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Résumé

Nous présentons trois résultats dans cette thèse.
Dans le chapitre 2 nous montrons l’existence d’un zéro-cycle cx sur une

hypersurface X de type Calabi–Yau dans une varieté homogène projective
complexe. Plus précisement, nous montrons que l’intersection de n diviseurs
sur X, où n = dimX, est proportionnelle à la classe d’un point supporté sur
une courbe rationnelle dans X.

Dans le chapitre 3 nous donnons une nouvelle preuve du théorème de
Beauville et Voisin portant sur la décomposition de la petite diagonale d’une
surface K3 notée S. La preuve que nous donnons est explicite et utilise
le plongement de degré 2g − 2 de S dans Pg. Elle est différente de celle
donnée par Beauville et Voisin, qui repose sur l’existence d’une famille à un
paramètre de courbes elliptiques.

Le chapitre 4 est consacré à l’étude des similitudes entre la variété de
Fano des droites d’une cubique de dimension 4, qui est une variété hyper-
Kählerienne étudiée par Beauville et Donagi, et la variété hyper-Kählerienne
de dimension 4 construite par Debarre et Voisin dans [11]. Nous introduisons
un analogue de la notion de triangle pour ces variétés et prouvons que la var-
iété des triangles, qui est de dimension 6, est une sous-variété Lagrangienne
du cube de la variété hyper-Kählerienne construite par Debarre et Voisin.



5

Abstract

We present in this thesis three results.
In Chapter 2 we prove the existence of a canonical zero-cycle cX on a

Calabi–Yau hypersurfacee X in a complex projective homogeneous variety.
Namely, we show that the intersection of any n divisors on X, n = dimX is
proportional to the class of a point on a rational curve in X.

In Chapter 3 we give a new proof of the theorem of Beauville and Voisin
about the decomposition of the small diagonal of a K3 surface S. Our proof
is explicit and uses the degree 2g − 2 embedding of S in Pg. It is different
from the one used by Beauville and Voisin, which employed the existence of
one-parameters familie of elliptic curves.

Chapter 4 is devoted to the study of similarities between the Fano varieties
of lines on a cubic fourfold, a hyper-Kähler fourfold studied by Beauville and
Donagi, and the hyper-Kähler fourfold constructed by Debarre and Voisin in
[11]. We exhibit an analog of the notion of "triangle" for these varieties and
prove that the 6-dimensional variety of "triangles" is a Lagrangian subvariety
in the cube of the constructed hyper-Kähler fourfold.
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Chapter 1

Introduction

1.1 Chow groups

1 Basic definition

First of all we introduce the basic invariant that we will work with. This
invariant, the Chow ring, is associated with a projective algebraic variety.
All varieties will be defined over the field of the complex numbers C.

Let X be an algebraic variety. A cycle of dimension i is a formal finite
sum of irreducible subvarieties of X of dimension i. The free abelian group
generated by the cycles is denoted by Zi(X). We define Zi(X)rat as the
abelian subgroup of Zi(X) generated by elements of the form W (0)−W (1),
where W is a subvariety of X ⇥ P1 (flat over P1) and W (0) and W (1) are
fibers over 0 and 1. Two cycles are called rationally equivalent if their
difference is contained in the group Zi(X)rat.

Definition 1.1. The Chow group of dimension i of the variety X

CHi(X) = Zi(X)/Zi(X)rat

is by definition the group of algebraic cycles of dimension i modulo rational
equivalence.

Assuming X is smooth and projective of dimension n, we can also define
Chow groups of codimension i as:

CHi(X) = CHn−i(X).

The intersection product constructed in [14] defines a structure of a ring on
the Chow groups:

CH⇤(X) =
dimXM

i=0

CHi(X).

9
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Example 1.2. If X is a smooth variety, then CH1(X) is just the Picard
group Pic(X). For instance, if X is a smooth projective connected curve, we
have

0 // Jac(X) // CH1(X)
deg

// Z // 0.

Cycle class map. For variety X defined over C, one can compare the
Chow ring CH⇤(X) and the cohomology ring H⇤(X) of an algebraic variety
X by considering the cycle class map. The cycle class map associates to
every subvariety Y ⇢ X the class which is Poincaré dual to the fundamental
class [Y ] in the homology of X:

cl : CHk(X) ! H2k(X,Z).

Example 1.3. [32] The long exact sequence associated to the following short
exact sequence of sheaves of holomorphic functions in the analytic topology

0 // Z // OXan

exp
// O⇤

Xan
// 0

gives a map
H1(Xan,O⇤

Xan) ! H2(X,Z),

where
H1(Xan,O⇤

Xan) = Pic(Xan) = Pic(X) = CH1(X),

where the second equality follows from Serre’s GAGA principle. One can
prove ([32, Chapter 4]) that the first Chern class coincides with the cycle
class map:

c1 : Pic(X) ! H2(X,Z).

Correspondences. Let us consider a morphism f : X ! Y of smooth
proper varieties. We have the push-forward f⇤ : CHr(X) ! CHr(Y ) and the
pull-back f ⇤ : CHs(Y ) ! CHs(X) maps. Treating the graph Γf ⇢ X ⇥ Y of
f as a cycle of X ⇥ Y we can describe these two maps in another way:

↵ 2 CHr(X), f⇤(↵) = (⇡Y )⇤(⇡
⇤
X(↵) · Γf ), (1.1)

β 2 CHs(X), f ⇤(β) = (⇡X)⇤(⇡
⇤
Y (β) · Γf ), (1.2)

where ⇡X and ⇡Y are the natural projections of X ⇥ Y to its factors. Sub-
stituting Γf with any cycle Γ 2 CH⇤(X ⇥ Y ) the construction leads to the
following definition.

Definition 1.4. Let X and Y be smooth projective varieties. A correspon-
dence from X to Y is an element of the Chow group CHk(X ⇥ Y ).
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A correspondence γ defines two maps γ⇤ and γ⇤ given by the formulas
(1.1) and (1.2). We notice that correspondences as well as morphisms can
be composed. Namely, for γ1 2 CH⇤(X ⇥ Y ) and γ2 2 CH⇤(Y ⇥ Z) we have
the natural projections:

X ⇥ Y ⇥ Z
πX,Y

ww

πY,Z

✏✏

πX,Z

''

X ⇥ Y Y ⇥ Z X ⇥ Z

the composition can be defined as

γ1 ◦ γ2 = (⇡XZ)⇤((⇡XY )
⇤(γ2) · (⇡Y Z)

⇤(γ1)) 2 CH⇤(X ⇥ Z).

It follows from the properties of the pull-backs and the push-forwards that
this operation is associative. One can check that if f : X ! Y and g : Y ! Z
are morphisms then Γg ◦Γf = Γg◦f . In particular, on the group CH⇤(X⇥X)
the composition defines a structure of a graded associative algebra with the
class of the diagonal ∆X as the unit.

2 Mumford’s theorem, conjecture of Bloch and Beilin-

son

While CH1(X) is relatively simple due to the exponential exact sequence, the
higher codimensional Chow groups are less understood, which can be seen
from the following theorem proved by Mumford in [24].

Theorem 1.5. Let S be a projective smooth surface over the complex num-
bers. If H0(S,Ω2

S) 6= {0} then CH0(S) has infinite dimension.

Originally, this theorem was formulated in another way: the dimension of
constant cycle subvarieties in SymnS is restricted above (cf. Remark 1.23).
The theorem of Mumford was generalized for higher dimensional varieties by
Roitman, see [30].

The following conjecture of Bloch can be viewed as a complement of a
result of Mumford and Roitman.

Conjecture 1.6. Let S be a surface. If h2,0(S) = 0 then the Albanese map
CH0(S)hom ! Alb(S) is an isomorphism.

This conjecture is a particular case of the most general conjecture of Bloch
and Beilinson ([6], see also [33]).
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Conjecture 1.7. For any smooth irreducible projective variety X over the
complex numbers there exists a filtration on the Chow groups with rational
coefficients:

F ·CHk(X)Q,

0  k  n, n = dimX, such that

a. F · is stable with respect to the action of correspondences, in particular,
with respect to push-forwards and pull-backs,

b. F 0CHk(X)Q = CHk(X)Q and F 1CHk(X)Q = CHk(X)Q,hom

c. F iCH⇤(X)Q · F jCH⇤(X)Q ⇢ F i+jCH⇤(X)Q

d. GrrFCH
k(X)Q is controlled by the Hodge structure. Namely,

GrrFCH
k(X)Q = 0

if H2k−r(X) is of coniveau greater than k − r,

e. F k+1CHk(X) = 0.

1.2 Varieties with trivial canonical bundle

In this section we make an introduction to the theory of manifolds (com-
pact Kähler or complex projective manifolds) with trivial canonical bundle.
These varieties are the main geometric context of our work. Although we
are interested into their properties as algebraic varieties, their theory started
more naturally in the context of compact Kähler geometry. So in this section
X will denote a compact Kähler manifold.

1 The decomposition theorem

The starting point of the theory of Calabi–Yau manifolds is the theorem of
Yau [40].

Theorem 1.8. Let X be a compact Kähler manifold. If the topological first
Chern class c1(X) is zero then in each Kähler class on X, there exists a
unique Kähler form ! such that the Ricci curvature of the corresponding
Kähler metric is zero: Ric(X,!) = 0.

Remark 1.9. For a Kähler manifold the Ricci curvature is just the curvature
of the Chern connection of the induced metric on the canonical bundle. Thus
an equivalent way of formulating the theorem is to say that the representation
of the restricted holonomy group is in the special unitary group SU(n), where
n is the dimension of the variety.
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Using the classification of holomony groups, Beauville decomposes vari-
eties with trivial canonical bundle in the product of irreducible factors.

Theorem 1.10. ([2]). Let X be a compact Kähler manifold such that c1(X) =
0. There exists a finite étale cover X̃ of X such that X̃ is isomorphic to a
product

X̃ ⇠= T ⇥
Y

Yi ⇥
Y

Zj,

where T is a complex torus, Yi are simply connected Calabi–Yau manifolds
and Zj are compact hyper-Kähler manifolds.

Complex tori are simply the quotients V/Λ of a complex vector space V
by a lattice Λ of maximal rank. We continue with the other types of varieties
in the next two subsections.

2 Calabi–Yau manifolds

By definition, a compact Kähler manifold X is a Calabi–Yau manifold if it
is simply connected, the canonical bundle KX is trivial, and H0(X,Ωi

X) = 0
for all 0  i  n, where n = dimX. By Yau’s theorem we have the following
equivalent definition in terms of holonomy group.

Lemma 1.11. ([2]) Let X be a simply connected compact Kähler manifold
of dimension n. Then X is a Calabi–Yau manifold if an only if it admits a
Kähler metric with holonomy group equal to SU(n).

Here are some examples of Calabi–Yau manifolds.

Example 1.12. a. If X is a complete intersection of hypersurfaces of
degrees d1, d2, . . . , dk in a projective space Pn such that d1 + d2 + . . .+
dk = n+ 1 and dimX ≥ 2, then X is a Calabi–Yau manifold.

b. If X is a hypersurface in the anti-canonical linear system | −KY | of a
Fano variety Y , then X is a Calabi–Yau manifold.

3 Hyper-Kähler manifolds

By definition a compact Kähler manifold X is a hyper-Kähler manifold (or
irreducible symplectic manifold) if X is simply connected and H0(X,Ω2

X) is of
dimension 1, generated by a holomorphic 2-form σ, which is non-degenerated
at any point of X. The 2-form σ is called the symplectic holomorphic form
of X. It is defined up to a multiplicative constant.

There is an equivalent definition in terms of holonomy group.
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Lemma 1.13. [2] Let X be a simply connected compact Kähler manifold of
dimension 2n. Then X is a hyper-Kähler manifold if and only if it admits a
Kähler metric whose holomony group is Sp(n).

One can then prove that H0(X,Ω2i
X) = C · σi, for 0  i  m = dimX/2.

Beauville in [2] provides two series of families of examples, for each even
complex dimension: (a) the n−punctual Hilbert scheme S[n] of a K3 surface
S and (b) the fiber at the origin of the Albanese map of the (n + 1)−st
punctual Hilbert scheme of an abelian surface. All of the irreducible hyper-
Kähler manifolds constructed later on are deformation-equivalent to one of
Beauville’s examples, with two exceptions: O’Grady examples in dimension
6 and in dimension 10 (see [26, 25]).

We note that the varieties in Beauville’s examples have Picard number
two, while a general algebraic deformation of a hyper-Kähler manifold has
Picard number one. There are not so many available explicit constructions of
these general deformations with Picard number one. Only four such families,
each of which is 20-dimensional and parametrizes general polarized deforma-
tions of the second punctual Hilbert scheme of a K3 surface, are known:

a. (Beauville and Donagi, [4]) The Fano variety of lines of a cubic fourfold.
It was proven in [4] that the variety F (X) of lines on a smooth cubic
hypersurface F ⇢ P5 is an algebraic hyper-Kähler fourfold. It gives a
20-dimensional moduli space of fourfolds.

b. (Iliev and Ranestad, [17, 18]) The variety V (X) of sum of powers of
a general cubic X ⇢ P5. It was proven in [17, 18] that it is another
algebraic hyper-Kähler fourfold, with 20 moduli.

c. (O’Grady, [27]) O’Grady constructed a 20-parameter family of hyper-
Kähler algebraic fourfolds. They are quasi-étale double covers of certain
singular sextic hypersurfaces constructed by Eisenbud, Popescu, and
Walter.

d. (Debarre and Voisin, [11]) Using Grassmann geometry another 20-
dimensional family of hyper-Kähler varieties which are deformations
of S[2] for S of genus 12 is constructed in this paper.

