Samuel Boissière 
  
Alessandro Chiodo 
  
Olivier Debarre 
  
Laurent Manivel 
  
Alexander Adam 
  
Mattia Galeotti 
  
Anne Giralt 
  
Tanya Ivanova 
  
Nikita Vaganov 
  
Finski Sergey 
  
Sasha Zubkova 
  
Ivan Tsylin 
  

of Lyon. I would like to thank Alessandro Chiodo for his support and encouragement in the beginning of my study in Paris, where the thesis is done.

Iwouldliketothanktheprofessorsofmyundergraduateschoolfordeveloping my interests in mathematics. Especially, I am grateful to Sergey Loktev, who showed me the beauty of algebraic geometry, and to Ivan Arzhantsev

First of all we introduce the basic invariant that we will work with. This invariant, the Chow ring, is associated with a projective algebraic variety. All varieties will be defined over the field of the complex numbers C.

Let X be an algebraic variety. A cycle of dimension i is a formal finite sum of irreducible subvarieties of X of dimension i. The free abelian group generated by the cycles is denoted by Z i (X).W e d e fi n e Z i (X) rat as the abelian subgroup of Z i (X) generated by elements of the form W (0) -W (1), where W is a subvariety of X ⇥ P 1 (flat over P 1 )a n dW (0) and W (1) are fibers over 0 and 1.T w o c y c l e s a r e c a l l e d r a t i o n a l l y e q u i v a l e n t i f t h e i r difference is contained in the group Z i (X) rat .

Definition 1.1. The Chow group of dimension i of the variety X CH i (X)=Z i (X)/Z i (X) rat is by definition the group of algebraic cycles of dimension i modulo rational equivalence.

Assuming X is smooth and projective of dimension n,w ec a na l s od e fi n e Chow groups of codimension i as:

CH i (X)=CH n-i (X).
The intersection product constructed in [START_REF] Fulton | Intersection Theory.S p r i n g e r -V e r l a gN e wY o r k[END_REF]d e fi n e sas t r u c t u r eo far i n go n the Chow groups:

CH ⇤ (X)= dim X M i=0 CH i (X).
Example 1.2. If X is a smooth variety, then CH 1 (X) is just the Picard group Pic(X).F o ri n s t a n c e ,i fX is a smooth projective connected curve, we have 0 / / Jac(X) / / CH 1 (X) deg / / Z / / 0.

Cycle class map. For variety X defined over C,o n ec a nc o m p a r et h e Chow ring CH ⇤ (X) and the cohomology ring H ⇤ (X) of an algebraic variety X by considering the cycle class map. The cycle class map associates to every subvariety Y ⇢ X the class which is Poincaré dual to the fundamental class [Y ] in the homology of X: cl : CH k (X) ! H 2k (X, Z).

Example 1.3. [START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF] The long exact sequence associated to the following short exact sequence of sheaves of holomorphic functions in the analytic topology

0 / / Z / / O X an exp / / O ⇤ X an / / 0
gives a map H 1 (X an , O ⇤ X an ) ! H 2 (X, Z), where H 1 (X an , O ⇤ X an )=Pic(X an )=Pic(X)=CH 1 (X), where the second equality follows from Serre's GAGA principle. One can prove ([32, Chapter 4]) that the first Chern class coincides with the cycle class map: c 1 : Pic(X) ! H 2 (X, Z).

Correspondences. Let us consider a morphism f : X ! Y of smooth proper varieties. We have the push-forward f ⇤ : CH r (X) ! CH r (Y ) and the pull-back f ⇤ : CH s (Y ) ! CH s (X) maps. Treating the graph Γ f ⇢ X ⇥ Y of f as a cycle of X ⇥ Y we can describe these two maps in another way:

↵ 2 CH r (X),f ⇤ (↵)=(⇡ Y ) ⇤ (⇡ ⇤ X (↵) • Γ f ), (1.1) 
β 2 CH s (X),f ⇤ (β)=(⇡ X ) ⇤ (⇡ ⇤ Y (β) • Γ f ), (1.2) 
where ⇡ X and ⇡ Y are the natural projections of X ⇥ Y to its factors. Substituting Γ f with any cycle Γ 2 CH ⇤ (X ⇥ Y ) the construction leads to the following definition.

Definition 1.4. Let X and Y be smooth projective varieties. A correspondence from X to Y is an element of the Chow group CH k (X ⇥ Y ).

Ac o r r e s p o n d e n c eγ defines two maps γ ⇤ and γ ⇤ given by the formulas (1.1)a n d ( 1.2). We notice that correspondences as well as morphisms can be composed. Namely, for γ 1 2 CH ⇤ (X ⇥ Y ) and γ 2 2 CH ⇤ (Y ⇥ Z) we have the natural projections:

X ⇥ Y ⇥ Z π X,Y w w π Y,Z ✏ ✏ π X,Z ' ' X ⇥ YY ⇥ ZX ⇥ Z
the composition can be defined as

γ 1 • γ 2 =(⇡ XZ ) ⇤ ((⇡ XY ) ⇤ (γ 2 ) • (⇡ YZ ) ⇤ (γ 1 )) 2 CH ⇤ (X ⇥ Z).
It follows from the properties of the pull-backs and the push-forwards that this operation is associative. One can check that if f : X ! Y and g : Y ! Z are morphisms then Γ g • Γ f = Γ g•f .I np a r t i c u l a r ,o nt h eg r o u pCH ⇤ (X ⇥ X) the composition defines a structure of a graded associative algebra with the class of the diagonal ∆ X as the unit.

Mumford's theorem, conjecture of Bloch and Beilinson

While CH 1 (X) is relatively simple due to the exponential exact sequence, the higher codimensional Chow groups are less understood, which can be seen from the following theorem proved by Mumford in [START_REF] Mumford | Rational equivalence of zero-cycles on surfaces[END_REF].

Theorem 1.5. Let S be a projective smooth surface over the complex numbers. If H 0 (S, Ω 2 S ) 6 = {0} then CH 0 (S) has infinite dimension.

Originally, this theorem was formulated in another way: the dimension of constant cycle subvarieties in Sym n S is restricted above (cf. Remark 1.23). The theorem of Mumford was generalized for higher dimensional varieties by Roitman, see [START_REF] Roitman | The torsion of the group of zero-cycles modulo rational equivalence[END_REF].

The following conjecture of Bloch can be viewed as a complement of a result of Mumford and Roitman.

Conjecture 1.7. For any smooth irreducible projective variety X over the complex numbers there exists a filtration on the Chow groups with rational coefficients:

F • CH k (X) Q , 0  k  n, n =dimX,s u c ht h a t
a. F • is stable with respect to the action of correspondences, in particular, with respect to push-forwards and pull-backs, b.

F 0 CH k (X) Q =CH k (X) Q and F 1 CH k (X) Q =CH k (X) Q,hom c. F i CH ⇤ (X) Q • F j CH ⇤ (X) Q ⇢ F i+j CH ⇤ (X) Q d. Gr r F CH k (X) Q is controlled by the Hodge structure. Namely, Gr r F CH k (X) Q =0 if H 2k-r (X) is of coniveau greater than k -r, e. F k+1 CH k (X)=0.

Varieties with trivial canonical bundle

In this section we make an introduction to the theory of manifolds (compact Kähler or complex projective manifolds) with trivial canonical bundle. These varieties are the main geometric context of our work. Although we are interested into their properties as algebraic varieties, their theory started more naturally in the context of compact Kähler geometry. So in this section X will denote a compact Kähler manifold.

The decomposition theorem

The starting point of the theory of Calabi-Yau manifolds is the theorem of Yau [START_REF] Yau | the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere quation[END_REF].

Theorem 1.8. Let X be a compact Kähler manifold. If the topological first Chern class c 1 (X) is zero then in each Kähler class on X,t h e r ee x i s t sa unique Kähler form ! such that the Ricci curvature of the corresponding Kähler metric is zero: Ric(X, !)=0. Remark 1.9. For a Kähler manifold the Ricci curvature is just the curvature of the Chern connection of the induced metric on the canonical bundle. Thus an equivalent way of formulating the theorem is to say that the representation of the restricted holonomy group is in the special unitary group SU(n), where n is the dimension of the variety.

Using the classification of holomony groups, Beauville decomposes varieties with trivial canonical bundle in the product of irreducible factors.

Theorem 1.10. ( [START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]). Let X be a compact Kähler manifold such that c 1 (X)= 0.T h e r ee x i s t safi n i t eé t a l ec o v e r X of X such that X is isomorphic to a product

X ⇠ = T ⇥ Y Y i ⇥ Y Z j ,
where T is a complex torus, Y i are simply connected Calabi-Yau manifolds and Z j are compact hyper-Kähler manifolds.

Complex tori are simply the quotients V/Λ of a complex vector space V by a lattice Λ of maximal rank. We continue with the other types of varieties in the next two subsections.

Calabi-Yau manifolds

By definition, a compact Kähler manifold X is a Calabi-Yau manifold if it is simply connected, the canonical bundle K X is trivial, and H 0 (X, Ω i X )=0 for all 0  i  n, where n =dimX. By Yau's theorem we have the following equivalent definition in terms of holonomy group. Lemma 1.11. ( [START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]) Let X be a simply connected compact Kähler manifold of dimension n.T h e nX is a Calabi-Yau manifold if an only if it admits a Kähler metric with holonomy group equal to SU(n).

Here are some examples of Calabi-Yau manifolds.

Example 1.12.

a. If X is a complete intersection of hypersurfaces of degrees d 1 ,d 2 ,...,d k in a projective space P n such that

d 1 + d 2 + ...+ d k = n +1 and dim X ≥ 2,t h e nX is a Calabi-Yau manifold. b. If X is a hypersurface in the anti-canonical linear system | -K Y | of a
Fano variety Y ,t h e nX is a Calabi-Yau manifold.

Hyper-Kähler manifolds

By definition a compact Kähler manifold X is a hyper-Kähler manifold (or irreducible symplectic manifold) if X is simply connected and H 0 (X, Ω 2 X ) is of dimension 1,generatedb yaholomorphic2-formσ, which is non-degenerated at any point of X. The 2-form σ is called the symplectic holomorphic form of X.I ti sd e fi n e du pt oam u l t i p l i c a t i v ec o n s t a n t .

There is an equivalent definition in terms of holonomy group. One can then prove that [START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]p r o v i d e st w os e r i e so ff a m i l i e so fe x a m p l e s ,f o re a c he v e n complex dimension: (a) the n-punctual Hilbert scheme S [n] of a K3 surface S and (b) the fiber at the origin of the Albanese map of the (n +1 ) -st punctual Hilbert scheme of an abelian surface. All of the irreducible hyper-Kähler manifolds constructed later on are deformation-equivalent to one of Beauville's examples, with two exceptions: O'Grady examples in dimension 6a n di nd i m e n s i o n1 0( s e e [START_REF] Grady | A new six-dimensional irreducible symplectic variety[END_REF][START_REF] Grady | Desingularized moduli spaces of sheaves on a K3[END_REF]).

H 0 (X, Ω 2i X )=C • σ i ,f o r0  i  m =dimX/2. Beauville in
We note that the varieties in Beauville's examples have Picard number two, while a general algebraic deformation of a hyper-Kähler manifold has Picard number one. There are not so many available explicit constructions of these general deformations with Picard number one. Only four such families, each of which is 20-dimensional and parametrizes general polarized deformations of the second punctual Hilbert scheme of a K3 surface, are known: a. (Beauville and Donagi, [START_REF] Beauville | La variété des droits d'une hypersurface qubique de dimension 4[END_REF]) The Fano variety of lines of a cubic fourfold.

It was proven in [START_REF] Beauville | La variété des droits d'une hypersurface qubique de dimension 4[END_REF]t h a tt h ev a r i e t yF (X) of lines on a smooth cubic hypersurface F ⇢ P 5 is an algebraic hyper-Kähler fourfold. It gives a 20-dimensional moduli space of fourfolds.

b. (Iliev and Ranestad, [START_REF] Iliev | K3 surface of genus 8 and varieties of sums of powers of cubic fourfolds[END_REF][START_REF] Iliev | Addendum to "K3 surface of genus 8 and varieties of sums of powers of cubic fourfolds[END_REF]) The variety V (X) of sum of powers of ag e n e r a lc u b i cX ⇢ P 5 .I tw a sp r o v e ni n [START_REF] Iliev | K3 surface of genus 8 and varieties of sums of powers of cubic fourfolds[END_REF][START_REF] Iliev | Addendum to "K3 surface of genus 8 and varieties of sums of powers of cubic fourfolds[END_REF] [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]) Using Grassmann geometry another 20dimensional family of hyper-Kähler varieties which are deformations of S [2] for S of genus 12 is constructed in this paper.

The last example will be studied in Chapter 4.

There was found recently a new family of hyper-Kähler varieties of dimension 8, see [START_REF] Lehn | Twisted cubics on cubic fourfolds[END_REF].

Chow groups of varieties with trivial K X 1 Around a result of Beauville and Voisin

The following theorem, which contrasts with the results of Mumford (Theorem 1.5), is the starting point of this work as well as many other researches ( [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF][START_REF] Fu | Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections[END_REF][START_REF] Fu | Beauville-Voisin conjecture for generalized Kummer varieties[END_REF][START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF][START_REF] Grady | Moduli of sheaves and the chow group of k3 surfaces[END_REF][START_REF] Grady | Computations with modified diagonals[END_REF][START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF][START_REF] Voisin | Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces[END_REF][START_REF] Voisin | Rational equivalence of zero-cycles on K3 surfaces and conjectures of Huybrechts and O'Grady. To appear in[END_REF][START_REF] Voisin | Remarks and questions on coisotropic subvarieties and zerocycles of hyper-Kähler varieties[END_REF]).

