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Compiègne, France 
  

2016 



2



We cannot solve our problems with the same thinking we used when we created them.
Albert Einstein
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Resumé

L’incertitude a été toujours présente dans les problèmes d’optimisation. Dans ce travail,

nous nous intéressons aux problèmes d’optimisation multi-niveaux où l’incertitude ap-

parâıt très naturellement. Les problèmes d’optimisation multi-niveaux avec incertitude

ont suscité un intérêt à la fois théorique et pratique. L’optimisation robuste fait partie

des méthodes les plus étudiées pour traiter ces problèmes.

En optimisation robuste, nous cherchons une solution qui optimise la fonction objec-

tive pour le pire scénario appartenant à une ensemble d’incertitude donné. Les problèmes

d’optimisation robuste multi-niveaux sont difficiles à résoudre, même de façon heuristique.

Dans cette thèse, nous abordons les problèmes d’optimisation robuste à travers le prisme

des méthodes de décomposition. Ces méthodes décomposent le problème en un problème

mâıtre (MP) et plusieurs problèmes satellites de séparation (AP). Le problème mâıtre

contient les contraintes robustes initiales, mais écrites uniquement pour un nombre fini

de scénarios. D’autres scénarios sont générés au fur et à mesure par la résolution des

problèmes satellites de séparation.

Dans ce contexte, les solutions et les relaxations heuristiques ont une importance

particulière. Même pour les problèmes d’optimisation combinatoires, les relaxations sont

importantes pour analyser l’écart de l’optimalité des solutions heuristiques. Un autre

aspect important est l’utilisation des heuristiques comme integrés dans une méthode

exacte. Ansi, les solutions heuristiques permettent un gain important en terme de temps

de calcul, entre autres, parce que les problèmes satellites de séparation doivent être résolus

à plusieurs reprises. Une bonne solution heuristique pour les problèmes satellites de

séparation peut nous permettre de générer un scénario supplémentaire pour le problème

mâıtre.

Les principales contributions de ce travail sont les suivantes. Premièrement, nous pro-

posons une nouvelle relaxation pour les problèmes multi-niveaux basée sur l’approche dite
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d’information parfaite dans le domaine de l’optimisation stochastique. L’idée principale

derrière cette méthode est d’éliminer les contraintes de non anticipativité du modèle pour

obtenir un problème plus simple. Nous pouvons ensuite fournir des algorithmes combina-

toires ad-hoc et des formulations de programmation mixte en nombres entiers compactes

pour ce problème. Deuxièmement, nous proposons de nouveaux algorithmes de program-

mation dynamique pour résoudre les problèmes satellites apparaissant dans une classe

spécifique de problèmes robustes pour un ensemble d’incertitude de type budget. Ce

type d’incertitude est basé sur le nombre maximum d’écarts autorisés et leur taille. Ces

algorithmes peuvent être appliqués à des problèmes de lot-sizing et à des problèmes de

tournées de véhicules. Enfin, nous proposons un modèle robuste pour un problème lié à

l’installation équitable de capteurs. Ce modèle fait le lien entre l’optimisation robuste et

l’optimisation stochastique avec contraintes probabilistes ambigües.

Mots-clés: optimisation robuste, optimisation sous incertitude, complexité computa-

tionnelle, problèmes de lot-sizing, problèmes à plusieurs étapes.
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Abstract

Uncertainty has always been present in optimization problems, and it arises even more

severely in multistage optimization problems. Multistage optimization problems under

uncertainty have attracted interest from both the theoretical and the practical level.

Robust optimization stands among the most established methodologies for dealing with

such problems.

In robust optimization, we look for a solution that optimizes the objective function for

the worst possible scenario, in a given uncertainty set. Robust multi-stage optimization

problems are hard to solve even heuristically. In this thesis, we address robust optimiza-

tion problems through the lens of decompositions methods. These methods are based

on the decomposition of the robust problem into a master problem (MP) and several

adversarial separation problems (APs). The master problem contains the original robust

constraints, however, written only for finite numbers of scenarios. Additional scenarios

are generated on the fly by solving the APs.

In this context, heuristic solutions and relaxations have a particular importance. Sim-

ilarly to combinatorial optimization problems, relaxations are important to analyze the

optimality gap of heuristic solutions. Heuristic solutions represent a substantial gain

from the computational viewpoint, especially when used to solve the separation problem.

Because the adversarial problems must be solved several times, good heuristic solution

may avoid the exact solution of the APs.

The main contributions of this work are three-fold. First, we propose a new relax-

ation for multi-stage problems based on the approach named perfect information in the

field of stochastic optimization. The main idea behind this method is to remove non-

anticipativity constraints from the model to obtain a simpler problem for which we can

provide ad-hoc combinatorial algorithms and compact mixed integer programming for-

mulations. Second, we propose new dynamic programming algorithms to solve the APs

7



for robust problems involving budgeted uncertainty, which are based on the maximum

number of deviations allowed and on the size of the deviations. These algorithms can be

applied to lot-sizing problems and vehicle routing problems among others. Finally, we

study the robust equitable sensor location problem. We make the connection between

the robust optimization and the stochastic programming with ambiguous probabilistic

constraints. We propose linear models for several variants of the problem together with

numerical results.

