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Résumé

Cette these traite des équations différentielles stochastiques rétrogrades(EDSR) du second or-
dre réfléchies dans une filtration générale . Dans un premier temps, nous considérons deux
cas de réflexions, I'un qui avec un obstacle inferieur et 'autre avec un obstacle supérieur.
Notre contribution consiste a démontrer 1’existence et l'unicité de ses équations dans le cadre
d’une filtration générale sous des hypotheses faibles sur le générateur, la condition terminal
et 'obstacle. L'étape essentielle de l'existence étant la démonstration du principe de program-
mation dynamique, nous construisons une fonction valeur qui soit mesurable par rapport au
temps, a I'espace et a la mesure de probabilité. Ainsi, nous avons recours au théoréeme de
sélection mesurable pour prouver le principe de programmation dynamique. La non symétrie
entre 'obstacle inferieur et I'obstacle supérieur dans le cadre des équations du second ordre
est également mise en évidence. Ensuite nous considérons le probléme d’approximation de
la valeur initiale de la solution d'une EDSR réfléchie de second ordre. Ceci revient encore
a donner une approximation d'un probleme de contrdle sur les solutions d’EDSR standards
réfléchies avec incertitude sur le modele. Notre technique consiste a donner approximation en
temps discret qui transfeére 1'incertitude sur le modéle en incertitude sur la volatilité et ensuite
de montrer la convergence de cette approximation.

Mots clés: Equations différentielles stochastiques rétrogrades, équations différentielles stochas-
tiques rétrogrades de second ordre réfléchies,approximation faible, contréle stochastique ro-
buste, modele avec incertitude sur la volatilité, capacité, Ensemble analytique, probléme avec
obstacle, probleme de Skorokhod, schéma numérique, équations différentielles stochastiques
rétrogrades réfléchies.






Abstract

This thesis deals with second order reflected backward stochastic differential equations (2RBS-
DEs) in general filtration. At first, we consider two cases of reflection, one with a lower obstacle
and the other with an upper obstacle. We prove existence and uniqueness of the solutions of
these equations under weak assumptions about the generator, the terminal condition and the
obstacle in the context of general filtration. The dynamic programming principle plays a key
role in the proof of existence, we construct a value function that is measurable with respect to
time, space and probability measure. Therefore, we use the measurable selection theorem to
prove dynamic programming principle. The non-symmetry between the lower obstacle and
the upper obstacle in the second-order framework is also highlighted. Then we consider the
problem of approximation of the initial value of the solution of a 2RBSDE. This can be inter-
preted as an approximation of the value of stochastic control problem associated to standard
reflected backward stochastic differentials equations solutions under model uncertainty. Our
approach is based on the time discretization of the value of stochastic problem and the dis-
cretization of the model trough the discretization of the volatility process.

Key Words: Backward stochastic differential equations, second order reflected stochastic dif-
ferential equations, weak approximation, robust stochastic control, Uncertainty Volatility Model,
capacity, analytic set, obstacle problem, reflected backward stochastic differential equation, nu-
merical scheme, skorokhod problem.
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Chapter 1

Introduction

1.1 Second order Reflected BSDEs

Second order Backward Stochastic Differential Equations (2BSDEs for short) were first intro-
duced by Cheredito, Soner, Touzi and Victoir in [21] motivated by applications in financial
mathematics and probabilistic numerical methods. Later, inspired by the quasi-sure stochas-
tic analysis of Denis and Martini [25], Soner, Touzi and Zhang [91] gave the quasi-sure for-
mulation of 2BSDEs. Given a filtered measurable space (Q), F, { Fi }o<i<T) generated by a d-
dimensional canonical process B and a set of probability measures Pj; on (), F), a solution to
a one-dimensional 2BSDE consists in a triple of progressively measurable processes (Y, Z, K)
taking values in R x R? x R such that

T T
Y, =&+ / Fo(Ye, Zs,@s)ds — / Z,dBs + Ky — Ky, t € [0,T], P-as. VP € P,
Jt t

were the generator f is a progressively measurable function and the terminal condition ¢ is a
Fr-measurable random variable. Before we go into the details, we briefly recall the definition
of Backward Stochastic Differential Equations (BSDEs for short) and their link with Partial
Differential Equations(PDEs for short).

1.1.1 BSDEs and connection with semi-linear PDEs

Backward stochastic differential equations first appeared in Bismut [9] in the linear case but the
theory of these equations was introduced by Pardoux and Peng [77]. Given a filtered probabil-
ity space (Q), F, { Fi }o<t<T,P) generated by a d-dimensional Brownian motion W , a solution
to a one-dimensional BSDE consists in a couple of progressively measurable processes (Y, Z)
taking values in R x R? x R such that

T T
Y, :§+/ fs(Ys,Zs)ds—/ Z,dW,, t € [0, T], P-as. (1.1.1)
t t

where the generator f is a progressively measurable function and the terminal condition is an
Fr-measurable random variable. Under the following conditions

- f is uniformly Lipschitz with respect to both i and z;
- ¢ and f;(0,0) are square integrable,

Pardoux and Peng [77] proved the existence and uniqueness of the solution to the equation
(1.1.1). These results were followed by many others in order to relax the condition on f among
which we can mention the existence of a solution when

13



- f is uniformly Lipschitz w.rt. z and has polynomial growth w.r.t. y (see Briand and
Carmona [17]);

- f is only continuous in (y, z) with linear growth (see Lepeltier and San Martin [59]);
- f is quadratic growth w.r.t. z (see Kobylanski [55]);

Most of these results appear to be useful for problems in financial mathematics, stochastic
control and differential games (see [37] and [43] ), provide probabilistic interpretation for semi-
linear partial differential equations etc. We also refer the reader to El Karoui, Hamadene and
Matoussi [32] for some applications.

The connection between BSDEs and semi-linear PDEs can be established by considering Marko-
vian BSDEs where the randomness of the generator and terminal condition comes from a diffu-
sion process (Xs,0 < s < T) which is the strong solution of a standard It6 stochastic differential
equation (SDE):

t t
X :x+/ b(s,xs)ds+/ (s, Xs)dWs, 0 < £ < T, P-a.s.
0 0

Let consider the following semi-linear PDE

g—;{(t,x) + Lu(t,x) + f(t,x,u(t,x), (Vuo)(t,x)) =0, Vt € [0,T], x € RY,
u(T,x) = p(x), Vx € RY, (1.1.2)

where L is the second order differential operator associated to X given by
Lu(t,x) = %Tr[a(t,x)(f’(t,x)vzu(t,x)] bt x) - V(L x).

Under suitable assumptions on f, 4, b and ¢ the PDE (1.1.2) has a classic smooth solution and
then processes (Y, Z) = (Y1, Zt)e(o 1= (u(t, Xi), Vu(t, Xe)o(t, Xt) )refoq solves the following
BSDEs

T T
Y= 9(Xr) + [ fi(Xo Yo Z)ds — [ ZaW,, £ € (0,T], P-as.
t t

This link gives a probabilistic interpretation for solutions of the semi linear PDE (1.1.2) using
the solution of the Markovian BSDE (1.1.1) and generalizes the Feynman-Kac formula to a
semi-linear case. From that interpretation, one can use probabilistic methods for numerical
simulations of solutions of semi-linear PDEs. Motivated by the applications of fully non-linear
PDEs and probabilistic numerical methods for this class of PDEs in many fields especially in
financial mathematics, Cheredito, Soner, Touzi and Victoir [21] defined the first formulation of
2BSDEs which are connected to fully non-linear PDEs.

1.1.2 Second order backward stochastic differential equations

We begin with the first formulation of 2BSDEs.

1.1.2.1 First formulation of 2BSDEs and connection with fully non-linear PDEs

Given a d-dimensional diffusion process X defined for every initial condition (s, x) € [0, T] x
RY by

AX;* = b(X7Y)dt + o (X;¥)dW,, t € (s, T), P-as.

Xt =, P-as.

14



and two continuous functions & and 1, Cheredito, Soner, Touzi and Victoir [21] introduced the
following 2BSDE:

dYy = h(t, Xf'x, Y;, Zt,rt)dl’ + Z),{ o dX?’x, t e [S, T), P-a.s.
AZ; = Adt +T4dX", t € [S, T), P-a.s.
Yr = p(X55), (1.13)

where Z{ o dXj”* denotes Fisk-Stratonovich integration, which is related to 16 integration by
1
ZiodX;”™ = Z{dX;”™ + Ed(Z, X4,

A quadruple (Y, Z, T, A) of progressively measurable processes ( w.r.t. the augmented filtration
generated by W* := W. — W) is called a solution of the 2BSDE associated to (X**,h, ) if Y, Z,T
and A satisfy the relation (1.1.3).

The class of admissible strategies is Z := ;>0 Zn where 2, is the class of all processes of the
form

t t
Zi=z +/ A, dr +/ IdX;”, tels,T),
0 0
with Z,T and A such that

max{|Z|, [T¢], [A¢]} < m(1+[X}*

P), s et T
and

ITe| = [T < m (L4 X7+ (X5 ([t =7 + X = X3¥)), 7.t €[5, T,

Let consider the following PDE

_%{(t,x) +h(t,x,u(t,x), vVu(t,x), Vzu(t,x)) =0, (t,x) €[0,T) x RY
u(T,x) = p(x),Vx € RY. (1.1.4)

and £ the operator defined by

u

1 /
B (t,x) + s Te[V2u(t, x)o(x)o’ (x)].

Lu(t,x) = 5

o’ is the transposed of ¢. If u is a continuous function such that du /9t, Vu, V?u and LVu exists
and are continuous and u solves the PDE (1.1.4), then it follows directly from It6’s formula that
for each (s, x) € [0, T] x R?, the processes

Ye =u(t, X)), t € s, T), P-as.,,

Zy =vu(t,X;™"), t € [s, T, P-as.,

Ty = V2u(t, X, t € [, T, P-as.,

Ay = Lvu(t,X7™), t € [s,T), P-as.

solve the 2BSDE (1.1.3) associated to (X%, h, ).
Uniqueness of the solution: The uniqueness of the solution (Y, Z,T’, A) of 2BSDE(1.1.3) is
proved only when the process Z belongs to the class of processes Z defined above. We notice

that Z is limited and cannot be extended to a class of square integrable processes. In general
there is no uniqueness result if the solution is allowed to be a general square integrable process.
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Existence of the solution: Except for the trivial case where the PDE(1.1.4) has a sufficiently
smooth solution, the existence problem was left open in [21].

The necessity to provide a complete theory of existence and uniqueness of the solution of
2BSDEs on a less restricted setting lead to the reformulation of 2BSDE.

1.1.2.2 New formulation of 2BSDEs

The key idea for the new formulation is inspired by the quasi-sure analysis of Denis and Mar-
tini [28] in the sense that the 2BSDE must hold IP-a.s. for every P in a non-dominated class of
(eventually mutually singular) probability measures. Before recalling the new formulation of
2BSDE, It is worth pointing out some intuition which will help to understand this formulation.

Example 1: G-expectation. The G-expectation is defined by Peng using the following fully

non-linear PDE
ou

= (tx) + G(V2u(t,x)) =0, (t,x) € [0,T) x R?

u(T,x) = p(x),Vx € RY.

where the time maturity is taken to be T. Let denote by Sd>0 the set of all real valued positive
definite d x d matrices. Fora,a € Sd>0, the nonlinearity & is defined by

1
h(t,x,y,z,7v) = G(y) = Esuﬁ Tr[ay].
ae

where A := {a € S0 << a} and the order < in the set A is in the sense of symmetric
matrices.

We suppose that the above PDE has a smooth solution. Let also consider & := (as)s¢(o,7] @
process taking values in [4,a] and define X} by

t
X = /0 /24w,

Then by using the link establish in [21] between fully nonlinear PDEs and 2BSDEs, we have
that Yy = u(t, X}) and Z; = Vu(t, X}') satisfies the following 2BSDE

T T
Yt:¢(x%)+/ G(vzu)(s,xg)ds—/ 7! 0 dXY,;
t t
o« T 2 1 2 o« T I o
- ¢(XT)+/t (G(v2u) - 5859 u](s,Xs)ds—/t 71X,
T
= y(x4) - [ Zjaxs +Kr— K.

where K; := fOt[G(VZu) — Loy v2u](s, X¥)ds is a non-decreasing process with Ky = 0. The last
equation highlights the presence of a non-drecreasing process K in the equation.

Example 2. Let i defined by
1
h(t,x,y,z,7v) := sup {Tr[a'y] —f(t,x,y,z,a)}.
€870 2

where f is a Fenchel-Legendre transform of 4. Let consider the following fully non-linear PDE

fg—btl(t,x) YRt x,u(t x), Vu(t x), V2u(t, x)) = 0, (t,x) € [0,T) x R?

u(T,x) = p(x),¥x € RY.
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Then it is natural to expect that the solution of this PDE is given by

u(t,x) = sup u(t,x),
aes;0

where u* solves the following PDE
ou”

_ﬁ(
u™(T, x) = (x),Vx € RY.

t,x)+ %Tr[avzu”(t,x)] — f(t,x,u’(t,x), Vu'(t,x),a) =0, (t,x) € [0,T) x R?

Since the above PDE is semi-linear, it corresponds to the BSDE

T T
vi= () + [ fls X022 ads — [ 2,
t t
with
t
Xf:/ al/2dW.
0

Consequently, using the link between fully non-linear PDEs and 2BSDEs in Markovian case
given in [21], a first component of a solution to a 2BSDE will write as

Y; = sup yi.

>0
a€s;

Formulation. Let():= {w € C([0, T, RY) : wy = 0} the canonical space equipped with the
uniform norm ||w||e := sup, €/0,1) |wt|, Py the Wiener measure and B the canonical process.

Given a map h(t,w,y,2z,79) : [0,T] x Q x R x R x D;, — R we define its conjugate f with
respect to y by

f(t,w,y,z,a) = sup {1Tr[a'y] —h(t,w,y,z, 'y)} .
YED, 2

We denote by Dy, -y := {a, fi(w,y,z,a) < oo} the domain of f in a for fixed (t, w,y, z).
Models space: The local martingale measures. We outline the space of models defined in
[91]. A probability measure IP is a local martingale measure if the canonical process B is a local
martingale under P. By Karandikar [53], we know that we can give pathwise definition of
quadratic variation (B) and its density a with

t N
(B); := BB —2/ BB, and G := Tim ~((B): — (B)i_c).
0 el €

Clearly, (B) coincides with the IP-quadratic variation of B, IP-a.s. for all local martingale mea-
sures IP.
Let Py denote the set of all local martingale measures IP such that

(B); is absolutely continuous in t and @ takes values in S;°, IP-a.s.

We note that, for different P;,IP, € Py, in general IP; and IPp are mutually singular. The
subclass Pg C Pyy consists in all probability measures P* with

ot
P* = Pyo (X*)~! where X* ;:/0 «l/2dBs, t € [0,T], P-as. (1.1.5)
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for some progressively measurable process a taking values in 570 with fOT lat|dt < oo We
recall from [92] that every IP € Pg satisfies the Blumenthal zero-one law and the martingale
representation property. We concentrate on the subclass Ps C Ps defined by

Ps:={P* € Pg,a <a <7, Pp-as.} (1.1.6)

for fixed matrices a2 and 7 in Sd>0.
We fix a constant k € (1,2] and restrict the probability measures in the following subset P

Definition 1.1.1. P} denotes the collection of all those P € Pg such that

2
"]<oo.

]EIP[(/OT |£5(0,0,@;)|"dt)

EY denotes the expectation under P. It is clear that Py; is decreasing in x, and @y € Dy, ), dt x dIP-
a.s. forall P € Py.

Remark 1.1.1. We emphasize the fact that the bounds (a, @) are not uniform with respect to the under-
lined probability measure. In fact unlike in Denis and Martini [28], this restriction on the set of measure
are not essential, because Py, does not need to be relatively weakly compact.

Definition 1.1.2. We say a property holds Pj -quasi-surely (Pj;-q.s. for short) if it holds P-a.s. for all
P € Py.

We shall consider the following 2BSDE:

T T
Y, = g+/ Fo(Ys, Zs,s)ds —/ ZdBs + Kr — Ky, t € [0,T), Pi-qs..  (117)
t t

Definition 1.1.3. We say that (Y, Z) is a solution to 2BSDE (1.1.7) if:
- Yr =¢, P-as. forall P € Pf;

- For all P € P¥, the process K¥ defined below has nondecreasing paths P-a.s.
-t ‘T
KP =Yy Y — / Fo(Ys) Zs, 35)ds + / ZdBs, t € [0,T], P-as.  (1.18)
Jo Jt

- The family {K¥,IP € PF} satisfies the minimun condition:

K = essinf’ EV'[KE |7, t € [0,T], P-as. VP € Py, (1.1.9)
PP (t+,P)

where Py (t+,IP) is the set of all probability measures in Pj which coincides with P until t*.

Moreover, if the family {KF,P € Py} can be aggregated into a universal process K, we call (Y, Z,K)
the solution of 2BSDE (1.1.7)

The process K is added to keep the process Y above all the solutions of BSDEs defined IP-a.s.
for all P € P; with the same generator f and same terminal condition ¢. With this formula-
tion there is no longer one fixed probability measure but a non-dominated class of eventually
mutually singular probability measures.
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Existence and Uniqueness of the solution: Under the following condition
- P} is non empty, the domain Dy of f is independent of (w, y, z);

- Fort €10,T], y1,y2 € Rand z1,2; € R?, we have
iy, z1,8) — fi(ya, 22,0 < C(ly1 — yol + 132(z1 — 22) ), Pf-qss.

- £5(0,0,4s) and ¢ verify some integrability conditions;
- f and ¢ are uniformly continuous in w under the uniform convergence norm.

Soner, Touzi and Zhang [91] proved the existence and uniqueness of the solution to 2BSDE
(1.1.7). The uniqueness is provided by the following representation formula: For any IP € P}/
and 0 <t <t <T,

Yy, = esssuplp y]}i/(tz,Ytz), P-a.s. (1.1.10)
P'ePE (] IP)

where for any F-stopping time 7, and F;,-measurable square integrable random variable
&, yP derives from (y¥,2z") := (yF'(z,¢), 2z (7, &)) the unique solution to the following BSDE
under a fixed probability IP

T T
y]tp = ‘:"‘/t fs(yls",zs“j,ﬁs)ds _/t zﬂ’st, t €0, 7], P-as.

With this representation formula, the process K can be interpreted as allowing Y to remain
above all the processes y¥', IP € Pr.

The assumptions of uniform continuity in w for f and ¢ are used to prove the existence of
the solution using dynamic programming principle(with regular conditional probability mea-
sures). The construction of the solution is done in their accompanying paper [92]. In the
markovian case, a stochastic representation result for fully nonlinear parabolic PDEs is pro-
vided.

These results were followed by many others in order to relax the condition on f among which
we can mention the case where,

- f has quadratic growth (see Possamai and Zhou[56]);
- f has linear growth (see Possamai [52]);

- f has quadratic growth (see Possamai [83]).

Connection with fully non-linear PDEs: The connection between 2BSDEs and fully non-
linear PDE:s is established by considering the Markovian 2BSDEs where the randomness of the
generator and terminal condition comes from the canonical process B. Given a deterministic
map h(t, B(w),y,z,7v) : [0,T] x R? x R x R x D, —> R, then the corresponding conjugate
and bi-conjugate functions become

f(t,x,y,z,a) := sup {;Tr[a'y] —h(t,x,y,z, ’y)} aeS;
€D,

~

h(t,x,y,z,7v) := sup {;Tr[a’y] —f(t,x,y,z,a)} , Y E R4,

>0
a€S;
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Let consider the following PDE

—a—u(t,x) +h(t,x,u(t,x), Vu(t,x), V2u(t,x)) =0, (t,x) € [0,T) x R?

u(T,x) = p(x),¥x € R (1.1.11)

Under suitable assumptions on Pj;, Dy, f and ¢ the PDE (1.1.11) has a classic smooth solution
and then

t
Y; = Ll(t, Bt), Zt = Vu(t, Bt), K; := / ksds,
0
~ 1
with ks = ]’l(i’, Bt, Yt, Zt, Ft) - ETr[ﬁtl"t] —f(i’, Bt, Yt, Zt,ﬁt) and Ft = VZu(t, X)

solves the following 2BSDE:
T R T
Y, = p(Br) + /t (s, Be, Yo, Zs, @s)ds — /t Z,dBs + Ky — Ky, t € [0, T], Pl-qs..

1.1.2.3 Some applications of 2BSDEs

Robust utility maximization in non-dominated models.

Utility maximization and connection with quadratic BSDEs: The utility maximization consists in
a problem of optimal investment faced by an economic agent who has the opportunity to invest
in a financial market consisting of a risk-less asset and for simplicity one risky asset. Given
a fixed investment horizon T, the aim of the agent is to find an optimal allocation between
the two assets, so as to maximize his welfare at time T. Following the seminal work of Von
Neumann and Morgenstern[96], where they assumed that the preference of the agent could be
represented by a utility function U and a given probability measure P reflecting his views, the
now classical formulation of the problem consists in solving the optimization

V(x) = suE]E]P u(xXy™—2¢)],

where A is the set of admissible strategies 7 for the agent, X" is his wealth at time T with
initial capital x and a trading strategy 77, and ¢ is a terminal liability. This optimal problem was
solved first by Merton [70] in the particular case where the risky asset follows a Black-Scholes
model in complete market, where the utility function is of power type and where the liability
is equal to 0. The same problem in complete market but with a a general utility function was
solved by Pliska [51].

As the hypothesis of complete market is too much restrictive and unrealistic from the point
of view of applications, a large trend of literature was developed. Among which one can
mention Cvitanic and Karatzas [25] and Zariphopoulou [98] where convex duality and control
techniques were used to solve the problem and Kramkov et Schachermayer [52] in a general
semimartingale model.

The appearance of the theory of BSDEs and their link with optimal investment problem al-
lowed El Karoui and Rouge [38] to connect the value function of the problem with the initial
value of a BSDE where the generator has quadratic growth w.r.t. to z. They considered the
problem of indifference pricing with an exponential utility in the case where the strategies are
constrained to stay in a given closed and convex set. The generalization of this approach to the
case where the utility function is of logarithmic and power types and strategies in a closed set
was done by Hu, Imkeller and Muller [47].
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Robust utility maximization in dominated models: The problem of robust utility maximization
with dominated models was introduced by Gilboa and Schmeilder [40]. An example is the un-
certainty in the drift. Based on the robust utility maximization penalized by a relative entropy
term of the model uncertainty with respect to a given probability reference introduced by An-
derson, Hansen and Sargent [4] and Hansen et al. [45], many results have been obtained in
dominated models. Many authors introduced a dominated set of probability measures which
are absolutely continuous with respect to a reference probability measure . A set P is said to be
dominated if every probability measure IP € P is absolutely continuous with respect to some
reference probability measure in P. Then the problem can be written as follows

rob _ : P X, 7T
v (x) = sup inf EX[U(X™ - 0)],

where P is a set of all possible probabilities measures. With reference to results linked to BS-
DEs, Muller in [72] study the robust problem in the case when the drift is unkown, Bordigoni,
Matoussi and Schweizer [10] have solved the robust problem in a more general semimartingale
framework by using stochastic control techniques and proved that the solution was related to
a quadratic semimartingale BSDE. Also, Gundel [41] and Schied and Wu [88] studied the case
of continuous filtrations.

Robust utility maximization in non-dominated models: To consider a fixed reference probability
measure, means that the investor knows the historical probability IP that describes the dynam-
ics of the state process. In reality, the investor may have some uncertainty on this probability,
which means that several objective probability measures may be considered. Now the set P
is no longer dominated, which happens when introducing volatility uncertainty, in the sense
that the volatility process is only assumed to lie between two given bounds.

The robust utility maximization in non-dominated models was first studied with duality
theory by Denis and Kervarec [27]. They worked with bounded utility function and their ap-
proach takes into account the uncertainty under both the drift and the volatility. Under suitable
assumptions on the utility functions, they showed that there is a least favourable probability
measure and an optimal strategy. More recently Matoussi, Possamai and Zhou [67] proved
for exponential, power and logarithmic utilities that the value function of the problem can be
written as

Vol (x) = U(XF" — Yo),

where Y) is the initial value of a quadratic 2BSDE. In [67] volatility uncertainty is considered,
in the sense that the volatility of the market is only assumed to lie between two given bounds.
The intuition in [67] is that, exactly as the problem of utility maximization under constraints
was linked to BSDEs with quadratic growth, the problem of robust utility maximization under
volatility uncertainty should be linked to some kind of backward equations. They showed that
in incomplete markets with volatility uncertainty, the solution of the robust utility maximiza-
tion problem is related to the initial value of a particular 2BSDE with quadratic growth and
prove existence of an optimal strategy.

1.1.3 Second order Reflected backward stochastic differential equations

Second order reflected backward stochastic equations (2RBSDEs for short) with lower obstacle
were introduced by Matoussi, Possamai and Zhou [66] motivated by the problem of pricing
of American options in a market with uncertain volatility. Following the theory of 2BSDEs
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treated in [91], they defined the 2BSDEs reflected with a lower obstacle. The solution of these
equations are represented by a triple (Y, Z, K) satisfies:

T T
Yi=¢+ / fs(Ys, Zs, a5)ds — / ZsdBs + Kt — Ky, t € [0, T], Py-q:s. (1.1.12)
t Jt

where K is a non decreasing process nul at 0.

In order to better understand this notion of 2RBSDEs, let recall the notion of Reflected Back-
ward stochastic differentials equations (RBSDEs for short) with a lower obstacle.

1.1.3.1 Reflected BSDEs with a lower obstacle and related problems

Reflected BSDEs were introduced by El Karoui, Kapoudjian, Pardoux, Peng and Quenez in
[35]. The principal idea is to keep the solution of a backward equations above a given stochastic
process, called the obstacle. An increasing process is introduced to push the solution upwards,
so that it may remain above the obstacle. The formulation of this problem is the following:
Given a filtered probability space (Q, F, { F }o<t<T) generated by a d-dimensional Brownian
motion W, given also an obstacle process L, a generator f (progressively measurable) and a
terminal condition ¢(Fr-measurable), a solution to a one dimensional RBSDE consists in a
triple (Y, Z, K) of processes taking value in R x R¥ x R such that

Yi =+ [T f(Ys, Zo)ds — [ ZodWs + Kr — Ky, t € [0, T), P-as.
Y, > Ly, t € [0,T], P-as., (1.1.13)
) (Ys = Ly)dK; = 0, P-as.

The process K is non-decreasing and null at 0 and this process is added in order to keep the
solution Y above the obstacle L. The last condition means that the process K only acts when
Y reaches the obstacle L, and provides the uniqueness of the solution. The uniqueness and
existence are both proved in [35] by a fixed point argument (and Snell envelope) and by ap-
proximation via penalization. Existence and uniqueness of the solution was proved under the
following conditions

- f is uniformly Lipschitz with respect to both y and z;
- L is continuous and progressively measurable;
-V (y,z) € RxRY f(-,y,z) and ¢ are square integrable;

- EP(supg<,<1(5)?) < oo.
More information about obstacle. If the obstacle L is a general semimartingale of the form

t t
L = L0+/ Ust+Ct+/ S.dW.,
0 0

where C is continuous process of integrable variation such that the measure dC; is singular
with respect to dt and which admits a decomposition

C=C -G,

where C;” and C; are increasing processes. Also U and S are R and R¥ progressively measur-
able and satisfying

T
/O (|Uy|dt + |Si]2dt) + CF + C < oo, P-as.
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Then under the above assumptions, the solution (Y, Z, K) satisfies
Z; = S5;,dP x dt a.e. ontheset {Y; = L}
and there exists a predictable process {a;, 0 < t < T} such that 0 < a; < 1and
dKy = arlyy,—( ([f(t, L, S¢) + Uy]~dt +dC,).

These results was followed by many others in order to relax the condition on the obstacle, the
generator, the filtration, high dimension ... (see Lepeltier and Xu [60] for the right continuous
with left limit obstacle, Hamadene [42] for discontinuous obstacle, Matoussi [64] and Lepeltier,
Matoussi and Xu [58] for the generator with arbitrary growth in y, [44] for LP-solutions).

In [35] they also proved that the solution of RBSDE is a value function of an optimal stopping
problem and provided the probabilistic interpretation for the viscosity solution of an obstacle
problem associated with a non-linear PDE.

RBSDEs and non-linear PDEs. The connection between RBSDEs and non linear PDEs is
established as in section 1.1.1 by considering Markovian RBSDEs where the randomness of the
generator, the terminal condition and the obstacle comes from a diffusion process (X;,0 <'s <
T). Let consider the following PDE

min ((t, x) = h(t,x), = 34(,x) = Lu(t, x) = f(x,u(t,x), (Tu0) (%)) ) =0,
V(t,x) € (0,T) x R*  (1.1.14)
u(T,x) = p(x), Vx € RY.
where £ have the same expression to section 1.1.1. Under suitable assumptions, the PDE
(1.1.14) has at most one viscosity solution in the class of continuous functions which grow
at most polynomially at infinity and a viscosity solution of (1.1.14) is given by u(t,x) :=
Y, (t,x) € [0, T] x RY where (Y, Z,K) is the solution of the following RBSDE
Yi = 9(Xr) + [ fs(Xs, Ys, Zs)ds — [ ZsdWs + K1 — Ky, t € [0,T], P-as.
Y; > h(t, Xt), te [0, T], P-as.,
[ (Ys = h(s, Xs))dKs = 0, P-a.s.

One can also refer to Bally, Caballero, El Karoui and Fernandez [5] to the related problems for
PDEs.

RBSDEs and optimal stopping time. For the relation with optimal stopping time control
problems established in [35] , the first component of the solution Y can be represented as a
Snell envelope

v
Y; = esssup ]E]P [‘/t fS(YS, Zs)ds + Lvl{t<T} + Cl{t:T}‘]:t:|r te [0, T]
veTy

where 7 is the set of stopping times taking value in [t, T]. They generalized the above rep-
resentation, first to the case where f is a linear function of (y,z) and write the solution Y as
the optimal stopping time problem. Second, they considered f a concave or convex function
of (y,z) and obtained that Y is the value function of a mixture of an optimal stopping time
problem. This is resumed by following results (Theorem 7.2 in [35]).
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Theorem 1.1.1. Foreach (B,7y) € A,
Yt’g’v = esssup E¥ [D(t,v,B,7)|F].
veTy

Moreover,

Y; = essinf Y}B 4
(Br)eA

= essinf esssup ET [®(t, v, 8,7)|F:
(B1)eA veﬁp [ ‘8 }

= esssup essinf ET D(t,v,B,77)|Ft|.
ueﬂp (Br)eA [ )

In other words, Yy is the value function of a minimax control problem and there exists an optimal triple
(B*,v*, D), where Dy = inf {t <s < T;Ys = Ls}.

For more details about the functions ®, the process YP7 and the set A, refer to section 7 of [35].
RBSDEs and american options. The idea of El Karoui, Pardoux and Quenez in [36] is to

consider the strategy wealth portfolio (Y, 1) as a pair of adapted processes which satisfy the
following BSDE:

—dYt = b(t, Yt, ﬂt)dt — 7'[;0}th,

where b is a R-valued convex and Lipschitz function with respect to (y, 71). In addition, the
volatility matrix of d risky assets is invertible and its inverse (0;) ! is bounded. The classical
case correspond to b(t,y, ) = —riy — 714 - 0¢0;, where 6; is the risk premium vector.

In complete market, we are concerned with the problem of pricing an American contingent at
time #, which consists in selection of a stopping time v > t and a payoff L, on exercise if v < T
and ¢ if v = T. In other words, the payoff L is represented by

Ly = Lol{yery + Elio=1y}-
Then the price of an American contingent claim (Ls,0 < s < T) at time f is given by

Y: = esssup Yi(v, Ly).
veT;

Moreover the price (Y;,0 < t < T) corresponds to the unique solution of the RBSDE associated
with terminal condition §, generator b and obstacle L, there exists (77;) and (K;) an increasing
continuous process with Ky = 0 such that for all t € [0, T],

Yi =&+ [T b(s,Ys, m5)ds — [ 7t05dWs + Kr — Ky, £ € [0,T), P-as.
Y > L, t € [0, T], P-as.,
) (Ys = Ly)dKs = 0, P-as.

Furthermore, the stopping time Dy = inf{s > t,Y; = Ls;} A T is optimal after ¢, that is

Yt = Yt(Dt, iDt)-
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1.1.3.2 Reflected BSDEs driven by G-Brownian Motion

On the base that the G-expectation theory shares many similarities with second order BSDEs,
we will recall briefly the notion of reflected BSDEs driven by a G-Brownian motion. Recently,
two independent studies of reflected G-BSDEs have appeared, the first by Li and Peng [61] and
the second in the PhD thesis of Soumana Hima [93]. A reflected G-BSDE is in the following
form

Yi =&+ [ f(s,Ys, Zs)ds — [ ZsdBs + Ar — Ay, t € [0,T),

Y; > Ly, t €0, T], P-as.

in addition to the following conditions:

- Peng and Li [61]: The process A is a continuous, nondecreasing and {— fot (Ys — Ls)dAs }ejo,1)
is a nonincreasing G-martingale.

- Soumana Hima [93]: The process A admits the decomposition A := R — K, where R is a
continuous increasing process null at 0 verified the following Skorokhod condition

T
/(n—gm&:aq&
0

and K is a decreasing G-martingale, which also means that -K satisfies the minimum condition
(1.1.9) (see [90] for representation of G-martingale).

Existence of solution The existence of the solution of the triplet (Y,Z, A)(and quadruplet
(Y, Z, R, K) [93]) of the above reflected G-BSDE have been proved through penalization method.
The assumptions: the generator is Lipschitz in y,z , the terminal condition, the generator and
the obstacle satisfies some integrability conditions (with respect to G-expectation) and the ob-
stacle is a G-Itd process.

Uniqueness of solution In [93], the uniqueness of (Y, Z, A) is proved under assumptions, but
the uniqueness of the decomposition A := R — K is not provided, whereas Li and Peng [61]
proved the uniqueness of (Y, Z, A) under an additional assumption, which is the upper bound-
edness of the obstacle. For the uniqueness, they don’t need the obstacle as a G-It6 process.

1.1.3.3 Second order Reflected BSDEs and American options under volatility uncertainty

Formulation. The 2RBSDEs are formulated in [66, 68] with a similar framework to [91]. These
equations are the kind of combination of 2BSDEs and RBSDEs. The goal is to define quasi-
surely (w.r.t. P;,) the equations and force the solution to stay above a given obstacle, then a non-
decreasing process is introduced. A solution of a 2RBSDE associated to a terminal condition
¢, a generator f and an obstacle L is a triple of processes (Y, Z, K) which verifies (1.1.12). The
formulation do not need to add another nondecreasing process, unlike in the classical case
and do not need to impose a condition similar to the Skorokhod condition. The only change
necessary is in the minimal condition that the non-decreasing process must satisfy.

For any P € P,, F-stopping time T, let (y¥,z", k") := (yP(7,&),z%(1,&),k"(7,¢)) de note
the unique solution to the following RBSDE with the lower obstacle L, the generator f and the
terminal condition ¢( existence and uniqueness have been proved under appropriate assump-
tions by Lepeltier and Xu [60]).

vy =24 [ fs(yF 2L, a)ds — [ zPdB, + kL —kF, 0 <t < 7, P-as.
yF > L, t €[0,T)], P-as., (1.1.15)
Jo WE — Le-)dkl =0, P-as., Vt € [0, T]

The following definition is formulated in [66].
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Definition 1.1.4. We say that (Y, Z) is a solution to 2RBSDE (1.1.12) if:
-Yr=_CandY; > Ly t € [0,T], Pi-q.s. ;

- For all P € P¥, the process K¥ defined below has nondecreasing paths P-a.s.
t T
KP =Yy Y — / Fo(Ys, Zs, 85)ds + / Z,dBs, t € [0,T], P-a.s. (1.1.16)
0 t
- The family {K¥,P € P} satisfies the minimum condition:

T
essinf® EF’ / G Ak — kP 7Rl =0, 0<t<T, Pas, VP ePr. (1117
]P’eP;f(t*,]P) [ ; s ( S s )‘ t+} =t = h ( )

where for any t € [0, T) and for any P € Py , the process G'T is defined by
LP Sop_ 1P P P °p P Py ~—1/2
G i= exp ([ (AF =5 ¥ 1) (Yu 8, Zus 20+ [ (Y%, 20, 28) -5,y ).

The processes AY and #* are bounded and determined by the Lipschitz assumption under the
genrator f. We recall that PJ(t*,IP) is the set of all probability measures in Pf which coincides
with P until t+.

In this case, the nondecreasing process K plays two roles, the first to maintain the solution Y
above the obstacle process L and secondly to maintain the solution Y above all the solutions
yP of RBSDEs defined IP-a.s. for all IP € Pj;in (1.1.15).

Existence and uniqueness Under the following assumptions
- P} is non empty, the domain D 7 of f is independent of (w,y,z);

- Fort€[0,T), y1,y2 € Rand z1,2; € R4, we have
fi(y1, 20, @) — fi(y2,22,@)| < C(ly1 — vo| + [@/%(z1 — 22)|), Pu-qs.

- £5(0,0,45), ¢ and L verify some integrability conditions;
- f,¢ and L are uniformly continuous in w under the uniform convergence norm.

Matoussi, Possamai and Zhou [66] proved the existence and uniqueness of the solution to
2RBSDE (1.1.12). Following [91], the uniqueness derives from the representation formula:
Forany IP € P,fandO <t<T,

Y; = esssup’ y]tP/, P-a.s. (1.1.18)
PP (t+,P)

where for any IP € Pj, [F-stopping time T, y]P comes from (y]P,z]P, kIP) the unique solution to
the RBSDE (1.1.15).

The existence is obtained using the dynamic programming principle. The value function is
chosen pathwise as as the supremum over a shifted set of probability measures of a solution of
RBSDEs. The strong assumptions about uniform continuity in w for f, ¢ and L allows to obtain
the dynamic programming principle. After that, they obtained a semi-martingale decomposi-
tion of the value function which ensures the existence of the solution to the 2RBSDE.
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Symmetry about upper and lower obstacle ? In [60] the authors highlight that unlike with
classical RBSDEs, considering a lower obstacle was fundamentally different from considering
the upper obstacle. Because, having a lower obstacle corresponds to add an increasing pro-
cess in the definition, then they still end up with an increasing process. However, in the case
of upper obstacle, they would have to add a decreasing process, therefore ending up with a
finite variation process(in place of an increasing process). Consequently, there is no longer any
symmetry between lower and upper obstacles in the second-order framework. This remark
have been verified in [65], where Matoussi, Piozin and Possamai studied the case of doubling
reflected 2BSDEs. As usual to prove the existence result for doubling reflected 2BSDEs, they
assumed that the upper obstacle is a semimartingale. This is directly linked to the fact that this
is one of the conditions under which existence and uniqueness of solutions to standard doubly
reflected BSDEs are guaranteed. More precisely, this assumption will be also crucial in order to
obtain a priori estimates for 2BSDEs with two obstacles. This assumption is the heart of their
approach, and theirs proofs no longer work without it. They also notice however that such an
assumption was not needed for the lower obstacles considered in [66].

More details about the action of K¥ and kF.

Proposition 1.1.1. Under assumptions listed above, let (Y, Z) be the solution to the 2RBSDE (1.1.12)
and (y]P,zIP,k]P)H)Gp];c be the solutions to the corresponding RBSDEs (1.1.15) starting at t = 0. Then
we have the following result. For all t € [0, T],

t t
TR S A VY

The above result tells us that if Y becomes equal to the obstacle L, then it suffices to push it
exactly as in the standard RBSDE case. This is in accordance to the following intuition: When Y
reaches L, since the representation formula (1.1.18), then all the y* are also on the obstacle and
therefore there is no need additional efforts other than kT to the second order effects. Moreover,
we have the following decomposition of K’

t t
P P P
Kt :/0 l{st:Lsf}dKS +/0 1{Y57>L57}sz, P-a.s.
£ t
P P
:/0 l{Ys*:Lsf}dks +/0 1{YS,>LS,}dKS/ P-a.s.

the last equality comes from the above proposition. The last above inequality leads naturally
to think that one could decompose KT into two nondecreasing processes AT and V¥ with

t
P _ P
vE = i
satisfies the usual Skorokhod condition for RBSDEs, that is
T
Y, —L.)dVF =0, t € [0,T], P-as. VP € Pf. (1.1.19)
0 s h
and
t
P P P
AP = K! —/O Ly K,

ot
P
- /0 1oy o, KT
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On{Y; =L;- }U{y" > L;- }, the process AP satisfies the minimum condition (1.1.9) of 2BS-
DEson, i.e.

AP = essinfl E [AH;U-}], P-as. VIP € Pj.
P/EPE(t+,P)

and otherwise (that means on {Y;- > L;-} N { y]tP, = L;- }) we cannot say anything. Such a
decomposition isolates the effects due to the obstacle by V¥ and the ones due to the second
order by AF. Of course, the choice VT := kP would be natural, given the minimum condition
(1.1.19). However, this is not necessary true unless on {Y,- = L,- }. The existence of such a
decomposition KF := AP + VP with K and AT satisfies the above properties on the whole
space (), is therefore still an open problem in [66].

If we have more information on the obstacle L, then we can give a more explicit representation
for the process KT. The following result comes from Proposition 1.1.1 and the representation
in the paragraph 1.1.3.1.

More information about obstacle. If the obstacle L is a general semimartingale of the form

t t
L= Lo+ / Usds + C; + / S.dB.,
JO J0O

where C is cadlag process of integrable variation such that the measure dC; is singular with
respect to dt and which admits a decomposition

C=C—C,

where C;” and C; are nondecreasing processes. Also U and V are R and R? progressively
measurable and satisfying

/OT(|ut|dt + [S¢|?dt) + Cf + C; < oo, Pj-gs.
Then under the above assumptions, the solution (Y, Z) to the 2RBSDE(1.1.12) satisfies
Zy = Sy, dt X Pj; q.s. ontheset {Y;- = L;-}
and there exists a predictable process {txltP,O <t< T} such that 0 < cxltP <1and

1{Y7:Lr,}dK}fP = ‘X]tpl{Yt,:Lr,}([f(t’ Ly, St,ﬁt) + Ut]idt + dC;)

Connection with optimal stopping problem: Let (Y, Z) be the solution to the 2RBSDE 1.1.12,
then for each f € [0, T] and for all P € Py,

Y; = esssup® esssup ]EIP / fs( ys ) Zg ,A)ds+Lvl{t<T}+§l{t T}|~7:t] P-a.s.
PePf(t+P) veT:

— esssup ]EIP /t fo(Ys, Zs, @5)ds + Ay — Af + Lolyery + STy |]-‘t], P-a.s.
veTy

where T; is the set of all stopping times taking valued in [f, T] where AY := fot Iy _>r dKY is
the part of K which only increases when Y- > L.
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Connection with American options under volatility uncertainty: Inincomplete market, the
problem consists in pricing an American contingent claims under uncertain volatility. In [66],
they consider a superhedging price for the contingent claim given by

Y; = ess sup]P YEP/, P-as., VP € P},
P/ePy (tP)

where Y[ is the price at time  of an American contingent claim a complete market with un-
derlying probability measure IP. Then the link with 2RBSDE is given by the following result

Theorem 1.1.2. There exist an IF -progressively measurable process 1t and a non-decreasing cadlag
process K such that for all t € [0, T] and for all P € P,

:("H-ftT (s,Ys, 715 )ds — ft s0sdWs + K — Ky, £ € [0, T], P-as.
Y; > L, t € [0, T], P-a.s.,

T
essinf’ EF / GIP a(KP — kP | FP | = 0, P-a.s.
P/EPE (t,P) [ ; s ( s s )’ t+}
Furthermore, for all €, the stopping time Df = inf {s <t Ys < Ls+e, P,’;-q.s.} AT is e-optimal
after t. Besides, for all P, if we consider the stopping times DtP'e =inf{s <t Y; <Ls;+¢ P-as.}A
T, which are e-optimal for the American options under each I, then for all I,

Df > DIF, P-ass.

where for any f € [0, T} and for any IP € Py, the process G'T is defined by

GtIP —exp(/ ( S || M || (Yu, mlau,n Ou du+/ ;71, (Yy, L,,nuau,nf(fu)dwg))

1.2 Contribution

Chapter 2 provides basis tools and preliminary results which will be useful to establish results
in the following chapters. It includes especially the reminder of universal measurability, regu-
lar conditional probability distribution, dynamic programming principle, measurability with
respect to a probability law, RBSDEs in a general filtration, the weak convergence of filtrations
and some applications.

1.2.1 2RBSDEs under weak assumption: the lower case

In Chapter 3, we study 2RBSDEs with a lower obstacle under weak assumptions in general
filtration. Our models space (more precisely the space of probability measures) on which we
are working is much more general than the ones considered in [91] and [66]. As mentioned
earlier about existence and uniqueness results in the above papers, the uniformly continuous
conditions on the terminal condition, the generator (and the obstacle in [66]) are made to ob-
tain the continuity of the value function and hence the measurability of this one. This very
strong regularity assumptions allows to obtain the dynamic programming principle by avoid-
ing completely the use of measurable selection theorem. In section 2.3 of Chapter 2 we recall
that one can use measurable selection theorem together with the stability of controls to derive
the dynamic programming principle. It is this last method together with the measurability
with respect a probability law introduced by Neufeld and Nutz [73] which is used by Pos-
samai,Tan and Zhou [85] to prove existence and uniqueness of 2BSDEs without any regularity
conditions on the terminal condition and the generators.
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We start from the wellposdeness result in [85] which extends the 2BSDE theory in a general
filtration with no regularity conditions on the parameters. We extend 2RBSDEs introduced by
Matoussi, Possamai and Zhou [66] to a large class of probability measures in general filtration
with no regularity conditions on the parameters.

We briefly recall the context of our work. Let Q = {w € C([0, T],R?) : wy = 0} (C([0, T], R%)
denotes the space of continuous map from [0, T] to R? ) be the canonical space equipped with
the uniform convergence norm, X the canonical process and F = (F;)o<;<T the canonical
filtration. We summarize the space of models defined in [85].

Models space: the semimartingale measures. A probability measure P is a semimartingale measure
if the canonical process X is a semimartingale under IP. By Karandikar [53], we know that we
can give pathwise definition of quadratic variation (X) and its density 2 with

lim
€l0

Ju—

t
(X) = thg—z/o XedX! and @ := (X}t — (X)1_e).

o=

Clearly, (X) coincides with the IP-quadratic variation of X, IP-a.s. for all local semimartingale
measures IP. For every t € [0,T], Let th denotes the collection of all probability measures IP
on (), Fr) such that

— (Xs)set,1) is a (P, [F)-semimartingale admitting the canonical decomposition
S
Xs = / b}jdr + Xg']P, s € [t,T], P-as.,
t

where BT is a predictable R%-valued process, and X is the continuous local martingale part
of X under IP.

— ({X)s)sept,7) 1s absolutely continuous in s with respect to the Lebesgue measure, and @
takes values in S;O, P-a.s.( S{?O denotes the set of all symmetric positive semi-definite d x d
matrices).

In the sequel, we consider the generator

f:(tw,y,zab)e0,T] xQAxRX R? x SdZO x RY — R.

The additional dependency b comes from the fact that we work with semimartingale and b rep-
resents the finite-variation process of the semimartingale. We also consider a random variable
¢ Q — R, alower obstacle process (Lt)c(o,r] and (P(t, w)) (;w)e(o,1]x @ class of probabil-
ity measure families where P(t,w) C P}V for all (t,w) € [0,T] x Q. We define the graph of
(P(t, @) (tw)elo,1)xq PY

[Pl ={(tw,P) : (tw)€[0,T] xQ, PeP(tw)}.