The last example will be studied in Chapter 4.

There was found recently a new family of hyper-Kähler varieties of di-
mension 8, see [19].
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1.3 Chow groups of varieties with trivial KX

1 Around a result of Beauville and Voisin

The following theorem, which contrasts with the results of Mumford (Theo-
rem 1.5), is the starting point of this work as well as many other researches
([3, 12, 13, 22, 28, 29, 35, 36, 37, 38]).

Theorem 1.14 ([5]). Let X be a K3 surface.

a. All points of X which lie on some (possibly singular) rational curve
have the same class cX in CH0(X).

b. The image of the intersection product

Pic(X)⌦ Pic(X) ! CH0(X)

is contained in ZcX .

c. The second Chern class c2(X) 2 CH0(X) is equal to 24cX .

Originally, the proof of (b) was done separately from the proof of (c).
The proof of (b) used the existence of a rational curve in any ample class
L 2 Pic(S) (see [23]). It allows to represent the intersection of two divisors
L1 and L2 as a cycle with support on rational curves. Taking into account
that all points on any rational curve represent the same class cX , the result
(b) follows.

The proof of (c) involves the idea of the decomposition of the small diag-
onal ([5, Proposition 2.1]):

Proposition 1.15. The following equality holds in CH2(S ⇥ S ⇥ S)Q

∆123 = ∆12 ⇥ o3 +∆23 ⇥ o1 +∆13 ⇥ o2

− S ⇥ o⇥ o− o⇥ S ⇥ o− o⇥ o⇥ S, (1.3)

where o is any point representing the canonical zero cycle, ∆123 is the small
diagonal in S3, and the notation ∆ij⇥ok stands for ⇡⇤

ij(∆)·⇡⇤
ko, ∆ 2 CH2(S⇥

S) being the class of the diagonal.

Considering the small diagonal as a correspondence between X ⇥X and
X, we can use (1.3) to control the intersection product on X. For example,
applying this correspondence to ⇡⇤

1L1 · ⇡
⇤
2L2 we get the intersection product

of L1 and L2 on one hand and something proportional to cX on the other,
which proves (b). Similarly (this is the argument in [5] to get (c)), applying
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the correspondence to the diagonal ∆ ⇢ X ⇥ X we get c2(X) on one hand
and something proportional to cX on the other, which proves (c).

These two results led to extensive study of Chow groups for Calabi–
Yau varieties and hyper-Kähler manifolds, and we will focus on them in the
rest of the introduction. One of our results in this thesis is a new proof of
Proposition 1.15, see Section "K3 surfaces and an invitation to Chapter 3"
and Chapter 3.

2 Hyper-Kähler varieties

From now on we work with rational coefficients: CHi(X) = CHn−i(X)⌦Q.
The Theorem 1.14 can be restated as saying that any polynomial relation

P (c1(L)) = 0

in H⇤(S) already holds at the level of Chow groups. In [3] Beauville put this
statement in a more general framework and proposed a conjectural expla-
nation for hyper-Kähler manifolds: the class map cl : CHi(X) ! H2i(X) is
injective on the subring generated by divisors.

Conjecture 1.16. ([3]) Let Y be an algebraic hyper-Kähler variety. Then
any polynomial cohomological relation

P ([c1(Lj)]) = 0

in H2k(Y,Q), where Lj 2 Pic(Y ), already holds at the level of Chow groups :

P ([c1(Lj)]) = 0

in CHk(Y ).

Beauville proved this conjecture in the case of the second and third punc-
tual Hilbert scheme of an algebraic K3 surface. A stronger version, which
involves Chern classes of tangent bundles, was formulated by Voisin:

Conjecture 1.17. ([35, Conjecture 1.3]) Let Y be an algebraic hyper-Kähler
variety. Then any polynomial cohomological relation

P ([c1(Lj)], [ci(TY ))]) = 0

in H2k(Y,Q), where Lj 2 Pic(Y ), already holds at the level of Chow groups:

P ([c1(Lj)], [ci(TY ))]) = 0

in CHk(Y ).
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This conjecture was proven for (a) Y = S[n] with n  2b2(S)tr+4 and any
k and for (b) Y the Fano variety of lines of a cubic fourfold ([35, Theorem
0.4]).

The next result has been obtained by Fu for a generalized Kummer va-
riety. We recall that a generalized Kummer variety Kn can be defined in
the following way: if A is an abelian surface, s : A[n+1] ! A is the nat-
ural morphism defined by the composition of the Hilbert–Chow morphism
A[n+1] ! A(n+1) and the summation A(n+1) ! A using the group of law of A,
then s is an isotrivial fibration and a generalized Kummer variety is a fibre
Kn := s−1(OA) (cf. [2] and [13, Example 1.3]). We note, that the following
result is stated for numerical equivalence, i.e., in a slightly stronger version
than the conjecture above.

Theorem 1.18. ([13]) Let z 2 CH(Kn)Q be an algebraic cycle, which is a
polynomial with rational coefficients of the first Chern classes of line bun-
dles on Kn and the Chern classes of the tangent bundle of Kn, then z is
numerically trivial if and only if z is (rationally equivalent to) zero.

The reader can find some other results about hyper-Kähler manifolds in
[22, 37, 38].

3 Calabi–Yau varieties and an invitation to Chapter 2

The following example from [3] shows that Conjecture 1.16 does not hold
for Calabi–Yau varieties, namely, the class map may be not injective on the
subring DCH⇤(X) ⇢ CH⇤(X) generated by divisors if X is a Calabi–Yau
variety.

Example 1.19. ([3, Example 1.7]) Let X be the blow-up of P3 along a curve
C of degree d and genus g. Let X̃ be the Calabi–Yau variety, obtained as
a double cover of X ramified over an element of | − 2KX |. We have the
following diagram:

X̃

2:1 π
✏✏

E
i

//

p

✏✏

X

ε
✏✏

C
ic

// P3

Let H be the class of a hyperplane section on P3 and put HC = i⇤cH. The
space DCH2(X) ⇢ CH(X)Q is generated by

"⇤H2, "⇤H · [E] = i⇤p
⇤HC , [E]2 = i⇤p

⇤c1(N)− "⇤[C],
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where N is the normal bundle on C for the embedding ic : C ! P3. Since
c1(N) = 4HC +KC , DCH2(X) contains the elements i⇤p

⇤HC and i⇤p
⇤KC .

The map i⇤p
⇤ : CH1(C)Q ! CH2(X)Q induces an isomorphism of the

subspace of degree 0 divisor classes on C onto the subspace of homologically
trivial classes in CH2(X)Q. If we choose C in such a way that HC is non
proportional to KC in CH1(C)Q then the class Z = i⇤p

⇤(dKC − (2g − 2)HC)
in DCH2(X) is homologically trivial, but not trivial. Finally, its pull-back
⇡⇤(Z) is non-trivial in DCH(X̃) (because ⇡⇤(⇡

⇤(Z)) = 2Z is not trivial in
CH(X)Q), but it is homologically trivial.

However, this example deals with cycles of strictly positive dimension and
still there is a hope of existence partial results in this case. More precisely,
results of Voisin [36] provide a decomposition of the small diagonal for a
Calabi–Yau hypersurface X in Pn. This result is similar to Proposition 1.15
(although it contains an extra term) and allows to control the intersection
product on X.

Theorem 1.20. ([36, Theorem 3.1]) Let X be a Calabi–Yau hypersurface in
Pn and let F (X) be the variety of lines contained in X. We denote the class
of a hyperplane section on X by H and put o = HdimX/deg (HdimX). For
t 2 F (X) we denote P1

t ⇢ X ⇢ Pn the corresponding line.
The following relation holds in CH2n−2(X ⇥X ⇥X)Q :

∆ = ∆12 · o3 + (perm.) + Z + Γ0,

where Z is the restriction to X ⇥X ⇥X of a cycle on Pn ⇥ Pn ⇥ Pn and Γ0

is a multiple of the following effective cycle of dimension n− 1:

Γ = [t2F (X)P
1
t ⇥ P1

t ⇥ P1
t .

Corollary 1.21. ([36, Theorem 3.4]) Let X be as above and let Zi and Z 0
i be

cycles of codimension greater than 0 on X such that codimZi + codimZ 0
i =

n− 1. Then if we have a cohomological relation

X

i

nideg (Zi · Z
0
i) = 0,

this relation holds at the level of Chow groups:

X

i

ni(Zi · Z
0
i) = 0

in CH0(X)Q.
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This theorem and its corollary were generalized by Fu in [12] for a Calabi–
Yau complete intersection in projective space which is general for a given
degrees of hypersurfaces.

The results above suggest that despite the counterexample given by Ex-
ample 1.19, it is true that the cycle map is injective on zero-cycles which are
intersections of divisors or, equivalently, that the intersection of any dim (X)
divisors on X is proportional to a canonical zero-cycle cX in CH0(X). The
existence of such a cycle is trivial if Pic(X) is generated by one element H:
we can put cX = HdimX/deg

(
HdimX

)
.

Our result of Chapter 2 provides evidence for the existence of such a
canonical zero cycle cX for some Calabi–Yau manifolds with higher Picard
rank (see also [1]):

Theorem 1.22. (= Theorem 2.1) Let Y be a complex homogeneous variety
of dimension n + 1 which is a Fano variety and let X be a general element
of the anti-canonical system | −KY | on Y .

a. There exists a constant cycle subvariety (cf. Definition 1.25) of positive
dimension n − 1. All points of X which lie on such a constant cycle
variety have the same class cX in CH0(X).

b. The image of the intersection product

Pic(X)⌦n ! CH0(X)

is contained in ZcX .

c. The top Chern class cn(X) 2 CH0(X) is proportional to cX .

Result (a) shows that a constant cycle subvariety can be a divisor in
a Calabi–Yau manifold. This is not possible in hyper-Kähler manifolds of
dimension at least 4 by the following fact.

Remark 1.23. ([24, 38]) If X is a hyper-Kähler manifold and Y ⇢ X is a
constant cycle subvariety, then Y is Lagrangian for the holomorphic 2-form
σX , hence 2 dimY  dimX.

4 K3 surfaces and an invitation to Chapter 3

Chapter 3 is devoted to a new proof of the decomposition of the small diag-
onal, which is stated in Proposition 1.15 (cf. Theorem 3.1). The presented
proof is short and there are some related ideas that are not involved and not
reflected in the proof.
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At first, we would like to emphasise that our proof is very different from
the original proof. The original proof uses the existence of a one-parameter
family of elliptic curves and the theorem of Bloch and Srinivas [7].

Our proof uses only projective geometry; it is similar in spirit to the proof
of the decomposition of the small diagonal for a Calabi–Yau hypersurface
(Theorem 1.20). Namely, we use the degree 2g−2 embedding of a K3 surface
S in projective space Pg. It is based on the study of the set of pairs of points
(x, y) in S ⇥ S such that two hyperplane sections intersect exactly at these
two points with given multiplicities. Specifically, we choose the multiplicities
2g − 3 and 1.

Now we are going to explain the philosophy behind this approach, which
formally is not involved in the proof.

Chow groups of S[n]. Let S be a K3 surface, and P(n) be the set of
all partitions of n. For any such a partition µ = (µ1, . . . , µk), we denote as
kµ its length. Put Sµ = Skµ = S ⇥ S ⇥ . . . ⇥ S (kµ times). We also have a
natural morphism to a symmetric product:

Sµ ! S(n)

(x1, . . . , xk) 7! µ1x1 + . . .+ µkxk.

Now define Eµ =
(
S[n] ⇥S(n) Sµ

)
to be the reduced incidence variety in S[n]⇥

Sµ. The variety Eµ can be viewed as a correspondence between S[n] to Sµ, it
defines maps: E⇤

µ : CH(Sµ) ! CH(S[n]) and Eµ⇤ : CH(S
[n]) ! CH(Sµ). Let

µ = (µ1, . . . , µk) = 1a12a2 . . . kan be a partition of n, we put

mµ = (−1)n−k
Y

µi, cµ =
1

mµa1! · . . . · an!
.

Theorem 1.24. ([10]) The group CH(S[n]) has the following decomposition:

CH(S[n]) =
M

µ2P(n)

cµE
⇤
µ ◦ Eµ⇤

(
CH(S[n])

)
.

This theorem allows us to relate cycles in CH(S[n]) and cycles in CH(Sµ).
In particular, we will consider the following construction. If S is embedded in
Pg by a primitive linear system |L|, then the intersection of S with a general
linear subspace Pg−2 ⇢ Pg is a zero-cycle of degree 2g − 2 on S. The set of
all P = Pg−2 ⇢ Pg is the Grassmann variety Gr(g − 1, g + 1) and we have a
birational map:

Gr(g − 1, g + 1) // S[2g−2] ,

P 7! P \ S.
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Let Gr denote the class in CH(S[2g−2]) of the image of Gr(g − 1, g + 1) in
S[2g−2]. Using the theorem above, we can relate Gr with its components in
Sµ, and, particularly, if we take µ to be the partition in 2g − 3 and 1, we
expect to get a surface in S⇥S as a component of the decomposition for Gr.

Voisin showed that every term E⇤
µ(P ) of the decomposition of a poly-

nomial expression P 2 CH(S[n]) in ci(O
[n]) and cj(Tn) is a polynomial ex-

pression in ⇡⇤
i (o) and ⇡ij(∆S) (see [35, Propostion 2.4]): all these cycles as

well as the decomposition of the diagonal are cycles defined globally over the
moduli space. Since Gr can be represented as a polynomial in ci(L

[2g−2]), the
elements of its decomposition are expected to be polynomials in ⇡⇤

i (o), ⇡
⇤
i (L)

and ⇡ij(∆S). A careful consideration of relations between polynomials gives
a relation which turned out to be the decomposition of the small diagonal up
to multiplicative constant. The relation itself can be obtained in a simpler
way, which does not involve Theorem 1.24 visibly.

