
HAL Id: tel-01797325
https://theses.hal.science/tel-01797325

Submitted on 22 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Skilled mobility, networks and the geography of
innovation
Clément Gorin

To cite this version:
Clément Gorin. Skilled mobility, networks and the geography of innovation. Economics and Finance.
Université de Lyon, 2017. English. �NNT : 2017LYSES030�. �tel-01797325�

https://theses.hal.science/tel-01797325
https://hal.archives-ouvertes.fr


	

 
 
 
 
 
 
N°d’ordre NNT : 2017LYSES030 
 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

L’Université Jean Monnet 
 

Ecole Doctorale N° 486 
Ecole Doctorale Sciences Economiques et de Gestion 

 
Spécialité de doctorat : Économie 
Discipline : Géographie de l’innovation 

 
 
 

Soutenue publiquement le 29/09/2017, par : 
Clément GORIN 

 
 

Skilled mobility, networks and the 
geography of innovation 

 
 
 
 
 
 
Devant le jury composé de : 
 
Corinne AUTANT-BERNARD, Professeur, Université Jean Monnet Présidente 
 
Maryann FELDMAN, Professeur, University of North Carolina  Rapporteure 
Francesco LISSONI, Professeur, Université de Bordeaux   Rapporteur 
Rosina MORENO SERRANO, Professeur, Universitat de Barcelona Examinatrice 
 
Nadine MASSARD, Professeur, Université Grenoble Alpes  Directrice de thèse 
 
Ernest MIGUELEZ, Chargé de recherche, CNRS    Invité 









Acknowledgements

My PhD has been a stimulating and rewarding experience both personally and profes-

sionally, and this is largely due to the many people I met, exchanged idea and spent

great moments with. I would like to express my gratitude to all those who, in one way

or another, have supported me in the completion of this thesis.

I am grateful to my director, Nadine Massard for her guidance and her unwavering

support. Her insights and critical thinking have been invaluable assets throughout this

thesis. She has given me the freedom to find my own path, while helping me to develop

as a researcher. I express my gratitude to Maryann Feldman and Francesco Lissoni for

accepting to report on this thesis. I am also indebted to Corinne Autant-Bernard and

Rosina Moreno for being part of the jury, and along with Ernest Miguelez, for providing

valuable advice during the thesis committees.

In addition, I was fortunate to meet Julien Salanié, who gave me numerous advices on

econometric modelling and programming. I am grateful to the direction of the GATE,

Antoinette Baujard and Sonia Paty, for providing PhD students with ideal working

conditions and support. I also thank Michel Bellet, who provided the most convenient

teaching conditions, and Sylvie Grenier for making the administrative tasks a lot easier.

My everyday working life was made enjoyable thanks to my humoured fellow labmates

at the GATE and my friends at AQR.

Finally, I would like to acknowledge my family and my friends for their support, and es-

pecially Adrien, Amélie, Camilla, Camille, Dominique, Gaëlle, Jordi, Margït, Mathilde,

Raphaël, Régis, Robin, Samuel, Thomas and Tobias. Most importantly, I am grateful

to Pauline for her constant encouragement and her cheerful nature that helped in the

moments of doubt.





Contents

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Methodological choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview of the chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Skilled mobility and the geography of innovation 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Labour mobility and economic geography . . . . . . . . . . . . . . . . . 25

2.3 Economic geography, innovation and growth . . . . . . . . . . . . . . . 36

2.4 Skilled mobility and the diffusion of knowledge . . . . . . . . . . . . . . 44

2.5 The determinants of skilled mobility . . . . . . . . . . . . . . . . . . . 51

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Patterns and determinants of skilled mobility across urban areas 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Patterns of inventors’ mobility . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Determinants of inventors’ mobility . . . . . . . . . . . . . . . . . . . . 85

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Accessiblity, absorptive capacity and innovation in urban areas 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

1



4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Conclusion 129

5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Direction for future research . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135

Appendix 151

A1 Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A2 Appendix for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 153

List of acronyms 159

Abstract 161

2



1 Introduction

1.1 Background

Since the development of the endogenous growth theory, innovation and knowledge are

largely accepted as the main driving forces behind long-term economic growth. From

a regional perspective, scholars have established that innovative activity is remarkably

concentrated in space, and especially in large urban areas. For instance, Audretsch and

Feldman (1999) reported that in 1982 in the US, less than 4% of product innovations

took place outside metropolitan areas, while 70% of the population resided in those

cities. More recently, Moretti (2012) observed that about twenty US cities with a solid

base of human capital kept attracting good employees and offering high wages. As

a result, they accounted for the bulk of US innovative activity. Understanding the

concentration of innovation should help explaining the persistence of long-run growth

differentials among urban areas, and in a more dynamic setting, whether these gaps

tend to widen or fall over time.

Jacobs (1969) long ago pointed to the importance of cities as a source of innovative

change. She argued that the diversity of people, firms and cultures in urban areas con-

stitutes a fertile ground for innovation. The relation between knowledge and innovation

lies on the belief that new discoveries stem from the combination of previously uncon-
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nected ideas. Therefore, there would be a positive association between the stock of di-

verse knowledge available and innovative performance1. The connection with economic

theory was provided by Lucas (1988), who introduced human capital in a neoclassi-

cal growth model. In his setting, productivity gains are associated with the clustering

of skilled people in urban areas. Although Lucas did not give any indication about

the mechanisms by which externalities occurred in the real world, he argued that “the

scope of such effects must have to do with the ways various groups of people interact”

(p.37). This is due to the tacit nature of knowledge conductive to innovation, which

is embodied in individuals’ minds and habits, and is better transmitted through direct

and frequent interactions (Howells, 2002). Building on this intuition, Glaeser (1999)

designed a model in which dense urban agglomerations provide a faster rate of contact

between individuals. Each contact provides an opportunity for learning and lowers the

costs of communication, so that workers learn more quickly in metropolitan areas. In a

more dynamic setting, Black and Henderson (1999) developed a model in which urban

systems grow endogenously through human capital externalities. The model features

a simultaneous relationship whereby workers in the city become more productive by

accumulating human capital. This makes the city more attractive and increase popu-

lation growth, which increases in turn the amount of human capital externalities and

makes skilled cities grow faster.

The empirical evidence is fairly conclusive. Using US patent citations, Jaffe et al. (1993)

found that industry patenting at the metropolitan level was influenced by university

research spending in related technological fields, which points to the existence of local

knowledge externalities. Glaeser and Mare (2001) documented that workers residing in

US cities are more productive, and earn more than their non-urban counterpart. The
1Fujita and Thisse (2002b, p.170) define knowledge as “(...) the kind of information related to

products, technologies and markets, which is difficult to codify because it is tacit, and thus it can
typically be collected only through face-to-face communications”.
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analysis reveals that workers in cities accumulate human capital faster, which increases

the average labour productivity and cause cities with more educated residents to grow

faster. The explicit connection to innovation is provided by Carlino et al. (2007), who

noticed that US cities with higher employment density also generate more patents per

capita, highlighting the role that density plays in the diffusion of idea. Similar evidence

is reported by Bettencourt et al. (2007), who found that large metropolitan areas in

the US have disproportionately more inventors than smaller ones, and consequently

generate more patents. In this regard, Glaeser and Resseger (2010) highlighted strong

complementaries between knowledge and agglomeration; knowledge externalities am-

plify the benefits of agglomeration, while agglomeration facilitates the accumulation of

knowledge.

Such circular-causation mechanisms are the foundations of new economic geography and

growth models, which explain the uneven distribution of economic activity through the

interplay of diverse agglomeration and dispersion forces. In particular, Baldwin and

Forslid (2000) designed a model encompassing both labour mobility and knowledge

externalities as agglomeration forces. Their main contribution is to show that agglom-

eration and economic growth are mutually self-reinforcing processes. Depending on

labour mobility and the range of knowledge externalities, a core-periphery pattern may

emerge as firms and skilled workers cluster within the same location. As this location

becomes more attractive, further concentration of factors occurs, pushing its capacity

to grow at the expense of peripheral areas. By contrast, when knowledge externalities

have a wide spatial range, location decisions have no effect on innovation, which weak-

ens the cumulative mechanism described above and favours the symmetric equilibrium

(Fujita and Thisse, 2003). A major limitation of these models is that they do not

control for the actual mechanisms through which knowledge diffuses in space (Fujita

and Krugman, 2004). A related issue is that the law of motion governing migration
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dynamics is very simplistic, as workers respond only to real wage differentials. These

two issues are further investigated in the empirical geography of innovation literature.

Going beyond the pure externality perspective, two streams of literature investigated

how knowledge diffuses in space and across organisations. First, the empirical ge-

ography of innovation literature has established that the transmission of knowledge

proceeds mostly through personal ties. Consequently, firms may gain access to knowl-

edge through the recruitment of key workers. When these individuals move away from

the place where they originally worked, they bring their embodied knowledge to their

new workplace and promote innovation. From an empirical perspective, Almeida and

Kogut (1999) tracked knowledge diffusion patterns using patent citations in the semi-

conductor industry. He found evidence of knowledge flows in the US states where the

mobility of inventors across companies is high. Going beyond the direct impact of mo-

bility, Agrawal et al. (2006) showed that mobile inventors are more likely to be cited by

their former colleagues. This suggests that social ties facilitate the transfer of knowledge

even when inventors are no longer co-located. More generally, a related mechanism for

the transmission of knowledge is the presence of scientific networks, because workers

and firms that are embedded in those networks are more likely to be exposed to orig-

inal ideas. This is confirmed by Singh (2005), who argued that co-invention networks

explained the subsequent patterns of patent citations, both at the regional and at the

firm level. To the extent that mobility patterns remain predominantly local, this could

explain the observed concentration of innovation (Breschi and Lissoni, 2009). However,

having access to external knowledge is not sufficient to use it for innovation. A second

stream of research focused on firms’ ability to absorb external knowledge. In an influ-

ential contribution, Cohen and Levinthal (1989) argued that firms actively engaging in

research are not only more likely to innovate, they are also able to build an absorptive

capacity in order to assimilate and use productively the discoveries of others. Griffith
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et al. (2003) explicitly modelled absorptive capacity in a model of endogenous growth;

they argued that the social returns to R&D and human capital are greater than pre-

viously thought. From an empirical perspective, Caragliu and Nijkamp (2012) showed

that a lower regional absorptive capacity increases knowledge flows towards neighbour-

ing areas, hampering the regions’ capability exploit newly created knowledge, both

produced locally and originating from outside.

While the importance of skilled workers for the diffusion of knowledge is well estab-

lished, far less attention has been devoted to the determinants of their location decisions.

This is important because heterogeneity in workers’ characteristics and location pref-

erences alters the circular-causation mechanism of agglomeration (Tabuchi and Thisse,

2002). Economists consider mobility as a rational decision in which individuals com-

pare expected utilities at origin and destination as well as the cost of moving. The

literature has developed around two views of what influences the level of utility. The

traditional approach considers that mobility is driven primarily by the labour market.

Empirically, this means that workers are drawn toward locations offering attractive

employment opportunities. In an urban context, Scott (2010) investigated what drives

inflows of migrant US engineers into different MSA. Their estimation results suggest

that local employment opportunities have a major impact on the destination choices

of engineers. An alternative approach views mobility as a consumption choice. In this

perspective, mobility is a response to spatial heterogeneity in the provision of amenities.

Early works focused on natural advantages (Graves, 1980), but more recent contribu-

tions have considered the importance of human-produced amenities including social,

cultural and skill-dependent amenities, which are particularly important in an urban

context (Shapiro, 2006). Finally, Faggian and McCann (2006) studied the mobility of

UK graduates entering into first employment. Their analysis suggests that mobility

flows are mainly directed by differences in nominal wages, so that regions offering a
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higher nominal wage are net absorber of human capital flows and regions with lower

nominal wages net losers of human capital.

These findings have implications for the geography of innovation. Models that study

growth and geography in an integrated framework recognize the importance of both

workers’ mobility and knowledge externalities in determining the location of innova-

tion. On the one hand, if a region becomes relatively more attractive, mobile workers

will move to this region, causing it to grow at the expense of peripheral areas in a

circular-causation mechanism. On the other hand, the strength of agglomeration de-

pends negatively on the range of knowledge externalities. In this setting, the aggregate

impact of skilled mobility is ambiguous because it favours the core-periphery equilib-

rium, while its role in the diffusion of knowledge may lead to dispersion. The relative

importance of these two effects critically depends on workers’ mobility patterns. For in-

stance, in the presence of long-term mobility, the agglomeration force should be stronger

than what theory predicts. By contrast, the increasing development of short-term, cir-

cular patterns of mobility should give rise to dispersion. The literature is unclear about

which effect prevails, partly because it does not account for the actual mechanisms

through which knowledge diffuses in space. This work represents a step in this direc-

tion.

1.2 Research questions

Building on these considerations, an important research question is to understand the

role of skilled mobility in the geography of innovation. This should help explaining the

persistence of long-run growth differentials among urban areas, and in a more dynamic

setting, whether these gaps tend to widen or fall over time. Specifically, this thesis
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seeks to address the following question.

How does the mobility of skilled workers shapes the diffusion of knowledge,

and the resulting spatial distribution of innovative activity?

To answer this question, the thesis proceeds in three steps. Chapter 2 sets the con-

ceptual framework and surveys the related literature. One of the main conclusion of

this review is that some new economic geography and growth models provide a useful

theoretical framework, because they recognize the importance of skilled mobility and

knowledge externalities for the distribution of innovation. However, they fail to provide

a reasonable answer to our research question for at least two reasons.

First, the migration dynamics are very simplistic, and introducing heterogeneity in

workers’ characteristics and location preferences alters the cumulative mechanism of

agglomeration. Chapter 3 provides a descriptive analysis on the patterns of inventors’

mobility across urban areas, and their spatial dimension. Building on these results, a

gravity model is used to analyse formally how employment opportunities, professional

networks and urban amenities, influence inventors’ mobility flows.

Second, these models do not consider workers’ role in the diffusion of knowledge. The

literature has established that skilled individuals influence the diffusion of knowledge

by moving across organisation, creating network relationships and building absorptive

capacities. Chapter 4 implements a spatial model to study these three mechanisms in

an integrated framework. It is assumed that that mobility and networks provide access

to knowledge, but the proportion of accessible knowledge used for innovation depends

on absorptive capacity.
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1.3 Methodological choices

Before going into more details, this section highlights three methodological choices com-

mon to the empirical chapters. First, this thesis makes extensive use of patent data,

and therefore focuses on inventors’ mobility and networks. Second, the empirical anal-

ysis is performed at the level of urban areas in Europe, an economically meaningful

unit of analysis. Third, spatial econometric tools are used to model explicitly the inter-

dependencies between neighbouring cities’ innovation processes, and recover unbiased

estimates.

Patent data contains considerable information about the patents themselves, the inven-

tors and the assignees. This data is used extensively to compute a range of variables

including mobility, networks, innovation and technological indexes, among others. Con-

sequently, inventors are used as a proxy for the broader category of skilled individuals.

Arguably, they constitute a representative sample, because they are directly involved in

the production of new knowledge and therefore, have a large impact on the innovation.

Despite several limitations discussed in detail in the chapters, patent data has the ma-

jor advantage of being available on a large scale2 and consistent across space and time.

Finally, this data contains detailed inventors’ addresses, and therefore can be geocoded

at the level of urban areas, or any other spatial scale of analysis.

There is substantial theory and evidence that innovation is primarily an urban phe-

nomenon. By contrast, most empirical studies on the geography of innovation have

used administrative boundaries such as regions or states, especially in Europe. This

thesis performs the analysis at the level of urban areas. The definitions developed by

Eurostat and the OECD provide harmonized measures of cities throughout European
2This is partly due to the joint efforts of several research teams to provide access to disambiguated

patent datasets (Coffano and Tarasconi, 2014; Lai et al., 2013; Pezzoni et al., 2014).
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countries. These areas are defined using population density and commuting patterns,

so that each represents a self-contained labour market, an economically meaningful unit

of analysis. Besides, these definitions do not focus exclusively on large metropolitan

areas, but also feature a wide array of small and medium-sized cities, with varying

characteristics. However, using a non-standard scale of analysis is challenging in terms

of data availability. In this regard, geocoding and data mining techniques were used ex-

tensively to build datasets at the city level. This spatial scale of analysis should reflect

more closely the dynamics of mobility and innovation, and complements the existing

empirical evidence at the level of regions.

From a methodological perspective, spatial econometrics offer a strong potential to

investigate interdependencies in neighbouring cities’ innovation because it models par-

simoniously complex relationships between observational units across space and time.

In her review of the literature, Autant-Bernard (2012) argued that spatial models are

relevant to study of regional innovation because they account for two sources of depen-

dence that characterize the geography of innovation. First, spatial autocorrelation arise

when innovation in a city is affected by the research effort of its neighbours. Second,

spatial heterogeneity stems for the spatial concentration of innovative activity. These

two phenomena are well established in the empirical literature. Spatial dependence gen-

erates endogeneity and cause conventional models to produce biased estimates. This

thesis takes advantage of recent developments in spatial econometrics to model explic-

itly the interdependencies between neighbouring cities’ innovation, and recover reliable

estimates.
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1.4 Overview of the chapters

Chapter 1

This chapter sets the conceptual framework by drawing on three distinct streams of

literatures including the new economic geography (NEG), endogenous growth, and the

empirical geography of innovation literature. Specifically, the new economic geography

(Krugman, 1991) provides an insightful theoretical framework to explain the uneven

distribution of economic activity through the interplay of diverse agglomeration and

dispersion forces. While research in this field has shed a new light on how labour

mobility influences the spatial distribution of economic activity, it has been criticized for

the static nature of some of its assumptions (Walz, 1996), and the lack of consideration

of knowledge externalities as an agglomeration force (Fujita and Mori, 2005). As a

consequence, it fails to provide a reasonable explanation for the spatial concentration

of innovative firms, which rely on external knowledge as an input for their activity.

By contrast, endogenous growth theorists have established that sustained innovation

depends on knowledge externalities arising from other firms (Romer, 1990). To the

extent that these externalities have a limited spatial range (Jaffe et al., 1993), there

is a positive relationship between agglomeration and R&D-driven economic growth.

More recent theoretical work has explored this association by introducing endogenous

growth in a NEG framework, while allowing for labour mobility (Baldwin and Forslid,

2000). This body of literature, known as the new economic geography and growth,

has established that knowledge externalities and their geographical range impact the

location of innovation. Yet, the microeconomic foundations of these models remain

weak (Fujita and Krugman, 2004). In particular, while recognizing the importance of
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both mobility and knowledge externalities for the location of innovation, they do not

consider these workers’ role in the diffusion of knowledge. Besides, the law of motion

governing migration dynamics seem over-simplistic in light of the migration literature.

These two limitations are addressed by the empirical literature on the geography of

innovation. First, studies have established that the transmission of knowledge proceeds

mostly through personal ties. Consequently, firms can gain access to knowledge through

the recruitment of key workers (Almeida and Kogut, 1999) or by actively engaging in

collaboration networks (Singh, 2005). These two mechanisms are closely related because

mobile workers influence the structure of networks (Agrawal et al., 2006) and conversely,

social relationships influence mobility decisions. Besides, firms hiring skilled workers

are able to build an absorptive capacity in order to capture and use productively ex-

ternal knowledge (Massard and Mehier, 2009). Second, introducing heterogeneity in

workers’ preferences and location decision weakens the circular-causation mechanism of

agglomeration. Empirical evidence suggests workers’ do not respond exclusively to mar-

ket signals, but also to the provision of amenities (Miguelez and Moreno, 2014). More

generally, mobility is diverse and each category of workers has different propensities

and motivations to move, so that mobility patterns differ considerably.

Chapter 2

While there is large consensus on the importance of skilled workers on the diffusion

of knowledge, far less attention has been devoted to the factors driving their location

decisions. This chapter investigates the patterns and determinants of skilled workers’

mobility across urban areas. First, a descriptive analysis documents the dynamics

of inventors’ mobility and their spatial dimension. Second, a gravity model is used

to analyse how employment opportunities, collaboration networks as well as urban
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and natural amenities, influence the flows of inventors between European urban areas.

From a methodological perspective, this chapter uses a spatial filtering variant of the

Poisson gravity model, which accommodate the nature of the data, while controlling

for multilateral resistance and spatial autocorrelation in mobility flows (Krisztin and

Fischer, 2015).

Despite the commonly held belief that skilled workers are highly mobile in space, the

analysis suggests that mobility remains a rare event. Among multi-patenting inven-

tors, only 9.67% moved from one city to another between 1975 and 2008. Mobility

is also limited in space because inventors travel relatively short distances, generally

within the same country. These results can be partly explained by the high level of

circular and intra-firm mobility. Finally, the analysis highlight significant heterogeneity

among countries. Turning to the determinants of inventors’ mobility, four results are

worth noting. First, inventors are drawn toward cities offering numerous employment

opportunities. This finding is in line with the scarce existing evidence, provided by

Miguelez and Moreno (2014) at the level of European regions, yet the explicit mod-

elling of spatial autocorrelation and the analysis at the urban scale provide additional

robustness to this finding. Second, the decision to move is mediated by network ties,

which reduce information asymmetries between inventors and their potential employers,

and therefore improve matching (Jackson, 2011). Besides, the definition of networks

should not be restricted to direct collaborations. In particular, the centrality of cities,

which represent a less restricted view of social networks, also plays a role. Third, con-

trary to expectations, geographical distance has a limited role in deterring mobility.

This may be because it acts as a proxy for other, more meaningful forms of distance.

In particular, mobility occurs primarily between cities sharing the same technologi-

cal specialisation, partly because of the availability of specialised jobs, partly because

collaboration networks tend to develop within the same scientific community. More
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importantly, cultural and institutional distance translate into greater adaptation costs.

Fourth, from a methodological perspective, spatial autocorrelation in mobility flows

should be explicitly controlled for when estimating the gravity model in order to obtain

unbiased parameter estimates.

These results have implications for the geography of innovation. While both mobility

and networks have been shown to influence the diffusion of knowledge, they have of-

ten been investigated separately, and it would be interesting to study the interrelation

between these two channels, as they appear to be closely related. The results suggest

that the diffusion of knowledge may be limited for several reasons. Movers represent

only a fraction of the inventors; and those who move travel relatively short distances,

generally within the same country. This result is magnified by the fact that a large por-

tion of mobility occurs within firms, and is not necessarily associated with a transfer

of knowledge. Besides, the fact that mobility takes place primarily between technolog-

ically related cities may cause the transferred knowledge to be redundant, and have a

limited economic impact. A more promising finding is that mobility may be encour-

aged, in particular through the development of research collaborations involving distant

research communities.

Chapter 3

Empirical studies on the geography of innovation have established that skilled workers’

mobility (Almeida and Kogut, 1999) and collaboration networks (Singh, 2005) shape

the diffusion of knowledge across firms and regions. At the same time, the literature

on absorptive capacity insisted on the importance of local research capabilities to take

advantage of knowledge developed elsewhere (Cohen and Levinthal, 1989). This chapter

investigates both phenomena in an integrated framework by assuming that mobility
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and networks provide access to knowledge, but the proportion of accessible knowledge

effectively used for innovation depends on absorptive capacity (Miguelez and Moreno,

2013a). Such complementaries in regional research efforts are effectively captured using

a spatial Durbin model (Autant-Bernard and LeSage, 2011) in which the connectivity

structure stems from mobility and collaboration patterns (Hazir et al., 2014).

This chapter contributes to the empirical literature in four ways. First, the analysis

is carried out at the level of urban areas, a meaningful unit of analysis with regards

to arbitrarily defined regions commonly used in the literature. Second, it proposes a

refinement of the typical weight matrices based on purely geographical criteria by using

information on the mobility of inventors and their collaborative ties. The model is es-

timated iteratively using different forms of connectivity to select the matrix associated

with the model that fits the data most closely. Results confirm that skilled mobility,

and to a lesser extent networks, significantly affect neighbouring cities’ innovation pro-

cesses. Besides, contiguity alone does not reflect the nature of dependence, but serves

as a proxy for more meaningful forms of proximity based on social ties. Third, this

chapter estimates a spatial knowledge production function on a panel of 488 European

urban areas over 1998-2009. Maximum likelihood estimates suggest that innovation at

the urban level is strongly affected by the research effort of their neighbours. Specifi-

cally, spending in R&D contributes to local innovation, but also significantly increase

patenting in neighbouring cities. By contrast, the aggregate impact of human capital

is not significant, because the positive effect on local innovation is offset by a negative

spillover effect on neighbours. This is interpreted as a competition effect whereby an

increase in human capital in a city would draw skilled workers from neighbouring cities,

causing it to grow at the expense of peripheral areas. Fourth, this chapter attempts to

provide an estimate of absorptive capacity, measured as the complementarity between

internal and external resources. There is rather weak evidence of this phenomenon but
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results suggests nonetheless that a certain level of human capital allow cities to take

advantage of others’ discoveries.

