rilevamento automatizzato di modularità,
utilizzato per trovare struttura in grandi insiemi di dati, sottolineando un caso reale di data min-
ing su un corpus di letteratura medico-biologica, in cui l’automatismo ha scoperto importanti
relazioni funzionali che erano sfuggite all’esame umano. Permettendomi di trarre alcune con-
seguenze forse estreme, concludo suggerendo che questo crescente uso di metodi computazionali
nelle scienze potrebbe essere sul punto di provocare un importante cambiamento di paradigma
in qualche disciplina.

L’oggetto di questa tesi è multiforme e non facile da etichettare: vertendo sulle conseguenze
dell’antimodularità, una proprietà di alcuni sistemi, sulla possibile spiegazione scientifica di essi,
si tratta di un’opera di filosofia della scienza. Dato che la proprietà proposta, l’antimodularità,
dipende da alcuni limiti di calcolo che interessano il rilevamento della modularità, e che sostengo,
in relazione con la discussione sulla spiegazione computazionale, una concezione intenzionale
della nozione di computazione, allora questo è un lavoro di filosofia della computazione, inteso nel
duplice senso di rendere certe nozioni riguardanti la computazione nozioni utili per la riflessione
filosofica, e di proporre una riflessione filosofica sul concetto di computazione in sé. Considerata
la discussione di lunga data nel campo della biologia sulla modularità e il fatto che dovrebbe
essere probabile trovare sistemi che mostrano antimodularità tra i sistemi biologici, nonché e
una serie di esempi che riporto da quella disciplina, il presente lavoro è anche un lavoro di
filosofia della biologia. Per quanto riguarda la spiegazione scientifica, abbraccio esplicitamente
una posizione epistemica, centrata sulla nozione di livelli di descrizione, che sono dispositivi
epistemici, e dunque questo lavoro ha un aspetto epistemologico. E, come probabilmente ogni
posizione epistemologica, la posizione suddetta ha anche un portato metafisico, che cerco di
delineare verso la fine di questa introduzione. Infine, questa dissertazione si avvale di tutte
le discussioni teoriche di cui sopra per far luce sulle loro possibili conseguenze sulla pratica
della scienza, ventilando la possibilità che un grande cambiamento storico, forse un cambio di
paradigma, sia sul punto di realizzarsi nella scienza, se non è già avvenuto. Quindi, in un

19.1. Modularità 419

certo senso questa è una tesi di storia della scienza. Anche se ancora richiede osservazioni e
prove, credo che questa ipotesi storica potrebbe darci un indizio della portata degli effetti che
l’adozione diffusa di metodi computazionali ha avuto o potrebbe essere in procinto di avere sulla
scienza come la conosciamo.3

19.1 Modularità

Intendo iniziare questa chiarificazione del il concetto di modularità con uno schizzo storico: la
modularità sembra essere un concetto di base e diffuso, che è stato concepito da lungo tempo,
probabilmente più di una volta, in campi teorici e pratici parzialmente indipendenti e diversi-
ficati. Tuttavia, la riflessione filosofica moderna su di essa è iniziata nella seconda metà del
XX secolo, con il contributo particolarmente rilevante di Herbert Simon. Lavorando nel campo
dell’econometria, egli giunse a una concezione di modularità sotto forma di sistemi quasi- scom-
ponibili gerarchici4, vale a dire sistemi che possono essere visti, almeno in prima approssimazione
, come gerarchicamente scomponibili in modo ricorsivo in sottosistemi robusti parzialmente in-
dipendenti. Questo punto di vista sulla quasi-scomponibilità, che ha successivamente influenzato
molti altri autori in diversi campi, è l’idea di fondo che ispira la mia proposta sulla modularità.

In questo lavoro, esamino una possibile concezione della modularità nei sistemi complessi, ed
esploro le conseguenze della presenza di modularità o della sua assenza (antimodularità) sulla
spiegazione del comportamento di tali sistemi. In effetti, non applico il concetto di modular-
ità ai sistemi fisici, reali, bensì alle loro descrizioni, e a re-descrizioni di descrizioni, dove una
(re)descrizione è intesa, preferenzialmente, come una computazione che prende una descrizione e
la elabora per produrre un’altra descrizione. Abbracciando una posizione ampiamente epistem-
ica, se non pienamente antirealistica (una posizione che sarà meglio esposta nella sezione 19.5.1
di questa introduzione), lungo le linee della concezione epistemica di Cory Wright e di William
Bechtel riguardo alle spiegazioni meccanicistiche5, ritengo le spiegazioni scientifiche dei disposi-
tivi epistemici, basati su descrizioni di fenomeni, legate alla comunicazione umana , e richiedenti
almeno un grado minimo di intelligibilità cognitiva. Di conseguenza, sono interessato a definire
la modularità come una caratteristica delle descrizioni, che, se presente, consente alcuni tipi com-
prensivi di spiegazione. Mentre la sezione II è dedicata ad una esposizione approfondita della
modularità e di altri concetti coinvolti, darò qui una spiegazione schematica di ciò che vorrei
proporre.

19.1.1 La modularità nei sistemi complessi
Procedendo lungo le linee sopra esposte, provo a definire la proprietà della modularità nei sistemi
complessi, come la possibilità per un sistema di questo tipo di essere descritto come un insieme
di moduli collegati debolmente tra loro, cioè un insieme di sottosistemi robusti ben definiti,
con parti interne altamente interconnesse, dove ogni sottosistema è parzialmente indipendente
dal contesto esterno, essendo collegato solo debolmente ad altri sottosistemi. Estendo questa
concezione della modularità a quella della piena descrizione gerarchica di un sistema in termini

3 Un’analisi approfondita della nozione di modularità gerarchica e di antimodularità è condotte nei principali
capitoli da della dissertazione. Intendo fornire nel seguito di questa introduzione una panoramica più succinta
dei principali contenuti del lavoro. Avverto il lettore che, nel seguito, farò spesso uso dei termini “modularità” e
“sistema” invece di “modularità gerarchica” e “sistema complesso”, lasciando al contesto il compito di disambiguare
il loro significato.

4 Vedi il seminale Simon (1962).
5 Opposta ad una concezione ontica delle spiegazioni causali. Vedi la sezione 19.1.9, 19.4.3, così come Bechtel

& Abrahamsen (2005) e Wright (2012).

420 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

di livelli “superiori”e “inferiori” di descrizione, ognuno dei quali è costituito da moduli, e in cui,
ad eccezione del livello più basso, ognuno dei moduli a un certo livello è un macromodulo, cioè,
può a sua volta essere visto come caratterizzato internamente da una organizzazione modulare
di micromoduli, e così via ricorsivamente. Come detto, tutto questo riguarda descrizioni, non
insiemi di oggetti del mondo reale (e questo è in linea con l’essenza di una concezione epistemica).

Mentre la distinzione macromodulare/micromodulare è ovviamente dipendente dalla scelta di
un particolare livello di descrizione, il punto da evidenziare è che tutta la descrizione modu-
lare gerarchica risulta dipendere, per la definizione stessa di modularità, dalla scelta da parte
dell’osservatore di una specifica relazione significativa tra le parti elementari del sistema, e ciò
proprio per il modo in cui il concetto di modulo è definito: un modulo è un sottoinsieme delle
parti di un tutto che sono relate l’una all’altra in un modo più forte di quanto esse siano relate
a parti esterne al modulo cui appartengono. Il riconoscimento di un sottoinsieme come mod-
ulo richiede pertanto che una relazione tra parti venga prima di tutto presa in considerazione,
e, a seconda di quale specifica relazione è considerata, la struttura modulare identificabile può
cambiare.

Questa definizione di modularità gerarchica naturalmente presuppone che un sistema complesso
sia composto di parti elementari distinte e correlate, e questo a sua volta è dovuto alla scelta di
una descrizione elementare atomica del sistema: la scelta dell’insieme delle parti e quella della re-
lazione che sussiste tra loro, equivale alla scelta, da parte dell’osservatore, secondo i suoi interessi,
di quello che chiamerei una descrizione preferita del sistema. Generalmente, vi è una descrizione
“naturale” di livello più basso di un sistema in termini di parti elementari, spesso suggerita dalle
proprietà fisiche del sistema combinate con gli interessi del ricercatore: per esempio, in biologia un
tessuto è naturalmente descritto come composto di cellule, una cellula è naturalmente descritta
come un sistema complesso composto principalmente di macromolecole interagenti, mentre nelle
scienze sociali una società è naturalmente descritta come composta di individui. Il punto da
sottolineare è che la modularità gerarchica è relativa a tale scelta, e dipende soprattutto della
scelta della relazione tra parti elementari del sistema, che di solito è una scelta meno vincolata
rispetto a quella delle parti stesse. Ad esempio, in una società possiamo considerare legami af-
fettivi tra gli individui, o, in alternativa, potremmo scegliere rapporti di subordinazione. Queste
due diverse descrizioni del sistema molto probabilmente determinerebbero differenti descrizioni
modulari gerarchiche, perché un modulo è definito come un sottosistema di elementi altamente
interconnessi debolmente connessi con l’ambiente circostante, e questa “connessione” è appunto
la relazione tra le parti elementari considerata nella descrizione scelta preferita del sistema: nei
casi di esempio, una relazione è il rapporto di legame affettivo, l’altra quello di potere.

19.1.2 Modularità, scomponibilità ed economia di descrizione
La modularità si manifesta come la possibilità di scomporre un sistema6 in sottosistemi riconosci-
bili, sufficientemente definiti, ognuno composto da parti che sono più fortemente collegate tra
loro che a parti appartenenti ad altri moduli o all’ambiente esterno. È la presenza di queste
variazioni nella forza delle relazioni vigenti tra coppie di parti del sistema, ciò che consente il
riconoscimento di modularità: se tutte le parti fossero pienamente collegate tra loro, i moduli
non comparirebbero, precisamente perché un modulo è (informalmente) definito come un sot-
tosistema i cui collegamenti con il resto del sistema hanno forza inferiore (in media) rispetto
a quella dei collegamenti tra le parti interne del modulo. Come notato sopra, la modularità
risultante è relativa alla specifica relazione tra le parti di basso livello che stiamo prendendo

6 Naturalmente, con “sistema” qui intendo una sua descrizione. In ciò che segue, spesso userò il termine
“sistema” simpliciter per indicare la sua descrizione standard, di solito la sua “descrizione preferita”.

19.1. Modularità 421

in considerazione. Questo è un concetto molto simile a quello originale di Herbert Simon, il
concetto della quasi-scomponibilità. La quasi-scomponibilità permette al sistema originale di es-
sere rappresentato come un insieme di sottosistemi connessi, e questa decomposizione può essere
ripetuta sino al conseguimento di una descrizione gerarchica completa. Il punto cruciale è che
il sistema originale, costituito dalle sue parti elementari, è quindi descrivibile in una maniera di
alto livello, sotto forma di un altro sistema le cui parti corrispondono ciascuna ad uno dei moduli
del sistema originale. Quindi, la descrizione di alto livello risulta essere più semplice rispetto
a quella di basso livello, perché, nella prima, interi gruppi (i moduli) di parti di basso livello
sono rappresentati come singole parti di alto livello, e così le parti del livello superiore sono in
numero inferiore rispetto a di quelle di basso livello. Se il sistema che stiamo descrivendo in
questo modo è statico, come per esempio l’elenco dei membri che compongono il personale di
un’organizzazione, la descrizione di alto livello di solito appare più economica e comprensibile
rispetto all’elenco originale. L’esempio tipico è quello degli organigrammi. In un organigramma,
ogni gruppo di persone che lavorano nello stesso ufficio è rappresentato da un singolo elemento
grafico, etichettato con il nome dell’ufficio. Il nome dell’ufficio rappresenta il nome aggregato del
gruppo di persone che lavorano in quell’ufficio.

19.1.3 Moduli come parti similari di alto livello ripetute

C’è un ulteriore possibile miglioramento dell’economia di descrizione di un sistema complesso se
è possibile rilevare in esso più sottosistemi che risultano essere identici o talmente simili da poter
essere considerati come la ripetizione di un singolo modello. In questo caso, a parte l’economia
di descrizione dovuta all’aggregazione7, anche la descrizione modulare, qualora essa comprenda
più moduli identici, può essere semplificata sostituendo ogni occorrenza di questi moduli con
un riferimento al modello comune, che è quindi necessario descrivere solo una volta. Questa
forma di modularità è particolarmente utile in ingegneria, ed è sostanzialmente alla base della
progettazione di artefatti complessi, che sono generalmente costituiti da parti standard identiche
o quasi identiche, che compaiono nel sistema in più copie.

19.1.4 Modularità strutturale e modularità dinamica

È facilmente immaginabile che la modularità possa riguardare non solo la struttura di un sistema,
ma anche il suo funzionamento dinamico: è concepibile, per esempio, e anche ovvio, che la
modularità nella struttura di un programma per elaboratore (la cui struttura è una lista di
istruzioni) dia luogo a una modularità nella sua esecuzione dinamica, perché un programma
per elaboratore non è solo una lista di istruzioni statiche, ma si suppone che venga eseguito,
quindi la modularità della lista di istruzioni dovrebbe essere riflessa nella modularità dinamica
del programma.

Considerando la relazione tra modularità strutturale e modularità dinamica, questa risulta non
essere sempre una relazione semplice: gli aspetti strutturali e gli aspetti dinamici possono essere
associati ma anche disgiunti, sebbene nella maggior parte dei casi di sistemi dinamici la loro
struttura fisica modulare induca una forma di funzionamento modulare dinamico, conseguenza
del fatto che in sistemi dinamici la loro dinamica è condotta sulla struttura predefinita del sistema,
ed è quindi vincolata da essa. La relazione tra modularità strutturale e modularità dinamica non
è però completamente limpida e la sezione 6 ne discute più profondamente.

7 Menzionata nella sezione precedente.

422 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

19.1.5 Quasi-scomponibilità e aggregabilità
Una forma di modularità dinamica proposta a partire dai primi anni ’60 da Herbert Simon
e Albert Ando8 deriva dalla quasi-scomponibilità del sistema, e in particolare dalla quasi-
scomponibilità del modello matematico che descrive la dinamica del sistema. Il modello
matematico è di solito una relazione di ricorrenza, o un sistema di relazioni di ricorrenza, in
cui lo stato di ciascuna parte elementare del sistema è rappresentato da una variabile: questa
equazione rappresenta una funzione di aggiornamento, con il tempo come variabile indipendente,
che determina come lo stato delle parti del sistema cambi con lo scorrere del tempo, e quindi
è un modello matematico della dinamica del sistema. In un sistema che è quasi-scomponibile
nel senso inteso da Simon, le variabili di questa equazione, che possono essere in gran numero
perché rappresentano le parti interagenti elementari del sistema, possono essere anch’esse
suddivise (modulo una certa approssimazione) in una partizione di sottoinsiemi di variabili,
ogni sottoinsieme contenente variabili che influenzano solo debolmente variabili all’interno
di altri sottoinsiemi: questo corrisponde al fatto che in un sistema quasi-scomponibile, per
definizione, le interazioni tra alcuni gruppi di parti (i moduli) sono solo deboli. In questo modo,
la dinamica di ciascun modulo può essere considerata come una dinamica che evolve nel tempo
in modo semi-indipendente dalle dinamiche degli altri moduli, e, di conseguenza, le equazioni
che descrivono queste dinamiche semi-indipendenti si rivelano semi-indipendenti l’una dall’altra.
Queste equazioni che governano gruppi di variabili semi-indipendenti possono essere considerate
moduli funzionali, una re-descrizione modulare del modello matematico originale descrivente
la dinamica globale del sistema. Nei sistemi quasi scomponibili, la loro modularità determina
anche una sorta di modularità dinamica o di processo, sotto la forma di un disaccoppiamento
della dinamica temporale tra parti del sistema: la dinamica all’interno dei moduli è più veloce
della dinamica delle interazioni tra moduli.

Date le condizioni di cui sopra, in alcuni casi favorevoli che dipendono dalla forma delle equazioni
modulari, la dinamica globale del sistema, originariamente descritta dalla funzione di aggiorna-
mento globale, in cui lo stato di ogni parte elementare è descritto da una singola variabile, può
essere, modulo una certa approssimazione accettata, ulteriormente re-descritta sotto forma di
un’altra funzione di aggiornamento globale più semplice. Questa funzione di aggiornamento è
più semplice di quella originale perché nella nuova funzione di aggiornamento ogni variabile rap-
presenta un valore aggregato di tutte le variabili contenute in ciascuno dei moduli funzionali
sopra descritti: il numero di variabili che devono essere prese in considerazione per modelliz-
zare le dinamiche globali del sistema viene in questo modo ridotto. Quando questa condizione
sussiste (non ogni sistema dinamico è aggregabile), il sistema è detto aggregabile, e questa è
evidentemente un’altra forma di economia di descrizione, in questo caso economia del modello
matematico, consentita dalla presenza di modularità. Il prezzo da pagare è una quantità di ap-
prossimazione che dipende dal fatto che, al fine di aggregare correttamente le dinamiche, alcune
interazioni tra le parti del sistema la cui forza scende al di sotto di una soglia prescelta sono con-
siderate nulle. L’approssimazione potrebbe risultare inaccettabile in sistemi non lineari, in cui il
comportamento a lungo termine della descrizione semplificata potrebbe divergere troppo dal com-
portamento reale del sistema. Il punto da sottolineare è che, anche qui, sono coinvolte scelte da
parte dell’osservatore: la scelta della descrizione preferita (che, tuttavia, in molti casi, è già data),
e una scelta sull’approssimazione accettabile o meno a seconda degli obiettivi dell’osservatore.

Un problema molto importante che riguarda l’aggregazione è che questa si è rivelata essere un
compito computazionalmente intrattabile: ci sono dimostrazioni, in Kreinovich & Shpak (2006),
e Kreinovich & Shpak (2008), che l’aggregabilità, e perfino l’aggregabilità approssimativa, già in

8 Simon & Ando (1961).

19.1. Modularità 423

sistemi lineari, è NP-hard. Questo significa9 che non vi è alcun metodo generale algoritmico che,
applicato ad un modello matematico della dinamica del sistema, possa sempre produrre in un
tempo ragionevole una versione aggregata semplificata plausibile del modello, per i modelli con un
numero sufficientemente grande di variabili. In altri termini, ciò significa che il rilevamento della
modularità nel modello dinamico di un sistema complesso è un compito computazionalmente
impraticabile, e che quindi non ci si deve aspettare, in generale, che la modularità dinamica
possa essere trovata con un metodo generale.

Tuttavia, l’aggregazione può in molti casi essere trovata più facilmente se abbiamo qualche
conoscenza a priori che ci può guidare nel partizionamento delle variabili in sottoinsiemi semi-
indipendenti. Ad esempio, nel caso di reti genetiche, potremmo sapere su basi empiriche che
qualche gruppo di geni co-esprime sempre, e così le variabili che rappresentano questi geni pos-
sono essere raggruppate. Questo potrebbe semplificare molto il compito di trovare una buona
aggregazione, un compito che in linea di principio, come detto, è troppo esigente.

19.1.6 La modularità nei sistemi discreti dinamici
Ci sono casi complessi in cui le forme di modularità strutturale e dinamica non sono facilmente
separabili, perché qualche struttura ad alto livello del sistema, in sé, “emerge”10 dalle complesse
dinamiche di basso livello del sistema. Questo è tipico di certi sistemi dinamici discreti complessi,
come ad esempio alcune reti booleane, o certi automi cellulari. Mentre dedico alcune sezioni
del capitolo 5 a spiegare le basi dei sistemi dinamici discreti, e più precisamente di una loro
sottoclasse, i cosiddetti automi cellulari (CA da ora in poi), una panoramica molto sintetica può
essere qui prodotta: tali sistemi sono costituiti da un gran numero di parti semplici, ciascuna
delle quali, in un dato momento, appare essere in un particolare stato, scelto all’interno di un
insieme finito di stati possibili distinti. Si è soliti pensare a ogni stato distinto come a un simbolo,
e considerare l’insieme dei possibili simboli come un alfabeto (si pensi, nel caso più semplice,
ai simboli 0 e 1). Non solo i simboli sono discreti, ma lo è anche il tempo: in questi sistemi
discreti il tempo procede per passi di tempo (timesteps) distinti, che possiamo chiamare t1, t2,
e così via. In qualsiasi momento, l’insieme degli stati in cui tutte le parti del sistema si trovano
essere, costituisce la configurazione globale del sistema. Gli stati di tutte le parti del sistema sono
aggiornati in modo sincrono ad ogni passo temporale successivo secondo una determinata regola
deterministica, una regola che può essere la stessa per tutte le parti del sistema (come è nel caso
dei CA), o diversa per ciascuna parte. In un momento iniziale convenzionale, chiamiamolo t0, il
sistema è nella configurazione iniziale. L’evoluzione del sistema è la sequenza di configurazioni
globali successive che il sistema raggiunge col passare del tempo, a partire dalla configurazione
iniziale. Classi tipici di tali sistemi sono, come detto, i CA, e una classe più ampia, quella
delle reti booleane. La dinamica di tale evoluzione può, per certi sistemi, essere estremamente
complessa, in alcuni casi palesemente equivalente alla potenza di calcolo delle macchine di Turing
universali, che si ritengono essere11 la classe più potente di sistemi computazionali. Per questo
motivo, l’andamento nel tempo dei sistemi complessi è, in generale, molto difficile da prevedere,
e, nel caso di capacità di livello Turing, è in linea di principio algorithmicamente indecidibile in
generale12.

Una forma di modularità può essere indotta o apparire in certi sistemi dinamici discreti, sia
imponendo loro un stato iniziale specifico, o, in alcuni casi, per via della sua comparsa spontanea

9 Vedi sezione 19.3.
10 Uso il termine “emergenza” qui in modo intuitivo, anche se esso sarà discusso brevemente in seguito e, più

profondamente, nel corpo della dissertazione.
11 Data la tesi di Church-Turing per scontata. Per una spiegazione, si veda l’Appendice, sezione 17.3.
12 Come conseguenza della indecidibilità del problema della fermata. Vedere la sezione 17.2.6.

424 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

nel sistema dopo un certo tempo lungo la sua evoluzione, indipendentemente dalla specifica con-
figurazione iniziale: un fenomeno che è una forma di auto-organizzazione. Modularità in questo
senso equivale al fatto che alcuni sottoinsiemi della configurazione globale del sistema vengono
a risultare parzialmente o totalmente congelati dopo un certo tempo, cioè, vengono a costituire
parti immutabili o poco modificabili della configurazione, in modo da isolare parzialmente altri
sottoinsiemi della configurazione, ostacolando la propagazione di influenze da ciascuno di questi
sottoinsiemi agli altri. Ciò, implicitamente, impone una struttura virtuale di alto livello sopra la
struttura di basso livello originale del sistema, una sovrastruttura che può essere vista come un
insieme di moduli dinamici (le parti non fisse della configurazione) debolmente collegati tra loro
(mediante i residui percorsi di connessione che non siano interrotti da parti congelate). Per un
esempio di una rete discreta con modularità di alto livello che emerge durante la sua evoluzione,
vedi fig. 19.1.

In un altro modo leggermente diverso, l’auto-organizzazione può apparire, soprattutto nei CA,
come l’emergere di sottoconfigurazioni altamente localizzate, parzialmente robuste, ben delimi-
tate, solo in parte cangianti, della configurazione globale, i cosiddetti gliders, che sembrano, per
così dire, viaggiare attraverso la configurazione globale del sistema. Un esempio è in fig. 19.2.