1.4 Our main tool: constant cycle subvarieties

The notion of constant cycle subvarieties was introduced in [15] and used
in [22, 38] to study CH0(X) for hyper-Kähler manifolds. Constant cycle
subvarieties will play a crucial role in our proofs.

Definition 1.25. A subvariety Z ⇢ X of positive dimension is called a
constant cycle subvariety if for any two points z, z0 2 Z one has [z] = [z0] in
CH0(X). If, moreover, codimX(Z) = 1, we call Z a constant cycle divisor
(or CCD for short). We will denote by cZ 2 CH0(X) the common class of
the points z 2 Z.

Example 1.26. Let S be surface and let C ⇢ S be a rational (possibly,
singular) curve. Clearly, C is a constant cycle subvariety. More generally,
any rationally connected subvariety Y of X is a constant cycle subvariety.

Example 1.27. Let ⇡ : X ! Pn be a ramified double cover. Clearly, the
class in CH0(X) of the degree two cycle x1 + x2 = ⇡−1(p) does not depend
on the choice of p 2 Pn, and if, moreover, x1 and x2 coincide, then the class
[x1] = [x2] is determined in CH0(X) uniquely. The locus, where the two
preimages x1 and x2 coincide is the divisor D of ramification. So, D is a
constant cycle divisor on X.

Example 1.28 (The curve of hyperflexes, cf. [15] and [39]). Recall that for
a quartic X ⇢ P3 a line l ⇢ P3 is called bitangent of X if at every point
x 2 X \ l the intersection multiplicity is at least two, a bitangent l is a
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hyperflex if there is a unique point of an intersection. We can consider the
universal family of bitangents:

B
q

//

p

✏✏

X ⇢ P3

F

here F ⇢ Gr(P1,P3) is the variety of all bitangents and B is the variety of
pairs (l, x), where x is a point of contact of l and X. The map p : B ! F
has degree two and let D be the ramification divisor. The curve Chf ⇢ X is
defined as q(p−1(D)).

The curve Chf is a constant cycle curve in X because every point in Chf

has class (l|X)/4 in CH0(X) and there is no torsion in CH0(X) by [30]. It is
is a singular and irreducible curve in the linear system |OX(20)| of geometric
genus 201, in particular, Chf is not rational.

Construction 2.2 in Chapter 2 generalizes Example 1.28 for Calabi–Yau
hypersurfaces in Fano manifolds with trivial Chow groups.

1.5 Debarre–Voisin hyper-Kähler fourfolds and

Lagrangian subvarieties

Remark 1.23 states that any constant cycle subvariety Y in a hyper-Kähler
manifold X is Lagrangian for the holomorphic 2-form σX and hence 2 dimY 
dimX.

Example 1.29. Let S ⇢ Pg be a K3 surface and S[2g−2] be the Hilbert
scheme of 2g − 2 points on it. The image of the map

Gr(g − 1, g + 1) // S[2g−2],

which sends a subspace Pg−2 ⇢ Pg to the intersection Pg−2 \ S, is a constant
cycle subvariety. We note that the dimension of the Grassmanian is 2g − 2,
i.e., half of the dimension of S[2g−2].

Example 1.30. ([35, Proof of Lemma 2.2]) Let X ⇢ P5 be a cubic fourfold
and F (X) be its Fano variety of lines. If Y ⇢ X is a hyperplane section
then the set F (Y ) of all lines contained in Y forms a Lagrangian subvariety
in F (X). If, moreover, Y has 5 nodal points then F (Y ) is birational to the
projective plane P2 and, in particular, is a constant cycle surface.
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In Chapter 4 we study a hyper-Kähler four-dimensional manifold F con-
structed by Debarre and Voisin from a hyperplane section X in Gr(3, 10) (see
[11]). Similarly to the case of Fano variety of lines, we introduce a notion of
triangle on X and define a corresponding subvariety I3 ⇢ F ⇥ F ⇥ F . The
result of Chapter 4 is the following theorem.

Theorem 1.31. The 6−dimensional subvariety I3 is Lagrangian for 2-formP3
i=1 ⇡

⇤
i σF , where ⇡i : F 3 ! F are the natural projections and σF is a

holomorphic 2-form on F .

Our proof uses the fact that the cycle [W1]+[W2]+[W3] on X correspond-
ing to a point of I3 is constant in CH9(X) (i.e., does not depend on a choice
of point in I3). The similar result is obviously true for a cubic fourfold: any
triangle is just a restriction of some plane to the cubic hypersurface.

However, we do not expect that I3 is a constant cycle subvariety, because
there is no similar result for a cubic fourfold (see [31, Theorem 20.5] for
details).





Chapter 2

Result for some Calabi–Yau

varieties

2.1 Introduction

Example 1.19 shows that Conjecture 1.16 does not hold for Calabi–Yau va-
rieties, namely, the class map may be not injective on the ring generated
by divisors if X is a Calabi–Yau variety. Fortunately, this example deals
with cycles of strictly positive dimension and still there is a hope that the
class map is injective on zero-cycles or, equivalently, that the intersection of
any dim (X) divisors on X is proportional to a canonical zero-cycle cX in
CH0(X). The existence of such a cycle is trivial if Pic(X) is generated by
one element H: we can put cX = HdimX/deg

(
HdimX

)
. We aim to show the

existence of cX prove the following analog of the Theorem 1.14 at least for
some Calabi–Yau varieties with higher Picard rank.

The natural candidate for Calabi–Yau variety X is a Calabi–Yau hy-
persurface in a Fano variety Y . In this case we can study Pic(X) using
an existence of an identification between Pic(X) and Pic(Y ) due to the
Grothendieck–Leftschetz theorem. In the result below we concentrate on
the case when Y is a homogeneous variety, because of the wonderful struc-
ture of its Picard group. We recall that variety Y is homogeneous if its
automorphism group acts transitively on Y .

Theorem 2.1. (= Theorem 1.22) Let Y be a complex homogeneous variety
of dimension n + 1 which is a Fano variety and let X be a general element
of the anti-canonical system | −KY | on Y .

a. There exists a constant cycle subvariety (cf. Definition 1.25) of positive
dimension. All points of X which lie on such constant cycle variety
have the same class cX in CH0(X).

25
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b. The image of the intersection product

Pic(X)⌦n ! CH0(X)

is contained in ZcX .

c. The top Chern class cn(X) 2 CH0(X) is proportional to cX .

We have a hope that, using the construction and ideas presented in this
chapter, it is possible to generalize Theorem 2.1 for wider classes of Fano
varieties Y . Our principal requirement for Y , the triviality of Chow groups,
will be stated in Construction 2.2 and fulfilled not only for rational homo-
geneous varieties but also for other classes such as smooth toric varieties or
varieties admitting a stratification by affine spaces. We use few properties of
homogeneous varieties in our proof and one can probably avoid using them
to generalize the result.

The chapter is organized as follows. Firstly, we briefly recall basic facts
about homogeneous spaces. Then, we construct a constant cycle divisor
associated with an effective class of curves in Y . Using these divisors we
finish the proof in the last section.

The main point of our proof is an existence of a constant cycle divisor
in an ample class (in the situation of K3 surface, the analog is the existence
of rational curves in an ample class). Our result (b) also shows that the
restriction to our Calabi–Yau hypersurface of any curve in a homogeneous
space is proportional to the canonical cycle cX (cf. Proposition 2.8). Indeed,
by the hard Lefschetz theorem, any curve class in Y is an intersection of
divisor classes in Y and furthermore the cycle class CHn(Y ) ! H2n(Y ) is
injective, so any element of CHn(Y ) is an intersection of divisors.

2.2 Homogeneous varieties

We recall that a projective variety Y is called homogeneous if there is an
algebraic group acting transitively on Y . Due to a fundamental theorem of
Chevalley, any projective homogeneous variety is isomorphic to a product of
an abelian variety and a rational homogeneous variety. Examples of rational
homogeneous varieties include Grassmann varieties, flag varieties and their
products.

In the present work we deal with Y which is a homogeneous Fano variety,
therefore Y is a rational homogeneous variety. For the sake of simplicity, the
notion of a homogeneous variety will refer to a rational homogeneous variety.

We recall some basic facts about homogeneous varieties (see [8] and the
references therein). For a projective homogeneous variety Y the cone of
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effective divisors Eff(Y ), which is the closure of the cone of ample divisors, is
a polyhedral cone. Every rational point in it represents a globally generated
line bundle, which is (very) ample if and only if the point belongs to the
interior of Eff(Y ). Since Y is Fano, its anti-canonical class −KY belongs to
the interior of Eff(Y ).

For every face σ ⇢ Eff(Y ) of codimension one, one defines the extremal
contraction

Y
fβ

// Yβ,

of the primitive class β 2 σ? of curves, where β is the unique integral positive
generator of the rational line σ?, and Yβ is a homogeneous variety of smaller
dimension and fβ is a fibration. There is the natural identification

β? = f ⇤
β(Pic(Yβ)) ⇢ Pic(Y ).

Vice versa, for any extremal ray R>0β there is a face σ = β? \ Eff(Y ) of
codimension one and we can define a contraction fβ. We denote the set of
all primitive effective classes of curves on extremal rays by R.

A general fiber Y0 of fβ is a generalized Grassmann variety in the following
sense: it is a homogeneous space G/P , where P is a maximal parabolic
subgroup of G. We use only one fact: Pic(Y0) is generated by the class of an
ample bundle OY0(1) and the unique primitive effective class β 2 CH1(Y0)
has degree 1 with respect to it (we call β the class of a line).

2.3 Constant cycle divisors

The notion of constant cycle subvarieties was introduced in [15] and used in
[22] and [38]. The goal of this section is to construct constant cycle divisors
on Calabi–Yau hypersurfaces expanding the idea of examples from the intro-
duction: having a family of zero-cycles on X, all of the same class and degree,
we are looking for cycles represented by one point (with the corresponding
multiplicity).

Construction 2.2. Let Y be a Fano variety of dimension n+1 and assume
that Y has trivial CH1(Y ) group, which means the following.

(?) The natural class map

cl : CH1(Y )Q // H2n(Y,Q)

is injective.
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(Varieties with trivial Chow groups include projective homogeneous spaces,
smooth toric varieties, and varieties admitting a stratification by affine spaces.)

Let β be any effective class in CH1(Y ) and Mβ be the space of all (ir-
reducible) rational curves C ⇢ Y representing class β. Denoting by Cβ the
universal curve we have the natural diagram:

Cβ

p

✏✏

q
// Y

Mβ

(2.1)

where p and q are the natural projections.
For a given hypersurface X ⇢ Y we can construct the following variety:

VX,β = {(C, x) 2 Cβ : C \X = deg (C \X) · x},

where the equality is an equality of zero-cycles on C (or even of subschemes
of C if C is smooth). The subvariety p(VX,β) in Mβ describes all curves inter-
secting X in one point with the maximal multiplicity. Due to our assumption
(?), the class of the zero-cycle C|X in CH0(X) does not depend on the point
C in Mβ. By [30], a family of torsion cycles in a variety has to be constant,
hence the subvariety q(VX,β) ⇢ X is a constant cycle subvariety.

If X is a smooth Calabi–Yau hypersurface in Y , and furthermore there is
no obstruction for deformation of curves in Y , then denoting d = deg (C \X)
we have

dimVX,β ≥ dimMβ − (d− 1) = (−KY · β + (n+ 1)− 3)− (d− 1)

= (X · C + dimX − 2)− d+ 1 = dimX − 1,

and we expect that q(VX,β) is a CCD on X.

Notation 2.3. Continuing with the settings of Construction 2.2, we put

Hβ = q(VX,β) ⇢ X.

Lemma 2.4. Let Y be a projective homogeneous variety with Picard number
one and dimension at least two and let β be the class of a line. If X 2 |−KY |
is general, then Hβ is a non-empty effective divisor on X.

Proof. First of all, Hβ cannot be the whole of X, because it would imply
that all points in X are rationally equivalent. In order to show that Hβ is a
non-empty effective divisor, it thus suffices to show that its class is non-zero.
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We denote the class of the standard polarization on Y by H1 and notation
as in (3.2), let H̃1 = q⇤H1 be the corresponding divisor on the universal curve.
We also put H2 := p⇤(H̃

2
1 ) = p⇤q

⇤H2
1 , let H̃2 = p⇤H2. Denote by Krel the

class of the relative cotangent bundle on the universal curve, it is easy to see
that Krel = −2H̃1 + H̃ 0

2, where H̃ 0
2 = p⇤H 0

2 for some divisor H 0
2 on Mβ.

Let us show that H2 = H 0
2. By the Grothendieck–Riemann–Roch formula,

c1

⇣
R0p⇤OC(H̃1)

⌘
= p⇤

✓
H̃2

1 +
5

6

⇣
H̃2

1 − H̃1H̃
0
2

⌘
+

1

12
H̃2

2

◆
,

but the left-hand side can be calculated geometrically: it is the locus of
all curves C in Mβ such that the restrictions of two general sections in
H0(Y,OY (H1)) to C coincide. Hence the left-hand side is equal to p⇤q

⇤(H2
1 ) =

p⇤

⇣
H̃2

1

⌘
. Since p⇤

⇣
H̃2

2

⌘
= 0, we get

p⇤

✓
5

6

⇣
H̃2

1 − H̃1H̃
0
2

⌘◆
= 0.