These findings have implications for the convergence debate. While greater accessibil-

ity encourages convergence, the notion of absorptive capacity implies a self-reinforcing

effect leading to divergence (Aghion and Jaravel, 2015). On the one hand, if a region

becomes relatively more attractive, mobile workers will move to this region, causing it

to grow at the expense of peripheral areas. On the other hand, the strength of agglom-

eration depends negatively on the range of knowledge externalities. In this setting, the

aggregate impact of skilled mobility is ambiguous because it favours the core-periphery

equilibrium, while its role in the diffusion of knowledge gives rise to dispersion. The

theoretical literature is unclear about which effect prevail, and this chapter provides

evidence of both complementarity and competition effects among neighbouring cities

innovation processes.

1.5 Main results

One of the main conclusion of Chapter 2 is that some new economic geography and

growth models provide a useful theoretical framework to explain the spatial distribu-

tion of innovative activity through the interplay of agglomeration and dispersion forces.

While recognizing the importance of skilled mobility and knowledge externalities for the

distribution of innovation, they neglect these workers’ role in the diffusion of knowl-

edge. This should lead to an increased relevance of mobility choices for innovation. In

addition, the migration dynamics are very simplistic, and heterogeneity in workers’ lo-

cation preferences weakens the circular mechanism of agglomeration. Some evidence is

available in the geography of innovation literature. Empirical studies have established
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that skilled workers influence the diffusion of knowledge by moving across organisa-

tion, creating network relationships and building absorptive capacities. Besides, labour

mobility is diverse and skilled workers do not move exclusively in response to labour

market signals.

Building on these considerations, Chapter 3 investigates the patterns and determinants

of inventors’ mobility across European urban areas. The descriptive analysis suggests

that mobility is relatively rare and has a limited spatial dimension. Interestingly, the

results points to the importance of circular patterns of mobility, which generally occur

within the same firm. The econometric analysis reveals that inventors’ do not respond

exclusively to labour market signals, but are also attracted to cities providing natural

and cultural amenities. In addition, the decision to move is mediated by network ties,

which reduce information asymmetries and improve matching. Finally, the fragmenta-

tion of cultural and institutional frameworks in Europe significantly reduces mobility.

These results suggest that the diffusion of knowledge may be limited. Mobility is rare

and generally occurs within the same firms, located in technologically related cities.

This may cause may cause the transferred knowledge to be redundant. A more promis-

ing finding is that mobility may be encouraged, in particular through the development

of research collaborations.

Chapter 4 explicitly models interdependencies between neighbouring cities’ innovation

by assuming that by assuming that mobility and networks provide access to knowledge,

but the proportion of accessible knowledge effectively used for innovation depends on ab-

sorptive capacity. The analysis confirms that mobility, and to a lesser extent networks,

significantly affect neighbouring cities’ innovation. Specifically, spending in R&D con-

tributes to local innovation, but also significantly increases patenting in neighbouring

cities. By contrast, the aggregate impact of human capital is not significant, because
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the positive effect on local innovation is offset by a negative spillover effect on neigh-

bours. This is interpreted as a competition effect whereby an increase in human capital

in a city would draw skilled workers from neighbouring cities, causing it to grow at the

expense of peripheral areas. Finally, the results suggest that a certain level of human

capital allow cities to take advantage of others’ discoveries.
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2 Skilled mobility and the geogra-

phy of innovation

Abstract

This chapter investigates the importance of skilled mobility for the geography of inno-

vation. To answer this question, it draws on three distinct streams of literatures. The

new economic geography provides a theoretical framework to explain the distribution of

economic activity, but does not consider innovation. By contrast, endogenous growth

models recognize the importance of skills and knowledge for innovation, but do not

consider geography. Several models overcome these limitations by studying growth and

geography in an integrated framework. While recognizing the importance of labour

mobility and knowledge for location of innovation, they do not consider workers’ role

diffusion of knowledge. To investigate these issues, we turn to the empirical geography

of innovation literature. Such an approach provides a deeper understanding of the im-

portance of labour mobility, as well as the implications for the geography of innovation.
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2.1 Introduction

In proposing a new theory of economic geography Krugman (1991, p.55) asked “What

is the most striking feature of the geography of economic activity? The short answer is

surely concentration”. There is substantial empirical evidence that what Krugman ob-

served for production was even more pronounced for innovative activity. For instance,

Audretsch and Feldman (1999) reported that in 1982 in the US, less than 4% of product

innovations took place outside metropolitan areas, while 70% of the population resided

in those cities. Building on these considerations, a stream of empirical literature has

sought to provide economic foundations to the observed concentration of innovation.

One of the main explanation that has been developed is the presence of local knowledge

externalities. Endogenous growth theorists have established that innovation depends

on firms’ own research capabilities, as well as their ability to use knowledge developed

by other firms (Romer, 1990). Due to its non-rival characteristic, knowledge is only

partly appropriated by its producer. To the extent that knowledge externalities are

predominantly local (Jaffe et al., 1993), this could explain the observed concentration

of innovation. This local aspect derives from the tacit nature of knowledge (Howells,

2002), which is embodied in individuals’ minds and habits and therefore, is better trans-

mitted through frequent and direct interactions than long distance communications. In

their critical review of this literature, Breschi and Lissoni (2001) argued that knowledge

may flow locally, but not necessarily as an externality. Whether or not an external-

ity occurs depend on the type of mechanisms through which knowledge is transferred.

Building on these considerations, a series of empirical contributions have investigated

the mechanisms of knowledge transfer and their determinants. In particular, this lit-

erature insisted on the role of skilled workers’ mobility and the networked nature of

knowledge production on innovation. For instance, Almeida and Kogut (1999) found
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evidence that skilled workers who change position take their embodied knowledge with

them and promote new combination of knowledge. In addition, Agrawal et al. (2006)

showed that mobile inventors are more likely to be cited by their former colleagues, re-

flecting the importance of social ties in the diffusion of knowledge. In this perspective,

the limited geographical range of knowledge flows is the result of workers’ lack of mo-

bility, or because social relationships are equally bound in space (Breschi and Lissoni,

2009).

This chapter seeks to address the question of how skilled mobility shapes the spatial

distribution of innovative activity. To answer this question, it draws on three dis-

tinct streams of literatures including the new economic geography (NEG), endogenous

growth, and the empirical geography of innovation literature. Each of these provides

complementary piece of evidence, but as is often the case, none gives a comprehensive

explanation of this phenomenon. While one cannot attempt to survey such large bodies

of literature, this chapter connects several key contributions in order to shed light on

the relationship between skilled mobility and the geography of innovation. What is

lacking is an integrated conceptual framework bringing together skilled mobility, eco-

nomic geography, and innovation studies. Such an approach would undoubtedly provide

a more thorough understanding of the labour mobility as well as the implications for

the spatial distribution of innovative activity.

Specifically, the new economic geography (Krugman, 1991) provides an insightful the-

oretical framework to explain the uneven distribution of economic activity through the

interplay of diverse agglomeration and dispersion forces. While research in this field has

shed a new light on how labour mobility influences the spatial distribution of economic

activity, it has been criticized for the static nature of some of its assumptions (Walz,

1996), and the lack of consideration of knowledge externalities as an agglomeration force
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(Fujita and Mori, 2005). As a consequence, it fails to provide a reasonable explanation

for the spatial clustering of innovative firms, which rely on external knowledge as a

primary input of their activity.

By contrast, endogenous growth theorists have established that sustained innovation

depends on knowledge externalities arising from other firms (Romer, 1990). To the

extent that these externalities have a limited spatial range (Jaffe et al., 1993), there

is a positive relationship between agglomeration and R&D-driven economic growth.

Recent theoretical work has explored this association by introducing endogenous growth

in a NEG framework, while allowing for labour mobility (Baldwin and Forslid, 2000).

This body of literature, known as the new economic geography and growth (NEGG),

has established that knowledge externalities and their geographical range impact the

location of innovation. Yet, the microeconomic foundations of these models remain weak

(Fujita and Krugman, 2004). In particular, while recognizing the importance of both

skilled mobility and knowledge externalities for the location of innovation, they do not

consider these workers’ role in the diffusion of knowledge. This should in principle lead

to an increased relevance of mobility choices for the spatial distribution of innovation.

Besides, the laws governing migration dynamics seem very simplistic in light of the

migration literature, which emphasize the heterogeneity in workers’ characteristics and

migration behaviour.

To investigate these issues, we turn to the empirical geography of innovation literature.

These studies have established that the mobility of skilled individuals both in space

and across organizations constitutes an important mechanism of knowledge transfer.

Almeida and Kogut (1999) found evidence that skilled workers who change position

take their embodied knowledge with them and promote new combination of knowledge.

Singh (2005) argued in turn that this effect is depends on mobile worker’s capability
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to create networks relations. Building on these considerations, a range of authors have

investigated the determinants of skilled mobility. In particular, Scott (2010) showed

that talented workers move primarily in response to differences in labour market oppor-

tunities, although the provision of amenities also play a role. In addition, Miguelez and

Moreno (2014) reported that the cost of moving varies with the geographical separation

as well as cultural and technological forms of distance. Finally, mobility is diverse and

workers have different propensities and motivation to move, so that mobility patterns

differ considerably.

The remainder of this chapter is structured as follows. Section 2.2 introduces the basic

NEG setting with a focus on the role of skilled mobility. Several models linking economic

geography and endogenous growth are reviewed in section 2.3. Section 2.4 surveys

empirical contributions on the impact of skilled workers’ mobility on the diffusion of

knowledge. Empirical evidence on the determinants of skilled mobility is reviewed in

section 2.5 and section 2.6 concludes.

2.2 Labour mobility and economic geography

Initiated by Krugman’s (1991) pioneering paper, the NEG has developed a solid theoret-

ical framework to explain why economic activity concentrates in certain region leaving

others relatively undeveloped. Much of that work focuses on the propensity of firms

and workers to cluster together as regions become more integrated. The main novelty of

this literature is to show that spatial imbalances can arise within a general equilibrium

framework through the interplay of several agglomeration and dispersion forces, which

are built upon micro-decisions of representative agents. After considering how labour

mobility influences the spatial structure of the economy in the core-periphery model,
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we review extensions that introduce workers’ heterogeneity in a NEG framework.

2.2.1 Labour mobility in the core-periphery model

Krugman’s (1991) core-periphery (CP) model illustrates how the spatial structure of

the economy can change endogenously through the interplay of several agglomeration

and dispersion forces. In particular, it shows how the mobility of labour across regions

determines the agglomeration of economic activity. The model assumes an economy

composed of two regions, with two sectors and two production factors.

1. The perfectly competitive agricultural sector produces a homogeneous good under

constant return to scale using immobile farmers. This good can be traded freely

across regions.

2. The industrial sector operates under increasing returns to scale. The introduction

of increasing returns implies that we cannot assume perfect competition. There-

fore, the manufacturing sector is modelled using Dixit and Stiglitz’s (1977) model

of monopolistic competition where each firm produces a horizontally differenti-

ated variety. This sector uses workers who migrate to whichever region offers a

higher real wage. Besides, shipping the industrial good involves iceberg transport

costs (Samuelson, 1954).
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Table 2.1: Basic setting of the CP model

Agriculture Manufacture

Se
ct

or
s

Agricultural firms (A) Manufacturing firms (M)
Perfectly competitive Monopolistically competitive
Constant returns to scale Increasing returns to scale
Produce an homogeneous good Produce differentiated varieties
Costless transportation Iceberg transportation costs

Fa
ct

or
s Peasants (P) Workers (L)

Immobile Mobile in response to real wage differ-
entials

CES preference for variety CES preference for variety

In the initial setting, the two regions are identical in every respect, including their

endowment of immobile factors. On one hand, the agglomeration forces arise from pe-

cuniary externalities, which result from the location decisions of manufacturing firms

and workers. These decisions are governed in turn by a combination of love of variety

preferences, increasing returns to scale and transport costs. Pecuniary externalities

reinforce one another in a circular causation mechanism that may push manufacturing

and workers to agglomerate in the same region. On the other hand, the dispersion

forces arise from product market competition and immobile factors of production. De-

pending on the relative strength of these two set of forces, regions can endogenously

develop different production structures and become either an industrialized core or an

agricultural periphery.

Going into more details, let us first consider firms’ location behaviour. The introduc-

tion of increasing returns provides an incentive for manufacturing firms to concentrate

production near large markets to benefit from economies of scale. This acts as an ag-

glomeration force since manufacturing firms can find it profitable to produce in a single
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location and ship to the other, provided that transport costs are low enough. At the

same time, firms located in the core face a larger number of low-priced competitors.

Besides, immobile agricultural workers imply that part of the demand remains located

in the periphery, so that firms may be encouraged to locate in that region to serve the

local market.

Turning to the workers’ location behaviour, preference for variety implies that workers

prefer to live near large markets offering a greater variety of consumption goods. A

larger share of income spent on industrial goods allows firms in that region to pay

higher nominal wages, making this location increasingly attractive for workers. Besides,

these workers face a lower price for industrial goods since more varieties are produced

and they do not incur trade cost, which cause the real wage to rise as well. At the

same time, workers in that region face higher competition in the labour market, which

causes firms to pay lower wages. This is a dispersion force since some workers have an

incentive to move to the periphery where the relative wage may be higher.
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Figure 2.1: The centripetal pull of labour mobility

Larger number of workers

Larger demand for M goods

Larger number of M firms

Larger supply of M goods

One worker moves from R2 to R1

Forward linkageBackward linkage

1

1 2

2

1. Backward linkage: Manufacturing firms have an incentive to concentrate produc-

tion near large markets to benefit from increasing returns, and ship to the other,

provided that transport costs are low enough.

2. Forward linkage: Workers have an incentive to migrate toward large markets

because they face a lower equilibrium price index for industrial goods, since more

varieties are produced and they do not incur trade cost, which cause the real wage

to rise.

As Krugman (1991, p.486) puts it “(...) manufactures production will tend to concen-

trate where there is a large market, but the market will be large where manufactures

production is concentrated”. If agglomeration forces generated by forward and back-

ward linkages are strong enough to overcome the dispersion forces, the economy will

end up with a core-periphery structure in which all manufacturing is concentrated in
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one region. Whether or not agglomeration occurs depends on the underlying charac-

teristics of the economy. Small changes in key parameters can have large effects on the

production structure of the two regions due to circular causation.

The CP model has shed a new light on how labour mobility influences the agglomeration

of economic activity. Yet, the assumptions governing the migration dynamics seem

somewhat over-simplistic. First, it assumed that all workers have identical preferences

for commodities and are symmetric in their migration behaviour. Second, all workers

are homogeneous in their characteristics, in particular regarding their skill level. Third,

while migration across regions is allowed, workers remain bound to their sectors of

origin. In other words, the model rules out the impact of heterogeneous preferences and

workers’ characteristics on the geographic distribution of economic activity. In the next

subsection, we consider several contributions seeking to address these shortcomings.

2.2.2 Introducing heterogeneity in workers’ characteristics

Several studies have introduced heterogeneity in workers’ characteristics and migration

behaviour in a NEG framework. Murata (2003) and Tabuchi and Thisse (2002) relax

the assumption of homogeneous preferences among workers. Mori and Turrini (2005)

introduce heterogeneity in workers’ skill level, and Tabuchi et al. (2015) explicitly con-

siders differences in the migration costs they face. Finally, Puga (1999) proposes a

model in which workers are mobile not only across regions but also across sectors.

Heterogeneity in workers’ location preferences

The migration literature has shown that workers not only respond to wage differentials

but many other non-market local characteristics. Besides, it is very likely that they
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value differently local amenities depending on their motivation, culture or attachment to

a particular region, among other factors. Introducing heterogeneity weakens the forward

linkage depicted in figure 2.1, and consequently the circular causation mechanism of

agglomeration in the CP model. In fact, heterogeneous preferences imply that prices,

variety and wages matter less to workers, so that some of them may chose to remain

located in the periphery.

Murata (2003) introduced heterogeneity in workers’ migration behaviour by combin-

ing a simplified NEG model with a discrete choice model of migration. Contrary to

the traditional NEG setting depicted in table 2.1, this model considers only one sector

where each firms produces a horizontally differentiated variety under increasing returns

to scale using mobile workers as the only production factor. Heterogeneous preferences

are modelled by introducing a random variable representing idiosyncratic taste differ-

ences in residential location in the utility function. Therefore, the overall utility for an

individual k is given by

V k
r (λ) = Ũr(λ) + ξkr

Where Ũr(λ) is the indirect utility associated with differentiated goods common to the

residents in region r and ξkr is the random variable described above, which is assumed to

be i.i.d. across individuals and regions. Together, product diversity, taste heterogene-

ity, and transport costs determine the spatial distribution of economic activity. Workers

migrate whenever the interregional difference in indirect utility exceeds the individual

migration cost. In this setting, heterogeneity in preferences serves as a probabilistic

immobile factor and a dispersion force that weakens the circular causation of agglomer-

ation. Specifically, Murata considers the case of low heterogeneity in preferences where

workers tend to migrate to the region with a higher indirect utility from differentiated

31



goods. By contrast, in the presence of very heterogeneous preferences, workers tend to

choose their location with equal probability regardless of transport costs.

In a slightly different setting, Tabuchi and Thisse (2002) yield similar conclusions.

Contrary to Murata (2003), their model does not eliminate the traditional immobile

factor. They show that taste heterogeneity acts as a strong dispersion force which gives

rise to an equilibrium in which the manufacturing sector is only partially agglomerated.

Besides, they explicitly consider the case where regions exogenously differ in the level

of amenities they offer. This is consistent with the empirical evidence that natural

amenities, such as a coastal location and good climate, affect the spatial distribution

of industrial activities (Black and Henderson, 1999). Not surprisingly, workers tend to

migrate toward the region with the larger endowment in amenities.

Heterogeneity in workers’ characteristics

Workers are heterogeneous in the skills they own. By ruling out such characteristics,

the CP model fails to explain the observed tendency of spatial segmentation according

to skill levels. There is significant evidence that the existing distribution of skill affects

the migration decision of workers, as they self-select across locations according to their

skill level (Rauch, 1993). Mori and Turrini (2005) explicitly modelled heterogeneous

skill level and the resulting distribution of economic activity. Focusing exclusively on

pecuniary externalities1, they showed that skilled workers tend to cluster in the region

where aggregate skill and income is higher while unskilled ones remain in the other

region. From a methodological perspective, the model departs from the traditional CP

setting in two ways. First, manufactured products are both horizontally and vertically

differentiated, and producing higher quality products requires skilled workers. Homo-
1Alternative theoretical explanations for this phenomenon can be found in Black and Henderson

(1999) who focus on agglomeration forces generated by human capital externalities.
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geneous unskilled workers produce an intermediate input for a variety of final good,

while mobile skilled workers are used to improve the quality of the final varieties. Turn-

ing to the consumer, the CES utility function incorporates both love for variety and

preference for quality. Second, transportation is modelled somewhat differently since

a communication fixed cost is added to the iceberg cost so that the perceived quality

of products is lower if the goods are shipped to the other region. As in the CP model,

circular causation through forward and backward linkages pushes manufacturing firms

and workers to agglomerate within a single region. Yet, agglomeration also implies

tougher competition among co-located producers. Agents with low skills are not able

to endure competition at large agglomerations while those with higher skills locate

where they can fully exploit agglomeration economies, since competition matters less

to them.

Recently, Tabuchi et al. (2015) proposed an alternative view on the causes of agglomer-

ation. In their model, the emergence of a core-periphery structure results from the in-

terplay between labour productivity and migration cost. Specifically, the simple model

features a single sector, manufacturing, using a single factor, labour. The manufac-

turing sector produces horizontally differentiated varieties under increasing returns to

scale, which can be shipped to the other region under iceberg transport costs. Workers

are heterogeneous in their skill level and are imperfectly mobile, because they face a

cost when moving from one region to the other. Central to this model is the migra-

tion cost function. Each migrant bears a specific cost, which is incurred as long as

he stays away from his region of origin. The rationale for this is that migration is

not a one-time expense. Rather, migrants incur a permanent cost to adapt to their

new environment, either because the culture and the language are different, or because

of the distance separating them from their relatives. In this setting, agglomeration is

driven by technological innovations, which translate into greater labour productivity.
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Conversely, the dispersion force arises from imperfect mobility of workers. Together,

the interplay between labour productivity and migration costs determine the location

of firms and workers. When productivity increases sufficiently, workers migrate toward

the more productive region by decreasing order of efficiency, until the economic gains

stemming from migration are not sufficiently large to offset their own migration cost.

The model has several attractive features. First, it provides an alternative explanation

to the observed agglomeration of manufacturing as well as the spatial segmentation of

workers according to their skill level. Second, the modelling of migration cost prevent

complete agglomeration and both regions comprise skilled and unskilled workers. How-

ever, the source of increased labour productivity is unknown, as technological progress

is exogenous.

Inter-sectoral mobility of workers

The assumption that workers are bound to their sector of origin seems unrealistic. Puga

(1999) proposes a model in which workers are mobile not only across regions but also

across sectors. Specifically, he shows that when the supply of labour is sufficiently

elastic, the relocation of workers from agriculture to industry affects only slightly the

wage ratio between sectors. In this case, agglomeration occurs as more workers move

from agriculture to industry where wages are relatively higher. On the contrary, when

the supply of labour is inelastic, the relocation of workers reduces the wages paid

in industry relative to agriculture, which deter further agglomeration and promotes

dispersion.
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2.2.3 The need for an alternative approach

Although this first generation of NEG models constitutes an impressive theoretical ad-

vance in the study of agglomeration, it faces two major criticisms. First, these models

are static in nature. While they can be interpreted as describing the long run spatial

distribution of economic activity (Baldwin, 1999), it lacks the adjustment process to-

ward this equilibrium (Walz, 1996). Second, as Fujita and Mori (2005, p.21) put it,

“In most models of the NEG so far, agglomeration forces arise solely from pecuniary

externalities through linkage effects among consumers and industries, neglecting all

other possible sources of agglomeration economies such as knowledge externalities and

information spillovers”. Marshall (1920), writing about industrial clusters, argued that

firms could take advantage of (1) input-output relationships within industries, (2) the

availability of a pool of specialized skills, and (3) knowledge externalities arising from

other firms. This early NEG models focused only on agglomeration forces arising from

pecuniary externalities through linkage effects among consumers and firms ; that is en-

tries (1) and (2). While relevant, these explanations fall short of providing a reasonable

explanation for many other observed clustering of economic activity, where non-market

mechanisms play a central role (Audretsch and Feldman, 1996).

Endogenous growth models have established that sustained growth depends on con-

stant technological progress, which depends in turn on knowledge externalities arising

from other firms (Romer, 1990; Grossman and Helpman, 1991). To the extent that

these externalities have a limited spatial range, as suggested by the empirical literature

on knowledge externalities (Jaffe et al., 1993), there should be a positive relationship

between the agglomeration of economic activity, innovation and growth. In this set-

ting, innovative firms have an incentive to locate close to one another to benefit from

knowledge externalities arising from nearby firms, and reduce the cost of innovation.
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Conversely, higher economic growth promotes agglomeration for standard Marshallian

reasons (Baldwin and Forslid, 2000).

To sum up, NEG models explain why economic activity concentrates in certain region

but do not consider explicitly innovation. By contrast, endogenous growth models

emphasized the importance of knowledge externalities in the generation of innovation,

but omit the role played by geography in the process. These considerations point to

the importance of studying growth and the spatial distribution of economic activity in

an integrated framework. Appreciating these dimensions requires a model which relies

on knowledge externalities to make both location and growth endogenous. Building on

these considerations, more recent contributions have explored the relationship between

agglomeration of economic activity and R&D-driven economic growth. This strand of

literature, known as the new economic geography and growth (NEGG) is reviewed in

the next section.

