
HAL Id: tel-01797231
https://theses.hal.science/tel-01797231

Submitted on 22 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speaker adaptation of deep neural network acoustic
models using Gaussian mixture model framework in

automatic speech recognition systems
Natalia Tomashenko

To cite this version:
Natalia Tomashenko. Speaker adaptation of deep neural network acoustic models using Gaussian mix-
ture model framework in automatic speech recognition systems. Neural and Evolutionary Computing
[cs.NE]. Le Mans Université; ITMO University, 2017. English. �NNT : 2017LEMA1040�. �tel-01797231�

https://theses.hal.science/tel-01797231
https://hal.archives-ouvertes.fr

Natalia TOMASHENKO

Mémoire présenté en vue de l’obtention du

grade de Docteur de Le Mans Université

sous le sceau de l’Université Bretagne Loire

en cotutelle avec ITMO University

École doctorale : MathSTIC

Discipline : Informatique
Spécialité : Informatique
Unité de recherche : EA 4023 LIUM

Soutenue le 1 décembre 2017
Thèse N° : 2017LEMA1040

 Speaker adaptation of deep neural network
acoustic models using Gaussian mixture

model framework in automatic speech
recognition systems

JURY

Rapporteurs : Jean-François BONASTRE, Professeur, Université d’Avignon et des Pays de Vaucluse

Denis JOUVET, Directeur de Recherche, LORIA-INRIA

Examinateurs : Alexey KARPOV, Professeur, ITMO University

Lori LAMEL, Directrice de Recherche, LIMSI-CNRS

Directeur de Thèse : Yannick ESTEVE, Professeur, Le Mans Université

Co-directeur de Thèse : Yuri MATVEEV, Professeur, ITMO University

Co-encadrant de Thèse : Anthony LARCHER, Maître de conférences, Le Mans Université

Title of thesis : Speaker adaptation of deep neural network acoustic models using Gaussian
mixture model framework in automatic speech recognition systems

 Résumé
Les différences entre conditions d'apprentissage et
conditions de test peuvent considérablement dégrader
la qualité des transcriptions produites par un système
de reconnaissance automatique de la parole (RAP).
L'adaptation est un moyen efficace pour réduire
l'inadéquation entre les modèles du système et les
données liées à un locuteur ou un canal acoustique
particulier. Il existe deux types dominants de modèles
acoustiques utilisés en RAP : les modèles de mélanges
gaussiens (GMM) et les réseaux de neurones profonds
(DNN). L'approche par modèles de Markov cachés
(HMM) combinés à des GMM (GMM-HMM) a été l'une
des techniques les plus utilisées dans les systèmes de
RAP pendant de nombreuses décennies. Plusieurs
techniques d'adaptation ont été développées pour ce
type de modèles. Les modèles acoustiques combinant
HMM et DNN (DNN-HMM) ont récemment permis de
grandes avancées et surpassé les modèles GMM-HMM
pour diverses tâches de RAP, mais l'adaptation au
locuteur reste très difficile pour les modèles DNN-HMM.
L'objectif principal de cette thèse est de développer une
méthode de transfert efficace des algorithmes
d'adaptation des modèles GMM aux modèles DNN. Une
nouvelle approche pour l'adaptation au locuteur des
modèles acoustiques de type DNN est proposée et
étudiée : elle s'appuie sur l'utilisation de fonctions
dérivées de GMM comme entrée d'un DNN. La
technique proposée fournit un cadre général pour le
transfert des algorithmes d'adaptation développés pour
les GMM à l'adaptation des DNN. Elle est étudiée pour
différents systèmes de RAP à l'état de l'art et s'avère
efficace par rapport à d'autres techniques d'adaptation
au locuteur, ainsi que complémentaire.
Mots clés
adaptation au locuteur, apprentissage adaptatif au
locuteur (SAT), réseaux de neurones profonds,
modèles de mélanges Gaussiens (GMM),
paramètres acoustiques dérivés de GMM (GMMD),
reconnaissance automatique de la parole (RAP),
modèles acoustiques, apprentissage profond

Abstract
Differences between training and testing conditions may
significantly degrade recognition accuracy in automatic
speech recognition (ASR) systems. Adaptation is an
efficient way to reduce the mismatch between models
and data from a particular speaker or channel. There
are two dominant types of acoustic models (AMs) used
in ASR: Gaussian mixture models (GMMs) and deep
neural networks (DNNs). The GMM hidden Markov
model (GMM-HMM) approach has been one of the most
common technique in ASR systems for many decades.
Speaker adaptation is very effective for these AMs and
various adaptation techniques have been developed for
them. On the other hand, DNN-HMM AMs have recently
achieved big advances and outperformed GMM-HMM
models for various ASR tasks. However, speaker
adaptation is still very challenging for these AMs. Many
adaptation algorithms that work well for GMMs systems
cannot be easily applied to DNNs because of the
different nature of these models. The main purpose of
this thesis is to develop a method for efficient transfer of
adaptation algorithms from the GMM framework to DNN
models. A novel approach for speaker adaptation of
DNN AMs is proposed and investigated. The idea of this
approach is based on using so-called GMM-derived
features as input to a DNN. This technique of
processing features for DNNs makes it possible to use
GMM adaptation algorithms for neural network AMs.
The proposed technique provides a general framework
for transferring adaptation algorithms, developed for
GMMs, to DNN adaptation. It is explored for various
state-of-the-art ASR systems and is shown to be
effective in comparison with other speaker adaptation
techniques and complementary to them.
Key Words
speaker adaptation, speaker adaptive training (SAT),
deep neural network (DNN), Gaussian mixture
model (GMM), GMM-derived (GMMD) features,
automatic speech recognition (ASR), acoustic
models, deep learning

 L’Université Bretagne Loire

Titre de thèse

Prénom NOM Natalia Tomashenko

 Utilisation de modèles gaussiens pour l'adaptation au locuteur de
réseaux de neurones profonds dans un contexte de modélisation

acoustique pour la reconnaissance de la parole

Acknowledgements

This thesis was done in collaboration between two universities – University of Le Mans in France and

ITMO University in Saint-Petersburg – and I thank all the people from both universities who organized this

collaboration and made this double-degree program possible.

I would like to express my deep gratitude to my supervisor from the LIUM (Laboratoire d’Informatique de

l’Université du Maine), Yannick Estève, and my advisor, Anthony Larcher, for supervision, scientific freedom,

motivation, enthusiasm, valuable pieces of advice about my work, kindness, inspiration, interesting scientific

discussions, encouraging and friendly atmosphere they create for students, for bringing happiness and joy to the

work, and for all the opportunities and support that were provided for my work. It is not possible to express in

words how happy and grateful I was to work in the LIUM, and I thank everyone there for contributing towards

the exciting academic environment and friendly atmosphere: Carole, Mercedes, Sahar, Kévin, Salima, Anthony

R., Etienne, Grégor, Sylvain, Walid, Mélanie, Dominique, Antoine, Edwin, Marie, Adrien, Fethi, Ozan, Florent,

Daniel, Nathalie, Loïc, Amira, Abdessalam, Emmanuelle, Bruno, Simon, Hakim, and all the others.

Also, I would like to thank my supervisor from the ITMO University, Yuri N. Matveev, and the Department

of Speech Information Systems (SIS) in the ITMO University for the opportunity to develop my work within

the framework of the double-degree program.

I would like to express my sincere gratitude to Jean-François Bonastre and Denis Jouvet for accepting to be

the reviewers of this work and for their insightful comments and suggestions which led to many improvements.

My gratitude also goes to other jury members: president of the jury, Lori Lamel, and Alexey Karpov, whose

valuable feedback helps to improve this manuscript. I thank them a lot.

I thank the Speech Technology Center (STC) in Saint-Petersburg and many current and former STC

colleagues. The years that I worked at the STC on various industrial and research projects related to speech

technologies gave me experience in the field and inspired me to complete my PhD in speech recognition. I

particularly thank the Research and Development Department of the STC and all the people with whom I

worked there: Alexey Prudnikov, Olga Khomitsevich, Irina Chernych, Yuri Khokhlov, and many, many others.

Finally, I thank all my friends and my family for their love and support.

Thank you! Merci ! Спасибо!

Contents

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

Thesis structure . 3

2 Deep neural networks 7

2.1 Introduction . 7

2.2 Deep neural network architecture . 7

2.3 Training . 10

2.3.1 Training criteria . 10

2.3.2 Learning algorithm . 12

2.3.3 Momentum . 13

2.3.4 Regularization . 13

2.3.5 Dropout . 14

2.3.6 Pre-training . 15

2.4 Alternative neural network architectures 15

2.4.1 Convolutional neural network (CNN) 15

2.4.2 Time-delay neural network (TDNN) 18

2.4.3 Recurrent neural network (RNN) 19

2.4.4 Bidirectional recurrent neural network (BRNN) 21

2.4.5 Long short term memory (LSTM) network 22

3 Overview of automatic speech recognition 25

3.1 Introduction to automatic speech recognition 25

vi Contents

3.2 Feature extraction . 27

3.2.1 Spectral features . 29

3.2.2 Neural network-based features . 30

3.2.2.1 Tandem features . 30

3.2.2.2 Bottleneck features . 31

3.3 Acoustic modeling . 32

3.3.1 Hidden Markov models . 33

3.3.2 State distribution modeling in HMM 35

3.3.2.1 GMM-HMM . 35

3.3.2.2 Subspace Gaussian mixture models 36

3.3.2.3 DNN-HMM . 36

3.3.3 HMM training and parameter estimation 39

3.3.3.1 GMM-HMM . 39

3.3.3.2 DNN-HMM . 40

3.4 Pronunciation modeling . 41

3.5 Language modeling . 42

3.6 Speech decoding techniques . 44

3.7 End-to-end ASR . 45

3.8 Speech recognition performance evaluation 46

3.8.1 General evaluation scheme . 47

3.8.2 Alignment algorithms . 47

3.8.3 Measures for evaluation . 48

3.8.4 Absolute and relative improvement 49

3.8.5 Statistical significance tests and confidence intervals 49

4 Acoustic adaptation 51

4.1 Speech variability and adaptation . 51

4.1.1 Adaptation types and modes . 52

4.1.2 Normalization . 53

4.2 Adaptation for GMM models . 54

4.2.1 Maximum a posteriori (MAP) . 54

4.2.1.1 Standard MAP approach 54

4.2.1.2 Vector field smoothing (VFS) 55

4.2.1.3 Structural maximum a posteriori (SMAP) 56

4.2.2 Maximum likelihood linear regression (MLLR) 56

Contents vii

4.2.2.1 Regression classes . 57

4.2.2.2 Constrained MLLR (CMLLR) and feature-space MLLR

(fMLLR) . 58

4.2.3 Speaker space methods . 58

4.2.3.1 Cluster adaptive training (CAT) 58

4.2.3.2 Eigenvoice-based adaptation 59

4.2.4 Speaker adaptive training (SAT) 59

4.3 Adaptation for DNN models . 59

4.3.1 Linear transformation . 60

4.3.1.1 Linear input network (LIN) 61

4.3.1.2 Linear output network (LON) 62

4.3.1.3 Linear hidden network (LHN) 63

4.3.2 Regularization techniques . 63

4.3.2.1 L2 regularization . 64

4.3.2.2 Kullback-Leibler divergence (KLD) regularization 64

4.3.2.3 Reducing the number of adapted parameters 65

4.3.2.4 Conservative training 66

4.3.3 Subspace methods . 66

4.3.4 Factorized adaptation . 68

4.3.5 Multi-task learning . 70

4.3.6 Auxiliary features . 72

4.3.6.1 I-vectors . 73

4.3.6.2 D-vectors . 76

4.3.6.3 Speaker codes . 76

4.3.7 Adaptation based on GMMs . 77

5 Speech corpora 79

5.1 Wall Street Journal (WSJ) . 80

5.2 TED-LIUM . 81

5.3 STC . 82

5.4 Arabic MGB 2016 challenge . 83

5.5 Summary for all datasets . 84

6 GMM framework for neural network AMs 87

6.1 Introduction . 87

6.2 Hybrid DNN-HMM systems with GMM-derived (GMMD) features 88

viii Contents

6.3 DNN adaptation using GMMD features 90

6.4 Preliminary experimental results with supervised adaptation 92

6.4.1 Baseline system . 92

6.4.2 Adaptation for DNN . 93

6.4.2.1 Supervised adaptation performance for different DNN-

HMMs . 94

6.4.2.2 Adaptation performance depending on the amount of the

adaptation data . 94

6.4.3 Fusion . 94

6.4.3.1 Feature-level fusion . 96

6.4.3.2 Posterior-level fusion 96

6.5 Conclusions . 97

7 Speaker adaptive training 99

7.1 SAT DNN AM training using GMMD features 99

7.1.1 Proposed approach to SAT-DNN 99

7.1.2 Experimental results with SAT and unsupervised MAP and fMLLR

adaptation . 101

7.1.2.1 Baseline system . 101

7.1.2.2 SAT-DNN AMs . 101

7.1.2.3 Adaptation performance for different DNN-HMMs . . . 102

7.1.2.4 Adaptation performance depending on the size of the adap-

tation dataset . 103

7.1.3 Discussion . 104

7.2 MAP adaptation using lattices scores . 106

7.3 Data augmentation and data selection for SAT 107

7.4 Experimental results with data augmentation, data selection and lattices scores110

7.5 Conclusions . 111

8 Integration of GMMD features into state-of-the-art ASR systems 113

8.1 System fusion . 113

8.1.1 Feature-level fusion . 113

8.1.2 Posterior-level fusion . 114

8.1.3 Lattice-level fusion . 115

8.1.4 Other types of fusion . 115

8.2 Training DNN AMs with GMMD features 116

Contents ix

8.3 Training TDNN AMs with GMMD features 117

8.4 Baseline systems and addressed questions 119

8.4.1 Questions addressed in this study 120

8.4.2 Baseline DNN AMs . 121

8.4.3 Baseline TDNN AMs . 122

8.5 Proposed systems with GMMD features 124

8.5.1 DNN AMs on GMMD features 124

8.5.2 TDNN AMs on GMMD features 124

8.6 Adaptation and fusion results . 125

8.6.1 Preliminary results: impact of the auxiliary GMM and parameter τ

in MAP adaptation on GMMD features 125

8.6.2 Results for DNN models . 126

8.6.3 Results for TDNN models . 129

8.7 Results for Arabic MGB 2016 Challenge 131

8.7.1 Acoustic models . 132

8.7.2 Results . 134

8.7.3 Discussion . 134

8.8 Conclusions . 136

9 Towards speaker adaptation for end-to-end AMs 137

9.1 Introduction . 137

9.2 Speaker adaptation for BLSTM-CTC models 138

9.3 Experiments . 139

9.3.1 Baseline systems . 140

9.3.2 Adapted models . 140

9.3.3 Adaptation results for CTC AMs 141

9.3.4 Comparison of adaptation behavior for BLSTM-CTC and TDNN AMs142

9.4 Conclusions . 143

10 GMMD feature analysis 147

10.1 Phoneme posterior based features . 147

10.2 Visual analysis using t-SNE . 149

10.3 Davies-Bouldin index . 149

10.4 Analysis for TDNN models . 150

10.5 Conclusions . 157

x Contents

11 Conclusions and future work 159

11.1 Overview of contributions . 159

11.2 Perspectives . 161

Publications 165

Bibliography 169

List of Figures

2.1 Example of a deep neural network . 8

2.2 Convolutional neural network for image processing 16

2.3 Example of feature expansion and subsampling in the time-delay neural

network . 18

2.4 Jordan recurrent neural network . 20

2.5 Elman recurrent neural network . 20

2.6 Bidirectional recurrent neural network . 22

2.7 Example of the LSTM memory cell . 23

3.1 Scheme of an ASR system . 27

3.2 Example of the tandem speech recognition system 30

3.3 Bottleneck (BN) features for GMM-HMM speech recognition system . . . 32

3.4 HMM-based phone model with five states and left-to-right topology 34

3.5 Example of the hybrid acoustic model . 38

4.1 Linear input network (LIN) adaptation . 61

4.2 Linear output network (LON) adaptation 62

4.3 Linear hidden network (LHN) adaptation 63

4.4 Singular value decomposition (SVD) bottleneck adaptation 66

4.5 Factorized adaptation . 69

4.6 Factor extraction using BN features . 70

4.7 Multi-task learning (MTL) neural architecture for adaptation 71

4.8 DNN architecture for adaptation with hierarchy output layer 72

4.9 Using i-vectors for DNN adaptation: concatenation of i-vectors with input

features . 74

4.10 Using i-vectors for DNN adaptation: adaptation network 75

4.11 Speaker codes for DNN adaptation . 77

xii List of Figures

6.1 Use of GMMD features for training DNN-HMM model 89

6.2 Adaptation scheme for a DNN trained on GMMD features 91

6.3 Supervised adaptation performance depending on the amount of the adapta-

tion data for the STC corpus . 95

7.1 SAT scheme for DNN training with GMMD features. 100

7.2 Unsupervised adaptation performance on si_et_05 set depending on the size

of the adaptation dataset . 105

7.3 Data selection and data augmentation scheme for SAT 107

7.4 Differences in GMMD characteristics depending on τ values 109

8.1 Types of fusion . 114

8.2 Using speaker-adapted BN-based GMMD features for SAT of a DNN-HMM 117

8.3 Using speaker-adapted BN-based GMMD features for SAT of a TDNN-HMM118

9.1 SAT for the BLSTM-CTC AM using GMMD features 139

9.2 Per-speaker relative WER reduction for speakers from test and development

datasets of the TED-LIUM corpus for different adaptation algorithms . . . 145

10.1 Scheme of phoneme posterior based (PPB) feature extraction 148

10.2 Analysis of PPB features for vowels using t-SNE for TDNN models 151

10.3 Analysis of PPB features for consonants-1 using t-SNE for TDNN models . 152

10.4 Analysis of PPB features for consonants-2 using t-SNE for TDNN models . 153

10.5 Adaptation analysis based on PPB feature statistics 155

10.6 Summary statistics for all speakers from the development and the two test

datasets of the TED-LIUM corpus . 156

List of Tables

5.1 Datasets statistics for the TED-LUM corpus 81

5.2 Statistics for the MGB-2016 training and development datasets. 84

5.3 Summary statistics for all datasets . 85

6.1 Baseline WER results for SI-DNN models with 2 and 4 hidden layers for

three types of features on the STC corpus 93

6.2 Supervised adaptation performance for different DNN-HMMs on the STC

corpus . 94

6.3 Feature and posterior level fusion results on the STC corpus for 11×13MFCC

and 11×55GMMD features . 96

7.1 WER results for unsupervised adaptation on WSJ0 evaluation sets 102

7.2 Performance for unsupervised speaker adaptation on the WSJ0 corpus for

speakers from si_et_20 evaluation set . 103

7.3 Performance for unsupervised speaker adaptation on the WSJ0 corpus for

speakers from si_et_05 evaluation set . 104

7.4 Summary of WER results for unsupervised adaptation on WSJ0 evaluation

set si_et_20 . 111

8.1 Impact of the parameters of the auxiliary model topology and τ on GMMD

feature extraction . 126

8.2 Summary of unsupervised adaptation results for DNN models on the TED-

LIUM corpus . 127

8.3 Summary of the fusion results for DNN models on the TED-LIUM corpus . 128

8.4 Summary of unsupervised adaptation results for TDNN models on TED-

LIUM corpus . 130

8.5 Summary of the fusion results for TDNN models on TED-LIUM corpus . . 131

xiv List of Tables

8.6 Recognition results on the Dev dataset for different AMs and their fusion for

MGB-2016 . 135

9.1 Summary of unsupervised adaptation results for CTC AMs on TED-LIUM

corpus . 142

9.2 Summary of unsupervised adaptation results for TDNN AMs on TED-LIUM

corpus . 143

9.3 Relative WER reduction for adapted BLSTM-CTC and TDNN AMs on

TED-LIUM corpus . 144

10.1 Davies-Bouldin index for different types of features used in TDNN training 154

10.2 Statistics for PPB features, obtained using the corresponding TDNN models 154

Nomenclature

Notations

∆ First-order time derivatives of a feature vector

∆∆ Second-order time derivatives of a feature vector

∆absWER Absolute Word Error Rate Reduction

∆relWER Relative Word Error Rate Reduction.

F(ΛΛΛ) Objective function to be optimized over parameters ΛΛΛ

hl Activation vector (typically hidden) at l-th layer in a neural network

ΛΛΛ Set of model parameters

N (.;µµµ,ΣΣΣ) Multivariative Gaussian distribution with mean vector µµµ and covariance matrix ΣΣΣ

ot Speech observation vector at time t

ôt Context vector composed of several neighboring speech observation vectors: [ot−T1 ,

. . . ,ot+T2]. Usually, except for time-delay neural networks, we consider symmetrical

intervals (T1 = T2 = T).

τ Parameter that controls the balance between the maximum likelihood estimate of

the mean and its prior value in maximum a posteriori adaptation

[−T1..T2] where (T1,T2 ≥ 0) – Sequence of T1 + T2 + 1 integer numbers in this interval:

−T1,−T1 +1, . . . ,T2−1,T2. Notation [−T1..T2] for feature vector ot means, that for

this vector a new context vector ôt is obtained through concatenation of neighboring

vectors: ôt = [ot−T1 , ...,ot , ...,ot+T2]. Usually, except for time-delay neural networks,

we consider symmetrical intervals (T1 = T2 = T).

xvi Nomenclature

Acronyms / Abbreviations

AM Acoustic Model

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BLSTM Bidirectional Long Short Term Memory

BMMI Boosted Maximum Mutual Information

BN Bottle-Neck

BP Backpropagation

BRNN Bidirectional Recurrent Neural Network

CAT Cluster Adaptive Training

CD Context-Dependent

CDF Cumulative Distribution Function

CE Cross-Entropy

CI Context-Independent

CMLLR Constrained Maximum Likelihood Linear Regression

CMN Cepstral Mean Normalization

CMVN Cepstral Mean and Variance Normalization

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

DB Davies-Bouldin (index)

DCT Discrete Cosine Transform

DNN Deep Neural Network

DP Dynamic Programming

Nomenclature xvii

EM Expectation Maximization

fbanks filter-bank (coefficients)

FER Frame Error Rate

fMLLR feature-space Maximum Likelihood Linear Regression

GMMD GMM-Derived

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HL Hidden Layer

HMM Hidden Markov Model

KLD Kullback-Leibler Divergence

LDA Linear Discriminant Analysis

LHN Linear Hidden Network

LHUC Learning Hidden Unit Contributions

LIN Linear Input Network

LM Language Model

LON Linear Output Network

LSTM Long Short Term Memory

LVCSR Large Vocabulary Continuous Speech Recognition

MAP Maximum A Posteriori

MBR Minimum Bayes Risk

MFCC Mel-Frequency Cepstral Coefficients

MGB Multi-Genre Broadcast

MLLR Maximum Likelihood Linear Regression

xviii Nomenclature

MLLT Maximum Likelihood Linear Transform

ML Maximum Likelihood

MLP Multilayer Perceptron

MMI Maximum Mutual Information

MTL Multi-Task Learning

PCA Principal Component Analysis

PLP Perceptual Linear Prediction

PPB Phoneme Posterior Based

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SAT Speaker Adaptive Training

SD Speaker Dependent

SGD Stochastic Gradient Descent

SGMM Subspace Gaussian Mixture Model

SI Speaker Independent

SMAP Structural Maximum a Posteriori

sMBR state-level Minimum Bayes Risk

t-SNE t-Distributed Stochastic Neighbor Embedding

TDNN Time-Delay Neural Network

UBM Universal Background Model

VFS Vector Field Smoothing

VTLN Vocal Tract Length Normalization

Nomenclature xix

VTS Vector Taylor Series

WER Word Error Rate

WSJ Wall Street Journal

Chapter 1

Introduction

Automatic speech recognition (ASR) is the technology that enables human–machine interac-

tion by allowing human beings to speak with a computer interface. ASR has been an active

research area for decades. The progress in the development of ASR technology achieved in

the last years increased the use of different ASR systems in everyday life. Interactive voice

response (IVR) systems, information extraction and retrieval, automatic closed captioning,

dictation, transcription of recorded speech, language learning systems, speech-to-speech

translation systems (such as Skype translator), virtual personal assistant devices (such as

Apple’s Siri, Google Assistant, Amazon Alexa, Microsoft Cortana, Facebook’s M), and many

other ASR applications are becoming an integral part of our lives.

This progress has become possible largely due to the recent advances in deep learning

research [Goodfellow et al., 2016], which represents now the mainstream direction for speech

recognition development [Yu and Deng, 2014]. Two key factors have contributed to this

process: (1) substantial increase of computational power of multi-core processors, general

purpose graphical processing units (GPGPUs), and GPU clusters, which allow to train more

complex models with a greater number of parameters, and (2) access to more training data.

Despite all these advances, ASR systems are still domain dependent and usually can

show high performance only if they are designed for a specific task or environment. Any

mismatch between training and testing conditions may degrade the performance. In particular,

this mismatch can be caused by different acoustic conditions (such as different speakers,

recording channels, background noises, etc.). To overcome this problem, acoustic adaptation

is typically applied.

The aim of acoustic model (AM) adaptation is to reduce mismatches between training

and testing acoustic conditions and improve the accuracy of the ASR system for a target

speaker or channel, using a limited amount of adaptation data from the target acoustic source.

2 Introduction

This thesis focuses mainly on speaker adaptation, which is aimed to reduce the mismatch

caused by inter-speaker variability. Nevertheless, the developed approaches are applicable to

a wider range of adaptation tasks.

Adaptation of deep neural network (DNN) AMs is a rapidly developing research area.

In the recent years, DNNs have replaced conventional Gaussian mixture models (GMMs)

in most state-of-the-art ASR systems, because it has been shown that DNN Hidden Markov

Models (HMMs) outperform GMM-HMMs in different ASR tasks [Hinton et al., 2012a].

Many adaptation algorithms that have been developed for GMM-HMM systems, such as

maximum a posteriori adaptation (MAP) [Gauvain and Lee, 1994], maximum likelihood

linear regression (MLLR) [Gales, 1998; Leggetter and Woodland, 1995] and others [Shinoda,

2011; Woodland, 2001], cannot be easily applied to DNNs because of the different nature of

these models.

Among the adaptation algorithms developed for DNNs, only a few take advantage of

robust adaptability of GMMs (Chapter 4). The most common way of using GMMs for DNN

model adaptation is through GMM-adapted features. For example, acoustic features adapted

with feature-space maximum likelihood linear regression (fMLLR) technique are used as

input for DNN training in [Kanagawa et al., 2015; Parthasarathi et al., 2015; Rath et al., 2013;

Seide et al., 2011a]. In [Lei et al., 2013] likelihood scores from DNN and GMM models,

both adapted in the feature space using the same fMLLR transform, are combined at the state

level during decoding. A temporally varying weight regression (TVWR) is explored in [Liu

and Sim, 2014], where DNN posteriors are transformed into time-varying scaling factors for

Gaussian weights, using a regression model. However, none of these approaches suggests a

universal method to transfer adaptation algorithms from GMM models to DNNs.

The main purpose of this thesis is to develop a framework for efficient transfer of all

adaptation algorithms, developed for GMM AMs, to DNN AMs. To achieve this goal, we

proposed to use so-called GMM-derived features (GMMD) as input to a DNN [Tomashenko

and Khokhlov, 2014b]. Then, the proposed adaptation algorithm was extended to the concept

of speaker adaptive training (SAT) for DNNs [Tomashenko and Khokhlov, 2015].

The desirable property of an adaptation algorithm is flexibility. That means that adaptation

makes use of all available adaptation data: it improves the speech recognition accuracy even

with a small amount of adaptation data, and, when the amount of adaptation data increases,

speech recognition accuracy also continues to improve, asymptotically approaching the

accuracy of matched (in our case, speaker-dependent (SD)) AM [Shinoda, 2011]. The

effectiveness of the proposed adaptation approach was explored using the most common

adaptation algorithms for GMM-HMM – MAP and fMLLR adaptation, as an example. We

3

mostly focus on MAP adaptation in the experiments, because it can provide an additional

flexibility to DNN adaptation, as it is not restricted to a single transform, as fMLLR.

Different ways for adaptation performance improvement, such as using confidence

scores [Tomashenko et al., 2016b], data selection and data augmentation strategies [Tomashenko

et al., 2016d], were proposed and investigated in this thesis.

Starting our research from a classical DNN architecture and simple auxiliary GMM model

trained for GMM-derived feature extraction, we are interested in the following questions:

• The first question is how, in terms of topology and basic features, to more effectively

train an auxiliary GMM model, which is used for GMM-derived features, in order to

achieve better DNN adaptation performance [Tomashenko et al., 2016b].

• The second question concerns the way of efficient integration of GMM-derived features

into neural network architectures of state-of-the-art ASR systems [Tomashenko et al.,

2016a]. Most of these systems already use normalization and speaker adaptation

techniques. How the best improvement over these systems can be obtained using the

proposed adaptation approach?

• Is the proposed technique complementary to other widely used algorithms for DNN

adaptation, such as fMLLR or i-vectors?

• And finally, can the other more advanced neural network architectures, such as time-

delay neural networks (TDNN), recurrent neural networks (RNN), and others, which

nowadays have become dominant in state-of-the art ASR systems, also benefit from

the proposed adaptation technique? We are particularity interested in end-to-end deep

AMs (Chapter 9), because end-to-end systems are an important trend in current ASR

technology.

In addition, we aim to look more deeply into the nature of the GMMD features and

adaptation techniques associated with them to better understand their properties, strengths

and weaknesses and the potential for improvement (Chapter 10).

Thesis structure

The thesis is organized as follows:

• Chapter 2 provides an introduction to DNNs, key aspects of their training procedure, and

some of the most common neural network architectures currently used in ASR.

4 Introduction

• Chapter 3 gives an overview of HMM-based ASR systems, describes their principal

components (including feature extraction; acoustic, pronunciation and language modeling;

decoding techniques) with the main focus on acoustic modeling part. Two types of AMs are

described, differing in the way they model the state probability distribution: HMM-GMM

and hybrid HMM-DNN models. In addition, end-to-end ASR systems are reviewed, as

they represent an important trend in current ASR technology. Performance evaluation for

ASR systems is described in the final section.

• Chapter 4 reviews speaker adaptation techniques for both GMM-HMM and DNN-HMM

acoustic models.

• Chapter 5 describes the speech corpora and language models (LM) used to carry out the

experiments. Experimental results in each chapter follow theoretical descriptions.

• Chapter 6 introduces a GMM framework for training DNNs and provides preliminary

experimental results with supervised speaker adaptation.

• Chapter 7 extends the scheme for GMM-derived feature extraction by applying a concept

of SAT. It can be considered as consisting of two main parts, representing independent

ideas: (1) Section 7.1 and (2) the rest of this chapter (Sections: 7.2, 7.3 and 7.4). Each of

these parts has a corresponding section with experimental results.

In the first part, a SAT procedure for DNN training is presented. In the experiments for

this chapter we explore the effectiveness of MAP and fMLLR adaptation, as well as their

combination in the proposed approach for adapting an auxiliary GMM model, used for

GMMD feature extraction. We look at the dependence of the adaptation behavior for

different algorithms on the amount of adaptation data.

In the second part, several techniques for adaptation performance improvement are pro-

posed and studied: using lattice scores, data augmentation and data selection. For this

techniques we used a different experimental setup, with larger and more complex models.

For this chapter as well as for all the following ones experimental results are reported for

unsupervised adaptation mode.

• Chapter 8 investigates various ways of integrating GMM-derived features into different

state-of-the-art neural network architectures (DNN and TDNN). To build a stronger ASR

system, we took as a basis conventional Kaldi [Povey et al., 2011b] recipes for AMs and

aim to integrate our adaptation algorithm in these recipes. We perform this integration in

different ways: feature concatenation of the proposed GMMD features with conventional

5

features for training DNNs, fusion of posterior from different DNNs, lattice-level fusion

of recognition results, and others. Also we compare the proposed approach with the

most common feature-space adaptation techniques, such as fMLLR and i-vectors, for

DNN and TDNN AMs. In addition, in Section 8.7 we report some results of applying

the proposed GMMD features in the MGB Challenge 20161 as a part of the LIUM ASR

system [Tomashenko et al., 2016f].

• Chapter 9 explores the effectiveness of the proposed adaptation technique in application

to end-to-end AMs, taking as an example bidirectional long short term memory (BLSTM)

acoustic models trained with connectionist temporal classification (CTC) criterion. Three

different speaker adaptation algorithms have been implemented to this type of AMs and

experimentally analyzed: (1) fMLLR adaptation, (2) adaptation using i-vectors, and

(3) the proposed algorithm with MAP adaptation using GMMD features. Furthermore, a

comparative study of the adaptation techniques was conducted for CTC AMs and TDNN

AMs trained with the traditional frame-wise cross-entropy criterion.

• Chapter 10 analyzes properties of the proposed GMM-derived features and adaptation

algorithm. For this analysis, we use phoneme posterior based (PPB) features, obtained from

decoding lattices. Visual t-distributed stochastic neighbor embedding (t-SNE) analysis

[Maaten and Hinton, 2008] is performed for different phoneme groups. Davies-Bouldin

(DB) index [Davies and Bouldin, 1979] and other statistics are also used in this study.

• Chapter 11 contains a summary and discusses possible future work.

1The Multi-Genre Broadcast (MGB) challenge: http://www.mgb-challenge.org/

Chapter 2

Deep neural networks

This chapter introduces deep neural networks (DNNs) and provides an overview of some of

the most common neural network architectures used in ASR.

2.1 Introduction

In the ASR literature, the term deep neural network (DNN) was originally referred to as

feed-forward artificial neural network (or multilayer perceptron (MLP) [Rosenblatt, 1961])

with more than one hidden layer [Hinton et al., 2012a; Seide et al., 2011b]. Later this term

was extended to the meaning of any neural network with a deep structure [Yu and Deng,

2014]. In this thesis we will use the term DNN mainly when referring to feed-forward models

and explicitly specify the type of the architecture (feed-forward, convolutional, recurrent,

etc.), when it is necessary.

DNNs play an important role in modern ASR systems, particularly in acoustic model-

ing. It was shown, that for various ASR tasks, DNN AMs outperform traditional GMM

AMs [Hinton et al., 2012a].

Further in this chapter we review a feed-forward DNN architecture, training procedure

including some practical considerations, and different alternative types of neural network

architecture that nowadays are used in ASR systems.

2.2 Deep neural network architecture

The architecture of a conventional DNN can be described as follows [Hinton et al., 2012a].

Let denote the l-th layer of a DNN as hl , and the total number of layers in a DNN as L+1,

8 Deep neural networks

so that layers have indexes: 0, . . . ,L. Then

hl = f l(zl) = f l
(

Wlhl−1 +bl
)

for 0 < l ≤ L, (2.1)

where





zl = Wlhl−1 +bl ∈ R
Nl – excitation vector,

hl ∈ R
Nl – activation vector,

Wl ∈ R
Nl×Nl−1 – weight matrix,

bl ∈ R
Nl – bias vector,

Nl – number of neurons in layer l (or layer dimension),

h0 = o ∈ R
N0 – input observation feature vector,

N0 = D – feature dimension,

f l(·) : RNl → R
Nl – activation function.

(2.2)

Input vector

Hidden layers

Output vector

Figure 2.1 Example of a deep neural network with an input layer, three hidden layers, and an
output layer

The activation function f l is applied element-wise to the excitation vector. Let zi be i-th

element of vector z of linear activations, obtained from (2.2). For simplicity, we omit layer

index l in the notation. There are several types of activation functions, among which the most

commonly used are:

2.2 Deep neural network architecture 9

• Identity function:

I(zi) = zi. (2.3)

Identity function is usually used in the output layer for regression tasks.

• Sigmoid (standard logistic) function:

σ(zi) =
1

1+ e−zi
. (2.4)

• Hyperbolic tangent function:

tanh(zi) =
ezi− e−zi

ezi + e−zi
. (2.5)

Hyperbolic tangent function is connected with the sigmoid function: tanh(z) =

2σ(2z)− 1 and is different from the sigmoid function in the output range of val-

ues: tanh(z) ∈ (−1,1), while σ(z) ∈ (0,1). So the tanh function is symmetric around

zero, and is recommended, for example in [LeCun et al., 2012], for more efficient

training.

• Rectified linear unit (ReLU) function:

ReLU(zi) = max(0,zi). (2.6)

The ReLUs [Jaitly and Hinton, 2011; Nair and Hinton, 2010] create sparse representa-

tions in a DNN structure. They are efficient in combination with dropout [Srivastava

et al., 2014] regularization techniques [Dahl et al., 2013].

• Maxout function [Goodfellow et al., 2013]:

maxout
(
{zi}i∈R

)
= max({zi}i∈R) , (2.7)

where R is the number of linear activations. A single maxout unit can be considered as

a piecewise linear approximation to any convex function, and maxout network with

two hidden units can approximate arbitrarily well any continuous functions.

• Softmax function [Bridle, 1990]:

softmax(zi) =
ezi

∑
Nl
j=1 ez j

. (2.8)

10 Deep neural networks

• Lp-norm function [Boureau et al., 2010; Gulcehre et al., 2014; Zhang et al., 2014]:

∥∥{zi}i∈R

∥∥
p =

(

∑
i∈R

|zi|
p

) 1
p

, (2.9)

where p≥ 1 is the order of the norm, and R is the set of linear activations, for which

the norm is calculated.

In this thesis we will apply sigmoid (2.4) and ReLU (2.6) activation functions for hidden

layers in different DNN-HMM AM setups, and the softmax activation function (2.9) will be

used for the output layer.

The type of the output layer depends on the task:

• For the regression task it is a linear layer (with the identity activation function):

hL = zL = WLhL−1 +bL. (2.10)

• For the multi-class classification task each output neuron represents a class i∈ 1, . . . ,NL,

and the value of i-th output neuron hL
i represents the probability PDNN(i|o) that vector

o belongs to class i. To simulate a probability distribution, the softmax function (2.9)

is used:

hL
i = PDNN(i|o) = softmax(zi). (2.11)

2.3 Training

Let y be an output vector of a DNN, corresponding to an observation vector o. As before

(see Formula (2.2)), [W,b] denotes a set of DNN parameters to be estimated from training

samples T= {(om,ym) : 0≤ m≤M}, where om is the m-th observation vector, and ym is the

corresponding target vector. The process of [W,b] parameter estimation (or DNN training)

is characterized by a training criterion and a learning algorithm.

2.3.1 Training criteria

In order to estimate parameters of a DNN, a suitable training criterion (or a loss func-

tion) should be specified. Two aspects should be taken into account when choosing a loss

function F:

2.3 Training 11

1. Simplicity of evaluation.

2. Correlation with the final goal of the task.

Several popular training criteria are used for DNN training:

• Mean square error (MSE):

FMSE(W,b;T) =
1
M

M

∑
m=1

FMSE(W,b;om,ym), (2.12)

where

FMSE(W,b;o,y) =
1
2
∥hL−y∥2 =

1
2

(
hL−y

)T (
hL−y

)
. (2.13)

This criterion is used for regression tasks.

• Cross-entropy (CE):

FCE(W,b;T) =
1
M

M

∑
m=1

FCE(W,b;om,ym), (2.14)

where

FCE(W,b;o,y) =−
NL

∑
i=1

yi loghL
i , (2.15)

where yi = Ptarget(i|o) is the observed in the training set empirical probability that the

observation vector o belongs to class i, and hL
i = PDNN(i|o) is the same probability

estimated from the DNN. This criterion is used for the classification tasks, where y

is a probability distribution. Minimizing CE criterion is equivalent to minimizing the

Kullback-Leibler divergence (KLD) between the empirical probability distribution (of

targets) and the probability distribution estimated from the DNN. In many tasks, hard

class labels are used as targets:

yi =





1, if co = i

0, otherwise
(2.16)

where co is the class label of the observation vector o in the training set. In this case

the CE criterion (2.15) becomes the negative log-likelihood criterion (NLL):

FNLL(W,b;o,y) =− loghL
co
. (2.17)

12 Deep neural networks

2.3.2 Learning algorithm

Given the training criterion, the parameters of a DNN [W,b] can be discriminatively trained

(DT) with the error backpropagation algorithm (BP) [Rumelhart et al., 1986] by propagating

derivatives of a loss function. In the simplest version, the DNN parameters can be improved

using the first-order gradient information as follows [Yu and Deng, 2014]:

Wl
t+1←Wl

t − ε∆Wl
t (2.18)

and

bl
t+1← bl

t − ε∆bl
t , (2.19)

where ε is a learning rate; Wl
t and bl

t are the weight matrix and the bias vector of the layer l

after the t-th update;

∆Wl
t =

1
Mb

Mb

∑
m=1

∇
Wl

t
F(W,b;om,ym) (2.20)

and

∆bl
t =

1
Mb

Mb

∑
m=1

∇
bl

t
F(W,b;om,ym) (2.21)

are the average weight matrix gradient and the average bias vector gradient correspondingly

at iteration t computed on Mb samples and ∇xF is the gradient of F with respect to x.

The parameter updates in Formulas (2.18) and (2.19) are estimated on a batch of training

samples. The choice of the batch size influences the final result of the training, as well as

the convergence speed. In the simplest approach, which is referred to the batch training,

the batch is the whole training set. An alternative approach is to use the stochastic gradient

descent (SGD) algorithm [Bishop, 2006; Bottou, 1998], where gradients are estimated from a

single sample. However, the most common technique is to compute the derivatives on small,

randomly chosen mini-batches of the training samples. In this thesis we will use the last

approach, which also referred to as the mini-batch SGD algorithm in the literature [Li et al.,

2014c].

There are some practical considerations that have to be taken into account for efficient

DNN training [Ruder, 2016; Yu and Deng, 2014]. One important question is the choice of the

learning rate ε . If a learning rate is too small the learning algorithm has too slow convergence,

and on the contrary, if it is too large, it can prevent learning from convergence to optimal

solution. Learning rate schedules [Darken and Moody, 1991] aim to regulate the learning rate

during the training according to a fixed learning rate schedule, depending on the changes in the

objective function, or component-wise, depending on the geometry of the observed data and

2.3 Training 13

the parameter sparseness. Popular gradient descent optimization algorithms include [Ruder,

2016]: momentum, Nesterov accelerated gradient (NAG) [Nesterov, 1983], Adagrad [Duchi

et al., 2011], Adadelta [Zeiler, 2012], adaptive moment estimation (Adam) [Kingma and Ba,

2014], natural gradient descent [Amari, 1998], and RMSprop [Tieleman and Hinton, 2012].

Batch normalization technique, proposed in [Ioffe and Szegedy, 2015], allows significant

acceleration of the DNN training. It consists in a normalization step that fixes the means and

variances of layer inputs.

Below we consider some other important issues related to DNN training procedure, such

as momentum, pre-training, and regularization techniques.

2.3.3 Momentum

In order to speed up the training and to smooth the parameter updates, the information about

the previous updates is included into the gradient update in the form of momentum [Qian,

1999; Rumelhart et al., 1985]. When the momentum is applied, Formulas (2.18) and (2.19)

are replaced with:

Wl
t+1←Wl

t − ε∆Wl
t +α∆t−1(W

l) (2.22)

and

bl
t+1← bl

t − ε∆bl
t +α∆t−1(b

l), (2.23)

where

∆t(W
l) = Wl

t+1−Wl
t (2.24)

and

∆t(b
l) = bl

t+1−bl
t , (2.25)

and 0 < α < 1 is a momentum coefficient (factor).

2.3.4 Regularization

Overfitting can be a serious problem in DNN training due to the large number of estimated

parameters. There are different ways to control and prevent over-fitting in DNN training.

One solution to reduce over-fitting is to apply some regularization terms for the DNN pa-

rameter updates. Regularization aims to incorporate some prior information into the training

criteria, to prevent the model from learning undesirable configurations. The common way is

to add a complexity term (penalty) to the loss function to penalizes certain configurations.

The most commonly used regularization terms include:

14 Deep neural networks

1. L1-penalty:

R1(W) = ∥vec(W)∥1 =
L

∑
l=1

∥∥∥vec(Wl)
∥∥∥

1
=

L

∑
l=1

Nl

∑
i=1

Nl−1

∑
j=1
|W l

i j| (2.26)

is based on L1-norm.

2. L2-penalty:

R2(W) = ∥vec(W)∥2
2 =

L

∑
l=1

∥∥∥vec(Wl)
∥∥∥

2

2
=

L

∑
l=1

Nl

∑
i=1

Nl−1

∑
j=1

(W l
i j)

2 (2.27)

is based on L2-norm.

In Formulas (2.26) and (2.27), Wi j denotes the (i, j)-th element in matrix W, and vec(Wl) is

the vector, obtained by concatenation all the columns in the matrix Wl . The regularization

terms are often referred to as weight decay in the literature. When the regularization is

applied, the training criterion is changed to:

Freg(W,b;T) = F(W,b;T)+λRp(W), (2.28)

where p ∈ {1,2}, depending on the chosen penalty type; and F(W,b;T) is a CE or MSE

loss function, that optimizes the empirical loss on the training set T.

2.3.5 Dropout

Dropout is an alternative powerful regularization technique [Dahl et al., 2013; Hinton et al.,

2012b; Srivastava et al., 2014] which consists in removing a specified percentage of randomly

selected hidden units or inputs during training or pre-training to improve generalization.

When a hidden neuron is dropped out in training, its activation is set to 0. During the

training with dropout, a random subset of units should be repeatedly sampled. This slows

down the training process. A fast dropout training algorithm was proposed in [Wang and

Manning, 2013] and is based on using Gaussian approximation instead of doing Monte Carlo

optimization.