19.1.7 Modularità nei sistemi computazionali

Essendo una forma di sistema dinamico discreto, un sistema computazionale può ovviamente
mostrare modularità. I computer universali comuni del mondo reale sono macchine altamente
modulari già al cosiddetto livello “hardware”. Ma un’altra forma molto importante di modularità
riguarda i programmi per computer. Un programma è essenzialmente costituito da una lista di
istruzioni che l’hardware del computer “esegue” passo dopo passo. Naturalmente, tale elenco
può essere privo di modularità apparente, o può invece essere strutturato dal programmatore in
modo evidentemente modulare, suddividendolo in sottoliste disgiunte, ciascuna dei quali contiene
principalmente istruzioni relative solo a un insieme limitato di variabili interne alla sottolista,
ad eccezione di un insieme di “ingresso” (o “input”) e un insieme di “uscita” (o “output”) di
variabili alle quali si accede anche da istruzioni comprese in altre sottoliste. In questo modo,
ciascuna di queste sottoliste può essere considerata un modulo, e il trasferimento limitato e
controllato di informazioni tra i diversi moduli è realizzato dalle variabili di ingresso-uscita, che
sono gruppi separati di variabili che risultano gli unici ad essere accessibili e gestibili dalle parti
del programma esterne al modulo: un tale tipo di modulo può essere considerato una “scatola
nera” con un insieme limitato di linee di ingresso e di uscita. In questo modo, la struttura tipica
dei moduli è realizzata: considerando come relazione prescelta tra le parti della lista di istruzioni
il rapporto tra un’istruzione e la variabile su cui essa agisce, si può facilmente vedere che una
sottolista di istruzioni le cui variabili interne, quelle non comprese negli insiemi di ingresso e uscita,
sono di uso prevalentemente interno, e sono meno spesso o (meglio) non sono mai manipolate da
istruzioni appartenenti a sottoliste disgiunte esterne, può essere considerata un modulo, dotato di
coesione interna e strutturalmente piuttosto indipendente dagli altri moduli. In un programma
non modulare, una modifica del programma da parte del programmatore può risultare molto
difficile da realizzare e da gestire, perché un cambiamento in una parte del programma potrebbe
influenzare parti potenzialmente molto distanti. Per contro, data la connettività limitata tra i
moduli, soprattutto nel caso in cui solo le variabili di ingresso e uscita siano accessibili a moduli
esterni, un cambiamento interno al modulo, e che riguarda variabili solo interne, non si diffonde
indiscriminatamente ad altri moduli, e quindi i suoi effetti sono più facili da controllare. In
generale, nella programmazione dei computer, ciò che si cerca è alta coesione interna dei moduli
e debole accoppiamento tra di loro.

19.1. Modularità 425

Figure 19.1: un’evoluzione parziale nel tempo di una rete discreta. Il tempo scorre dall’alto verso il basso,
ciascuna riga di pixel rappresenta la configurazione del sistema ad ogni passo temporale. Ogni pixel rappresenta
lo stato di una delle parti elementari della rete, i suoi nodi. Le linee verticali spesse, nero o a motivi regolari,
che si distinguono nell’immagine, sono sottoinsiemi “congelati” della configurazione. Essi inducono una forma
modularità di alto livello, agendo come più o meno come “muri” impenetrabili, rendendo in questo modo il
sistema quasi-scomponibile in diversi sottosistemi indipendenti. (Immagine tratta dalla Galleria DDLab di Andrew
Wuensche, http://uncomp.uwe.ac.uk/wuensche/gallery/ddlab_gallery.html).

426 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Figure 19.2: alcuni glider in un CA (il cosiddetto Regola 54 , secondo la classificazione di Stephen Wol-
fram (Vedi Wolfram 2002). Il tempo scorre dall’alto verso il basso, ogni riga di pixel rappresenta la con-
figurazione globale del sistema ad ogni passo temporale. Ogni pixel rappresenta lo stato di una delle parti
elementari della CA, le sue *cellule. Sopra: la sequenza di stati del CA. Sotto: dopo aver filtrato ed es-
cluso dall’immagine pattern ripetitivi di sfondo della configurazione del CA, i glider appaiono più chiara-
mente, rappresentati nel tempo da linee rette, che raffigurano lo spostamento progressivo di queste sottoconfigu-
razioni all’interno della configurazione globale (immagine tratta dalla Galleria di DDLab di Andrew Wuensche,
http://uncomp.uwe.ac.uk/wuensche/gallery/r54_filted. gif, successivamente modificata).

19.1. Modularità 427

La modularità nella forma della presenza nel sistema di parti simili o identiche ripetute è alla
base di una forma correlata di modularità dei programmi per elaboratore, una forma compatibile
con quella delineata sopra: se più di uno dei moduli del, programma esegue la stessa funzione
di ingresso/uscita, anziché essere esplicitamente ripetuto sotto forma della ripetizione di copie
identiche della sequenza delle sue istruzioni in punti diversi all’interno della lista globale del
programma, tale modulo può semplicemente essere invocato, “chiamato” più volte in diverse parti
del programma, “chiamandolo” ogni volta con configurazioni di ingresso distinte, e ricevendo
sue configurazioni di uscita potenzialmente diverse al momento che il modulo termina la sua
esecuzione. Moduli di programma visti in questo modo, come sottoprogrammi richiamabili, sono
spesso chiamati subroutine o procedure. Questo modo di strutturare i programmi può migliorare
enormemente la loro affidabilità, poiché il test di ciascuna procedura è sufficiente sia fatto una
volta sola, e il sistema completo viene assemblato a partire dai moduli già collaudati.

19.1.8 Modularità gerarchica, livelli, robustezza e validità

Cercherò di chiarire qui l’importanza di una proprietà dei moduli che fino ad ora ho solo men-
zionato: la robustezza. Intuitivamente, per una descrizione modulare di un sistema dinamico,
robustezza significa che un modulo a livello superiore deve sopportare una certa gamma di per-
turbazioni al livello inferiore, mantenendo la sua identità distinta e persistente nonostante la
variazione di stato nei suoi componenti costituenti. Oppure, in alcuni casi, un modulo robusto
dovrebbe rimanere lo stesso nonostante le possibili sostituzioni di alcuni dei suoi componenti di
basso livello. Nelle descrizioni modulari di reti13, Che sono descrizioni modulari strutturali, un
modulo è considerato robusto quando non cambia la sua identità nonostante la sottrazione o
l’aggiunta di alcuni collegamenti fra i suoi componenti sottostanti di basso livello14.

Nei sistemi dinamici, la persistenza a fronte delle variazioni renderebbe ovviamente un modulo
che può comprendere qualsiasi insieme casuale di componenti di livello inferiore un modulo molto
robusto: esso non cambierebbe mai a fronte di qualunque cambiamento a livello più basso! Ma
questo sarebbe una forma di robustezza banale. Un modulo dinamico robusto esplicativamente
adeguato dovrebbe essere non troppo evanescente, ma nemmeno dovrebbe permanere in uno
stato immutabile: dovrebbe invece essere in grado di seguire, in maniera grossolana, le dinamiche
sottostanti. L’adeguata robustezza dei moduli è essenziale quando si producono descrizioni gerar-
chiche che vogliamo impiegare nelle spiegazioni scientifiche di sistemi dinamici, perché un modulo
di alto livello, per essere esplicativo, deve essere supposto in grado di monitorare fedelmente, di
rispecchiare diciamo, le dinamiche di basso livello, anche se a una risoluzione temporale più
bassa rispetto a queste e spesso anche ad una risoluzione spaziale più bassa, o ad una precisione
inferiore. Un modulo appartenente alla descrizione di un sistema dinamico, per essere utile per
la spiegazione scientifica, dovrebbe essere robusto in una misura che viene scelta dall’osservatore,
secondo i suoi interessi: questo è un altro aspetto della relatività della modularità gerarchica
alla scelta dell’osservatore. In ogni caso, un modulo di alto livello non dovrebbe essere troppo
evanescente, altrimenti il suo livello di descrizione sarebbe inutilizzabile per delle spiegazioni,
né deve essere troppo congelato, poiché in quel caso non ci sarebbe alcun effetto esplicativo: un
modulo il più possibile congelato, che rimane nello stesso stato per ogni possibile combinazione di
tutte le parti del sistema, potrebbe semplicemente costituire un “nome” del sistema complessivo
(questo potrebbe in effetti essere utile in alcuni casi, al fine di individuare fenomeni per la prima
volta).

13 Vedi sezione 19.2.1.
14 Alcuni algoritmi di rilevamento della modularità di rete effettuano questo tipo di test per valutare la

robustezza modulare. Vedi la sezione 3.2.1.2.

428 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Comunque, la ridescrizione modulare ad alto livello in sistemi dinamici è una questione comp-
lessa: la descrizione modulare ad alto livello non deve divergere (perlomeno non troppo) nella sua
dinamica rispetto alla sottostante evoluzione dinamica al livello basso, quello della descrizione
preferita del sistema. Una descrizione modulare deve essere valida (per usare la terminologia
della simulazione al computer per scopi scientifici), per poter essere esplicativamente utile: deve
seguire con una certa precisione, anche se su scala più a grana grossa, l’evoluzione dinamica del
sistema. Una descrizione modulare non valida è esplicativamente inutile. Ciò può essere meglio
compreso con un esempio. Immaginiate che lanciamo l’esecuzione di un sistema dinamico dis-
creto una sola volta e per un tempo limitato, ottenendo una sezione della sua evoluzione: vedi
fig. 19.2. Potremmo elaborare immediatamente una rappresentazione modulare ad alto livello
di questa esecuzione dinamica, semplicemente prendendo come modulo ciascuna delle linee di-
agonali che rappresentano la traiettoria di un glider, e quindi produrre una spiegazione ad alto
livello del segmento in questione dell’evoluzione del sistema menzionando solo “traiettorie di
glider” (sulla falsariga di “il terzo glider si scontra con il secondo e lo distrugge, proseguendo
verso la grande colonna verticale di sinistra”, e così via . . .). Una descrizione come questa costi-
tuirebbe una descrizione valida di alto livello della dinamica del sistema? Molto probabilmente
no, perché avremmo basato il nostro rilevamento della modularità solo su un segmento limi-
tato della possibile evoluzione del sistema: la prossima volta che si avviasse il sistema con una
configurazione iniziale anche leggermente diversa, esso produrrebbe con la più alta probabilità
un segmento completamente diverso di evoluzione, e la descrizione precedentemente ottenuta
sarebbe resa inutile. Il punto è, quando ridescriviamo tali tipi di sistemi dinamici a un livello
superiore, non dobbiamo cercare di ridescrivere pattern unici ed effimeri della loro evoluzione,
ma solo sottosistemi adeguatamente robusti, che appaiano nella dinamica del sistema con un’alta
frequenza e regolarità: solo in questo modo si può sperare di ottenere una descrizione modulare
ad alto livello valida15. In termini che verranno chiariti nella sezione 19.4.3, potremmo anche
dire che un modulo dovrebbe idealmente rappresentare, ad alto livello, una funzione, eseguita al
fine di contribuire al comportamento complessivo del sistema. La scomposizione funzionale non
è arbitraria: non ogni dissezione arbitraria di un sistema in parti casuali può essere considerata
funzionale. Una decomposizione arbitraria, che porti ad una descrizione non valida, non sarebbe
considerata esplicativa in senso funzionale o meccanicistico.

19.1.9 Modularità e spiegazione

Si direbbe che la modularità sia connessa con al spiegazione in modi diversi e fondamentali.
Già i primi scritti di Herbert Simon sui sistemi quasi-scomponibili evidenziano che la formula
che rappresenta la dinamica aggregata16 di un sistema quasi-scomponibile è più semplice della
formula della sua dinamica originale, e questo significa che l’aggregabilità produce economia di
descrizione. Dal momento che una spiegazione scientifica della dinamica del sistema (perlomeno
una spiegazione di tipo deduttivo-nomologico17) utilizzerebbe sicuramente questa formula, questo
fatto permette di conseguire un’economia di spiegazione.

In generale, la modularità dovrebbe permettere una forma di descrizione a grana grossa (coarse-
graining), un’operazione che consiste nel prendere un sistema complesso rappresentato come un

15 Si può obiettare che la robustezza dei moduli di alto livello può essere ottenuta tramite la mappatura in
un modo complesso e non immediatamente evidente di insiemi eterogenei di sottoconfigurazioni effimere di basso
livello a moduli di alto livello. Questa, credo, non è un’obiezione banale, soprattutto considerando l’importanza
che attribuisco alla relatività della modularità. Esamino la questione, che ha profonde implicazioni, nella sezione
14.5.2.

16 Vedi sezione 19.1.5.
17 Vedi sezione 19.4.4.

19.1. Modularità 429

insieme di numerose parti, partizionare questo insieme in sottinsiemi distinti, e considerare, al
posto del sistema originale, un altro insieme in cui ogni parte corrisponde a uno dei sottoinsiemi
distinti del sistema originale. Questa risulta essere essenzialmente la stessa operazione, sia quando
riguarda insiemi di variabili di un equazione, come nell’operazione di aggregazione, dove porta a
una modularità dinamica, sia quando riguarda una rete, in cui la rappresentazione originale può
essere sostituita da una rete con u numero inferiore di nodi, sia nel caso di spiegazioni funzionali o
meccanicistiche18, in cui un gruppo di parti interagenti o di azioni può può venire ad essere visto
come una singola funzione, o un singlo meccanismo, e un gruppo di meccanismi può essere visto
come un singolo super-meccanismo, le cui parti sono i singoli meccanismi più semplici. Questo,
in un certo modo, vale anche per la modularità nei sistemi computazionali, nei quali una lista di
istruzioni può essere riscritta in un linguaggio di più ato livello in cui, ad ogni istruzione di alto
livello, corrisponde un gruppo di istruzioni di livello più basso: oltretutto, quello di un linguaggio
di alto livello è una forma del tutto tipica di redescrizione a grana grossa. In ognuno di questi casi,
si raggiunge un’economia di descrizione e, ragionevolmente, la comprensibilità della spiegazione
ne viene grandemente facilitata.

Un’altra forma di economia di descrizione è ottenuta in certe descrizioni modulari in cui più copie
di un singolo modulo ricorrente possono essere sostituite da una singola citazione del modello
generale di quel modulo, una forma di economia di descrizione che corrisponde, nei programmi
informatici, al fatto di chiamare la stessa subroutine da punti differenti del programma.

Inoltre, considerazioni di economia o di intelligibilità a parte, la modularità è necessaria per
produrre certi tipi di spiegazione. La strategia esplicativa analitica di Robert Cummins, che
toccheremo nella sezione 19.4.3 insieme con la spiegazione meccanicistica, esplicitamente invocano
una scomposizione gerarchica del funzionamento del sistema, al fine di spiegarlo. Naturalmente,
questa decomposizione è possibile nel caso in cui sia presente nel sistema qualche forma di
modularità funzionale, cioè quando i moduli ricercati possono legittimamente essere considerati
moduli funzionali. Allo stesso modo, l’idea di una spiegazione meccanicistica sembra richiedere
il ritrovamento di una coincidenza tra due tipi di gerarchie, una coincidenza tre una descrizione
strutturale e una descrizione funzionale del sistema, almeno nella concezione di meccanismo
portata avanti da William Bechtel e dal suo gruppo : per questi autori, che non vedono la
spiegazione meccanicistica semplicemente come riduzionistica, è essenziale che la spiegazione sia
multilivello, e ciò corrisponde a una descrizione meccanicistica gerarchica funzionale del sistema.
Abbracciando una visione epistemica delle spiegazioni19, questi autori naturalmente sottolineano
anche l’importanza dell’intelligibilità cognitiva delle Spiegazioni, e questa può essere ottenuta
tramite la modularità delle descrizioni impiegate nelle spiegazioni.

Quindi, in primo luogo, sembra che almeno spiegazioni di un certo tipo, ovvero spiegazioni
meccanicistiche o funzionali, richiedano modularità, anche quando si trascurino questioni circa
l’intelligibilità di queste spiegazioni.

Ma la modularità gerarchica permette anche spiegazioni multilivello che certamente migliorano la
comprensione. Data un’adeguata scomposizione gerarchica meccanicistica, un sistema può essere
descritto a qualsiasi livello desiderato di descrizione, con risultati diversi sulla intelligibilità della
spiegazione: i livelli grossolani più astratti consentono una spiegazione molto semplificata, che
di solito induce una migliore comprensione, mentre la scelta di procedere fino a livelli inferiori,
più dettagliati, migliora le informazioni sul sistema veicolate dalla spiegazione, probabilmente a
prezzo della comprensione: la spiegazione più dettagliata possibile è quella che descrive il sistema

18 Vedi al sezione 19.4.3.
19 Vedi sezione 1.4.3.

430 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

in termini di entità del livello più basso20, e, in molti casi, l’enorme quantità di informazioni
contenute in tale descrizione potrebbe ostacolare la sua intelligibilità.

19.1.10 Modularità e scienze biologiche: qualche esempio
Mi concentrerò qui su alcune brevi considerazioni riguardo l’importanza della modularità nel
pensiero e nella ricerca biologici, e questo perché la biologia è uno dei campi in cui la modularità
è stata più al centro dell’attenzione negli ultimi tempi. Un’osservazione ovvia è che gli organismi
sono indubbiamente modulari a molti livelli: possono, da un punto di vista biologico, grosso
modo essere visti come composti di sistemi, organi, cellule, macromolecole. È meno evidente se
la modularità risulti presente a certi livelli intermedi che possono essere considerati come sistemi
complessi, comprendenti molte parti: per esempio, il genoma, il proteoma o la rete metabolica
sono modulari?

Quindi, una prima domanda da porci è: l’evoluzione produce architetture modulari dinamiche
modulari negli organismi? E, se questo è il caso, la modularità è evoluta per selezione naturale
o per altri motivi? Al di là dell’eventuale studio empirico di questo problema, alcune consid-
erazioni a priori sono sembrate in grado di gettar luce sulla questione, almeno fin dai tempi di
Herbert Simon. C’è un certo numero di argomenti che puntano a concludere che la selezione
naturale dovrebbe realmente condurre ad un’organizzazione modulare. Tutti questi argomenti
sostanzialmente derivano dal seguente ragionamento: in un organismo completamente integrato,
non modulare, in cui ogni parte potenzialmente influisce su ogni altra, il cambiamento evolu-
tivo in una parte potrebbe incidere e possibilmente alterare le funzioni svolte da altre parti, e,
dato questo, il numero di tentativi evolutivi potenzialmente necessari per ottenere un organismo
ancora funzionante dopo un cambiamento in una sua parte sarebbe enorme, quindi è plausibile
affermare che, se così fosse, la selezione naturale non avrebbe avuto il tempo, nonostante la scala
geologica dei tempi evolutivi reali, per determinare l’evoluzione dei sistemi complessi. Questo è
più o meno l’argomento generale a favore dell’evoluzione della modularità inizialmente proposto
negli anni ’60 da Herbert Simon21 e adottato, con alcune variazioni, da molti autori successivi. A
partire da alcuni lavori di Stuart Kauffman nei primi anni ’90, è apparso un argomento alternativo
(ma a mio parere non così dissimile, vedi la sezione 7.1.2) che, pur affermando la modularità dei
sistemi biologici, nega la sua diretta provenienza dalla selezione naturale: la modularità sarebbe
invece una proprietà auto-emergente di una certa classe di sistemi complessi dinamici, dovuta
al “congelamento” di alcuni dei loro sottosistemi dinamici (vedi sopra, sezione 19.1.6), un fatto
che non nasce dalla selezione diretta, ma in virtù delle caratteristiche intrinseche, matematiche
di questi sistemi22. Il genoma di un organismo (visto come un complesso di parti interagenti,
nella forma della rete di regolazione genetica) può, secondo Kauffman, essere considerato, con
una certa approssimazione, appartenente a questa classe di sistemi dotati di una tendenza a
fare emergere la modularità spontaneamente, una classe che si rivela essere la classe della mag-
gior parte dei sistemi evolvibili: il ruolo della selezione naturale sarebbe stato quello di operare
una meta-selezione della classe di sistemi in grado di evolversi, all’interno della quale, poi, op-
erare il suo più fine ruolo analitico selettivo, come classicamente concepito nel darwinismo23, e

20 Il fatto stesso di giungere a queste entità di più basso livello, questo “toccare il fondo”, che corrisponde nella
mia terminologia al raggiungimento della descrizione preferita, è di solito una questione di scelta o convenzione,
anche secondo Bechtel e i suoi co-autori. Vedere le sezioni 19.4.7 e 11.1.5.

21 Con la celebre parabola dei due orologiai, vedi la sezione 7.1.1 e, naturalmente, Simon (1962).
22 Questo tipo di spiegazione fornita da Kauffman può essere vista come una forma di spiegazione topologica,

secondo il modello recentemente proposto da Philippe Huneman. Vedi la sezione 19.4.5 e Huneman (2010).
23 Colgo l’occasione qui per un’avvertenza: anche quando parlo della selezione naturale in termini intenzionali,

non sto proponendo di considerare la selezione un soggetto intenzionale: è solo, ovviamente, un’utile “façon de
parler”, ampiamente diffusa in filosofia e biologia.

19.2. Rilevamento algoritmico della modularità 431

questa classe è la classe di sistemi complessi che, spontaneamente, mostrano una qualche forma
di modularità.

Quindi sembrerebbe, tutto considerato, che ci siano ragioni per le quali i sistemi biologici che si
sono evoluti debbano avere preferibilmente una organizzazione modulare. Molti di questi sistemi
sono così complessi e composti di tante parti, che il rilevamento della loro modularità funzionale,
consentendo la loro spiegazione multilivello, sarebbe di grande aiuto anche nella comprensione
di tali sistemi.

In biologia, sin dai tardi anni ’90, alcune proposte sulla possibilità di vedere sistemi biologici
complessi come composti da moduli funzionali sono state direttamente ispirate dal punto di
vista ingegnenristico sui sistemi artificiali, in particolare sui circuiti elettrici: tra le proposte
più importanti da questo punto di vista vi sono McAdams & Shapiro (1995), e Hartwell et
al. (1999)24. Questo punto di vista è stato applicato a reti genetiche e metaboliche, dove
l’elevata specificità dei collegamenti elettrici tra i componenti di un circuito elettronico è sostituita
dalla specificità del rapporto tra una proteina e il suo ligando, e l’intera rete biologica viene
rappresentata come un circuito digitale, che è equivalente (con alcune differenze, tenendo conto
dei ritardi di propagazione dei segnali) a un tipo di rete booleana. In questi circuiti, i moduli
sono le occorrenze separate di componenti standard , collegati da connessioni, e il circuito digitale
completo può essere visto come una struttura gerarchica, in cui ogni livello è descrivibile come
un circuito di parti modulari ripetibili interconnesse, che rendono in grado le unità digitali di
alto livello di realizzare praticamente qualsiasi circuito digitale, anche quelli che possono essere
visti come sistemi computazionali. Vedi fig. 19.3 per un’esemplificazione della visone gerarchica
dei circuiti elettronici digitali.