2.3 Economic geography, innovation and growth

In order to formally investigate the spatial dimension of innovative activity, we turn

to the NEGG literature. Initiated by Martin and Ottaviano (1999), this generation

of models rely on two main building blocks: Krugman’s CP model introduced above

and endogenous growth models along the lines of Romer (1990) and Grossman and

Helpman (1991). After briefly introducing Romer’s modelling framework, we review

several NEGG contributions allowing for labour migration.
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2.3.1 Innovation and endogenous growth

Generally speaking, endogenous growth theorists model technological change as a result

of profit-motivated investments by private economic agents. They assume that a firm

investing in capital unintentionally contributes to the productivity of capital held by

other firms. This can be either physical capital (Arrow, 1962) or human capital (Lucas,

1988). Romer (1986) instead, assumed that knowledge externalities arising from private

research efforts increase the stock of publicly available knowledge. Provided that these

externalities are strong enough, they increase the returns to private human capital

accumulation which remains permanently above the discount rate, thereby ensuring

sustained growth.

The breakthrough to studying technological change was achieved by Romer (1990)

and subsequently, Grossman and Helpman (1991). Central to these models is novel

formulation of knowledge as a non-rival, partially excludable good :

1. Thanks to its non-rival characteristic, newly developed knowledge increases the

stock of publicly available knowledge, which is accessible for anyone engaged in

research by means of studying its patent documentation. These externalities

increase the productivity of the R&D sector as a whole and the rate at which new

varieties are developed, ensuring sustained economic growth.

2. At the same time, the introduction of partial excludability provides firms with

an incentive to engage in R&D and earn monopoly profits, since an intellectual

property system precludes other firms from using newly developed knowledge.

The introduction of incentives to invest in R&D requires modelling the economy

within the framework of imperfect competition (Dixit and Stiglitz, 1977).

In sum, knowledge enters the production function in two ways. First, newly developed
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technological knowledge is used in production by the firm which developed it. Second,

this knowledge increases the total stock of publicly available knowledge and benefits

other firms.

From a methodological perspective, Romer’s model consist of an economy with three

sectors: A perfectly competitive sector producing homogeneous final consumption goods

using differentiated inputs; an intermediate sector where each firm produces a differen-

tiated input for the final sector under monopolistic competition. In order to produce

a new variety, firms operating in this sector buy blueprints from the innovation sector.

The perfectly competitive R&D sector produces patents for new varieties using skilled

workers who benefit from technological spillovers. At the equilibrium, economic growth

as measured by the rate at which new varieties are created is positive and constant.

2.3.2 Economic geography, innovation and growth in the NEGG

More recent theoretical contributions have explored the relationship between agglom-

eration of economic activity and R&D-driven economic growth. These models combine

Krugman (1991) core-periphery model introduced above and endogenous growth models

along the lines of Romer (1990) and Grossman and Helpman (1991).

In line with traditional NEG models, they use circular causation mechanisms to explain

the spatial concentration of economic activities, so that growth and agglomeration of

economic activity are mutually self-reinforcing processes. Specifically, growth spurs

spatial agglomeration of economic activities as firms are drawn toward where innova-

tion take place. This in turn reduces cost of innovation, boosts growth and encour-

ages further agglomeration. From a methodological perspective, both fields share the

same basic framework of monopolistic competition, which reflects the importance of

economies of scale. Yet, these models depart from earlier NEG models in several ways.
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Besides having a different model structure, transport costs and labour mobility are no

longer the only factor that leads to centripetal or centrifugal outcomes. A significant

achievement is to work both pecuniary and knowledge externalities at the same time,

which modifies the traditional forward and backward linkages of the CP model. The

introduction of endogenous growth introduces a growth-linked cycle of circular causal-

ity. Given the focus on labour mobility, this section describes several models in which

workers are mobile across regions. Significant contributions in this field include Walz

(1996); Black and Henderson (1999); Baldwin and Forslid (2000) as well as Fujita and

Thisse (2002a, 2003).

Walz (1996) represents an early attempt to link growth and geography. He designed

a model of R&D-driven economic growth and location based on increasing returns to

scale at the local level and migration. He shows that fall in transport cost leads to

agglomeration and faster growth. However, the assumption of costless migration and

the focus on aggregate rather than firm-level increasing returns seems too restrictive

(Baldwin and Martin, 2004). In an urban context, Black and Henderson (1999) model

the relationship between urbanization and growth through local knowledge externalities.

Urbanization affects the growth of the economy, while growth affects the size of cities.

However, the assumption of a migration process that is determined by a city developer

seems unrealistic.

Baldwin and Forslid (2000) proposed an ambitious framework encompassing labour

mobility and knowledge externalities. In their model, growth and agglomeration are

mutually self-reinforcing processes, and the strength of agglomeration depends on the

amount of externalities across regions. In line with the traditional CP model, the

economy is composed of two symmetric regions and includes an agricultural and an

industrial sector, and two productions factors, agriculturists and workers.
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1. The perfectly competitive agricultural sector produces a homogeneous good under

constant return to scale using immobile farmers. This good can be traded freely

across regions.

2. The monopolistically competitive industrial sector where each firm produces a

horizontally differentiated variety under increasing returns to scale using mobile

workers. The introduction of a new industrial variety requires one unit of capital

available from the innovation sector at a fixed cost. Shipping the industrial good

involves iceberg transport costs.

3. Growth is introduced through a perfectly competitive innovation sector that pro-

duces knowledge capital using mobile workers. Following the endogenous growth

literature, the cost of producing capital falls as the amount of existing knowledge

increases in the economy.

Table 2.2: Basic setting of Baldwin and Forslid (2000)

Agriculture Manufacture Innovation

Se
ct

or
s

Agricultural firms (A) Manufacturing firms (M) Innovative firms (I)
Perfect competition Monopolistic competition Perfect competition
Constant returns to scale Increasing returns to scale Increasing returns to scale
Homogeneous good Differentiated varieties Knowledge capital (K)
Variable cost (L) Var. cost (L), fix. cost (K) Decreasing var. cost (L)
Costless transportation Iceberg transport costs

Fa
ct

or
s Peasants (P) Workers(L)

Immobile Mobile in response to real wage differentials
CES preference for variety CES preference for variety

Turning to consumers, both agriculturists and workers have the same inter-temporal

utility function, which depends on the consumption of the agricultural good and man-

ufacturing varieties that enter the function symmetrically. Forward-looking workers

migrate in response to market signals. That is, the difference in the present value of
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utility across regions, which depends on discounted real wage difference2.

Formally, the I-sector production function can be written as follows.

Qk =
LI

aI

Where LI is the I-sector employment and aI the capital unit factor requirement. Intro-

ducing technological externalities yields the following function for aI .

aI =
1

K−1 + λK∗
−1

Where K−1 represents the stock of capital lagged one period, and the superscript ∗

denotes the other region. Due to sector-specific learning effect, the cost of producing a

new variety falls with every new variety produced in both regions. The extent to which

externalities are local is captured by parameter λ.

Together, the interplay between labour mobility, knowledge externalities and trade costs

determine the distribution of economic activity. In addition to the usual backward and

forward linkages of the NEG, the introduction of endogenous growth gives rise to a

growth-linked mechanism of circular causality whose strength depends on the level

knowledge externalities across regions. From there, the authors examine the stability

of different configurations in the cases where externalities are either local or global.

• When externalities are purely local (λ = 0), the cost of innovation in a region

depends exclusively on the number of firms located in that region. The region

with a slight head start accumulates I-sector experience faster than the other,

this causes the relative capital stocks to diverge indefinitely. This difference in

the rate of capital accumulation implies a continual increase in the real wage
2The log-difference in the present values of real wages across regions.
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gaps due to preferences for variety, causing more workers to migrate toward that

region. Therefore, a core-periphery configuration emerges as all the innovation

takes place in the region with a higher number of firms.

• Conversely, if externalities are global (λ = 1), the location of firms has no im-

pact on the cost of innovation, which weakens the circular causation mechanism

described above and favours the symmetric equilibrium. In this sense, knowledge

spillovers are a stabilizing factor.

Growth, as measured by the rate at which new varieties are created, is highest when

the innovation sector is agglomerated and fully benefit from knowledge externalities.

When the innovation sector is fully dispersed, growth is at the lowest. Interestingly,

there is a tension between the destabilizing tendency of falling trade costs highlighted in

the core-periphery model, and the stabilizing tendency that arises when ideas become

easier to trade.

In a similar setting, Fujita and Thisse (2002a, 2003) designed a model where the in-

novation sector produces patents using skilled workers benefiting from knowledge ex-

ternalities, which are stronger within a region than across region. Consequently, the

agglomeration of skilled workers in a region leads to a higher productivity of skilled

workers in the R&D sector of that region.

Overall, to the extent that knowledge externalities are local, the existence of an R&D

sector appears to be a strong agglomeration force, which amplifies the circular causa-

tion mechanisms of agglomeration. Interestingly, the introduction of the R&D sector in

a dynamic setting yields another interesting feature. Agglomeration increases the rate

of innovation, which in turns constantly increases the number of firms operating in the

manufacturing sector, some of which relocate in the periphery. The more aggregated

the economy, the faster the growth in aggregate terms. However, agglomeration gener-
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ates spatial divergence in income levels, reflected by the spatial distribution of skilled

workers.

2.3.3 The need for deeper microeconomic foundations

The theoretical NEGG literature has improved our understanding of how knowledge

externalities determine both the productivity and location of innovative activity. Yet, to

a large extent, the strength of agglomeration and the resulting distribution of innovative

activity critically hinges on the geographical range of knowledge externalities, which in

turn depends on some exogenous parameter value. Fujita and Krugman (2004, p.162)

argue that “Although the concept of knowledge externalities plays a crucial role in

such models, its micro-foundations are rather weak, leaving plenty of room for further

development.”

This problem arises because the NEGG modelling framework do not account for the

actual mechanisms through which knowledge diffuses in space and across firms. By

contrast, the empirical geography of innovation literature has established that the mo-

bility of skilled individuals play an important role in the diffusion of knowledge. While

NEGG models recognize the importance of both skilled workers’ mobility and knowl-

edge externalities in determining the location of innovation, they neglect these workers’

role in the diffusion of knowledge. To the extent that knowledge diffuses according to

the mobility patterns of skilled individuals, this should lead to an increased relevance

of mobility choices on the spatial distribution of innovative activity.

A related issue, which also applies to earlier NEG models, is that the laws of motion

governing the dynamics of workers’ mobility appear very simplistic in light of the mi-

gration literature. Specifically, most models assume that workers move exclusively in

response to real wage differentials across regions. This contrasts sharply with the mi-
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gration literature, which emphasize the heterogeneity in both workers’ preference and

characteristics. Skilled mobility is a highly diverse phenomenon. Each category of

workers has different propensities and motivation to move, so that mobility patterns

differ considerably. Consequently, their impact on the diffusion of knowledge, and the

resulting distribution of innovative activity is likely to be different. As already shown

in section 2.2.2, introducing heterogeneity in workers’ migration behaviour alters the

cumulative mechanism of agglomeration.

2.4 Skilled mobility and the diffusion of knowledge

Building on these considerations we need to go beyond the pure externality perspective

to look at the mechanisms underlying the diffusion of knowledge and their determi-

nants. In order to address these points, we turn to empirical contributions within the

geography of innovation and the migration literatures. After highlighting the concep-

tual framework behind skilled mobility in the diffusion of knowledge, selected empirical

contributions are reviewed.

2.4.1 Going beyond the externality perspective

In explaining the limited geographical range of knowledge spillovers, modern approaches

to the geography of innovation emphasize the role played by interactions between firms

and workers in the innovation process. Central to this argument is the notion that a

substantial amount of knowledge conductive to innovation turns out to be tacit (How-

ells, 2002) and embodied in individuals (Lucas, 1988). While codified knowledge can

be transmitted across distance by means of communication technologies, the transfer

of tacit knowledge relies on effective interpersonal interactions (Storper and Venables,
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2004). In essence, the transmission of complex knowledge is not a routine activity

that can be performed through standardized procedures. R&D activity involves long

periods of exchange and discussion, during which actors develop a mutual way of com-

municating through some common codes. This in turn should improve co-ordination,

productivity and mitigate the incentives problem in the collaboration between agents.

Moreover, direct interactions are often at the origin of new ideas, combining insights

from each party that are crucial for innovations. Such exchanges of knowledge is truly

effective in the form of frequent and direct interactions (Glaeser et al., 1992).

The empirical evidence is fairly conclusive3. Using US patent (Jaffe, 1989) or inno-

vation counts (Acs et al., 1992), studies found that industry patenting at the state or

metropolitan levels (Anselin et al., 1997) was influenced by university research spending

in related technological fields. Audretsch and Feldman (1996) focused on the propen-

sity of innovative activity to cluster spatially as a way to assess the spatial dimension

of knowledge externalities. Their results suggest that in the US, R&D intensive in-

dustries are found to be relatively more concentrated. In an influential contribution,

Jaffe et al. (1993) reconstructed the actual paths of knowledge diffusion using patent

citations. They showed that innovative firms are more likely to quote research from a

university that conducts relevant research located in the same US state and metropoli-

tan area, than from similar universities located elsewhere. Overall the evidence have

been widely interpreted as a proof of the existence of local knowledge externalities. At

the same time, there is evidence that these externalities are not systematic, and their

geographical is found to differ across countries and industries.

An important point is made by Breschi and Lissoni (2001). In their critical review of

this literature, they argued that knowledge may flow locally, but not necessarily as an

externality. Whether or not an externality occurs depend on the type of mechanisms
3See Audretsch and Feldman (2004) for a more comprehensive review of this literature.
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through which knowledge is transferred. In fact, agents may get in touch through a

variety of mechanisms, some of which favour the gratuitous exchange of knowledge,

while others take the form of market-mediated transactions. These developments point

to the importance of going beyond the pure externality perspective to explore the

mechanisms through which transferred among agents located in the same geographic

area.

2.4.2 Skilled mobility and networks in the diffusion of knowl-

edge

The recent literature has highlighted a variety of mechanisms through which knowledge

is transmitted between individuals and firms. Among the many mechanisms that exist,

the mobility of skilled workers is regarded as particularly important. While there is

significant body of evidence highlighting a positive correlation between the mobility of

skilled individuals and innovative performance, there is no clear consensus concerning

the specific mechanism at play. Specifically, the literature has documented two main

mechanisms.

1. A first strand of literature argue that knowledge is transferred by the labour

market (Almeida and Kogut, 1999). The rationale is that when skilled workers

move away from the place where they originally worked, they take their embodied

knowledge with them and promote new combination of knowledge. Consequently,

firms can gain access to knowledge through the direct recruitment of key workers.

Besides, firms are capable of building an absorptive capacity, to identify and use

productively external sources of knowledge (Massard and Mehier, 2009). In this

perspective, the limited geographical range of knowledge flows is the result of

workers’ lack of mobility (Breschi and Lissoni, 2009).
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2. A second strand of literature argue that this effect depends on mobile worker’s ca-

pability to create networks relations (Singh, 2005). The tacit nature of knowledge

relevant to innovative activities makes its transfer and diffusion strongly relying

upon socio-professional relationships, or networks. In this case, knowledge flows

locally because proximity facilitates the development of social relationships, by

exposing agents to relevant social events and reducing the costs of forming and

sustaining such ties (Breschi and Lissoni, 2005).

These two mechanisms are closely related. Skilled workers on the move may influence

the structure of networks by bridging or closing existing networks. Besides, mobility

also gives mobile researchers a strategic position within the network. Agrawal et al.

(2006) provides empirical evidence that even though co-location facilitates the devel-

opment of social relationships, and that network ties tend to persist after formerly

collocated individuals are separated. Conversely, social networks are likely to drive mo-

bility decisions for at least two reasons. First, information about the destination may

not be easily available, and networks spanned by friends and colleagues are important

informal channels through which information is transmitted. A worker embedded in a

dense network of relationships is more likely to be informed of vacancies and to know

more about the job and the receiving organisation (Jackson, 2011). Second, Millard

(2005) examined the location decisions of Italian researchers in the UK and point to

the importance of prestige and networks in determining location decisions. This is in

line with Laudel (2005), who highlighted the role of the scientific elite in recruiting the

next generation of scientists.

A large body of empirical evidence has investigated skilled workers’ mobility patterns

and collaboration choices and their impact on the diffusion of knowledge. Given the

diversity of the modelling strategies and the data used, contributions are classified by
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type of worker.

Table 2.3: Empirical contributions classified by categories of workers

Categories Contributions

Inventors Agrawal et al. (2006)
Almeida and Kogut (1999)
Breschi and Catalini (2010)
Breschi and Lissoni (2005, 2009)
Lobo and Strumsky (2008)
Miguelez and Moreno (2013a,b)
Singh (2005)

Migrants inventors Hunt (2011)
Hunt and Gauthier-Loiselle (2010)
Kerr (2008)
Kerr and Lincoln (2010)
Niebuhr (2010)

Outstanding researchers Herrera et al. (2010)
Schiller and Revilla Diez (2012)
Trippl (2013)
Zucker and Darby (2014)

Graduates, Students Chellaraj et al. (2008)
Faggian and McCann (2006, 2009)
Stuen et al. (2012)

Skilled workers Bosetti et al. (2015)
Gagliardi (2015)

The first strand of literature tracks the mobility patterns individual inventors across

firms and space using patent data. In their pioneering study, Almeida and Kogut (1999)

replicated Jaffe et al.’s (1993) exercise for every US state. Using a sample highly cited

patents in the semi-conductor industry, they found evidence of local knowledge flows
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only in the regions where the intra-regional mobility of inventors across companies

is high. In a similar setting, Singh (2005) investigates whether co-invention networks

explain the subsequent patterns of patent citations, both at the regional and at the firm

level. They apply a using choice-based sampling methods to USPTO patent citations

and find that the probability to observe a citation link between two patents is positively

related on the existence of a network tie between inventors, either direct or indirect.

Agrawal et al. (2006) looked at the mobility patterns of US inventors across different

Metropolitan Statistical Areas (MSA). Their results suggest that inventors who move

in space are more likely to be cited by their former colleagues. This suggests that

social ties facilitate knowledge diffusion, even after formerly co-located inventors are

separated.

Looking at migrant inventors in particular, Kerr and Lincoln (2010) used an exogenous

surge in the immigration of scientists and engineers in the US caused by the 1990

Immigration Act. They found a strong correlation between skilled workers’ inflow and

patenting activity at the level of MSA, especially in the case of Chinese and Indian

immigrants. These results are consistent with Hunt and Gauthier-Loiselle (2010), who

showed that immigrant college graduates files a least twice more patents than their

US counterpart. However, this difference may be explained by the disproportionate

share of skilled immigrants engaged in science and engineering (Hunt, 2011). Related

to this, Niebuhr (2010) used a knowledge production function approach to investigate

the importance of cultural diversity for innovative outcomes in German regions. Their

results suggest that workers from diverse cultural backgrounds enhance performance

of regional R&D sectors. Diversity could provide a wider set of perspective at the

origin of novel ideas. Kerr (2008) investigated the importance of ethnic networks in

the transmission of knowledge by estimating elasticities for technology transfer across

multiple ethnicities and manufacturing industries. He found evidence of knowledge
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transfer following ethnic networks between US migrant and their home countries.

In a series of articles, Zucker and her colleagues emphasized the role of outstanding

academic scientists in innovation. This category of workers is considered as particu-

larly relevant because mobility is regarded as a normal phenomenon in the academic

world. Zucker et al. (1998) introduced the concept of stars in biotechnology based upon

productivity measures. They showed that the direct involvement of these scientists sig-

nificantly determined which firms were ultimately major winners in biotechnology. In

their 2006 paper, Zucker and Darby tracked the career paths of highly-publishing aca-

demic scientists in the field of science and technology across 25 countries. Their results

suggest that their presence played a key role in the location of firms in this sector.

Schiller and Revilla Diez (2012) investigated knowledge transfer activities performed

by highly cited scientists in Germany and provided evidence for rather strong intrare-

gional knowledge links between these star scientists and local actors. In a similar vein,

Trippl (2013) found evidence of substantial knowledge transfer following the movements

of star scientists. This is due to their higher propensity to move, and their ability to

create knowledge networks between distant areas.

Looking at the migration behaviour of UK graduates, Faggian and McCann (2009)

found that graduate migration patterns across regions significantly affect regional in-

novative performance4, as measured by patent applications. Interestingly, their results

point to the existence of a cumulative process operating at the regional level. Inflows

of recent graduates boosts regional innovative performance, which in turn determines

graduates’ location decisions. This process feeds on itself so that more innovative re-

gions develop at the expense of others, which gives rise to a core-periphery pattern.
4The results are significant for both England and Wales, but found insignificant for Scotland. The

authors attribute this difference to the fact that Scottish graduates tend to be less mobile than their
British and Welsh counterparts.
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Gagliardi (2015) looks at the broader category of skilled individuals, as measured by

educational attainment. She found that the share of skilled workers within British

Travel To Work Areas (TTWA) significantly affects their innovative performance. In-

terestingly, she does not find any significant additional effect associated with the urban

dimension5.

Overall, the evidence points to the relevance of skilled workers’ mobility patterns and

collaboration networks in the diffusion of knowledge. However, mobility is a diverse

phenomenon, and appreciating the effect of workers’ mobility requires an understanding

of who is moving, the quality of their skills, as well as the nature of their mobility.

In particular, the latter may include the direction of the flows, their frequency, their

duration, and the propensity to return (Ackers, 2005). Therefore, to assess the impact of

skilled mobility on innovation, we must investigate what drives their location decisions.

2.5 The determinants of skilled mobility

While there is large consensus on the importance of skilled workers on the diffusion

of knowledge, far less attention has been devoted to the factors driving their location

decisions. This is an important issue because heterogeneity in workers’ characteristics

(Mori and Turrini, 2005; Tabuchi et al., 2015) and location preferences (Tabuchi and

Thisse, 2002; Murata, 2003) alters the circular causation mechanism of agglomeration.

This section reviews recent empirical evidence on the determinants of labour mobility,

with a particular focus on skilled workers. Due to the diversity in the modelling strategy

and the data used, the table below classifies the existing empirical evidence by type of

worker.
5She explain these results by the fact that British cities traditionally concentrate service industries

as well as other less innovative manufacturing firms; and that TTWAs may be too narrow to reflect
actual metropolitan areas.
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Table 2.4: Empirical contributions classified by categories of workers

Category Contributions

Inventors Crespi et al. (2007)
Hoisl (2007)
Lenzi (2009)
Nakajima et al. (2010)
Miguelez and Moreno (2014)

Scientists & Engineers Dahl and Sorenson (2010)
Scott (2010)

High technology workers Chen and Rosenthal (2008)
Dorfman et al. (2011)
Hansen and Niedomysl (2009)

Students & Graduates Brown and Scott (2012)
Faggian and McCann (2006, 2009)
Gottlieb and Joseph (2006)
Nifo and Vecchione (2014)

Skilled migrants Facchini and Lodigiani (2014)

Economists traditionally consider mobility as a rational decision in which an individ-

ual compares the expected utility of staying with the expected utility obtained at an

alternative location. The individual will decide to move whenever the expected util-

ity differential exceeds the cost of moving. The literature has developed around two

alternative views of what influence the level of utility.

The human capital approach views the decision to move as an investment to maximize

lifetime earnings, net of migration costs. This approach was adopted for instance in

Krugman (1991), in which mobility is a response to spatial heterogeneity in the net

returns to labour. Empirically, this means that workers are attracted toward locations

offering better employment opportunities, more attractive salaries and other pecuniary
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incentives. In an urban context, Scott (2010) investigated what drives inflows of migrant

US engineers into different MSA for 13 different technological categories between 1994

to 1999. Using a fractional Logit model, he found that local employment opportunities

have a major impact on the destination choices of engineers, far above amenities or even

wages. These results are in line with Brown and Scott (2012), who analysed the location

choices of university degree holders by applying a multinomial Logit model to Canadian

2001 census data. They showed that skilled individuals are drawn to thick labour

markets to match their specialized skills with employers’ needs. Therefore, degree

holders are more likely to move to locations that are specialized in their industry. From

macroeconomic perspective, Miguelez and Moreno (2014) focused on the geographical

mobility of inventors across European regions. By applying a gravity model to EPO

data from 1975 to 2005, they found that job opportunities and to a lesser extent,

amenities are important determinants of inventors’ mobility. Besides, their results show

that mobility occurs primarily between technologically related regions. Finally, Faggian

and McCann (2006, 2009) studied the mobility of UK graduates entering into first

employment using a three-stage least squares model on 2000 survey data. The analysis

suggests that mobility flows are mainly directed by differences in nominal wages, so

that regions offering a higher nominal wage are net absorber of human capital flows

and regions with lower nominal wages net losers of human capital. More interestingly,

a centre-periphery pattern seems to emerge which reflects the rank order of the region

within the national urban hierarchy.