2.4 Alternative neural network architectures 15

2.3.6 Pre-training

Pre-training techniques provide an effective way of weight initialization and also can propose

a solution for the over-fitting problem [Erhan et al., 2010]. Various approaches to DNN

pre-training include [Yu and Deng, 2014]:

• Generative pre-training:

– restricted Boltzmann machines (RBMs) [Hinton, 2010; Nair and Hinton, 2010;

Smolensky, 1986]. An RBM is a stochastic neural network, where binary activa-

tions depend on their neighbors and have probabilistic binary activation functions.

– Deep belief networks (DBNs) [Hinton et al., 2006].

– Denoising autoencoders [Bengio et al., 2007].

• Discriminative pre-training (DPT). In DPT, layers can be pre-trained layer-wise using

BP as follows. First, a DNN with only one hidden layer is trained discriminatively to

convergence using labels. Then, another hidden layer with randomly initialized weights

is inserted before the output layer. After that the new network is discriminatively trained

again. Each time, when a new hidden layer is added to the network, all layers are

updated using BP. This procedure is repeated until the required number of hidden

layers is reached.

2.4 Alternative neural network architectures

2.4.1 Convolutional neural network (CNN)

Convolutional neural network (CNN) [LeCun et al., 1995, 1998] is a neural network archi-

tecture designed for data that has a grid-structure topology [Goodfellow et al., 2016].

The development of CNNs is claimed to be originally inspired by biological neural

processes. Neurophysiologists [Hubel and Wiesel, 1962] explored how neurons in the cat’s

brain responded to images on a screen in front of the cat. In this experiment they found

out that in the primary visual cortex of the brain, some part of cells (so-called, simple

cells) strongly respond to specific edge-like patterns, but almost do not respond to other

patterns. Another part of cells (complex cells) have wider receptive fields (sub-regions of

the visual field, to which the cells are sensitive) and are locally invariant to small changes

in the position of the pattern. This phenomenon inspired the development of some pooling

strategies in CNNs, such as, maxout units [Goodfellow et al., 2013] and different models,

16 Deep neural networks

such as, NeoCognitron [Fukushima, 1988], HMAX [Serre and Riesenhuber, 2004; Serre et al.,

2007], LeNet [LeCun et al., 1998].

Input layer

(C1)

4 feature maps

(S1)

4 feature maps

(C2)

6 feature maps

(S2)

6 feature maps

Output

Layer

Convolution Subsampling

or pooling

Convolution Fully connected MLP Subsampling

or pooling

Figure 2.2 Example of the convolutional neural network for image processing. The figure
was adapted with some modifications based on the idea from [LeCun et al., 1995].

The modern CNNs were proposed in [LeCun et al., 1995, 1998, 1989] for image pro-

cessing. The following ideas were introduced into the neural network architecture [LeCun

et al., 1998]: convolution, local receptive fields, shared weights and spatial or temporal

subsampling (or pooling) in order to achieve a certain degree of invariance to scale, shift and

distortions of the input [LeCun et al., 1998].

A typical example of a CNN architecture is depicted in Figure 2.2. It contains two convo-

lutional layers (C1 and C2), two subsampling (or pooling) layers (S1 and S2), and several

fully-connected layers. The lower-layers are composed of convolution and subsampling (or

max-pooling layers). The upper-layers are fully-connected and correspond to a simple MLP

with several hidden layers. Units in a layer are organized in planes, within which all the units

share the same set of weights. The set of outputs from units in a plane is called a feature map.

A convolutional layer is composed of several feature maps with different sets of weights and

biases. Different feature maps extract different types of local features from the input. The

input to the first fully-connected layer is the set of all features maps from the lower layer.

In general, a CNN can be described by the following operations:

• Convolution. The convolution operation, denoted as

c(t) = (x∗ k)(t) =
∫

x(τ)k(t− τ)dτ, (2.29)

can be considered in the discrete case as multiplication of input x by a matrix kernal

(also called filter) k. The output is referred to as the feature map. In practice input x is

usually a multidimensional array of data and kernel k is a multidimensional array of

2.4 Alternative neural network architectures 17

parameters that are trained by the learning algorithm. The kernel typically has a much

smaller size than the input.

• Pooling. The pooling operation maps the output at a certain region to a summary

statistic of neighboring units in this region. Examples of pooling include: the max-

pooling [Riesenhuber and Poggio, 1999; Zhou and Chellappa, 1988], average of a

rectangular neighborhood, the Lp-norm of a rectangular neighborhood [Boureau et al.,

2010], a weighted average based on the distance from the central point, and others [Jia

et al., 2012; Swietojanski and Renals, 2016]. Pooling helps to make the representation

be approximately invariant to small changes of the input. Also for many tasks, pooling

is important for handling inputs of different sizes.

These operations introduce several useful properties into the neural network architecture,

that can help to improve a machine learning system: sparse interactions and parameter

sharing [Goodfellow et al., 2016]. Also they allow a neural network to work with inputs of

variable size.

Convolutional networks play an important role in the history of neural networks. In the

past they were applied to many tasks including handwriting recognition [Bottou et al., 1994],

on-line handwritten word recognition [Bengio et al., 1995], face recognition [Lawrence et al.,

1997] and others. In image processing, a deep CNN was used to win the ImageNet image

classification challenge [Krizhevsky et al., 2012], and more recently, the 152-layer residual

network (ResNet)1 has been introduced [He et al., 2016] to significantly reduce the ImageNet

classification error rate.

In recent years, CNNs have become widely used in various state-of-the-art applications,

for example, in computer vision: [Jia et al., 2014; LeCun et al., 2010; Szegedy et al., 2015], in

speech technology: [Chen et al., 2016; Li et al., 2016; Manenti et al., 2016], and particularly,

in ASR: [Abdel-Hamid et al., 2013, 2012; Deng et al., 2013a; Ghahremani et al., 2016;

Sainath et al., 2013a,b; Suzuki et al., 2016; Swietojanski et al., 2014; Zhang et al., 2016b],

CNNs with a very deep VGG2 network architecture [Sercu et al., 2016; Yu et al., 2016]. In

ASR systems, for acoustic modeling, the convolution can be done either in time [Yoshioka

et al., 2015] or in frequency domain [Abdel-Hamid et al., 2014], or in both [Mitra and Franco,

2015]. Applying convolution in the time domain allows a neural network to be invariant to

1Residual networks (ResNets) are the type of NNs, where a residual function of the input is learned using
skip connections. ResNet framework was designed [He et al., 2016] to train very deep neural networks, which
are easy to optimize and which avoid poor optimization or generalization problems.

2The VGG (Visual Geometry Group) network architecture was introduced in [Simonyan and Zisserman,
2014] for ImageNet Challenge 2014 submission.

18 Deep neural networks

shifts in time. Using convolution in the frequency domain makes a neural network invariant

to frequency.

2.4.2 Time-delay neural network (TDNN)

Time-delay neural networks (TDNNs) belong to a particular type of CNNs that share weights

along a single temporal dimension. Initially TDNN models have been proposed for the

phoneme recognition task in [Lang and Hinton, 1988; Waibel et al., 1989], and later they

were applied for spoken word recognition [Bottou et al., 1990] and for on-line handwriting

recognition [Guyon et al., 1991] tasks. TDNNs allow the acoustic model to learn the temporal

dynamics of the speech signal using short term acoustic feature vectors. Recently AMs

with the TDNN topology have been shown to outperform state-of-the-art DNN-HMM ASR

systems for many tasks [Peddinti et al., 2015; Povey et al., 2016].

Acoustic vectors

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5 +4 -3

+1 -8

+3 -3

+2 -1

+2
-2

Figure 2.3 Example of feature expansion and subsampling in the time-delay neural network.
The figure was adapted with some modifications based on the idea from [Peddinti et al.,
2015].

Figure 2.3 shows an example of layer-wise context expansion scheme for a TDNN model.

Each frame of the higher level corresponds to a longer context than the lower layers. This

hierarchical temporal context expansion is different from the using of a wide contextual

2.4 Alternative neural network architectures 19

window of acoustic feature vectors in the input layer, as it is done in a DNN model. Different

layers in the TDNN model correspond to different levels of abstraction in information,

extracted from the speech signal: local patterns in speech signal can be captured by the lower

layers, while more complex structures can be learned by higher levels.

In the given example (Figure 2.3), each layer has its own context extension and sub-

sampling characteristics. For example, the first layer operates on the window of 5 frames

{ot−2,ot−1,ot ,ot+1,ot+2} of the input features. We will denote it as {−2,−1,0,1,2} (or

simply, [−2,2]) following the notations from [Peddinti et al., 2015; Povey et al., 2011b].

Layer 2 operates on the window of 4 frames of the Layer 1: [−1,2]. In addition, Layer 2 has

a sub-sampling, so it utilizes only boundary frames {−1,2} from context window [−1,2].

The frame connections that are used in TDNN after sub-sampling are shown in the figure

with solid lines (the light dotted lines correspond to frame connections without subsampling).

Finally, we can see, that the top layer has an indirect connection to the input acoustic vectors

layer by means of context window [−17,12].

This type of neural network will be used for AMs in our experiments. The layer-wise

context expansion in time dimension has been explored also in [Amodei et al., 2015; Yu

et al., 2016]. Sub-sampling and context extension in the network was also used in stacked

bottle-neck networks [Grézl et al., 2014], but in that setup both neural networks were trained

separately.

2.4.3 Recurrent neural network (RNN)

Recurrent neural networks (RNNs) is a type of neural networks developed to process se-

quential data. RNNs provide a powerful extension of feed-forward DNN models by adding

connections between different type of units, regardless from their positions within the neural

network topology. Possible connections include backward connections to previous layers,

self-recurrent loops of units and others. A directed cycle is a basic type of connections

between different units in RNN models. The use of recurrence over the temporal dimension

allows RNNs to model the dynamic temporal behavior.

Early important types of RNNs, suggested in the literature, include:

• Jordan RNN [Jordan, 1986, 1997]: contains recurrent connections that allow the

network’s hidden units to see its own previous output, so that the subsequent behavior

can be formed by the previous responses (Figure 2.4).

20 Deep neural networks

• Elman RNN or simple recurrent networks (SRNs) [Elman, 1990]: has additional

context units that come from the hidden layer and are augmented with the input layer

(Figure 2.5).

Input

vector

Hidden

layer

Output

vector

Context

vector

Figure 2.4 Jordan recurrent neural network

Input

vector

Hidden

layer

Output

vector

Context

vector

Figure 2.5 Elman recurrent neural network

The main difference of RNNs from DNNs consists in the fact that RNNs operate not only

on input vectors, but also on internal states of the model. The internal states of the RNN

encode the information about the temporal sequence of the past process that was already

processed by this RNN. A simple RNN with a single hidden layer can be described with the

observation and state equations as follows:





ht = f (Wohot +Whhht−1 +Wyhyt−1 +bh)

yt = g(Whyht +by),
(2.30)

2.4 Alternative neural network architectures 21

where




ot ∈ R
D – vector of inputs,

ht ∈ R
N – vector of hidden state values,

yt ∈ R
L – vector of outputs,

Why ∈ R
L×N – weight matrix connecting N hidden units to L outputs,

Woh ∈ R
N×D – weight matrix connecting D inputs to N hidden units,

Whh ∈ R
N×N – weight matrix connecting N hidden units from time t−1 to time t,

Wyh ∈ R
N×L – weight matrix connecting the output layer at time t−1 to the hidden layer,

bh – bias vector for hidden states,

by – bias vector for outputs,

f (·) – hidden layer activation function,

g(·) – output layer activation function.

The term Wyhyt−1 in Formula (2.30) is often omitted. For training RNN models, a back-

propagation-through-time (BPTT) learning algorithm is typically used [Werbos, 1990].

However, in practice, training RNNs to learn long-term temporal dependencies can be

difficult due to the vanishing and exploding gradient problems [Bengio et al., 1994].

2.4.4 Bidirectional recurrent neural network (BRNN)

In many applications the output prediction of yt may depend not only on the information

about the past sequence {o1, . . . ,ot−1}, but also on the future sequence {ot+1, . . . ,oT}. In

order to capture information from the whole input sequence, the bidirectional RNN (BRNN)

architecture was proposed [Schuster and Paliwal, 1997]. In BRNNs, data are processed in

two directions with two hidden layers, which are then inputted further to the same output

layer. As shown in Figure 2.6, a recurrent forward hidden layer of BRNN
−→
h computes

sequence of hidden outputs for t = 1, . . . ,T , and an additional recurrent layer
←−
h computes

the backward sequence of hidden outputs for t = T, . . . ,1:





−→
h t = f (W

o
−→
h

ot +W−→
h
−→
h

−→
h t−1 +b−→

h
),

←−
h t = f (W

o
←−
h

ot +W←−
h
←−
h

←−
h t−1 +b←−

h
),

yt = g(W−→
h y

−→
h t +W←−

h y

←−
h t +by).

(2.31)

22 Deep neural networks

Input vectors

Backward hidden layers

Output vectors

Forward hidden layers

��−1 �� ��+1

��−1 �� ��+1

��−1 �� ��+1

��−1 �� ��+1

Figure 2.6 Bidirectional recurrent neural network

BRNNs become very successful in many applications [Graves, 2012], such as handwriting

recognition [Graves and Schmidhuber, 2009] and ASR [Graves et al., 2013]. In ASR domain,

BRNN architecture underlies many end-to-end systems [Graves and Jaitly, 2014; Graves

et al., 2013; Hannun et al., 2014; Miao et al., 2015a].

2.4.5 Long short term memory (LSTM) network

Long short term memory (LSTM) neural networks represent a special type of RNNs, which

are able to learn long-term dependencies. They were introduced in [Hochreiter and Schmid-

huber, 1997] and explicitly designed to avoid the long-term dependency problem. The LSTM

models have shown themselves to be extremely effective in many tasks, such as handwriting

recognition [Graves et al., 2009; Pham et al., 2014]; machine translation [Sutskever et al.,

2014]; speech synthesis [Fan et al., 2014]; visual recognition and description [Donahue et al.,

2015]; speech recognition [Graves et al., 2013; Sak et al., 2014] and many others [Greff et al.,

2016].

A schematic LSTM block diagram is illustrated in Figure 2.7. Here ct is the memory

cell state at time moment t. The LSTM has the ability to remove or add information to the

cell state, regulated by structures called gates. Gates provide a mechanism to optionally

let information through. They are composed of a sigmoid neural net layer and a pointwise

multiplication operation. To protect and control the cell state, the LSTM has three gates:

• Forget gate ft decides what information is thrown away from the cell state.

2.4 Alternative neural network architectures 23

� � ���ℎ

��−1 ��

��−1
�

��

�� �� ��

���ℎ

∙ ∙ ∙ +

��

�� F
o

rg
e

t
 g

a
te

In
p

u
t

g
a

te

O
u

tp
u

t
g
a

te

Input

Output

Figure 2.7 Example of the LSTM memory cell

• Input gate it – decides which values are updated.

• Output gate ut – decides what parts of the cell state are outputted.

The computations at time t are described as follows:





it = σ (Wioot +Wiyyt−1 +bi) ,

ft = σ
(
W f oot +W f yyt−1 +b f

)
,

c̃t = tanh(Wcoot +Wcyyt−1 +bc) ,

ct = ft⊙ ct−1 + it⊙ c̃t ,

ut = σ (Wuoot +Wuyyt−1 +bu) ,

yt = ut⊙ tanh(ct),

(2.32)

where W.o terms denote the weight matrices connecting the inputs with the units; W.y terms

denote the weight matrices connecting the memory cell outputs from the previous time

moment t−1 with the units. The operation ⊙ denotes the element-wise multiplication of

two vectors.

There are many variants of the original LSTM model, which were proposed in the

literature for different tasks [Grézl et al., 2007; Sak et al., 2014; Yao et al., 2015]. In one

24 Deep neural networks

popular LSTM variant, introduced in [Gers and Schmidhuber, 2000], peephole connections

from the cell to the gates were added to the neural network architecture. This allows the

neural network to learn exact timings. Another alternative structure is the gated recurrent unit

(GRU), proposed in [Cho et al., 2014]. It consists in simplification of the LSTM architecture.

In GRU, the forget and input gates are combined into a single update gate. In addition, the

cell state and hidden state are merged, and some other modifications are made.

Chapter 3

Overview of automatic speech

recognition

This chapter provides an overview of ASR systems with the focus on hidden Markov model

based ASR systems and describes their principal concepts.

3.1 Introduction to automatic speech recognition

The development of ASR has a long history — since 1960 till this moment – and during this

period has achieved a great progress. The success in ASR research has led to the increase of

a variety of real-world applications, such as interactive spoken dialog systems, information

extraction and retrieval, automatic closed captioning, dictation, transcription of recorded

speech, language learning systems, etc.

The goal of ASR consists in finding a text representation for an input speech signal. In

a statistical speech recognition paradigm, which is the most common one for this problem

nowadays [Benesty et al., 2007; Rabiner, 1989], an ASR system aims to find word sequence

W = (w1, . . . ,wN), which is the most probable according to the trained model, for given

acoustic observation feature vectors O = [o1, . . . ,oT].

The principal components of an ASR system with an example of speech recognition

analysis are illustrated in Figure 3.1. First, an input speech waveform is converted into a

sequence of fixed-size acoustic feature vectors O = [o1, . . . ,oT] in a process called feature

extraction. Then, the decoder tries to find the most likely sequence of words for the obtained

feature vectors. The ASR task can be formulated as finding word sequence W∗ out of all

possible word hypotheses, that maximizes the posterior probability of O:

26 Overview of automatic speech recognition

W∗ = argmax
W

P(W|O). (3.1)

However, since P(W|O) is difficult to model directly, Bayes theorem is usually ap-

plied [Jelinek, 1976]:

P(W|O) =
P(O|W)P(W)

P(O)
∝ P(O|W)P(W) (3.2)

to transform into the equivalent problem :

W∗ = argmax
W

P(O|W)P(W). (3.3)

The likelihood P(O|W) is determined by an acoustic model and the prior P(W) – by a

language model.

As shown in Figure 3.1 each word wn in W is represented as a sequence of basic sounds

called phones. To take into account different pronunciation variations (phonetic transcriptions

Q), the likelihood P(O|W) can be estimated as

P(O|W) = ∑
Q

P(O|Q)P(Q|W), (3.4)

where Q is a sequence of word pronunciations Q = (Q1, . . . ,QN) for the word sequence W,

and each word pronunciation is a sequence of phones: Qn = (q(n)1 ,q(n)2 . . .), 1≤ n≤ N. Then

P(Q|W) =
N

∏
n=1

P(Qn|wn), (3.5)

where P(Qn|wn) is the probability that the word wn is pronounced with phonetic transcription

Qn. Hence P(Q|W) corresponds to pronunciation model and gives the probability of the

phonetic sequence given the sequence of words. The pronunciation model is also called

(phonetic) dictionary, or lexicon. Taking into account all three factors (acoustic, phonetic

and language) and the corresponding models, Formula (3.3) can be rewritten as follows:

W∗ = argmax
W

∑
Q

P(O|Q)P(Q|W)P(W). (3.6)

3.2 Feature extraction 27

hh ih z m ow s s ah g n ih f ih k ah n t s ay ah n t ih ih f k p ah b l ih k ey sh ah n z

his most significant scientific publications

Acoustic feature vectors:

Input speech

Feature extraction

Decoder

Acoustic

model

Phonetic transcription:

Word sequence:

Pronunciation

model Language

model

Figure 3.1 Scheme of an ASR system and analysis of an example phrase "his most significant
scientific publications"

In our example presented in Figure 3.1 the phrase W= (his, most, significant, scientific,

publications) corresponds to the phonetic transcription Q=((hh ih z), (m ow s), (s ah g n ih f

ih k ah n t), (s ay ah n t ih f ih k), (p ah b l ih k ey sh ah n z)).

3.2 Feature extraction

A feature extraction (also referred to as acoustic front-end analysis) module is an important

component of any ASR system. The purpose of the feature extraction stage is to provide

a compact encoding of the speech waveform signal to be used further in the ASR system.

28 Overview of automatic speech recognition

Speech data contains information about different aspects of the signal besides the pronounced

word sequence. These aspects include language and dialect, environmental characteristics

(recording channel, background noises), speaker’s personal characteristics (gender, emotional

state, age) and others. One of the main goals of the feature extraction module is to remove

the information irrelevant for ASR from the speech signal while preserving the essential

information about the spoken content. Another goal is to reduce the dimension of the obtained

feature vectors and provide the optimal representation of information for the given acoustic

model (AM).

Typically, the waveform file format is used for storing speech data. The continuous

speech signal is transformed into a sequence of samples (or the discrete-time signal). Signal

sampling can be performed at different sampling rates (usually 8-44 kHz) depending on the

conditions, task and recording channel. Speech signal is divided into overlapping segments

and feature vectors are computed usually every 10-15 ms using an overlapping analysis

window of about 25 ms. Speech signal is supposed to be stationary in these segments (speech

frames). Usually each speech frame is represented by a single parameter feature vector.

One of the simplest and most widely used speech encoding techniques is based on Mel-

frequency cepstral coefficients (MFCCs) extraction [Davis and Mermelstein, 1980]. Also

there have been various other types of features proposed for the speech recognition problem,

which aim to incorporate new information into speech recognition system: perceptual linear

prediction (PLP) [Hermansky, 1990], temporal patterns (TRAPS) features [Hermansky and

Sharma, 1999], discriminatively trained features [Povey et al., 2005] with minimum phone

error objective function (fMPE features), and many others. Features generated by neural

networks, such as tandem features [Hermansky et al., 2000], features with split left and right

temporal contexts (LC-RC) [Schwarz, 2009], and bottleneck (BN) features [Grézl et al.,

2007; Yu and Seltzer, 2011] have shown to be very effective in many ASR systems.

Usually ASR systems with GMM-HMM acoustic models do not use filter-bank coeffi-

cients (fbanks) as the input representation because they are strongly correlated, and to model

them well many parameters (a lot of diagonal Gaussians or full covariance Gaussians) are

required [Hinton et al., 2012a]. However, for neural network acoustic models, raw filter-bank

features sometimes are more preferable than MFCCs or others [Deng et al., 2013b; Mohamed

et al., 2012].

Features, obtained with a GMM were used in [Pinto and Hermansky, 2008] for training a

phoneme multilayer perceptron recognizer. This type of features is close to the one which will

be used in this thesis. Augmenting the basic input features with some additional features, for

3.2 Feature extraction 29

example, pitch features [Ghahremani et al., 2014; Metze et al., 2013] is a common technique

to improve ASR performance.

In the next two sections, we describe the most commonly used in ASR types of features

from two categories: spectral features and neural network-based features.

3.2.1 Spectral features

The general scheme for feature extraction can be described as follows.

• Spectrum computation. Short time fast Fourier transform (FFT) is calculated for each

speech frame.

• Auditory-like modifications. Modifications, which are motivated by psycho-physical

acoustic phenomena and human perception characteristics [Moore, 1997], are per-

formed for the obtained spectra.

For example, in case of MFCC features, to take into account different sensitivity of

human hearing system to different frequencies, the powers of the obtained spectra are

mapped into the Mel scale. In addition, since the human perception of loudness is

logarithmic, all the Mel power-spectra values are transformed into logarithmic scale.

The obtained features are referred to as mel-filter bank (fbank) features, and sometimes

are used in this thesis to train DNN AMs.

• Decorrelation. In case of MFCCs, decorrelation of the obtained features is done by

discrete cosine transform (DCT).

• Derivatives. The resulting feature vectors are often appended with their first and

second order temporal derivatives (delta (∆) and acceleration (∆∆) coefficients).

MFCCs are one of the most widely used input features for ASR systems. Another popular

features are PLP [Hermansky, 1990]. In PLP feature extraction, the Bark scale is used

(instead of the Mel scale) to compute the filter-bank filters. Then this process is followed by

a linear predictive analysis, from which a cepstral representation is derived. Both, MFCC and

PLP features are calculated with ∆ and ∆∆ derivatives and usually have the same dimension

(39). It was shown [Dave, 2013; Milner, 2002; Psutka et al., 2001] that PLP features can

provide comparable results to MFCCs, and the superiority of one feature type over another

depends on the database characteristics, environmental conditions, or system configurations.

30 Overview of automatic speech recognition

3.2.2 Neural network-based features

Neural network models are often used as feature extractors in ASR systems. Features

generated by these models can further be used to train other classifiers for ASR, such

as GMMs or DNNs. Two important types of neural network-based features, tandem and

bottle-neck features, are described below.

Splicing

Cepstral mean normalization

NN training

DCT

Input sound

Cepstral features

Concatenation
Postprocessing

with phoneme

outputs

⊕

GMM-HMM training

Postprocessing

Figure 3.2 Example of the tandem speech recognition system

3.2.2.1 Tandem features

In the tandem approach [Ellis et al., 2001; Hermansky et al., 2000; Morgan, 2012] a neural

network, trained with phones as targets, is used to generate input features fed to a con-

3.2 Feature extraction 31

ventional GMM-HMM model. These features can be fed directly to a GMM model after

some post-processing steps (decorrelation and dimensionality reduction, for example, us-

ing principal component analysis (PCA), DCT, heteroscedastic linear discriminant analysis

(HLDA) [Kumar and Andreou, 1998]) as in the originally proposed approach [Hermansky

et al., 2000], or appended with other features, for example, with some spectral features before

training a GMM model. An example of the tandem speech recognition system is illustrated

in Figure 3.2. The dashed lines in the figure correspond to the stages of the feature extraction

process that can be omitted.

In this thesis we propose and investigate the approach which is in some sense inverse to

the tandem approach — features, derived from GMM models, are used as input representation

for training DNN models.

3.2.2.2 Bottleneck features

Bottleneck (BN) features [Grézl et al., 2007; Yu and Seltzer, 2011] have shown to be effective

in improving the accuracy of ASR systems for both DNN-HMM and GMM-HMM acoustic

models. Conventionally, bottleneck features are extracted from a DNN, which is trained to

predict context-independent monophone states or context-dependent triphone states. In [Yu

and Seltzer, 2011] it was shown that the use of context-dependent triphone states gives better

accuracy for the final ASR system.

One of the hidden layers in a DNN, trained for BN feature extraction, has a relatively

small dimension (35-80 units). This layer is referred to as a BN layer. The part of the

DNN, following the BN layer, is removed from the DNN structure after the training, and

the outputs from the BN layer are used as features directly or with some post processing

(splicing, concatenation with other features and other modifications) to train DNN-HMM or

GMM-HMM models. An example of using BN features for training a GMM-HMM acoustic

model is shown in Figure 3.3.

An important property of bottleneck features — the capability of transferring the learned

representation to unseen languages [Vu et al., 2014] — makes them (and some of their

advanced versions, such as stacked BN (SBN) features [Grézl et al., 2014]) very popular

in multilingual training architectures, especially for low-resource ASR systems [Bell et al.,

2014; Li et al., 2014b; Müller et al., 2014].

32 Overview of automatic speech recognition

Splicing

Cepstral mean normalization

NN training

DCT

Input sound

Cepstral features

Concatenation
Postprocessing

⊕

GMM-HMM training

triphone states

as outputs

Postprocessing

Figure 3.3 Bottleneck (BN) features for GMM-HMM speech recognition system

3.3 Acoustic modeling

Statistical approach with hidden Markov models (HMMs) [Rabiner, 1989] is conventional

in state-of-the-art ASR systems. As mentioned above (see Figure 3.1), any spoken word w

is represented with a sequences of basic sounds (units). Each basic unit is modeled with a

corresponding HMM.

The simplest example of a unit is a phoneme. The same phonemes may have different

pronunciations depending on their context. To take into account the effects caused by

coarticalation and reduction, usually context-dependent (CD) triphone units (phonemes with

given left and right neighbor phonemes) are used for acoustic modeling. When phones are

3.3 Acoustic modeling 33

modeled without considering the context they are referred to as context-independent (CI) or

monophone units.

Introducing triphones into the ASR system significantly increases the number of param-

eters to be estimated for this system. Some triphones may be missing in the training data

sets (so-called unseen triphones) or have insufficient number of realizations to model them

accurately. To avoid this data sparsity problem, clustering algorithms, such as data-driven

clustering and tree-based clustering, are commonly used [Hwang et al., 1996; Young et al.,

2002, 1994] for triphone state clustering. They tie the parameters of those triphone states

that are close acoustically.

3.3.1 Hidden Markov models

An HMM is a stochastic Markov process with hidden (unobserved) states. The hidden states

can be observed indirectly through another stochastic process (or several stochastic processes)

that outputs the sequences of observed symbols. A detailed introduction to HMMs for speech

processing is given in [Rabiner and Juang, 1986].

In ASR systems, each unit (triphone or monophone) is modeled with a continuous density

HMM, as illustrated in Figure 3.4 for a sequence of observation vectors O = (o1,o2, . . .). An

HMM model is characterized by the following set of parameters:

• Number of states N;

• State transition probability distributions ai j, denoted by matrix A = {ai j}:

ai j = P(st = j|st−1 = i) , (3.7)

where
N

∑
j=1

ai j = 1,∀i = 1, . . . ,N. (3.8)

• State output (emission) probability distributions {b j(.)}, denoted by B = {b j(.)},

where b j(.) is a probability distribution of state j, and b j(ot) denotes the likelihood of

state j generating observation vector ot at time t:

b j(ot) = P(ot |st = j) (3.9)

34 Overview of automatic speech recognition

States

Acoustic

feature

vectors

Figure 3.4 HMM-based phone model with five states and left-to-right topology. The first
and the final states are non-emitting, other states have output distributions b j(.). Transition
parameters ai j model the transition probabilities between hidden states i and j.

• Initial state probability distribution. The initial probability πi for state si is πi = P(s0 =

i), and ∑
N
i=1 πi = 1. In practice and further in this thesis, initial distribution is excluded

from the analysis.

Hence an HMM is represented with model parameters ΛΛΛ = {A,B}=
{
{ai j},{b j(.)}

}
.

Modeling of output probability distributions b j(.) depends on the type of acoustic model (see

Section 3.3.2).

Due to computational reasons, two important assumptions for HMM in ASR systems are

usually made (except for some particular examples, such as graphical models [Bilmes and

Bartels, 2005]):

1. A first order Markov process assumption, which means that the stochastic process

satisfies the Markov property, so that its state st at time t depends only on the state st−1

at the previous moment of time:

P(st |st−1,st−2, . . . ,s1) = P(st |st−1). (3.10)

2. Observation independence assumption, in which observation feature vectors ot are

assumed to be conditionally independent of the previous observations and states, given

state st :

P(ot |ot−1, . . . ,o1;st , . . . ,s1) = P(ot |st). (3.11)

3.3 Acoustic modeling 35

The analysis of conditions where the standard model assumptions deviate from real

speech data is given in [Gillick et al., 2011]. These assumptions allow us to simplify the

calculation of acoustic likelihood for a given sequence of observations O and states S as

P(O|w;ΛΛΛ) = ∑
S∈w

T

∏
t=1

P(ot |st ;ΛΛΛ)P(st |st−1;ΛΛΛ) = ∑
S∈w

aq0,q1

T

∏
t=1

bqt (ot)aqt ,qt+1 . (3.12)

In practice, the calculation of the likelihoods directly from Formula (3.12) is too com-

putationally expensive and requires O(NT) multiplications and summations, hence special

algorithms were developed for this purpose. The Baum-Welch forward-backward algorithm

[Baum et al., 1967] reduces the complexity to O(N2T) steps. Another widely-used solution

is the Viterbi algorithm [Viterbi, 1967], which finds only the most likely state sequence

(using maxS∈w operation instead of ∑S∈w in Formula (3.12)).

3.3.2 State distribution modeling

In this section we consider some of the most common approaches for modeling state proba-

bility distributions in HMMs.

3.3.2.1 GMM-HMM

The Gaussian mixture models (GMMs) approach has been one of the most common technique

to model state probability distributions (see Formula (3.9)) in ASR systems for many decades.

In a GMM-HMM model, each state j is modeled as a weighted sum of M j Gaussians:

b j(ot) = P(ot | j) =
M j

∑
m=1

ω jmN
(
ot ;µµµ jm,ΣΣΣ jm

)
, (3.13)

where ω jm is the weight of the m’th component in the mixture for state j such that:

ω jm ≥ 0 and
M j

∑
m=1

ω jm = 1. (3.14)

In Formula (3.13), N (.;µµµ,ΣΣΣ) is a multivariative Gaussian distribution with mean vector

µµµ and covariance matrix ΣΣΣ:

N (o;µµµ,ΣΣΣ) =
1√

(2π)d|ΣΣΣ|
exp

{
−

1
2
(o−µµµ)TΣΣΣ−1(o−µµµ)

}
, (3.15)

36 Overview of automatic speech recognition

where d is the dimensionality of acoustic feature vector: o ∈ R
d .

3.3.2.2 Subspace Gaussian mixture models

Subspace Gaussian mixture models (SGMMs) have been proposed in [Burget et al., 2010;

Povey et al., 2010, 2011a] as an alternative approach to standard GMM-HMMs for acoustic

modeling. All context-dependent HMM states in SGMMs share a common representation,

based on the universal background model (UBM)1. The covariance matrices are shared

between states. The mean vectors and mixture weights for each state are specified by a

corresponding vector v j ∈ R
S, where S is a subspace dimension (typically S = 50). In the

simplest form SGMM can be expressed as follows [Povey et al., 2010]:





b j(ot) = P(ot | j) = ∑
I
i=1 ω jiN

(
ot ;µµµ ji,ΣΣΣi

)
,

µµµ ji = Miv j,

ω ji =
expωT

i v j

∑
I
i′=1

expωT
i′

v j
,

(3.16)

where j ∈ {1, . . . ,J} is a context-dependent speech state, modeled with a GMM with I Gaus-

sians (usually I ∈ [200,2000]) and covariance matrices ΣΣΣi which are shared between states,

mixture weights ω ji and means µµµ ji. The description of model extensions and developed

training procedures can be found in [Povey et al., 2011a].

The strengths of SGMMs lie in their compactness. These models require less data for

training in comparison with GMM models to achieve a comparable accuracy and have

been widely used for low-resource and multi-lingual ASR systems [Burget et al., 2010; Lu

et al., 2011]. The weakness of SGMMs consists in their complexity of implementation in

comparison with conventional GMMs; we will not consider these models further in the thesis.

3.3.2.3 DNN-HMM

The use of neural networks is an alternative approach for AM training, proposed in [Bourlard

and Wellekens, 1990; Morgan and Bourlard, 1990], where multilayer perceptions (MLP)

(feed-forward artificial neural networks (ANN)) were used to estimate emission probabilities

1Universal background model (UBM) is a GMM model trained on all speech classes pooled together [Povey
et al., 2010]. The UBM is a popular approach to alternative hypothesis modeling in speaker recognition domain,
where a GMM-UBM represents a large mixture of Gaussians that cover all speech, and in the context of speaker
recognition, it is trained using the EM algorithm on data from multiple speakers, and then adapted to each
speaker using maximum a posteriori (MAP) estimation [Bimbot et al., 2004; Reynolds et al., 2000].

3.3 Acoustic modeling 37

for HMMs. In the DNN-HMM approach state probabilities in HMMs are estimated with a

neural network model.

One of the commonly used approaches in state-of-the-art ASR systems is a hybrid DNN-

HMM approach, where the dynamics of speech signal is modeled with HMMs, and the state

observation probabilities are estimated with DNN models. In the original approach [Bourlard

and Wellekens, 1990] the MLP outputs were used directly for HMMs. But later the need

for scaling the obtained probabilities with state priors was shown. The output posterior

probabilities from a neural network are scaled using prior class probabilities estimated from

the training data, to obtain scaled likelihoods [Bourlard et al., 1992].

In a DNN-HMM system, outputs of a DNN are the state posteriors P(si|ot), which are

transformed for decoding into pseudo (or scaled) log-likelihoods as follows:

logP(ot | si) = log
P(si | ot)P(ot)

P(si)
∝ logP(si | ot)− logP(si), (3.17)

where the state prior P(si) can be estimated from the state-level forced alignment on the

training speech data, and probability P(ot) of the acoustic observation vector ot is independent

on the HMM state and can be omitted during the decoding process.

Typically states of context-dependent (CD) phonemes (triphones) are used as basic classes

for DNN outputs. However the earlier hybrid ASR systems use context-independent (CI)

phones (monophones) states. The first attempts to incorporate CD triphones into hybrid

architectures [Bourlard et al., 1992] were based on modelling the context-dependency using

factorization:

P(si,c j|ot) = P(si|ot)P(ci|s j,ot) = P(ci|ot)P(si|c j,ot), (3.18)

where c j ∈ {c1, . . . ,cJ} is one of the clustered context classes, and s j is either a CD phone or

a state in a CD phone. ANNs were used to estimate both P(si|ot) (or P(ci|ot)) and P(ci|s j,ot)

(or P(si|c j,ot)) probabilities. These types of CD DNN-HMM models provided comparatively

small improvement over the GMM-HMM models.

The more efficient technique for CD state modeling [Dahl et al., 2012] uses a DNN model

to directly estimate the posterior distribution of tied triphone HMM states. These states are

usually obtained from a conventional GMM-HMM system through a state clustering proce-

dure, however there are some works that propose a GMM-free training procedure [Bacchiani

et al., 2014; Senior et al., 2014; Zhu et al., 2015]. A DNN-HMM model is illustrated in

Figure 3.5.

38 Overview of automatic speech recognition

The recent technical progress in computational hardware allowed to overcome some

limitations of the first hybrid ASR systems. The shallow neural networks have been replaced

with the deep neural architectures, with many hidden layers. This type of acoustic models is

referred to as CD-DNN-HMM models in the literature. Modern DNN-HMM AMs have been

demonstrated to significantly outperform GMM-HMM systems on various ASR tasks [Dahl

et al., 2011, 2012; Hinton et al., 2012a; Kingsbury et al., 2012; Seide et al., 2011b; Yu et al.,

2010]. A review of recent developments in DNN-HMM framework and in deep learning

approach to ASR is given in [Li et al., 2015a; Trentin and Gori, 2001; Yu and Deng, 2014].

States

DNN

HMM

Observation

probabilities

Input layer

Feature vectors

Output layer

Hidden layers

Transition

probabilities

Window of acoustic vectors

Figure 3.5 Example of the hybrid acoustic model using a DNN to estimate posterior proba-
bilities for HMM states

3.3 Acoustic modeling 39

3.3.3 HMM training and parameter estimation

3.3.3.1 GMM-HMM

The acoustic model parameters ΛΛΛ =
{
{ai j},{b j(.)}

}
can be estimated from a training corpus

using expectation maximization (EM) algorithm [Dempster et al., 1977]. In a general case,

HMMs are trained using a chosen training criterion, which corresponds to a particular

objective function. An objective function F(ΛΛΛ) = F(ΛΛΛ;O) is optimized (minimized or

maximized, depending on the training criterion) during the training. Here O= (O1, . . . ,OR)

is the set of training sentences (acoustic sequences).

One of the standard ways to train HMM models is by optimizing maximum likelihood

(ML) objective function:

FML(ΛΛΛ) =
R

∑
r=1

log pΛΛΛ(Or|φr), (3.19)

where φr = φ(Wr) is a composite HMM model, corresponding to the (correct) transcription

of the training sentence Or and Wr is a sequence of words in this transcription. This objective

function can be maximized by using the EM algorithm [Dempster et al., 1977], known as the

Baum-Welch algorithm [Baum et al., 1967; Juang et al., 1986].

One of the main problem with the ML training criterion is that it fits to the training data,

but does not take into account the ability of the model to discriminate. To eliminate this

problem, alternative approaches with discriminative training criteria [Schlüter et al., 2001;

Vertanen, 2004] have been proposed.

In one of the first approaches, developed in the discriminative training framework,

parameters are trained to maximize the mutual information (MMI) between an acoustic

observation sequence and the corresponding word sequence [Bahl et al., 1986; Povey, 2004;

Povey and Woodland, 2001; Schluter and Macherey, 1998; Schlüter et al., 1999] with the

following objective function:

FMMI(ΛΛΛ) =
R

∑
r=1

log
pΛΛΛ(Or|φr)P(φr)

∑φ pΛΛΛ(Or|φ)P(φ)
, (3.20)

where P(φ) is the language model probability for sentence O. Here the numerator corresponds

to the data given the correct word sequence Wr, and the dominator corresponds to the total

likelihood of the data given all possible word sequences W. In practice, W is obtained from

an ASR system (in the form of N-best lists or word lattices). Hence, the MMI criterion

40 Overview of automatic speech recognition

attempts not only to make the correct hypothesis more probable, but also to decrease the

probability of incorrect alternatives.

Other approaches include minimum phone error (MPE) training [Povey and Woodland,

2002], which attempts to maximize the a posteriori sentence probability, scaled by the raw

phone accuracy, and a state-level minimum Bayes risk (sMBR) criterion [Veselỳ et al., 2013].

These two criteria can be expressed as

FMBR(ΛΛΛ) =
R

∑
r=1

∑φ pΛΛΛ(Or|φ)
kP(φ)kA(φ ,φr)

∑φ ′ pΛΛΛ(Or|φ)kP(φ ′)k , (3.21)

where k is a scaling factor, and A(φ ,φr) is the raw accuracy of the sentence W with respect

to the reference Wr. Hence, A(φ ,φr) corresponds to the number of correct phone labels (in

MPE) or state labels (in sMBR).

There are also many others [Kaiser et al., 2000; Povey et al., 2008] criteria, for example,

minimum classification error (MCE) [Chou et al., 1993; Juang and Katagiri, 1992], which

focuses on sentence-level accuracy, or boosted MMI (BMMI) criterion [Povey et al., 2008].

In the BMMI criterion [Povey et al., 2008] the MMI objective function (3.20) is modified to

boost the likelihoods of paths that contain more errors, as follows:

FBMMI(ΛΛΛ) =
R

∑
r=1

log
pΛΛΛ(Or|φr)P(φr)

∑φ pΛΛΛ(Or|φ)P(φ)e−bA(φ ,φr)
, (3.22)

where b is the boosting factor.

In this work for training GMM-HMM models we will mostly use the ML and BMMI

criterion. For DNN-HMM models we will apply the cross-entropy (CE) criterion (see

Section 2.3) and, for some models, perform additional training with the sMBR criterion.

3.3.3.2 DNN-HMM

DNNs usually use a contextual window of several (2T +1) frames as an input vector. As

shown in Figure 3.5, the input vector for the DNN is vector ôt = [ot−T , . . . ,ot , . . . ,ot+T].

In a CD-DNN-HMM system, a single DNN is used to model the conditional state

posterior probability P(si|ot) for all states, in contrast to a GMM-HMM system, where each

state is modeled by a separate GMM model.

DNNs for AMs can be trained with a CE criterion (Formula (2.15)) using SGD algorithm,

as described in Section 2.3. To obtain targets for each observation vector, the force-alignment

3.4 Pronunciation modeling 41

of the training corpus can be produced by a GMM-HMM system, or with DNN alignments

as in a GMM-free training procedure [Bacchiani et al., 2014; Senior et al., 2014].

The CE criterion operates on the frame level, so it is possible to improve AMs using dis-

criminative criteria [Veselỳ et al., 2013], which operate on the sentence level, as described in

Section 3.3.3.1. Similar to training GMM-HMM systems, before the sequence-discriminative

training of DNNs the numerator and denominator lattices have to be generated. In [Povey

et al., 2016] a sequence-discriminative training of neural network AMs using lattice-free

version of the (MMI) criterion is performed without frame-level CE pre-training. In recent

times, connectionist temporal classification (CTC) criterion [Graves et al., 2006], which

allows to train a DNN without pre-generated frame-level alignment, has attracted a lot of

interest in ASR research. We will consider this approach in Section 3.7.

3.4 Pronunciation modeling

The pronunciation model (or lexicon) defines the list of words with their phonetic transcrip-

tions in terms of a set of context-independent phonemes. Some words may have multiple

pronunciations and prior probabilities associated with their occurrence frequencies.

A pronunciation system usually contains a static word pronunciation dictionary, which

can be created by experts or generated automatically. However, such a static dictionary may

not cover all possible words in a language, that are required for a given ASR system. Hence,

a dictionary is often supplemented with a grapheme-to-phoneme (G2P) converter. Many

approaches for building a lexicon (or G2P converters) can be broadly classified into two

classes [Bisani and Ney, 2008; Jouvet et al., 2012; Wester, 2003]:

• Knowledge-based approach, where different pronunciation variants are generated by

using phonological rules of the given language [Kaplan and Kay, 1994]. Such rules

are developed by experts and based on linguistic knowledge. They have to take into

account many pronunciation exceptions that can occur in a language.

• Data-driven approach, in which phonetic pronunciations are automatically trained

from a corpus of pronunciation examples. Different algorithms have been developed

to train such G2P converters, including joint-sequence models [Bisani and Ney, 2008],

conditional random field (CRF) models [Illina et al., 2011; Wang and King, 2011], the

statistical machine translation approach [Laurent et al., 2009], approaches based on

using neural networks [Rao et al., 2015; Yao and Zweig, 2015] and many others.

42 Overview of automatic speech recognition

Often, and in this thesis also, all pronunciations of a given word are assumed to have

equal prior probabilities.

3.5 Language modeling

Statistical language modeling aims to learn the joint probability function of word sequences

in a given language. The language model (LM), which corresponds to P(W) in Formula (3.3),

estimates a probability distribution over the sequence of words: W = (w1, . . . ,wM). The

prior probability of W is estimated as

P(W) =
M

∏
m=1

P(wm|wm−1, . . . ,w1). (3.23)

For large vocabulary continuous speech recognition (LVCSR) systems, the common

technique is based on using n-gram LMs [Damerau, 1971] and approximates this probability

as:

P(W) =
M

∏
m=1

P(wm|wm−1, . . . ,wm−n+1). (3.24)

In Formula (3.24), n is the n-gram order of the given LM. It determines the length of the

conditioning word history. Usually n is in the range 2–4.