Le parti modulari possono essere, nel caso di reti genetiche, singoli geni e, ad un livello superiore,
complessi di geni come gli operoni dei genomi batterici. Tali componenti di livello superiore
avrebbero un ruolo funzionale, come è il caso, per esempio, di un operone, che controlla la
produzione di un complesso di enzimi che svolgono una funzione metabolica specifica. Una
possibile rappresentazione schematica di un “circuito genetico” è riportata in fig. 19.4.

Hartwell et al. (1999) ha proposto che i termini linguistici (“amplificazione”, “correzione degli
errori”, “rilevamento coincidenza”, e così via ..) corrispondenti a funzioni di medio e alto livello
svolte dai moduli situati a livelli gerarchici intermedi, vengano a costituire un vocabolario di
termini, essenziale per la descrizione funzionale dei sistemi biologici.

19.2 Rilevamento algoritmico della modularità

Esaminerò qui algoritmi conosciuti per il rilevamento della modularità in certe classi di sistemi
complessi, cioè algoritmi che, dato un sistema complesso e una descrizione elementare preferita
di esso, cercano di produrre una descrizione modulare gerarchica del sistema.

19.2.1 Rilevamento algoritmico della modularità nelle reti e complessità
computazionale

Prendo qui in considerazione, in particolare, algoritmi per il rilevamento della modularità nelle
reti, perché i modelli di rete sono emersi come uno dei modi preferiti di rappresentare sistemi
complessi, in particolare i sistemi biologici, nella ricerca recente. Una rete può in generale essere

24 Per una meta-riflessione sui metodi della ricerca biologica, la modularità, e l’approccio ingegnenristico, vedi
anche Lazebnik (2002).

432 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Figure 19.3: immagine A: un diagramma di alto livello che rappresenta un circuito digitale. Fatta eccezione
per un paio di porte logiche singole (U4A e U4B), la maggior parte dei componenti sono di livello superi-
ore, e possono essere considerati i moduli che svolgono funzioni di livello superiore. In questo caso, ciascuno
degli elementi etichettati U2A, U2B, U3A, U3B è un cosiddetto flip-flop, un tipo di cella di memoria a 1
bit. Ciascun flip-flop può essere visto (immagine B) come composto internamente da un certo numero di el-
ementi semplici, cioè porte logiche NAND. Ciascuna delle porte NAND a due ingressi etichettate come G1
e G2 nell’immagine B sono strutturate internamente come un circuito composto da transistor e resistenze,
come nell’immagine C. Naturalmente, la descrizione a livello superiore a quello dei flip-flop è possibile: per
esempio, tutto il circuito dell’immagine A può essere definito come un modulo che svolge la funzione di con-
tatore a un’unica cifra, che conta gli impulsi inviati alla sua linea di ingresso e visualizza il numero con-
tato sul display etichettato DCD HEX. Come modulo, questo circuito può essere utilizzato come una parte
standard in altri circuiti più grandi. (Immagini A, B e C tratte da Wikipedia Commons, rispettivamente
da http://commons.wikimedia.org/wiki/File:4_bit_counter.svg, http://commons.wikimedia.org/wiki/File:JK-
FlipFlop_(4-NAND).PNG and http://commons.wikimedia.org/wiki/File:TTL_npn_nand.svg).

considerata come un insieme di parti, i suoi nodi, collegate tra loro in diversi modi tramite
connessioni , o link (una possibile rappresentazione grafica di una rete è fig. 19.5). Ci sono
due principali possibili forme di modularità nelle reti, non incompatibili tra loro: struttura di
comunità e di motivi di rete25. Mentre l prima si basa sul tipico concetto di modularità instesa
come sottosistemi robusti debolmente collegati, la seconda coincide con l’idea di moduli come
parti standard ripetibili.

25 Vedere la sezione 3.

19.2. Rilevamento algoritmico della modularità 433

Figure 19.4: rappresentazione schematica del circuito genetico generante la dinamica del ciclo lisogenico del fago
λ phage. (Il fago è un virus che attacca i batteri. Immagine tratta da McAdams & Shapiro 1995, p. 652).

Il capitolo 3 fa una panoramica dettagliata sui principali metodi proposti per la rilevazione dei due
tipi di modularità, con una particolare attenzione alla fattibilità computazionale di questi metodi:
risulta che la maggior parte dei migliori algoritmi per il rilevamento di modularità nelle reti sono
computazionalmente molto impegnativi, e che vi è anche un limite teoricamente stabilito sulla
loro accuratezza. In sintesi, è stato dimostrato che l’accertamento automatico della migliore
descrizione modulare possibile di un sistema è ostacolato da un’insormontabile complessità di
tempo di calcolo: il compito è NP-completo26. Inoltre, è un dato di fatto che la maggior parte
degli algoritmi per almeno approssimare l’individuazione ottimale della modularità nelle reti sono
di per sé anch’essi altamente intensivi dal puto di vista computazionale. In generale, sembra che
il rilevamento algoritmico della modularità di rete venga influenzato da un compromesso tra
complessità del compito e affidabilità della descrizione modulare prodotta, e che, per questo
motivo, sia algoritmicamente possibile solo per sistemi dimensioni limitate l’identificazione di
loro descrizioni gerarchiche approssimative ma accettabili.

19.2.2 Rilevamento della modularità nei sistemi dinamici discreti e nei
sistemi computazionali

In linea con le considerazioni sulla modularità dinamica fin qui fatte, procedo qui a prendere
in considerazione forme di modularità dinamica in alcuni tipi di sistemi dinamici discreti capaci

26 Vedi sezione 19.3 e, nell’Appendice , la sezione 17.4.

434 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Figure 19.5: una rete con struttura di comunità. In questa immagine, i dischi colorati circondano le comunità,
che mostrano alta densità di legami intra-modulo, mentre i collegamenti esterni tra moduli diversi esterni sono
più radi.

di computazione. La possibilità di rilevazione della modularità dinamica e computazionale in
questi tipi di sistemi, che spesso possono essere considerati sistemi computazionali a livello della
macchina di Turing, risulta essere afflitta da indecidibilità algoritmica o, almeno, dalla comp-
lessità computazionale del compito. Una prima discussione introduttiva su questa questione sarà
effettuata nel seguito.

19.2.3 Alcune applicazioni reali nella ricerca scientifica della rilevazione di
modularità

Dato che la modularità funzionale e quella strutturale, anche se concettualmente distinte, sono
spesso legate, i metodi di rilevazione automatica della modularità nelle reti, che si applicano
alla struttura della rete, potrebbero, se applicati a rappresentazioni sotto forma di rete di un sis-
tema biologico, produrre una descrizione modulare immediatamente funzionale. La coincidenza
frequente tra l’organizzazione strutturale e l’organizzazione funzionale nei sistemi biologici è con-
fermata da molte opere, in particolare, tra l’altro, da una serie di ricerche di Zhou e Lipowsky27,
in cui uno dei migliori metodi di rilevazione della modularità nelle reti viene applicato alla rete
di interazioni proteina-proteina del lievito, producendo una descrizione modulare comprendente
449 moduli, che risultano corrispondenti a sottosistemi funzionali già noti, e che sono componenti
di una descrizione modulare ad ancora più alto livello. Un altro lavoro importante che evidenzia
la coincidenza tra modularità strutturale e funzionale nei sistemi biologici è Guimerà & Amaral
(2005b), che applica a reti metaboliche un algoritmo per la rilevazione della modularità il quale
identifica i moduli e quindi assegna loro un ruolo funzionale presunto, sulla base della connet-
tività strutturale intra-modulo e inter-modulo. I moduli funzionali identificati hanno ruoli che

27 Vedi Zhou & Lipowsky (2004) e Zhou & Lipowsky (2006).

19.3. Intrattabilità computazionale 435

risultano correlare abbastanza bene con le funzioni biologiche reali che metaboliti corrispondenti
a ciascun modulo effettivamente compierno nella rete metabolica complessiva. Vedere fig. 19.6.

Figure 19.6: rappresentazione modulare ad alto livello di una rete metabolica. (Immagine tratta da Guimerà &
Amaral 2005b).

19.3 Intrattabilità computazionale

L’intrattabilità computazionale è una limitazione pragmatica di alcuni compiti di calcolo, che
consiste essenzialmente nel fatto che essi non possono essere portati a termine se la dimensione
dei loro dati di ingresso supera certi limiti28. Ciò significa che, in generale, il compito com-
putazionale in questione, mentre è eseguibile in linea di principio, potrebbe non essere mai
portato a termine in tempi umani, o anche tempo astronomicamente plausibili, se la dimensione
dell’input supera una certa grandezza. Questo è tipico, per esempio, dei problemi che hanno
tempi di esecuzione proporzionale a una funzione esponenziale delle dimensioni del loro input:
anche per piccole dimensioni del loro ingresso, il loro tempo di completamento può raggiungere
valori ingestibili, perché le funzioni esponenziali crescono in maniera molto ripida. Quindi, anche
se l’intrattabilità computazionale non è una limitazione in linea di principio, essa è certamente
un limite insormontabile da un punto di vista pragmatico. Le classi più tipiche di complessità

28 Questa è la complessità temporale dei programmi, che è non l’unico tipo di complessità computazionale.
Altri tipi di complessità e un migliore trattamento di queste questioni possono essere trovati nella sezione 17.4.

436 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

computazionale che possono essere considerate difficili sono le classi dei cosiddetti problemi algo-
ritmici NP-completi e NP-hard.

Alcuni compiti algoritmici che non sono da considerare formalmente intrattabili, possono tuttavia
essere troppo computazionale esosi, per essere di applicabilità pratica. Questo accade per esempio
quando un’attività richiede una serie di passi che è proporzionale a una potenza intera del formato
di input: per esempio, n4, dove n è la dimensione dei dati di ingresso. In questi casi, dato un
input sufficientemente grande, il programma prenderebbe certamente troppo tempo a completare
l’elaborazione, per essere di un qualche uso pratico.

L’intrattabilità computazionale e e l’eccessivo costo computazionale pratico sono due nozioni di
base su cui la mia proposta sull’antimodularità si incentra, come vedremo nella prossima sezione.

19.4 Antimodularità

Tenuto conto di tutti i risultati di cui sopra circa la difficoltà computazionale del rilevamento
algoritmico di modularità, propongo di definire la proprietà dell’antimodularità in generale,
come l’impossibilità di ottenere, mediante rilevamento algoritmico della modularità, un’utile
descrizione modulare gerarchica valida di un sistema. Più precisamente, un sistema mostra
antimodularità quando la sua descrizione gerarchica più fattibile e fedele, prodotta da mezzi
algoritmici, è comunque troppo approssimativa per costituire in ogni caso un’utile descrizione di
alto livello del sistema, oppure quando essa è persino completamente non-valida. In questi casi,
l’unica descrizione gerarchica possibile comprende solo due livelli gerarchici banali: il livello di
tutto il sistema e il livello delle sue parti singole, di livello più basso: in altre parole, i sistemi
antimodulari sono sistemi che, intuitivamente, possono essere spiegati dalla decomposizione ad
un unico livello, il livello dei loro componenti elementari, più fini.

Lantimodularità è dovuta al fallimento della applicazione dei metodi algoritmici per il rilevamento
modularità, e questo a sua volta può essere eventualmente attribuito a due condizioni:

1. Nessun livello intermedio di modularità può essere ragionevolmente supposto nel sistema,
a partire dall’osservazione della sua descrizione preferita. Cioè, detto in maniera semplice,
il sistema così descritto è in realtà non modulare affatto. Io chiamo questo caso antimodu-
larità intrinseca, il che significa che l’antimodularità è intrinseca alla descrizione preferita
data, non importa quanto sia preciso l’algoritmo per la sua individuazione. Questa situ-
azione può verificarsi quando le parti del sistema, secondo la descrizione preferita, sono
iperconnesse: per esempio, in una rete regolare ogni nodo è collegato a tutti gli altri, e
quindi nessuna modularità può mai presentarsi.

2. Indipendentemente dal fatto che una struttura modulare reale sia presente nella descrizione
preferita del sistema o meno (come al punto 1), l’antimodularità sorge perché, dato l’elevato
numero di parti che compongono la descrizione preferita del sistema, l’algoritmo per il ril-
evamento di modularità finisce per essere computazionalmente troppo costoso per essere
portato a termine, sia perché esso è computazionalmente intratabile29, o, anche se formal-
mente non è intrattabile, perché esso è comunque troppo impegnativo computazionalmente
per essere portato a termine in ogni caso. Io chiamo questa ultima ragione semplicemente
antimodularità (naturalmente, l’antimodularità intrinseca è un caso di antimodularità).

29 Vedi sezione precedente.

19.4. Antimodularità 437

La ragione di questa distinzione tra antimodularità e antimodularità intrinseca è che, mentre
l’antimodularità potrebbe in alcuni casi essere eliminata migliorando l’algoritmo di rilevamento
della modularità, l’antimodularity intrinseca rimarrebbe ancora in ogni caso, non essendo essa
dovuta alla inesattezza o al costo computazionale dell’algoritmo impiegato, ma a una caratter-
istica oggettiva di un sistema in cui, grazie alla distribuzione uniforme in tutto il sistema della
forza della relazione che riguarda le parti, la modularità, relativamente a quel rapporto scelto
tra le parti, è in realtà, oggettivamente, assente.
Potrebbe essere utile, una volta in presenza di antimodularità, avere un metodo per dire se
questa è antimodularità intrinseca, o se invece la modularità è presente, ma non può essere
rilevata. Essendo dovuta alla distribuzione statistica della relazione tra le parti, l’antimodularità
intrinseca, almeno l’antimodularità intrinseca strutturale, dovrebbe essere ragionevolmente facile
da rilevare: l’assenza intrinseca di modularità può essere rivelata da indagini statistiche sulla
distribuzione di alcune proprietà attraverso il sistema. Quindi, dovrebbe essere abbastanza facile
distinguere antimodularità e antimodularità intrinseca, almeno in certi casi. Vi sono, tuttavia,
delle eccezioni che verranno discusse nella sezione 13.2.
Alla luce di quanto abbiamo visto finora, sembra che il rilevamento di modularità possa, in sistemi
sufficientemente grandi, venire effettivamente impedito da problemi di costo computazionale, o
anche da intrattabilità computazionale, per cui un sistema può essere pragmaticamente consider-
ato antimodulare, anche se in linea di principio esso possiede un certo grado di modularità, che,
tuttavia, siamo praticamente incapaci di rilevare automaticamente. Una descrizione preferita an-
timodulare di un sistema non possiede, almeno per quanto ne possiamo sapere, una descrizione
valida modulare di alto livello, cioè una descrizione le cui parti sono dotate di un sufficiente grado
di robustezza.
L’aspetto pragmatico dell’antimodularità, comunque, non deve essere minimizzato come mera-
mente pragmatico: è un’impossibilità pragmatica di portare a compimento in un tempo possibile
un programma di computer, ma, soprattutto quando l’intrattabilità computazionale di un al-
goritmo è stata matematicamente dimostrata, questo ostacolo pragmatico diventa qualcosa di
più pressante, assumendo la cogenza di una legge logica: non ci può essere alcuna speranza
di rendere l’algoritmo per l’ottimizzazione della modularità rilevata, che è risultato essere com-
putazionalmente intrattabile, più computazionalmente trattabile: non importa quanto cerchiamo
di migliorare un algoritmo intrattabile, o aumentare la potenza del sistema su cui viene eseguito:
il suo tempo di esecuzione saprà, almeno in certi casi, sconfiggere sempre qualsiasi possibile
miglioramento nella velocità. L’ottimizzazione del rilevamento di modularità può essere proba-
bilmente approssimata in tempi più ragionevoli, ma il compromesso tra velocità e precisione, che
è tipico degli algoritmi approssimati per il rilevamento di modularità, connesso all’elevato nu-
mero di parti di alcuni sistemi complessi, potrebbe rendere la modularità reperita eccessivamente
approssimativa o, al contrario, rendere troppo elevato il tempo di rilevamento di una descrizione
modulare sufficientemente precisa, e questo anche se l’algoritmo approssimato non è, da un punto
di vista formale, computazionalmente difficile.
Quindi, l’antimodularità, almeno per quanto riguarda la ricerca della migliore descrizione modu-
lare, ricerca che è stato dimostrata essere un compito NP-completo, è una proprietà pragmatica
ma allo stesso tempo oggettiva, inevitabile di un sistema, proprietà derivante da proprietà com-
putazionali che non dipendono da vincoli contingenti o da una scelta operata dall’osservatore.

19.4.1 Emergenza antimodulare
Propongo di chiamare il verificarsi dell’antimodularità in un sistema un caso di emergenza anti-
modulare, e di considerrlo una forma di emergenza computazionale. L’antimodularity appare in

438 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

effetti molto simile a una forma ben nota di emergenza: l’emergenza debole (weak emergence), una
nozione proposta da Mark Bedau a partire dalla metà degli anni ’90. Si tratta di una nozione
di emergenza diacronica connessa a certe proprietà di sistemi computazionali. In particolare
paragono la mia nozione di emergenza antimodulare a quella di emergenza debole, concludendo
che l’antimodularità comporta, con qualche clausola, l’emergenza debole, ma che l’implicazione
conversa non vale per tutti i sistemi: ci sono sistemi modulari che sono, allo stesso tempo, debol-
mente emergenti. Delineo qui la linea di base del ragionamento sul rapporto tra antimodularità
ed emergenza debole, una discussione che viene ampliata nella sezione 13.3.

Mark Bedau (1997) introduce la nozione di emergenza debole (WE), che, nella sua formulazione
originaria, vale soprattutto per sistemi dinamici discreti:

Il macrostato P di S con microdinamica D è debolmente emergente sse P può essere derivato
da D e dalle condizioni esterne di S, ma solo tramite una simulazione30

Senza soffermarmi in una spiegazione approfondita dei termini impiegati nella definizione di
cui sopra, è sufficiente notare qui che la definizione di Bedau potrebbe essere riformulata senza
dubbio nel modo seguente:

Un macrostato è debolmente emergente sse può essere derivato a partire dalla descrizione di
basso livello (dalla descrizione preferita) del sistema, associata allo stato iniziale del sistema,
ma solo tramite microsimulazione, cioè, simulando la dinamica del sistema passo-passo
secondo la sua descrizione di livello più basso (cioè, la sua descrizione preferita).

Risulta che, nella maggior parte delle condizioni, condizioni che saranno meglio specificate
in seguito qui e nella sezione 13.3, l’antimodularità comporta l’emergenza debole di Bedau.
L’argomento è, in breve, questo: se un sistema è antimodulare, allora, per definizione, questo
significa che la sua unica descrizione modulare valida è il livello di descrizione più basso, la sua
descrizione preferita. Ciò implica che il sistema non sia prevedibile mediante una simulazione
modulare di alto livello: perché, se lo fosse, ciò significherebbe che la simulazione di alto livello,
in quanto in grado di predire il sistema, rappresenta una descrizione modulare valida di alto
livello. Ma, in un sistema antimodulare, questa descrizione modulare valida di alto livello è
esclusa dalla definizione stessa di antimodularità. Quindi, si può concludere che la dinamica di
un sistema antimodulare non è suscettibile di essere predetta da alcuna simulazione modulare di
alto livello: se nessun altro metodo non modulare di predizione è applicabile, l’unico modo per
sapere come il comportamento del sistema evolverà è simulandolo a livello della sua descrizione
preferita, cioè per microsimulazione. Quest’ultima circostanza appare equivalente alla riformu-
lazione che ho fatto più sopra della definizione di emergenza debole di Bedau. Così, sembra che
antimodularità → emergenza debole. Questa implicazione non è del tutto certa, tuttavia, poiché
essa dipende dal fatto che un sistema antimodulare, che non è prevedibile da alcuna simulazione
modulare di alto livello, sia ugualmente impossibile da prevedere anche con qualsiasi altro mezzo
non modulare. Nella sezione 13.3 evidenzierò come certi sistemi antimodulari potrebbero effet-
tivamente essere predetti con mezzi non modulari di alto livello, e quindi risultare non essere
debolmente emergenti, ma sosterrò anche che questi sistemi non sono probabilmente molto inter-
essanti nel loro comportamento, e che in sistemi complessi più interessanti, come quelli capaci di
computazione, l’antimodularità comporta l’emergenza debole.

30 Bedau (1997), p.378.

19.4. Antimodularità 439

La cosa interessante è che l’implicazione conversa non tiene: esistono sistemi debolmente emer-
genti che allo stesso tempo non sono antimodulari, cioè hanno descrizioni modulari di alto livello
valide. Il sistema rimane debolmente emergente anche in presenza di queste descrizioni modulari,
perché tali descrizioni di alto livello non possono essere utilizzate per prevedere il suo compor-
tamento (circostanza che, se possibile, renderebbe il sistema non debolmente emergente, per
definizione), ma possono essere utilizzate solo per spiegare il sistema. Ciò può accadere per due
possibili ragioni: perché tali descrizioni modulari sono troppo vaghe, troppo astratte, troppo di
alto livello per essere impiegate per calcolare una simulazione dinamica del sistema: per esempio,
si pensi al caso di diagrammi di flusso che semplicemente descrivono sommariamente il ruolo
funzionale che i moduli ricoprono nel sistema, senza fornire indicazioni sufficienti per consentire
la loro implementazione. Queste descrizioni modulari di alto livello non possono simulare dinami-
camente il sistema, quindi non possono anticipare in alcun modo i suoi risultati dinamici, ma
possono essere utilizzate per spiegare il sistema, veicolando una buona spiegazione. Oppure, in un
altro caso, il motivo per cui il sistema è debolmente emergente pur avendo possibili ridescrizioni
modulari di alto livello, è che il sistema, anche se funzionalmente modulare ad alto livello, è intrin-
secamente imprevedibile, e questo è il motivo del suo essere debolmente emergente. Questo può
avvenire in sistemi computazionalmente universali, che, come conseguenza dell’indecidibilità del
problema della terminazione (la nota proprietà dimostrata nel 1936 da Alan Turing insieme con
la sua proposta dei sistemi computazionali31), posseggono molte proprietà dinamiche intrinseca-
mente imprevedibili. I computer universali del mondo reale sono generalmente sistemi di questo
tipo: essi sono altamente modulari, ma potenzialmente imprevedibili. Così, sono modulari e allo
stesso tempo debolmente emergenti.

19.4.2 Antimodularità e modelli della spiegazione scientifica
Dopo aver definito questo nuovo tipo di emergenza computazionale, dovuto alla quantità di
durezza computazionale che può essere manifestata in alcuni casi da algoritmi di rilevamento
della modularità, cerco di trarre alcune possibili conseguenze dell’emergenza antimodulare sulla
possibilità di spiegare scientificamente i sistemi che essa affligge. Esamino due ben noti modelli
di spiegazione scientifica: la spiegazione funzionale-meccanicistica e quell deduttivo-nomologica
(DN, d’ora in poi). Valuto quindi un modello più controverso di spiegazione, la spiegazione
computazionale, e un altro tipo di spiegazione che è stata oggetto di una recente indagine, la
spiegazione “matematico-topologica”, una forma di spiegazione adeguata a spiegare alcune carat-
teristiche dei sistemi dinamici complessi. Concludo che l’emergenza antimodulare colpisce la
fattibilità dei primi due tipi di spiegazione, e anche, seppure in modo diverso, della spiegazione
computazionale, mentre non impedisce la possibilità di spiegazione topologica, venedo a costituire
persino un fattore abilitante di questo tipo di spiegazione.