While relevant, the assumption that workers respond exclusively to market mechanisms

is restrictive, and falls short of providing a reasonable explanation for mobility between

locations with similar levels of economic development. An alternative approach views

mobility as a consumption choice. Individuals may choose to live where the provi-

sion of locally-produced goods and services, or amenities, satisfy their preferences. In
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this perspective, mobility would be a response to spatial heterogeneity in the provi-

sion of amenities. These two views are not incompatible in the sense that potential

movers compare utility differentials across alternative locations, and these utilities are

a function of both economic and non-economic factors. This approach was adopted by

Tabuchi and Thisse (2002) and Murata (2003) among others. Early works focused on

natural advantages such as pleasant landscapes, proximity to the coast or a temperate

climate. Building on this initial intuition, other economists have considered the im-

portance of human-produced amenities including social, cultural (Glaeser et al., 2001)

and skill-dependent amenities which are particularly important in an urban context.

For instance, Miguelez and Moreno (2014) showed that mild winter temperatures and

proximity to the coast significantly affect inventors’ location decisions. Shapiro (2006)

argued that the presence of educated population in the city increases the quality of life

so that the effect of human capital goes beyond the productivity. However, recent stud-

ies have established that the relative importance of amenities have been exaggerated

(Storper and Scott, 2009; Hansen and Niedomysl, 2009), and that labour mobility is

driven primarily by differences in labour market opportunities. For instance, Dorfman

et al. (2011) find that natural amenities are not a major factor of high-tech workers’

location decisions and metropolitan areas of the US.

Another variable entering workers’ location decision is the cost of moving. In most

of the NEG literature surveyed above, a considerable attention have been paid to the

cost of moving goods. However, the cost of moving people is not explicitly taken into

account, with the exception of Tabuchi et al. (2015). Empirically, economists have of-

ten relied on geographical distance to act as a proxy for pecuniary and non-pecuniary

cost of moving. More recent studies refined the analysis by documenting other, more

meaningful forms of distance. For instance, Miguelez and Moreno (2014) suggested

that differences in cultures, languages and institutions translate into greater adapta-
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tion costs, and inventors are more likely to move to regions sharing the same cultural

background and language. Nifo and Vecchione (2014) studied the importance of insti-

tutions on the mobility decisions. Using a a Probit model on a sample of 47300 Italian

graduates, they found that institutional quality is a major determinant of mobility.

The above reasoning overlooks the fact that information about destination may not be

easily available. Knowing about labour market conditions, or looking for a job in poten-

tial destinations may involve significant search and information costs. Social networks,

spanned by friends and colleagues are important informal channels through which in-

formation are transmitted. Dahl and Sorenson (2010) investigated the professional

mobility of Danish scientists and engineers between 2004 and 2006 using a Mixed Logit

model. Their results suggest that differences in wages, but more importantly, distance

to family and friends, explain mobility patterns.

Overall, the evidence suggests that workers move in response to labour market signals,

as well as spatial disparities in the provision of amenities. Besides, geographical distance

and other forms of separation, such as cultural or institutional distance, increase the

cost of moving. Going into more details, several studies have considered the importance

of personal characteristics such as life-cycle (Crespi et al., 2007) and productivity (Hoisl,

2007) on skilled workers’ mobility decisions. This suggests that mobility is diverse and

each category of workers has different propensities and motivations to move, so that

mobility patterns differ considerably. This is an important issue because heterogeneity

in workers’ characteristics and location preferences alters the cumulative mechanism of

agglomeration.
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2.6 Conclusion

This chapter seeks to address the question of how skilled mobility shapes the spatial

distribution of innovative activity. To answer this question, it draws on three distinct

streams of literatures including the new economic geography, endogenous growth, and

the empirical geography of innovation literature.

The new economic geography (Krugman, 1991) provides an insightful theoretical frame-

work to explain the uneven distribution of economic activity. Interesting extensions

to the basic model have shown that heterogeneity in workers’ characteristics (Mori

and Turrini, 2005; Tabuchi et al., 2015) and location preferences (Tabuchi and Thisse,

2002; Murata, 2003) alter the circular causation mechanism of agglomeration. How-

ever, these models fails to provide a reasonable explanation for the spatial clustering of

innovative firms, because they do not consider knowledge externalities as an agglom-

eration force (Fujita and Mori, 2005). To the extent that that sustained innovation

depends on knowledge externalities arising from other firms (Romer, 1990), and that

knowledge flows have a limited spatial dimension (Jaffe et al., 1993), there is a positive

association between knowledge, agglomeration and growth. Recent theoretical work

has explored this association by introducing endogenous growth in a NEG framework,

while allowing for labour mobility (Baldwin and Forslid, 2000). These studies estab-

lished that knowledge externalities and their geographical range impact the location

of innovation. However, while recognizing the importance of both skilled mobility and

knowledge externalities for the location of innovation, the microeconomic foundation

of these models remain weak (Fujita and Krugman, 2004), partly because they do not

consider these workers’ role in the diffusion of knowledge. The empirical geography

of innovation literature has established that the mobility of skilled individuals both in
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space and across organizations constitutes an important mechanism of embodied knowl-

edge transfer. Skilled workers on the move can transfer embodied knowledge from their

initial workplace to the new one (Almeida and Kogut, 1999), and conversely channel

back the knowledge they acquired thanks to the link they have kept with their previous

environment (Agrawal et al., 2006). Besides, firms hiring skilled workers are not only

more likely to innovate, they are also able to build an absorptive capacity in order to

capture and use productively external knowledge (Massard and Mehier, 2009). In this

perspective, knowledge flows locally either because mobility takes place across short dis-

tances, or because the social context in which workers are embedded is equally bound

in space (Breschi and Lissoni, 2009). While there is large consensus on the importance

of skilled workers on the diffusion of knowledge, far less attention has been devoted to

the factors driving their location decisions. There is evidence that mobile workers do

not exclusively respond to labour market signals, but are also sensitive to the provision

of amenities (Miguelez and Moreno, 2014). Besides, the cost of moving is affected by

various forms of distance including geographical, cultural and institutional forms of

separation. This is an important issue because heterogeneity in workers’ characteristics

(Mori and Turrini, 2005) and location preferences (Tabuchi and Thisse, 2002) weakens

the circular causation mechanism of agglomeration.

These findings have implications for the convergence debate. Depending on labour mo-

bility and the range of knowledge externalities, a core-periphery pattern can emerge as

firms and skilled workers cluster within the same location. As this location becomes

more attractive, further concentration of firms and factors occurs, pushing its capacity

to innovate and grow at the expense of peripheral areas. By contrast, when knowledge

externalities have a wide spatial range, location decisions have no effect on innova-

tion, which weakens the circular causation mechanism described above and favours the

symmetric equilibrium. In this setting, the aggregate impact of skilled mobility is am-
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biguous because it favours the core-periphery equilibrium, while its role in the diffusion

of knowledge acts as a dispersion force. The theoretical literature is unclear about which

effect prevails, because it does not account for the mechanisms through which knowl-

edge diffuses in space. In light of the geography of innovation literature, the impact of

skilled workers on innovation critically depends on their mobility patterns. For instance,

in the presence of long term mobility, the agglomeration force should be stronger than

what theory predicts. By contrast, the increasing development of short-term, circular

patterns of mobility should give rise to dispersion. The migration literature makes it

clear that mobility is diverse. Each category of workers has different propensities and

motivation to move, so that mobility patterns differ considerably. Consequently, their

impact on the diffusion of knowledge, and the resulting distribution of innovative ac-

tivity is likely to be different. Building on these considerations, further work should

investigate the patterns and determinants of skilled workers’ mobility.
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3 Patterns and determinants of skilled

mobility across urban areas

Abstract
Skilled workers drive economic development of cities through their effect on productiv-
ity and innovation. However, they are mobile and tend to cluster within a few urban
areas. Therefore, an important question is what factors shape these mobility flows, and
influence the geography of innovative activity. This chapter investigates the patterns
and determinants of inventors’ mobility across European urban areas. First, a descrip-
tive analysis documents the patterns of inventors’ mobility. Second, a gravity model is
used to analyse how labour markets, networks and amenities influence the flows of in-
ventors. From a methodological perspective, the spatial filtering variant of the Poisson
gravity model accommodates the nature of the data, while controlling for multilateral
resistance and spatial dependence in mobility flows. The descriptive analysis suggests
that inventors’ mobility occurs primarily between relatively large and collocated urban
areas, partly because of the high level of circular mobility. The econometric analysis
reveals that social networks and to a lesser extent employment opportunities and urban
amenities, significantly influence mobility flows.
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3.1 Introduction

Models that study growth and geography in an integrated framework recognize the

importance of workers’ mobility and knowledge externalities in determining the pro-

ductivity and the location of innovation (Baldwin and Forslid, 2000). At the same

time, the empirical geography of innovation literature insists on the importance of

skilled mobility for the diffusion of knowledge (Almeida and Kogut, 1999). This leads

to an increased relevance of mobility choices for the distribution of innovation. How-

ever, extensions to the basic core-periphery model show that heterogeneity in workers’

characteristics (Mori and Turrini, 2005) and location preferences (Murata, 2003) alter

the cumulative mechanism of agglomeration. Therefore, an important question is what

factors shape these mobility flows, and influence the geography of innovative activity.

This study focuses on inventors, which represent a specific category of skilled workers.

Arguably, inventors constitute a representative sample, because they are directly in-

volved in the production of new knowledge and therefore, have a large impact on the

innovation.

Economists traditionally consider mobility as a rational process in which workers com-

pare expected utilities at origin and destination. In this setting, a worker will decide

to move whenever the expected utility differential exceeds the cost of moving. The

literature has developed around two alternative views of what influences the level of

utility. The traditional approach considers that mobility is driven primarily by the

labour market. This may include employment opportunities, financial incentives along

with attractive working conditions. In addition, information about destination may not

be easily available, and professional networks help matching workers to positions by re-

ducing information asymmetries (Jackson, 2011). However, purely economic factors
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cannot explain mobility between locations with similar levels of economic development.

An alternative approach views mobility as a consumption choice in which workers move

in response to spatial disparities in the provision of amenities. Early works focused on

natural advantages such as climate (Graves, 1980), but more recent contributions con-

sidered other human-produced amenities including social, cultural (Glaeser and Mare,

2001) and skill-dependent amenities which are particularly important in an urban con-

text (Shapiro, 2006). Existing evidence on the determinants of inventors’ mobility in

Europe adopt a fairly microeconomic perspective. Lenzi (2009) explores the mobility

patterns for a group of Italian inventors in the pharmaceutical sector using survey and

patent data. Crespi et al. (2007) analyses the mobility of inventors from academia

to private firms for six European countries. Closer to this work, Miguelez and Moreno

(2014) adopted a macroeconomic approach to investigate the determinants of inventors’

mobility across European regions.

This chapter contributes to the empirical literature in four ways. First, the analysis

is carried out at the level of urban areas, a meaningful unit of analysis with regard to

regions commonly used in the literature. Second, it takes advantage of a large-scale

dataset to shed light on the patterns of inventors’ mobility across European urban ar-

eas, and their spatial dimension. To my knowledge, such a descriptive analysis does

not exist for Europe, especially at the level or urban areas. Building on these results, a

gravity model is used to analyse formally how job opportunities, professional networks

and amenities influence the flows of inventors between urban areas. Interestingly, while

both skilled mobility and networks influence the diffusion of knowledge, they have been

investigated separately. Studying the interactions between the two is interesting be-

cause mobility influences the structure of networks by creating new or bridging existing

networks (Miguelez, 2013). Conversely, social relationships help matching workers to

positions by reducing information asymmetries, so that networks influence mobility de-
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cisions. Fourth, spatial dependence in mobility flows is explicitly taken into account

using spatial econometrics techniques. Accounting for the dependence structure in

mobility flows is an important issue (Bertoli and Moraga, 2013) and spatial filtering

provides a natural tool to deal with such interdependencies (Patuelli et al., 2015).

Despite the commonly held belief that skilled workers are highly mobile in space, the

analysis suggests that mobility remains a rare event. Among multi-patenting inventors,

only 9.67% moved from one city to another between 1975 and 2008. Mobility is also

limited in space; inventors who move travel between relatively large and co-located ur-

ban areas, and 90% of these moves occur within the same country. These results can be

partly explained by the high level of circular and intra-firm mobility. Finally, the anal-

ysis highlight significant heterogeneity among countries, with about 80% of all moves

taking place either in Germany, France or the UK. Likewise, the propensity to move

vary importantly across technological sectors. Turning to the determinants of inventors’

mobility, five results are worth noting. First, inventors are drawn toward cities offering

numerous employment opportunities along with attractive working conditions. This

finding is in line with the scarce existing evidence, provided by Miguelez and Moreno

(2014) at the level of European regions, yet the explicit modelling of spatial autocorre-

lation and the analysis at the urban scale provide additional robustness to this finding.

Second, the decision to move is mediated by network ties, which reduce information

asymmetries and improve matching (Jackson, 2011). Besides, the definition of networks

should not be restricted to direct collaborations. The centrality of cities the network of

inventors significantly affect mobility flows. Third, workers are attracted to cities with

a pleasant environment, providing green spaces and cultural amenities. More generally,

while urban amenities have received significant attention in the literature, empirical

progress have been hampered by the lack of data. In addressing this issue, this chapter

uses data mining techniques to collect specific data on the provision of urban amenities
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for all urban areas in Europe. Fourth, contrary to expectations, geographical distance

has a limited role in deterring mobility. This is because geographical distance acts

as a proxy for other, more meaningful forms of distance. In particular, mobility oc-

curs primarily between cities sharing the same technological specialisation, cultural and

institutional backgrounds. Fifth, from a methodological perspective, spatial autocorre-

lation in mobility flows should be explicitly controlled for when estimating the gravity

model in order to obtain unbiased parameter estimates.

These results have implications for the geography of innovation. While both mobility

and networks have been shown to influence the diffusion of knowledge, they have often

been investigated separately. Besides, the results suggest that the diffusion of knowl-

edge may be limited for several reasons. Movers represent only a fraction of inventors,

and those who move travel relatively short distances, generally within the same coun-

try. This result is magnified by the fact that a large portion of mobility occurs within

firms, and does not necessarily imply a transfer of knowledge. Besides, mobility oc-

curs primarily between technologically related cities, so that the transferred knowledge

may be redundant, and have a limited economic impact. A more promising finding is

that mobility may be encouraged, in particular through the development of research

collaborations involving distant research communities.

The remainder of this chapter is structured as follows. Section 3.2 briefly reviews the

related literature. Section 3.3 describes the data, with a focus on the definition of

urban areas and the measurement of mobility. Section 3.4 documents the patterns of

inventors’ mobility across European urban areas and their spatial dimension. Turning

to the determinants of inventors’ mobility, section 3.5 describes the model and discusses

the estimation results. Section 3.6 concludes.
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3.2 Background

Economists traditionally consider mobility as a rational process in which workers com-

pare expected utilities at origin and destination. In this setting, a worker will decide

to move whenever the expected utility differential exceeds the cost of moving. The

literature has established that utility in a given location depends on employment op-

portunities as well as the provision of amenities, and the cost of moving is expected to

rise with distance, which acts as a proxy for pecuniary and non-pecuniary mobility costs.

Specifically, the traditional approach views mobility as a response to spatial disparities

in employment opportunities. In this setting, workers would depart from cities in which

employment and wages are low toward cities where labour market conditions are more

attractive. This is particularly important for talented workers because they are rela-

tively more mobile and willing to find a position that maximise the return to their skills.

In addition, Krugman (1991) showed that the concentration of skilled workers in a re-

gion creates a market pooling effect, which draws additional firms and workers toward

this location and expands employment opportunities in a circular-causation mechanism.

In the same spirit, Berry and Glaeser (2005) argued that skilled cities host more en-

trepreneurs, which may employ additional skilled workers. However, purely economic

factors cannot explain entirely mobility decisions. An alternative approach views mo-

bility as a response to disparities in the provision of amenities. Early works focused on

natural advantages such as pleasant landscapes, proximity to the coast or a temperate

climate (Graves, 1980). Building on this intuition, other economists have considered

other human-produced amenities including social, cultural (Glaeser and Mare, 2001)

and skill-dependent amenities which appear to be particularly important in an urban

context (Shapiro, 2006). For instance, in his work on the creative class, Florida (2002)

claimed that talented individuals value open-minded environments offering a high de-
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gree of tolerance and diversity. These two views are not incompatible in the sense that

potential movers compare utility differentials across different alternative locations, and

these utilities are a function of both economic and non-economic factors.

From an empirical perspective, Miguelez and Moreno (2014) studied the mobility of

inventors across European regions. Using EPO data from 1975 to 2005, they found

that job opportunities and to a lesser extent, amenities are important determinants of

inventors’ mobility. Besides, they showed that geographical distance is a significant pre-

dictor of inventors’ mobility patterns. Finally, other meaningful forms of distances such

as social ties, institutional frameworks and cultural similarities are shown to play a role.

Looking at geographical distance in particular, Breschi and Lenzi (2010) documented

the mobility patterns of inventors across US cities between 1978 and 2004. Their result

highlight the existence of two distinctive spatial patterns, whereby inventors move both

at short and long distances, suggesting that the cost of mobility decreases as inventors

move further away. In an urban context, Scott (2010) investigated what drives inflows of

migrant engineers into different MSA for 13 different technological categories. He found

that local employment opportunities have a major impact on the destination choices

of these skilled individuals, far above amenities or even wages. This is consistent with

Dorfman et al. (2011) found that natural amenities are not a major factor of high-tech

workers’ location decisions in US metropolitan areas. Considering other determinants

of mobility, Nifo and Vecchione (2014) looked at the importance of institutions in driv-

ing location decisions. Using a sample of 47300 Italian graduates, they found that

institutional quality significantly affects mobility. Faggian and McCann (2006, 2009)

studied the migration of UK graduates entering into first employment. Their analysis

suggests that more educated individuals are more likely to move. Besides, migration

flows are mainly directed by differences in nominal wages. They showed that regions

offering higher wages are net absorber of human capital, and develop at the expense of
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regions in which salaries are lower. Interestingly, a centre-periphery pattern seems to

emerge, which reflects the rank order of regions within the national urban hierarchy.

The above reasoning overlooks the fact that information about destination may not be

easily available. Knowing about labour market conditions, or looking for a job in poten-

tial destinations may involve significant search and information costs. Social networks,

spanned by friends and colleagues are important informal channels through which in-

formation are transmitted. The theoretical literature on social networks surveyed in

Jackson (2011) has identified two main channels through which networks relationships

can affect labour market outcomes. If a worker is embedded in a dense network, he

is more likely to be informed of vacancies and to know more about the job and the

receiving organisation. Such networks are particularly important for cross-country mo-

bility, since workers may lack specific skills such as language fluency or knowledge of

the institutions. From the firms’ perspective, professional networks may be used to

improve screening and signalling of unobserved workers’ ability, allowing them to select

the most able workers. In sum, recruiting through professional networks may reduce

information asymmetries and improve matching. Nakajima et al. (2010) provided em-

pirical evidence on the importance of networks for matching inventors to firms. Using

US patent data from 1975 to 1997, they showed that networked inventors are more

productive and have longer tenure than non-networked inventors. While we cannot

observe whether inventors do use their networks when looking for a job, we can expect

higher levels of mobility between cities whose inventors have collaborated frequently in

the past. Krabel and Flother (2014) studied the mobility of skilled German graduates

entering the labour market. They found that professional network ties directly impact

job search success and labour mobility. Interestingly, they argued that graduates are

less likely to move when living in a metropolitan area where the share of highly qualified

employees is relatively high.
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Additional evidence on the determinants of inventors’ mobility adopt a more microeco-

nomic approach. Crespi et al. (2007) studied the mobility of inventors from academia

to the private sector. Using a sample of academic inventors who were granted a EPO

patent between 1993 and 1997, they reported that individual life cycle signifiantly

affects mobility. Besides, mobility patterns are found to differ greatly across technolog-

ical sectors and countries, which points to the importance of academic labour market

regulations and institutions. Hoisl (2007) studied the interrelation between inventors’

productivity and inventors’ mobility using a random sample of 2697 inventors residing

in Germany between 1993 and 1997. Their results highlight the existence of a simulta-

neous relationship. Movers are on average more productive than non-moving inventors,

but more productive inventors are also less likely to move. In a similar setting, Lenzi

(2009) investigated mobility decisions of 106 Italian inventors in the pharmaceutical

sector using survey data. The analysis suggests that inventors’ personal characteris-

tics, inventive productivity, and geographical location matter for mobility choices. The

descriptive part of this study is closest to Breschi and Lenzi (2010), who documented

the mobility patterns of inventors across US Core Based Statistical Areas (CBSA) be-

tween 1978 to 2004. To my knowledge, no comparable evidence is available for Europe,

especially at the level of cities. This would be interesting because mobility patterns in

Europe are expected to be quite different from the United States for several reasons.

First, it is well-known the Europe exhibit lower levels of mobility than the United States,

both regarding the degree and the spatial extent of mobility. However, differences do

not only include mobility patterns. The empirical evidence from Europe suggests that

mobility is driven mainly by labour market variables rather than amenities (Miguelez

and Moreno, 2014). Yet, these studies have not considered the importance of urban

amenities in particular. Finally, there is limited evidence on the importance of network

ties in driving the mobility decisions of European inventors, though some evidence is
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available for the United States (Nakajima et al., 2010).

3.3 Data

The analysis is carried out at the level of urban areas. The gravity variables include size

and distance, measured by the number of inventors and the driving distance between

urban areas, respectively. Mobility is computed by recording changes in inventors’

addresses in patent documentation. Turning to the variables of interest, research in-

vestment and human capital are used to proxy the labour market for inventors. In

addition, two measures of networks are used, a bilateral collaboration count as well

as a more multilateral network centrality index. Besides, various amenities including

social, cultural and natural amenities are considered. Finally, control variables include

a technological proximity index as well as a same country indicator variable.
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Table 3.1: List of variables

Variable Proxy Source

Mobility Changes in inventors’ addresses Invpat

Gravity
Size Number of inventors Invpat
Distance Driving distance OpenStreetMap

Labour markets
Research investment Spending in research and development Eurostat
Human capital Human resources in science and tech. Eurostat

Networks
Direct collaborations Collaboration count Invpat
Centrality Betweenness centrality index Invpat

Urban amenities
Social life Bars, cafes, pubs, restaurants OpenStreetMap
Culture Cinemas, galleries, museums, theatres OpenStreetMap
Green spaces Surface of public parks and gardens OpenStreetMap

Natural amenities
Seaside Distance to the coast OpenStreetMap
Climate Average summer temperature WolrdClim
Rain Average winter precipitations WolrdClim

Controls
Technology Technological proximity index Invpat
Culture, institutions Same country dummy –

Urban areas

Larger Urban Zones (LUZ) were created by Eurostat to provide a harmonized definition

of metropolitan areas throughout the European Union as well as several other countries.

In the 2012 version, which uses 2006 as a reference year, LUZ are defined on the basis

of population size, population density and commuting patterns, so that each represents
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a self-contained labour market (Djikstra and Poelman, 2012). This edition covers 695

cities in 31 countries1.

Figure 3.1: Larger Urban Zones

Specifically, each LUZ is composed of a densely populated city core and a commuting

zone around it. The urban core is composed of high-density contiguous population

grid cells (> 1500 inh/km2) whose total population is greater than 50 000. The core

is then adjusted to LAU2 delineations2 and include those LAU2 with at least 50% of

their population residing inside the urban core. The commuting zone includes LAU2

where more than 15% of their employed resident population work within the urban
1The 28 European Union current member States, Norway, Switzerland and Iceland.
2LAU2 consists of municipalities or equivalent units in the 28 EU member states.
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core. To ensure homogeneity, LAU2 surrounded by a single LUZ are included and

non-contiguous LAU2 are dropped.

Mobility

Mobility is computed from the Invpat database (Lai et al., 2013). The database con-

tains patent applications at the USPTO from 1975 to 2010, and includes information

about inventors, patents and assignees3. Mobility is computed by recording changes in

inventors’ personal addresses. Consider an inventor who fills a patent at time t while

residing in city i; in t + 1, this same individual fills another patent while residing in

city j. Therefore, one can observe that between t and t+ 1, this individual has moved

from i to city j. This measure of mobility is fairly straightforward but presents three

obvious drawbacks. First, the use of patent data restricts the analysis to those inventors

with at least two patents, when single-patenting inventors represent about 56% of the

sample. Second, a move is recorded only if those inventors applied for a patent before

and after the move, so it represents a lower-bound measure of mobility. Third, patents

record inventors’ location at a point in time, therefore it is not possible to determine

precisely when the move took place. I consider that mobility occurs exactly between

the application dates of the patents at origin and destination, if there is no more than

a four-year lag between the two. Addresses are then geocoded at the level of LUZ.