LMs are trained on text corpora, by estimating n-gram probabilities of word n-gram

frequencies to maximize the likelihood (ML) of the training data [Dempster et al., 1977]. Let

denote C (wm, . . . ,wm+k) the number of occurrences of the k+1 words wm, . . . ,wm+k in the

training corpus, then

P(wm|wm−1,wm−2)≈
C (wm−2,wm−1,wm)

C(wm−2,wm−1)
. (3.25)

The major problem with this ML estimation approach is data sparsity. There are several

approaches to robust estimation of LMs:

1. Katz smoothing [Katz, 1987] consists in combination of discounting and backing-off :

P(wm|wm−1,wm−2) =





C (wm−2,wm−1,wm)

C(wm−2,wm−1)
, if C∗ <C,

d
C (wm−2,wm−1,wm)

C(wm−2,wm−1)
, if 0 <C ≤C∗,

α(wm−1,wm−2)P(wm|wm−1), C = 0,

(3.26)

3.5 Language modeling 43

where C∗ is a count threshold, d is a discount coefficient and α is a normalization

constant. That means, that when there is enough statistic for some n-grams, the ML

estimate is used. When the amount of available statistic is not sufficient according to the

chosen threshold, then the same ML estimated is used, but discounted. The "discounted

probability mass" is then distributed over unseen n-grams, which are estimated with

the weighted version of their (n−1)-grams. In our example (Formula (3.26)) n = 2.

The discounting coefficient d is based on Good-Turing estimates [Good, 1953; Katz,

1987]: d = (r+1)nr+1/(rnr), where nr is the number of n-grams that occur r times in

the training corpus.

2. Kneser-Ney smoothing [Chen and Goodman, 1996; Kneser and Ney, 1995; Ney et al.,

1994] is an improved smoothing algorithm.

3. Class-based models [Brown et al., 1992; Martin et al., 1998] is an alternative approach

to robust LM estimation, where every word wm has a corresponding class cm, to which

this word belongs. Then the probability of the word sequence is estimated using class

n-gram probabilities:

P(W) =
M

∏
m=1

P(wm|cm)P(cm|cm−1, . . . ,cm−n+1). (3.27)

As for the word n-grams, class n-grams are estimated via ML, and since the number

of classes (typically several hundreds) is much smaller, than the number of words,

this approach helps to overcome the data sparsity problem. The words are grouped

together into the classes according to the underlying nature of these classes. It can

be syntactical, semantical or statistical word classes. In the statistical approach for

classes, the word classes are chosen to optimize the likelihood of the training data.

4. Interpolation of LMs relies on linearly weighted combination of several LMs with the

same or different n-gram order.

Various other LM approaches have been proposed for ASR systems, for example, random

forest LMs [Xu and Mangu, 2005], structured LMs [Chelba and Jelinek, 2000; Emami et al.,

2003], LMs based on constraint dependency grammars (CDGs) [Wang et al., 2004] and

others [Schwenk, 2007]. In recent years neural networks have become a popular approach

for language modeling [Bengio et al., 2003; Le et al., 2011; Xu and Rudnicky, 2000]. The

idea in [Bengio et al., 2003] is based on mapping a discrete n-gram word distribution to a

continuous representation. Since the obtained distributions are smooth functions of the word

44 Overview of automatic speech recognition

representation, this approach allows to better generalize the unseen n-grams. In [Mikolov

et al., 2010] recurrent neural network based LMs have been proposed. The long short-term

memory (LSTM) neural network architecture for LMs has been explored in [Sundermeyer

et al., 2012]. Neural network based LMs are usually used for ASR hypotheses rescoring in a

post-processing step.

An evaluation metric for LMs is perplexity estimated on a test dataset as:

PPL = 2−
1
M ∑

M
m=1 log2(P(wm|wm−1,...,w1)). (3.28)

The lower the perplexity, the better the LM generalizes to predict unseen data.

In this thesis we will use 2-gram, 3-gram and 4-gram LMs.

3.6 Speech decoding techniques

After the acoustic, pronunciation and language models are estimated, it is possible to perform

decoding, based on Formula (3.6). Existing decoding strategies can be characterized by the

following aspects [Aubert, 2002]:

• Network expansion:

– Static expansion of the search space, where the entire decoding network is

generated before the decoding [Saon et al., 2005]. In this case, any search

algorithm may be applied, though in practice, a time-synchronous Viterbi search

is usually used [Forney, 1973; Viterbi, 1967] with implementation based on

weighted finite-state transducers (WFSTs) [Mohri et al., 2002].

– Dynamic (or on-the-fly) expansion of the search space [Rybach et al., 2013, 2011].

In this case, the required parts of the network are generated on demand during the

search. Hence, decoders with the dynamic network expansion have much lower

memory consumptions, but requires additional computations during the search

process, that can slow down the decoding process. There are several decoding

strategies, that can be implemented in this framework, for example, the history

conditioned lexical tree (HCLT) [Ney et al., 1992] or WFST-based decoding with

on-the-fly transducer compositions [Mohri et al., 2005] and on-the-fly hypothesis

rescoring [Hori et al., 2007].

• Search:

3.7 End-to-end ASR 45

– Time-synchronous decoding, where all hypotheses are evaluated in parallel, fre-

quently referred to as Viterbi decoding, which approximates the solution to

Formula (3.6) by searching only for the most probable state sequence. It relies

on beam pruning to restrict the number of hypotheses, developed in parallel.

– Asynchronous decoding [Frankel and King, 2007; Picheny, 1999] (for example,

stack decoders [Paul, 1992]), where the most promising hypothesis is followed

first until the end of the speech signal is reached, thus, the search is carried out

asynchronously with respect to time.

For the experiments reported in this thesis, we will apply decoding with a static network

expansion and the Viterbi search with an WFST-based implementation. In the WFST-

based approach, all components of the ASR system (acoustic, phonetic and language) are

represented with individual WFSTs, which are then composed into a single WFST used for

decoding.

In practice, to give more strength to a LM in comparison with an AM, the LM probabilities

are scaled in the log-domain2 with factor k, and Formula (3.6), is replaced with:

W∗ = argmax
W

∑
Q

P(O|Q)P(Q|W)P(W)k, (3.29)

where the optimal value for k is usually estimated empirically on the development set.

Additional improvements in ASR accuracy can be obtained by performing multiple

passes over the speech data. For this purpose the decoder can generate and save multiple

recognition hypotheses in the form of word lattices [Richardson et al., 1995]. A word lattice

consists of a set of nodes representing points in time and a set of directed arcs representing

word hypotheses. Each arc can contain information about a word identity and corresponding

acoustic and language model scores. Lattices can be rescored by using a higher-order (or

another more advanced) language model. Also they can be transformed into another efficient

representation called a confusion network [Mangu et al., 2000].

3.7 End-to-end ASR

One important trend in current ASR technology is training deep end-to-end ASR systems [Au-

dhkhasi et al., 2017; Bahdanau et al., 2016; Chan et al., 2016; Chorowski et al., 2014; Col-

lobert et al., 2016; Fritz and Burshtein, 2017; Graves and Jaitly, 2014; Miao et al., 2015a;

2Decoders typically work in the log-domain.

46 Overview of automatic speech recognition

Ochiai et al., 2017; Yi et al., 2016; Zhang et al., 2016a, 2017; Zhu et al., 2016] that attempt

to map an acoustic signal to a words sequence directly by means of neural network models.

Some of these works aim to be exempted from the need of an HMM part, or presegmented

training data, but still use lexicons, phoneme representations, LMs, or separate feature

extractors, so not all of them are completely end-to-end.

One of the first major steps in this direction was introduced in [Graves et al., 2013] where,

for the phoneme recognition task, a deep bidirectional LSTM RNN model was trained to

map directly acoustic sequences to phonetics ones. This was done by using the connectionist

temporal classification (CTC) objective function [Graves et al., 2006]. In the CTC approach,

the alignment between the inputs and target labels is unknown. CTC can be implemented

with a softmax output layer using an additional unit for the blank label /0. The symbol /0

corresponds to no output and is used to estimate the probability of outputting no label at

a given time. The network is trained to optimize the total log-probability of all valid label

sequences for training data. A set of valid label sequences for an input sequence is defined as

the set of all possible label sequences of the input with the target labels in the correct order

with repetitions and with label /0 allowed between any labels. Targets for CTC training can be

computed using finite state transducers (FSTs) [Sak et al., 2015], and the forward-backward

algorithm can be used to calculate the CTC loss function.

State transition probability distribution and state priors are not required for CTC approach,

in contrast to the hybrid DNN-HMM system. Several types of output units for CTC training

have been explored in the literature, such as phones (or graphemes) [Miao et al., 2015a],

words [Audhkhasi et al., 2017] or grams [Liu et al., 2017]. Due to the large number of word

outputs in acoustic-to-word CTC models, they require significantly more training data in

comparison with traditional ASR systems [Audhkhasi et al., 2017]. A maximum a-posteriori

(MAP) training criterion instead of CTC was used in [Fritz and Burshtein, 2017] to train an

end-to-end ASR system.

Most of the works devoted to end-to-end technology do not use any speaker adaptation

techniques. In this thesis, we will implement our proposed adaptation techniques to one end-

to-end system, described in [Miao et al., 2015a], to explore how the end-to-end technology

can benefit from speaker adaptation (Chapter 9).

3.8 Speech recognition performance evaluation

Performance evaluation is characterized by three elements: a criterion, a measure and a

method [Hirschman and Thompson, 1997]. In ASR the criterion is recognition accuracy, one

3.8 Speech recognition performance evaluation 47

of the most popular measures is word error rate (WER), and the method is comparing the

sequence of recognized words with what was actually spoken and establishing alignment at

the word level between these sequences by using a dynamic programming (DP) algorithm.

3.8.1 General evaluation scheme

LVCSR evaluation procedure contains two important steps:

1. Alignment of reference and recognized sequences of words. It is assumed that we

have the text that was actually spoken (a reference). Alignment consists in establishing

agreement at the word level between the original and recognized texts. The standard

approach to alignment is the classical Levenshtein (edit distance) algorithm. If some

additional information (such as time labels or phonological features of words) about

reference is available, then it may be used in alignment process.

2. Computing the evaluation measure. After the alignment is processed, each word in

reference and recognized sentences gets a status: correct, substitution, deletion (for

a reference word) or insertion (for a recognized word). The evaluation measure is

usually based on counts of substitution, deletion, insertion errors and correct words.

3.8.2 Alignment algorithms

Alignment of the original and recognized texts is usually performed by computing the

Levenshtein distance using the DP algorithm. The Levenshtein distance is the minimal

number (or weighted sum) of insertion, deletion and substitution word operations needed to

transform the original text into the recognized one.

Existing alignment algorithms differ from each other by the way they compute weights

for word operations. Let rec be a recognized word, ref – a word from the reference. There

are two basic types of alignment [Fiscus and et al, 1998].

1. Standard Levenshtein alignment (SLA). This approach is considered to be the standard

method for LVCSR performance evaluation tasks. In general, SLA can be characterized

by the loss function:

F = wcorNcor +winsNins +wdelNdel +wsubNsub, (3.30)

where Nsub , Nins and Ndel denote the total number of word substitutions, insertions

and deletions respectively; Ncor — the number of correctly recognized words; wcor,

48 Overview of automatic speech recognition

wins, wdel , wsub — the constant weights assigned for operations of each type. Optimal

weights (in the sense of minimizing WER) are: wcor = 0 , wins = wdel = wsub = 1. It

was shown in [Morris et al., 2004] that any choice of other weights requires special

justification. This type of alignment (with some variations of weights) is the most

commonly used. For example, NIST used it in Speech Recognition Scoring Toolkit for

Speech-To-Text evaluation programs but sets up weights that equal (0,3,3,4) [Fiscus,

2009]; in the HTK toolkit (for building HMMs) weights are (0,7,7,10) [Young et al.,

2006].

2. Time-mediated alignment (TMA) [Fiscus and et al, 1998]. TMA is a variation of

DP alignment where word-to-word distances are based on the time of occurrence for

individual words. TMA is computed by replacing the standard word-to-word distance

weights with measures based on the times of beginnings and endings of words. The

formulas for time-mediated word-to-word distances are3:




D(correct) = |B(re f)−B(rec)|+ |E(re f)−E(rec)|

D(insertion) = E(rec)−B(rec)

D(deletion) = E(re f)−B(re f)

D(substitution) = |B(re f)−B(rec)|+ |E(re f)−E(rec)|+0.001,

(3.31)

where B(x) and E(x) are the beginning and ending time marks of word x.

Other types of alignment reported in literature, such as word-weight-mediated, phono-

logical [Fisher and Fiscus, 1993], alignment based on multiple dimension Levenshtein edit

distance [Fiscus et al., 2006], modified TMA [Khokhlov and Tomashenko, 2011] and others

are developed for particular applications and are not considered in this thesis.

3.8.3 Measures for evaluation

Most of the measures for LVCSR are based on magnitudes: Nsub , Nins , Ndel and Ncor. The

common measure is WER, which is defined as the percentage ratio of the total number of

word errors made by an ASR system to the total number of words in the reference:

WER =
Nsub +Nins +Ndel

Nre f
×100%, (3.32)

3http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

3.8 Speech recognition performance evaluation 49

where Nre f is the total number of words in the reference text. WER has been the most popular

measure in continuous speech recognition assessment since the 1980s. NIST used WER as

the primary measure in comparative technology evaluation programmes for ASR [Fiscus,

2009]. Other measures were suggested in literature, such as: weighted WER [Fiscus and et al,

1998], sentence error rate (SER); word correct or incorrect (WCI) and sentence correct or

incorrect (SCI) [Strik et al., 2000]; number of errors per sentence (NES) [Strik et al., 2000];

match error rate (MER) [Morris et al., 2004]; relative information lost (RIL) [Maier, 2002;

Morris et al., 2004]; word information lost (WIL) and word information preserved (WIP)

measures [Morris, 2002]; individual WER (IWER) [Goldwater et al., 2010] and others. In

this thesis we will consider WER as a basic metric for evaluation.

3.8.4 Absolute and relative improvement

When several ASR systems are compared it is a common practice to report the absolute and

relative change in WER values, calculated between two systems with WERs: WER1 and

WER2, as follows:

• Absolute WER reduction

∆absWER = WER1−WER2 (3.33)

• Relative WER reduction

∆relWER =
WER1−WER2

WER1
×100%. (3.34)

3.8.5 Statistical significance tests and confidence intervals

In the ASR system development, it is often important to know whether the observed difference

in the performance is statistically significant or not. For this purpose several approaches have

been proposed in the literature [Bisani and Ney, 2004; Gillick and Cox, 1989; Pallet et al.,

1990]. In paper [Gillick and Cox, 1989] a matched-pairs test for comparing outputs of two

ASR systems is described, which is applicable under the assumptions that the output of an

ASR system can be divided into segments, in which the errors are independent of the errors

in other segments. In paper [Bisani and Ney, 2004] a bootstrap method for significance

analysis is presented. The idea is based on creating the replications of a statistic by random

sampling from the test dataset with replacement (so-called Monte Carlo simulation).

50 Overview of automatic speech recognition

In this thesis, if the results in terms of WER are reported to be significantly different,

that means that the hypothesis is tested with significance level α = 5%. In addition, as it

is done for example in [Bell, 2010; Povey, 2004; Świętojański, 2016] for baseline systems,

we approximate the required WER change in terms of confidence intervals (CIs), calculated

with α = 5%. For clarity, we report these CIs in some experiments for baseline systems (not

for all systems to avoid redundancy).

Chapter 4

Acoustic adaptation

This chapter provides a review of adaptation techniques for both GMM and DNN acoustic

models.

4.1 Speech variability and adaptation

Differences between training and testing conditions may significantly degrade recognition

accuracy in ASR systems. The source of these differences may be of various nature [Ben-

zeghiba et al., 2007] – speaker, channel and environment. Speech variations may occur both

across different speakers (across-speaker variability) and within one speaker (within-speaker

variability).

The across-speaker variability is connected with such factors as age, gender, foreign or

regional accents, etc. In [Huang et al., 2001], with the use of statistical analysis methods, it

was demonstrated that the two principal components in variation correspond to the gender

and accent. From the physiological point of view, another speaker-dependent factor is the

shape of the vocal tract, that determines the potential range within which parameters of voice

for a given speaker may vary.

The within-speaker variability [Karlsson et al., 1998] appears, for example, when a

speaker speaks at different rates. In the past it was shown that variations in speaking rate

can degrade recognition performance in ASR systems [Mirghafori et al., 1996]. This effect

is typically more significant for fast speech than for slow speech, that is, the higher the

speaking rate, the higher the error rate in ASR systems. Fast speech is different from normal

or slow speech in several aspects, such as acoustic-phonetic and phonological characteristics.

Many methods for compensating the effects of speaking rate variability were proposed in

52 Acoustic adaptation

the literature [Ban and Kim, 2012; Mirghafori et al., 1996; Nanjo et al., 2001; Siegler, 1995;

Tomashenko and Khokhlov, 2014c].

Another important factor, which can be attributed to within-speaker variability, is the

speech style. Reading, dictation or spontaneous speech may have different acoustic character-

istics for the same speaker. In spontaneous speech, reductions of some phonemes or syllables

often happen. Also it usually contains various disfluencies, such as repetitions, hesitations,

filled pauses, false starts and others [Liu et al., 2006], which should be taken into account

when building an ASR system. A speaker can speak with different volume – louder, quieter,

in a whisper [Jou et al., 2004], or shout. Emotional state of a speaker also has an impact on

the speech signal [Scherer, 2003].

Adaptation is an efficient way to reduce mismatches between the models and the data

from a particular speaker, channel or another factor.

Three types of acoustic models (AMs) can be used in ASR systems:

• Speaker independent (SI) AM is trained on a training set of acoustic data from multiple

speakers.

• Speaker dependent (SD) AM is trained on data from a single target speaker. Given

enough training data, a SD AM can provide WERs several times lower than a SI

AM [Lee et al., 1991].

• Speaker adapted (SA) AM is initially trained on data from multiple speakers, and then

is adapted using a comparatively small amount of data from a target speaker.

The aim of AM adaptation is to reduce mismatches between training and testing acoustic

conditions and improve the accuracy of the ASR system for a target speaker or channel using

a limited amount of adaptation data from the target acoustic source.

4.1.1 Adaptation types and modes

Acoustic adaptation algorithms can be divided in two types:

• Model-based adaptation transforms the model parameters in order to optimize a certain

criterion, for example, to maximize posterior probability or likelihood on the adaptation

data.

• Feature-space adaptation transforms the acoustic feature vectors and does not require

modification of the parameters of the acoustic model, so usually it is more suitable for

real-time on-line ASR systems.

4.1 Speech variability and adaptation 53

Speaker adaptation techniques can be applied in various modes:

• In the supervised mode, the true transcriptions of the adaptation data are supposed to

be known.

• In the unsupervised mode there are no available (correct) transcriptions of the adapta-

tion data. In this case transcripts for adaptation can be obtained from the first decoding

pass by a SI or another model. Since the adaptation with erroneous transcriptions from

the first decoding pass may degrade the performance of the unsupervised adaptation

compared to the supervised one [Pitz et al., 2000], an important question for some

adaptation techniques is how to deal with these transcription errors. One popular

solution is the use of confidence measures1 [Anastasakos and Balakrishnan, 1998;

Gollan and Bacchiani, 2008; Pitz et al., 2000; Tomashenko et al., 2016b; Uebel and

Woodland, 2001; Wang and Narayanan, 2002].

.

With regard to the use of the accumulated adaptation data, speaker adaptation can also be

classified by the following modes [Shinoda, 2011; Woodland, 2001]:

• Batch / off-line / static adaptation. This adaptation is performed after all the adaptation

data are obtained.

• Incremental / on-line / dynamic adaptation [Zhang et al., 2000] is performed each time,

a new portion of adaptation data is obtained, so that the system continues to adapt over

time.

A speaker diarization system may also be required to detect speaker changes. The choice of

the most suitable adaptation mode depends on the application.

4.1.2 Normalization

Normalization attempts to minimize the effects of variations in speech. The most popular

normalization techniques include:

• Cepstral mean and variance normalization (CMVN). Cepstral mean normalization

(CMN) subtracts the average (cepstral) feature value. Generally, it reduces the sen-

sitivity to channel variations. Cepstral variance normalization scales each feature

1In ASR, confidence measures are used in different tasks to evaluate reliability of recognition results. An
extensive survey on confidence measures for ASR can be found in [Jiang, 2005].

54 Acoustic adaptation

coefficient to have a unit variance and empirically this has been shown to reduce

sensitivity to additive noise [Benesty et al., 2007].

• Vocal-Tract-Length Normalization (VTLN) [Lee and Rose, 1996]. Variations in vocal-

tract length of different speakers cause variations in formant frequencies. VTLN is

usually performed by warping the frequency-axis of the spectra of the given speaker

by an corresponding warp factor before extracting cepstral features. Warp factors can

be found by ML estimation of the warped utterances with respect to a given model and

transcriptions.

4.2 Adaptation for GMM models

Many efficient adaptation algorithms have been developed for GMM-HMM AMs (see, for

example, reviews in [Lee and Huo, 2000; Shinoda, 2010; Woodland, 2001]). In this section

we consider some of the most popular adaptation approaches, such as MAP, MLLR, as well

as their modifications, and speaker space methods.

4.2.1 Maximum a posteriori (MAP)

4.2.1.1 Standard MAP approach

One of the most popular approaches for acoustic model adaptation is maximum a posteriori

(MAP) adaptation [Gauvain and Lee, 1994], also referred to as Bayesian adaptation. Given

some adaptation data O= (O1, . . . ,OR), MAP adaptation aims to maximize the following

objective function:

FMAP(ΛΛΛ) =
R

∑
r=1

log pΛΛΛ(Or|φr)p0(ΛΛΛ), (4.1)

where φr = φ(Wr), as before in Section 3.3.3, is a composite HMM model, corresponding

to the (correct) transcription of the training sentence Or and Wr is a sequence of words in

this transcription. In comparison with the ML objective function (see Formula (3.19)), the

likelihood in MAP-estimation is weighted by the prior distribution of the parameters p0(ΛΛΛ).

In MAP adaptation a SI model is used as a prior probability distribution over model

parameters. Let m denote the index of a Gaussian component in the SI acoustic model (AM),

and µµµm the mean of this Gaussian. Then the MAP estimation of the mean vector is

µ̂µµm =
τµµµm +∑t γm(t)ot

τ +∑t γm(t)
, (4.2)

4.2 Adaptation for GMM models 55

where τ is the parameter that controls the balance between the maximum likelihood estimate

of the mean and its prior value; γm(t) is the posterior probability of Gaussian component

m at time t. As can be seen from Formula (4.2), the smaller the occupation likelihood of

a Gaussian component γm = ∑t γm(t), the closer the mean MAP estimate remains to the SI

component mean µµµm. In MAP adaptation, every single mean component in the system is

updated with a MAP estimate, based on the prior mean, the weighting, and the adaptation

data.

An important advantage of MAP adaptation consists in the fact that, when the amount

of adaptation data increases, the parameters asymptotically converge to speaker-dependent

performance. On the other hand, one drawback of MAP adaptation is that it requires more

adaptation data to be effective when compared to transformation-based techniques, such as

maximum likelihood linear regression (MLLR) (see Section 4.2.2), because MAP adaptation

is defined at the component level and adapts each Gaussian individually. When larger

amounts of adaptation data become available, MAP begins to perform better than MLLR.

The two adaptation approaches can be combined to improve the performance (see, for

example, [Digalakis and Neumeyer, 1996]).

Other approaches developed to make MAP adaptation more robust when only a small

adaptation set is available include vector field smoothing (VFS) [Ohkura et al., 1992; Taka-

hashi and Sagayama, 1997; Tonomura et al., 1995], structural maximum a posteriori (SMAP)

[Shinoda and Lee, 1997, 2001], and the combination of MAP estimation and weighted

neighbor regression (WNR) in the so-called MAP-WNR adaptation [He et al., 2000].

4.2.1.2 Vector field smoothing (VFS)

The vector field smoothing (VFS) technique [Ohkura et al., 1992; Takahashi and Sagayama,

1997; Tonomura et al., 1995] provides a solution to overcome one limitation of MAP

adaptation and improves its performance when only very small amount of adaptation data is

available. The VFS technique is based on the assumption that one speaker acoustic feature

space can be continuously transfer to another one. Hence, it solves the problem of adapting

the parameters in case of unseen adaptation data. The VFS algorithm is applied to the

Gaussian mean vectors and consists of three steps [Tonomura et al., 1995]:

• Estimation of transfer vectors. The transfer vectors represent the difference of the

mean vectors between the initial SI model µµµm and the target MAP-model µ̂̂µ̂µm:

vm = µ̂µµm−µµµm, (4.3)

56 Acoustic adaptation

where m∈Ga (Ga is the set of Gaussian distributions, which have associated adaptation

data).

• Interpolation of transfer vectors. Interpolation is applied for those Gaussian compo-

nents µµµn, that do not have associated adaptation data (n ∈ Ga):

vn =
∑k∈N(n)λn,kvk

∑k∈N(n)λn,k
, (4.4)

where N(n) is the set of nearest neighbors to µµµn. The set of nearest neighbors N(n) is

defined based on the Euclidean distance between mean vectors of Gaussian components

and µµµn. The weighting coefficient λn,k depends on the distance between µµµn and µµµk.

Then, µ̂µµn is estimated with the obtained transfer vector vn, as follows:

µ̂µµn = µµµn +vn (4.5)

• Smoothing of transfer vectors. For all transfer vectors vm (m ∈ Ga), which Gaussian

components are present in the adaptation set, a smoothing is performed as follows:

vs
m =

∑k∈N(m)λm,kvk

∑k∈N(m)λm,k
, (4.6)

µ̂µµ
s
m = µµµm +vs

m. (4.7)

4.2.1.3 Structural maximum a posteriori (SMAP)

Structural maximum a posteriori (SMAP) adaptation is another approach to improve the

MAP estimates obtained when the amount of adaptation data is small [Shinoda and Lee,

1997, 2001]. In SMAP adaptation, parameters are shared by using a tree structure. First,

a tree of Gaussian distributions is build using Kullback-Leibler divergence as a distance

between mixture components. The root node corresponds to the whole acoustic space, and

each leaf corresponds to a single Gaussian in the AM. Parameters of parent nodes are used as

priors, and the MAP estimation is performed from the root to the leaves in a cascade way.

4.2.2 Maximum likelihood linear regression (MLLR)

Maximum likelihood linear regression (MLLR) is an alternative algorithm to AM adaptation,

in which a set of linear transforms is estimated to map a SI model to a new adapted model in

4.2 Adaptation for GMM models 57

such a way that the likelihood of the adaptation data is maximized [Gales, 1998; Leggetter

and Woodland, 1995], given the transformed Gaussian parameters. The MLLR can be applied

either only to the means of Gaussians, or to the both means and variances. The adapted

estimate of the mean µ̂µµ is calculated as:

µ̂µµ = Aµµµ +b, (4.8)

where A is d×d transformation matrix (d is the dimensionality of acoustic feature vectors)

and b is a bias vector. If we denote W = [b A] and ξξξ = [wµ1 . . .µd]
T – the extended mean

vector, where w represents a fixed bias offset (which is usually equals to 1) [Young et al.,

2006], then Formula (4.8) becomes more compact:

µ̂µµ = Wξξξ . (4.9)

The transformation W is estimated using the expectation maximization (EM) algorithm (the

details can be found in [Gales, 1998; Leggetter and Woodland, 1995; Young et al., 2006]).

4.2.2.1 Regression classes

Typically the transformation matrix is tied over a large number of Gaussians, that allows the

system to adapt all these Gaussians using a small amount of adaptation data. In general, the

MLLR adaptation is very flexible. If only a small amount of adaptation data is available,

then a single global transformation for all Gaussians in a GMM-HMM model can be applied.

However, increasing the amount of adaptation data, it is possible to improve MLLR adaptation

with the use of several more specific transformation matrices, each of which is applied to a

certain group of Gaussians. Gaussians can be grouped according to the phoneme classes to

which they belong. A popular approach for using such classes is based on the construction of

a regression class tree.

The regression class tree is built to cluster together those Gaussians, that are close in

acoustic space, so that similar Gaussians can be transformed in a similar way. The tree can be

built using a SI model and a centroid splitting algorithm with the Euclidean distance measure.

The tree topology makes it possible to adapt those Gaussian components, for which there is

no data in the adaptation set. Also, it allows the transformations to be applied dynamically,

depending on the amount of adaptation data for a particular regression class.

58 Acoustic adaptation

4.2.2.2 Constrained MLLR (CMLLR) and feature-space MLLR (fMLLR)

There are two possible ways of transforming covariance matrices: unconstrained [Gales

and Woodland, 1996] and constrained [Digalakis et al., 1995]. In the unconstrained MLLR,

transformations for means and variances of Gaussians are estimated independently. On the

contrary, in the CMLLR means and variances are adapted using the same transformation:





µ̂µµ = Aµµµ +b,

Σ̂ΣΣ = AΣΣΣAT .
(4.10)

In practice, CMLLR is used more often as an adaptation technique for features, than for

acoustic models. In this case typically one regression class is used and the adaptation method

is referred as feature-space MLLR (fMLLR). For fMLLR, Formula (4.10) can be rewritten

for features as follows:

ôt = A−1ot−A−1b. (4.11)

MLLR can be combined with the MAP adaptation techniques. In [Neumeyer et al., 1995]

various ML transformation-based techniques, as well as their combination with MAP, are

compared. In [Digalakis and Neumeyer, 1996], the mean vectors, obtained by MLLR, are

used as priors for mean vectors in MAP adaptation. Transformation-based methods work

well when only a small amount of adaptation data is available. Bayesian methods perform

better when the amount of adaptation data increases. Hence, their combination inherits the

advantages of these two approaches. Maximum a posteriori linear regression (MAPLR)

was proposed in [Chesta et al., 1999; Chou, 1999], where a standard MLLR approach was

reformulated under MAP framework. A combination of SMAP (Section 4.2.1.3) and MLLR

was investigated in [Siohan et al., 2002] in the method called SMAPLR.

4.2.3 Speaker space methods

4.2.3.1 Cluster adaptive training (CAT)

The basic idea of speaker clustering is to find in the training dataset a cluster of those speakers

who are acoustically close to a given test speaker. Then this cluster can be used directly

for speech recognition, in case when we have an HMM model corresponding to this cluster.

A simple example of this approach is gender-dependent AMs. Also each of these training

speakers can be adapted to the test speaker, and the resulting adapted data are used to estimate

the new parameters of the model [Padmanabhan et al., 1998].

4.3 Adaptation for DNN models 59

Speaker clustering is performed according to the chosen distance metric between speakers.

Popular metrics include Bhatacharyya distance [Kosaka and Sagayama, 1994], likelihood

distance measure [Gales, 2000] and others [Hazen and Glass, 1997; Yoshizawa et al., 2001].

Cluster adaptive training (CAT) [Gales, 2000] can be considered as an extension of

speaker clustering. Instead of a SI model, a set of cluster-specific models is trained on more

homogenous datasets. In [Gales, 2000] speaker model’s mean parameters are estimated in the

form of a linear combination of all the cluster means. The Gaussian component variances and

priors are assumed to be the same for all clusters. At recognition time, a linear combination of

models is selected where the set of interpolation weights gives a speaker-specific transform.

4.2.3.2 Eigenvoice-based adaptation

Eigenvoice approach, proposed in [Kuhn et al., 2000], also represents the adapted model in

the form of a weighted sum of a small number of basis eigenvoice vectors obtained from a

set of reference speakers. These eigenvoices are found using principal components analysis

(PCA) for set of supervectors obtained from all means in the set of SD HMM systems.

The eigenvoices with the largest eigenvalues are selected as a basis set. These vectors are

orthogonal to each other and represent the most important components of variation between

the reference speakers.

4.2.4 Speaker adaptive training (SAT)

Speaker adaptive training (SAT) aims to provide a more suitable model for speaker adap-

tation. A method, that explicitly compensates for the inter-speaker variations in the HMM

parameter estimation process, is introduced in [Anastasakos et al., 1996]. First an initial SI

model is trained. Then for each speaker in the training dataset, MLLR mean (or fMLLR)

transformations are estimated. Then using the obtained SD transforms, the parameters of the

initial models (means, variances and mixture weights) are re-estimated on the whole training

dataset. The SAT procedure tends to result in more compact AMs with higher likelihoods on

the training set and smaller variances. Usually SAT AMs provide significantly better results

with adaptation, in comparison with SI models.

4.3 Adaptation for DNN models

Adaptation of DNN acoustic models is a rapidly developing research area. In recent years

DNNs have replaced conventional GMMs in most state-of-the-art ASR systems, because it

60 Acoustic adaptation

has been shown that DNN-HMMs outperform GMM-HMMs in different ASR tasks [Hinton

et al., 2012a]. Many adaptation algorithms that have been developed for GMM-HMM

systems (see Section 4.2) cannot be easily applied to DNNs because of the different nature of

these models. GMM is a generative model and it fits the training data so that the likelihood

of the data given the model is maximized. In contrast, DNN is a discriminative model. Since

DNN parameter estimation uses discriminative criteria, it is more sensitive to segmentation

errors and can be less reliable for unsupervised adaptation. Various adaptation methods have

been developed for DNNs. These methods, as for GMM-HMM AMs, can also be categorized

in two broad classes, feature-space and model-based.

Model-based adaptation methods rely on direct modifications of DNN model parameters.

In [Swietojanski et al., 2016; Swietojanski and Renals, 2014], learning speaker-specific

hidden unit contributions (LHUC) was proposed. The main idea of LHUC is to directly

parametrize amplitudes of hidden units, using speaker-dependent amplitude parameters. The

idea of learning amplitudes of activation functions was proposed earlier in [Trentin, 2001].

Other model-based DNN adaptation techniques include linear transformations (Section 4.3.1),

adaptation using regularization techniques (Section 4.3.2), subspace methods (Section 4.3.3)

and others.

Feature-space adaptation methods operate in the feature space and can either transform

input features for DNNs, as it is done, for example, in fMLLR adaptation [Seide et al., 2011a]

or use auxiliary features (Section 4.3.6).

4.3.1 Linear transformation

One of the first adaptation methods developed for neural networks was linear transformation

that can be applied at different levels of the DNN-HMM system:

• Input features, as in the linear input network (LIN) transformation [Abrash et al.,

1995; Gemello et al., 2006; Li and Sim, 2010; Neto et al., 1995; Trmal et al., 2010] or

feature-space discriminative linear regression (fDLR) [Seide et al., 2011a; Yao et al.,

2012];

• Activations of hidden layers, as in the linear hidden network (LHN) transforma-

tion [Gemello et al., 2006];

• Softmax layer, as in the linear output network (LON) transformation [Li and Sim,

2010] or in the output-feature discriminative linear regression (oDLR) [Yao et al.,

2012].

4.3 Adaptation for DNN models 61

Wherever the transformation is applied, weights are initialized with an identity matrix

and then trained by minimizing the error at the output of the DNN system while keeping the

weights of the original DNN fixed. Adaptation of hybrid tied-posterior acoustic models [Sta-

dermann and Rigoll, 2005] can also be considered a linear transform of posteriors. The

authors of [Dupont and Cheboub, 2000] describe a method based on linear transformation in

the feature space and PCA.

4.3.1.1 Linear input network (LIN)

In the LIN [Abrash et al., 1995; Gemello et al., 2006; Li and Sim, 2010; Neto et al., 1995;

Trmal et al., 2010] and fDLR [Seide et al., 2011a; Yao et al., 2012] approaches, the linear

transformation is applied to the input features, as shown in Figure 4.1. These adaptation

techniques aim to linearly transform the SD features of a particular speaker to better match

the SI DNN AM.

Adaptation layer

LIN

Hidden layers

Output vector

Input vector

Figure 4.1 Linear input network (LIN) adaptation

In LIN adaptation the input vector h0 ∈ R
N0 is transformed to h0

LIN as follows:

h0
LIN = WLINh0 +bLIN, (4.12)

where N0 is the size of the input layer, WLIN ∈ R
N0×N0 is the weight matrix and bLIN ∈ R

N0

is the bias vector. Since in ASR the input vector h0 typically composed of a sequence of

several speech frames: h0 = ôt = [ot−T , . . . ,ot+T], when the adaptation set is small, it is more

62 Acoustic adaptation

preferable [Yu and Deng, 2014] to use per-frame transformation, with smaller number of

parameters:

oLIN = WLIN
o o+bLIN

o , (4.13)

where WLIN
o ∈RD×D is the weight matrix and bLIN

o ∈RD is the bias vector, D is the dimension

of acoustic feature vectors (N0 = (2T +1)D), and the final transformed input feature vector

is constructed as: h0
LIN = ô

LIN
t = [oLIN

t−T , . . . ,o
LIN
t+T].

Based on the LIN, the adaptation parameter estimation via MAP linear regression was

studied in [Huang et al., 2014] and is referred to as feature-space MAP LIN (fMAPLIN).

4.3.1.2 Linear output network (LON)

In LON [Li and Sim, 2010] and output-feature discriminative linear regression (oDLR) [Yao

et al., 2012; Yu et al., 2013] adaptation algorithms, the linear transformation is applied to the

softmax layer, as shown in Figure 4.2. The LON adaptation can be applied in two different

ways: either before the calculation of the softmax layer weights, or after it. Both approaches

lead to very similar linear transforms [Yu and Deng, 2014], but the number of parameters

can differ a lot depending on the difference between the hidden and output layer dimensions.

Adaptation layer

LON

Hidden layers

Output vector

Input vector

Figure 4.2 Linear output network (LON) adaptation

4.3 Adaptation for DNN models 63

4.3.1.3 Linear hidden network (LHN)

In a similar manner, linear transformations can also be applied to the hidden layers, as in

LHN [Gemello et al., 2006]. Illustration of LHN adaptation is given in Figure 4.3. The

Adaptation layer

LHN

Hidden layers

Output vector

Input vector

Figure 4.3 Linear hidden network (LHN) adaptation

hierarchical MAP approach applied to the LHN was proposed in [Huang et al., 2015b].

The choice of the appropriate adaptation techniques depends on the task, the number

of parameters, and the size of the adaptation set. An experimental comparison of different

linear transformation approaches can be found in [Gemello et al., 2006; Huang et al., 2015b;

Li and Sim, 2010].

4.3.2 Regularization techniques

In order to improve generalization during the adaptation regularization techniques, such as L2

(or L2-prior) regularization [Li and Bilmes, 2006; Liao, 2013], Kullback-Leibler divergence

(KLD) regularization [Huang and Gong, 2015; Tóth and Gosztolya, 2016; Yu et al., 2013],

conservative training [Albesano et al., 2006; Gemello et al., 2006], reduction of the number

of adapted parameters [Ochiai et al., 2014; Stadermann and Rigoll, 2005; Xue et al., 2014a]

and others [Ochiai et al., 2014; Shen et al., 2016; Xue et al., 2014d] are used.

64 Acoustic adaptation

4.3.2.1 L2 regularization

The key idea of the DNN adaptation with L2 regularization [Li and Bilmes, 2006; Liao, 2013;

Yu and Deng, 2014] is to update DNN parameters or only part of them by using the modified

training objective function FL2(W,b;T), which takes into account the difference between the

parameters of SI and speaker-adapted models. This difference is calculated using L2 norm as

follows:

R2 (WSI−W) = ∥vec(WSI−W)∥2
2 =

L

∑
l=1

∥∥∥vec(Wl
SI−Wl)

∥∥∥
2

2
, (4.14)

where WSI and W correspond to the original SI and adapted models respectively, and∥∥vec(Wl)
∥∥2

2 is the Frobenious norm of matrix Wl . The objective function is modified with

this L2 regularization term:

FL2(W,b;T) = F(W,b;T)+λR2 (WSI−W) , (4.15)

where λ is the weight regularization factor, that controls the impact of the original SI model

to the adaptation criterion. The larger the regularization term is, the closer the adapted model

is forced to be to the SI one.

4.3.2.2 Kullback-Leibler divergence (KLD) regularization

Using the Kullback-Leibler divergence (KLD) regularization [Huang and Gong, 2015; Tóth

and Gosztolya, 2016; Yu et al., 2013] is another way to adapt the model. The idea of

this adaptation technique consists in keeping the senone distribution, estimated from the

adapted model, to be close to the distribution estimated from the SI model. To measure the

distance between these distributions, KLD is used [Yu et al., 2013]. By adding this KLD as a

regularization term to the adaptation criterion and removing the terms unrelated to the model

parameters, the objective function with the KLD regularization can be written as follows [Yu

and Deng, 2014]:

FKLD(W,b;T) = (1−λ)F(W,b;T)+λRKLD(WSI,bSI;W,b;T), (4.16)

where λ is the regularization weight,

RKLD(WSI,bSI;W,b;T) =
1
M

M

∑
m=1

C

∑
i=1

PSI(i|om;WSI,bSI) logP(i|om;W,b), (4.17)

4.3 Adaptation for DNN models 65

PSI(i|om;WSI,bSI) and P(i|om;W,b) are the probabilities that the observation vector om

belongs to class i, estimated with the SI and adapted models respectively. Unlike in L2-

regularization approach to adaptation, which imposes the constraints to the DNN parameters,

in the KLD-regularization approach the constraints are applied to the output probabilities.

The regularization weight λ ∈ [0,1] can be optimized on the development set. The large

values of λ provide small impact from the adaptation data to the final model.

4.3.2.3 Reducing the number of adapted parameters

Alternative regularization technique for preventing overfitting during the adaptation is to

adapt not the entire DNN model, but only a subset of its parameters. In [Stadermann and

Rigoll, 2005] only a sub-set of the hidden units with maximum variance, computed on the

adaptation data, is retrained.

The number of speaker-specific parameters is reduced in [Xue et al., 2014a; Yu and Deng,

2014] through factorization based on singular value decomposition (SVD). One approach

proposed in [Xue et al., 2014a] is referred to as SVD bottleneck adaptation. It is based on

applying the SVD to the fully connected weight matrix Wm×n ∈ R
m×n (where m≥ n) :

Wm×n = W1
m×nΣΣΣn×n(W

2
n×n)

T , (4.18)

where ΣΣΣn×n is a diagonal matrix with singular values of matrix Wm×n on the diagonal. If

Wm×n is a sparse matrix with rank r≪ n, then Formula (4.18) can be rewritten as

Wm×n ≈W3
m×rΣΣΣr×r(W

4
n×r)

T = W3
m×rW

5
r×n. (4.19)

Hence, the original matrix Wm×n can be approximated with two smaller matrices: W3
m×r

and W5
r×n, as shown in Figure (4.4). To apply an SVD bottleneck adaptation, an additional

r-dimensional linear layer is added to the BN layer:

Wm×n ≈W3
m×rSr×rW

5
r×n, (4.20)

where Sr×r is initialized with the identity matrix for SI model. During the adaptation, this

matrix Sr×r is adapted to a particular speaker, while keeping matrices W3
m×r and W5

r×n fixed

for every layer. Since in this case only r× r parameters have to be adapted instead of m×n,

as r can be much smaller then m and n, this approach allows to adapt all layers of the DNN by

adapting only small-sized matrices for each layer. Thus, such technique gives the possibility

to decrease the required amount of adaptation data.

66 Acoustic adaptation

SI BN layer

�

��

��+�

��

��+�

��

��+�

SA BN layer

BN layer

� �

�௠×௡

�௠×�3

��×௡5 �r×r �௠×�3

��×௡5

Figure 4.4 SVD-BN adaptation: f corresponds to a nonlinear activation function; hl , hl+1
are the layers of the NN between which a SI and SA BN layers are inserted.

In [Xue et al., 2014d] the SVD also is applied on the weight matrices Wm×n in the trained

SI DNNs (Formula (4.18)), and then only the diagonal matrices with singular values ΣΣΣn×n are

fine-tuned with the adaptation data. Since during the adaptation the weight matrices can be

modified only by changing the singular values, this techniques proposes the solution for the

over-fitting problem. Regularized SAT of subsets of DNN parameters is explored in [Ochiai

et al., 2014].

4.3.2.4 Conservative training

When a neural network trained with a large set of parameters has to be adapted with new data

that does not appropriately represent the original training data, then a problem, addressed in

the literature as catastrophic forgetting [French, 1999], occurs. In particular, this problem

appears when some of the targets of the original NN are not present in the adaptations set.

In this situation, the previously learned information in the NN can be distorted or forgotten

during the adaptation.

The conservative training [Albesano et al., 2006; Gemello et al., 2006] proposes a

solution to eliminate this problem. During the adaptation, the conservative training does

not assigns zero value to the targets of the missing units, using instead as target values the

outputs computed by the original network.

4.3.3 Subspace methods

Subspace adaptation methods aim to find a speaker subspace and then construct the adapted

DNN parameters as a point in the subspace.

In [Dupont and Cheboub, 2000] an approach similar to the eigenvoice technique [Kuhn

et al., 2000], was proposed for the fast speaker adaptation of NN AMs. It is based on using

4.3 Adaptation for DNN models 67

the affine transformation in the feature space. In contrast to the standard approach, where

the whole transformation is adapted, in [Dupont and Cheboub, 2000] adaptation to a new

speaker is performed using PCA by optimizing several (K) principal components, which

represent the most meaningful speaker specific variations. A new speaker is represented

by the parameter space described by the first K eigenvoices. Adaptation is performed by

estimating the corresponding K eigenvoices coefficients. This allows to reduce the required

amount of adaptation data.

As noticed in [Yu and Deng, 2014], this idea can be extended to a more general case and

to other adaptation techniques, for example, to any other linear transformations (LON, LHN,

etc). Given the set of S speakers, for each speaker an adaptation matrix WSA can be estimated

(by any adaptation technique, considered before). If a = vec(WSA) is the vectorization of the

matrix WSA, then PCA can be done for the set of S vectors in the speaker space in order to

obtain the eigenvectors, that define the principal adaptation matrices. It is assumed [Dupont

and Cheboub, 2000; Yu and Deng, 2014] that the number of speakers S in the training set is

big enough, so that the new speaker can be represented as a point in the space, defined by

these S speakers. A new speaker is defined as a linear combination of the eigenvectors:

a = a+Ug, (4.21)

where U = (u1, . . . ,uS) is the eigenvectors matrix; g is the projection of the adaptation

vector onto principal directions; a is the mean of the adaptation parameters of all speakers.