Keywords: robust optimization, optimization over uncertainty, computational complex-

ity, lot-sizing problems, multi-stage problems.
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Introduction

Uncertainty has always been present in optimization problems. This is due, among others,

to the possibility of data errors and the lack of information about some parameter of the

problem at the moment we solve it. Such uncertainty arises naturally in problems where

the decisions can be divided into disjoint sets associated with periods of time and the

taken decisions at a period are influenced by the decisions taken at earlier periods. These

problems are named multi-stage problems, because of the temporal relation between the

decision. They will be one of the focus of our work.

Multistage optimization problems appear in insurance [MS04], energy production [HCF10]

and trading [VJM16], logistics and transportation [BMdO15], among other areas. Mul-

tistage optimization problems under uncertainty have attracted interest from both, the-

oretical and practical points-of-view from diverse research communities as we can see

in [LF14], [Tim15], [PP15] and [AP14]. Multi-stage optimization problems are hard to

model properly due to the links between the uncertain parameter revealed in early peri-

ods and the decisions that must be taken in the future. More precisely, we must enforce

that for any two different scenarios (a concrete realization of the uncertain parameters is

called a scenario), that are equals until the period i, we must have the same decisions for

the decision variables until period i. Such kind of constraints, called non-anticipativity

constraints model the intuition that the decision maker can only take into consideration

something that already happens and these constraints usually need infinite numbers of

variables and linear constraints to be modeled accurately. Among the most established

methodologies for dealing with such problems are stochastic programming and, more
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recently, robust optimization.

In robust optimization [BTEGN09], we look for a solution that optimizes the objective

function according to “worst possible” realization of the uncertain parameters. Thanks

to such a strong constraint, robust optimization models do not make any assumption

about the probabilistic distribution of the uncertain parameters. It rather assumes that

all possible scenarios lie into a given uncertainty set, which is usually considered to be

a tractable convex set [BN98]. Notice that the uncertainty set can be seen as the set of

scenarios against which we want to be protected. Robust optimization often conducts

to reasonable solutions that are practical, and it makes only a few simple assumptions

about the uncertain parameters of the problem [BGGN04], [BS03]. Robust solutions are

usually more expensive, from the point of view of the evaluation of the objective function,

than stochastic ones. In this work, we focus on robust optimization solutions and robust

programming methods.

Some approaches to solving robust problems are based on decomposition methods,

which are especially useful for multi-stage problems that only have two-stages or does not

have non-anticipativity constraints. These methods are based on the idea that to solve

a robust optimization problem we can decompose the problem into a master problem

(MP) and several adversarial separation problems (APs). The master problem contains

the original robust constraints, however, written only for a finite number of scenarios.

Additional scenarios are generated on the fly by solving the APs. In this framework, the

master problem provides optimality while the adversarial problems check feasibility.

In this context, heuristic solutions and relaxations have a special importance. Heuris-

tic solutions are feasible solutions that may be not optimal. One example is the affine

decision rules presented in [BIP10], which considers that the optimization variables are

affine functions of the uncertain parameters. Relaxations, as the dual affine decision

rules presented in [KWG11], are important to analyze the optimally gap of heuristic so-

lutions defined as the difference between the relaxation and a heuristic solution. This

gap represents in some way the quality of the proposed solution. Hence good relaxations
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(relaxations which have the value close to the optimal solution) are important for a good

estimation of the quality of a heuristic solution.

With respect to decompositions methods for robust optimization, heuristic solutions

may represent a substantial gain from the computational point-of-view when this is used

to solve the AP problems. We recall that such problems need to be solved several times,

not necessary to optimality. A good heuristic solution may prove the non-feasibility of a

solution for the master problem and allow us to generate an additional scenario for the

master problem.

A kind of robust optimization problems that have been receiving a lot of attention

are robust lot-sizing problems. Such problems are naturally multi-stage and, despite their

simplicity they conserve the main difficulties and structures of general robust multi-stage

optimization problems. Special attention is given to these robust optimization problems,

because not only such problems can, typically, be solved in a tractable manner but they

provide useful insights into the structure of the multi-stage problems in general.