The class (P(t, w))(t,w)e[O,T] « of semimartingale measures replaces the class Ps of local mar-
tingale measure defined in (1.1.2.2). This class is larger than Pg introduced in [91] and takes
over in [66] in the sense that the quadratic variation of X does not need to be bounded in Sd>o
and the probability measures does not need to be represented as in (1.1.5). We notice that for
t =0, we have Py := P(0,w) for any w € Q.

Assumptions. We assume that
— The r.v. ¢ is Fr-measurable.

— £5(0,0,as, bP), & and L verify the following integrability conditions.

T
sup ET[|¢|P] < oo, supEF[sup |L;|f] < o, sup ]EIP[(/ |f5(O,O,ES,bSP)\ds)”] < oo,
PePy PePy  O<t<T PP, Jo
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— The generator function f is jointly Borel measurable, Lipschitz with respect to y and z and
the map (t,w) — f(t,w,y,z,4a,b) is F-progressively measurable .

— The graph [[P]] of P is upper semi-analytic in [0, T] x Q x M ( see definition 2.1.2 (4) ).
— P is stable under conditioning and concatenation (see Assumption 2.3.1 of Chapter 2).
Remark 1.2.1. Notice that in the assumptions about integrability of ¢, f and L are a sketch of integra-

bility conditions, we will come back in more details in chapter 3 (see Assumption 3.3.1 for L and f and
space ]LS’K define in (3.2.4) for ¢).

The first three assumptions excepted the jointly Borel measurability are quite standard in the
RBSDE literature. The last two assumptions comes from [85](see also [39]) and are classic to
establish the measurability of a value function of the stochastic control problem over a family
of probability measures. The jointly measurable assumption about time, space and probability
measure is introduced in [73]( and reminded in section 2.4). Unlike in [66], we do not need
regularity conditions under the terminal value, the generator and the obstacle. These con-
ditions were necessary in [66] to establish the existence of the solution through the dynamic
programming principle. In this work, we use measurable selection theorem to provide the
measurability of the value function.

We consider the following 2RBSDE with the lower obstacle L:

Yi =&+ [ fo(YVs, 027,05, 08 )ds — [ Z - dx¢® — [T amP + KE — KP,
Y > Ly, 0<t<T, P-as. VP € Py

where MF is a martingale orthogonal to X°F.
For any IP € Py, Fr-measurable random variable &, we consider (y¥,z", m", kT) the following
RBSDE

P =+ ] R 8220, a, 00 )ds — [ 20 - axe® — [ dml +kF —kF, 0 <+ < T, P-as.
yP > Ly, t €0, T], P-as,
foT(y;Pf — L, )dkP =0, P-ass.

For any, IP € Py, The existence and uniqueness of these solutions under IP is given by Theorem
2.5.1 and the solution is a quadruple (y¥,z", m", k) where m" is a martingale orthogonal to
the canonical process X.

Definition 1.2.1. We say that (Y, Z) is a solution to the 2RBSDE if :
(i) Y =¢& and Yy > Ly, t € [0, T], Po-q.5.;
(ii) VIP € Py, the process KT has non-decreasing paths P-a.s.
t T T
KP =Yy — Y — / Fo(Y., 327, 3, b7 )ds + / Z, - dXoP / dMP, t € [0, T].
0 s s
(iii) We have the following minimality condition: ¥IP € Py,
/ T / / /
essinf’ EP [/ P d(KE ~ k)| FE] =0, 0<t<T, Pas.
IP’E'PO(I‘,]P,]FJr) t
where for any t € [0, T) and for any P € Py , the process G'* is defined by
S 1 S m
G i= exp ([ (AF =5 InE12) (Va8 Zu 20+ [ (Yo o, 20, 25) -3 248,

AP and 5" are bounded processes.
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Remark 1.2.2. Rigorously, the solution is (Y, Z, (MY )pep,, (KF)pep,) and through misuse of lan-
guage, we denote (Y, Z), given the dependence in P of K¥ and MT.

We prove existence and uniqueness of this 2RBSDE defined in a general filtration under the
assumptions mentioned above.

1.2.2 2RBSDEs under weak assumption: the upper case

In Chapter 4, we study the case where we have an upper obstacle. Of course the space of
models and the tools used for the lower one are still the same. But the added process K is no
longer non decreasing, with an upper obstacle, K plays the role to maintain the solution at the
same time below the obstacle and above standard RBSDEs associated. These two effects cannot
be ensured by a non decreasing process, but rather by a finite variation process which can be
seen as a difference of two non decreasing process. Our main goal is to establish existence
and uniqueness of 2RBSDE with an upper obstacle without any regularity assumptions on
the terminal condition, the generator and the obstacle. As in chapter 3, we work in a general
filtration.

We consider the following generator

fi(twyzab)e0,T]xQAxRxR x87" x RY — R,

We also consider a random variable { : 3 — IR, an upper obstacle process (Ut)c[o,r) and
(P(t, @) (tw)efo,1]x 2 @ class of probability measure families where P(t,w) C P}¥ forall (t,w) €
[0,T] x Q.

The assumptions are the same to the ones in section 1.2.1 excepted that U replaces L. Let
consider the following 2RBSDE with the upper obstacle U:

Yt = §+ ftTfS(YSlag/ZZSr/a\S/ bs]P)ds - ftT Zs : dXE,]P - ftT dMItP + KH; - KtP,

Y < U, 0<t<T, P-as.VIP € Py
where MY is a martingale orthogonal to X“F. For any IP € P, ¢ is a Fr-measurable random
variable , we consider the following RBSDE

Y=+ ftTfS(yg’,ﬁg/zzf,ﬁs,bgj)ds — ftT Zr . dxet — ftT dm? — kY +kF,0<t < T, P-as.

yF < U, t€[0,T], P-as.,

fOT(Usf —yP)dkl =0, P-as.
By the symmetry about lower and upper obstacles in the case of RBSDEs explained in section
2.5, we can deduce by Theorem 2.5.1, that under specified assumptions we have the existence
and uniqueness of the solution to the above RBSDE under each IP. Moreover, the solution

is represented by a quadruple (y*,zF,mP, k), where m" is a martingale orthogonal to the
canonical process X.

Definition 1.2.2. We say that (Y, Z) is a solution to the 2RBSDE if :
(i) Y =¢,and Yy < Uy, t € [0, T), Po-q.5.;

(ii) VIP € Py, the process K¥ has paths of bounded variation P-a.s.

t T T
KP .= YO—Yt—/O fs(ys,ag/zzs,as,bg’)ds+/ Zs~dX§']P+/ aMP, t € [0,T].
S S
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(iii) We have the following minimality condition: VIP € Py,

T
e7s)s(ir1f]P )]E]P/ { / GHP' d(KP +k£’/)|f§1’+} =0, 0<t<T, Pas.
P'ePy(t,P,F+ Jt

where for any t € [0, T) and for any P € Py , the process G'T is defined by
S 1 S o
GYF smexp ([ (A = 5 IE 1) (Va8 Zus 2B )i [ (Vi 8, 2, 28) /20X ).

AP and y® are bounded processes.

Remark 1.2.3. Here again, rigorously speaking, the solution is (Y, Z, (MY )pep,, (K¥)pep,) and
through misuse of language, we denote (Y, Z), given the dependence in P of K¥ and MF.

We prove existence and uniqueness of this 2RBSDE defined in a general filtration under the
assumptions mentioned above.

1.3 Approximation of second order Reflected BSDEs and con-
vergence

In this section we state some approximation methods for BSDEs and a weak approximation
of a class of 2BSDE introduced in [84]. We first recall the approximation of BSDEs by the
Euler scheme, then approximation of the driving Brownian motion by a random walk. The
following section is dedicated to a brief statement of weak approximation of 2BSDE. The we
state our contribution.

1.3.1 Discrete-time approximation of BSDEs
Let consider the following BSDE defined on a probability space (Q, F,P),

T T
Yt:C-i-/t f(S,Ys,Zs)ds—/t ZsdW;

W is a Brownian motion whose right-continuous and completed filtration assciated is F =
(Fi)<t<T- Let m: tg = 0 <t < ... < t, = T, be an equidistant partition of [0, T| and let
h = T/n the step. We follow Bouchard, Elie and Touzi [12] to give the discretization. The
above BSDEs can be discretized as by the following Euler scheme:

Y =Y+ hf (4, YT ZE) = Zi,(Whyy — W),

i1 i
The solution of this scheme is obtained by applying the following operations:
- Taking conditional expectation with respect to F;,, leads to

Yt:[ = IE[Y;;[+1 ‘]:t,-} + hf(tlf Y;;E, Zt:[)

- Pre-multiplying by (W;,,, — W;,) and then taking conditional provides

0=ENT, (Wi, — Wy,)|F,] — hZ]

i+1

Then the BSDE can be approximated by the following backward Euler scheme

Y =g
YT =BT F + hf (6, YT ZE);
Zt:r - %]E[Ytil (Wti+1 - Wti) “Fti}'
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For the estimation of error, the classical approach is to suppose that the randomness comes
from a forward SDE process. Then this process is discretized on 7t and the terminal value is
choose as a function of this process. Under suitable conditions on the drift and the volatility
the following estimation of error is obtained

n=l ety

max ]E{ sup |Y: — YT)? + Y / " |Z; —Zf|2dt} < C|n|.
0sism Ly<i<tiyg ’ i—0 /ti ’

where | 77| := max;j<j<, |t; — ti_1| and C is a positive constant independent of n. This error only

depends on the regularity of BSDEs, for the details about regularity we refer to Ma and Zhang

[62] and for the details about this error, one can refer to the work of Zhang [99] and [100] and
Bouchard and Touzi [15].

Remark 1.3.1. The following explicit scheme can also be considered

Y =¢;
Ytir - ]E[Yl‘i'il |-7:ti] + hf(ti’ Yfi‘rﬂ’z"{z‘r);
ZZ,T = %]E[Ygﬂ(wtiﬂ = Wi) | F).

and the convergence rate is still the same.

Let consider the following RBSDE defined on (Q), 7, P)
Ye =&+ [ f(s,Ys, Zo)ds — [, ZedWs + Ky — Ky,
Yi > Ly, [y (Ys — Ls)dKs = 0.

Following Bouchard and Touzi [15], we can discretize the above RBSDE using the following
backward Euler scheme:

Y =¢;
Yi* = max{Le, E[Y[ |F¢]+nhf(t, Y], Zi)}
ZZ? = %]E[Ytﬁl(wfﬂl - Wti)‘fti]'

Similarly to the case of BSDEs the estimates of the error is provided by the regularity of RBS-
DEs, for more details about regularity of RBSEs one can refer to Ma and Zhang [63]. Similarly
to the case of BSDEs, in literature the randomness comes from a forward SDE process and
therefore the terminal value and the obstacle are taken as functions of this forward SDE pro-
cess. The estimate of the error is also linked to the discretization error of the forward process.
Many results have been shown for the discrete time approximation of RBSDEs, among which
we can cite Bouchard and Touzi in [15] for the case where the generator f does not depend
on z, they obtained an estimation of error in order of || 2. The case where the generator de-
pends on z have been studied in [11] and [12] with additional condition on the volatility of the
forward process and the obstacle.

1.3.2 Convergence of approximation of BSDEs

The weak approximation of BSDEs or also called Donsker’s type theorem for BSDEs by Briand,
Delyon and Mémin in [19] is a method of approximation of BSDEs by discretization of BSDEs
using an approximation of the Brownian motion by a sequence of i.i.d. random variables.

Approximation of a Brownian motion. The key idea is that a Brownian motion can be ap-
proximated by a sequence of scaled random walked as follows: Let (Q, F,IP) be a probability
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space and a sequence of i.i.d. Bernoulli symmetric sequence (&} );<k<,. We define for n € IN*,
the scaled random walked

t/h]

Wr=vVh) &, 0<t<T, h:%.
k=1

where [x] is the integer part of x. We have by Donsker’s theorem that

sup |[Wi' —Wi| -0, asn — oo,
0<t<T

in probability as well as in L”, 1 < p < oo, where (W;)o<;<T is a Brownian motion.

Remark 1.3.2. We notice that if W and the sequence (") are defined on two different probability
spaces, we can use Skorokhod representation theorem to find a new probability space (Q, F,P) carrying
a Brownian motion (Wy)o<i<t and a Bernoulli symmetric sequence (£y)1<<y of such that

[t/h]

Wr=vhY &, 0<t<T, h:%.
k=1

and by Donsker’s Theorem,

sup [W/' —Wi| =0, asn— oo,
0<t<T

in probability as well asin L, 1 < p < oo,

We begin by approximation by numeric schemes.

1.3.2.1 Approximation by numeric scheme

Approximation of a BSDEs. We consider the following BSDE defined on the probability space
(Q, F,P) carrying the Brownian motion (W;)o<;<T and with respect to the Brownian filtration
F = (]:t)OStST defined by ]:t = O’(WS,O S S S i’).

T T
Y :§+/ f(SrYs/Zs)ds_/ ZsdWs, (1.3.1)
t t

For n > 1, we consider a probability space (Q)", F",IP") containing the sequence of ii.d.
Bernoulli symmetric sequence (e})i<k<,. Let denote F" = (F')1<k<, er F' = (€], ..., €}).
We define the discrete time BSDE on the small interval [kh, (k + 1)h]

Vi =i Ryl 2) = VhzZiel, k=n—1,...,0, yi =¢", (13.2)
n

1
Zp = ﬁlﬁ[yﬂﬂeﬂﬂ]‘f]-

Then we define two continuous time processes by setting, for 0 <t < T, Y}' := y’L‘t Jh)” Zf =
ZTt/hJ’ where [n] := (n —1)7 for all integer n and | x| = [x] if x is not an integer.
Assumptions. (i) f is uniformly Lipschitz under y and z, that is, there is K > 0 such that

V.y.z7) |f(sy.2) = fsy, )N <K(y—yI+]z=21); s €[0,T].
(ii) ¢ is Fr-measurable and ¢" is F}}-measurable such that

E[|¢[] +Sl;plE[|C”|] < oo
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(iii) ¢" converges to ¢ in L'asn — oo.

Briand, Delyon and Mémin in [19] have proved that under the above Assumptions, (Y", Z")
converges to (Y, Z) in the following sense:

T
sup |YI' — Y;|? +/ |Z" — Zs|?ds — 0 as n — oo in probability.
0<t<T 0

where (Y, Z) is the solution of the BSDE (1.3.1) (existence and uniqueness are satisfied under
assumptions). The proof of this result can be found in [19].

Peng and Xu [79](see also [97]) have established the same convergence when the implicit

discretization (1.3.2) is replaced by the following explicit discretization on the small interval
[kh, (k + 1)h]

T = T + IF K E[GE |FE), 20) = Vhziel,, k=n—1,...,0, 73 =",

1 .
Z = W]E[VZHSQHVH

and then by setting, for 0 <t < T, Y/' := Zh = 2l

T
sup |V — Y;|? —|—/ |Z" — Zs|*ds — 0 as n — oo in probability.
0<t<T 0

where (Y, Z) is the solution of the BSDE (1.3.1). Moreover, in [79] the simulations of explicit
and implicit approximation can also be found.

Approximation of a RBSDEs. Ménin, Peng and Xu [69] and Xu and Peng [79] have extended
these convergence results to the case of reflected BSDEs. Let consider the following RBSDEs
on the probability space (Q), F,P)

T T
Y=g+ [ f(s o Z)ds— [ ZaWe+ K ~ K
T
Yt Z Lt, / (Ys - Ls)sz = 0 (133)
Jo

In [69], the obstacle L is consider to be the null process and in [79], the obstacle L is consider
to be an It6 process , i.e., Ly = Lo + fg lsds + fot osdWs. For the existence and uniqueness of the
above RBSDEs one can refer to section 1.1.3.1. In [69], the discrete time RBSDE is defined on
the small interval [kh, (k + 1)h] by

Yi = Yo T hf(kh v, zi) — \/EZZE%H +di, k=n-1,...,0, y, =¢",
ki = idﬁf Ve 2 L, dg 20
j=1
(i — Li)dg = 0.
where L}! = Lo+ h Z}:& Iy, + Vh Z}:& ot l.s;l +1- Under suitable assumption among them,

lim E[|§" — &[2] = 0.

By setting, for 0 <t < T, Y/" := y’[t /h)’ VARES ZTt /n) We have the following convergence result

T
]E[ sup |Y[Z—Yt|2+/ \Z:—Zs|2ds} — 0 as n — oo.
0<t<T 0
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Numeric scheme using penalization. We recall that a solution of RBSDE (1.3.3) is a limit of solution
of the following penalized BSDEs: For p > 1,

T T T t
Yl = §+/t f(s,Yf,Zé’>ds+p/t (¢ —L) [ zlaw, K - p/o (7 — L)~
t
and there exists a positive constant c independent of p such that

C
E[ sup |Y; — Y”2+/ ~ZP)2ds+ sup |Ki — K')?] < S
[0§t£T| | O<tET‘ | } VP

The penalized BSDEs can be discretized on the small interval [kh, (k + 1)h] as: for p > 1,
v’ = v Ry )+ p T = LT = VigTel, k=n—1,.,0, 5 =8,

g , — . , , t/h ,
and d,f" = p((yzp—Lz) . By setting, Y/"" := th/hJ 7P = Lt/hj and K}'"" = Z]L Ojd;.”’, for
0 <t < T, we have the following convergence

T
lim Tim E| sup [¥i — Y72 + /0 (2, — 727)ds| = 0. (1.3.4)

p—00 n—oo 0<i<T

andKf’p — Kyin L2, for0 < ¢ < Tasn,p — oo.
Similarly to the case of BSDEs, We can discretize the RBSDE using an explicit scheme. The
convergence and simulations have been done in [79] and [69].

1.3.2.2 Approximation by a sequence of BSDE

These above approximations are based on the discretization of BSDEs and since (Y, Z) is the
solution of BSDE driven by the Brownian motion W, among whom conditions, we can repre-
sent the approximations Y”, Z" as the solutions of a BSDE driven by a martingale W". This is
also called robustness of BSDEs and have been studied by Briand and al. [19] and [20].

In this section, we still work on the probability space (2, F,P) carrying a Brownian motion
(Wi)o<t<t and F := (F}) still denote the filtration generated by the Brownian motion W.
(W™),>1 is a sequence of cadlag martingale with respect to the right continuous and complete
filtration F" := (F}')o<t<T- They consider the following assumptions.

Assumptions. (i) W" is a square integrable martingale which converges to W in S?;

(ii) there exists p : Ry — Ry with p(07) = 0 and a deterministic sequence (ay), with
limy_ ety = 0 such that, IP-a.s.,

VO<s<t<T, (W' — (W")s <p(t—s)+ay

(iii) ¢ is Fr-measurable and for all 1, ¢" is F/-measurable such that ¢" converges to ¢ in L2.
(iv) The function f" is Lipschitz in (y,z) and converges to f(who is also Lipschitz in (y,z)) in
2

Under these conditions, the following BSDEs has a unique solution (Y",Z", N") for n large
enough.

Y! = §”+/ FU Y, Z0 ) d (WY, / ZIAW! — (NI — NJ).
and we have the following converge

(v, / Zdwy, N") / Z,dW,,0)
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and n tends to infinity in 8% % 8?2 x §? and

(/0 Zfd<W”>n/0' ZE AW, ) — (/0' Zrdr,/o' \Z,|2dr)

in S? x S1. where (Y, Z) solves the following BSDE

T T
Yt = €+‘/t f(s/ YSI Zs)ds 7\/t stWS.

The proof of this result use the weak convergence of filtration [F" to IF as an essential arguments.

1.3.3 Weak approximation of a class of 2BSDEs

We have already introduced the notion of second order BSDE in section 1.1.2.2. In [84] Pos-
samai, Tan and Zhou provided the weak approximation of a class of 2BSDEs. We give a brief
description of this class and state the result of weak convergence.

Let d € IN*, and consider a canonical space Q) of continuous paths on [0, T] valued in R*
starting at 0. The canocical process is denoted by B, IF = (F;)o<<T is the canonical filtration
and Fy := (Fi4 )o<i<r is the right continuous limit of F. IPj is the Wiener measure on Q) under
which B is a standard Brownian motion. Consider a compact convex set A C Sd>0( S;O is the
set of positive, symmetric d x d matrices) such that foralla € A, a > ¢yl;, where gy > O is a
fixed constant.

Class of models. Let define the two class Py and Ps by

Pw = {]P, local martingale measure such that d<£>t € A, dP x dt—a.e.}

and
t
Ps = {IP“ € Py, P* := Py ® (X*) !, where X} := / «l/2dBs, ]Po—a.s.}
0

The process « in the above set is a [F-progressively measurable process taking values in A. We
consider the following 2BSDE

T T
Ytzé’(B)Jr/t (g(s,B,YS,ZS,ﬁS):ﬁS)ds—/t Z.dBs + Ky — Ky, P-a.s.

where 7 denotes the density of the quadratic variation of B. The goal is to approximate the
initial value Y), the value of the solution Y at time f = 0. But the definition of 2BSDE doesn’t
give more information about the process K except the minimum condition (1.1.9). Then the
approximation of Yj by discretization of the equation is not very interesting, this leads to use
the representation formula (1.1.10) of 2BSDE. For this purpose, the BSDEs associated to the
above 2BSDE under the space of models Py are defined as follows: For every P € Py,

T T

yl = &(B) +/t (g(s,B,yY,zF,a;) : a5)ds — /t ZPdBs +nk —nf, Ps-q.s.
where 1T is a martingale orthogonal to B. The presence of the additional orthogonal mat-
tingale is due to the fact every P € P doesn’t a priori satisfies the predictable martingale
representation property unlike every P € Pg which satisfies the predictable martingale rep-
resentation and the Blumental 0-1 law. Then for P € Pg, n* = 0. Using the representation
formula of the 2BSDE (1.1.10), by the representation formula of 2BSDE, the approximation of
the initial value Yy of the 2BSDE comes back to approximate the following control problem
under uncertainty

Yo := supyy = sup EV[yl]. (1.3.5)
PePs PePw
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The weak approximation of Yy will be a discrete time approximation, where the uncertainty
about the space of models is translate to uncertainty about conditional variance of the in-
crements. This discrete approximation method of a continuous problem have been used by
Dolinsky, Nutz and Soner [30] to show a weak approximation of G-expectation. In this case
the approximation is based on a control problem over the space of martingale law defined
on a discrete time canonical space. Morover, Dolinsky [29] provided a numerical scheme for
G- expectation, the key idea was to approximate a control problem under uncertainty on the
space of models by a control problem on a space of discrete time martingale. Furthermore, the
author provides a convergence rate of the approximation.

Since under every IP € Ps the canonical process B is a martingale, the BSDEs associated to
the 2BSDEs can be approximated by a sequence of BSDEs driven by a sequence of martingales
which converge to the martingale B( see section 1.3.2.2 for the approximation of a BSDE by a
sequence of BSDEs).

Martingale approximation. Let T : tg = 0 < t; < ... < t;, = T, be an equidistant partition of
[0,T] and let h = T/n the step. For n > 1, let (0", 7"*,IP") be a probability space containing
n, independent random variables Uy, ..., U,. Let define a family of functions (H})1<k<un>1
such that every H} : A x [0, 1] is continuous in a and for some é > 0, hence

E[H (a,Uy)] = 0, E[|H} (a, Uy)[’] = ah, E[|H} (a, Uy)[**] < Ch'**/2,

Define the filtration F" := (]:t’i)lgkgn with .7-";}( := o (U, ..., Uy,) and denote by E, the collec-

tion of all [F*-predictable A-valued processes ¢ = (afl,. . .,afn). Then for every e € E,, M* is
defined by

k
fk = ZHZI(Q(EI'/ ul)
i=1
Observe that
k
(M), =h) aj
i=1

In order to consider a BSDE driven by the martingale M°, the continuous time version of M*
is defined by M; := Mfk for all t € [t, tx.1) and by the same way the continuous version of
the filtration IF" by F}' := .7-'[;{ forall t € [t, t;,1). Then for every e € E,, and n > 1, the BSDE
driven by M is given by
N T N T
Vi = S + [ guls, ME, e 2508)  d(M)s — [ 2dME -+ —

~

M? is the linear interpolation of M* and g, is defined by

et x,y,z,0) = g(ty, x,y,2z,a), t € [t tri1)-
For the existence and uniqueness result of this BSDE, see [84].

Weak approximation. For every n > 1, denote

n __ e
Yo = supyo.
ecE,

Under specific assumptions under ¢ and ¢ the following approximations are established in

[54].

39



Theorem 1.3.1.
liminfYy > Yy,
n—oo
and if g does not depend on z, then

n—00

1.4 Contribution

Let ) be the canonical space of continuous paths on [0, T] which start at 0 equipped with the
following norm ||w||; := supy., |ws| , for any w € Q and t € [0,T] and X the canonical
process. o

The models space. We consider a nonempty compact convex subset D = [4,a], where a > 0. We
denote by Pp C P(Q) the collection all probability measures IP satisfies:

- Xisa (PP, F)-martingale;
- (X) is absolutely continuous PP-a.s.
- d(X);/dt e D, P xdt-ae.

Formulation. We consider the following 2RBSDE where the terminal condition is defined with
an R-valued function ® and the obstacle with an R-valued function & satisfying ® > h.

T ~ ~ T T
Yi=®(X)+ [ f(s,X,Ys, 8% Z,85)ds — [, ZsdXs — [, dMP + kP —KF,
0<t<T, P-as., VP € Pp,

Y; > I’l(Xt),O <t<T, P-as., VP € Pp.
(1.4.1)
and for each IP € P), we define the following RBSDE

yf = (X)) + ftTf(s, X.,yf,ﬁg/zzf,ﬁs)ds — ftT ZPdXs — ftT dm? + k¥ — kT,
yf > h(Xs), t€[0,T) (14.2)
T
JTF = (X, )dkE = 0.
We recall the definition of 2RBSDE
Definition 1.4.1. We say that (Y, Z) is a solution to the 2RBSDE (4.2.1) if :
(i) Yr = ®(X.),and Y; > h(X}), t € [0, T], Pp-q.5.;
(ii) VIP € Pp, the process KT defined below has non-decreasing paths P-a.s.
t T T
KP =Yy —Yi— / F(s,X.,Ys 3127, 35 )ds +/ Z,-dX, + / dMP, t € [0,T], (143)
0 s s
(iii) We have the following minimality condition:
T
PP P o P P\ | P
, — = <t< -a.s. .
it [/t G d(KP — k! )\]—‘H} 0, 0<t<T, Pas VPePp
where for any t € [0, T) and for any P € Py , the process G'T is defined by
S 1 S o
Gé‘{,IP = exp (~/t (/\]LI; - E ||7]E||2)(Yu/y]5r Zurzillj)du + /t UE(Yu/y]lIL)/ Zu,ZE) ' au 1/2dX1c1/]P)‘
AP and 5" are bounded processes.

Notation: Pp(t,P,F1) :={P' € Pp:P =P on F;}.
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Our goal is to give an approximation of the solution Y, the classical idea is the approxima-
tion of Y by a discretized backward scheme. But the definition of 2BSDE doesn’t give more
information about the process K except the minimum condition. Then the approximate of Y
by discretization of the equation is not very interesting, this leads to use the representation
formula (1.1.10) of 2BSDE. In other words, we look for an approximation of Y in particular for
t = 0 represented by

Yo = sup EP[yP] (1.4.4)

PePp

where y¥ is the y-component of the solution of the above RBSDE.
Discrete time approximation. Given n > 1, we discretize [0, T] in n 4 1 equidistant points 0 =
ty <t <---<ty, =T, withh = T/nand set Q" = R"*! the canonical space of d-dimensional
paths in discrete time k = 0,1,...,n. Let Uy, ..., U, be a sequence of n independent random
variables . We denote (Q)", 7", IP") a probability space carrying Uy, . . ., Uy. Define the filtration
F" .= (‘F]:l)lgkgn with .7:;;[( = (T(ul, ceey Uk)
Denote A, the collection of all F"-predictable D-valued process a = (ay,,...,a,). Then for
every a € A,, we define the discrete time martingale M* = (M?O, cer, an) of the form, Mfo =0
and

k
?k = EH]n(atj,U]’), 1 S k S n.
]:

Then for every a € A;,, we define the following RBSDE
vl = d(M) + [T f(s, MO Yo, al %28, a)dC — [T 28dME — [T dmf + ks — K,
y? > h(M?), t € [0,T] (1.4.5)
T A~
Jo (Vi —h(M{))dki = 0.

where C!' = [s/h]h and y* denotes the cadlag process associated to y*. a'/? denotes the unique
square root of 2 in D and 4 is given by

—1

n
ap =), At Lt (1), 1€ [0, T].
k=0

We make the following assumptions.
Assumptions. There exists a constant K > 0 such that for any (xy,y1,21), (x2,¥2,22) € R X R x
R,s,t €[0,T),a1,a2 € D,

(i)- @ is positive continuous and |®(x7) — P(x2)| < K(||x1 —x2|T),
(ii)- h is positive continuous and |1 (y1) — h(y2)| < K(Jy1 — y2!),
(iih)- [ £(t,x1, 51,21, 8) = f(t,x2,y2,22,8)] < K(|xa = xallt + [y1 = y2| + |21 — 22l + a1 — a2),

(iv)- f is positive and the map a — f(t,x,y,z,a) is concave and uniformly continuous for
every (t,x,1,z) € [0,T] x R x R x R.

(v) - The process t — f(t,X.,yt,zt,at) is progressively measurable given progressive processes
(x,¥,z,a) and uniformly continuous with modulus p in the sense that for every s < tand x, y, z,

£t om0 ¥,2,8) = fls,xsn0y,2,0)| < p(t—s).
(Vi) - Sup(t,x,'y)e[O,T]xQxeD |f(f,X,0,0, ’7)| + |<D(O)| + |h(0)| <K

(vii)- h is bounded, derivable and his derivative is Lipschitz (with Lipschitz constant K).
We proof the following result
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Proposition 1.4.1. Under the above assumptions, there is a unique solution (y?,z",m", k%) to the
RBSDE (5.3.3) for n large enough.

Givenn > 1, let set

Yy = sup E"[yg].
ac A,

where E" denotes the expectation with respect to the distribution of U;.

1.4.1 Main result
Our main result is the following weak approximation

Theorem 1.4.1. (i) Suppose that the above assumptions hold true. Then
L eyn s
h,ﬂ 10r01f1/0 > Y.
(ii)Suppose in addition that f does not depend on z and for every a € Ay,
1 n 1/2 —
K< ? and  K|Hj! (ap,, Ux)| < ay,~, fork=1,--- ,n.
then

o
Y0 = Yo

1.4.2 Auxiliary results

As an auxiliary result, we extend the approximation method of a BSDE by a sequence of BSDEs
(see section 1.3.2.2) to the case of RBSDEs defined in general filtration. Let set the following
RBSDE

yi =@M + [T f(s, M1y, (a0)/ 228, an)dcy — [ zdM2 — [T dm? + K — K7,
yi = h(M}), t€[0,T]
T A~
Jo (i = h(M))dks = 0.
where M is the linear interpolation of M". M" is a martingale which converge to the canonical
process X under the Skorokhod topology J;. For n large enough, we establish existence and

uniqueness the above RBSDE and estimates of the solution. We also establish the following
convergence result.

Theorem 1.4.2. Let the above assumptions holds and (y",z", m",k™) be the solution to above the
RBSDE. Denote (y,z,m, k) the solution of the following RBSDE .

v =®(X) + ftTf(s, X.,ys, vz, a5)ds — ftT zsdXs — ftT dms + kr — ki,
ye > h(Xy), t€10,T]
I (s — (X, ))dks = 0.

Then we have

(v /O MY, /0 (@) 2zpacym k) (iF, /O 2Pax,, /O a2 dr,m® ),

n—r—+o00

in law for the topology of uniform convergence.
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Chapter 2

Basics tools and preliminaries
results
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The aim of this chapter is to introduce the basics tools and some results which will be useful
in the next chapters. The main themes concern the notions of universal measurability, regu-
lar conditional probability, dynamic programming principle, measurability with respect to a
probability law and finally, RBSDEs in a general filtration and the convergence of filtrations
and Snell envelope.

2.1 Analytic selection theorem

Before formulating the analytic measurable theorem, we need the following definitions.

Definition 2.1.1. Let (Q), F) be a measurable space and P(Q)) the set of all probability measures on
(Q, F). Forall P € P(Q), denote by F¥ the completed o-field of F under IP. The universal completion
of F is the o-field defined as the intersection of FY for all probability measures P € P(Q) , i.e.

FU .= ﬂ FP.
PeP(Q)

Definition 2.1.2. 1. A Borel set is any set in a topological space that can be formed from open sets
(o1, equivalently, from closed sets) through the operations of countable union, countable intersec-
tion, and relative complement.

2. A topological space is said to be a Borel space, if it is topologically homeomorphic to a Borel subset
of a Polish space.
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3. Let E be a Borel space, then a subset B is an analytic set in E if there is another Borel space F
and a Borel subset A C E x F such that B = mtg(A), where 7t is the projection operator map of
subsets of E x F to subsets of F,

ng(A) :=={x: 3y € F such that (x,y) € A}.
A subset C C E is co-analytic if its complement C is analytic.

4. Afunctiong: E — R = RU {oo} is upper semianalytic (u.s.a. for short)if {x € E : g(x) > c}
is analytic for every ¢ € R.

5. Let E be a Borel set and A(E) denote the o-field generated by all analytic subsets. A function
f : E — F, where F is a Borel set, is analytically measurable if f~*(C) € A(E) for every
C € B(F).

In a Borel space E, every Borel set is analytic, every analytic set is universally measurable,
ie. B(E) C A(E) C BY(E). It follows that every upper semianalytic function is universally
measurable. However, the complement of an analytic set may not be an analytic set and the
class of analytic sets is not a o-field.

Theorem 2.1.1 (Analytic selection theorem). Let E and F be Borel spaces, A be an analytic subset of
E x F,and f : A — R be an upper semianalytic function. Define g(x) := sup {f(x,y) : (x,y) € A}.

(i) The projection set 7tg(A) is an analytic subset in E.

(ii) There exists an analytically measurable function ¢ : g(A) — F such that (x,$(x)) € A for
every x € mtg(A).

(iii) The function g : mg(A) — R = R U {oo} is upper semianalytic.

(iv) For every € > 0, there is an analytically measurable function ¢e : mg(A) — F such that
F(x,ge(x)) 2 8°(x) = (§(x) — €)Lig(x)<c0} + & L{g(x)=o0) for every x € me(A).

This theorem comes from El Karoui and Tan[39] for the measurable selection theorem and
we also refer to Chapter 7 of Bertsekas and Shreve [7], Dellacherie and Meyer [26] for the
measurable selection theorem and the dynamic programming principle.

These results can be useful to prove the dynamic programming principle and present the ad-
vantage of not requiring any regularity conditions on the value functions. This will be applied
in the chapters 3 and 4, to prove the dynamic programming principle of the value function, in
order to construct the solution of 2RBSDEs under weak conditions.

2.2 Regular conditional probability distribution

Let IP be a probability measure on a filtered space (€, Fr, (Ft)ic[o,7)) and T a [F-stopping time
T taking values in [0, T]. Following the terminology of Stroock and Varadhan [94], there exists
a family of regular conditional probability distribution (r.c.p.d. for short) (IP,),cq satisfying:

(i) Forevery w € Q, P}, is a probability measure on (Q), Fr);
(ii) For every E € Fr, the mapping w — P{,(E) is Fr-measurable;

(iii) The family (IP},)wcq is a version of the conditional probability measure of IP on F=, i.e.,
for every integrable Fr-measurable random variable ¢ we have E' [#|F;](w) = EFe[g],
forP-a.e. w € Q).
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(iv) Forevery w € Q, PL(QY) =1, where Q¢ := {w' € Q: '(s) = w(s), 0 <s < 7(w)}.

Moreover, given some P and a family (Qu),en such that w — Q, is Fr-measurable and
Qu(QY) = 1forall w € O, one can then define a concatenated probability measure IP @ Q.

by

P ®+ Q[A] = /OQM[A] ]P(da)), VA € Fr.

2.3 The dynamic programming principle

Dynamic programming is an optimization approach that transforms a complex problem into
a sequence of simpler problems; its essential characteristic is the multistage nature of the op-
timization procedure. The dynamic programming principle (DPP for short) plays an essential
role in studying the control problems and shows that a global optimization problem can be split
into a serie of local optimization problems. Bertsekas and Shreve in [7] give the DPP for the
discrete time case . In the literature, this principle is classically established under assumptions
which ensure that the value function satisfies some regularity /measurability properties. For
stochastic control problems to derive the DPP, it is classical to use a measurability selection ar-
gument together with the stability of controls with respect to conditioning and concatenation.
The measurable selection theorem plays an important role and is generally used to prove the
measurability of the associated value function. But there is another commonly used approach
to derive the DPP without the measurable selection argument, for example by assuming addi-
tional assumptions to prove the regularity of the value function. The dynamic programming
principle in continuous time mentioned below can be found in [39].

Let consider the following notations
- E a Polish space and Q) the canonical space of all E-valued cadlag paths on R*;

- P(Q) the set of all probability measures on Q). Due to the fact that () is a Polish space,
P(Q) is a Polish space (one can refer to [73]);

- Ausa(Q)) the collection of all upper semianalytic functions bounded from below defined
on the Polish space ();

- IF := (F)¢>0 the filtration generated by the canonical process on ();

FY the universally completed o-field of 7, where T is a [F-stopping time;
- AY(w) the collection of all FY-measurable functions in A5, (Q);

- (Prw) (tw)eR+xO & class of probability measures families.

We consider a family of nonlinear operators associated with the class (P ) (w)eR* xO'

Er8)(w) := sup {]E]P ] :Pe Pr(w),w} , V where 7 is a finite [F-stopping time .

The family (Pt) (bw)eR+ x ) CaN be considered as a family of section sets of subsets in R™ x

Q x P(Q). Equivalently, its graph is given by

[Pl] :=={(t,w,P): (t,w) ER" xQPEPry}.
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Suppose that [[P]] is an analytic set in the Polish space RT x () x P(Q)). Moreover, we assume
the progressive measurability, i.e. for every (t,w) € R* x Q), Py, is not empty and F-adapted,
forany (t,w) € R™ x Q,

Prw = Pruw,. and P({w : win. =win.})) =1, VP € Py, (2.3.1)

/!

The following hypotheses of conditioning and concatenation are commonly used to establish
the DPP.

Assumption 2.3.1. Let (tg,wp) € [0,T] x Q be arbitrary, T be an arbitrary stopping time taking
value in [ty, T] and P € Py, .

Stability by conditioning: There is a family of r.c.p.d. (Py)weq of P w.rt. Fy such that P, €
Pr(w)w for P-almost every w € Q.

Stability by concatenation: Let (Quw)weq be such that w — Qy, is Fr-measurable and Qu € Pr () w
for Pa.e. w € Q), then P @7 Q. € Pt p-

Since the DPP is mainly based on the regularity ( measurability) of the value function, the
following results which can be found in [39] give this regularity using the selection measurable
theorem.

Lemma 2.3.1. Let (Pi) (@)E[0T]xO be satisfying the above hypotheses , T a F-stopping time and
&€ Ausa(Q). Then &[¢] € AY(Q). In particular, & is an operator from Az, (Q) to AY(Q) C
Ausg(Q).

Now we have the following DPP for £.

Theorem 2.3.1. Suppose that [[P]] is analytic in [0, T| x Q) x P(Q), the condition (2.3.1) and As-
sumption 2.3.1 hold true. Then for every F-stopping times T > o, we have the following time consis-
tency property:

&g = E[&[E]], V& € Ausa(Q).

2.4 Measurability with respect to the probability law.

Given a set of probability measures, Neufeld and Nutz in [73] provided a measurability of
semi-martingales with respect to a probability measure considered as parameter. There are
numerous applications of stochastic analysis and dynamic programming. It is well known
that the DPP is delicate as soon as the regularity of the value function is not known a priori;
this is often the case when the reward /cost function is discontinuous or in the presence of state
constraints. In this situation, the measurability of the set of controls is crucial to establish the
dynamic programming and the measurability of the value function;

This result is very interesting because we work with a large set Py of semimartingale laws,
often mutually singular. For instance, when considering a standard stochastic control problem
based on a controlled BSDEs, it is useful to recast the problem on Skorokhod space by taking
Py to be the set of all semimartingale laws. We will need the following results of [73] which
are respectively Lemmas 3.1, 3.2 and 3.5, to construct a right-continuous jointly measurable
version of the RBSDESs associated to a 2RBSDE (see the proof of Lemma 3.4.2).

We have the following notations
- (Q), F) is a measurable space,
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- F := (Fi)>0 is a filtration of sub-o-fields of F and Fy := (Fi1)s>0 his right-continuous
version,

- P the set of all probability measure on (Q), F) and B(33) its Borel o-field.

(O, F) = (B xQ,B(P) Q@ F).

~

-TF = (F)s>0 a filtration , where F; := B(B) ® F; and . its right continuous filtration.

Lemma 2.4.1. Let t > 0 and let f : O — R be measurable. Then the function B — R, P
EP[f (P, )] is measurable. Moreover, there exists a version of the conditional expectations EY [f(IP, -)| F]
and EY [f(IP, -)| Fi4] such that

Q=R (Pw)— E[f(P)|F](w), (Pw) EP[f(P,)|F](w)
are measurable with respect to Fi and Fy., respectively, while for fixed P € 9,
Q= R, w—E[f(P,)|F)(w), w—E[f(P,)|F](w)
are measurable with respect to Fy and Fi, respectively.

Lemma 2.4.2. Let f" : QO xXP — R* be measurable functions such that f*(P,-) is a convergent

sequence in IL1(IP) for every P € P. There exists a measurable function f : Q X P — R such that
f(P,-) = lim, f*(P,-) in ILY(IP) for every P € SR. Moreover, there exists an increasing sequence
(n})x € N such that P — n¥ is measurable and limy f”f (P,-) = f(P,-) P-as. forall P € B.

Lemma 2.4.3. Let f : P x QO x Ry — R be such that f(-,-,t) is B(P) @ Fi4 measurable for all
t. There exists a measurable function f : P x Q x Ry — R such that f is B(R) x F-optional,
f(P,w, ) is right-continuous for all (P, w), and for any P € P such that f(IP,-,-) is an F-adapted
P - F; supermartingale with right-continuous expectation t — EY[f(IP, -, )], the process f(IP,-, ) is

an F-adapted P-modification of f(IP,-,-) and in particular a P-F | -supermartingale.

Since the 2BSDEs are defined IP-a.s. for every probability measure IP, the solution can be
viewed as a function of probability measure IP ( in other word [P plays the role of a mea-
surable parameter). This result allows us to consider a jointly measurable version of the so-
lutions processes in time, space and probability law. This is exactly the approach followed
by Possamai,Tan and Zhou in [85] to provide wellposedness of 2BSDEs in a general filtration,
existence and uniqueness of solution without any regularity condition on the generator and
the terminal condition. In [91] and [66] they deduce the measurability of the value function
by the uniform continuity of this one. To prove this uniform continuity, the generator and
the terminal value (and the obstacle in [66]) should be uniformly continuous, this is why they
need regularity conditions on the parameters. Using the Borel jointly measurability, Possamai,
Tan and Zhou in [85] obtain the DPP of the value function without any regularity conditions
on the terminal condition, the generator and proved existence and uniqueness of the 2BSDEs.
We follow this approach and prove the existence and uniqueness of the 2RBSDEs in a general
filtration without any uniform continuity condition on the terminal condition, the generator
nor the obstacle.

2.5 RBSDEs in general filtration

Definition 2.5.1. Let (Q, F, (Ft);cr+P) a filtered probability space.
1. The filtration (Ft )i is complete if () is a complete space and all P-negligible sets are in Fy.

2. The filtration (F¢)¢>o is right-continuous if Fy = Fy for all t > 0, with

]:t-i- = ﬂ ]:5.

s>t
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3. The filtration (F;)s>o is said to satisfy the usual conditions if it is complete and right-continuous.

4. The filtration (Fy)s>o is quasi-left continuous if (Fy)¢>o satisfy usual conditions and Fr = Fr_
for all previsible time T, with

.7:137 = \/ .7:5.

s<t

Given a filtered probability space (Q, (F);cr+,P), equipped with a quasi left-continuous,
right-continuous and complete filtration (F;) (see Definition 2.5.1) and a d-dimensional cadlag
square integrable martingale (M;,t € R™). We are interested in BSDE driven by a martingale
M. Here the main difference is that the filtration (F;) is no longer generated by a Brownian
motion. Then the representation property of a local martingale is no more true and an ad-
ditional orthogonal martingale term has to be introduced in the definition of the solution. A
solution to one-dimensional BSDEs with respect to (F;) becomes a triple of adapted processes
(Y,Z,N) taking values in R x R? x R such that

T T T
Yt = §+/ fS(YS/ Zs)ds - / stMS - / dNS, ]P-a.S. (251)
t t t

where N is a cadlag square integrable martingale orthogonal to M, f the generator is pre-
dictable and ¢ the terminal condition.

These BSDEs were first introduced by El Karoui and Huang [33]. Under the following condi-
tions,

- For any (y1,21,y2,22)/
|f(t/3/1121) _f(try2122)| < ”t|]/l _y2| +9t|mt||21 _Z2|’ dt@dlp_a's'

where m is the density of the quadratic variation of M, r and 6 are two non-negative
predictable processes.

- £(t,0,0)/(rt + 6?) and ¢ are square integrable, for all t € [0, T].

they proved the existence and the uniqueness of the solution to the BSDE (2.5.2). The time
horizon T may be a stopping time possibly with infinite values. Unlike in the classical re-
sults of existence and uniqueness related to a BSDE with respect to a Brownian filtration, the
assumptions of uniformly Lipschitz condition on the driving parameter is relaxed.

Kruse and Popier [56] consider BSDEs with respect to filtration generated by a Brownian mo-
tion and a Poison random measure( notice that the filtration is still quasi left-continuous and
verifies usual conditions) and establish existence and uniqueness of multimensional solutions.
They work under monotonicity assumption on the driver and generalize to random time hori-
zons given by a stopping time, they also proved comparison principle in the one-dimensional
case.

Following (2.5.2), the solution of a RBSDE with a lower obstacle in general filtration consists in
a quadruple (Y, Z, N, K) of processes which verifies

Ye=0+ ffT fo(Ys, Zs)ds — ftT Zsd M — ftT dN; + Kr — K;, P-as.
Yy > Ly, P-as. (2.5.2)
foT(Ys — Lg)dKs = 0, P-a.s.

where K is non decreasing and null at 0 and N is a martingale orthogonal to M null at 0.
Klimsiak [54] studied the problem of existence and uniqueness of solutions of this class of
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RBSDEs in multiple dimension under monotonicity and weak integrability conditions with
finite terminal condition. When 1 < p < 2 the assumption of quasi-left continuous of the
filtration is needed.In this section we choose to remind the wellposedness of RBSDEs in general
filtration, which may not be quasi left-continuous introduced by Bouchard et al [14].