The eigenvectors corresponding to small variances in the PCA are discarded after the PCA

procedure, and the dimensionality of the speaker space can be reduced to K < S. In the

reduced speaker space the adaptation vector a can be approximated as

a≈ a+ Ũg̃, (4.22)

where Ũ = (u1, . . . ,uK) is the reduced eigenvectors matrix. In Formula (4.22), a and Ũ are

estimated on the training set using data of S speakers; and g̃ is estimated for a new speaker

on the adaptation set.

In [Wu and Gales, 2015] a multi-basis adaptive neural network is proposed, where a

traditional DNN topology is modified and a set of sub-networks, referred as bases were

introduced. This DNN has a common input layer and a common output layer for all the bases.

Each basis has several fully-connected hidden layers and there is no connections between

neurons from different bases. The outputs of bases are combined by linear interpolation

using a set of adaptive weights. The adaptation to a given speaker can be performed

68 Acoustic adaptation

through optimization of interpolation weights for this speaker. The idea of this approach was

motivated by the CAT, developed for GMM AMs (Section 4.2.3.1). Paper [Tan et al., 2015]

also investigates the CAT framework for DNNs. A subspace learning speaker-specific hidden

unit contributions (LHUC) adaptation was proposed in [Samarakoon and Sim, 2016c].

4.3.4 Factorized adaptation

Factorized adaptation [Li et al., 2014a; Qian et al., 2016; Samarakoon and Sim, 2016b;

Tran et al., 2016; Yu et al., 2012] takes into account different factors that influence the

speech signal. These factors can have different nature (speaker, channel, background noise

conditions and others) and can be modeled explicitly before incorporating them into the

DNN structure, for example, in the form of auxiliary features [Li et al., 2014a] (see also

Section 4.3.6), such as i-vectors, or can be learnt jointly with the neural network AM [Tang

et al., 2017]. The first case, when factors, such as noise or speaker information, are estimated

explicitly from the training and testing data, and are then fed to the DNN AM, is also known

as noise-aware or speaker-aware training correspondingly [Yu and Deng, 2014], or, in

general case, as context-aware training [Tang et al., 2017].

Paper [Li et al., 2014a] proposed to incorporate the auxiliary features, consisting of

average noise estimates, computed for each utterance, and noise-distorted speech, into the

DNN AM. These features correspond to the two factors and are included directly to the input

of the softmax layer. The general scheme of this approach is shown in Figure 4.5. This

approach is claimed to be related [Li et al., 2014a] to the vector Taylor series (VTS) based

adaptation [Moreno, 1996] technique, developed for noise-robust ASR. Also this approach

can be considered from the joint factor analysis (JFA) point of view [Kenny et al., 2007].

Auxiliary features, representing different factors, can also be included into the other parts

of the DNN structure. For example, they can be appended to the input feature vectors. We

will consider this case in more detail in Section 4.3.6.

In paper [Yu et al., 2012] two types of factorized DNNs were introduced: joint and

disjoint models. In the first model, hidden factors (speaker and environment conditions) and

triphone tied states are modeled jointly. On the contrary, in the disjoint factorized model,

factors and triphone tied states are estimated separately using different DNNs. However, as

it was noticed in [Yu and Deng, 2014], the total number of parameters in such networks is

typically too large to use them in real-world applications.

In [Tran et al., 2016] an extension of the LIN adaptation (see Section 4.3.1.1), so-called

factorized LIN (FLIN), has been investigated for the case when adaptation data for a given

4.3 Adaptation for DNN models 69

Output vector

Input vector

Hidden layers
Factor 1 Factor N

Features

Figure 4.5 Factorized adaptation

speaker include multiple acoustic conditions. The feature transformations are represented as

weighted combinations of affine transformations of the enhanced input features. Each set

of LIN transformations can represent a class of noise-environment conditions. The weights

in the combination are obtained from a vector characterizing the noise context conditions

for the given utterance. The noise context features are obtained using an auxiliary neural

network from the enhanced and noisy features. This auxiliary network is jointly trained with

the LIN transformations.

In [Delcroix et al., 2015] a context adaptive DNN is proposed. This DNN contains one or

several factorized hidden layers. Each factorized hidden layer contains several sub-layers,

which represent different acoustic conditions. The output of the factorized layer is a weighted

averaging over the outputs of all sub-layers, where weights are the posterior probabilities of

the factor classes. Factorized hidden layer adaptation was also studied in [Samarakoon and

Sim, 2016a,b].

Multi-factor aware joint DNN training was proposed in [Qian et al., 2016], where factors

are dynamically estimated using a DNN. The input to the factor extractor networks are noisy

corrupted features. Each factor is modeled using several-layer DNN with a BN layer in the

70 Acoustic adaptation

Output

vector

Input

vector

Hidden

layers

Speaker

factor

Noisy

corrupted

features

Phone

factor

Noise

factor

Figure 4.6 Factor extraction using BN features

middle, and factor-specific output layer, as shown in Figure 4.6. Three types of outputs were

considered: speakers, context-independent (CI) phones and clean features. The output of a

BN layer represents a corresponding factor. These factors are integrated into the main DNN

AM, which is trained to classify triphone tied states, and are trained jointly with it.

A different approach called collaborative joint learning is proposed in [Tang et al., 2017]

where the two models – for ASR and for speaker recognition task are trained in a collaborative

manner, mutually improving the performance of each other.

4.3.5 Multi-task learning

The concept of multi-task learning (MTL) has recently been applied to the task of speaker

adaptation in several works [Huang et al., 2015a; Li et al., 2015b; Swietojanski et al., 2015]

and has been shown to improve the performance of different model-based DNN adaptation

techniques, such as LHN [Huang et al., 2015a] and LHUC [Swietojanski et al., 2015].

The basic idea of MTL framework, used in [Bell et al., 2017; Huang et al., 2015a;

Swietojanski et al., 2015] consists in adding to the neural network structure an additional

auxiliary output layer or several layers, as shown in Figure 4.7. Each output layer is associated

with a specific task. Typically, a main task is used during an ASR process, but a DNN can be

trained or adapted using auxiliary (secondary) tasks. This auxiliary tasks (layers) correspond

to different sets of targets and usually have a lower dimension than the main task. For

example, the main task can represent the senones, which correspond to a large number

4.3 Adaptation for DNN models 71

of context-dependent (CD) triphone tied states, and the auxiliary task can represent CI

monophone states or clusters of senones from the main task.

Output

vector

Input

vector

Hidden

layers

Main

task

Auxiliary

task 1

Auxiliary

task 2

Figure 4.7 Multi-task learning (MTL) neural architecture for adaptation

This type of the DNN architecture can be trained using a MTL approach. MTL is a

machine learning technique which allowed a classifier to learn several related tasks in parallel,

using a shared representation [Caruana, 1998]. The principal goal of MTL is to improve

generalization by leveraging the information, contained in auxiliary tasks. In MTL DNN

training, the error vector from each output layer is back-propagated to the same last HL.

Then, the error vectors, corresponding to different output layers, are combined together in a

linear combination. The combined error vector is further back-propagated to the previous

HLs. During the adaptation, the auxiliary tasks can be used to deal with the data sparsity

problem and unseen senones.

In [Pironkov et al., 2016b] a speaker classification task was used as an auxiliary task to

train RNN-LTSM AM. In [Pironkov et al., 2016a], in addition to the speaker classification

task, the i-vector extraction auxiliary task was implemented.

A slightly different idea was proposed earlier in [Price et al., 2014] in the form of special

hierarchy of output layers, where tied triphone state layer are followed by monophone state

layer. Figure 4.8 illustrates the DNN with an auxiliary output layer, added on the top of

the original main output layer, as proposed in [Price et al., 2014]. During adaptation, the

DNN parameters are updated to predict posterior probabilities for the over HMM states,

corresponding to the auxiliary monophone output layer, which has much lower dimension

72 Acoustic adaptation

then the main triphone output layer. The errors are back-propagated through the original

softmax layer to the rest of the DNN. Before adaptation, the weights of the hierarchy output

layer are trained using SI data, keeping fixed the layers below. During adaptation, the weights

of the original network are updated, using the full hierarchical structure, but keeping the

weights in the hierarchy output layer fixed. During decoding, only the main original output

triphone layer is used.

Output

vector

Input

vector

Hidden

layers

CD triphone

states

CI monophone

states

Hierarchy

output vector

Figure 4.8 DNN architecture for adaptation with hierarchy output layer

A different multi-task learning approach, called collaborative joint learning, is proposed

in [Tang et al., 2017]. It relies on inter-task information propagation, which can improve the

performance of each task by the auxiliary information derived from other tasks.

4.3.6 Auxiliary features

Using auxiliary features, such as i-vectors [Gupta et al., 2014; Karanasou et al., 2014; Saon

et al., 2013; Senior and Lopez-Moreno, 2014], is another widely used approach in which the

acoustic feature vectors are augmented with additional speaker-specific or channel-specific

features computed for each speaker or utterance at both training and test stages. Another

example of auxiliary features is the use of speaker-dependent BN features obtained from a

speaker aware DNN used in a far field speech recognition task [Liu et al., 2014]. Alternative

method is adaptation with speaker codes [Abdel-Hamid and Jiang, 2013; Huang et al., 2016;

4.3 Adaptation for DNN models 73

Xue et al., 2014c]. In [Murali Karthick et al., 2015] speaker-specific subspace vectors,

obtained by the SGMM model, are used as auxiliary features to adapt CNN AMs.

4.3.6.1 I-vectors

The use of speaker identity vectors (or i-vectors) has become a popular approach for speaker

adaptation of DNN AMs [Gupta et al., 2014; Karanasou et al., 2014; Miao et al., 2014;

Saon et al., 2013; Senior and Lopez-Moreno, 2014]. Originally i-vectors were developed

for speaker verification and speaker recognition tasks [Dehak et al., 2011], and nowadays

they have become a very common technique in these domains. I-vectors can capture the

relevant information about the speaker’s identity in a low-dimensional fixed-length represen-

tation [Dehak et al., 2011; Saon et al., 2013].

I-vector extraction

The acoustic feature vector ot ∈R
D can be considered as a sample, generated with a universal

background model (UBM), represented as a GMM with K diagonal covariance Gaussians [De-

hak et al., 2011; Saon et al., 2013]:

ot ∼
K

∑
k=1

ckN (·;µµµk,ΣΣΣk) , (4.23)

where ck are the mixture weights, µµµk are means and ΣΣΣk are diagonal covariances. The acoustic

feature vector ot(s), belonging to a given speaker s is described with the distribution:

ot(s)∼
K

∑
k=1

ckN (·;µµµk(s),ΣΣΣk) , (4.24)

where µµµk(s) are the means of the GMM, adapted to the speaker s. It is assumed that there

is a linear dependence between the SD means µµµk(s) and the SI means µµµk, which can be

expressed in the form:

µµµk(s) = µµµk +Tkw(s), k = 1, . . . ,K, (4.25)

where Tk ∈ R
D×M is a factor loading matrix, corresponding to component k and w(s) is the

i-vector, corresponding to speaker s2. Each Tk contains M bases, that span the subspace of

the important variability in the component mean vector space, corresponding to component k.

2More strictly, i-vector is estimated as the mean of the distribution of random variable w(s).

74 Acoustic adaptation

The detailed description of how to estimate the factor loading matrix, given the training

data {ot}, and how to estimate i-vectors w(s), given Tk and speaker data {ot(s)}, can be

found, for example, in [Dehak et al., 2011; Saon et al., 2013].

Integration of i-vectors into a DNN model

Various methods of i-vector integration into a DNN AM have been proposed in the literature.

The most common approach [Gupta et al., 2014; Saon et al., 2013; Senior and Lopez-

Moreno, 2014] is to estimate i-vectors for each speaker (or utterance), and then to concatenate

it with acoustic feature vectors, belonging to a corresponding speaker (or utterance). The

obtained concatenated vectors are introduced to a DNN for training, as shown in Figure 4.9.

In the test stage i-vectors for test speakers also have to be estimated, and input in a DNN in

the same manner.

Input vector

Hidden layers

Output vector

stacked acoustic vectors i-vector

Figure 4.9 Using i-vectors for DNN adaptation: concatenation of i-vectors with input features

Unlike acoustic feature vectors, which are specific for each frame, an i-vector is the same

for a chosen group of acoustic features, to which it is appended. For example, i-vector can be

calculated for each utterance, as in [Senior and Lopez-Moreno, 2014], or estimated using

all the data of a given speaker, as in [Saon et al., 2013]. I-vectors encode those effects in

the acoustic signal, to which an ASR system is desired to be invariant: speaker, channel

and background noise. Providing to the input of a DNN the information about these factors

makes it possible for a DNN to normalize the acoustic signal with respect to them.

An alternative approach of i-vector integration into the DNN topology is presented in

[Miao et al., 2014, 2015b], where an input acoustic feature vector is normalized though

4.3 Adaptation for DNN models 75

Input

vector

Hidden

layers

Output

vector

i-vector

acoustic vectors

+
Adaptation

network

SI

network

�௦

�௦
��

��

Figure 4.10 Using i-vectors for DNN adaptation: adaptation network

a linear combination of it with a speaker-specific normalization vector obtained from an

i-vector, as shown in Figure 4.10. Firstly, an original SI DNN is built. Secondly, a small

adaptation network is built, keeping a SI DNN fixed. This adaptation network is learnt to

take i-vectors is as input and generate SD linear shifts ys to the original DNN feature vectors.

After the adaptation network is trained, the SD output vector ys is added to every original

feature vector ot from speaker s:

õt = ot⊕ys, (4.26)

where ⊕ denotes element-wise addition. Finally, the parameters of the original DNN model

are updated in the new feature space, while keeping the adaptation network unchanged. This

gives a SAT DNN model. Similar approaches have been studied in [Goo et al., 2016; Lee

76 Acoustic adaptation

et al., 2016]. Also i-vector dependent feature space transformations were proposed in [Li and

Wu, 2015a].

In paper [Dimitriadis et al., 2016] two different i-vector representations are presented:

(1) noise i-vectors, estimated only from the noise component of the noisy speech signal; and

(2) noisy i-vectors, estimated from noisy speech signal. Another type of factorized i-vectors

is described in [Karanasou et al., 2014], where speaker and environmental i-vectors are used

together.

In [Garimella et al., 2015] casual i-vectors are calculated using all previous utterances of

a given speaker for accumulating sufficient statistics. Exponentially decaying weights are

applied on previous speech frames to give more importance to the recent speech signal, in

order to make i-vectors to be able to capture more recent speaker and channel characteristics.

Attribute-based i-vectors are explored in [Zheng et al., 2016] for accent speech recogni-

tion.

4.3.6.2 D-vectors

Deep vectors or d-vectors were originally proposed for text-dependent speaker verifica-

tion [Variani et al., 2014]. They also described speaker information and are derived by a

DNN which is trained to predict speakers at frame-level. For extracting the d-vector, firstly, a

DNN is trained to classify speakers at the frame-level. Then the averaged output activations

of last hidden layer are used as the speaker representation. Paper [Li and Wu, 2015b] explores

the idea of augmenting DNN inputs with d-vectors derived by LSTM projected (LSTMP)

RNNs [Sak et al., 2014]. Both the d-vector extraction and senone prediction are LSTMP

based, and the whole network is jointly optimized with multi-task learning.

4.3.6.3 Speaker codes

Adaptation with speaker codes, proposed in [Abdel-Hamid and Jiang, 2013; Xue et al.,

2014c], relies on a joint training procedure for (1) an adaptation NN from the whole training

set and (2) small speaker codes, estimated for each speaker only using data from that speaker,

as shown in Figure 4.11, The speaker code is fed to the adaptation NN to form a nonlinear

transformation in feature space to normalize speaker variations. This transformation is

controlled by the speaker code. During adaptation, a new speaker code for a new speaker is

learned, optimizing the performance on the adaptation data.

In [Xue et al., 2014b] instead of stacking an adaptation NN below the initial speaker

independent NN and normalizing speakers features with speakers codes, speaker codes are

4.3 Adaptation for DNN models 77

fed directly to the hidden layers and the output layer of the initial NN and the output layer of

the initial NN. In [Huang et al., 2016] speaker adaptation with speaker codes was applied for

RNN-BLSTM AMs.

Input

vector

Hidden

layers

Output

vector

stacked acoustic vectors speaker code

speaker code

speaker code

Figure 4.11 Speaker codes for DNN adaptation

4.3.7 Adaptation based on GMMs

The most common way of combining GMM and DNN models for adaptation is using

GMM-adapted features, for example fMLLR, as input for DNN training [Kanagawa et al.,

2015; Parthasarathi et al., 2015; Rath et al., 2013; Seide et al., 2011a]. In [Lei et al., 2013]

likelihood scores from DNN and GMM models, both adapted in the feature space using the

same fMLLR transform, are combined at the state level during decoding.

Another method is temporally varying weight regression (TVWR) [Liu and Sim, 2014],

where DNN posteriors are transformed, using a regression model, into the time-varying

scaling factors for the Gaussian weights.

However, none of these approaches can be considered as a universal method for transfer

of adaptation algorithms from GMM models to DNNs. Development and investigation of a

method, that can solve this problem, led us to GMM-derived features, which we use as input

to train a DNN [Tomashenko and Khokhlov, 2014b, 2015]. This approach will be presented

and extensively explored in Chapters 6–10.

Chapter 5

Speech corpora

This chapter describes speech corpora and language models, used in the experiments through-

out this thesis.

We perform a series of experiments to explore the proposed acoustic model adaptation

framework using four different corpora, which are suitable for this purpose. This corpora

differ among themselves in such characteristics as:

• language;

• training dataset size;

• testing dataset sizes;

• amount of data available for adaptation;

• vocabulary size;

• number of speakers;

• type of speech;

• quality of available text transcriptions.

It is important to explore the adaptation framework in different conditions to get a more

complete picture of the approach, its properties, strengths and weaknesses, and boundaries of

applicability. We carry out certain types of experiments for particular corpora. Below in this

chapter we describe four speech corpora used in experiments.

80 Speech corpora

5.1 Wall Street Journal (WSJ)

In this thesis, the WSJ0 (CSR-1) part of the Wall Street Journal Corpus (WSJ) [Paul and

Baker, 1992] was used for experiments. This corpus consists of read speech in English with

texts from the Wall Street Journal news. The part of the corpus used in the experiments was

recorded with a Sennheiser close-talking microphone, 16 kHz. The phoneme set consists of

39 phonemes1. This corpus was used for experiments in Chapter 7.

Training data

For acoustic models training we used 7 138 utterances from 83 speakers (42 male and 41

female) from the standard SI-84 training set, which correspond to approximately 15 hours

(12 hours of speech and 3 hours of silence) recordings.

Adaptation data

Dataset si_et_ad consists of 320 utterances from 8 speakers (5 male and 3 female). We used

this dataset in experiments with semi-supervised adaptation (Section 7.1.2).

Test data and language models

Evaluation was carried out on the two standard WSJ0 evaluation tests:

1. Test si_et_05 is a November ‘92 NIST evaluation set with 330 read utterances from

8 speakers2 (about 40 utterances per speaker). A standard WSJ trigram closed LM

without verbalized punctuation (NVP, non-verbalized punctuation) with a 5K word

vocabulary was used during recognition.

2. Test si_et_20 consists of 333 read utterances from 8 speakers. A WSJ trigram open

NVP LM with a 20K word vocabulary was used. The out-of-vocabulary (OOV) rate is

about 1.5%.

Both LMs were pruned as in the Kaldi WSJ recipe with the threshold 10−7 [Povey et al.,

2011b].

1ARPAbet phoneme set is used: https://en.wikipedia.org/wiki/Arpabet
2These 8 speakers are the same for si_et_05, si_et_20 and si_et_ad datasets

5.2 TED-LIUM 81

5.2 TED-LIUM

The experiments were conducted on the TED-LIUM corpus [Rousseau et al., 2012, 2014].

The corpus is comprised of TED talks3 in English. It has been released by LIUM laboratory

[Rousseau et al., 2012] within the context of the participation in the International Workshop

on Spoken Language Translation (IWSLT) 2011 evaluation campaign, and later extended

[Rousseau et al., 2014].

We used the last (second) release of this corpus [Rousseau et al., 2014]. This publicly

available dataset contains 1 495 TED talks that amount to 207 hours (141 hours from male

and 66 hours from female) speech data from 1 242 speakers, 16kHz. The phoneme set is the

same, as for the WSJ corpus (Section 5.1). This corpus is used for experiments in Chapters 8,

9 and 10.

Training and test data

For experiments with SAT and adaptation we removed from the original corpus data for

speakers who had less than 5 minutes of data, and from the rest of the corpus we made four

datasets: training set, development set and two test sets. Characteristics of the obtained

datasets are given in Table 5.1.

Table 5.1 Datasets statistics for the TED-LUM corpus

Characteristic
Dataset

Training Development Test1 Test2

Duration,
hours

Total 171.66 3.49 3.49 4.90

Male 120.50 1.76 1.76 3.51

Female 51.15 1.73 1.73 1.39

Duration
per speaker,

minutes

Mean 10.0 15.0 15.0 21.0

Minimum 5.0 14.4 14.4 18.3

Maximum 18.3 15.4 15.4 24.9

Number
of speakers

Total 1 029 14 14 14

Male 710 7 7 10

Female 319 7 7 4

Number of words Total - 36 672 35 555 51 452

3Technology, Entertainment, Design: http://www.ted.com

82 Speech corpora

The motivation for creating the new test and development datasets was to obtain datasets

that are more representative and balanced in characteristics (gender, duration) than the

original ones and more suitable for adaptation experiments.

Language models

For evaluation two different LMs are used:

1. LM-cantab is the publicly available 3-gram LM cantab-TEDLIUM-pruned.lm34 with

150K word vocabulary. The same LM is used in the Kaldi tedlium s5 recipe5.

2. LM-lium is a 4-gram LM from TED-LIUM corpus with 152K word vocabulary. It is

similar to the one currently used in the Kaldi tedlium s5_r2 recipe.6 We conducted part

of the experiments presented here using this LM in order to be compatible with the

most recent Kaldi recipe and for comparison purposes with the results of the TDNN

acoustic models. The only difference is that we modified a little the training set,

removing from it data presented in our test and development datasets.

These two LMs are used in different series of experiments. The ASR results with different

LMs are not comparable between each other. Also because of the fact that some data from

the development and test sets may be part of the training corpus for LM-cantab, this LM can

be biased towards the test sets, and more ASR errors are due to acoustics than due to the LM.

For this reason, most of the final results are reported for LM-lium.

5.3 STC

The STC corpus is a microphone corpus (16 kHz) of read Russian speech collected at Speech

Technology Center7.

Training data

The training set contains approximately 27 hours of speech data from 203 (111 male and

92 female) speakers. An 11k vocabulary without LM was used in evaluation. The phone

set consists of 52 phonemes. This corpus is used for experiments with supervised speaker

adaptation in Chapter 6.

4http://cantabresearch.com/cantab-TEDLIUM.tar.bz2
5https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5; date of access: January, 2016
6https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5_r2; date of access: March, 2017
7http://speechpro.com/

5.4 Arabic MGB 2016 challenge 83

Adaptation and test data

The adaptation experiments were conducted on data from 20 (10 male and 10 female)

speakers excluded from the training set. For each speaker there are approximately 180

utterances, corresponding to 16-17 minutes of speech data. The amount of adaptation data is

5 minutes for each speaker, and the rest of the data (11-12 minutes for each speaker) is used

for testing in all experiments. The test set consists of 2395 utterances. The total number of

word occurrences in the test set is approximately 19K.

5.4 Arabic MGB 2016 challenge

The 2016 Multi-Genre Broadcast (MGB-2) Challenge is a controlled evaluation of speech

recognition and lightly supervised alignment using Aljazeera Arabic TV channel record-

ings [Ali et al., 2016]. In Section 8.7 we report experimental results on the MGB-2 Challenge

corpus, provided by the organizers to all participants.

Training and development data

The training data for AMs, provided by the organizers, consists of approximately 1 128

hours of Arabic broadcast speech, obtained from more than 2 000 broadcast shows on the

Aljazeera Arabic TV channel over a period of 10 years, from 2005 until 2015. According to

the MGB-2 organizers [Ali et al., 2016], most of the speech data (around 70%) is Modern

Standard Arabic (MSA), and the remaining part contains speech in different Arabic dialects,

such as Egyptian, Gulf, Levantine and North African.

The original data has a corresponding time-aligned transcription output from a lightly

supervised alignment based on Aljazeera closed-captions, with varying quality of manual

transcription. Table 5.2 presents some statistics for the training and development datasets.

For AM training, the LIUM has iteratively selected and aligned 648.3 hours of speech

data (see the last line of Table 5.2). The detailed description of LIUM’s data selection and

alignment strategy is described in [Tomashenko et al., 2016f]. We use this selected data for

AM training.

For experiments with adaptation we use grapheme-based lexicon with 40 graphemes. The

number of speakers, estimated using meta data, is 14 249. This number is considered when

performing speaker adaptation or per-speaker normalization, but this may not correspond

to the real number of speakers in the training corpus, as, for example, a speaker presented

in different shows, will be counted several times. The estimated number of speakers in

84 Speech corpora

Table 5.2 Statistics for MGB-2016 training and development datasets. The first line of
the table corresponds to the training, provided by the MGB organizers, and the last line
corresponds to the subset of the training dataset selected for AM training.

Dataset Shows Duration, hours Utterances Words

Training (original) 2 214 1 128.0 376 011 7 815 566

Dev 16 8.5 4 940 57 647

Training (selected for AM training) - 648.3 398 438 4 422 123

the development set equals to 132. Since for the test data set the original text data was

not provided by the MGB-2 organizers, and the evaluation process on the test dataset was

performed by them, we do not report statistics about this dataset here.

Language models

The provided language modeling data, according to the organizers, consists of more than

110 million words from the Aljazeera8 website, collected between 2004 and 2011. The

provided normalized and transliterated language modeling data contains 4 717 873 sentences,

corresponding to 121 277 408 words. The automatic transcriptions of Arabic broadcast

speech were also available for LM training.

We use 2-gram and 4-gram LMs, built using SRILM toolkit [Stolcke et al., 2002] by the

LIUM. The description of these LMs are given in [Tomashenko et al., 2016f]. For these

LMs, modified Knesser-Ney discounting was applied. The vocabulary size is 300K.

5.5 Summary for all datasets

Summary information for all datasets, used in this thesis, is given in Table 5.3.

8http://www.aljazeera.net

5.5 Summary for all datasets 85

Ta
bl

e
5.

3
S

um
m

ar
y

st
at

is
ti

cs
fo

r
al

ld
at

as
et

s

C
o
rp

u
s

W
S

J
T

E
D

-L
IU

M
S

T
C

A
ra

b
ic

M
G

B
-2

0
1
6

L
an

gu
ag

e
E

ng
li

sh
E

ng
li

sh
R

us
si

an
A

ra
bi

c

C
ha

nn
el

M
ic

ro
ph

on
e

Ty
pe

R
ea

di
ng

L
ec

tu
re

s
R

ea
di

ng
M

ul
ti

-g
en

re
br

oa
dc

as
ts

T
ra

in
in

g

D
ur

at
io

n
(s

pe
ec

h
+

pa
us

e)
,

ho
ur

s
15

(1
3+

2)
17

2
27

64
8

S
pe

ak
er

s
(m

al
e

+
fe

m
al

e)
83

(4
2+

41
)

10
29

(7
10

+
31

9)
20

3
(1

11
+

92
)

14
24

9

T
es

t

A
da

pt
ai

on
/D

ev
./

Te
st

se
ts

si
_e

t_
05

si
_e

t_
20

D
ev

.
Te

st
1

Te
st

2
A

da
pt

.
Te

st
D

ev
.

M
ea

n
du

ra
ti

on
pe

r
sp

ea
ke

r,
m

in
ut

es
3.

5
3.

5
15

15
21

5
11

.5
3.

8

S
pe

ak
er

s
(m

al
e

+
fe

m
al

e)
8

(5
+

3)
14

(7
+

7)
14

(7
+

7)
14

(1
0+

4)
)

20
(1

0+
10

)
13

2

W
or

ds
5

35
3

5
64

5
36

67
2

35
55

5
51

45
2

-
19

K
57

64
7

V
oc

ab
ul

ar
y,

w
or

ds
5K

20
K

15
0K

an
d

15
2K

-
11

K
30

3K

Chapter 6

GMM framework for neural network

AMs

In this chapter we proposed a GMM framework for adaptation of DNN AMs. It is based on

paper [Tomashenko and Khokhlov, 2014b].

6.1 Introduction

The main purpose of introducing the GMM framework is to transfer GMM adaptation

techniques to DNN AMs.

On the one hand, GMM-HMM AMs have a long history: since 1980s they have been used

in speech recognition and, as we saw in Section 4.2, speaker adaptation is a well-studied field

of research for these models. Many very effective adaptation algorithms have been developed

for GMM AMs. On the other hand, DNNs have achieved big advances in ASR over the past

3-6 years, and nowadays DNNs show higher performance than GMMs for different ASR

tasks. Neural networks today are state-of-the-art of acoustic modeling. However, speaker

adaptation is still a very challenging task for these models.

One of the motivations for the current research, described in this thesis, is the fact that

many adaptation algorithms that work well for GMM systems cannot be easily applied

to DNNs. Except for some feature normalization techniques, such as VTLN or CMVN

(Section 4.1.2), only fMLLR adaptation technique (Section 4.2.2.2), originally developed

for GMM AMs, has also become a widespread adaptation technique for DNN AMs (Sec-

tion 4.3.7). However, fMLLR adaptation is limited to only one feature-space transformation.

Thus, this algorithm performs well, when a small amount of adaptation data is available, but

when the amount of adaptation data increases, this method is known to saturate, and does

88 GMM framework for neural network AMs

not make use of all the available adaptation data, unlike, for example, Bayesian methods.

Therefore, there is no universal method for efficient transfer of all adaptation algorithms from

the GMM framework to DNN models.

Another important aspect, that should be taken into account when comparing GMM and

neural network AMs, is the different nature of these models. Hence, GMM and DNN models

may be complementary, and ASR systems may benefit from their combination. In this thesis,

we aim to take advantage of the robust adaptability of GMM AMs and existing adaptation

methods developed for them, and apply these methods to DNN AMs.

6.2 Hybrid DNN-HMM systems with GMM-derived fea-

tures

As we saw in Section 3.3.2.1, in a conventional GMM-HMM ASR system, the state emission

log-likelihood of the observation feature vector ot for a certain tied state si of HMMs is

modeled as (see Formula (3.13)):

logP(ot | si) = log
M

∑
m=1

ωimNim(ot | si), (6.1)

where M is the number of Gaussian mixtures in the GMM for state si and ωim is the mixture

weight.

In a DNN-HMM system, outputs of a DNN are the state posteriors P(si|ot), which

are transformed for decoding into pseudo (or scaled) log-likelihoods as follows (see For-

mula (3.17)):

logP(ot | si) = log
P(si | ot)P(ot)

P(si)
∝ logP(si | ot)− logP(si), (6.2)

where the state prior P(si) can be estimated from the state-level forced alignment on the

training speech data, and probability P(ot) is independent on the HMM state and can be

omitted during the decoding process.

We propose to use features, derived from a GMM model, in order to train a DNN model.

Further in this thesis, we will refer to a GMM model, used for feature extraction, as an

auxiliary GMM model, and to the obtained features – as GMM-derived (GMMD) features.

As we mentioned before, the construction of GMMD features for DNNs is mainly

motivated by two factors. First, in the past it was shown [Ellis and Reyes-Gomez, 2001;

6.2 Hybrid DNN-HMM systems with GMM-derived (GMMD) features 89

Pinto and Hermansky, 2008; Swietojanski et al., 2013] that NN and GMM models may

be complementary and their combination can provide an additional improvement in ASR

performance. Secondly, this type of features makes it possible to use various GMM-HMM

adaptation algorithms in the DNN framework.

The GMMD features are obtained as follows (see Figure 6.1). Firstly, acoustic feature

vectors are extracted from the speech signal. It can be spectral features (Section 3.2.1), such

as MFCCs, PLPs, or NN-based features (Section 3.2.2), such as BN features (Section 3.2.2.2)

or other types. After that, cepstral mean normalization (CMN) can be applied to the extracted

features. Then, an auxiliary HMM-GMM model is used to transform acoustic feature vectors

into likelihood-based feature vectors. This auxiliary HMM-GMM can be trained in a standard

way with ML objective function (Section 3.3.3) and with triphone or monophone states as

basic units.

��
��

Acoustic

feature vector

GMMD

feature vector

Training data: input sound

Dimensionality reduction

Context extension

Auxiliary SI GMM-HMM

DNN-HMM training

GMMD feature extraction

Figure 6.1 Use of GMMD features for training DNN-HMM model

90 GMM framework for neural network AMs

For a given acoustic feature vector, a new GMMD feature vector is obtained by calculating

likelihoods across all the states of the auxiliary GMM model on the given vector. Suppose ot

is the acoustic feature vector at time t, then the new GMMD feature vector ft is calculated as

follows:

ft = [p1
t , . . . , pn

t], (6.3)

where n is the number of states in the auxiliary GMM-HMM model,

pi
t = ϕ(P(ot | st = i)) (6.4)

is the function of likelihood estimated using the GMM-HMM. Here st denotes the state index

at time t. The natural choice of ϕ is a logarithmic function (as in [Pinto and Hermansky,

2008; Tomashenko and Khokhlov, 2015; Tomashenko et al., 2016b]) or an identity function

(as in [Tomashenko and Khokhlov, 2014b]).

The dimension of the obtained likelihood-based feature vector ft is determined by the

number of states in the auxiliary GMM-HMM AM. At this step, we can also reduce the

dimension of ft using PCA, LDA, HLDA or other analysis. This step is not necessary, as

shown in Figure 6.1. The dimensionality reduction can be required to obtain a sufficient

dimension of the input layer of a DNN.

After that, the features are spliced in time by taking a context of several frames (typically

2T +1 frames (i.e. [−T..T]1), where 5≤ T ≤ 15).

The obtained GMMD features are used to train a DNN-HMM AM. A DNN model can

be trained either directly on GMMD features, as shown in Figure 6.1, and as it was done

in [Tomashenko and Khokhlov, 2014b, 2015], or on combination of GMMD with other

conventional features, as in [Tomashenko et al., 2016a,b].

6.3 DNN adaptation using GMMD features

Speaker adaptation of a SI DNN-HMM model built on GMMD features is performed through

the adaptation of the auxiliary SI GMM-HMM model, that was used for GMMD feature

extraction. The adaptation of the auxiliary SI GMM-HMM model can be done by any

adaptation algorithm developed for GMM-HMM AMs (Section 4.2). In this thesis we

will investigate the application of the most popular speaker adaptation algorithms – MAP

(Section 4.2.1) and MLLR (Section 4.2.2) for DNN AM adaptation.

1Notation [−T..T] for feature vector ot means, that for this vector a new context vector ôt is obtained
through concatenation of neighboring vectors: ôt = [ot−T , ...,ot , ...,ot+T]

6.3 DNN adaptation using GMMD features 91

Auxiliary SI GMM-HMM

Adapted GMM-HMM

GMM adaptation

��
 �� adapted

Acoustic

feature vector

GMMD

feature vector

Test data: input sound

Dimensionality reduction

Context extension

Decoding

GMMD feature extraction

Adaptation

Recognition

Adaptation data

Transcripts

Input sound

Figure 6.2 Adaptation scheme for a DNN trained on GMMD features. Adaptation of a DNN
is performed through the adaptation of an auxiliary GMM.

The proposed adaptation scheme for a DNN model is shown in Figure 6.2. First, adapta-

tion of an auxiliary SI GMM-HMM model is performed and a new speaker-adapted (SA)

GMM-HMM model is created. Second, at the recognition stage, GMMD features are cal-

culated using this SA GMM-HMM. The proposed approach can be considered as a feature

space transformation technique with respect to DNN-HMMs trained on GMMD features.

92 GMM framework for neural network AMs

6.4 Preliminary experimental results with supervised adap-

tation

In this section preliminary results for the proposed approach are presented. The adaptation

experiments were conducted in a supervised mode (Section 4.1.1).

6.4.1 Baseline system

The experiments were conducted on STC corpus (Section 5.3). We used 11×13MFCC

features (13-dimensional MFCC spliced across 11 frames ([−5..5]) as baseline features for

training baseline DNN.

For GMMD feature extraction we first built an auxiliary speaker-independent (SI) GMM-

HMM monophone model. Acoustic features in Figure 6.1 in this series of experiments

are 39-dimensional MFCC+∆+∆∆ features, extracted from speech signal with a frame

shift of 10 ms and window length of 16 ms. Features were normalized using CMN. In the

auxiliary HMM-GMM, each of 52 Russian phonemes was modeled using a 3-state left-right

context-independent HMM, with 30 Gaussians per state. The silence model was a 1-state

HMM. The total number of states in the auxiliary HMM-GMM was equal to 157 – that is

the dimension of ft (n in Formula (6.3)). The function φ from Formula (6.4) was an identity

function in these experiments. That means, that the coordinates of feature vector ft were

likelihoods:

pi
t = P(ot | st = i) (6.5)

We extracted two types of GMMD features (with and without dimensionality reduction):

• 11×157GMMD – 1 727-dimensional features, obtained after splicing ft feature vectors

with a context of 11 frames: [−5..5].

• 11×55GMMD – 550-dimensional features. In this case, before splicing, the dimension

of ft was reduced from 157 to 55 using PCA.

The three SI-DNN models corresponding to these three types of features (11×13MFCC,

11×55GMMD and 11×157GMMD) had identical topology (except for the dimension of

the input layer) and were trained on the same training corpus. The auxiliary SI monophone

GMM was also trained on the same data.

The SI CD-DNN-HMM systems used 1000-neuron hidden layers, and a 2008-neuron

output layer. 2008 neurons in the output layer correspond to context-dependent states

6.4 Preliminary experimental results with supervised adaptation 93

determined by tree-based clustering in the CD-GMM-HMM system. ReLU nonlinearities

(Formula (2.6)) were used in the hidden layers. The DNN system was trained using the frame-

level cross-entropy (CE) criterion and the senone alignment generated from the triphone

GMM system. The output layer was a softmax layer. DNNs were trained without layer-by-

layer pre-training, and dropout with hidden dropout factor (HDF = 0.2) was applied during

training as a regularization (Section 2.3).

In order to explore trends in the behavior of SI and adapted models trained on the

proposed GMMD features for DNNs of different depths, two DNN-HMMs were trained for

each experiment, with 2 and 4 hidden layers.

An 11k vocabulary was used in evaluating both SI and adapted models. No language

model was used. All described experiments were conducted on the same test set, which

consists of 2 395 utterances.

The performance results in terms of WER (Formula (3.32)) for SI DNN-HMM models

are presented in Table 6.1. We can see that DNN-HMMs trained on 11×13MFCC perform

better than DNN-HMMs trained either on 11×55GMMD or 11×157GMMD features. In

Section 6.4.3, we explore this issue in more detail and propose ways to improve the quality

of SI models.

Table 6.1 Baseline WER results for SI-DNN models with 2 and 4 hidden layers for three
types of features on the STC corpus. WERs for baseline systems are given with confidence
intervals, corresponding to 5% level of significance.

Features
Number of

hidden layers WER, %

11×13MFCC
2 39.7 ±0.70

4 38.0 ±0.69

11×157GMMD
2 40.8

4 40.8

11×55GMMD
2 42.0

4 41.6

6.4.2 Adaptation for DNN

The adaptation experiments were conducted on data from 20 speakers (10 male and 10 female

speakers) excluded from the training set (see Section 5.3 for details). The parameter τ in

the MAP adaptation formula (4.2) is set to 5. Adaptation experiments are carried out in a

supervised mode.

94 GMM framework for neural network AMs

6.4.2.1 Supervised adaptation performance for different DNN-HMMs

The adaptation results for four DNN-HMMs are presented in Table 6.2. We can see that

adaptation improves SI models by approximately 14-15% absolute, corresponding to 34-36%

relative WER reduction (∆relWER) (Formula 3.34). The amount of adaptation data in these

experiments was 5 minutes per each speaker.

Table 6.2 Supervised adaptation performance for different DNN-HMMs for the STC corpus.
Adaptation is performed using all the available adaptation data (5 minutes per each speaker).
Absolute and relative WER reduction (∆absWER and ∆relWER) for adapted AMs is calculated
with respect to the corresponding SI AMs.

Features
Number of

hidden layers
WER, %

for adapted AM ∆absWER, % ∆relWER, %

11×157GMMD
2 26.4 14.3 35.2

4 26.9 13.9 34.1

11×55GMMD
2 26.8 15.2 36.2

4 27.1 14.5 34.8

6.4.2.2 Adaptation performance depending on the amount of the adaptation data

In this experiment we measure the performance of the proposed adaptation method using

different amounts of adaptation data. Adaptation sets of different size, from 5 seconds to

5 minutes (for a speaker), are used to adapt a SI 4-hidden-layer DNN-HMM trained on

11×157GMMD features. The results are shown in Figure 6.3. We can see that even with

5 seconds of adaptation data, we can achieve a performance gain of about 2% absolute

(5% relative) WER reduction. After using all available 300 seconds of adaptation data, the

gain from the adaptation increases up to approximately 14% absolute (34% relative) WER

reduction.

6.4.3 Fusion

As we observed in the experiments described above, the proposed adaptation technique

provides a significant improvement in the ASR performance. However, from the practical

point of view, it can also be useful to have a strong SI baseline for the ASR system , for

example, in case we do not have adaptation data for some speakers. Also, a stronger SI

model (according to WER) can potentially provide a better result than a weaker model when

they are adapted.

6.4 Preliminary experimental results with supervised adaptation 95

5 10 15 30 60 180 300

26

28

30

32

34

36

38

40

42

Amount of adaptation data, sec

W
E

R
,

%

28.1

31.7

33.9

36.8

35.9

26.9

38.8

SI

Adapted

33.9

28.1

26.9

31.7

35.9
36.8

38.8

Figure 6.3 Supervised adaptation performance depending on the amount of the adaptation
data for the DNN trained on 11×157GMMD features for the STC corpus.

As seen from the results described above (Table 6.1), DNN-HMMs trained on 11×13MFCC

perform better than DNN-HMMs trained on either 11×55GMMD or 11×157GMMD

features. For the SI 2-hidden-layer DNN, the absolute difference in WER is 2.3% for

11×55GMMD and 1.1% for 11×157GMMD as compared to 11×13MFCC features. As

the number of layers in DNNs increases from 2 to 4, the differences in quality between

the SI DNN trained on 11×13MFCC features and SI DNNs trained on 11×55GMMD and

11×157GMMD features increase up to 3.6% and 2.8% respectively. The purpose of this

set of experiments was to find out whether it is possible to improve the performance of SI

systems by applying different multi-stream combination techniques, so-called late and early

integration [Pinto and Hermansky, 2008]. More advanced analysis for fusion techniques and

ways of integration of GMMD features into the state-of-the-art ASR system architecture is

presented in Chapter 8.

96 GMM framework for neural network AMs

6.4.3.1 Feature-level fusion

In this experiment, 11×13MFCC and 11×55GMMD features are concatenated, resulting

in 693-dimension feature vectors, and new DNN SI models are trained. The results with

feature concatenation are presented in Table 6.3. We can see that this type of features helps

to reduce WER for the SI model compared to the baseline SI model for 11×55GMMD. In

addition, the adaptation performance with feature concatenation is slightly better than with

11×55GMMD for the 4-hidden-layer DNN, while for the 2-hidden-layer DNN it remains

unchanged. However, the performance of feature concatenation without adaptation is still

worse than 11×13MFCC, especially for the deeper network.

Table 6.3 Feature and posterior level fusion results on the STC corpus for 11×13MFCC
and 11×55GMMD features. Adaptation is performed in a supervised mode using all the
available adaptation data (5 minutes per each speaker).

Fusion type
Number of

hidden layers
WER, %

for SI AM
WER, %

for adapted AM

Features
2 39.8 26.8

4 39.4 26.3

Posteriors
2 38.1 27.1

4 37.2 26.6

6.4.3.2 Posterior-level fusion

Finally, we perform state-level system fusion experiments. The outputs of the two classifiers

can be combined using various multi-stream combination techniques [Kittler et al., 1998]

such as sum (or linear combination), product, maximum, minimum, etc. In this work results

are shown for the mean of outputs of two DNNs, as this combination gave the best result in

preliminary experiments.

System fusion is performed at the state-level for every frame. The posterior fusion results

are summarized in Table 6.3. Combining scores from DNNs trained on 11×13MFCC and

11×55GMMD features achieves 1.6% and 0.8% absolute WER improvement for SI DNNs

as compared to DNNs trained on 11×13MFCC features for DNNs with 2 and 4 hidden

layers respectively. Adaptation for posterior-level fusion gives about 30-32% relative WER

reduction compared to SI DNNs trained on 11×13MFCC features.

Thus we see that posterior-level fusion of the two SI-DNN-HMMs gives better results

than the feature concatenation approach. Moreover, posterior-level fusion helps to improve

6.5 Conclusions 97

the quality of the baseline SI-system which is used for adaptation. This type of fusion gives

an improvement of about 2-4% of relative WER reduction over the single best stream. This

result can probably be further improved by using other fusion techniques.

6.5 Conclusions

In this chapter we proposed a novel feature-space transformation method for the adaptation of

DNN-HMM models [Tomashenko and Khokhlov, 2014b]. The proposed method is based on

a special method of feature processing for DNNs. Input features for DNN are generated from

the likelihoods of the GMM model. The described method of feature processing is effective

for training DNN-HMMs when used in combination with other conventional features, such

as 11×13MFCC. According to the experiments, the best performance is obtained by the

posterior-level fusion technique which gives approximately 2-4% relative WER reduction

compared to the single best stream (the baseline DNN trained on 11×13MFCC).