Mobility computed this way identifies inventors who filled at least two patents while

residing in different LUZ.

Another issue is that in practice, it is difficult to determine whether two inventors are

the same person, since the USPTO does not require unique identifiers for inventors.

Therefore, disambiguation is necessary to determine whether two patents belong to the

same inventor career by comparing all pairs of inventor-patent instances. In particular,
3The database contains inventors’ names and addresses, assignees’ names, patent numbers, dates

of application and granting and detailed technological classes.
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two issues arise from this exercise. The first is misspelling of the same inventor’s

name on different occasions while the second occur when two inventors with the same

name are not actually the same person. To overcome this difficulty, Lai et al.’s (2013)

disambiguation algorithm uses information in patent documentation to identify likely

matches4. The routine computes a cumulative similarity score for each pair of inventor-

patent instances, the greater the similarity score, the greater the probability that the

two patents belong to the same inventor career. The threshold value of the score has

been set to a relatively high value to ensure a rather conservative approach.

Gravity

The gravity variables include economic size and distance. In migrations studies, a

common practice is to use population rather than economic variables such as GDP. This

chapter uses the number of inventors at origin and destination to measure the number of

potential movers. Intuitively, a higher level of mobility is expected between cities with

a large stock of inventors. Distance is measured in several ways including geodesic and

driving distance (Luxen and Vetter, 2011) between cities’ geographical centres. Distance

between origin and destination is expected to reduce inventor flows for at least three

reasons. First, the direct cost of moving is higher, this may include transportation and

other pecuniary costs of relocation. Second, distance increases search costs and reduces

the quality of information about the destination, such as employment opportunities or

income differentials. Finally, movers may also face significant non-pecuniary costs. If

he has spent a substantial amount of time in the city of origin, moving to a distant city

means being separated from family, friends and colleagues (Dahl and Sorenson, 2010).

Labour market

Employment opportunities are measured using human resources in science and tech-
4Variables used for the disambiguation include first names, middle initial, last names, location,

assignees, number of shared technology classes, and number of shared co-inventors.
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nology. It is a general proxy for human capital, the presence of universities, research

centres and technology-oriented firms. In addition, total R&D spending is used to mea-

sure the research effort in the public and the private sectors. The expected impact of

these variables is unclear at least for the city of origin. On the one hand, cities with a

large labour market for inventors host more potential movers, which increases the prob-

ability of a move. On the other hand, working in a city where many firms, universities,

research centres are located makes it easier to find a position within the area, and to

the extent that intra-city mobility is a substitute to inter-city mobility, this decreases

the probability of a move.

Networks

A network of inventors can be viewed as a social network whose nodes are individual

inventors and links are co-inventorship relations. Co-inventorship refers to the situation

where the patent lists more than one inventor. If two inventors have collaborated in

the past, then a social tie exist. The network variable full counts for each year the

number of collaborations between inventors residing in city i and those residing in j.

I acknowledge a certain degree of endogeneity between the network variable and the

dependent variable since mobility influences the structure of networks by creating new,

bridging or closing existing networks. To attenuate this issue, the network variable is

lagged one year.

In addition, a measure of centrality is used to abstract from the duality of the net-

work variable, which represents a rather restrictive view of social networks. Centrality

measures the relative position of a city within the network. It characterizes whether

a particular city has a favourable position in the network and how a city’s network

positioning changes over time. Following Berge et al. (2017) the betweenness centrality

index (BCi) of a city cen be broken down into three components. (1) A city’s par-
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ticipation intensity, which measures of how well a city is embedded in the network of

collaboration. (2) A city’s relative outward orientation, which assesses the openness of

a city with respect to established network linkages. A high number of internal collab-

orations would have a negative influence as it potentially reduces the number of actors

connecting different cities. (3) A city’s diversification of network links, which indicates

how collaborations are distributed along other cities in the network. The more concen-

trated the collaborations, the less the region is central in the sense that it links only a

few other cities. The BC of a city, which is defined as the number of bridging paths

stemming from a city between all dyads of the network, can be defined as follows.

BCi =
∑

i ̸=j

∑

k ̸=i,j

gijgik
ni

(3.1)

ni is the number of inventors active in region i. gij and gik are network links between

city i and city j or k, respectively. In an aggregate context, equation (3.1) collapses to

the following equation.5

BCi = ḡisi(1− hi) (3.2)

ḡi = gi−gii is the number of outer collaborations, and reflects the participation intensity

of the city. si = ḡi/gi is the share of outer collaborations, which measures the relative

outward orientation of the city. hi =
∑
k ̸=i,j

(gij/ḡi)
2 is the Herfindahl-Hischman index of

the distribution of i’s outer collaborations. It varies between zero and one depending

on the degree of diversification of network links to other cities. The resulting centrality

index is normalized to one, so that the most central city has an index value equal to

unity. As for the previous network measure, mobility flows are expected to be greater
5See Berge et al. (2017, p. 20-21) for a formal proof.
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between cities with a high degree of centrality.

Amenities

While the role of urban amenities in the location decisions has received significant at-

tention in the literature, empirical progress have been hampered by the lack of data. In

addressing this issue, this chapter uses the OpenStreetMap database to collect specific

data on the provision of amenities for all urban areas in Europe. Specifically, ameni-

ties are grouped into three broad categories. First, to measure whether a city has a

vibrant social life, an index including the number bars, cafes, pubs and restaurant is

computed for each city. In addition, the cultural amenities index includes the number

of cinemas, galleries, museums and restaurants. Finally, amenities in the form of urban

green spaces are measured by an index including the surface in square-kilometres of

public parks and gardens. Figure 3.2 represents the distribution of the three types of

amenities in European urban areas.
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Figure 3.2: Urban amenities in Europe

Social amenities are represented in red, cultural amenities are in blue and green spaces are in green.
All variables are normalized to a range between zero and one, so the size of the slices represents the
relative position of cities in the provision of each type of amenities.

The analysis on the role of urban amenities is exploratory because there is a significant

lag with the dependent variable. Data on mobility is exploited up to the year 2007,

while data on amenities reflect the current situation. Even though there is no explicit
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role for time in a cross-sectional setting, the amenities variables are normalized to a

range between zero and one, so that the index value reflects the relative position of

urban areas in the provision of amenities. Therefore, it is assumed that this position

remains stable over time.

Controls

Inventors may be specialized in a very specific field, and have only a few alternative

destinations to choose from. In an aggregate context, a technological proximity index

is computed by grouping the patents into technological sectors and comparing their

relative distribution across cities. Using the classification provided by the NBER patent

data project, patents are grouped into 6 broad technology classes and 40 subclasses.

An issue is that patent with multiple classes often belong to more than one sector,

which makes the aggregation difficult. Sectors are weighted according to their relative

frequency of apparition in the patents. Following Jaffe (1986), technological proximity

is computed as the uncentered correlation between i and j’s vectors of technological

class.

tij =

∑
fihfjh√∑
f 2
ih

∑
f 2
jh

fih and fjh denote the share of city i and j’s patents of technological class h, respec-

tively. The resulting index tij varies between zero and one depending on the level

of technological proximity. The technological proximity index is computed using 34

technological subclasses6. An index value close to unity indicates that two cities are

technologically similar, while a value close to zero indicate that they are technologically

distant. Inventors flows are expected to be larger between cities that have a similar
6Each of the 6 class has a subclass named "Miscellaneous", which is considered too heterogeneous

to reflect a city’s technological specialisation.
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technological specialisation.

Even though workers are in principle free to move, they are in practice confronted with

a series of obstacles hampering their movement. Differences in cultures, languages and

institutions may translate into greater adaptation costs. Inventors’ mobility may be

hampered by institutional and legal barriers, which may vary significantly across coun-

tries. In the same manner, inventors are more likely to relocate in a city sharing the

same cultural background and language, in order to minimize mobility costs. Insti-

tutional and cultural proximity are captured using a dummy variable that takes the

value one if the two cities are located in the same country and zero otherwise. Intu-

itively, inventors flows are expected to be smaller between cities belonging to different

countries.

3.4 Patterns of inventors’ mobility

This section documents the patterns of inventors’ mobility across LUZ between 1975

and 2008. During this period, 72.62% of all patents were filled by inventors residing in

urban areas. This share, although substantial, is somewhat lower than that reported

by Jaffe et al. (1993) for the United States. Among multi-patenting inventors, only

9.67% were mobile, which suggests that mobility is a rare event, and contradicts the

commonly held belief that skilled workers are highly mobile in space. The final sample

includes 15361 inventors who moved across at least two of the 695 LUZ between 1975

and 2008, for a total of 30628 moves. Table 3.2 shows that about 80% of inventors

moved only once or twice during their career. Likewise, the number of cities visited,

defined as the number of different cities where an address has been recorded, exhibit a

large positive skew, which suggests that circular mobility is important.
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Table 3.2: Distribution of inventors per number of moves and cities visited

N. moves N. inventors (%) N. cities N. inventors (%)

1 9045 (58.88)
2 3361 (21.88) 2 13881 (90.37)
3 1230 (8.01) 3 1246 (8.11)
4 666 (4.34) 4 173 (1.13)

5+ 1059 (6.89) 5+ 61 (0.40)

15361 (100) 15361 (100)

Circular mobility is identified when the city of origin for the move m is the same as the

city of destination for the move m+1. Each pair of moves is compared in sequence for

the 6316 inventors who moved at least twice during their career, for a total of 15267

moves. This is a rather restrictive measure of circular mobility since each move is

compared only with the next, so this figure is probably lower-bound. Nonetheless, this

form of mobility represents about three-quarters (74.08%) of these inventors’ mobility.

Building on these considerations, one may wonder whether circular mobility occurs

because inventors move primarily between different establishments of the same firm

(Breschi and Lenzi, 2010). For instance, if the inventors works for a multinational firm,

changing location does not imply working for another firm, but simply moving from

one establishment to another. In this sense, intra-firm mobility is defined as a move

between two establishments of the same firm located in two distinct cities. Determining

whether two assignees belong to the same firm is difficult, since the assignees’ names

alone cannot be used to identify the firm that holds the patent. Problems arise from

misspellings, from different forms of the same company’s name and from subsidiaries

having completely different names from the parent. Lai et al. (2013) performed a dis-

ambiguation of firms’ names using the NBER file of patent assignee to identify the
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same firms listed as assignee on distinct patents. The following figures should be inter-

preted with caution as information about the assignee at both origin and destination is

available in only 66.85% of the cases. In this sub-sample, intra-firm mobility represents

69.64% (14259) of the moves so that inter-firm mobility is limited. Linking this to

circular mobility, among inventors the 4449 inventors who moved at least twice, and for

which assignee information is available, about half (49.23%) of circular mobility occurs

within the same firm, suggesting that the two phenomena are closely related.

Table 3.3: Distribution of moves per country

Country National moves
International moves

as orig. (%) as dest. (%)

Germany 14227 (51.74) 813 (25.96) 745 (23.79)
United Kingdom 5997 (21.81) 448 (14.30) 399 (12.74)
France 2693 (9.79) 349 (11.14) 384 (12.26)
Netherlands 1201 (4.37) 300 (9.58) 286 (9.13)
Italy 1081 (3.93) 122 (3.90) 144 (4.60)
...
Belgium 288 (1.05) 217 (6.93) 242 (7.73)
Switzerland 172 (0.63) 304 (9.71) 319 (10.19)
Austria 82 (0.30) 177 (5.65) 195 (6.23)
Others 1755 (6.37) 402 (12.82) 451 (14.4)

27496 (100) 3132 (100) 3132 (100)

The upper panel lists the top 5 countries according to the total number of moves. Belgium, Switzerland
and Austria are listed due to their high level of international mobility. There are 28 countries in total.

Turning to the spatial dimension of mobility, table 3.3 describes the distribution of

national and international moves per country. Here, three figures are worth noting.

First, Germany represents about half of all national moves and a quarter of international

moves. This can be explained by the importance of intra-firm and circular mobility
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and by the higher level of patenting activity in Germany, which represents 39.69% of

all patents. Second, 89.77% of the mobility occurs within the same country, whereas

international mobility only represents a fraction of the moves. Interestingly, in Belgium,

Switzerland and Austria, the magnitude of international mobility both as origin and

destination is much higher than in the other countries. Speculatively, these countries

may act as international hubs for inventors, partly due to their central location in

Europe and their reliance on foreign workers, due to the small size of their domestic

labour market. Finally, both national and international mobility take place across

relatively short distances, while inventors who move nationally travel on average 180

km, the mean driving distance for those who move across borders is 532 km. Both these

figures are much lower than those reported by Breschi and Lenzi (2010) who show that

mobile US inventors travel on average 867 km7. The distribution of moves by distance

has a large positive skew, which means that the vast majority of moves take place across

short distances.
7Moves to Alaska, Hawaii and Puerto Rico are excluded.
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Figure 3.3: Inward, outward (left) and net (right) mobility of inventors

Left panel: Inward mobility is in blue while outward mobility is in red. The size of the largest bubble
corresponds to 2495 moves (inward + outward). Right panel: Positive net mobility is in green while
negative net mobility is in red. The size of the largest bubble corresponds to a 126 moves difference
between inward and outward mobility.

Looking at a finer spatial scale, figure 3.3 depicts the distribution of inventors’ mobility

across LUZ. The left panel confirms earlier findings that mobility occurs primarily

between a selected number of large urban areas, such as those located in the Rhur,

southern UK, or Paris and Milan. Interestingly, the distribution of inward and outward

mobility is remarkably similar, as confirmed by the right panel. This result may be

explained by the large amount of short-range circular mobility. This suggest that we
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should not think of mobility between cities in terms of attraction and repulsion, at least

in our case. Dynamic urban areas are associated with a larger turnover, with higher

levels of inward and outward mobility than other cities. Interestingly, in France and the

UK, several large urban areas are losing inventors to the benefit of the periphery. In a

more dynamic setting, figure 3.4 depicts national, international and circular movements

of inventors. Mobility patterns vary considerably across countries, and reflect to a

certain extent their respective urban configurations. For instance, in France and the

UK, the capital cities occupy a central position, while in Germany mobility is more

evenly distributed across the urban continuum.

Figure 3.4: National (left), international (middle) and circular (right) mobility

Finally, mobility patterns vary according to the technological specialisation of inventors.

Each patent has a list of technology classes, which provides information about the

inventors’ area of expertise. However, assigning a particular technological sector to

inventors is difficult for at least two reasons. First, some inventors are specialised

in activities classified in two distinct technological fields. In this case, the inventor’s
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patents would list technological classes belonging to different sectors. Second, a patent

often has more than one designated inventor, and the relative contribution of each

inventor to the patent is unknown. This may be problematic when a patent is filled by

an interdisciplinary team in which inventors are specialised in distinct sectors. The first

specialisation is defined as the sector which appear most often in an inventor career and

represent at least 40% of the listed patent classes. Following the same selection rule,

a second specialisation is defined for inventors who engage in cross-sector activities.

Using this criterion, less than a third (27.81%) of mobile inventors are specialised in

two sectors, the majority of them being specialized in the chemical sector, and having

the drugs & medical sector as a second specialisation. Table 3.4 reports the number

of inventors and the distribution of moves for each technological sector, using the first

specialisation.

Table 3.4: Distribution of moves per technological specialisation of inventors

Technological sector N. inv. National Intern. All

Chemical 5583 11615 1174 12789
Computers & communications 1852 2864 394 3258
Drugs & medical 1326 2220 409 2629
Electrical & electronic 2486 3984 512 4496
Mechanical 2472 2280 250 4454
Others 1411 2118 241 2530

Σ 15130 30156

472 moves were made by the 231 inventors with no specialisation according to this definition.

Note that the propensity to patent may be greater in some sectors. The greater the

number of patents, the greater the probability to observe a move. Therefore, mobility

in those sectors may be inflated in comparison to others sectors with a lower propensity

to patent.
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3.5 Determinants of inventors’ mobility

3.5.1 Model

The model is based on the utility maximizing framework. Assuming that inventors are

rational and freely mobile, their decision to move from one city to another is based on

a comparison between the expected utilities at origin and destination. In this setting,

the individual utility is a function of location-specific variables, and the cost of moving

depends on a measure of distance between origin and destination. Formally, the utility

of individual k associated with city i can be written as follows.

Uk
i = u(Xi) + ϵki (3.3)

The model states that the individual utility from living in i, depends on a component

common to all individuals u(Xi), and a stochastic term ϵki , which represent factors

specific to inventor k. These factors include anything that leads k to value Xi differently

than a randomly selected individual. By definition, E(ϵi) = 0 because any systematic

component is included in u. It follows that an individual decides to move if the expected

utility differential is greater than the cost of moving.

E(Uk
i ) < E(Uk

j )− C(dij) (3.4)

When this condition is satisfied, the mobility variable takes the value one and zero oth-

erwise. Aggregating individual movements at the city level, we can write the empirical

gravity model.
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Yij = β0X
β1
i Xβ2

j Xβ3
ij ϵij (3.5)

Yij is a vector of mobility flows between i and j. Xi and Xj are matrices representing

the characteristics at origin and destination, respectively. Similarly, Xij is a matrix

recording various measures of distance between origin and destination. β0 is a vector

of ones and β1, β2, β3 are scalar parameters to be estimated. Finally, ϵij is a vector of

disturbances with E[ϵij|Xi, Xj, Xij] = 1 assumed to be statistically independent from

the explanatory variables. This leads to the following equation.

E[Yij|XiXiXij] = β0X
β1
i Xβ2

j Xβ3
ij (3.6)

The dependent variable takes non-negative integer values, many of which are zero, which

invalidates the normality assumption, especially when the range of values taken by the

dependent variable is limited. Santos Silva and Tenreyro (2006) propose to overcome

this issue using a Poisson specification of the gravity model along with the Poisson

Pseudo Maximum Likelihood (PPML) estimator proposed by Gourieroux et al. (1984).

The PPML estimator is like the Poisson maximum likelihood estimator except that the

data generating process does not need to be the Poisson. This estimator has been shown

to be robust to different patterns of heteroskedasticity and conveniently deals with the

zero values, as the model can be estimated in its multiplicative form. The PPML

estimator has the appealing feature coefficients estimates can be interpreted in terms of

elasticities if the dependent variable is in level and the covariates are in logarithms. A

profitable approach is to model the expected value as an exponential function. Because

the exponential is always positive, it ensures that predicted values for Y will also be

positive. Assuming that observed mobility flows follow a Poisson distribution with µij
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as the expected flows, and are independent of other mobility flows, the observed flows

have the following probability distribution.

Prob(yij) =
exp(−µij)µ

yij
ij

yij!

Following Krisztin and Fischer (2015), equation (3.6) can be rewritten as follows.

µij = E[Yij|XiXiXij] = exp[ln β0 + β1 lnXi + β2 lnXj + β3 lnXij] (3.7)

Maximum likelihood estimation of the Poisson regression model assumes that all ob-

servations are mutually independent. In a gravity setting, this implies that mobility

flows between any pair of cities is independent from flows between any other pair of

cities. Such an assumption is not likely to hold for several reasons. First, movers face

a discreet choice in choosing between alternative destinations (Beenstock and Felsen-

stein, 2016). If a mover living in city i can choose either cities j or k as alternative

destinations, it follows that flows from i to j are not independent from flows from

i to k. Second, mobility flows between a pair of cities do not only depend on their

respective attractiveness, rather, it is influenced by pull and push factors across all

possible origins and destinations, the multilateral resistance to migration (Bertoli and

Moraga, 2013; Behrens et al., 2012). As a result, the model residuals may exhibit spa-

tial autocorrelation, which directly violates the independence assumption, and produce

consistent but biased parameter estimates (Krisztin and Fischer, 2015). The problem

of alternative destinations is analogous to one that arises in the gravity model of in-

ternational trade. In their influential contribution, Anderson and van Wincoop (2003)

argued that accounting for the interaction structure is important when estimating the

gravity equation. A variety of approaches have been taken to control for multilateral
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resistance, from the inclusion of ad-hoc remoteness index to the introduction of origin

and destination-specific indicator variables. This latter solution is not satisfactory for

at least two reasons. First, Behrens et al. (2012) and Koch and LeSage (2015) argued

that the inclusion of origin and destination fixed effects captures heterogeneity rather

than spatial dependence. Second, the city-specific determinants of mobility cannot be

introduced into the model. Recently, Patuelli et al. (2015) show that the inclusion

of origin-specific and destination-specific spatial filters effectively control for omitted

multilateral resistance terms, while filtering out autocorrelation in mobility flows. The

rationale is that many mobility cost variables such as distance, culture or institution are

spatially correlated, so that spatially proximate cities tend to have similar resistance

terms.

In this framework, we distinguish two forms of spatial dependence in a gravity frame-

work8. Origin-based dependence assumes that flows from an origin to a destination are

correlated with other flows from neighbours to origin to the same destination. Con-

versely, destination-based dependence assumes that flows from an origin to a destination

are correlated with other flows from the same origin to neighbours to destination. Con-

nectivity is introduced in the model using a W matrix. One issue is that W cannot

be estimated and needs to be specified in advance, using some relevant criterion. The

specification of W is always subject to arbitrariness and it has become common practice

to investigate whether results are robust to the specification of W . However, LeSage

and Pace (2014) argued that estimates should not be overly sensitive to changes in the

weight matrix in a well-specified spatial model. The preferred specification of W is

based on cut-off driving distance. Specifically, two cities are considered as neighbours

when their respective geographical centres are less than 150 km apart9. Formally,
8The structure of dependence in a gravity framework is more complex in the sense that each city

is associated with several observations as an origin and as a destination.
9A shortcoming to this approach is that interdependencies are not merely spatial (Behrens et al.,
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Wij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if dij ≤ 100

0 otherwise

The resulting matrix is sparse and symmetric, with zeros on the diagonal and and ones

on the off-diagonals when observation i depends on observation j. W is used for spatial

autocorrelation diagnostics, and for the computation of spatial filters. Traditional di-

agnostics may not be appropriate for Poisson residuals (Chun, 2008). Instead, I follow

Lin and Zhang (2007) and use a Moran’s I log-linear residual test to detect spatial

autocorrelation in the residuals.

Eigenvector spatial filtering was introduced by Griffith (2003) for areal data and recently

extended to flow data. Applications to mobility flows10 include United States interstate

migration (Chun, 2008; Chun and Griffith, 2011), and German journey-to-work flows

(Griffith, 2009). This approach is based on the assumption that spatial autocorrelation

in the disturbances arises from missing origin and destination variables, which are

spatially autocorrelated (Tiefelsdorf and Griffiths, 2007), very much like the missing

origin and destination multilateral resistance terms. A spatial filter made of synthetic

variables can be used to control for spatial autocorrelation11. This approach has the

advantage that the model can then be estimated as if observations were independent,

using conventional regression techniques. This is particularly attractive because the

dependent variable represents Poisson distributed counts, and spatial models are less

developed for this type of data.
2012; Beenstock and Felsenstein, 2016)

10Other applications to flow data include trade (Krisztin and Fischer, 2015; Patuelli et al., 2015),
patent citations (Fischer and Griffith, 2008) and research collaborations (Scherngell and Lata, 2013).

11In the presence of spatial autocorrelation, the residuals can be divided into a spatial component and
the white noise. Spatial filtering enforces independence by isolating the stochastic spatial component
from the white noise using a set of proxy variables called a spatial filter.
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Specifically, spatial filtering relies on the spectral decomposition of a transformed W

into eigenvalues and eigenvectors, and then uses a subset of eigenvectors as origin and

destination explanatory variables into the model. Eigenvectors can be interpreted as

independent map patterns describing the latent spatial autocorrelation of a variable.

The W matrix is transformed as follows.

(
I − ll′

n

)
W

(
I − ll′

n

)

I is the n× n identity matrix, l is an n× 1 vector of ones and l′ its transpose. The n

eigenvector of the above matrix describe the full range of possible and mutually orthog-

onal uncorrelated map patterns, and their corresponding eigenvalues index the nature

and degree of spatial autocorrelation portrayed by each eigenvector. Eigenvectors are

extracted in sequence to maximise the Moran Coefficient (MC) while being uncorre-

lated with the preceding eigenvectors. For parsimony, it is not sensible to include all

eigenvectors in the spatial filter, a two-step procedure is used to identify a relevant

subset of eigenvectors. First, eigenvectors are selected on the basis of their MC val-

ues exceeding some predefined threshold. Here, the common rule ei/e1 ≥ 0.25 is used,

where e denotes the associated eigenvalues, to keep eigenvectors associated with strong

and positive spatial autocorrelation. This subset is further reduced through a stepwise

Poisson selection technique12 (Tiefelsdorf and Griffiths, 2007). Filters at origin and

destination are obtained using Ei = l ⊗ E and Ej = E ⊗ l respectively, where E is

the n × Q matrix of eigenvectors and the resulting Ei and Ej are n2 × Q matrices, Q

being the number of selected eigenvectors. The spatial filter includes the subset of Q

eigenvectors that are common to all cross-sections. Adding the spatial filter to equation
12As noted by Patuelli et al. (2015), selection based on AIC or BIC is not possible in the case of

Quasi-Poisson models since they have no likelihood, so it is manually performed by iterative backward
elimination of the eigenvector with the highest p-value.
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(3.6) gives the following equation.