19.4.3 Antimodularità e spiegazioni funzionali e meccanicistiche
Affermo che l’antimodularità influisce negativamente sulla spiegazione meccanicistica, una forma
fondamentale di spiegazione nelle scienze biologiche. Una breve digressione è dovuta, qui, al fine
di descrivere ciò che questa forma di spiegazione costituisce.

Il termine spiegazione meccanicistica di solito si riferisce al giorno d’oggi in filosofia ad un modello
relativamente recente della spiegazione scientifica, sviluppato a partire dagli anni ’90 da diversi
gruppi di filosofi della biologia e delle scienze cognitive che lavorano piuttosto indipendentemente.
Gli esponenti più in vista delle due linee principali di indagine in questo campo risultano essere

31 Come spiegato nella sezione 17.2.6 dell’Appendice.

440 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

William Bechtel e i suoi collaboratori, da un lato, e Carl Craver e i suoi colleghi, dall’altro32.
Lasciando per il momento da parte le sottili differenze tra queste due concezioni principali di
spiegazione meccanicistica33, mi baso qui su Bechtel & Abrahamsen (2005), che è un testo stan-
dard per l’argomento. Bechtel e Abrahamsen (* BA * d’ora in poi) danno la seguente definizione
di meccanismo:

Un meccanismo è una struttura che svolge una funzione34 in virtù delle sue parti compo-
nenti, operazioni componenti, e della loro organizzazione. Il funzionamento orchestrato del
meccanismo è responsabile di uno o più fenomeni35.

La definizione di cui sopra definisce un meccanismo come quello che in questo capitolo ho chiam-
ato un sistema complesso, cioè un sistema composto da parti interagenti. Il punto da sottolineare
è che c’è una concezione funzionale coinvolta: la funzione globale, che rappresenta l’explanandum,
viene spiegata tramite la descrizione dell’organizzazione e delle interazioni delle parti che, medi-
ante il loro funzionamento dinamico “orchestrato”, producono il fenomeno. Ciò che è necessario,
secondo BA, per spiegare un dato fenomeno, è quindi innanzitutto identificare le parti e le oper-
azioni necessarie per la sua produzione. A questo scopo, il sistema nel suo insieme deve essere
sottoposto a due operazioni, che BA chiamano decomposizione strutturale e decomposizione fun-
zionale: la prima produce l’insieme di parti elementari del sistema, mentre la seconda, che nel
mondo della scienza reale è spesso condotta separatamente dalla prima, identifica le operazioni
elementari. Una terza operazione desiderabile è la localizzazione, che consiste nel collegare le
parti con le funzioni che esse eseguono. Una spiegazione meccanicistica, secondo BA, è prodotta
in questo modo. Questo tipo di spiegazione di basso livello non è sempre il più desiderabile, e,
come BA evidenziano, è importante considerare una gerarchia di meccanismi, e che la spiegazione
sia quindi multilivello. Secondo BA, un meccanismo può anche comportare molteplici livelli di
organizzazione, essendo esso spesso parte di un meccanismo più grande di livello superiore: cir-
costanze esterne a un determinato meccanismo possono essere viste come meccanismi globali
sovraordinati, mentre i componenti di un meccanismo possono essere visti come meccanismi
stessi, ricorsivamente composti di sottoparti.

Mi sembra che tutta questa concezione dei meccanismi potrebbe essere facilmente riformulata
in termini di modularità, in linea con la visione che ho abbozzato fino ad ora. Il risultato
della decomposizione funzionale, della decomposizione strutturale e della localizzazione è quello
che ho chiamato la descrizione preferita del sistema: l’identificazione delle parti del livello più
basso di base che l’osservatore ha deciso di identificare. BA non sottolineano particolarmente,
come faccio qui, la dipendenza di questa descrizione da una scelta effettuata dall’osservatore,
poiché essi ritengono implicitamente che ci sono descrizioni preferite di alcuni sistemi che sono
naturalmente date, e queste ci sono indubbiamente, per esempio in biologia molecolare, dove
le molecole (o, eventualmente, gli atomi) sono le parti elementari più naturali. La differenza
principale con il mio punto di vista è allora che la mia concezione di modularità gerarchica è
più generale, comprendente, forme di modularità esclusivamente funzionali e non fisiche, come
la modularità delle computazioni.

Detto questo, partendo dalla definizione di antimodularità, è facile mostrare che l’antimodularità
costringe a ricorrere a spiegazioni a singolo livello, obbligando a trascurare l’esigenza, essenziale

32 Le due corrispondenti opere seminali sono Bechtel & Richardson (1993) e Machamer et al. (2000).
33 Queste differenze, in particolare quelle più significative, tra la cosiddetta concezione epistemica, che io,

insieme con William Bechtel, sostengo, e la concezione ontica dei meccanismi, sostenuta da Carl Craver, sono
discusse nel capitolo 10.

34 Vedi sezione 9.
35 Bechtel & Abrahamsen (2005), p. 423.

19.4. Antimodularità 441

per le spiegazioni meccanicistiche, dell’integrazione multi-livello. L’antimodularità limiterebbe
la spiegazione meccanicistica al livello di descrizione che rappresenta le parti più elementari
del sistema, cioè la descrizione che cita il più alto numero di parti e quindi la descrizione più
complicata. Questo fatto ostacola certamente la comprensione: per sistemi abbastanza grandi, la
loro spiegazione meccanicistica a questo livello è troppo complessa per essere compresa da esseri
umani, e si consideri che la comprensibilità è una qualità che va perseguita nella spiegazione
meccanicistica, in particolare secondo William Bechtel e i suoi collaboratori. Anche altri autori
sottolineano l’importanza dell’intelligibilità per le spiegazioni, per esempio Petri Ylikoski, che
considera la “salienza cognitiva” una caratteristica importante delle spiegazioni.

È evidente che una spiegazione meccanicistica cerca di rispondere a domande riguardanti il “come”
(“come un fenomeno è prodotto?”), mostrando il modo in cui il complesso funzionamento dinam-
ico di un insieme di parti interagenti produce il fenomeno. Alla stessa domanda si può rispondere
anche dal punto di vista esclusivamente funzionale, e questa concezione, pensata soprattutto per
caratterizzare la spiegazione in psicologia cognitiva, è stata notoriamente avanzata da Robert
Cummins. In un modo simile a quello della decomposizione meccanicistica, l’analisi funzionale
inizia con una caratterizzazione del fenomeno globale (la disposizione; dedicherò una discussione
a questo termine tecnico nel capitolo 9) assunta come funzione complessivache deve essere spie-
gata in termini delle sue funzioni parziali componenti. Questa è una forma tipica del cosiddetto
funzionalismo di ruolo, in quanto il concetto di funzione36 è considerato essere il ruolo parziale ri-
coperto da un sottosistema al fine di realizzare il funzionamento globale del sistema sovraordinato.
Vista da un punto di vista esplicativo, la funzione di un sottosistema è impiegata nello spiegare
come la funzione globale, che è l’explanandum, venga eseguita mediante i contributi organizzati
delle sue sottofunzioni, che eseguono la loro funzione in un’attività programmata. Questa po-
sizione è abbastanza vicino a una concezione computazionale, ed è completamente compatibile
con essa. In realtà, l’analisi funzionale di Cummins ’è il prototipo della spiegazione tipica della
psicologia cognitiva, che consiste principalmente di spiegazioni funzionali, spesso sotto forma di
spiegazione computazionale, che consiste nell’esibizione di un programma per computer in grado
di produrre il fenomeno cognitivo che deve essere spiegato.

Una caratterizzazione più approfondita della posizione di Cummins è fornita nel capitolo 9, dove
il rapporto tra spiegazione puramente funzionale e spiegazione meccanicistica è meglio analizzato.
Quello che vorrei sottolineare è che Cummins stesso, a partire dalle sue opere precedenti, come il
seminale Cummins (1975), sottolinea come la decomposizione funzionale ricorsiva fino ad ottenere
una completa gerarchia sia la strategia da perseguire nelle spiegazioni scientifiche, soprattutto in
quelle biologiche. L’antimodularity ostacolarebbe completamente questo obiettivo, consentendo
solo due livelli spiegazione: quello più alto, quello del explanandum in sé, e, all’altra estremità
della scala, il livello più basso, quello delle funzioni più elementari.

19.4.4 Antimodularità e modello nomologico-deduttivo
Nel classico modello nomologico-deduttivo (DN) della spiegazione, che deriva dal lavoro semi-
nale di Carl G. Hempel e Paul Oppenheim37, la spiegazione è vista come una deduzione logica
dell’explanandum dall’explanans, e quello che conta è la validità e la solidità della deduzione,
con una scarsa attenzione rivolta all’intelligibilità della spiegazione: una tale preoccupazione
per la comprensibilità della spiegazione sarebbe stata considerata, nello storico ambiente post-
neopositivistico del tempo, un inappropriato sconfinamento della filosofia della scienza nel territo-
rio degli aspetti pragmatici, o, peggio, psicologici della spiegazione scientifica. In tale prospettiva,

36 La nozione di funzione è esaminata nel capitolo 9.
37 Hempel & Oppenheim (1948).

442 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

tutto ciò che conta per una spiegazione è che si tratti di una deduzione corretta. La spiegazione
è vista in questo modello come dipendente dalla possibilità di previsione del fenomeno medi-
ante una legge scientifica. La spiegazione in sé ammonta alla descrizione della derivazione logica
dell’explanandum da un gruppo di premess costituite da una legge scientifica e da un insieme di
clausole che rappresentano le condizioni iniziali del sistema che deve essere spiegato.

Per quanto riguarda le spiegazioni deduttivo-nomologiche, evidenzio come, dal momento che
l’antimodularità, nei sistemi abbastanza complessi, implica l’emergenza debole, non si possa
ricorrere alla spiegazione DN nel caso di un sistema antimodulare, perché, se si potesse, vorrebbe
dire che il sistema è prevedibile, e questa possibilità è negata dalla definizione di stessa weak
emergence. Per chiarire: è escluso dalla definizione di fenomeno debolmente emergente che
esso possa essere previsto per mezzo di una legge la quale, dato lo stato iniziale, determina
in quale stato il sistema sarà in un dato momento, e che questa legge abbia un’espressione
matematica che può essere analiticamente risolta. Come detto, questo è escluso dalla definizione
di emergenza debole, la quale che afferma in sostanza che un fenomeno debolmente emergente
(in un sistema dinamico discreto) è un fenomeno che non può essere previsto, e che può essere
reggiunto solo eseguendo passo-passo passo la microsimulazione al livello più basso del sistema.
Dal momento che la mia idea di antimodularità, date le circostanze espresse nella sezione 19.4.1,
l’emergenza debole, risulta che un sistema antimodulare abbastanza complesso non può essere
previsto da un’espressione analiticamente risolvibile. Quindi, nessuna spiegazione DN di un
sistema complesso antimodulare potrebbe basarsi su una legge analiticamente risolubile.

Detto questo, se si prende in considerazione una specifica classe di sistemi, vale a dire gli au-
tomi cellulari (* CA), allora un processo debolmente emergente generato da un CA può in un
certo senso venire spiegato producendo un, elenco, potenzialmente molto lungo, di stadi della sua
evoluzione, un elenco che può essere visto come un elenco di passi deduttivi* all’interno di un
sistema logico formale, in cui le premesse sono costituite dalla configurazione iniziale del CA e
dalla regola del CA, che viene ripetutamente applicata prima alla configurazione iniziale e poi
alla configurazione intermedia ottenuta ad ogni passo deduttivo. Dato che ogni regola-CA è, per
il teorema di Curtis-Hedlund-Lyndon38, locale e ugualmente valida in qualsiasi punto del reticolo
del CA, la forma di una regola-CA può in questo senso essere assimilata alla forma di una legge
fisica, che, come legge, vale universalmente. In base a questa analogia, la produzione di questa
lista di stati consecutivi del CA potrebbe in certo modo essere assimilata ad una lunga spiegazione
DN, la quale, come detto, deve consistere in una deduzione logica dell’explanandum a partire da
certe condizioni iniziali e da una legge. Anche in questo caso la comprensione umana sarebbe
ostacolata dalla lunghezza potenziale della lista, ma in ogni caso, secondo la posizione teorica dei
sostenitori post-neopositivistici del modello DN di spiegazione, la comprensione è una caratter-
istica inessenziale delle spiegazioni, e non è richiesta per una buona spiegazione DN. Così, in un
certo senso, l’emergenza debole e, di conseguenza, l’antimodularità, non ostacolano la spiegazione
DN , almeno nel caso dei CA e di altri sistemi la cui dinamica seguire una regola universale. Da
queste considerazioni sono escluse classi differenti dai CA, ad esempio le reti booleane in genere,
la cui dinamica può seguire regole che cambiano localmente e che non sono quindi universali.
In questi casi, la regola da impiegare sarebbe la regola di aggiornamento globale, che, essendo
non locale, è solitamente molto più complessa di un regola-CA, e, di conseguenza, l’elenco delle
deduzioni costituenti la spiegazione stile DN di tale sistemi sarebbe ancora più incomprensibile.

38 Vedere la sezione 14.2.1.

19.4. Antimodularità 443

19.4.5 Antimodularità e spiegazione topologica
Passo a onsiderare ora le conseguenze dell’antimodularità sulla possibilità di spiegare un sistema
complesso per mezzo di ciò che Philippe Huneman chiama spiegazione topologica. Huneman de-
scrive la spiegazione topologica come “un genere di spiegazione che astrae dalle relazioni causali
e dale interazioni in un sistema, al fine di cogliere qualche sorta di proprietà”topologica" di quel
sistema e di trarre da quelle proprietà conseguenze matematiche che spiegano le caratteristiche
del sistema che esse prendono a riferimento“39. Ispirate dalla topologia matematica, le proprietà
topologiche di un sistema sono le proprietà riguardanti in qualche modo la sua”forma" che risul-
tano invarianti per possibili deformazioni continue del sistema. Queste proprietà strutturali non
devono appartenere a un sistema materiale, ma possono essere parti di uno spazio matematico as-
tratto. Nella mia terminologia, direi che queste proprietà topologiche non riguardano un sistema,
ma una descrizione del sistema. Ora, la spiegazione topologica consiste nello spiegare certe carat-
teristiche del sistema facendo appello non a eventi causali tra le sue parti, comela spiegazione
meccanicistica farebbe, ma mettendo il luce alcune caratteristiche topologiche della rappresen-
tazione del sistema in questo spazio astratto. Questo tipo di spiegazione non è meccanicistica, in
quanto non specifica le particolari interazioni tra le parti che danno luogo al fenomeno dinamico:
la spiegazione si basa in esclusivamente su specifica una caratteristica matematica, topologica,
che si accolla tutto il lavoro esplicativo.

La spiegazione topologica potrebbe anche essere basata sulla presenza di una struttura modulare:
questo può accadere, ad esempio quando una spiegazione topologica della robustezza della dinam-
ica di una rete a perturbazioni locali consiste nel menzionare il fatto che la rete ha una struttura
di comunità40: questa struttura modulare assicura che le perturbazioni rimangano locali o in-
canalate, senza diffondersi indiscriminatamente alla stessa velocità su tutta la rete. Al contrario,
l’antimodularità intrinseca potrebbe produrre una diffusione illimitata delle perturbazioni sulla
rete.

Tutto sommato, non solo sembra che l’emergenza antimodulara non ostacoli la spiegazione topo-
logica, ma in realtà risulta che l’antimodularità intrinseca o la sua assenza potrebbero consentire
certe spiegazioni topologiche

19.4.6 Spiegazione e predizione
La possibilità, evidenziata nella sezione 19.4.1, che vi siano sistemi che sono funzionalmente
spiegabili e, allo stesso tempo, imprevedibili, di cui un esempio è la classe dei sistemi com-
putazionalmente universali, fornisce un’indicazione abbastanza notevole, e cioè che la predizione
e la spiegazione sono sforzi disgiunti: l’imprevedibilità non rende, di per sé, inspiegabile un sis-
tema. Questo è un risultato curioso, perché prova, in un certo modo, che la predizione non è
necessaria per la spiegazione, e quindi che il modello nomologico-deduttivo di spiegazione, anche
se fosse esente da altri aspetti negativi, non potrebbe essere il modello di spiegazione onnicom-
prensivo per la scienza in generale. Nella scienza alcune spiegazioni sono accettabili anche se non
si basano sulla predizione: si tratta delle spiegazioni funzionali, o meccanicistiche.

19.4.7 Computazione e spiegazione computazionale
Prima di valutare, nel prossimo paragrafo, le possibili conseguenze dell’antimodularità sulle sp-
iegazioni computazionali, è necessaria riflessione su ciò che una spiegazione computazionale è.

39Huneman (2010), p. 214.
40 Vedere la sezione 3.2.1.

444 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Specificamente, ci chiederemo se e quando un dato sistema, in specifico un sistema dinamico,
calcola o no, per vedere se può esserne data una spiegazione computazionale. A questo fine,
sembra inevitabile discutere della nozione stessa di computazione.

A partire dal lavoro epocale di Turing del 1936, che ha fondato l’informatica, può sembrare a
prima vista che il concetto di calcolo meccanico o computazione sia assolutamente chiaro: il
lavoro di Turing ha infatti fornito una pietra di paragone rispetto al quale caratterizzare ciò che
computazione è. Questo è certamente corretto: la computazione è stata trattata, sin dal suo inizio
con Turing, come una questione eminentemente formale, che merita un approccio matematico.
E questo è sicuramente stato, credo, il modo * giusto* di trattare la question, perché ha messo
in luce le caratteristiche essenziali della computazione: le proprietà della computabilità, la sua
forza e i suoi limiti, che sono state dettagliate in un modo approfondito e rigoroso che nessun
altro approccio al problema del calcolo avrebbe potuto sviluppare. Come sempre, un approccio
matematico si è rivelato come il modo più potente per evidenziare tutti gli aspetti di un fenomeno
astratto e di trarre importantissime conseguenze e nuove idee e modelli da questa analisi: uno
sguardo all’Appendice41 sarà sufficiente a convincere di questo il lettore.

Quand’è che un dato sistema effettua una computazione? Sulla scia di quanto detto sopra, questa
sembra una domanda facile, decidibile in modo formale, ma in realtà, da un altro punto di vista,
essa non lo è. Per vedere questa difficoltà si potrebbe immaginare qualcuno che lancia un pro-
gramma sul suo computer, e che alla domanda “Che cosa fa questo programma?” rispodesse che
calcola, simpliciter. Questa risposta avrebbe un senso per noi? Supponiamo, ancora una volta,
che qualche programmatore abbia realizzato per divertimento un programma scrivendo un elenco
casuale di istruzioni, e che, per un colpo di fortuna, il programma, invece di schiantarsi, abbia
girato, producendo stringhe apparentemente casuali sullo schermo. Considereremmo questo pro-
gramma come qualcosa che effettua una computazione, che calcola? Sì, in un certo senso, esso
calcola . . . ma calcola cosa?!? Terzo caso: abbiamo un programma in esecuzione su un computer
molto primitivo, che produce in output direttamente delle stringhe binarie: fornendogli la stringa:
00110101, produce 1111, data 01000011 Produce 1100. Tale programma calcola?

Mi sembra che gli esempi soprastanti suggeriscano immediatamente che il riconoscimento
della presenza di una computazione ha bisogno di una sorta di attribuzione intenzionale:
è l’attribuzione di calcolare, a ciò che altrimenti potrebbe essere visto come una semplice
trasformazione fisica di elementi: per dire che un dato processo calcola, abbiamo bisogno di
specificare che cosa esso calcola. Per fare questo, una condizione deve essere soddisfatta: una
corrispondenza deve essere stabilita tra le configurazioni fisiche della macchina, su cui il presunto
calcolo agisce, e segni linguistici significativi. Solo una volta fatto questo, saremo in grado di
provare almeno a indovinare quale calcolo specifico il sistema effettua.

La corrispondenza suddetta è un’interpretazione, che fa corrispondere, che “mappa” le configu-
razioni di ingresso e uscita a segni significativi della nostra lingua. Se si applica questa condizione
al terzo esempio sopra e interpretiamo i simboli delle stringhe apparentemente prive di signifi-
cato, riconosciamo che il sistema sta probabilmente eseguendo moltiplicazioni: basta sostituire
“3” a “0011”, “5” a “0101”, “15” a “1111”, “4” per “0100”, “3” a “0011”, “12” a “1100”: questo
è, tra l’altro, un ovvia interpretazione, basata sulla numerazione in base 2, ma senza una tale
interpretazione, il calcolo svolto dal sistema non avrebbe probabilmente avuto molto senso.

L’interpretazione è una corrispondenza, mappatura, che è un’operazione algoritmica che, date
alcune configurazioni di ingresso, produce altri simboli. Questo non è qualcosa che riguarda
il problema dell’intenzionalità intesa come problema filosofico. N oi operiamo un’attribuzione

41 Sezione 17.

19.4. Antimodularità 445

intenzionale sul set di configurazioni derivante da questa mappatura, configurazioni che devono
essere state scelte, nelle loro proprietà formali, come in grado di significare qualcosa per noi. Una
volta stabilita la mappatura, possiamo operare una attribuzione intenzionale più globale, e dire
quale calcolo il sistema nel suo complesso sta eseguendo. A mio avviso, solo allora il sistema può
essere visto come computazionale. La computazione è attribuzione di computazione a sistemi che,
di per sé, sono semplicemente sistemi dinamici discreti governati da regole di.42

Questo punto di vista “intenzionale”, o “semantico” della computazione (“intenzionale” o “se-
mantico”, con tutte le precisazioni di cui sopra) non è una nuova posizione, poiché è stato
adottato da vari autori, in particolare Jerry Fodor. Questo punto di vista semantico è avversato
da altri, come Gualtiero Piccinini, che vedono il calcolo come definibile in termini puramente
meccanicistici, senza la necessità di ricorrere ad alcuna attribuzione semantica43.

Qui sorge un problema: dato che l’attribuzione della computazione dipende dalla scelta di una
corrispondenza, significa forse questo che qualsiasi macchina, una volta realizzata una mappatura
adeguata tra i suoi stati e simboli significativi, può essere vista come qualcosa che effettua una
computazione?

Ebben, alcune condizioni devono essere soddisfatte: primo, la macchina deve essere digitale: sti-
amo parlando di computazione digitale qui (il paradigma dominante della computazione, almeno
a partire dagli anni ’50). Quindi, per considerarsi computazionale, una macchina deve essere
almeno considerata digitale, cioè deve possedere, e operare su un insieme finito di possibili stati
stabili e distinti. Sono questi gli stati che la mappatura collegherà ai simboli. Ma, affinché ciò
sia possibile, questi stati devono essere robusti e distinguibili, e una regola deterministica deve
governare la transizione tra configurazioni stabili di questi elementi. Non tutti i sistemi sono in
grado di soddisfare tali condizioni non banali (pensiamo a configurazioni stabili distinte in un
fluido turbolento). Ma, all’interno della concezione di modularità che ho proposto qui, è facile
vedere che tutto ciò che è richiesto è che il sistema sia un sistema discreto dinamico (o DDS),
cioè una forma di sistema funzionalmente modulare (vedi Sezione 19.1.6).