The main advantage of these GMMD features is the possibility of performing the adap-

tation of a DNN-HMM model through the adaptation of the auxiliary GMM-HMM. We

investigate the performance of MAP adaptation for this scheme. Experiments demonstrate

that MAP adaptation is very effective and, for single-stream systems, gives, on average,

approximately 35-36% relative WER reduction for a 5 minute adaptation sample and 5%

relative WER reduction for a 5 second adaptation sample, as compared to a SI-DNN model.

If we compare adaptation results in a multi-stream recognition system, we see that the

performance improvement from the adaptation for a 5 minute adaptation set is 11% absolute

(29% relative) WER as compared to the SI system.

It is worth noting that in the proposed scheme, other methods for the adaptation of the

auxiliary GMM-HMM can be used instead of MAP adaptation. Thus, this approach opens

new perspectives in the adaptation of DNN-HMMs, since it allows us to use approaches

developed for GMM-HMM, as well as SAT (that will be the topic of the following chapter),

in DNN-HMM adaptation.

Chapter 7

Speaker adaptive training

In this chapter we extend the scheme for GMM-derived (GMMD) feature extraction and

apply the concept of speaker adaptive training (SAT) to DNNs, trained on GMMD features.

Also several techniques for adaptation performance improvement are proposed and explored:

using lattices scores in maximum a posteriori (MAP) adaptation, data augmentation and

data selection techniques. This chapter is based on papers [Tomashenko and Khokhlov,

2015] and [Tomashenko et al., 2016d].

7.1 SAT DNN AM training using GMMD features

7.1.1 Proposed approach to SAT-DNN

In this section we improve the previously proposed scheme for GMMD feature extraction and

apply the concept of SAT to DNNs, trained on GMMD features. In SAT, speaker adaptation

is performed for the training data, independently for each training speaker, so that all the

training data are projected into speaker-adaptive feature space. Then, the parameters of the

SAT-DNN AM are estimated in this feature space.

The scheme of SAT-DNN training is shown in Figure 7.1. In contrast to the previous

approach, explored above (Section 6.2 and Figure 6.1), for each training speaker we extract

speaker-adapted GMMD features, and train SAT-DNN AM on them.

The procedure for building SAT-DNN can be summarized as follows:

1. Train an auxiliary SI GMM-HMM ΛΛΛ over the training data.

2. Adapt ΛΛΛ for the training speakers, so that for each speaker S in the training corpus a

speaker-adapted GMM-HMM ΛΛΛ(S) is created.

100 Speaker adaptive training

��
��

Acoustic

feature vector

GMMD

feature vector

Training data: input sound

Dimensionality reduction

Context extension

SAT DNN-HMM training

GMMD feature extraction

Auxiliary SI GMM-HMM

Adapted GMM-HMM

Speaker adaptation

Training data

for speaker �
Transcripts

Input sound

speaker

adapted

�

�ሺ�ሻ

Figure 7.1 SAT scheme for DNN training with GMMD features.

3. For each speaker in the training corpus, transform all acoustic feature vectors ot of the

training corpus, belonging to speaker S, into likelihood based feature vectors ft using

speaker-adapted auxiliary AM ΛΛΛ(S) and Formulas (6.3) and (6.4).

7.1 SAT DNN AM training using GMMD features 101

4. Calculate GMMD features from speaker-adapted ft .

5. Train DNN AM on the obtained speaker-adapted GMMD features.

During the test, the adaptation is performed in the same manner, as described in Sec-

tion 6.3. In this chapter, and further in the following chapters, we use log-likelihoods in

Formula (6.4), so that

pi
t = logP(ot | st = i) (7.1)

7.1.2 Experimental results with SAT and unsupervised MAP and fMLLR

adaptation

7.1.2.1 Baseline system

The experiments were conducted on the WSJ0 corpus (Section 5.1).

We used conventional 11×39MFCC features, composed of 39-dimensional MFCC (with

CMN) spliced across 11 frames [−5..5], as baseline features and compared them to the

proposed GMMD features. The two SI-DNN models corresponding to these two types of

features, 11×39MFCC and 11×118GMMD, had identical topology (except for the dimension

of the input layer) and were trained on the same training dataset. An auxiliary monophone

GMM was also trained on the same data. For training speaker independent (SI) DNN on

GMMD features, we applied the scheme shown in Figure 6.1.

The SI CD-DNN-HMM systems used four 1000-neuron hidden layers and an output

layer with approximately 2500 neurons. The neurons in the output layer corresponded to the

context-dependent states determined by tree-based clustering in CD-GMM-HMM. Rectified

linear units (ReLUs) were used in the hidden layers. The DNN system was trained using the

frame-level CE criterion and the senone alignment generated from the GMM system. The

output layer was a softmax layer. DNNs were trained without layer-by-layer pre-training,

and hidden dropout factor (HDF = 0.2) was applied during the training as a regularization.

Evaluation was carried out on the two standard WSJ0 evaluation tests: (1) si_et_05 and

(2) si_et_20.

7.1.2.2 SAT-DNN AMs

We trained three SAT DNNs on GMMD features, as shown in Figure 7.1. For adapting an

auxiliary GMM model we used two different adaptation algorithms: MAP and fMLLR. In

addition, we trained a SAT DNN on GMMD features with "fMLLR+MAP" configuration,

102 Speaker adaptive training

where MAP adaptation of an auxiliary GMM model was performed after fMLLR adaptation.

For comparison purposes we also trained a DNN on conventional 11×39MFCC features with

fMLLR. All SAT DNNs had similar topology and were trained as described in Section 7.1.2.1

for SI models. Training GMM-HMMs and fMLLR adaptation was carried out using the

Kaldi speech recognition toolkit [Povey et al., 2011b].

7.1.2.3 Adaptation performance for different DNN-HMMs

Unless explicitly stated otherwise, the adaptation experiments were conducted in an un-

supervised mode on the test data using transcripts obtained from the first decoding pass.

The performance results in terms of word error rate (WER) for SI and SAT DNN-HMM

models are presented in Table 7.1. We can see that SI DNN-HMM trained on GMMD

features performs slightly better than DNN-HMM trained on 11×39MFCC features. In all

experiments we consider SI DNN trained on 11×39MFCC features as the baseline model

and compare the performance results of the other models with it.

Table 7.1 WER results for unsupervised adaptation on WSJ0 evaluation sets: si_et_20 and
si_et_05. ∆relWER is a relative WER reduction calculated with respect to the baseline SI
model. WER for the baseline system is given with confidence intervals, corresponding to 5%
level of significance.

Features Adaptation
(SAT)

si_et_20 si_et_05

WER, % ∆relWER, % WER, % ∆relWER, %

11×39MFCC
SI 9.55 ±0.77 baseline 3.23 ±0.47 baseline

fMLLR 8.03 16.0 2.76 14.5

GMMD

SI 9.28 2.8 3.19 1.2

MAP 7.60 20.4 2.69 16.8

fMLLR 7.85 17.8 2.52 22.0

fMLLR+MAP 7.83 18.0 2.78 13.9

The SAT DNN trained on GMMD features with MAP adaptation demonstrates the best

result over all cases in the dataset si_et_20. It outperforms the baseline SI DNN model

trained on 11×39MFCC features and results in 20.4% relative WER reduction (∆relWER,

see Formula 3.34). In the dataset si_et_05 the SAT DNN trained on GMMD features

with fMLLR adaptation performs better than other models and gives 22.0% of ∆relWER.

Moreover, we can see that in all experiments SAT models trained on GMMD features, with

fMLLR as well as with MAP adaptation, perform better in terms of WER than the SAT

model trained on 11×39MFCC features with fMLLR adaptation.

7.1 SAT DNN AM training using GMMD features 103

From the last row of Table 7.1, which shows the results of combining MAP and fMLLR

algorithms, we can conclude that this combination does not lead to additional improvement

in performance, and for the test si_et_05, it even degrades the result.

The results, presented in Tables 7.2 and 7.3, demonstrate adaptation performance for

different speakers from the si_et_20 and si_et_05 datasets, correspondingly. The bold

figures in the tables indicate the best performance over the three acoustic models. Relative

WER reduction (∆relWER) is given in comparison to the baseline model, SI DNN built on

11×39MFCC. We can observe that all the three models behave differently depending on the

speaker.

Table 7.2 Performance for unsupervised speaker adaptation on the WSJ0 corpus for speakers
from si_et_20 evaluation set

Speaker id WER, % for SI,
11×39MFCC

∆relWER, %
11×39MFCC

fMLLR
GMMD
fMLLR

GMMD
MAP

440 8.49 24.1 22.4 6.9

441 16.02 24.3 26.2 36.4

442 10.59 13.2 15.8 14.5

443 9.94 11.3 14.1 9.9

444 10.87 11.8 18.4 26.3

445 7.25 13.0 20.4 18.5

446 7.13 8.5 17.0 12.8

447 6.59 16.0 0.0 26.0

All 9.55 16.0 17.8 20.4

7.1.2.4 Adaptation performance depending on the size of the adaptation dataset

In this experiment we measured the performance of the proposed adaptation method using

different amounts of adaptation data. Adaptation sets of different sizes, from 15 to 210

seconds of speech data (per speaker), were used to adapt SAT DNN-HMM models trained

on 11×39MFCC and GMMD features.

The results are shown in Figure 7.2. Relative WER reduction is given with respect to the

baseline SI DNN trained on 11×39MFCC. We can see that, for adaptation sets of different

size, the SAT DNN trained on GMMD features with fMLLR perform better than the SAT

DNN trained on 11×39MFCC features with fMLLR.

104 Speaker adaptive training

Table 7.3 Performance for unsupervised speaker adaptation on the WSJ0 corpus for speakers
from si_et_05 evaluation set

Speaker id WER, % for SI,
11×39MFCC

∆relWER, %
11×39MFCC

fMLLR
GMMD
fMLLR

GMMD
MAP

440 4.15 29.6 40.7 40.7

441 4.71 43.3 56.7 16.7

442 3.32 0 8.3 12.5

443 1.52 -10.0 0 -20

444 2.43 33.3 22.2 22.2

445 3.16 0.0 5.3 15.8

446 1.89 -15.2 -7.6 23

447 4.87 6.3 15.6 6.3

All 3.23 14.5 22 16.8

In contrast, MAP adaptation reaches the performance of fMLLR adaptation (for MFCC)

only when using all the adaptation data. However, the gain from MAP adaptation grows

monotonically as the sample size increases, while fMLLR adaptation reaches saturation on a

small adaptation dataset. The same behavior of MAP and fMLLR adaptation algorithms is

known for GMM-HMM AMs.

We conducted an additional experiment with MAP adaptation, marked in Figure 7.2 with

the text "using extra data", in which we added the data from the WSJ0 si_et_ad dataset to the

adaptation data. Hence, in this case we performed the adaptation in a semi-supervised mode:

the transcriptions for the si_et_ad dataset were supposed to be known and the transcriptions

for the si_et_05 were generated from the first decoding pass. The total duration of the

adaptation data was approximately 380 seconds for each speaker. This result (21.4% of

relative WER reduction) confirms the suggestion that the performance of MAP adaptation

did not reach its maximum in the previous experiments.

7.1.3 Discussion

In this section we improved the previously proposed adaptation algorithm by applying the

SAT concept to DNNs built on GMMD features and by using fMLLR-adapted features for

training an auxiliary GMM model. Traditional adaptation algorithms, such as MAP and

fMLLR were performed for the auxiliary GMM model used in a SAT procedure for a DNN.

7.1 SAT DNN AM training using GMMD features 105

10 15 30 60 120 200 400
−10

−5

0

5

10

15

20

25

30

Amount of adaptation data, sec

∆
re

lW
E

R
,
%

11x39MFCC+fMLLR

11x118GMMD+fMLLR

11x118GMMD+MAP

using
extra data

Figure 7.2 Unsupervised adaptation performance on si_et_05 test depending on the size
of the adaptation dataset. Relative WER reduction (∆relWER) is given with respect to the
baseline SI DNN trained on 11×39MFCC.

Experimental results on the WSJ0 corpus demonstrate that, in an unsupervised adaptation

mode, the proposed adaptation technique can provide, approximately, a 17–20% relative

WER reduction for MAP and 18–28% relative WER reduction for fMLLR adaptation on

different adaptation sets, compared to the SI DNN-HMM system built on conventional

11×39MFCC features. We found that fMLLR adaptation for the SAT DNN trained on

GMMD features outperforms fMLLR adaptation for the SAT DNN trained on conventional

features by up to 14% of relative WER reduction. It has been shown, that fMLLR adaptation

for GMMD features is efficient when using a small amount of adaptation data, while MAP

adaptation works better when more adaptation data are used.

It is worth noting that in the proposed scheme, any other methods for the adaptation

of the auxiliary GMM can be used instead of MAP or fMLLR adaptation. Thus, this

approach provides a general framework for transferring adaptation algorithms developed for

GMM-HMMs to DNN adaptation.

106 Speaker adaptive training

7.2 MAP adaptation using lattices scores

The use of lattice-based information and confidence scores [Gollan and Bacchiani, 2008] is a

well-known method for improving the performance of unsupervised adaptation. In this work

we use the MAP adaptation algorithm for adapting the SI GMM model. Speaker adaptation

of a DNN-HMM model built on GMMD features is performed through the MAP adaptation

of the auxiliary GMM monophone model, which is used for calculating GMMD features.

We modify the traditional MAP adaptation algorithm by using lattices instead of alignment

from the first decoding pass as follows.

Let m denote an index of a Gaussian in SI AM, and µµµm the mean of this Gaussian. Then

the MAP estimation of the mean vector is

µ̂µµm =
τµµµm +∑t γm(t)ps(t)ot

τ +∑t γm(t)ps(t)
, (7.2)

where τ is the parameter that controls the balance between the maximum likelihood estimate

of the mean and its prior value; γm(t) is the posterior probability of Gaussian component m at

time t; and ps(t) is the confidence score of state s at time t in the lattice obtained from the first

decoding pass by calculating arc posteriors probabilities. The forward-backward algorithm is

used to calculate these arc posterior probabilities from the lattice as follows [Evermann and

Woodland, 2000; Uebel and Woodland, 2001]:

P(l|O) =
∑q∈Ql

Pac(O|q)
1
λ Plm(w)

P(O)
, (7.3)

where λ is is the scale factor (the optimal value of λ is found empirically by minimizing

WER of the consensus hypothesis [Mangu et al., 2000]); q is a path through the lattice

corresponding to the word sequence w; Ql is the set of paths passing through arc l; Pac(O|q)

is the acoustic likelihood; Plm(w) is the language model probability; and p(O) is the overall

likelihood of all paths through the lattice. For the given frame ot at time t we the calculate

confidence score ps(t) as follows:

ps(t) = ∑
l∈Ss(ot)

P(l|O), (7.4)

where Ss(ot) is the set of all arcs corresponding to state s in the lattice at time t. In a

particular case, when ps(t) = 1 for all states and t, Formula (7.2) represents the traditional

MAP adaptation (Formula (4.2)).

7.3 Data augmentation and data selection for SAT 107

In addition to this frame-level weighting scheme, we apply confidence-based selection

scheme, when we use in (7.2) only the observations with confidence scores exceeded the

chosen threshold.

7.3 Data augmentation and data selection for SAT

In this work we explore two other approaches to improve the performance of SAT DNN

models with MAP adaptation (Figure 7.3): data augmentation and data selection.

The first approach is based on using different values of parameter τ (in Formula (4.2))

when extracting adapted GMMD features for DNN training. In this approach we extract

features for all training corpus several times for a set of τ values: {τ1,τ2, . . .}. Then, the DNN

model is trained on the union of the obtained features. The intuition behind this approach is

similar to that used in data augmentation [Cui et al., 2015].�1 �ଶ �ଷ �1 �ଶ �ଷ

�1 �ଶ �ଷ

Data of speaker S

Features

for

SAT DNN

training

Figure 7.3 Data selection and data augmentation scheme for SAT. For each speaker S in the
training corpus, training data of this speaker are divided into several parts (shown in gray).
Then MAP adaptation is performed independently for these parts. At this stage, different
values of parameter τ : {τ1,τ2,τ3} are applied during the GMMD feature extraction for each
part. In the shown example, the size of the training corpus (in terms of the features) increases
in 9 times (3(selection)×3(augmentation)).

108 Speaker adaptive training

The second approach, which we call data selection strategy, consists in splitting training

data for each speaker in the training corpus into several parts and then performing MAP

adaptation independently on each of the parts. In this chapter we use a simple implementation

of this strategy – we randomly separate training data for each speaker into several subsets, so

that the total amount of data in each subset is approximately equal to the average amount of

data per speaker in the test set. This strategy serves as a regularization and is supposed to

make adaptation more robust to the size of the adaptation set.

Hence, the original data from the training corpus are used in AM training several times

with different values of τ and inside different subsets of data chosen for adaptation. The

motivation for these two approaches lies in obtaining more robust SAT DNN models for

MAP adaptation, especially when the training corpus is relatively small.

The GMMD feature dynamic in the training corpus for different values of τ and for

different data selection strategies is shown in Figure 7.4. In both pictures "full" means

that during the SAT training for a given speaker all data of that speaker from the training

corpus are used for MAP adaptation, whereas "selection" means that data selection strategy

is applied and training data for this speaker is randomly split into two subsets so that MAP

adaptation is performed for each subset independently. Let denote T1 and T2 two types of

features, (or more precisely, GMMD features extracted with different parameters). Every

curve in Figure 7.4a and 7.4b, marked as "T1–T2", corresponds to the average differences

between T1 and T2 features and is calculated as follows. First, we subtract coordinate-wise

features T2 from T1 on the training corpus. Then, we found mean (Figure 7.4a) and standard

deviation (Figure 7.4b) values for each feature vector coordinate. Finally, we sort the obtained

values for each feature vector dimension by descending order.

For example, in Figure 7.4 the first (blue) line in both pictures corresponds to "τ=0.1 –

τ=5 (full)". This means in our notation, that we consider two types of GMMD features:

T1 : τ = 0.1 and T2 : τ = 5, calculated on the training corpus with different τ values, and

"(full)" means that in both cases features are extracted in the standard way without data

selection, for each speaker using all data from this speaker available in the training corpus to

perform speaker adaptation.

We can see that GMMD features calculated for various τ and with (or without) data

selection strategy have different amplitude and dynamic characteristics, therefore they can

contain complementary information. Hence data augmentation might improve AM by making

them more robust to τ and to the size of the adaptation set.

7.3 Data augmentation and data selection for SAT 109

0 20 40 60 80 100 120 140
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GMMD−features (coordinates)

M
e
a
n

 v
a
lu

e
s

o
f

d
if

fe
re

n
c
e
s

τ=0.1 – τ=5 (full)

τ=0.1 – τ=5 (selection)

τ=1 – τ=5 (full)

τ=1 – τ=5 (selection)

selection – full (τ=0.1)

selection – full (τ=1)

selection – full (τ=5)

(a) Mean values

0 20 40 60 80 100 120 140
−0.2

−0.15

−0.1

−0.05

0

0.05

GMMD−features (coordinates)

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 v

a
lu

e
s

o
f

d
if

fe
re

n
c
e
s

τ=0.1 – τ=5 (full)

τ=0.1 – τ=5 (selection)

τ=1 – τ=5 (full)

τ=1 – τ=5 (selection)

selection – full (τ=0.1)

selection – full (τ=1)

selection – full (τ=5)

(b) Standard deviation values

Figure 7.4 Differences in GMMD-features depending on τ values. GMMD feature co-
ordinates are sorted by descending order of the corresponding differences. Statistics are
calculated on the training dataset of the WSJ0 corpus.

110 Speaker adaptive training

7.4 Experimental results with data augmentation, data se-

lection and lattices scores

The experiments are conducted on the WSJ0 corpus (Section 5.1). Unlike the initial ex-

periments with SAT and GMMD features, described in Section 7.1.2, for this series of

experiments we built a novel strong baseline AM using the Kaldi speech recognition toolkit

[Povey et al., 2011b], following mostly Kaldi WSJ recipe (except for GMMD-features and

adaptation). The new SAT-DNN AM on GMMD features was also trained according to the

new recipe.

We use conventional 11×39MFCC features (39-dimensional MFCC (with CMN) spliced

across 11 frames (±5)) as baseline features and compare them to the proposed GMMD

features. We train four DNN models: SI model on 11×39MFCC; SI and two SAT models on

GMMD features. These four DNNs have identical topology (except for the dimension of the

input layer) and are trained on the same training dataset. An auxiliary GMM is also trained

on the same data.

The first SAT DNN on GMMD features is trained as described in Section 7.1.1 with

parameter τ for adaptation equal to 5. The second SAT DNN on GMMD features is trained

using data augmentation (with τ equal to 0.1, 1 and 5) and data selection strategy, as described

in Section 7.3. For training SI-DNN on GMMD features, we apply the scheme shown in

Figure 6.1.

All four CD-DNN-HMM systems had six 2048-neuron hidden layers and a 2355-neuron

output layer. The neurons in the output layer correspond to context-dependent states deter-

mined by tree-based clustering in CD-GMM-HMM. The DNN is initialized with the stacked

restricted Boltzmann machines by using layer by layer generative pre-training. It is trained

with an initial learning rate of 0.008 using the CE objective function. After that, five iterations

of training with the sMBR criterion (Formula (3.3.3.1)) are performed.

In all experiments further we consider SI DNN trained on 11×39MFCC features as the

baseline model and compare the performance results of the other models with it. Evaluation

is carried out on the standard WSJ0 evaluation test si_et_20. The adaptation experiments

are conducted in an unsupervised mode on the test data using transcripts or lattices obtained

from the first decoding pass.

For adapting an auxiliary GMM model we use MAP adaptation algorithm. We perform

two adaptation experiments:

1. with traditional MAP;

7.5 Conclusions 111

2. with lattice-based MAP using confidence scores, as described in Section 7.2.

For lattice-based MAP the value of confidence threshold is 0.6. The performance results in

terms of WER for SI and adapted DNN-HMM models are presented in Table 1. We can see

that using confidence scores can give an additional slight improvement in MAP adaptation

for DNN models over adaptation, which uses an alignment. The best result is obtained using

data augmentation and data selection strategies. For comparison purposes we also train six

DNN models with τ values 0.1, 1 and 5 with and without data selection strategies, but in all

cases the results are worse than the one obtained combining both strategies, so we do not

report other results here.

Table 7.4 Summary of WER (%) results for unsupervised adaptation on WSJ0 evaluation set
si_et_20. ∆relWER is a relative WER reduction calculated with respect to the baseline SI
AM. The WER for the baseline system is given with a confidence interval, corresponding to
5% level of significance.

Type of Features Adaptation WER, % ∆relWER, %

11×39MFCC SI 7.51 ±0.69 baseline

GMMD

SI 7.83 −

MAP (alignment) 7.09 5.6

MAP (lattice-based) 6.93 8.4

MAP (data augmentation & selection) 6.77 9.9

Experimental results demonstrate, that in an unsupervised adaptation mode, the pro-

posed adaptation technique can provide, approximately, up to 9.9% relative WER reduction

compared to the SI DNN system built on conventional 11×39MFCC features.

7.5 Conclusions

In this chapter we extended and improved the previously proposed adaptation algorithm by

applying the concept SAT to DNNs built on GMM-derived features.

In the first series of experiments (Section 7.1.2), traditional adaptation algorithms, such

as MAP and fMLLR were performed for the auxiliary GMM model used in a SAT procedure

for a DNN [Tomashenko and Khokhlov, 2015]. Experimental results on the WSJ0 corpus

demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can

provide, approximately, a 17–20% relative WER reduction for MAP and 18–28% relative

112 Speaker adaptive training

WER reduction for fMLLR adaptation on different adaptation sets, compared to the SI DNN-

HMM system built on conventional 11×39MFCC features. We found that fMLLR adaptation

for the SAT DNN trained on GMM-derived features outperforms fMLLR adaptation for the

SAT DNN trained on conventional features by up to 14% of relative WER reduction. It has

been shown, that fMLLR adaptation for GMMD features is efficient when using a small

amount of adaptation data, while MAP adaptation works better when more adaptation data

are used.

Another contribution of this chapter consists in the way to improve the previously

proposed adaptation algorithm by using confidences scores in adaptation [Tomashenko et al.,

2016d]. In addition, we introduced two approaches, so called data augmentation and data

selection strategies, for improving the regularization in MAP adaptation for DNN. The

proposed approaches are especially suitable when the training corpus is small, or when the

amount of adaptation data is not known in advance and can vary.

The second series of experiments (Section 7.4) was conducted with different DNN

training recipes, criteria and different DNN topologies in comparison with the experiments

described in the first part of this chapter. Particularly, all DNNs in this second series were

trained with much more parameters (6 HLs×2048 neurons vs. 4 HLs×1000 neurons). Also,

DNNs in the second series had sigmoid activation functions and were trained with RBM

pre-training in contrast to the DNNs in the first series, which used ReLU activation functions

and dropout. In addition, DNNs in the second series were trained with sMBR training

criterion, while CE criterion was used in the first series of experiments. This resulted in more

accurate (in sense of WER) models. We observed that, in these conditions, improvement

from MAP adaptation decreased but is still significant. The relative WER reduction for

adapted AM equals to approximately 10%, if we compare them with SI AM trained on the

same features, and 6% if we compare them with SI AM trained on conventional features.

These two values can be further improved by the proposed data augmentation and selection

techniques and reach respectively 14% and 10% of relative WER reduction.

Chapter 8

Integration of GMMD features into

state-of-the-art ASR systems

In this chapter we investigate various ways of integrating GMMD features into different neural

network architectures (DNN and TDNN). It includes the results from papers [Tomashenko

et al., 2016b], [Tomashenko et al., 2016a] and [Tomashenko et al., 2016f].

8.1 System fusion

In this section we suggest several types of combination of GMMD features with conventional

ones at different levels of DNN architectures. It is known that GMM and DNN models

can be complementary and their combination allows to improve the performance of ASR

systems [Pinto and Hermansky, 2008; Swietojanski et al., 2013]. Fusion is useful when the

individual systems, used in combination, contain complementary information. To obtain

better recognition performance we explore the following types of fusion: feature-level,

posterior-level, lattice-level and others.

8.1.1 Feature-level fusion

In this type of fusion, also called early fusion or early integration [Pinto and Hermansky,

2008], input features are combined before performing classification, as shown in Figure 8.1a.

In our case, features of different types – GMMD features and cepstral or BN features are

simply concatenated and provided as input into the DNN model for training. This type of

fusion allows us to combine different adaptation techniques in a single DNN model. For

example, MAP-adapted GMMD features can be concatenated with fMLLR-adapted BN

114 Integration of GMMD features into state-of-the-art ASR systems

Input

features 2

Output

posteriors
Decoder Result Feature

concatenation

Input

features 1

DNN

(a) Fusion for training and decoding stages.

Output

posteriors 1

Decoder

Output

posteriors 2

Posterior

combination
Result

DNN 1

DNN 2

Input

features 1

Input

features 2

(b) Fusion for decoding stage: posterior combination.

Output

 posteriors 1
Decoder

Result

Output

posteriors 2
Decoder

Confusion

Network

Combination
Lattices 2

DNN 1

DNN 2

Input

features 1

Input

features 2

Lattices 1

(c) Fusion for decoding stage: CNC.

Alignment
Training

Training

Training corpus

Input

features 1

Input

features 2

DNN 1

DNN 2
State tying

(d) Fusion for training stage.

Figure 8.1 Types of fusion

features or i-vectors, that makes adaptation more efficient for both small and large adaptation

sets.

8.1.2 Posterior-level fusion

Posterior-level fusion is also referred to as late fusion [Parthasarathi et al., 2015], late

integration [Pinto and Hermansky, 2008], state-level score combination [Lei et al., 2013]

or explicit combination [Swietojanski et al., 2013]. In this type of fusion (Figure 8.1b) the

outputs of two or more DNN models are combined at the state level. The outputs of the

two classifiers can be combined using various multi-stream combination techniques such as

sum (or linear combination), product, maximum, minimum, etc. In this work we perform

8.1 System fusion 115

frame-synchronous fusion using a linear combination of the observation posteriors of two

models (DNN1 and DNN2) as follows:

P(ot | si) = αPDNN1
(ot | si)+(1−α)PDNN2

(ot | si), (8.1)

where α ∈ [0,1] is a weight factor that is optimized on a development set. This approach

assumes that both models have the same state tying structure.

8.1.3 Lattice-level fusion

The highest level of fusion operates in the space of generated word hypotheses and tries to

rescore or modify recognition hypotheses provided as lattices (Figure 8.1c) or n-best lists.

This type of fusion is also referred to as implicit combination [Swietojanski et al., 2013].

One of the most common techniques for ASR system combination are recognizer output

voting error reduction (ROVER) [Fiscus, 1997] and confusion network combination (CNC)

[Evermann and Woodland, 2000]. In ROVER 1-best word sequences from the different

ASR systems are combined into a single word transition network (WTN) using a dynamic

programming algorithm. Based on this WTN the best scoring word is chosen among the

words aligned together. The decision is based either on the voting scheme, or word confidence

scores if they are available for all systems.

In CNC, instead of aligning the single best output, confusion networks built from individ-

ual lattices are aligned. In this work we experiment with the CNC approach because usually

(for example, [Evermann and Woodland, 2000; Xu et al., 2011]) it provides better results

than a simple ROVER scheme.

8.1.4 Other types of fusion

There are other possible ways of combining information from different ASR systems than

those listed above, that also could be considered as fusion. In this chapter, in addition to

those already mentioned, we also implemented the two following approaches.

The first approach is specific to the adaptation task and is related only to the acoustic

model adaptation stage. It consists in using the transcripts (or lattices) obtained from the

decoding pass of one ASR system in order to adapt another ASR system (cross-adaptation).

The second approach (Figure 8.1d) is related to the acoustic model training. It is possible

to transfer some information from building one acoustic model to another one. In this work

we used phoneme-to-speech alignment obtained by one acoustic DNN model to train another

116 Integration of GMMD features into state-of-the-art ASR systems

DNN model. In addition we used state tying from the first DNN model to train the second

DNN. This procedure is important when we want to apply posterior fusion for two DNNs

and need the same state tying for these models. Also, several types of fusion described above

can be combined.

8.2 Training DNN AMs with GMMD features

In the previous chapters (6 and 7), an auxiliary GMM model was trained on MFCC features,

and then this GMM model was used to extract GMMD features for further training a DNN

model. In this chapter, we investigate the effectiveness of the proposed approach on another

level of DNN architecture. We use bottleneck (BN) features (Section 3.2.2.2) from a DNN to

train a GMM model for GMMD feature extraction. The motivation for using BN features

in this approach is that for better source features we can obtain better adaptation results.

BN features allow us to capture long term spectro-temporal dynamics of the signal with

GMMD features and are proven to be effective both for GMM and DNN acoustic model

training [Grézl et al., 2007, 2014]. To confirm this suggestion, in Section 8.6.1, we will

experimentally demonstrate that BN features are more effective than MFCC for GMMD

feature extraction.

The scheme for training DNN models with GMM adaptation framework is shown in

Figure 8.2. First, 40-dimensional log-scale filterbank features, concatenated with 3-dim-

ensional pitch-features1, are spliced across 11 neighboring frames [-5..5], resulting in 473-

dimensional (43× 11) feature vectors. After that a DCT transform is applied and the

dimension is reduced to 258. Then a DNN model for 40-dimensional BN features is trained

on these features. An auxiliary triphone or monophone GMM-HMM model is used to

transform BN feature vectors into log-likelihoods vectors. At this step, speaker adaptation of

the auxiliary speaker-independent (SI) GMM-HMM model is performed for each speaker in

the training corpus and a new speaker-adapted (SA) GMM-HMM model is created in order

to obtain SA GMMD features.

For a given BN feature vector, a new GMMD feature vector is obtained by calculating

log-likelihoods across all the states of the auxiliary GMM model on the given vector. Suppose

ot is the BN feature vector at time t, then the new GMMD feature vector ft is calculated as in

Formulas (6.3) and (7.1).

1Pitch-features are calculated using the Kaldi toolkit [Povey et al., 2011b] and consist of the following
values [Ghahremani et al., 2014]: (1) probability of voicing (POV-feature), (2) pitch-feature and (3) delta-pitch-
feature. For details see http://kaldi-asr.org/doc/process-kaldi-pitch-feats_8cc.html.

8.3 Training TDNN AMs with GMMD features 117

The obtained GMMD feature vector ft is concatenated with the original vector ot . After

that, the features are spliced in time taking a context size of 13 frames: [-10,-5..5,10]. These

features are used as the input for training a SAT DNN.

Fbank features

Splicing: ×11 [-5..5]

SAT-DNN training

Speaker adaptation

Cepstral mean normalization

40+3

43

473

 2355

 2048

speaker adapted speaker independent

Transcriptions

Pitch features

DNN training for BN features

DCT 258

1500

40

1500

1500

2390

127

2171 Splicing: ×13 [-10,-5..5,10]

Auxiliary GMM

40

Input sound

Figure 8.2 Using speaker-adapted BN-based GMMD features for SAT of a DNN-HMM.
Numbers correspond to feature or layer dimensions.

8.3 Training TDNN AMs with GMMD features

In addition to the system described in Section 8.2, we aim to explore the effectiveness of

using GMMD features to train a time delay neural network (TDNN) [Waibel et al., 1989].

118 Integration of GMMD features into state-of-the-art ASR systems

Splicing: ×11 [-5..5]

TDNN training

Speaker adaptation

Cepstral mean normalization

40

40

440

 4052

speaker adapted speaker independent

Transcriptions
MFCC features

DNN training for BN features

1500

40

1500

1500

4052

127

Auxiliary GMM

40

Input sound

Speaking rate perturbation: 0.9, 1.0, 1.1

 935

 850

i-vector 100

Feature expansion and subsampling

Figure 8.3 Using speaker-adapted BN-based GMMD features for SAT of a TDNN-HMM.
Numbers correspond to feature or layer dimensions.

A TDNN model architecture allows to capture the long term dependencies in speech

signal. The recently proposed approaches to train TDNN acoustic models [Peddinti et al.,

2015] are reported to show higher performance on different LVCSR tasks compared with

the standard (best) DNN systems. We aim to incorporate GMMD features into the existing

state-of-the art recipe for TDNN model [Peddinti et al., 2015]. For comparison purposes,

we take a Kaldi TED-LIUM recipe with a TDNN acoustic model as a basis. An example of

using GMMD features for training a TDNN is shown in Figure 8.3. Here, as before, we use

8.4 Baseline systems and addressed questions 119

BN features to train the GMM auxiliary model for GMMD feature extraction. Then GMMD

features are obtained in the same way as described in Section 8.2.

There are several options to obtain the final features which are fed to the TDNN model.

First GMMD features can be combined with the original MFCC features. Another variant

consists in combination of GMMD features with BN features, that are used for training

the auxiliary GMM model, as shown in Figure 8.3. In both cases we can also use speaker

i-vectors as auxiliary features (Section 4.3.6.1). We will experimentally explore all these

possibilities in Section 8.6.3.

8.4 Baseline systems and addressed questions

The experiments were conducted on the TED-LIUM corpus (Section 5.2). We used the open-

source Kaldi toolkit [Povey et al., 2011b] and mostly followed the standard TED-LIUM Kaldi

recipes to train two sets of baseline systems, corresponding to two different types of acoustic

models (DNN and TDNN)2 and two LMs (LM-cantab and LM-lium, see Section 5.2):

1. Baseline systems with DNN AMs. AMs in this set are DNNs trained on BN features,

and for the baseline with speaker adaptation we used fMLLR adaptation. LM-cantab

was used for decoding.

2. Baseline systems with TDNN AMs. This set corresponds to a TDNN AMs, with

i-vectors and fMLLR for speaker adaptation and LM-lium for decoding.

Hence, for each set of baseline systems we trained several acoustic models – SI and SAT AMs.

The motivation for creating multiple baseline systems is to have a possibility to compare the

proposed adaptation approach not only to some SI baselines, but also to the strong SAT AMs,

which use conventional speaker adaptation techniques. Also, one of the question addressed in

this study, is to explore several types of basic features to build an auxiliary GMM for GMMD

feature extraction. For this reason, we (in addition to the standard original baselines, proposed

in Kaldi recipes) built corresponding baseline AMs using the same basic features, as we

used for GMMD feature extraction in order to have a more complete picture of experimental

results and possibility to compare adaptation techniques under equal conditions.

As we noticed already, besides the standard feed-forward DNNs which were the main

focus of all the previous experiments, in this chapter, we also explore TDNN AMs, because

recently they have been shown to outperform standard DNNs for many LVCSR tasks [Peddinti

et al., 2015].
2using "nnet1" and "nnet3" Kaldi setups: http://kaldi-asr.org/doc/dnn.html

120 Integration of GMMD features into state-of-the-art ASR systems

Thus, two series of experiments were conducted:

1. With DNN AMs:

• Baseline AMs: Section 8.4.2;

• LM: LM-cantab;

• Proposed systems with GMMD features: Section 8.5.1;

• Results: Preliminary results to choose basic features and optimal topology of an

auxiliary GMM for GMMD feature extraction, as well as the adaptation parameter

τ are given Section 8.6.1. Final results are provided in Section 8.6.2.

2. With TDNN AMs:

• Baseline AMs: Section 8.4.3;

• LM: LM-lium;

• Proposed systems with GMMD features: Section 8.5.2;

• Results: Section 8.6.3.

8.4.1 Questions addressed in this study

Several questions addressed in this study include:

1. One of the main questions explored in this chapter is how to effectively integrate

the proposed GMMD features into state-of-the art AMs (DNN and TDNN). Some

examples of integration were proposed in Sections 8.2 (for DNN) and 8.3 (for TDNN).

But we also explore other ways, as will be described below in this chapter.

2. Explore factors which influence GMMD feature extraction:

• Basic features for training an auxiliary GMM model which is used for GMMD

feature extraction:

– For DNNs we explore 39-dimensional MFCC+∆+∆∆ and 40-dimensional

BN features (preliminary experiments, Section 8.6.1);

– For TDNNs we explore 40-dimensional high-resolution MFCC and 40-

dimensional BN features (Section 8.6.3);

• Topology of the auxiliary GMM model (Section 8.6.1)

8.4 Baseline systems and addressed questions 121

• Parameter τ in MAP adaptation (see Formula (4.2)), that controls the balance be-

tween the maximum likelihood estimate of the mean and its prior value [Gauvain

and Lee, 1994] (Section 8.6.3).

3. Study different types of fusion (features-, posterior-, lattice-level) of GMMD features

with other features (both SI and adapted) for DNNs (Section 8.6.2) and TDNNs

(Section 8.6.3);

4. Compare the proposed adaptation technique with the two most popular adaptation

approaches for neural network AMs:

• fMLLR (for DNNs and TDNNs, Sections 8.6.2 and 8.6.3);

• i-vectors (for TDNNs, Section 8.6.3).

5. Explore the complementarity of the proposed adaptation technique to other adaptation

approaches:

• fMLLR (for DNNs and TDNNs)

• i-vectors (for TDNNs)

6. Investigate the impact of the training criteria on the adaptation performance. We

compare CE and sMBR criteria for DNNs (Section 8.6.2).

8.4.2 Baseline DNN AMs

We trained four baseline DNN acoustic models:

• DNNBN-CE was trained on BN features with CE criterion.

• DNNBN-sMBR was obtained from the previous one by performing four epochs of

sMBR sequence-discriminative training.

• DNNBN-fMLLR-CE was trained on fMLLR-adapted BN features.

• DNNBN-fMLLR-sMBR was obtained from the previous one by four epochs of sMBR

training.

For training DNN models, the initial GMM model was trained first using 39-dimensional

MFCC features including delta and acceleration coefficients. Linear discriminant analysis

122 Integration of GMMD features into state-of-the-art ASR systems

(LDA), followed by maximum likelihood linear transform (MLLT) and fMLLR transforma-

tion, was then applied over these MFCC features to build a GMM-HMM system. Discrimi-

native training with the BMMI objective function (Formula (3.22)) was finally performed on

top of this model.

Then a DNN was trained for BN feature extraction. The DNN system was trained using

the frame-level cross entropy criterion and the senone alignment generated by the GMM-

HMM system. To train this DNN, 40-dimensional log-scale filterbank features concatenated

with 3-dimensional pitch-features were spliced across 11 neighboring frames, resulting in

473-dimensional (43×11) feature vectors. After that a DCT transform was applied and the

dimension was reduced to 258. A DNN model for extraction 40-dimensional BN features

was trained with the following topology: one 258-dimensional input layer; four hidden layers

(HL), where the third HL was a BN layer with 40 neurons and other three HLs were 1500-

dimensional; the output layer was 2390-dimensional. Based on the obtained BN features

we trained the GMM model, which was used to produce the forced alignment, and then

SAT-GMM model was trained on fMLLR-adapted BN features. Then fMLLR-adapted BN

features were spliced in time with the context of 13 frames: [-10,-5..5,10] to train the final

DNN model. The final DNN had a 520-dimensional input layer; six 2048-dimensional HLs

with logistic sigmoid activation function, and a 4184-dimensional softmax output layer, with

units corresponding to the context-dependent states.

The DNN parameters were initialized with stacked restricted Boltzmann machines

(RBMs) by using layer-by-layer generative pre-training. It was trained with an initial

learning rate of 0.008 using the cross-entropy objective function to obtain the SAT-DNN-CE

model DNNBN-fMLLR-CE.

After that four epochs of sequence-discriminative training with per-utterance updates,

optimizing state sMBR criteria, were performed to obtain the SAT-DNN-sMBR model

DNNBN-fMLLR-sMBR.

Baseline SI DNN models (DNNBN-CE and DNNBN-sMBR) were trained in a similar

way as the SAT DNNs described above, but without fMLLR adaptation.

8.4.3 Baseline TDNN AMs

We trained five baseline TDNN acoustic models, which differ only in the type of the input

features:

• TDNNMFCC was trained on high-resolution (40-dimensional) MFCC features.

8.4 Baseline systems and addressed questions 123

• TDNNMFCC⊕⊕⊕i-vectors was trained on high-resolution MFCC features, appended with

100-dimensional i-vectors.

• TDNNBN was trained on BN features.

• TDNNBN⊕⊕⊕i-vectors was trained on BN features, appended with 100-dimensional i-

vectors.

• TDNNBN-fMLLR was trained on fMLLR-adapted BN features.

The baseline SAT-TDNN model TDNNMFCC⊕⊕⊕i-vectors is similar to those described in

[Peddinti et al., 2015], except for the number of hidden layers and slightly different subse-

quences of splicing and sub-sampling indexes. The two types of data augmentation strategies

were applied for the speech training data: speed perturbation (with factors 0.9, 1.0, 1.1) and

volume perturbation. The SAT-TDNN model was trained on high-resolution MFCC features

(without dimensionality reduction, keeping all 40 cepstra) concatenated with i-vectors. The

100-dimensional on-line i-vectors were calculated as in [Peddinti et al., 2015], and the

statistic for i-vectors was updated every two utterances during the training.

The temporal context was [t−16, t+12] and the splicing indexes used here were3 [−2,2],

{−1,2}, {−3,3}, {−7,2}, {0}, {0}. This model has 850-dimensional hidden layers with

rectified linear units (ReLU) [Dahl et al., 2013] activation functions, a 4052-dimensional

output layer and approximately 10.9 million parameters.

The baseline SI-TDNN model TDNNMFCC was trained in a similar way as the SAT-

TDNN described above, but without using i-vectors.

In addition to these baseline models, for comparison purpose, we trained two other

baseline TDNNs (with and without i-vectors) using BN features instead of high-resolution

MFCC features. The same BN features we used later for training an auxiliary monophone

GMM model for GMMD feature extraction. These BN features were extracted using a DNN

trained in a similar way, as described in Section 8.4.2 for the DNN AM, but on the high-

resolution MFCC features (instead of "filter bank ⊕ pitch" features) and on the augmented

(by means of speed and volume perturbation) data base.

Finally, a TDNN with fMLLR adaptation on BN features was trained (TDNNBN-fMLLR).

3For notations see Section 2.4.2 and Figure 2.3

124 Integration of GMMD features into state-of-the-art ASR systems

8.5 Proposed systems with GMMD features

For experiments with speaker adaptation we trained two types of acoustic models — DNNs

and TDNNs.

8.5.1 DNN AMs on GMMD features

In this set of experiments we trained four DNNs, using the approach proposed in Section 8.2:

• DNNGMMD⊕⊕⊕BN-CE is a DNN trained without performing speaker adaptive training,

which in our case means that the auxiliary GMM monophone model was not adapted.

The model was trained using CE criterion.

• DNNGMMD⊕⊕⊕BN-sMBR was obtained from the previous one by performing four epochs

of sequence-discriminative training with per-utterance updates, optimizing sMBR

criterion.

• DNNGMMD-MAP⊕⊕⊕BN-CE was a proposed SAT DNN model trained on speaker adapted

GMMD-MAP features, with CE criterion.

• DNNGMMD-MAP⊕⊕⊕BN-sMBR was obtained from the previous one by performing four

epochs of sMBR sequence training.

Models DNNGMMD-MAP⊕⊕⊕BN-CE and DNNGMMD-MAP⊕⊕⊕BN-sMBR were trained as de-

scribed in Section 8.2. The GMMD features were extracted using a monophone auxiliary

GMM model, trained on BN features. This GMM model was adapted for each speaker

by MAP adaptation algorithm (Section 4.2.1). We took the state tying from the baseline

SAT-DNN to train all other models. The purpose of using the same state tying is to allow

posterior level fusion for these models.