Since H̃1 has degree one on fibers of p : C ! Mβ, we get p⇤

⇣
H̃1H̃

0
2

⌘
= H 0

2

and

H 0
2 = p⇤

⇣
H̃1H̃

0
2

⌘
= p⇤

⇣
H̃2

1

⌘
= H2.

The subvariety VX,β ⇢ C is the intersection of d divisors of classes (0 
r  d− 1)

dH̃1 + rKrel,

where the divisor number r is to say that the r−th derivative of the restriction
fX |C is zero at a point on the curve C, where fX is the defining equation
for X; all together they mean that fX |C is one point with the maximal
multiplicity. So, the degree of Hβ = q⇤(VX,β) can be calculated as the degree
of the following intersection on Y (we recall dimX = n, dimY = n+ 1):

Hn−1
1 · q⇤

h
dH̃1 ·

⇣
dH̃1 +Krel

⌘
· . . . ·

⇣
dH̃1 + (d− 1)Krel

⌘i

= q⇤

h
H̃n−1

1 · dH̃1 ·
⇣
dH̃1 +Krel

⌘
· . . . ·

⇣
dH̃1 + (d− 1)Krel

⌘i

= q⇤

"
dH̃n

1

d−1Y

r=1

⇣
dH̃1 + r

⇣
−2H̃1 + H̃2

⌘⌘#

= q⇤

"
d!

 
H̃n

1 H̃
d−1
2 +

d−1X

r=1

✓
d− 2r

r

◆
H̃n+1

1 H̃d−2
2

!#
.
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Clearly, points of p⇤(H̃
n+1
1 ) = p⇤q

⇤(Hn+1
1 ) in Mβ correspond to curves

which pass through a point of the intersection Hn+1
1 in Y . Since H2 is ample

on Mβ, the intersection H̃n+1
1 H̃d−2

2 is not empty. To finish the proof, we note

that the coefficient of H̃n+1
1 H̃d−2

2 , which is the sum
Pd−1

r=1(d/r− 2), is strictly
positive if d > 2.

Lemma 2.5. Let Y be a homogeneous variety and X 2 |−KY | be general. If
β 2 R such that fβ : Y ! Yβ is not a P1−fibration, then Hβ is a non-empty
effective CCD on X.

Proof. It is enough to show that VX,β is non-empty of the expected dimension
and a general fiber of q : VX,β ! q(VX,β) ⇢ Hβ is finite.

A general fiber Y0 of fβ : Y ! Yβ is a Schubert variety in Y , hence the
restriction map H0(Y,OY (X)) ! H0(Y0,OY (X)|Y0) is surjective ([9, Section
3] or [8, Theorem 2.3.1]). Applying the previous lemma to Y0 and X|Y0

we see that VX,β is non-empty and the projection q has some finite fibers,
hence a general fiber is finite. The dimension of VX,β is expected because the
dimension of Mβ is expected.

Example 2.6. Let Y = P2 ⇥ S, where S is a Fano variety of positive di-
mension and let β be equal to [l ⇥ point], where l is a line in P2. If X is a
general Calabi–Yau hypersurface in Y then the restriction of Hβ to a fiber of
P2 ⇥ S ! S is the union of nine Weierstrass points on a plane elliptic curve.
In particular, Hβ is non-empty and effective.

Example 2.7. Let Y be as in Construction 2.2 and assume that

fβ : Y // Yβ

is a P1−fibration (again β is the class of contracted curves, i.e, the class
of a fiber). If X is a general Calabi–Yau hypersurface then Hβ has class
(−KY +KY/Yβ

)|X = f ⇤
β(−KYβ

)|X in Pic(X) and Hβ is trivial on fibers of fβ
(in contrast to Lemma 2.5 and Example 2.6).

Example 1.28 from Introduction is another example of our construction.

2.4 The proof of Theorem 2.1

Let us first prove the following.

Proposition 2.8. In the setting of Theorem 2.1, there exists a class cX in
CH0(X) such that the restriction C|X of any curve in Y is proportional to
cX in CH0(X).
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Proof. Because of the linearity of the intersection, it is enough to prove the
statement only for curves with class β 2 R. By construction of Hβ, the
corresponding zero-cycles can be represented by points (with multiplicities)
on Hβ for β 2 R. Let us show that the class cHβ

does not depend on the
choice of β 2 R.

Case 1: dimYβ < n for any β 2 R. We may assume that the dimension of
X is at least three and thus by the Grothendieck–Leftschetz theorem, we can
identify Pic(X) and Pic(Y ) by the restriction map. Let Hβ be the restriction
of a divisor H̃β on Y . We claim that the divisor

H̃ :=
X

β2R

H̃β

is ample on Y . This is equivalent to H̃ · β > 0 for all β 2 R. To see this, it
suffices to prove the inequalities

H̃β|β0 ≥ 0 and H̃β|β > 0

for any β, β0 2 R. Since the fibers of fβ0 : X ! Yβ0 have positive dimension,
any curve C contained in a fiber F ⇢ X of X ! Yβ0 has its class in Y
a non-zero multiple Nβ0. For smooth F , the curve C can be chosen to be
movable in F and thus we get

NH̃β · β
0 = Hβ · C = Hβ|F · C ≥ 0,

because Hβ|F is effective in F . The second inequality follows from Lemma
2.4. Thus the claim is proved.

The divisor H := H̃|X is thus ample on X, hence it is connected and any
point on the divisors Hβ represents the same class cX = cHβ

in CH0(X).
Case 2: dimYβ = n for some β 2 R. In this case, fβ|X : X ! Yβ is a

double cover (out of some codimension two subvariety, where X contains a
whole fiber of fβ). Due to Example 2.7, the divisor H := Hβ is a pull-back
of an ample divisor on Yβ, so H meets Hβ0 for any β0. It thus follows that
cHβ0

= cHβ
for any β0 and we can take cX as the class of a point on H.

Note that in a situation where Y is not homogeneous, but still satisfies
assumption (?) the following alternative lemma could be used.

Lemma 2.9. If there exist an ample divisor H̃ on Y such that H = H̃ \X
is a CCD on X with associated class cH , then for any curve C on Y , C|X
is proportional to cH and, in particular, the intersection of any n divisors is
proportional to cH .
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Proof. We have the following commutative diagram:

H̃n−1 : CH1(Y ) //

✏✏

CHn(Y )

✏✏

H2(Y ) // H2n(Y )

The vertical arrows are isomorphisms due to condition (?), the bottom arrow
is also an isomorphism by the hard Lefschetz theorem, hence the top arrow
is an isomorphism. Therefore the restriction C|X is equal to (L · H̃n−1)|X
for some divisor L on Y . But the last restriction can be represented by a
zero-cycle with the support on H, hence is proportional to cH .

Proof of Theorem 2.1. The divisor H constructed in the proof of Lemma 2.8
does not intersect a constant cycle subvariety Z only if Z is a rational curve
contracted by fβ and dimYβ = n. But in this case the class of a point on Z
is proportional to β|X and hence is proportional to cX . Let D̃i be a divisor
on Y such that D̃i|X = Di in Pic(X); we then have in CH0(X)

D1 · . . . ·Dn =
⇣
D̃1 · . . . · D̃n

⌘∣∣∣
X
.

The intersection in the right-hand side is a (reducible) curve in Y , we proved
that the restriction of any curve in Y to X is proportional to cX in Proposition
2.8.

The top Chern class of X can be represented by a combination of Chern
classes of Y and Chern classes of line bundle OY (X). This is again a restric-
tion of some (reducible) curve on Y .

Remark 2.10. There is another strategy to prove Theorem 2.1 b. If dimYβ <
n for some β then

D1 · . . . ·Dn = 0

for any divisors Di on Yβ. The same is true for divisors f ⇤
β(Di)|X on X.

Since Hβ and f ⇤
β(Pic(Yβ))|X generate Pic(X) ⌦ Q, any intersection of n di-

visors on X is proportional to a zero-cycle with support on Hβ and hence is
proportional to cX .



Chapter 3

A new proof of decomposition of

a small diagonal for K3 surface

3.1 Introduction

The canonical zero cycle on a K3 surface S is defined in [5] as the rational
equivalence class of any point lying on a rational curve C ⇢ S. The paper
[5] shows that the intersection of any two divisors in S is proportional to the
canonical cycle in CH0(S). It is also shown that the second Chern class c2(S)
is proportional to this canonical zero cycle o. Both results can be obtained
as consequences of the following theorem.

Theorem 3.1. (= Proposition 1.15, [5, Proposition 4.2]) Let S be a K3
surface. In CH2(S

3)Q there is a decomposition

∆123 = ∆12 ⇥ o3 +∆23 ⇥ o1 +∆13 ⇥ o2

− S ⇥ o⇥ o− o⇥ S ⇥ o− o⇥ o⇥ S, (3.1)

where o is the canonical zero cycle, ∆123 is a small diagonal in S3, and the
notation ∆ij ⇥ ok stands for ⇡⇤

ij(∆) · ⇡⇤
ko.

The goal of this paper is to give a new proof of Theorem 3.1 for a K3
surface S with Pic(S) = Z[L] with L2 = 2g−2. The result can be generalised
for K3 surfaces with higher Picard rank using the specialisation argument (cf.
Remark 3.7). Our proof is very explicit using the embedding of S in Pg. It is
based on the study of the set of pairs of points (x, y) in S ⇥ S such that two
curves in the linear system |L| intersect exactly at these two points with given
multiplicities. Specifically, we choose the multiplicities 2g−3 and 1. In other
words, we are studying the surface Σ parameterising complete intersections

33
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subschemes of S consisting in the union of two points, one of them with
multiplicity 2g−3. We will prove that this is a surface and will establish two
relations (3.6) and (3.7), from which we obtain the relation (3.1) up to some
multiplicative factor µ, which is non-zero if the surface Σ ⇢ S⇥S dominates
factors. The second part of the paper is then devoted to the proof that
µ 6= 0. In order to prove this non-vanishing we will interpret the surface Σ
in a slightly different way: as Pic(S) = Z[L], the curves in |L| are irreducible
hence the intersection of any two different curves in the linear system |L| is
a zero-dimensional subscheme of S of length deg(L), so we have a morphism
Gr(2, H0(S, L)) ! S[2g−2] and we let Gr denote the image. Using techniques
from [10, 20, 21, 35] to work with cohomology groups of the Hilbert scheme
S[2g−2], one can define the pieces E⇤

M(Gr) 2 CH(Sm) of the decomposition
of the class of Gr in CH(S[2g−2]), where M is a partition of {1, . . . , 2g − 2}
and m = |M |. The proof that µ 6= 0 involves the study of this class E⇤

M(Gr)
in the case where M is a partition into two integers.

3.2 The proof of Theorem 3.1

1 Surface Σ.

Let us recall that a K3 surface with a very ample linear system L of degree
2g− 2 ≥ 4 generating Pic(S) can be embedded in Pg by |L| and the intersec-
tion of S with any linear subspace Pg−2 ⇢ Pg is a zero-cycle of degree 2g− 2
on S (cf. [16, Chapter 2]). The set of all P = Pg−2 ⇢ Pg is the Grassmann
variety Gr(g − 1, g + 1) and as already mentioned this provides a morphism

Gr(g − 1, g + 1) ! S[2g−2],

which maps [P ] to P \ S for [P ] 2 Gr(g − 1, g + 1). We denote by Gr the
image of this map. We introduce the incidence scheme Ξ ⇢ S ⇥ S[2g−2]:

Ξ

π1

✏✏

π2
// S[2g−2]

S

(3.2)

Let L[2g−2] denote the vector bundle (⇡2)⇤⇡
⇤
1(OS(L)) on S[2g−2]. The image

Gr is the locus in S[2g−2], where the rank of the map

H0(S, L)⌦OS[2g−2] ! L[2g−2]

is at most g − 1 and it follows by [14] that its class is given by

[Gr] = c2g−1(L
[2g−2])− cg−2(L

[2g−2])cg(L
[2g−2])). (3.3)
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Let us also define a subset G0
0 ⇢ Gr(g − 1, g + 1) in the following way:

G0
0 = {[P ] 2 Gr(g − 1, g + 1) : P \ S = (2g − 3)p1 + p2 as a cycle}.

We also define the variety Σ0 ⇢ S ⇥ S as

Σ0 := {(p1, p2) 2 S ⇥ S : (2g − 3)p1 + p2 = S \ P

for some [P ] 2 Gr(g − 1, g + 1)} .

If we construct the following diagram

G00
0 ⇢ E2g−3,1

p

✏✏

q
// S[2g−2]

Σ0 ⇢ S ⇥ S

(3.4)

where E2g−3,1 represents schemes of the form (2g−3)p1+p2 on S, we then have
G00

0 = q−1(Gr) and Σ0 = p(q−1(Gr)). We expect that the natural morphism
G0

0 ! G00
0 is an isomorphism, but since we will not use it, we omit a proof.

Let us prove the following facts about the geometry of Σ0.

Lemma 3.2. The following holds:

a. Σ0 is a non-empty surface, possibly reducible,

b. there is a component Σ ⇢ Σ0 such that Σ dominates both factors of
S ⇥ S.