Il punto centrale è questo: per permettere di attribuire ad un sistema l’esecuzione di un calcolo,
le seguenti condizioni devono essere soddisfatte:

a. un corrispondenza algoritmica (un mapping) tra simboli linguistici e possibili configurazioni
di ingresso e di uscita del sistema deve essere stabilito;

b. dobbiamo essere in grado di dire quale è la funzione particolare che connette configurazioni
di input a configurazioni di output, cioè quale è la specifica della computazione, per dire
ciò che il sistema sta calcolando.

Solo nel caso in cui il sistema sia un DDS e queste due condizioni siano soddisfatte, il sistema
può essere visto come effetuante una computazione. Solo allora saremo nella posizione di dire
che un sistema sta eseguendo un calcolo.

L’ordine delle condizioni a e b sopra riportate è invertito rispetto a come un programmatore
umano opera. In questo caso c’è bisogno non di un’interpretazione, ma dell’istituzione di una

42 Naturalmente può essere sollevato un problema qui: se il sistema è già considerato come governato da
regole, significa che un’attribuzione intenzionale originale è già stata operata. Ma è al di là degli scopi di questo
lavoro affrontare qui questa e altre simili questioni spinose, analoghe al famigerato problema “kripkensteiniano”
del seguire una regola.

43 Si veda ad esempio Piccinini (2008).

446 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

norma, una specifica: nel caso della programmazione, dapprima la specifica (punto b) è arbi-
trariamente scelta, è considerata la norma secondo la quale il programma dovrà operare, e sulla
base della specifica, il programmatore sceglie il mapping (punto a) da simboli a configurazioni
di ingresso e di uscita che ritiene migliore, per poi procedere alla scrittur, all’implementazione
del programma, che è la specificazione delle parti e della struttura del meccanismo (programma)
che sarà, alla fine, in grado di realizzare la specifica scelta in funzione della mappatura prescelta.
Così, la scelta della mappatura determina la scelta della particolare struttura del programma.
Tutto questa serie di operazioni costituisce l’implementazione della specifica scelta.

Parlando di implementazione sulla falsariga di Galton (1993), e Partridge & Galton (1995),
ritengo che la relazione specifica-attuazione sia una relazione tendenzialmente universale: una
implementazione è l’atto di specificare un metodo per “realizzare”44 una certa specifica generale.
Quando si considera un programma, non c’è, tuttavia, un unica specifica generale e un unico
livello di attuazione, perché le due nozioni sono relative, esattamente come quelle di livello di
descrizione “superiore” e “inferiore” e quella di funzione, che45 è il ruolo parziale che qualcosa
svolge relativamente alla realizzazionre di una funzione globale. Relativo in questo caso significa
che qualcosa che è l’implementazione di una specifica può a sua volta essere considerata una
specifica di livello inferiore da realizzare a un livello ancora più basso. In altre parole, data
una specifica vi è la necessità di trovare una sua possibile implementazione, e, nello stile di
programmazione strutturato o modulare, tale implementazione sarà essa stessa scomponibile in
moduli. Ogni modulo, realizzando una specifica funzione input/output46 costituisce, a sua volta,
una specifica, che sarà implementata ad un livello inferiore, e così via.

Sembra ragionevole pensare che la stessa gerarchia astratta multi-livello , in cui ogni macro-
componente è multirealizzabile da parte di sotto-componenti, e così via, sia alla base delle
nozioni di programmazione strutturata, decomposizione funzionale, e livelli modulari gerarchici
di descrizioni.

Come detto, un programmatore inizia con una specifica e cerca di implementarla. Ma si può
iniziare con un processo discreto non interpretato, con l’obiettivo di scoprire quale computazione,
nel caso, e in che modo, il processo esegue. Questo è un percorso bottom-up, ed è tipico
dellaretroingegnerizzazione di una computazione. Il percorso top-down consistente nell’iniziare
con una specifica di un calcolo e cercare di decomporre ricorsivamente tale specifica, che è una
funzione, in sottofunzioni, e a loro volta queste in sottofunzioni più semplici, e così via, per descri-
vere il modo in cui la specifica si realizza, è invece il percorso della spiegazione computazionale,
che è la spiegazione funzionale tipica della psicologia cognitiva, dove la specifica, che è la fa-
coltà cognitiva (l’equivalenza cognizione / computazione è il principio di base della psicologia
cognitiva), è spiegata in termini di una rappresentazione funzionale gerarchica.

19.4.8 Antimodularità, automi cellulari e spiegazioni computazionali
Possiamo ora rivolgere la nostra attenzione al problema delle conseguenze dell’antimodularità
sulla spiegazione computazionale. Come detto, questo è il tipo di spiegazione tipica delle scienze
cognitive. Tuttavia, non voglio provare qui a vedere quale impatto antimodularità potrebbe
avere su queste scienze, ma solo come essa potrebbe influenzare un “modello giocattolo”: prendo
come modello di sistema computazionalmente capace un automa cellulare, al fine di vedere come
il suo comportamento dinamico può essere spiegato come qualcosa che esegue un calcolo. L’idea

44 In un senso strettamente simile a quello del concetto di realizzazione in filosofia della mente. Non intendo
però esaminare tale nozione qui.

45 Vedi sezione 19.4.3.
46 Funzione ingresso-uscita in senso matematico. Vedere. sezione 9.

19.4. Antimodularità 447

è che, se il CA è antimodulare nel suo comportamento dinamico, l’operazione potrebbe essere
ostacolata o addirittura resa impossibile. Se questo è il caso, questo significa che l’antimodularità
potrebbe avere un impatto sulla possibilità di spiegazione computazionale.

Consideriamo quindi il caso di cercare di spiegare computazionalmente un CA. Due domande
fondamentali possono essere poste al riguardo:

• Un CA è un sistema computazionale?

• Se lo è, come possiamo spiegare la computazione che esso esegue?

Per quanto riguarda il primo punto, naturalmente, un CA, essendo un sistema dinamico discreto,
rispetta le condizioni indicate nella sezione precedente di questo capitolo, e può essere considerato
in modo sicuro un sistema potenzialmente in grado realizzare una computazione. Ma per dire che
esso calcola, bisogna poter dire, in qualche modo, che cosa calcola, qiale calcolo esegue: nessuna
spiegazione computazionale può essere applicata prima che una mappatura venga stabilita tra
le configurazioni del CA e dei simboli significativi per noi. Potremmo provare a mappare lo
stato delle sua cella a qualche simbolo sensato, per esempio, potremmo mappare questi stati a
“nero” e “bianco”, ma questo porterebbe a spiegazioni “computazionali” di questo tipo: “in base
all’applicazione ripetuta della sua regola, il CA produce una variazione progressiva dello stato
delle sue cellule, che possono, sotto condizioni diverse, cambiare da bianche a nere”. Questa
non mi sembra una spiegazione molto utile. Una spiegazione completa richiede una specifica più
significativa e trasparente, cioè la capacità di dire ciò che il sistema calcola. Qui, la specifica è
troppo vaga: “progressiva variazione dello stato delle sue cellule in varie condizioni”. La specifica
esatta del CA, intesa come funzione di ingresso / uscita, è data dall’applicazione ripetuta della
sua regola, per cui una specifica ragionevole potrebbe essere fornita in termini della regola del CA.
Ora, riguardo a questo, si presenterebbero alcuni problemi: di solito, la maggior parte delle regole
CA sono descritte nei termini di una “tabella di corrispondenza”, cioè un elenco estensionale
di come la regola determini il valore di una cella al passo successivo della dinamica del CA
sulla base dei valori delle cellule vicine. Tale tabella diventa incontrollabilmente grande come
all’espandersi dell’“area di vicinato” (il neighborhood) del CA. Così, per alcuni CA, l’esibizione
di questa tabella sarebbe impossibile, o comunque renderebbe completamente senza senso una
spiegazione computazionale che la esibisca. In CA a due valori, la loro regola può essere vista
come una specifica espressione booleana. Quindi, si potrebbe pensare di semplificare la sua
descrizione nella forma di una espressione booleana. Questo, tuttavia, è quasi certamente un
compito computazionalmente intrattabile, quindi, non può essere garantito riuscire in tutti i casi
in tempi ragionevoli.

Tutto questo ci suggerisce che dovremmo cercare di trovare spiegazioni di livello superiore ,
possibilmente spiegazioni computazionali multilivello, in modo da ottenere una spiegazione più
utile. In altre parole, si deve trovare un modo per vedere un CA descritto ad un livello superiore
rispetto a quello delle sue celle elementari come una macchina computazionalmente capace. Per
ottenere ciò, potremmotentare di vedere se la dinamica del CA è in grado di produrre certi tipi
di moduli dinamici, cioè, strutture di alto livello abbastanza persistenti, il cui comportamento al
livello più alto possa essere visto come governato da regole, al fine di soddisfare la condizione di
vedere le dinamiche CA a questo livello superiore come un altro sistema dinamico discreto, un
sistema a livello più alto, che può essere visto come diverso dal DDS costituito dal CA e la sua
regola. In altri termini, per ottenere una spiegazione computazionale utile di un CA, una prima
condizione è (i) che una forma di modularità dinamica a un alto livello di descrizione possa essere
rilevata in modo affidabile nelle dinamiche globali del CA. E un’altra condizione deve valere: (ii)

448 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

la dinamica modulare di alto livello deve essere capace di rispecchiare (di “tracciare”) con successo
le dinamiche di basso livello del CA, senza divergere da esse. Questa condizione di validità (per
usare la terminologia della simulazione scientifica tramite computer) è una condizione piuttosto
complessa, ed è meglio specificata nelle sezioni 2.2.1 e 6.6.8 di questo lavoro, ma essa equivale
sostanzialmente a questo: che la dinamica della descrizione ad alto livello non diverga nel tempo
dalla dinamica corrispondente del CA al livello più basso di descrizione, quella delle cellule.

Risulta che alcuni CA sono in realtà dotati di una forma di livello modularità robusta di alto
livello: come abbiamo visto (vedi fig. 19.2), alcuni CA possono generare alianti, che finiscono per
realizzare, in molti casi, interazioni prevedibili l’uno con l’altro, come nel caso della Regola 54 47,
e queste interazioni prevedibili possono essere viste come implementazioni di alto livello di fun-
zioni booleane, con gliders che agiscono come “bit” viaggianti. Questa interpretazione in termini
di funzioni booleane potrebbe poi permettere di costruire progressivamente una spiegazione mul-
tilivello in termini di calcoli sensati, allo stesso modo in cui i programmi per computer possono
essere descritti da linguaggi di programmazione di livello progressivamente superiore. In questo
modo avremmo costruito una parte delle condizioni necessarie per spiegare un CA mediante una
spiegazione computazionale.

Tuttavia, tale interpretazione in termini di gliders non è sempre possibile: ci sono certi CA
“caotici”, come la regola 30 (vedi fig. 19.7), che non mostrano mai subconfigurazionni abbastanza
robuste per essere considerate moduli dinamici in grado di rendere la rappresentazione di alto
livello una rappresentazione computazionalmente capace48.

Un punto deve essere evidenziato qui: questa impossibilità di individuare moduli dinamici sta-
bili in un CA, come nel caso della Regola 30, può essere visto come una forma di antimodularità
intrinseca della descrizione ad alto livello del CA. Quindi possiamo dire che l’antimodularità,
in questa forma, già impedisce il primo passo, passo (i) di cui sopra, richiesto per fornire una
spiegazione computazionale, una passo che consiste nel considerare il CA come computazional-
mente capace ad un livello di descrizione elevato. Così, sembra che, almeno in questa forma,
l’antimodularità intrinseca effettivamente impedisca la spiegazione computazionale.

Tuttavia, è provato che, per certi CA, la loro interpretazione di alto livello come sistemi com-
putazionali è possibile: c’è una mappatura complessa, ideata da Matthew Cook49, con la quale
egli ha saputo dimostrare che Regola 110, un’altra regola CA elementare, può essere vista come
un sistema computazionale sul piano della macchina di Turing universale. Anche il più famoso
CA, il Game of Life ideato da John Conway , è stato dimostrato essere Turing completo50.
Quindi, è un fatto dimostrato che, sotto certe interpretazioni, alcuni CA possono essere visti
come computazionali: questa prima condizione può essere vista come stabilita, almeno per certi
CA.

Ma, se vogliamo dare una /spiegazione computazionale* di un sistema, un’altra condizione deve
essere soddisfatta: che il sistema stia realmente effettuando una computazione, e non solo, che
sia computazionalmente capace, come sono tutti i sistemi digitali. E, a questo scopo, dobbiamo
prima essere in grado di dire che cosa esso stia calcolando: cioè, dobbiamo essere in grado di
esprimere la relazione input/output, la sua specifica. Dobbiamo notare che stiamo lavorando

47 Vedi per esempio Martínez et al. (2014).
48 Perché non possiamo inventare una mappatura da set di configurazioni caotiche a simboli significativi, in

questo modo rendendo anche un CA caotico computazionalmente capace ad alto livello? Una risposta implica
una discussione sulla complessità della mappatura tra configurazioni di sistema e simboli, una discussione che si
sviluppa nella sezione 14.5.2.

49 Vedi Cook (2004).
50 Cfr. Rendell (2002).

19.4. Antimodularità 449

Figure 19.7: segmento caotico dell’evoluzione del CA elementare Regola 30. Il tempo scorre dall’alto verso il
basso, ogni riga di pixel rappresenta la configurazione globale del sistema ad ogni passo temporale. Ogni pixel
rappresenta lo stato di una delle parti elementari della CA, le sue cellule.

450 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

qui nel campo della ingengeria inversa: abbiamo una macchina, il CA, che sappiamo essere
computazionalmente capace, e dovremmo, al fine di spiegarlo computazionalmente , trovare la
specifica di tale computazione.

Ora, il compito di retroingegnerizzare la specifica di un programma, apparentemente è arduo:
sostanzialmente, si tratta di produrre tutti gli ingressi di un programma e di osservare tutte le
uscite corrispondenti: richiede una forma di induzione. Lasciando i dettagli più fini ad un’altra
occasione, semplicemente bisogna notare qui che vi è una serie di problemi legati al fatto che i
sistemi computazionalmente capaci a livello della macchina di Turing sono affetti dal problema
della fermata, e questo rende il compito sopra indicato molto difficile se non impossibile: a causa
del fatto che il numero di possibili coppie di ingresso/uscita da osservare cresce esponenzialmente
con la dimensione massima (in bit) dell’ingresso, questo è perlomeno un compito intrattabile dal
punto di vista computazionale (vedere paragrafi 14.5.2 e 17.2.6 per i dettagli). Ci sono algo-
ritmi approssimati per l’inferenza induttiva della specifiche (algoritmi per “specification mining”,
vedere la sezione 4.3.1.1), che però danno risultati spesso troppo approssimativi, e non sono in
grado di retro-ingegnerizzare specifiche di computazioni di livello Turing.

Ma noi avevamo bisogno della specifica del programma al fine di spiegarlo computazionalmente.
E questa specifica è molto difficile da scoprire.

Tuttavia, una specifica in termini di mera funzione di ingresso/uscita non è l’unico modo in cui
una specifica può essere data, e, anche se è il più preciso, non è nemmeno il modo più perspicuo,
perché un elenco di coppie ingresso/uscita può risultare privo di significato. Quindi, un’altra
forma, più perspicua in cui può essere data una specifica, è in forma aggregata : un modo più
o meno sintetico di riassumere l’intera funzione di ingresso/uscita. Un modo di ottenere questo
consiste nel dare la specifica in termini della sua decomposizione in sottofunzioni, il che è una
forma di scomposizione gerarchica.

Ora, il punto interessante è questo: se una rappresentazione modulare gerarchica della com-
putazione da spiegare potesse essere trovata in qualche modo, sarebbe allora possibile testare
ogni modulo separatamente nella ricerca della specifica di solo quel modulo, un compito che
molto probabilmente risulterà essere più fattibile di ordini di grandezza rispetto a quello di pre-
sentare ogni ingresso possibile all’intero programma, al fine di dedurre direttamente la specifica
globale. Questo accade perché un modulo è identificabile per il fatto stesso che esso dovrebbe
essere collegato scarsamente o in maniera tenue agli altri moduli, e questo si traduce in una
probabile riduzione del numero di possibili ingressi del modulo, e conseguente a un’esplorazione
più facile dello spazio degli input51.

Il fatto che sia stato possibile trovare la singola specifica di ciascun modulo per merito della
scomponibilità del sistema, permette auspicabilmente, se la specifica di ciascun modulo non è
troppo complicata, una forma di aggregazione, come discusso nella sezione 4.1.5.1: se siamo in di
rendere più astratta la specifica del modulo “denominandolo” in un modo succinto significativo,
dandogli un nome rappresentativo ed esplicativo della funzione che svolge (ad esempio quando si
dice che un modulo esegue l’operazione di “moltiplicazione”), allora la specifica di ciascun modulo
può essere sostituita da questa definizione più concisa di ciò quale funzione il modulo effettua. A
quel punto una specifica globale dell’intero sistema può essere data in termini di una descrizione
(di solito nella forma grafica di un * diagramma di flusso *) della struttura modulare del sistema
come una rete diretta di moduli collegati, in cui i moduli sono visti come nodi etichettati con
i loro “nomi” succinti che rappresentano le loro specifiche e le loro connessioni di ingresso e di
uscita sono i collegamenti diretti tra i nodi.

51 Anche se in realtà questo non è garantito. Vedere la sezione 4.3.1 per una discussione ulteriore.

19.4. Antimodularità 451

Quindi, questo tipo di spiegazione sembra possibile, dopo tutto. Ma esso richiede che una mod-
ularità funzionale della computazione possa essere trovata, e questo, a sua volta richiede due
condizioni: primo, che il sistema sia effettivamente computazionalmente capace ad alto livello, e
ciò non è garantito: sistemi intrinsecamente antimodulari, come il CA Regola 30, citato sopra,
non sono suscettibili di essere visti come computazionalmente capaci ad alto livello. In secondo
luogo, un’altra condizione è che, anche se il sistema è computazionalmente capace, ed effetti-
vamente possiede modularità dinamica, questa modularità possa essere effettivamente trovata.
Questo potrebbe essere ostacolato da alcuni fattori, dovuti all’elevato costo computazionale degli
algoritmi per il rilevamento della modularità, o all’eccessiva approssimazione dei risultati che
si ottengono, quando questi possono essere ottenuti in un tempo ragionevole: le descrizioni
gerarchiche ottenute potrebbero non rispecchiare in maniera sufficientemente fedele l’effettiva or-
ganizzazione modulare funzionale del sistema, da essere considerare descrizioni modulari valide,
in grado di caratterizzare sufficientemente bene il calcolo eseguito.

Sembra, quindi, che l’antimodularità possa ostacolare o impedire anche la spiegazione di tipo
computazionale.

Ma, potrebbero ricostruzioni parziali della gerarchia funzionale del programma essere usate nelle
spiegazioni? Ebbene, sembra, intuitivamente che i modelli funzionali così prodotti sarebbero
molto limitati da clausole ceteris paribus, aventi lo scopo di tenerli all’interno della gamma di
rapporti di ingresso/uscita noti, e, tra questi, nell’intervallo di quelli che non divergono troppo,
per mancanza di validità del modello modulare, dal comportamento reale osservato del sistema.
Così, sembra che una spiegazione basata su di tali ricostruzioni parziali della gerarchia modulare
dovrebbero essere limitate nella loro applicabilità. Esse potrebbero apparire come una spie-
gazione accettabile, ma risulterebbero in un certo senso una spiegazione post-hoc della gamma
di comportamento del sistema effettivamente osservata durante il processo di rilevamento della
modularità, e non di tutti i suoi possibili comportamenti.

Può ben darsi che, nelle scienze cognitive computazionali, un tale tipo di spiegazione limitata
potrebbe essere accettata, e, inoltre, è probabile che ci siano solo spiegazioni di questo genere in
alcuni sottocampi della psicologia cognitiva. In tale scienza, il compito di trovare le specifiche e le
relazioni funzionali tra i moduli, è lasciata alla sperimentazione umana, il che è più probabilmente
un processo più lento di quelli algoritmici automatizzati.

Per concludere questa sezione, penso che anche questo fallimento nella ricerca di spiegazioni
computazionali di alcuni sistemi possa essere considerata una forma di emergenza antimodulare.
Questa emergenza computazionale per quanto riguardante le spiegazioni computazionali può es-
sere vista come dovuta a due forme di antimodularità: prima di tutto, l’antimodularità intrinseca
che interess i sistemi caotici, che non possono nemmeno essere considerati computazionalmente
capaci a un livello superiore di descrizione, e, secondo, l’antimodularità dovuta all’eccessivo costo
computazionale o all’eccessiva approssimazione degli algoritmi di rivelazione della modularità.

La conseguenza di questa forma di emergenza antimodulare è che il sistema interessato da essa
è spiegabile soltanto al suo livello più basso di descrizione, e questo in generale non costituisce
una forma intelligibile di spiegazione, in sistemi sufficientemente complessi. E c’è da aspettarsi
che l’emergenza antimodulare possa influenzare spiegazione anche la spiegazione computazionale
nelle scienze cognitive e nelle neuroscienze, e questo meriterebbe, mi sembra, ulteriori indagini.

452 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

19.4.9 La modularità di alto livello come condizione per la
programmazione in informatica e per la ricerca scientifica

Almeno per un programmatore informatico, l’affermazione di Robert Cummins, che incontr-
eremo nel capitolo 9.2, che l’analisi funzionale ha una capacità esplicativa, non è una novità:
un programmatore, durante la sua attività, è, almeno implicitamente, immerso un’attività con-
tinua di sviluppo di spiegazioni parziali di come il programma in costruzione funzioni mediante
l’esecuzione organizzata delle sue istruzioni, e, ad un livello superiore, delle sue subroutine o di
moduli di livello ancora più elevato. L’atto stesso della programmazione inizia dalla specifica
dell’intero programma (per esempio, essere “un word processor”), e lo sviluppo procede analiz-
zando, in un senso à la Cummins, questa funzione globale, che è la specifica, in sottofunzioni più
semplici che insieme ne costituiscono l’implementazione. A sua volta, ogni sottofunzione viene
decomposta, se possibile, in sottofunzioni più semplici, e così via. La scrittura vera e propria del
programma, l’atto di scrivere le sequenze di istruzioni che compongono ciascun sottoprogramma,
di solito rimbalzando su e giù tra i vari livelli gerarchici, analizzando funzioni globali in sub-
routine più semplici, la loro implementazione e il tornare a decomporre altre funzioni di alto
livello, o a comporre dal basso partendo dalle subroutine semplici e salendo nei livelli gerarchici,
è quasi un atto irrealizzabile senza un precedente, almeno implicita, spiegazione, da parte del
programmatore stesso, di tutto il sistema in termini gerarchici. Questa può essere visto come
una forma di spiegazione funzionalealla maniera in cui Cummins la intende. Sembra, quindi,
che la spiegazione gerarchica funzionale sia necessaria per la programmazione di computer, in
informatica.