Theorem 1.14 ([5]). Let X be a K3 surface. a. All points of X which lie on some (possibly singular) rational curve have the same class c X in CH 0 (X).

b. The image of the intersection product

Pic(X) ⌦ Pic(X) ! CH 0 (X) is contained in Zc X . c. The second Chern class c 2 (X) 2 CH 0 (X) is equal to 24c X .
Originally, the proof of (b)w a sd o n es e p a r a t e l yf r o mt h ep r o o fo f( c). The proof of (b)u s e dt h ee x i s t e n c eo far a t i o n a lc u r v ei na n ya m p l ec l a s s L 2 Pic(S) (see [START_REF] Mori | The uniruledness of the moduli space of curves of genus 11,v o l u m e1 0 1 6o fLectures Notes in Math[END_REF]). It allows to represent the intersection of two divisors L 1 and L 2 as a cycle with support on rational curves. Taking into account that all points on any rational curve represent the same class c X ,t h er e s u l t (b) follows.

The proof of (c)in v olv e stheide aofthede c ompos itionofthes ma lldiagonal ([5, Proposition 2.1]):

Proposition 1.15. The following equality holds in CH 2 (S ⇥ S ⇥ S) Q ∆ 123 = ∆ 12 ⇥ o 3 + ∆ 23 ⇥ o 1 + ∆ 13 ⇥ o 2 -S ⇥ o ⇥ o -o ⇥ S ⇥ o -o ⇥ o ⇥ S, (1.3)
where o is any point representing the canonical zero cycle, ∆ 123 is the small diagonal in S 3 ,andthenotation∆ ij ⇥o k stands for

⇡ ⇤ ij (∆)•⇡ ⇤ k o, ∆ 2 CH 2 (S⇥ S) being the class of the diagonal.
Considering the small diagonal as a correspondence between X ⇥ X and X,w ec a nu s e( 1.3)t oc o n t r o lt h ei n t e r s e c t i o np r o d u c to nX.F o re x a m p l e , applying this correspondence to ⇡ ⇤ 1 L 1 • ⇡ ⇤ 2 L 2 we get the intersection product of L 1 and L 2 on one hand and something proportional to c X on the other, which proves (b). Similarly (this is the argument in [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF]t og e t( c)), applying the correspondence to the diagonal ∆ ⇢ X ⇥ X we get c 2 (X) on one hand and something proportional to c X on the other, which proves (c).

These two results led to extensive study of Chow groups for Calabi-Yau varieties and hyper-Kähler manifolds, and we will focus on them in the rest of the introduction. One of our results in this thesis is a new proof of Proposition 1.15, see Section "K3 surfaces and an invitation to Chapter 3" and Chapter 3.

Hyper-Kähler varieties

From now on we work with rational coefficients: CH i (X)=CH n-i (X) ⌦ Q. The Theorem 1.14 can be restated as saying that any polynomial relation

P (c 1 (L)) = 0
in H ⇤ (S) already holds at the level of Chow groups. In [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF]Beauvilleputthis statement in a more general framework and proposed a conjectural explanation for hyper-Kähler manifolds: the class map cl : CH i (X) ! H 2i (X) is injective on the subring generated by divisors. 

P ([c 1 (L j )]) = 0 in CH k (Y ).
Beauville proved this conjecture in the case of the second and third punctual Hilbert scheme of an algebraic K3 surface. A stronger version, which involves Chern classes of tangent bundles, was formulated by Voisin: Conjecture 1.17. ([35,C o n j e c t u r e1 . 3 ] )L e tY be an algebraic hyper-Kähler variety. Then any polynomial cohomological relation 

P ([c 1 (L j )], [c i (T Y ))]) = 0 in H 2k (Y, Q),
P ([c 1 (L j )], [c i (T Y ))]) = 0 in CH k (Y ).
This conjecture was proven for (a) Y = S [n] with n  2b 2 (S) tr +4 and any k and for (b) Y the Fano variety of lines of a cubic fourfold ([35, Theorem 0.4]).

The next result has been obtained by Fu for a generalized Kummer variety. We recall that a generalized Kummer variety K n can be defined in the following way: if A is an abelian surface, s : A [n+1] ! A is the natural morphism defined by the composition of the Hilbert-Chow morphism A [n+1] ! A (n+1) and the summation A (n+1) ! A using the group of law of A, then s is an isotrivial fibration and a generalized Kummer variety is a fibre [START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]a n d [START_REF] Fu | Beauville-Voisin conjecture for generalized Kummer varieties[END_REF]Example 1.3]). We note, that the following result is stated for numerical equivalence, i.e., in a slightly stronger version than the conjecture above.

K n := s -1 (O A ) (cf.
Theorem 1.18. ( [START_REF] Fu | Beauville-Voisin conjecture for generalized Kummer varieties[END_REF]) Let z 2 CH(K n ) Q be an algebraic cycle, which is a polynomial with rational coefficients of the first Chern classes of line bundles on K n and the Chern classes of the tangent bundle of K n ,t h e nz is numerically trivial if and only if z is (rationally equivalent to) zero.

The reader can find some other results about hyper-Kähler manifolds in [START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF][START_REF] Voisin | Rational equivalence of zero-cycles on K3 surfaces and conjectures of Huybrechts and O'Grady. To appear in[END_REF][START_REF] Voisin | Remarks and questions on coisotropic subvarieties and zerocycles of hyper-Kähler varieties[END_REF].

3 Calabi-Yau varieties and an invitation to Chapter 2

The following example from [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF] shows that Conjecture 1.16 does not hold for Calabi-Yau varieties, namely, the class map may be not injective on the subring DCH ⇤ (X) ⇢ CH ⇤ (X) generated by divisors if X is a Calabi-Yau variety.

Example 1.19. ([3, Example 1.7]) Let X be the blow-up of P 3 along a curve C of degree d and genus g.L e t X be the Calabi-Yau variety, obtained as ad o u b l ec o v e ro fX ramified over an element of | -2K X |.W e h a v e t h e following diagram:

X 2:1 π ✏ ✏ E i / / p ✏ ✏ X ε ✏ ✏ C ic / / P 3
Let H be the class of a hyperplane section on P 3 and put

H C = i ⇤ c H. The space DCH 2 (X) ⇢ CH(X) Q is generated by " ⇤ H 2 , " ⇤ H • [E]=i ⇤ p ⇤ H C , [E] 2 = i ⇤ p ⇤ c 1 (N ) -" ⇤ [C],
where N is the normal bundle on C for the embedding i c :

C ! P 3 .S i n c e c 1 (N )=4H C + K C , DCH 2 (X) contains the elements i ⇤ p ⇤ H C and i ⇤ p ⇤ K C . The map i ⇤ p ⇤ : CH 1 (C) Q ! CH 2 (X)
Q induces an isomorphism of the subspace of degree 0 divisor classes on C onto the subspace of homologically trivial classes in CH 2 (X) Q .I fw ec h o o s eC in such a way that

H C is non proportional to K C in CH 1 (C) Q then the class Z = i ⇤ p ⇤ (dK C -(2g -2)H C ) in DCH 2 (X) is homologically trivial, but not trivial. Finally, its pull-back ⇡ ⇤ (Z) is non-trivial in DCH( X) (because ⇡ ⇤ (⇡ ⇤ (Z)) = 2Z is not trivial in CH(X) Q ), but it is homologically trivial.
However, this example deals with cycles of strictly positive dimension and still there is a hope of existence partial results in this case. More precisely, results of Voisin [START_REF] Voisin | Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces[END_REF]p r o v i d ead e c o m p o s i t i o no ft h es m a l ld i a g o n a lf o ra Calabi-Yau hypersurface X in P n . This result is similar to Proposition 1.15 (although it contains an extra term) and allows to control the intersection product on X.

Theorem 1.20. ([36,T h e o r e m3 . 1 ] )L e tX be a Calabi-Yau hypersurface in P n and let F (X) be the variety of lines contained in X.W ed e n o t et h ec l a s s of a hyperplane section on X by H and put o = H dim X /deg (H dim X ).F o r t 2 F (X) we denote P 1 t ⇢ X ⇢ P n the corresponding line. The following relation holds in CH 2n-2 (X ⇥ X ⇥ X) Q :

∆ = ∆ 12 • o 3 +(perm.)+Z + Γ 0 ,
where Z is the restriction to X ⇥ X ⇥ X of a cycle on P n ⇥ P n ⇥ P n and Γ 0 is a multiple of the following effective cycle of dimension n -1:

Γ = [ t2F (X) P 1 t ⇥ P 1 t ⇥ P 1 t .
Corollary 1.21. ([36,T h e o r e m3 . 4 ] )L e tX be as above and let Z i and Z 0 i be cycles of codimension greater than 0 on X such that codim

Z i + codimZ 0 i = n -1.T h e ni fw eh a v eac o h o m o l o g i c a lr e l a t i o n X i n i deg (Z i • Z 0 i )=0,
this relation holds at the level of Chow groups:

X i n i (Z i • Z 0 i )=0 in CH 0 (X) Q .
This theorem and its corollary were generalized by Fu in [START_REF] Fu | Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections[END_REF] for a Calabi-Yau complete intersection in projective space which is general for a given degrees of hypersurfaces.

The results above suggest that despite the counterexample given by Example 1.19, it is true that the cycle map is injective on zero-cycles which are intersections of divisors or, equivalently, that the intersection of any dim (X) divisors on X is proportional to a canonical zero-cycle c X in CH 0 (X). The existence of such a cycle is trivial if Pic(X) is generated by one element H:

we can put c X = H dim X /deg H dim X .
Our result of Chapter 2 provides evidence for the existence of such a canonical zero cycle c X for some Calabi-Yau manifolds with higher Picard rank (see also [START_REF] Bazhov | On the chow group of zero-cycles of calabi-yau hypersurfaces[END_REF]): b. The image of the intersection product

Pic(X) ⌦n ! CH 0 (X) is contained in Zc X . c. The top Chern class c n (X) 2 CH 0 (X) is proportional to c X .
Result (a) shows that a constant cycle subvariety can be a divisor in a Calabi-Yau manifold. This is not possible in hyper-Kähler manifolds of dimension at least 4 by the following fact.

Remark 1.23. ([24, 38]) If X is a hyper-Kähler manifold and Y ⇢ X is a constant cycle subvariety, then Y is Lagrangian for the holomorphic 2-form σ X ,h e n c e2dimY  dim X.

K3 surfaces and an invitation to Chapter 3

Chapter 3 is devoted to a new proof of the decomposition of the small diagonal, which is stated in Proposition 1.15 (cf. Theorem 3.1). The presented proof is short and there are some related ideas that are not involved and not reflected in the proof.

At first, we would like to emphasise that our proof is very different from the original proof. The original proof uses the existence of a one-parameter family of elliptic curves and the theorem of Bloch and Srinivas [START_REF] Bloch | Remarks on correspondences and algebraic cycles[END_REF].

Our proof uses only projective geometry; it is similar in spirit to the proof of the decomposition of the small diagonal for a Calabi-Yau hypersurface (Theorem 1.20). Namely, we use the degree 2g -2 embedding of a K3 surface S in projective space P g .I ti sb a s e do nt h es t u d yo ft h es e to fp a i r so fp o i n t s (x, y) in S ⇥ S such that two hyperplane sections intersect exactly at these two points with given multiplicities. Specifically, we choose the multiplicities 2g -3 and 1.

Now we are going to explain the philosophy behind this approach, which formally is not involved in the proof.

Chow groups of S [n] .L e tS be a K3 surface, and P(n) be the set of all partitions of n.F o ra n ys u c hap a r t i t i o nµ =( µ 1 ,...,µ k ),w ed e n o t ea s k µ its length. Put S µ = S kµ = S ⇥ S ⇥ ...⇥ S (k µ times). We also have a natural morphism to a symmetric product:

S µ ! S (n) (x 1 ,...,x k ) 7 ! µ 1 x 1 + ...+ µ k x k . Now define E µ = S [n] ⇥ S (n) S µ to be the reduced incidence variety in S [n] ⇥ S µ .
The variety E µ can be viewed as a correspondence between S [n] to S µ ,it defines maps: E ⇤ µ : CH(S µ ) ! CH(S [n] ) and E µ⇤ : CH(S [n] ) ! CH(S µ ).L e t µ =(µ 1 ,...,µ k )=1 a 1 2 a 2 ...k an be a partition of n,w ep u t

m µ =(-1) n-k Y µ i ,c µ = 1 m µ a 1 ! • ...• a n ! . Theorem 1.24. ([ 10 
]) The group CH(S [n] ) has the following decomposition: n] ) .

CH(S [n] )= M µ2P(n) c µ E ⇤ µ • E µ⇤ CH(S [
This theorem allows us to relate cycles in CH(S [n] ) and cycles in CH(S µ ). In particular, we will consider the following construction. If S is embedded in P g by a primitive linear system |L|,t h e nt h ei n t e r s e c t i o no fS with a general linear subspace P g-2 ⇢ P g is a zero-cycle of degree 2g -2 on S. The set of all P = P g-2 ⇢ P g is the Grassmann variety Gr(g -1,g+1) and we have a birational map:

Gr(g -1,g+1) / / S [2g-2] ,
P 7 ! P \ S.

OUR MAIN TOOL: CONSTANT CYCLE SUBVARIETIES

Let Gr denote the class in CH(S [2g-2] ) of the image of Gr(g -1,g +1) in S [2g -2] .U s i n gt h et h e o r e ma b o v e ,w ec a nr e l a t eGr with its components in S µ ,a n d ,p a r t i c u l a r l y ,i fw et a k eµ to be the partition in 2g -3 and 1,w e expect to get a surface in S ⇥ S as a component of the decomposition for Gr.