Both DNN models were trained on the proposed features in the same manner and had the

same topology except for the input features, as the final baseline SAT DNN model trained on

BN features (Section 8.4.2).

The other two SI models (DNNGMMD⊕⊕⊕BN-CE and DNNGMMD⊕⊕⊕BN-sMBR) were trained

in the same manner, but without speaker adaptation.

8.5.2 TDNN AMs on GMMD features

In this set of experiments we trained five TDNNs, using the approach proposed in Section 8.3.

8.6 Adaptation and fusion results 125

• TDNNMFCC⊕⊕⊕GMMD was trained on high-resolution MFCC features appended with

speaker adapted GMMD features.

• TDNNMFCC⊕⊕⊕GMMD⊕⊕⊕i-vectors is a version of the TDNNMFCC⊕⊕⊕GMMD model with 100-

dimensional i-vectors appended to input features.

• TDNNBN⊕⊕⊕GMMD was trained on BN features appended with speaker adapted GMMD

features.

• TDNNBN⊕⊕⊕i-vectors⊕⊕⊕GMMD is a version of the TDNNBN⊕⊕⊕GMMD with 100-dimensional

i-vectors appended to input features.

• TDNNBN-fMLLR⊕⊕⊕GMMD was trained on fMLLR-adapted BN features appended with

speaker adapted GMMD features.

All the five TDNN models were trained in the same manner, as the baseline TDNN model

(Section 8.4.3), and differ only in the type of the input features.

8.6 Adaptation and fusion results

In this section, the adaptation experiments were conducted in an unsupervised mode on the

test data using transcripts from the first decoding pass obtained by the baseline SAT-DNN

model, unless explicitly stated otherwise.

8.6.1 Preliminary results: impact of the auxiliary GMM and parame-

ter τ in MAP adaptation on GMMD features

We aim to explore two factors related to the auxiliary GMM, used for GMMD feature

extraction: (1) the topology of the model and (2) the type of input features for training

this model, and choose the configuration, which is more effective for GMMD feature

extraction. We experimented with the following parameters of GMM model: the total

number of Gaussians and their distributions between states. Also GMM models were trained

on two different types of input features: 39-dimensional MFCC and BN features, extracted

as described in Section 8.4.2. In addition, we extracted features with different values of

adaptation parameter τ (in Formula (4.2) τ is the parameter that controls the balance between

the maximum likelihood estimate of the mean and its prior value in MAP adaptation).

In order to speed up these preliminary experiments, we performed them on a smaller (85

hours) subset of the training dataset. The performance results in terms of WER for DNN

126 Integration of GMMD features into state-of-the-art ASR systems

models, used for BN feature extraction, are presented in Table 8.1. Parameter Power in the

table controls the distribution of number of Gaussians between states in the GMM-HMM

model according to the distribution of data in the training corpus between these states. It is

the exponent for the number of Gaussians according to occurrence counts. When Power = 0,

all states in the GMM-HMM are modeled with the same number of Gaussians, otherwise

the number of Gaussians, used to model a given state, depends on the amount of data in the

training corpus belonging to this state.

We can see that for GMMD feature extraction it is better to train an auxiliary GMM model

on BN features than on MFCC, and that equal distribution of number of Gaussians between

states (Power = 0) performs worse than distribution which is dependent on occurrence counts.

We set parameter τ = 5 for all the following experiments.

Table 8.1 Impact of the parameters of the auxiliary model topology and τ (adaptation
parameter in MAP, see Formula (4.2)) on GMMD feature extraction (on the development set
of the TED-LIUM corpus)

Features Number of Gaussians τ Power WER,%

MFCC

2500 5 0.5 13.89

2500 5 0.0 14.05

3800 5 0.5 13.75

3800 5 0.0 13.65

BN

2500 1 0.5 13.69

2500 3 0.5 13.51

2500 5 0.5 13.34

2500 7 0.5 13.33

2500 10 0.5 13.40

2500 5 0.0 13.34

3800 5 0.5 13.33

3800 5 0.0 13.48

10200 5 0.5 13.92

8.6.2 Results for DNN models

We empirically studied different types of fusion described in Section 8.1 and applied them

to DNN models trained using GMMD-features extracted as proposed in Section 8.5.1. The

performance results in terms of WER for SI and SAT DNN-HMM models are presented in

8.6 Adaptation and fusion results 127

Table 8.2. The first four lines of the table correspond to the baseline SI (#1, #2) and SAT

(#3, #4) DNNs, which were trained as described in Section 8.4.2. Lines #4–#8 correspond

to feature level fusion of conventional and GMMD features. For comparison purpose

with lattice-level fusion (which we consider further in this chapter) we report WER of the

consensus hypothesis4 in parentheses for experiments #4 and #8 – these models will be used

in the fusion. Parameter τ in MAP adaptation for both acoustic model training and decoding

was set equal to 5.

Table 8.2 Summary of unsupervised adaptation results for DNN models on the TED-LIUM
corpus. The results in parentheses correspond to WER of the consensus hypothesis. WERs
for baseline systems are given with confidence intervals, corresponding to 5% level of
significance.

Model Features
DNN
training
criterion

WER,%

Development Test1 Test2

1
SI BN

CE 13.16 ±0.35 11.94 ±0.34 15.43 ±0.31

2 sMBR 12.14 ±0.33 10.77 ±0.32 13.75 ±0.30

3
SAT BN-fMLLR

CE 11.72 10.88 14.21

4 sMBR 10.64 (10.57) 9.52 (9.46) 12.78 (12.67)

5
SI GMMD⊕BN

CE 12.92 11.62 15.19

6 sMBR 11.80 10.47 13.52

7
SAT GMMD-MAP⊕BN

CE 10.46 9.74 13.03

8 sMBR 10.26 (10.23) 9.40 (9.31) 12.52 (12.46)

As we can see from Table 8.2, using speaker-independent (SI) GMMD features in concate-

nation with SI BN features (#5 and #6) improves the SI baselines (#1 and #2 correspondingly)

for all data sets, for both training criteria (CE and sMBR).

By comparing results for AMs trained with CE criterion in lines #5 and #7, we can

conclude that the proposed adaptation technique with MAP provides for different datasets

approximately 14–18% of relative WER reduction with respect to the SI AM trained on

GMMD⊕BN features. For sMBR criterion (lines #6 and #8) the relative WER reduction is

approximately 7–13%.

If we compare AMs adapted with fMLLR (#3, #4) with AMs adapted with MAP (#7,

#8 correspondingly), we observe that for AMs trained with CE criterion (#3 and #7) the

4Consensus hypothesis is obtained by finding the path through the confusion graph with the highest
combined link weight [Mangu et al., 2000]

128 Integration of GMMD features into state-of-the-art ASR systems

MAP-adapted AM outperforms the fMLLR-adapted AM, and relative WER reduction for

different datasets is in the interval 8–11%. However, for AMs trained with sMBR criterion

this gain reduces to 1–3% of relative WER reduction.

Table 8.2 shows the effectiveness of feature-level fusion of GMMD and conventional BN

features. We are also interested in other types of fusion (posterior- and lattice-level). For

these experiments we chose the best AM, trained on MAP-adapted GMMD features (#8)

and the AM, trained on fMLLR-adapted BN features (baseline SAT AM: #4). After that, we

made posterior fusion for these AMs. The result is given in Table 8.3, line #9. Value α in

Formula (8.1) (Section 8.1.2) is a weight of the baseline SAT-DNN model. Parameter α was

optimized on the development set.

Table 8.3 Summary of the fusion results for DNN models on the TED-LIUM corpus. The
results in parentheses correspond to WER of the consensus hypothesis. Relative WER
reduction (∆relWER,%) is calculated for consensus hypothesis with respect to AM trained
on BN-fMLLR (#4 in Table 8.2). The bold figures in the table indicate the best performance
improvement.

#
Fusion:

#4 and #8
Development Test1 Test2

WER ∆relWER WER ∆relWER WER ∆relWER

9
Posterior fusion,

α = 0.45
9.98

(9.91) 6.2
9.15

(9.06) 4.3
12.11

(12.04) 5.0

10
Lattice fusion,

α = 0.46 10.06 4.8 9.09 4.0 12.12 4.4

Finally, we applied lattice fusion (Section 8.1.3) for the same pair of models (line #10).

In this type of fusion, before merging lattices, for each edge, scores were replaced by their

a posteriori probabilities. Posteriors were computed for each lattice independently. The

optimal normalizing factors for each model were found independently on the development set.

Then the two lattices were merged into a single lattice and posteriors were weighted using

parameter α . As before, value α in Formula (8.1) corresponds to the weight of the baseline

SAT-DNN model. The resulting lattice was converted into the confusion network [Mangu

et al., 2000] and the final result was obtained from this confusion network.

We can see that both posterior and lattice types of fusion provide similar improvement

for all three models: approximately 4%–6% of relative WER reduction in comparison with

the adapted baseline model (SAT DNN on fMLLR features, #4), and 12%–18% of relative

WER reduction in comparison with the SI baseline model (#2). For models #7–8 only MAP

adaptation was applied.

8.6 Adaptation and fusion results 129

Experiments #9–10 present combination of two different adaptation types: MAP and

fMLLR. Is is interesting to note that in all experiments optimal value of α is close to 0.5, so

all types of models are equally important for fusion. We can see that MAP adaptation on

GMMD features can be complementary to fMLLR adaptation on conventional BN features.

8.6.3 Results for TDNN models

Summary of the adaptation results for the TDNN models is given in Table 8.4. The first five

lines of the table correspond to the baseline AMs: SI (#1, #3) and SAT (#2, #4, #5). The

rest of the table (lines #6–#10) shows the results for different AMs, trained using GMMD

features. Since the performance of MAP adaptation depends on the quality of transcripts,

used for adaptation, for these models, for comparison purposes, we present results, obtained

with the use of transcripts from three different AMs, used in the first decoding pass (#3, #4,

#5). These results have the corresponding letters in numeration (a, b, c).

For SI AM trained on BN features, using GMMD adapted features provides 3.2–10.1%

of relative WER reduction (#3 vs #8.a). If we compare results in lines #4 and #9.b, we can

see that the use of GMMD features gives an additional improvement over i-vector based

adaptation (0.8–6.9% of relative WER reduction for different sets). The best result over all

AMs was obtained by TDNNGMMD⊕⊕⊕BN-fMLLR (line #10.c).

To further investigate the complementary of the different adaptation techniques, we

performed CNC of recognition results for different TDNN models (Table 8.5). The best

results (#24 or #25) are obtained by combinations of TDNN models (#2, #7) or (#2, #10) and

provide approximately 8–15% of relative WER reduction in comparison with the conven-

tional state-of-the-art SAT baseline model TDNNMFCC⊕i-vectors, and 5–7% of relative WER

reduction in comparison with the strongest baseline AM we could achieve without GMMD

features (#5).

130 Integration of GMMD features into state-of-the-art ASR systems

Table 8.4 Summary of unsupervised adaptation results for TDNN models on TED-LIUM
corpus. The results in parentheses correspond to WER of the consensus hypothesis (they are
given only for those results, that will be used further in fusion). Indices, following GMMD
features, denotes the AM, used to obtain transcriptions for adaptation. The bold figures in the
table indicate the best performance. WERs for baseline systems are given with confidence
intervals, corresponding to 5% level of significance.

Model Features
WER,%

Development Test1 Test2

1 SI MFCC 13.69 ±0.35 11.34 ±0.33 14.38 ±0.30

2 SAT MFCC⊕i-vectors 11.63 (11.56) 9.62 (9.51) 13.28 (13.19)

3 SI BN 12.32 ±0.34 10.48 ±0.32 14.00 ±0.30

4 SAT BN⊕i-vectors 11.62 (11.45) 9.75 (9.69) 13.30 (13.23)

5 SAT BN-fMLLR 10.70 (10.60) 9.28 (9.25) 12.84 (12.83)

6.a

SAT

GMMD#3⊕MFCC 11.30 9.75 13.74

6.b GMMD#4⊕MFCC 10.91 9.47 13.45

6.c GMMD#5⊕MFCC 10.39 9.31 13.27

7.a

SAT

GMMD#3⊕MFCC⊕i-vectors 11.23 9.91 13.69

7.b GMMD#4⊕MFCC⊕i-vectors 10.90 9.45 13.49

7.c GMMD#5⊕MFCC⊕i-vectors 10.31 (10.29) 9.32 (9.34) 13.26 (13.20)

8.a

SAT

GMMD#3⊕BN 11.07 9.75 13.55

8.b GMMD#4⊕BN 10.83 9.36 13.13

8.c GMMD#5⊕BN 10.29 9.20 13.04

9.a

SAT

GMMD#3⊕BN⊕i-vectors 11.01 9.73 13.59

9.b GMMD#4⊕BN⊕i-vectors 10.82 9.32 13.20

9.c GMMD#5⊕BN⊕i-vectors 10.30 (10.22) 9.11 (9.09) 13.09 (13.02)

10.a

SAT

GMMD#3⊕BN-fMLLR 10.92 9.54 13.27

10.b GMMD#4⊕BN-fMLLR 10.70 9.17 13.01

10.c GMMD#5⊕BN-fMLLR 10.15 (10.10) 9.06 (9.03) 12.84 (12.82)

8.7 Results for Arabic MGB 2016 Challenge 131

Table 8.5 Summary of the fusion results (CNC) for TDNN models on TED-LIUM corpus.
Relative WER reduction (∆relWER,%) is calculated for consensus hypothesis with respect
to the baseline TDNNMFCC⊕⊕⊕i-vectors, α is a weight of TDNN1 in the fusion. Numeration of
AMs corresponds to numeration in Table 8.4. The bold figures in the table indicate the best
performance.

TDNN1 TDNN2 α
Development Test1 Test2

WER ∆relWER WER ∆relWER WER ∆relWER

11 2 4 0.50 10.83 6.3 9.06 4.7 12.51 5.1

12 4 5 0.29 10.35 10.5 8.92 6.2 12.55 4.8

13 2 5 0.45 10.25 11.3 8.63 9.3 12.34 6.5

14 7.c 9.c 0.50 10.13 12.3 9.05 4.9 12.94 1.9

15 10.c 9.c 0.43 10.01 13.4 8.93 6.1 12.69 3.8

16 10.c 7.c 0.47 9.97 13.7 8.95 5.9 12.69 3.8

17 5 9.c 0.38 9.96 13.8 8.86 6.8 12.40 6.0

18 4 9.c 0.43 9.96 13.8 8.75 8.0 12.35 6.4

19 5 7.c 0.45 9.94 14.0 8.87 6.7 12.40 6.0

20 4 10.c 0.50 9.93 14.1 8.67 8.9 12.28 6.9

21 4 7.c 0.43 9.91 14.3 8.85 7.0 12.39 6.1

22 2 9.c 0.43 9.91 14.3 8.47 11.0 12.22 7.4

23 5 10.c 0.52 9.87 14.6 8.82 7.2 12.35 6.4

24 2 10.c 0.49 9.85 14.8 8.45 11.1 12.21 7.5

25 2 7.c 0.49 9.83 15.0 8.66 8.9 12.20 7.5

8.7 Results for Arabic MGB 2016 Challenge

This section presents the results of using the described approach for speaker adaptation as a

part of the LIUM ASR system [Tomashenko et al., 2016f] in 2016 Multi-Genre Broadcast

(MGB-2) Challenge in the Arabic language [Ali et al., 2016].

One objective of this section is to study the effectiveness of the proposed adaptation

technique when it is directly applied to novel conditions: language, size of the training

database, amount of adaptation data for training and test speakers, etc. The language

(MSA Arabic, switching to various Arabic dialects), the quality of audio recordings and

transcriptions in the training database, as well as other factors make this task more difficult

for ASR, and resulted in much higher WER of the baseline system in comparison with

the results, reported for WSJ0 and TED-LIUM datasets. The amount of the training data

used in the Arabic MGB 2016 dataset is approximately 3.8 times more than in TED-LIUM

132 Integration of GMMD features into state-of-the-art ASR systems

dataset. Also, the amount of data in development and test datasets is not balanced with

respect to speakers. Another aspect addressed in this experiments is to show the performance

of AMs trained on GMMD features in combination (particularly, lattice-level fusion) with

more different AMs than before (in the previous experiments we reported lattice-level fusion

results only for two AMs).

8.7.1 Acoustic models

The Kaldi speech recognition toolkit [Povey et al., 2011b] was used for AM training. The

corpus description is given in Section 5.4. The LIUM developed five different AMs, while

the same LM set was used for every system. Below we will provide a brief description of

these AMs; further details can be found in [Tomashenko et al., 2016f]. All the AMs except

the second one (TDNN2) were built using the grapheme-based lexicon.

TDNN chain model with 1-to-1 word-to-grapheme lexicon (TDNN1)

The first acoustic model is a recently proposed type of model in the Kaldi toolkit, the so-

called chain TDNN model [Povey et al., 2016]. Training this model was done by using

high-resolution PLP features (without dimensionality reduction, keeping the 40 cepstra)

concatenated with 100-dimensional i-vectors for speaker adaptation. We also, as in a standard

Kaldi recipe, applied data augmentation techniques before performing the actual training,

namely time-warping of the raw audio by factors of 0.9, 1.0 and 1.1, as well as frame-shifting

by 0, 1 and 2 frames. On top of this network, we performed a sequence-discriminative

training, using the sMBR criterion (Formula (3.3.3.1)).

TDNN chain model with vowels and phonetization (TDNN2)

This acoustic model is a TDNN chain model built in the same way as the one described

above, to the exception that no sequence-discriminative training was performed. The model

was trained on a realigned vowelized training set, where words were replaced by the two best

diacritization candidates provided by MADAMIRA toolkit [Pasha et al., 2014]. Thereby,

the phoneme-based lexicon was used for training, while pronunciations were mapped to the

grapheme words in the decoding process.

8.7 Results for Arabic MGB 2016 Challenge 133

DNN on fMLLR-adapted BN features (DNNBN)

This DNN model was trained on fMLLR-adapted 40-dimensional BN features, spliced in time

with the context of 13 frames: [-10,-5...5,10]. It had a 520-dimensional input layer; six 2048-

dimensional hidden layers with logistic sigmoid activation function, and a 8467-dimensional

softmax output layer, with units corresponding to the context-dependent states. The DNN

parameters were initialized with stacked RBMs by using layer-by-layer generative pretraining

and trained with CE objective function. After that four epochs of sequence-discriminative

training with per-utterance updates, optimizing sMBR criterion, were performed.

DNN on MAP-adapted GMMD features (DNNGMMD)

For training this DNN acoustic model we used speaker-adapted GMMD features. The

MAP-adapted GMMD 130-dimensional feature vectors were concatenated with unadapted

40-dimensional BN feature vectors and spliced across 13 frames as before [-10,-5...5,10],

resulting in 2210-dimensional feature vectors, for training a new DNN model. The topology

of DNNGMMD is similar to DNNBN, except for the dimension of the input layer. Further

DNNGMMD was trained in the same way as DNNBN model. In the experimental results, for

adaptation on the Dev set, we used the best transcripts, obtained from other AMs.

TDNN on MAP-adapted GMMD features (TDNNGMMD)

For training this TDNN acoustic model we used the same features, as for the model

DNNGMMD: speaker-adapted GMMD features concatenated with speaker-independent BN

features. Except for the difference in the input features and the absence of data augmentation,

the TDNNGMMD model was trained in the same way as TDNN1. We did not not perform

sequence training for this model (particularly due to competition constrains), hence in the

sense of training criteria this model is weaker than the TDNN1 model, and we can not

compare them directly. Also no data augmentation was applied for this AM. However, the

experiments reported in this section are interesting because they can provide additional

understanding of how systems built on GMMD features perform in combination with the

other systems built on conventional features.

134 Integration of GMMD features into state-of-the-art ASR systems

8.7.2 Results

As earlier in this chapter (Section 8.6.2), we applied the fusion of the recognition results

from different AMs, on the word lattice level (Section 8.1.3), in the form of CNC [Evermann

and Woodland, 2000].

Table 8.6 summaries the recognition results in terms of WER on the Dev dataset. Results

are reported after rescoring word-lattices with the 4-gram LM described in Section 5.4. These

word-lattices were obtained by using the 2-gram LM to decode the audio signal. Numbers in

the columns 3–7 are weights of the recognition results (lattices) from corresponding AMs

in CNC. Lines 1–5 represent results for single AMs, both for the 1-best result from lattices,

and for the 1-best result from consensus hypotheses. Lines 6–15 show results for pairwise

combination, lines 16–25 — fusion results for three models, and lines 26–30 — fusion results

for four models. Finally, line 31 demonstrates the WER=19.48%, obtained by fusion of the

results from all the five AMs.

If we compare lines #5 and #24, we can see, that by adding in the combination the AMs,

trained with the use of GMMD features, we can achieve 7.6% of relative WER reduction

in comparison with best single AM (TDNN1). Even when we combine three AMs (#20,

WER=19.86%), we can further slightly improve the result using GMMD features (#31,

WER=19.48%) by 2% of relative WER reduction.

We do not report results on the Test dataset, because they were computed by the MGB

organizers and did not cover all our experiments on the Dev dataset. But those results

that were available showed that results on Test and Dev were consistent. For more details

see [Tomashenko et al., 2016f].

8.7.3 Discussion

In this section, we described the application of the proposed adaptation approach to the LIUM

ASR system, that has been ranked in second position in the 2016 Arabic MGB Challenge. In

comparison with the previous experiments, the AMs, described in this section, were trained

on a larger speech corpus (648 hours) and were used without any a priori knowledge about

test speaker statistics. Also, combining more than two models by CNC, we can observe, that

GMMD features continues to provide an improvement in the overall ASR accuracy.

8.7 Results for Arabic MGB 2016 Challenge 135

Table 8.6 Recognition results on the Dev dataset for different AMs (systems: #1–#5) and
their fusion (systems: #6–#31) for MGB-2016. The second column (#) represents the system
identification numbers. Numbers in the columns 3—7 are weights of the recognition results
(lattices) from corresponding AMs in CN combination. The last column represents 1-best
result from consensus hypotheses.

Number
of AMs
in fusion

#
Fusion weights WER,%

TDNN1 TDNN2 DNNBN DNNGMMD TDNNGMMD Lattice Cons. hyp.

1

1 - 1 - - - 23.66 23.25

2 - - 1 - - 22.67 22.56

3 - - - - 1 22.31 22.11

4 - - - 1 - 22.05 21.89

5 1 - - - - 21.69 21.37

2

6 - - 0.525 0.475 - 21.02

7 - 0.529 0.471 - - 20.65

8 0.620 - - 0.380 - 20.52

9 - - 0.461 - 0.539 20.50

10 - 0.550 - 0.450 - 20.47

11 - - - 0.468 0.532 20.46

12 0.598 - 0.402 - - 20.42

13 - 0.501 - - 0.499 20.38

14 0.562 0.438 - - - 20.36

15 0.567 - - - 0.433 20.01

3

16 0.432 - 0.298 0.271 - 20.11

17 - - 0.341 0.293 0.365 20.08

18 - 0.423 0.264 0.313 - 19.99

19 0.303 0.435 - 0.262 - 19.87

20 0.369 0.332 0.298 - - 19.86

21 - 0.357 0.340 - 0.304 19.86

22 - 0.383 - 0.249 0.368 19.81

23 0.475 - 0.187 - 0.338 19.76

24 0.379 - - 0.218 0.403 19.75

25 0.350 0.358 - - 0.292 19.71

4

26 - 0.314 0.200 0.252 0.235 19.70

27 0.307 0.326 0.183 0.183 - 19.68

28 0.252 0.270 0.207 - 0.271 19.64

29 0.342 - 0.226 0.188 0.244 19.64

30 0.302 0.259 - 0.193 0.246 19.49

5 31 0.297 0.179 0.130 0.183 0.211 19.48

136 Integration of GMMD features into state-of-the-art ASR systems

8.8 Conclusions

In this chapter we have investigated the GMM framework for adaptation of DNN-HMM

acoustic models and combination of MAP-adapted GMMD with conventional features at

different levels of DNN and TDNN architectures [Tomashenko et al., 2016a,b].

Experimental results on the TED-LIUM corpus demonstrated that, in an unsupervised

adaptation mode, the proposed adaptation and fusion techniques can provide approximately, a

12–18% relative WER reduction on different adaptation sets, compared to the SI DNN system

built on conventional (MFCC) features, and a 4–6% relative WER reduction compared to

the strong adapted baseline — SAT-DNN trained on fMLLR adapted features. For TDNN

models using the adapted GMMD features and fusion techniques leads to improvement of

15–28% of relative WER reduction in comparison with SI model trained on conventional

features and 8–15% of relative WER reduction in comparison with SAT model trained with

i-vectors. Hence, for both considered adaptation techniques, fMLLR and i-vectors, the

proposed adaptation approach has appeared to be complementary and provide an additional

improvement in recognition accuracy.

In addition, we reported the results of applying the proposed adaptation approach to

the LIUM ASR system in the 2016 Arabic MGB Challenge, and demonstrated that this

complicated ASR system, trained with many hundred hours of speech data and resulting

from a combination of several AMs, can also benefit from the use of the adapted GMMD

features [Tomashenko et al., 2016f].

Chapter 9

Towards speaker adaptation for

end-to-end AMs

In this chapter we explore effectiveness of the proposed speaker adaptation technique for

end-to-end AMs.

9.1 Introduction

Recently, various neural end-to-end approaches to ASR have been proposed in the litera-

ture [Audhkhasi et al., 2017; Bahdanau et al., 2016; Chan et al., 2016; Collobert et al., 2016;

Fritz and Burshtein, 2017; Hannun et al., 2014]. End-to-end acoustic models (AMs) [Chorowski

et al., 2014; Graves and Jaitly, 2014; Miao et al., 2015a; Zhang et al., 2017] attempt to map

an acoustic signal to a phoneme or grapheme sequence directly by means of neural network

models (see Section 2.4). They have been developed as an alternative to the traditional hybrid

HMM-DNN approach.

However, the major part of the published works, devoted to end-to-end technology, does

not use any speaker adaptation techniques. This lack may be justified by the strong focus of

these papers on the neural core of the technology they introduce.

A few papers have offered some preliminary and promising information about the benefits

provided by some speaker adaptation techniques to end-to-end AMs. In [Miao et al., 2016],

VTLN has been applied to filterbank features, for a neural end-to-end AM training through

CTC criterion, providing 3% of relative WER reduction. Speaker i-vectors, appended to the

acoustic features, are used in [Audhkhasi et al., 2017] for training phone and word CTC

models. Also fMLLR-adapted features are used to train attention-based RNNs [Chorowski

et al., 2014]. However in these works [Audhkhasi et al., 2017; Chorowski et al., 2014], no

138 Towards speaker adaptation for end-to-end AMs

comparison results with the unadapted models are given. Work [Yi et al., 2016] proposes a

CTC regularized model adaptation method for the accent adaptation task. Speaker adaptation

with speaker codes of RNN-BLSTM AMs is studied in [Huang et al., 2016] for the phone

recognition task. In [Huang et al., 2016] AMs were trained with CE criterion, and the

adaptation provides about 10% of relative reduction in phone error rate.

The aim of this chapter is to explore the efficiency of speaker adaptation for end-to-end

ASR systems with the focus on the proposed approach, on the example of CTC-BLSTM AMs

(or shortly, CTC AMs). For this purpose we implemented three different speaker adaptation

algorithms to this type of AMs and performed an experimental analysis of these methods.

Furthermore, a comparative study of the adaptation techniques was conducted for CTC AMs

and TDNN AMs trained with traditional frame-wise CE criterion.

9.2 Speaker adaptation for BLSTM-CTC models

In this chapter we focus on the feature space adaptation techniques for end-to-end acoustic

models. In this section we describe the adaptation approach, which is based on using

speaker-adapted GMMD features for training BLSTM-CTC models.

The incorporation of the adapted GMMD features into the recipe for training sequence-

to-sequence AMs is straightforward. The scheme for SAT of BLST-CTC AMs models with

GMM-based adaptation framework is shown in Figure 9.1.

An auxiliary monophone GMM-HMM model is used to transform acoustic feature vectors

into log-likelihoods vectors. At this step, speaker adaptation of the auxiliary SI GMM-HMM

model is performed for each speaker in the training corpus using correct transcriptions and

a new speaker-adapted GMM-HMM model is created in order to obtain speaker-adapted

GMMD features.

For a given acoustic feature vector, a new GMMD feature vector is obtained by calculating

log-likelihoods across all the states of the auxiliary GMM model on the given vector. Suppose

ot is the acoustic feature vector at time t, then the new GMMD feature vector ft is calculated

as in Formulas (6.3) and (7.1).

The adapted GMMD feature vector ft is concatenated with the original vector ot to obtain

vector xt . These features are used as the input to train a SAT BLSTM-CTC AM.

9.3 Experiments 139

Backward

hidden layers

Output

vectors

Forward

hidden layers

 1+�ܡ �ܡ 1−�ܡ

 1+�ܠ �ܠ 1−�ܠ � � � � 1+� �

Deep BLSTM training

Speaker adaptation

Speaker adapted

GMMD

feature vector

 Speaker independent

acoustic

feature vector

Transcriptions

Auxiliary GMM

Input sound

��=�ܠ ⊕ ��

� �−1 � �+1 � �−1

��

�� �� ��

�� = [��1,…, ���]

���−1 ���+1 ���

Figure 9.1 SAT for the BLSTM-CTC AM using GMMD features

9.3 Experiments

The three different types of AM adaptation were explored in this chapter: (1) fMLLR, (2)

adaptation using i-vectors, and (3) MAP adaptation using GMMD. The experiments were

conducted on the TED-LIUM corpus (Section 5.2). The 4-gram language model LM-lium

(Section 5.2) was used for evaluation.

140 Towards speaker adaptation for end-to-end AMs

9.3.1 Baseline systems

We used the open-source Kaldi toolkit [Povey et al., 2011b] and the Eesen system [Miao et al.,

2015a] for the experiments presented in this chapter. Three baseline SI AMs were trained

using the Eesen system in a similar manner, and differ only in the front-end processing. The

following three type of features were used:

1. fbanks ⊕ ∆ ⊕ ∆∆ (dimension = 120): 40-dimensional filterbank features appended

with their first and second-order temporal derivatives;

2. high-resolution MFCC features (dimension = 40): features extracted without dimen-

sionality reduction, keeping all 40 cepstra;

3. bottleneck (BN) features (dimension = 40).

The first type of features is the same as proposed in the original Eesen recipe for the TED-

LIUM corpus. For the AMs with the two other types of features, also the two types of data

augmentation strategies were applied for the speech training data: speed perturbation (with

factors 0.9, 1.0, 1.1) and volume perturbation, as in [Peddinti et al., 2015].

The first baseline AM was trained as described in [Miao et al., 2014] with the CTC

criterion and the deep BLSTM architecture. The BLSTM network contains five bidirectional

LSTM layers with 320 memory cells in each forward and backward sub-layer. The input

features were normalized with per-speaker mean subtraction and variance normalization.

The output layer is a 41-dimensional softmax layer with the units corresponding to 39

context-independent phones, 1 noise model and 1 blank symbol.

The third SI AM was trained on BN features [Grézl et al., 2007]. A DNN model for

extraction 40-dimensional BN features was trained with the following topology: one 440-

dimensional input layer; four hidden layers (HLs), where the third HL was a BN layer with 40

neurons and other three HLs were 1500-dimensional; the output layer was 4052-dimensional.

The input features for training this BN extractor were 440-dimensional (40× 11): 40-

dimensional high-resolution MFCCs spliced across 11 neighboring frames (±5).

9.3.2 Adapted models

The three types of AM adaptation were empirically explored in this section: fMLLR, adapta-

tion using i-vectors, and MAP adaptation using GMMD features. For all the adapted AMs

the same data augmentation strategies were applied during the training, as for the SI ones.

All the SAT models were trained with the same neural network topology (except for the input

9.3 Experiments 141

layer) and training criterion, as described in Section 9.3.1 for SI AMs. The six SAT AMs

were trained on the following features:

4. MFCC ⊕ i-vectors (dimension = 140);

5. BN ⊕ i-vectors (dimension = 140);

6. BN with fMLLR (dimension = 40);

7. MFCC ⊕ GMMD (dimension = 167);

8. BN ⊕ GMMD (dimension = 167);

9. BN with fMLLR ⊕ GMMD (dimension = 167).

For the AMs trained on features #5 and #6, the 100-dimensional on-line i-vectors were

calculated as in [Peddinti et al., 2015], and the statistic for i-vectors was updated every two

utterances during the training.

For AMs #7–#9 we used BN features to train the auxiliary GMM model for GMMD

feature extraction. The speaker-adapted GMMD features were obtained in the same way as

described in Section 9.2. Parameter τ in MAP adaptation (see Formula (7.2)) was set equal

to 5 for both acoustic model training and decoding.

9.3.3 Adaptation results for CTC AMs

The adaptation experiments were conducted in an unsupervised mode on the test data using

transcripts from the first decoding pass.

The performance results in terms of word error rate (WER) for SI and SAT AMs models

are presented in Table 9.1. The first three lines of the table (#1–#3) correspond to the baseline

SI AMs, which were trained as described in Section 9.3.1, where the very first line represents

the Eesen baseline [Miao et al., 2014]. The next six lines (#4–#9) show the results for the

adapted models. The numeration in Table 9.1 coincides with the numeration in Sections 9.3.1

and 9.3.2.

The two last lines of the table (#10 and #11) are obtained with the same AMs, as the lines

#8 and #9 correspondingly, but for the extraction of GMMD-adapted features in #10 and #11

we used the transcriptions from the adapted model #6). Notice, that for all other tests (#7–#9)

we used transcriptions from the SI model #2.

The best result among all the systems #1–#9 is obtained by system #9, which corresponds

to the use of MAP-adapted GMMD features appended with fMLLR-adapted BN features.

142 Towards speaker adaptation for end-to-end AMs

Table 9.1 Summary of unsupervised adaptation results for CTC AMs on TED-LIUM cor-
pus. Indices for GMMD features denote the AM, which was used to obtain transcripts for
adaptation.

Model Features
WER,%

Dev. Test1 Test2

1 SI fbanks ⊕ ∆ ⊕ ∆∆ 14.57 11.71 15.29

2
SI

MFCC 13.21 11.16 14.15

3 BN 13.63 11.84 15.06

4

SAT

MFCC ⊕ i-vectors 12.92 10.45 14.09

5 BN ⊕ i-vectors 13.47 11.37 14.31

6 BN-fMLLR 12.45 10.96 13.79

7 MFCC ⊕ GMMD#2 11.95 10.20 14.04

8 BN ⊕ GMMD#2 11.66 10.14 13.88

9 BN-fMLLR ⊕ GMMD#2 11.63 9.91 13.58

10
SAT

BN ⊕ GMMD#6 11.67 10.11 13.70

11 BN-fMLLR ⊕ GMMD#6 11.41 9.93 13.47

It can be only slightly improved (#11) for two sets by using the adapted model on the first

decoding pass. Among all the adaptation methods, applied separately (#4–#8), the MAP

adaptation of GMMD features shows the best performance for both BN and MFCC features.

9.3.4 Comparison of adaptation behavior for BLSTM-CTC and TDNN

AMs

In this series of experiments we aim to compare the adaptation behavior of SAT CTC models

with the different type of neural network AMs. For this purpose we chose a TDNN model

topology, because such models are shown to achieve the best performance result in many

state-of-the ASR systems [Peddinti et al., 2015]. These AMs were trained with the CE

criterion.

For comparison we used the same set of SI and SAT AMs, as before for CTC-AMs (see

Sections 9.3.1 and 9.3.2), except for #1. All SI ans SAT TDNN models were trained in a

similar way and have the same model topology. They differ only in the type of the input

features. These are the same AMs, as were described in Sections 8.4.3 and 8.5.2. Note that

not all the TDNN AMs explored in the mentioned sections are used in the current chapter.

9.4 Conclusions 143

Table 9.2 Summary of unsupervised adaptation results for TDNN AMs on TED-LIUM corpus

Model Features
WER,%

Dev. Test1 Test2

2
SI

MFCC 13.69 11.34 14.38

3 BN 12.32 10.48 14.00

4

SAT

MFCC ⊕ i-vectors 11.63 9.62 13.28

5 BN ⊕ i-vectors 11.62 9.75 13.30

6 BN-fMLLR 10.70 9.28 12.84

7 MFCC ⊕ GMMD#2 11.30 9.75 13.74

8 BN ⊕ GMMD#2 11.07 9.75 13.55

9 BN-fMLLR ⊕ GMMD#2 10.92 9.54 13.27

10
SAT

BN ⊕ GMMD#6 10.29 9.20 13.04

11 BN-fMLLR ⊕ GMMD#6 10.15 9.06 12.84

The results for TDNN AMs are reported in Table 9.2. They include some results from

Table 8.4, but we show them here again for clarity and ease of comparison with CTC AMs.

Also Figure 9.2 presents the comparison of different adaptation algorithms in terms of

relative WER reduction for the speakers from test and development datasets for BLSTM-

CTC (Figure 9.2a) and TDNN (Figure 9.2b) AMs. The relative WER reduction is calculated

with respect to the SI AMs trained on BN features.

For TDNN AMs we also added in Figure 9.2b the results obtained with the use of SAT

AMs for the first decoding pass, because they provide a consistent additional improvement in

performance in comparison with the use of SI AMs.

Table 9.3 shows the relative WER reduction for BLSTM-CTC and TDNN AMs in

comparison with the best corresponding SI AMs (#2 for CTC and #3 for TDNN). We can see

that the optimal choice of features depends on the AM architecture. For SI AMs, BNs have

appeared to perform better than MFCCs for TDNN AMs, but for CTC AMs the situation is

reversed. Also for SAT CTC and SAT TDNN AMs, the ranking of the systems by the WER

is different.

9.4 Conclusions

This chapter explored how the end-to-end AMs can benefit from speaker adaptation and

demonstrated that speaker adaptation has remained an essential mechanism for improving

144 Towards speaker adaptation for end-to-end AMs

Table 9.3 Relative WER reduction (∆relWER) for adapted BLSTM-CTC and TDNN AMs
in comparison with the best SI AMs for each AM type (#2 for CTC and #3 for TDNN).
∆relWER values are calculated based on the results from Tables 9.1 and 9.2.

Features
CTC: ∆relWER,% TDNN: ∆relWER,%

Dev. Test1 Test2 Dev. Test1 Test2

4 MFCC ⊕ i-vectors 2.20 6.36 0.42 5.60 8.21 5.14

5 BN ⊕ i-vectors -1.97 -1.88 -1.13 5.68 6.97 5.00

6 BN-fMLLR 5.75 1.79 2.54 13.15 11.45 8.29

7 MFCC ⊕ GMMD#2 9.54 8.60 0.78 8.28 6.97 1.86

8 BN ⊕ GMMD#2 11.73 9.14 1.91 10.15 6.97 3.21

9 BN-fMLLR ⊕ GMMD#2 11.96 11.20 4.03 11.36 8.97 5.21

10 BN ⊕ GMMD#6 11.66 9.41 3.18 16.48 12.21 6.86

11 BN-fMLLR ⊕ GMMD#6 13.63 11.02 4.81 17.61 13.55 8.29

the performance of an ASR system in the new end-to-end speech recognition paradigm.

Experimental results on the TED-LIUM corpus showed that in an unsupervised adaptation

mode, the adaptation and data augmentation techniques can provide approximately a 10–20%

relative WER reduction on different adaptation sets, compared to the SI BLSTM-CTC system

built on filter-bank features. In average, the best results for BLSTM-CTC AMs were obtained

by using GMMD features and MAP adaptation, which can be further slightly improved by

combination with fMLLR adaptation technique.

We found out, that the type of the neural network AM architecture can differently

influence the adaptation performance. The comparison with the TDNN-CE AMs showed

that for these models, in contradiction to BLSTM-CTC AMs, MAP adaptation using GMMD

features outperforms fMLLR only when it uses SAT model in the first decoding pass to

obtain transcriptions for adaptation.

Also the obtained results allow us to compare TDNN-CE and BLSTM-CTC AMs in

the realistic conditions, when the speaker adaptation is applied, which is important because

usually end-to-end and hybrid AMs are compared on incomplete unadapted systems. The

best SI TDNN-CE AM outperforms the best SI BLSTM-CTC AM by 1–7% of relative WER

reduction for different test sets. For the best SAT AMs this gap in WER for TDNN-CE and

BLSTM-CTC AMs increases and reaches 5–13% of relative WER reduction.

9.4 Conclusions 145

0 5 10 15 20 25 30 35 40

−10

−5

0

5

10

15

20

25

30

35

Speaker

∆
re

lW
E

R
,
%

BN ⊕ i−vectors

BN−fMLLR

BN ⊕ GMMD
#2

BN−fMLLR ⊕ GMMD
#2

(a) CTC

0 5 10 15 20 25 30 35 40

−10

−5

0

5

10

15

20

25

30

35

Speaker

∆
re

lW
E

R
,
%

BN ⊕ i−vectors

BN−fMLLR

BN ⊕ GMMD
#2

BN−fMLLR ⊕ GMMD
#2

BN ⊕ GMMD
#6

BN−fMLLR ⊕ GMMD
#6

(b) TDNN

Figure 9.2 Per-speaker relative WER reduction (∆relWER) for speakers from test and devel-
opment datasets of the TED-LIUM corpus for different adaptation algorithms with respect to
the SI AMs, trained on BN features (#3). Adaptation is performed in an unsupervised mode.
Results are ordered in ascending WER reduction order for each AM.

Chapter 10

GMMD feature analysis

The objective of this chapter is to analyze the proposed GMMD features and the adaptation

algorithm for better understanding their nature and properties at different levels.

10.1 Phoneme posterior based features

Phoneme posterior based (PPB) features are obtained from time dependent phoneme posterior

scores [Gollan and Bacchiani, 2008; Uebel and Woodland, 2001] by computing arc posteriors

from the output lattices of the decoder. These features contain more information about the

decoding process, than the posterior probabilities from neural networks. We use this type of

features to analyze the adaptation performance for TDNN acoustic models.

Let {ph1, . . . , phN} be a set of phonemes and the silence model. For each time frame t we

calculate pn
t — the confidence score of phoneme phn (1≤ n≤ N) at time t in the decoding

lattice by calculating arc posterior probabilities. The forward-backward algorithm is used to

calculate these arc posterior probabilities from the lattice as follows:1

P(l|O) =
∑q∈Ql

Pac(O|q)
1
λ Plm(w)

P(O)
, (10.1)

where λ is the scale factor (the optimal value of λ is found empirically by minimizing

WER of the consensus hypothesis [Mangu et al., 2000]); q is a path through the lattice

corresponding to the word sequence w; Ql is the set of paths passing through arc l; Pac(O|q)

1We already used the lattice scores obtained from arc posterior probabilities to improve MAP adaptation in
Section 7 (Formula (7.2)), but here we again provide the description as a reminder.

148 GMMD feature analysis

is the acoustic likelihood; Plm(w) is the language model probability; and P(O) is the overall

likelihood of all paths through the lattice.

For the given frame ot at time t we calculate its probability P(ot ∈ phn) of belonging to

phoneme phn, using lattices obtained from the first decoding pass:

pn
t = P(ot ∈ phn) = ∑

l∈Sn(ot)

P(l|O), (10.2)

where Sn(ot) is the set of all arcs corresponding to the phoneme phn in the lattice at time t;

P(l|O) is the posterior probability of arc l in the lattice.

ASR

Calculation of

phoneme posterior

probabilities

Word

lattices

phoneme

alignments

 acoustic feature vector

1

2 4

5

�1

w2

w3

w4

w5

w6
w8

w9

0

w7

3
with

Vectors of

phoneme

posterior

probabilities:

w10

Figure 10.1 Scheme of phoneme posterior based (PPB) feature extraction

The obtained probability P(ot ∈ phn) of frame ot belonging to phoneme phn is the

coordinate value pn
t on the new feature vector pt . Thus for a given acoustic feature vector ot

at time t we obtain a new feature vector pt :

pt =
(

p1
t , . . . , pN

t

)
, (10.3)

where N is the number of phones in the phoneme set used in the ASR system.

10.2 Visual analysis using t-SNE 149

Hence for each frame ot we have a N-dimensional vector pt , each coordinate of which

represents the probability of this frame to belong to a certain phoneme. When some phonemes

are not present in the lattice for a certain frame, we set probabilities equal to some very small

value ε for them in the vector (where ε is a minimum value from lattices: ε ≈ 10−9). In

addition to this, we use state index information (position of the state in phoneme HMM: 0, 1

or 2) from the Viterbi alignment from the original transcripts.

10.2 Visual analysis using t-SNE

The PPB features were visualized using t-distributed stochastic neighbor embedding (t-SNE)

analysis [Maaten and Hinton, 2008]. This technique allows us to visualize high-dimensional

data into two or three dimensional space, in such a way that the vectors, which are close in

the original space, are also close in the low dimensional t-SNE representation.

We are interested in how well the different acoustic models can cluster different phoneme

states. For better visualization we used data only from inter-word phones and only from

the middle state of HMM (State 1). We choose only those phonemes for which we have

sufficient amount of data for analysis and perform t-SNE analysis independently on three

different groups of phonemes2:

• Vowels (UH, OW, AO, EY, ER, AA, AY, IY, EH, AE, IH, AH);

• Consonants-1: Liquids (L, R), Nasals (M, N, NG), Semivowels (W);

• Consonants-2: Stops (P, T, D, K), Affricates (CH), Fricatives (F, V, TH, S, Z, SH).

Each phoneme in these groups represents a separate cluster in our study.