Nella scienza empirica, la spiegazione funzionale multilivello è probabilmente essenziale non solo
dopo che una teoria o il modello di un fenomeno è stato stabilito, cioè nella fase della spiegazione
di un fenomeno già noto, ma anche nella teorizzazione, nella fase di ricerca di un modello. *
Concezioni intervenzionistiche della causalità come quella di James Woodward52 vedono una
relazione causale come sussistente tra due entità nel caso in cui una variazione ipotetica dello
stato di un’entità, volutamente indotta da uno sperimentatore, cioè un intervento, produca sis-
tematicamente una variazione nello stato dell’altra entità: quando questa circostanza ipotetica
è valida, si può dire che le due entità siano in relazione causale. Una concezione meccanicis-
tica della spiegazione richiede durante la ricerca scientifica l’avanzamento e la rifinitura della
descrizione di un meccanismo scoprendo progressivamente tutte le relazioni causali che sussitono
tra le sue parti. A tale scopo, lo sperimentatore procede intervenendo su ciascuna parte separata-
mente, per vedere se qualche conseguente variazione si verifica su altre parti. Ma, per identificare
correttamente i legami causali, l’intervento sullo stato di una parte richiede una temporanea, al-
meno virtuale, disgregazione della struttura dei collegamenti causali che vanno da altre parti
del meccanismo verso la parte su cui stiamo intervenendo: interventi sui meccanismi richiedono
che il meccanismo sia temporaneamente modificato eliminando alcune delle connessioni tra le
sue parti. Woodward sostiene che l’insieme di equazioni che rappresentano correttamente un
sistema causale deve essere modulare, perché altrimenti, dato che il rilevamento di una relazione
causale richiede un intervento su una parte del sistema, interrompendo momentaneamente solo
l’influenza causale che va in direzione di quella certa parte, se il sistema fosse completamente
non modulare, questa specifica disconnessione di un percorso causale potrebbe perturbare non
solo la parte dell’equazione interessata dall’intervento, ma anche altre parti del sistema. Quindi,
la modularità dinamica è sempre presente in un meccanismo, almeno a livello più basso, quello
della descrizione preferita.

Ma, il punto è, se vogliamo ridescrivere un sistema meccanicistico a livello più alto, potremmo
52 Vedi Woodward (2003), e la sezione 6.9.

19.4. Antimodularità 453

certamente interpretare le relazioni tra le parti di alto livello prima facie come “relazioni causali
di alto livello”. In tal caso, al fine di procedere all’intervento alla manier di Woodward, la mod-
ularità è necessaria anche nelle equazioni che rappresentano la dinamica del sistema a questi
livelli elevati. Tutto considerato, questa condizione vale se la struttura della funzione di aggior-
namento53 è gerarchicamente modulare, e questo a sua volta rappresenta il fatto che il sistema
è funzionalmente, e probabilmente anche, in modo dinamico, e, molto probabilmente, struttural-
mente, gerarchicamente modulare.

La stessa utilità della presenza e della possibile individuazione di una struttura modulare si
presenta nella fase di scoperta di reti complesse, in particolare nei casi in cui la scoperta di
collegamenti tra i nodi richiede un lavoro sperimentale complesso, come nelle reti di regolazione
dei geni, e in altre reti di interesse biologico. Alcuni metodi algoritmici proposti di recente, come
quello in Clauset et al. (2008)54, potrebbero essere di grande aiuto in questo tipo di compito,
perché, sulla base della modularità gerarchica rilevata nella rete parziale già scoperta fino a quel
momento, questi metodi possono produrre probabilisticamente, con buone possibilità di successo,
una previsione su dove nella rete i collegamenti mancanti probabilmente si presenteranno a seguito
di ulteriori osservazioni, guidando così proficuamente la successiva sperimentazione.

Quindi, sembra che la modularità gerarchica sia importante o addirittura indispensabile nella fase
di ricerca scientifica e dellascoperta sperimentale, oltre ad essere quasi essenziale, come abbiamo
visto nelle precedenti sezioni, per la spiegazione di un fenomeno già studiato.

19.4.10 Emergenza esplicativa
Dato che la mancanza di comprensione dovuta alla presenza di emergenza antimodulare in un
sistema è apparentemente in grado di influenzare la maggior parte dei tipi di spiegazioni, mi
propongo di generalizzare la nozione con la seguente definizione:

L’emergenza esplicativa è una proprietà di sistemi, o di loro descrizioni, che consiste nel
fatto che, per ragioni computazionali di principio o pragmatiche, tali sistemi o descrizioni
resistono alle spiegazioni comprensibili.

Questa è una definizione più generale di quella di antimodularità, una definizione comprendente
altri possibili effetti di vincoli computazionali sulla spiegazione di sistemi complessi. Nella sezione
14.6, illustro la mia concezione della definizione di cui sopra, che non si applica necessariamente a
compiti computazionali, ma anche a compiti riguardanti lo sviluppo di spiegazioni quando questi
sono eseguiti da esseri umani, e la possibile utilità di questa definizione nell’attuale panorama
scientifico.

19.4.11 È probabile incontrare sistemi antimodulari nella scienza?
Antimodularità sembra dipendere dalla scelta di una relazione, che è specificata nella descrizione
preferita, tra le parti elementari del sistema. L’antimodularità può verificarsi quando, data
questa relazione scelta, il rilevamento della modularità in base ad essa risulta essere troppo com-
putazionale pesante per essere portato a termine in un tempo plausibile, o quando, seppur il
rilevamento della modularità sia completato con successo mediante un algoritmo approssimativo,
la descrizione modulare prodotta appare troppo approssimativa per essere in grado di rappre-
sentare validamente il sistema originale.

53 La funzione che regola la dinamica di un DDS:!. Vedi sezione 5.1.
54 Descritto nella Sezione 6.9.

454 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

Qual è la probabilità che una di queste due circostanze si possano incontrare durante la ricerca
scientifica? Va sottolineato che la complessità computazionale del rilevamento della modularità
riguarda algoritmi per il rilevamento di modularità che non impiegano alcuna altra informazione
sui sistemi diversa da quella inclusa nella descrizione preferita, cioè il livello delle loro parti
elementari e le loro relazioni. Aggiungendo vincoli su come le parti elementari possono essere
raggruppate in moduli, tale compito può essere fortemente semplificato. Ciò equivale a elaborare
algoritmi ad hoc per il rilevamento della modularità, e gli algoritmi ad hoc potrebbero finire
per essere meno computazionalmente impegnativi di un algoritmo generale. In realtà, in molti
casi, questo sembra esattamente ciò che la scienza fa: si cercano vincoli empirici per aiutarci a
scegliere tra le possibili teorie del mondo. Ciò solleva la aumenta la probabilità che il metodo
scientifico sia in grado di produrre desfrizioni modulari intelligibili dei fenomeni.

Ma, dobbiamo chiederci se i nuovi sviluppi della scienza possano spostare l’attenzione su sistemi
di una tale complessità che anche i vincoli noti, empiricamente trovati, su tali sistemi, potrebbero
finire per essere troppo scarsi per permettere il completamento della rilevazione della modularità
su tali sistemi.

Nel caso di sistemi biologici, possiamo effettivamente essere ragionevolmente sicuri che essi sono
modulari, almeno a certi livelli. Ci sono molti argomenti, empirici e teorici, che favoriscono questa
conclusione, argomenti trattati nella sezione 7.1. Tuttavia, ci possono essere sistemi biologici
significativi, come ad esempio le reti di interazione del metabolismo cellulare, che possono finire
per essere così enormi da produrre potenzialmente effetti di emergenza esplicativa o antimodulare
a causa dell’elevato costo computazionale degli algoritmi per il data mining o il rilevamento
modularità in relazione alle dimensioni del sistema. Un altro tipo di situazione in cui ci si può
aspettare questa emergenza antimodulare, è il data mining alla ricerca di informazioni sui moduli
effettuato sulla letteratura già esistente riguardante alcuni temi scientifici, di cui un esempio è
presentato nella sezione 19.5.2.

19.5 Alcune riflessioni aggiuntive su modularità, metafisica,
computazione, storia della scienza

Nelle sezioni soprastanti, ho delineato la struttura principale di questo lavoro, in cui cerco di
riflettere sul concetto di modularità, sulla sua relazione con la descrizione, la spiegazione, il cal-
colo, la comprensione, e di delineare le condizioni nelle quali la modularità si manifesta o, al
contrario, non può essere rilevata. Il mio obiettivo generale è quello di descrivere l’importanza
di quello che potremmo chiamare un “modo modulare di pensare” per la conoscenza umana del
mondo, e in particolare la grande importanza della modularità su gran parte della concettualiz-
zazione scientifica, soprattutto nelle cosiddette “scienze speciali”, che per lo più ricorrono a tipi
di spiegazione, meccanicistica o funzionale, che sono i tipi modulari di spiegazione per eccellenza:
per spiegare in questi due modi, è necessario trovare un modo per descrivere un sistema come
modulare.

Ho poi focalizzato la mia attenzione in particolare su modi per rilevare la modularità nei grandi
sistemi complessi, sottolineando il fatto che, purtroppo per la scienza, questi modi sono algo-
ritmicamente complessi e per questo motivo non sono garantiti dare risultati utili. Quando un
fallimento nel dare descrizioni modulari si manifesta, questo è quello che io chiamo un caso di
emergenza antimodulare. Questo fatto ostacola, ed eventualmente impedisce, in alcuni casi, la
possibilità di spiegazione scientifica e di comprensione di sistemi complessi abbastanza ampi e
complicati da riuscire a sfuggire ad un’adeguata spiegazione modulare, sistemi che, a causa delle
loro dimensioni, non possono essere afferrati cognitivamente nella loro descrizione non modulare,

19.5. Alcune riflessioni aggiuntive su modularità, metafisica, computazione, storia della scienza455

di basso livello, che è la loro unica descrizione possibile. Ho chiamato questa condizione “emer-
genza esplicativa”. Questo è l’obiettivo principale di questo lavoro, che considero un’opera di
filosofia della scienza, focalizzantesi specialmente su discipline di derivazione biologica e sui loro
metodi, e, allo stesso tempo, sulla computazione, vista come un metodo per la ricerca in queste
discipline, ma, prima di tutto, come un quadro teorico promettente alla luce del quale cercare
di ripensare alcuni enigmi filosofici classici, un tentativo che faccio quando cerco di riformulare
come ridescrizioni computazionalmente fattibili ciò che è stato tradizionalmente concepito come
spiegazione scientifica, e come una relazione specifica / implementazione una relazione tra livelli
di organizzazione che è stata tradizionalmente vista come una relazione di costituzione.

Le domande di cui sopra, che costituiscono la spina dorsale della mia proposta in filosofia della
scienza, sono più profondamente discusse, come previsto, nel corpo dell’opera. Vorrei comunque
dedicare le prossimi due ultime sezioni di questo capitolo a riflessioni che toccano alcune domande
che in qualche misura cadono al di fuori della portata principale di questo lavoro come l’ho appena
delineata.

La prima (nella sezione 19.5.1) è una riflessione sulle possibili conseguenze di natura metafisica
della mia presa di posizione sulla natura delle spiegazioni, che è una posizione eminentemente
epistemica. Avvertivo il lettore che questo è al di fuori del campo di applicazione principale di
questo lavoro, perché non voglio immergere profondamente il mio discorso sulla filosofia della
spiegazione scientifica in un contesto metafisico: non sono un metafisico, né la mia presa di
posizione è del tutto antimetafisica, ma probabilmente ho un’inclinazione verso l’essere sempre
cauto quando si tratta di questioni fortemente metafisiche. Seguendo Kant, non posso fare a meno
di guardare con un certo sospetto le affermazioni metafisiche forti, perché queste potrebbero a
volte avere conseguenze molto gravi, e in genere non è molto chiaro quando esse possano essere
considerati adeguatamente supportate. Per questo motivo, ho pensato di mantenere la riflessione
principale filosofica sulla scienza, che costituisce l’obiettivo principale di questa tesi, più o meno
libera da interferenze metafisiche esplicite (anche se credo che questo potrebbe essere giudicato
un progetto molto discutibile, e probabilmente un progetto di dubbia fattibilità) .

Tuttavia, alcune conseguenze metafisiche dell’approccio generale da me adottato e dei risultati
sui limiti computazionali della descrizione modulare che ho descritto, aprono, mi sembra, la porta
ad un’affascinante anche se rischiosa possibilità di delineare una particolare posizione metafisica,
e non voglio perdere qui l’occasione di provare a delineare brevemente questa posizione. Dedico
quindi la sezione successiva a tale scopo “sperimentale”. Lo schizzo qui presentato è nel migliore
dei casi uno schizzo di massima. Ciò che non è ben ponderrato qui, sarà meglio lasciare per
un’occasione futura.

Nella sezione che segue (sezione 19.5.2) mi prenderò la libertà di un’altra impresa potenzialmente
affrettata e imprudente, quella di cercare di prevedere le possibili conseguenze storiche di lungo
periodo della concezione della computazione applicata alla spiegazione scientifica che descrivo
nella principale linea di questo lavoro. In questo caso, voglio lasciare questa riflessione fuori
dalla spina dorsale filosofico-scientifica della tesi, non perché penso che la riflessione storica sia
fuori luogo in un’opera di filosofia della scienza. Al contrario, in realtà: spesso, in molte parti dei
capitoli principali, seguo, ove possibile, le linee di ricostruzione storica dei più noti dibattiti recenti
che ruotano intorno alle principali questioni in gioco. Credo, infatti, che almeno un’esposizione
almeno cronologica, se non storica, di idee e discussioni, sia eminentemente importante per la
scrittura filosofica e la riflessione, anche in una disciplina per lo più analiticamente informata
come la filosofia della scienza. Il motivo per cui ho lasciato queste considerazioni storiche fuori del
campo di applicazione principale del presente lavoro non è quindi un disprezzo per la storia delle
idee, della filosofia o della la scienza, ma la natura intrinsecamente intellettualmente rischiosa

456 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

di queste riflessioni, che diventerà evidente nel corpo della sezione ad esse dedicata. Tuttavia,
considero queste riflessioni come dotate di un potenziale di ulteriore investigazione più rigorosa,
che sarà meglio non ignorare, almeno per la mia ricerca futura.

19.5.1 Un tentativo metafisico: modularità come ontologia? Antirealismo
vincolato

Come abbiamo visto, una caratteristica importante e necessaria di un modulo è la sua robustezza:
un modulo è qualcosa che deve sopportare una serie di perturbazioni, e su una certa scala tempo-
rale esso deve persistere per una certa quantità di tempo. Un altro tratto distintivo dei moduli
è il fatto che essi godono di una certa quantità di indipendenza dal resto del sistema e da altri
moduli, e ciò è dovuto ad un almeno parziale isolamento del modulo, al suo possedere qualche
forma di confine riconoscibile. Si tratta di proprietà che i moduli condividono con le entità, o con
gli oggetti, cioè con quello che si possono plausibilmente considerare le componenti ontologiche
di base del mondo. Vorrei suggerire che non si tratta di una semplice coincidenza. Penso che
sia plausibile dire che il nostro sistema percettivo opera un “rilevamento di modularità* sui dati
grezzi che incidono sul nostro corpo, al fine di produrre una descrizione del mondo in termini
di entità o oggetti: gli oggetti che percepiamo sono i moduli prodotti da questo processo di
rilevamento della modularità. E ’anche plausibile, credo, prendere in considerazione i limiti di
questo rilevamento di modularità effettuato da ciascun organismo, alla luce dei limiti che ab-
biamo visto pregiudicare gli algoritmi di rilevamento della modularità. Naturalmente, ci sono
alcune importanti differenze qui: in primo luogo, i sistemi percettivi non sono calcoli algorit-
mici seriali, come quelli attuate su computer standard, e potrebbero pertanto essere esentati
dal manifestare la stessa complessità computazionale di questi algotritmi seriali. Tuttavia, se
diamo per scontata una forma di determinismo fisico (almeno macroscopico) e la finitezza dei
sistemi biologici percettivi, l’equivalenza computazionale di quei processi percettivi con qualche
algoritmo dovrebbe essere in line di principio abbastanza garantita: i sistemi percettivi possono
essere visti come sistemi computazionali. Bisogna poi considerare che gli algoritmi appartenenti a
certe classi di complessità sono intrinsecamente intrattabili, indipendentemente dall’architettura
computazionale su cui sono eseguiti: per esempio, anche se si utilizzano architetture altamente
parallele, come quelle delle reti neurali, i problemi EXPTIME non possono essere affrontati con
successo , perché il tempo richiesto per il loro completamento cresce esponenzialmente, mentre la
quantità di parallelismo può crescere al più linearmente55, mentre la funzione esponenziale cresce
incomparabilmente più veloce di qualsiasi polinomio. Un’ulteriore obiezione può tuttavia essere
sollevata: i sistemi percettivi non hanno bisogno di scoprire una buona struttura modulare in un
ammasso inizialmente non strutturato di stimoli, perché essi sono già messi a punto per rilevare
una struttura modulare più o meno nota in un mondo che è più o meno stabile: un organismo è
adattato a rilevare alcuni tipi di oggetti intorno ad esso, e il suo sistema percettivo è già strut-
turato e predisposto alla ilevazione di quei tipi di moduli, cioè quei tipi di oggetti nel mondo.
Questa messa a punto è stata, da un punto di vista classicamente darwinista, prodotta dalla
selezione naturale. Tale processo di rilevamento della modularità preadattato potrebbe essere
molto meno computazionalmente complesso del processo grezzo consistente nel dover trovare una
buona struttura modulare inizialmente sconosciuta in un grande insieme di dati non strutturati,
un processo che richiede lo svolgimento di un’attività NP-completa, cioè a dire il compito di
ottimizzare la misura modularità Q56. Questo è perlomeno probabile: i processi percettivi non

55 o, eventualmente, in maniera quadratica, o cubica, se immaginiamo qualche futuristico “cubo crescente”
computazionale tridimensionale.

56 Questa è una misura della qualità della modularità rilevata da un algoritmo. Ottimizzare significa scegliere
la migliore di tutte le possibili descrizioni gerarchiche di un sistema. Vedere la sezione 3.2.1.2.

19.5. Alcune riflessioni aggiuntive su modularità, metafisica, computazione, storia della scienza457

sono probabilmente così computazionalmente difficili. Vi sono, tuttavia, due repliche. La prima
è che i processi percettivi non sono meno vincolati dalla complessità computazionale, almeno
indirettamente, di quanto lo sia l’ottimizzazione della modularità: i processi percettivi come
sono ora, sono stati raggiunti attraverso la selezione naturale (almeno per la concezione darwin-
ista), ed è questo processo, il processo di selezione naturale, ad aver portato il peso di cercare
di ottimizzare la misura di modularità Q su un mondo inizialmente percettivamente non strut-
turato. La NP-completezza in alcuni casi però è così forte che nemmeno la selezione naturale
può essere reputata aver avuto abbastanza tempo per eseguire una ricerca esaustiva nello spazio
fenotipico dei possibili sistemi percettivi. Quindi, si potrebbbe sostenere che i sistemi percettivi
attuali che derivano dall’evoluzione sono indirettamente stati colpiti da questi stessi limiti com-
putazionali, dovuti all’eccessiva complessità computazionale del compito di ricerca della migliore
descrizione gerarchica modulare, perfino della sua ricerca durante il corso dell’evoluzione. La
seconda risposta alla precedente obiezione deriva da quest’ultima considerazione: molto proba-
bilmente, a causa della loro bassa complessità computazionale, i processi percettivi sono meno
accurati rispetto al compito algoritmico di ottimizzazione di Q, e questo è un altro modo per dire
che il rilevamento della modularità ottimale su dati provenienti dal mondo empirico non è quello
che i sistemi percettivi realizzano: la percezione è indirettamente vincolata dalla intrattabilità
computazionale del rilevamento della modularità, nel senso che essa è stata resa più o meno
inaffidabile da questa intrattabilità.

Un altro suggerimento in questo senso è il fatto che in una concezione interventionistica della
causalità come quella di James Woodward, che è stata adottato come posizione standard da
alcuni sostenitori della spiegazione meccanicistica, ad esempio Carl Craver, la modularità delle
equazioni dinamiche che governano il regime del sistema è necessaria per separare le variabili
su cui intervenire durante la sperimentazione per discriminare cause singole. Dunque, la decom-
posizione meccanicistica di un fenomeno dipende dalla possibile modularizzazione dei suoi stati
globali. Naturalmente, l’identificazione delle parti del meccanismo, o entità, che sono gli ele-
menti causalmente attivi di un meccanismo, dipende la proposizione dal successo nell’effettuare
questa valutazione causale portata avnti pezzo per pezzo. Così, sembra che la stessa ontologia
di un meccanismo, l’insieme delle sue parti, dipenda dalla modularizzabilità della sua dinamica.
Quest’ultima considerazione, alla luce della durezza computazionale dell’ottimizzazione della
modularità, ci dice che, molto probabilmente, la scienza sperimentale, non è e non sarà in grado
di produrre la più plausibile ontologia del mondo, non solo se essa è condotta passo-sperimentale
dopo passo-sperimentale da parte di soggetti umani, ma anche se venisse completamente au-
tomatizzata: l’intrattabilità computazionale dell’ottimizzazione di Q o dell’aggregabilità delle
variabili nei modelli dinamici57 è impossibile da superare. Sembra abbastanza probabile quindi,
che l’ontologia dei meccanismi scoperti dalla scienza non sia la migliore ontologia possibile.

Ci si potrebbe chiedere dove questa singolare visione della modularità come ontologia si posizioni
lungo la linea realismo-antirealismo, e non solo nel senso normale di antirealismo su entità in-
osservabili postulate da teorie scientifiche, ma nel senso più ampio, onnicomprensivo, di mettere
in discussione la realtà anche degli oggetti macroscopici di medie dimensioni. Oltre tutto, se il
nostro scomporre il mondo in pezzi sensati è un effetto della possibilità di rilevazione della mod-
ularità, e se questa possibilità dipende a sua volta da limiti di calcolo, è legittimo chiedersi da
dove questi vincoli derivino. Tuttavia, non è nel campo di interesse di questa tesi l’approfondire
discussioni metafisiche profonde. Così, il massimo che possiamo fare qui è ammettere che se
identifichiamo moduli la cui rilevazione è fattibile tenuto conto di certi vincoli derivanti dalla
complessità computazionale, allora potremmo dire che questo punto di vista è una forma di
quello che chiamerei antirealismo vincolato: si tratta di un posizione che può essere certamente

57 Vedi le sezioni 19.1.5 e 2.2.1.

458 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

considerata antirealistica, perché, a suo avviso, non si sa quali entità sono reali di per sé. Meglio,
da questo punto di vista, la questione potrebbe non avere nemmeno molto senso: la realtà delle
entità, cioè il loro essere dotate di robustezza e confini, è il risultato del processo di rilevamento
della modularità, che è limitato dalla complessità computazionale. La realtà delle entità, da
questo punto di vista, non è una caratteristica intrinseca delle entità, ma deriva in maggior
misura dall’oggettività dei limiti di calcolo che affliggono il rilevamento della modularità. Così,
questa è certamente una forma di antirealismo. È, comunque, un antirealismo dotato di oggettiv-
ità, in quanto i limiti di calcolo cui è sottoposto sono oggettivi, insormontabili, e, anche se le loro
conseguenze sono di natura pragmatica, le limitazioni che essi rappresentano sono insuperabili58.
In un certo senso, si potrebbe anche ritenere l’antirealismo vincolato una forma di realismo, per-
ché l’oggettività assoluta dei limiti di calcolo potrebbe deporre a favore della loro realtà, nel senso
di esistenza indipendente. L’antirealismo vincolato potrebbe quindi essere considerato una forma
di realismo debole, anche se un tipo di realismo diverso da quelli tipici, anche dal tipo platonico.
In un certo senso, credo che questo potrebbe essere considerato un particolare tipo di kantismo,
in cui le condizioni trascendentali assumono la forma di limiti di calcolo.