Voisin showed that every term E ⇤ µ (P ) of the decomposition of a polynomial expression P 2 CH(S [n] ) in c i (O [n] ) and [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]Propostion 2.4]): all these cycles as well as the decomposition of the diagonal are cycles defined globally over the moduli space. Since Gr can be represented as a polynomial in c i (L [2g-2] ),the elements of its decomposition are expected to be polynomials in

c j (T n ) is a polynomial ex- pression in ⇡ ⇤ i (o) and ⇡ ij (∆ S ) (see
⇡ ⇤ i (o), ⇡ ⇤ i (L) and ⇡ ij (∆ S )
.Ac a r e f u lc o n s i d e r a t i o no fr e l a t i o n sb e t w e e np o l y n o m i a l sg i v e s a relation which turned out to be the decomposition of the small diagonal up to multiplicative constant. The relation itself can be obtained in a simpler way, which does not involve Theorem 1.24 visibly.

Our main tool: constant cycle subvarieties

The notion of constant cycle subvarieties was introduced in [15]a n du s e d in [START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF][START_REF] Voisin | Remarks and questions on coisotropic subvarieties and zerocycles of hyper-Kähler varieties[END_REF]t os t u d yCH 0 (X) for hyper-Kähler manifolds. Constant cycle subvarieties will play a crucial role in our proofs. Definition 1.25. As u b v a r i e t yZ ⇢ X of positive dimension is called a constant cycle subvariety if for any two points z, z 0 2 Z one has [z]=[z 0 ] in CH 0 (X).I f ,m o r e o v e r ,codim X (Z)=1 ,w ec a l lZ a constant cycle divisor (or CCD for short). We will denote by c Z 2 CH 0 (X) the common class of the points z 2 Z.

Example 1.26. Let S be surface and let C ⇢ S be a rational (possibly, singular) curve. Clearly, C is a constant cycle subvariety. More generally, any rationally connected subvariety Y of X is a constant cycle subvariety.

Example 1.27. Let ⇡ : X ! P n be a ramified double cover. Clearly, the class in CH 0 (X) of the degree two cycle x 1 + x 2 = ⇡ -1 (p) does not depend on the choice of p 2 P n ,a n di f ,m o r e o v e r ,x 1 and x 2 coincide, then the class

[x 1 ]=[ x 2 ] is determined in CH 0 (X) uniquely.
The locus, where the two preimages x 1 and x 2 coincide is the divisor D of ramification. So, D is a constant cycle divisor on X.

Example 1.28 (The curve of hyperflexes, cf. [START_REF] Huybrechts | Curves and cycles on K3 surface[END_REF]a n d [START_REF] Welters | Abel-Jacobi isogenies for certain types of Fano threefolds[END_REF]). Recall that for aq u a r t i cX ⇢ P 3 al i n el ⇢ P 3 is called bitangent of X if at every point x 2 X \ l the intersection multiplicity is at least two, a bitangent l is a hyperflex if there is a unique point of an intersection. We can consider the universal family of bitangents:

B q / / p ✏ ✏ X ⇢ P 3
F here F ⇢ Gr(P 1 , P 3 ) is the variety of all bitangents and B is the variety of pairs (l, x), where x is a point of contact of l and X. The map p : B ! F has degree two and let D be the ramification divisor. The curve C hf ⇢ X is defined as q(p -1 (D)).

The curve C hf is a constant cycle curve in X because every point in C hf has class (l| X )/4 in CH 0 (X) and there is no torsion in CH 0 (X) by [START_REF] Roitman | The torsion of the group of zero-cycles modulo rational equivalence[END_REF]. It is is a singular and irreducible curve in the linear system |O X (20)| of geometric genus 201, in particular, C hf is not rational. Example 1.29. Let S ⇢ P g be a K3 surface and S [2g-2] be the Hilbert scheme of 2g -2 points on it. The image of the map

Gr(g -1,g+1) / / S [2g-2] ,
which sends a subspace P g-2 ⇢ P g to the intersection P g-2 \ S,i sac o n s t a n t cycle subvariety. We note that the dimension of the Grassmanian is 2g -2, i.e., half of the dimension of S [2g -2] .

Example 1.30. ([35, Proof of Lemma 2.2]) Let X ⇢ P 5 be a cubic fourfold and F (X) be its Fano variety of lines. If Y ⇢ X is a hyperplane section then the set F (Y ) of all lines contained in Y forms a Lagrangian subvariety in F (X).I f ,m o r e o v e r ,Y has 5 nodal points then F (Y ) is birational to the projective plane P 2 and, in particular, is a constant cycle surface.

In Chapter 4 we study a hyper-Kähler four-dimensional manifold F constructed by Debarre and Voisin from a hyperplane section X in Gr(3, 10) (see [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]). Similarly to the case of Fano variety of lines, we introduce a notion of triangle on X and define a corresponding subvariety I 3 ⇢ F ⇥ F ⇥ F . The result of Chapter 4 is the following theorem.

Theorem 1.31. The 6-dimensional subvariety I 3 is Lagrangian for 2-form P 3 i=1 ⇡ ⇤ i σ F ,w h e r e⇡ i : F 3 ! F are the natural projections and σ F is a holomorphic 2-form on F .

Our proof uses the fact that the cycle

[W 1 ]+[W 2 ]+[W 3 ] on X correspond- ing to a point of I 3 is constant in CH 9 (X) (i.e.
, does not depend on a choice of point in I 3 ). The similar result is obviously true for a cubic fourfold: any triangle is just a restriction of some plane to the cubic hypersurface.

However, we do not expect that I 3 is a constant cycle subvariety, because there is no similar result for a cubic fourfold (see [START_REF] Shen | The Fourier Transform for Certain Hyper-Kaehler Fourfolds[END_REF]Theorem 20.5] for details).

Chapter 2

Result for some Calabi-Yau varieties

Introduction

Example 1.19 shows that Conjecture 1.16 does not hold for Calabi-Yau varieties, namely, the class map may be not injective on the ring generated by divisors if X is a Calabi-Yau variety. Fortunately, this example deals with cycles of strictly positive dimension and still there is a hope that the class map is injective on zero-cycles or, equivalently, that the intersection of any dim (X) divisors on X is proportional to a canonical zero-cycle c X in CH 0 (X). The existence of such a cycle is trivial if Pic(X) is generated by one element H:w ec a np u tc X = H dim X /deg H dim X .W ea i mt os h o wt h e existence of c X prove the following analog of the Theorem 1.14 at least for some Calabi-Yau varieties with higher Picard rank.

The natural candidate for Calabi-Yau variety X is a Calabi-Yau hypersurface in a Fano variety Y .I n t h i s c a s e w e c a n s t u d y Pic(X) using an existence of an identification between Pic(X) and Pic(Y ) due to the Grothendieck-Leftschetz theorem. In the result below we concentrate on the case when Y is a homogeneous variety, because of the wonderful structure of its Picard group. We recall that variety Y is homogeneous if its automorphism group acts transitively on Y . b. The image of the intersection product

Pic(X) ⌦n ! CH 0 (X) is contained in Zc X . c. The top Chern class c n (X) 2 CH 0 (X) is proportional to c X .
We have a hop e that, using the construction and ideas presented in this chapter, it is possible to generalize Theorem 2.1 for wider classes of Fano varieties Y .O u rp r i n c i p a lr e q u i r e m e n tf o rY , the triviality of Chow groups, will be stated in Construction 2.2 and fulfilled not only for rational homogeneous varieties but also for other classes such as smooth toric varieties or varieties admitting a stratification by affine spaces. We use few properties of homogeneous varieties in our proof and one can probably avoid using them to generalize the result.

The chapter is organized as follows. Firstly, we briefly recall basic facts about homogeneous spaces. Then, we construct a constant cycle divisor associated with an effective class of curves in Y .U s i n g t h e s e d i v i s o r s w e finish the proof in the last section.

The main point of our proof is an existence of a constant cycle divisor in an ample class (in the situation of K3 surface, the analog is the existence of rational curves in an ample class). Our result (b) also shows that the restriction to our Calabi-Yau hypersurface of any curve in a homogeneous space is proportional to the canonical cycle c X (cf. Proposition 2.8). Indeed, by the hard Lefschetz theorem, any curve class in Y is an intersection of divisor classes in Y and furthermore the cycle class CH n (Y ) ! H 2n (Y ) is injective, so any element of CH n (Y ) is an intersection of divisors.

Homogeneous varieties

We recall that a pro jective variety Y is called homogeneous if there is an algebraic group acting transitively on Y .D u et oaf u n d a m e n t a lt h e o r e mo f Chevalley, any projective homogeneous variety is isomorphic to a product of an abelian variety and a rational homogeneous variety. Examples of rational homogeneous varieties include Grassmann varieties, flag varieties and their products.

In the present work we deal with Y which is a homogeneous Fano variety, therefore Y is a rational homogeneous variety. For the sake of simplicity, the notion of a homogeneous variety will refer to a rational homogeneous variety.

We recall some basic facts ab out homogeneous varieties (see [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF]a n dt h e references therein). For a projective homogeneous variety Y the cone of effective divisors Eff(Y ), which is the closure of the cone of ample divisors, is a polyhedral cone. Every rational point in it represents a globally generated line bundle, which is (very) ample if and only if the point belongs to the interior of Eff(Y ).S i n c eY is Fano, its anti-canonical class -K Y belongs to the interior of Eff(Y ).

For every face σ ⇢ Eff(Y ) of codimension one, one defines the extremal contraction

Y f β / / Y β ,
of the primitive class β 2 σ ? of curves, where β is the unique integral positive generator of the rational line σ ? ,a n dY β is a homogeneous variety of smaller dimension and f β is a fibration. There is the natural identification

β ? = f ⇤ β (Pic(Y β )) ⇢ Pic(Y ).
Vice versa, for any extremal ray R >0 β there is a face σ = β ? \ Eff(Y ) of codimension one and we can define a contraction f β .W ed e n o t et h es e to f all primitive effective classes of curves on extremal rays by R. AgeneralfiberY 0 of f β is agener alize dGr assmannvarietyin the following sense: it is a homogeneous space G/P , where P is a maximal parabolic subgroup of G.W eu s eo n l yo n ef a c t :Pic(Y 0 ) is generated by the class of an ample bundle O Y 0 (1) and the unique primitive effective class β 2 CH 1 (Y 0 ) has degree 1 with respect to it (we call β the class of a line).

Constant cycle divisors

The notion of constant cycle subvarieties was introduced in [15]a n du s e di n [START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF]a n d [START_REF] Voisin | Remarks and questions on coisotropic subvarieties and zerocycles of hyper-Kähler varieties[END_REF]. The goal of this section is to construct constant cycle divisors on Calabi-Yau hypersurfaces expanding the idea of examples from the introduction: having a family of zero-cycles on X,allofthesameclassanddegree, we are looking for cycles represented by one point (with the corresponding multiplicity). 

C β p ✏ ✏ q / / Y M β (2.1)
where p and q are the natural projections.

For a given hypersurface X ⇢ Y we can construct the following variety:

V X,β = {(C, x) 2 C β : C \ X =deg(C \ X) • x},
where the equality is an equality of zero-cycles on C (or even of subschemes of C if C is smooth). The subvariety p(V X,β ) in M β describes all curves intersecting X in one point with the maximal multiplicity. Due to our assumption (?), the class of the zero-cycle C| X in CH 0 (X) does not depend on the point C in M β .B y [START_REF] Roitman | The torsion of the group of zero-cycles modulo rational equivalence[END_REF], a family of torsion cycles in a variety has to be constant, hence the subvariety q(V X,β ) ⇢ X is a constant cycle subvariety. If X is a smooth Calabi-Yau hypersurface in Y ,a n df u r t h e r m o r et h e r ei s no obstruction for deformation of curves in Y ,thendenotingd =deg(C \ X) we have

dim V X,β ≥ dim M β -(d -1) = (-K Y • β +(n +1)-3) -(d -1) =(X • C +dimX -2) -d +1=dimX -1,
and we expect that q(V X,β ) is a CCD on X.

Notation 2.3. Continuing with the settings of Construction 2.2,w ep u t

H β = q(V X,β ) ⇢ X.
Lemma 2.4. Let Y be a projective homogeneous variety with Picard number one and dimension at least two and let β be the class of a line.

If X 2 |-K Y | is general, then H β is a non-empty effective divisor on X.
Proof. First of all, H β cannot be the whole of X,b e c a u s ei tw o u l di m p l y that all points in X are rationally equivalent. In order to show that H β is a non-empty effective divisor, it thus suffices to show that its class is non-zero.