Proof. Let us first prove that dimΣ0  2. Indeed, from the equality

p1 + (2g − 3)p2 = L2,

valid in CH2(S) for any pair (p1, p2) 2 Σ0, and the theorem of Mumford [24],
it follows that

⇡⇤
1σS + (2g − 3)⇡⇤

2σS = 0 (3.5)

on Σ0, where σS is a non-vanishing 2-form on S. Therefore dimΣ0  2.
Notice that equation (3.5) characterises K-correspondences in the termi-

nology of [34]. This equation implies that for any irreducible component Σ
of Σ0 the morphism ⇡1|Σ is dominant if and only if the morphism ⇡2|Σ is
dominant. Indeed, these conditions are respectively equivalent to the generic
non-vanishing of ⇡⇤

i σS. This argument also shows that (a) and (b) are im-
plied by the fact that the first projection ⇡1|Σ0 is dominant. In order to prove
this last statement we observe that the cycle Ω = p⇤q

⇤(Gr) has for support
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the surface Σ0 although this cycle could be non-effective due to the fact that
even if Σ0 has the right dimension the scheme G00

0 = q−1(Gr) could be of a
higher dimension leading to excess formulas in the computation of the cycle
Ω. Nevertheless we can argue that if Ω can not be represented by a cycle
supported on the union of divisors of the form D ⇥ S, then one component
of the support suppΩ has to dominate S by the first projection, that is, one
component of Σ0 dominates S by the first projection. The next section is
devoted to the proof that the class Ω can not be supported on the union of
D ⇥ S, see Proposition 3.10.

Remark 3.3. Let us note that we expect dimG0
0 = 2, Σ0 is irreducible and

the projection p : G0
0 ! Σ0 is a one-to-one correspondence. In this case we

get [Σ0] = Ω in H4(S ⇥ S) (actually, we can consider the equality even in
CH2(S ⇥ S)). Unfortunately, the author does not know how to prove these
facts and we avoid them in our proof by introducing below a surface G0 as a
substitute of G0

0.

Let Σ be a surface as in the last lemma and let G0 ⇢ G0
0 be any surface

dominating Σ after the projection ⇡1 : G0
0 ! Σ0. We can consider G0 as a

subvariety of Gr(g−1, g+1) and define Π2 ⇢ Pg⇥Pg and Π3 ⇢ Pg⇥Pg⇥Pg

as the universal varieties:

Π2 := {(x1, x2) 2 Pg ⇥ Pg : x1, x2 2 P for some [P ] 2 G0} ,

Π3 := {(x1, x2, x3) 2 Pg ⇥ Pg ⇥ Pg : x1, x2, x3 2 P for some [P ] 2 G0} .

We have dimΠ2 = dimG0+2(g−2) = 2g−2 and dimΠ3 = dimG0+3(g−2) =
3g − 4. Clearly, Σ ⇢ Π2 \ (S ⇥ S).

2 Key lemma

A key observation for our proof is the following lemma.

Lemma 3.4. a. There is a decomposition in CH2(S ⇥ S) which, in fact,
is an equality of effective cycles

Π2|S⇥S = ↵∆+ β
(
Σ+ Σ

T
)
, (3.6)

where ∆ is the diagonal in S ⇥ S.

b. There is a decomposition in CH2(S ⇥ S ⇥ S)

Π3|S⇥S⇥S = γ∆123 + "(δ12⇤ + δ23⇤ + δ31⇤)(Σ+ Σ
T ), (3.7)

where ∆123 is the small diagonal in S3, and δ12(x, y) = (x, x, y), δ23(x, y) =
(y, x, x), δ31(x, y) = (x, y, x).
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Proof. The proof of (3.6) follows from the facts that Π2|S⇥S is symmetric
and supported on the union of the diagonal, Σ and Σ

T , and that Σ and Σ
T

are chosen to be irreducible. The proof of (3.7) is similar.

Lemma 3.5. We have:

a. the denominators of the ratios α
β

and γ
ε

are non-zero and both ratios
are non-negative,

b. the following relation holds:

γ

"
−

3↵

β
= −

✓
↵

β
+ a+ b

◆
, (3.8)

where a and b are the degrees of the projections of Σ ⇢ S ⇥ S to its
factors.

Proof. a. As numbers ↵, β, γ, " are non-negative, we need only to show
that β, " 6= 0. We will use the fact that S has some transcendental
cohomology. Let us consider the actions on H⇤(S) of Π2|S⇥S and of
∆ viewed as correspondences between S and S. Since Π2|S⇥S can be
supported on divisors, it acts as zero on the transcendental cohomology
of S. Since ∆ always acts as identity, it is not proportional to Π2|S⇥S.
It implies β 6= 0. Using a projection S⇥S⇥S ! S⇥S, the fact " > 0
can be proved in a similar way.

b. Projecting (3.7) to S ⇥ S and taking cohomology classes, we easily
conclude that γ

ε
= 2α

β
− a− b, which is equivalent to (3.8).

Proof of Theorem 3.1. We chose a surface Σ as in Lemma 3.2. Due to [5,
Proposition 2.6], δij⇤(Π2|S⇥S) can be represented by a sum of Z 0|S3 and ok ⇥
∆ij. We also recall that δij⇤(∆) = ∆123. So, putting (3.6) and (3.7) together,
we get a decomposition of the small diagonal:

✓
γ

"
−

3↵

β

◆
∆123 = ↵1∆12 ⇥ o3 + ↵2∆23 ⇥ o1 + ↵3∆13 ⇥ o2 + Z|S3 , (3.9)

where Z ⇢ Pg ⇥ Pg ⇥ Pg.
Projecting to S⇥S and taking the cohomology classes, we easily conclude

that ↵1 = ↵2 = ↵3 = γ/"−3↵/β, and by previous lemma, ↵1 = −(↵/β+a+
b). Since the decomposition of the small diagonal holds in cohomology (due
to [5] and more generally [29]), we can deal with the term Z|S3 as follows:
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this term is a polynomial in L1, L2, L3, where Li := pr⇤iL and on the other
hand it is cohomologous to

−↵1(S ⇥ o⇥ o+ o⇥ S ⇥ o+ o⇥ o⇥ S).

By [5] it is thus rationally equivalent to −↵1(S⇥o⇥o+o⇥S⇥o+o⇥o⇥S).
Since a, b > 0 by choice of Σ and ↵/β is non-negative, we can divide the
equation by −↵/β − a− b to get the result. The theorem is proved.

Remark 3.6. We would like to emphasise that this proof is very different
from the one used by Beauville and Voisin, which uses the existence of one-
parameters families of elliptic curves. It is much more along the lines of the
method used by Voisin in the Calabi–Yau hypersurface case, and Fu in the
Calabi-Yau complete intersection case (see [36, Theorem 3.1], [12]). Namely,
to study the case of Calabi-Yau varieties, one needs to replace G0 by the set
of lines intersecting the hypersurface in two points, the result [5, Proposition
2.6] used in our proof, corresponds to [36, Lemma 3.3].

Remark 3.7. The Picard number one condition can be removed using the
following specialization argument. For a given K3 surface S, consider a
family of projective K3 surfaces such that the general member is of Picard
number one. The expression of decomposition of the small diagonal provides
a (universal) relative 2-cycle of this family and by the proof above we know
that it vanishes on general fibers. Since the specialization of the diagonal
(resp. small diagonal) is the diagonal (resp. small diagonal), we can conclude
that the decomposition holds in the special fiber.

Remark 3.8. As proved in [5], the decomposition of the small diagonal im-
mediately gives the fact that c2(S) is proportional to the canonical cycle o.
From our proof we can easily get another more direct proof of this fact, using
only (3.6). Indeed, let us apply ∆⇤ : CH2(S ⇥ S) ! CH0(S) to the decom-
position (3.6). Since ∆⇤(∆) = c2(S), we get that ↵c2(S) is a combination
of a canonical zero cycle (corresponding to the term ∆⇤(Π2|S⇥S)) and zero
cycle ∆

⇤(Σ+Σ
T ) which is supported on Σ\∆ and Σ

T \∆. But clearly the
points on Σ \ ∆ are rationally equivalent to o. This proves the statement
concerning c2, once we prove that ↵ 6= 0, which can be derived from the
following remark or from the proofs of Lemma 3.2 and of Proposition 3.10 in
the next section.

Remark 3.9. Let us present a relation between ↵/β, a, and b. We see from
the definition of Σ that for any (x, y) 2 Σ, we have the equality

(2g − 3)x+ y = L2 in CH0(S).
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It follows that we have for any x 2 S

Σ⇤(x) = −a(2g − 3)x+ C in CH0(S),

where C is a constant multiple of L2. Similarly

ΣT
⇤ (x) = −

b

2g − 3
x+ C 0 in CH0(S).

Applying (3.6) and the fact that Π2 is restricted from Pg ⇥ Pg, we thus
conclude that for any x 2 S

C 00 = −a(2g − 3)x−
b

2g − 3
x+

↵

β
x in CH0(S),

where C 00 is a constant multiple of L2. It follows that

↵/β = a(2g − 3) +
b

2g − 3
.

3 Proof of the fact that supp (Ω) dominates factors

The goal of this section is to prove the following lemma.

Proposition 3.10. The class Ω = E⇤
2g−3,1(Gr) in H⇤(S ⇥ S) cannot be

represented by a cycle supported on the union of divisors of the form Di ⇥ S
and S ⇥Dj, and hence its support has non-trivial projections to both factors
of S ⇥ S.

To prove Proposition 3.10 we study H⇤(S[2g−2]) and introduce the follow-
ing notation. Let

M = (m1,m2, . . . ,mk)

be a partition of {1, . . . , 2g− 2}. Such a partition determines a partial diag-
onal

SM
⇠= Sk ⇢ S2g−2,

defined by the conditions

x = (x1, . . . , x2g−2) 2 SM () xi = xj if i, j 2 ml, for some l.

Consider the quotient map

qM : Sk ⇠= SM ! S(2g−2),
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and denote by EM the following fibered product:

EM := SM ⇥S(2g−2) S[2g−2] ⇢ Sk ⇥ S[2g−2].

We view EM as a correspondence between Sk and S[2g−2] and we will denote
by E⇤

M : CH(S[2g−2]) ! CH(Sm) the map

↵ ! ⇡1⇤(⇡
⇤
2(↵) · EM).

The main point of the proofs is considering E⇤
M(Gr) for the partition M =

({1, . . . , 2g − 3}, {2g − 2}) and the intersection

⇡2⇤(EM) · (c2g−1(L
[2g−2])− cg(L

[2g−2])cg−2(L
[2g−2]))

We now turn our attention to the cup product on the Hilbert scheme S[2g−2].

4 Cup product on S [n]

The paper [21] gives a description on the ring structure on H⇤(S[n]); the
following theorem holds (cf. [21, Theorem 3.2]):

Theorem 3.11. Let S be a smooth projective surface with numerically trivial
canonical class. Then there is a canonical isomorphism of graded rings

(H⇤(S;Q)[2])[n] ! H⇤(S[n];Q)[2n].

In the theorem above we define A[n] as

A[n] := (A{Sn})
Sn .

It is the subspace of invariants of the ring A{Sn}, which has the following
grading by permutations in Sn

A{Sn} := ⊕π2Sn
A⌦(π)\[n] · ⇡,

where (⇡)\[n] denotes the orbit space for the action on {1, 2, . . . , n} of the
group generated by permutation ⇡. The action of σ on {1, 2, . . . , n} induces
a bijection:

σ : (⇡)\[n] ! (σ⇡σ−1)\[n], x 7! σx

for each ⇡ and hence an isomorphism of A{Sn}:

σ : A{Sn} ! A{Sn}, a⇡ 7! σ⇤(a)σ⇡σ−1.

To describe ci(O
[2g−2]) in these terms, let us introduce the following no-

tation. If σ 2 Sn is a permutation, then let c(σ) be the number of cycles in



3.2. THE PROOF 41

σ and l(σ) = n− c(σ). The number l(σ) is the minimal number of transpo-
sitions needed to generate σ.

The statement [21, Proposition 4.3] (see also [20]) gives

ci(O
[2g−2]) = ✏i, where ✏i := (−1)i

X

l(σ)=i

σ 2 H⇤(S)[2g−2]. (3.10)

The class of EM for M = ({1, . . . , 2g − 3}, {2g − 2}) is proportional to
the sum of all permutations which contains one cycle of length 2g − 3 (cf.
[21, 2.10]).

5 Two technical lemmas and end of the proof

Before we start the proof of Proposition 3.10, we would like to state two
lemmas about transpositions. Let us enumerate all transpositions in S2g−3

by s1, s2, . . . s(2g−3)(g−2) in such a way that

l(s1 · . . . · s2g−4) = 2g − 4

and define A(k) as the set of all permutations σ 2 S2g−3 such that l(σsi) >
l(σ) for any i  k. We note that for σ 2 A(k) one has σ 2 A(k + 1) or
σ = σ0sk+1 for some σ0 2 A(k + 1) with l(σ0) = l(σ)− 1.

Let us define set of pairs Fk(i, j, ⌧):

{(σ1, σ2) 2 A(k)⇥ A(k) : l(σ1) = i, l(σ2) = j, l(σ1σ2⌧) = i+ j + l(⌧)}.

And let Fk(i, j, ⌧) be the number of elements in Fk(i, j, ⌧).

Lemma 3.12. If i+ 1 < j, one has

Fk(i, j, ⌧)  Fk(i+ 1, j − 1, ⌧). (3.11)

and the inequality is strict in the case i = g − 3, j = g − 1, k = 0, ⌧ = id.