One of the contributions of this work is to propose a new relaxation method based

on the famous approach of perfect information for stochastic optimization, sometimes

also known as the clairvoyant version. The main idea behind this method is to remove

the non-anticipativity constraints of the model to obtain a simpler problem, which is

easier to solve. When we remove the non-anticipativity constraints, each scenario of the

uncertainty set has a set of variables associated with it, and the problem becomes a

two-stage robust problem. Remark that we can see this problem as the problem where

the decision-maker has full knowledge of the future, that is why this method is usually

called the clairvoyant version. Because we commonly end up with a robust two-stage

problem after removing the non-anticipativity constraints, we also proposed a Benders-

like algorithm to solve this kind of problems when it possesses a special dependency

structure of the uncertainty and a special structure on the uncertainty set.

This thesis is organized as follows. Chapter 1 presents concepts used in the field of

optimization under uncertainty. We present the main methods known in the literature
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to deal with uncertainty in optimization problems, namely, stochastic and robust op-

timization. This work is focused on robust optimization. Hence we present stochastic

optimization very briefly at the end of the chapter just to better place the contributions

presented. In the second part, we go over classical results and tools for robust optimiza-

tion, namely, affine decision rules, dualization and decomposition methods. At this point

we note that affine decisions rules give heuristic solutions although they might be optimal

for several cases [BIP10], they can also provide poor solutions in others.

In Chapter 2, we present the main definitions and concepts in the field of inventory

management as well as we formalize the definition of many variants of lot-sizing problems

and robust lot-sizing problems. Chapter 2 also presents the most important notations

used in the thesis, as well as the concepts of backlog and setup costs.

In Chapter 3, we consider the budgeted uncertainty polytope from Bertsimas and

Sim, widely used in the literature, and propose new dynamic programming algorithms to

solve the adversarial separation problems which are based on the maximum number of

deviations allowed and on the size of such deviations. Our algorithms can be applied to

robust constraints that occur in various applications such as lot-sizing, traveling salesper-

son problems with time-windows, scheduling problems, and inventory routing problems,

among many others. We show how the simple version of the algorithms leads to a fully

polynomial approximation scheme when the deterministic problem is convex. We assess

our approach to a lot-sizing problem numerically, showing a comparison with the classical

MIP reformulation of the AP traditionally used in the literature.

In Chapter 4, we address the problem of obtaining relaxations for multi-stage robust

problems, with a special focus on robust lot-sizing problems. We define a relaxation

problem based on the approach of perfect information, and we study the relaxation prob-

lem associated with different versions of the robust lot-sizing problem. Most relaxation

problems for the robust lot-sizing problem are proven to be polynomial, when the un-

certainty polytope is simple enough (this will be defined formally in the chapter, but it

can be understood as a compact linear polytope). We also discuss the importance of
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such relaxation from the theoretical point-of-view and compare them, numerically, with

the relaxation presented in [KWG11], one of the few references concerning relaxation in

robust multi-stage optimization.

In Chapter 5, we change a little bit the focus from robust multi-stage problems and

robust lot-sizing problems to equitable and ambiguous sensor location problems. We

tackle three sensor locations problems: equitable sensor location, resilient sensor location,

and ambiguous sensor location. In the equitable sensor location, one wants to determine

a placement of K sensors in a plan to protect locations of interest in such way that each

location of interest has the highest equitable level of probabilistic protection. In the

resilient sensor location problem, we extend the basic equitable model to the case when

sensors are subject to failures. In the ambiguous sensor location problem, we consider

the case where the surveillance probabilities that an intruder is detected are not known

with accuracy. We study these three problems and present models and solution methods

for each one of them.

To finalize, Chapter 6 presents a conclusion of all the work done as well as some open

questions for future work.
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Part I

General Context and Preliminaries
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The first part of this thesis is devoted to the description of the context, the research

area and main methods and techniques to be used. We start with robust optimization,

which is the main focus of this thesis. Next, we recall the main techniques and methods

in the field of robust optimization. We present a more formal definition of robust multi-

stage problems as well as the popular approaches like these based on affine decision rules,

dualization and Bender’s decomposition for such problems.
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Chapter 1

Uncertainty in Optimization

Problems

1.1 Problems with uncertainty

Optimization refers to the analysis and solution of problems characterized by a feasible

region, which contains the possible solutions (feasible solution) and an objective function

that gives an evaluation of each possible solution. The goal is to determine the solution

with the largest profit or the smallest cost, depending on the statement of the problem.

Commonly, feasible solutions are represented by a set of variables that can take values

in a fixed range, defining the feasible region for the problem. The variables can be seen

as decisions that should be taken by someone. These methods maximize (if we want a

feasible solution with the largest profit) or minimize (if we want a feasible solution with

the smallest cost) the objective function evaluation.

Mathematically, we can write an optimization problem as
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min (ormax) c(x)

st fi(x) ≤ bi ∀i ∈ {1, . . . , n}

x ∈ X ,

where x is the vector of optimization variables, X is a set of possible values (choices) for

x, fi : X → R is a function and bi a real number for each i ∈ {1, . . . , n}, which define

the restrictions of the feasible region associated to the problem; and c : X → R is the

objective function.