We denote the class of the standard p olarization on Y by H 1 and notation as in (3.2), let H1 = q ⇤ H 1 be the corresponding divisor on the universal curve. We also put H 2 := p ⇤ ( H2 1 )=p ⇤ q ⇤ H 2 1 ,l e t H2 = p ⇤ H 2 .D e n o t eb yK rel the class of the relative cotangent bundle on the universal curve, it is easy to see that K rel = -2 H1 + H0

2 , where H0

2 = p ⇤ H 0 2 for some divisor H 0 2 on M β . Let us show that H 2 = H 0 2 .B yt h eG r o t h e n d i e c k -R i e m a n n -R o c hf o r m u l a , c 1 ⇣ R 0 p ⇤ O C ( H1 ) ⌘ = p ⇤ ✓ H2 1 + 5 6 ⇣ H2 1 -H1 H0 2 ⌘ + 1 12 H2 2 ◆ ,
but the left-hand side can be calculated geometrically: it is the locus of all curves C in M β such that the restrictions of two general sections in

H 0 (Y, O Y (H 1 )) to C coincide. Hence the left-hand side is equal to p ⇤ q ⇤ (H 2 1 )= p ⇤ ⇣ H2 1 ⌘ .S i n c ep ⇤ ⇣ H2 2 ⌘ =0,w eg e t p ⇤ ✓ 5 6 ⇣ H2 1 -H1 H0 2 ⌘ ◆ =0.
Since H1 has degree one on fibers of p :

C ! M β ,w eg e tp ⇤ ⇣ H1 H0 2 ⌘ = H 0 2 and H 0 2 = p ⇤ ⇣ H1 H0 2 ⌘ = p ⇤ ⇣ H2 1 ⌘ = H 2 .
The subvariety

V X,β ⇢ C is the intersection of d divisors of classes (0  r  d -1) d H1 + rK rel ,
where the divisor number r is to say that the r-th derivative of the restriction f X | C is zero at a point on the curve C, where f X is the defining equation for X;a l lt o g e t h e rt h e ym e a nt h a tf X | C is one point with the maximal multiplicity. So, the degree of H β = q ⇤ (V X,β ) can be calculated as the degree of the following intersection on Y (we recall dim X = n, dim Y = n +1):

H n-1 1 • q ⇤ h d H1 • ⇣ d H1 + K rel ⌘ • ...• ⇣ d H1 +(d -1)K rel ⌘i = q ⇤ h Hn-1 1 • d H1 • ⇣ d H1 + K rel ⌘ • ...• ⇣ d H1 +(d -1)K rel ⌘i = q ⇤ " d Hn 1 d-1 Y r=1 ⇣ d H1 + r ⇣ -2 H1 + H2 ⌘⌘ # = q ⇤ " d! Hn 1 Hd-1 2 + d-1 X r=1 ✓ d -2r r ◆ Hn+1 1 Hd-2 2 !# . CHAPTER 2.

RESULT FOR SOME CALABI-YAU VARIETIES

Clearly, points of p ⇤ ( Hn+1

1 )=p ⇤ q ⇤ (H n+1 1 
) in M β correspond to curves which pass through a point of the intersection H n+1 Lemma 2.5. Let Y be a homogeneous variety and

X 2 |-K Y | be general. If β 2 R such that f β : Y ! Y β is not a P 1 -fibration, then H β is a non-empty effective CCD on X.
Proof. It is enough to show that V X,β is non-empty of the expected dimension and a general fiber of q : V X,β ! q(V X,β ) ⇢ H β is finite.

Ag e n e r a lfi b e rY 0 of Section 3] or [8, Theorem 2.3.1]). Applying the previous lemma to Y 0 and X| Y 0 we see that V X,β is non-empty and the projection q has some finite fibers, hence a general fiber is finite. The dimension of V X,β is expected because the dimension of M β is expected.

f β : Y ! Y β is a Schubert variety in Y ,h e n c et h e restriction map H 0 (Y, O Y (X)) ! H 0 (Y 0 , O Y (X)| Y 0 ) is surjective ([9,
Example 2.6. Let Y = P 2 ⇥ S, where S is a Fano variety of positive dimension and let β be equal to [l ⇥ point], where l is a line in P 2 .I fX is a general Calabi-Yau hypersurface in Y then the restriction of H β to a fiber of P 2 ⇥ S ! S is the union of nine Weierstrass points on a plane elliptic curve. In particular, H β is non-empty and effective.

Example 2.7. Let Y be as in Construction 2.2 and assume that

f β : Y / / Y β
is a P 1 -fibration (again β is the class of contracted curves, i.e, the class of a fiber). If X is a general Calabi-Yau hypersurface then H β has class

(-K Y + K Y/Y β )| X = f ⇤ β (-K Y β )| X in Pic(X)
and H β is trivial on fibers of f β (in contrast to Lemma 2.5 and Example 2.6).

Example 1.28 from Introduction is another example of our construction.

The proof of Theorem 2.1

Let us first prove the following. Proposition 2.8. In the setting of Theorem 2.1,t h e r ee x i s t sac l a s sc X in CH 0 (X) such that the restriction C| X of any curve in Y is proportional to c X in CH 0 (X).

Proof. Because of the linearity of the intersection, it is enough to prove the statement only for curves with class β 2 R.B y c o n s t r u c t i o n o f H β ,t h e corresponding zero-cycles can be represented by points (with multiplicities) on H β for β 2 R.L e tu ss h o wt h a tt h ec l a s sc H β does not depend on the choice of β 2 R.

Case 1: dim Y β <nfor any β 2 R. We may assume that the dimension of X is at least three and thus by the Grothendieck-Leftschetz theorem, we can identify Pic(X) and Pic(Y ) by the restriction map. Let H β be the restriction of a divisor Hβ on Y .W ec l a i mt h a tt h ed i v i s o r

H := X β2R
Hβ is ample on Y . This is equivalent to H • β > 0 for all β 2 R.T os e et h i s ,i t suffices to prove the inequalities

Hβ | β 0 ≥ 0 and Hβ | β > 0
for any β, β 0 2 R.S i n c et h efi b e r so ff β 0 : X ! Y β 0 have positive dimension, any curve C contained in a fiber F ⇢ X of X ! Y β 0 has its class in Y an o n -z e r om u l t i p l eN β 0 .F o rs m o o t hF ,t h ec u r v eC can be chosen to be movable in F and thus we get

N Hβ • β 0 = H β • C = H β | F • C ≥ 0, because H β | F is effective in F .
The second inequality follows from Lemma 2.4. Thus the claim is proved.

The divisor H := H| X is thus ample on X,h e n c ei ti sc o n n e c t e da n da n y point on the divisors H β represents the same class c X = c H β in CH 0 (X).

Case 2: dim Y β = n for some β 2 R. In this case, f β | X : X ! Y β is a double cover (out of some codimension two subvariety, where X contains a whole fiber of f β ). Due to Example 2.7,t h ed i v i s o rH := H β is a pull-back of an ample divisor on Y β ,s oH meets H β 0 for any β 0 . It thus follows that c H β 0 = c H β for any β 0 and we can take c X as the class of a point on H.

Note that in a situation where Y is not homogeneous, but still satisfies assumption (?) the following alternative lemma could be used. Lemma 2.9. If there exist an ample divisor H on Y such that H = H \ X is a CCD on X with associated class c H ,t h e nf o ra n yc u r v eC on Y , C| X is proportional to c H and, in particular, the intersection of any n divisors is proportional to c H . Proof. We have the following commutative diagram:

Hn-1 : CH 1 (Y ) / / ✏ ✏ CH n (Y ) ✏ ✏ H 2 (Y ) / / H 2n (Y )
The vertical arrows are isomorphisms due to condition (?), the bottom arrow is also an isomorphism by the hard Lefschetz theorem, hence the top arrow is an isomorphism. Therefore the restriction C| X is equal to (L 

D 1 • ...• D n = ⇣ D1 • ...• Dn ⌘ X .
The intersection in the right-hand side is a (reducible) curve in Y ,w epro v ed that the restriction of any curve in Y to X is proportional to c X in Proposition 2.8. The top Chern class of X can be represented by a combination of Chern classes of Y and Chern classes of line bundle O Y (X). This is again a restriction of some (reducible) curve on Y . Remark 2.10. There is another strategy to prove Theorem 2.1 b.I fdim Y β < n for some β then

D 1 • ...• D n =0 for any divisors D i on Y β . The same is true for divisors f ⇤ β (D i )| X on X. Since H β and f ⇤ β (Pic(Y β ))| X generate Pic(X) ⌦ Q,a
n yi n t e r s e c t i o no fn divisors on X is proportional to a zero-cycle with support on H β and hence is proportional to c X .

Chapter 3

A new proof of decomposition of a small diagonal for K3 surface

Introduction

The canonical zero cycle on a K3 surface S is defined in [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF]a st h er a t i o n a l equivalence class of any point lying on a rational curve C ⇢ S. The paper [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF] shows that the intersection of any two divisors in S is proportional to the canonical cycle in CH 0 (S). It is also shown that the second Chern class c 2 (S) is proportional to this canonical zero cycle o.B o t hr e s u l t sc a nb eo b t a i n e d as consequences of the following theorem. )L e tS be a K3 surface. In CH 2 (S 3 ) Q there is a decomposition

∆ 123 = ∆ 12 ⇥ o 3 + ∆ 23 ⇥ o 1 + ∆ 13 ⇥ o 2 -S ⇥ o ⇥ o -o ⇥ S ⇥ o -o ⇥ o ⇥ S, (3.1)
where o is the canonical zero cycle, ∆ 123 is a small diagonal in S 3 ,a n dt h e notation

∆ ij ⇥ o k stands for ⇡ ⇤ ij (∆) • ⇡ ⇤ k o.
The goal of this paper is to give a new proof of Theorem 3.1 for a K3 surface S with Pic(S)=Z[L] with L 2 =2g -2. The result can be generalised for K3 surfaces with higher Picard rank using the specialisation argument (cf. Remark 3.7). Our proof is very explicit using the embedding of S in P g .I ti s based on the study of the set of pairs of points (x, y) in S ⇥ S such that two curves in the linear system |L| intersect exactly at these two points with given multiplicities. Specifically, we choose the multiplicities 2g -3 and 1.I no t h e r words, we are studying the surface Σ parameterising complete intersections subschemes of S consisting in the union of two points, one of them with multiplicity 2g -3. We will prove that this is a surface and will establish two relations (3.6)a n d( 3.7), from which we obtain the relation (3.1)u pt os o m e multiplicative factor µ, which is non-zero if the surface Σ ⇢ S ⇥ S dominates factors. The second part of the paper is then devoted to the proof that µ 6 =0 . In order to prove this non-vanishing we will interpret the surface Σ in a slightly different way: as Pic(S)=Z[L],thecurv esin|L| are irreducible hence the intersection of any two different curves in the linear system |L| is az e r o -d i m e n s i o n a ls u b s c h e m eo fS of length deg(L),s ow eh a v eam o r p h i s m Gr(2,H 0 (S, L)) ! S [2g -2] and we let Gr denote the image. Using techniques from [START_REF] De Cataldo | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF][START_REF] Lehn | Chern classes of tautological sheaves on Hilbert schemes of points on surface[END_REF][START_REF] Lehn | The cup product on the Hilbert Scheme for K3 surfaces[END_REF][START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF] to work with cohomology groups of the Hilbert scheme S [2g -2] ,o n ec a nd e fi n et h ep i e c e sE ⇤ M (Gr) 2 CH(S m ) of the decomposition of the class of Gr in CH(S [2g-2] ), where M is a partition of {1,...,2g -2} and m = |M |. The proof that µ 6 =0involves the study of this class E ⇤ M (Gr) in the case where M is a partition into two integers.

The proof of Theorem 3.1 1 Surface Σ.

Let us recall that a K3 surface with a very ample linear system L of degree 2g -2 ≥ 4 generating Pic(S) can be embedded in P g by |L| and the intersection of S with any linear subspace P g-2 ⇢ P g is a zero-cycle of degree 2g -2 on S (cf. [START_REF] Huybrechts | Lectures on K3 surfaces[END_REF]Chapter 2]). The set of all P = P g-2 ⇢ P g is the Grassmann variety Gr(g -1,g+1) and as already mentioned this provides a morphism

Gr(g -1,g+1)! S [2g-2] ,
which maps [P ] to P \ S for [P ] 2 Gr(g -1,g +1).W ed e n o t eb yGr the image of this map. We introduce the incidence scheme Ξ ⇢ S ⇥ S [2g -2] :

Ξ π 1 ✏ ✏ π 2 / / S [2g-2] S (3.2) Let L [2g-2] denote the vector bundle (⇡ 2 ) ⇤ ⇡ ⇤ 1 (O S (L)) on S [2g-2]
. The image Gr is the locus in S [2g -2] , where the rank of the map

H 0 (S, L) ⌦ O S [2g-2] ! L [2g-2]
is at most g -1 and it follows by [START_REF] Fulton | Intersection Theory.S p r i n g e r -V e r l a gN e wY o r k[END_REF]t h a ti t sc l a s si sg i v e nb y

[Gr]=c 2 g-1 (L [2g-2] ) -c g-2 (L [2g-2] )c g (L [2g-2] )). (3.3)
Let us also define a subset G 0 0 ⇢ Gr(g -1,g+1) in the following way:

G 0 0 = {[P ] 2 Gr(g -1,g+1):P \ S =(2g -3)p 1 + p 2 as a cycle}.
We also define the variety Σ 0 ⇢ S ⇥ S as

Σ 0 := {(p 1 ,p 2 ) 2 S ⇥ S :(2g -3)p 1 + p 2 = S \ P for some [P ] 2 Gr(g -1,g+1)} .
If we construct the following diagram

G 00 0 ⇢ E 2g-3,1 p ✏ ✏ q / / S [2g-2] Σ 0 ⇢ S ⇥ S (3.4)
where E 2g-3,1 represents schemes of the form (2g-3)p 1 +p 2 on S,wethenhave G 00 0 = q -1 (Gr) and Σ 0 = p(q -1 (Gr)).W ee x p e c tt h a tt h en a t u r a lm o r p h i s m G 0 0 ! G 00 0 is an isomorphism, but since we will not use it, we omit a proof. Let us prove the following facts about the geometry of Σ 0 . Proof. Let us first prove that dim Σ 0  2.I n d e e d ,f r o mt h ee q u a l i t y

p 1 +(2g -3)p 2 = L 2 ,
valid in CH 2 (S) for any pair (p 1 ,p 2 ) 2 Σ 0 , and the theorem of Mumford [START_REF] Mumford | Rational equivalence of zero-cycles on surfaces[END_REF], it follows that

⇡ ⇤ 1 σ S +(2g -3)⇡ ⇤ 2 σ S =0 (3.5)
on Σ 0 , where σ S is a non-vanishing 2-form on S. Therefore dim Σ 0  2. Notice that equation (3.5) characterises K-correspondences in the terminology of [START_REF] Voisin | Intrinsic pseudovolume forms and K-correspondences[END_REF]. This equation implies that for any irreducible component Σ of Σ 0 the morphism ⇡ 1 | Σ is dominant if and only if the morphism ⇡ 2 | Σ is dominant. Indeed, these conditions are respectively equivalent to the generic non-vanishing of ⇡ ⇤ i σ S . This argument also shows that (a) and (b) are implied by the fact that the first projection ⇡ 1 | Σ 0 is dominant. In order to prove this last statement we observe that the cycle Ω = p ⇤ q ⇤ (Gr) has for support the surface Σ 0 although this cycle could be non-effective due to the fact that even if Σ 0 has the right dimension the scheme G 00 0 = q -1 (Gr) could be of a higher dimension leading to excess formulas in the computation of the cycle Ω.N e v e r t h e l e s sw ec a na r g u et h a ti fΩ can not be represented by a cycle supported on the union of divisors of the form D ⇥ S,t h e no n ec o m p o n e n t of the support supp Ω has to dominate S by the first projection, that is, one component of Σ 0 dominates S by the first projection. The next section is devoted to the proof that the class Ω can not be supported on the union of D ⇥ S, see Proposition 3.10.