Definition 2.5.2. Let L be a cadlag process such that LT := LV 0 satisfies E [sup, 1 [L; |P] < oo
We say that (Y, Z, N, K) is a solution of the RBSDE with a lower obstacle L if

T T T
Yt:§+/t fs(YS,ZS)ds—/t ZSdMS_/t AN, + K7 — K,

holds for any t € [0, T] P-a.s. where K is a non decreasing process null at 0, N is a martingale
orthogonal to M and if

Y > Lyt € [O T], P-a.s.

fo (Y- -)dKs =0, P-a.s.
Symmetry about upper and lower obstacle. In the case of standard RBSDE the is a symmetry
about upper and lower obstacle in the sense that for the upper one, the non decreasing process
K null at 0 is adding by subtraction in the equation. This is due to the fact that for the upper
obstacle K maintains the solution below the obstacle in opposite to the lower case where K

maintains the solution above the obstacle. This symmetry is still verified in a general filtration.
So, we have a similar definition for an upper obstacle.

Assumption 2.5.1. - ¢ € LP, f(s,0,0) is square integrable and (s, w) — fs(w,y,z) is progres-
sively measurable for all (y, z).

- There are two positive constants Ly and L such that

filw,y,2) = filwy', 2N < Lyly —y'| + La|z = 2],
forall (t,y,2,y,2') € [0,T] x Q x (R x R%)2.
The following results have been proved in [14].

Theorem 2.5.1. Let Assumption 2.5.1 holds true. Then, there is a unique solution (Y,Z, N,K) to the
reflected BSDE introduced in Definition 2.5.2.

Similar to the case of filtration generated by Brownian motion, we have the following result
which state that the solution of RBSDE can be represented as a snell enveloppe.

Proposition 2.5.1. Let (Y, Z, M,K) and L be as in Definition 2.5.2. Then

v
Y; = esssup EP [/t £ (Y, Zo)ds + Lol gy + gy 1], forall t € [0,T).
veTy

where Ty is the set of all stopping times taking values in [t, T).
And with an upper obstacle denoted U, we have the following;:

Proposition 2.5.2. Let (Y,Z, M, K) the solution of a RBSDE associated to the generator f, & and the
obstacle U . Then

Y = essmf ]E]P / fs(Ys, Zs)ds + Uolygey + ¢l T}‘}_t] forall t €0, T).

oeT;

where Ty is the set of all stopping times taking values in [t, T).
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2.6 Convergence of filtrations

2.6.1 Skorokhod topology J;

For a fixed T > 0, we denote D = D([0, T],R) the space of R-valued cadlag paths defined
on [0,T]. In this space the uniform convergence topology is not the most appropriate one.
When we consider the behaviour of a sequence of process (x;), in the neighbourhood of points
of discontinuity of its limit process x(t). The topology J; suggests that the convergence be
uniform also at points of discontinuity. It is much more natural to suppose that the functions
we can obtain from each other by small deformation of the times scale lies close to each other.
Following this observation, Skorokhod in [89] was brought to propose the convergence with
respect to the topology J; which we will see below. This topology has also been studied by
Billingsley [8] for T = 1 and by Jacod and Shiryaev [50] for stochastic processes indexed by
[0, +oof.

Before this we introduce A the set of all continuous functions A : [0,T] — [0, T] that are
strictly increasing with A(0) = 0 and A(T) = T. The following result is a part of Theorem 1.14
of [50]

Theorem 2.6.1. A sequence (x,)y is called J-convergent to x if there exists a sequence {A,} C A
such that

sup |An(s) —s| — 0and sup |x, o Ay(s) — x(s)| — 0 forall N € N*.
s

s<N

Remark 2.6.1. 1. The topology J, is weaker than the uniform topology.
2. If a sequence x" is Ji-convergent to x and x is continuous on the compact set [0, T|, then x"
converge to x with respect to the uniform topology.

2.6.2 Convergence of c-algebra and filtration

The notions of convergence of c-algebras and filtrations was introduced by Hoover [46] in
1991. A few years later, Coquet, Mackevicius, Menin and Slominski in [23], [24] gave some
results about the links between the convergence of processes and the convergence of the filtra-
tions generated by these processes. The following results essentially comes from [46] for the
convergence of c-algebras and from [24] for the J;-convergence of filtrations.

Definition 2.6.1. A sequence of o-algebras A" converges weakly to a c-algebra A if and only if, for all
B € A, the sequence of random variables (E[1g|.A"]) converges in probability to 1.

Definition 2.6.2. A sequence of filtrations F" converges weakly to the filtration F if and only if for all
B € Fr, the sequence of cadlag martingales (E[1g|F!"]) converges in probability under the Shorokhod
J1-topology on D to the martingale (E[15|.F.])

In [24], there are many examples of weak convergence of filtrations essentially based on the
behaviour of the sequence of processes which generated the sequence of filtrations. Among
these, we have the following

Proposition 2.6.1. Let {X,} be a sequence of cadlag processes with independent increments (initial
values are considered as increments). If X" — X in probability under J,, then FX" converge weakly to
FX.
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2.7 Convergence of Snell envelope
Let consider

Jit = esssup E[f(X7)|F']
TeT!

and

Jt = esssup E" [f(XT)|]-"tX}
TeTr

where f is a bounded continuous function defined on IR, FX(resp. FX") the filtration generated
by X (resp. X") and 7;"(resp. Ty) the set of [t, T|-valued FX-stopping times(resp. FX" -stopping
times).

In this section we only mention a result about stability for Snell envelope under convergence in
distribution of the underlying processes. Mulinacci and Pratelli in [71] prove that if a sequence
(X™) of stochastic process converges in distribution for the Skorokhod topology ( in particular
J; topology ) to a process X and satisfies some additional hypotheses, the sequence of Snell
envelope of X converges in distribution for the Meyer-Zheng topology to the Snell envelope of
X. Also when the Snell envelope of the limit process is continuous, the convergence is in fact
in the Skorokhod sense. Let { X"} be a sequence of positive stochastic processes.

Assumption 2.7.1. 1. The processes X" are uniformly of class D (see section 2.6 for the definition of
D), i.e. the random variable X2, for n € IN and T stopping time for the filtration FX", are uniformly
integrable;

2. “ Aldous tightness criterion ” For every € > 0, there exist ng € IN and 6 > 0 such that if
n>np,0<s < dandtisan FX"-stopping time, we have

E"[|X",— X!|] <e.

Remark 2.7.1. Let us comment the above assumptions. The second condition introduced by Aldous in
[1] and [3] are very useful in proofs of weak convergence. This condition is automatically verified by
quasi-left-continuous processes and together with the first condition, this ensures the tightness of the
sequence (X") ( one can refer for example to [50]).

Remark 2.7.2. In the framework of chapter 5, X is the canonical process of the probability space, then
the condition () (introduced in [16] and then taken by Mulinacci and Pratelli in [71]) that must be
verified by the pair (X, FX) is obvious since the filtration FX is generated by the canonical process X.
This condition is very important, since the convergence result of [/1] can’t be obtained otherwise.

Then the following result is a reformulation of Theorem 3.5 of [71] in our context.

Theorem 2.7.1. Suppose that X" is J;-convergent to X, that Assumption 2.7.1 holds true, then
(X", J") is convergent to (X, J) with respect to the Meyer-Zheng topology.

The original definition is not about J; topology but S. Since the S topology is coarser than J;
(one can refer to Jakubowski [51]), the theorem can be stated as above.
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Chapter 3

Second order Reflected BSDEs
under weak assumptions: the case
of a lower obstacle
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3.1 Introduction

Following Possamai, Tan and Zhou [85], we consider their wellposedness result for 2BSDEs
in a general filtration which does not require any regularity assumption on terminal condition
and generator together with 2RBSDEs with a lower obstacle defined in [66, 68]. Recall that in
[91] and [66] , the dynamic programming principle was the key idea to show existence of the
solution. To prove this dynamic programming, they imposed regularity condition on terminal
condition, generator and obstacle to obtain the regularity of the value function.

Recently considering the optimization over a set of non-dominated probability measures of
solutions of BSDEs, Possamai, Tan and Zhou [85] proved a dynamic programming principle
for this stochastic control problem using analytic selection measurable through the Borel mea-
surability argument.
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Our goal is to prove existence and uniqueness of solution to 2RBSDEs in a general filtration
without any regularity condition on generator, terminal condition and obstacle. The remainder
of this chapter is organized as follows. First, we give some of the standard notations and
the definition of 2RBSDE introduced in [66, 68], then the following section is dedicated to
representation and uniqueness of the solution. The last section is devoted to the existence of
the solution using DPP.

3.2 Preliminaries

3.2.1 Notation

Letus fix T > 0Oand d € N*. Let O = {w € C([0,T],R?) : wy = 0} be the canonical
space equipped with the uniform convergence norm ||w||e = supy—,;7 ||@t||, X the canonical
process, i.e. Xi(w) = w; for all w € Q and Py the Wiener measure on () under which X is a
Brownian motion. We denote by IF = (F;)o<¢<7 the canonical filtration, Fy = (F;1)o<t<T the
right limit of IF with Fyy := Mg~ Fs forall t € [0, T) and Fry = Fr.

We shall need the following notations introduced in [85].

— M; is the collection of all probability measures on (2, Fr). Notice that IM; is a Polish space
equipped with the weak convergence topology and set # its Borel o-field. For any P € M,
denote by 7' the completed o-field of F; under P, F¥ = (FF) the completed filtration

and FFY its right limit. Thus F¥ satisfies the usual conditions.

0<t<T

— For P C M;, we have

FY .= (Ftu F? .= (f?)(KKT and F? := (]:ﬁ)0<t<T such that

)ogtg’

Fle= N, 7P = N FF, and 7, = nsy F, t € [0, T), and FT, := FF.
PeM; PeP

3.2.2 The models space: the semimartingles measures

We call a probability measure IP on ((), Fr) a semimartingale measure if X is a semimartin-
gale under IP. By Karandikar [53], there is some [F-progressively measurable non-decreasing
process on () denoted by (X) = ((X)t)y<;<7 Which coincides with the quadratic variation of
X under each semi-martingale measure IP. In particular, this provides a pathwise definition of
(X) and its density ay,

H
el0

Ju—

t
(X)y = thg—zf XedX! and @ := (X}t — (X)i_e).
0

o=

where X’ denotes the transposed of X, and the lim is componentwise defined. For every t €
[0, T], let P/ denote the collection of all probability measures IP on (Q, Fr) such that:

— (Xs)sep,1) is a (P, [F)-semimartingale admitting the canonical decomposition
S
X = / bPdr + XF, s € [t, T, P-as.,
t

where bT is a F-predictable R?-valued process, and X°F is the continuous local martingale
part of X under PP.
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— ({X)s)sept,1) is absolutely continuous in s with respect to the Lebesgue measure, and @

takes values in S;O, P-a.s.( SdZO denotes the set of all symmetric positive semi-definite d x d
matrices).

Remark 3.2.1. Ifd; is non-degenerate IP-a.s., for all s € [0, T}, the we can construct a Brownian motion
WT on Q by

t
WP = / A 24xP t e [0,T), Pas. (3.2.1)
0

Otherwise we define the enlarged canonical space Q := Q x (Y, where ) is identical to Q) and set
(X, B) its canonical process, i.e. X¢(@) := wy, By(@) := w) for all @ := (w,w’) € Q. The extension
from Q) to Q) of a random variable or a process A is defined by

AM@) == Mw), Vo = (w, ') € Q. (3.2.2)

In particular @ can be extended on Q). For P € P}Y, a probability measure on the enlarged space Q
is denote by P with P := P ® Py. We also consider like in [66], the canonical filtration F gener-

ated by (X, B), the filtration F* generated by X, the right-continuous filtrations Ff and T, and the

augmented filtration Ff’]{) and F]z given a probability measure P on Q).

From the above it follows that X in (Q, Fr,P,TF) is a semimartingale measure with the same triplet
of characteristics as X in (Q, Fr,P,F), B is a F-Brownian motion and X is independent of B. Then
for every P € P}V, there is some R%-valued TF-Brownian motion W' such that(see Theorem 4.5.2 of
Stroock and Varadhan [94])

X, = / bPdr + / a2dWP, s € [t, T], P-a.s. (3.2.3)

where the definition of b* and @ are extended on Q).

Remark 3.2.2. The decomposition (3.2.3) of the canonical process X with a Brownian motion WY is
on the enlarged space Q). The interest of this decomposition lies in the fact that in calculations, we can
apply some known results related to Brownian Motion like Girsanov Theorem, linearisation arguments
and others. To have the same decomposition on ), @ needs to be non-degenerate. Since we cannot ensure
that this condition will be satisfied, we will extend some equivalence introduced in [85] in our work.

Assumptions. We consider a random variable ¢ : (3 — R and a generator function
f:(tw,y,zab)e0,T] xQAxRX R? x Sdzo x RY — R.
For simplicity of notation, we denote
fgp(y,z). f(s, X.ps,Y,2,8s,bY) and fs = f(s, X.ps,0,0,@s,bF).

We denote by (P(t, w)) tw)e[o,7] xq @ class of probability measure families where P(t, w) C Py
for all (t,w) € [0,T] x Q. Denote also P; := UyeqP(t,w). The family (P(t, w))(;w)elo,1)x0
can be considered as a family of section sets of a subset in [0, T] x ) x IMj. Then, we define its
graph

[[P]] :={(t,w,P) : (t,w)€[0,T]xQ, PeP(tw)}.

Following [85], we make the following assumption.
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Assumption 3.2.1. (i) The random variable  is Fr-measurable, the generator function f is jointly
Borel measurable and uniformly Lipschitz in y and z such that for every (t,w,y,Vy,z,2',a,b) €
0,T] x @ x R x R x R x R? x 87 x RY,

f(twy,z,ab) = f(t,wy,2,a,b)| < Le(ly - y'| + Iz = Z|]),

Ly is a positive constant and for every fixed (y,z,a,b), the map (t,w) — f(t,w,y,z,a,b) is F-
progressively measurable .

(ii) For every (t,w) € [0,T] x Q, one has P(t,w) = P(t,w.n¢) and P(Q)) = 1 whenever P €
P(t,w), where QY = {w' € O: W'(s) = w(s), 0 <s < t}. The graph [[P]] of P is upper semi-
analytic in [0, T] x QO x M;.

(iii) ‘P is stable under conditioning, i.e. for every (t,w) € [0, T| x Q and every P € P(t,w) together
with an F-stopping time T taking values in [t, T|, there is a family of r.c.p.d. (Pw)weq such that
Py € P(t(w),w) for P-a.e. w € Q.

(iv) P is stable under concatenation, i.e. for every (t,w) € [0,T] x Qand P € P(t,w) together with
an F-stopping time T taking values in [t, T], let (Qw )weq be a family of probability measures such that
Qw € P(t(w),w) forallw € Q and w — Q, is Fr-measurable, then the concatenated probability
measure P @1 Q. € P(t,w).

We notice that for t = 0, we have Py := P (0, w) for any w € Q.

Remark 3.2.3. 1. Let us comment the above assumptions. The first assumption except a jointly Borel
measurability are quite standard in the classical RBSDE literature. The second one is classic assump-
tion to derive time consistence property for a family of nonlinear operators(see [39], [85]). The last two
assumptions are related to reqular conditional probability and cumulate to the second assumption, this
allow us to establish the measurability of a value function of the stochastic control problem over a family
of probability measures. The jointly measurable assumption is introduced in [73] where a probability
measure is consider as a parameter of measurability . Unlike in [66], we do not need regqularity condi-
tions under the terminal value, the generator and the obstacle. These conditions were necessary in [60]
to establish the existence of the solution through the dynamic programming principle. In this work, we
use measurable selection theorem to provide the measurability of the value function.

2. Using the Lipschitz property of f in the first assumption, we can define bounded functions A :
0,T]x QxR xRxR! xR xS x RY — Rand 57 : [0,T] x QA x R x R x R x R? x
S;O x R? — RY such that for any (t,w,y,v',z,72',a,b)

f(tw,y,zab) - ftwy,2,ab)=Awyy,z7,ab)y—y)+n(wyy, z7,ab) (z-2).
For simplicity of notation, we denote

Ay, y,2,2) = M(Xany, Y, 2,2, 85,0 and 4F (y,y',2,2") == i (Xan vy, 2,2, s, BY).

3.2.3 Spaces and norms

We follow [85] and define the spaces and norms which will be needed for the formulation of
our problem. Fix some t € [0,T]| and some w € Q. In what follows, X := (X;);<s<7 will
denote an arbitrary filtration on (Q), Fr) and P and arbitrary element in P(,w). Denote also
by Xp the IP-augmented filtration associated to X.

Forp > 1, ]Lf/ w(X) (resp. ]Lf, »(X,P)) denotes the space of all Xr-measurable scalar random
variable ¢ with

Jelfy = sup B¥lel] < +os (vesp- 1617, ) = B[P < +20).
w PeP(t,w w
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]I—If’w (X)(resp. H—If (X, P)) denotes the space of all X-predictable R¥-valued processes Z, which
are defined a;(w)ds-a.e. on [t, T] with

T 0y 2

([ Iarza) | <o
PN

(/t [GEA ds) ]<oo>.

]Mi7 (X, P) denotes the space of all (X, IP)-optional martingales M with IP-a.s. cadlag paths on
[t, T] with M; = 0P-a.s., and

1ZI?, = sup EF
tw PeP(tw)

(resp. HZH]’I’{f ®) = EF

P
1y =2 ] <3

Furthermore, we will say that a family (MIP)]Pep(W) belongs to ]Mf,w ((Xp)pep(tw)) if for any
P € P(t,w), M" € M}, (Xp,P) and

sup [|M ]y ) < oo

P
PeP(tw) tw(P)

]If, » (X, IP) denotes the set of all X-predictable processes K with IP-a.s. cadlag and non-decreasing
paths on [t, T| with Ky = 0, P-a.s. and

P PP
Ky gy = EF[KE] < +oo.

We will say that a family (K]P)IPQ]P(W) belongs to l[f,w ((Xp)pep(tw)) if forany P € P(t, w), KP ¢
1} ,(X,P) and

sup ||K]P||11f ) < T
PeP(t,w) -~
]DZW(X) (resp. IDf, »(X,P)) denotes the space of all X-progressively measurable R-valued
processes Y with P(t, w)-q.s.(resp. IP-a.s.) cadlag paths on [t, T] with

IYlpy = sup EP[sup %if?] <too, (respllYly o

PeP(tw)  t<s<T = ]EIP[ 4 |YS|F’] < +°°>'

) t<s<T
For each & € IL}(F’?) and s € [t, T] denote
PolPrzy . _ P P . (! I
Es* [¢] ;= esssup’ E" [¢|Fsy] where Py(s,IP,F1) :={P' € Py, P’ =P on Fs }.

P’ €Py(s,P,F;)

Then we define foreach1 < x < p,

L = {g € LY(Fs), gy < +oo}, (3.2.4)
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where

4
3

Po P
1207 s = sup EF [esssup® (BT[] )" |-
0 PPy t<s<T

Similarly given a probability measure IP and a filtration X on the enlarged canonical space Q,
we denote the corresponding spaces by D} (X, P), H} ,(X,P), M} ,(X,P),... Furthermore
when t = 0, there is no longer any dependence on w since wy = 0, so that we simplify the
notations by suppressing the w-dependence and write H})(X), H} (X, P),... Similar notations
are used on the enlarged canonical space.

3.2.4 Formulation of second order reflected BSDE

The following formulation is an extension of the one introduced by Matoussi, Possamai and
Zhou [66] to the case of general filtration. Unlike in [66], we work with the filtration ]Ff“. Since
every P € Py doesn’t a priori satisfy the martingale representation property, then for every
P € Py, we consider a 2RBSDE driven by the IP-martingale part X“F of X. Following the
definition of RBSDEs in general filtration (see section 2.5 ) and the wellposedness of 2BSDE in
[85], we formulate 2RBSDE with respect to filtration ]Ffo. Our lower obstacle is represented by
the process L. We will assume that (L¢);c(o 7] is cadlag and L € D] (]FZ:O).We now consider the
following 2RBSDE with lower obstacle L:

=&+ [ (Y., a2 Z)ds — [ Z - axe® — [T amP + KE — KT,
0<t<T, Pas, VPP,  (3.25)
Y; > L;,0<t<T, IP-as., VIP € Po,

where for every P € Py, MY is a P-martingale null at 0 orthogonal to X“F and K is a non
decreasing process null at 0.

For any P € Py and § € L} (P) a Fr-measurable random variable , let (y¥,zF, mF,kT) :=
(y*(T,&),z%(T, &), m? (T, &),k (T,&)) denote the solution to the following standard RBSDE
with lower obstacle L:

yP =+ [T PP, a2y ds — [T 2P - axe® — [T dmP + k2 —kP,0 <t < T, P-as.
yt > Ly, t €[0,T], P-as.,

J P — Ly )dkP =0, P-as.

(3.2.6)
where m" is a martingale orthogonal to X under IP. Bouchard et al. in [14](see Theorem
3.1) have proved existence and uniqueness of a solution to the reflected BSDEs (3.2.6) with
(vF, 2, mE, K )se,r) € Dy (FY,P) x HE (FY, P) x M{(FY,P) x I§(FY,P) satisfying equa-
tion (3.2.6) under IP. This equation gives the classical formulation to a RBSDE on () in a general
filtration. We recall the definition of a 2RBSDE for fixed p in the following.

P

Definition 3.2.1. We say that (Y,Z) € IDg(]Ff“) X I[—IS(JFEO) is a solution to the 2RBSDE (3.2.5)if :
(l) Yr=¢ and Yy > Ly, t € [O, T],Po—q.s.;

(ii) VIP € Py, the process K¥ defined below has non-decreasing paths P-a.s.

t t
KP =YY, — /0 P (Y, 327, ds +/0 Zo-dXP +MP e [0,T),  (327)
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(iii) We have the following minimality condition:

T
inf? EF / GV A(KP —kPYFR] =0, 0<t<T, Pas, VP e Py (328
st [ a0 1] 0 05121 s wen, oas

where for any t € [0, T] and for any P € Py , the process G'F is defined by

S 1 S
G 1= exp ([ (A =5 InE 1) (Va8 Zu 2)du+ [ (Yo, 20 25) - aWy).

The processes A¥ and #" are introduced in Remark 3.2.3(2).
Notation: Py(t,P,Fy) :={P' € Py:P =P on F; }.

. . P P,

Remark 3.24. 1. Rigorously, the solutionis (Y, Z, (MF)pep,, (K )pep,) € D) (F,°) x H) (F.°) x

M) ((FY)pep,) x I ((FY )pep,) and through misuse of language, we denote (Y, Z), given the
dependence in P of K¥ and MY

2. Here we use the review minimality condition introduced by Matoussi, Possamai and Zhou [68].
It has been found that the condition introduce in [66] was wrong in the sense that in general
— kP is not non decreasing(one can refer to the counter-example of [68] in section A.1).

3. Using the above definition, the for any P € Py, K¥ — MY is a semimartingale defined by
t t
KP —MP =Y, — Y, —/ P (Y, a/224)ds +/ Ze-dXP t e [0,T),
0 0

Using recent results of Nutz [76], under additional assumptions (related to axiomatic set theory)
the family of semimartingales (K¥ — MY)p can always be aggregated into a universal semi-
martingale K — M. Then by the uniqueness of decomposition of semimartingales, the processes
K® and MP® can be aggregated into processes K and M.

Throughout the rest of this chapter for the sake of simplicity , we consider the case where @ is
non-degenerate and then there exists the Brownian motion W¥ on Q) under P satisfying (3.2.1).
Therefore the RBSDEs (¥, zF, mT, k) associated to the 2RBSDE (3.2.5) will be considered on
(Q, Fr,P) w.r.t. the filtration F¥

yP =&+ [ PR 8220 )ds — [ 20 -G/ 2aWE — [T dmb + K7 —KF, 0<t < T, P-as.
yF > Ly, t €[0,T], P-as.,

fo vy — L~ )dk{ =0, P-as.
(3.2.9)
The case where 7 is degenerate can be easily adapted by working in the enlarged space (see
Remark 3.2.1) with equivalence of RBSDEs established in section A.2.

3.3 Uniqueness of the solution

Following [66] and [85] in addition to Assumption 3.2.1, we will always assume the following
in order to prove uniqueness of the solution to the 2RBSDE (3.2.5).
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Assumption 3.3.1. For fixed p > 2, there is some x € (1, p] such that the following integrability
conditions are satisfied:

Al

. v
4)?”( := sup ET |esssup” ]EZDO’]P / | 0% ds < +o00, (3.3.1)
PP, 0<t<T 0
r
7™ = sup E¥ |esssup” ]EZDO’]P sup |Ls|* < 00, (3.3.2)
PPy 0<t<T 0<s<T

3.3.1 Representation and uniqueness of the solution

We have similarly as in Theorem 3.1 of [66], the following representation:

Theorem 3.3.1. Let Assumptions 3.2.1 and 3.3.1 hold. Let ¢ € L}™ and (Y, Z) be a solution to the
2RBSDE (3.2.5). Forany P € Py, let (y¥,zF, m",kP) € D (FY,P) x H) (FY,P) x M} (FT,P) x
]Ig(]FE, IP) be the solutions to the corresponding RBSDEs (3.2.6). Then forany P € Pyand0 <t < T,

Y; = esssup’ yItP/, P-a.s. (3.3.3)
P’EPo(t,]l’,IF+)

Thus, the 2RBSDE (3.2.5) has at most one solution in D} (FY ) x H} (FY) .

Proof. The proof is divided in two parts. The first part provides the representation (3.3.3) and
the last one consists in uniqueness of the solution.
(i) Representation of the solution. Choose IP € Py. For every P’ € Py(t,IP,F, ) we set

§Y =Y —y¥, 62:=7 2", 6M:= M — " and 6K := K* — k"'
By Remark 3.2.3(2), there exists bounded processes AP and 17]1’, such that for all t € [0, T
5Y; = /t TPy, 1 P - a1/267,)ds — /t "5z, al2awr — /t " d(6MP' — 6KT'), P'-as.
By applying Ito’s formula to G/'§Y between t and T, we have :

/ / T / T / T / !
GHP'svp = GHP s, + / 5Y, dGiP 1 / G'P'doY, + / d(GP 6Y)s+ Y AGHP AsY,
t t t t<s<T

=GFov + /t "5V (AP ds + P dWT)
+ /t "GP (AR5, — P G20z ds + /t "GP 57, G AWT
+ /t "GP (5MP — 5KP') + /t "G Y267 ds

=GIP'ov, + /t "GP @1/267, + P 5v)awE + /t " GEPa(sMP — 5KY').

Since 0YT = 0 and Gf’IP/ = 1, then taking conditional expectation under P’ with respect to ]-'tﬂi
on both side of equality we obtain

/ T ! ! !
oY =EY| / G ask?' | 7F]. (33.4)
t

Because the conditional expectation of the martingale terms is equal to 0. Thus, we deduce
that

/ / T / / / /
8V =Y, —yf =EF [/t GYTd(KY — kS )|f§1’+]
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By arbitrariness of IP’ and thanks to the minimality condition (3.2.8) it follows that

/
Y; — esssup® yf =0, P-as.
P'€Po(tP,Fy)

(ii) Uniqueness of the solution. The uniqueness of Y is deduce from the representation (3.3.3).
Since quadratic covariation is uniquely define and

t
Y, XL :/0 A5Zsds, P-a.s.,

Z is also uniquely defined, 4;dt ® Py-q.s.

By definition of the solution of (3.2.5), it follows by the uniqueness of Y and Z that the processes
MY — KP are also uniquely defined for any IP € Py. Since K¥ is a nondecreasing process and
MY is a martingale, we observe that for any P € Py, MF — K¥ is a (F¥, IP)-supermartingale.
Furthermore, (KF, MF) € L} (F®?,P) x L] (FY,P) for any t € [0, T], and K is F¥ -predictable.
Then by the uniqueness of the Doob-Meyer decomposition of supermartingales, we deduce
the uniqueness of M' and KT for any IP € P,. 0

Remark 3.3.1. The representation formula (3.3.3) also established in [68] thanks to the minimum
condition (3.2.8) is more restrictive than the following classical representation formula ,

Y; = ess sup]P y]tp/ (5,Y:), 0<t<s<T, TP-as.
P'ePy(t,P,F-)

To get back this dynamic programming representation, it suffices to extend the minimality condition
(3.2.8) to the following:

'S / ’
essinf® EY [/ G a(KY — k)| FE] =0, 0<t<s<T, Pas, VPP,
P/Gpg(t,P,]F+) Jt

3.3.2 Some properties of the solution

More details about the action of KP. In this section we recall the results obtained in [66] concern-
ing the action of K¥. The demonstrations are not mentioned because the slight difference is
the additional martingale term M in the definition and this does not change much. This is an
answer to the question of whether the action of K can be represented by two non decreasing
process which act separately respectively to the obstacle (namely satisfies the Skorokhod con-
dition) and to the space of probability measures (namely satisfy the minimum condition (1.1.9)
of 2BSDEs).

Proposition 3.3.1. Let Assumptions 3.2.1 and 3.3.1 hold. Assume & € L) and (Y, Z) € D} (F%) x
H) (FY) is a solution to the 2RBSDE(3.2.5). Let {(y*, 2z, m®, k%), P € Py} be the solutions of the
corresponding RBSDEs (3.2.6). Then we have the following: for all t € [0, T| and for all P € Py

t t
/0 1{Y5;Lsf}sz]P = /0 1{ys,:Ls,}dk]sP, P-a.s. (3.3.5)

Remark 3.3.2. The above result tells us that if Y becomes equal to the obstacle L, then it suffices to
push it exactly as in the standard RBSDE case. Moreover, we have the following decomposition of K

ot -t
KP = [y o K+ [ ydkE, P,

t
:/0 1{Y7:L7}dkf+VS]P, P-a.s.
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with

t
P P
VP — /0 Lry o yak?,

Then KY can be decomposed as the sum of two non decreasing processes. On {Y,~ = L,- } U { y]tp, > L},
the process AY := KF — [} Ty —p }dkg’ satisfies the minimum condition (1.1.9) of 2BSDEs. Oth-

erwise (that means on {Y;~ > L~} N {yItP, = L;- }) we cannot say anything and the question was left
open in [66]. A decomposition which isolates the effects due to the obstacle and the ones due to the second
order is therefore still an open problem .

Following Proposition 4.2 of [35] on the standard RBSDEs , the following result shows that if
the obstacle is a general semimartingale, we can give a more explicit representation of K.

Assumption 3.3.2. L is a semimartingale with the following decomposition:
t t
Li=Lo+ / uPds + B + / P,-dXS® + NP, P-as, forall P e P
0 0

where N¥ is a FY - cadlag martingale orthogonal to XF such that
EP [[N]P}T] < 400, VIP € Pp.

BY is a cadlag process of integrable variation such that the measure dBY is singular with respect to the
Lebesgue measure dt and which admits the following decomposition Bf = BE‘P’JF - BlP’_, where BP+
and B~ are non decreasing processes. Also, UT and P are respectively R and R*-valued FE and

fff progressively measurable processes such that

T
UP\dt + ||a/2p,|»)dt + BY T + BY~ < 0, P-a.s. VP € P,.
0 t t T T

Proposition 3.3.2. Let Assumptions 3.2.1, 3.3.1 and 3.3.2 hold. Let (Y,Z) be the solution of the
2RBSDE (3.2.5), then for all P € P

Z; = Py and Mltp = NgP, dt x P-a.s. on theset {Y;- = L;,-},

and there exists a progressively measurable process (a} )o<i<T such that 0 < a¥ < 1and

Lpy g ydKE =1gy _ ydkf =af1y, ) ([P (Le,a}/2P) + UF) =t +dBE ).

Connection with optimal stopping problem. The following result gives the link between 2RBSDEs
and optimal stopping problem.

Proposition 3.3.3. Let (Y, Z) be the solution to the above 2RBSDE (3.2.5) and { (y*, 2", m",k¥),P €
Po} be the solutions of the corresponding RBSDEs (3.2.6). Then for each t € [0, T| and for all P € Py

/ v ’ AR ’ ’
Y; = esssup® esssup ET [/ Y, a2 ds + Lolpery + Cl{U:T}’}'&}, P-a.s.
P ePy(t,PFy) vET; t

v
= esssup EP [ /t P (Y, 8% Z)ds + AY — AF + Lolgyery + Elgpery |f£}, P-a.5.
ve'lt b

where AY := fot Ly, >Ls,}szP~
Moreover, for each IP, the following stopping time is e-optimal

Dip’e = inf{v > t, yg’ < L,+e¢, ]P—a.s.} AT.
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Comparison result. Let us consider two triple (f,¢, L) and (f/,¢’, L") and assume the 2RBSDEs
associated with this triples has a solution respectively (Y, Z) and (Y’,Z"). We also denote re-
spectively { (y¥, 2", mP, k), P € Py} and {(y'*, 2", m™,k'"),IP € Py} the RBSDEs associated
to the 2RBSDEs. The following result allows us to compare the components Y and Y’ if we can
compare the triples (f,¢, L) and (f/, &', L).

Theorem 3.3.2. Assume that f satisfies the Lipschitz condition in Assumption 3.2.1(i) and that

T .p
supIE]P[/O R 3220 Pas] < oo

T
sup E | / FF©0,0)[ds| < oo and
0 PePy

PPy
Suppose in addition the following:
-¢<¢, Pogs.
PR AR < ), Pt ae.
-Ly<L;, 0<t<T, Pyqgs.
ThenY <Y’, Po-q.s.

Proof. Using the comparison result of RBSDEs establish in Theorem 8.21 of [32], we deduce
that for every IP € Py,

' <y?, P-ae (3.3.6)
and if in addition f’ is Lipschitz with respect to y and z and L = L’ then
kE—kP > K — kP, P-as. foranys < t. (3.3.7)

In fact despite we are in general filtration, the additional martingale term does not create any
else difficulty since it disappears by taking the expectation.

It follows directly by the representation formula (3.3.3) and (3.3.6) that for any ¢ € [0, T], Y; <
Y/, P-as. for every P € Py. o

3.3.3 A priori estimates

We start by recalling some properties of the solution of the RBSDEs given in [14]. By Lipschitz
condition in Assumption 3.2.1(i), there exists a R-valued F-progressively measurable process
A and a R%-valued, FF-predictable process #, with [A| < L fand [[n]| < Ly such that

ft (y:,a rAl/z r) = ft +Ayf @ Al/zz]tpf te[0,T].

It should be noted that A and # depend on IP, but for the sake of simplicity we skipped high-
lighting this dependence. We define

_ L fi Ads de,: / WP Qp ._ ]P_/‘
elo s, =28 e( [ th>TandW = WF — [ s, (3.3.8)

where £ denotes the Doléans-Dade exponential. Then, by Girsanov theorem, W?? is a Qp-
Brownian motion and m" is still a Qp-martingale orthogonal to WP . By Ito’s formula applied
to the product I yP, we can re-write the solution of the RBSDE (3.2.9) as

T -p T T T
Iyl = It + / I f3"0ds — / Izy - a2 dWgr — / IdmF + / IKY, P-as.
t t ¢ ¢
Lyf > IiLy, t € [0,T], P-as.,

T
/0 L~ (]/ISP— - Lsf)dk]f =0, P-a.s.
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One can now use Proposition 3.1 of Lepeltier and Xu [60] to establish the link between RBSDEs
with a cadlag barrier and optimal stopping problems. In the following, we will denote Q
instead of Qp for simplicity.

Proposition 3.3.4. Let (y¥,zF, m¥, k) be a solution of the RBSDE (3.2.9), with the reflected lower
barrier L, terminal condition & and generator f. Then for each t € [0, T],

T
Ity]tP = esssup EQ [/t Isf/'gpxods + ITLTl{T<T} + IT‘:l{r:T} ’ft.:,_}
TeTr

and

T
JF = esssup B | [ FFE %8s+ Lot oy + S| 2F |
TE b

where Ty is the set of all F-stopping times valued in [t, T).

This result will be useful to establish the a priori estimates of the first component y* of the RB-
SDE (3.2.9) and the apriori estimates of the other components derived from the first estimates.

Proposition 3.3.5. Let Assumptions 3.2.1 and 3.3.1 hold. Assume ¢ € L))" and (Y, Z) is the solu-
tion to the 2RBSDE(3.2.5). Let {(y*, 2", m" k) }p_p, be the solutions of the corresponding RBS-
DEs(3.2.9). Then there exists a constant C depending only on x, T, p and the Lipschitz constant L¢ of
f such that

sp Iy ey < c(ncn;g,x o) ) and (YL, < C(IEl] e +0f" +91").

Proof. The proof falls naturally into two steps. We begin with the a priori estimates of y* and
finish with that of Y. Throughout this proof we will use the fact that by definition of the norms
and Assumption 3.3.1, we have

T
p p P 7P,0
I, < 2y supET[([17

PePy

ds)p} < ‘Pf’K and sup ]E]P{ Sup |Lt‘pds} S
PePy te[0,T]

and also for any ! > 0 and (4;)1<j<, C (0, +-00) we have the following inequalities (see Remark
2.10f [14]),

al. (3.3.9)

1

=

iai)l < (1vah

=

n
(An )Y af < (
i=1

1

Step 1. We follow the proof of Proposition 3.2 of [14] to establish the a priori estimates of y.
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We deduce from Proposition 3.3.4 that

yF| < e M Ly

T
< esssup e “'EQ {/ L| 20
t

ds + Ir|Le|[lzory + I7[G[1 (=1} !fw}
teTir

r T
ot ves{ [ s s 1
LJO s€[0,T]

B - T 1 T T
< M TOBP [exp ([ - dWP 45 [ lnslPds) ([ 1FP Vs + sup L] + J2]) |72
- t t 0 s€[0,T)

] T T
< JLA(T—t) P L/ WP L/ 2
<e E _exp(Ki1 . s AW +2(K71) ; 75 d5)|]'—f+}

xk=1
K

T 1
X ]EIP{(/ |fP0ds + sup |Ls| + |€|)K|]-'t+}
0 s€[0,T]

T 1
< eLf(Tft)fﬁL}(Tft)]E]p[(/ |J;;[[)/()
0

ds+ sup |Ls| +[2))"|Fi+ "
s€[0,T]

1 o T
S eLf(Tft)me;(Tft):;Tl TK—l]E]P |:/ U/cgl’,o
0

1
“ds + sup |Lo|* + |¢]*[Fi+ |
s€[0,T]

where we have used the boundedness of A in the first and third inequalities, the fifth inequal-
ity follows from the Cauchy-Schwarz inequality. The boundedness of # and the fact that the
expectation of the exponential martingale is equal to 1 lead to the sixth inequality and finally,
the seventh one is given by the property (3.3.9).

Taking the supremum over ¢ € [0, T},

T 1/x
sup |yF| < C sup EP[ [ [7P01ds + sup L+ (]| 73 |
t€[0,T] t€[0,T) 0 se[0,T]

where C is a constant depending only on L¢, T, x whose value can vary line to line. Hence,
taking the expectation we deduce from Doob’s inequality, Holder’s inequality and relation
(3.3.9) that

= V) < " e (B[ e ]

T p/x
< C(IE]P[/ |fEO%ds + sup |Ls|* + |§|KD
0 5€[0,T]

SCEP[(/OT |70

< cEr[( [ 17

Therefore taking the supremum over IP € Py, we obtain

p/x
“ds+ sup |L*+g*)" ]
s€[0,T]

P
ds)" + sup |Ls|? +cl?]
s€[0,7T]

Hy“’HI’,’)g(P) < C(Iléllig,x +op lp}""). (3.3.10)

Step 2. We now turn to the a priori estimates of Y. By the representation of Y in (3.3.3), it
follows that

Y; = esssup’ yItP,(T,C), P-a.s.
P/ Py (tP,F)
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We recall that from step 1, there exists a constant C depending only on «, T and Ly such that

1
“ds + sup |Lo| + |¢]*[Fi |
s€[0,7T]

T
wh(r,8) < cB®[ [ |77
Then by representation formula, we get

/ P
]E]P[ sup |Yt|p} §1E]P[ sup ( esssup® |yl (T,C)\) },
te[0,T] te[0,T] "P'ePy(t,P,Fy)
[ ! T ! %
< CE®| sup ( esssup’ IEF [/ |fF' O ds + sup |Lg|* + |§|K|]-'t+} )]
“te[0,T] ‘P ePy(tP,F ) 0 s€[0,T]

Kds+ sup |Ls|* + |e;|’<f)}

s€[0,T]
4
s (B up 1)

- T
Po, P
< CE"| sup (]Et0 [/ | fIP0
“t€[0,T] 0

< CEP _t:‘[(l)% <]E;Po,]P [/OT |]?5[P'0‘de})g

+EP

|

P
+ CEY | sup (£ (1)

Taking supremum over IP € Py we have that,

IYIIp, < C(IICIII’;@K + ol + tp{"‘). (3.3.11)
O

Proposition 3.3.6. We keep the notations and hypotheses of Proposition 3.3.5. For p > 2 there exists
a constant C depending only on , T, p and the Lipschitz constant L of f such that

sup {||zﬂ’|;;g(m +EF ()] +1E“’[<k“£>ﬂ]} < (eI, + 47" +9L"),

PPy

14
1217, + sup EF | [MP]7] + sup E” | (KF)?| < C(El] o+ 9f" +91")-
0 PPy PePy 0

Proof. Fix P € Py, the proof will be divided into three steps.
Step 1. We show the following

EP( / (a}/22F |2ar)""] + EP (1] < CEP [ sup [yF )7 + ( /OT|ﬁ“"°

te[0,T]

)p]. (3.3.12)

Hamadéne and Popier proved similar estimates for the zF component in Lemma 1 of [44].
Their estimates were shown for the RBSDEs with respect to a Brownian filtration. We follow
their proof to show estimates in our case where the RBSDEs are defined in a general filtration.
Let us define for each integer n

t
7, = inf{t € [0, T},/ [a1/22P||2ds + [mP]r > n} AT
0

Since z' is in H} (P) and m® € M} (P), then/ aL/22F|12ds 4 [mT]1 < co,IP-a.s. and it turns

out that (7,),>0 is a stationary sequence. Now considering a real constant « and using Itd’s
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formula to e |y |2 between 0 and 7, we get
P2 [ asA1/2,P)2 K P

vE P+ / e jal/22F |Pds + [ eafm®),

— ey P4 [T ey FF (8l 220 — af)ds 42 [T ey akd
_2/ easyISP dm 2/ easyg’ P Al/ZdW]P Z E“S|Ayg)|2

0 0<s<ty

< e””|yr,,|2+/ e yd (2 fF0) + 2L |yF| + 2L |l ?2E | — ayf)ds

+2/ e”‘sy;P dk? —2/0 e"‘syf dmgP—Zl/O e"‘sygP P 1de;P

n " T
< e yh 2ot 2super |y [P0l + 2Ly Lye ™t ) [ eyl s

s<Ty

Tn
+€LJ‘/O ||ﬁg/221sp||2d5+2/0 eyl akl — 2/ ey dm¥ — 2/ SyPLP G2 WP

for any € > 0. The last inequality is obtained by the following Young'’s inequality
a>  eb?

< 4+ ) 3.
ab_2€+ 2,fora1r1ye>0 (3.3.13)

Thus,
WP+ (=eLy) [T e @l 22 Pas+ [ ersam®,

P2 2 2
< e lyE [+ supelyF P+ ([ |70
s<1y 0

Tn
ds) +(2Ls+Lee ' —u / e |yL 2ds
) @ng L —a) [T ey
1
+ esupeszsws ‘2+€ 72/ ezxsy;l’ dm 2/ etxsyg’ P Al/ZdW]P

s<Ty,

Furthermore by (3.2.9), we have

Tn
k]"IF)n = ]/%) - yl”}')n - fs (ys ,/\1/2 dS +/ ]P Al/de]P + an
Then, there exists a constant C depending on the Lipschitz constant L such that
2 .
()2 < (W P+ Iy 2+ ([ 17P0ds) "+ / E s + [ al/2k) s
Tn
P ~1/2 ;0P|
+ ‘ /0 Zg - 5" “dWj )

By taking into account the last inequality in the right-hand side of the previous one, we obtain

(1—eC)|yg)|2+(1—eLf)/ e ||al/ %z ]P|| ds — eC/ 2ds

Tn

+/ easd[m]l’}s
0
ATy, 2 1 20 2 K 7IP,0 2
< (eC+eMyE P+ (1+ 2 )supe|yF P+ (1 eC) ([ |FP)ds)
s<Ty 0
Tn Tn 2

+ (ZLJ:—i-Lfef1 —oc)/ e“s|yg’|2ds+ec‘/ ZP . al/2dwr P2
+2‘/0 esyP2P  Gl/2g WP easyg’
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Choosing now € small enough, « such that 2L¢ + L fe_l — a < 0 and using inequality (3.3.9),
we get

Tn 14 14
(1/\2§’1)(/0 e*|[a1/22P | %ds) 2 + (1 A 25 1)[mP]2,
Tn
<cv2i ([ IF0Ns) + sup |y
0 te[0,T]

+\/0 esyP2P . GL/24WP |2 +\/ eyl dmf|2). (3.3.14)

Otherwise, thanks to the BDG’s inequality under probability IP and the Young’s inequality, we
can can write

]E]P“ /OTn easyg’zg’ ,ag/ZdWSIP‘%} < CPIE]P[</O |]/s | ||{11/2 ]Pszs) P]

< CyEP [ sup Iyﬂ’l)g(/(; 25722 ]P”%)%}

te[0,T]
< C%IE]P[ sup [yF ‘p} +17]EP[(/ [a1/22F | ds)g}
7 t€[0,T] ’ |

and
‘/ etxsyg’ 2} < C;]EIP{(./(;T" |y£|2d[m]1’]s)%}
]
12

NI
S

! P
< C)E

(t:}g”yﬂ’) ("]

where Cp, C}, depend on the BDG'’s constants and « and 7, 77" are positive constants. By taking
expectation under P in (4.3.14), using the two previous estimates, choosing # and #’ small
enough and using Fatou’s Lemma we deduce that (3.3.12) holds. Finally, combining (3.3.12)
with (3.3.10), we obtain the required estimates of ZP and mP

Step 2. Estimates of k¥'. By the definition of our RBSDE (A.2.2),
pP_ P _ P TP /2P T 172 0P P
kT = Yo _yT_/O fs (ys ,as" "z )ds+/0 zs - A" dWs + mr.
Using (3.3.9), and Lipschitz assumption on f, we easily have
T p T
()" <51 (W1 + [l + ([ 1FF O aY20)las)" +| [ 2F-al/2aw?
_ ,\ ~ p
<51 (1817 + 1217 + ([ OFP2+ Loy¥ -+ gt 2ef)las) + | [ 28 - 2aw?
+ |m|?)
T
<5 (1817 +1ele +3 ([ Pous)” w3 tan( [ |ds)

43P lLP(/ ||A1/2 HdS _|_‘/ P Al/ZdW]P

p
+ |m¥1P)

+ |m¥|?)
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Next,

14
2

() < c(lep+ sup yF1F + ([ 1770

te[0,T]

p
+ ‘/ 2P /2P
0

)+ ([ 18R as)

+ |mE 7).