10.3 Davies-Bouldin index

In order to support the visual analysis, we also use the Davies-Bouldin (DB) index [Davies

and Bouldin, 1979] to evaluate the quality of the phoneme state clusters obtained from the

PPB features:

DB =
1
K

K

∑
k=1

max
j ̸=k

(
σk +σ j

ρk, j

)
, (10.4)

where
2The notations are given according to the ARPAbet phoneme set: https://en.wikipedia.org/wiki/Arpabet

150 GMMD feature analysis

K is the number of clusters;

σk is the scatter within the cluster k, which is our case the standard deviation of the

distance of all vectors corresponding to cluster k, to the cluster center (other possible metric

variants are described in [Davies and Bouldin, 1979]);

ρk, j is a between-cluster separation measure, which in our case is the Euclidean distance

between the centroids of clusters k and j.

Smaller values of DB index correspond to better clusters.

10.4 Analysis for TDNN models

In this set of experiments we compare the following three TDNN acoustic models: TDNNMFCC,

TDNNBN⊕⊕⊕i-vectors and TDNNBN⊕⊕⊕i-vectors⊕⊕⊕GMMD (from Chapter 8). All the experiments

described in this section (except for Figure 10.6) are performed using PPB features (Sec-

tion 10.1) on the Development dataset.

First we analyzed the adaptation algorithm using t-SNE (Section 10.2). The results of the

visual t-SNE analysis are given in Figure 10.2 for the group of vowels and in Figures 10.3,

10.4 – for the two group of consonants. We can observe for all groups of phonemes that the

adapted features (Figures 10.2b, 10.3b, 10.4b) form more distinct and clear phone clusters

than the unadapted features (Figures 10.2a, 10.3a, 10.4a). Also we can note that the use of

GMMD features helps to further slightly improve cluster separability (Figures 10.2c, 10.3c,

10.4c).

To support this visual analysis of cluster separation, we calculated DB index (Section 10.3)

for all phonemes, separately for each state type, depending on its position in phoneme HMM

(State 0, 1, 2). As we can see in Table 10.1, DB index decreases for all HMM states when we

move from unadapted (MFCC) to adapted (BN⊕ i-vectors) features. That confirms the fact

the clusters are better for adapted features. The acoustic model with the adapted GMMD

features (BN⊕ i-vectors⊕GMMD) shows best result (the smallest value of DB index).

In order to more deeply investigate the adaptation behavior, we calculated additional

statistics for PPB features (Table 10.2). Frame error rate (FER) is calculated on the phoneme

level using only speech frames (excluding silence). Oracle FER was calculated also only on

speech frames as follows: if the correct phoneme is not present in the list of all candidates in

the lattices for a given frame, then it was considered as an error.

10.4 Analysis for TDNN models 151

UH
OW
AO
EY
ER
AA
AY
IY
EH
AE
IH
AH

(a) MFCC

UH
OW
AO
EY
ER
AA
AY
IY
EH
AE
IH
AH

(b) BN⊕ i-vectors

UH
OW
AO
EY
ER
AA
AY
IY
EH
AE
IH
AH

(c) BN⊕ i-vect⊕GMMD

Figure 10.2 Analysis of PPB features for vowels using t-SNE for TDNN models, trained on
different basic features. Results are shown for the Development dataset of the TED-LIUM
corpus.

152 GMMD feature analysis

L
M
N
NG
R
W

(a) MFCC

L
M
N
NG
R
W

(b) BN⊕ i-vectors

L
M
N
NG
R
W

(c) BN⊕ i-vect⊕GMMD

Figure 10.3 Analysis of PPB features for consonants-1 using t-SNE for TDNN models,
trained on different basic features. Results are shown for the Development dataset of the
TED-LIUM corpus.

10.4 Analysis for TDNN models 153

CH
D
F
K
P
S
SH
T
TH
V
Z

(a) MFCC

CH
D
F
K
P
S
SH
T
TH
V
Z

(b) BN⊕ i-vectors

CH
D
F
K
P
S
SH
T
TH
V
Z

(c) BN⊕ i-vect⊕GMMD

Figure 10.4 Analysis of PPB features for consonants-2 using t-SNE for TDNN models,
trained on different basic features. Results are shown for the Development dataset of the
TED-LIUM corpus.

154 GMMD feature analysis

Table 10.1 Davies-Bouldin (DB) index for different types of features used in TDNN training.
The DB index is calculated on PPB features produced by the corresponding model. Results
are provided for the development data set of the TED-LIUM corpus.

Features State 0 State 1 State 2

MFCC 1.67 1.52 1.71

BN⊕ i-vectors 1.53 1.36 1.41

BN⊕ i-vectors⊕GMMD 1.39 1.26 1.27

Table 10.2 Statistics for PPB features, obtained using the corresponding TDNN models. All
statistics in the table are calculated only for speech frames (excluding silence). The average
log-probability of the correct phoneme is given with the standard deviation. Results are
provided for the development data set of the TED-LIUM corpus.

Features FER Oracle FER Aver. correct log-prob.

MFCC 5.18 0.72 −0.17±0.83

BN⊕ i-vectors 4.11 0.75 −0.11±0.64

BN⊕ i-vectors⊕GMMD 3.64 1.23 −0.08±0.52

We can see that FER decreases when moving from the unadapted features to the adapted

ones, and then to the use of the adapted GMMD features, that correlates with the WER

behavior (Table 8.4). It is interesting to note, that Oracle FER, on the contrary, increases with

the adaptation. One of the possible explanation for this unusual situation can be phonetic

transcriptions errors which occur in the lexicon. The adapted models, which can be more

sensitive to the phonetic transcription errors, can more strictly supplant, during the decoding

process, hypotheses that do not match the sound.

Decoding parameters, such as decoding beam and lattice beam, were the same for all

models, but the adapted models in average have less alternative phoneme candidates for a

certain frame, than the unadapted one. This can be seen in Figure 10.5a, which shows the

cumulative distribution functions (CDFs) of the number of phoneme alternatives presented in

the lattices for a certain frame, estimated only for speech frames. Figure 10.5b demonstrates

CDFs of position of the correct phoneme (if it exists) in lattices for a certain speech frame in

the list of all phoneme candidates ordered by their posterior probabilities. We can conclude

from this figure, that for adapted models (especially for the AM with GMMD features), the

correct candidate has less incorrect alternatives with higher probabilities than its own.

10.4 Analysis for TDNN models 155

1 3 5 7 9 11 13 15 17 19 21 23
0.5

0.6

0.7

0.8

0.9

1

Number of phoneme alternatives

MFCC

BN ⊕ i−vectors

BN ⊕ i−vectors ⊕ GMMD

(a)

1 3 5 7 9 11 13 15
0.95

0.96

0.97

0.98

0.99

1

Position of the correct phoneme

MFCC

BN ⊕ i−vectors

BN ⊕ i−vectors ⊕ GMMD

(b)

−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.05

0.1

Log−probability of the correct phoneme

MFCC

BN ⊕ i−vectors

BN ⊕ i−vectors ⊕ GMMD

(c)

Figure 10.5 Adaptation analysis based on PPB feature statistics for the three TDNN models
on the development data set of the TED-LIUM corpus: (a) CDF of the number of phoneme
alternatives in the lattices for a certain frame; (b) CDF of the position of the correct phoneme
in the list of all phoneme candidates (ordered by the posterior probability) presented in
lattices for a certain frame; (c) Log-probability histogram of the correct phoneme (if it exists)
in the lattice for a certain frame.

156 GMMD feature analysis

0 5 10 15 20 25 30 35 40

−5

0

5

10

15

20

25

30

35

Speaker id

%

WER SI

WER SAT

∆
rel

WER

(a)

3 4 5 6 7 8

−5

0

5

10

15

20

Average likelihood improvement

∆
re

lW
E

R
,
%

Speakers

(b)

Figure 10.6 Summary statistics for all speakers from the development and the two test
datasets of the TED-LIUM corpus: (a) WERs(%) for two (SI and SAT) TDNN models: SI –
TDNNBN, SAT – TDNNBN⊕⊕⊕GMMD. Relative WER reduction (%) is computed for the given
WERs. Results are ordered by increasing WER values for the SI model; (b) Dependence of
relative WER reduction (the same as in (a)) on average likelihood improvement, obtained
by MAP adaptation of the auxiliary monophone model. The line corresponds to the linear
regression model.

10.5 Conclusions 157

Also, the average correct log-probability (it is a value from a PPB features vector,

which corresponds to the correct phoneme for a given frame) has a maximum value for

TDNNBN⊕i-vectors⊕GMMD model (see the last column of Table 8.4 and a histogram on Fig-

ure 10.5c).

Hence, if we compare the statistics presented in Table 10.2 and in Figure 10.5, we

can conclude that the adapted models tend to be more "selective" and "discriminative"

in comparison with unadapted models in the sense that: (1) they reduce the number of

alternatives in the hypothesis more aggressively; (2) they give higher probability values for

correct candidates; and (3) the correct phoneme candidate, if it exists in the lattice for a given

frame, has in average, less incorrect competitor alternatives with higher probabilities than

its own. The AM trained on the adapted GMMD features most strongly shows the same

properties.

This analysis demonstrates that the acoustic models trained with the proposed adapted

GMMD features perform better than the baseline adapted model not only by comparing the

WER (which is the main metric), but also on the other levels.

Also, what is important, this gives us an understanding of the possible way of the

adaptation performance improvement through more careful handling of the transcripts, for

example, by automatically estimating their quality and reliability.

Finally, Figure 10.6 shows the statistics obtained for 42 speakers from Development,

Test1 and Test2 data sets for TDNNBN and TDNNBN⊕⊕⊕GMMD models. We can observe that

the proposed adaptation approach improves recognition accuracy for 83% of speakers.

10.5 Conclusions

We have looked from the various points of view at the proposed adaptation approach explor-

ing the phoneme posterior based features, generated from the decoding lattices and have

demonstrated, that the advantage of using MAP-adapted GMMD features manifests itself

at different levels of the decoding process. This analysis also shows a possible potential

and direction for improvement of the proposed adaptation approach through more careful

handling of quality of the phonetics transcripts used in adaptation. This will be a focus of

our future work.

Chapter 11

Conclusions and future work

11.1 Overview of contributions

We have developed and investigated a novel technique for adaptation of DNN AMs.

Chapter 6 introduced a feature-space transformation method for the adaptation of DNN-

HMM models [Tomashenko and Khokhlov, 2014b], where input features for DNN training

are generated from the likelihoods of the GMM-HMM model. The main advantage of these

GMM-derived (GMMD) features is the possibility of performing adaptation of a DNN-HMM

model through the adaptation of the auxiliary GMM-HMM. Experiments demonstrate that in

supervised adaptation mode MAP adaptation is very effective for this scheme and gives, on

average, approximately 35-36% of relative WER reduction for a 5 minute adaptation sample

and 5% relative WER reduction for a 5 second adaptation sample, as compared to a SI-DNN

model.

Then, Chapter 7 extended the proposed adaptation approach by applying the concept

SAT to DNNs built on GMM-derived features. Traditional adaptation algorithms, such as

MAP and fMLLR were performed for the auxiliary GMM model used in a SAT procedure

for a DNN [Tomashenko and Khokhlov, 2015]. Experimental results on the WSJ0 corpus

demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can

provide, approximately, a 17–20% relative WER reduction for MAP and 18–28% relative

WER reduction for fMLLR adaptation on different adaptation sets, compared to the SI

DNN-HMM system built on conventional 11×39MFCC features. It has been shown, that

fMLLR adaptation for GMMD features is efficient when using a small amount of adaptation

data, while MAP adaptation works better when more adaptation data are available. Another

contribution of this chapter concerns a method of improving the adaptation algorithm by

using confidence scores in MAP adaptation [Tomashenko et al., 2016d]. In addition, data

160 Conclusions and future work

augmentation and data selection strategies, were introduced for improving the regularization

in MAP adaptation for DNN. These approaches can be especially useful when the training

corpus is small, or when the amount of adaptation data is not known in advance and can vary.

Various ways of integration of adapted GMMD features into different state-of-the art

neural network architectures DNN [Tomashenko et al., 2016a,b] and TDNN have been

investigated in Chapter 8. Experimental results on the TED-LIUM corpus demonstrate

that, in an unsupervised adaptation mode, the proposed adaptation and fusion techniques

can provide approximately, a 12–18% relative WER reduction on different adaptation sets,

compared to the SI DNN system built on conventional features, and a 4–6% relative WER

reduction compared to the strong adapted baseline — SAT-DNN trained on fMLLR adapted

features. For TDNN models, using the adapted GMMD features and fusion techniques

leads to improvement of 15–28% relative WER reduction in comparison with SI model

trained on conventional features and 8–15% relative WER reduction in comparison with SAT

model trained with i-vectors. Hence, for both considered adaptation techniques, fMLLR and

i-vectors, the proposed adaptation approach has appeared to be complementary and provide

an additional improvement in recognition accuracy. In addition, we report the results of

applying the proposed adaptation approach to the LIUM ASR system in the 2016 Arabic

MGB Challenge, and demonstrate, that the complicated ASR system, trained with many

hundred hours of speech data and comprised a combination of several AMs, can also benefit

from the use of the adapted GMMD features [Tomashenko et al., 2016f].

Chapter 9 has explored how the end-to-end ASR technology can benefit from speaker

adaptation and has demonstrated that speaker adaptation has remained an essential mechanism

for improving the performance of an ASR system in the new end-to-end speech recognition

paradigm. Experimental results on the TED-LIUM corpus showed that in an unsupervised

adaptation mode, the adaptation and data augmentation techniques can provide approximately

a 10–20% relative WER reduction on different adaptation sets, compared to the SI BLSTM-

CTC system built on filter-bank features. The best results, for BLSTM-CTC AMs, in average,

were obtained using GMMD features and MAP adaptation, which can be further slightly

improved by combination with fMLLR adaptation technique. We found out, that the type of

the neural network AM architecture can differently influence the adaptation performance.

The comparison with the TDNN-CE AMs showed that for these models, in contradiction

to BLSTM-CTC AMs, MAP adaptation using GMMD features outperforms fMLLR only

when it uses SAT model in the first decoding pass to obtain transcriptions for adaptation.

Also the obtained results allow us to compare TDNN-CE and BLSTM-CTC AMs in the

realistic conditions, when the speaker adaptation is applied, which is important because

11.2 Perspectives 161

usually end-to-end and hybrid AMs are compared on incomplete unadapted systems. The

best SI TDNN-CE AM outperforms the best SI BLSTM-CTC AM by 1–7% of relative WER

reduction for different test sets. For the best SAT AMs this gap in WER for TDNN-CE and

BLSTM-CTC AMs increases and reaches 5–13% of relative WER reduction.

Finally, in Chapter 10, we have looked from the various points of view at the proposed

adaptation approach exploring the phoneme posterior based (PPB) features, generated from

the decoding lattices and have demonstrated, that the advantage of using MAP-adapted

GMMD features manifests itself at different levels of the decoding process. Visual t-

distributed stochastic neighbor embedding (t-SNE) analysis applied to different phoneme

groups, Davies-Bouldin (DB) index and analysis of other statistics from decoding lattices

have shown a possible potential and direction for improvement of the proposed adaptation

approach through more careful handling the quality of the phonetic transcripts, used in MAP

adaptation.

The proposed adaptation approach was experimentally studied on four different speech

corpora, corresponding to three languages (English (WSJ0 and TED-LIUM), Russian (STC)

and Arabic (MGB-2016). The developed algorithms are integrated into the Kaldi environment.

For TED-LIUM and WSJ0 corpora, we plan to prepare and release training recipes based on

the proposed approach.

The most important advantage of the proposed approach is that it provides a general

framework for adapting DNN acoustic models. In this thesis we used MAP and fMLLR

adaptation algorithms as examples to study and demonstrate the effectiveness of the proposed

framework, but any other adaptation algorithms can be used instead of them.

11.2 Perspectives

Different possible directions of future developments can be suggested for the work, presented

in this thesis.

Application to other adaptation domains

The proposed adaptation framework opens new opportunities not only for the speaker

adaptation task, which was the main focus of this thesis, but also to other adaptation domains,

such as channel and noise adaptation, or other tasks. For example, the application of the idea,

presented in works [Tomashenko and Khokhlov, 2014b, 2015] for speaker adaptation, has

162 Conclusions and future work

later been successfully applied in [Kundu et al., 2016] to noise adaptation of a DNN AM

with the use of vector Taylor series (VTS) for an auxiliary GMM model.

Combination with model-based adaptation techniques

In this thesis it was demonstrated, that the proposed adaptation algorithm is complementary

to the most commonly used feature-space adaptation techniques for DNNs, such as fMLLR

and i-vectors. Also it is interesting to investigate the complementarity of the proposed

algorithm to model-based adaptation techniques for DNNs, for example learning hidden unit

contributions (LHUC), or others.

Speaker adaptive training for GMMD with transcripts from ASR

In the proposed SAT approach, at the training stage, adaptation is performed using original

(correct) transcripts from the training corpus. However, at the test time, inaccurate transcripts

from the ASR system are used for adaptation. Hence, speaker adaptive training and decoding

are performed in different conditions. Probably, using transcriptions from the ASR system

for adaptation in the SAT procedure can help to make adaptation more robust to overfitting

during the training or to transcription errors during adaptation at the test time. In the proposed

SAT scheme we assume that the targets and alignment for training are obtained using the

correct transcripts.

Improving the quality of adaptation transcripts

The GMMD feature analysis in Chapter 10 shows a possible direction for improvement of

the proposed adaptation approach through more careful handling the quality of the phonetic

transcripts used in adaptation. Various approaches can be proposed for this purpose.

We assume that the fixed lexicon for the ASR system can not cover all pronunciations of

words that can occur in speech. But we can not extend the lexicon enough with all additional

pronunciation variants because too much pronunciations in lexicon degrades the performance

of the ASR system. Hence one approach is to add possible pronunciations dynamically

during decoding in a two-pass scheme.

GMMD features: high dimension and correlation problem

The dimension n of the GMMD features equals to the number of states in the auxiliary GMM.

In our study we usually use a monophone GMM model with 3 states in each monophone.

11.2 Perspectives 163

Depending on the number of phonemes in the language, n can be roughly estimated as

100 < n < 200. Hence, the dimension of GMMD features is typically larger than the

dimension of conventional features (fbanks, MFCC+∆+∆∆, BN, etc.) which often does not

exceed 40. When we aim to train a DNN, a context extension is usually applied which

may increase the dimension of the input features up to 30 times. This can lead to too high

dimension of the input layer (up to 6000 units).

Using triphones in the auxiliary GMM model instead of monophones can be attractive

because adaptation of a triphone GMM can provide more accurate adaptation when we have

more adaptation data. But in this case the problem of high dimension becomes critical,

because with triphone states the dimension of the input layer can increase in 10–30 times

more in comparison with monophones.

Another aspect of this problem is correlation between GMMD feature components, which

increases when the number of states in the auxiliary GMM increases.

Proposed solution

To solve this problem, standard feature dimensionality reduction and decorrelation techniques

(such as PCA, LDA, HLDA, and others) can be applied.

An alternative promising solution is to use convolutional neural networks (CNNs, see

Section 2.4.1) for this purpose and train CNNs directly on high-dimensional GMMD features,

obtained after splicing with a wide context. Through convolutional and pooling operations,

CNNs can solve the problem of a high dimension and correlation in a natural and easy

way. Also, to train a CNN more effectively, it is possible to place GMMD features into

2-dimensional plane (to make a “picture" of triphone states) in such a way that acoustically

close senones are locally close on this “picture”.

In order to adapt GMMD features extracted using a triphone auxiliary GMM with many

states, different approaches, such as vector field smoothing (MAP-VFS, Section 4.2.1.2),

structural MAP (SMAP, Section 4.2.1.3), MLLR with regression classes (Section 4.2.2.1),

maximum a posteriori linear regression (MAPLR) or other algorithms can be applied.

Publications

International conferences and journals

This thesis mainly contains the work published in the following papers:

1. Tomashenko, N., Khokhlov, Y., and Esteve, Y. (2016). On the use of Gaussian mixture

model framework to improve speaker adaptation of deep neural network acoustic

models. In INTERSPEECH, pp. 3788-3792. [Tomashenko et al., 2016b]

2. Tomashenko, N., Khokhlov, Y., and Esteve, Y. (2016). A New Perspective on Combin-

ing GMM and DNN Frameworks for Speaker Adaptation. In International Conference

on Statistical Language and Speech Processing, SLSP-2016, pp. 120-132. Springer

International Publishing. [Tomashenko et al., 2016a]

3. Tomashenko, N., Khokhlov, Y., Larcher, A., and Estève, Y. (2016). Exploring GMM-

derived features for unsupervised adaptation of deep neural network acoustic models.

In International Conference on Speech and Computer, pp. 304-311. Springer Interna-

tional Publishing. [Tomashenko et al., 2016d]

4. Tomashenko N., Vythelingum K., Rousseau A., and Esteve Y. (2016). LIUM ASR

systems for the 2016 Multi-Genre Broadcast Arabic Challenge // IEEE Workshop on

Spoken Language Technology, SLT-2016, pp. 285–291. [Tomashenko et al., 2016f]

5. Tomashenko, N. A., and Khokhlov, Y. Y. (2015). GMM-derived features for effective

unsupervised adaptation of deep neural network acoustic models. In INTERSPEECH,

pp. 2882-2886. [Tomashenko and Khokhlov, 2015]

6. Tomashenko, N. A., and Khokhlov, Y. Y. (2014). Speaker adaptation of context

dependent deep neural networks based on MAP-adaptation and GMM-derived feature

processing. In INTERSPEECH, pp. 2997-3001. [Tomashenko and Khokhlov, 2014b]

166 Conclusions and future work

Some aspects of the work, which remained beyond the scope of this thesis, but were

indirectly connected with some of its points, are presented in the following papers:

7. Khomitsevich O.G., Mendelev V.S., Tomashenko N.A., Rybin S.V., Medennikov I.P.,

and Kudubayeva S.A. (2015). A Bilingual Kazakh-Russian System for Automatic

Speech Recognition and Synthesis // Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Vol. 9319, pp. 25-33. [Khomitsevich et al., 2015]

8. Bulgakova E., Sholohov A., Tomashenko N., and Matveev Y. (2015). Speaker Verifi-

cation Using Spectral and Durational Segmental Characteristics // Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Vol. 9319, pp. 397-404. [Bulgakova et al., 2015a]

9. Tomashenko N., and Khokhlov Y. (2014). Speaking Rate Estimation Based on

Deep Neural Networks. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.

[Tomashenko and Khokhlov, 2014c]

10. Chernykh G., Korenevsky M., Levin K., Ponomareva I., and Tomashenko N. (2014).

State Level Control for Acoustic Model Training // Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Vol. 8773, No. LNAI, pp. 435–442. [Chernykh et al., 2014b]

11. Levin, K., Ponomareva, I., Bulusheva, A., Chernykh, G., Medennikov, I., Merkin, N.,

Prudnikov, A., and Tomashenko, N. (2014). Automated closed captioning for Russian

live broadcasting. In INTERSPEECH (pp. 1438-1442). [Levin et al., 2014]

12. Tomashenko, N. A., and Khokhlov, Y. Y. (2013). Fast Algorithm for Automatic

Alignment of Speech and Imperfect Text Data. In Speech and Computer: 15th Inter-

national Conference, SPECOM 2013, September 1-5, 2013, Pilsen, Czech Republic,

Proceedings. Vol. 8113, pp. 146–153. Springer. [Tomashenko and Khokhlov, 2013]

13. Khokhlov, Y., and Tomashenko, N. (2011). Speech recognition performance evaluation

for LVCSR system. In Speech and Computer: 14th International Conference, SPECOM

2011. Kazan pp. 129-135. [Khokhlov and Tomashenko, 2011]

In addition to the above works, during my PhD study, I had an opportunity to contribute

towards the two speech recognition evaluations companies: MGB Challenge 20161 and

1The Multi-Genre Broadcast (MGB) Challenge: http://www.mgb-challenge.org/

11.2 Perspectives 167

OpenKWS 20162, which resulted in the following publications (besides [Tomashenko et al.,

2016f]):

14. Khokhlov Y., Tomashenko N., Medennikov I., and Romanenko A. (2017). Fast and

Accurate OOV Decoder on High-Level Features. In INTERSPEECH. pp 2884-2888.

[Khokhlov et al., 2017b]

15. Khokhlov Y., Medennikov I., Romanenko A, Mendelev V., Korenevsky M., Prudnikov

A., Tomashenko N., and Zatvornitsky A. (2017). The STC Keyword Search System

For OpenKWS 2016 Evaluation. In INTERSPEECH. pp 3602-3606. [Khokhlov et al.,

2017a]

16. Medennikov, I., Romanenko, A., Prudnikov, A., Mendelev, V., Khokhlov, Y., Ko-

renevsky, M., Tomashenko N., and Zatvornitskiy, A. (2017). Acoustic Modeling in

the STC Keyword Search System for OpenKWS 2016 Evaluation. In International

Conference on Speech and Computer. pp. 76-86. Springer International Publishing.

[Medennikov et al., 2017]

National conferences and journals (France, Russia)

17. Tomashenko, N., Khokhlov, Y., Larcher, A., and Estève, Y. (2016). Exploration de

paramètres acoustiques dérivés de GMM pour l’adaptation non supervisée de modèles

acoustiques à base de réseaux de neurones profonds. Proceedings of the 31éme

Journées d’Études sur la Parole (JEP). (In French). [Tomashenko et al., 2016c]

18. Tomashenko N.A., Khokhlov Yu.Yu., Larcher A., Estève Ya., and Matveev Yu. N.

(2016). Gaussian mixture models for adaptation of deep neural network acoustic

models in automatic speech recognition systems. Scientific and Technical Journal of

Information Technologies, Mechanics and Optics, vol. 16, no. 6, pp. 1063–1072. (In

Russian). [Tomashenko et al., 2016e]

19. Bulgakova E.V., Sholokhov A.V., and Tomashenko N.A. (2015). Speakers’ identi-

fication method based on comparison of phoneme lengths statistics. Scientific and

Technical Journal of Information Technologies, Mechanics and Optics, vol. 15, no. 1,

pp. 70–77. (In Russian). [Bulgakova et al., 2015b]

2Open Keyword Search (OpenKWS) Evaluation: https://www.nist.gov/itl/iad/mig/openkws16-evaluation

168 Conclusions and future work

20. Tomashenko N.A., and Khokhlov Y. Y. (2014). Analysis of data balancing problem in

acoustic modeling of automatic speech recognition system. Scientific and Technical

Journal "Priborostroenie", 2(57), pp. 17-23. (In Russian). [Tomashenko and Khokhlov,

2014a]

21. Chernykh G. A., Korenevsky M. L., Levin K. E., Ponomareva I. A., and Tomashenko

N. A. (2014). Cross-validation state control in acoustic model training of automatic

speech recognition system. Scientific and Technical Journal "Priborostroenie", 2(57),

pp. 23-28. (In Russian). [Chernykh et al., 2014a]

22. Solomennik, A., Chistikov, P., Rybin, S., Talanov, A. and Tomashenko, N. (2013). Au-

tomation of New Voice Creation Procedure For a Russian TTS System. Vestnik MGTU.

Priborostroenie, Biometric Technologies, 2, pp. 29-32. (In Russian). [Solomennik

et al., 2013]

Bibliography

Abdel-Hamid, O., Deng, L., and Yu, D. (2013). Exploring convolutional neural network
structures and optimization techniques for speech recognition. In Interspeech, pages
3366–3370.

Abdel-Hamid, O. and Jiang, H. (2013). Fast speaker adaptation of hybrid nn/hmm model
for speech recognition based on discriminative learning of speaker code. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages
7942–7946.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE/ACM Transactions on
audio, speech, and language processing, 22(10):1533–1545.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., and Penn, G. (2012). Applying convolutional
neural networks concepts to hybrid NN-HMM model for speech recognition. In Acous-
tics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on,
pages 4277–4280. IEEE.

Abrash, V., Franco, H., Sankar, A., and Cohen, M. (1995). Connectionist speaker normaliza-
tion and adaptation. In in Eurospeech. Citeseer.

Albesano, D., Gemello, R., Laface, P., Mana, F., and Scanzio, S. (2006). Adaptation of
artificial neural networks avoiding catastrophic forgetting. In Proc. IJCNN’06, pages
1554–1561. IEEE.

Ali, A., Bell, P., Glass, J., Messaoui, Y., Mubarak, H., Renals, S., and Zhang, Y. (2016).
The MGB-2 challenge: Arabic multi-dialect broadcast media recognition. In Spoken
Language Technology Workshop (SLT), 2016 IEEE, pages 279–284. IEEE.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen, J.,
Chrzanowski, M., Coates, A., Diamos, G., et al. (2015). Deep speech 2: End-to-end
speech recognition in English and Mandarin. arXiv preprint arXiv:1512.02595.

Anastasakos, T. and Balakrishnan, S. V. (1998). The use of confidence measures in unsuper-
vised adaptation of speech recognizers.

Anastasakos, T., McDonough, J., Schwartz, R., and Makhoul, J. (1996). A compact model
for speaker-adaptive training. In Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on, volume 2, pages 1137–1140. IEEE.

170 Bibliography

Aubert, X. L. (2002). An overview of decoding techniques for large vocabulary continuous
speech recognition. Computer Speech & Language, 16(1):89–114.

Audhkhasi, K., Ramabhadran, B., Saon, G., Picheny, M., and Nahamoo, D. (2017). Direct
acoustics-to-word models for english conversational speech recognition. arXiv preprint
arXiv:1703.07754.

Bacchiani, M., Senior, A. W., and Heigold, G. (2014). Asynchronous, online, GMM-free
training of a context dependent acoustic model for speech recognition. In Interspeech,
pages 1900–1904.

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016). End-to-end
attention-based large vocabulary speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on, pages 4945–4949. IEEE.

Bahl, L., Brown, P., De Souza, P., and Mercer, R. (1986). Maximum mutual information esti-
mation of hidden markov model parameters for speech recognition. In Acoustics, Speech,
and Signal Processing, IEEE International Conference on ICASSP’86., volume 11,
pages 49–52. IEEE.

Ban, S. M. and Kim, H. S. (2012). Speaking rate dependent multiple acoustic models using
continuous frame rate normalization. In Signal & Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pages 1–4. IEEE.

Baum, L. E., Eagon, J. A., et al. (1967). An inequality with applications to statistical
estimation for probabilistic functions of markov processes and to a model for ecology.
Bull. Amer. Math. Soc, 73(3):360–363.

Bell, P. (2010). Full covariance modelling for speech recognition. PhD thesis, University of
Edinburgh.

Bell, P., Driesen, J., and Renals, S. (2014). Cross-lingual adaptation with multi-task adaptive
networks. In Interspeech, pages 21–25.

Bell, P., Swietojanski, P., and Renals, S. (2017). Multitask learning of context-dependent
targets in deep neural network acoustic models. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 25(2):238–247.

Benesty, J., Sondhi, M. M., and Huang, Y. (2007). Springer handbook of speech processing.
Springer Science & Business Media.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137–1155.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy layer-wise
training of deep networks. Advances in neural information processing systems, 19:153.

Bengio, Y., LeCun, Y., Nohl, C., and Burges, C. (1995). LeRec: A NN/HMM hybrid for
on-line handwriting recognition. Neural Computation, 7(6):1289–1303.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Bibliography 171

Benzeghiba, M., De Mori, R., Deroo, O., Dupont, S., Erbes, T., Jouvet, D., Fissore, L.,
Laface, P., Mertins, A., Ris, C., et al. (2007). Automatic speech recognition and speech
variability: A review. Speech communication, 49(10):763–786.

Bilmes, J. A. and Bartels, C. (2005). Graphical model architectures for speech recognition.
IEEE signal processing magazine, 22(5):89–100.

Bimbot, F., Bonastre, J.-F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I., Meignier, S.,
Merlin, T., Ortega-García, J., Petrovska-Delacrétaz, D., and Reynolds, D. A. (2004). A
tutorial on text-independent speaker verification. EURASIP journal on applied signal
processing, 2004:430–451.

Bisani, M. and Ney, H. (2004). Bootstrap estimates for confidence intervals in asr per-
formance evaluation. In Acoustics, Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Conference on, volume 1, pages I–409. IEEE.

Bisani, M. and Ney, H. (2008). Joint-sequence models for grapheme-to-phoneme conversion.
Speech communication, 50(5):434–451.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning in neural
networks, 17(9):142.

Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller,
U. A., Sackinger, E., Simard, P., et al. (1994). Comparison of classifier methods: a case
study in handwritten digit recognition. In Pattern Recognition, 1994. Vol. 2-Conference
B: Computer Vision & Image Processing., Proceedings of the 12th IAPR International.
Conference on, volume 2, pages 77–82. IEEE.

Bottou, L., Soulie, F. F., Blanchet, P., and Liénard, J.-S. (1990). Speaker-independent isolated
digit recognition: Multilayer perceptrons vs. dynamic time warping. Neural Networks,
3(4):453–465.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling
in visual recognition. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 111–118.

Bourlard, H., Morgan, N., Wooters, C., and Renals, S. (1992). CDNN: A context dependent
neural network for continuous speech recognition. In Acoustics, Speech, and Signal
Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, volume 2,
pages 349–352. IEEE.

Bourlard, H. and Wellekens, C. J. (1990). Links between markov models and multilayer per-
ceptrons. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12):1167–
1178.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition. In Neurocomputing, pages 227–236.
Springer.

172 Bibliography

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479.

Bulgakova, E., Sholohov, A., Tomashenko, N., and Matveev, Y. (2015a). Speaker verification
using spectral and durational segmental characteristics. In International Conference on
Speech and Computer, pages 397–404. Springer.

Bulgakova, E., Sholokhov, A., and Tomashenko, N. (2015b). Speakers’ identification method
based on comparison of phoneme lengths statistics. Scientific and Technical Journal of
Information Technologies, Mechanics and Optics, 15(1):70–77.

Burget, L., Schwarz, P., Agarwal, M., Akyazi, P., Feng, K., Ghoshal, A., Glembek, O., Goel,
N., Karafiát, M., Povey, D., et al. (2010). Multilingual acoustic modeling for speech
recognition based on subspace gaussian mixture models. In Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on, pages 4334–4337. IEEE.

Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer.

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2016). Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on, pages 4960–4964. IEEE.

Chelba, C. and Jelinek, F. (2000). Structured language modeling. Computer Speech &
Language, 14(4):283–332.

Chen, C., Bunescu, R., Xu, L., and Liu, C. (2016). Tone classification in mandarin chinese
using convolutional neural networks. Interspeech 2016, pages 2150–2154.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics, pages 310–318. Association for Computational Linguistics.

Chernykh, G., A., Korenevsky, M., L., Levin, K., E., Ponomareva, I., A., and Tomashenko, N.,
A. (2014a). Cross-validation state control in acoustic model training of automatic speech
recognition system. Scientific and Technical Journal «Priborostroenie», 57(2):23–28.

Chernykh, G., Korenevsky, M., Levin, K., Ponomareva, I., and Tomashenko, N. (2014b).
State level control for acoustic model training. In International Conference on Speech
and Computer, pages 435–442. Springer.

Chesta, C., Siohan, O., and Lee, C.-H. (1999). Maximum a posteriori linear regression for
hidden markov model adaptation. In Eurospeech.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Chorowski, J., Bahdanau, D., Cho, K., and Bengio, Y. (2014). End-to-end continuous
speech recognition using attention-based recurrent NN: First results. arXiv preprint
arXiv:1412.1602.

Bibliography 173

Chou, W. (1999). Maximum a posterior linear regression with elliptically symmetric matrix
variate priors. In Eurospeech.

Chou, W., Lee, C.-H., and Juang, B.-H. (1993). Minimum error rate training based on N-best
string models. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993
IEEE International Conference on, volume 2, pages 652–655. IEEE.

Collobert, R., Puhrsch, C., and Synnaeve, G. (2016). Wav2letter: an end-to-end ConvNet-
based speech recognition system. arXiv preprint arXiv:1609.03193.

Cui, X., Goel, V., and Kingsbury, B. (2015). Data augmentation for deep neural network
acoustic modeling. IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP), 23(9):1469–1477.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Improving deep neural networks for
LVCSR using rectified linear units and dropout. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 8609–8613.

Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2011). Large vocabulary continuous speech
recognition with context-dependent DBN-HMMs. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 4688–4691. IEEE.

Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio,
Speech, and Language Processing, 20(1):30–42.

Damerau, F. J. (1971). Markov models and linguistic theory: an experimental study of a
model for English. Number 95. Mouton De Gruyter.

Darken, C. and Moody, J. E. (1991). Note on learning rate schedules for stochastic optimiza-
tion. In Advances in neural information processing systems, pages 832–838.

Dave, N. (2013). Feature extraction methods LPC, PLP and MFCC in speech recognition.
International journal for advance research in engineering and technology, 1(6):1–4.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IEEE transactions on
acoustics, speech, and signal processing, 28(4):357–366.

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., and Ouellet, P. (2011). Front-end factor
analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language
Processing, 19(4):788–798.

Delcroix, M., Kinoshita, K., Hori, T., and Nakatani, T. (2015). Context adaptive deep neural
networks for fast acoustic model adaptation. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 4535–4539. IEEE.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38.

174 Bibliography

Deng, L., Abdel-Hamid, O., and Yu, D. (2013a). A deep convolutional neural network using
heterogeneous pooling for trading acoustic invariance with phonetic confusion. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 6669–6673. IEEE.

Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X.,
Williams, J., et al. (2013b). Recent advances in deep learning for speech research
at Microsoft. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 8604–8608. IEEE.

Digalakis, V. V. and Neumeyer, L. G. (1996). Speaker adaptation using combined trans-
formation and Bayesian methods. IEEE transactions on speech and audio processing,
4(4):294–300.

Digalakis, V. V., Rtischev, D., and Neumeyer, L. G. (1995). Speaker adaptation using
constrained estimation of Gaussian mixtures. IEEE Transactions on speech and Audio
Processing, 3(5):357–366.

Dimitriadis, D., Thomas, S., and Ganapathy, S. (2016). An investigation on the use of
i-vectors for robust ASR. In Interspeech 2016, pages 3828–3832.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko,
K., and Darrell, T. (2015). Long-term recurrent convolutional networks for visual
recognition and description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625–2634.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Dupont, S. and Cheboub, L. (2000). Fast speaker adaptation of artificial neural networks for
automatic speech recognition. In Proc. ICASSP, volume 3, pages 1795–1798. IEEE.

Ellis, D. P. and Reyes-Gomez, M. (2001). Investigations into tandem acoustic modeling for
the aurora task. In Eurospeech 2001: Scandinavia: 7th European Conference on Speech
Communication and Technology: September 3-7, 2001, Aalborg Congress and Culture
Centre, Aalborg-Denmark: proceedings, pages 189–192. ISCA-Secretariat.

Ellis, D. P., Singh, R., and Sivadas, S. (2001). Tandem acoustic modeling in large-
vocabulary recognition. In Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01). 2001 IEEE International Conference on, volume 1, pages 517–520.
IEEE.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Emami, A., Xu, P., and Jelinek, F. (2003). Using a connectionist model in a syntactical
based language model. In Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on, volume 1, pages I–I. IEEE.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11(Feb):625–660.

Bibliography 175

Evermann, G. and Woodland, P. (2000). Posterior probability decoding, confidence esti-
mation and system combination. In Proc. Speech Transcription Workshop, volume 27.
Baltimore.

Fan, Y., Qian, Y., Xie, F.-L., and Soong, F. K. (2014). TTS synthesis with bidirectional
LSTM based recurrent neural networks. In Interspeech, pages 1964–1968.

Fiscus, J. e. a. (2009). Rich transcription 2009 evaluation.

Fiscus, J. G. (1997). A post-processing system to yield reduced word error rates: recognizer
output voting error reduction (ROVER). In Proc. ASRU, pages 347–354. IEEE.

Fiscus, J. G., Ajot, J., Radde, N., and Laprun, C. (2006). Multiple dimension levenshtein
edit distance calculations for evaluating automatic speech recognition systems during
simultaneous speech. In The International Conference on language Resources and
Evaluation (LERC). Citeseer.

Fiscus, J. G. and et al (1998). The NIST speech recognition scoring toolkit (SCTK).
https://www.nist.gov/itl/iad/mig/tools.

Fisher, W. M. and Fiscus, J. G. (1993). Better alignment procedures for speech recognition
evaluation. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE
International Conference on, volume 2, pages 59–62. IEEE.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.

Frankel, J. and King, S. (2007). Speech recognition using linear dynamic models. IEEE
Transactions on Audio, Speech, and Language Processing, 15(1):246–256.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135.

Fritz, L. and Burshtein, D. (2017). End-to-end MAP training of a hybrid HMM-DNN model.
arXiv preprint arXiv:1703.10356.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern
recognition. Neural networks, 1(2):119–130.

Gales, M. J. (1998). Maximum likelihood linear transformations for HMM-based speech
recognition. Computer speech and language, 12(2):75–98.

Gales, M. J. (2000). Cluster adaptive training of hidden Markov models. IEEE transactions
on speech and audio processing, 8(4):417–428.

Gales, M. J. and Woodland, P. C. (1996). Mean and variance adaptation within the MLLR
framework. Computer Speech & Language, 10(4):249–264.

Garimella, S., Mandal, A., Strom, N., Hoffmeister, B., Matsoukas, S., and Parthasarathi,
S. H. K. (2015). Robust i-vector based adaptation of DNN acoustic model for speech
recognition. In Interspeech, pages 2877–2881.

176 Bibliography

Gauvain, J.-L. and Lee, C.-H. (1994). Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains. IEEE Trans. Speech and Audio Proc.,
2:291–298.

Gemello, R., Mana, F., Scanzio, S., Laface, P., and De Mori, R. (2006). Adaptation of hybrid
ANN/HMM models using linear hidden transformations and conservative training. In
Proc. ICASSP, pages 1189–1192.

Gers, F. A. and Schmidhuber, J. (2000). Recurrent nets that time and count. In Neural
Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on, volume 3, pages 189–194. IEEE.

Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., and Khudanpur, S.
(2014). A pitch extraction algorithm tuned for automatic speech recognition. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on,
pages 2494–2498. IEEE.

Ghahremani, P., Manohar, V., Povey, D., and Khudanpur, S. (2016). Acoustic modelling
from the signal domain using CNNs. Interspeech 2016, pages 3434–3438.

Gillick, D., Gillick, L., and Wegmann, S. (2011). Don’t multiply lightly: Quantifying
problems with the acoustic model assumptions in speech recognition. In Automatic
Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pages 71–76.
IEEE.

Gillick, L. and Cox, S. J. (1989). Some statistical issues in the comparison of speech
recognition algorithms. In Acoustics, Speech, and Signal Processing, 1989. ICASSP-89.,
1989 International Conference on, pages 532–535. IEEE.

Goldwater, S., Jurafsky, D., and Manning, C. D. (2010). Which words are hard to recognize?
Prosodic, lexical, and disfluency factors that increase speech recognition error rates.
Speech Communication, 52(3):181–200.

Gollan, C. and Bacchiani, M. (2008). Confidence scores for acoustic model adaptation. In
Proc. ICASSP, pages 4289–4292.

Goo, J., Kim, Y., Lim, H., and Kim, H. (2016). Speaker normalization through feature
shifting of linearly transformed i-vector. In Interspeech 2016, pages 3489–3493.

Good, I. J. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika, pages 237–264.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y. (2013).
Maxout networks. ICML (3), 28:1319–1327.

Graves, A. (2012). Supervised sequence labelling. In Supervised Sequence Labelling with
Recurrent Neural Networks.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 177

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pages 369–376.
ACM.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks. In ICML, volume 14, pages 1764–1772.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and Schmidhuber, J.
(2009). A novel connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5):855–868.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE.

Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimen-
sional recurrent neural networks. In Advances in neural information processing systems,
pages 545–552.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2016).
LSTM: A search space odyssey. IEEE transactions on neural networks and learning
systems.

Grézl, F., Karafiát, M., Kontár, S., and Cernocky, J. (2007). Probabilistic and bottle-neck
features for LVCSR of meetings. In Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, volume 4, pages IV–757. IEEE.

Grézl, F., Karafiát, M., and Vesely, K. (2014). Adaptation of multilingual stacked bottle-neck
neural network structure for new language. In Proc. ICASSP, pages 7654–7658. IEEE.

Gulcehre, C., Cho, K., Pascanu, R., and Bengio, Y. (2014). Learned-norm pooling for deep
feedforward and recurrent neural networks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 530–546. Springer.

Gupta, V., Kenny, P., Ouellet, P., and Stafylakis, T. (2014). I-vector-based speaker adaptation
of deep neural networks for French broadcast audio transcription. In Proc. ICASSP,
pages 6334–6338. IEEE.

Guyon, I., Albrecht, P., Le Cun, Y., Denker, J., and Hubbard, W. (1991). Design of a neural
network character recognizer for a touch terminal. Pattern recognition, 24(2):105–119.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh,
S., Sengupta, S., Coates, A., et al. (2014). Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Hazen, T. J. and Glass, J. R. (1997). A comparison of novel techniques for instantaneous
speaker adaptation. In Eurospeech.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778.

178 Bibliography

He, L., Wu, J., Fang, D., and Wu, W. (2000). Speaker adaptation based on combination of
MAP estimation and weighted neighbor regression. In Acoustics, Speech, and Signal
Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on,
volume 2, pages II981–II984. IEEE.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. the Journal of
the Acoustical Society of America, 87(4):1738–1752.

Hermansky, H., Ellis, D. P., and Sharma, S. (2000). Tandem connectionist feature extraction
for conventional hmm systems. In Acoustics, Speech, and Signal Processing, 2000.
ICASSP’00. Proceedings. 2000 IEEE International Conference on, volume 3, pages
1635–1638. IEEE.

Hermansky, H. and Sharma, S. (1999). Temporal patterns (TRAPS) in ASR of noisy
speech. In Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE
International Conference on, volume 1, pages 289–292. IEEE.

Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum,
9(1):926.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, et al. (2012a). Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE, 29(6):82–97.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012b).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Hirschman, L. and Thompson, H. S. (1997). Overview of evaluation in speech and natural
language processing.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hori, T., Hori, C., Minami, Y., and Nakamura, A. (2007). Efficient WFST-based one-pass
decoding with on-the-fly hypothesis rescoring in extremely large vocabulary continuous
speech recognition. IEEE Transactions on audio, speech, and language processing,
15(4):1352–1365.