Remark 3.3. Let us note that we expect dim G 0 0 =2, Σ 0 is irreducible and the projection p : G 0 0 ! Σ 0 is a one-to-one correspondence. In this case we get [Σ 0 ]=Ω in H 4 (S ⇥ S) (actually, we can consider the equality even in CH 2 (S ⇥ S)). Unfortunately, the author does not know how to prove these facts and we avoid them in our proof by introducing below a surface G 0 as a substitute of G 0 0 . Let Σ be a surface as in the last lemma and let G 0 ⇢ G 0 0 be any surface dominating Σ after the projection ⇡ 1 : G 0 0 ! Σ 0 .W ec a nc o n s i d e rG 0 as a subvariety of Gr(g -1,g+1) and define Π 2 ⇢ P g ⇥ P g and Π 3 ⇢ P g ⇥ P g ⇥ P g as the universal varieties:

Π 2 := {(x 1 ,x 2 ) 2 P g ⇥ P g : x 1 ,x 2 2 P for some [P ] 2 G 0 } , Π 3 := {(x 1 ,x 2 ,x 3 ) 2 P g ⇥ P g ⇥ P g : x 1 ,x 2 ,x 3 2 P for some [P ] 2 G 0 } . We have dim Π 2 =dimG 0 +2(g-2) = 2g-2 and dim Π 3 =dimG 0 +3(g-2) = 3g -4. Clearly, Σ ⇢ Π 2 \ (S ⇥ S).

Key lemma

A key observation for our proof is the following lemma.

Lemma 3.4.

a. There is a decomposition in CH 2 (S ⇥ S) which, in fact, is an equality of effective cycles

Π 2 | S⇥S = ↵∆ + β Σ + Σ T , (3.6) 
where ∆ is the diagonal in S ⇥ S.

b. There is a decomposition in CH 2 (S ⇥ S ⇥ S)

Π 3 | S⇥S⇥S = γ∆ 123 + "(δ 12⇤ + δ 23⇤ + δ 31⇤ )(Σ + Σ T ), (3.7) 
where ∆ 123 is the small diagonal in S 3 ,andδ 12 (x, y)=(x, x, y), δ 23 (x, y)= (y, x, x), δ 31 (x, y)=(x, y, x).

Proof. The proof of (3.6) follows from the facts that Π 2 | S⇥S is symmetric and supported on the union of the diagonal, Σ and Σ T ,a n dt h a tΣ and Σ T are chosen to be irreducible. The proof of (3.7)i ss i m i l a r .

Lemma 3.5. We have:

a. the denominators of the ratios α β and γ ε are non-zero and both ratios are non-negative, b. the following relation holds:

γ " - 3↵ β = - ✓ ↵ β + a + b ◆ , (3.8) 
where a and b are the degrees of the projections of Σ ⇢ S ⇥ S to its factors.

Proof. a. As numbers ↵, β, γ, " are non-negative, we need only to show that β, " 6 =0 . We will use the fact that S has some transcendental cohomology. Let us consider the actions on H ⇤ (S) of Π 2 | S⇥S and of ∆ viewed as correspondences between S and S.S i n c eΠ 2 | S⇥S can be supported on divisors, it acts as zero on the transcendental cohomology of S.S i n c e∆ always acts as identity, it is not proportional to Π 2 | S⇥S . It implies β 6 =0.U s i n gap r o j e c t i o nS ⇥ S ⇥ S ! S ⇥ S,thef ac t" > 0 can be proved in a similar way. b. Projecting (3.7)t oS ⇥ S and taking cohomology classes, we easily conclude that γ ε = 2α β -a -b, which is equivalent to (3.8).

Proof of Theorem 3.1. We chose a surface Σ as in Lemma 3. 

✓ γ " - 3↵ β ◆ ∆ 123 = ↵ 1 ∆ 12 ⇥ o 3 + ↵ 2 ∆ 23 ⇥ o 1 + ↵ 3 ∆ 13 ⇥ o 2 + Z| S 3 , (3.9) 
where Z ⇢ P g ⇥ P g ⇥ P g . Projecting to S ⇥S and taking the cohomology classes, we easily conclude that

↵ 1 = ↵ 2 = ↵ 3 = γ/" -3↵/β,andb ypreviouslemma,↵ 1 = -(↵/β + a + b).S i

n c et h ed e c o m p o s i t i o no ft h es m a l ld i a g o n a lh o l d si nc o h o m o l o g y( d u e

to [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF]a n dm o r eg e n e r a l l y [START_REF] Grady | Computations with modified diagonals[END_REF]), we can deal with the term Z| S 3 as follows:

this term is a polynomial in L 1 ,L 2 ,L 3 , where L i := pr ⇤ i L and on the other hand it is cohomologous to

-↵ 1 (S ⇥ o ⇥ o + o ⇥ S ⇥ o + o ⇥ o ⇥ S).
By [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF]

itisthusrationallyequiv alentto-↵ 1 (S ⇥ o ⇥ o + o ⇥ S ⇥ o + o ⇥ o ⇥ S).
Since a, b > 0 by choice of Σ and ↵/β is non-negative, we can divide the equation by -↵/β -a -b to get the result. The theorem is proved.

Remark 3.6. We would like to emphasise that this pro of is very different from the one used by Beauville and Voisin, which uses the existence of oneparameters families of elliptic curves. It is much more along the lines of the method used by Voisin in the Calabi-Yau hypersurface case, and Fu in the Calabi-Yau complete intersection case (see [START_REF] Voisin | Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces[END_REF]Theorem 3.1], [START_REF] Fu | Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections[END_REF]). Namely, to study the case of Calabi-Yau varieties, one needs to replace G 0 by the set of lines intersecting the hypersurface in two points, the result [5, Proposition 2.6] used in our proof, corresponds to [36,L e m m a3 . 3 ] .

Remark 3.7. The Picard number one condition can be removed using the following specialization argument. For a given K3 surface S,c o n s i d e ra family of projective K3 surfaces such that the general member is of Picard number one. The expression of decomposition of the small diagonal provides a( u n i v e r s a l )r e l a t i v e2 -c y c l eo ft h i sf a m i l ya n db yt h ep r o o fa b o v ew ek n o w that it vanishes on general fibers. Since the specialization of the diagonal (resp. small diagonal) is the diagonal (resp. small diagonal), we can conclude that the decomposition holds in the special fiber.

Remark 3.8. As proved in [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF], the decomposition of the small diagonal immediately gives the fact that c 2 (S) is proportional to the canonical cycle o.

From our pro of we can easily get another more direct pro of of this fact, using only (3.6). Indeed, let us apply ∆ ⇤ : CH 2 (S ⇥ S) ! CH 0 (S) to the decomposition (3.6). Since ∆ ⇤ (∆)=c 2 (S),w eg e tt h a t↵c 2 (S) is a combination of a canonical zero cycle (corresponding to the term ∆ ⇤ (Π 2 | S⇥S ))a n dz e r o cycle ∆ ⇤ (Σ + Σ T ) which is supported on Σ \ ∆ and Σ T \ ∆.B u tc l e a r l yt h e points on Σ \ ∆ are rationally equivalent to o. This proves the statement concerning c 2 ,o n c ew ep r o v et h a t↵ 6 =0 , which can be derived from the following remark or from the proofs of Lemma 3.2 and of Proposition 3.10 in the next section. Remark 3.9. Let us present a relation between ↵/β, a,a n db.W es e ef r o m the definition of Σ that for any (x, y) 2 Σ,w eh a v et h ee q u a l i t y (2g -3)x + y = L 2 in CH 0 (S).

It follows that we have for any x 2 S

Σ ⇤ (x)=-a(2g -3)x + C in CH 0 (S),
where C is a constant multiple of L 2 .S i m i l a r l y

Σ T ⇤ (x)=- b 2g -3
x + C 0 in CH 0 (S).

Applying (3.6)a n dt h ef a c tt h a tΠ 2 is restricted from P g ⇥ P g ,w et h u s conclude that for any x 2 S

C 00 = -a(2g -3)x - b 2g -3 x + ↵ β x in CH 0 (S),
where C 00 is a constant multiple of L 2 . It follows that

↵/β = a(2g -3) + b 2g -3 .
3 Proof of the fact that supp (Ω) dominates factors

The goal of this section is to prove the following lemma. To prove Proposition 3.10 we study H ⇤ (S [2g-2] ) and introduce the following notation. Let M =(m 1 ,m 2 ,...,m k ) be a partition of {1,...,2g -2}.S u c hap a r t i t i o nd e t e r m i n e sap a r t i a ld i a gonal

S M ⇠ = S k ⇢ S 2g-2 ,
defined by the conditions x =(x 1 ,...,x 2g-2 ) 2 S M () x i = x j if i, j 2 m l , for some l.

Consider the quotient map

q M : S k ⇠ = S M ! S (2g-2) ,
and denote by E M the following fibered product:

E M := S M ⇥ S (2g-2) S [2g-2] ⇢ S k ⇥ S [2g-2] .
We view E M as a correspondence between S k and S [2g -2] and we will denote by E ⇤ M : CH(S [2g-2] ) ! CH(S m ) the map

↵ ! ⇡ 1⇤ (⇡ ⇤ 2 (↵) • E M ).
The main point of the proofs is considering E ⇤ M (Gr) for the partition M = ({1,...,2g -3}, {2g -2}) and the intersection

⇡ 2⇤ (E M ) • (c 2 g-1 (L [2g-2] ) -c g (L [2g-2] )c g-2 (L [2g-2]
))

We now turn our attention to the cup pro duct on the Hilb ert scheme S [2g -2] .

4 Cup product on S [n] The paper [START_REF] Lehn | The cup product on the Hilbert Scheme for K3 surfaces[END_REF]g i v e sad e s c r i p t i o no nt h er i n gs t r u c t u r eo nH ⇤ (S [n] );t h e following theorem holds (cf. [21, Theorem 3.2]):

Theorem 3.11. Let S be a smooth projective surface with numerical ly trivial canonical class. Then there is a canonical isomorphism of graded rings

(H ⇤ (S; Q)[2]) [n] ! H ⇤ (S [n] ; Q)[2n].
In the theorem above we define A [n] as

A [n] := (A{S n }) Sn .
It is the subspace of invariants of the ring A{S n }, which has the following grading by permutations in S n

A{S n } := ⊕ π2Sn A ⌦(π)\[n] • ⇡,
where (⇡)\[n] denotes the orbit space for the action on {1, 2,...,n} of the group generated by permutation ⇡. The action of σ on {1, 2,...,n} induces ab i j e c t i o n :

σ :(⇡)\[n] ! (σ⇡σ -1 )\[n],x7 ! σx
for each ⇡ and hence an isomorphism of A{S n }:

σ : A{S n } ! A{S n },a ⇡ 7 ! σ ⇤ (a)σ⇡σ -1 .
To describe c i (O [2g-2] ) in these terms, let us introduce the following notation. If σ 2 S n is a permutation, then let c(σ) be the number of cycles in σ and l(σ)=n -c(σ). The number l(σ) is the minimal number of transpositions needed to generate σ.

The statement [START_REF] Lehn | The cup product on the Hilbert Scheme for K3 surfaces[END_REF]Proposition 4.3] (see also [START_REF] Lehn | Chern classes of tautological sheaves on Hilbert schemes of points on surface[END_REF]) gives

c i (O [2g-2] )=✏ i , where ✏ i := (-1) i X l(σ)=i σ 2 H ⇤ (S) [2g-2] . (3.10) 
The class of E M for M =( {1,...,2g -3}, {2g -2}) is proportional to the sum of all permutations which contains one cycle of length 2g -3 (cf.

[21,2 . 1 0 ] ) .

Two technical lemmas and end of the proof

Before we start the proof of Proposition 3.10,w ew o u l dl i k et os t a t et w o lemmas about transpositions. Let us enumerate all transpositions in S 2g-3 by s 1 ,s 2 ,...s (2g-3)(g-2) in such a way that l(s 1 • ...• s 2g-4 )=2g -4 and define A(k) as the set of all permutations σ 2 S 2g-3 such that l(σs i ) > l(σ) for any i  k.W en o t et h a tf o rσ 2 A(k) one has σ 2 A(k +1) or σ = σ 0 s k+1 for some σ 0 2 A(k +1) with l(σ 0 )=l(σ) -1.

Let us define set of pairs F k (i, j, ⌧ ):

{(σ 1 , σ 2 ) 2 A(k) ⇥ A(k):l(σ 1 )=i, l(σ 2 )=j, l(σ 1 σ 2 ⌧ )=i + j + l(⌧ )}.
And let F k (i, j, ⌧ ) be the number of elements in F k (i, j, ⌧ ).