Detto questo, la domanda circa la natura di questi limiti di calcolo rimane aperta: la discus-
sione, che sarebbe necessario svolgerebbe è molto spinosa, e toccherebbe una tesi molto attuale e
problematica, che è comunemente conosciuta come la tesi del * pancomputazionalismo . Questa
è la tesi che sostiene la natura fondamentale del mondo è computazionale, o informazionale, e
che tutti la cosiddetti realtà fisica consiste negli effetti di questo processo computazionale fonda-
mentale. Dibattiti intorno a questo tema sono molto complessi e di lunga data, coinvolgendo
la filosofia della fisica e anche la filosofia della matematica. Come detto, questo non è il luogo
adatto per esaminare questi problemi in profondità. Per riassumere, posso dire che la mia po-
sizione metafisica, in contrasto con la scelta della maggior dei parte sostenitori della spiegazione
meccanicistica, non è quella del realismo scientifico. Questa è la ragione per cui ho abbozzato
in qesto lavoro una forma più liberale di spiegazione rispetto al meccanicismo stretto, una forma
di spiegazione che prendo come modello elettivo di per la spiegazione dei fenomeni complessi e
di calcolo, cioè la spiegazione funzionale multilivello basata sulla relazione ricorsiva specifica /
implementazione*.

19.5.2 Metodi computazionali nella ricerca scientifica: un possibile punto
di svolta storica?

Tutte le considerazioni esposte sopra potrebbero suggerire una tesi storica. Ma ho il sospetto
che questa tesi, che vorrei proporre, potrebbe essere plausibilmente accusata di non essere ben
supportata. Il motivo principale del mio sospetto è che non sono sicuro che essa possa essere
vista come una tesi storica, che riguarda i fatti del passato: potrebbe benissimo essere una tesi su
futuri, incipienti sviluppi storici della scienza. In ogni caso, è la mia impressione che ci siano fatti
possibili interessanti connessi con metodi computazionali, modularità e antimodularità, molto
vicini nel tempo al momento presente, probabilmente sul punto di accadere, se non si sono già
verificati.

Quindi, la tesi storica che sto per suggerire qui è ancora, per il momento, probabilmente non
molto corroborata dai fatti, ma è senza dubbio una tesi abbastanza forte. Sono consapevole che
questa combinazione di alto impatto e basso supporto empirico è molto pericolosa per una tesi
storica. Quello che vorrei fare è quindi, almeno per il momento, dare solo un accenno, o qualche
semplice suggerimento, riguardante la possibilità che un importante cambiamento di paradigma

58 A meno che, naturalmente, P = NP. Ma questo sembra molto improbabile al momento. Per una spiegazione,
vedere la sezione 17.4.1.3.3.

19.5. Alcune riflessioni aggiuntive su modularità, metafisica, computazione, storia della scienza459

nella scienza sia appena accaduto o possa essere in procinto di accadere. Questo cambiamento di
paradigma si sarebbe verificato o starebbe per verificarsi, a causa della disponibilità e dell’uso, per
diversi scopi, di potenti macchine di calcolo e algoritmi in diversi aspetti della pratica della ricerca
scientifica. Gli usi dei computer in ambito scientifico le cui conseguenze che vorrei considerare
qui sono due usi, appartenenti a due diverse fasi della ricerca scientifica.

Cominciamo con il più evidente: le simulazioni al computer. Qualcosa, io sostengo, è cambiato o
è destinato a cambiare nel campo della scienza dal momento in cui complesse simulazioni al com-
puter sono state accettate o verranno a essere accettate come corrette spiegazioni scientifiche. Il
punto è: fin dalla sua nascita come fisica galileiana fino a tempi molto recenti, la scienza moderna
ha, abbastanza plausibilmente, preso in considerazione sistemi che sono spiegabili in termini rel-
ativamente semplici, o suscettibili di essere descritti da modelli approssimativi sufficientemente
fedeli (dati gli scopi dell’osservatore) al fenomeno empirico originale. Nel corso della tesi, ho
cercato di dimostrare che alcuni sistemi, per ragioni di complessità computazionale (motivi che
in un certo senso sono pragmatici, ma che da un altro punto di vista sono oggettivi) non pos-
sono essere descritti in maniera modulare . Questa antimodularità ha la conseguenza di rendere
tali sistemi passibili solo di descrizioni di livello molto basso. Il problema è che di solito tali
descrizioni non consentono un elevato grado di comprensibilità, a causa della enorme quantità
di dettagli che portano. Tuttavia, in molti casi, la simulazione al computer può comunque mod-
ellizzare dinamicamente tali sistemi non modulari, rendendo fattibile la mera predizione della
dinamica del sistema, almeno una previsione passo-passo per simulazione all’interno di un certo
range temporale finito: tali sistemi sono in un certo modo dinamicamente prevedibili, ma il loro
comportamento non può essere spiegato in maniera comprensibile. Si tratta di un problema
reale? Fino ad ora, sembra in effetti essersi dato il caso che le spiegazioni scientifiche siano sem-
pre risultate umanamente comprensibili. La maggior parte delle spiegazioni dei sistemi complessi
naturali sono state fino ad ora, in qualche misura, di questo tipo. Il modello meccanicistico, di
uso diffuso in biologia, ha sempre evidenziato la necessità di una spiegazione multilivello, che
porta con sé un potenziale grado elevato di comprensibilità. Ma, modelli meccanicistici che sono
colpiti da antimodularity non ammetterebbero spiegazioni multilivello, e questo li renderebbe
molto difficili da capire, anche se essi constituirebbero in ogni caso una possibile base per la
simulazione al computer. Dovrebbero modelli meccanicistici molto complessi di basso livello di
questo tipo essere accettati come spiegazioni appropriate essi stessi, sapendo che non possiamo
aspettarci alcun ulteriore miglioramento della loro comprensibilità?

Cosa costituisce la spiegazione del fenomeno, in questi casi? È il programma che gestisce la
simulazione? Ma il programma, che di solito è modulare poiché così strutturato dal program-
matore, e come tali soggetto potenzialmente a essere compreso, se il sistema simulato è davvero
antimodulara, per definizione di antimodularità non può costituire una descrizione modulare ad
alto livello del fenomeno: il programma che simula un sistema antimodulare potrebbe essere
compreso nei suoi termini come programma modulare gerarchico, ma non come una descrizione
del sistema simulato. Sarebbe certamente un programma comprensibile, ma ciò che capiremmo
di esso sarebbe il fatto che simula il fenomeno complesso reiterando un enorme numero di volte
alcune operazioni semplici, corrispondentementi precisamente alle attività delle parti semplici
del sistema che si sta simulando. Quindi, non mi sembra che il programma potrebbe essere preso
come spiegazione: essendo isomorfo alla descrizione dinamica di basso livello del sistema, esso
non costituirebbe una spiegazione computazionale multilivello.

Allora, che cosa dobbiamo considerare come la spiegazione di un fenomeno antimodulare sim-
ulato al computer? Penso che sia l’intera simulazione dinamica che debba essere presa come
spiegazione, e, dato che il fenomeno è antimodulare, la simulazione può essere solo guardato e
osservata, ma non compresa. Almeno non può essere compresa in modo funzionale o meccanicis-

460 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

tico. Potrebbe tuttavia essere significativamente spiegata in maniera topologica (vedere la sezione
19.4.5): prendendo in considerazione alcune caratteristiche generali della rete che costituisce il
modello del sistema complesso, qualche conclusione si potrebbe probabilmente trarre riguardo
certe proprietà della dinamica che si svolge, per simulazione, su tale modello.

Quindi, torniamo alla domanda: dovrebbero le simulazioni meccanicistiche di basso livello molto
complesse di questo tipo essere accettate come spiegazioni adeguate esse stesse, senza aspettarsi
alcun ulteriore miglioramento nella loro comprensibilità? Se la risposta è sì, allora la scienza
ha subito un grande cambiamento storico: la scienza potrebbe allora focalizzarsi su sistemi che,
essendo troppo complessi e interconnessi per essere oggetto di descrizioni modulari, avrebbero
dovuto essere lasciati fuori della ricerca scientifica prima dell’avvento di simulazione al computer.
Questo è già successo in parte, almeno da tre decenni: basti pensare a tutta la letteratura sulla
simulazione di sistemi complessi e caotici, che ha prosperato sin dagli anni ’80. Si deve notare
che, essendo la maggior parte di questi sistemi simulati, almeno in certe regioni del loro spazio
delle fase, antimodulari, le spiegazioni tipiche impiegate in testi di quest’area della ricerca (come,
per esempio, le opere di Stuart Kauffman), sono spiegazioni statistiche o topologiche (nel senso
impiegato da Philippe Huneman, vedere la sezione 19.4.5), una forma di spiegazione che, come
abbiamo visto, è ancora consentita in sistemi antimodulari.

Un altro possibile modo in cui i computer possono rivoluzionare la ricerca scientifica, un modo
di cui una forma specifica è la rilevazione di modularità, è nell’aiutare a trovare un modello
teorico. In questo caso un algoritmo viene a sostituire in parte il ricercatore, non nella raccolta
di dati grezzi, ma nel compito di escogitare un modello teorico che raccordi dati già disponibili.
Tuttavia, questa non è la questione completa, perché a volte accade che la raccolta di dati grezzi
possa essere eseguita automaticamente. Questo è particolarmente vero nei casi in cui l’oggetto di
studio è di per sé un oggetto digitale: studio dei testi, letteratura, contenuti Internet, struttura di
internet, e così via. In ogni caso, dopo la fase di raccolta dei dati, arriva la necessità di un modello
teorico in grado di inglobare tutti i dati raccolti: di solito, il modello è elaborato dal ricercatore
umano. Ma per quanto riguarda i casi in cui lo sperimentatore non è in grado di elaborare un
tale modello? Che dire dei casi in cui la quantità di dati è così grande che non è da aspettarsi che
un essere umano sarà in grado di discernere un pattern in essa, al fine di elaborare un modello
teorico? Anche qui (tranne nei casi in cui i dati, anche se complessi, possono essere * aggregati
* in un modo che consente una semplice descrizione, come in meccanica statistica), si tratta di
discernere qualche struttura nei dati, una struttura modulare di qualsiasi tipo, perché i dati siano
suscettibili di modellizzazione e di spiegazione umanamente comprensibili. Eseguendo quel che
si chiama “data mining”, i computer sono stati in grado, in alcuni casi, di essere validamente di
supplemento in questo compito.

Vorrei citare qui un caso particolarmente sorprendente. Utilizzando un metodo di rilevazione
della struttura di comunità59) nelle reti, Wilkinson & Huberman (2004) sono stati in grado di
analizzare algoritmicamente la letteratura scientifica esistente sul cancro al colon, e di trovare
automaticamente i moduli di geni della rete regolativa genica umana coinvolti nel cancro del
colon, senza nemmeno dover fornire preventivamente al programma i dati grezzi che descrivono
la rete genetica: tutti i dati necessari sono stati automaticamente “estratti” dalla letteratura
preesistente. Questo caso è particolare perché, qui, i dati stessi sono già memorizzati in un sup-
porto informatico utilizzabile dalla macchina, e non sono strutturati ad-hoc, anche se, in ultima
analisi, i dati (la letteratura accademica) in realtà provengono dal lavoro di ricercatori umani
. Ma un altro risultato seriamente sorprendente è che il sistema di Wilkinson e Huberman è
stato in grado di trovare parti della rete genetica coinvolte nel cancro del colon che avevano

59 Cioè, il rilevamento di un tipo di modularità. Vedere la sezione 3.2.1.

19.5. Alcune riflessioni aggiuntive su modularità, metafisica, computazione, storia della scienza461

eluso l’attenzione (lo span limitato di attenzione) umana dei ricercatori: la macchina ha trovato
un nuovo modello teorico di un fenomeno, un modello probabilmente il cui reperimento sarebbe
fuori dalla portata delle capacità umane! Ora, in questo caso, il risultato ottenuto è ancora
probabilmente esprimibile in forma umanament comprensibile, proprio perché è una descrizione
modulare del sistema genetico sotto osservazione. Ma cosa succederebbe se un programma, anal-
izzando la letteratura clinica, trovasse un modello modulare che unisce in moduli dati di natura
eterogenea, combinandoli in una maniera che è improbabile che alcun essere umano possa venire
a concepire spontaneamente? Ad esempio, producendo un modello modulare in cui i moduli sono
composti sia dei geni che delle proteine del proteoma, ma che sono correlati fra loro in modo non
semplice? Potrebbe questo modello essere ancora comprensibile da parte dei ricercatori umani?
Oppure, cosa accadrebbe se il modello, seppur modulare, fosse composto di centinaia di moduli
di medio livello senza alcuna descrizione modulare sovraordinata in grado di raggruppare insieme
alcuni? Si consideri che, a causa della sua complessità computazionale, l’algoritmo di Wilkinson
e Huberman non è in grado di elaborare reti con più di qualche migliaio di geni. A causa della
complessità computazionale eccessiva dell’algoritmo di rilevamento della modularità di alto liv-
ello, dunque, dovremmo ricorrere ad un modello del fenomeno che non è modulare ad un livello
superiore. Tale modello, se valido, potrebbe plausibimente essere utilizzato per eseguire alcune
ulteriori simulazioni del fenomeno osservato. Ma il fenomeno non sarà facile da spiegare medi-
ante il modello, dal momento che la decomposizione funzionale del modello è stata impossibile,
e, così com’è, esso sarà troppo complesso per essere compreso.

Ma, vorrei speculare ulteriormente: potrebbe anche essere possibile che il fenomeno stesso, scop-
erto dal data mining algoritmico, finisca per risultare essere né un fenomeno noto, né un fenomeno
facilmente comprensibile? Che dire di un fenomeno complesso che nessun essere umano avrebbe
plausibilmente preso in considerazione, e che è difficile per noi anche solo descrivere plausibil-
mente, o nominarlo? Anche se oltre l’intuizione umana spontanea o perfino oltre la comprensione
umana, accadrà, molto probabilmente che programmi informatici vengano a scoprire questo tipo
di fenomeni. Ma, che cosa sarà della scienza, allora? Penso che questo problema potrebbe ionsin-
uarsi potenzialmente più a fondo: il compito di rilevamento della modularità ha bisogno di una
relazione tra le parti del sistema, al fine di valutare la sua modularità, e questo rapporto e le parti
stesse sono date insieme in quello che ho chiamato la descrizione preferita: come ho sostenuto
in precedenza60, è proprio questa descrizione preferita, insieme ai limiti computazionali che af-
fliggono la rilevazione di modularità, a determinare l’“ontologia” del sistema sotto osservazione.
Ora, che cosa si può pensare della possibilità di cambiare la descrizione preferita da quella tipica,
“naturale”, ad una artificiosa? Data la possibilità della descrizione algoritmica di relazioni com-
plesse tra le parti, allora anche generi complessi, generi non naturali potrebbero essere rilevati
come moduli e essere fatti oggetto di scienza, lasciando gli algoritmi associare gruppi eterogenei
di proprietà del mondo reale in parti e relazioni di una descrizione di alto livello. Un, “mondo
bizzarro”, completamente diverso da quello comunemente descritto dalla scienza potrebbe venire
fuori da quella descrizione. Tale descrizione non standard potrebbe anche essere gerarchicamente
decomposta in modo da essere comprensibile, almeno in linea di principio. Oppure, potrebbe
dar luogo a una struttura gerarchica così complessa da poter essere utile per la spiegazione solo
in linea di principio: a causa di questa “rimappatura”, una nuova serie di “generi innaturali”
potrebbe emergere, e con loro, nuove discipline. Naturalmente questa modularizzazione deve es-
sere tale da rilevare moduli sufficientemente robusti, altrimenti non costituirebbe una descrizione
modulare valida del mondo. Si potrebbe allora obiettare che la descrizione naturale causale, co-
mune del mondo popolato da oggetti causalmente coesi è l’unica possibile descrizione robusta. La
questione è aperta, e ho il sospetto che qualche modularizzazione valida non ovvia e sorprendente

60 Sezione 19.5.1.

462 Chapter 19. Modularità, Antimodularità, Spiegazione: una panoramica introduttiva

sia è possibile, e forse è già stata proposta, vale a dire la descrizione della fisica quantistica61.

Tutto sommato, un ricorso diffuso a questo tipo di rimappatura artificiale, o a più familiari sim-
ulazioni al computer come quelle sopra descritte, potrebbe certamente apportare in alcune aree
scientifiche una tale serie di innovazioni nel metodo e nei criteri, da costituire un cambiamento
di paradigma nella scienza, con la possibilità di vedere il sorgere di nuove discipline scientifiche.
Il rovescio della medaglia è che dovremmo abbandonare la prospettiva della scienza come un
percorso progressivo verso una migliore comprensione del mondo: la tendenza sarebbe verso una
forma inedita di “spiegazione scientifica automatizzata”, forse incomprensibile.

Quanto sopra è una possibile formulazione della tesi storica che volevo discutere. Forse richiede
eccessivo sforzo di immaginazione. Inoltre, è abbastanza chiaro non ho in questo lavoro prodotto
un sostegno sufficientemente forte per poter affermare questa tesi. Il motivo è che ho mirato
più in basso, in questro lavoro: ho solo cercato di sgombrare il terreno proponendo una serie di
definizioni e proponendo prima di tutto una proprietà, l’antimodularità, che, se e quando compar-
isse in fenomeni reali, potrebbe causare problemi per alcuni modelli di spiegazione scientifica e
la necessità del ricorso alla simulazione al computer. Il condizionale appena formulato manca di
supporto per la premessa: è probabile che l’antimodularità appaia soprattutto in certi fenomeni
complessi, ma non ho dimostrato qui che un tale tipo di fenomeni sia così centrale e diffuso nella
letteratura scientifica oggi. Bisognerà vedere se è questo il caso.

Ma, come secondo punto, penso che debba essere messo in evidenza che il crescente bisogno
di ricorrere, quando la modularità può essere effettivamente trovata, a mezzi algoritmici per la
sua rilevazione, e quindi il bisogno di ricorrere a una sorta di spiegazione favorita dai progressi
nella potenza di calcolo, potrebbe questo fatto stesso favore l’interesse verso fenomeni particolar-
mente complessi, oppure, in alcuni casi, apportare persino la possibilità di “vedere” l’esistenza
di fenomeni che potrebbero essere completamente sfuggiti all’attenzione della ricerca scientifica
non computazionale: il rilevamento automatico della struttura modulare, ove fattibile, potrebbe
produrre descrizioni modulari a prima vista incomprensibili , se la macchina è in grado di rag-
gruppare le parti in moduli sulla base della considerazione di relazioni artificiose, innaturali ma
significative, tra le parti, relazioni che erano state precedentemente invisibili alla comprensione
umana. E, da quel momento in poi, una tendenza verso una scienza più computazionale, forse
meno umanamente comprensibile, è una tendenza alimentata da un feedback positivo: una tale
scienza, se queste spiegazioni sono utilizzate anche per orientare ulteriori ricerche, potrebbe
avanzare in modi che a noi apparirebbero oscuri.62

61 Probabilmente la descrizione fisica quantistica non è immediatamente una modularizzazione discreta come
quelle che ho trattato, più compatibili con una visione meccanicistica di sistemi. Tuttavia, la fisica quantistica
costituisce una valida descrizione del mondo alternativa rispetto a quella del senso comune, o a quella della fisica
classica.

62 Al fine di mantenere la discussione all’interno dei temi della filosofia della scienza e della storia della scienza,
non oso qui chiamare questa scienza futura, per lo più computazionale, potenzialmente incomprensibile, una
scienza “postumana”, anche se quello che ho scritto potrebbe probabilmente evocare un qualche uso legittimo del
termine.

References

463

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of
Modern Physics, 74 (1), 47–97.

Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks.
Nature, 406 (6794), 378–382.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits.
CRC Press.

Amaral, L. a. N., Scala, A., Barthélémy, M., & Stanley, H. E. (2000). Classes of small-world
networks. Proceedings of the National Academy of Sciences, 97 (21), 11149–11152.

Ammons, G., Bodík, R., & Larus, J. R. (2002). Mining Specifications. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02 (p.
4–16). New York, NY, USA: ACM.

Amundson, R., & Lauder, G. V. (1994). Function without purpose. Biology and Philosophy,
9 (4), 443–469.

Appel, K., & Haken, W. (1976). Every planar map is four colorable. Bulletin of the American
Mathematical Society, 82 (5), 711–712.

Arcaya, I., & Romero, N. (2007). On a Hedlund’s theorem and place-dependent cellular automata.
Divulgaciones Matemáticas, 15 (2), 81–92.

Arenas, A., Díaz-Guilera, A., & Pérez-Vicente, C. J. (2006). Synchronization reveals topological
scales in complex networks. Physical review letters, 96 (11), 114102.

Arenas, A., Fernández, A., Fortunato, S., & Gómez, S. (2008). Motif-based communities in
complex networks. Journal of Physics A: Mathematical and Theoretical, 41 (22), 224001.

Arora, S., & Barak, B. (2009). Computational complexity: a modern approach. Cambridge
University Press.

Baltagi, B. (2011). Econometrics. Springer.

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science,
286 (5439), 509–512.

Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5 (2), 101–113.

Batada, N. N., Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B.-J., Hurst, L. D., & Tyers,
M. (2006). Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network.
PLoS Biology, 4 (10).

Bechtel, W., & Abrahamsen, A. (2005). Explanation: a mechanist alternative. Studies in History
and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical
Sciences, Mechanisms in biology, 36 (2), 421–441.

Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: computational mod-
eling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy
of Science Part A, 41 (3), 321–333.

Bechtel, W., & Richardson, R. C. (1993). Discovering Complexity: Decomposition and Localiza-
tion as Strategies in Scientific Research. Princeton University Press.

465

Beck, J., & Eichmann, D. (1993). Program and interface slicing for reverse engineering. In
Proceedings of the 15th international conference on Software Engineering (p. 509–518). IEEE
Computer Society Press.

Bedau, M. A. (1997). Weak Emergence. Noûs, 31, 375–399.

Bird, R. J., & Wadler, P. (1988). An Introduction to Functional Programming. Prentice Hall.

Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., & Rapisarda, A. (2007). Detecting
complex network modularity by dynamical clustering. Physical Review E, 75 (4), 045102.

Bovet, D. P., Crescenzi, P., & Bovet, D. (1994). Introduction to the Theory of Complexity.
Prentice Hall London.

Böhm, C., & Jacopini, G. (1966). Flow diagrams, turing machines and languages with only two
formation rules. Communications of the ACM, 9 (5), 366–371.

Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science. Annual Review of Information
Science and Technology, 41 (1), 537–607.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner, D.
(2008). On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering,
20 (2), 172–188.

Bunge, M. (1959). Causality: The Place of the Causal Principle in Modern Science. Cambridge
University Press.

Bunge, M. (1963). A General Black Box Theory. Philosophy of Science, 30 (4), 346–358.

Bunge, M. (1964). Phenomenological theories. In The Critical Approach to Science and Philoso-
phy: In Honor of Karl R. Popper : (New York, N.Y.): Free Press of Glencoe. Collier-Macmillan.

Bunge, M. (1997). Mechanism and Explanation. Philosophy of the Social Sciences, 27 (4), 410–
465.