Taking expectation under IP in the last inequality and using BDG'’s inequality, we obtain

ds)’”+(/ 131/22 Il’)||2azs) + (B3],

where C depends onlyon p, T, L f and the BDG’s constants. The above estimates together with
the estimates obtained in step 1 give that

BP ()] < CBP[jgff + sup [yF17+ ([ 170
te[0,T]

PI(kP)"] < CEP [t?[épny P+ (/T \ﬁ“"”lds)p] (3.3.15)

Using Proposition 3.3.5 together with (3.3.10) and (3.3.12) we deduce the first assertion of the
Proposition.
Step 3. We now turn to the case of Z, (M]P)]pe'po and (KIP)][JGPO. Since we have the a priori
estimates of Y, we proceed analogously to step 1 with the solution of the 2RBSDE instead of
the solution of the RBSDE and obtain

)’

P T

IE]P[(/ %2 ||2dt) |+ ER (M) < CBP[ sup [¥P)P + (] 1
t€[0,T] 0

Doing the same as in step 2 with the solution of the 2RBSDE instead of the solution of the

RBSDE , we also have

T p T g r
EP[(KF)"] < CEP[[gl? + sup [YFIP + ( / 7P01s)" + ([ 18228 Pas) * + [MF] 7]
te[0,T] 0
Combining these two above estimates with the estimates of Y in Proposition 3.3.5, we deduce
the second claim of our proof and complete the proof. 0

Theorem 3.3.3. Let Assumptions 3.2.1 hold, and consider two generators f1 , f2 and two lower obsta-
cles L', L2 such that Assumption 3.3.1 holds. For i = 1,2, let ((Y', Z) be a solution to the 2RBSDE
(3.2.5) with the generator f', the terminal condition & and lower obstacle L. Define

P
K

o = sup e fessup (6727 [ - PG 022 )] ) ] < oo

o = sup P [( [T 17 - I 7) ] oo

2=

l[JLl [2 1= sup EP {ess sup? (IEZDO’P[ sup |L! — L§|KD } < +oo.

PePy 0<t<T 0<s<T

Then, there exists a constant C depending only on x, T and the Lipschitz constants of f' and f* such
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that
= v2ly < (16" = @l + i+ o)

|2} = Z2||7,, + sup EF [ [M'F — M>F] 1] + sup EP [(KEP — K3P]
0 PePy PPy

S C(H{fl o 52”]{6"" +¢p¥ffz lle LZ)
1/2
C(llg" =155 + @)+ li)") < (16 e + 1825 + 0 +072°)
Proof. (i) The representation formula (3.3.3) gives,

Y} —Y?| < esssup” |y}’IP,(T, & — yf’lp,(T, &2)|, P-as. forall P € Py, t € [0, T].
PPy (t,PFy)

where y''F' and y>T are the RBSDEs associated to Y! and Y?. Following the proof of Proposition

A.4.1, there exists a constant C depending on «, T and the Lipschitz constant of f2 such that we

have P-a.s. forall P € Pyand t € [0, T]

T 1

AP 2P . x

31— < BT [T PR A s sup 11 72 ]
s€|0,T

Now using Cauchy-Schwarz inequality and (3.3.9), the above inequality provides PP-a.s.,

=

T
|~1]P ~2,]P|p < CIE]P[/O |ﬁl,]l)7fz,]["x(y~gl’ ~1/2% 1][’)ds+ SFP]|L1 L?‘KJrlCl 7€Z‘K|F}[ii|
s€(0,T

A

<cw?[([N1R - PR A 20908+ (sup 11— 12) " 4 it - 2P |7

s€[0,T)

By the definition of the norms, we deduce the first assertion of the theorem.
(ii) We consider the same notations used in the proof of Proposition A.4.1 and the following
notations

§Y :=Y'—Y? 67 := 7' — 7%, 5K¥ = K'* — K*F, sMF .= M — MPP,
By Definition 3.2.1, we have
T T T T
SY: = 68+ / (FMP(Y2,al/2Z1) — 2P (v2,31/222)) ds — / 57, - dXSP — / dsMP + / d6KP
_5§+/ (6FF (Y1, /2 Z1) + AdYs + 11, - 51/20Z) dsf/ 57, - dXSP — / d(SMH’+/ oK.

where A and 7 are such that [A| < Ly and |[77|| < Lp2('see section 3.3.3). Using It6’s formula
to [0Y|? between 0 and T, we have

16Yo[2 = |(5§\2+2/ svi6fF (v}, a2z} dt+2/ AoV 2dt+2/ il 26Y,8Z,dt
2 / Y167, - dXP — 2 / 5Y, dsMF 42 / 5Y, d6KF
0 0

—/ 3260z, |2dt — [sMP]r — Y |Advi[2
0 0<t<T
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It follows that
/ /267, |2t + [sMP)r < |§¢|2+2/ 16Y,|167F (v1, a2 2} \dt+2/ A |8Y; 2dt
+2 / il 26Y,o Zdt — 2 /0 Y167, - dX®
0 .
T T
2 / 8Y, dsMP +2 / 5Y, doKP
0

< |62 +2 sup |(smx/ 67 (v, a2 Z1) |t + = / 81267, |2t
te[0,T]

T

+(2Lp +2L2)T sup |6Y:2 =2 | Y62, - dXST

f f p t
teo,T] 0

—2/ 8Y,dSMP +2 sup [8Y|(KA® + K2P)
te[o,T]

<6817 + (2szT+2Lf2 )sup 16Y; 2 / 812627, |2dt
te[0, T

o (Y},aV%z} dt +2 (smzt dxe?
t t t

+\2/ 5Y,-doMP| + sup |(5Yt|(K1]P+K2]P)
te[0,T]

Hence,

/ ||ﬁl/zéZtszt+[5M]P]T<C(|z§§\2+sup 16Yi[? + / 67T ( 1A1/221)|dt)

+] / 8Yi6Zy - dXEP + | / 6, doMF | + sup 8%, |(K¥ + K&T)).
0 0 te[0,T]

Therefore, by inequality (3.3.9) we get

s

T P
2%4(/ ||a}/zfszf\\zdt)2 (A28 )M
0
P P 1 41/2
<78 (jozp + sup 6P+ ([ 1ofF o alrzhary

+|/ 5,67, - dXF| 2 +}/ 8Y,-dsMP|% + sup [6Y|5 (KKP + K2P)5 ).
te[0,T)

Taking the expectation under IP gives us
4
EP [(/ @267 ) * ] +EP[[sMP]2]

< CBP[jagl? + sup %l + ([ ofF (0t 22 ar)']
te[0,T]
; 3

P T c,IP
+E H/O Y167 - dXC

T
| +E7 | /0 5Y, dsmP

+ EH’[ sup |5Yt|p} 1/2} EP [(KlT']P)P + (K%H’)PT/Z.
te[0,T]

Now the Burkholder’s inequality allows us to write

P
4

“’H /OT‘SYF‘MMItP g} < C,,JE“’[(/OT |5Yt7|2d[5MH’]t)

4
< CplE]P[ sup |§Yt|g[5MP]ﬂ
te[0,T]

< 2C2EF L:}%mmv] + %IE]P [[51\411’}?]

}
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and

N

PH/OT(SYt(EZt-de'P } <Cp]E]PK./(;T5Yt|2|ﬁ}/252t|2dt)z}

T 14
14 .
< CE" [ sup [5v;)% (/ @267 |2at) " |
te[0,T] 0
< 2c21Eﬂ’[ sup \(mv’} +lpgr [(/T ||ﬁl/2c5Zt||2dt)g
- te[0,T) 8 (R

)

We deduce that there exists a constant C depending on T, p, L} and szc such that

B [( [t oziPar) ] + EP [loM7)S]

T
< CEP[jegl? + sup |ovil? + ([ |ofF (v, a1/2Z})a)']
te[0,T]
1/2
+E" | sup |(syt|ﬂ “EP [(KFP)? + (k5P|
te[0,T]
By the same way as Step 2 of Proposition 3.3.6, we show that fori = 1,2
. , T
EP[(K{F)"] < CEF [ sup [¥i)P + ([ |fP01as)"].
te[0,T) 0

Combining the two above estimates, we get
4
EP [(/ |a}/267 %) * } + EP [[6MP]Z]

T
< CE" [|og]? + sup oYil? + ([ [ofF (v}, a}/22})|ar)"
te[0,T]

T
+ (o224 sup o772 4 ([ IafF 02l 2 jan)?)

te(0,T]
(t:}(l)%]wt 7 + t:}é};]wt |7+ (/T |E’P’O\ds)p I (/OT |E’P’0\ds)p>1/2],

Then taking the supremum over IP € Py in the above estimates, we have
i
|2 - ZZH]};{{; +11§27€0]EP [[Ml,u? _ Mz,ll’]%] < C(Hgl _ Cz”ﬁg/" _‘_4)}71’,}2 + ¢ LZ)
/2 2, /2
C(H§1 §2||£“ ( plez)p <¢L1 Lz)p )X
1/2
(15 122 5 e+ 0"+ 072°)

It remains to prove the estimates of SKP. By definition, 3.2.1, we have

T
SKP = 6Y, — 67 — / P(y1,al/27L) - 2P (Y2,1/222))ds + /O 5Zs - dXP 4 6ME
T
= 6Yy — 0 — / (YL,al2Z5) + As6Ys + 115 - A/ 26Z5)ds + /O 6Zs -dXT + sME.
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Next, there exists a constant C which can vary line to line and only depending on p, T and the
Lipschitz constants of f! and f? such that

T T
(GKE)Y < Cll6vol? + |6 + ( [ 167 (2,8 2Z8)1ds)? + ([ Asleslas)”
T T
([ Ins-al20ze1ds) ds + ([ 6zo-dxT) + (6MF)’].

After that, we take the expectation under IP in the above and use the Burhkholder’s and
Young's inequalities to obtain

T
BT [(0KE)?] < CEP[j6e]? + sup 6|7 + ( [ |6fF (2, al/2Z))|ds)"
te[0,T] 0

T E p
~1/2 2 2 P12
+(/O |ai/26z|Pdt) * + [oMP13).

We finally get the expected estimate of 6KT by taking the supremum over IP € P in the above
inequality and using the estimates of §Y,6Z and 6 M. O

3.4 Existence of the solution

The key idea to prove existence of a solution is the dynamic programming principle and the
selection measurable Theorem. The value function is defined pathwise as a supremum of
the conditional expectation of Picard iteration of solution to BSDEs over a set of probability
measures. After proved the DPP for the value function, the solution is obtained from this one.
Following the representation formula of 2RBSDEs (3.3.3), a natural candidate to the solution
of 2RBSDEs could be: For every (t,w) € [0,T] x Q,

Vi(w):= sup E"[y}],
PeP(tw)

where y is the first component of the solution of RBSDE(3.2.9).

The proof of existence of a solution of 2RBSDE(3.2.5) will be divided in four steps:

Step one. In order to establish the dynamic programming principle for the above value func-
tion V, we need a jointly measurable (with respect to time, space and probability IP) version of
yP solution of RBSDEs. We recall that for every IP € P, these RBSDEs already have a unique
solution then our goal is to construct a jointly measurable version of the solutions . Thereby,
we use the Picard iteration of the solution to the penalized BSDEs and prove the converge of
the iterations.

Step two. After the convergence of approximations, the resulting solutions y}’ can be inter-
preted as a function of f,w and IP. We now show that y¥ is jointly measurable: that means
(t,w,P) — y]tp is a measurable function.

Step three. This step is dedicated to establish the following dynamic programming principle
for the value function.

Vi(w) = sup E"[yf (7, Vr)]
PeP(tw)

where 7 is a stopping time taking value in [t, T]
Step four. This last step consists in path modification of the value function in order to obtain a
cadlag process and deduce the solutions by the Doob decomposition.
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3.4.1 Construction of measurable version of solution

We recall the classical construction of the y* part of the solution to the RBSDE (3.2.9) under
some probability IP € Py using Penalization and Picard’s iterations. These approximations are
very closed to the definition of BSDEs in general filtration, for more details refer to section 2.5.
The obstacle is represented by L which is a cadlag FP0+-progressively measurable process.
Forn € N, let (y]P M, 2P P kP be the solution of the following penalized BSDE

T “p T T T
t=g [ PP aaas — [ Al 2awE — [T amPt g [P~ L) as.
(3.4.1)
with

Pn __ ! Pn -
ki =n A (s Ls)~ds.

We prove in section A.3.1 that the solution of the penalized BSDEs converge to the solution of
RBSDEs. This result has been already proved in the literature, we can mention [35] for contin-
uous obstacle and [60] for a cadlag obstacle and those result concern a filtration generated by
a Brownian motion. In section A.3.1, we use the reasoning of the above papers and show that
the presence of a martingale m does not affect the result. More generally one can also refer to
Klimsiak [54] for RBSDEs in general filtration.
Therefore (y*", zZ0", mP7, kP converge to (yT,zF, mP, k) the solution of the RBSDE (3.2.9).
Now for a fixed n, letus defmey]P”O =0,z =, m]tP”’O =0and k™ =0, forall t € [0, T]
Ian ]an P,n,m k]P,n,m)

and given a family of IF  -progressively measurable processes (v, ’ , re[0,T)’

T T
1an+1 _ §+/ fs (yPmm gl/2 P mm g _/t Pl G2 P _/t dmPrm+l Ppgs.
(3.4.2)
where T (x,y) := fF(x,y) +n(y — L) . By definition 7P still verify the Lipschitz assump-
tionin y and z.

We have that y*#"+1 is a semi-martingale under P. Let (y"*1, X)P be the predictable quadratic
covariation of the process y*""*1 and X under IP. Define

P,nm+1 X r__ /, Pnm+l X r
limsup <}/ ’ >s <y ’ >s—e

€€Q,el0 €

ﬁ§ /ZZg’,n,erl — (3.4.3)

Convergence. We first show that the sequence (yF™,zFmm)

the norm

T 1
1(y,2,m)lp e := (IE“’[/ e lys |2ds+/ a2z s + [ esdiml])". @44

where « is positive well chosen. Let « be a positive real number
T
Pym+1 _ Pam _ Pm 51/2,P, P Pum—1 ~1/2 Pnm—1
Y — Y _/; (f (ys nm, ag nm) fs (]/s e g anm ))ds

T T
P,n,m+1 Pnmy -1/2 P P,n,m+1 P,n,m
- /t (Zs — Zg ) " A dWs - /t d(ms — M )

m>0 is a Cauchy sequence for

We apply 1to’s formula to e (y} "™ — yF™)2 to obtain
sz Pn,m+1 P,n,my2
(y7’ —yr"")

T
Pn,m+1 P,n,m\2 as (. P,n,m+1 P,n,m\2
My " =y ) +vt/t (s —ys ") ds

T
+ 2/ JP n,m+1 ]/JP,H m) (y]l’,n/m+1 yll’ N, m + / easd<y]]’,n,m+1/c’yIP,n,m,c>s
P, 1 P, P, 1 P,
4 Z oS { yIS[’,n,m+1 yIS[’ N, m) (y 7n M+ y 7n m) (y 7n M+ y 7n m) (yg’ n,m+1 y]P,n,m)} .
t<s<T
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Since yr/"" 1 — 2 = 0 and
P,nm+1 P,n,m\2 P,n,m+1 P,n,m P,nm+1 P,n,m P,n,m+1
(s S 2 Bl (e —y ) = 2(yL =y ") A(ys -

= (A" —ydmm)? > 0,
then

T T
eat(y]tl’,n,erl _ y]tP,n,m)Z +/ eusasHZ]sP,n,m+1 _ Z]SP,n,mHst +/ easd[m][’,n,erl _ m][’,n,m}s

P
s"")

T
< —a /t (y]P n,m—+1 y]P n, m)st 2 / ]P n,m-+1 ]/SWPLn,m )d(m]sl",n,erl _ m]sl",n,m)
2 IP n,m+1 Pnmy(fPn Pnm =1/2_ Pnmy _ FPn/, Pnm—1 ~1/2_Pnm—1 d
+ —Ys )(fs (ys s85" " Zg ) fs (ys 785" " Zg )) S
_2 / ]P n,m+1 y]P,n,m) (Zg’,n,erl _ Zg’,n,nt) . ﬁg/de;P
< _“/t (yg’nnwrl ]an 2/ ]I’nm+1 y]:’nM) ( g’,n,erl _ mg’,n,m)

+2C/ zxs‘yll’n ,mA+1 —yP

(‘y]an 7y]1’nm 1| + HAl/Z( ;l’,n,m 72?’”’"[71)”)115

]P n,m+1 P,n,m P,n,m+1 Pnmy ~1/2 P
72/ —Ys )(Zs —Zs )"15 dws

Taking expectation under IP, we have

T T
]E]P { (yItP n,m—+1 yItP n, m + / easzl\s ||Zg’,n,m+1 o ZgP,n,m ||2dS + / easd[m]P,n,erl o
t t

m]P,n,m} s}

T
P P 1 P P 1 A12 P P -1
20 [ eyt — T (yF — P G/ 2P ) s

T
as (. Pn,m+1 P,n,m\2
7“/1& 4 (ys —Ys )ds]

Then
P,nm+1 ]an T NS P,nm+1 P,n,m 2 T s P,nm+1
L A R ST
C? P P,n,m P,n,m—1 ~1/2 (. Pnm Pnm—1 2
< S| [ oy — Pt 4 /2R )]
2C2 P T s P,n,m Pnm—1,2 ~1/2 /. P,nm Pnm—1y(2
< T]E [ ; e (|y —Ys’ | + ”as (Zs — Zs )H )}

the first inequality follows by using the following polarization identity

2 2
—aa® +2Cab = —oc(a — Eb) + —bZ ¢ b2
o o

Therefore, in terms of the (IP, «)-norm defined in (3.4.7), we have
P IP P ]P -1 P P -1\12
||Z nm+1 anPa < 7”( nmm . Pnm z P nm )H
and
P,n,m+1 P,n,m |2 2C? P,n,m ]an—l P,n,m P,n,m—1y/12
[ =y < = = (y T =y 2 — )|

By (3.4.5), we also deduce that at any time ¢

2C?
E P, 1 IP,n, M, M= n, MMm—
P [ly n,m+ — nm|2} < - ”(y]an y]an 1,Z]an Z]an 1)||@2P
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Moreover, by integrating between 0 and T both sides of this inequality, we obtain

2C2T

[yt =y < ==yt -yt g — AP,
Consequently, there exists K > 0 depending only on C and T such that
|| (yPm+L — P Pmtl P Pl gy Py H%),,x (3.4.6)
< 5” (yPm — yPmm=1 JPum _ Panm=1y %)’a
< ()" 16P ) B (347)

Let p be a positive integer, then

Pumtp _ P Pty _ Pam  Pamp m]P'n'm) Hllz’ w

I(y y
— ||(y]P,n,m+p o y]I’,n,erpfl) + (y]P,n,erpfl o yI[’,n,m+p72) NI (y]P,n,erl o y]P,n,m)

7

(Z]P,n,m—i—p . Z]P,n,m—',—p—l) -+ (Z]l",n,m+p—1 . Z]l",n,m+p—2) T (Z]P,n,m-i-l o Z]P,n,m)

(m]P,n,m—i-p _ m]I’,n,m+p—1) + (mll’,n,m+p—1 _ m]l’,n,m+p—2) RS (mP,n,m+1 _ m]P,n,m)l 2

P,
p i i - .
< Y ||t — yPrmti 1 P P a1y 3
j=1
P /Ky\mti
<Y (3)" I g,
j=1
(K/a)™
S Ll AEaeel ¥

for a large enough such that K/a < 1, we have lim;— o (K/a)™ = 0 and consequently,
(yTmm, ZPmm Prmy o is a Cauchy sequence. Hence, by taking some suitable sub-sequence
(m}),~,, we can define the solution to the penalized BSDE(3.4.1) as

P P
MMy P,n n,my Pn
2t

. P,n . P, . Pnmy
y]tp’” = limsup y, , = limsup z, and m;" := limsupm,” "%, P-as.
k—co k—oc0 k—0c0

(3.4.8)

Since the solution to the penalized BSDE converges to solution of the reflected BSDE (3.2.9)(see
A.3), then there exists (yIP, 2P mP, k]P) the solution of (3.2.9) such that for ¢ € [0, T]

P

r Pl P and kF := Lim k"
n—oo

P 1 Pn . .
= limvy,”’ z¢ = limz my = limm
yt i’lﬁooyt ’ t n—,oo t t n—oo

3.4.2 Measurability of the constructed solution

In this paragraph, we justify the measurability with respect to a probability I’ of the construc-
tion in Section 3.4.1. The following result proved in [85](Lemma 2.3) provides the measura-
bility of a quadratic variation of a semimartingale under a probability law IP using results of

[73].

Lemma 3.4.1. Let P be a measurable set in My, (t,w,P) + HF (w) be a measurable function such
that for all P € P,HY is right continuous, F-adapted and (P, F¥ )-semimartingale. Then there
is a measurable function (t,w,P) — (H)F(w) such that for all P € P, (H)¥ is right continuous,
IF, -adapted and FY -predictable, and

(H)® is the predictable quadratic variation of the semimartingale H under IP.
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Proof. (i) For every n > 1, we define the following sequence of random times

" o= 0, weQ,
Pn . P,n P P —n . (349)
Ty = inft> 7" (w), |Hy (w) — HTM(w)| >27"M AL, weQ,i>1

We notice that T]P” are all IF,-stopping times since the H are right continuous and FF-

adapted. We then define

[H].(w) := lim supZ( i (@) = ng/n/\.(w))z_ (3.4.10)

n——+o0o i>0 r+1
It is clear that (f,w,P) ~ [HY];(w) is a measurable function, and for all P € P, [H"] is non-
decreasing, F-adapted and IF -optional. Then it follows by Karandikar[53] that [HT] coin-
cides with the quadratic variation of the semimartingale H” under IP. Moreover, by taking its
right limit over rational time instants, we can choose [H'] to be right continuous.

(ii) Finally, using Proposition 5.1 of Neufeld and Nutz [73], we can then construct a process
(H)F (w) satisfying the required conditions. O

Notice that the construction above can also be carried out for the predictable quadratic covari-
ation (H]P, Gﬂj)]P, by using the polarization identity

(HY,GPYP .= i((HP +GPYP (P - G“’>“’) (3.4.11)

The following result gives the property of the solution of the penalized BSDE (3.4.1).

Lemma 3.4.2. For each n > 1, there exists a measurable map (t,w,P) — (yltp’"( ), zItP"(w),

]tP "(w), k]tP’” (w)) such that for every P € Py, we have the following properties:

(i) y®m is right continuous, F -adapted and ]FE—optiomzl;
(i) zP" is F-adapted and FY -predictable ;

n, Z]P,n Pn )

(iii) m®" is right continuous, FY -martingale orthogonal to X under P such that (y*
satisfies

T T T T
Tk :§+/t P (yPm, 5l 220 ds — /t zf’”ﬁg/de}j—/t dmgP'”—i—n/t (yP" — Ls)~ds, P-a.s.
(3.4.12)

,m

Proof. (i)- Foreveryt € [0, T], (3.4.8) leads to

Pn P,n,m
y;© = lim y, 77,

m—r00

with

T T
II’nm+1 *5‘*’/ fs ]I’n,m’ag/ZZs]P,n,m)ds_/t Z;I’,n,m-«—l.ag/ZdWSIP_/t dmP" 1 P,
(3.4.13)

To prove the statement (i), we first prove by induction under m that y** is right continuous,

FF-adapted and FF%, -optional and then deduce the result by tending m to infinity.
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(a)-Basis m = 1: By definition y*"0 = 0, then by setting m = 0 and by taking conditional
expectation under IP with respect to F;, we have

T
=6 [ P00 7]

Since f is jointly measurable, we can apply Lemma 2.4.1. This Lemma states that there is a

version of conditional expectation EF {C + /. tT fm (0, O)dr’}'H} measurable with respect to IP

and w, in other words, (P, w) — y]tP'”'l (w) is B @ Fiy-measurable. With this jointly measura-

bility version and the fact that y]tp’"’l is Fy+-measurable, we use Lemma 2.4.3 to choose for any
IP € Py a P-modification of y¥! which is right-continuous, F -adapted and ¥ -optional and
then the property is verified for m = 1.

(b)- Inductive step: Assume that the property holds to the order m, then by definition we
have

T
yp = EP [5 + /t FE e, zEmm) dr ‘fu}, P-a.s.

and the same reasoning to the above about measurability applies to y¥*" 1 implies that there
exists a measurable map (£, w, P) — yI ™" ! (w) such that for every P € Py, y* "1 is right-
continuous, [F-adapted and F_-optional.

Thereby showing that (¢, w, P) — y "1 (w) holds to the order 1 + 1. Since both the basis and
the inductive step have been performed, by mathematical induction, for all natural numbers

m > 1, yP™ is right continuous, F -adapted and IF¥ -optional.

(c)- The passage to the limit: The sequence (y'""),,>1 is the Picard iterations and we
have seen in the above section that (™), > is Cauchy sequence under the (IP, a)-norm( for
a > 0 large enough) and that (y""™),>1 converge uniformly in ¢, P-a.s. Therefore, y""
converges (under the (I, &)-norm) to some process y¥" as m — oo which solves the penalized
BSDE (3.4.1). Following the previous paragraph the iteration y**"" are jointly measurable with
respect to time, space and probability law . Now we can use the Lemma 2.4.2 to find a family
of subsequences ((mY¥)>1,IP € Pp) such that the limit of y]P'"'mkIP is jointly measurable. And
this jointly measurable limit process still the solution of the penalized BSDE (3.4.1).

(ii) We prove the second statement using (3.4.8), zF" is the limit of the Picard iteration (zP"+1),,
also represented by

]P,n,m+1, X>ISP _ <yIP,n,m+1, X>gj—e

ﬁ;j/zz]f’”’mﬂ = limsup

€€Q,el0 €

The same reasoning applies to zI/* and a passage to the limit similar to above allows to
deduce the result. First let show that by induction under m that zP"*1 is F -adapted and
IF¥ -predictable.

(a)-Basis m = 1: For every t € [0, T], we have
e X)Y — L X)5

~1/2_ Pl ._ 7
a;'“zg ™" == limsup

€€Q,el0 €

The definition of quadratic covariationin (3.4.11), Lemma 3.4.1 and the first part of this proof(i)
prove that there is a measurable version of the function (t,w,P) — (y¥"1, X)F(w), such
that for every P € Py, (y¥"!, X)¥ is right-continuous, IF-adapted and coincides with the
predictable quadratic covariation of y*#! and X under IP. With this version of (y*1, X)P  itis
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clear that the family zP'»! defined above is measurable in (t,w, P) and for every IP € Py, zF!

is F.-adapted and IF¥ -predictable. Therefore assertion is verified for m = 1.
(b)- Inductive step: Assume that the property holds to the order m,

P,n,m+1 X r_ /., Pnm+l X P
_ limsup {y X)s — X)s—e

a}/Zzsﬂ’,n,m+1 .
€€Q,el0 €

Similar arguments to the basis step (a) induce that there is a measurable version of the map
(t,w,P) s zF "1 such that for every P € Py, 2"+ (w) is F-adapted and IF¥ -predictable.
Therefore we conclude by induction that zF*"*1 is F, -adapted and FF¥ -predictable for all nat-
ural numbers m > 1.

(0)- The passage to the limit: (z'""), -1 is a Picard iteration and a Cauchy sequence under
the (IP, &)-norm, then by (3.4.8) (zF*™),,~1 converges uniformly PP-a.s. to some process zI"
which is the z- composant of the solution to the penalized BSDE (3.4.1). By the same way, we

can use the Lemma 2.4.2 to find a family of subsequences ((mY )y>1, P € Py) such that the limit
P
ZPm of z]tP'n’mk still jointly measurable and verifies (3.4.1). This conclude the proof of (ii).

(iii) For n > 1, on the one hand by (3.4.8) m"" is a limit of Picard sequence (m"™),,~o which
verifies 3.4.2, thus for a fixed m > 0, (mT"""")~ is a IF¥ -adapted right continuous martingale
orthogonal to X. By letting m to infinity, the limit still a right continuous F¥ -adapted right
continuous martingale orthogonal to X. On the other hand we have already proved in the two
above steps the jointly measurability of y©" and zP”*. Also Picard iterations converge to the
solution of the penalized BSDE, thus by (3.4.1), mP" verifies

t ot t
mpt = Py [ PR R a2 s — [P a2awE o [ — L) ds.

We deduce that there exists a measurable map (t,w,P) +— m} " (w). Indeed f is jointly mea-
surable by Assumption 3.2.1(i) then mP " is a sum of measurable terms. o
]P,n,LP )

Lemma 3.4.3. There is a subsequence (n}.,k > 1) such that the sequence (y n? of jointly measur-

able functions with respect to B[0, T] x Fr x % converges and the limit denoted y* is also a jointly

measurable function. Moreover, for every t € [0,T] and P € Py, the limit process y¥ provides the
solution to the RBSDE (3.2.9).

Proof. The sequence (y",z0", mP", kP, - is solution of Penalized BSDE and we have
seen that (y©",zP", mP"), 5o converges to (y¥,zF, mP,kT) (see A.3.1). Moreover (y*"),>o
converge uniformly PP-a.s. Therefore, ¥ converges (under the norm defined on D3(F¥,P))
to some process y* as n — oo which solves the RBSDE (3.2.9). Following the previous Lemma
for each n > 0, yP* are jointly measurable with respect to time, space and probability law

. Now we can use the Lemma 2.4.2 to find a family of subsequence ((n} )i>0,P € Py) such
)i
that the limit of y]tp'n" is jointly measurable. And this jointly measurable limit process still the

solution of RBSDE (3.2.9). a

3.4.3 Dynamic programming principle

The dynamic programming principle here is principally based on universally selection mea-
surable theorem seen in section 2.3. The following result extends Theorem 2.1 of [85]in the case
of RBSDEs. Our value function V is given by: For every (t,w) € [0, T] x Q,

Vi(w):= sup E[y}],
PeP(tw)
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where y¥ is the first component of the solution of RBSDE(3.2.9). We have the following dy-
namic programming principle on V.

Theorem 3.4.1. Suppose that Assumption 3.2.1 holds true. Then for all (t,w) € [0, T] x Q, one has
Vi(w) = Vi(w.pt), and (t,w) — Vi(w) is B([0, T]) ® Fr-universally measurable. Moreover, for all
(t,w) € [0, T] x Q and F-stopping time T taking values in [t, T|, we have

Vi(w) = sup E[yf (7, V7)),
PeP(t,w)

where yF (T, V) is obtained from the solution to the following RBSDE with terminal time T and termi-
nal condition Vz,

yP = Ve + [T fEF, a2y ds — [ 2P - al/2awl — [T dmP + kP — kP, P-as.
yP > Ly, t€[0,7], P-as., (3.4.14)
Jo WF = L;-)dkF =0, P-as.

To prove this result, we proceed similarly to [85]. The first step of our prove is to establish the
dynamic programming principle of our RBSDE associated to the 2RBSDE.

Lemma3.4.4. Lett € [0, T],IP € Py, T be an F-stopping time taking values in [t, T| and (y]P, 20, mP, k)
be a solution to the RBSDE (3.2.9) under IP. Then one has

yi (T,2) =vi (vyy) =yt (T.EY[y7|F1]), P-as.

Proof. First, we consider a solution (y]P, 2P ml, k]P) to the RBSDE (3.2.9) associated to (¢, f, L)
under P w.r.t. the filtration F¥ = (FF )o<s<7, then

T T T T
oF =y + [ PR, a2 ds — [ 28 Al 2aw? — [Camf 4 [ kT, P
Taking conditional expectation w.r.t. F¥ under IP, we get IP-a.s. that

T T T T
P :]EP[yE’|f£’]+/t Jiﬂ’(yg’,ag/zzg’)ds_/t zg’-ﬁgﬂdw}’—/t dm£’+/t kP P-as.

P| 7P], and k¥ := kP is non-decreasing by the fact
}desP for s < 1, then

where the process kP defined by 2

E" [k7
that k¥ is non-decreasing. Since dkF = 1 { P

T ~ u ~ ~
| OF =L )df = tim [CF — L )R + (- — Lo ) AR

Uu—T-

U
= lim [ (yF — Ly )dkl + (% — L) EP[kF — k2| 7]

u—t~— JO
=E"[(7- — Lo ) (kY —K7)| 7]
=0.

The last equality is provided by (3.4.14), if (y©. — L.-) > 0, then kT — k¥ = 0. Therefore,
T A~
/0 (y]tP_ — L;-)dkP =0, P-a.s.and yF > Ly, Vt € [0, 7], P-a.s.

We also have 7L := EP[mL|FF], and m¥ := mP when s < 7. It is apparent that m" €
M} (F%,P) and by identification, we deduce that

ity =my + B[y + k7| F7) — (7 +K7)-
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and then 7" is orthogonal to the continuous martingale X under IP. Let consider a RBSDE

associated to (EF[yF|FF], f,L) on [0, 7], by uniqueness of this solution associated with the
properties verifies by ' and kP, it follows that

yP (1, ") = yF (r, EP[yF| FF)), P-as.

Finally, by definition of the RBSDE (3.2.9) it is clear that y¥ (T, &) = yF (t,yF). ]

We now back to the proof of Theorem 3.4.1. The proof is exactly the same to Theorem 2.1 of
[85] since we have proved the previous Lemma.

Proof of Theorem 3.4.1 (i) Assumption 3.2.1(iii) gives P(t,w) = P(t,w.n¢), and by defi-
nition of V we have V;(w) = Vi(w;n.). Furthermore, since (t,w,P) — yF(w) is a Borel
measurable map from [0, T] x Q2 x M by Lemma 3.4.3 and the graph [[P]] is also Borel mea-
surablein [0, T] x Q) x M by Assumption 3.2.1, it follows by the measurable selection theorem
that (t, w) — Vi(w) is B([0, T]) ® Fr-universally measurable theorem 2.1.1 ( or more precisely
upper semi-analytic).

(ii) Now, using the measurable selection argument, the DPP is a direct consequence of the
comparison principle and the stability of RBSDE (3.2.9). First, for every IP € Pj, we have

v (T,0) =vf (vye) =i (TE 7| 77)), P-as.
it follows by the comparison principle of the RBSDE (3.2.9) that

Vi(w):= sup EP[{(T,8)]= sup E[yf (v, EP[yr|FT])] < sup EP[yf (T, Vo)l
PeP(tw) PeP(tw) PEP(tw)

Next, forevery P € P(t,w) and € > 0, using the measurable selection theorem (see proposition
7.50 of [7]), one can choose a family of probability measures (QS,)ycq such that w — QS is
Fr-measurable, and for P-a.e. w € ),

Q5 € P(r(w),w) and E%[yTe (T,8)] = Vo) (w) —e.

Then P ®: Q° € P(t,w) by Assumption 3.2.1(v). Finally, using stability of the solution to
RBSDE (3.2.9)(see Proposition 3.3 of Bouchard et al [14] ), it follows that

Vi(w) > BPerQ [PeeQ) _ pPerQt [ PerQ’(o  PorQty)
— EP®Q° [yltP&Q? (T,]EIP@TQ? [ylf&Q? |]_-T])]
— P [yP (7, EPErQ TaandrA )]
> E¥ [y} (7, Vr)] — Ce,

for some constant C > 0 independent of €. And hence the other inequality of the DPP holds
true by the arbitrariness of € > 0 and as well as that of P € P(¢t, w). a

3.4.4 Path regularization of the value function

After proving the DPP, we are interested in the right-continuity property that the first com-
ponent of the solution of the 2RBSDE (3.2.5) should verify. The first step is to represent the
right-continuity modification of V as a semi-martingale under any IP € Py and then give its
decomposition. We define for all (t,w) € [0,T) x Q

Viii= lim  V; and Vi :=Vr.
reQN[0,T],r it
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Our first objective is to show that V' admits right- and left- limits outside a Pp-polar set.
Since for all t € (0, T, Vf is by definition ]-"tqu—measurable, we can deduce that VT is in fact
IFPo+-optionnal. The downcrossing inequalities below is proved in [66] for RBSDEs but not in
a general filtration. We apply the same arguments to prove the result to the case of general

filtration. Let | := (7,),eN be a countable family of [F-stopping times taking values in [0, T
such that for any (i,]) € IN2, one has either 7; < T, 0r T > T, forevery w € Q). Leta > b and
Ju C ] be a finite subset (J, = {0 < 7y < --- 1, < T}). We denote by DY(V, J,) the number of

downcrossings of the process (Vz, )1<k<, from b to a. We then define
Db(V,]) :=sup {DZ(V, Jn) : Jn C J, and J, is a finite set } .
The following lemma follows very closely the related result proved in Lemma A.1 of [13].

Lemma 3.4.5. Fix some IP € Py. Let Assumptions 3.2.1 and 3.3.1 hold. Denote by Ly the Lipschitz
constant of the generator f. Then, for all a < b, there exists a probability measures Q, equivalent to IP,
such that

eLfT

e oy ] < &

E® [eLfT(Vo Ab—a)—e YT (VpAb—a)t

T
+e (Ve Ab—a)” + eLfT/ ’]ﬂP(IZ,O)‘dS}
0
Moreover, outside a Po-polar set, we have

lim Vi(w) := lim  Vi(w), and lim Vi(w):= lim  Vi(w).
reQN(t,T),rt reQN(t,T),rt reQN(t,T),r1t reQN(t,T] 1t

To prove the above result, we need to recall some properties verifed by V defined at [F-stopping
times. For any [F-stopping times T > ¢, we have from Theorem 3.4.1 that

Vo) (@)= sup E" [yf(w) (1, vT)] ) (3.4.15)
PeP(r(w),w)
We refer the reader to [22] for the precise details about the proof of this result.
Lemma 3.4.6. For any IP € Py, for any [F-stopping times 0 < o < T < T, we have

o(w) o(w)
EP yre) (4, Vo) = P [y (x, Vi)

]-'(7] (w), forP-ge we Q.

The following inequality is the consequence of the above equation.
Vo(w) = B [y (T, V2)], forany P € P(o(w), w). (3.4.16)

These inequalities allow one to prove Lemma 3.4.5.

Proof of Lemma 3.4.5. Without loss of generality, we suppose thata = 0. Let J, = {1, 7, - , T }

with0 =1 <7 < --- <1 =T Foranyi =1,...,n and w € (), let the following RBSDE

under P! (@)
Ti-1(w) ) i1 (w) . ptie1(@) o Ti-1(w)

A o K e T Y A

on [7;_1, 1]

o pTie1(@) - 71 (w) ) T (w) ) LT (@) )
_ ftTl Zérﬂjw . ag/zdwsﬂjw _ ftTl dmlsl]Pw + ftTl dklsl]Pw , ]I’Z’,’l(w)—a.s.,

. Ti71(w) 2
;/]Pw 2 Lt/ te [Tifll Tl]/ ]13871 (w)_a's'/

y
(@) (w)

X P | Y .
JE e —Lyakd =0, PG W,
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where A and 7 are two bounded processes (by the the Lipschitz constant L  of f) appearing
in the linearisation of f due to the Lipschitz property of f. Define the linear RBSDE,

(w)

i P (o
U =V + [T (= 1fs

pte1@) 7_1(w) , - Ti-1(w)  _iptie1(@) )
_ ftTl Zérﬂjw . ag/de;Pw _ ftTl dn—,llsl]Pw + ftTl dklsl]Pw / I[’Z’,’l(w)—a.s.,

_ipli-1l @)

. w) ) -1
+ AL, +l-al?zhe T )ds

o Tio1 (@) )
]7{11)‘” > Ly, t€ 11,71, H’Z’l(w)-a.s.,
o api-1@) () 4
JE @R L)k =0, PG W,

By Assumption 3.2.1(iv), for P-almost every where w € (), we have ]PZ’}’l(w) € P(1i-1(w), w).
Therefore on one side by comparison principle for supersolution of BSDEs and on another side
by (3.4.15), we have

T o Ti—1(@)
gl <y < v (w). (3.4.17)

. o . nTiel (@)
We consider X} = eloAsds, By It6’s formula applied to Xzylt’]P‘” between t and T;, we can
rewrite the above RBSDE as

. oTie1(w) . . 7i_1(w) L aptic1@) Ti_1(w) .
Xigi"e = XV — X Olds — Xt G 2wl T — ylds)

_ - Tio1(@) . _pTic1@) )
— X dmPe 4 [Tl gple T pi@as,

LT (w)
‘—/]Pu’v 1 . 71 (w
Xiylt > X;Lt, t e [Ti—eri}/ P 1 >—a.s.,
- oTio1(@) - oTi—1(@)
T . _ ,]P i—1 — ,]P i—1
JE XL @ — L )aRe

Ti-1

=0, P! (w)—a.s.

One can now use the link between the RBSDEs and optimal stopping problems to establish

7_1(w)

(@) P
fs¢

T . T . 7_1(w) v s i
_jph-1 Ti—1(@) i i—1( - Alds
ik = esssup ET@ {5( i - dWPe ) ( - efTH ’
T 1<v<T; Ti-1 Ti—1
v F-s.t.

0l ds

Y Alds T Alds
Lo M veli M) |[F

where v is a F-stopping time. Hence by (3.4.17), it is clear that

71 (w)
w

Ti—1(w) T . 71 (w) v S Aig
esssup EFw {5( 7l dWPe ) ( _ / ol A5 I 'O)ds
Ti-1SVST Ti-1 JTi 4
vIF-s.t.
U Alds T Alds
b LM, vl ) R ] < v )

Using the definition of the r.c.p.d., it follows that

VoS Ads| opli-1l)
esssup IEQ[f/ effifl ’ fAsIP ’O‘ds
Ti,lgvgl’i Ti-1
vIF-s.t.
Vo Alds T Alds
t Lehin M vl M R ] < v, P

where the probability measure Q is equivalent to I’ and defined by
aQ By
P = g(/ﬂq_l 77; deP>, t e [Ti_l,Tl’].
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Hence, by choosing v = T; above, we get

IEQ[—/T{ e
T

1

Ji Alds| pTi-10)

Ti-1 fS .

i
s

v
T

Fi] € Vo, Paas.

Let A ==Y, /\él[h . (8), then one has that the discrete process (Ux, )o<i<, defined by

7

Uy = Vel e [ " el Mvr| fR0
is a Q-supermartingale relative to [F. Define further
Uy, := Ug A (beLfT — /OTi elo )"dr|jﬂsp'0|ds>,
which is also a Q-supermartingale relative to IF. Let
Up = beJo Ardr _ /Ot eho A’d’|fsﬂ)'0’ds,
and
Iy = 7/Otefgmdr‘]ﬂsP,O

It is clear that D}'(U,]) = Dj'(U,]), in others words the number of downcrossings of the
process U from [ to u is equal to the number of downcrossings of the process U from [ to
u. Since | is decreasing in t, so that we can apply the classic downcrossing theorem from
supermartingales (see Doob [31]) to U and obtain

EQ[D§(v, )] <EC[D}(T, )]
LfT _ B _
< T]EQ [(To — Ur) — (ur — Ur) A O]
LfT T s
< T]EQ [(Uo AbetTy — Up A (belsT _/0 eo Ardr| F.0) gs)

— (ur — (beLfT — /OT el )"dr|jﬂsp'0|ds)) A 0}

ets! LT LT [ 7P0 T Xeds o poLeT
< S EQ[eT (Vo A b) + e / [FF0|ds — (Vrelo A< p belsT))|

LT o
< T]E‘Q BT (Vo Ab) + eLfT/ ’fﬂjo‘ds - VTefﬂ Asds A pelsTy+

+ (Vpelo A5 5 pelsT) }

oL T

< S EQ[elT (Vo D) +eLfT/ [FE0ds — e LT (Ve Ab)* + e T (Ve A b)),
which proof the statement for a = 0.

Let set
Y = {w € O s.t. V.(w) has no right- or left-limits along the rationals } .

We claim that X is a Pp-polar set. Indeed suppose that there exists IP € Py satisfying (%) > 0.
Then, X is non-empty and for any w € X, the path V.(w) has, e.g., no right-limit along the
rational at some point ¢ € [0, T]. Hence we can find two rational numbers a, b such that

lim Vi(w)<a<b< lim  V,(w),
reQN(t,T]rt reQN(t,T]rt
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and the number of downcrossing DE(V, ])(w) of the path V.(w) on the interval [a, b] is equal
to +c0. However, the downcrossing inequality proved above shows that DY(V, J) is Q-a.s. and
thus P-a.s. (see Lemma A.2.1), finite, for any pair (a,b). This implies a contradiction since
we assumed that P(X) > 0. Therefore, outside the Py-polar set X, V admits both right- and
left-limits along the rationals. O

Using Lemma 3.4.5, we obtain

VtJr = lim  V;, outside a Py-polar set,
reQN|0,T],rlt

and from this we deduced that V7 is right-continuous outside a Py-polar set.

3.4.4.1 Representation formula
We begin by extend this inequality (3.4.16) to V.

Lemma 3.4.7. Forany 0 <s <t < T, forany P € Py, we have
V.t >yP(t,v,"), Pas.

The proved of this Lemma is in [85] and the proof is the following.

Proof. Choose some (s,t,w) € [0,T] x [s, T] x Q and some P € Py. Letrl € QN (s, T], 7} | s
and 2, € QN (t,T)], 72, | t. For any m,n > 1, inequality (3.4.16) applies to ) and 2, give that
for P € P(r}, w)

vV, > EP {y]ﬁ (rfanr,zn)]

In particular, the stability under conditioning of P (remember Assumption 3.2.1(iv)) yields for
P-a.e. w € ), we have

Vrl(w)zlE“’ﬁ[yg(m%z)} EP [y}, (73, V2| 5y | (), (3.4.18)

n

where we have used Lemma 3.4.6. We have by definition of V* that

lim V1—Vs ,P-a.s.

n—+00

Our next goal is to show that

EP [y 1 (7 m,Vz | rn} yP(r m'Vr%,)' for the norm || - HIL},w'

n——+oo

In fact, we have

PP [Y5 (2, Vi) | Fy] =y (2, Via) || = P [[BP 5, (7 Via) = yF (7, Via ) F ] ]
<P [E” [Iy5, (3, Vig) = o (3 Vi)l 7]
< EP [y} (7 Vig) = o (5, Vig -
Then since yrl( m/V2 )is cadlag, we know that y 1 (2, ) goes, P-as. to y¥(r merz,,) as n

goes to +oco. Moreover, by the a priori estimates of the solution of RBSDEs( recall Theo-
rem 3.3.5 ), the quantity yﬁ (r%n,\/r’zn ) is uniformly bounded in LF(FE*,P), and thus the se-

quence (y]rP1 (r%,z,Vr%l))nzl is a uniformly integrable family by de la Vallée-Poussin criterion
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(since p > 1). Therefore the dominated convergence theorem implies that the last term of
the above inequalities go to 0 and then

lim ]E]P“IE]P[]/l mrs Vm | J ys m/Vrz)’] =0.

n——+oo

Hence taking a subsequence if necessary, we have that the right-hand side of (3.4.18) goes
P-as. toy¥ (12, Vr%,) as n goes to +o0. Letting 1 goes to +co in (3.4.18), we have

Vs+ > yg)(r%w Vr’zn )/ P-as.
Otherwise, we have by the dynamic programming for RBSDEs

Vs (e Via) =y (Vi) =y (ris Via ) =y (i, Vio) + 98 (3 Vi) — s (£ V)

=y (Vi) = ys (ra Vi) + s (B yE (3, Vi) — e (1, V).

The inequality (A.4.3) yields the first difference on the last equality converges to 0, P-a.s.
Applying the same method that we have used for the estimates (A.4.3), we control the second
difference by

EP ||Vt —yF (7, Vi) P |7

for some 1 < § < p. This term goes IP-a.s.(at least along a subsequence) to 0 when m goes
~+oo(see Proposition A.4.1). Consequently,

lim (y3 (r, Vi) =2 (£V;7)) =0

m—+-o00

which completes the proof. O

The next result is an extension of the previous result to stopping times.

Lemma 3.4.8. For any F-stopping times 0 < o < T < T, for any P € Py, we have
V5 > yP(r, V), P-as.
In particular V' is cadlag, Po-q.s.