Lemma 3.12. If i +1<j,o n eh a s

F k (i, j, ⌧ )  F k (i +1,j -1, ⌧ ). (3.11)
and the inequality is strict in the case i = g -3, j = g -1, k =0, ⌧ = id.

Proof. The set F k (i, j, ⌧ ) can be divided in four subsets: a. pairs (σ 1 , σ 2 ) such that σ 1 , σ 2 2 A(k +1). This subset coincides with

F k+1 (i, j, ⌧ ). b. pairs (σ 1 , σ 2 ) such that σ 1 2 A(k +1) and σ 2 / 2 A(k +1),soσ 2 = σ 0 2 s k+1 with l(σ 0 2 )=j -1. This subset is in bijection with pairs (σ 1 , σ 0 2 ) of F k+1 (i, j -1,s k+1 ⌧ ). c. pairs (σ 1 , σ 2 ) such that σ 1 / 2 A(k +1) and σ 2 2 A(k +1),soσ 1 = σ 0 1 s k+1 with l(σ 0 1 )=i-1. This subset is in bijection with pairs (σ 0 1 ,s k+1 σ 2 s k+1 ) of F k+1 (i -1,j,s k+1 ⌧ ). d. pairs (σ 1 , σ 2 ) such that σ 1 , σ 2 / 2 A(k +1),s oσ 1 = σ 0 1 s k+1 and σ 2 = s k+1 σ 0 2 for some σ 0 1 , σ 0 2 2 A(k +1).S i n c e l(σ 1 σ 2 ⌧ )=l(σ 0 1 s 2 k+1 σ 0 2 ⌧ )=l(σ 0 1 σ 0 2 ⌧ )  l(σ 1 ) -1+l(σ 2 ) -1+l(⌧ ),
this subset is empty.

So we have

F k (i, j, ⌧ )=F k+1 (i, j, ⌧ )+F k+1 (i -1,j,s k+1 ⌧ )+ F k+1 (i, j -1,s k+1 ⌧ ). (3.12)
The proof easily follows by induction if we prove that

F k (0,j,⌧ )  F k (1,j -1, ⌧ )
for all j, k and all ⌧ . Inequality follows from the fact that any permutation σ 2 , where (id, σ 2 ) 2 F k (0,j,⌧ ),h a s( m o r et h a no n e )d e c o m p o s i t i o nσ 0 1 σ 0 2 , where (σ 0 1 , σ 0 2 ) 2 F k (1,j -1, ⌧ ).D i fferent σ 2 have different decompositions. We note that for σ 2 = s g-1 ...s 2g-4 , ⌧ =(s 1 ...s g-2 ) -1 the pair (id, σ 2 ) will be an element of F g-2 (0,g -2, ⌧ ) and therefore the inequality is strict.

Let G(i, j) be the set of all pairs (σ 1 , σ 2 ) 2 S 2g-2 ⇥ S 2g-2 such that the following three conditions hold:

a. l(σ 1 )+l(σ 2 ) -2=l(σ 1 σ 2 ), b. σ 1 σ 2 preserves the point 2g -2: (σ 1 σ 2 )(2g -2) = 2g -2, c. σ 1 and σ 2 do not preserve the point 2g -2 : σ 1,2 (2g -2) 6 =2g -2.
Let G(i, j) be the number of elements in G(i, j). Lemma 3.13. One has G(g -1,g-1) >G(g -2,g).

Proof. Let us define a map of sets f : S n ! S n-1 in the following way: if σ 0 2 S n has a cycle (. . . , k, n, m, . . .) we replace it by a cycles (. . . , k, m, . . .). Clearly, if σ 0 (n) 6 = n than l(σ)=l(σ 0 ) -1 for σ = f (σ 0 ). G(g -2,g) by Lemma 3.13,w eg e tt h a tt h er e p r e s e n t a t i o no fΩ = E ⇤ M (Gr) as a sum of ∆, c 2 (S) ⇥ S, S ⇥ c 2 (S),a n dL ⇥ L contains the diagonal with a non-zero coefficient. Therefore Ω viewed as a self-correspondence of S does not act trivially on H 2,0 (S) and can not be supported on divisors of the form D i ⇥ S and S ⇥ D j .

Chapter 4

Results for hyper-Kähler varieties 1 Introduction

In this section we study a 20-dimensional family of hyper-Kähler fourfolds described in [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]. An irreducible hyper-Kähler manifold is a simply connected compact Kähler manifold whose space of holomorphic 2-forms is generated by an everywhere non-degenerated form. In each dimension 2n,B e a u v i l l e constructed in [START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]t w of a m i l i e so fs u c hv a r i e t i e s : ( a )t h en-punctual Hilbert scheme S [n] of a K3 surface S and (b) the fiber at the origin of the Albanese map of the (n +1)-st punctual Hilbert scheme of an abelian surface. All of the irreducible hyper-Kähler manifolds constructed later on are deformationequivalent to one of Beauville's examples, with two exceptions: O'Grady's examples in dimension 6 and in dimension 10 (see [START_REF] Grady | A new six-dimensional irreducible symplectic variety[END_REF][START_REF] Grady | Desingularized moduli spaces of sheaves on a K3[END_REF]).

We noted in the intro duction that the varieties constructed by Beauville have Picard number two, while a general algebraic deformation of a hyper-Kähler manifold has Picard number one. We also listed four families of hyper-Kähler manifold with Picard rank 1.

Two of them were the Fano variety of lines of a cubic fourfold and the hyper-Kähler manifold constructed by Debarre and Voisin in [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]. These two varieties have very similar constructions and we start in this section the study of their common properties. We hope that this start will allow to attack the Beauville-Voisin conjecture for the hyper-Kähler manifolds constructed by Debarre and Voisin, which is already proved for Fano varieties of lines of cubic fourfold [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF].

Let us recall the construction of [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]. Let G(3,V 10 ) be the Grassmann variety of 3-dimensional vector subspaces in a 10-dimensional vector space V 10 and let X be a hyperplane section in Gr(3,V 10 ). The variety X is defined by a 3-form

↵ X = X ↵ ijk e ⇤ i ^e⇤ j ^e⇤ k 2 Λ 3 V ⇤ 10 
where (e ⇤ i ) is a basis of the dual vector space V ⇤ 10 . The variety F (X) is then defined as the subvariety of Gr(6,V 10 ) of all 6dimensional spaces V 6 ⇢ V 10 such that the form i

⇤ V 6 ↵ X 2 Λ 3 V ⇤ 6 is zero, where i ⇤ V 6 : Λ 3 V ⇤ 10 ! Λ 3 V ⇤ 6
is that natural map. Equivalently, for any 3-dimensional V 3 ⇢ V 6 the restriction i ⇤ V 3 ↵ X is zero and hence Gr(3,V 6 ) ⇢ X.W et h u sh a v e an a t u r a lu n i v e r s a ld i a g r a m :

U p ✏ ✏ q / / X ⇢ Gr(3,V 10 ) F (X) ⇢ Gr(6,V 10 ) , (4.1) 
where U is the universal variety consisting of pairs [START_REF] Debarre | Hyper-Kaehler fourfolds and grassmann geometry[END_REF]). For ↵ X general, the variety F (X) is an irreducible hyper-Kähler manifold of dimension four. More precisely, endowed with the Plücker line bundle, it is deformation-equivalent to the second punctual Hilbert scheme S [2] of a K3 surface S of genus 12, endowed with the line bundle whose pull-back to

(V 3 ,V 6 ) such that V 3 ⇢ V 6 and i ⇤ V 6 ↵ X is zero. For [V 6 ] 2 F (X) we will denote Z V 6 := Gr(3,V 6 ) ⇢ X,a nine-dimensional subvariety of X whose class is U ⇤ [V 6 ]. Theorem 4.1 ([
Ŝ ⇥ S is (O S (1) ⇥ O S (1)) 10 (-33 e E).
In this theorem Ŝ ⇥ S ! S ⇥ S is the blow-up of the diagonal, e E is the exceptional divisor, and the pull-back is via the canonical double cover Ŝ ⇥ S ! S [2] . The goal of this section is to study the variety F (X) and its similarities with the variety of lines of a cubic fourfold, which has the following similar construction. Let Y ⇢ P 5 = Gr(2, 6) be a smooth hypersurface of degree 3, and F (Y ) ⇢ Gr(2, 6) be the variety of lines contained in Y :

U p ✏ ✏ q / / Y ⇢ P 5 F (Y ) ⇢ Gr(2, 6)
, here U is the universal variety consisting of pairs (x, [l]), where x 2 X,t h e line l is contained in Y ,a n dx 2 l.

The notation F (X) for the fourfold constructed by Debarre and Voisin and F (Y ) for the Fano variety of lines may look confusing, but the author decided to use them in order to emphasise the similarity between two varieties. The Fano variety of lines does not appear below, so F (X) will unequivocally refer to the fourfold constructed by Debarre and Voisin.

Statements of main results

In this subsection we announce Theorems 4.2 and 4.3, which provide evidences of similarities between the Fano varieties of lines on a cubic fourfold and the hyper-Kähler fourfold constructed by Debarre and Voisin. The rest of the chapter will be devoted to the proofs of these theorems.

Following the ideas used in [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]fortheF anovarietyoflinesinacubicfourfold, we are going to consider the incidence variety I of pairs

([W 1 ], [W 2 ]) 2 F (X) ⇥ F (X)
such that the corresponding subvarieties Z W 1 and Z W 2 on X have a common point. This common point, represented be a 3-dimensional space, can be viewed as a point on the diagonal ∆ X in X ⇥ X,a n ds i n c e we expect that (p, p)(q, q) -1 ∆ X is reducible and contains a diagonal as a component, we then define I in the following way:

I ⇢ (p, p)(q, q) -1 ∆ X , I = ((p, p)(q, q) -1 ∆ X ) r ∆ F (X) ,
where p and q were defined by the diagram (4.1). The variety I has a stratification: 4) [ I (5) [ I (6) , where I (i) is the subvarity of I consisting of pairs (W 1 ,W 2 ) with i-dimensional intersection. For general ↵ X ,c a l c u l a t i o n sg i v e dim I (3) =dimI =6, dim I (4) =4, dim I (5) =3, and away from ∆ F (X) which could be contained in I,w eh a v edim I (6)  3. We define the variety of "triangles" as the closure of I o 3 :

I = I (3) [ I ( 
I o 3 = {([W 1 ], [W 2 ], [W 3 ])|dim (W i \ W j ) ≥ 3 8i, j and dim (W 1 \ W 2 \ W 3 )=0} ⇢ F (X) ⇥ F (X) ⇥ F (X), I 3 = I o 3 ⇢ F (X) ⇥ F (X) ⇥ F (X)
. In Lemma 4.7 below we will show that the natural projection ⇡ 12 : I 3 ! I has degree one. One can also consider a bigger variety defined as in CH 4 (F ⇥ F r ∆ F (X) [ I (4) ), where I o is the restriction of I to (F ⇥ F r ∆ F (X) [ I (4) ). The result will follow by the localisation exact sequence.

I 0 3 = {([W 1 ], [W 2 ], [W 3 ])|dim (W i \ W j ) ≥ 3 8i, j} ⇢ F (X) ⇥ F (X) ⇥ F (X).
We recall that I is the image in F ⇥ F of Ĩ =( q, q) -1 ∆ X under the projection (p, p): Ĩ ! I.S i n c e(p, p) is an isomorphism away from ∆ F (X) [ I (4) ,w eh a v eal oc a li s o m o r p h i s mbe t w e e nI o and Ĩo =(p, p) -1 (I o ).

We denote some Chern classes in the following short way:

c j i (3) = pr ⇤ j c i (Gr(3, 10 
)) 2 CH i (Gr(3, 10)), c j i (6) = pr ⇤ j c i (Gr(6, 10)) 2 CH i (Gr [START_REF] Beilinson | Height pairing between algebraic cycles,v o l u m e1 2 8 9o f Lecture Notes in Math. K-theory, arithmetic and geometry[END_REF][START_REF] De Cataldo | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF]). When we speak about CH ⇤ (U ⇥ U ), where U is the universal variety in the diagram (4.1), to keep notation simple we will denote (p, p) ⇤ (c j i (6)) as c j i (6) and (q, q) ⇤ (c j i (3)) as c j i (3). We have the normal sequence:

0 ! T U ⇥U/F ⇥F | Ĩ0
! N Ĩ0 /U ⇥U ! (p, p) ⇤ N I 0 /F ⇥F ! 0, therefore (p, p) ⇤ N Io/F ⇥F can be expressed as a polynomial in the Chern classes of the normal bundle N Ĩo/U ⇥U and in Chern classes of T U ⇥U/F ⇥F | Ĩo . The later ones are polynomial in c j i (6) and c j i [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF].N e x t ,w es e et h a t Ĩ =( q, q) -1 (∆ X ), therefore c i (N Ĩo/U ⇥U )=(q, q) ⇤ c i (T X ), but c i (T X ) are polynomial in c j (Gr(3,V 10 )).S ow eh a v et h a t I 2 o =(p, p) ⇤ (P • Ĩ), where P is a quadratic polynomial in c j i (6) and c j i (3). The polynomial P can be divided in three parts: a. the part containing only c j i [START_REF] Beilinson | Height pairing between algebraic cycles,v o l u m e1 2 8 9o f Lecture Notes in Math. K-theory, arithmetic and geometry[END_REF].S i n c ea l lt h e s et e r m sh a v ef r o m(p, p) ⇤ (c) for some c 2 CH 2 (F (X)⇥F (X)), the intersection with Ĩ and projection (p, p) ⇤ gives the term Γ 1 • I o . b. the part divisible by c j 1 (3). The term c j 1 (3) has the from (q, q) ⇤ (c),f o r some c 2 CH 2 (X ⇥X), and its intersection with Ĩ can be represented as (q, q) ⇤ (c•∆ X ).S i n c ec 1 (Gr(3, 10))•∆ X is proportional to ∆ Gr(3,10) | X⇥X , it is a cycle coming from CH(Gr(3, 10)⇥Gr [START_REF] Beauville | On the splitting of the Bloch-Beilinson filtration[END_REF][START_REF] De Cataldo | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF]). Therefore this part gives the term Γ 2 in the final relation. c. the part proportional to c j 2 (3). It will lead to the term (p, p) ⇤ (q, q) ⇤ Γ 3 =(p, p) ⇤ (q, q) ⇤ (c 2 (Gr(3, 10))) in the final relation. On the other hand, α 0 can be written as e ⇤ 1 ^Q1 + e ⇤ 2 ^Q2 + e ⇤ 3 ^Q3 , where

As α 0 2 K ⇤ 1 ⌦ K ⇤ 2 ⌦ K ⇤ 3 ,
Q i 2 K ⇤ 2 ⌦ K ⇤ 3 .
This gives the desired matrix presentation. Assuming that Q 3 is non-degenerate and using operations on lines, we can transform the matrix to 0

@ 01 Q -1 3 Q 2 10 -Q -1 3 Q 1 00-Q 2 Q -1 3 Q 1 + Q 1 Q -1 3 Q 2 1
A .