It is commonly known that uncertainties are frequent in the data related to optimiza-

tion problems. Optimization problems under uncertainty are characterized by the need

for the decision maker to take their decisions without knowing what their full effects

will be. Such problems appear in many areas and present many exciting challenges in

theory and practice [Roc01]. Some examples of applications where one must take into

consideration data uncertainty follow:

Generation of electrical power: Electrical utilities must decide their production and

distribution without knowing exactly the client demands [GCCP93] and [GKHR03].

Reservoir management: Systems of water reservoirs and their connecting flows have

to be managed in a reasonable manner for drinking water, irrigation, hydropower,

flood control, recreation, and the protection of fish runs. However, none of these

demands are known or even can be guaranteed to exist [RM10].

Portfolio selection: Investments must be made in stocks, bonds, foreign currencies and

without knowing for sure how their values will rise or fall [Zhu10].

The uncertainty can be related to errors while measuring the data associated to the

problem [GH86]. It can also be intrinsic to the problem, for example when a parameter of

the problem models some information that is related to the future or to elements that can
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not be objectively measured. This implies that the uncertainty can influence the functions

fi, as well as the real values bi and the objective function c. Mathematically they become

functions of the uncertainty, or to be more precise of the uncertain parameters that wrap

up the uncertainty related to the problem. We assume that the uncertain parameters

belong to a set denoted Ξ which we call the uncertainty set.

In this context, one wants to optimize a function g that takes as arguments the value

of the function c() for each element ξ ∈ Ξ. More precisely, we can write an optimization

problem under uncertainty as follows:

min(max) g({c(x,ξ)|ξ ∈ Ξ})

st fi(x, ξ) ≤ bi(ξ) ∀i ∈ {1, . . . , n}, ∀ξ ∈ Ξ

x ∈ X .

For instance, g can represent the expectation or the maximum value taken over Ξ.

1.2 Models for the uncertain parameters

One crucial point concerns the mathematical model used to represent the uncertain pa-

rameters linked to the uncertainty present in the problem. Notice that the model of such

uncertain parameters is a challenge in itself, and many research papers have seeked to

achieve a meaningful representation of the possible uncertainties present in an optimiza-

tion problem. Herein, we focus on two kinds of mathematical models for the uncertain

parameters: scenario’s uncertainty and polyhedral uncertainty.

In scenario’s uncertainty, we have a list of all possible realizations of the uncertain

parameters. This method is inherently discrete since such list must be finite [God00],

[CTC07]. More precisely, the uncertainty set Ξ shall consist of a list {ξ1, ξ1, . . . , ξm}.

On the other hand, polyhedral uncertainty assumes that each possible realization of

the uncertain parameters lies into a polyhedral set that is a closed set defined by a group
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of linear constraints [Min09],[AYP11]. More precisely,

Ξ = { ξ | Wξ ≤ q}

where W is a matrix, q is a vector with adequate dimensions.

A specific polyhedral uncertainty set called the budgeted uncertainty polytope [BS04]

has gained much attention in the last years due to its simplicity. In addition, the budgeted

uncertainty polytope often allows us to adapt the algorithms for the problem without

uncertainty (called the nominal version) to the version with uncertainty. The budgeted

uncertainty polytope is defined according to a real number Γ that roughly represents the

number of elements in the uncertain parameters that are allowed to vary, more precisely,

ΞΓ = { ξ | ||ξ||1 ≤ Γ; −1 ≤ ξ ≤ 1}.

We denote this set by ΞΓ in order to indicate explicitly its dependency on Γ. In some

applications, it may be interesting to distinguish between positive and negative deviations,

so we can also define as

Ξ+
Γ = { ξ | ||ξ||1 ≤ Γ; 0 ≤ ξ ≤ 1}

and

Ξ−Γ = { ξ | ||ξ||1 ≤ Γ; −1 ≤ ξ ≤ 0}.

Another characteristic of the uncertainty model concerns the probability distribution

over the uncertainty set. Although this is an important feature of problems with uncer-

tainty we will not go deeper on this subject, mainly because this work focus on robust

optimization, an approach in which we do not need or use a probabilistic distribution

over the uncertainty set. For the reader interested in problems involving probabilistic

distribution, we suggest [JPTL13], [WLO+11], [LZX+15] and [CH92].
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1.3 Solving problems with uncertainty

Let us take a closer look at methods to solve problems with uncertain data. There are,

basically, two types of methods dealing with uncertainty in the literature of optimization,

namely, stochastic and robust programming. The difference between these two methods

lies on the kind of function used to evaluate a feasible solution and the available infor-

mation on the uncertainty.