Huang, C., Chen, T., Li, S. Z., Chang, E., and Zhou, J.-L. (2001). Analysis of speaker
variability. In Interspeech, pages 1377–1380.

Huang, Y. and Gong, Y. (2015). Regularized sequence-level deep neural network model
adaptation. In Interspeech, pages 1081–1085.

Huang, Z., Li, J., Siniscalchi, S. M., Chen, I.-F., Weng, C., and Lee, C.-H. (2014). Feature
space maximum a posteriori linear regression for adaptation of deep neural networks.
In Proc. Interspeech, pages 2992–2996.

Bibliography 179

Huang, Z., Li, J., Siniscalchi, S. M., Chen, I.-F., Wu, J., and Lee, C.-H. (2015a). Rapid
adaptation for deep neural networks through multi-task learning. In Proc. Interspeech,
pages 2329–9290.

Huang, Z., Siniscalchi, S. M., Chen, I.-F., Li, J., Wu, J., and Lee, C.-H. (2015b). Maximum a
posteriori adaptation of network parameters in deep models. In Proc. Interspeech, pages
1076–1080.

Huang, Z., Tang, J., Xue, S., and Dai, L. (2016). Speaker adaptation of RNN-BLSTM for
speech recognition based on speaker code. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 5305–5309. IEEE.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154.

Hwang, M.-Y., Huang, X., and Alleva, F. A. (1996). Predicting unseen triphones with
senones. IEEE Transactions on speech and audio processing, 4(6):412–419.

Illina, I., Fohr, D., and Jouvet, D. (2011). Grapheme-to-phoneme conversion using conditional
random fields. In 12th Annual Conference of the International Speech Communication
Association-Interspeech 2011.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning,
pages 448–456.

Jaitly, N. and Hinton, G. (2011). Learning a better representation of speech soundwaves using
restricted Boltzmann machines. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 5884–5887. IEEE.

Jelinek, F. (1976). Continuous speech recognition by statistical methods. Proceedings of the
IEEE, 64(4):532–556.

Jia, Y., Huang, C., and Darrell, T. (2012). Beyond spatial pyramids: Receptive field learning
for pooled image features. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 3370–3377. IEEE.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and
Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678.
ACM.

Jiang, H. (2005). Confidence measures for speech recognition: A survey. Speech communi-
cation, 45(4):455–470.

Jordan, M. (1986). Attractor dynamics and parallelism in a connectionist sequential machine.
In Proc. 8th Annu. Conf. of the Cognitive Science Society, 1986.

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. Advances in
psychology, 121:471–495.

180 Bibliography

Jou, S.-C. S., Schultz, T., and Waibel, A. (2004). Adaptation for soft whisper recognition
using a throat microphone. In Interspeech.

Jouvet, D., Fohr, D., and Illina, I. (2012). Evaluating grapheme-to-phoneme converters
in automatic speech recognition context. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 4821–4824. IEEE.

Juang, B.-H. and Katagiri, S. (1992). Discriminative learning for minimum error classification
(pattern recognition). IEEE Transactions on signal processing, 40(12):3043–3054.

Juang, B.-H., Levinson, S., and Sondhi, M. (1986). Maximum likelihood estimation for
multivariate mixture observations of markov chains (corresp.). IEEE Transactions on
Information Theory, 32(2):307–309.

Kaiser, J., Horvat, B., and Kacic, Z. (2000). A novel loss function for the overall risk criterion
based discriminative training of hmm models. In Sixth International Conference on
Spoken Language Processing.

Kanagawa, H., Tachioka, Y., Watanabe, S., and Ishii, J. (2015). Feature-space structural maplr
with regression tree-based multiple transformation matrices for DNN. In 2015 Asia-
Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA), pages 86–92. IEEE.

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Computa-
tional linguistics, 20(3):331–378.

Karanasou, P., Wang, Y., Gales, M. J., and Woodland, P. C. (2014). Adaptation of deep
neural network acoustic models using factorised i-vectors. In Proc. Interspeech, pages
2180–2184.

Karlsson, I., Bänziger, T., Dankovicova, J., Johnstone, T., Lindberg, J., Melin, H., Nolan,
F., and Scherer, K. R. (1998). Within-speaker variability due to speaking manners. In
ICSLP.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE transactions on acoustics, speech, and signal
processing, 35(3):400–401.

Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2007). Joint factor analysis
versus eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 15(4):1435–1447.

Khokhlov, Y., Medennikov, I., Romanenko, A., Mendelev, V., Korenevsky, M., Prudnikov,
A., Tomashenko, N., and Zatvornitsky, A. (2017a). The STC keyword search system for
OpenKWS 2016 evaluation. Proc. Interspeech 2017, pages 3602–3606.

Khokhlov, Y. and Tomashenko, N. (2011). Speech recognition performance evaluation for
LVCSR system. In Proc. of the 14th Intern. Conf. on Speech and Computer (SPECOM
2011), Kazan, pages 129–135.

Khokhlov, Y., Tomashenko, N., Medennikov, I., and Romanenko, A. (2017b). Fast and
accurate OOV decoder on high-level features. Proc. Interspeech 2017, pages 2884–2888.

Bibliography 181

Khomitsevich, O., Mendelev, V., Tomashenko, N., Rybin, S., Medennikov, I., and
Kudubayeva, S. (2015). A bilingual Kazakh-Russian system for automatic speech
recognition and synthesis. In International Conference on Speech and Computer, pages
25–33. Springer.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingsbury, B., Sainath, T. N., and Soltau, H. (2012). Scalable minimum bayes risk training
of deep neural network acoustic models using distributed hessian-free optimization. In
Interspeech, pages 10–13.

Kittler, J., Hatef, M., Duin, R. P., and Matas, J. (1998). On combining classifiers. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 20(3):226–239.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, volume 1, pages 181–184. IEEE.

Kosaka, T. and Sagayama, S. (1994). Tree-structured speaker clustering for fast speaker
adaptation. In Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE
International Conference on, volume 1, pages I–245. IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Kuhn, R., Junqua, J.-C., Nguyen, P., and Niedzielski, N. (2000). Rapid speaker adaptation in
eigenvoice space. IEEE Transactions on Speech and Audio Processing, 8(6):695–707.

Kumar, N. and Andreou, A. G. (1998). Heteroscedastic discriminant analysis and reduced
rank HMMs for improved speech recognition. Speech communication, 26(4):283–297.

Kundu, S., Sim, K. C., and Gales, M. J. (2016). Incorporating a generative front-end layer
to deep neural network for noise robust automatic speech recognition. In Interspeech,
pages 2359–2363.

Lang, K. J. and Hinton, G. E. (1988). A time-delay neural network architecture for speech
recognition. Carnegie Mellon University, Computer Science Department.

Laurent, A., Deléglise, P., Meignier, S., and Spécinov-Trélazé, F. (2009). Grapheme to
phoneme conversion using an SMT system.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: A
convolutional neural-network approach. IEEE transactions on neural networks, 8(1):98–
113.

Le, H.-S., Oparin, I., Allauzen, A., Gauvain, J.-L., and Yvon, F. (2011). Structured output
layer neural network language model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pages 5524–5527. IEEE.

182 Bibliography

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. et al. (1989). Generalization and network design strategies. Connectionism in
perspective, pages 143–155.

LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and ap-
plications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, pages 253–256. IEEE.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–48. Springer.

Lee, C.-H. and Huo, Q. (2000). On adaptive decision rules and decision parameter adaptation
for automatic speech recognition. Proceedings of the IEEE, 88(8):1241–1269.

Lee, C.-H., Lin, C.-H., and Juang, B.-H. (1991). A study on speaker adaptation of the
parameters of continuous density hidden markov models. IEEE Transactions on Signal
Processing, 39(4):806–814.

Lee, L. and Rose, R. C. (1996). Speaker normalization using efficient frequency warping
procedures. In Proc. ICASSP, volume 1, pages 353–356. IEEE.

Lee, W., Han, K. J., and Lane, I. (2016). Semi-supervised speaker adaptation for in-vehicle
speech recognition with deep neural networks. In Interspeech 2016, pages 3843–3847.

Leggetter, C. J. and Woodland, P. C. (1995). Maximum likelihood linear regression for
speaker adaptation of continuous density hidden Markov models. Computer Speech &
Language, 9(2):171–185.

Lei, X., Lin, H., and Heigold, G. (2013). Deep neural networks with auxiliary Gaussian
mixture models for real-time speech recognition. In Proc. ICASSP, pages 7634–7638.
IEEE.

Levin, K., Ponomareva, I., Bulusheva, A., Chernykh, G., Medennikov, I., Merkin, N., Prud-
nikov, A., and Tomashenko, N. (2014). Automated closed captioning for Russian live
broadcasting. In Fifteenth Annual Conference of the International Speech Communica-
tion Association, Interspeech.

Li, B. and Sim, K. C. (2010). Comparison of discriminative input and output transformations
for speaker adaptation in the hybrid NN/HMM systems. In Proc. Interspeech, pages
526–529.

Li, J., Deng, L., Haeb-Umbach, R., and Gong, Y. (2015a). Robust Automatic Speech
Recognition: A Bridge to Practical Applications. Academic Press.

Li, J., Huang, J.-T., and Gong, Y. (2014a). Factorized adaptation for deep neural network. In
Proc. ICASSP, pages 5537–5541. IEEE.

Bibliography 183

Li, J., Zheng, R., Xu, B., et al. (2014b). Investigation of cross-lingual bottleneck features in
hybrid ASR systems. In Interspeech, pages 1395–1399.

Li, L., Wu, Z., Xu, M., Meng, H., and Cai, L. (2016). Combining CNN and BLSTM to
extract textual and acoustic features for recognizing stances in mandarin ideological
debate competition. Interspeech 2016, pages 1392–1396.

Li, M., Zhang, T., Chen, Y., and Smola, A. J. (2014c). Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 661–670. ACM.

Li, S., Lu, X., Akita, Y., and Kawahara, T. (2015b). Ensemble speaker modeling using speaker
adaptive training deep neural network for speaker adaptation. In Proc. Interspeech,
pages 2892–2896.

Li, X. and Bilmes, J. (2006). Regularized adaptation of discriminative classifiers. In
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, volume 1, pages I–I. IEEE.

Li, X. and Wu, X. (2015a). I-vector dependent feature space transformations for adaptive
speech recognition. In Interspeech, pages 3635–3639.

Li, X. and Wu, X. (2015b). Modeling speaker variability using long short-term memory
networks for speech recognition. In Interspeech, pages 1086–1090.

Liao, H. (2013). Speaker adaptation of context dependent deep neural networks. In Proc.
ICASSP, pages 7947–7951. IEEE.

Liu, H., Zhu, Z., Li, X., and Satheesh, S. (2017). Gram-CTC: Automatic unit selection and
target decomposition for sequence labelling. arXiv preprint arXiv:1703.00096.

Liu, S. and Sim, K. C. (2014). On combining DNN and GMM with unsupervised speaker
adaptation for robust automatic speech recognition. In Proc. ICASSP, pages 195–199.
IEEE.

Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf, M., and Harper, M. (2006).
Enriching speech recognition with automatic detection of sentence boundaries and
disfluencies. IEEE Transactions on audio, speech, and language processing, 14(5):1526–
1540.

Liu, Y., Zhang, P., and Hain, T. (2014). Using neural network front-ends on far field multiple
microphones based speech recognition. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5542–5546.

Lu, L., Ghoshal, A., and Renals, S. (2011). Regularized subspace Gaussian mixture models
for cross-lingual speech recognition. In Automatic Speech Recognition and Understand-
ing (ASRU), 2011 IEEE Workshop on, pages 365–370. IEEE.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579–2605.

184 Bibliography

Maier, V. (2002). Evaluating RIL as basis of automatic speech recognition devices and the
consequences of using probabilistic string edit distance as input. Univ. of Sheffield, third
year project.

Manenti, C., Pellegrini, T., and Pinquier, J. (2016). CNN-based phone segmentation experi-
ments in a less-represented language. Interspeech 2016, pages 3549–3553.

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding consensus in speech recognition: word
error minimization and other applications of confusion networks. Computer Speech &
Language, 14(4):373–400.

Martin, S., Liermann, J., and Ney, H. (1998). Algorithms for bigram and trigram word
clustering. Speech communication, 24(1):19–37.

Medennikov, I., Romanenko, A., Prudnikov, A., Mendelev, V., Khokhlov, Y., Korenevsky, M.,
Tomashenko, N., and Zatvornitskiy, A. (2017). Acoustic modeling in the STC keyword
search system for OpenKWS 2016 evaluation. In International Conference on Speech
and Computer, pages 76–86. Springer.

Metze, F., Sheikh, Z. A., Waibel, A., Gehring, J., Kilgour, K., Nguyen, Q. B., and Nguyen,
V. H. (2013). Models of tone for tonal and non-tonal languages. In Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 261–266.
IEEE.

Miao, Y., Gowayyed, M., and Metze, F. (2015a). EESEN: End-to-end speech recognition
using deep rnn models and WFST-based decoding. In Automatic Speech Recognition
and Understanding (ASRU), 2015 IEEE Workshop on, pages 167–174. IEEE.

Miao, Y., Gowayyed, M., Na, X., Ko, T., Metze, F., and Waibel, A. (2016). An empirical
exploration of CTC acoustic models. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 2623–2627. IEEE.

Miao, Y., Zhang, H., and Metze, F. (2014). Towards speaker adaptive training of deep neural
network acoustic models. pages 2189–2193.

Miao, Y., Zhang, H., and Metze, F. (2015b). Speaker adaptive training of deep neural
network acoustic models using i-vectors. IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), 23(11):1938–1949.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In Interspeech, volume 2, page 3.

Milner, B. (2002). A comparison of front-end configurations for robust speech recogni-
tion. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, volume 1, pages I–797. IEEE.

Mirghafori, N., Fosler, E., and Morgan, N. (1996). Towards robustness to fast speech in
ASR. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on, volume 1, pages 335–338. IEEE.

Bibliography 185

Mitra, V. and Franco, H. (2015). Time-frequency convolutional networks for robust speech
recognition. In Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE
Workshop on, pages 317–323. IEEE.

Mohamed, A.-r., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep belief
networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):14–22.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in speech
recognition. Computer Speech & Language, 16(1):69–88.

Mohri, M., Pereira, F., and Riley, M. (2005). Weighted automata in text and speech processing.
arXiv preprint cs/0503077.

Moore, B. C. (1997). An introduction to the psychology of hearing. Academic Press.

Moreno, P. J. (1996). Speech recognition in noisy environments. PhD thesis, Carnegie Mellon
University Pittsburgh.

Morgan, N. (2012). Deep and wide: Multiple layers in automatic speech recognition. IEEE
Transactions on Audio, Speech, and Language Processing, 20(1):7–13.

Morgan, N. and Bourlard, H. (1990). Continuous speech recognition using multilayer
perceptrons with hidden markov models. In Acoustics, Speech, and Signal Processing,
1990. ICASSP-90., 1990 International Conference on, pages 413–416. IEEE.

Morris, A. (2002). An information theoretic measure of sequence recognition performance.
Technical report, IDIAP.

Morris, A. C., Maier, V., and Green, P. D. (2004). From WER and RIL to MER and WIL:
improved evaluation measures for connected speech recognition. In Interspeech.

Müller, M., Stüker, S., Sheikh, Z., Metze, F., and Waibel, A. (2014). Multilingual deep bottle
neck features: a study on language selection and training techniques. In International
Workshop on Spoken Language Translation, pages 257–264.

Murali Karthick, B., Kolhar, P., and Umesh, S. (2015). Speaker adaptation of convolutional
neural network using speaker specific subspace vectors of SGMM. In Proc. Interspeech,
pages 1096–1100.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

Nanjo, H., Kato, K., and Kawahara, T. (2001). Speaking rate dependent acoustic modeling
for spontaneous lecture speech recognition. In Interspeech, pages 2531–2534.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence
rate o(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376.

Neto, J., Almeida, L., Hochberg, M., Martins, C., Nunes, L., Renals, S., and Robinson,
T. (1995). Speaker-adaptation for hybrid HMM-ANN continuous speech recognition
system. pages 2171–2174.

186 Bibliography

Neumeyer, L., Sankar, A., and Digalakis, V. (1995). A comparative study of speaker
adaptation techniques. system, 1:2.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic dependences in
stochastic language modelling. Computer Speech & Language, 8(1):1–38.

Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M. (1992). Improvements in beam
search for 10000-word continuous speech recognition. In Acoustics, Speech, and Signal
Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, volume 1,
pages 9–12. IEEE.

Ochiai, T., Matsuda, S., Lu, X., Hori, C., and Katagiri, S. (2014). Speaker adaptive training
using deep neural networks. In Proc. ICASSP, pages 6349–6353. IEEE.

Ochiai, T., Watanabe, S., Hori, T., and Hershey, J. R. (2017). Multichannel end-to-end speech
recognition. arXiv preprint arXiv:1703.04783.

Ohkura, K., Sugiyama, M., and Sagayama, S. (1992). Speaker adaptation based on transfer
vector field smoothing with continuous mixture density HMMs. In Second International
Conference on Spoken Language Processing.

Padmanabhan, M., Bahl, L. R., Nahamoo, D., and Picheny, M. A. (1998). Speaker cluster-
ing and transformation for speaker adaptation in speech recognition systems. IEEE
Transactions on Speech and Audio Processing, 6(1):71–77.

Pallet, D. S., Fisher, W. M., and Fiscus, J. G. (1990). Tools for the analysis of benchmark
speech recognition tests. In Acoustics, Speech, and Signal Processing, 1990. ICASSP-
90., 1990 International Conference on, pages 97–100. IEEE.

Parthasarathi, S. H. K., Hoffmeister, B., Matsoukas, S., Mandal, A., Strom, N., and Garimella,
S. (2015). fMLLR based feature-space speaker adaptation of DNN acoustic models. In
Proc. Interspeech, pages 3630–3634.

Pasha, A., Al-Badrashiny, M., Diab, M. T., El Kholy, A., Eskander, R., Habash, N., Pooleery,
M., Rambow, O., and Roth, R. (2014). MADAMIRA: A fast, comprehensive tool for
morphological analysis and disambiguation of Arabic. In LREC, volume 14, pages
1094–1101.

Paul, D. B. (1992). An efficient A* stack decoder algorithm for continuous speech recognition
with a stochastic language model. In Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference on, volume 1, pages 25–28. IEEE.

Paul, D. B. and Baker, J. M. (1992). The design for the wall street journal-based CSR corpus.
In Proceedings of the workshop on Speech and Natural Language, pages 357–362.
Association for Computational Linguistics.

Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network architecture
for efficient modeling of long temporal contexts. In Interspeech, pages 3214–3218.

Pham, V., Bluche, T., Kermorvant, C., and Louradour, J. (2014). Dropout improves recurrent
neural networks for handwriting recognition. In Frontiers in Handwriting Recognition
(ICFHR), 2014 14th International Conference on, pages 285–290. IEEE.

Bibliography 187

Picheny, M. N. M. (1999). Speed improvement of the time-asynchronous acoustic fast match.

Pinto, J. P. and Hermansky, H. (2008). Combining evidence from a generative and a
discriminative model in phoneme recognition. Technical report, IDIAP.

Pironkov, G., Dupont, S., and Dutoit, T. (2016a). I-vector estimation as auxiliary task
for multi-task learning based acoustic modeling for automatic speech recognition. In
Spoken Language Technology Workshop (SLT), 2016 IEEE, pages 1–7. IEEE.

Pironkov, G., Dupont, S., and Dutoit, T. (2016b). Speaker-aware long short-term memory
multi-task learning for speech recognition. In Signal Processing Conference (EUSIPCO),
2016 24th European, pages 1911–1915. IEEE.

Pitz, M., Wessel, F., and Ney, H. (2000). Improved MLLR speaker adaptation using confi-
dence measures for conversational speech recognition. In Interspeech, pages 548–551.

Povey, D. (2004). Discriminative training for large vocabulary speech recognition. PhD
thesis, University of Cambridge.

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Feng, K., Ghoshal, A., Glembek, O., Goel,
N. K., Karafiát, M., Rastrow, A., et al. (2010). Subspace Gaussian mixture models for
speech recognition. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pages 4330–4333. IEEE.

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O., Goel, N.,
Karafiát, M., Rastrow, A., et al. (2011a). The subspace Gaussian mixture model — a
structured model for speech recognition. Computer Speech & Language, 25(2):404–439.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P., et al. (2011b). The Kaldi speech recognition toolkit.
In Proc. ASRU.

Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., and Visweswariah, K.
(2008). Boosted MMI for model and feature-space discriminative training. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,
pages 4057–4060. IEEE.

Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., and Zweig, G. (2005). fMPE:
Discriminatively trained features for speech recognition. In Acoustics, Speech, and
Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on,
volume 1, pages I–961. IEEE.

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., and
Khudanpur, S. (2016). Purely sequence-trained neural networks for asr based on
lattice-free mmi. In Interspeech, pages 2751–2755.

Povey, D. and Woodland, P. (2001). Improved discriminative training techniques for large
vocabulary continuous speech recognition. In Acoustics, Speech, and Signal Processing,
2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, volume 1,
pages 45–48. IEEE.

188 Bibliography

Povey, D. and Woodland, P. C. (2002). Minimum phone error and I-smoothing for improved
discriminative training. In Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, volume 1, pages I–105. IEEE.

Price, R., i. Iso, K., and Shinoda, K. (2014). Speaker adaptation of deep neural networks using
a hierarchy of output layers. In 2014 IEEE Spoken Language Technology Workshop
(SLT), pages 153–158.

Psutka, J., Müller, L., and Psutka, J. V. (2001). Comparison of mfcc and plp parameterizations
in the speaker independent continuous speech recognition task. In Interspeech, pages
1813–1816.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151.

Qian, Y., Tan, T., and Yu, D. (2016). Neural network based multi-factor aware joint training
for robust speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(12):2231–2240.

Rabiner, L. and Juang, B. (1986). An introduction to hidden markov models. ieee assp
magazine, 3(1):4–16.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rao, K., Peng, F., Sak, H., and Beaufays, F. (2015). Grapheme-to-phoneme conversion
using long short-term memory recurrent neural networks. In Acoustics, Speech and
Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 4225–4229.
IEEE.

Rath, S. P., Povey, D., Veselỳ, K., and Cernockỳ, J. (2013). Improved feature processing for
deep neural networks. In Proc. Interspeech, pages 109–113.

Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker verification using adapted
gaussian mixture models. Digital signal processing, 10(1-3):19–41.

Richardson, F., Ostendorf, M., and Rohlicek, J. R. (1995). Lattice-based search strategies
for large vocabulary speech recognition. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference on, volume 1, pages 576–579. IEEE.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex.
Nature neuroscience, 2(11):1019–1025.

Rosenblatt, F. (1961). Principles of neurodynamics. Perceptrons and the theory of brain
mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC BUFFALO
NY.

Rousseau, A., Deléglise, P., and Esteve, Y. (2012). TED-LIUM: an automatic speech
recognition dedicated corpus. In Proc. LREC, pages 125–129.

Rousseau, A., Deléglise, P., and Estève, Y. (2014). Enhancing the TED-LIUM corpus
with selected data for language modeling and more TED talks. In Proc. LREC, pages
3935–3939.

Bibliography 189

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by back-
propagating errors. Nature, 323(6088):533–538.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations
by error propagation. Technical report, California Univ. San Diego, Inst. for Cognitive
Science.

Rybach, D., Ney, H., and Schlüter, R. (2013). Lexical prefix tree and WFST: A comparison
of two dynamic search concepts for LVCSR. IEEE Transactions on Audio, Speech, and
Language Processing, 21(6):1295–1307.

Rybach, D., Schlüter, R., and Ney, H. (2011). A comparative analysis of dynamic network de-
coding. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, pages 5184–5187. IEEE.

Sainath, T. N., Kingsbury, B., Mohamed, A.-r., Dahl, G. E., Saon, G., Soltau, H., Beran, T.,
Aravkin, A. Y., and Ramabhadran, B. (2013a). Improvements to deep convolutional
neural networks for LVCSR. In Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on, pages 315–320. IEEE.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B. (2013b). Deep
convolutional neural networks for LVCSR. In Acoustics, speech and signal processing
(ICASSP), 2013 IEEE international conference on, pages 8614–8618. IEEE.

Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Fifteenth Annual Conference
of the International Speech Communication Association.

Sak, H., Senior, A., Rao, K., Irsoy, O., Graves, A., Beaufays, F., and Schalkwyk, J. (2015).
Learning acoustic frame labeling for speech recognition with recurrent neural net-
works. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on, pages 4280–4284. IEEE.

Samarakoon, L. and Sim, K. C. (2016a). Factorized hidden layer adaptation for deep neural
network based acoustic modeling. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(12):2241–2250.

Samarakoon, L. and Sim, K. C. (2016b). Multi-attribute factorized hidden layer adaptation
for DNN acoustic models. In Interspeech 2016, pages 3484–3488.

Samarakoon, L. and Sim, K. C. (2016c). Subspace LHUC for fast adaptation of deep neural
network acoustic models. In Interspeech 2016, pages 1593–1597.

Saon, G., Povey, D., and Zweig, G. (2005). Anatomy of an extremely fast LVCSR decoder.
In Ninth European Conference on Speech Communication and Technology.

Saon, G., Soltau, H., Nahamoo, D., and Picheny, M. (2013). Speaker adaptation of neural
network acoustic models using i-vectors. In Proc. ASRU, pages 55–59. IEEE.

190 Bibliography

Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms.
Speech communication, 40(1):227–256.

Schluter, R. and Macherey, W. (1998). Comparison of discriminative training criteria.
In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference on, volume 1, pages 493–496. IEEE.

Schlüter, R., Macherey, W., Müller, B., and Ney, H. (2001). Comparison of discriminative
training criteria and optimization methods for speech recognition. Speech Communica-
tion, 34(3):287–310.

Schlüter, R., Müller, B., Wessel, F., and Ney, H. (1999). Interdependence of language models
and discriminative training. In Proc. IEEE ASRU Workshop, pages 119–122.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681.

Schwarz, P. (2009). Phoneme recognition based on long temporal context.

Schwenk, H. (2007). Continuous space language models. Computer Speech & Language,
21(3):492–518.

Seide, F., Li, G., Chen, X., and Yu, D. (2011a). Feature engineering in context-dependent
deep neural networks for conversational speech transcription. In Proc. ASRU, pages
24–29. IEEE.

Seide, F., Li, G., and Yu, D. (2011b). Conversational speech transcription using context-
dependent deep neural networks. In Interspeech, pages 437–440.

Senior, A., Heigold, G., Bacchiani, M., and Liao, H. (2014). GMM-free DNN acoustic
model training. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 5602–5606. IEEE.

Senior, A. and Lopez-Moreno, I. (2014). Improving DNN speaker independence with i-vector
inputs. In Proc. ICASSP, pages 225–229.

Sercu, T., Puhrsch, C., Kingsbury, B., and LeCun, Y. (2016). Very deep multilingual
convolutional neural networks for LVCSR. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 4955–4959. IEEE.

Serre, T. and Riesenhuber, M. (2004). Realistic modeling of simple and complex cell
tuning in the HMAX model, and implications for invariant object recognition in cortex.
Technical report, DTIC Document.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. IEEE transactions on pattern analysis and
machine intelligence, 29(3).

Shen, P., Lu, X., and Kawai, H. (2016). Comparison of regularization constraints in deep
neural network based speaker adaptation. In Chinese Spoken Language Processing
(ISCSLP), 2016 10th International Symposium on, pages 1–5. IEEE.

Bibliography 191

Shinoda, K. (2010). Acoustic model adaptation for speech recognition. IEICE transactions
on information and systems, 93(9):2348–2362.

Shinoda, K. (2011). Speaker adaptation techniques for automatic speech recognition. Proc.
APSIPA ASC 2011.

Shinoda, K. and Lee, C.-H. (1997). Structural MAP speaker adaptation using hierarchical
priors. In Automatic Speech Recognition and Understanding, 1997. Proceedings., 1997
IEEE Workshop on, pages 381–388. IEEE.

Shinoda, K. and Lee, C.-H. (2001). A structural Bayes approach to speaker adaptation. IEEE
Transactions on Speech and Audio Processing, 9(3):276–287.

Siegler, M. A. (1995). Measuring and compensating for the effects of speech rate in large
vocabulary continuous speech recognition. PhD thesis, Carnegie Mellon University
Pittsburgh.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Siohan, O., Myrvoll, T. A., and Lee, C.-H. (2002). Structural maximum a posteriori linear
regression for fast HMM adaptation. Computer Speech & Language, 16(1):5–24.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. Technical report, DTIC Document.

Solomennik, A., Chistikov, P., Rybin, S., Talanov, A., and Tomashenko, N. (2013). Au-
tomation of new voice creation procedure for a russian TTS system. Vestnik MGTU.
Priborostroenie,“Biometric Technologies, 2:29–32.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Stadermann, J. and Rigoll, G. (2005). Two-stage speaker adaptation of hybrid tied-posterior
acoustic models. In Proc. ICASSP, pages 977–980.

Stolcke, A. et al. (2002). SRILM - an extensible language modeling toolkit. In Interspeech,
volume 2002, page 2002.

Strik, H., Cucchiarini, C., and Kessens, J. M. (2000). Comparing the recognition performance
of CSRs: in search of an adequate metric and statistical significance test. In Interspeech,
pages 740–743. Citeseer.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM neural networks for language
modeling. In Interspeech, pages 194–197.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

Suzuki, M., Tachibana, R., Thomas, S., Ramabhadran, B., and Saon, G. (2016). Domain
adaptation of CNN based acoustic models under limited resource settings. Interspeech
2016, pages 1588–1592.

192 Bibliography

Świętojański, P. (2016). Learning Representations for Speech Recognition using Artificial
Neural Networks. PhD thesis, University of Edinburgh.

Swietojanski, P., Bell, P., and Renals, S. (2015). Structured output layer with auxiliary targets
for context-dependent acoustic modelling. In Proc. Interspeech, pages 3605–3609.

Swietojanski, P., Ghoshal, A., and Renals, S. (2013). Revisiting hybrid and GMM-HMM
system combination techniques. In Proc. ICASSP, pages 6744–6748. IEEE.

Swietojanski, P., Ghoshal, A., and Renals, S. (2014). Convolutional neural networks for
distant speech recognition. IEEE Signal Processing Letters, 21(9):1120–1124.

Swietojanski, P., Li, J., and Renals, S. (2016). Learning hidden unit contributions for
unsupervised acoustic model adaptation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 24(8):1450–1463.

Swietojanski, P. and Renals, S. (2014). Learning hidden unit contributions for unsupervised
speaker adaptation of neural network acoustic models. In Proc. SLT, pages 171–176.
IEEE.

Swietojanski, P. and Renals, S. (2016). Differentiable pooling for unsupervised acoustic
model adaptation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(10):1773–1784.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

Takahashi, J.-i. and Sagayama, S. (1997). Vector-field-smoothed bayesian learning for fast
and incremental speaker/telephone-channel adaptation. Computer Speech & Language,
11(2):127–146.

Tan, T., Qian, Y., Yin, M., Zhuang, Y., and Yu, K. (2015). Cluster adaptive training for deep
neural network. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 4325–4329. IEEE.

Tang, Z., Li, L., Wang, D., and Vipperla, R. (2017). Collaborative joint training with multitask
recurrent model for speech and speaker recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 25(3):493–504.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2).

Tomashenko, Natalia, A. and Khokhlov, Yuri, Y. (2014a). Analysis of data balancing problem
in acoustic modeling of automatic speech recognition system. Scientific and Technical
Journal «Priborostroenie», 57(2):17–22.

Tomashenko, N. and Khokhlov, Y. (2014b). Speaker adaptation of context dependent deep
neural networks based on MAP-adaptation and GMM-derived feature processing. In
Proc. Interspeech, pages 2997–3001.

Bibliography 193

Tomashenko, N. and Khokhlov, Y. (2014c). Speaking rate estimation based on deep neural
networks. In International Conference on Speech and Computer, pages 418–424.
Springer.

Tomashenko, N. and Khokhlov, Y. (2015). GMM-derived features for effective unsupervised
adaptation of deep neural network acoustic models. In Proc. Interspeech, pages 2882–
2886.

Tomashenko, N., Khokhlov, Y., and Estève, Y. (2016a). A new perspective on combining
GMM and DNN frameworks for speaker adaptation. In Statistical Language and Speech
Processing: 4th International Conference, SLSP 2016, Pilsen, Czech Republic, October
11-12, 2016, Proceedings, pages 120–132. Springer International Publishing.

Tomashenko, N., Khokhlov, Y., and Esteve, Y. (2016b). On the use of Gaussian mixture
model framework to improve speaker adaptation of deep neural network acoustic models.
In Proc. Interspeech, pages 3788–3792.

Tomashenko, N., Khokhlov, Y., Larcher, A., and Estève, Y. (2016c). Exploration de
paramètres acoustiques dérivés de GMM pour l’adaptation non supervisée de mod-
èles acoustiques à base de réseaux de neurones profonds. In Proc. 31éme Journées
d’Études sur la Parole (JEP), pages 337–345.

Tomashenko, N., Khokhlov, Y., Larcher, A., and Esteve, Y. (2016d). Exploring GMM-derived
features for unsupervised adaptation of deep neural network acoustic models. In Proc.
International Conference on Speech and Computer, pages 304–311. Springer.

Tomashenko, N., Khokhlov, Y., Larcher, A., Estève, Y., and Matveev, Y. N. (2016e). Gaussian
mixture models for adaptation of deep neural network acoustic models in automatic
speech recognition systems. Scientific and Technical Journal of Information Technolo-
gies, Mechanics and Optics, 16(6):1063–1072.

Tomashenko, N., Vythelingum, K., Rousseau, A., and Estève, Y. (2016f). LIUM ASR
systems for the 2016 multi-genre broadcast Arabic challenge. In Spoken Language
Technology Workshop (SLT), 2016 IEEE, pages 285–291. IEEE.

Tomashenko, N. A. and Khokhlov, Y. Y. (2013). Fast algorithm for automatic alignment of
speech and imperfect text data. In International Conference on Speech and Computer,
pages 146–153. Springer.

Tonomura, M., Kosaka, T., and Matsunaga, S. (1995). Speaker adaptation based on transfer
vector field smoothing using maximum a posteriori probability estimation. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on,
volume 1, pages 688–691. IEEE.

Tóth, L. and Gosztolya, G. (2016). Adaptation of DNN Acoustic Models Using KL-divergence
Regularization and Multi-task Training, pages 108–115. Springer International Publish-
ing.

Tran, D. T., Delroix, M., Ogawa, A., and Nakatani, T. (2016). Factorized linear input network
for acoustic model adaptation in noisy conditions. Interspeech 2016, pages 3813–3817.

194 Bibliography

Trentin, E. (2001). Networks with trainable amplitude of activation functions. Neural
Networks, 14(4):471–493.

Trentin, E. and Gori, M. (2001). A survey of hybrid ANN/HMM models for automatic
speech recognition. Neurocomputing, 37(1):91–126.

Trmal, J., Zelinka, J., and Müller, L. (2010). Adaptation of a feedforward artificial neural
network using a linear transform. In Text, Speech and Dialogue, pages 423–430.
Springer.

Uebel, L. and Woodland, P. C. (2001). Improvements in linear transform based speaker
adaptation. In Proc. ICASSP, pages 49–52.

Variani, E., Lei, X., McDermott, E., Moreno, I. L., and Gonzalez-Dominguez, J. (2014). Deep
neural networks for small footprint text-dependent speaker verification. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages
4052–4056. IEEE.

Vertanen, K. (2004). An overview of discriminative training for speech recognition. Univer-
sity of Cambridge, pages 1–14.

Veselỳ, K., Ghoshal, A., Burget, L., and Povey, D. (2013). Sequence-discriminative training
of deep neural networks. In Interspeech, pages 2345–2349.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269.

Vu, N. T., Weiner, J., and Schultz, T. (2014). Investigating the learning effect of multilingual
bottle-neck features for ASR. In Interspeech, pages 825–829.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme
recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 37(3):328–339.

Wang, D. and King, S. (2011). Letter-to-sound pronunciation prediction using conditional
random fields. IEEE Signal Processing Letters, 18(2):122–125.

Wang, D. and Narayanan, S. S. (2002). A confidence-score based unsupervised MAP
adaptation for speech recognition. In Signals, Systems and Computers, 2002. Conference
Record of the Thirty-Sixth Asilomar Conference on, volume 1, pages 222–226. IEEE.

Wang, S. I. and Manning, C. D. (2013). Fast dropout training. In ICML (2), pages 118–126.

Wang, W., Stolcke, A., and Harper, M. P. (2004). The use of a linguistically motivated
language model in conversational speech recognition. In Acoustics, Speech, and Sig-
nal Processing, 2004. Proceedings.(ICASSP’04). IEEE International Conference on,
volume 1, pages I–261. IEEE.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560.

Wester, M. (2003). Pronunciation modeling for ASR–knowledge-based and data-derived
methods. Computer Speech & Language, 17(1):69–85.

Bibliography 195

Woodland, P. C. (2001). Speaker adaptation for continuous density HMMs: A review. In
ISCA Tutorial and Research Workshop (ITRW) on Adaptation Methods for Speech
Recognition.

Wu, C. and Gales, M. J. (2015). Multi-basis adaptive neural network for rapid adaptation in
speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 4315–4319. IEEE.

Xu, H., Povey, D., Mangu, L., and Zhu, J. (2011). Minimum bayes risk decoding and system
combination based on a recursion for edit distance. Computer Speech & Language,
25(4):802–828.

Xu, P. and Mangu, L. (2005). Using random forest language models in the IBM RT-04 CTS
system. In Interspeech, pages 741–744.

Xu, W. and Rudnicky, A. I. (2000). Can artificial neural networks learn language models?

Xue, J., Li, J., Yu, D., Seltzer, M., and Gong, Y. (2014a). Singular value decomposition
based low-footprint speaker adaptation and personalization for deep neural network. In
Proc. ICASSP, pages 6359–6363. IEEE.

Xue, S., Abdel-Hamid, O., Jiang, H., and Dai, L. (2014b). Direct adaptation of hybrid
DNN/HMM model for fast speaker adaptation in lvcsr based on speaker code. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on,
pages 6339–6343. IEEE.

Xue, S., Abdel-Hamid, O., Jiang, H., Dai, L., and Liu, Q. (2014c). Fast adaptation of deep
neural network based on discriminant codes for speech recognition. Audio, Speech, and
Language Processing, IEEE/ACM Trans. on, 22(12):1713–1725.

Xue, S., Jiang, H., and Dai, L. (2014d). Speaker adaptation of hybrid NN/HMM model for
speech recognition based on singular value decomposition. In Chinese Spoken Language
Processing (ISCSLP), 2014 9th International Symposium on, pages 1–5. IEEE.

Yao, K., Cohn, T., Vylomova, K., Duh, K., and Dyer, C. (2015). Depth-gated recurrent
neural networks. arXiv preprint arXiv:1508.03790.

Yao, K., Yu, D., Seide, F., Su, H., Deng, L., and Gong, Y. (2012). Adaptation of context-
dependent deep neural networks for automatic speech recognition. In Proc. SLT, pages
366–369. IEEE.

Yao, K. and Zweig, G. (2015). Sequence-to-sequence neural net models for grapheme-to-
phoneme conversion. arXiv preprint arXiv:1506.00196.

Yi, J., Ni, H., Wen, Z., Liu, B., and Tao, J. (2016). CTC regularized model adaptation for
improving LSTM RNN based multi-accent mandarin speech recognition. In Chinese
Spoken Language Processing (ISCSLP), 2016 10th International Symposium on, pages
1–5. IEEE.

Yoshioka, T., Karita, S., and Nakatani, T. (2015). Far-field speech recognition using CNN-
DNN-HMM with convolution in time. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 4360–4364. IEEE.

196 Bibliography

Yoshizawa, S., Baba, A., Matsunami, K., Mera, Y., Yamada, M., and Shikano, K. (2001).
Unsupervised speaker adaptation based on sufficient HMM statistics of selected speakers.
In Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001
IEEE International Conference on, volume 1, pages 341–344. IEEE.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J.,
Ollason, D., Povey, D., et al. (2002). The HTK book. Cambridge university engineering
department, 3:175.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J.,
Ollason, D., Povey, D., et al. (2006). The HTK book (for HTK version 3.4). Cambridge
university engineering department, 2(2):2–3.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-based state tying for high accuracy
acoustic modelling. In Proceedings of the workshop on Human Language Technology,
pages 307–312. Association for Computational Linguistics.

Yu, D., Chen, X., and Deng, L. (2012). Factorized deep neural networks for adaptive speech
recognition. In in Proc. Int. Workshop Statist. Mach. Learn. Speech Process. Citeseer.

Yu, D. and Deng, L. (2014). Automatic speech recognition: A deep learning approach.
Springer.

Yu, D., Deng, L., and Dahl, G. (2010). Roles of pre-training and fine-tuning in context-
dependent dbn-hmms for real-world speech recognition. In Proc. NIPS Workshop on
Deep Learning and Unsupervised Feature Learning.

Yu, D. and Seltzer, M. L. (2011). Improved bottleneck features using pretrained deep neural
networks. In Interspeech, volume 237, page 240.

Yu, D., Xiong, W., Droppo, J., Stolcke, A., Ye, G., Li, J., and Zweig, G. (2016). Deep
convolutional neural networks with layer-wise context expansion and attention. In Proc.
Interspeech.

Yu, D., Yao, K., Su, H., Li, G., and Seide, F. (2013). KL-divergence regularized deep neural
network adaptation for improved large vocabulary speech recognition. In Proc. ICASSP,
pages 7893–7897.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zhang, X., Trmal, J., Povey, D., and Khudanpur, S. (2014). Improving deep neural network
acoustic models using generalized maxout networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on, pages 215–219. IEEE.

Zhang, Y., Chan, W., and Jaitly, N. (2016a). Very deep convolutional networks for end-to-end
speech recognition. arXiv preprint arXiv:1610.03022.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Bengio, C. L. Y., and Courville, A. (2017).
Towards end-to-end speech recognition with deep convolutional neural networks. arXiv
preprint arXiv:1701.02720.

Bibliography 197

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C., Bengio, Y., and Courville,
A. (2016b). Towards end-to-end speech recognition with deep convolutional neural
networks. Interspeech 2016, pages 410–414.

Zhang, Z.-P., Furui, S., and Ohtsuki, K. (2000). On-line incremental speaker adaptation with
automatic speaker change detection. In Acoustics, Speech, and Signal Processing, 2000.
ICASSP’00. Proceedings. 2000 IEEE International Conference on, volume 2, pages
II961–II964. IEEE.

Zheng, H., Zhang, S., Qiao, L., Li, J., and Liu, W. (2016). Improving large vocabulary
accented mandarin speech recognition with attribute-based i-vectors. In Interspeech
2016, pages 3454–3458.

Zhou, Y. and Chellappa, R. (1988). Computation of optical flow using a neural network. In
IEEE International Conference on Neural Networks, volume 1998, pages 71–78.

Zhu, L., Kilgour, K., Stüker, S., and Waibel, A. (2015). Gaussian free cluster tree construction
using deep neural network. In Interspeech, pages 3254–3258.

Zhu, Z., Engel, J. H., and Hannun, A. (2016). Learning multiscale features directly from
waveforms. arXiv preprint arXiv:1603.09509.

Bibliography 199

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	Thesis structure

	2 Deep neural networks
	2.1 Introduction
	2.2 Deep neural network architecture
	2.3 Training
	2.4 Alternative neural network architectures

	3 Overview of automatic speech recognition
	3.1 Introduction to automatic speech recognition
	3.2 Feature extraction
	3.3 Acoustic modeling
	3.4 Pronunciation modeling
	3.5 Language modeling
	3.6 Speech decoding techniques
	3.7 End-to-end ASR
	3.8 Speech recognition performance evaluation

	4 Acoustic adaptation
	4.1 Speech variability and adaptation
	4.2 Adaptation for GMM models
	4.3 Adaptation for DNN models

	5 Speech corpora
	5.1 Wall Street Journal (WSJ)
	5.2 TED-LIUM
	5.3 STC
	5.4 Arabic MGB 2016 challenge
	5.5 Summary for all datasets

	6 GMM framework for neural network AMs
	6.1 Introduction
	6.2 Hybrid DNN-HMM systems with GMM-derived (GMMD) features
	6.3 DNN adaptation using GMMD features
	6.4 Preliminary experimental results with supervised adaptation
	6.5 Conclusions

	7 Speaker adaptive training
	7.1 SAT DNN AM training using GMMD features
	7.2 MAP adaptation using lattices scores
	7.3 Data augmentation and data selection for SAT
	7.4 Experimental results with data augmentation, data selection and lattices scores
	7.5 Conclusions

	8 Integration of GMMD features into state-of-the-art ASR systems
	8.1 System fusion
	8.2 Training DNN AMs with GMMD features
	8.3 Training TDNN AMs with GMMD features
	8.4 Baseline systems and addressed questions
	8.5 Proposed systems with GMMD features
	8.6 Adaptation and fusion results
	8.7 Results for Arabic MGB 2016 Challenge
	8.8 Conclusions

	9 Towards speaker adaptation for end-to-end AMs
	9.1 Introduction
	9.2 Speaker adaptation for BLSTM-CTC models
	9.3 Experiments
	9.4 Conclusions

	10 GMMD feature analysis
	10.1 Phoneme posterior based features
	10.2 Visual analysis using t-SNE
	10.3 Davies-Bouldin index
	10.4 Analysis for TDNN models
	10.5 Conclusions

	11 Conclusions and future work
	11.1 Overview of contributions
	11.2 Perspectives

	Publications
	Bibliography