Now we see that the pairing is non-generate if and only if

-Q 2 Q -1 1 Q 3 + Q 3 Q -1
1 Q 2 is non-degenerate. This condition is an open condition and it is true for the following choice: For a general choice of α and a general choice of N 0 ,t h ev e c t o r s N 0 ,f 1 ,f 2 ,f 3 are linearly independent in K 3 2 . Moreover, we claim that all 13 -i vectors f 1 ,f 2 ,f 3 ,v i ,...,v 9 are linearly independent. Indeed, this condition is an open condition, and it is enough to show the result for some choice of v j .W e can fix N 0 in K 3 3 ,t a k ev i = N 0 ,t h e nd e fi n ev j for j 6 = i in such a way that the desired 13 -i vectors are linearly independent. It is possible, while the dimension of hf 1 ,f 2 ,f 3 ,v i ,...,v 9 i is less than 9. The assumption of the existence of non-zero M 0 in the fiber, provides that dim hf 1 ,f 2 ,f 3 ,v i ,...,v 9 i8. The independence of f 1 ,f 2 ,f 3 ,v i ,...,v 9 will imply that the dimension of a fiber over N 0 is at most i - Proof. We prove the lemma by contradiction. Assume that there is a component B 0 of B \ D 2 contained in X 0 .H e n c eπ(B 0 ) is contained in X 0 and therefore each point of π(B 0 ) is the limit of a line contained in B \ X 0 .S i n c e B \ X 0 = A [ A 0 , where

A = ⌦ v i ,...v 9 ,v ⇤ 1 ,...,v ⇤ i-1
↵ ,A 0 = hv i+1 ,...v 9 ,v ⇤ 1 ,...,v ⇤ i i . Proof of Lemma 4.8. For k =1the result follows from Lemma 4.9. The intersection F of B with a fiber of D 1 is irreducible and therefore it is contained in one irreducible component of B \ D 1 . Conversely, any component contains such a fiber. Since each fiber contains a point which does not belong to X 0 , each irreducible component of B \ D 1 is not contained in X 0 . For k =2the result follows from Lemma 4.11.

Conjecture 1 .

 1 16. ([3]) Let Y be an algebraic hyper-Kähler variety. Then any polynomial cohomological relation P ([c 1 (L j )]) = 0 in H 2k (Y, Q),w h e r eL j 2 Pic(Y ),a l r e a d yh o l d sa tt h el e v e lo fC h o wg r o u p s:

w h e r eL j 2

 2 Pic(Y ),a l r e a d yh o l d sa tt h el e v e lo fC h o wg r o u p s :

Theorem 1 .

 1 22. (= Theorem 2.1)L e tY be a complex homogeneous variety of dimension n +1 which is a Fano variety and let X be a general element of the anti-canonical system | -K Y | on Y .a. There exists a constant cycle subvariety (cf. Definition 1.25)ofp ositive dimension n -1.A l lp o i n t so fX which lie on such a constant cycle variety have the same class c X in CH 0 (X).

Construction 2 .

 2 2 in Chapter 2 generalizes Example 1.28 for Calabi-Yau hypersurfaces in Fano manifolds with trivial Chow groups.

1. 5

 5 Debarre-Voisin hyper-Kähler fourfolds and Lagrangian subvarietiesRemark 1.23 states that any constant cycle subvariety Y in a hyper-Kähler manifold X is Lagrangian for the holomorphic 2-form σ X and hence 2dimY  dim X.

Theorem 2 . 1 .

 21 (= Theorem 1.[START_REF] Lin | On the Chow group of zero-cycles of a generalized Kummer variety[END_REF])L e tY be a complex homogeneous variety of dimension n +1 which is a Fano variety and let X be a general element of the anti-canonical system | -K Y | on Y . a. There exists a constant cycle subvariety (cf. Definition 1.25)ofp ositive dimension. All points of X which lie on such constant cycle variety have the same class c X in CH 0 (X).

Construction 2 . 2 .

 22 Let Y be a Fano variety of dimension n +1 and assume that Y has trivial CH 1 (Y ) group, which means the following.(?) The natural class mapcl : CH 1 (Y ) Q / / H 2n (Y, Q) is injective.CHAPTER 2. RESULT FOR SOME CALABI-YAU VARIETIES (Varieties with trivial Chow groups include projective homogeneous spaces, smooth toric varieties, and varieties admitting a stratification by affine spaces.) Let β be any effective class in CH 1 (Y ) and M β be the space of al l (irreducible) rational curves C ⇢ Y representing class β.D e n o t i n gb yC β the universal curve we have the natural diagram:

1 in 1 Hd- 2 2 1 Hd- 2 2,

 11212 Y .S i n c eH 2 is ample on M β ,thein tersection Hn+1 is not empty. To finish the proof, we note that the coefficient of Hn+1 which is the sum P d-1 r=1 (d/r -2),isstrictly positive if d>2.

Theorem 3 . 1 .

 31 (= Proposition 1.15,[ 5,P r o p o s i t i o n4 . 2 ]

Lemma 3 . 2 .

 32 The following holds: a. Σ 0 is a non-empty surface, possibly reducible, b. there is a component Σ ⇢ Σ 0 such that Σ dominates both factors of S ⇥ S.

Proposition 3 . 10 .

 310 The class Ω = E ⇤ 2g-3,1 (Gr) in H ⇤ (S ⇥ S) cannot be represented by a cycle supported on the union of divisors of the form D i ⇥ S and S ⇥ D j ,a n dh e n c ei t ss u p p o r th a sn o n -t r i v i a lp r o j e c t i o n st ob o t hf a c t o r s of S ⇥ S.

and show that I 3 3 .

 33 is an irreducible component of I 0 Theorem 4.2.a. There exists a cycle γ 2 CH 10 (Gr(3, 10)) such that for any([W 1 ], [W 2 ], [W 3 ]) 2 I 3 ,t h es u mZ W 1 + Z W 2 + Z W 3 2 CH 9 (X) is the restriction to X of γ.

w ec a na sw e l le v a l u a t eα 0 on e 1 ^(n 4 e 4 + n 5 e 5 + n 6 e 6 ) ^(m 7 e 7 + m 8 e 8 + m 9 e 9 ) -e 1 ^(n 7 e 4 + n 8 e 5 + n 9 e 6 ) ^(m 4 e 7 + m 5 e 8 + m 6 e 9 ) + e 2 ^(n 7 e 4 + n 8 e 5 + n 9 e 6 ) ^(m 1 e 7 + m 2 e 8 + m 3 e 9 ) -e 2 ^(n 1 e 4 + n 2 e 5 + n 3 e 6 ) ^(m 7 e 7 + m 8 e 8 + m 9 e 9 ) + e 3 ^(n 1 e 4 + n 2 e 5 + n 3 e 6 ) ^(m 4 e 7 + m 5 e 8 + m 6 e 9 ) -e 3 ^(n 4 e 4 + n 5 e 5 + n 6 e 6 )

 145678914567892456789245678934567893456 ^(m 1 e 7 + m 2 e 8 + m 3 e 9 ).

  Hence it is true for a general choice ofQ 1 ,Q 2 ,Q 3 . Proposition 4.5. a. The 9-dimensional cycle Z W 1 +Z W 2 +Z W 3 in CH 9 (X 0 ) is the restriction of a cycle Z of Gr(3,K 1 ⊕ K 2 ⊕ K 3 ). b. The 9-dimensional cycle Z W 1 + Z W 2 + Z W 3 in CH 9 (X) is the restriction of a cycle Z 0 of Gr(3, 10).I np a r t i c u l a r ,Z W 1 +Z W 2 +Z W 3 is constant in CH 9 (X),i.e.,itdo esnotdep endonthechoic eof([W 1 ], [W 2 ], [W 3 ]) 2 I 3 .Proof. The statement (b)isanimmediateconsequenceof(a). We prove (a). Let us represent Gr(3,K 1 ⊕ K 2 ⊕ K 3 ) as the union of the chart O (as above), and subvarieties D 1 , D 2 , D 3 whereO = {V :dimπ K 1 (V )=3} , D k = {V :dimπ K 1 (V )=3-k} .

orthogonal to hf 1

 1 ,f 2 ,f 3 ,v i ,v i+1 ,...,v 9 i .

2 )  4 . 4 . 11 .

 24411 4.H e n c edimM 0  5 and therefore dim π(A \ D 0 2 )  4. (b) dim M 0N  8 -i and dim M 0M  i -3.I nt h i sc a s e ,dim M 0  5 and therefore dim π(A \ D 0 Lemma No 9-dimensional component of B \ D 2 is contained in X 0 .

  We have that π(B 0 ) is contained in π(A[A 0 ).D u et oL e m m a4.10, dim π(A[ A 0 )  4,b u tdim π(B 0 ) ≥ 5.We have a contradiction, which proves the lemma.

  Lemma 1.13.[START_REF] Beauville | Variétés kählériennes dont la premiere class de chern est nulle[END_REF]L e tX be a simply connected compact Kähler manifold of dimension 2n.T h e nX is a hyper-Kähler manifold if and only if it admits a Kähler metric whose holomony group is Sp(n).

  • Hn-1 )| X for some divisor L on Y .B u tt h el a s tr e s t r i c t i o nc a nb er e p r e s e n t e db ya zero-cycle with the support on H,h e n c ei sp r o po r t i o n a lt oc H .

Proof of Theorem 2.1. The divisor H constructed in the proof of Lemma 2.8 does not intersect a constant cycle subvariety Z only if Z is a rational curve contracted by f β and dim Y β = n.B u ti nt h i sc a s et h ec l a s so fap o i n to nZ is proportional to β| X and hence is proportional to c X .L e t Di be a divisor on Y such that Di | X = D i in Pic(X);w et h e nh a v ei nCH 0 (X)

  2.D u et o[ 5, Proposition 2.6], δ ij⇤ (Π 2 | S⇥S ) can be represented by a sum of Z 0 | S 3 and o k ⇥ ∆ ij .W ea l s or e c a l lt h a tδ ij⇤ (∆)=∆ 123 .S o ,p u t t i n g( 3.6)and(3.7)together, we get a decomposition of the small diagonal:

me, and without her patience she showed during my study.

We claim that f (G(i, j)) is (2g -3)-fold covering of F 0 (i -1,j -1, id), where F 0 (i-1,j-1, id) was defined before Lemma 3.12.I n d e e d ,l e t(σ 1 , σ 2 ) 2 F 0 (i -1,j-1, id) and 1  k  2g -3.I fσ 1 contains a cycles (..., k, m 1 ,...), then let σ 0 1 be the same permutation, but with the cycle (...k, 2g -2,m 1 ,...). Similarly, if σ 2 contains cycles (..., m 2 ,k,...) we put σ 0 2 the permutation containing the cycle (...m 2 , 2g-2,k,...).P a r t i c u l a r l y ,f (σ 0 1 )=σ 1 and f (σ 0 2 )=σ 2 . Now condition l(σ 1 σ 2 )=l(σ 1 )+l(σ 2 ) provides that l(σ 0 1 )+l(σ 0 2 )-2=l(σ 0 1 σ 0 2 ) and so (σ 0 1 , σ 0 2 ) 2 G(i, j).A n ye l e m e n to fG(i, j) can be obtained in this way. Due to Lemma 3.12,w eg e tt h er e s u l t .

Proof of Proposition 3.10. Let us recall, that we are going to understand the product

)), which is a polynomial in the ring H ⇤ (S, Q) [2] [2g-2] .S o m et e r m so ft h i sp o l ynomial are divisible by L i , and eventually, they will correspond to classes supported on divisors of S ⇥ S. Therefore we are interested only in the remaining terms. Since c(L [2g -2] ) has a uniform representation for all L (cf. [START_REF] Lehn | Chern classes of tautological sheaves on Hilbert schemes of points on surface[END_REF]Theorem 4.6]), we can conclude that the part without L i coincides with c(O [2g-2] ). The classes c i (O [2g-2] ) are given by (3.10). Then, the class of E M is proportional to the sum of all permutations which contains one cycle of length 2g -3,i . e . ,a l lp e r m u t a t i o n sc o n j u g a t e dt oσ M =( 1 , 2,...,2g -3).