Robust programming claims to find a solution that, for a minimization problem, min-

imizes the cost of the worst evaluation of a feasible solution for all the possible scenarios

belonging to the uncertainty set. The stochastic programming method aims to find a

solution that has a minimal expected cost over all feasible solutions. More precisely, we

can write a robust minimization problem as

min κ (1.1)

st κ ≥ c(x,ξ) ∀ξ ∈ Ξ

fi(x, ξ) ≤ bi(ξ) ∀i ∈ {1, . . . , n}, ∀ξ ∈ Ξ

x ∈ X .

For the stochastic problem, we must have a probabilistic distribution P over the elements

of the uncertainty set to be able to define the expected value of the objective function

and the constraints. Mathematically we can express this problem as

min κ (1.2)

st κ ≥ E(c(x,ξ)) ∀ξ ∈ Ξ

fi(x, ξ) ≤ bi(ξ) ∀i ∈ {1, . . . , n}, ∀ξ ∈ Ξ

x ∈ X ,

where E denotes the expected value. We recall that such probabilistic distribution is not
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needed in the robust problem, which makes robust optimization simpler to apply in cases

where limited information is available. Hence, the choice between stochastic optimization

and robust optimization depends on the available information on the uncertain parameter

and the type of application we are interested in.

1.4 Stochastic programming

As said before, stochastic programming is an approach for modeling optimization prob-

lems with uncertainty that assumes the existence of probability distributions governing

the uncertainty and that such probabilities are known or can be estimated, by historical

data for example. The main feature of such method is to provide solutions that perform

well in average. Again, as we said before, the distribution probability of the uncertain

parameters plays a central role in all models from stochastic programming.

Stochastic programming can be used when the decisions must be taken only once,

or can be adjusted in each period; this kind of problem is usually known as a multi-

stage stochastic program. Although stochastic programming can be used in multi-stage

problems, the most widely applied and studied stochastic programming problems are

two-stage problems. These are problems where the decision maker takes some action in

the first stage, after which a random event occurs affecting the outcome of the first-stage

decision. Then a second-stage decision can be made in the second stage that compensates

for any harmful effects that might have been experienced.

1.5 Robust programming

In this section, we formalize some definitions of robust optimization problems as well as

the main methods for solving robust problems or computing heuristic solutions. We pay

a particular attention to two approaches: affine decisions rules combined with dualization

techniques and decomposition methods. For the reader interested in a more general view

28



of what has been done in the field we recommend [GMT14] and [GdH15].

Robust optimization seeks to find a solution that is protected against all realizations of

the uncertain parameters that lie in an uncertainty set. The motivation for this approach

is twofold. First, the model of set-based uncertainty is interesting on its own, and in many

applications, it models the uncertainty involved in the application accurately. Second,

its computational tractability is often better than the one of stochastic programming

approaches [BS07]. The computational tractability of robust optimization explains its

success in a broad variety of application areas, especially after the work of Bertismas and

Sim [BS04] with the introduction of the budgeted uncertainty set, see also [BS03].

Notice that tractability does not always mean that the robust version conserves the

complexity of the nominal problem. For instance, flow problems are difficult even for the

budgeted uncertainty set [Min09]. Moreover, even when the uncertainty set is composed

of a finite number of scenarios, the robust version can be difficult, for example, the robust

shortest path problem is NP-Hard even for an uncertainty set with only two scenarios

[GJ98].

In this thesis, we focus on robust linear optimization and robust mixed integer lin-

ear optimization, for the reader interested in a more general framework we refer to

[BTEGN09].

1.6 Classical approaches in robust optimization

We begin by presenting more formally a robust static problem. We can model a robust

static problem as

min cTx

st A(ξ)x ≤ b(ξ) ∀ξ ∈ Ξ

x ∈ X ∀ξ ∈ Ξ.
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These problems represent the most standard class of robust problems. In the following,

we present two classical methods to solve this robust static problem: dualization and

cutting planes algorithms.

1.6.1 Dualization

We assume that the matrix A(ξ) and the independent vector b(ξ) are affine functions of

the uncertain parameters, more precisely, Ai(ξ) = Āi + Âiξ and b(ξ) = b̄ + b̂ξ where Ā,

Âi and b̂ are matrices of appropriate dimensions and b̄ is a vector. In this setup we can

write the previous problem as

min cTx

st ĀTi x ≤ b̄i + max
ξ∈Ξ

(b̂Ti ξ − (Âiξ)Tx) ∀i ∈ 1, . . . , n

x ∈ X

where Mi denotes the ith row of any matrix M .

The idea of the dualization method is to write the inner maximization in each con-

straint as a minimization problem, thanks to strong duality in linear programming. More

precisely, considering a fixed x, we rewrite the maximization problem

max
ξ∈Ξ

b̂Ti ξ − (Âiξ)Tx

for each i ∈ {1, . . . , n}, where n is the number of rows of the matrix A, recalling that

Ξ = { ξ | Wξ ≤ q}, as

min qT z

st W T z ≥ b̂Ti − (Âi)Tx.
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where z are the dual optimization variables.