Proof. Assume first that o takes a finite number of values {t, - - ,t,} and that 7 is determin-
istic. Then, we have for any IP € Py

n n
V=Y Viflomny 2 vt (T V) oy = w5 (T, Vi), P-as.
i=1 i=1

Assume next that both 7 and ¢ take a finite number of values {t1, - - , t, }. We have similarly

M-

I
—

n
Vo (T V) =Y yo (b, Vi ) leyy < Y Vi Loy = Vi, P-ass.
i=1
Then, if o is general, we can always approach it from above by a decreasing sequence of IF ;-
stopping times (¢"),>1 taking only a finite number of values. The above results imply directly
that
V+

oAT —

> yP (T, V), P-as.
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Then, we can use the right-continuity of V* and y® (7, V" to let n goes to +co and obtain
V.m > yP(r, V), P-as.

Finally, let us take a general stopping time 7. We once more approach it by a decreasing se-
quence of F-stopping times (7"),>1 taking only a finite number of values. We thus have

VF > yP(«", V1), P-as.

4 Tl’l

The term on the right-hand side converges (along a subsequence if necessary) IP-a.s. to y¥ (, ?;r )
by Lemma A.4.1.

It remains to justify that V' admits left-limits outside a Py-polar set. Fix some IP € Py. Follow-
ing the same arguments as in the proof of Lemma 3.4.5, we can show that for some probability
measure Q equivalent to I’ and some bounded process A,

t t s
U; := VieloAsds +/ elo )"dr|fgp'0|ds,
0

is a right-continuous (Q, IF; )-supermatingale, which is in addition uniformly integrable under
Q since V and FP'O are uniformly bounded in IL.?(Fr, P) and thus in IL? (Fr, Q) for some 1 <
p < p. Therefore, for any increasing sequence of F_-stopping times (p"),>0 taking values in
[0, T), the sequence (EQ[V,»]),,> is non-increasing and admits a limit. By Theorem VI-48 and
Remark VI-50(f) of [26], we deduce that V, and thus V™, admit left-limits outside a Q-negligible
set. Moreover, the above implies that the set

{w e O,V (w) admits left-limits },
is Pp-polar, which ends the proof. i
Similarly to [66] and [85], we have the following representations.

Lemma 3.4.9. For any F-stopping times 0 < ¢ < 1 < T, forany 0 <t < T, for any P € Py, we
have

V, = esssup’ E [y]},)/(r,y]f/)‘.%}, P-a.s.and V;" = esssup? y]tp,(T, &), P-as.
P,EPU(U/P/F) IP’EP()(t,IP,]F+)

where Py(c, P, F) is defined in Section 3.2.3. In particular, if Assumption 3.3.1 holds, one has V' €
D} (FP0+).

Proof. We start with the first equality. By definition and Lemma 3.4.6, for any P’ € Py(c, P, IF)
we have

Vo > B [y¥' (x,4F)| 72|, P-as.

But since both sides of the inequality are F“-measurable and IP’ coincides with P on F, (and
thus on FY, by uniqueness of universal completion) the above also holds P-a.s. We deduce

V, > esssup’ E [yg)/(T,y?ﬂfT}, P'-as.
PPy (0,P,F)

Next, notice that by Lemmas 3.4.3 and 4.4.3, (t,w,Q) — EQ[y2(T,&)] = EQ[y2(7,y?)] is
Borel measurable. As in the proof of Theorem 3.4.1, it follows by the measurable selection
theorem(see e.g. Proposition 7.47 of [7]) that for every € > 0, there is a family of probability
measure (QS,)yecq such that w — QF, is Fy-measurable and for P-a.e. w € Q),

Vo(w) (w) < EQw [yg(zgu)] + ¢, P-as.
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Let us now define the concatenated probability P¢ := P ® QF so that P¢ € Py(c,P,F), it
follows then by Lemma 3.4.6 that

V, <EF [y]}:e('r,y]fe)‘}}] +e< esssup’ EF [y]};/(T,y“:) ]]—'T} +¢, P-as.
P'ePy(0,P,F)

We hence finish the proof of the first equality by arbitrariness of € > 0.

Let us now prove the second equality. Let r, € QN (¢, T], r} | t. By the first part of the proof,
we have

Vr}, = esssupﬂ’ EF’ [yg(T,g”}‘r}l], P-a.s.
P'cPy(rL,P,F)

Since for every n € IN,Py(r,P,IF) C Po(t,IP,IF+), we deduce as above that for any P’ €
Po(t,IP,F ) and for n large enough

v, > EP {y}i (T, ) ]]—‘r}z}, P-a.s.
Arguing exactly as in the proof of Lemma 3.4.7, we can let n go to 4o to obtain
Vit > yF(T,¢), P-as,
which implies by arbitrariness of P’/

V;F > esssup’ yF' (T, &), P-as..
PPy (t,P,F+ )

We claim next that for any n € IN, the following family is upward directed
{]E]P/ [Vg(T/ C)’]’—rﬂ, P e Po(r,l,l,]P,IF)}.

Indeed this can be proved exactly as in Step 3 of Theorem 3.3.1. According to Neveu [74], we
then know that there exists some sequence (IP™),,,~o C Po(r}, P, F) such that

Vg = Jm 1 EPH [y]:?(T’ §)|J—',ﬂ, P-as.

By dominated convergence(recall that the yT are in ng (FP+,1P), with a norm independent of

IP, by 3.3.10), the above convergence also holds for the ]Lg (IP)-norm, forany 1 < p < p. By the
stability result of Proposition A.4.1 and the monotone convergence theorem, we deduce that

yr(rl, Vi) = yr (r}z,mliQm + EPY [ylrl?n (T, &)|Fa] ), P-a.s.
EZI(T, <;‘)|]-'r111]>, P-a.s.

= lim y]tpzl (r},,]EIP? [ngI(T,§)|Fr}J),IP—a.S.

m—r—+oo

= 1im_yF(r, EM [y

m——+00

. P rm
= lim y;" (7’3,/]/r}1’1 (T,Z)), P-as.

m—»+oo

= lim y]tPZl(T,C), P-as.

m—r—+oo
< esssup y]tP/ (T, ), P-as.
P’ €Py(tPFy.)
where we have used in the third equality the fact that P} coincides with IP on 7,1 and that yr is

F, -measurable, Lemma 4.4.3 in the fourth equality, and the dynamic programming principle
for RBSDEs in the fifth equality.
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Finally, it remains to let 7 to to +oco and to use Lemma A.4.1 (together with Lemma A.2.2) to
obtain the desired equality, from which we deduce exactly as in the proof of Proposition 3.3.5
that V* € D} (FF"°"). O

The next result shows that V™ is actually a semi-martingale under any IP € P, gives its de-
composition and deduce the existence of a solution to the 2RBSDE (3.2.5)

Lemma 3.4.10. Let Assumptions 3.2.1 and 3.3.1 hold. For any IP € Py, there exists (ZIP, MIP,K]P) S
H) (FY, P) x M} (FY,P) x I} (FY, P) such that
T o T T T
v = ¢+/ APV, a 22 ds —/ 7P . gxeP —/ AMP +/ dK®, t € [0, T), P-a.s.
t t t t
Moreover, there is some FT0-predictable process Z which aggregates the family (Z¥)pep, and the
quadruple (V*,Z, (M¥)pep,, (K )pep,) is solution to the 2RBSDE (3.2.5).

Proof. The proof will be divided into three steps. The first step will be devote to the semi-
martingale decomposition of V7, in the second one, we will justify the aggregation of the
family (Z]P)]Pe'po and finally we show that the quadruple is solution to the 2RBSDE (3.2.5)

(i) Fix some IP € Py. Consider the following reflected BSDE on the enlarged space. For 0 <
t <T,IP-as.

« P A 9 T. PN T ;+ T .y
y}’_§+ft fR @@, a2 ds — [ 2P - 2awl — [ dml + [ dkP
y]l’ > V+

Jy @GP — vE)akP =

By Theorem 3.11in [14], this RBSDE is well posed and i is cadlag. We claim that /¥ = V*, P®
Py-a.s. Indeed, we argue by contradiction, and assume without loss of generality that 7 >
V,©. For each € > 0, denote e := inf{t : ¥ < V;" + €}. Then ¢ is an [, -stopping time and
yv]tp, > V;I +e> V;Z for all t < .. Thus 121}’ = 12]1;6, P-a.s. for 0 < t < 7. and thus

i =it [ R a2 [Tl 2awE — [T ik, P e Poas,
Therefore,
I = yF (e V) = 98— T + /Te{fs (9,228 — P (oF, 0t/ 22E) s
,/ Py . g1/ 2gWP /:ed(m]sl’ —m¥) — (K° —kF).
where (y¥,yT, mP, k) is a solution to the RBSDE (3.2.9). Similar linearisation argument that

we we used in Step 1 of proof of Proposition A.4.1 implies that there exists two processes A
and 7 such that

fs (g]sP//\g/ZV]sP) f (ys /Ag/z Zs ) - As(gg) —Ys ) +775 111/2(Z _Zs]P)

and
Te s
7~y = el At v —/0 eloMsds (2P — 2Py Gl /2 dWP — ods)

€ s Te s
— / eJo Asds q(mlP — mP) — / elo Asds gl
0 0
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Then, there exists a probability measure Qp equivalent to IP such that

"Te 5 Te " .
T - = B [N g ) — [T el ndsagd]

Te
< B [ Aot (g _y7ty]
< CE® [j} — V] < Ce.

where C > 0 is a constant only depending on the Lipschitz constant of f. Note that this
equivalent to 7} < y¥(t, Vi) + Ce. However by Lemma 3.4.7, we know that y{ (e, Vi) <
V,", which contradicts the fact that uE > v,

For some (Z¥)pep, € HY(FY,P), and (MF, K¥)pep, € M) (FY,P) x I} (FY, P)

T “p T T T
v :g+/t 7 (V;,al/zzg’)ds—/t z;l’-dng“’—/t dM]SI’+/t dKP, t € [0, T], P-as.

(ii) By Karandikar [53], since V' is a cadlag semi-martingale, we can define a universal process
denote by (VT, X) which coincides with the quadratic co-variation of V' and X under each
probability IP € Py. In particular, the process (VT, X) is Py-quasi-surely continuous and hence
is IFP0+predictable (or equivalently FP0-predictable). Similar to the proof of Theorem 2.4 in
[75], we can then define a universal F"0-predictable process Z by

v+, X
Zt = ﬁte 7< >t ’
dt
where 7, represents the Moore-Penrose pseudoinverse of ;. In particular, Z aggregates the

family (Z%)pep,

(iii) Fix t € [0, T] and P € Py. According to the two previous steps, it remains to show that
the families (K¥)pcp, and (k¥)pep, satisfies the minimality condition (3.2.8). Let us denote
forany P’ € Py(t, P, FF;),

V=V —y]tP/ and (5K]tP/ = K]tP/ — k]tP/.

By (3.3.4), we have
/! T / /
6V =EF| / G askY' | 7).
t

where G'F’ is defined in Remark (3.2.3). Then taking the essential infimum over P’ € Py(t,P,F)
in the above equality, we get

T
essinf EF { / G d(KF — k)| F, +] =V = esssup yl
P'ePy(t,P,Fy) t s ° ° { f f T’Epo(t,TEF+) !

Finally the minimum condition is obtained by using the representation formula of V* estab-
lished in Lemma 3.4.9 and this concludes the proof.
O
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Chapter 4

Second order Reflected BSDEs
under weak assumptions: the case
of an upper obstacle
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4.1 Introduction

In this chapter, we consider the 2RBSDEs with an upper obstacle, that is, we study the case
where the solution is forced to stay below a given stochastic process. Following Soner, Touzi
and Zhang [91], these solutions are closely linked to the standard RBSDEs with an upper ob-
stacle.

Given a filtered probability space (Q), F, (Ft)o<¢<T,IP) generated by a Brownian motion W,
a solution to a RBSDE with an upper obstacle (Ut);c[o,r) associated to a generator f and a
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terminal value ¢ is a triple of progressively measurable processes (Y, Z, K) such that

T T
Y, = g+/t Fo(Ys, Zo)ds — Ky + K —/t Z.dW,, P-a.s.
Y < U, t€0,T], P-as.

T
/ (U, — Ys)dKs = 0, P-a.s.
0

The increasing process K plays the role to push the solution downwards, so that it may remain
below the obstacle. The last condition is known as the Skorokhod condition and guarantees
that the process K acts in a minimal way, that is to say only when the process Y reaches the
obstacle U. In comparison with the definition of the RBSDEs with a lower obstacle given in
section 1.1.3.1, one can observe that in the theory of standard BSDEs, the reflection problem
with obstacle is symmetric. In other words, for the lower case, a non decreasing process is
added by addition in order to maintain the solution above the obstacle and for the upper case,
a non decreasing process is added by subtraction in order to maintain the solution below the
obstacle.

Following the wellposedness of 2BSDEs of [91], Matoussi, Possamai and Zhou in [66, 68] in-
troduced 2RBSDEs with a cadlag lower obstacle. They represented a solution of a 2RBSDE
as a supremum of standard RBSDEs with the same generator, terminal condition and lower
obstacle, but written under the different probability measures. A non decreasing process K has
been added by addition and this process plays two roles. The first is to maintain the solution
of the 2RBSDE above the obstacle and the second is to maintain the solution of 2RBSDE above
all the solutions of standard RBSDEs associated.

Similarly a solution of a 2RBSDE with an upper obstacle must be at the same time below the
obstacle and above standard RBSDEs with the same upper obstacle, generator and terminal
condition. These two effects start to counterbalance each other and the situation changes dras-
tically. This is clearly explained in [66] that unlike with classical RBSDEs, considering a lower
obstacle in the context of second order is fundamentally different from considering an upper
obstacle. Therefore, in contrast to the case of lower obstacle, one needs to add by subtraction a
non decreasing process to push the solution downwards and to add by addition a non decreas-
ing process to ensure that this solution stays above the standard RBSDEs associated which at
the end is equivalent to add by addition a finite variation process.

It is worth pointing out again that the existence and uniqueness result of [91] and [66] have
been obtained under uniform continuity assumption on the terminal condition, the genera-
tor and the obstacle. Since the existence of the solution is essentially based on the dynamic
programming principle which needs the measurability of the value function, this regularity
condition allowed to establish the uniform continuity of the value function.

Recently considering the optimization over a set of non-dominated probability measures of
solutions of BSDEs, Possamai, Tan and Zhou proved a dynamic programming principle for
this stochastic control problem using selection measurable argument. The authors obtained
wellposedness result for 2BSDEs which does not require any regularity assumption on the
terminal condition and the generator. In the same way as Chapter 3, our goal is to prove
existence and uniqueness to 2RBSDEs with an upper obstacle in a general filtration without
any regularity condition on generator, terminal condition and obstacle.

This work is carried out in the same approach as chapter 3 and then we will keep same no-
tations and results obtained in this chapter. The remainder of this chapter is organized as
follows. First, we give the formulation and the definition of 2RBSDEs, then the following sec-
tion is dedicated to representation and uniqueness of the solution. The last section is devoted
to the existence of the solution using DPP.
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4.2 Formulation

4.2.1 Notation, spaces and norms

We consider a fixed T > 0and d € N. Let QO = {w € C([0,T],R?) : wy = 0} be the canonical
space equipped with the uniform convergence norm ||w||ec = supy—;7 ||@t||, X the canonical
process, i.e. Xi(w) = wy for all w € O and Py the Wiener measure on () under which X is a
Brownian motion. We denote by IF = (F;)o<¢<7 the canonical filtration, F; = (F;")o<;<r the
right limit of F with 7} := N>+ F; forall t € [0, T) and 7 = Fr.
We keep all the notations, the space of models, assumptions and remarks, spaces and norms
introduced from section 3.2.1 to section 3.2.3. In addition, for a fixed t € [0, T] and w € Q) we
define the following spaces where X := (X;);<s<1 denotes an arbitrary filtration on (Q), Fr),
IP denote arbitrary element in P(t,w) and Xp denote the P-augmented filtration associated to
X:

— For p > 1, we introduce Vf/ (X, P) the set of all X-progressively measurable processes K
with P-a.s. cadlag and bounded variation paths on [t, T| with Ky = 0, IP-a.s. and

KW gy = EP[(Varyr(K))?) < +ov

In the above Var; r(K) denotes the total variation of K on [t, T].
— We will say that a family (K¥)pep,,) belongs to Vzw((X]p)]Pefp(t,w)) if for any IP €
P(t,w), KP € V] (X,PP) and

sup K[l ) < +oo.

14
PeP(t,w) tao (P)

4.2.2 Formulation

Our upper obstacle is represented by the process U. We will assume that (ut)te[O,T] is cadlag
and U € ]Dg(]FEO). The terminal condition ¢ and the generator f are introduced in section

3.2.2. The following formulation is related to the universal filtration IFEO and remember that
every IP € Py doesn’t a priori satisfy the martingale representation property, then we follow
[85] and for every P € Py, we consider a 2BSDE driven by the P-martingale part X“¥ of X
reflected to the upper obstacle U given by

T ~ T T
Ye=¢+ ft ;P(Ys/ﬂg/zzs)ds o ft Zs 'ng']P o ft dM]tP + KI%) o KQP’
0<t<T, P-as., VP € P,

Y; < U, 0<t<T, P-as., VP € Py,

(4.2.1)
where for every P € Py, M¥ is a P-martingale null at 0 orthogonal to X“F. This additional
martingale comes from the fact that this equation are with respect to a general filtration, more
details about the definition of RBSDEs in general filtration are given in section 2.5.

For any P € P and a Fr-measurable random variable ¢ € L} (F), let (4%, 2%, m®,kP) :=
(y*(T, &), 2% (T, &), m"(T,&),kP(T,£)) denote the solution to the following standard RBSDE
with upper obstacle U:

Y=+ ftTﬂP(yg},ﬁg/zzsﬂ))ds — fthgP dxST — ftTdmgI) — kY + kP, 0<t<T, P-as.
yP < U, t€[0,T], P-as.,

S Uy —yP)dkP =0, P-as.
(4.2.2)
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where m" is a martingale orthogonal to X under IP. Bouchard et al in [14](see Theorem

3.1) have proved existence and uniqueness of a solution to the reflected BSDEs (4.2.2) with
(v, zF mf kF )ieor) € DY, P) x HY(FT,P) x M (IFT, P) x I (IFY, IP) satisfying equa-
tion(4.2.2) under .

Remark 4.2.1. Bouchard et al in [14] proved existence and uniqueness of RBSDEs with lower obstacle
in a general filtration. Since in the theory of standard BSDEs there is a symmetry between lower and
upper obstacles, this is sufficient to deduce that this result is still true when the obstacle is an upper one.
For more details about existence of these solutions ( about upper and lower obstacles) via penalization,
we refer the reader to Appendix section A.3.

We define a 2RBSDE with the upper obstacle U with respect to the filtration ]Ffﬁ as follow: for
fixedp > 1,

Definition 4.2.1. We say that (Y, Z) € D} (F.?) x H} (IF}?) is a solution to the 2RBSDE (4.2.1) if :
(i) Yy =¢ and Y; < Uy, t € [0, T], Po-q..;

(ii) VIP € Py, the process KT defined below has paths of bounded variation P-a.s.

t t
KP:=Yy—-Y; 7/0 (Y, ak%75)ds +/0 Zs-dXST + MF, t € [0, T], (4.2.3)
(iii) We have the following minimality condition:

T
essinff EF / G a(K® + kY| FP | =0, 0<t<T, P-as, VP c Py (4.2.4
P’ePy(t,P,F) |: t s ( S s )| t+:| <t< 0 ( )

where for any t € [0, T) and for any P € Py , the process G'T is defined by
"S 1 S
G i=exp ([ (AF = 5 ImE IR a8, Zu 2+ [ nE (Y v, 22,28 - awy).
The processes A¥ and #* are introduced in Remark 3.2.3(2)

Notation: Py(t,P,Fy) :={P' € Py: P =P on Fp; }.

. . P P,
Remark 4.2.2. 1. Rigorously, the solutionis (Y, Z, (MF)pep,, (K )pep,) € D) (F,°) x H) (F.°) x
M) ((FY)pep,) x V5 ((FL ) pep,) and through misuse of language, we denote (Y, Z), given the
dependence in P of K¥ and MY,

2. For the same reasons as in Chapter 3, we use the review minimality condition introduced by
Matoussi, Possamai and Zhou [68].

3. Using the above definition, the for any P € Py, K¥ — MY is a semimartingale defined by
t t
KP = MP=Yo—Yi— [ fP(valZ)ds + [ Z,-axe®, te o,T],
0 0
Using recent results of Nutz [76], under additional assumptions (related to axiomatic set theory)
the family of semimartingales (K¥ — M®)p can always be aggregated into a universal semi-

martingale K — M. Then by the uniqueness of decomposition of semimartingales, the processes
K® and MY can be aggregated into processes K and M.
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For the same reasons mentioned in chapter 3, it is more advantageous for us to work with a
Brownian motion, then throughout the rest of this chapter, we consider the following RBSDE
defined using WP a P-Brownian motion on (), which is equivalent to the RBSDE 4.2.2,

yP=c+ [T PP, a2 yds — [T 2P - al/2awP — [TdamP — k2 4 kP, 0 <t < T, P-as.
yf < U, t€[0,T], P-as.,

Jo (U —yP)dkF =0, P-as.
(4.2.5)

Remark 4.2.3. The definition 4.2.1 differs from the definition 3.2.1 in the meaning that the process K¥
has bounded variation. Therefore, KT is the difference of two non decreasing processes. The first non
decreasing process exactly as with 2BSDE framework forces the process Y to stay above all the y* and
the second one pushes the process Y to stay below the obstacle U. We notice that as shown in Example
1 in Introduction section 1.1.2.2, 2BSDE are a natural generalization of the G-expectation introduced
by Peng [78] which is an example of sublinear expectation. One can also refer the reader to the paper by
Pham and Zhang [80], whose problematic are strongly connected to 2RBSDEs. They study some norm
estimates for semimartingales in the context of linear and sublinear expectations, and point out that
there is a fundamental difference between non-linear submartingales and supermartingales. Translated
in our framework, and using the intuition from the classical RBSDE theory, when the generator is equal
to 0, a 2RBSDE with a lower obstacle should be a non-linear supermartingale, while a 2RBSDE with
an upper obstacle should be a non-linear submartingale.

4.3 Uniqueness of the solution and others properties
Following [66] and [85] in addition to Assumption 3.2.1, we will always assume the following
in order to prove uniqueness of the solution to the 2RBSDE (4.2.1).

Assumption 4.3.1. For fixed p > 1, there is some x € (1, p| such that the following integrability
conditions are statisfied:

Al

; 4
gbf’K = ];,ug EF esos<st1<11:T)]P (]EZDO’]P /0 |fIP0 de]) < +o0, (4.3.1)
SV} SIS
v
¥l == sup E' |esssup” (]EZDO’]P sup |Us|" > < o0, (4.3.2)
PPy 0<t<T 0<s<T

4.3.1 Representation and uniqueness of the solution

We have similarly as in Theorem 3.3.1 of Chapter 3, the following representation:

Theorem 4.3.1. Let Assumptions 3.2.1 and 4.3.1 hold. Let & € 1L} and (Y, Z) be a solution to
the 2RBSDE (4.2.1). For any P € Py, let (y¥, 23, m¥,k¥)sc;pr) € DY(FY,P) x Hi (FY,P) x
M} (FY, P) x I} (FY, P) be the solutions to the corresponding RBSDESs (4.2.2). Then for any P € Py
and 0 <t <T,
Y; = esssup® yl, P-as. (4.3.3)
IP'€Py (t,PF)

Thus, the 2RBSDE (4.2.1) has at most one solution in D (F% ) x Hp (F¥) .

Proof. The proof is the same as the proof of Theorem 3.3.1 of Chapter 3, so we only mention
the slight difference due to the fact that the minimum condition is about K¥ + k. The rest of
the proof is the same with 6K = K + kT instead of 6K = KT — kP. 0
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Remark 4.3.1. To get the following dynamic programming representation,

Y = ess sup]P y]tP/ (5,Y;), 0<t<s<T, T-as.
]I”EPo(t,]I’,IF+)

it suffices to extend the minimality condition (4.2.4) to the following:

s
Pee%s(itnﬂgﬂ; )JETP/ [/t GIP' d(KY +kf’)]}‘£} =0, 0<t<s<T, Pas, VP eP,.
(A .

4.3.2 More details about the action of KT

In this section we study the action of K under IP relatively to the position of the solution y*
of the RBSDE with respect to the obstacle.

Proposition 4.3.1. Let Assumptions 3.2.1 and 4.3.1 hold. Assume ¢ € ]Lg’K and (Y, Z) € ]Dg (FP) x
H](FY) is a solution to the 2RBSDE(4.2.1). Let {(y¥,2z¥,k¥),IP € Py} be the solutions of the
corresponding RBSDEs (4.2.2). Then we have the following decomposition for all t € [0, T| and for all
PePy

KP =K} —kP, Pas. (4.3.4)

where K]tp = fot 1 {y }dKLP, P-a.s. is a non decreasing process satisfying the following mini-

P o<u,-
S
mum condition

K} = essinff EP [KHT) |FL], P-as. VP € Py. 4.3.5)
PPy (P, F,.)

Proof. Consider IP € Py, Choose 11 and T» two stopping times such that forallt € [11, 72), y]tp, <
U;-, P-a.s. On the one hand we know from the skorokhod condition that kP does not increase
between 11 and 15, this can be rewrite as

K — kP =0, P-as. form <t<u<m. (4.3.6)

Using this result, we have P-a.s. for g <t <u < 1,

u u u
P P _ P _ P P
KP — K] _/t dK! _/t ey 1K +/t e g K

5™ - s

which gives the decomposition (4.3.4). On the other hand we showed in the proof of Theorem
4.3.1 that K¥ + kP is non decreasing. Therefore, on [11, T2), the process K' is non decreasing
due to (4.3.6). Since K" =KP + kP, we get that K" isanon decreasing process.

Now choose 71 and 1, two stopping times such that forall t € [1, T2), ylt[’, = U;-, P-as. By the
definition 4.2.1, the process Y is below the obstacle U, hence Y; < U;, P-a.s. forall t € [0, T].
The representation formula (4.3.3) shows that Y; > y]tP, P-a.s. for all t € [0, T]. Combining
these observations together with the fact that these processes are cadlag yields

Y- = ylﬁ =U-, te€rn,n), P-as. (4.3.7)
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This implies that for t € [11, ), AY; =Y; — Y- =Y, — U;- and Ay} =yf —yF = yF — U;-.
Since Y and y* solve respectively the equations (4.2.1) and (4.2.2), we can obtain the following
P-as.forp <t<u<m,
u u U
U, +AY =Y, + / FP(Y.,a/274)ds — / Zo-dXP — / dMP + KP _ kP,
Jt t Jt
u u u
Uy +8yF = + [ PR, a2ds — [ 28 axe? = ["amd il k.

By identifying the martingale parts above and the fact that both m" and M are orthogonal to
X, we get that Z; = zI and mP' = MF, ds x P-a.e. Applying the same identification to the
finite variation parts, we have

u ~U
Y. — AY; + / PP (Y, 3127, )ds + KP — KP =y — AyP + / PP (P, /2P )ds — kP 4 kP

(4.3.8)
Using (4.3.7) and the fact that for all s € [t,u], Zs = zF, ds x P-a.e, we clearly have
| Rtz = [1 R a2 as,
Moreover, since Y;- = y]tP, = U,- for all s € [t,u] and since all the processes are cadlag, the

jumps of Y and y¥ are equal to the jumps of U. Therefore, we can rewrite (4.3.8) as
Ki —K{ = —(ky —k7)
_ /t” 1{y]:,7<u57}d1<]sp ~ (P kP
=K —Ki — (k[ — D).

which gives the decomposition (4.3.4). So we have shown that in all possible case, K¥ admits

the decomposition (4.3.4), where K" is a non decreasing process. The minimum condition
(4.3.5) is an immediate consequence of (4.2.4). ad

Remark 4.3.2. It is important to point out the fact that it is enough that one y* hits U so that Y hits
the obstacle U. This means that in contrast to the 2RBSDEs with a lower obstacle, at a fixed time t it is
enough to find one P such that y¥ coincides with Uy to conclude that Y; coincides with U.

The above result gives the decomposition of K¥ as the difference of two non decreasing processes where
one acts only when Y hits U, which corresponds to a standard reflection with a Skorokhod condition and
the other non decreasing process only acts to push Y below the standard RBSDEs associated and this
process verifies the minimum condition introduced in [91]. Hence for a fixed P, the act of reflection on
the obstacle is clearly independent to the act on the set of probabilities.

Matoussi, Possamai and Zhou [66](see also Remark 3.3.2 for more details) showed for a 2RBSDE with
a lower obstacle that outside the set {Y,~ > Ly~ } N {yg’, = Ly } one can clearly decompose K as the
sum of two non decreasing processes where the actions of these processes are clearly identified. Namely,
one of these processes acts only when Y hits the obstacle and then verified the usual skorokhod condition
for RBSDEs. The other acts enough to push Y to maintain it above all the RBSDEs associated. However,
the existence of a decomposition like (4.3.4) on the whole space () is still an open problem.

4.3.3 Some properties of the solution

We first give the connection with optimal stopping problem.
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Proposition 4.3.2. Let (Y, Z) be a solution to the above 2RBSDE (4.2.1) and {(y*, 2", k%), P € Py}
be the solutions of the corresponding RBSDEs (4.2.2). Then for each t € [0, T| and for all P € Py,

/ T AR ’ ’
Y, = esssup’ essinf EF [ / FPY, 8220 )ds + Ul gy +§1{T:T}|Fﬁ], P-a.s.
PePy(tPEy) TETE t
(4.3.9)
P [ [T Py A1/2 P P P
— essinf E { P(Y,,31/22,)ds + K — K, +uT1{T<T}+§1{T:T}yft+}, PP-a.5.
T€T; t
(4.3.10)

Moreover, for each IP, the following stopping time is e-optimal
DItP’€ = inf{v > t, y]ll,) > U, —¢, ]P—a.s.} AT.

Proof. Proposition 2.5.1 shows that RBSDEs can be represented as a Snell envelope. Applying
this proposition to the case of upper obstacle RBSDE(4.2.2) , we get for all P € Py,

v
y¥ = essinf EV [/ FEE, @228 )ds + Upl oy + §1{U:T}|f}i], forall t € [0, T].
veT; t

Then the first equality is a simple consequence of the representation formula (4.3.3). To prove
the second equality, we follow the proof of Proposition 3.1 of [60] about RBSDEs with a cadlag
obstacle and optimal stopping time. Fix some P € Py and some ¢ € [0, T]. Let v € T;, taking
conditional expectation under PP in the first line of (4.2.1) between ¢ and v,

Y = B[y, + /tTf}’(Ys,ﬁg/ZZS)ds +KF - KF|FE |
Using the decomposition (4.3.4), we have
Y= B (Yo [ 7@ 22)ds + KE K — (6 — kF)|FE ]
<EP [ /tTﬁSP(YS,ﬁg/ZZS)ds + Ulgpery +lipry + Ky — f]tp\fﬁ]

which establishes the first the inequality.
Now fix € > 0 and consider D]tp’e defined in proposition. Firstly, on the set {Dtﬂ”e < T}, we

have by definition ygp,e > Upp,e — € and secondly on {Dlp’e = T} we know that y¥ < U — ¢,
t t
fort <s < T. Then foralls € [t, D]tP’e], ng, < Us-. From (4.3.4), we have that

P __ P P
KDPG K = Kpre =Ky .

Therefore, we have the following inequalities

—EP[y Dpe+/ i (Yo, @l/2Z,)ds + Py — KF|7E |

D]Pe

YD};Pe + fS (Ys,Al/ZZS)dS+KD]I)€ _Kt ‘ i|

P

I
&=

Vv

v
&

|
|

]E“’[y]g +/ fs (Y., 8Y/2Z,)ds + Kppe —K; | FE |
|

P /t f YS,A1 ZZs)dS+uDP61{DPg<T} +€1{D]Pe T} +KD]P€ ~K; |f£} -
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for all €. By arbitrariness of €, we deduce the desired result. O

Following Proposition 4.2 of [35] on the standard RBSDEs , we are going to show below that
if the obstacle is a general semimartingale, we can give a more explicit representation of KT.
Within the framework of second order BSDEs, this result has been already stated in [66] for
2RBSDEs with a lower obstacle and [65] for 2RBSDEs with two obstacles.

Assumption 4.3.2. U is a semimartingale with the following decomposition:
t t
U = Uy + / APds 1 BP / P, -dXS® + NP, P-as, forall P € Py.
0 0

where N¥ is a FY - cadlag martingale orthogonal to XF such that
ET [[NT]7] < 400, VP € Py.

BP is a cadlag process of integrable variation such that the measure dBY is singular with respect to the
Lebesgue measure dt and which admits the following decomposition B} = BItP’Jr - Blp’_, where BP+
and B~ are non decreasing processes. Also, AT and P are respectively R and R%-valued }"£ and

]-'ff progressively measurable processes such that
T
/0 (| AP|dt + [|a/2P,||?)dt + BE* + BE~ < oo, P-a.s. VP € P,

Proposition 4.3.3. Let Assumptions 3.2.1, 4.3.1 and 4.3.2 hold. Let (Y,Z) be the solution of the
2RBSDE (4.2.1), then for all P € Py

Z; = Pyand M{' = NF, dt x P-a.s. on the set {Y,- = U,-},

and there exists a progressively measurable process (a} Jo<i<T such that 0 < a¥ < 1and

o :uf}dKip = fuf}dkltp - altpl{yﬁ’ —u,-} (L (U332 + AF) i +-dBE ).
[ [

=t
Proof. Following the decomposition of U and (4.2.1), for all P € Py, the following holds IP-a.s.
t ot
U—Y = U — Yo +/ (FP (Y., a1/2Z,) + AP)ds — / (Zs — P)AXSP — (MF — NP)
0 JO
+KF + B — B

Now if we denote L; the local time at 0 of U; — Y}, then by It6-Tanaka formula under IP
t
(U =Y0)" = Uo=Yo) " + [ 1py oy 3 (P (¥ 8220) + AF)ds

t t
_/O 1{YS,<US,}(ZS _PS)dXS']P _/0 1{Ys,<us,}d(M£P - N;P)

t 1
P P,+ P,—
+/0 Ly <u_yd(KF +Bf™ = BP™) + 5L
+ Y U -y - (U - Y )t _1{Y57<u57}A(u5 -Ys)}
0<s<t

But from (4.2.1), (U; — Y¢)™ = U; — Y}, hence the two above differentials coincide and so the
martingale and the bounded variation parts coincide. By identification of the martingale parts,
we obtain

Ly, —u, y(Ze— P)dXe" =0 and 1{Yr:uﬁ}d(M£P — NF), P-as. VP € P,.
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Hence, we get Z; = Py and Ml = NF, dt x P-as. on theset {Y,- = U, }.
By identification of the bounded variation parts, we have

1 i ~1/2 P P, P,—
sLo=—1r 3 ([P (4,aY22,) + AF]dt + B+ — aBf™)
—{W =) = (U =Y )" =1y g AU =YD
Since (Uy — Y;)T = U; — Y}, we deduce that
{(Ut—Yt) (Ut_ _Yt { <ut7}A(Ut—Yt)} < LIt—Yt.

P
1{Y7:Uf7}th +

Also, by the representation (4.3.3), it is obvious that {yF = U,-} C {Y,- = U;-}, P-as. for
every IP € Py. Then we deduce that

P P
1{y]t11:ut,}th - 1{Yr:ur}th

< -1y oy }([ﬁP(Yt, al/27;) + A¥)dt + B} — Bl
< gy _y_y (FF(08220) + AF) "dt + aBf )
+1{Y7_u V([FF(n,al22) + AF) dt+aBf)
- ( fF(0,aY22:) + AF] "dt + dBf)
1y }(ﬁPYt, a/22;) + AF) dt +dB]")

Proposition 4.3.1 yields

1{yﬁ, :ut_}dK]tP = —1{yP :u_}dklg’

= =t
By the fact that k¥’ is non decreasing, it follows by the two above inequalities that there exists
a predictable process (af)o<;<T such that 0 < a < 1and
_ PP P _ P APy A1/2 P+ P+
1{}’,7 U, }dK { ]tP,:U,f }dkt oy 1{y£[i:llr} ([fs (th, a; Pt> + A } dt + dBt )

O

4.3.4 A priori estimates

Lemma 4.3.1. Let (y*,2z¥, m", k") be the solution of the RBSDE (4.2.2) and (Y, Z) be a solution to
(4.2.1). There exists a real constant C which only depends on T, p and the Lipschitz constant L¢ of f
such that

wP[( [ lat2eF )] + B [ 1§J<CIE“’LZE%|%|” ([0 @s
EP[(/ ||a1/2Z||2dt) }HE]P[[MH’]?}gCEP[t:m;YtV’JF(/OT|ﬁ“’f°dt)”] (4.3.12)

Proof. This first result is proved in step 1 of the proof of 3.3.6. The slight difference is the sign
before k¥, but this does not affect the result. We know focus on the second one. The method
are the similar to step 1 of the proof of Proposition 3.3.6.

t
7, = inf{t € [0, T],/ [@/27,]2ds + [MP]r > n} AT.
0
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Since Z is in H} (IP) and MF € M} (IP), then (7,1) > is a stationary sequence. Now considering
a real constant & and using It6’s formula to e*|Y;|? between 0 and T, we get

WP+ [ etz s + [ s,

< e Yg, 2 4 /OT" &Y, (2| fP0] + 2Ly Ye| + 2Ly |/ 2Zs | — a5 ds
+2 /OT" Y, dkP -2 /OTn Y, dmy —2 /OT" FHLAKT

< e””|YTn|2 + 2supe”®|Ys| x /OTH |J/(3P'O

S<Ty

120 12 T as P P T s P
+eLf/O [GEAl ds+2/0 Y, d(K: —ks)—2/0 Y, dM!

Tn
L+ Lpe ! — oc)/o ¢ Ys[2ds

Tn
) / Y, Zed XP .
0
for any € > 0. Thus,

|y0|2+(1feLf)/0 s [[al/2 | ds+/ S d[MP]

< ey [P+ supe v (77

S<Ty

Tn
ds) + (2Lf + Lfefl - tx)/o ™| Ys|?ds

1+ Lsup Y, 4 e(RE )P + e (KF) —2/ Y, dMP — 2/ Y, Z,AXF.

s<Ty,

Furthermore by (4.2.5), we have
g [P — [T aawd
=Y, —/O 7 (Ys,ﬁg/zzs)dsjtfom Z.AXS® + MP K
Then, there exists a constant C depending on the Lipschitz constant Ly such that
(RE) + () < C (2 ol + 195 2+ v [+ ([ 17 01as)’
T n T T
b [T Pas [T ivPas [T a2 s + [T ad2z,) Pas
+ ‘ /OTH 2 al/2axeP ’ PP+ MY 2)
< (1o Yo [+ ([ 17P1as) + / fiss INCEARE
+/ [al/22P) |2ds+‘/ ]Pch]P

+ ¥ |2+ [ME ?) (4.3.13)

2
dxer

ch]I’

where we have used the representation formula(4.3.3) which implies y¥ < Y;. By taking into
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account the last inequality in the right-hand side of the previous one, we obtain

(1—6C)|Y0|2+(1—6Lf)/0T s|[al/2z||*ds — eC/ A ds+/ e d[MP]

)

+(2Lf+Lfe_1—oc)/ “S|Y|2ds+ec‘/ 7, dX“P’ +eC|MP |2 + eC|mP |2
0

< (eC ™) ¥y P (1 2)supe |y o (14 €C) ([ 17
s<Ty

T Tn 2
eC / a2z s +2| / Y, ZdXS | +2) / Y, dMP Faxer
0 0 0 0

Choosing now € small enough, a such that 2Ly + L fe’l — « < 0 and using inequality (3.3.9),
we get

Tn 14 4
an2i( [" e a2z s + a2k mmk

Tn
< c<1vz§—1)((/ 1FP01ds)” + sup |vi?
0

te[0,T]

| [ " Y, ZedXP | 4 | A "oy aM? ). (43.14)

Otherwise, thanks to the BDG’s inequality under probability IP and the Young’s inequality, we
can can write

]EP[|/OT”easyszsdxg'ﬂ’\ﬂ ipmﬂ’[s%};|yv}+nmﬂ’[(/ (A
te

LSS

and
T pp  C2 4
]P“/ e"‘sstdMsPP} < —’j]E]P{ sup |YS|P] +17’]E]P{[MP]%H].
0 n t[0,T]
where Cp, C;, depend on the BDG'’s constants and « and 7,7’ are positive constants. By taking
expectation under P in (4.3.14), using the two previous estimates, choosing # and 7’ small
enough and using Fatou’s Lemma we deduce that (4.3.12) holds. O

Proposition 4.3.4. Let (y*,zF,m®, k) be the solution of the RBSDE (4.2.2) and (Y, Z) be a solution
to (4.2.1). There exists a real constant C which only depends on T, p and the Lipschitz constant Ly of f
such that

T
EP[ sup |y1}’|ﬁ} < CJE“’[|§|P+ (/ 7018”4+ sup yuﬂ (4.3.15)
0<t<T 0 t[0,T]
T
IEJP[ sup |Yt|P] < csupIE“’[|§|P+ (/ IFP01at)? + sup \utﬂ. (4.3.16)
0<t<T PePy te(0,T]

We need the following result to prove the above proposition.

Lemma 4.3.2. Fix P € Py. Assume that (y]P, Z]P,m]P,k]P) is the solution of the RBSDEs (3.2.9). Then
forany 0 <t < u < T we have

WF 1P +<(p) / 12 o222 s c(p) [ IyE 1210 i,
+ 3 S = 1y 17— plys [P sgn(ys )Ays )

t<s<u
u u
< +p | \yE’|P*1sgn<yg">f£’<y2°,a§/2z2°>ds—p | E P sgn(yP)=E - axer
u
—p/t lyY [P~ tsgn(yl )dm p/ lyY [P~ sgn(yl )dks .
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withc(p) = p(p —1)/2 and sgn(x) = ﬁlx#o-
Proof. This follows directly by Lemma A.4.2. i

Proof of Proposition 4.3.4. We first prove the estimates for RBSDE and then deduce the esti-
mates for the 2RBSDE. Let « be a real constant, Applying It formula to e*?|yF |V and using the
above Lemma yields

1 T .
e”‘”tIy]fI“rEP(P—l)/t e lys P2 e Lo (11337725 |1 s + d[m®]s)

T
+0‘P/t Plys|Pds + Y e P{[yt [P — |yE 1P — plyt- [P Tsgn(yho ) Ayt }

t<s<T
<eTie 1 p [ eryF sy T, 322 s
—P/ e"Plyg [P lsgn(ys )z - dXET — P/ eV lyg [P sgn(y;- )dms
—p [ e sgn? )ik
<Vl 4 p [ PR, a2 s — p [ ey sgn(y? )akE
p [Pt )eE xR —p [ e IyE P sgn(y e
<t 4 p [ P s Ly [ el s
bty [ Py a2 s — p [ e yE P sga(yE ek - axe?
[ eI g Jand —p [P P sga(yF )ik,

The Skorokhod condition implies that dk¥’ = 1 { }desP, also the function x — |x|P~!sgn(x)

P
Y- >U,-
is non decreasing then,

[t s = [T T
T

-1 P

[ g, (8

By Young’s inequality, we have

e pL? 1 e
pLATIP G 22E | < 1P + oo = DI 2R e

and for any 8 > 0,

T
Pp—1,7P,0
p [ et

Pip—-1 T —1 _aps| 7IP,0
ds < ppB sup |y; |F /ﬁ "o\ fs 7 |ds
0<t<T t

ds)p

B P - T aps| 7IP,0
< (p=1p7 sup WFIP+p 7 ([ eI
0<t<T t
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Hence combining these estimates, we obtain
1 T
I+ 3o —1) [ eI o (Y22 s + dim” )

_r_ p
< TGP+ (p =187 sup P+ ([ eI Elas)

0<t<T
2

L T T
Fpllpt oty —a) [ eVl Pds—p [ eIy sgn(yF )k -axe?
—p [ eI gl JamE —p [ U P sga(u, Jak?

= p
< TGP + (p - BT sup PP+ B ([ el FE0as)
0<t<T t

L2 T T
oLyt ) [ ey iras —p [y isgn(y)2l - axek

T
—P/ P lyE P sgn(yR ydm? +p sup (U] [ eriakt.
0<t<T t

By choosing a such that L¢ + Lf/(p — 1) < &, we obtain for any € > 0,

1 T .
e”‘”tIy]tPI’”rZP(P—l)/ eV lyg P21y p g (1357225 | ds + d[m" )

aps p
< eVTIE + (p~ 17T sup PP+ 5 o[ e ieoias)

0<t<
—p [P sgn(P)E - dxs —p [ lyE P sgn(y? )

.
4 (p—1)eTF sup |Ut|p+e’”(/ e“PSdk]sP) . 4.3.17)
0<t<T

Furthermore

T T

=g+ [ FFOF a2 - [ Faxe® - mp

0 0

Then

e K/,Temdkf)p} < CEF (3]
el + / FrE ay2aras) (/OT a2awr)" + (mh)’]

cEF|
CEP [+ sup 4F17+ ([ \7291as)"+ ([ a2 )" e ]
el

I /\

I/\

EF [ sup uF "+ ([ 1701as)"]

where we have used Lemma 4.3.1 and where C is a constant depending on T, p,« and Ly
which vary line to line. Then taking expectation under IP in (4.3.17), we obtain

1 T
E” [P yF 1P+ gp(p—1) [ eIyl 1P e (11122 Pds + d[m);)
4 Jt

_P_
-1

T
S EF [T 4 ((p= D7 +e7C) sup oF I+ (877 + ) |17 0s)

4 (p—1)eTF sup ). (4.3.18)
0<t<T

103



Going back to (4.3.17), taking the supremum over t and then the expectation under IP , we have

EP | sup e*|yF|?]
te[0,T]

r_ T p
<EP[eTjely + (p—1)p7 T sup [yF |+ p7 ([ e FP0ds)
0<t<T 0

T P
#psup | [ e yT P Tsgn(yl)zr dxg'“’\ +(p— 1) sup [Uif?
tefo,T]' 7t 0<t<T

+ €P sup (/Te“psdkfy} (4.3.19)

+p sup \/ e"Plyg [P lsgn(y;) P
te|0,T

te[0,T]

By the Burkholder inequality, there exists positive constant Cj, such that

B sup | [ ey sgn(y?)2E -axc¥]|
te[0,T]

< C,,IE]P[(/ e zl{yﬂ’7éo}||”1/2 ]PHZdS)l/Z}

1/2
< P [sup P2 [ 1P 21 yp a1V 220 s
o sup V([ e )]

1 P P 2P T -2 1/2 P2
< —E"[ sup |y; '] + pC E / e 1P 21 e llag 228 | ds
4 [te[O,T] o ' [ 0o foz0} }

and

s | [ s and |

1/2
< P p/z / P p—2
CpE L?[f)p w12 () e 1{yg’¢o}d[m]s) |

/0 P ‘2p—21{yg>#0}d[m]s) 1/2}
1

T
< —EP[ su IPp—l—CZIE]P/ P1p=21 d{m)s|.
i s WY+ L WEP e gy dlm

Combining the two above inequalities together with (4.3.19) and (4.3.18), taking B and € small
enough it follows that

{t%m 7] < cEP[jgr + ( / 7701 +t:1[3%|us|ﬁ]. (4.3.20)

Therefore, we have proved the first assertion of the proposition. The second concerning Y is
deduced by the representation formula (4.3.3).

sup |Vi|” < sup esssup® |[yF (T,&)|P, P-as.
te[0,T] te[0, TP’ Py (t,IP,F)

Taking expectation under IP, we have

B oo ] < B[ sup emone? B[ op 1]
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Taking the supremum over IP € Py, it follows that

supIE]P[ sup ‘Yt’p} < sup ]E]P{ sup ( esssup? lEIP/{ sup |ygp,|‘]-}+Dp}.
PPy te[0,T] PePy  te[0,T] “P'ePy(tPF,) 0<s<T

Moreover, using Lemma A.2 of [90] and Holder’s inequality, we have

/ ’ p p1e
sup]E]P[ sup ( esssup’ EP { sup |y¥ |‘]—'t+D ] < supIE]P[ sup |ng|'<}
PPy t€[0,T) “P'€Py(t,P,F4) 0<s<T PePy  “te[0,T]

Al

< sup E | sup [y "]
PePy te[0,T]

Then (4.3.20) and Holder’s inequality yield

P
K

sup ]E]P[ sup ‘Yt’p} < SUPE]P[ sup |yg)ﬂ

< sop P i+ (] 17710)" + sup ]
< sop (£t ([0 T 4 sup ]
<o o2 ) 5 ]

O

Proposition 4.3.5. Let Assumptions 3.2.1 and 4.3.1 hold. Assume ¢ € ]Lg’K and (Y, Z) is the solu-
tion to the 2RBSDE (4.2.1). Let {(y¥,z¥, mF, kT) }Pepo be the solutions of the corresponding RBS-
DEs(4.2.2). Then there exists a constant C depending only on «, T, p and the Lipschitz constant L of
f such that

14
sup {0 g0+ 17 W+ P [0071E] + P [F7] | < C(IEI7y . +of" +ul).