For simplicity, we study the part involving σ M only (the total sum would be greater in (2g -4)! • (2g -2) times):

Every summand in the sum above correspond to a class of c 2 (S) ⇥ S (or S ⇥ c 2 (S))o r∆ in S ⇥ S.T o d i s t i n g u i s h t h e c l a s s e s o f t h e d i a g o n a l ,w e need to require that the factor e g(σ M ,σ 1 ,σ 2 ) appearing in the triple intersection and corresponding to c 2 (S) should be equal to one (cf. [21, Proof of Lemma 2.13]). It implies that the three following conditions must hold

The pairs (σ 1 , σ 2 ) with l(σ 1 )=i, l(σ 2 )=j satisfying these requirements are precisely the set G(i, j) defined previously. Since G(g -

, where σ F (X) denotes a (2, 0)-form on F (X) generating H 2,0 (F (X)).

The proof of Theorem 4.2 starts in the next subsection and goes until the end of the chapter.

Another similarity between Fano varieties of lines and Debarre-Voisin fourfolds is given in the next theorem (see [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]Proposition 3.3] for the corresponding results for the Fano variety of lines).

Theorem 4.3.

There is a quadratic relation in CH 4 (F (X) ⇥ F (X)) of the form

where

We prove Theorem 4.3 in the next subsection.

Proofs of main results

We start with the proof of Theorem 4.2.

Proof of Theorem 4.2. Item (a) will be proved in Proposition 4.5 below. From Lemma 4.6 and Lemma 4.7 below it is follows that I 3 is a 6-dimensional subvariety. Let us show that (a)i m p l i e s( b).

Let Ĩ3 be a desingularisation of I 3 .L e t T be the natural correspondence between Ĩ3 and F (X).I np a r t i c u l a r ,w eh a v eam a pT ⇤ : CH 0 ( Ĩ3 ) ! CH 0 (F (X)).N o t et h a t ,b y( a), the image of the composition

is Z. Therefore, by the generalisation of Mumford's theorem [START_REF] Mumford | Rational equivalence of zero-cycles on surfaces[END_REF], the map

which proves that the subvariety I 3 is Lagrangian.

Proof of Theorem 4.3. We follow the line of the pro of of the similar statement for the Fano variety of lines (see [START_REF] Voisin | On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]Proposition 3.3]).

We are going to establish a relation of the following form:

Technical lemmas: open part

We start with the study of the local geometry of

) be ag e n e r a lpo i n to fI 3 .B yd e fi n i t i o no fI 3 ,t h et h r e es p a c e s

are pairwise transversal. In particular, we have decompositions

and since α X vanishes on

) and X 0 contains Z W 1 ,Z W 2 , and Z W 3 , where the notation Z W i was introduced above.

Let O be an open chart of Gr(3,K 1 ⊕ K 2 ⊕ K 3 ) defined in the following way:

We note that O is naturally isomorphic to the affine space

I t sr e s t r i c t i o nα 0 | O defines a pairing between Hom(K 1 ,K 2 ) and Hom(K 1 ,K 3 ),w h i c hi ns o m eb a s i sc a nb er e p r esented by a 9 ⇥ 9-matrix

Moreover, this pairing is non-degenerate for a general choice of α 0 .

Proof. Let (e 1 ,e 2 ,e 3 ) be a basis of K 1 , (e 4 ,e 5 ,e 6 ) be a basis of K 2 ,a n d (e 7 ,e 8 ,e 9 ) be a basis of K 3 .L e tap o i n tp 2 Hom(K 1 ,W 1 ) be given by the matrix (4.2). We evaluate α 0 on the trivector Due to Lemma 4.4,t h ef o r mα 0 | O defines a non-degenerate quadratic hypersurface Q = X 0 | O .U s i n g t h i s f a c t w e a r e g o i n g t o r e p r e s e n t c y c l e

where B i are 10-dimensional subspaces of O.W ec a nt a k e

To finish the proof we need to investigate the boundaries B 0 ik = B i \ D k . For k =1 , 2, we will prove in Lemma 4.8 that the intersection of B 0 ik and X 0 \ D k has dimension at most 8 for a general choice of the basis (v 1 ,...,v 9 ). For k =3,w en o t et h a tZ W 2 identifies to Hom(K 1 ,K 3 ),v i at h ei s o m o r p h i s m W 2 = K 1 ⊕ K 3 ,t h e r e f o r et h ec y c l eZ W 1 is contained in the complement of O and in fact equal to D 3 .W eh a v ea ni n c l u s i o n :

Therefore the restriction to X 0 of the closure of B 1 -B 2 + B 3 -... + B 9 defines a cycle of the form dZ W 1 + Z W 2 + Z W 3 for some d ≥ 0.P e r m u t i n g the W i and adding up, we conclude that

is the restriction of a cycle of Gr(3,V 9 ), which concludes the proof.

In the end of this subsection, we are going to present a lemma about the relation of I and I 3 . Lemma 4.6. For a general X the expected dimension of I is 6.

Proof. The codimension of ∆ X is 20, therefore the codimension of (q, q) -1 ∆ X is also 20. Since U ⇥ U has dimension 26, the dimension of (q, q) -1 ∆ X as well as the dimension of (p, p)(q, q) -1 ∆ X should be 6. Lemma 4.7. For a general choice of α X ,t h en a t u r a lp r o j e c t i o nπ 12 : I o 3 ! I has degree one. As a consequence, there exists a birational map:

Proof. We are going to understand the fib er π -1 12 (p) for a general point p =

Any point of I o 3 \ π -1 12 (p) belongs to the following open char of Gr(6,V 9 ):

This chart can be identify with Hom (K 1 ⊕ K 2 ,K 3 ),a n di t sp o i n t(φ ⊕ ψ) belongs to I o 3 , if and only if the following equations hold:

,t h e s e equations are equivalent to

The equations define two linear systems: for φ and for ψ.S i n c et h ec o e fficients in the left hand sides of equations are defined only by the part of α 0 which belongs to K ⇤ 1 ⌦ K ⇤ 2 ⌦ K ⇤ 3 ,w em a ya p p l yL e m m a4.4 to see that the matrix of coefficients in the linear system for φ 2 Hom (K 1 ,K 3 ) is a non-degenerate 9 ⇥ 9-matrix. Similarly, the matrix for ψ is non-degenerate. Therefore there is a unique solution and the natural projection π 12 : I o 3 ! I has degree one.

Technical lemmas: boundary

The goal of this subsection is to prove the following lemma. We continue with the notation from the previous subsection. Lemma 4.8. For a general choice of basis (v j ) of K 3 2 and for any choice of integer i between 1 and 9,l e tB ⇢ O be the 10-dimensional vector space hv i ,v i+1 ,...,v 9 ,v ⇤ 1 ,...,v ⇤ i i , where v ⇤ j denotes the dual basis of K ⇤ 3 with respect to α 0 | O .T h e nt h ei n t e rsection B \ D k \ X 0 has dimension at most 8 for k =1, 2.

The proof of Lemma 4.8 will rest on Lemma 4.9 for k =1and Lemma 4.11 for k =2 .B e f o r et h ep r o o fw ei n t r o d u c el o c a lc o o r d i n a t e so nO and relate them to the local coordinates on D 1 and on D 2 .I np a r t i c u l a r ,w es h o w that any point on D k is the limit point of some affine line in O.F i n a l l y ,w e show that the intersection B \ D k \ X 0 has dimension at most 8 by proving that any 9-dimensional component of B \ D k is not contained in X 0 .

We recall that a p oint in Gr(3, 9) can be represented by three independent vectors, i.e., 3⇥9 matrix (both up to GL(3)-action). Fixing basis of K 1 ,K 2 , and K 3 ,w eh a v ei nc h a r tO ar e p r e s e n t a t i o n

In this notation, n i correspond to an element of Hom(K 1 ,K 2 ) and m i correspond to an element of Hom(K 1 ,K 3 ).U n f o r t u n a t e l y ,i ti sn o tp o s s i b l et o relate coordinates n j and m j with the basis (v j ,v ⇤ j ) in a simple way, because the quadratic form α 0 | O is not a general quadratic form on O (its form was explained in Lemma 4.4).

Now we are going to study the boundaries D 1 and D 2 .A c c o r d i n gt ot h e definition of D k ,apoin tp 2 D k can be represented by a 3⇥9-matrix, whose rank of the first three columns is equal to 3 -k.

For k =1 ,w en e e da n o t h e rc h a r tO 0 where the rank of the first three columns may be two. Without loss of generality, we may assume that the columns number 1, 2,a n d4 are linearly independent in O 0 .O nO 0 \ O we have 0 

A .

The intersection D 0 1 = O 0 \ D 1 is the 17-dimensional affine space defined by n 0 7 =0in O 0 .A n yp o i n tp 2 D 0 1 can be represented as the (t !1)-limit of the affine line

in O, where the 3⇥3-matrices N 0 ,N 1 ,M 0 ,M 1 are defined by the coordinates n 0 i and m 0 i of p. Moreover, since the coordinates n 0 2 ,n 0 3 ,n 0 5 ,n 0 6 and m 0 1 ,...,m 0 6 are well-defined as t !1,t h ed i r e c t i o n(N 0 |M 0 ) must satisfy the condition

2 O defines a line, whose limit point p belongs to D 1 . The coordinates n 0 1 ,n 0 4 ,n 0 7 ,n 0 8 ,n 0 9 ,m 0 7 ,m 0 8 ,m 0 9 of the limit point p 2 D 0 1 are defined only by the choice of (N 0 |M 0 ) and the remaining coordinates

..,m 0 6 defines the structure of a fibration on D 0 1 , which can be extended to D 1 . Lemma 4.9. Let F be the intersection of B with a fiber of D 1 .T h e nt h e r e exists a point p 2 F ,s u c ht h a tp/ 2 X 0 .

Proof. Ac h o i c eo ffi b e ri se q u i v a l e n tt ot h ec h o i c eo f(N

Without loss of generality, we may assume that (N 0 |M 0 ) belongs to the first subspace. In this case v ⇤ i is not related with (N 0 |M 0 ) and can be chosen arbitrarily (more precisely, there is a choice of basis (v j ) providing the given choice of v ⇤ i ). It allows to take a point (N 1 |M 1 ) in B corresponding to v ⇤ i .I nt h i sc a s e N 1 =0and M 1 is arbitrary, which makes the coordinates m 0 1 ,...,m 0 6 arbitrary (while n 0 1 ,n 0 4 ,n 0 7 ,n 0 8 ,n 0 9 ,m 0 7 ,m 0 8 ,m 0 9 are fixed by the choice of (N 0 |M 0 )). Representing α 0 as Q 0

)) + other terms. Since (0, 1,n 0 4 ) can not be orthogonal to (1,n 0 8 ,n 0 9 ) with respect to all three forms Q 0 i , at least one of the first three terms is not zero. Therefore a general choice of m 0 1 ,...,m 0 6 provides a point p with α(p) 6 =0and thus p 6 2 X 0 . For k =2,w en e e dac h a r tO 0 , where the rank of the first three columns may be one. Without loss of generality, we may assume that the columns number 1, 4,and5 are linearly independent in O 0 .O nO 0 we have coordinates 0

A .
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The intersection D 0 2 = D 2 \ O 0 is the 14-dimensional affine subspace in O 0 ,d e fi n e db yn 0 4 = n 0 5 = n 0 7 = n 0 8 =0 .A g a i n ,a n y p o i n t o n D 0 2 can be represented as the limit of the affine line

in O and, similarly to the case k =1,wehaverk(N 0 |M 0 )=2. Conversely, an affine line t (0|N 0 |M 0 )+(id|N 1 |M 1 ) with rk(N 0 |M 0 )=2defines a limit point p 2 D 2 .W ea l s oh a v et h es t r u c t u r eo fafi b r a t i o no nD 2 :w ec a nfi x(N 0 |M 0 ) and then vary (N 1 |M 1 ). A fiber has the following matrix presentation in O 0 :

where n 0 j and m 0 j are fixed. We note that such a fiber of D 2 is entirely contained in X 0 or has an empty intersection with X 0 .I t m a k e s s e n s e t o consider a projection π : O 0 ! P, In this notation the value α 0 (p(t)) does not depend on t. Therefore the limit point of such a line belongs to X 0 \ D 2 if and only if the line is contained in X 0 .

We are going to show that the intersection B \ D 2 is not contained in X 0 . We need the following auxiliary lemma. 

Then π(A \ D 0 2 ) has dimension at most four.

Proof. The dimension of π(A\D 0 2 ) depends only on the variety of "directions" in A:

Let M 0 be an irreducible component of M. There are two possibilities:

a. M 0 =0for general (N 0 |M 0 ) 2 M 0 .I nt h i sc a s ew eh a v em 0 1 = m 0 2 = ... = m 0 6 =0for the corresponding component of π(A \ D 0 2 ).H e n c e its dimension is at most 4.

b. M 0 6 =0for general (N 0 |M 0 ) 2 M 0 .L e tM 0N be the image of the projection of M 0 to K 3 2 ,i . e . ,M 0N is the variety of N 0 in pairs (N 0 |M 0 ) 2 M 0 .W en o t et h a tM 0N is contained in the cubic hypersurface defined in hv i ,...,v 9 i by det(N 0 )=0 .I np a r t i c u l a r ,dim M 0N  9 -i.S i m ilarly, we can define M 0M as the image of the projection of M to K 3 3 . We also have dim M 0M  i -2. There are two possibilities: (a) dim M 0N =9-i or dim M 0M = i -2.W i t h o u tl o s so fg e n e r a l i t y , we may assume that dim M 0N =9-i.W e a r e g o i n gt os h o w that the fiber of M 0 ! M 0N over a general point of M 0N has dimension at most i -4. This will imply that dim M 0  5 and therefore dim π(A \ D 2 )  4.

Let N 0 be a general point of M 0N ⇢hv i ,...,v 9 i. The fiber of M 0 over N 0 is the subvariety of

consisting of all matrices M 0 such that rk(N 0 |M 0 )=2 .I tc a n be defined by 3 linear equations (depending on N 0 )a n dh e n c ei t can be represented as the subspace orthogonal with respect to the quadratic form α 0 | O to some 3-dimensional subspace