Now we can replace the previous maximization problem, of each constraint i by the

minimization problem above. Proceeding as said, we obtain the problem given below,

min cTx

st ĀTi x ≤ qT zi + b̄i ∀i ∈ {1, . . . , n}

W T zi ≥ b̂Ti − (Âi)Tx ∀i ∈ {1, . . . , n}

x ∈ X .

The above problem is a linear program if x is a continuous variable and it can be solved

efficiently. Otherwise, it is a mixed integer linear problem.

1.6.2 Cutting Planes

A more general tool for solving robust optimization problems is based on cutting planes

methods. In this method, we start with a subset of the original constraints, and we verify

in each iteration of the method whether there is a violated constraint. If we find a violated

constraint we add the constraint to the model and repeat the process. Otherwise, we stop,

and the optimal solution has been found. We assume that the deterministic constraints

of the problem are provided in the initial problem.

Formally, we are given an finite set Ξi ⊆ Ξ for each constraint i and consider the

relaxed master problem RMP defined as

min cTx

st Ai(ξ)x ≤ bi(ξ) ∀i ∈ {1, . . . , n} ∀ξ ∈ Ξi (1.3)

x ∈ X .

Given a solution x∗, determining whether there is a violated constraint for x∗ comes to
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find if there is i ∈ {1, . . . , n} and ξ ∈ Ξ such that

Ai(ξ)x
∗ > bi(ξ).

The idea for the algorithm comes straightforward from above. We start first by

solving the problem restricted to Ξ1 = Ξ2 = . . . = Ξn = ∅, if the separation problem

finds a solution, that is, a pair (i, ξ) such that Ai(ξ)x
∗ > bi(ξ), we add ξ to Ξi and repeat

the process, otherwise we have obtained the optimal solution. The algorithm given below

formalizes this idea

Algorithm 1: Cutting plane algorithm for solving classical robust problem.

forall the j ∈ {1, . . . , n} do Ξj ← ∅ ;

Solve the problem RMP;

while Separation problem found pair (i, ξ) do

Ξi ← Ξi ∪ {ξ};

Solve the problem RMP;

end

Although the method can be applied to a variety of robust problems, it is effective

only when we know how to solve the separation problem efficiently. For instance, if we

proceed as before and assume that A(ξ) and b(ξ) are affine functions of the uncertainty

parameter, we can solve the separation problem by a simple linear program for each fixed

i.

Notice that when X contains integer restrictions, it is more efficient to use a branch-

and-cut aproach instead of the simplistic cutting planes algorithm presented in Algo-

rithm 1
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1.7 Robust multi-stage optimization problems

1.7.1 Definition

We address below multi-stage robust problems. We present some definitions and methods

used to solve this kind of problem. We begin by recalling a more formal definition of the

robust optimization problems. A robust multi-stage problem can be written as:

min κ (1.4)

st κ ≥ c(ξ)Tx(ξ) ∀ξ ∈ Ξ

A(ξ)x(ξ) ≤ b(ξ) ∀ξ ∈ Ξ

x(ξ) ∈ X ∀ξ ∈ Ξ.

Where x(ξ) are the optimization variables and A(ξ) and b(ξ) represent the constraints

that x(ξ) must satisfy for every ξ belonging to the uncertainty set Ξ and X represents

the deterministic constraints. Below, we consider simplified setting and assume that

A(ξ) = A and c(ξ) = c for every ξ ∈ Ξ.

The above formulation does not contain the so-called non-anticipativity constraints

recalled next. Let vi be the projection of the vector v over its first i components, the

non-anticipativity constraints impose the following

the non-anticipativity constraints

xi(ξ) = xi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′)

yi(ξ) = yi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′).

These constraints represent the fact that the decision maker must take the decisions

without any knowledge of the future.

An interesting type of multi-stage problem are two-stage problems. In this kind of

problem we consider that the decision must be taken in two distinct periods, x represents
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the decisions that must be taken before the uncertain parameters ξ be revealed and y(ξ)

represents the decisions that must be made after. We can mathematically model this

issue as follows

min κ

st κ ≥ cTx+ gTy(ξ) ∀ξ ∈ Ξ

Ax+Gy(ξ) ≤ b(ξ) ∀ξ ∈ Ξ

x ∈ X ; y ∈ Y .

where X represents the set of constraints related to the first stage variables, Y represents

the set of constraints related to the second stage variables, G is a matrix and g a vector

of appropriated dimensions.

In this context, we can see that the non-anticipativity constraints are not necessary

because the variables x are already the same for all the uncertain parameters and the

variables y depend on the whole vector ξ ∈ Ξ. The variables x are the so-called here-

and-now decisions while the variables y are the wait-and-see decisions.

1.7.2 Solving robust multi-stage problems

Now we present some exact and heuristic methods to solve a multi-stage robust problem.