14
IYIZ, + 1217 + sup EY | [MP)7 | + sup ET |Varor(K*)P | < C(IZIFpx + ¢F" + 97" ).
by + 1215 up B 7))+ sup ¥ Vo () = C(1GIEy + 4} + 417)

Proof. Throughout this proof we will use the fact that by definition of the norms and As-
sumptions 3.2.1 and 4.3.1, we have

ds)”} < ‘/’er and sup ]EIP{ sup |Ut|pd5} <y

P p P T 7IP,0
1617, < 187y sup EF[( [ 17
0 0 0 PP, te[0,T)

PePy
By Lemma 4.3.1 and Proposition 4.3.4, it follows that

T p/2 ? T
B sup P+ () 18 27)" + 071 < B [igp + ([ 1"
tel0,T

P
ds) + sup |Ut|”}
te[0,T]

Then taking the supremum under [P, we obtain

P T P
PP PP EP[P121) < ¢ EP [P / 0|4 AL
Hfggo{lly Iy 12" Wy ) + E¥ [1717] } < sup e+ () 1770as) + s i)

T
< C(HCH]L[;; +H§:7}))01Eﬂ’[(/0 ‘JHSP,0|ds>” +;}£}\U,\PD

< C(Ielyy, + 97"+ 91)-
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Similarly,

4 T
YU, + 121, + sup EF [[MP)F] < Csup BF g7 + ([ 178
0 0 PPy PPy 0

P K px
< I, + "+ 9lf").

)pJFQEFT]Utp}

It remains to prove the estimates of k' and KF, we first focus on k¥

W =yf b+ [ PR s~ [ 2F a2awd
Then using the Lipschitz property of f, we get
02)7 <5 (161F + 1P+ ([ PP GR a2l + ([ Faxsm)? + mke)
< g+ P+ ([ 1PNy + ([ 171eds)? + ([ a2 las)?
+ (/()ng)ng’IP)p + \m]%)\p)

with C a constant only depending on p, T and L¢ which varies line to line. Then taking the
expectation under IP and using Burkholder inequality, we obtain

T
1E“’[(k“’>]<cmﬂ’[|¢w+srp WFIP ([ AFP0lds)” 4 ([ 1a2E )+ ([ 2Eaxe?) + k]

R /2 £
<c1E“’[s1[1p]|/t P (AR ([ 1R )+ )]
te[0,T

< CB® [ sup [yF1F + ([ 7)as)']
te0,T]

Taking the supremum under IP, the estimates of k¥ follows directly. Finally, we have by Propo-
sition 4.3.1, the following decomposition

KP =K} — kP,

where K~ is a non decreasing process. Hence we have by definition of total variation and the
—P .
fact that K' and k¥ are non decreasing

EP [(VarolT (KIP))FJ} = [(Varo T( - k]P)) ]
< EF [(VarO,T(K )+ Varo,T(k]P))p}
< op-1EP [(Vafo,T(F]P))p + (VarO/T(k]P))p}

<2 EP[(Kr)” + (k)]
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We can now use (4.3.13) with power p,
] T T T
IE“’{(K%H(HF)”]scmﬂ’ﬂmwau(/ 77%as)" + | |Ys|r’ds+(/ Faxer|

b ([aezypas)” + ([T aeapypas)” 4| [ zaxer|

+ |mP 1P+ |MF |

T
< C]E]P{ sup |Y;|P + (/ |]ﬂsp’0
te[0,T]

)"+ (/ /22 |2ds)"”

P

([ 1azpypas)” 4 )k + ]

< C]E]P{ sup |Y|? + (/OT |f¢33,0|ds)lﬂ}

te[0,T]

Then taking the supremum under P,

P Py\P P T 2po
sup E [(VarO,T(K ) } <CsupE { sup |Y3|P + (/ |fs
PePy PePy te[0,T]

< C(N2I e + 97" + wt")-

4
) + sup |Us|P }
te[0,T]
this concludes the proof. O
Theorem 4.3.2. Let Assumption 3.2.1 hold, and consider two generators f' , f2 and two lower obsta-

cles U, U? such that Assumption 4.3.1 holds. Fori = 1,2, let ((Y!,Z") be a solution to the 2RBSDE
(4.2.1) with the generator f', the terminal condition & and lower obstacle U'. Define

¢j’j;’ff2 := sup EV [esssupPIEIP[(/OT T N (T s)glf?lﬂ < too,

PePy 0<t<T
T
o= sup EP[ ([ IFIF = PRI, a22D)) ] e,
fuf PePy 0

[aS]

. P P 1 2 P x
Vit = pup B esssup (B sup ) = UEY|7E]) ] < o

Then, there exists a constant C depending only on «, T and the Lipschitz constant of f' and f? such
that

p
Iy =2, < C (e = Iy + 9 o+ o)

|20 = 22| + sup EP [MYF — M) 2] + sup EF [Vary p (K — K3T)? ]
0 PePy PePy

S C(Hél ‘:ZHILPK +¢f1 fz +11Uu1 uz)
K K 1/2
(18 = &l + @)+ Wl 2)"?) < (12 s + 125 e + 03" + 077

Proof. (i) The representation formula (4.3.3) gives,

|Ytl — Yt2| < esssup’ |y}'IP,(T, &y - yf’P,(T, &2)|, P-ass. forall P € Py, t € [0, T).
P’ Py (P, F+ )

where y'F and y>¥ are the RBSDEs associated to Y! and Y2. Following the proof of Proposition
A.4.2, there exists a constant C depending on x, T and the Lipschitz constant of f2 such that we
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have P-a.s. forallIP € Pyand t € [0, T]

[ e -

Now using Cauchy-Schwarz inequality and (3.3.9), the above inequality provides PP-a.s.,

1
TR s+ sup U - W2 +1et - [ FR ]
s€|0,T

|~l]P ~2]P

P
|~, ~2]I’|p <C]E]P / |fa ’2][" (ygl’,’\l/Zle)ds_,’_ Sl[,é};]“ll u52|1<+‘§1_§2|’< |].‘t+]x
se

Al

P
< CE”[( / T = RN (“’,4/2”’),;15) (SI[JP]IUS—UEI")”+|é‘1—ézlp|fﬁ]
s€[0,T

By the definition of the norms, we deduce the first assertion of the theorem.

(ii) We consider the same notations as in the proof of Proposition A.4.1 and the following
notations

§Y =Y —Y? 67 := 7' — 72, k¥ = KM — K*F, sMF .= MVF — MPT,

By Definition 3.2.1, we have
T ~p > p T T T

OY; = 6% + / (FAP(v2,al/2zYh) — f27(v2,al/%72))ds — / 675 - dXST — / dsMF + / dsKF
t
T

:5§+/ (6FP(Y2,a221) + AYs + s - 8V/20Z,) ds—/ §Zs - dXP — / dsMP + / oK.

t

where A and 7 are such that [A| < Ly and ||| < Lp2( see section 3.3.3). Using It6’s formula to
|6Y|? between t and T, we have

16Yo[? = |5§\2+2/ sviofF (YL, a27)) dt+2/ AloY:| 2dt+2/ 1286 Z,dt
2 / Y167, - dXP — 2 / 5Y, dsMP + 2 / 5Y, doK”
JO 0

—/ (8267t — [sMP]r — Y ASY 2.
0 0<t<T

It follows that

/ 1617262, |24t + [sMP)y < |5g|2+2/ 16Y;||8FF (Y}, 3122} \dt+2/ Adlov:dt
+2 /0 nal/26Y,0Z,dt — 2 /O 5Y,62; - dXSP
T T
2 / 8Y,-déMF +2 / 5Y, dsKP
0

< 16217 +2 sup [6Yi] x / 6P (vl a2z a + / [EARE
te[0,T]

+(2Lgz +2L2,)T sup [8Y; fz/ Y167, - dXP
te[0,T]

T
2 / 5Y, d6MPF +2 sup |6Y:|(Varg 1 (K'F) + Varg r(K2P))
0 te0,T)

1 /T
< 168P + (2LpT +21%T) st]|5yt2+2/0 13725z, |2t
te(0,T

(/ 6FF (v}, a2z} |at) +2]/ 5Y,62; - dXEP|

+ |2 / 6Y,-dsM{| + sup |8Y;|(Varg r(K') + Varg r (K*T))
0 te[0,T]
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Hence,

2/ @267, 2dt + [sMP ]y < C (165 + sup |6 + (/ 6FP (Y}, 3, /ZZt)|dt>
t€[0,T]

T T
| [ ovioze-axi®|+| [ oY, domF)

+ sup \5Yt|(Varo,T(K1']P) +Var0,T(K2'P))).
te[0,T]

Therefore, by inequality (3.3.9) we get

P
2%*1(/ ||a1/25Zt||2dt) + (1 A2E ) [sMP)2

h- T 1 -1/2
<7571c(logl + sup ovil? + ( [ |ofF (0, a2z \ar)”
te[0,T]

+ / §Yi0Zy - dXSP |2 4 | / 5Y, dsMmP |

+ sup |8Y; |5 (Varor (KIF) + Vargr (K*F)) 2 ).
t€[0,T]

Taking the expectation under IP gives us
4
Eﬂ’[(/ @} 2672 ) * ] +EP[[sMP)2]
< CE®||ég]? + sup |6Y;? + (/ ofF (vt a2z} an)? |

te[0,T)
!

1/2
+ ]E]P{ sup |(5Yt|’”} }]E]P {(VarO,T(Kl']P)p + Vargy 7 (K>F)?
te[0,T]

P
2

+JE“’H/OT5thszt.dxf'H’ }+1E“’H/OT5YF[15M?’

}1/2

Now the Burkholder’s inequality allows us to write

14
4

/‘ 5, dsMP } <cC IEP[((/OT oY, PdloM");)

)

P
< C,,]E]P[ sup |5Yt|%[5M“’];]
te[0,T]

1 r
< 2C2E" | sup Jovi|F] + SET [[oM"]7 ]
te[0,T]
and

14
2

| <P [( [ oviial oz )

< CE" L?[é%wytﬁ(/ 13257, ||2dt) }

P T c,IP
EP || / Y167y - dX
0

< 2C2]EIP Lzl[épT]éYtW] + ;]E]P K/OT Hﬁ}/Z(SZtHZdt) g}
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We deduce that there exists a constant C depending on T, p, lef and LJ% such that
14
EP [(/ la}/257,|dt)* } +EP [[sMP)2]

T
< CEP[jegl? + sup |ovil? + ([ |ofF (v}, a}/22}) ar)']
te[0,T]
P 2 p 1P Pyp]t/2
+E [ sup |(5Yt|7’} E [(VarO,T(K PYP 4 Vary (K> )P] .
te[0,T]
By the same arguments as in the proof of Proposition 4.3.5, we show that fori = 1,2
. T p
EP [(Varo;r (K"7))"] < CE® [ sup |Y/|" + ([ 17700as)"].
t€[0,T) 0

Combining the two above estimates, we get
14
EP [(/ |3} /267 %) * } +EP[[sMP)2]

T
< CEP[Jegl? + sup |ovil? + ( [ |ofF (v}, a}/22}) ar)”
te[0,T)

T
+ (\5e§|ﬁ/2+ sup |5yt|v/2+(/0 |6} (Y},Al/zztﬂdt)p/z)x

te[0,T]
T p T p\1/2
(sup \Yt |+ sup Y|P + (/ |fsl']P'0\ds) + (/ |f52']P'0|ds) ) }
te[0,T] teo,T] 0

Then taking the supremum over P € Py in the above estimates, we have
1 2||P P 1P _ A p2P15 1 2P px
12 =z HH5+H§1€171;01E (MY = MPPIE] < C(l8 =&+ i + 9
/2 /2 /2
(H‘Z -¢ HEPK (¢ lefZ)p (lPLlLZ)p )X
1/2
(181 + 12201 e + 051"+ 071°)

It remains to prove the estimates of SKT'. By definition, By Definition 3.2.1, we have
T p o T
oK = Yy — o — / (fAP(vd,al2zly — 2P (v2,aY/222) ) ds + / 0Zs - dXS® + sMT
0 0
T T
= 0Yy — 6C — / (6T (YL, a2ZY) + As0Ys + 5 - 8L/26Z ) ds + / 6Zs - dXT 4+ sME.
0 0

Next, there exists a constant C which may vary line to line and only depending on p, T and the
Lipschitz constants of f! and f2 such that

T T
(OKE)? < C[loYol? + 102! + ( | 16fF (2, a/2ZD)lds)” + ( [ Aslo¥slas)”

(/ |17 a1/2§ZS|dS)PdS+ / 57 - Xc]l’) (5M]1;)p}

After that, we take the expectation under IP in the above and use the Burkholder’s and Young’s
inequalities to obtain

T
Pl(oKD)| < EP[jog)? + sup 601+ | 1677 (v a2z as)”
tel0, T

+ (/ AR

NI

+[oMP)F].
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Moreover,
E” {(Varo,T(KIP))p} =E" [(Varo,T@K]P - 5kﬂ)))p} < 2r1EF {(6?1;))’” + (5k“§)p}.

Since we know the estimates of 6kT, we replace into the above estimates and get the expected
estimate of 6K' by taking the supremum over P € Py in the above inequality and using the
estimates of 0Y,6Z and S M. O

4.4 Existence of the solution

The proof of existence of the solution follows the same scheme that in Chapter 3. Following
the representation formula of 2RBSDEs (4.3.3), a natural candidate to the solution of 2RBSDEs
is: For every (t,w) € [0, T] x Q,

Vi(w) = sup ET[y}],
PeP(tw)

where y¥ is the first component of the solution of RBSDE(4.2.5).

The proof of existence of a solution of 2RBSDE(4.2.1) will be divided into the following steps:
Step one. In order to establish the dynamic programming principle for the above value func-
tion V, we need a jointly measurable (with respect to time, space and probability IP) version of
y¥ solution of RBSDEs. We recall that for every IP € P, these RBSDEs already have a unique
solution then our goal is to construct a jointly measurable version of the solutions . Thereby,
we use the Picard iteration of the solution to the penalized BSDEs and prove the converge of
the iterations.

Step two. After the convergence of approximations, the resulting solutions y} can be inter-
preted as a function of t,w and P. We now show that y* is jointly measurable: that means
(t,w,P) — yF is a measurable function.

Step three. This step is dedicated to establish the following dynamic programming principle
for the value function.

Vi(w) = sup EF[yf(t,Vr)]
PeP(t,w)

where 7 is a stopping time taking value in [t, T
Step four. This last step consists in path modification of the value function in order to obtain a
cadlag process and deduce the solutions by the Doob decomposition.

44.1 Construction of measurable version of solution

We recall the classical construction of the y* part of the solution to the RBSDE (4.2.5) under
some probability IP € Py using Penalization and Picard’s iterations. These approximations are
very closed to the definition of BSDEs in general filtration, for more details let refer to section
2.5. The obstacle is represented by U which is a cadlag F*0+-progressively measurable process.
Forn € N, let (y]P M, 2P P kP be the solution of the following penalized BSDE

T T T T
P, n = ) .,z ) Y=
Pt = [ R a A s — [P al2aw? - [ amPr —n [ (U - yP ) s,
(4.4.1)
with

t
kP = n/ (Us — yP™)~ds.
0
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We prove in section A.3.2 that the solution of the penalized BSDEs to an upper obstacle con-
verges to the solution of RBSDEs. Since for the case of standard BSDEs there is a symmetry
between lower an upper obstacles, the results in the literature are for the most part related to
the lower obstacle. We can mention [35] for continuous obstacle and [60] for a cadlag obstacle
and those result concerned a filtration generated by a Brownian motion. In section A.3.2, we
take the reasoning to the above papers and show that the presence of a martingale m does
not affect the result. More generally one can also refer to Klimsiak [54] for RBSDEs in general
filtration.

Therefore (yIP'”, Z0n, mtn, [ Pm) converge to (y]P, ZP, mP, k]P) the solution of the RBSDE (4.2.5).
Now for a fixed n, let us define y]tP'”'O =0, z]tP'”’O =0, mltp'”’o =(0and k]P "0 =0 forallt € [0, T]
]an ]an P,n,m k]P,n,m)

and given a family of F -progressively measurable processes (y; ’ 1My ke0,T)

g T T
n,m-+ §+/ PPy P 51/2, ]P”’”)ds—/ Zg’,n,m—&-l,ag/ZdWslP_/ dmPrm 1 P,
t t
(4.4.2)

where ¥ (x,y) := fF(x,y) — n(Us — y)~. By definition P still verifies the Lipschitz as-
sumption in y and z.

We have that y©"*1 is a semi-martingale under IP. Let (y"*1, X)F be the predictable quadratic
covariation of the process y*""*1 and X under IP. Define

P,n,m+1 X r__ /., Pnm+l X P
a\g/ZZgP,n,erl .— limsup <y ’ >s <y ’ >sfe

4.4.3
€€Q,el0 € ( )

Convergence. Using the same arguments as in the case of lower obstacle, we show that the

sequence (yTm,zPnm), < is a Cauchy sequence for the norm
T )
1y 2m) e = (EF| / lysPds + / S0l 2z Pds 4 [ esdiml])T @ad
0
for « large enough.
y]tl’nm—i—l ]an _ / Ian /\1/2 ]an) 'I’[‘Sﬂ’,n(ng,n,m—llZl\g/Zng,n,m—l))ds

T
P,n,m+1 Pnm\ =1/2 P P,nm+1 P,nm
- /t (Zs - Zs ) " dg dWs - /t d(ms — M )

In much the same way as for the lower obstacle case in section 3.4.1, it follows that

(yPmm ZPnm g Prmy o is a Cauchy sequence, which converge to y, 2P, mP), <o the
solution of the penalized BSDE 4.4.1. In other words, by taking some su1table sub-sequence
(m} )~ if necessary, we can define the solution to the penalized BSDE(4.4.1) as

P

P
my r my P,n

. Pn, . Pn, . Pn,mf
yr = limsup v, , z;" = limsup z, and m;" := limsupm,” " *. (44.5)
k—o00 k—o00 k—o00

Since the solution to the penalized BSDE (4.4.1) converge to the solution of the reflected BSDE
(4.2.5), then there exists (ylp, zZP, mP®, k) the solution of (4.2.5) such that for t € [0, T]

yr o= Limyl", 28 = Jlim 24" mf = lmml " and k¥ := Lim kI,
n—oQ n—oo n—oo

4.4.2 Measurability of the constructed solution

In this paragragh, we justify the measurability with respect to probability IP of the construction
in Section 3.4.1. The following result extends Lemma 3.4.2 of Chapter 3 in the upper case.

112



Lemma 4.4.1. For each n > 1, there exists a measurable map (t,w,P) (yltp’"( ), ItP"(w),

m]tP’" (w), k]tP’” (w)) such that for every P € Py, we have the following properties:
(i) y® is right continuous, F -adapted and F¥ -optional;

(i) zP" is F-adapted and FY -predictable ;

(iii) m®" is right continuous, IFY -martingale orthogonal to X under P such that (y®",zP", mPm)
satisfies
Pn __ T’T Pn ~1/2_Pn T Pn 51/2 P T P,n T P,n\—
Y _€+/t fs (ys' P52 )ds_/i; Zg" -4 dws _[ dms’ _n/t (Us_ys' ) ds.
(4.4.6)

Proof. (i)- Foreveryt € [0, T], (4.4.5) leads to

Pn li P,n,m
m
L m~>ooy ’

with
H’nm+1 _ §+/ fs I[’nm’ ~1/2 ]an)ds /ng’,n,m+1 ﬁg/zdwslp _ /Tdm]sp,n,m+1 P-as.
t t
4.4.7)

To prove the statement (i), we first prove by induction under m that y** is right continuous,

IF;-adapted and FF¥ -optional and then deduce the result by tending m to infinity.
(a)-Basis m = 1: By definition y*"0 = 0, then by setting m = 0 and by taking conditional
expectation under IP with respect to F;, we have

T
P =B [o+ [ P (0,0)ds |7y ]

Since f is jointly measurable, we can apply Lemma 2.4.1. This Lemma states that there is a

version of conditional expectation EP {cf. + f tT A,IP’”(O, 0)dr|ft+} measurable with respect to IP
and w, in other words, (P, w) — y]tp (W) is % @ Fiy-measurable. With this jointly measura-

bility version and the fact that y]P M1is Fi\-measurable, we use Lemma 2.4.3 to choose for any

P € Py a P-modification of y¥! which is right-continuous, F -adapted and ¥ -optional and
then the property is verified for m = 1.

(b)- Inductive step: Assume that assertion the property holds to the order m, then by defi-
nition we have

T
yItP,n,m+1 — EP [§+/t J?rJP (yPmm ZPmim) dr‘]-'H} P-a.s.

Prm+1 implies that there

Prmtl is right-

and the same reasoning to the above about measurability applies to y
exists a measurable map (£, w, P) — yI ™™+ (w) such that for every P € Py, y
continuous, [F-adapted and F_-optional.

thereby showing that indeed (t,w,P) — y} "™ (w) holds to the order 1 + 1, Since both the
basis and the inductive step have been performed, by mathematical induction, for all natural
numbers m > 1, yT7 is right continuous, F. -adapted and IF¥ -optional.

(0)- The passage to the limit: The sequence (y¥"*),>1 is the Picard iterations and we
have seen in the above section that (y**™),>1 is Cauchy sequence under the (IP,a)-norm(
for « > 0 large enough) and that (y¥"*™),~; converge uniformly P-a.s. Therefore, y"™
converges (under the (IP, &)-norm) to some process y*" as m — oo which solves the penalized
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P,n,m

BSDE (4.4.1). Following the previous paragraph the iteration y are jointly measurable with

respect to time, space and probability law . Now we can use the Lemma 2.4.2 to find a family
P

of subsequence ((mf) 1, P € PO) such that the limit of y]tP'n'mk is jointly measurable. And this

jointly measurable limit process still the solution of the penalized BSDE (4.4.1).

(ii) We prove the second statement using (4.4.5), z'" is the limit of the Picard iteration (zF"+1),,
also represented by

]P,n,m+1/ X)ISP _ <yIP,n,m+1/ X>glie

al/2zPmmtl . — limsup

€€Q,el0 €
The same reasoning applies to zI'"" and a passage to the limit similar to above allows to
deduce the result. First let show that by induction under m that z'"*! is F -adapted and
IFP -predictable.
(a)-Basis m = 1: For every t € [0, T], we have

Pl x\P _ Pl x\P
al/2;Pml .~ Jimsup ", X)s =y, >s—e.

€€Q,el0 €

The definition of quadratic covariationin (3.4.11), Lemma 3.4.1 and the first part of this proof(i)
prove that there is a measurable version of the function (t,w,P) — (y¥*1, X)F(w), such
that for every P € Py, (y'"!,X)¥ is right-continuous, IF-adapted and coincides with the
predictable quadratic covariation of ! and X under IP. With this version of (y1, X)P itis
clear that the family ZPm1 defined above is measurable in (t,w,IP) and for every P € Py, ZPm1
is IF.-adapted and IF¥ -predictable. Therefore assertion is verified for m = 1.

(b)- Inductive step: Assume that the property holds to the order m,

P,n,m+1 X r__ /., Pnm+l X P
_ limsup {y X)s — X)s—e

ag/ZZgP,n,m+1 .
€€Q,el0 €

Similar arguments to the basis step (a) induce that there is a measurable version of the map
(t,w,P) = zF "1 such that for every P € Py, 2" 1 (w) is F -adapted and IF¥ -predictable.
Therefore we conclude by induction that zF#" 1 is F -adapted and FF¥ -predictable for all nat-
ural numbers m > 1.

(c)- The passage to the limit: (zP), -1 is a Picard iteration and a Cauchy sequence under
the (IP,a)-norm, then by (3.4.8) (zF"*"),,~; converge uniformly P-a.s. to some process z"
which is the z- component of the solution to the penalized BSDE (4.4.1). By the same way, we

can use the Lemma 2.4.2 to find a family of subsequence ((m} )y>1, P € Py) such that the limit
P
ZPM of z]tP'n’mk still jointly measurable and verifies (4.4.1). This conclude the proof of (ii).

(iii) For n > 1, on the one hand by (4.4.5) m®"" is a limit of Picard sequence (m®"""),,~, which
verifies 4.4.2, thus for a fixed m > 0, (m]P'"'m)tZO isa IF]E—adapted right continuous martingale
orthogonal to X. By letting m to infinity, the limit still a right continuous F¥ -adapted right
continuous martingale orthogonal to X. On the other hand we have already proved in the two
above steps the jointly measurability of y©" and zP”*. Also Picard iterations converge to the
solution of the penalized BSDE, thus by (4.4.1), mP" verifies

t t t
mp =P =y [P E a2 s — [ 22w [ (U - P s

We deduce that there exists a measurable map (f,w,P) +— mItP'” (w). Indeed f is jointly mea-

surable by Assumption 3.2.1(i) then m"”" is a sum of measurable terms. o
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Lemma 4.4.2. There is family of subsequence (n} ,k > 1) such that the sequence (y]P'”E ) nP of measur-

able jointly measurable functions with respect to B[O, T| x Fr x % converges and the limit denoted y*
is also a jointly measurable function. Moreover, for every t € [0, T| and P € Py, the limit process yF
provides the solution to the RBSDE (4.2.5).

The result is proved in the same way as Lemma 3.4.3.

4.4.3 Dynamic programming principle

The dynamic programming principle here is principally based on universally selection mea-
surable theorem seen in section 2.3. The following result extends Theorem 3.4.1 of Chapter 3
in the case of upper obstacle.

Theorem 4.4.1. Suppose that Assumption 3.2.1 holds true. Then for all (t,w) € [0, T| x Q), one has
Vi(w) = Vi(w.pt), and (t,w) — Vi(w) is B([0, T]) @ Fr-universally measurable. Moreover, for all
(t,w) € [0, T] x Q) and F-stopping time T taking values in [t, T|, we have

Vi(w) = sup EP[yf (t,Vr)],
PeP(tw)

where yY (T, V) is obtained from the solution to the following RBSDE with terminal time T and termi-
nal condition Vz,

yr=ve+ f:ﬁsp(y]sp,ﬁ;ng’)ds — [P LAy 2dwrF — [ dm? — k¥ +kF, P-as.
yP <u, t€[0,7], Pas, (4.4.8)
Jo (U= =y )dkP =0, P-a.s.

The proof follows the same scheme as the proof of Theorem 3.4.1. The first step of our proof is
to establish the dynamic programming principle of our RBSDE associated to the 2RBSDE.

Lemma4.4.3. Lett € [0, T],IP € Py, T be an F-stopping time taking values in [t, T| and (yP, 20, mP, k)
be a solution to the RBSDE (4.2.5) under IP. Then one has

vi (T.8) = yi (T.y7) = vi (CEY[y7 |77 ]), Peas.
Proof. First, we consider a solution (y¥,zF, m", k') to the RBSDE (4.2.5) associated to (&, f, L)
under P w.r.t. the filtration F¥ = (FE )o<s<1, then
P_ P, [TFPP ~1/2P R SV SN Y AT R LN
Yo =Yz +/t fs (ys P07 Zg )dS _/t Zg -l dws _/t dms _/t dks , P-as.
Taking conditional expectation w.r.t. 71 under IP, we get IP-a.s. that

T T T T _
yP = EP[P|7P] + [ PP (P, 8L/ 2P )ds — [ 2P G 2aWP — /t dil — Z dk?, P-as.

where the process kT defined by k¥ := EF[kP| FF], and k¥ := kT is non-decreasing by the fact

that kT is non-decreasing. Since dkgj =1 { }dkgp for s < 7, then

]/]P >U

s — 8

T e u ~ ~
U =y dRE = tim [ (U = yP dRE + (U — AR

u—t— J0

u
= lim [ (U —yQ)dkl + (U — y2 )EP [KE — kP | 7]

u—t~ JO
= ]E]P[(u'r— - ylf—)(k]'lr) - k]lr)—)‘}—r}
=0.
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The last equality is provided by (4.4.8), if (U,- — y]_lrj,) > 0, then k¥ — k]f, = 0. Therefore,

T R
/0 (U —yP)dkf =0, P-as.and yf < Uy, Vt € [0, 7], P-as.
We also have ¥ := EP[mF|7F], and sl := ml when s < 7. It is apparent that m" €
M} (F¥,P) and by identification, we deduce that

ity =my + B[y — k7| F7) — (7 —kr)-

and then 7" is orthogonal to the continuous martingale X under IP. Let consider a RBSDE
associated to (EF[yF|FF], f,L) on [0, 7], by uniqueness of this solution associated with the

properties verifies by /" and kT, it follows that
v (7)) =y (TEV T | 7)), Peas.
Finally, by definition of the RBSDE (4.2.5) it is clear that y} (T, &) = y} (t,y¥). ]

We now back to the proof of Theorem 4.4.1. The proof is exactly the same to Theorem 3.4.1 in
Chapter 3 and use the previous Lemma.

4.4.4 Path regularization of the value function

After proving the DPP, we are interested in the right-continuity property that the first com-
ponent of the solution of the 2RBSDE (4.2.1) should verify. The first step is to represent the
right-continuity modification of V' as a semi-martingale under any IP € Pj and then give its
decomposition. We define for all (t,w) € [0,T) x Q

V= lim V, and Vj :=Vr.

reQN(0,T),rlt

Our first objective is to show that V' admits right- and left- limits outside a Py-polar set. Since
forall t € (0,T], Vf is by definition ]-'}”-measurable, we can deduce that V7 is in fact FP0+-
optionnal. The downcrossing inequalities below is prove in section 5 of [85] to the case of
BSDEs. Similar arguments apply to the case of RBSDEs give the same result.
Let | := (Ty)neN be a countable family of IF-stopping times taking values in [0, T] such that for
any (i,]) € INZ, on has either 7; < Tj,Or T > Tj, forevery w € (). Leta > band ], C ] be a finite
subset (J, ={0 <7 <---1, <T}). We denote by D,’j (V, Jn) the number of downcrossings of
the process (Vz, )1 <k<, from b to a. We then define

D(V,]) := sup {Dg(V,]n) :Jn C J, and J, is a finite set}

The following lemma follows very closely the related result proved in Lemma A.1 of [13].

Lemma 4.4.4. Fix some P € Py. Let Assumptions 3.2.1 and 4.3.1 hold. Denote by L the Lipschitz
constant of the generator f. Then, for all a < b, there exists a probability measure Q, equivalent to IP,
such that

ELT

B[pbv. )] < 2

EQ {eLT(VO Ab—a) —e T (Ve Ab—a)t

+ el (Ve Ab—a)” +etT /

Jo ‘fp(a,o)]ds}

Moreover, outside a Py-polar set, we have

lim V(w):= lim  Vi(w), and lim Vi(w):= lim  Vi(w).
reQN(t,T)rlt reQN(t,T)rlt reQN(t,T),r1t reQN(t,T]r1t
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To prove the above result, we need to recall some properties verifed by V defined at IF-stopping
times. For any stopping F-stopping times T > ¢, we have from Theorem 4.4.1 that

Vow)(@) = sup  EF[yF (x,v0)], (4.4.9)
PeP(0(w),w)

Formally, the following result can be obtained by simply taking conditional expectations of
the corresponding RBSDEs. However, this raises subtle problems about negligible sets and
conditional probability measures. We refer the reader to [22] for the precise details.

Lemma 4.4.5. For any IP € Py, for any [F-stopping times 0 < o < T < T, we have

o(w) o (w)

A ACI R UL

]-'T} (w), forP-ae w e Q.

The following inequality is the consequence of the above equation.
Vo) > EP [yg’(w)(r, VT)}, for any IP € P(c(w), w). (4.4.10)

These inequalities allow one to prove Lemma 4.4.4.

Proof of Lemma 4.4.4. Without loss of generality, we suppose thata = 0. Let J, = {10, 7, -+ , T}

with0 =1 <7 < - <71 =T Foranyi =1,...,n and w € (), let the following RBSDE
Ti-1(w)

under P on [7;_1,T]
T (w) ) 7;_1(w) T (W) % _1(w)
g v T (FRTO AEET a2 s
pTie1(@) = 7_1(w) 7i_1(w) ) - Ti-1(@) )
_ tTl ler]Pw . ag/zdwépw f dm Py ftT1 deS/]Pw i H);zfl(w)_a.s.’

o Ti-1(@)
y;']Pw < U, t€ 11,1, P 1w )—a.s.,
. . 1—1( ) . 1—1( ) A
JE U =y ake =0, PE s,

Ti-1

where A and 7 are two bounded processes (by the the Lipschitz constant L r of f) appearing
in the linearisation of f due to the Lipschitz property of f. This RBSDE can be also write as

ipl-1) 7 2o pi1@ al/2, z]P’ 1)
—vy =V + [, (f fs My —nied )ds
71 (w) _1(w) T (w) - oTio1(@)
T P! ~1/2 Pt T ,]PZ T i1 T (w
_ tl( 1 w ),as/ dwsw _ft d(_m; w )+ft1dkls w i ]Pu; 1( )-a.s.,

7i_1(w) ,

y;]P > *Ut, te [Tiferi]r stil(a})'a‘sv
T (@) 5T (@)
Ti P P it 71 (w
JE =y — (—ue )kt =0, g “as.

and then we obtain a RBSDE with the lower obstacle —U, since we have already proved the
downcrossing inequality in Lemma 3.4.5 of Chapter 3 when the BSDE are reflected with a
lower obstacle, therefore using the following symmetry between lower and upper obstacle, we
can follow step by step the proof of Lemma 3.4.5 of Chapter 3 to proof the our result with the
RBSDE define above. U

Using Lemma 3.4.5, we obtain

VAREES lim  V;, outside a Py-polar set,
reQN[0,T),rt

and from this we deduced that V' is right-continuous outside a Py-polar set.
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4.44.1 Representation formula

In this section we don’t give the proof of result since the arguments of proof are the same to
the case of lower obstacle in Chapter 3. We begin by extending the inequality (3.4.16) to V.

Lemma 4.4.6. Forany 0 <s <t < T, forany IP € Py, we have
VE > yP(t, V), Pas.

The proof of this Lemma is the same as the proof of Lemma 3.4.7.

The next result is an extension of the previous result to stopping times and the proof is similar
for the lower case.

Lemma 4.4.7. For any [F-stopping times 0 < ¢ < T < T, for any P € Py, we have
V.m > yP(r, V), P-as.
In particular V' is cadlag, Po-q.s.

Lemma 4.4.8. For any F-stopping times 0 < 0 < 7 < T, forany 0 < t < T, for any P € Py, we
have

V, = esssup’ EV {y]}:(r, y]?!}}}, P-a.s.and V;" = esssup® y¥ (T,&), P-as.
P'e€Py(v,P,F) P/ ePy(t,P,F; )

where Py(c, P, TF) is defined in Section 3.2.3. In particular, if Assumption 3.3.1 holds, one has V* €
D} (FP0+).

The next result shows that V' is actually a semi-martingale under any IP € P, gives its decom-
position and deduce the existence of a solution to the 2RBSDE (4.2.1) and the proof is deduce
by the same arguments to the case of lower obstacle.

Lemma 4.4.9. Let Assumptions 3.2.1 and 4.3.1 hold. For any P € Py, there exists (Z¥, MF,KT) ¢
H} (FY,P) x M} (F%, P) x I} (F¥,P) such that

T T T T
Vi =r§+/ ﬁ,ﬂ’(w,ang’)ds—/ z?dxg'ﬂ’—/ dMS]P+/ dK¥, t € [0, T], P-a.s.
t Jt t t

Moreover, there is some FFo-predictable process Z which aggregates the family (Z]P)]pe'po and the
quadruple (V*, Z, (M®)pep,, (K )pep,) is solution to the 2RBSDE (4.2.1).
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Chapter 5

Weak approximation of second
order reflected BSDEs

Contents
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545 Convergence of Reflected BSDE . . ... ... ............... 141

5.1 Introduction

In this chapter, we aim at approximating a solution of a second order reflected BSDEs studied
in Chapter 3, in particular in terms of weak approximation. A second order reflected BSDE
(2RBSDE) can be represented as an equation defined as follows on the canonical space () :=
C([o, T],RY)

T s o T T
Ye =&+ [p f(s,Ye, @2 Zs,a5)ds — [; ZedXs — [, dMF + KE — KF,
0<t<T, P-as., VP € P,
Y; > L;,0<t<T, P-as., VP € P

where P is the set of probability eventually non dominated such that under IP € P, the canon-
ical process X is a local martingale (or more generally semimartingale see Chapter 3) measure
with the density of its quadratic variation (also called volatility) a taking value the set SdZO of
symmetric positive semi-definite d X d matrices. With this stochastic differential equation, it
is natural to have recourse to the discretization of the continuous solution by numerical meth-
ods (among which we can mention Euler’s scheme, Milstein’s scheme ...), this turns out to
be complicated for in the present case since the process K' in the equation is not defined ex-
plicitly. The information about K is given by the minimum condition introduced by Soner,
Touzi and Zhang [91] for the second order BSDEs and thereafter adapted for reflected second
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order BSDEs by Matoussi, Possamai and Zhou [66]. Thus it appears easier to make use of
the representation formula through standard reflected BSDEs, and then our problem becomes
to approximate a supremum of a family of nonlinear expectations on the canonical space of
continuous trajectories.

The G-expectation introduced by Peng [78] is a particular case of nonlinear expectation. In
[30] Dolinsky, Nutz and Soner studied the weak approximation of G-expectation, they intro-
duced a notion volatility in discrete time and define an approximation of the G-expectation
in discrete time. They proved the converge of the discrete time approximation to the contin-
uous time G-expectation. And with this weak convergence approach, there is no estimation
error of convergence rate. To overcome this disadvantage, Dolinsky [29] considers a differ-
ent approximation with explicit discrete time martingale and then proves the convergence of
approximation and provides the error estimates.

Possamai and Zhou [84] proved weak approximation of a class of second order BSDE non re-
flected. Their approximation consists in a construction of a sequence of discrete martingale
convergent to X and a sequence of BSDEs driven by these martingales. Then under specific
conditions, they proved that the supremum under volatilities uncertainty in discrete time of
this family of BSDEs converge to the solution of 2BSDE. In order to do this, they call on ro-
bustness properties of BSDEs introduced by Briand , Delyon and Mémin [19] and [20] (which
is a weak approximation of BSDEs driven by a Brownian motion ) and tightness of sequence
of approximations.

Our main contribution is to extend weak approximation of [85] to the case of second order
reflected BSDE, using an approximation of a sequence of discrete time martingale convergent
to the canonical process. An auxiliary result is to extend the stability results for the case of
reflected BSDEs driven by a martingale in a general filtration.

The rest of the paper is organized as follows: in section 5.2, we provides a framework to our
class of second order BSDEs. Section 5.3 is devoted to an approximation in discrete time of mar-
tingale as random walk and the statement of the main result using a family of reflected BSDEs
driven by the approximation. Finally the last section contains proofs of existence, uniqueness
and stability of RBSDEs driven by discrete time approximation of martingale.

5.2 Framework and formulation of the problem

Framework. We consider Q) := {w € Cy([0, T|,R) : wp = 0} the canonical space of continu-
ous paths on [0, T] which start at 0 equipped with the following norm ||w||; := sup,,; |ws|
,forany w € Q and t € [0, T] and X the canonical process. We denote by IF = (F¢)o<;<T the
canonical filtration and Fy = (F;")o<;<r the right continuous filtration.

Let P(Q)) be the collection of all probability measure on (), Fr), Py the Wiener measure on
Q under which X is a standard Brownian motion. A probability measure IP in P(Q) will be
called a martingale measure if X is a martingale under IP and Xy, = 0, IP-a.s. For P € P(Q)), we
define F¥' = (FF)o<;<r to be the completed filtration with respect to IP and FY its right limit.
In this way, for P C P(Q), we define the augmented filtration with respect to P by

F? = (F)o<i<r, FL = () F¥
PreP

and F” his right limit.
By Karandikar [53], there is some [F-progressively measurable non-decreasing process on (2
denoted by (X) = ({X)t)g<;<r which coincides with the quadratic variation of X under each
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semi-martingale measure IP with

m
el0

Ju—

t
(X); = thg—zf XedX! and @ i=
0

o=

(X} = (X)t—c)-
where X’ denotes the transposed of X, and the lim is componentwise defined.

The models space. We consider a nonempty compact convex subset D = [4,a], where 2 > 0. We
denote by Pp C P(Q) the collection all probability measures IP satisfies:

- Xisa (PP, F)-martingale
- (X) is absolutely continuous PP-a.s.

- d(X);/dt € D, P xdt-ae.

Formulation of second order Reflected BSDE We consider the following 2RBSDE

Yi = (X)) + [1 f(s, X, Y, 827, 05)ds — [ Zed X, — [T dMP + KE — KF,

0<t<LT, P-as., VP € Pp,

Y > h(X;),0 <t <T, P-as,VP € Pp (5.2.1)

essinff EP' | [T G a(KP — kP FP | =0, 0<t<T, P-as. VP € Pp.
PePy(LP L) [ft AT -k H} - P

where for any ¢ € [0, T] and for any IP € P, the process G"F is defined by
"S 1 S o
G i= exp ([ (AF = 5 IF 1) (Y8, Zus )+ [0 (Y8, 20, 20) -2,

AP and 5T are bounded processes, f,® and h are three functions respectively on [0, T] x Q x
R x R x D and R with values in R satisfying ® > h.

Notation: Pp(t,P,F;) :={P' € Pp:P =P on F; }.
We proved existence and uniqueness of solution of the above equation in Chapter 3. Further-
more, the solution (Y, Z, (MY)pepy, (KP)pep,, ) of this 2RBSDE is such that Y is ., -progressively
measurable, Z is F -predictable, KP ig ]Fﬁ—predictable and MT is an IF]E—optional martingale
orthogonal to X under PP.

Remark 5.2.1. In this work, we have a slightly different formulation of 2RBSDE in the sense that
in chapter 3, the generator depends on @ only by the product with z, while in the above expression the
dependence with respect to @ is more general. Nevertheless, the existence and uniqueness of the 2RBSDE
5.2.1 is obtained under Assumptions 5.2.1 by the same arguments as in Chapter 3.

We also provided in (3.3.3) of Chapter 3 the following representation formula: for 0 <t < T,

Y; = esssup? y]tp/, P-a.s. (5.2.2)
P'ePp(tP,F. )

where y is the first component of the solution of the following RBSDE:
yP = o(X) + [T f(s, X, yF,at 28 a)ds — [ 2PdXs — [] dmP + K2 — kP,
yf > h(Xs), t€[0,T] (52.3)
Jo P —h(X,- )k =o.
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The existence and uniqueness of solution to the above RBSDEs under each IP € Pp is proved
in section 4 and the arguments used to prove this result are classical to the ones used in [14]
for example. For every IP the solution is represented by a quadruple (y*,zF, m®, k¥) of -
measurable processes where m" is a (P, F;)-martingale orthogonal to X under IP. For every
P € Pp, we have the following estimates

T
EF| sup [4Ff+ |82+ e+ () < c. (5.24)
tel0, T

where C is a constant independent of IP.
For every IP € Pp, each RBSDE (5.2.3) are linked to an optimal stopping problem by the fol-
lowing relation

v
yF = esssupETP [/t £(5, X 8,2 8 )ds + h(Xo) L ety + P(X)pory | Fir |, (5:25)
veTy

where 7; is the set of all [t, T|-valued F-stopping times.
Formulation of the problem. Thanks to the representation formula (5.2.2), our goal is to give
an approximation of Yy defined by

Yo = sup EV[yF]. (5.2.6)
PePp

We make the following assumptions.

Assumption 5.2.1. There exists a constant K > 0 such that for any (x1,Y1,21), (X2, ¥2,22) € R X
R xR,s,t € [0,T],a1,a2 € D,

(i) @ is positive continuous and |P(x1) — P(x2)| < K(||x1 —x2||1),
(ii) h is positive continuous and |h(y1) — h(y2)| < K(ly1 — y2|),
(iii) | f(t,x1,y1,21,a) = f(£,X2,¥2,22,@)| < K([[x1 = xa[lt + [y1 = y2| + |21 — 22/ + |a1 — a2]),

(iv) f is positive and the map a — f(t,X,y,z,a) is concave and uniformly continuous for every
(t,x,y,z) € [0,T] x Rx R xR.

(v) The process t — f(t,X., Y, zt, at) is progressively measurable given progressive processes (X,y,z,a)
and uniformly continuous with modulus p in the sense that for every s < t and x,y, z,
|f(t, Xsn- Y, 2,8) — f(S,%sn., Y, 2,a)] < p(t—5).
(vi) Sup(trx/y)e[()j]x()x €D |f(t/ x,0,0, ,-},)| + |CI)(O)| + |h(0)| <K
(vii) h is convex, bounded, derivable and his derivative is Lipschitz (with Lipschitz constant K),

Remark 5.2.2. Assumptions (i), (ii), (iii), (v) and (vi) are classical in the theory of BSDEs and the nu-
merical approximation of RBSDEs and ensures the convergence of the numerical scheme to the solution.
Assumption (iv) will be useful in section to prove the existence of an opimal function value and finally
Assumption (vii) comes from the approximation of RBSDEs ( we can see Bouchard and Chassagneux
[11]). Since we don’t give a bound on the convergence rate, the last one is only need to prove Lemma
5.3.1 to establish an estimate for a scheme of RBSDEs.

5.3 Discrete time martingale and formulation of approxima-
tion

We begin with a discrete time analogue of martingale, we follow the approximation of [84] and
then proved existence and uniqueness of solution to RBSDE driven by the approximation.
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Discretisation. Given n > 1, we discretize [0, T| in n + 1 equidistant points 0 =ty < t; < --- <
tn = T, with h = T/n and for every n > 1, we set ()", 7"*,IP") a probability space carrying a
sequence of n independent random variables Uj, .. ., Uy,. Define the filtration F" := (F}')1<¢<p
with 7! := o(Uy, ..., Ux).

We consider a family of functions {H}!,1 < k < n} such that H! : D xR — R is a continuous
in a and for some J > 0, we have for any v,

E[H}(7,U)] =0, E[H; (v, Ug)?) = vk, E[H; (7, U] = Kn' ™2 (53.1)
where the expectation is with respect to the probability of IP".