Proof. The set Fk(i, j, ⌧) can be divided in four subsets:

a. pairs (σ1, σ2) such that σ1, σ2 2 A(k + 1). This subset coincides with
Fk+1(i, j, ⌧).

b. pairs (σ1, σ2) such that σ1 2 A(k+1) and σ2 /2 A(k+1), so σ2 = σ0
2sk+1

with l(σ0
2) = j − 1. This subset is in bijection with pairs (σ1, σ

0
2) of

Fk+1(i, j − 1, sk+1⌧).

c. pairs (σ1, σ2) such that σ1 /2 A(k+1) and σ2 2 A(k+1), so σ1 = σ0
1sk+1

with l(σ0
1) = i−1. This subset is in bijection with pairs (σ0

1, sk+1σ2sk+1)
of Fk+1(i− 1, j, sk+1⌧).
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d. pairs (σ1, σ2) such that σ1, σ2 /2 A(k + 1), so σ1 = σ0
1sk+1 and σ2 =

sk+1σ
0
2 for some σ0

1, σ
0
2 2 A(k + 1). Since

l(σ1σ2⌧) = l(σ0
1s

2
k+1σ

0
2⌧) = l(σ0

1σ
0
2⌧)  l(σ1)− 1 + l(σ2)− 1 + l(⌧),

this subset is empty.

So we have

Fk(i, j, ⌧) = Fk+1(i, j, ⌧) + Fk+1(i− 1, j, sk+1⌧)+

Fk+1(i, j − 1, sk+1⌧). (3.12)

The proof easily follows by induction if we prove that

Fk(0, j, ⌧)  Fk(1, j − 1, ⌧)

for all j, k and all ⌧ . Inequality follows from the fact that any permutation
σ2, where (id, σ2) 2 Fk(0, j, ⌧), has (more than one) decomposition σ0

1σ
0
2,

where (σ0
1, σ

0
2) 2 Fk(1, j − 1, ⌧). Different σ2 have different decompositions.

We note that for

σ2 = sg−1 . . . s2g−4, ⌧ = (s1 . . . sg−2)
−1

the pair (id, σ2) will be an element of Fg−2(0, g − 2, ⌧) and therefore the
inequality is strict.

Let G(i, j) be the set of all pairs (σ1, σ2) 2 S2g−2 ⇥ S2g−2 such that the
following three conditions hold:

a. l(σ1) + l(σ2)− 2 = l(σ1σ2),

b. σ1σ2 preserves the point 2g − 2: (σ1σ2)(2g − 2) = 2g − 2,

c. σ1 and σ2 do not preserve the point 2g − 2 : σ1,2(2g − 2) 6= 2g − 2.

Let G(i, j) be the number of elements in G(i, j).

Lemma 3.13. One has

G(g − 1, g − 1) > G(g − 2, g).

Proof. Let us define a map of sets f : Sn ! Sn−1 in the following way: if
σ0 2 Sn has a cycle (. . . , k, n,m, . . .) we replace it by a cycles (. . . , k,m, . . .).
Clearly, if σ0(n) 6= n than l(σ) = l(σ0)− 1 for σ = f(σ0).
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We claim that f(G(i, j)) is (2g − 3)−fold covering of F0(i− 1, j − 1, id),
where F0(i−1, j−1, id) was defined before Lemma 3.12. Indeed, let (σ1, σ2) 2
F0(i− 1, j − 1, id) and 1  k  2g − 3. If σ1 contains a cycles (..., k,m1, ...),
then let σ0

1 be the same permutation, but with the cycle (...k, 2g− 2,m1, ...).
Similarly, if σ2 contains cycles (...,m2, k, ...) we put σ0

2 the permutation con-
taining the cycle (...m2, 2g−2, k, ...). Particularly, f(σ0

1) = σ1 and f(σ0
2) = σ2.

Now condition l(σ1σ2) = l(σ1)+l(σ2) provides that l(σ0
1)+l(σ0

2)−2 = l(σ0
1σ

0
2)

and so (σ0
1, σ

0
2) 2 G(i, j). Any element of G(i, j) can be obtained in this way.

Due to Lemma 3.12, we get the result.

Proof of Proposition 3.10. Let us recall, that we are going to understand the
product

EM · (c2g−1(L
[2g−2])− cg−2(L

[2g−2])cg(L
[2g−2])),

which is a polynomial in the ring H⇤(S,Q)[2][2g−2]. Some terms of this poly-
nomial are divisible by Li, and eventually, they will correspond to classes
supported on divisors of S ⇥ S. Therefore we are interested only in the re-
maining terms. Since c(L[2g−2]) has a uniform representation for all L (cf.
[20, Theorem 4.6]), we can conclude that the part without Li coincides with
c(O[2g−2]). The classes ci(O

[2g−2]) are given by (3.10). Then, the class of EM

is proportional to the sum of all permutations which contains one cycle of
length 2g − 3, i.e., all permutations conjugated to σM = (1, 2, ..., 2g − 3).
For simplicity, we study the part involving σM only (the total sum would be
greater in (2g − 4)! · (2g − 2) times):

X

l(σ1)=g−1,l(σ2)=g−1

σMσ1σ2 −
X

l(σ1)=g−2,l(σ2)=g

σMσ1σ2.

Every summand in the sum above correspond to a class of c2(S)⇥ S (or
S ⇥ c2(S)) or ∆ in S ⇥ S. To distinguish the classes of the diagonal, we
need to require that the factor eg(σM ,σ1,σ2) appearing in the triple intersection
and corresponding to c2(S) should be equal to one (cf. [21, Proof of Lemma
2.13]). It implies that the three following conditions must hold

a. l(σ1σ2) = l(σM), in particular, l(σ1σ2) = l(σ1) + l(σ2) − 2, because
l(σM) = 2g − 4 and l(σ1) + l(σ2) = 2g − 2,

b. (σ1σ2)(2g − 2) = 2g − 2,

c. σ1(2g − 2) 6= 2g − 2 and σ2(2g − 2) 6= 2g − 2.

The pairs (σ1, σ2) with l(σ1) = i, l(σ2) = j satisfying these requirements
are precisely the set G(i, j) defined previously. Since G(g − 1, g − 1) >
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G(g − 2, g) by Lemma 3.13, we get that the representation of Ω = E⇤
M(Gr)

as a sum of ∆, c2(S)⇥ S, S ⇥ c2(S), and L⇥L contains the diagonal with a
non-zero coefficient. Therefore Ω viewed as a self-correspondence of S does
not act trivially on H2,0(S) and can not be supported on divisors of the form
Di ⇥ S and S ⇥Dj.



Chapter 4

Results for hyper-Kähler varieties

1 Introduction

In this section we study a 20-dimensional family of hyper-Kähler fourfolds
described in [11]. An irreducible hyper-Kähler manifold is a simply connected
compact Kähler manifold whose space of holomorphic 2-forms is generated
by an everywhere non-degenerated form. In each dimension 2n, Beauville
constructed in [2] two families of such varieties: (a) the n−punctual Hilbert
scheme S[n] of a K3 surface S and (b) the fiber at the origin of the Albanese
map of the (n+ 1)−st punctual Hilbert scheme of an abelian surface. All of
the irreducible hyper-Kähler manifolds constructed later on are deformation-
equivalent to one of Beauville’s examples, with two exceptions: O’Grady’s
examples in dimension 6 and in dimension 10 (see [26, 25]).

We noted in the introduction that the varieties constructed by Beauville
have Picard number two, while a general algebraic deformation of a hyper-
Kähler manifold has Picard number one. We also listed four families of
hyper-Kähler manifold with Picard rank 1.

Two of them were the Fano variety of lines of a cubic fourfold and the
hyper-Kähler manifold constructed by Debarre and Voisin in [11]. These two
varieties have very similar constructions and we start in this section the study
of their common properties. We hope that this start will allow to attack the
Beauville-Voisin conjecture for the hyper-Kähler manifolds constructed by
Debarre and Voisin, which is already proved for Fano varieties of lines of
cubic fourfold [35].

Let us recall the construction of [11]. Let G(3, V10) be the Grassmann
variety of 3-dimensional vector subspaces in a 10-dimensional vector space
V10 and let X be a hyperplane section in Gr(3, V10). The variety X is defined
by a 3-form

↵X =
X

↵ijke
⇤
i ^ e⇤j ^ e⇤k 2 Λ3V ⇤

10

45
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where (e⇤i ) is a basis of the dual vector space V ⇤
10.

The variety F (X) is then defined as the subvariety of Gr(6, V10) of all 6-
dimensional spaces V6 ⇢ V10 such that the form i⇤V6

↵X 2 Λ3V ⇤
6 is zero, where

i⇤V6
: Λ3V ⇤

10 ! Λ3V ⇤
6 is that natural map. Equivalently, for any 3-dimensional

V3 ⇢ V6 the restriction i⇤V3
↵X is zero and hence Gr(3, V6) ⇢ X. We thus have

a natural universal diagram:

U

p

✏✏

q
// X ⇢ Gr(3, V10)

F (X) ⇢ Gr(6, V10)

, (4.1)

where U is the universal variety consisting of pairs (V3, V6) such that V3 ⇢ V6

and i⇤V6
↵X is zero. For [V6] 2 F (X) we will denote ZV6 := Gr(3, V6) ⇢ X, a

nine-dimensional subvariety of X whose class is U⇤[V6].

Theorem 4.1 ([11]). For ↵X general, the variety F (X) is an irreducible
hyper-Kähler manifold of dimension four. More precisely, endowed with
the Plücker line bundle, it is deformation-equivalent to the second punctual
Hilbert scheme S[2] of a K3 surface S of genus 12, endowed with the line

bundle whose pull-back to Ŝ ⇥ S is (OS(1)⇥OS(1))
10(−33 eE).

In this theorem Ŝ ⇥ S ! S ⇥ S is the blow-up of the diagonal, eE is
the exceptional divisor, and the pull-back is via the canonical double cover

Ŝ ⇥ S ! S[2].
The goal of this section is to study the variety F (X) and its similarities

with the variety of lines of a cubic fourfold, which has the following similar
construction. Let Y ⇢ P5 = Gr(2, 6) be a smooth hypersurface of degree 3,
and F (Y ) ⇢ Gr(2, 6) be the variety of lines contained in Y :

U

p

✏✏

q
// Y ⇢ P5

F (Y ) ⇢ Gr(2, 6)

,

here U is the universal variety consisting of pairs (x, [l]), where x 2 X, the
line l is contained in Y , and x 2 l.

The notation F (X) for the fourfold constructed by Debarre and Voisin
and F (Y ) for the Fano variety of lines may look confusing, but the author de-
cided to use them in order to emphasise the similarity between two varieties.
The Fano variety of lines does not appear below, so F (X) will unequivocally
refer to the fourfold constructed by Debarre and Voisin.
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2 Statements of main results

In this subsection we announce Theorems 4.2 and 4.3, which provide evi-
dences of similarities between the Fano varieties of lines on a cubic fourfold
and the hyper-Kähler fourfold constructed by Debarre and Voisin. The rest
of the chapter will be devoted to the proofs of these theorems.

Following the ideas used in [35] for the Fano variety of lines in a cubic four-
fold, we are going to consider the incidence variety I of pairs ([W1], [W2]) 2
F (X) ⇥ F (X) such that the corresponding subvarieties ZW1 and ZW2 on X
have a common point. This common point, represented be a 3−dimensional
space, can be viewed as a point on the diagonal ∆X in X ⇥ X, and since
we expect that (p, p)(q, q)−1∆X is reducible and contains a diagonal as a
component, we then define I in the following way:

I ⇢ (p, p)(q, q)−1∆X ,

I = ((p, p)(q, q)−1∆X)r∆F (X),

where p and q were defined by the diagram (4.1). The variety I has a strat-
ification:

I = I(3) [ I(4) [ I(5) [ I(6),

where I(i) is the subvarity of I consisting of pairs (W1,W2) with i-dimensional
intersection. For general ↵X , calculations give

dim I(3) = dim I = 6, dim I(4) = 4, dim I(5) = 3,

and away from ∆F (X) which could be contained in I, we have dim I(6)  3.
We define the variety of "triangles" as the closure of Io3 :

Io3 = {([W1], [W2], [W3])|dim (Wi \Wj) ≥ 3 8i, j

and dim (W1 \W2 \W3) = 0} ⇢ F (X)⇥ F (X)⇥ F (X),

I3 = Io3 ⇢ F (X)⇥ F (X)⇥ F (X).

In Lemma 4.7 below we will show that the natural projection ⇡12 : I3 ! I
has degree one. One can also consider a bigger variety defined as

I 03 = {([W1], [W2], [W3])|dim (Wi \Wj) ≥ 3 8i, j} ⇢ F (X)⇥ F (X)⇥ F (X).

and show that I3 is an irreducible component of I 03.

Theorem 4.2. a. There exists a cycle γ 2 CH10(Gr(3, 10)) such that for
any ([W1], [W2], [W3]) 2 I3, the sum ZW1 +ZW2 +ZW3 2 CH9(X) is the
restriction to X of γ.



48 CHAPTER 4. RESULTS FOR HYPER-KÄHLER VARIETIES

b. The 6−dimensional subvariety I3 ⇢ F (X) ⇥ F (X) ⇥ F (X) is a La-
grangian subvariety for the (2, 0)−form pr⇤1σF (X)+pr⇤2σF (X)+pr⇤3σF (X),
where σF (X) denotes a (2, 0)−form on F (X) generating H2,0(F (X)).

The proof of Theorem 4.2 starts in the next subsection and goes until the
end of the chapter.

Another similarity between Fano varieties of lines and Debarre-Voisin
fourfolds is given in the next theorem (see [35, Proposition 3.3] for the cor-
responding results for the Fano variety of lines).

Theorem 4.3. There is a quadratic relation in CH4(F (X) ⇥ F (X)) of the
form

I2 = ↵∆F (X) + βI(4) + I · Γ1 + Γ2 + q⇤p⇤Γ3,

where Γ1 2 CH2(Gr(6, 10)2)|F (X)⇥F (X), Γ2 2 CH4(Gr(6, 10)2)|F (X)⇥F (X) and
Γ3 is proportional to ∆X⇤c2(Gr(3, 10)) 2 CH(X ⇥X).