µij = exp

[
ln β0 + β1 lnXi + β2 lnXj + β3 lnXij +

Q∑

q=1

EqΦq

]
(3.8)

exp
[∑Q

q=1 EqΦq

]
is the spatial filter that accounts for origin and destination spatial

autocorrelation. Eq denotes the qth eigenvector and Φq its associated coefficient.

3.5.2 Results

This section summarizes the main estimation results obtained. The sample used is

restricted to inventors who moved across 497 LUZ between 2000 and 2007. To avoid

extreme heterogeneity, I follow Miguelez and Moreno (2014) and pool mobility flows

into two distinct four-years periods13, corresponding to 2000–2003 and 2004–2007.
13In this chapter, the panel specification is not implemented. In fact, the main advantage of using the

longitudinal structure of the data would be to include origin-destination-pairs fixed effects, to account
for time-invariant pair-specific unobserved heterogeneity that is not captured by the covariates. Using
random effects would be inappropriate here because we cannot assume that unobserved heterogeneity
is related with unobserved effects that are time-invariant and not specific to origin-destination pairs
(Scherngell and Lata, 2013). A disadvantage of fixed effects is that time-invariant variables cannot
be included in the model. However, variables such as geographical distance, cultural and institutional
proximity are of special interest for this study. With regards to spatial dependence, fixed effects do not
effectively control for spatial autocorrelation and precludes the use of a spatial filter. A time-varying
spatial filter would rely on a connectivity matrix specific to each period, and there is no theoretical
motivation to do so in this study. Besides, the eigenvector selection procedure in a panel framework is
unclear from a mathematical point of view (Patuelli et al., 2011).
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Table 3.5: Descriptive statistics

Variable Mean St. dev. Min. Max

Gravity
Number of inventors 106.07 312.91 0.00 4287.25

Driving distance 967.34 519.11 0.00 3291.00

Labour markets
Spending in R&D (×106) 734.10 1377.46 0.00 15210.75

Human resources in S&T 11450.71 14875.90 49.75 173200.20

Networks
Direct collaborations 0.29 14.75 0.00 4880.00

Betweenness centrality index 0.03 0.09 0.00 1.00

Urban amenities
Social life index 0.03 0.07 0.00 1.00

Cultural index 0.03 0.07 0.00 1.00

Green spaces index 0.03 0.06 0.00 1.00

Natural amenities
Distance to the coast 145.43 150.51 0.22 628.49

Summer temp. index 0.46 0.18 0.00 1.00

Winter prec. index 0.21 0.13 0.00 1.00

Controls
Technological proximity index 0.16 0.20 0.00 1.00

Same country dummy - - 0.00 1.00

Values are averaged over 2000-2007, except for amenities.

Table 3.6 reports the estimation output for the unfiltered PPML gravity model in

the first two columns and its spatially filtered counterpart in columns (3) and (4).

Broadly speaking, all coefficients estimates have the expected sign and significance. The

adjusted Moran’s I suggests that inventors’ mobility between two cities are positively

associated with flows from and to neighbouring cities. This motivates the use of a spatial
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specification in order to obtain unbiased parameter estimates. The selected eigenvectors

effectively fill this purpose, as shown by the Moran’s I statistic, which is divided by

about 4.5 when adding the spatial filter. As a result, the spatial model consistently

exhibit lower standard errors than its unfiltered counterpart, and the goodness-of-fit

measure14 points to this model as the preferred specification.
14For the goodness-of-fit measure, the model is fitted twice, once with a regular likelihood Poisson

model and once with the quasi variant model. The log-likelihood is extracted from the former and the
dispersion parameter from the latter.
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Table 3.6: Estimation results for labour market and networks

Quasi-Poisson Spatially filtered QP
00–03 04–07 00–03 04–07

(1) (2) (3) (4)

Gravity
Stock of inventors (o) 0.590∗∗∗ 0.599∗∗∗ 0.596∗∗∗ 0.611∗∗∗

(0.013) (0.017) (0.010) (0.013)

Stock of inventors (d) 0.551∗∗∗ 0.631∗∗∗ 0.596∗∗∗ 0.631∗∗∗

(0.017) (0.021) (0.015) (0.018)

Driving distance (od) −0.307∗∗∗ −0.346∗∗∗ −0.297∗∗∗ −0.304∗∗∗

(0.017) (0.022) (0.015) (0.019)

Labour market
Spending in R&D (d) 0.193∗∗∗ 0.213∗∗∗ 0.419∗∗∗ 0.330∗∗∗

(0.038) (0.072) (0.021) (0.045)

Human ress. in S&T (d) 0.172∗∗∗ 0.134∗∗ 0.396∗∗∗ 0.262∗∗∗

(0.039) (0.074) (0.020) (0.044)

Networks
Collaborations (od) 0.705∗∗∗ 0.737∗∗∗ 0.631∗∗∗ 0.677∗∗∗

(0.010) (0.013) (0.009) (0.012)

Centrality (o) 0.188∗∗∗ 0.248∗∗∗ 0.153∗∗∗ 0.216∗∗∗

(0.019) (0.027) (0.014) (0.018)

Centrality (d) 0.219∗∗∗ 0.255∗∗∗ 0.154∗∗∗ 0.256∗∗∗

(0.019) (0.027) (0.014) (0.018)

Controls
Tech. proximity (od) 0.763∗∗∗ 1.374∗∗∗ 0.855∗∗∗ 1.437∗∗∗

(0.085) (0.122) (0.088) (0.115)

Same country (od) 2.292∗∗∗ 1.937∗∗∗ 2.390∗∗∗ 2.098∗∗∗

(0.035) (0.043) (0.037) (0.042)

Constant −10.345∗∗∗ −10.303∗∗∗ −11.327∗∗∗ −11.487∗∗∗

(0.173) (0.280) (0.120) (0.166)

Adjusted log likelihood -21972.08 -35409.02 -10298.94 -16466.88
Adjusted Moran’s I 0.343∗∗∗ 0.352∗∗∗ 0.076∗∗∗ 0.082∗∗∗

Number of spatial filters 61 61
∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.
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Gravity

In line with gravity theory, the results confirms that size and distance are important de-

terminant of inventors’ mobility. Specifically, the coefficient associated with the stock

of inventors remain strongly positive and significant over the two periods, with esti-

mated elasticities around 0.6. Looking at driving distance in particular, estimates are

negative and significant, which suggest that the pecuniary and non-pecuniary costs asso-

ciated with moving significantly impede inventors’ mobility. However, the importance

of distance is greatly reduced when we introduce other variables that have a spatial

dimension. This is because geographical distance serves as a proxy for other, more

meaningful forms of distance. In this regard, appendix A1.1 compares various forms of

distance using the preferred specification for the period 2004-2007. Consistently with

Breschi and Lenzi (2010), distance does not affect mobility in a linear manner, the

inclusion of a squared distance variable reveals that the cost of moving is high but

strongly decreases as we move further away.

Labour market

Turning to the labour market variables, R&D spending, and to a lesser extent human

capital, significantly influence inventors’ mobility. The estimates tend to be lower in the

second period. This difference may be attributed to the measure of mobility, which is

likely to be truncated toward the end of the dataset15, which cause the mobility variable

to be imperfectly observed. Overall, the evidence shows that employment opportuni-

ties strongly influence the mobility decisions of inventors. This is consistent with the

evidence reported by Miguelez and Moreno (2014) at the level of European regions, and

provide additional robustness due to the explicit modelling of spatial dependence, and
154608 moves took place during the first period while only 1422 occurred during the second. This is

because the database contains just a few observations for toward the end of the dataset. This problem
is magnified by the way mobility is computed, because a move is assumed to take place between the
application dates of the two patents.
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the analysis at the city level.

Networks

Looking at the network variables, both direct social ties and the centrality index are

strongly positive and significant. This confirms that collaboration networks play an

important role in matching workers to positions (Nakajima et al., 2010), because it

reduces information asymmetries and improve matching (Jackson, 2011). The elastic-

ities associated with direct collaborations are large with regards to the labour market

variables, which suggests that inventors’ mobility is driven primarily by social ties.

Comparing the two network variables, direct social ties matter more than the centrality

index. This is not surprising given that the former measures direct social connections

between inventors, which is more likely to influence the decision to move. Nonethe-

less, the fact that the two variables remain significant when introduced jointly in the

regression suggests that the importance of inventors’ networks goes beyond the effect

of direct collaborations. The relative position of the city within the network, which

represent a less restrictive definition of networks, is also important. Finally, spatial

filtering tends to reduce the importance of network variables, since the social context

in which inventors are embedded has a strong spatial dimension.

Amenities

Looking at the importance of urban and natural amenities, table 3.7 reports estimates

including amenities for the period 2004-2007. The estimates are reported for the Quasi-

Poisson model and its spatially-filtered counterpart.
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Table 3.7: Estimation results with amenities

Quasi Poisson Spatially filered QP
(1) (2)

Gravity
Stock of inventors (o) 0.609∗∗∗ (0.017) 0.609∗∗∗ (0.013

Stock of inventors (d) 0.653∗∗∗ (0.023) 0.675∗∗∗ (0.019)

Driving distance (od) −0.357∗∗∗ (0.023) −0.359∗∗∗ (0.020)

Labour market
Spending in R&D (d) 0.167∗∗ (0.072) 0.311∗∗∗ (0.052)

Human ress. in S&T (d) 0.226∗∗∗ (0.075) 0.306∗∗∗ (0.056)

Networks
Direct collaborations (od) 0.717∗∗∗ (0.014) 0.668∗∗∗ (0.013)

Centrality (o) 0.244∗∗∗ (0.027) 0.219∗∗∗ (0.019)

Centrality(d) 0.169∗∗∗ (0.033) 0.226∗∗∗ (0.023)

Urban amenities
Eat & drink (d) −2.469∗∗∗ (0.727) −1.451∗∗ (0.625)

Culture (d) 1.248∗ (0.621) 1.189∗ (0.591)

Greenspaces (d) 1.135∗∗∗ (0.320) 0.695∗∗∗ (0.195)

Natural amenities
Distance to coast (d) −0.383∗∗∗ (0.027) −0.217∗∗∗ (0.023)

Summer temperatures (d) 1.197∗∗∗ (0.158) 1.033∗∗ (0.445)

Winter precipitations (d) −0.349∗∗∗ (0.069) −0.206 (0.106)

Constant
Technological proximity (od) 1.334∗∗∗ (0.125) 1.380∗∗∗ (0.119)

Same country (od) 1.997∗∗∗ (0.045) 2.105∗∗∗ (0.044)

Constant −12.509∗∗∗ (0.877) −12.742∗∗∗ (0.544)

Adjusted log likelihood −35307.08 −16546.87

Adjusted Moran’s I 0.354∗∗∗ 0.078∗∗∗

Number of spatial filters 67

∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.
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The coefficients on natural amenities reveal that inventors tend to move toward cities

near the coast, with a pleasant weather and low precipitations. However, the significance

of the temperature and precipitation variables is reduced when adding the spatial filters.

This is hardly surprising because spatial filters based on geographical distance capture

the impact of variables that change slowly as we move across space. Turning to urban

amenities, the estimation results suggest that the presence of cultural amenities, and

to a lesser extent green spaces, significantly influence inventors’ mobility. Contrary to

expectations, the coefficient on social amenities is negative and significant in the two

specifications. A possible explanation is that a simple count of bars and restaurant is

a poor proxy for the quality of social life. Perhaps, controlling for the quality of these

establishments would provide different results.

Controls

The coefficients associated with the technological proximity index and the same coun-

try indicator variable are strongly positive and significant. The latter result is in line

with the descriptive analysis, and confirms that inventors’ mobility in Europe is largely

a national phenomenon. This may be explained by the diversity of cultures and the

fragmentation of institutional frameworks in the European Union, which translate into

greater migration costs. This may be one reason why skilled mobility in Europe is lower

than in the United States. Bear in mind that the indicator variable is arguably a rather

simple proxy to capture elements as diverse as culture, institutions or language. How-

ever, spatial filters also capture the effect of variables that change slowly as we move

across space. Finally, technological proximity is an important determinant of inven-

tors’ mobility. This may be because specialized workers do not have many alternative

destinations to choose from, in the sense that they can benefit from employment op-

portunities in cities with a similar technological specialisation. Similarly, co-invention

networks are primarily developed between inventors belonging to same technological
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field. To the extent that these networks influence mobility decisions, this should in-

crease again the probability to observe a move between technologically proximate cities.

3.6 Conclusion

Highly skilled professionals are regarded as one of the main driver for the economic

development of cities through their effect on innovative capabilities. Skilled individuals

are mobile in space and tend to cluster within a limited number of urban areas, therefore

a crucial question is what factors shape this flows and influence the levels of economic

development across urban areas. Building on these considerations, it takes advantage

of a large-scale dataset to shed light on the patterns and determinants of inventors’

mobility across European urban areas. First, a descriptive analysis is carried out to

document the patterns of inventors’ mobility and their spatial dimension. Second, a

gravity model is used to analyse how the labour market, professional networks as well

as natural and urban amenities, influence the flows of inventors between urban areas.

From a methodological perspective, this chapter uses a spatial filtering variant of the

Poisson gravity model, which accommodate the nature of the data, while controlling

for multilateral resistance and spatial autocorrelation in mobility flows.

Despite the commonly held belief that skilled workers are highly mobile in space, the

analysis suggests that mobility remains a rare event. Among multi-patenting inventors,

only 9.67% moved from one city to another between 1975 and 2008. Mobility is also

limited in space. Inventors who move travel between relatively large and co-located

urban areas, and 90% of these moves occur within the same country. These results

can be partly explained by the high level of circular and intra-firm mobility. Finally,

the analysis highlight significant heterogeneity among countries, with about 80% of all
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moves taking place either in Germany, France or the UK. Likewise, the propensity to

move vary importantly across technological sectors. Turning to the determinants of

inventors’ mobility, four results are worth noting. First, inventors are drawn toward

cities offering numerous employment opportunities along with attractive working con-

ditions. This finding is in line with the scarce existing evidence, provided by Miguelez

and Moreno (2014) at the level of European regions, yet the explicit modelling of spatial

autocorrelation and the analysis at the urban scale provide additional robustness to this

finding. Second, the decision to move is mediated by network ties, which reduce in-

formation asymmetries between inventors and their potential employers, and therefore

improve matching (Jackson, 2011). Besides, the definition of networks should not be

restricted to direct collaborations. In particular, the centrality of cities, which represent

a less restricted view of social networks, also plays a role. Third, workers are attracted

to cities with a pleasant climate, numerous green spaces and cultural amenities. While

the role of urban amenities has received significant attention in the literature, empirical

progress have been hampered by the lack of data. In addressing this issue, this chapter

uses data mining techniques to collect specific data on the provision of urban amenities

for all urban areas in Europe. Fourth, contrary to expectations, geographical distance

has a limited role in deterring mobility. This may be due to the availability of fast

transportation across cities and because it acts as a proxy for other, more meaningful

forms of distance. In particular, mobility occurs primarily between cities sharing the

same technological specialisation, partly because of the availability of specialised jobs,

partly because collaboration networks tend to develop within the same epistemic com-

munity. More importantly, cultural and institutional distance translate into greater

adaptation costs. Fourth, from a methodological perspective, spatial autocorrelation in

mobility flows is a serious issue and should be explicitly controlled for when estimating

the gravity model in order to obtain unbiased parameter estimates.
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These results have implications for the geography of innovation. While both mobility

and networks have been shown to influence the diffusion of knowledge, they have of-

ten been investigated separately, and it would be interesting to study the interrelation

between these two channels, as they appear to be closely related. Another implication

concerns the ongoing construction of the European Research Area, which aims to facili-

tate the diffusion of local and external knowledge, in particular through the mobility of

skilled individuals. The results suggest that the diffusion of knowledge may be limited

for several reasons. Movers, represent only a fraction of the inventors, and those who

move travel relatively short distances, generally within the same country. This result

is magnified by the fact that a large portion of mobility occur within firms, and do

not necessarily imply a transfer of knowledge. Besides, the fact that mobility occurs

primarily between technologically related cities may cause the transferred knowledge

to be redundant, and have a limited economic impact. Finally, the results highlight

significant heterogeneity across cities, and countries. A more promising finding is that

mobility may be encouraged, in particular through the development of research collab-

orations involving distant research communities.

Further research on other categories of skilled workers would be welcome, as inven-

tors represent only a fraction of the skilled workforce. Skilled mobility is a diverse

phenomenon and what may be true for inventors does not necessarily hold for other

categories of skilled workers. However, the study of mobility is often made impossible

by the lack of harmonized and reliable data. Finally, the empirical analysis is fairly

macroeconomic and do not consider the influence of personal characteristics such as

age, gender, tenure or productivity on the mobility patterns of inventors as in Crespi

et al. (2007); Lenzi (2009).
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4 Accessiblity, absorptive capacity and

innovation in urban areas

Abstract
Empirical studies on the geography of innovation have established that skilled work-
ers’ mobility and collaboration networks shape the diffusion of knowledge across firms
and regions. At the same time, the literature on absorptive capacity insisted on the
importance of local research capabilities to take advantage of knowledge developed
elsewhere. This chapter investigates both phenomena in an integrated framework by
assuming that mobility and networks provide access to knowledge, but the proportion
of accessible knowledge effectively used for innovation depends on absorptive capac-
ity. Such complementaries in regional research efforts are effectively captured using
a spatial Durbin model in which the connectivity structure stems from mobility and
collaboration patterns. Results confirm the relative importance of these two channels
in the diffusion of knowledge, and suggests that human capital increases absorptive
capacity. These findings have implications for the geography of innovation. While
greater accessibility encourages convergence, the notion of absorptive capacity implies
a self-reinforcing effect leading to divergence.
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4.1 Introduction

Since the development of endogenous growth theories, knowledge and innovation are

largely accepted as key driving forces behind long-term economic growth (Romer, 1986).

In this regard, economists have established that innovation depends on firms’ own re-

search capabilities, as well as their ability to use knowledge developed by other firms.

At the regional level, the production function approach suggests that innovation de-

pends on the level of human capital as well as the resources devoted to research. In

addition, regions may benefit from additional inputs emanating from the research ef-

fort of neighbouring regions (Moreno et al., 2005). Building on these considerations,

two streams of literature have analysed how knowledge is transmitted across firms

and regions. The empirical geography of innovation literature has established that the

transmission of knowledge proceeds mostly through personal ties. This is due to the

tacit nature of knowledge, which is embodied in individuals, and is better transmit-

ted though direct and frequent interactions (Howells, 2002). This effect is found to

be particularly important in urban areas where the concentration of individuals pro-

vides numerous opportunities for interaction and reduces the cost of communication

(Glaeser, 1999). Consequently, firms can gain access to external knowledge through

the recruitment of key workers (Almeida and Kogut, 1999) or by actively engaging in

collaborations networks (Singh, 2005). A second stream of research focused on firms’

ability to absorb external knowledge (Cohen and Levinthal, 1989). Specifically, having

access to knowledge, in particular through mobility and networks, is not sufficient so

that only firms endowed with the capacity to decode and understand others’ discoveries

can use it productively (Caragliu and Nijkamp, 2012). Therefore, there exist a com-

plementarity between internal and external inputs to innovation in the sense that firms

actively engaging in research increase their likelihood to innovate, but also develop their
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ability to understand and assimilate the discoveries of others (Cassiman and Veugelers,

2006). These two phenomena are interrelated and should be jointly analysed because

they are key factors in explaining regional innovation.

This chapter investigates the interactions among cities’ research activity by studying

accessibility, absorptive capacity and innovation in an integrated framework. The main

hypothesis is that mobility and networks provide access to knowledge, while the pro-

portion of accessible knowledge effectively used for innovation depends on absorptive

capacity (Miguelez and Moreno, 2013b). Specifically, this chapter contributes to the

empirical literature in four ways. First, the analysis is carried out at the level of urban

areas, a meaningful unit of analysis with regards to arbitrarily defined regions commonly

used in the literature. Second, it proposes a refinement of the typical weight matrices

based on purely geographical criteria by using information on the mobility of inventors

and their collaborative ties (Miguelez and Moreno, 2013a). In this chapter, the notion

of neighbourhood does not necessarily refer to spatially proximate cities, although it is

often the case, but rather cities that are linked by mobility flows and networks ties. The

iterative estimation method developed by Hazir et al. (2014) is used to draw inferences

on the relative importance of these different forms of connectivity. Third, this chapter

estimates a production function for innovation using a spatial Durbin model (Autant-

Bernard and LeSage, 2011) on a panel of 488 European urban areas over 1998–2009.

The results provide an assessment of the relative importance of mobility and networks

in accessing external knowledge. Fourth, there is evidence of absorptive capacity, as

only a fraction of the accessible knowledge is used for innovation, depending on the

level of human capital.

The main result is that innovation in cities is significantly influenced by the research

activity of their neighbours. In other words, there is evidence of strong spatial depen-
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dence among cities’ innovation processes. Specifically, three results are worth noting.

First, the analysis confirms the importance of skilled mobility, and to a lesser extent net-

works, in accessing external knowledge. A related conclusion is that contiguity alone

poorly reflects the nature of dependence, but serves as a proxy for more meaningful

forms of proximity based on social ties. Second, maximum likelihood estimates con-

firm that R&D spending contributes to local innovation, but also significantly increases

patenting in neighbouring cities. By contrast, the aggregate impact of human capital

is not significant, because the positive effect on local innovation is offset by a negative

spillover effect on neighbours, reflecting the existence of a competition effect between

cities to attract skilled individuals. On theoretical grounds, these opposing effects are

well documented. While endogenous growth models established that human capital

increases the rate of innovation, the new economic geography highlights a strong com-

petition effect associated with the mobility of workers. Third, this chapter provides an

estimate of absorptive capacity, measured as the complementarity between local and

external inputs, and shows that a certain level of human capital helps to take advantage

of neighbours’ discoveries.

These results have implications for the convergence debate. While greater accessibility

encourages convergence, the notion of absorptive capacity implies a self-reinforcing ef-

fect leading to divergence (Aghion and Jaravel, 2015). Models that study growth and

geography in an integrated framework recognize the importance of both workers’ mo-

bility and knowledge externalities in determining the location of innovation (Baldwin

and Forslid, 2000). On the one hand, if a region becomes relatively more attractive,

mobile workers will move to this region, causing it to grow at the expense of peripheral

areas in a circular-causation mechanism. On the other hand, the strength of agglomer-

ation depends negatively on the range of knowledge externalities. In this setting, the

aggregate impact of skilled mobility is ambiguous because it favours the core-periphery
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equilibrium, while its role in the diffusion of knowledge give rise to dispersion. The

theoretical literature is unclear about which effect prevails, partly because it does not

account for the actual mechanisms through which knowledge diffuses in space. This

work represents a step in this direction, as there is evidence of both complementarity

and competition effects among neighbouring cities’ innovation processes.

The remainder of this chapter is structured as follows. Section 4.2 reviews the related

literature. Section 4.3 describes the data and section 4.4 introduces the empirical model.

Section 4.5 discusses the estimation results and section 4.6 concludes.

4.2 Background

A number of empirical studies have established the existence of knowledge flows across

firms and regions (Jaffe et al., 1993) so that the production of innovation depends on the

amount of R&D activity carried out locally, as well as the possibility to take advantage

of neighbours’ research effort (Moreno et al., 2005). Building on these considerations,

two streams of literature have investigated the mechanisms through which knowledge

is transmitted in space.