Remark 5.3.1. Observe that if Uy, ..., U, are i.i.d. and under IP" the have a standard normal distri-
bution, the sequence of functions H}! (a, u) := auh satisfiy the above conditions.

Space of volatility uncertainty. Denote A, the collection of all [F"-predictable D-valued pro-
cess a = (ay,...,at,). Then for every a € A,, we define the discrete time martingale M* =
(Mg, ..., M{ ) of the form, M = 0and

tor e
k
j=

together with its predictable variation process { (M“),, k = 0,...,n} whichis givenby (M“);, =
0and

k
(M), = Y MMy = Y E[(AM))*|FE ] =h ) ay,.

k k
j=1 j=1 j=1

where AXt]. = thﬂ — Xt/..

We extend discrete paths in continuous paths. By abuse of notations, we define the continuous
time filtration F" = (F}')o<t<r, with 7' := F|, for all t € [t t;11[ and continuous time

n

martingales M{ := Mj forall t € [t;, t;;1[. We consider the complete filtration G" := .
It is easily to see that G" is right-continuous and completed under IP”, and by definition for
every a € A,, M* is a right-continuous, piecewise constant in time, G"-martingale.

Moreover, we also extend M of (R?)"*! to a continuous path by linear interpolation. We define
the interpolation operator ~ by

TH(RYD™ 5 Q, M= (My, ..., My) = M = (My)o<i<t,
My = ([t/B] +1 = t/B) My g + (/1 —= [/ B) M1
and [z] denotes the integer part of z.

Reflected BSDEs driven by M“. Then for every a € A;,, we define the following RBSDE

yi= (M) + [T f(s, MO ye,al %28, a)dCl — [T 28dME — [T dml + ks — K,
yi > h(Mf), t € [0, T) (5.3.3)
T A~
Jo (ve- = H(MZ-))dks = 0.
where C!' = [s/h]h and y* denotes the cadlag process associated to y*. a'/? denotes the unique
square root of 2 in D and 4 is given by

n—1
ap = 2 atkl[tkftk+1[(t)’ te[0,T].
k=0
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A solution of the above RBSDE is a quadruple (y*,z?, m®, k?) of G"-measurable processes such
that m” is a martingale orthogonal to M“( existence and uniqueness result is provided in section
54.

Numeric scheme of RBSDE (5.3.3). Following Bouchard and Touzi [15], by discretization of the
RBSDE (5.3.3), we have the following discretized backward dynamic program scheme:

I/Zh = CD(M\‘Z ),
i, = max{h(Mg,), ]E[y‘(‘k+1 |]-'”] —l—f(kh,]\//l\”.,yzh, a%zzih,akh)h}, (5.3.4)
2l = RE V{1 a0 AMiy | 77,
We are interested by approximation of the y”-component then we are not required to give a
discretization of the martingale orthogonal.

The following assumption is useful and provided a comparison result for reflected discrete
time BSDEs.

Assumption 5.3.1. For every n > 1and a € Ay, the following relations hold:

1
K< i and  K|H (ag,, Ux)| < a%z,fork =1,---,n

where K is the Lipschitz coefficient K introduced in Assumption 5.2.1 and h is the step of discretization.

These conditions guarantee that the following classical statement is satisfied: Let n > 1, the
backward scheme (5.3.4) is monotone. In others words let (y*!,z%1), (y*?,z%?) be two solu-
tions of (5.3.4), then

1 2 1 2 _
y?k+1)h < y?kﬂ)h = yzh < ]/Zh Vk=0,...,n—1.

Indeed,
Vin — i = max{h(M§,), Ely k+lh|ftk]+f<kh M.,y a2y, axn )b}
() B )+ 6058 )
< max{0, E[y| (k+1)h y(k+1 nl ]
kh Mu 1/2._.a,1 h— kh Mﬂ 1/2_.4a,22 h
+ f( 'ykh'“kh Zkhr“kh) f( YR a2 ag)h}
< max{0, E[y{ k+1)h y(k+1 Wl T+ Ky — v+ Khag (255 — 250) .

Furthermore,
1 2 1 1 2 -1
Zn = 2k = 7B LWl = Yin) T AMa |75
1 1 2 -1
= E]E [(y?kJrl)h - ]/L(lk+1)h) Txn H;:Jrl (akh/ Uk+1> |‘7:g<]
Then

(1= Kh) (v — yi) < max{0, E[(1+ Kay," >H} (ag, Uy11)) (V?kl+1)h - yb(lzil)h” hl}
Discrete time approximation of the problem. Given n > 1, let set

Yy = sup E[yg). (5.3.5)
acAy

where the expectation is defined with respect to the probability IP".
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Assumption 5.3.2. f(t,x,y,z,a) = f(t,x,y,a), in other words f does not depend on z.
Our main result is the following weak approximation

Theorem 5.3.1. (i) Suppose that Assumption 5.2.1 holds true. Then
L eyn S
hrg g}fYO > Y.
(ii)Suppose in addition that Assumptions 5.3.1 and 5.3.2 hold, then
. 0 _
55, Y0 = Yo
Proof. This proof is divided in two steps, the first step concerns the first assertion of the
Theorem and the second one is devoted to the proof of the second assertion.
Step 1 :Proof of the first assertion of the Theorem. Let P € Pp and consider (y¥,zF, m?, k) the
solution of the following RBSDE under IP.
yP =o(X) + [T f(s, X, yF,at/%2F ag)ds — [ 2PdX, — [T dmP + k2 —kF, P-as.
yf > h(Xy), t€[0,T] P-as.
fOT(ng_ —h(X;-))dkP =0 P-as.

with respect to the martingale X.
Let denote for n > 1, M" the piecewise approximation of the martingale X defined by

M} = ZH” ,1<k<n.

k

where 4" is a process which belongs to A, and is defined from the density @ of the quadratic
variation of X. We give all details about the construction of 4" and the convergence result of
M" in section 5.4.2. Using this approximation, we consider (y",z", m", k") the solution of the
following RBSDE
yl = (M) + [ f(s, MLy, (@) 228, am)dcy — [T zidM? — [ dm? + K — k!, P'-as.
y! > h(MP), t € [0,T] P'as.
fo yi —h( s,))dk;‘ =0, P"-as.
driven by (M™),>1, where M7 is the linear interpolation of M".

For n large enough, we establish the existence and uniqueness of the above RBSDE in section
5.4. Moreover, we stated in Theorem 5.4.1 the following convergence

yv' > yP, as n— oo (5.3.6)
in law for the topology of uniform convergence. Moreover, by definition of Y}, we have
E[yp] < Y-

Then taking the infimum limit into the following expression and using refnumcongyn we ob-
tain

liminf Y§ > lim inf E[ya] — EP[yF].

n—oo

Now taking the supremum over [P, we have the first part of the Theorem.
We stand for the second assertion.
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Step 2:Proof of the second assertion of the Theorem An essential argument for the proof of the
second part of the Theorem is the existence of an optimal control for the approximation prob-
lem (5.3.5). Then we reformulated the problem (5.3.5) using a backward scheme as a control
problem over the compact set D which is very useful to prove the existence of this optimal
control.

This formulation is based on backward scheme of the RBSDE.Let define

A= | {t} xR
0<k<n

For every n > 1, (t,x) € A" and ¢y € D, we define M%*7 € R*2 by

X, .
M7 = x;, foreveryi <k
1

Mtklx")/ — Mtk’X/(y + H;(I_,'_l (r)// uk+1)

tria tr
We then define u" : A" — R by the following backward iteration. The terminal condition is
given by

U (ty,x) == ®(x) Vx € R",

and the backward iteration u" is given by, for all x € R¥*1,

un(tk/ X) - supug(tk, X)/
y€D

1 (b, x) = max{h(M;™), E[ull (b1, MU + f (b, X, ult (b, X), 7200 (B, %), )R},

(b, %) 1= FIE [ (b1, MBXT)y T H] (7, U) |,

u

(5.3.7)

Proposition 5.3.1. Let u" defined in 5.3.7, then
u"(0,0) =Yj'.

In the rest of this section, we suppose that f does not depend on z and we consider the approx-
imation u" defined in 5.3.7 (see Proposition 5.3.1). Therefore, we have the following regularity

property.

Lemma 5.3.1. Let Assumption 5.3.1 holds. Consider u" the solution to the backward iteration (5.3.7),
then there exists a constant C independent of n such that

[ (t,x1) = " (b1, X3 | < C(IX" =] + V).
where x!,x? € R and x®% = (52,52 | + H' (-, Ugt1)) € RFF2,
The following result states the existence of an optimal control to the problem defined in 5.3.7.

Proposition 5.3.2. For every n > 1, thereis a* € A" such that the solution (y"*,z"*, m"*, k"*) =
At M @™ kMY of (5.3.3) satisfies v = ut (t, M™*), P"-a.s. with M"™* = M*"". Further-
y Yy k
more, the sequence (y"*),>1 is tight.

Hence with the above result, the proof of the second assertion can be resume by proving the
following inequality

limsup E[yy*] < Yo = sup E'[y}]. (5.3.8)

n—00 PePp
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where y™* is the process of Proposition 5.3.2. To prove (5.3.8), we will deal simultaneous with
the convergence of controls over the set 4, and the convergence of processes. In order to
guarantee the existence of limits, it will be necessary to work with a space of controls that have
the appropriate closure property and which yield the same value function for the optimization
problem we seek to approximate. This will done through deterministic relaxed controls.

Relaxed Controls. The notions related to relaxed controls used in the following can be found
in the work El Karoui, Huu Nguyen and Jeanblanc-Picqué[34] and Kusnher and Dupuis [57].
Given the compact set D, we define a Borel measure g on the g-algebras B([0, T] x D) (the
collection of Borel sets of [0, T| x D) such that g([0,t] x D) =t for all t € [0, T|. Denote Q the
following set

Q := {gmeasureon [0, T] x D : gq(dt,dvy) = q(t,dy)dt}.

For g € Q, we can defined a derivative g;(-) such that
B) = / , it
") [0,T]xD {(tm)eya(d7)

forall B € B([0,T] x D), i.e. q(dt,dy) = q;(dvy)dt. For every t, q; is a probability measure on
D. Let us introduce the canonical space of continuous paths , cadlag paths and measures

Q:=C([0,T],R) x D([0, T],R) x Q.
with the canonical process (X, U, q) and the canonical filtration F = (F;)o<;<7 defined by
Fy 1= o{X, U gs(9), ¢ € Col[[0,T] x D), s < 1},

where C,,([0, T] x D) is the set of all bounded continuous function on [0, T] x D, and

3:9) = [ [ 9ts,alds ).

We denote F = (Fiy )o<i<T the right limit of FF.

Remark 5.3.2. If (P is a probability measure on (Q, Fr) then By definition 2.4 of [34], for every
s €[0,T], g € CA(R),the process C(g, q) defined by

. 2
Cilgo) = 804) ~80%) — [ [ 258 (Xoyatas, av)

is a (P, F)-martingale.
We consider (M"*,y™*, a"™*) the processes of Proposition 5.3.2 and define

-1

g (dt,dy) =)

n
5[1:1/* (dvy)dtl [trtis1) (t).
k=0

Define P" the law on O induced by (M™*,y"*,q™*) in probability space ()", F",P"). Since

(M™*,y"*) is tight (by Proposition 5.3.2) and D is a compact set, then (IP"),>1 is relatively
compact. Let P* be a limit probability measures. We have the following result:

Proposition 5.3.3. Let Assumptions 5.2.1 and 5.3.1 hold. There exists some probability space (O, F*,P*)
containing (M*,y*,q*) whose distribution in P* such that

lim sup EP" [yg'*] = EM [y5]-

n—o0
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Moreover if % denote the right limit of the filtration generated by (M*,y*,q*) and completed under
IP*, then there exists IF', -progressively measurable processes z*, m*, k* and a* such that m* is a mar-
tingale orthogonal to M* with mg = 0, k* is a predictable nondecreasing process null at 0, a* is the
density of the quadratic variation of M* and (y*,z*, m*, k*) solve the following constraint BSDEs

T T T T
3ﬁ:MMﬂ+Kj@Wﬁﬁﬂbflsz§ilm@+ﬂd@,PW&

such that forall t € [0, T|, y; > h(Mj), P*-.a.s. and
T
/@:ummm:apw& (5.3.9)
0

Remark 5.3.3. We conjecture that the Skorokhod condition (5.3.9) is satisty. Unfortunately we are not
able until now to improve this assertion.

Proof. This proof will be divided in two steps, the first step consists in the existence of
(y*,z*,m*,k*) and the second one is devoted reflected condition.

Step 1. The sequence (P"),>; of law of (M™*,y"*,q"*),> is relatively compact, then there
exists a probability space (Q)*, 7*,IP*) containing the limit (M*, y*,g*) of (M"™*,y"™*, q4"*),>1
whose distribution is P* . That is the sequence y™* converge in law to y* and this leads to

E™ [y0*] — E¥ [yg] asn — .

Furthermore, since the process (y*, z"*, m"*,k"*) solves the RBSDE (5.4.10), we can used the
link between RBSDEs and optimal stopping problem to deduce that v + [; f(s, M, y5"*, a5 )ds
is a (IP", G")-supermartingale then using relaxed controls and the canonical process (X, U, q),
we get back that the process

D.(X,U,q) =U. + /0. /Df(s, X., Us,v)q(ds,dvy)
isa (P",FF)-supermartingale. Then for 0 < s < t < T and E € Fs., we have
EP [15(Di(X, U, q) — Ds(X, U, q))] < 0.
Since D.(X, U, q) is bounded and continuous ( by Assumption 5.2.1) we let 1 goes to co and get
EP” [1(Dy(X, U, 4) — Ds(X, 1,4))] <0.
D.(X,U,q) becomes a (P”,F. )-supermartingale. Now came back to the probability space

(QF, F*,IP*), we obtain that and then y* + [, [, f(s, M*, y%, s)g* (dy)ds is a F*, -supermartingale.
Denote

ati= | 9g:(d)ds
D
By the convexity assumption on D, a* takes values in D. In addition, using the fact that g4* is

the limit of g** it appears that a* is the density of the quadratic variation of M*. Using the fact
that v — f(t,x,y,) is a concave function, we have

L f oy mai @) < fx, [ i @),

Then y* + [, [p f(s, M¥,yZ,vs)q*(d7)ds still a F% -supermartingale.
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There exists some probability space (%, F*,IP*) containing (M*,y*, g*) We know apply the
Doob-Meyer decomposition and the orthogonal decomposition with respect to M* of the su-
permartingale y* + [, f(s, M, y3,a})ds to obtain the existence of z*,m* and k* such that m* is
a P*-martingale orthogonal to M*, k* is a nondecreasing process with kg = 0 and

t t
vi+ [ s Mzt ds = [ ZdMy 4 — ki

Step 2. Since (y™*,z"*, m"*, k") solves the RBSDE (5.4.10) then we have by (5.4.11) that

n
supE" { sup |y} ?
n>1 0<t<T

/ a1/ 250, n24CT + (m )7 + (k’%*)z] < 40, (5.3.10)

Then y™* and M™* (see Lemma 5.4.2) are uniformly bounded and convergent in L?( weakly
for y"* and strongly for M""*), so that a sequence of convex combinations (M"™*), (i7"*) and
(k"*) of the form

N n

N, Ny
=Y oM, gt =Y Ayt and with ) af =1,
= =1 i=1

converges strongly respectively to M*, y* and k*, then using the fact that v, > h(M,""),P"-
a.s for any t € [0, T], we have by using the convexity of & that

Nn
yf = lm 7" = lim thy” > lim th”h M)

n——+oo n~>+oo n~>+oo

> . Vl n ni,*
- nl—lg-loo 2 h(al Mt )

> lim h(M” )

n—+00

> h(My).

and then y; > h(Mjf),P*-a.s for any t € [0, T]. Hence since k* is a non decreasing process null
at 0, we deduce that

T
/0 (yi- —h(ME))dkl >0, P*-as.

O
The proof of the second assumption follows directly from Proposition 5.3.3. In fact,
limsupE[yy*] = E¥ [y5] < sup EF[yf] = Yo. (5.3.11)
n—00 PelPp
0O
Proof of Lemma 5.3.1. We have
" (b, x1) — " (b, X2 | < Jut" (b X — u"(fk, XE)] " (b, 3%) = u” (b, X2
< sup [ (£, X1) — 1 (b, 58)]| + sup [u (b, x2) — (B, 525,

reD YD

Lety € Dand n > 1, we claim that u (tk, ) is Lipschitz in x forall t, k =0,--- ,n
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Let x € R”H,uf;(tn,x) = ®(x) is Lipschitz in x. Suppose that for x € R¥*2, uli(ti1,x) is
Lipschitz in x and let x!,x? € RF1,
1 o
[l (b, ) — uly (e, x%) | = | max{(xy), B[t (b, MBT)] + f (1, X 0y (b X, y) B}
) -
— max{h(xg 1), B[u) (b, M) + f (b, 32,1 (1, X7), )} |
1 2
< max{E[|u (1, MW7) — ulf (tyq, MFT)]]
[ f (b Xl (X)) = f (b2, uly (b, X2), 7)1y [1(Xeyq) = BOG4) [}
1
< Kmax{|xj —Xi+1| E[[|[ M5 — M| 4 IR -5
+ |“$(tkfx ) tk/ )‘}

We recall that MtX'7 = (x!,xt,q + HL 1 (7, Uky1)) hence [ MEX — M| = |IxE = <2

Moreover, ||X! —X?|| < 2||x! — x?||. Therefore, we obtain

3K
Juty (b X1) = 1y (5| < - IXE =2 (5.3.12)

It remains to give an estimates to uff (, x 2) — ull (tes1, x2k). If we use the approximation of [11]
and denote 7 a kind of approx1mat10n of BSDE before reflection, we can write

y (b, x?) = max{h(xg ), @ (1, 5%) }5
. 2 o2 o~
”";(tk/ Xz) = E[uﬁy(tk+1/ Miex )] +f(tkr XZ/ u'r;(tkr Xl)/ Y)h
and then
- - 2,k
|l (b1, X2) =l (b XPE) | < (b 5P) = 02 (b, X [ [ ) = OG-
Since x2 = xi'fl, the last term is null and by approximation about BSDEs we obtain
|1y (£, 5%) = 1l (b, XF) | < (i (11, XP) — 15 (b1, X7F) | < CV, (5.3.13)

where C > 0 is a constant depending only on T and K, but independent of n. Combining the
estimates (5.3.12) and (5.3.13) the proof is complete. |

Proof of Proposition 5.3.1. For a process a € A;,, we have

y?k = maxX {h(M?k) [ytk 1| } +f(tk/ Mﬂ Iytk/ utk 2Ztk’ atk)h}
1 _
Z?k - E]E [y?k“ atlel?—i-l (afkﬂ’ Ug11) ’]:;11(]

where ]-'t';{ = o(Uy,...,U;) and M?k = Z;-‘:l H]’?(atj,llj) . In the same way, for v € D, and
x € RF! we have
ul (b, x) = max{ (M), E[ull (b1, M) + £ (b, %, (b, X), 720 (b, X), 1) B},
= max{h(M t}’jxy) IE[ug(tkH,Mtk'X”Hf[z] + f(te, X, ug(tk,x),'yl/z ”(tk, ), v)h}

and

Ufly(tk,x) = —E {“g(tkH,Mtk’X”) 71AMtk’X 7}

b1

N N

E ) (b2, MO0 )y T AMET | FL .

1
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This is due to the fact that M'**7 and AM;’:’:‘I’V only depends on Uy 1 by definition and there-
fore independent of F; . Comparison of the above equations shows that

supur,(0,0) < sup E[yg],
yeD ac Ay,

and then we obtain one side inequality. Its remains to show the reverse inequality. Let 0 < k <
n

sup B[y = sup max {E[1(M; )} Elv, ]+ E[f (b M. vf, a3 2], o )h] |
acAy acAy

Then using the selection measurable theorem we have that for any € > 0 there exists a mea-
surable process v¢ € A, with M ( defined using H", 4¢ and Uj, . .., U,) such that

sup B[y} < max {E{i(M]))L Bl ]+ B[f (M v 0522 250 | + ¢
acAy

W (b, M) +e.
Therefore by taking k = 0 and by the arbitrariness of € > 0, we deduce that

Yy = sup E[yg] <u"(0,0).
acA,

This concludes the proof. i
Proof of Proposition 5.3.2. This proof use the same arguments as in the proof of Proposistion
4.3 in [84]. Let n > 1, using the continuity of H;! in 7y and the dominated convergence theorem,
ur, defined in (5.3.7) is continuous in . By the compactness of D, any fixed #, there exists

an optimal denoted by *(t;) for the maximization problem (5.3.7). Then by the measurable
selection theorem we can construct a™* such that a"* = (v} ,...,7},) which verified

u" (b, M) = gy (e, M) = Yy
Moreover using Lemma 5.3.1, we have
E[(Ayy," ) 7] = Ellyi, — v P17
= E[Ju" (fr, M) — " (1, M) 2| 7]
< CE[|[Hf (4", Ugy1)| + VAP| 7]
C(]E[|H]f+1(atk+l Ug11)[P] + 1)
<C@+1)h.

where the constant C may vary line to line and does not depend of n. Since y™* is a pure jump
process, this implies that

Y™ ), <C@+Dty, tq <t <t

Let defined G" as follows

n—1
Gy =C@+1) } tepaljspy,,) ().
k=0

(G"),>1 is a sequence of non decreasing processes weakly converging to the deterministic
process s — C(@+1)s as n — oo. Then by applying Theorem 2.3 of Jacod, Mémin and Métivier
[49], where their condition C1 holds for the sequence of non decreasing processes (G"), we
deduce the tightness of (y"*),>1. ]
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5.4 Stability results for solutions of RBSDE in a general filtra-
tion

In this section, we prove existence, uniqueness and stability of the solution to RBSDE (5.3.3).

The arguments of proof are closed to the one used by Briand, Delyon and Mémin [20] in their

work on stability results for standard BSDEs. We also point out the fact we don’t use Itd’s

formula here to prove estimates and for stability results because the processes M” and X are

not martingales with respect to a common filtration. Unless otherwise stated the expectation
E will be understand with respect to the probability measure IP".

5.4.1 Existence and uniqueness

We prove existence by using fixed point arguments and Picard approximation and then use
conventional methods and steps to proof our result. We begin with a priori estimates of RBS-
DEs where the generator does not depend on y and z.

Lemma 5.4.1. Let (U;)o<i<T be a progressively measurable process and (Vi)o<i<T be a predictable

process with respect to G" = {G}',0 < t < T} such that

T
IE[ sup |Ut|2} < 400 and IE{/ \ag/ZVSFdC?} < H-o00.
0<t<T 0

Then the RBSDE

— T ~ T T
Yy = d(M?) —l—/ f(s, M?, Us—,ag/zVs,as)ng — / zsdME — / dms +kt —k,
t t Jt

ye > h(Mf), t € [0, T] (G.4.1)
[ e~ aks =

where m is a G"-martingale orthogonal to M* has a unique solution and
2 T2, 2
E[ sup |y + [ [al/22PdCY + (m)r + (kp)?] < +e.
0<t<T 0

Proof. Using the link between RBSDEs and optimal stopping times, y set out in Lemma can
be written as

T R ~ —
yi = esssuplE[/ f(s, M*, Uy, a}/* Vi, a5)dCY + h(M&)1 o1y + @(Mﬂ.)l{T:T}]gf], 0<t<T.
TeT; t

Moreover, we have that

T . ~ —
el SE[ [ fls, M Uy, al/2Ve,)dCl + sup [W(MY)| + @ ()] |G ].
0 0<t<T
By Doob’s inequality,
T R R _
E[ sup Iy <4E[( [ f(s,M%,U, 0l Ve a)dCl + sup |h(ME)|+ |0(M7))°]
0<t<T 0 0<t<T
T R . P
< 12]E[(/0 f(s,Mf‘,us,,,13/2‘/5,,15)01cg)2+ sup \h(Mf)|2+\q>(Mﬂ.)|2}.

0<t<T
(5.4.2)

132



Furthermore, for0 <s <t < T,
Cf —Cl=1[t/hh—[s/hh=[(t —s)/h+s/hlh — [s/h]h
([(t=s)/h) +[s/h]+1V)h—[s/hh=[(t —s)/h|lh+h
(t—s)+h. (5:4.3)

herefore the right hand side of the inequality (5.4.2) is finite in view

Then sup,, C7 is finite and t
(ii),(iii) and (vi). We deduce that

of Assumptlons 5.2.1 (i),

B[ sup ] <+

0<t<T

We apply the Doob-Meyer decomposition and the orthogonal decomposition with respect to
M? of the supermartingale y; + fg f(s, M, Usf,ag/ 2Vs,as)alC;Z to obtain the existence of z, m
and k such that

t R t
i+ / F(s, M9 U, al/2V,, a,)dC! = / 26dM? + 1 — ki, (5.4.4)
0 0

k is an increasing process such that kg = 0 and m is a G"-martingale orthogonal to M* with
mop = 0. On can refer to for example Jacod [48], Theorem 1.53 for Doob decomposition of
supermartingales and Theorem 4.27 for orthogonal decomposition of martingales. It is well
known that for all € > 0, the stopping time Df defined by

=inf{s >t ys <h(M?) +e}AT

is e-optimal, and kpe = k; (see proof of Proposition 3.1 of [60]). Then

[ e~ ntg i, =0

Since it is obvious that (y, z, m, k) solves the RBSDE, it remains to prove integrability results of
z,m and k. Using (5.4.2), we have

E[(kp)?] = zIE[/T(kT — ks)dk,]

/ E" [kr — K, |62k,

2E

t ~
/ E"[y yT—/f(s,M,“,Usf,ag/zvs,as)dcﬁgﬂdks}

IN

0<t<T

2E |
|

21E[ 2 sup |ys|+/ (s, M, U,-, a Vs,as)|dC) }
|

N 2 1
< 2E|(2 sup || + /O £ (s, M2, U a2/2Vs )| dCE) | + SEL(kr ).

0<t<T

Then

T _
E[(kr)?) < 8E[ sup >+ ( [ 1f(s, M, U-,al/2V;,as)ldC? ) 7 < oo

0<t<T

Since M” and m are orthogonal and using (5.4.2), we get

]E[/()T|ag/225‘2dcg+<m>ﬂ SIE{(/OTZSL‘ZMg-FmT)Z}

o T - 2
]E[(|¢(Mﬂ.)y+/o £(s, M, U, al/2Ve, 0,)dCE + kr )|

IN

IN

E[|q>(z@z.)|2+ (/OT (s, M?), U, al/2V,, a)|dC" ) (kT)ﬂ.
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By the Lipschitz property of F, we have
T N 2
JE[(/O £(s, M, U a2V )Y ) |
T N T T 2
<E[( [ £ M2,0,0,0)ldCt +K [ U Jac +K [ |al2vifact) ]
0
2 T 2
3E[( / 1F (s, 17, 00a5)|dC”) +1<2(/ U, |act) +1<2(/0 jal/2vijacz)|

T 2
3| sup [£(t, M17,0,0,a:) (CH)2 + K2 sup [Ui(CH)? + K2 ( [ Jal2vifact) ]

0<t<T 0<t<T

\ /\

IN

IN

T 2
3E[ s sup |f(t M?,0,0,0,) T2 + K sup [U[2T2 + K2 ( / jal/2ViJdC?) ] < +oo.
0<t< 0<t<T 0

O
A stability result is given by:

Proposition 5.4.1. Let (y,z,m, k) (resp. (y',z',m’, k")) be the solution to the RBSDE (5.4.1) associated
to (U, V) (resp. (U', V")) where U, U’ (resp. V, V") satisty the same property as U(resp. V) in Lemma
5.4.1. Foreach0 <o <t<T,

T
E[ sup [yl + / al/26242dCL + (Gm) — (m)o + (oke — oK, )]
o

c<t<tT

T
< 1025E| |8y« ] + C(t,0,h, K)E| sup |5ut\2+/ al/25vi2acy].
o

c<t<T
where C(t,0,h,K) = 1185K? max{ (¢ — 7) + h, ((¢ — T) + h)?} and &y stands for y — y' and so on.

Proof. By definition we have fort > o,
Syt = Sy« + /:(f(s,M?, U,-,al’?V,, a5) —f(s,]\//\lfl,U;,,ag/zVs’,as))dC? - /tT dzsdM?
- /t " domy + 0k — ok, 0<t<T. (5.4.5)
Taking the conditional expectation of the above expression gives
byt = E [oy +/ £(5, M, Uy, al/ V) = f(s, M2, UL, 0/ VY, 0,))dCY + bk — k|G|

Fix some € > 0 and define the stopping time D¢ := inf{s > t : ys < h(M?) + €} AT. By
definition of Df we have on one side, ype < h(Man) + e on the set {Df < T} and then

8Ype = Ype —ybte < h( A“Dte) _ybf +e<e ontheset {Df <t}

and on the other side y,_ > h(]\71f5‘_) forall s € [t Df] and kpe — ki = 0, by the Skorokhod
condition. These observations permitted us to get

D€ N .
Sy :]E[ayD;+/t (f(s, M®, Uy, a}/2Ve, a5) — f(s, M2, UL, a2/2V!))ACE + kps — ki — ( ’Df—k;)ygﬂ
/ bi \ fa \a ! 1/2v,7 n / ! n
<E[(yor —ype) + [ (F(s, M, Uy al/2Vey00) = (s, 817, UL- a2V, 0))dCE — (Kpg — Ki)|GF
<E [(yf —yo)l{ps=r) + (Ypg — Ype)l (D<)
D¢ R R
+[ (f(s, M2, Uy a2V a0) — (s, MO, UL, a2V, a))dCE| G |

v - N
< esssup E [5%1{1,:7} +/t (f(s, M* U,-,a/? Vs, a5) — (s, M?,Uéf,agﬂvs’,as))dcglgﬂ +e.
velo,T)NT;
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We know applying this reasoning again, with —dy; = y; — y; and D := inf{s > t : y, <
h(M§Z) + e} A T and deduce that

v R ~
—5y; < esssup IE[— - —/ (F(s, %, Uy, a2Vs, a5) — f(s, V1%, U], 2}V, as))dcg|gf} te.
ve(o,T|NT; t
Let € go to 0, we get by the Lipschitz property of f
2% R ~
|0y¢| < esssup ]E[\(Syf\l{,/:r} +/t |f(S,M‘_Z,us,,ag/2Vs,as) —f(s,Mfl,U;,,ag/2vs’,as)|dcs"‘gﬂ
velo,T)NT;

v
< esssup E|[|6y:[Lu—e) +K [ (10Us- |+ la/20Vi))dC? |G}
velo,T)NT; t

T
<" [Jéye| + K [ (16U |+ [al/ 26V )dCE|Gr].
[
Taking the supremum over the set [0, T] and using Doob’s inequality yields

1E[ sup |5yt|2} < 41E[(|(5yr| +I</:(|(5u57| + |a§/25vs\)dcg)2}

c<t<tT

< 12]E[\5yT]2+K2(/T |5usf\dcs)2+1<2(/r |a§/2(svs|dcg)z]. (5.4.6)
o o

Moreover, for all t > o,

T
E[(6ks — 0k;)?] = 2E| | (6kr — Jks)déks}

=2E| [ E[okc — ok \gg]daks]

T

=2E

Sl snf sy

T A~
E" [5]/s — 0y — /t {f(s, M, Usf,ag/ZVS,us)
— f(s, M°, U, al2V, as>}dcg|gg]d5ks]

- T
< 28 sup [0y + 3y +1</t (18U, | + |a2/26V4[)dCE ) (8 — bks)|

o<t<t

- T 2
< 2E[( sup [évi|+ [éye| + K [ (IoUs- | +[al/26Vi])act) |

- o<lt<t

—_

+ S E[(6k — 5ki)?].
Therefore, Vt > o, we have
T 2 T 2
E[(6k — 0k;)?] < 16E] sup |3y + |5yr|2+K2</ 6U,- |ac?) +1<2(/ jal/2svjact)].
oc<t<t t t

Using (5.4.6), we get

T 2 T 2
E[(6kr — ok;)?] < 192]E[|5y1|2]+224K2]EK/t oU,-|dCy )+ (/t jal/2svijact) .
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On the other hand , using (5.4.5), we have

T T T 2
]E / |al/252,2dCl + (m) — <m>4 = ]E”[(/t 0zsd M2 —/t d&ms) ]
N o 1/2 Sra 111 1/20 T 2
((SyT—5yg+/(7 (F(s, M, U, a2 Vs, a,) — f(s, %, U, ] Vs,as))dcg—i—/a ask.) |
T ~ N T 2
el + Joyel + [ 1 (s, MO, U a/2Vey ) — f(s, MO, UL a2V, as)ldCE + [ doks)']
a a

<E

=
<E|

T 2
(16yel + sup [dyel + K [ (16U |+ lal/26Vil)dCE + ke — ok ) ]
[

T 2 T 2
< 5E|[[sy.2 + sup |(5yt|2—|—K2(/ |5US_|dC§> + 1 / al/28V|dC2) " + (ke — ok, )]

c<t<t

< 1025 |dy< ] + 1185K7E" [ / l6U,- |dC” / |a1/25Vs|dc")}

Holder’s inequality leads to

]EK/ l6U,- |dC” / |a1/2(svs\dcn”

T
< E[ sup [0Uy(C2— C2)2+(CE—C2) [ [al/26ViPact].
(28

oc<t<t

Finally, using (5.4.3), we get

]E{(/(:|(5U57|dcg’)2+ (/;|a§/2(svs|dcg)z]

T
<E[((r=0)+1)? sup o+ ((r = o) +) [ |al/20vict].

c<t<t
This concludes the proof. |

Now we prove that when the generator is deterministic (does not depend on a and z), the
solution is obtained as a fixed point of a contracting function. We introduce the following
norm

n—=1
Iz m Rl = (L B[ sup I+ / "lat/22, pacy
j=0 te(jh, (j+1)h

+/jh1+1 d(m)s + (k(jsyn)” — (kkh)zbl/z-

This norm is equivalent to the following

T 1/2
|,z m, k)| = (E [5[11}(7 e+ [ lal 222dCl + (m)y 4+ (k)] )
te|0,

Then if we consider (y,z,m, k), (y',z',m’, k"), U, U’, V and V' with the same hypothesis defined
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in Proposition 5.4.1, we obtain

16y, 62, 6m, 5k)] 12, (Z WE| s |§yt|2+/ " a1/ 252, [2dc
teljh,(j4+1)h

(j+1)h 1/2
Hfdem)sk () = 0n)?])
Z 1{1025E |6y ;. 1)4/?]

(j+1)h
+2 % 1185KPHE | sup  [oUy +/ jal/252,acy] }
teljh, (j+1)h) jh

102
< ﬂn((sy,(sz om, 5k)||2 +2 x 1185K2h||(6U, 6V,0,0)]2

Then since h = T/n — 0 when n goes to infinity, there exists #ng such that for all n > ny and
for a large enough we have

1(8y, 6z, 6m, 5k) |2, < Bl (6U, 6V.,0,0) |3

where B €]0,1[. Then using a fixed point argument, we deduce that the RBSDE (5.4.1) has
unique solution for n large enough.

Picard iteration for general Lipschitz generator. We prove that our RBSDE admits a unique which
is the limit of Picard iteration.

Proposition 5.4.2. Let Assumption 5.2.1 holds true. Then there is a unique solution (y*,z%, m?,k") to
the RBSDE (5.3.3) for n large enough.

Proof. The proof is based on the Picard iteration sequence (y*?, z**, m®¥, k*?) which is recur-
sively defined by: (y*?,z%0, m*?, k") = (0,0,0,0), and

g = () + T fs, M0,y 0l 220 a)dCy — [T 2 amz — [T aml T 4 Tkl
yortt > h(]\71”) telo,T)

1 p+1
Jo P = h(Me ) dksP T = 0.

For all s < t; we have

ot
,p+1 ,p+1 , O , ,p—1 ,p—1
Yt -y =yt y?”+/s{f(r,Mfz,yff’ ay/ %z, ap) — f(r, My 0t 2207 ay) baC)!

t
_/ (zf’pﬂ—z[,l’p)de—/ d(mf’pﬂ +/ ,p+1 k).
S S

We apply similar arguments used in the proof of Proposition 5.4.1 to deduce that

t
p+1 , 1 ]
[sup Py +/ a2 (P —yf p)FdC;‘%—/ d(mP+t — Py,
s<r<t s
t 2
+ / d ka,p+1 - ku,p
(v’
< 1025E[|y}’ P v 71+ C(s,t, h,K)]E[sup Yo — et —l—/ |al/? ()P — zg’p71)|de§}.
s<r<t

Therefore there exists 7, such that by choosing « large enough, we get for n > ny,
H( ap+1l _ a p,za,p—&-l _ Za,p, ma,p—H _ ma,p,ka,p+1 K" p)

< Bl =y 2~y 0,0)|12,,
< Bl (™", 2", 0,0)Z .,
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B €]0, 1[. Since we have
T
1", 20,0,0)]2 = E[ sup [y [+ [ [a}/222" Pac]
0<t<T 0
< E[|@(M7)|+ sup |f(t M,0,0,a1) (CH)?]

0<t<T

< E[@(Mm + sup |f(t,z\71fz,o,o,at)|2T2} < foo
0<t<T

and the norms || - ||4,» and || - || are equivalent, we have
H (ya,p+1 _ ya,p,za,p-&-l _ Za,p, ma,p+1 _ ma,p,ka,p+1 _ ka,p) ”3&,11

gﬁr’]E[|<1>(A7H‘)|+ sup |f(t,z\71%’,o,o,at)|2T2] (5.4.7)
0<t<T

From there, one can easily proof that (y*?,z%F, m*?, k%) is a Cauchy sequence and thus con-
verges to the solution of the RBSDE (5.4.1). a

Since our RBSDEs admits a unique solution, we have the following estimates.
Proposition 5.4.3. Let (y?,z%, m", k") be as in (5.3.3). Then,

T
B[ sup [+ [ al/2222dCY + (mt) 7 + (K] <+
0<t<T 0

5.4.2 Stability result for Reflected BSDE

In this section we consider the for a fixed IP the following RBSDEs

yf = d(X.) + ftTf(s, X, yP, a4/ %P, ag)ds — ftT ZPdXs — ftT dm? + kY —kF, P-as.
yF > h(Xy), t€[0,T] P-as.

foT(ygi - h(Xsf))dkE’ =0 IP-as.
(5.4.8)
Since X is a martingale under IP, the following process denoted by WP is a P-Brownian motion

t
wgl’:/ a2,
0

We approximate the martingale X by a sequence of martingale M" (identical to the construc-
tion of M") and we prove that the solution of the RBSDE driven by M" converges to the above
RBSDE (5.4.8) driven by X. This robustness result is established by Briand et al. [19] and [20]
for the classical BSDEs with respect to a Brownian filtration. We deal with the case of RBSDE
in a general filtration.

5.4.3 Approximation of martingale and convergence

Approximation of X. Given n > 1, we introduce 4" an D-valued piecewise constant FP-
predictable process defined by

n

al :HD[(T /(::)hag/zds)z}, t e (kh, (k+1)h],

fork =1,...,n—1, where IIp : Rf — D is the Euclidean projection. On [0, %], we take,
ai :=T, whereI is an invertible element of D.
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Consider (Q", F",IP") a probability space containing n ii.d. random variables Uy, ..., U,,
with the filtration F" and the completed filtration G" = (G}'),¢[o,r] introduced in section 5.3.
Consider also the following discretized process

WE =0, Wiy, = Wi + ()2 Hi (afy, Us),

By using the properties satisfied by H” in (5.3.1), one can see W" as a discrete time version of
the Brownian motion WT. We know use the existence of regular conditional probability dis-
tributions, to construct functions @ : D([0,kh];R) X R X -+ - x R — D such that the random
variables ) := O (W" [(g 47, U1, - .., U) satisfy

{W",ag, ... 'ﬁ?n—l)h} = {WIP,&ZS,- . "a?n—l)h} in law . (5.4.9)

Then we obtained the discrete time volatility & = (aj, ..., 4, ) such thata}, := a"(W", Uy, ..., U)
is measurable with respect to o (U, ..., Ux), hence @" belongs to A;,.
Given n > 1, we define the discrete time martingale M" by

My := 0, M1y, = Mg + Hy (@, Ux)-

By using similar notations as in section 5.3, we define the piecewise continuous processes
W", M",a",d" of the processes define above. We also denote by M" the linear interpolation
of M".

Remark 5.4.1. We notice that W" and M" are defined in (Q",F",P") while WY and X are defined in
(Q), Fr,P). The fact that the processes are in two different probability space does not pose any problem
since we work with a convergence in law instead of in probability. By Donsker’s theorem and Skorokhod
representation theorem, there exists a probability space (where we denote by P the probability on this
space), with a Brownian motion WY and a sequence of i.i.d. variables (U"), = (UY,..., U, such
that the processes

Wi i= 0, Wi yqy, o= Wi, + (afy,) " 2Hf (afy, UF), 0<t<T.
satisfy

sup |W' = WF| — 0, asn — oo,
0<t<T
in probability 1P as well as in L? since H" satisfied (5.3.1).
For simplicity of notation,throughout the remainder of the document we will work with the random
variables Uy, . .., Uy instead of the sequence (U™),, when necessary. It will be the same for the proba-
bility space, that is to say that we will consider that the processes are in the same probability space the
probability measure IP.

Convergence of the approximation M" and others.
Lemma 5.4.2. We have
lim E”| sup W/ —WF[2| =0 and lim E| sup M} — X;*| =o0.
S [Ogth‘ t b } P {0§t£T| t tl }
Moreover, suppose that Assumption 5.2.1 holds true. Then,
lim EP [|q>(z\7ﬂ1) - q>(x.)|2} =0

n—oo

and forevery t € [0,T], (y,z) € Rx R
lim E[[1(¥F) ~ h(X0)P] = 0

and

T _
tiom EP [ [ £t 0, @)%, ) - £t X, y,8) %2, 0) Pat] = 0.
0

n—o0
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Proof. The convergence of W" follows from Donsker’s theorem and Remark 5.4.1. We use
the Doob’s inequality together with the fact that a” is a piecewise continuous version of the
projection of @ and (5.4.9) linked to the law of @" and a" to establish the following

]E]P{ sup |M} — Xt|2} < 4E" [<Mn - X>T}
0<t<T

IN

- T
41E]P[/ |(ﬁ?)1/2—ﬁ}/2|2dt}
0

=

4E

T
[/ ()2 =G 22dt] — 0 as n— .
0

Now we use this result to derive the convergence of the linear interpolation of M"

]EIP[ sup |X; —]\7If|2}
0<t<T

P (OISR IR ) N

B 2
< 4EF [Os;yxt - M l’]

< 16]E]P{(X—M")T}
~ T
< 16]151[’[/ (@)2 —al2Pdt] —0 as oo
0

The convergence about ® and # follows directly from the above convergence of X — M".

_ T . R R
B[ [ 1A M0, @) 22,3 = £ X v,a1 %) Pt
- T
Cr ~ ~ ~ ~1\2
< KEEP[ [ (1M = X[+ (@) /2 = 31/2)2) + [af = @) ]
I _
< KZEP[ [ (sup |V2 = Xl + ()2 = 3}/2)2] +|af ) ]

0<s<t

- R T T
< KPEP [ sup |M2 = X+ [ 1(@)" 2 ~al/2)zPae+ [ (af — @]
0<s<T 0 0

—0 as n— oo.
O

Now since we have the convergence of M", to establish the robustness result we need to have
the weakly convergence of filtrations and also the extended convergence.

5.4.4 Weak convergence of filtrations

In this section, we justify why the right continuous and completed filtration G" generated by
the cadlag process M" weakly converge to the right-continuous ans completed filtration FY
generated by the canonical process X. We use the results of section 2.6 of chapter 2 to justify
the following weak convergence.

Proposition 5.4.4. The filtration G" = (G}'),<<T weakly converge to the the canonical filtration F¥ .

Proof. Under the probability IP introduced in 5.4.1, the martingale M" converge uniformly
in probability ( and hence in law) to X. By the continuity of X, we deduce the convergence
of M" to X under the Skorokhod topology J;(see Proposition 1.2.1 of [87] ). Hence we have
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as an immediate consequence the following result. By construction of M" and the fact that
Uy, ..., Uy, areii.d., we get that the right-continuous version of M" is independent increments.
This means (M") is a sequence of cadlag processes with independent increments J;-convergent
to X, therefore the desired result is obtained by applying Proposition 2.6.1. a

The above weakly convergence result of filtrations leads us to establish the following extended
convergence.

Lemma 5.4.3. (M",G") — (X,FY) in probability P.

Proof. This result follows immediately by Proposition 5.4.4, the convergence of M" to X
under J; (see proof of proposition 5.4.4 for justification) and Proposition 7 of [24] associated to
the continuity of X. 0

5.4.5 Convergence of Reflected BSDE
We introduce the following RBSDE under IP"

Yl = d(M") —|—ft sM”,y (@221, am)dCr — ft ZldMP — ftTdmngka—k’f, P"-a.s.

yi > (M) €[0,T] P"-as.

fo y" —h(M™))dk! =0, P"as.

(5.4.10)
where M" is the linear interpolation of M", in this equation we take the pieces continuous
version of M" and 4". For n large enough, the above RBSDE under admits a unique solution
(y",z", m", k") of G"- progressive measurable processes where m" is a martingale orthogonal
to M" (The existence and uniqueness result is the similar to the existence and uniqueness result
for the RBSDE (5.3.3), see Proposition 5.4.2 for this result ). We have the following estimates

supE| sup [y} + / 1)V2202ACE + ()7 + (K)?] < oo, (5.4.11)
n>1 0<t<T

We now establish the following robustness result. We show that the above RBSDE driven
by M" converges to the solution of the RBSDE 5.4.8. Let first denoted the space S” where
1 < p < co the space of cadlag process U = (U;)o<¢<T with values in R with

lulls, = E®| sup [l < co.
t€[0,T]

Theorem 5.4.1. Let Assumption 5.2.1 holds. Let (y",z", m", k™) be the solution to the RBSDE (5.4.10)
and (y®,zP, mP, kP the solution of the RBSDE (5.4.8). Then we have

(yn / ndM?, /O( )1/2 ndc;q,m kn) (y]l’ / ]Per, /../\1/2 ]Pdr . kﬂ’)

as n tends to infinity in law for the topology of uniform convergence.

Proof. We consider the following Picard approximation (y?, z"*, m"?,k"?) and
(P, 2P, m®P k®P) defined by

(y"0, 20, m"0, k%) = (0,0,0,0), (y>=0,z"0, m™?,k>0) = (0,0,0,0)
and
= o)+ /t " £, 41, (@)1 V220, a)acs /t "o | /t Tt | /t "t
vt > (M), e [0,T]
/O R ))akr = o,

S
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and
vy P =o(X.)+ /tTf(s, X.,y:o’p,ﬁg/zz:o’p,ﬁs)ds - /t °°p+1dX / dmg” Py /tT dkf’pﬂ,
e > n(xy), te [0,T]
/0' T(y;’i"’“ (X)) = o

The same methods used in proof of Proposition 5.4.2 and estimates (5.4.7) applied to
(y™P,z"P, m"P k"P) show the convergence of (y™F,z"?, m"P, k") to (y",z",m", k") for n
large enough. Then there exists 79 € IN such that

supEP | sup |y} - yt”\2+/ DV -2 Pacy

n>ngy 0<t<T

+ <m” o mn,p>T + (k’% _ k’]’;P)Z} < C,Bp,

where C is a positive constant and g €]0, 1].