We prove Theorem 4.3 in the next subsection.

3 Proofs of main results

We start with the proof of Theorem 4.2.

Proof of Theorem 4.2. Item (a) will be proved in Proposition 4.5 below.
From Lemma 4.6 and Lemma 4.7 below it is follows that I3 is a 6−di-

mensional subvariety. Let us show that (a) implies (b).
Let Ĩ3 be a desingularisation of I3. Let T be the natural correspon-

dence between Ĩ3 and F (X). In particular, we have a map T⇤ : CH0(Ĩ3) !
CH0(F (X)). Note that, by (a), the image of the composition

U⇤ ◦ T⇤ : CH0(Ĩ3) ! CH0(F (X)) ! CH9(X)

is Z. Therefore, by the generalisation of Mumford’s theorem [24], the map

(U ◦ T )⇤ : H11,9(X) ! H2,0(Ĩ3)

is zero. But U⇤H11,9(X) = H2,0(F (X)) by [11], so σF (X) = U⇤ηX for some
ηX 2 H11,9(X) and thus

(
pr⇤1σF (X) + pr⇤2σF (X) + pr⇤3σF (X)

)
|Ĩ3 = (U◦T )⇤ηX =

0, which proves that the subvariety I3 is Lagrangian.

Proof of Theorem 4.3. We follow the line of the proof of the similar statement
for the Fano variety of lines (see [35, Proposition 3.3]).

We are going to establish a relation of the following form:

I2o = Io · Γ1 + Γ2 + Γ3,
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in CH4(F ⇥F r
(
∆F (X) [ I(4)

)
), where Io is the restriction of I to (F ⇥F r(

∆F (X) [ I(4)
)
). The result will follow by the localisation exact sequence.

We recall that I is the image in F ⇥ F of Ĩ = (q, q)−1∆X under the
projection (p, p) : Ĩ ! I. Since (p, p) is an isomorphism away from ∆F (X) [

I(4), we have a local isomorphism between Io and Ĩo = (p, p)−1(Io).
We denote some Chern classes in the following short way:

cji (3) = pr⇤j ci(Gr(3, 10)) 2 CHi(Gr(3, 10)),

cji (6) = pr⇤j ci(Gr(6, 10)) 2 CHi(Gr(6, 10)).

When we speak about CH⇤(U ⇥ U), where U is the universal variety in the
diagram (4.1), to keep notation simple we will denote (p, p)⇤(cji (6)) as cji (6)
and (q, q)⇤(cji (3)) as cji (3).

We have the normal sequence:

0 ! TU⇥U/F⇥F |
Ĩ0
! NĨ0/U⇥U ! (p, p)⇤NI0/F⇥F ! 0,

therefore (p, p)⇤NIo/F⇥F can be expressed as a polynomial in the Chern classes
of the normal bundle NĨo/U⇥U and in Chern classes of TU⇥U/F⇥F |

Ĩo
. The later

ones are polynomial in cji (6) and cji (3). Next, we see that Ĩ = (q, q)−1(∆X),
therefore

ci(NĨo/U⇥U) = (q, q)⇤ci(TX),

but ci(TX) are polynomial in cj(Gr(3, V10)). So we have that

I2o = (p, p)⇤(P · Ĩ),

where P is a quadratic polynomial in cji (6) and cji (3). The polynomial P can
be divided in three parts:

a. the part containing only cji (6). Since all these terms have from (p, p)⇤(c)
for some c 2 CH2(F (X)⇥F (X)), the intersection with Ĩ and projection
(p, p)⇤ gives the term Γ1 · Io.

b. the part divisible by cj1(3). The term cj1(3) has the from (q, q)⇤(c), for
some c 2 CH2(X⇥X), and its intersection with Ĩ can be represented as
(q, q)⇤(c·∆X). Since c1(Gr(3, 10))·∆X is proportional to ∆Gr(3,10)|X⇥X ,
it is a cycle coming from CH(Gr(3, 10)⇥Gr(3, 10)). Therefore this part
gives the term Γ2 in the final relation.

c. the part proportional to cj2(3). It will lead to the term

(p, p)⇤(q, q)
⇤Γ3 = (p, p)⇤(q, q)

⇤(c2(Gr(3, 10)))

in the final relation.
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4 Technical lemmas: open part

We start with the study of the local geometry of I3. Let ([W1], [W2], [W3]) be
a general point of I3. By definition of I3, the three spaces

K1 = W2 \W3, K2 = W3 \W1, K3 = W1 \W2

are pairwise transversal. In particular, we have decompositions

W1 = K2 ⊕K3,W2 = K3 ⊕K1,W3 = K1 ⊕K2, V9 = K1 ⊕K2 ⊕K3,

and since αX vanishes on W1,W2,W3, the restriction α0 = i⇤V9
αX belongs to

K⇤
1⌦K⇤

2⌦K⇤
3 . We note that α0 defines a hypersurface X 0 in Gr(3, V9) and X 0

contains ZW1 , ZW2 , and ZW3 , where the notation ZWi
was introduced above.

Let O be an open chart of Gr(3, K1 ⊕K2 ⊕K3) defined in the following
way:

O = {V : dim πK1(V ) = 3} .

We note that O is naturally isomorphic to the affine space Hom(K1,W1) or
to Hom(K1, K2) ⊕ Hom(K1, K3). The following lemma shows that α0|O is a
quadratic form and hence X 0|O is a quadratic hypersurface in O.

Lemma 4.4. Let α0 2 K⇤
1 ⌦K⇤

2 ⌦K⇤
3 . Its restriction α0|O defines a pairing

between Hom(K1, K2) and Hom(K1, K3), which in some basis can be repre-
sented by a 9⇥ 9−matrix

0
@

0 −Q3 −Q2

Q3 0 −Q1

Q2 Q1 0

1
A ,

where Q1, Q2, Q3 are 3⇥3-matrices. Moreover, this pairing is non-degenerate
for a general choice of α0.

Proof. Let (e1, e2, e3) be a basis of K1, (e4, e5, e6) be a basis of K2, and
(e7, e8, e9) be a basis of K3. Let a point p 2 Hom(K1,W1) be given by the
matrix (4.2). We evaluate α0 on the trivector

(e1 + (n1e4 + n2e5 + n3e6) + (m1e7 +m2e8 +m3e9))

^ (e2 + (n4e4 + n5e5 + n6e6) + (m4e7 +m5e8 +m6e9))

^ (e3 + (n7e4 + n8e5 + n9e6) + (m7e7 +m8e8 +m9e9)) .
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As α0 2 K⇤
1 ⌦K⇤

2 ⌦K⇤
3 , we can as well evaluate α0 on

e1 ^ (n4e4 + n5e5 + n6e6) ^ (m7e7 +m8e8 +m9e9)

− e1 ^ (n7e4 + n8e5 + n9e6) ^ (m4e7 +m5e8 +m6e9)

+ e2 ^ (n7e4 + n8e5 + n9e6) ^ (m1e7 +m2e8 +m3e9)

− e2 ^ (n1e4 + n2e5 + n3e6) ^ (m7e7 +m8e8 +m9e9)

+ e3 ^ (n1e4 + n2e5 + n3e6) ^ (m4e7 +m5e8 +m6e9)

− e3 ^ (n4e4 + n5e5 + n6e6) ^ (m1e7 +m2e8 +m3e9).

On the other hand, α0 can be written as e⇤1 ^Q1 + e⇤2 ^Q2 + e⇤3 ^Q3, where
Qi 2 K⇤

2 ⌦K⇤
3 . This gives the desired matrix presentation.

Assuming that Q3 is non-degenerate and using operations on lines, we
can transform the matrix to

0
@
0 1 Q−1

3 Q2

1 0 −Q−1
3 Q1

0 0 −Q2Q
−1
3 Q1 +Q1Q

−1
3 Q2

1
A .

Now we see that the pairing is non-generate if and only if −Q2Q
−1
1 Q3 +

Q3Q
−1
1 Q2 is non-degenerate. This condition is an open condition and it is

true for the following choice:

Q1 =

0
@
1 0 0
0 2 0
0 0 3

1
A , Q2 =

0
@
0 1 0
0 0 1
1 0 0

1
A , Q3 =

0
@
1 0 0
0 1 0
0 0 1

1
A .

Hence it is true for a general choice of Q1, Q2, Q3.

Proposition 4.5. a. The 9-dimensional cycle ZW1+ZW2+ZW3 in CH9(X
0)

is the restriction of a cycle Z of Gr(3, K1 ⊕K2 ⊕K3).

b. The 9-dimensional cycle ZW1 +ZW2 +ZW3 in CH9(X) is the restriction
of a cycle Z 0 of Gr(3, 10). In particular, ZW1+ZW2+ZW3 is constant in
CH9(X), i.e., it does not depend on the choice of ([W1], [W2], [W3]) 2 I3.

Proof. The statement (b) is an immediate consequence of (a). We prove (a).
Let us represent Gr(3, K1 ⊕ K2 ⊕ K3) as the union of the chart O (as

above), and subvarieties D1, D2, D3 where

O = {V : dim πK1(V ) = 3} ,

Dk = {V : dim πK1(V ) = 3− k} .
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Due to Lemma 4.4, the form α0|O defines a non-degenerate quadratic
hypersurface Q = X 0|O. Using this fact we are going to represent cycle
(ZW2 + ZW3)|O as the sum

(B1 − B2 +B3 − . . .+B9)|Q,

where Bi are 10−dimensional subspaces of O. We can take

Bi = hvi, vi+1, . . . , v9, v
⇤
1, . . . , v

⇤
i i ,

where (v1, v2, . . . , v9) is an arbitrary basis of K3
2 and (v⇤1, v

⇤
2, . . . , v

⇤
9) is the

dual basis in K3
3 . Now if A1 = K3

2 , A10 = K3
3 , and

Ai =
⌦
vi, vi+1, . . . , v9, v

⇤
1, . . . , v

⇤
i−1

↵

for 2  i  9, it is easy to see that Ai are 9−dimensional affine spaces
contained in hypersurface Q. We also have A1 = ZW2 |O and A10 = ZW3 |O.
Moreover, the restriction Bi|Q is Ai [Ai+1 for each i. Therefore (B1 −B2 +
B3 − . . .+B9)|Q = (ZW2 + ZW3)|O.

Let Bi ⇢ Gr(3, V9) be the Zariski closure of Bi ⇢ O. We are going to
take the cycle (B1 − B2 + B3 − . . . + B9) as the desired cycle in Gr(3, V9).
To finish the proof we need to investigate the boundaries B0

ik = Bi \ Dk.
For k = 1, 2, we will prove in Lemma 4.8 that the intersection of B0

ik and
X 0\Dk has dimension at most 8 for a general choice of the basis (v1, . . . , v9).
For k = 3, we note that ZW2 identifies to Hom(K1, K3), via the isomorphism
W2 = K1 ⊕K3, therefore the cycle ZW1 is contained in the complement of O
and in fact equal to D3. We have an inclusion:

Bi \X 0 ⇢
(
Ai [ Ai+1 [ ZW1

)
[ (lower dimensional terms) .

Therefore the restriction to X 0 of the closure of B1 − B2 + B3 − . . . + B9

defines a cycle of the form dZW1 + ZW2 + ZW3 for some d ≥ 0. Permuting
the Wi and adding up, we conclude that (d + 2)(ZW1 + ZW2 + ZW3) is the
restriction of a cycle of Gr(3, V9), which concludes the proof.

In the end of this subsection, we are going to present a lemma about the
relation of I and I3.

Lemma 4.6. For a general X the expected dimension of I is 6.

Proof. The codimension of ∆X is 20, therefore the codimension of (q, q)−1∆X

is also 20. Since U ⇥ U has dimension 26, the dimension of (q, q)−1∆X as
well as the dimension of (p, p)(q, q)−1∆X should be 6.
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Lemma 4.7. For a general choice of αX , the natural projection π12 : I
o
3 ! I

has degree one. As a consequence, there exists a birational map:

φ = π3 ◦ π
−1
12 : I // F (X).

Proof. We are going to understand the fiber π−1
12 (p) for a general point p =

([W1], [W2]) 2 I. Let K3 = W1 \W2, K2 ⇢ W1 such that K2 \K3 = 0, and
K1 ⇢ W2 such that K1 \K2 = 0, V9 = K1 ⊕K2 ⊕K3.

Any point of Io3 \ π−1
12 (p) belongs to the following open char of Gr(6, V9):

{V : dim πK1⊕K2(V ) = 6} ⇢ Gr(6, V9).

This chart can be identify with Hom (K1 ⊕ K2, K3), and its point (φ ⊕ ψ)
belongs to Io3 , if and only if the following equations hold:

α0((v1 + φ(v1)) ^ (v2 + φ(v2)) ^ (w1 + ψ(w1))) = 0,

α0((v1 + φ(v1)) ^ (w1 + ψ(w1)) ^ (w2 + ψ(w2))) = 0

for any v1, v2 2 K1 and any w1, w2 2 K2. Since, i⇤W1
α0 = i⇤W2

α0 = 0, these
equations are equivalent to

α0(v1 ^ φ(v2) ^ w1) + α0(φ(v1) ^ v2 ^ w1) = −α0(v1 ^ v2 ^ w1).

α0(v1 ^ ψ(w1) ^ w2) + α0(v1 ^ w1 ^ ψ(w2)) = −α0(v1 ^ w1 ^ w2).