Unlike robust static problems, for multi-stage problems there are no consolidated methods

that apply to general problems.

We start by an approximation that is widely used because it preserves, in most cases,

the complexity of the problem without uncertainty. Once more, we recall that this is only

a short introduction to the field, a more complete review can be found in [BS07].

Affine decision rules

In this relaxation, we assume that the adjustable decisions are not arbitrary functions of

the uncertain parameters but rather affine functions of the latter. Of course, this method
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can be only applied to continuous variables, hence in this section, we assume that the

adjustable variables are continuous variables.

More precisely, x(ξ) = x0 +Xξ, where x0 is a vector of optimization variables and X

is a matrix of optimization variables. Applying this change of variables, we can rewrite

the general robust problem as

min κ

st κ ≥ cT (x0 +Xξ) ∀ξ ∈ Ξ

A(x0 +Xξ) ≤ b(ξ) ∀ξ ∈ Ξ

x0 +Xξ ∈ X ∀ξ ∈ Ξ.

Notice that, by using this approach, we can turn a multi-stage robust problem into a

robust static problem. Although this method considerably reduces the complexity of a

multi-stage robust problem one can argue that the approximation obtained is weak for

some real applications especially when the adjustable decisions can vary in broad ranges

[BG12], [ISS13].

Next, we present methods for solving two-stage robust problems. These methods are

based on the dualization technique and the cutting planes method used to static robust

optimization problems.

Decompositions methods

The other method that we present is based on the idea of cutting planes for robust

problems. Here we allow the fist stage variables to be integer or continuous, although we

assume that the second stage variables must remain continuous. We define a finite set of

scenarios Ξ0 ⊆ Ξ and the two-stage relaxed master problem (RMP) associated with it,
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given by

min cTx

st Ax+Gy(ξ) ≤ b(ξ) ∀ξ ∈ Ξ0

x ∈ X ; y ∈ Y ∀ξ ∈ Ξ0,

where the second-stage costs are represented implicitely in the constraints Ax+Gy(ξ) ≤

b(ξ). When solving this problem we obtain a first stage solution x∗. To check the

feasibility of the first stage solution we need to determine if some constraint is violated

in the scenarios belonging to Ξ \ Ξ0. This comes to determine if there is a vector y(ξ∗)

for some ξ∗ ∈ Ξ \ Ξ0 such that

Ax+Gy(ξ∗)− b(ξ∗) > 0 with y(ξ∗) ∈ Y .

In [AP16], the authors show that answering to the above question is equivalent to find

if the optimal solution of the following problem is smaller than zero or not.

max(Aix∗ +Giy − b(ξ))π

st ξ ∈ Ξ

y ∈ Y

1π = 1

W Tπ = 0

π ≤ 0,

where π is the vector of dual variables and 1 represents the vector with all components

equals to 1. The problem presented above can be obtained by using the Farkas’s Lemma.

We solve the relaxed master problem restricted to Ξ0. Then, if the adversarial problem

is not zero we add the variables and constraints related to the solution of the adversarial
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problem and repeat the process until we have a first-stage solution, that is feasible for

every scenario and so optimal. The algorithm below formalizes this idea.

Algorithm 2: Decomposition algorithm for solving the two-stage robust problem.

Ξ0 ← arbitrary finite subset Ξ;

i← 0;

repeat

Solve RMP. Let x? be the obtained solution.;

Let ξ? be the solution of the adversarial problem.;

i← i+ 1;

Ξi ← Ξi−1 ∪ {ξ?};

until the adversarial problem associated with x? does not admit solution in Ξ \ Ξ0;

Again, the algorithm can be implemented in a branch-and-cut-and-price if X contains

integer restrictions.
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Chapter 2

Lot-sizing problems with uncertainty

2.1 Lot-sizing problems

This thesis considers various aspects of robust lot-sizing problems, a well-studied example

of multi-stage optimization problem under uncertainty. In the basic version of the lot-

sizing problem, one aims to fulfill the client demands di in each period i inside a planning

horizon H = 1, . . . , n by producing at the period or by some amount produced previously

and stored at the lowest possible cost [PW06]. Mathematically we can write the basic

lot-sizing problem as

(LS − U) min
n∑
i=1

(cixi + hisi) (2.1)

st si ≥
i∑

j=1

xj − dj ∀i ∈ H (2.2)

i∑
j=1

xj − dj ≥ 0 ∀i ∈ H (2.3)

si, xi ≥ 0 ∀i ∈ H,

where ci is the unitary production cost at period i and hi is the unitary storage cost from

period i to period i + 1. We suppose that we do not have initial stock. The variable xi
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represents the amount produced at period i and si represents the amount stored at period

i. The objective function (2.1) represents production and storage costs, as expected, and

constraint (2.2) represents the amount stored while constraint (2.3) represents the fact

that we must satisfy the client demands in each period.