Similarly, the convergence of the Picard iteration of the solution (y**,z%?, m*"F,k*?) con-
verge to the solution (y]P, ZP, m®, kP) of the RBSDE (5.4.8) with

~ T
B[ sup [y —y P+ [ [al/2(F — 2 s
0<t<T 0

+ (mT —m®Pyp 4 (KE — koTo’p)z} — asp — oo

Using the link between RBSDEs and optimal stopping times, we can write

- v e
Y = esssup BP[ [ (s, 017y, ()22, adC

veTy
+ ®(M )11y + h(ME) 1y |7 (5.4.12)
and
v AR esssupIE f s, X,y P, 4 223" ) ds
veTy
+ ®(X) oy + h X)Ly | Fie | (5.4.13)

where 7; is the set of F-stopping times valued in [t, T] and 7," is the set of G"-stopping times
valued in [t, T7.
We prove that for each p, the sequence ("7, |, z PdM!, m™?, k™P), converge to

(y>P, fo z;’o’der, m®P, k®P) as n goes to oo as described in the statement using induction
under p.
Basis: p = 0, (y™"0,z"0, m"0,k"0) = (y*0,20, m>N k*=0) = (0,0,0,0) therefore the assertion
is verified for p = 0.
Inductive step: assume that the property holds to the order p, thatis (y"7, fo zP AM?, m"P, kP,
converge to (y**, fo z2PdX,, m™P, k®P) as n goes to co. The process, defined by

t
xp P =y +/0 Fls, My, (@) /225F, anydCl, 0<t<T. (5.4.14)
satisfies
x:l,p-‘rl ~n,p+1+/ np+1dMn ,p+1 K np+1
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Therefore xP*! is an G"-supermartingale. In the same vein, the process x*7*! defined below
is an IF¥ -supermartingale

T / F(s, X, yOF 8Y2207 Gods, 0<t<T. (5.4.15)
_xgo p+1+/ oop+ldXS+m°°P+1 k°°/P+1' (5.4.16)

The rest of the proof is divided in three steps.
Step 1: fotf(s, M”,ys (@)Y 220F @) dCl converges to fo s, X.,y?’p,ﬁg/zz?’p,ﬁs)ds. Lett €
[0, T], we have

/ fls, M,y (@) /2227, gy dCl — / s, Xy, @l 223, a)ds
_ /0 {F(s, My, (@)1 /2227, a)dCl — f(s, Xy, @t/ 223", ay) YdCl
t
+ / F(s, X, yP, @ /227 3,)(dC — ds). (5.4.17)
0

However for all s € [0, T},

Cl = E}h: [%t}zand lim C! =s, then dC! — dsasn — oo.

n n—o0
It follows that the last term in (5.4.17) tends to 0. Indeed,
F(s, X s, 8225, )| < | £(s,X.,0,0,85) | + Klys P | + Klay/ 22577,

and on the right hand side of the above inequality, the first term is bounded by Assumption
5.2.1 (vi) and the two last terms are also bounded in the sense of the estimates in (5.2.4). The
induction assumption gives among others,

sup [y}~ >0 and  sup | ['(@)2act - [ al/ s as] o
te[0,T] te[O T] 0

as n tends to co. From this convergence we deduce by using the Lipschitz property of f that

sup | [10fs B2, 002207 ) = 5, X,y 1022577, ) Y

te[0,T]

¢ A r ~] 0o, p
ngup M =X+ " =y |+ | (@ OV — @22 + |ay
te[0,T]" -

t
<3K(srp]|Mt =Xl + sup 47—+ Big [ 1 —aslact +| / (@)1 /27 — a2 |acy
te(0,T] h

)

— as n — oo,

which end the first step.
Step 2: y"P+1 — y*P T for the Meyer-Zheng topology and the convergence also holds in L2. Using
(5.4.12), (y™P*1) is a sequence of Snell envelopes of g(-, M") with

§ M) = [ (s, M 27, @)V, G2)ACE + (M) gy + W) oy,

We have by Lemma 5.4.3 the extend convergence of filtration G" and the sequence (M"). Using
the continuity ( more precisely the quasi-left-continuity) of X, we deduce by Proposition 1.1.39
of [95]( who is a result of Aldous [2]) that the sequence (X") verifies the Aldous tightness
criterion of Assumption 2.7.1. Using Assumption 5.2.1 the functions g is Lipschitz and then
the sequence (g(-, M")) also verifies the verifies the Aldous tightness criterion.
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(g(-, M™)) is also uniformly of class D in the sense of Assumption 2.7.1. In fact, (M") is uni-
formly of class D and by Assumption 5.2.1 f, ® ang h are bounded and Lipschitz. Also using
step one and Lemma 5.4.2, we have the following convergence for Skrokhod topology as 1 tends
to o0

g, M) — /f 5, X,y ? 822" A)ds + (X )p.ory +h(X )11y

Thus by Theorem 2.7.1, the sequence of Snell envelopes (y"P*1) converges to the Snell enve-
lope y*P*1 with respect to the Meyer-Zheng topology. Its remains to prove that this conver-
gence also holds in L? sense. We have

y?’pﬂ = esssup ]E]P / f(s, M”,y?’p, (ﬁg)l/zzg’P,ﬁ’;)dC”s
veT:

+@(M)1,_7) + (M 1{V<T}"7:f+}

Using the same arguments as in proof of Lemma 5.4.1, we get that

BP sup [y 2] < O ( [ At M2, @) 22, aacy) + [+ sup [h(RE)

0<t<T 0<t<T
<C.

with C; and C two positives constants depending on the Lipschitz coefficient K defined in
Assumption ?? and T. We have also used the fact M" and y"* are uniformly bounded and z"**
are bounded in L2. By Fatou’s Lemma(or by using the estimates like above), we deduce that

EP [ sup |y; pﬂﬂ <C.

0<t<T

Then we can now get the convergence in L? of 4" *1 to y*?*! by using the dominated con-
vergence under probability IP.
Step 3 : others convergence. We deduce by the two firsts steps that the sequence (x"?*1) defined
in (5.4.14) is a sequence of positive supermartingales convergent to the positive supermatingale
x*P*1 defined in (5.4.15) in L!. Similar arguments of proof of Lemma 5.4.1 applied to kP *!
yields

- 1 1 T = 2
B[] < om g 117 o ()G BT @) )] < ¢

Then using Corollary 2 of Protter and Barlow [6], we have that the predictable part k*P*1 of
x™P+1 converge to the predictable part k! of x*7 in L! and we have the following conver-
gence of the martingale part in 7!,

/ zg’pHdM;l +m"P / PR ) QL
0 0
Since the m™P*! and M" are orthogonal, we deduce that
' 1 ' 1
/ 2P amr —s / 2P ax, and m" Pl — pooptl
0 0

as n tends to co. Furthermore, Corollary 2 of [6] and the Burkholder inequality allows us to
deduce the following convergence

. T
IE]P sup ’/ "p“dM”f/ PRGN @ H <]E]P ‘/ M1z, anrldC”f/ ﬁg/zz?’pﬂdsu — 0,
0 0

te[0,T]
and
P n,p+1 co,p+1 P p+1N1/2 p+1\1/2
EP | sup [} — | = BP[|(m 2 - mr 2| — 0,
te[0,T]
as n tends to oo. which concludes the proof |
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Appendix A

Appendix

A.1 Counter example

Fix T = 2 and take as a lower obstacle a process L satisfying the required assumptions in [66]
as well as
Li:=2(1—-1),0<t<1l,andL; <2, 1<t <2

Furthermore, take the generator f of the 2RBSDE to be 0, and the terminal condition to be Lj.
In this case, the solution to the 2RBSDE being necessarily the supremum of the solutions to the
associated RBSDEs, we will have automatically the representations

Y, = essup” essup® EY[L¢|Fr], yF = essup® EF'[L.|F7).
P’ePy(t,P,F,) TE'E,T TE'th

Furthermore, in this case since f = 0, KP' — kP’ being a IP’-submartingale is equivalent to
Y -y being a IP’-supermartingale, which would imply in particular that

Yo —yb > EY [v; -7 (A.1.1)

However, it is clear by definition of L that Yy = y(ﬂ;/ = 2. However, there is absolutely no reason
why in general one could not have, for some [P/, and for an appropriate choice of S, Y7 > yllp/
(recall that we always have Y; > y¥'), at least with strictly positive IP’-probability, which then
contradicts (A.1.1). So this is a counterexample to a possible definition that K* — k” being a
submartingale.

A.2 Equivalent formulation to the RBSDE on enlarged canon-
ical space

Recall that O := Q x Q' and for any probability measure IP on (), we define P := P ® Py a
probability measure on Q). Therefore, if we consider a IP-null set on (), it still a P-null set on Q)
if it is considered in the enlarged space.

Let 7 : O x O — Q) be the projection operator defined by 7(w, w’) := w, for any (w,w’) €
Q. The following result is proved in [85](Lemma 2.1).

Lemma A.2.1. Let A C Q) be a subset in Q). Then saying that A is a P-null set is equivalent to saying
that {w : n(w) € A}isa P := P ® Py-null set.

We now consider two RBSDEs on the enlarged space, w.r.t. two different filtrations.
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The first one is the following reflected BSDE on (Q, 7);,?) w.r.t the filtration T :

_ T _ _ T T - 5 = .
T / PP, a2 )dr — / D / a4 K — K, 0<t<T, P-as.
Jt Jt Jt

yF > Ly, t € [0,T), P-as, (A.2.1)
T — _p _
/O iF — L )dki =0, P-as.

where a solution is a triple (y*,z",m",k ) € D] (FE’P,?) x H) (ﬁf’P,?) x M} (Ff’P,?) X
I} (Fi’ﬂ), IP) satisfying (A.2.1).

The second reflected BSDE on the enlarged space (Q, Fr,P), w.r.t. the filtration F is the fol-
lowing

_ T T T _
g?’:g+/ P (T, 3220 dr —/ z}’-a}/zdwﬁ"—/ dm? + 7% — kP, 0<t < T, P-as.
t Jt Jt

¥ > L, t€[0,T], P-as., (A.2.2)

where a solution is a triple (¥, 2%, i, kT) e ]DP(]F+,]P) X ]I—IS(FE,?) x M} (Fﬁ,?) X ]IS(F]E,?)
satisfying (A.2.2).

The following result which is very closed to Lemma 2.2 of [85], gives the equivalence between
the three RBSDEs in (3.2.6), (A.2.1) and (A.2.2).

Lemma A.2.2. Let P € Pyand P := P ® Py, then each of the three RBSDEs (3 2. 6) (A 2.1)

and (A.2.2) has a unique solution, denoted respectively by (y¥,z¥, mP, kT), ¥, 2%, m® ha ) and

(]JIP, P mP, IE]P). Moreover, their solution coincide in the sense that there is some functional
Y= (Y, 959", 95) [0, T] x O — R xRY xR x R,

such that Y, ¥" and Y* are F -progressively measurable, P-a.s. cadlag, Y7 is F-predictable,

yr = ‘P‘ft/, ¥ = Y%, k¥ = ¥F,dsds-ae, mf =¥ forall t € [0,T], P-a.s.,

gr=gr =¥/ (X), *{P =P =¥i(X), k =k =¥Y¥X),ads-a.e. and m¥ = mF = ¥"(X.)
forallt € [0,T], P
Proof. (i) Since the existence and uniqueness of (3.2.6) have been proved in Theroem 3.1 of

[14], then it remains to show that the three RBSDEs share the same solution.

(ii) In this paragraph we prove that (A.2.1) and (A.2.2) have the same solution in (Q, ?HT?,@).
By the decomposition (3.2.3) of the canonical process X under P, it is apparent that a solution
to (A.2.1) is a solution solution to (A.2.2). To complete this paragragh, it remains to show that
a solution to (A.2.2) is a solution to (A.2.1).

Letf: QO — Rbea ?)T{’]P—measurable random variable, which admits the following unique
martingale representation
— T T
Plo] + / Z0 . axel + / dmt,
0 0
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w.r.t. the filtration ﬁfﬁ). We know that B is independent of X in the enlarged space, and X
admits the same semi-martingale triplet of characteristics in both space(() and Q), the above

martingale representation of 6 w.r.t. Ffﬂj is the same as the one w.r.t. ?E, which are all unique
uptoa P-evanescent set.

Since the solution of RBSDE (A.2.2) is constructed as an iteration of the above martingale rep-
resentation (see e.g. Section 3.4.1), then a solution to (A.2.2) is clearly a solution to (A.2.1).

(iii) We now show that a solution to (A.2.1) induces a solution to (3.2.6). Recall that yf, ¥, K

are Fi’ﬂj—optional, and Z¥ is Ff’ﬂj-predictable, then (see e.g. Lemma 2.4 of [91] and Theorem
IV.78 of [26]) there exists a functional (?y,?z,?m,?k) [0, T] x @ — R x R? x R x R such
that ¥/, 9" and ¥" are f}j -progressively measurable and P-a.s. cadlag, ¥~ is Ex—predictable,
and ¥ = ¥/,2F = ¥;, 7 = ¥, and ?tp = ?]t(,, forallt € [0, T],IP-a.s. Define
F°(w), T (w), T (w), T (w)) == (¥ (w,0), ¥ (w,0), F" (w,0), ¥ (w,0)),

where 0 denotes the path taking value 0 for all ¢ € [0, T].

. oV oz o wk =X . . /0 wz0 wm0 k0
Since (Y7,¥Y",¥ ,Y ) are F" -progressively measurable, the functions (¥, Y, ¥ ", ¥ ")
are [F-progressively measurable, and it is easy to see that they provide a version of a solution
to (3.2.6) in (Q), FE,P).

(iv) Finally, let (y]P, Z8, mP, k") be a solution to (3.2.6), then there exists a function (¥Y, %%, ¥, ‘I’k) :
[0,T] x Q@ — R x R? x R x R such that ¥¥, ¥"" and ¥* are . -measurable and P-a.s. cadlag,
Y7 is F-predictable, and y¥ = ¥/,zF = Y7, mF = ¥} and kF' = ¥}, for all t € [0, T], P-as.
Since P := P ® IPy, it is easy to see that (y*,zF, mT, kT is the required functional in the lemma.

A.3 Penalization method for RBSDEs in general filtration
In this section we follow [35] to show that the penalized BSDEs converge to the solution of the

RBSDEs, to a slight difference that we have in addition a martingale M" since backwards are
relative to a general filtration.

A.3.1 Lower obstacle

For each n € IN, we consider the following penalized BSDE
T T T T
Yr=¢+ / F(YD a2 ds + n/ (Y — Ly)~ds — / 70 @ 2qw, — / am?,
t t t t
where M" is a martingale orthogonal to W. We define

t

Ky = n/ (Y — Ly)"ds.
0

The generator f : [0, T] x Q x R x RY — R verify the classical Lipschitz condition with respect
toy and z, {, f5(0,0) and the obstacle satisfy the following integrability conditions:

T
B[P + [ 1£0,0)Fds + sup L] <o

By El Karoui and Huang [33], for each nn > 0, the penalized BSDEs has a unique solution.

147



A.3.1.1 Estimates

Proposition A.3.1. Foreach n > 0, let (Y",Z", M") be the solution of the above penalized BSDE.
There exists a constant C > 0 such that

T
VST, B[P+ [ a2z s+ M)+ (K)?] < oo,
Proof. Applying Ito’s formula to (Y")? between t and T, we have
T T T
YR = P42 [ enoe,attznas —2 [ vezealaw, —2 [ vram:
t t t

T
+2/t Y dK?" — / 1G22 |2ds — (MM — Y |AYT]

t<s<T

Then
n|2 TAl/ZnZ n 2 Tn n ~1/2—n TnnAl/Z
YR [ a2z s + M7 < (6P +2 [ YRR Al Azas =2 [ iz alzaw,
T T
fz/ Yg,dMgun/ Y'Y — L) ds.  (A3.1)
Jt Jt
Taking the expectation yields
B[P+ [ a2z s + )] < B[P+ 2 [ v a2z
+2/ Le-n(Y? — L) ~ds].
t
By Young inequality,
2 sz

< 4
ab_2£+ > Ve > 0,

and the Lipschitz property of f, we get
2 T ~1/2 2 2 T T 2
B[l [ a2z Pds + M) < E[lEP+2 [ [¥2]1£0,0)lds +2L, [ [v2Pds
T _1/2 T
+2Lf/t || ZQHds—l—z/t L-dK?|
2 T 2 T 2
E[j6P+ [ 1f:(0,0)Pds+C [ |v2ids

1 /T, . "
+§/ a1/2 21| %ds + 2 sup |Lt\/ aK? |
Jt t€[0,T]

T
IE |§|2+/ |fs(0,0)\2ds+c/ 1Y?|2ds

+5 / ||ﬁl/2Z”||2ds+fsup |Le|* + (KT — Kt)}
te[OT}

where C is a constant only depending on T and the Lipschitz coefficient of f and which can
vary line to line. But, for any f < T, we have by definition

T T T
Ki— K :y;l—g—/t f(yn, a2z ds+/t Z?ﬁg/deer/t AM"
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Thus,
T
E[(K} — K)?) < CE[I6f + [¥¢ P+ ([ |22 220)lds)
T T
+ (/ Z! @ 2awg)? + (/ dMglﬂ
t t
T T
< CE[lef+ [P+ [ v Pds+ [ 1£:(0,0)Pds
T
+ [ a2z Pds + 7] - (7]
T T
< CE[|ef+ YR+ [ vPas+ [ 1£:(0,0)ds
T ~1/2 2
+ [ a2z Pds + M7]r]
where the second inequality comes from the Lipschitz property of f, the Cauchy-Schwarz in-

equality and the Burkholder-Davis Gundy inequalities. Now plug this inequality into the pre-
vious one and choose eC, = 1/4 yields

T T T
E[IY/P+ [ 18Y222Rds + [MP)r| < CE[IP + [ [£:(0,0)ds + sup |Lif -+ | 1veas]
tel0,T

T
< C]E[1+/ vz ds).
t
From there, we can write
T
E[v[] < CIE[1+/ vipds|, t<T
t
and Gronwall’s inequality leads to
JE[m”\Z] <o, t<T
After that, the estimates related of Z" and M" come from
E T Al/ZZn 2d M" <E|lYr 2 T Al/ZZn Zd M"
; ”as s” S+[ ]T > |t|+t Hus s” S+[ ]T
T
gcna{u/ y2Pds| <o, t<T.
t
Finally, taking ¢t = 0 in (A.3.2), we get

T T T
E[(Kp)?] < CE[If + YR+ [ [¥2Pds+ [ 1£:0,0)Pds + [ [[al/222]%ds + [M"]r] < oo.

O

A.3.1.2 Convergence

Convergence of Y": Firstly, using comparison principle for BSDEs, we have for all ¢ € [0, T],
almost surely

Y] < Y[’H, a.s.

Combining this monotony to the estimates of Y" in the previous section, we obtain that for a
fixed t € [0,T], (Y}')n>0 converge and we denote his limit Y;. On the other hand, taking the
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supremun over t € [0, T] in (A.3.1) and the Burkholder -Davis-Gundy inequality, we deduce
also that

]E[ sup |Yt”|2} < oo.
te[0,T]

According to the above and Fatou’s Lemma,

]EL:E?T}MZ} <

It follows by dominated convergence that the sequence (Y"),,>( converge to (Yt),c[o,r) in L?,
in other words

T
]E[/O (Yt—Yt”)zdt}—> as 1 — oo

Convergence of Z"", M" and K": For p > n > 0and t < T, Itd’s formula applied to (Y" — Y*)?
between t and T, leads to

T
Y=Y =2 O = YD) (RO a22Y) — (a2 s
—2/ (Y!—YP)(z" — ZF) -5/ 2dw, — 2/ " YP)d(Mr — MY)
2 / VPR~ KY) / |l (zs — 70| s
t
- MPlr— Y |A(YE - YD)

t<s<T

Similar arguments to the previous section implies that

T

B[y =P+ [ al/2(ze - 20 s + [M" — Mg
t
T n P2 T n p n p
< C]E[./t " —Y?| ds+'/t (2 —¥P (K~ KD)].

Since p > n, then

T
[0 = Y2 (ke —KE) < sup (¥ — L) (K) +K4)
te[0,T]

Then taking expectation we have
E[jyy =Y+ / a2z — Z8)|%ds + (M" — MP]q]

< CE [/t Y — YPds + st](y: — L) (K + k7))
te|0,T

The following property have been proved in [35] and [32] and still verify despite the fact that
there is in addition M".

lim E sup|(Y” L)~ |*| = 0.
g 07 1]

The classical reasoning for penalization in [35] applies to this case shows that

{/ |aL/2(z2 — ZE)|*ds + [M MP]T} —0 as n— .
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Which ensures the convergence of (Z") >0 and (M"),>0 to respectively (Z;);c (o) and (M¢) (o, 7-
Also it is obvious to see that limit process M still orthogonal to W. The convergence of K" to a
process (Kt);c(o,1] comes from

T T
K =Yg =Y = [ (2,82 2ds + [ 223l 2w, + My

As in [35] the limit process K satisfies the Skorokhod condition and (Y, Z, M, K) is the solution
of the following RBSDE

T T T

Y, :g+/ fs(Ys,ﬁg/ZzS)ds—/ zs-ag/zdws—/ dM, + K1 — Ky, as.
t t t

Y > L, t € [O,T], a.s

T
/ (Y, — L, )dKs =0, a.s..
0

A.3.2 Upper obstacle

For each n € IN, we consider the following penalized BSDE
T T T
§+/ F(YD, 822 ds n/ (Us — Y")~ds — / z 2w, — / AM"
t t t
where M" is a martingale orthogonal to W. We define
t
Kl = n/ (U — Y")~ds.
0

The penalized BSDEs related to an upper obstacle is slightly different for
The generator f : [0,T] x Q x R x R? — R verify the classical Lipschitz condition with
respect to y and z, &, f5(0,0) and the obstacle satisfy the following integrability conditions:

T
B[P + [ £(0,0)ds + sup |Uil] < oo

A.3.2.1 Estimates

Proposition A.3.2. For each n > 0, let (Y",Z", M") be the solution of the above penalized BSDE.
There exists a constant C > 0 such that

T
VST B[P+ [ @222 s+ MY + ()] < e
0
Proof. Applying It&'s formula to (Y")2 between t and T, we have

T T T
|y{'|2:|<§|2+z/ Y;’fs(Yg’,ﬁg/ZZf)dsfz/ Y;’Zﬁ-ﬁg/zdws—Z/ Y dM!
t t t N
T T
—2 [ vrak: - [0 Rz s - MY - (AP
t t t<s<T

Then

T T T
PP+ [ a2z s+ M)y < [P 2 [ YRRVl zds =2 [ ez al
T T
—2/ yg,dmg—Zn/ Y (U — Y')~ds
t t
T
<leP+2 [ YR, a2 ds - 2/ I 7! 52w,
t

T
72/t Ys”,dMg’Jan/t UL (U — Y")~ds. (A32)
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Taking the expectation yields and using Young inequality, we have for a fixed ¢ > 0
T T
E(y R+ [ a2z Pds + [M7)r] < E[IEP +2 [ ¥ A0, 82Z0ds
t t

1
+ = sup [Uh[? +e(K} — K2,
€telo,T]

Then by the Lipschitz property of f and by the same operations as lower obstacle, we obtain
T T T
B[P+ [ 18222 Pds + M")r] < E[lEP+ [ 1£0,0Rds+C [ vz s

1 /T 1
5 [ a2z s+ sup [Usf +e(KE — K7V
Jt Erelo,1]

where C is a constant only depending on T and the Lipschitz coefficient of f and which can
vary line to line in the following. By definition

T T T
Ki— K =¢=Y+ [ fO0,a220ds = [ 2 al2aw, — [ am
Same method using in section A.3.1 gives ,

T T T
E[(Kf — K] < CE[)gP+ [P+ [ [Y2Pds+ [ 1f(0,0)Pds+ [ 3222 s + M)

Therefore, the estimates follow directly by the same argument to the case of lower obstacle
(see section A.3.1). m]

A.3.2.2 Convergence

Convergence of Y": Firstly, using comparison principle for BSDEs, we have for all t € [0, T],
almost surely

Y > Yt”'"l, a.s.

Then for a fixed t € (0, T], (Y{*)s>0 is a non increasing bounded sequence almost surely (see
also the estimates of Y"*). Hence this sequence converge almost surely and we denote his limit
Y;. Therefore we follow section A.3.1 and the same reasoning applies to the case of upper
obstacle shows that (Y"),>( converge uniformly to (Y});e(o,77, (Z")n>0, (M")n>0 and (K")u>0
converge respectively to (Zt)ic(o 1), (Mt)se(o,r] and (K);e(o,r] and the limit processes Y, Z, M
and K solve the following RBSDE

T T T

Y, :g+/ fs(Ys,ﬁg/zzs)ds—/ Zsﬁi/zdws—/ dM; — Ky + Ky, as.
t Jt Jt

Y < U, t € [0, T}, a.s.

T
/ (Us;- — Y,-)dKs =0, ass..
0

A.4 Some results and estimates for RBSDEs

The following result gives us the stability of RBSDEs in a general filtration.

Proposition A.4.1. Let Assumption 3.2.1 holds, and consider two generators fYand f? such that
Assumptions 3.3.1 holds. Fori = 1,2, let (yl'P,zl']P, ml’]P,kl’]P)Ipe'po be the solutions to the RBSDE
(3.2.6) with terminal condition & and lower obstacle L. Define

T 3
N P PP PP _ 2Pk, LP ~1/2 1P
5 PePy 0<t<T 0
1
K
l/Ji'lKLz := sup EF |esssup” [ ET | sup |L! — L2|*|F," < +oo0.
! PePy 0<t<T 0<s<T
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Then, there exists a constant C depending only on x, T and the Lipschitz constant of f* and f? such
that

HyZ,]P 7y2,]PH]]FS5<]P) S C(Hél §2HPPK +¢L1 12 + (pfl fz)
P 2,P||P P 2,IP 1P 2P 2P
22 = 2T [ g+ T = 2PN 4 I = ) < C(18 = s + 00 + 90150
Proof. In the proof, we use the fact that the RBSDEs defined in (3.2.6) are equivalent to the

RBSDEs defined in (A.2.2) ( see Lemma A.2.2). Since it is easier to make calculations with the

Brownian motion, we show the result by using RBSDEs defined in (A.2.2). For simplicity of

notations, we write (7', 2%, ", k) instead of (yﬁ P P kP).

Throughout the proof, we also use the following notatlons

5y~ yl ]P yZ,IP, 52]P = Zl'IP _ ZZ,]P’ 5ﬁ;l]P = n’jll,IP _ mz,]P’ 5]’21[) = 7{.1,1[) _ IEZ,]P’
6fF i= fIF — f2P L :=L' — 12, 6¢:=¢! - &

(i) [14] We begin to prove the estimates of the first component ¥ which has been proved in
Proposition 3.2 of [14]. By (A.2.2), we have

~P T 71,P ~1]P A1/2 111j 2P 2P ~1/2:2P T P ~1/2 P
5]/15 :55_‘_/; (fs' Ys© ,ag ) fs' (ys' ,a5" " Zy’ ))ds_/; 525 g dWs
T T
_ / dsmP + / 5P (A1)
t t

Using the same argument as in section 3.3.3, there exist a R-valued IF-progressively measurable
process A and a IR%-valued, F-predictable process 7j, with |A| < L p and [|7j]| < Ly such that
for s € [0, T], we have P-a.s.

f (~1]P ~1/25 1]1") f (y~2]P 1/2~2]P) f (y~1]P ~1/25 1]1") f (gl]P ~1/25 1]1")
S l S l S l S 1
f (~1 I[”Al/Z l]P) E,P(yZ,I[’ Al/2~2,]P)

5fF gLUP,a1/251P) 1 3 65F + 7, - a1/ 262F
s+ s

Therefore, we can define Qp ~ IP and a bounded positive process I as in (3.3.8)
~_[Ads dQIP. s P Qp . WP e
I; :=elo and =£ fr-dWy ) , W=P = W5 — [ s, (A4.2)
JO T 0
Apply 1td’s formula to I y]P for all stopping time T > ¢,
LogF = 67" +/ LofP (717, al/250P) f/r Loz . al2aw f/T Tsd(SmE’Jr/T LLdokY.
t t t

Taking conditional expectation under Qp w.r.t 7;", gives
~ L ~
Itfsﬂt IEQ]P 175 + / Issz ~1 IP, 3/222,1[’)ds + / Isdékgp|.7:t+}
t

Fix some € > 0 and define the stopping time DtP’e = inf {u >t: yl P <Llte ]P-a.s.} AT.

+ € on the set {Dip’e < T} and then

By definition we have on one side, gg};e < L})P .
t

P 2P 2P P
yD]}"E — yD]P6 < LDIPe —yDiPe +e< LD]Pe — LD“ + € on the set {Dt < T} .
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and on the other side gl,“’ > Ll foralls € [t, D]tp’e] and Tcg};ﬁ - I~<}’]P = 0, by the Skorokhod
condition. These observations enabled us to have t

Pe

3 . DY pPe
Logy = EQ® [ID}’,e5]?H;F,E+/ : Is5fs (~1]P,A1/2~1]P ds+/ Isdk“P /t U LR

']

o pPe
<EOr {IDH’e(ygﬁfe ﬁfe + / Iséfs (727, 222" )ds — /t Isdk?“jlfﬂ
<E® {I pe(@ =1 e AT e (Llpe —L2p )1 pe 4+ €l pe
= D {pPe=r} " Df<\TpPe T Eppe/HpPecr) T DY

+/ Is5fs ~1]P’A1/2~1IP ds|]-"ﬂ

< esssup JEQP / L|ofF (7%, @y 222" |ds + Lo 68 (1 o1y + Lt [0Le |1 ety + €| F} }
TE'E,T
We now apply this reasoning again, with dy} replace by yf’]P - y}']P = —6yr and D]tP’6 =

inf{u >t: yu]P <L?2+e, lPas}/\TandletegotoOtoobtain,

L|6gF| < esssup ]EQP[/ L[6F (7%, Y2287 ds + Te|08 1 (r_ry + Tel0Lel 1 rary + eTe] 7]
T€77,T t
Repeated step 1 of the proof of Proposition 3.3.5 enables us to write
juP 2P p[ [T 7P _ 2P P Sl/25 1P 1 g2 14 22+ ] YR
7" =¥ < CEP[ [T\ - R GT al2e ds+ sup L L+ 12! - 22|
s€(0,T

(A.4.3)

Taking the supremum over t € [0, T], and using Doob’s inequality, we prove the first assertion
of the Proposition.
(ii) We now turn to the second estimates. We can rewrite (A.4.1) as

~ T
s¥ :5§+/ (fF (¥, aL/2z1) +/\s(5g;"+ﬁs-a§/2éz§’)ds—/t 5zP . al/2qwP

T T
- / doiif + / doFY.
t t

Applying It&’s formula to |07" |2, we have

16782 = |(5g|2+2/ syPofF (77, al/250) dt+2/ As|o7F] dt+2/ 7ol 2sgF oz dt
2 / sF szl al/2awP — 2 /0 5 dom® +2 /0 5 dokP

O A P R (AT A R A

0<t<T

Since |61 |* — [097 |2 — 2|67T | ASG} = |ASFF > > 0, then
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/ [a1/262P Pt + [65F]r < \5g\z+2/ SyFI1ofF (" 2/ 22,") Idt+2/ Aslogy [*dt
+2/ iisd, /zﬁy]}jéiltpdth/ siPozF a1/ 2aWF
2 / 8% domF +2 / 5P dok?
0

<162 +2 sup oy [T @ e lar+ L [ el 2ost P
te[0,T

+(@Lp +2Lf2)T sup |o7F[2 —2/ siFozP a1/ 2awF
te[0,T]

—2 / 5P domP +2 / 5P dokP
JO

< [0E[2 + (LT + 2025 T +1) sup o7 / [a1/2627 | 2dt

tel0,T]

T
([ 10T a2 ar)” 2 / ogfozf -3}/ 2awF

fZ

T ~
72/ oyt domf + et sup \ég]f)|2+e(5k]l;)2.
0 te[0,T]

Moreover, by (A.4.1), there exists C > 0 such that
7P\ 2 P2 2 T glIP 71/25 11P 2 T P2 T ~1/2 5P |2
(RE)? < C(I6g 12+ 1og 2 + ([ 0fF (77, a2k P lds) "+ [ [ogF s+ [ [l 202F | 2ds

T 2
+| /0 5P .51/ 2qwP

+ |omy 2).
Thus,

[ a0 P+ (1 - eClon)r < (162 + sup log P+ ( [ 16FF (518l 220 ar))
tEOT

+2\/0 5% dom?® | +2|/ o2F . al/2a WP |

By choosing € small enough, using the same reasoning as in step 2 of Proof of Theorem 3.4.1,
we come to

p/2 3
E”|( / la}/2ozF |2ar)" ] +EP [[om?] 2] < CEP [ sup |o7F |V + / 67F @l 22 at) .
te[0,T]
We conclude from the first part of the proof that the announced estimates of z¥ and 6kT are
verified and hence that the estimates of 6k" is a consequence of the previous estimates (see
proof of Theorem 3.3.6 Step (iii)). O

Proposition A.4.2. Let Assumption 3.2.1 holds, and consider two generators ftand f? such that
Assumptions 3.3.1 holds. Fori = 1,2, let (y"P,zl'P, ml’]P,kl’]P)Ipe’pO be the solutions to the RBSDE
(4.2.2) with terminal condition & and lower obstacle U'. Define

4

T K
W = sup EF esssuplEP | ([ IFIF - PRSI, G220 s || F || < e,
fLf PePy 0<t<T 0
£
i 1u2 = sup EF esssup EP sup |ut — u?fr Fit < Ho00.
PPy 0<t<T 0<s<T

Then, there exists a constant C depending only on «, T and the Lipschitz constant of f' and f? such
that

HyZ/]P *yz’]PH]l]gg(]P) < C(”é] ngpﬂK JFl/)Ll >+ (Pf1 f2>

1P 2,P||IP 1r 2,P P 1P 2P 1 21(|P px
”Z -z H]Hg(]P) + ”m —m H]Mg(]P) + ”kT - kT H]IS(]P) < C(H(: - (: ”]Lé’/“ +¢ 1,52 lPu] uz)
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Proof. he arguments of this proof are essentially of the ones used to proof Proposition A.4.1.
Then we retained the same notations to the proof of Proposition A.4.1 and just take U =
U' — U? instead of 6L. By same arguments, we have the following

T ~
Lot IEQ]P s +/ LoFP (g7, 51/2207) g S_/ Tsd5kg’|fﬂ
t

where Qp ~ P and I is a bounded positive process. Fix some € > 0 and define the stop-
ping time D]tp’e = inf {u >t > U2 -, ]P—a.s.} A T. By definition we have on one side,

y~123 bo> 1,11231[,,E — € on the set {D]tp’e < T} and then
t

~1,IP ~2,IP ~1,IP u

yD]P,e _yD]P,e < yD]pe +e< UD“ — U?p. + € on the set {D]tp’e < T}.

D]Pe D]Pe

and on the other side y P < ul foralls e |[t, D]P “] and ké III;S - k2 P — 0, by the Skorokhod

condition. These observations enabled us to have

P Op[F soP DI . P 1P ~1/2.1P DI ip A —
e L e A T (ys' a2 s — [ LakP - [T LaRF |

. Dlp'e o
< B9 [Tpe (7F. — 7300) +/ LR (5T, a5 s [ LdRr|F]

S ]E |: D]Pe(é - g ) {D]tPf:T} + ID][’,G(U}DI[’,G - uél’,e)l{D]P,e T} + GTDi]lP,e

+/ Is5fs ~1]P,A1/2 1]P ds’]:-&-}

< esssup IEQH’[/t L6 fF (74", a3/ 227 | ds + It |6¢ |1 frry + Ie|0Ur | Lyeary + €| FF }
T€77,T

We now apply this reasoning again, with dyF replace by yz’]P - y}']P = —dyF and D]tP’6 =
inf{u >t: yu]P > Ul — ¢, P-as. } AT and let € go to 0 to obtain,

~ T T~ N
Ho7F | < esssup B[ [ LJo7F (947, a2 7) |ds + Tel0gI1 ey + TeloUel Ly + €T 7]
TE t,T

Repeated step 1 of the proof of Theorem 3.3.5 enables us to write

I

T ~ 1/x
[ [ 17— R a2 s + sup UL - UB 4 2 - 62
70 s€[0,T]
(A.4.4)

Taking the supremum over t € [0, T], and using Doob’s inequality, we prove the first assertion
of the Proposition. The others estimates are deduce exactly as in the proof of proof Proposition
A4l O

Fixamap g : [0, T] x Q x R x R? — R which is [F, -progressively measurable and uniformly
Lipschitz in (y, z) satisfying for IP € Py,
T
E" {/0 Igs(0,0)|”ds} < +oo.

Let (Lt)se(o,1] @ cadlag process such that L € D} (F7*). To Given a RBSDE (defined on en-
larged space ()) when terminal time is a term of a decreasing sequence of stopping times and

terminal value is a function of this term, the following result gives a convergence of such RBS-
DEs.
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Lemma A.4.1. Let IP € Py. For any F-stopping times 0 < o < T < T, any decreasing sequence of IF-
stopping times (Ty ), >1 converging P-a.s. to T, any F - progressively measurable and right-continuous
process V € D (FY,P), if y(-, V.) denotes the first component of the solution to the following RBSDE

yi=V.+ /t'gs(ys,ag/zzs)ds _ /t 2o - AV2AWP — /t dms + /t dks, P @ Py-a.s.
ye > Ly, Vt € [0,:], P ®Pp-a.s. (A.4.5)
/0.(%7 — Ly )dks =0, P @ Py-a.s.

Then

EP“Fo 1Yo (T, V2) = yo(tn, Va,)|] — 0

n——+00

Proof. We begin by recalling that Lemma 4.4.3 implies

Yo (T, Vz) = Yo = (T, Vz,) = Yo (T, V1) = Yo (T, Yy (T, Vi)

By (A.4.3), we have for any « € (1, p]

A=

EYP0[yo (T, Vo) = yo (T, y< (T, Vi, )] < CEVOO[|Ve — ye (T, Ve, )] 7
Applying the same reasoning used in step (i) of Proof of Proposition A.4.1, we get

v (T, V) = PP [ /T s - dWE) (el Moy, — /T elsMirg (0,0)ds + /T el Vi) | 7 |
T T T

Then,
Tn T
Ve = ye(Ta, Vi) = BPP0 [V — / s - AWP) el Asds
T
Tn T
+5(/ s - AWE)ele" Asds (v — v, )
T
Tn Tn s
—&( /T s - AWY) /T el Mg (0,0)ds
Tn Tn s
—5(/ Us-dwf)/ el Ard’dks|}'ﬂ
T T
Therefore

[Ve = Yo, V)| < 4 1EPPo []1 g(./:” o - AW ) el A58 v o
([ dWE) e v
ce ([ aw) ([ el g 0,0)/ds)"
+5(/TT" qs-dw;I’)K(/TT" efrsA'd’dks)Kp-"ﬂ

Using Holder inequality and since A and 7 are bounded (this leads to the Doléeans-Dade ex-
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ponential above has finite moments of any order ), we have forx < i < p
EPeTo [|]/U(T/ Ve) = Yo (T, Yy« (Tu, Vz,)) H

K n ™ p q EEE
SC]EII’®]P0[|VT|P]E]E]P®IPOU1_5(/T 175~dW;P)3fT )\sds|,,f,c} g

~_ K L P ™ Lfk
+ CEFP0 |V, — Vi P]FEPR [ ([ o awF)7erts [0 7
B
+C]E]P®]PO|:(/ Kj )\dr|g (0 O)|de) :|P]EIP / Us_dWSIP)P*K:| p
T T
+C1E]P®]P0|:(/[ ef Aydrdk) :|p1E]P®]P0 /T 7 dwgp)l? :| 2
p—x ©
<C]E]P®]PO ’1 / s - dWIP) f )\st‘p x:| P +C]E]P®]PO [|V _VT|p:|ﬁ
+ CEPEPo[ [ ef: g, (0,0) Pds] + CEF ™ (ke —ko)?] P
T

Since the terms inside the expectations on the right-hand side all converge in probability to 0,
and are clearly uniformly integrable by de la Vallée-Poussin criterion (since V € D} (FY,P), k €
]Ig (IF¥,P) and k is non-decreasing) and i < p, we can apply the dominated convergence theo-
rem and get the result. O

Remark A.4.1. The above result still verified if we take a RBSDEs with an upper barrier instead of
a lower barrier. Because the slight difference is the sign in front of the cadlag process k and when the
absolute value is taken the rest of arguments is the same.

The following results have been proved several times in different contexts, among others
Briand et al. [18] for a semimartingale with respect to a filtration generated by a Brownian
motion, Klimsiak [54] for a general filtration, Kruse and Popier [56] a filtration that supports a
Brownian motion and a Poison random measure.

Lemma A.4.2. Fix IP a probability measure in Py and let {Hy}yc(0,1), { Kt }rejo,1) be two progressively

measurable processes with values in R, {Z;}¢ (o 1) a predictable process with values in RY, {Miticpo,m)
and {Nt}te[O,T] two cadlag local martingales under P with Morthogonal to N such that IP-a.s

T
IRECARAREERY
We consider the R-valued semimartingale {St}te[O,T] under P defined by
ot ot
S; =295 +/ Hgds —|—/ ZsdNs + M; + Ky, P-a.s.
0 0
Then for any p € [1,2), we have
t . t .
IS:|P > |Ss|P + p/ 1S, P18, Hydr + p/ 1S,P~18,7,dN,

p 18,1718y p 18,8k 4 T (IS~ 15~ plsi A )

s<r<t
1 _ 1 _
20— 1) [ 18721, 40l ZoPAINE + 3 p(p 1) [ 18177215, sod M

where £ = |x| 7 1xly 4 .
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Proof. Case p € [1,2): In this case the function x — |x| is not smooth enough, to apply
It6’s formula we use an approximation. Let ¢ > 0 and let us consider the function u¢(x) =
(|x|> +€2)/2, x € R. Tt is a smooth function and we have

oul ) 0%u?l 2 —4
W () = prul (), TU () = pul 2(0) + plp — 2%l ().

We now apply It6’s formula and obtain

't Jul to2ul
p — P
(S0 = ul(5)+ [ FE(s,)ds,+ 5 [ S5 (sl 8]

+Y (s - 650)- (s, 051}

s<r<t
p ! p—2 Lot po 2 p—d ¢
E(8)+ [ pSrul (8, )dS, + 5 [ Ipul (S0 + p(p = 2)S2ul ()1l S
+ Y {ul(S)) —ul(S,-) — pS,-ul 2(S,)AS,}
s<r<t

Since N are orthogonal to M, d[S, S|S = ||Z,||?d[N]¢ + d[M]¢ and then

t _ t -
Wb (Sp) = uﬁ_’(ss)+p/ S, Hyu! Z(Sr)dr+p/ S, Zul73(S, )dN,

-l-p/ S, ul” er—i—p/ S, ul~%(s, )dK,
o [T + (p - 252l )12 PN (A46)
g [T + (p - 25kl Sl

+ Y {ul(Sy) —ul (Sr*)_PSr*”E_ (5r)AS,}.
s<r<t

Let us remark that puf_z(x)x — pl|x|P~1£. Now we pass to the limit when ¢ — 0 and by
dominated convergence theorem, we have IP-a.s.

/ S,Hyu! “2(S,)dr — p / 15,718, H,dr
p / S, Zyul (S, )dN, — p / S, P13, Z,dN,
(A47)
p/S ul” erHp/\va’lS ~dM,
p/S ul” dKr—>p/\Sf|p15 dK,.

By convexity of ul, ul(Ss) —uf(S,-) — pSs_u; (S;-)ASs > 0, s € [0, T]. Thus, by Fatou’s
lemma we have

liminf Y {uf(S,) —ul (S,-) — pS,-ul *(S,)AS,}

T+
e=0 s<r<t

> Y ISP — IS, [P — pS,-[S, P71 AS} (A48)

s<r<t

Furthermore, we have
pul 2(x) + p(p — 2)x2ul " (x) = petul " (x) + p(p — 1)x2ul " (x)

_ _ |x‘ 4-p p—2 2 p—4
=p(p=1)(5) P+ pEul )
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| x|
ue(x)

and

/" 1x40 as € \, 0. Hence by monotone convergence under IP, as e — 0,

t S 4—p B t B
[ Y tso 21, sollze PG 2 [ 15221, soll 22N,
s ue(sr) s

ot S 4—p B ¢ )
/ ( 5] ) |5l leﬁéod[M]f// 15,7215, Lod [ M.
S ug(sr) s

By taking the limit when € goes to 0 in (A.4.6), we deduce from (A.4.7)-(A.4.9) the desired
conclusion.

(A.4.9)
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Résumé

Cette thése traite des équations différentielles
stochastiques rétrogrades réfléchies du second
ordre dans une filtration générale. Le cas de
réflexion a une barriere inférieure est d'abord
traité, puis le résultat obtenu est étendu dans le
cas d'une barriere supérieure. La contribution de
ce travail consiste a démontrer I'existence et
I'unicité de la solution de ces équations dans le
cadre d'une filtration générale sous des
hypotheses faibles. La régularité uniforme sur la
barriere, la condition terminale et le générateur est
remplacée par une régularité de type Borel sur le
générateur. Le principe de programmation
dynamique pour le probleme de contrdle
stochastique robuste est donc démontré sous les
hypotheses faibles c'est a dire sans régularité sur le
générateur, la condition terminale et la barriere.
Dans le cadre des Equations Différentielles
Stochastiques Rétrogrades (EDSRs) standard, les
problemes de réflexions a barrieres inferieures et
supérieures sont symétriques. Par contre dans le
cadre des EDSRs de second ordre, cette symétrie
n'est plus valable a cause de la non linéarité de
I'espérance sous laquelle est définie notre
probléme de contréle stochastique robuste non
dominé.

Ensuite un schéma d'approximation numérique
d'une classe d'EDSR de second ordre réfléchies est
proposé ainsi que la convergence de schéma.

Mots clés: Equations différentielles stochastiques
rétrogrades, Equations différentielles stochastiques
rétrogrades de second ordre réfléchies, approximation
faible, Contrdle stochastique robuste, modéle avec
incertitude sur la volatilité, Capacité, Ensemble
analytique, Probléme avec obstacle, Probléme de
Skorokhod, Schéma numérique, Equations
différentielles stochastiques rétrogrades réfléchies.

Abstract

This thesis deals with second order reflected
backward stochastic differential equations
(2RBSDESs) in general filtration. At first, we
consider two cases of reflection, one with a lower
obstacle and the other with an upper obstacle. We
prove existence and uniqueness of these
equations under weak assumptions about the
generator, the terminal condition and the obstacle
in the context of general filtration. The dynamic
programming principle plays a key role in the
proof of existence, we construct a value function
that is measurable with respect to time, space and
probability measure . Therefore, we use the
measurable selection theorem to prove dynamic
programming principle. The non-symmetry
between the lower obstacle and the upper obstacle
in the second-order framework is also
highlighted. Then we consider the problem of
approximation of the initial value of the solution
of a 2RBSDE . This can be interpreted as an
approximation of the value of stochastic control
problem associated to standard reflected
backward stochastic differentials equations
solutions under model uncertainty. Our approach
is based on the time discretization of the value of
stochastic problem and the discretization of the
model trough the discretization of the volatility
process.

Key Words: Backward stochastic differential
equations, Second order reflected stochastic
differential equations, Weak approximation, Robust
stochastic control, Uncertainty Volatility Model,
Capacity, Analytic set, Obstacle problem, Reflected
backward stochastic differential equation, Numerical
scheme, Skorokhod problem..
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