The equations define two linear systems: for φ and for ψ. Since the coef-
ficients in the left hand sides of equations are defined only by the part of
α0 which belongs to K⇤

1 ⌦ K⇤
2 ⌦ K⇤

3 , we may apply Lemma 4.4 to see that
the matrix of coefficients in the linear system for φ 2 Hom (K1, K3) is a
non-degenerate 9⇥ 9−matrix. Similarly, the matrix for ψ is non-degenerate.
Therefore there is a unique solution and the natural projection π12 : I

o
3 ! I

has degree one.

5 Technical lemmas: boundary

The goal of this subsection is to prove the following lemma. We continue
with the notation from the previous subsection.

Lemma 4.8. For a general choice of basis (vj) of K3
2 and for any choice of

integer i between 1 and 9, let B ⇢ O be the 10-dimensional vector space

hvi, vi+1, . . . , v9, v
⇤
1, . . . , v

⇤
i i ,

where v⇤j denotes the dual basis of K⇤
3 with respect to α0|O. Then the inter-

section B \Dk \X 0 has dimension at most 8 for k = 1, 2.
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The proof of Lemma 4.8 will rest on Lemma 4.9 for k = 1 and Lemma
4.11 for k = 2. Before the proof we introduce local coordinates on O and
relate them to the local coordinates on D1 and on D2. In particular, we show
that any point on Dk is the limit point of some affine line in O. Finally, we
show that the intersection B \Dk \X 0 has dimension at most 8 by proving
that any 9−dimensional component of B \Dk is not contained in X 0.

We recall that a point in Gr(3, 9) can be represented by three independent
vectors, i.e., 3⇥9 matrix (both up to GL(3)−action). Fixing basis of K1, K2,
and K3, we have in chart O a representation

pO =

0
@
1 0 0 n1 n2 n3 m1 m2 m3

0 1 0 n4 n5 n6 m4 m5 m6

0 0 1 n7 n8 n9 m7 m8 m9

1
A . (4.2)

In this notation, ni correspond to an element of Hom(K1, K2) and mi cor-
respond to an element of Hom(K1, K3). Unfortunately, it is not possible to
relate coordinates nj and mj with the basis (vj, v

⇤
j ) in a simple way, because

the quadratic form α0|O is not a general quadratic form on O (its form was
explained in Lemma 4.4).

Now we are going to study the boundaries D1 and D2. According to the
definition of Dk, a point p 2 Dk can be represented by a 3⇥9−matrix, whose
rank of the first three columns is equal to 3− k.

For k = 1, we need another chart O0 where the rank of the first three
columns may be two. Without loss of generality, we may assume that the
columns number 1, 2, and 4 are linearly independent in O0. On O0 \ O we
have

0
@
1 0 n0

1 0 n0
2 n0

3 m0
1 m0

2 m0
3

0 1 n0
4 0 n0

5 n0
6 m0

4 m0
5 m0

6

0 0 n0
7 1 n0

8 n0
9 m0

7 m0
8 m0

9

1
A =

0
@
1 0 −n1

n7
0 n2n7−n1n8

n7

n3n7−n1n9

n7

m1n7−n1m7

n7

m2n7−n1m8

n7

m3n7−n1m8

n7

0 1 −n4

n7
0 n5n7−n4n8

n7

n6n7−n4n9

n7

m4n7−n4m7

n7

m5n7−n4m8

n7

m6n7−n4m8

n7

0 0 1
n7

1 n8

n7

n9

n7

m7

n7

m8

n7

m9

n7

1
A .

The intersection D0
1 = O0 \D1 is the 17−dimensional affine space defined by

n0
7 = 0 in O0. Any point p 2 D0

1 can be represented as the (t ! 1)-limit of
the affine line

l = t (0|N0|M0) + (id|N1|M1)

in O, where the 3⇥3−matrices N0, N1,M0,M1 are defined by the coordinates
n0
i and m0

i of p. Moreover, since the coordinates n0
2, n

0
3, n

0
5, n

0
6 and m0

1, . . . ,m
0
6

are well-defined as t ! 1, the direction (N0|M0) must satisfy the condition
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rk(N0|M0) = 1. Conversely, a choice of (N0|M0) with rk(N0|M0) = 1 and a
point (N1|M1) 2 O defines a line, whose limit point p belongs to D1. The
coordinates

n0
1, n

0
4, n

0
7, n

0
8, n

0
9,m

0
7,m

0
8,m

0
9

of the limit point p 2 D0
1 are defined only by the choice of (N0|M0) and the

remaining coordinates

n0
2, n

0
3, n

0
5, n

0
6,m

0
1, . . . ,m

0
6

are defined by (N1|M1), while (N0|M0) is fixed. The projection of D0
1 along

the coordinates n0
2, n

0
3, n

0
5, n

0
6,m

0
1, . . . ,m

0
6 defines the structure of a fibration

on D0
1, which can be extended to D1.

Lemma 4.9. Let F be the intersection of B with a fiber of D1. Then there
exists a point p 2 F , such that p /2 X 0.

Proof. A choice of fiber is equivalent to the choice of (N0|M0) such that
rk(N0|M0) = 1. We note that α0(id|N0|M0) = 0, therefore (N0|M0) belongs
to B \X 0, which is the union of two subspaces

⌦
vi, vi+1, . . . , v9, v

⇤
1, . . . v

⇤
i−1

↵
and hvi+1, . . . , v9, v

⇤
1, . . . v

⇤
i i .

Without loss of generality, we may assume that (N0|M0) belongs to the first
subspace. In this case v⇤i is not related with (N0|M0) and can be chosen arbi-
trarily (more precisely, there is a choice of basis (vj) providing the given choice
of v⇤i ). It allows to take a point (N1|M1) in B corresponding to v⇤i . In this case
N1 = 0 and M1 is arbitrary, which makes the coordinates m0

1, . . . ,m
0
6 arbi-

trary (while n0
1, n

0
4, n

0
7, n

0
8, n

0
9,m

0
7,m

0
8,m

0
9 are fixed by the choice of (N0|M0)).

Representing α0 as Q0
1 ^ e⇤7 +Q0

2 ^ e⇤8 +Q0
3 ^ e⇤9, where Q0

i 2 K⇤
1 ⌦K⇤

2 , we see
that

α0(p) = m1Q
0
1((0, 1, n

0
4), (1, n

0
8, n

0
9)) +m2Q

0
2((0, 1, n

0
4), (1, n

0
8, n

0
9))+

m3Q
0
3((0, 1, n

0
4), (1, n

0
8, n

0
9)) + other terms.

Since (0, 1, n0
4) can not be orthogonal to (1, n0

8, n
0
9) with respect to all three

forms Q0
i, at least one of the first three terms is not zero. Therefore a general

choice of m0
1, . . . ,m

0
6 provides a point p with α(p) 6= 0 and thus p 62 X 0.

For k = 2, we need a chart O0, where the rank of the first three columns
may be one. Without loss of generality, we may assume that the columns
number 1, 4, and 5 are linearly independent in O0. On O0 we have coordinates

0
@
1 n0

1 n0
2 0 0 n0

3 m0
1 m0

2 m0
3

0 n0
4 n0

5 1 0 n0
6 m0

4 m0
5 m0

6

0 n0
7 n0

8 0 1 n0
9 m0

7 m0
8 m0

9

1
A .
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The intersection D0
2 = D2 \ O0 is the 14−dimensional affine subspace in

O0, defined by n0
4 = n0

5 = n0
7 = n0

8 = 0. Again, any point on D0
2 can be

represented as the limit of the affine line

l = t (0|N0|M0) + (id|N1|M1)

in O and, similarly to the case k = 1, we have rk(N0|M0) = 2. Conversely, an
affine line t (0|N0|M0)+(id|N1|M1) with rk(N0|M0) = 2 defines a limit point
p 2 D2. We also have the structure of a fibration on D2: we can fix (N0|M0)
and then vary (N1|M1). A fiber has the following matrix presentation in O0:

0
@
1 n0

1 n0
2 0 0 ⇤ ⇤ ⇤ ⇤

0 0 0 1 0 n0
6 m0

4 m0
5 m0

6

0 0 0 0 1 n0
9 m0

7 m0
8 m0

9

1
A ,

where n0
j and m0

j are fixed. We note that such a fiber of D2 is entirely
contained in X 0 or has an empty intersection with X 0. It makes sense to
consider a projection

π : O0 ! P,

along the coordinates n0
3,m

0
1,m

0
2,m

0
3, where P ⇢ O0 is the linear subspace

defined by n0
3 = m0

1 = m0
2 = m0

3 = 0. Then, any point p(t) on the line

t (0|N0|M0) + (id|0|0) ,

passing through the origin of O with rk(N0|M0) = 2, can be represented as

0
@
1 n0

1 n0
2 0 0 0 0 0 0

0 1 0 tn4 tn5 tn6 tm4 tm5 tm6

0 0 1 tn7 tn8 tn9 tm7 tm8 tm9

1
A

or, for t 6= 0,

0
@
1 n0

1 n0
2 0 0 0 0 0 0

0 1/t 0 n4 n5 n6 m4 m5 m6

0 0 1/t n7 n8 n9 m7 m8 m9

1
A .

In this notation the value α0(p(t)) does not depend on t. Therefore the limit
point of such a line belongs to X 0 \D2 if and only if the line is contained in
X 0.

We are going to show that the intersection B\D2 is not contained in X 0.
We need the following auxiliary lemma.
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Lemma 4.10. Let 1  i  9 and let

A =
⌦
vi, . . . , v9, v

⇤
1, . . . , v

⇤
i−1

↵
.

Then π(A \D0
2) has dimension at most four.

Proof. The dimension of π(A\D0
2) depends only on the variety of "directions"

in A:
M = {(N0|M0) 2 A : rk(N0|M0) = 2}.

Let M0 be an irreducible component of M. There are two possibilities:

a. M0 = 0 for general (N0|M0) 2 M0. In this case we have m0
1 = m0

2 =
. . . = m0

6 = 0 for the corresponding component of π(A \ D0
2). Hence

its dimension is at most 4.

b. M0 6= 0 for general (N0|M0) 2 M0. Let M0N be the image of the pro-
jection of M0 to K3

2 , i.e., M0N is the variety of N0 in pairs (N0|M0) 2
M0. We note that M0N is contained in the cubic hypersurface defined
in hvi, . . . , v9i by det(N0) = 0. In particular, dimM0N  9 − i. Simi-
larly, we can define M0M as the image of the projection of M to K3

3 .
We also have dimM0M  i− 2. There are two possibilities:

(a) dimM0N = 9− i or dimM0M = i−2. Without loss of generality,
we may assume that dimM0N = 9 − i. We are going to show
that the fiber of M0 ! M0N over a general point of M0N has
dimension at most i − 4. This will imply that dimM0  5 and
therefore dim π(A \D2)  4.

Let N0 be a general point of M0N ⇢ hvi, . . . , v9i. The fiber of M0

over N0 is the subvariety of

A \K3
3 = hv⇤1, . . . , v

⇤
i i

consisting of all matrices M0 such that rk(N0|M0) = 2. It can
be defined by 3 linear equations (depending on N0) and hence it
can be represented as the subspace orthogonal with respect to the
quadratic form α0|O to some 3−dimensional subspace

hf1, f2, f3i ⇢ K3
2 = hv1, . . . , v9i ,

where f1, f2, f3 depend on N0. It can be also seen as the subspace
of

K3
3 = hv⇤1, . . . , v

⇤
9i
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orthogonal to
hf1, f2, f3, vi, vi+1, . . . , v9i .

For a general choice of α and a general choice of N0, the vectors

N0, f1, f2, f3

are linearly independent in K3
2 . Moreover, we claim that all 13− i

vectors
f1, f2, f3, vi, . . . , v9

are linearly independent. Indeed, this condition is an open condi-
tion, and it is enough to show the result for some choice of vj. We
can fix N0 in K3

3 , take vi = N0, then define vj for j 6= i in such a
way that the desired 13− i vectors are linearly independent. It is
possible, while the dimension of hf1, f2, f3, vi, . . . , v9i is less than
9. The assumption of the existence of non-zero M0 in the fiber,
provides that dim hf1, f2, f3, vi, . . . , v9i  8.

The independence of f1, f2, f3, vi, . . . , v9 will imply that the di-
mension of a fiber over N0 is at most i − 4. Hence dimM0  5
and therefore dim π(A \D0

2)  4.

(b) dimM0N  8− i and dimM0M  i−3. In this case, dimM0  5
and therefore dim π(A \D0

2)  4.

Lemma 4.11. No 9−dimensional component of B \D2 is contained in X 0.

Proof. We prove the lemma by contradiction. Assume that there is a com-
ponent B0 of B \ D2 contained in X 0. Hence π(B0) is contained in X 0 and
therefore each point of π(B0) is the limit of a line contained in B \X 0. Since
B \X 0 = A [ A0, where

A =
⌦
vi, . . . v9, v

⇤
1, . . . , v

⇤
i−1

↵
, A0 = hvi+1, . . . v9, v

⇤
1, . . . , v

⇤
i i .

We have that π(B0) is contained in π(A[A
0
). Due to Lemma 4.10, dim π(A[

A
0
)  4, but dim π(B0) ≥ 5. We have a contradiction, which proves the

lemma.

Proof of Lemma 4.8. For k = 1 the result follows from Lemma 4.9. The in-
tersection F of B with a fiber of D1 is irreducible and therefore it is contained
in one irreducible component of B\D1. Conversely, any component contains
such a fiber. Since each fiber contains a point which does not belong to X 0,
each irreducible component of B \D1 is not contained in X 0.

For k = 2 the result follows from Lemma 4.11.
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