Caldarelli, G., & Catanzaro, M. (2012). Networks: A Very Short Introduction. Oxford University
Press.

Cale, W. G., O’Neill, R. V., & Gardner, R. H. (1983). Aggregation error in nonlinear ecological
models. Journal of Theoretical Biology, 100 (3), 539–550.

Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108 (3),
309–333.

Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: A taxonomy.
Software, IEEE, 7 (1), 13–17.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Infor-
mation Theory, 2 (3), 113–124.

Church, A. (1936a). An Unsolvable Problem of Elementary Number Theory. American Journal
of Mathematics, 58 (2), 345–363.

Church, A. (1936b). A Note on the Entscheidungsproblem. The Journal of Symbolic Logic, 1 (1),
40–41.

Clauset, A., Moore, C., & Newman, M. E. (2008). Hierarchical structure and the prediction of
missing links in networks. Nature, 453 (7191), 98–101.

466

Clauset, A., Moore, C., & Newman, M. E. J. (2007). Structural Inference of Hierarchies in
Networks. In E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, & A. X.
Zheng (Eds.), Statistical Network Analysis: Models, Issues, and New Directions, Lecture Notes
in Computer Science (pp. 1–13). Springer Berlin Heidelberg.

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large
networks. Physical Review E, 70 (6), 066111.

Colburn, T. (2004). Methodology of computer science. In L. Floridi (Ed.), The Blackwell guide
to the philosophy of computing and information (p. 318–326).

Conant, G. C., & Wagner, A. (2003). Convergent evolution of gene circuits. Nature Genetics,
34 (3), 264–266.

Cook, M. (2004). Universality in elementary cellular automata. Complex Systems, 15 (1), 1–40.

Cook, S. A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71 (p. 151–158). New York,
NY, USA: ACM.

Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12 (4), 461–502.

Copeland, B. J. (2004). The Essential Turing. Oxford University Press.

Copeland, B. J. (2008). The Church-Turing Thesis. In E. N. Zalta (Ed.), The Stanford Encyclo-
pedia of Philosophy (Fall 2008.).

Couch, M. B. (2011). Causal Role Theories of Functional Explanation. Internet Encyclopedia of
Philosophy, (http://www.iep.utm.edu/, 11-19-2014).

Cummins, R. (1974). Dispositions, States and Causes. Analysis, 34 (6), 194–204.

Cummins, R. C. (1975). Functional Analysis. Journal of Philosophy, 72 (November), 741–64.

Cummins, R. C. (2000). “How Does It Work” Versus “What Are the Laws?”: Two Conceptions
of Psychological Explanation. In F. Keil & R. A. Wilson (Eds.), Explanation and Cognition,
117-145. MIT Press.

Danon, L., Díaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment, 2005 (09), P09008.

Davis, M. (2004). The Myth of Hypercomputation. In C. Teuscher (Ed.), Alan Turing: Life and
Legacy of a Great Thinker (pp. 195–211). Springer Berlin Heidelberg.

Daylight, E. G. (2012). Turing’s Influence on Programming. In Turing-100, EPiC Series (p.
42–52). EasyChair.

Daylight, E. G. (2013). Towards a historical notion of “Turing - the Father of Computer Science”.
History and Philosophy of Logic.

Deutsch, D. (1985). Quantum Theory, the Church-Turing Principle and the Universal Quantum
Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
400 (1818), 97–117.

Dijkstra, E. W. (1968). Letters to the Editor: Go to Statement Considered Harmful. Commun.
ACM, 11 (3), 147–148.

Dijkstra, E. W. (1982). On the role of scientific thought. In Selected Writings on Computing: A
Personal Perspective (p. 60–66). Springer.

467

Díaz-Guilera, A. (2008). Dynamics towards synchronization in hierarchical networks. Journal
of Physics A: Mathematical and Theoretical, 41 (22), 224007.

Erdős, P., & Rényi, A. (1960). On the Evolution of Random Graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences (p. 17–61).

Faust, K. (1988). Comparison of methods for positional analysis: Structural and general equiv-
alences. Social Networks, 10 (4), 313–341.

Fisher, F. M. (1963a). Decomposability, Near Decomposability, and Balanced Price Change
under Constant Returns to Scale. Econometrica, 31 (1/2), 67–89.

Fisher, F. M. (1963b). Properties of the Von Neumann Ray in Decomposable and Nearly De-
composable Technologies. In A. Ando, FM Fisher, HA Simon: Essays in the Structure of Social
Science Models, Cambridge, Mass.

Fodor, J. A. (1981). The Mind-Body Problem. Scientific American, 244, 114–25.

Fortnow, L., & Homer, S. (2003). A short history of computational complexity. Bulletin of the
EATCS, 80, 95–133.

Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104 (1), 36–41.

Fortunato, S., Latora, V., & Marchiori, M. (2004). Method to find community structures based
on information centrality. Physical Review E, 70 (5), 056104.

Galton, A. (1993). On the Notions of Specification and Implementation. Royal Institute of
Philosophy Supplements, 34, 111–136.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game. Scientific
American, 223, 120–123.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99 (12), 7821–7826.

Goodman, C. S., & Coughlin, B. C. (2000). The evolution of evo-devo biology. Proceedings of
the National Academy of Sciences, 97 (9), 4424–4425.

Gould, S. J., & Lewontin, R. C. (1979). The Spandrels of San Marco and the Panglossian
Paradigm: A Critique of the Adaptationist Programme. Proceedings of the Royal Society of
London. Series B, Biological Sciences, 205 (1161), 581–598.

Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte
für Mathematik und Physik, 37 (1), 349–360.

Grochow, J. A., & Kellis, M. (2007). Network motif discovery using subgraph enumeration and
symmetry-breaking. In Research in Computational Molecular Biology (p. 92–106). Springer.

Guimerà, R., & Amaral, L. A. (2005a). Cartography of complex networks: modules and universal
roles. Journal of Statistical Mechanics: Theory and Experiment, 2005 (02), P02001.

Guimerà, R., & Amaral, L. A. N. (2005b). Functional cartography of complex metabolic networks.
Nature, 433 (7028), 895–900.

468

Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2004). Modularity from fluctuations in
random graphs and complex networks. Physical Review E, 70 (2), 025101.

Gulbahce, N., & Lehmann, S. (2008). The art of community detection. BioEssays, 30 (10),
934–938.

Haigh, T. (2013). Actually, Turing Didn’t Invent the Computer (draft, Historical Reflections
column for Communications of the ACM). In SIGCIS 2013 Workshop. Presented at the Old
Ideas: Recomputing the History of Information Technology, Portland, Maine.

Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy, D., et al.
(2004). Evidence for dynamically organized modularity in the yeast protein–protein interaction
network. Nature, 430 (6995), 88–93.

Hanson, J. E., & Crutchfield, J. P. (1997). Computational mechanics of cellular automata: An
example. Lattice Dynamics, 103 (1–4), 169–189.

Harré, R. (1959). Metaphor, Model and Mechanism. Proceedings of the Aristotelian Society,
New Series, 60, 101–122.

Hartmanis, J., & Stearns, R. E. (1965). On the computational complexity of algorithms. Trans-
actions of the American Mathematical Society, 285–306.

Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular
cell biology. Nature, 402, C47–C52.

Haugeland, J. (1989). Artificial Intelligence: The Very Idea. MIT Press.

Hedlund, G. A. (1969). Endomorphisms and automorphisms of the shift dynamical system.
Mathematical systems theory, 3 (4), 320–375.

Hempel, C. G., & Oppenheim, P. (1948). Studies in the Logic of Explanation. Philosophy of
Science, 15 (2), 135–175.

Hilbert, D., & Ackermann, W. (1928). Grundzüge der Theoretischen Logik. Berlin: Springer
Verlag.

Hillis, W. D. (2015, March 3). The connection machine / W. Daniel Hillis.

Hopfield, J. J. (1994). Physics, Computation, and Why Biology Looks so Different. Journal of
Theoretical Biology, 171 (1), 53–60.

Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese,
177 (2), 213–245.

Huneman, P. (2015). Diversifying the picture of explanations in biological sciences: ways of
combining topology with mechanisms. Synthese, 1–32.

Itzhack, R., Mogilevski, Y., & Louzoun, Y. (2007). An optimal algorithm for counting network
motifs. Physica A: Statistical Mechanics and its Applications, 381, 482–490.

Itzkovitz, S., Levitt, R., Kashtan, N., Milo, R., Itzkovitz, M., & Alon, U. (2005). Coarse-graining
and self-dissimilarity of complex networks. Physical Review E, 71 (1), 016127.

Iwasa, Y., Andreasen, V., & Levin, S. (1987). Aggregation in model ecosystems. I. Perfect
aggregation. Ecological Modelling, 37 (3–4), 287–302.

Iwasa, Y., Levin, S. A., & Andreasen, V. (1989). Aggregation in Model Ecosystems II. Approxi-
mate Aggregation. Mathematical Medicine and Biology, 6 (1), 1–23.

469

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale
organization of metabolic networks. Nature, 407 (6804), 651–654.

Karrer, B., Levina, E., & Newman, M. E. J. (2008). Robustness of community structure in
networks. Physical Review E, 77 (4), 046119.

Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences of the United States of America, 102 (39), 13773–
13778.

Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U. (2004a). Topological generalizations of network
motifs. Physical Review E, 70 (3), 031909.

Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U. (2004b). Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20 (11), 1746–
1758.

Kauffman, S. A. (1993). The Origins of Order: Self Organization and Selection in Evolution.
Oxford University Press.

Kim, J. (1989a). Mechanism, Purpose, and Explanatory Exclusion. Philosophical Perspectives,
3, 77–108.

Kim, J. (1989b). The Myth of Nonreductive Materialism. Proceedings and Addresses of the
American Philosophical Association, 63 (3), 31.

Kim, J. (1989c). Mechanism, Purpose, and Explanatory Exclusion. Philosophical Perspectives,
3, 77–108.

Kimura, M. (1968). The Neutral Theory of Molecular Evolution. Cambridge University Press.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of
Statistical Physics, 34 (5-6), 975–986.

Kreinovich, V., & Shpak, M. (2006). Aggregability is NP-hard. ACM SIGACT News, 37 (3),
97–104.

Kreinovich, V., & Shpak, M. (2008). Decomposable Aggregability in Population Genetics and
Evolutionary Computations: Algorithms and Computational Complexity. In A. Kelemen, A.
Abraham, & Y. Liang (Eds.), Computational Intelligence in Medical Informatics, Studies in
Computational Intelligence (pp. 69–92). Springer Berlin Heidelberg.

Kripke, S. A. (1982). Wittgenstein on Rules and Private Language: An Elementary Exposition.
Harvard University Press.

Kuramoto, Y. (2003). Chemical Oscillations, Waves, and Turbulence. Courier Corporation.

Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11 (3), 033015.

Laplante, P. A. (2007). What Every Engineer Should Know about Software Engineering. CRC
Press.

Lazebnik, Y. (2002). Can a biologist fix a radio? — or, what I learned while studying apoptosis.
Cancer cell, 2 (3), 179–182.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N.
M., et al. (2002). Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science,
298 (5594), 799–804.

470

Leicht, E. A., & Newman, M. E. J. (2008). Community Structure in Directed Networks. Physical
Review Letters, 100 (11), 118703.

Levin, L. (1973). Universal Sequential Search Problems. Problemy Peredachi Informatsii, 9 (3),
115–116.

Levy, A., & Bechtel, W. (2013). Abstraction and the Organization of Mechanisms. Philosophy
of Science, 80 (2), 241–261.

Lewis, H. R., & Papadimitriou, C. H. (1998). Elements of the Theory of Computation: Harry
R. Lewis, Christos H. Papadimitriou. Prentice-Hall International.

Liu, T.-C. (1955). A Simple Forecasting Model for the U.S. Economy. Staff Papers - Interna-
tional Monetary Fund, 4 (3), 434.

Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. The
Journal of Mathematical Sociology, 1 (1), 49–80.

Machamer, P. K., Darden, L., & Craver, C. F. (2000). Thinking About Mechanisms. Philosophy
of Science, 67 (1), 1–25.

Mangan, S., & Alon, U. (2003). Structure and function of the feed-forward loop network motif.
Proceedings of the National Academy of Sciences, 100 (21), 11980–11985.

Mangan, S., Zaslaver, A., & Alon, U. (2003). The Coherent Feedforward Loop Serves as a
Sign-sensitive Delay Element in Transcription Networks. Journal of Molecular Biology, 334 (2),
197–204.

Martínez, G. J., Adamatzky, A., & McIntosh, H. V. (2006). Phenomenology of glider collisions
in cellular automaton Rule 54 and associated logical gates. Chaos, Solitons & Fractals, 28 (1),
100–111.

Martínez, G. J., Adamatzky, A., & McIntosh, H. V. (2014). Complete Characterization of
Structure of Rule 54. Complex Systems, 23 (3), 259–293.

Maslov, S., & Sneppen, K. (2002). Specificity and Stability in Topology of Protein Networks.
Science, 296 (5569), 910–913.

Massen, C. P., & Doye, J. P. K. (2005). Identifying communities within energy landscapes.
Physical Review E, 71 (4), 046101.

Mazurie, A., Bottani, S., & Vergassola, M. (2005). An evolutionary and functional assessment
of regulatory network motifs. Genome Biology, 6 (4), 1–12.

McAdams, H. H., & Shapiro, L. (1995). Circuit Simulation of Genetic Networks. Science, New
Series, 269 (5224), 650–656.

Millikan, R. G. (1984). Language, Thought, and Other Biological Categories: New Foundations
for Realism. MIT Press.

Millikan, R. G. (1989). In Defense of Proper Functions. Philosophy of Science, 56 (2), 288–302.

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., et al.
(2004). Superfamilies of Evolved and Designed Networks. Science, 303 (5663), 1538–1542.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network
motifs: simple building blocks of complex networks. Science, 298 (5594), 824–827.

471

Minelli, A. (2000). Holomeric vs. meromeric segmentation: a tale of centipedes, leeches, and
rhombomeres. Evolution & Development, 2 (1), 35–48.

Minelli, A. (2009). Evolutionary Developmental Biology does not Offer a Significant Challenge
to the Neo-Darwinian Paradigm. In F. J. Ayalaessor & R. Arp (Eds.), Contemporary Debates in
Philosophy of Biology (pp. 213–226). Wiley-Blackwell.

Nagel, E. (1961). The Structure of Science: Problems in the Logic of Scientific Explanation.
Routledge.

Neander, K. (1991). The teleological notion of “function”. Australasian Journal of Philosophy,
69 (4), 454–468.

Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45 (2),
167–256.

Newman, M. E. (2004a). Analysis of weighted networks. Physical Review E, 70 (5), 056131.

Newman, M. E. (2004b). Fast algorithm for detecting community structure in networks. Physical
Review E, 69 (6), 066133.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103 (23), 8577–8582.

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical review E, 69 (2), 026113.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435 (7043), 814–818.

Pan, R. K., & Sinha, S. (2009). Modularity produces small-world networks with dynamical
time-scale separation. EPL (Europhysics Letters), 85 (6), 68006.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15 (12), 1053–1058.

Partridge, D., & Galton, A. (1995). The specification of “specification”. Minds and Machines,
5 (2), 243–255.

Piccinini, G. (2008). Some neural networks compute, others don’t. Neural Networks, Advances in
Neural Networks Research: IJCNN ’07 2007 International Joint Conference on Neural Networks
IJCNN ’07, 21 (2–3), 311–321.

Piccinini, G. (2011). The Physical Church–Turing Thesis: Modest or Bold? The British Journal
for the Philosophy of Science, axr016.

Polger. (2004). Natural Minds. MIT Press.

Priestley, M. (2011). A Science of Operations: Machines, Logic and the Invention of Program-
ming. Springer Science & Business Media.

Putnam, H. (1967a). Psychological predicates. In W. H. Capitan & D. D. Merrill (Eds.), Art,
Mind, and Religion (p. 37–48). University of Pittsburgh Press.

Putnam, H. (1967b). The nature of mental states. In Mind, Language and Reality: Philosophical
Papers, Volume 2 (pp. 429–440). Cambridge University Press, 1975.

Putnam, H. (1988). Representation and Reality. MIT Press.

Quine, W. V. (1951). Two Dogmas of Empiricism. The Philosophical Review, 60 (1), 20.

472

Ravasz, E., & Barabási, A.-L. (2003). Hierarchical organization in complex networks. Physical
Review E, 67 (2), 026112.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical
Organization of Modularity in Metabolic Networks. Science, 297 (5586), 1551–1555.

Reichardt, J., & White, D. R. (2007). Role models for complex networks. The European Physical
Journal B, 60 (2), 217–224.

Rekoff, M. G. (1985). On reverse engineering. Systems, Man and Cybernetics, IEEE Transac-
tions on, (2), 244–252.

Rendell, P. (2002). Turing Universality of the Game of Life. In A. Adamatzky (Ed.), Collision-
Based Computing (pp. 513–539). Springer London.

Sales-Pardo, M., Guimerà, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the
hierarchical organization of complex systems. Proceedings of the National Academy of Sciences,
104 (39), 15224–15229.

Salthe, S. N. (1985). Evolving Hierarchical Systems: Their Structure and Representation.
Columbia University Press.

Schlosser, G. (2002). Modularity and the units of evolution. Theory in Biosciences, 121 (1),
1–80.

Schlosser, G., & Wagner, G. P. (2004). Modularity in Development and Evolution. University of
Chicago Press.

Schüle, M. (2014). Natural Computation: the Cellular Automata Case. In AISB 50 - The AISB
2014 Convention at Goldsmiths, University of London. Presented at the 7th AISB Symposium
on Computing and Philosophy: Is computation observer-relative?, London.

Searle, J. R. (1990). Is the brain a digital computer? In Proceedings and addresses of the
american philosophical association (p. 21–37). JSTOR.

Shen-Orr, S., Milo, R., Mangan, S., & Alon, U. (2002). Network motifs in the transcriptional
regulation network of Escherichia coli. Nature Genetics, 31 (1), 64–68.

Simon, H. A. (1962). The architecture of complexity. In Proceedings of the American Philosoph-
ical Society (p. 467–482).

Simon, H. A., & Ando, A. (1961). Aggregation of Variables in Dynamic Systems. Econometrica,
29 (2), 111–138.

Sipser, M. (2012). Introduction to the Theory of Computation. CENGAGE Learning Custom
Publishing.

Soare, R. I. (1996). Computability and Recursion. The Bulletin of Symbolic Logic, 2 (3), 284–321.

Solé, R. V., & Fernández, P. (2003). Modularity" for free" in genome architecture? arXiv preprint
q-bio/0312032.

Solé, R. V., & Valverde, S. (2008). Spontaneous emergence of modularity in cellular networks.
Journal of The Royal Society Interface, 5 (18), 129–133.

Tinbergen, J. (1951). Econometrics. Psychology Press.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem.
J. of Math, 58, 345–363.

473

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, New Series, 59 (236),
433–460.

Tzerpos, V., & Holt, R. (1998). Software botryology. Automatic clustering of software systems.
In Ninth International Workshop on Database and Expert Systems Applications, 1998. Proceed-
ings (pp. 811–818). Presented at the Ninth International Workshop on Database and Expert
Systems Applications, 1998. Proceedings.

Valiant, L. (2013). Probably Approximately Correct: Nature’s Algorithms for Learning and Pros-
pering in a Complex World. Basic Books.

Von Neumann, J. (1945). First Draft of a Report on the EDVAC. IEEE Annals of the History
of Computing, 15-1993 (4), 27–75.

Wagner, A., & Fell, D. A. (2001). The small world inside large metabolic networks. Proceedings
of the Royal Society of London. Series B: Biological Sciences, 268 (1478), 1803–1810.

Wagner, G. P. (1996). Homologues, Natural Kinds and the Evolution of Modularity. American
Zoologist, 36 (1), 36–43.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature,
393 (6684), 440–442.

Weiser, M. (1981). Program slicing. In Proceedings of the 5th international conference on Soft-
ware engineering (p. 439–449). IEEE Press.

Weiser, M. (1982). Programmers use slices when debugging. Communications of the ACM, 25 (7),
446–452.

White, D. R., & Reitz, K. P. (1983). Graph and semigroup homomorphisms on networks of
relations. Social Networks, 5 (2), 193–234.

White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The Structure of the Nervous
System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society
of London. B, Biological Sciences, 314 (1165), 1–340.

Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., & Adami, C. (2001). Evolution of digital
organisms at high mutation rates leads to survival of the flattest. Nature, 412 (6844), 331–333.

Wilkinson, D. M., & Huberman, B. A. (2004). A method for finding communities of related
genes. Proceedings of the National Academy of Sciences, 101 (suppl 1), 5241–5248.

Wimsatt, W. C. (1976). Reductive Explanation: A Functional Account. In R. S. Cohen, C. A.
Hooker, A. C. Michalos, & J. W. V. Evra (Eds.), PSA 1974, Boston Studies in the Philosophy
of Science (pp. 671–710). Springer Netherlands.

Winker, P. (1992). Some notes on the computational complexity of optimal aggregation (No.
184). Diskussionsbeiträge: Serie II, Sonderforschungsbereich 178 “Internationalisierung der
Wirtschaft”, Universität Konstanz.

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, 10 (1–2), 1–35.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Inc.

Woodward, J. (2003). Making Things Happen : A Theory of Causal Explanation: A Theory of
Causal Explanation. Oxford University Press, USA.

474

Wright, C. D. (2012). Mechanistic explanation without the ontic conception. European Journal
for Philosophy of Science, 2 (3), 375–394.

Wright, L. (1973). Functions. The Philosophical Review, 82 (2), 139–168.

Wu, F., & Huberman, B. A. (2004). Finding communities in linear time: a physics approach.
The European Physical Journal B - Condensed Matter and Complex Systems, 38 (2), 331–338.

Wuensche, A. (1999). Classifying cellular automata automatically: Finding gliders, filtering, and
relating space-time patterns, attractor basins, and the Z parameter. Complexity, 4 (3), 47–66.

Yamada, H. (1962). Real-Time Computation and Recursive Functions Not Real-Time Com-
putable. IRE Transactions on Electronic Computers, EC-11 (6), 753–760.

Yourdon, E., & Constantine, L. L. (1979). Structured design: Fundamentals of a discipline of
computer program and systems design (Vol. 5). Prentice-Hall Englewood Cliffs.

Zhang, L. V., King, O. D., Wong, S. L., Goldberg, D. S., Tong, A. H., Lesage, G., Andrews,
B., et al. (2005). Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae
interaction network. Journal of Biology, 4 (2), 6.

Zhou, H. (2003a). Network landscape from a Brownian particle’s perspective. Physical Review
E, 67 (4), 041908.

Zhou, H. (2003b). Distance, dissimilarity index, and network community structure. Physical
Review E, 67 (6).

Zhou, H., & Lipowsky, R. (2004). Network brownian motion: A new method to measure vertex-
vertex proximity and to identify communities and subcommunities. In M. Bubak, G. D. van
Albada, P. M. A. Sloot, & J. L. Snoep (Eds.), Computational Science-ICCS 2004, Lecture Notes
in Computer Science (Vol. 3038, p. 1062–1069). Springer.

Zhou, H., & Lipowsky, R. (2006). The yeast protein-protein interaction map is a highly modular
network with a staircase community structure.

475