The empirical literature on the geography of innovation has established that the trans-

mission of knowledge proceeds mostly through personal ties. This is due to the tacit

nature of knowledge, which is embodied in individuals’ minds and habits, and is bet-

ter transmitted though direct and frequent interactions (Howells, 2002). Consequently,

firms can gain access to knowledge through the recruitment of key workers. The ra-

tionale is that when these individuals move away from the place where they originally

worked, they bring their embodied knowledge to their new workplace and promote in-

novation. From an empirical perspective, Almeida and Kogut (1999) tracked knowledge
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diffusion patterns using patent citations in the semi-conductor industry. They found

evidence of knowledge flows only in the US sates where the intra-regional mobility of

inventors across companies is high. Miguelez and Moreno (2013a) reported similar evi-

dence at the regional level. Using a spatial knowledge production function on a panel of

European regions, they showed that regions linked by labour mobility and collaboration

networks influence their respective innovation outcomes. In fact, a related mechanism

for the transmission of knowledge is the presence of scientific networks, because they

reduce uncertainty and coordination problems. As a result, firms that are embedded

in collaboration networks are more likely to be exposed to original ideas. Singh (2005)

estimated the probability of knowledge flow between pairs of inventors. By applying a

choice-based sampling method to USPTO patent citations, he found that co-invention

networks explain the subsequent patterns of patent citations, both at the regional and

at the firm level. Finally, mobility and networks are two related phenomenon. Skilled

workers on the move influence the structure of networks by creating new, bridging or

closing existing networks. Conversely, a worker embedded in a professional network is

better informed about vacancies and the receiving organisation, so that social relation-

ships influence mobility decisions. For instance, Agrawal et al. (2006) looked at the

mobility patterns of US inventors across MSA and showed that mobile inventors are

more likely to be cited by their former colleagues, suggesting that social ties persist

even after formerly co-located inventors are separated.

The second stream of research focuses on firms’ ability to absorb external knowledge.

In a series of articles, Cohen and Levinthal (1989, 1990) argued that R&D does not only

generate knowledge, but also facilitates the imitation of knowledge developed elsewhere.

The intuition is that firms actively engaged in research in a particular technological field

can assimilate more readily the discoveries of others. In this sense, there is a comple-

mentarity between internal and external inputs to innovation (Cassiman and Veugelers,
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2006). The concept of absorptive capacity, originally developed in the context of firm

theory, has been recently extended to larger spatial units such as regions. Absorptive

capacity at the regional level can de defined as the ability of firms and individuals

within the region to assimilate and use productively accessible knowledge developed

elsewhere. Regions with a greater absorptive capacity are open to new ideas, and bet-

ter able to use them for innovation. The connection with economic theory is provided

by Griffith et al. (2003, 2004) who accounted explicitly for absorptive capacity in a

structural model of endogenous growth. The empirical results suggest that the social

returns to R&D and human capital are greater than previously thought at the indus-

try level. This is consistent with Mukherji and Silberman (2013), who provided an

estimate of absorptive capacity at the level of urban areas. Specifically, they interpret

origin and destination fixed effects of a gravity model of patent citations as a measure

of absorptive capacity, and use these estimates in a panel production function for in-

novation. Their results suggest that innovation in cities depend on their ability to use

external knowledge produced in neighbouring areas. At the regional level, Caragliu

and Nijkamp (2012) showed that a weak absorptive capacity increases knowledge flows

towards neighbouring areas, hampering the regions’ capability to decode and efficiently

exploit new knowledge, both produced locally and originating from outside.

Such interdependencies among neighbouring regions’ innovation processes can be ex-

plicitly modelled using a spatial specification. In her review of the literature, Autant-

Bernard (2012) argued that spatial models are relevant to study of regional innovation

because they account for two sources of dependence that characterize the geography of

innovation. First, spatial autocorrelation arise when innovation in a region is affected by

the research effort of its neighbours. Second, spatial heterogeneity stems for the spatial

concentration of innovative activity. These sources of dependence generate endogeneity

and cause conventional models to produce biased and inconsistent estimates. From an
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empirical perspective, Miguelez and Moreno (2013a) looked at the role of mobility and

networks on diffusion of knowledge for a panel of regions. Specifically, they estimated

a series of gravity models of knowledge diffusion and used fitted values on mobility and

networks to estimate a production function with neighbouring effects. Their main con-

tribution is to model explicitly the sources of interaction in regional innovation, rather

than using a connectivity structure based exclusively on geography. Recently, Hazir

et al. (2014) proposed an interesting methodology to build weight matrices using mul-

tiple criteria. They computed a series of matrices based on collaborations and distance

by means of gridding, and estimated the model iteratively to select the matrix asso-

ciated with the best model fit. The resulting matrix is used to draw inference on the

relative importance of different forms of connectivity. From a theoretical perspective,

Autant-Bernard and LeSage (2011) showed that spatial dependence in innovation could

be modelled parsimoniously using a spatial Durbin model. They demonstrated that to

the extent that innovation inputs are not perfectly observed, and that both observable

and unobservable inputs exhibit spatial dependence, the model should include spatial

lags for the dependent as well as the independent variables.

4.3 Data

The analysis is carried out at the level of urban areas. Innovation is measured by the

number of patents in a city, weighted by forward citations in order to control for patent

quality. Local inputs to innovation take the form of research investment and human

capital. The amount of external inputs that a city can access from its neighbours

depends on bilateral mobility flows, network collaborations as well as geographical

proximity. Finally, control variables include population and technological diversity.
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Table 4.1: List of variables

Variable Proxy Source

Innovation Citations weighted patents Crios-Patstat

Inputs
Research investment Spending in research and development Eurostat
Human capital Human resources in science and technology Eurostat

Connectivity
Mobility Changes in inventor’s addresses Crios-Patstat
Networks Bilateral collaboration counts Crios-Patstat
Geo. proximity Inverse driving distance OpenStreetMap

Controls
Size Population Univ. of Geneva
Tech. diversity Technological diversity index Crios-Patstat

Patent data contains extensive information about the patents, the inventors and the

assignees. Specifically, information relative to the patent include the date of applica-

tion, detailed technological categories as well as citations made to previous patents.

Besides, information about inventors comprise names and personal addresses, among

others. This chapter uses the Crios-Patstat database (Coffano and Tarasconi, 2014),

which records patent applications at the European Patent Office up to 2013. The data is

used extensively to compute innovation, mobility, networks and technological diversity

at the level of urban areas. This requires geocoding inventors’ addresses to determine

whether the patent was filled by an inventor residing in a city, which is done by clean-

ing and parsing addresses, before matching them against the OpenStreetMap database

to retrieve geographical coordinates. Cities are defined using Functional Urban Areas

(FUA), which provide a harmonized definition of metropolitan areas throughout the

European Union (OECD, 2013). FUA are defined using population density and com-
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muting patterns, so that each represents a self-contained labour market, an economically

meaningful unit of analysis (appendix A2.1).

The number of patents is used as proxy for innovation. Although patents represent a

well understood measure of innovation, available on a large scale and consistent across

space and over time, it has several limitations (Griliches, 1990). First, patents represent

invention but not necessarily innovation, because some inventions are never exploited

commercially. Second, not all inventions are patented, either because they don’t meet

the patentability criteria or because the firm favours other means of appropriability.

Third, patents vary greatly in their economic value, and the distribution of this value

is skewed toward the low end. In addressing this last issue, Trajtenberg (1990) argued

that the number of citations received may be used as a proxy for patent value. In-

tuitively, highly cited patents should be more valuable than those that received only

a few citations. However, counting citation-weighted patents involves two truncation

problems, one regarding patent counts and the other, citation counts (Hall et al., 2005).

First, there is a significant time lag between the patent application and the grant. As

we approach the last year of the dataset, we observe only a fraction of the patents ap-

plied for that will eventually be granted (appendix A2.2). For this reason, a three-year

safety lag is taken by exploiting patent data up to 2009. Second, the number of citations

received by a patent is truncated because they are observed up to the last year of the

dataset. Consequently, the citation intensity of patents applied for in different years

is not directly comparable1. This chapter uses the fixed effects approach developed by

Hall et al. (2001). For each patent, the citation intensity is expressed as a ratio to the

mean citation intensity of its cohort, which includes patents with the same application
1For instance, it is not obvious that a five year old patent that received 11 citations is more valuable

that a four-year old patent cited 10 times. Hall et al. (2001) discussed other sources of bias that may
affect citation. For instance, there has been an increase in the number of patents over time, so that
recent patents tend to be more cited than older ones. Besides, the average number of citations per
patent has increased over time, and recent citations may be less valuable.
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date. Rescaling citations this way removes the effects due to truncation, the effects due

to systematic changes over time in the propensity to cite, and the effects due to changes

in the number of patents making citations. However, there is no way to do so without

removing real differences between cohorts, which do not result from truncation.

Mobility is computed by tracking changes in inventors’ personal addresses in patent

documentation. For instance, consider an inventor who fills a patent at time t while

residing in city i. In t + 1, this same individual fills another patent while residing in

city j. Therefore, we can say that between t and t+ 1, this individual has moved from

i to j. This measure of mobility is fairly straightforward but presents three drawbacks.

First, the use of patent data restricts the analysis to inventors with at least two patents.

Second, a move is recorded only if those inventors applied for a patent before and after

the move, so this measure is lower bound. Third, patents record inventors’ location at

a point in time, therefore it is not possible to determine precisely when the move took

place. It is assumed that mobility occurred exactly between the application dates of

the patents at origin and destination, if there is no more than a four-year lag between

the two. Mobility computed this way identifies inventors who filled at least two patents

while residing in different urban areas. Another issue is that in practice, it is difficult to

determine whether two inventors are the same person, since patent offices do not require

unique identifiers for inventors. Therefore, disambiguation is necessary to determine

whether two patents belong to the same inventor by comparing all pairs of inventor-

patent instances. Inventors cannot be matched on the basis of their names for a least

two reasons. The first is misspelling of the same inventor name on different occasions.

The second occurs when two inventors with the same name are not actually the same

person. The Massacrator routine developed by Pezzoni et al. (2014) is used to identify

likely matches2 (appendix A2.3).
2I thank Michele Pezzoni for running several custom calibrations of Massacrator.
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Turning to the network variable, a patent has often more than one designated inventor,

if two inventors collaborate on the same patent, then a social tie exists. A network

of inventors can be viewed as a social network whose nodes are individual inventors

and links are co-inventorship relations. The network variable counts for each year,

the number of collaborations between inventors residing in city i and those residing

in j (appendix A2.4). Technological diversity is computed by grouping the patents

technological classes into 30 broader sectors defined by Schmoch (2008), and comparing

their relative distribution across cities. An issue is that patent with multiple classes

often belong to more than one sector, which makes the aggregation difficult. Sectors are

weighted according to their relative frequency of apparition in the patents (appendix

A2.5). For each city, the technological diversity index is computed as 1 −
n∑

t=1
s2t where

st is the relative share of the technological sector t in the city. An index a value close

to unity indicates that the city is technologically diverse.

Table 4.2: Descriptive statistics

N. obs Mean St. Dev. Min. Max.

Number of patents 5856 100.91 264.50 0.00 3477.00

Inputs
Spending in R&D (×106) 5856 272.91 811.13 0.00 14011.98

Human ressources in S&T 5856 2890.82 8333.77 0.00 142625.00

Connectivity
Mobility 4882 0.01 0.17 0.00 144.00

Networks 4882 0.29 7.06 0.00 2499.00

Distance 4882 752.89 408.43 10.00 2223.70

Controls
Population (×103) 5856 551.22 1047.53 19.00 11870.00

Tech. diversity index 5856 0.80 0.20 0.00 1.00

The analysis focuses on 488 cities over 12 years.
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Finally, total R&D expenditures are used as a proxy for the research effort. The level

of human capital is measured by the total number of R&D personnel and researchers

in full time equivalent.

4.4 Model

The model is based on a knowledge production function (Griliches, 1979), which ex-

presses innovation output (inn) in a city i as a function of domestic inputs (int) such

as R&D spending and human capital, as well as a set of characteristics (chr) specific

to i. Since knowledge developed by neighbouring cities enter the production function,

external inputs (ext) are added to the model. This function is assumed to take a

Cobb-Douglas form.

inni = chrβ1
i × intβ2

i × extβ3
i (4.1)

Spatial econometrics provide a natural tool to investigate the interdependencies in

neighbouring cities’ research activity. Autant-Bernard and LeSage (2011) provide a

formal motivation to estimate equation (4.1) using a spatial Durbin model (SDM).

Specifically, to the extent that innovation inputs are not perfectly observed and that

both observable and unobservable inputs exhibit spatial dependence, the model should

include spatial lags for the dependent as well as the independent variables. These as-

sumptions seem reasonable in our setting because R&D spending and human capital

represent rather aggregate measures of innovation inputs and, as made clear in the

previous section, cities’ research activities are expected to exhibit spatial dependence.

This gives the following empirical model, expressed in logarithms.
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Yt = ρWYt + βXt + θWXt + c+ εt (4.2)

Y is a vector of innovation output (inn). X is a matrix of local innovation inputs

(int) and city-specific characteristics (chr) with β the associated vector of coefficients.

Connectivity is introduced in the model through the weight matrix W . Two spatial lags

vectors, WY and WX, account for spatial dependence, and represent external inputs

to innovation (ext). Each vector is a linear combination of neighbouring observations’

dependent and independent variables, respectively. The scalar parameter ρ capture

the global dependence among cities’ innovation output, while the vector θ may be

interpreted as the average impacts of external inputs on local innovation. In addition,

c is a vector of individual effects and εt is a vector of independent and identically

distributed error terms with zero mean and constant variance σ2
0.

One of the main weaknesses of the spatial economic literature is the arbitrary choice of

the weight matrix. This is because W cannot be estimated and needs to be specified

in advance according to some relevant criterion. This chapter proposes a refinement of

the typical matrices based purely on geographical distance by using information on the

mobility of inventors and their collaborative network patterns. In this setting, physical

distance remains important because it increases the cost of mobility as well as the cost

of forming and maintaining network ties (Breschi and Lissoni, 2009). At the same

time, there is evidence of long-range knowledge flows (Owen-Smith and Powell, 2004),

and distant cities may influence each others if they are linked by labour mobility and

collaboration networks. Following Hazir et al. (2014), the weight matrix is expressed as

a convex combination of three components. The strength of interactions between cities

is assumed to be a function of bilateral (1) mobility flows, (2) network collaborations and

(3) geographical proximity. Letting WM , WN and WD be the corresponding matrices,
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with λM , λN , and λD their associated weights respecting λM + λN + λD = 1, W is

expressed as follows3.

W = λMWM + λNWN + λDWD

The resulting matrix has zeroes on the diagonal and non-null elements on the off-

diagonals when observation i depends on observation j. In order to make the three

matrices comparable in magnitude, WM,N,D are normalized to a range between 0 and 1.

Using different values of λM,N,D with increments of 0.1, sixty distinct weight matrices are

generated, reflecting different forms of connectivity. Equation (4.2) is then estimated

iteratively using each of the weight matrices. By comparing the different specifications,

one can observe how the model fit varies in response to changes in the connectivity

structure, and select the weight matrix associated with the model with the highest log-

likelihood, as shown in table 4.3. The values of λM,N,D associated with this matrix can

be used to draw inferences on the relative importance of different forms of connectivity.
3LeSage (2014) argued that a sparse and symmetric weight matrix performs better. The mobility

and network matrices are made symmetric so that for instance, the mobility between i and j reflects
the total number of moves between the two cities, regardless of the direction. Besides, the inverse
distance matrix is made sparse by keeping only the 15 nearest neighbours. The results are robust to
changes in the number of distance-based neighbours.
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Table 4.3: Structures of dependence

Rank λM λN λD Log-lik.

1 0.5 0.4 0.1 −1388.6

2 0.4 0.5 0.1 −1392.1

3 0.7 0.2 0.1 −1400.7
... ... ... ... ...

52 0.0 1.0 0.0 −1499.8

53 1.0 0.0 0.0 −1500.6

60 0.0 0.0 1.0 −1516.6

As noted by LeSage and Pace (2009), specifying the weight matrix using non-spatial

notions of proximity raises endogeneity concerns. In particular, mobility flows and net-

work ties used in the definition of W should be correlated with the inputs to innovation.

This is clearly a limitation of this empirical strategy, and to attenuate this issue, the

weight matrix is lagged one period4. Nonetheless, this connectivity structure has the

advantage of being derived from the economic literature, rather than being a vague

spatial pattern based on geography. Going back to the main hypothesis, it is assumed

that mobility and networks provide access to knowledge, but the proportion of acces-

sible knowledge effectively used for innovation depends on absorptive capacity. In our

setting, absorptive capacity can be measured as the complementarity between internal

and external inputs (Cassiman and Veugelers, 2006). Cities that engage actively in re-

search and employ talented individuals should understand more readily the discoveries

of others. Therefore, equation (4.2) is estimated with the addition of interaction terms

between the domestic inputs and the spatial lag.
4The correlation coefficient between the different matrices is 0.214 on average (appendix A2.4).
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Yt = ρWYt + βXt + θWXt + φXtWXt + c+ εt (4.3)

XWX is measure of absorptive capacity capturing the complementarity between in-

ternal and external inputs to innovation, and φ is the associated vector of coefficients.

Estimation results for the two models are presented in the next section. For clarity, the

model in equation (4.2) is referred to as the accessibility model, while equation (4.3) is

called the absorption model.

4.5 Results

The two models are estimated on a panel of 488 FUA located in 13 European countries

(appendix A2.1) over 1998–2009. These cities account for over 92% of all patents applied

for in European urban areas over this period. To avoid extreme heterogeneity, the

data is pooled into three-years periods corresponding to 1998–2000, 2001–2003, 2004–

2006 and 2006–2009. Besides, the weight matrix is not time-varying in our setting, so

mobility and network data are pooled over the sample period. To attenuate endogeneity

concerns, all independent variables are lagged one year. Table 4.4 reports the estimation

output for the accessibility model. The linear model presented in the first two columns

serves as a benchmark, while coefficient estimates for the spatial Durbin model are

presented in columns (3) and (4). Each model is estimated twice, once as a regular

model and once with the addition of individual fixed effects5. The spatial Durbin

models exhibit a better fit than their non-spatial counterpart and the log-likelihood
5For all models, the Hausman test rejects the null hypothesis that individual effects are uncorrelated

with the independent variables, so the fixed effects model is preferred over random-effects. In addition,
the maximum likelihood estimator is generally inconsistent in the presence of fixed effects (Lee and
Yu, 2010), especially when the length of the panel is short. The incidental parameter problem is solved
using the Lee Yu transformation.

119



statistic clearly favours the fixed effects specifications. Consequently, the discussion of

the results is based on the estimation output presented in column (4).

Table 4.4: Estimation output for the accessibility model

Linear model Linear model Spatial Durbin Spatial Durbin
(1) (2) (3) (4)

Internal inputs
R&D spending 0.178∗∗∗ (0.018) 0.093∗∗∗ (0.017) 0.078∗∗∗ (0.021) 0.034∗∗ (0.013)

Human capital 0.071∗∗∗ (0.017) 0.055∗∗ (0.021) 0.038∗∗ (0.015) 0.027∗ (0.017)

External inputs
W × R&D spending – – 0.012∗∗ (0.004) 0.037∗∗ (0.014)

W × Human capital – – −0.034∗∗ (0.013) −0.029∗ (0.012)

Controls
Population 0.675∗∗∗ (0.044) 0.279∗∗∗ (0.104) 0.638∗∗∗ (0.043) 0.171∗ (0.074)

Tech. diversity 1.692∗∗∗ (0.119) 1.073∗∗∗ (0.109) 1.256∗∗∗ (0.124) 1.003∗∗∗ (0.127)

Rho (ρ) – – 0.604∗∗∗ (0.028) 0.488∗∗∗ (0.040)

Fixed effects No Yes No Yes

Log-likelihood – −316.3 −1187.8 168.2

∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.

Accessibility

Our first hypothesis is that bilateral mobility and networks significantly affect neigh-

bouring cities’ research activity. The Rho estimate is positive and significant at the 1%

level, which confirms the existence of strong and positive spatial dependence. Looking

at the sources of dependence, table 4.3 shows that the best model fit is obtained when

W is computed using weights of 50% on mobility, 40% on networks and 10% on dis-

tance. Interestingly, the case when W is expressed only by distance yields the worst

fit, which confirm earlier findings that contiguity alone does not reflect the nature of
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dependence among innovation processes, but serves as a proxy for more meaningful

forms of proximity based on social ties. In addition, it implies that the mobility and

networks among distant cities matters for patenting. Distinguishing WM from WN , the

matrix expressed by mobility alone outperforms the network matrix in terms of model

fit, so that mobility has a slightly stronger spillover effect6. These findings motivate

the use of a spatial specification that model explicitly the sources of interactions among

neighbouring cities’ research activity. Considering the variables of interest, both the

R&D spending and the human capital variables have the expected sign and remain

significant at the 5% an 10% level when adding the fixed effects. Because the Rho

statistic is significant, their impact on the dependent variable must be interpreted in

terms of direct, indirect, and total effects, reported in table 4.5.

Table 4.5: Average marginal effects for the accessibility model

Direct effect Indirect effect Total effect

Inputs
R&D spending 0.036∗∗ (0.014) 0.035∗∗ (0.013) 0.071∗∗ (0.028)

Human capital 0.027∗ (0.011) −0.028∗∗ (0.011) −0.001 (0.006)

Controls
Population 0.168∗ (0.073) 1.085∗∗ (0.428) 1.254∗∗ (0.495)

Tech. diversity 0.988∗∗∗ (0.130) 2.693∗∗∗ (0.753) 3.681∗∗∗ (0.799)

∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.

The direct effect measures the impact of a unit change in one input of the typical

city i on the dependent variable of this same city i, averaged across all cities in the

sample. In our framework, this means that a 1% change in R&D investment increases
6The measure of mobility is sensitive to the disambiguation procedure. A robustness check using

a more conservative definition of mobility (appendix A2.3) favours the W computed using weights of
40% on mobility, 50% on networks and 10% on distance, which is very similar. Estimation results are
robust to this change in the connectivity structure.
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patenting in the city by 0.036%, which is an average elasticity response because of the

log-transformation. Similarly, the elasticity of patenting associated with an increase in

the level of human capital is 0.027%. The direct effect differs slightly from the estimates

reported in table 4.4, because the spatial Durbin model produces a small feedback

effect7. By contrast, the indirect effect captures the average impact on the dependent

variable city i, of a unit change in one input of cities j neighbouring i. The indirect

effect typically represent a measure of spillovers, which arise in our setting from bilateral

mobility and networks. A 1% change in neighbouring cities spending in R&D produces

on average a spillover impact of 0.035% on local innovation. Interestingly, the indirect

effect associated with an increase human capital is negative and significant. This is

interpreted as a competition effect. Unlike R&D investments, which partly consists of

research infrastructures; human capital is a mobile factor that relocates in space, and

tend to cluster within a few urban areas. It seems plausible that an increase in human

capital in a given city makes it more attractive to other skilled workers, and especially

to those located in neighbouring cities who face a lower mobility cost. Consequently, the

total impact of human capital is not significant, because it increases local patenting but

has a negative spillover effect on neighbours. On theoretical grounds, these opposing

effects are well documented. While the endogenous growth literature makes it clear

that human capital increases the rate of innovation, new economic geography models

highlight a strong competition effect associated with the mobility of workers. Turning

to the control variables, the coefficient associated with population and technological

diversity have the expected sign and remain significant in all the specifications.

Absorptive capacity

Our second hypothesis is that the amount of accessible knowledge effectively used for
7A variation in one input in city i impact city i’s output but also spillovers the output of neigh-

bouring cities, say j. This impact on j’s output produce in turn a spillover impact on output of cities
neighbouring j, and i is one such city (LeSage and Pace, 2009).
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innovation depends on cities’ absorptive capacity. In other words, cities that engage

actively in research and employ talented individuals can use a larger share of their neigh-

bours’ knowledge, accessible through mobility and networks. The estimation results for

the absorption model are detailed in table 4.6. Since R&D spending is associated with

a positive spillover effect, the model includes two interaction terms between the spa-

tial lag and the domestic inputs, interpreted as a measure of complementarity between

internal and external inputs to innovation. The linear model presented in columns (1)

and (2) serves as a benchmark, while coefficient estimates for the spatial Durbin model

are presented last two columns. As before, the preferred specification is the spatial

Durbin model with fixed effects in column (4), which has the highest log-likelihood.
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Table 4.6: Estimation output for the absorption model

Linear model Linear model Spatial Durbin Spatial Durbin
(1) (2) (3) (4)

Internal inputs
R&D spending 0.215∗∗∗ (0.022) 0.098∗∗∗ (0.021) 0.077∗∗ (0.030) 0.033∗ (0.014)

Human capital 0.090∗∗ (0.035) 0.029 (0.033) 0.056∗ (0.024) 0.023 (0.025)

External inputs
W × R&D spending – – 0.014∗∗ (0.005) 0.038∗∗ (0.015)

W × Human capital – – −0.074∗∗ (0.029) −0.011 (0.014)

Absorptive capacity
W RD × RD 0.119∗∗∗ (0.041) 0.036 (0.038) 0.054∗ (0.023) 0.021 (0.035)

W RD × HC 0.073∗∗∗ (0.027) 0.028∗∗ (0.011) 0.041∗∗ (0.016) 0.018∗ (0.007)

Controls
Population 0.650∗∗∗ (0.048) 0.413∗∗∗ (0.131) 0.634∗∗∗ (0.043) 0.173 (0.126)

Tech. diversity 2.028∗∗∗ (0.145) 1.213∗∗∗ (0.136) 1.242∗∗∗ (0.124) 0.999∗∗∗ (0.127)

Rho (ρ) – – 0.597∗∗∗ (0.028) 0.486∗∗∗ (0.040)

Fixed effects No Yes No Yes

Log-likelihood – −315.5 −1182.8 −266.7

∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.

As in the accessibility model, the Rho estimate confirms the existence of strong and

positive spatial dependence. Table 4.7 report the direct, indirect and total effects for the

absorption model. An additional 1% expenditures in R&D in a typical city increases

patenting in that city by 0.035% produces an average spillover impact of 0.034% on

neighbouring cities. Turning to human capital, both direct and indirect impacts become

insignificant in the fixed effects specification. Interestingly, when interacted with the

spatial lag of R&D spending, the coefficient on human capital remains significant at
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the 10% level, with a direct impact of 0.021%.

Table 4.7: Average marginal effects of the absorption model

Direct effect Indirect effect Total effect

Inputs
R&D spending 0.035∗ (0.015) 0.034∗∗ (0.014) 0.070∗∗ (0.026)

Human capital 0.024 (0.019) −0.012 (0.014) −0.012 (0.011)

Absorptive capacity
W RD × RD 0.023 (0.021) 0.012 (0.011) 0.035 (0.030)

W RD × HC 0.021∗ (0.009) 0.013 (0.010) 0.034∗ (0.014)

Controls
Population 0.213∗ (0.092) 1.046∗ (0.456) 1.259∗∗ (0.497)

Tech. diversity 1.084∗∗∗ (0.133) 2.607∗∗∗ (0.755) 3.691∗∗∗ (0.805)

∗90%, ∗∗95% and ∗∗∗99% confidence levels. Standard errors are robust.

Overall, there is rather weak evidence of absorptive capacity. Nonetheless, the results

confirm the existence of a complementarity between internal and external inputs to

innovation, and suggest that certain level of human capital helps to take advantage of

neighbours’ discoveries. Contrary to expectation, there is no comparable evidence for

the R&D spending variable. Finally, the controls have the expected sign and signifi-

cance.

4.6 Conclusion

Empirical studies on the geography of innovation have established that skilled work-

ers’ mobility and collaboration networks shape the diffusion of knowledge across firms

and regions. At the same time, the literature on absorptive capacity insisted on the

importance of local research capabilities to take advantage of knowledge developed
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elsewhere. This chapter investigates both phenomena in an integrated framework by

assuming that mobility and networks provide access to knowledge, but the proportion

of accessible knowledge effectively used for innovation depends on absorptive capac-

ity. Such complementaries in regional research efforts are effectively captured using

a spatial Durbin model in which the connectivity structure stems from mobility and

collaboration patterns.

This chapter contributes to the empirical literature in four ways. First, the analysis

is carried out at the level of urban areas, a meaningful unit of analysis with regards

to arbitrarily defined regions commonly used in the literature. Second, it proposes a

refinement of the typical weight matrices based on purely geographical criteria by using

information on the mobility of inventors and their collaborative ties. The model is es-

timated iteratively using different forms of connectivity to select the matrix associated

with the model that fits the data most closely. Results confirm that skilled mobility,

and to a lesser extent networks, significantly affect neighbouring cities’ innovation pro-

cesses. Besides, contiguity alone does not reflect the nature of dependence, but serves

as a proxy for more meaningful forms of proximity based on social ties. Third, this

chapter estimates a spatial knowledge production function on a panel of 488 Euro-

pean urban areas over 1998–2009. Maximum likelihood estimates suggest innovation

at the urban level is strongly affected by the research effort of their neighbours. Specif-

ically, spending in R&D contributes to local innovation, but also significantly increase

patenting in neighbouring cities. By contrast, the aggregate impact of human capital

is not significant, because the positive effect on local innovation is offset by a negative

spillover effect on neighbours. This is interpreted as a competition effect whereby an

increase in human capital in a city draws skilled workers away from neighbouring cities,

causing it to grow at the expense of peripheral areas. Fourth, this chapter provides

an estimate of absorptive capacity, measured as the complementarity between internal
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and external resources. There is rather weak evidence of this phenomenon but results

suggests nonetheless that a certain level of human capital helps to take advantage of

others’ discoveries.

These findings have implications for the convergence debate. While greater accessibil-

ity encourages convergence, the notion of absorptive capacity implies a self-reinforcing

effect leading to divergence. Models that study growth and geography in an integrated

framework recognize the importance of both workers’ mobility and knowledge exter-

nalities in determining the location of innovation (Baldwin and Forslid, 2000). On the

one hand, if a region becomes relatively more attractive, mobile workers will move to

this region, causing it to grow at the expense of peripheral areas in a circular-causation

mechanism. On the other hand, the strength of agglomeration depends negatively on

the range of knowledge externalities. In this setting, the aggregate impact of skilled

mobility is ambiguous because it favours the core-periphery equilibrium, while its role

in the diffusion of knowledge give rise to dispersion. The theoretical literature is un-

clear about which effect prevails, partly because it does not account for the actual

mechanisms through which knowledge diffuses in space. This work represents a step in

this direction, as it provides evidence of both complementarity and competition effects

among neighbouring cities innovation processes.

Perhaps, a more fine-grained study taking into account regional specificities in inno-

vation would provide a better understanding on the relative importance of these two

opposing effects. More generally, the impact on the distribution of innovation critically

depends on the nature of mobility. For instance, in the presence of long term mobility,

the agglomeration force should be stronger than what theory predicts. By contrast, the

increasing development of short-term, circular patterns of mobility should give rise to

dispersion. From a methodological perspective, spatial models offer a strong potential
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to investigate complementaries in research because they model parsimoniously complex

relationship between observational units across space and time. However, specifying

the weight matrix using non-spatial notions of proximity raises endogeneity concerns.

Further theoretical work in this direction would offer a great potential for empirical

analysis (Qu and Lee, 2015). In the same spirit, it would be interesting to implement

a dynamic panel with a time-varying weight matrix that allow the connectivity struc-

ture to change over time (Lee and Yu, 2012). This would allow for a more detailed

and dynamic analysis of the importance of mobility and networks in the diffusion of

knowledge.
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5 Conclusion

5.1 Main results

This thesis investigates the question of how skilled mobility shape the diffusion of

knowledge and the resulting spatial distribution of innovation. To answer this question,

it proceeds in three steps. Chapter 2 sets the conceptual framework and provides

a review of the literature. Chapter 3 investigates the patterns and determinants of

skilled workers’ mobility across urban areas. Chapter 4 focuses on the role of skilled

mobility, networks and absorptive capacity in the diffusion of knowledge across urban

areas.

One of the main conclusion of Chapter 2 is that some new economic geography and

growth models provide a useful theoretical framework to explain the spatial distribu-

tion of innovative activity through the interplay of agglomeration and dispersion forces.

While recognizing the importance of skilled mobility and knowledge externalities for the

distribution of innovation, they neglect these workers’ role in the diffusion of knowl-

edge. This should lead to an increased relevance of mobility choices for innovation. In

addition, the migration dynamics are very simplistic, and heterogeneity in workers’ lo-

cation preferences weakens the circular mechanism of agglomeration. Some evidence is

available in the geography of innovation literature. Empirical studies have established
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that skilled workers influence the diffusion of knowledge by moving across organisa-

tion, creating network relationships and building absorptive capacities. Besides, labour

mobility is diverse and skilled workers do not move exclusively in response to labour

market signals.

Building on these considerations, Chapter 3 investigates the patterns and determinants

of inventors’ mobility across European urban areas. The descriptive analysis suggests

that mobility is relatively rare and has a limited spatial dimension. Interestingly, the

results points to the importance of circular patterns of mobility, which generally occur

within the same firm. The econometric analysis reveals that inventors’ do not respond

exclusively to labour market signals, but are also attracted to cities providing natural

and cultural amenities. In addition, the decision to move is mediated by network ties,

which reduce information asymmetries and improve matching. Finally, the fragmenta-

tion of cultural and institutional frameworks in Europe significantly reduces mobility.

These results suggest that the diffusion of knowledge may be limited. Mobility is rare

and generally occurs within the same firms, located in technologically related cities.

This may cause may cause the transferred knowledge to be redundant. A more promis-

ing finding is that mobility may be encouraged, in particular through the development

of research collaborations.

Turning to the impact of skilled mobility, Chapter 4 explicitly models the interdepen-

dencies between neighbouring cities’ innovation. The main assumption is that mobility

and networks provide access to knowledge, but the proportion of accessible knowledge

effectively used for innovation depends on absorptive capacity. The analysis confirms

that mobility, and to a lesser extent networks, significantly affect neighbouring cities’

innovation. Specifically, spending in R&D contributes to local innovation, but also sig-

nificantly increases patenting in neighbouring cities. By contrast, the aggregate impact
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of human capital is not significant, because the positive effect on local innovation is

offset by a negative spillover effect on neighbours. This is interpreted as a competition

effect whereby an increase in human capital in a city would draw skilled workers from

neighbouring cities. Finally, the results suggest that a certain level of human capital

helps to take advantage of others’ discoveries.

These findings have implications for the convergence debate. Depending on labour mo-

bility and the range of knowledge externalities, a core-periphery pattern may emerge

as firms and skilled workers cluster within the same location. As this location becomes

more attractive, further concentration of firms and factors occurs, pushing its capacity

to innovate and grow at the expense of peripheral areas. By contrast, when knowledge

externalities have a wide spatial range, location decisions have no effect on innova-

tion, which weakens the circular-causation mechanism described above and favours the

symmetric equilibrium. In this setting, the aggregate impact of skilled mobility is am-

biguous because it favours the core-periphery equilibrium, while its role in the diffusion

of knowledge gives rise to dispersion. There exist both complementarity and competi-

tion effects among neighbouring regions’ innovative activity. The theoretical literature

is unclear about which effect prevails, partly because it does not account for the actual

mechanisms through which knowledge diffuses in space. In this regard, the geography

of innovation literature has established the importance of skilled mobility in the dif-

fusion of knowledge. However, the impact on the distribution of innovation critically

depends on the nature of mobility. For instance, in the presence of long term mobility,

the agglomeration force should be stronger than what theory predicts. By contrast, the

increasing development of short-term, circular patterns of mobility should give rise to

dispersion. The migration literature makes it clear that mobility is diverse.
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5.2 Direction for future research

Further research should focus on other categories of skilled workers, because inventors

represent only a fraction of the skilled workforce. Each category of workers has differ-

ent propensities and motivation to move, so that mobility patterns differ considerably.

Consequently, their impact on the diffusion of knowledge, and the resulting distribu-

tion of innovative activity is likely to be different. In addition, while both mobility

and networks influence the diffusion of knowledge, they have often been investigated

separately, and it would be interesting to study the interrelation between these two

channels, as they appear to be closely related. From a methodological perspective, spa-

tial models offer a strong potential to investigate complementaries in research because

they model parsimoniously complex relationship between observational units across

space and time. However, specifying the weight matrix using non-spatial notions of

proximity raises endogeneity concerns. Further theoretical work in this direction would

offer a great potential for empirical analysis.

More generally, there seems to be a consensus among economic geographers and urban

economists on the importance of large cities for innovation. This argument is backed

by substantial evidence exploring specific aspects of this relationship. Specifically, em-

pirical studies reported that dense urban areas concentrate more human capital and

generate more knowledge externalities. Besides, these cities are centres of production

and consumption, which attracts both skilled workers and innovative firms in a cumula-

tive mechanism. As a consequence, large urban areas are found to be more productive,

more innovative and tend to grow faster. It is tempting to translate these pieces of ev-

idence into a general hypothesis that large cities have a definite advantage over smaller

ones, and that higher concentration necessarily leads to better innovative performance.
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However, we should not fall back on narrow categorizations – high-skilled versus low-

skilled or core versus periphery – in our description of the economic landscape. These

classifications represent useful descriptions of the reality, but they mask a great deal

of variation. This is particularly important in a European context, because the vast

majority of the reported evidence is based on US data, and the EU has a more polycen-

tric and less concentrated urban structure. In this regard, Dijkstra et al. (2013) argued

that the concentration of people and growth in the largest European cities has slowed

down or reversed over the last decade. In a French context, Bouba-Olga and Grossetti

(2015) questioned the identification of productivity-agglomeration relationship. They

argued that specialization rather than size, drives differences in productivity. Finally,

urban economists have long established that negative externalities such as congestion

costs, labour crowding and high cost of living, may increase the appeal of smaller ur-

ban centres. Taken together, these arguments cast a very different light on the role

played by urban areas on European economic performance. In a recent contribution,

McCann and Acs (2011) argued that productivity is driven primarily by a city’s con-

nectivity, rather than to its scale. This is consistent with the evidence reported by

Fitjar and Rodriguez-Pose (2011) for south west Norway. Despite a low population

density and a limited investment is research, this region has remained innovative by

developing strategic international collaborations with dynamic regions. Building on

these considerations, different cities may opt for distinct strategies by using different

combinations of internal and external inputs for innovation. While large urban areas

can rely on their local pool of skills and knowledge, smaller urban areas may benefit

from the research effort in the core, in particular through the development of mobility

and networks. Future research should focus on small and medium-sized urban areas to

identify different innovation strategies. In this regard, it would be interesting to design

a typology to classify urban areas along various criteria including size, internal research
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capabilities, levels of mobility, embeddedness in networks and technological diversity

among others. In a more dynamic perspective, it would be interesting to monitor how

these cities move along the urban hierarchy. For instance, the innovation output to

input ratio may be greater in medium-sized cities than in large metropolitan areas.

Such an approach would certainly provide a deeper understanding of the importance of

smaller urban centres, as well as European specificities in innovation.
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Appendix

A1 Appendix for Chapter 3

A1.1 Distance

Table A1: Estimation results using various forms of distance

Spatially filtered Quasi Poisson
(1) (2)

Stock of inventors (o) 0.916∗∗∗ 0.580∗∗∗

Stock of inventors (d) 0.887∗∗∗ 0.541∗∗∗

Driving distance (od) −1.529∗∗∗ −20.341∗∗∗

Squared driving distance (od) 7.515∗∗∗

R&D expenditure (d) 0.278∗∗

Human ress. in S&T (d) 0.237∗∗∗

Collaborations (od) 0.185∗∗∗

Centrality (o) 0.185∗∗∗

Centrality (d) 0.215∗∗∗

Tech. proximity (od) 0.778∗∗∗

Same country (od) 2.198∗∗∗

Constant −4.197∗∗∗ −9.157∗∗∗

∗90%, ∗∗95% and ∗∗∗99% confidence levels.

A1.2 Technology

Table A2: Technological classes and subclasses
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1 – Chemicals
11 Agriculture, food, textiles
12 Coating
13 Gas
14 Resins
14 Organic compounds
15 Resins
19 Miscellaneous

2 – Computers, communications
21 Communications
22 Computer hardware, software
23 Computer peripherials
24 Information storage
25 Electronic business methods and software
29 Miscellaneous

3 – Drugs, medical
31 Drugs
32 Surgery, medical instruments
33 Genetics
39 Miscellaneous

4 – Electrical, electronic
41 Electrical devices
42 Electrical lighting
43 Measuring, testing
44 Nuclear, x-rays
45 Power systems
46 Semiconductor devices
49 Miscellaneous

5 – Mechanical
51 Mat. proc, handling
52 Metal working
53 Motors, engines, parts
54 Optics
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55 Transportation
59 Miscellaneous

6 – Others
61 Agriculture, husbandry, food
62 Amusement devices
63 Apparel, textile
64 Earth working, wells
65 Furniture, house fixtures
66 Heating
67 Pipes, joints
68 Receptacles
69 Miscellaneous

Source: NBER Patent Data Project

A2 Appendix for Chapter 4

A2.1 Functional Urban Areas

Each FUA is composed of a densely populated city core and a commuting zone

• Core: (1) All grid cells with a density of more than 1 500 inhabitants per sq km

are selected. (2) The contiguous high-density cells are then clustered, gaps are

filled and only the clusters with a minimum population of 50 000 inhabitants are

kept as core. (3) All the municipalities with at least half their population inside

the urban centre are selected as candidates to become part of the city. (4) The

city is defined ensuring that there is a link to the political level, that at least

50% of city the population lives in an urban centre and that at least 75% of the

population of the urban centre lives in a city.

• Commuting zone: (1) All municipalities with at least 15% of their employed
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Figure A1: Functional Urban Areas

FUA in red are used in the econometric analysis.

residents working in a city are identified. (2) Municipalities surrounded by a single

functional area are included and non-contiguous municipalities are dropped. (3)

If 15% of employed persons living in one city work in another city, these cities are

treated as a single city.
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A2.2 Innovation

Figure A2: Patents and citations over time
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A2.3 Disambiguation

The Massacrator routine uses a three-step procedure: cleaning and parsing, matching,

and filtering. Specifically, (1) cleaning and parsing involve purging names and surnames

stings of typographical errors and converting them to a standard character set. Strings

may be parsed into several substrings, whenever appropriate. (2) Then inventors whose

names match, either exactly or closely are selecting as likely candidates. (3) During the

filtering stage, the selected pairs are filtered using additional information present in the

patent documents. The disambiguation is a trade-off between precision and recall.

155



Table A3: Calibrations of Massacrator

Variables C1 HR C3 C4

Network
Coinventor 1 1 1 1
Three degrees 1 1 1 1

Geographical
City 0 0 0 0
Province 1 1 0 0
Region 1 1 0 0
State 0 0 0 0
Street 0 0 0 0

Applicant
Applicant 1 1 1 1
Small applicant 1 1 1 1
Group 0 0 0 0

Technology
IPC4 1 1 1 1
IPC6 1 1 1 1
IPC12 1 1 1 1

Citations
Citations 0 0 0 0
ASE 0 0 0 0

Other
Rare surnames 0 0 0 0
Three years 0 0 0 0

N criteria to be met 2 3 2 3

Calibrating Massacrator requires choosing (1) the number of filtering variables and (2)

the number of criteria to be met in order for the pair to be considered as a match. For

exploratory purposes, four calibrations based on the high-recall calibration of Massacra-

tor (HR) are tested. C1 tests the sensitivity of disambiguation results to the number of
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criteria to be met. C2 and C3 test the sensitivity of the disambiguation to the removal

of geographical criteria. C1 and C3 perform best, both by the number of movers and

the number of moves. Results suggest that disambiguation is much more sensitive to

the number of criteria to be met, rather than the inclusion of geographical criteria. The

preferred measure of mobility is C1, and C2 is used for robustness checks.

A2.4 Connectivity

Figure A3: Connectivity structure

Left panel: Mobility flows, 1998-2009. Right panel: Collaboration networks, 1998-2009. Middle panel:
Relative connectivity of cities with regards to their level of mobility flows (blue), both inward and
outard, and their number of collaborations (red).

Table A4: Correlation between weight matrices

WM WN WD

WM 1 0.395 0.086
WN 0.395 1 0.161
WD 0.086 0.161 1
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A2.5 Technology

Table A5: Technological classes and subclasses

A – Electrical engineering, Electronics
1 Electrical engineering
2 Audiovisual technology
3 Telecommunications
4 Information technology
5 Semiconductors

B – Instruments
6 Optics
7 Technologies for Control/Measures/Analysis
8 Medical engineering
9 Nuclear technology

C – Chemicals, Materials
10 Organic chemistry
11 Macromolecular chemistry
12 Basic chemistry
13 Surface technology
14 Materials, Metallurgy

D – Pharmaceuticals, Biotechnology
15 Biotechnologies
16 Pharmaceuticals; Cosmetics
17 Agricultural and food products

E – Industrial processes
18 Technical processes (chemical, physical, mechanical)
19 Handling; Printing
20 Materials processing, textile, glass, paper
21 Environmental technologies
22 Agricultural and food apparatuses

F – Mechanical engineering Machines, Transport
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23 Machine tools
24 Engines, Pumps, Turbines
25 Thermal processes
26 Mechanical elements
27 Transport technology
28 Space technology; Weapons

G – Consumer goods, Civil engineering
29 Consumer goods
30 Civil engineering

Source: ISI, OST, INPI

A simple count of patent classes is not satisfactory as multidisciplinary patents would

be over-represented. Building on these considerations, sectors within patents need to

be weighted according to some relevant criterion. Three aggregations are performed.

A1 retain only first sector. Conversely, A2 gives equal weight to all sectors. Finally, A3

weights sectors according to their relative frequency. The preferred aggregation is A3

and the other two are used for robustness checks.

Table A6: Aggregation of patent classes

Patent Sector Rank A1 A2 A3
A 1 F 1 1/2 1/3

A 2 - 0 1/4 1/3

A 2 - 0 1/4 1/3

B 1 F 1 1 1
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List of acronyms

CBSA Core Based Statistical Areas

EU European Union

FUA Functional Urban Areas

LUZ Larger Urban Zones

NEG New Economic Geography

NEGG New Economic Geography and Growth

MSA Metropolitan Statistical Areas

TTWA Travel To Work Areas

UK United Kingdom

US United States of America
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Abstract

The fact that innovative activity is remarkably concentrated in space, and in particular

in cities, has motivated an important research effort to understand the spatial dimen-

sion of innovation, and the underlying mechanisms at work. While the literature has

established the importance knowledge flows for location of innovation, the mechanisms

through which they diffuse in space remain largely understudied. In particular, studies

have insisted on the importance of skilled workers’ mobility and the networked nature

of knowledge production for innovation. Building on these considerations, this thesis

investigates the role of skilled mobility in the diffusion of knowledge, and the resulting

distribution of innovative activity.

To answer this question, the thesis proceeds in three steps. Chapter 2 sets the con-

ceptual framework and surveys the related literature. One of the main conclusion of

this review is that some new economic geography and growth models provide a useful

theoretical framework, because they recognize the importance of skilled mobility and

knowledge externalities for the distribution of innovation. However, they fail to provide

a reasonable answer to our research question for at least two reasons.

First, the migration dynamics are very simplistic, and introducing heterogeneity in

workers’ characteristics and location preferences alters the cumulative mechanism of

agglomeration. Chapter 3 provides a descriptive analysis on the patterns of inventors’

mobility across urban areas, and their spatial dimension. Using these results, a spa-

tial filtering gravity model is used to analyse formally how employment opportunities,

professional networks and urban amenities, influence inventors’ mobility flows.

Second, these models do not consider workers’ role in the diffusion of knowledge. The

literature has established that skilled individuals influence the diffusion of knowledge
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by moving across organisation, creating network relationships and building absorptive

capacities. Chapter 4 implements a spatial Durbin model to study these three mech-

anisms in an integrated framework. It is assumed that that mobility and networks

provide access to knowledge, but the proportion of accessible knowledge used for inno-

vation depends on absorptive capacity.

These results have implications for the geography of innovation. While long-term mo-

bility acts as a strong agglomeration force, the development of short-term, circular

patterns of mobility should give rise to dispersion. The relative importance of these

two effects is uncertain, because workers have different propensities and motivation to

move, so that mobility patterns differ considerably. This should help explaining the

persistence of long-run growth differentials among urban areas, and in a more dynamic

setting, whether these gaps tend to widen or fall over time.

164


	Introduction
	Background
	Research questions
	Methodological choices
	Overview of the chapters
	Main results

	Skilled mobility and the geography of innovation
	Introduction
	Labour mobility and economic geography
	Economic geography, innovation and growth
	Skilled mobility and the diffusion of knowledge
	The determinants of skilled mobility
	Conclusion

	Patterns and determinants of skilled mobility across urban areas
	Introduction
	Background
	Data
	Patterns of inventors' mobility
	Determinants of inventors' mobility
	Conclusion

	Accessiblity, absorptive capacity and innovation in urban areas
	Introduction
	Background
	Data
	Model
	Results
	Conclusion

	Conclusion
	Main results
	Direction for future research

	Bibliography
	Appendix
	Appendix for Chapter 3
	Appendix for Chapter 4

	List of acronyms
	Abstract