Many features can be added to the basic lot-sizing problem in order to model different

practical issues. In this study we consider 3 features:

Backlogging: we are allowed to postpone the client demand to a later period, upon

payment of a cost, called backlogging cost. To model this feature we can add a

variable ri representing the backlogging at period i with its associated cost pi in

the objective function and the constraints

ri ≥
i∑

j=1

(dj − xj) and ri ≥ 0 ∀i ∈ H, (2.4)

Notice that, in order to allow backlog costs one must remove constraints (2.3).

Setup Costs: we must pay a fixed cost gi for every period i ∈ H where production takes

place. To model this feature we can add binary variables yi in order to indicate

whether or not production takes place and the constraints

xi ≤Myi ∀i ∈ H (2.5)

where M ≥
n∑
i=1

di is a big constant value.

Production Capacity: we may impose limits Ci to the amount that can be produced

in each period i ∈ H. To model this feature it suffices to add the constraints

xi ≤ Ci ∀i ∈ H (2.6)

Notice that these features can be mixed. In this work we follow the notation presented

in [PW06]. More precisely, we add the subscript setup to indicate setup costs, we add
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Problem Setup Backlog Capacities Variables Constraints
LS − U no no no xi, si (2.2)
LS − C no no yes xi, si (2.2), (2.6)
BLS − U no yes no xi, si, ri (2.2),(2.4)
BLS − C no yes yes xi, si, ri (2.2),(2.4), (2.6)
LS − U setup yes no no xi, si, yi (2.2),(2.5)
LS − Csetup yes no yes xi, si, yi (2.2),(2.5), (2.6)
BLS − U setup yes yes no xi, si, ri, yi (2.2),(2.4),(2.5)
BLS − Csetup yes yes yes xi, si, ri, yi (2.2),(2.4),(2.5), (2.6)

Table 2.1: Different types of lot-sizing problems.

a B at the beginning of the problem name to indicate that backlog is allowed, and we

change U by C to indicate the presence of production capacity. In Table 2.1 we present

all possible notations for the lot-sizing problems studied.

2.2 Lot-sizing with uncertainty

The primary interest to study lot-sizing problems with uncertainty is that these are the

simplest examples of multi-stage problems.

The most natural source of uncertainty is the clients demands di in each period be-

cause these demands depend on many factors such as client’s subjective criteria and

current economic situation, which can be very hard to model. Other possible sources of

uncertainty are the costs associated with the production, storage, and backlog in each

period. In this work, we deal with uncertainty in the clients’ demands.

We assume that the clients demands di(ξ) in each period i are function of the uncertain

parameters ξ. Although some results presented in this thesis can be easily generalized to

a general client demand function di(ξ) at each period, we assume that the client demand

function is an affine function di(ξ) = d̄i+D̂iξ of the uncertain parameters, where d̂i is the

independent term and D̂ is a matrix that represents the correlation between the demands

of different periods.

Roughly, we can interpret the term d̄i as the expected value of the client demands in

the period i and each row of the matrix D̂ represents the manner in which the vector ξ
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influences such expected value at each period. It is common to suppose that the matrix D̂

is upper triangular because the demands of future periods do not influence the demands

of past periods.

2.3 Stochastic lot-sizing problem

Next, we make a very brief summary of the most known results and experiments involving

the stochastic lot-sizing problem. For a more comprehensive and extensive review in

this kind of problems we invite the reader to visit chapter 10 in [Tem13] and for more

information on stochastic programming we indicate [BL97] as the primary reference.

In the stochastic lot-sizing problem, one usually considers that the client demands are

uncertain and that we have a distribution probability for the uncertain demands. One

aims to find a solution that fulfills all the demands in every possible scenario and has the

minimum average cost.

Recently efficient algorithms have been proposed for several individual cases of the

problem, as in [TK04], [HLW01] and [KSLS13]. For example, the stochastic uncapacitated

lot-sizing problem with and without setup was studied by Guan and Miller [GM08] and

uncapacitated lot-sizing problems without setup costs was studied by Huang and Ahmed

[HA09].

Many works have been done on how to formulate stochastic inventory control problems

in a dynamic programming framework. These approaches turned out to be effective in

characterizing the structure of optimal solution, which can be called policies. These

solutions have a special structure that allows one to formalize the solution by a simple

rule, policy, for example, always produce the demand of client i in period i. For many of

these models, it can be shown that state-dependent (s,S) policies are optimal [TK04]. The

production decision in each period is driven by two thresholds. Specifically, production

takes place if and only if the inventory level falls below the threshold s. Also, if production

takes places we must produce enough to brought the inventory level up to the threshold
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S.

2.4 Robust lot-sizing

In the robust problem, one wants to determine, for each possible realization of the uncer-

tain parameters, the quantities that must be produced, stored, backlogged and if we must

have or not production in each period (setups). In this context the variables x,r,s and y

become functions of the uncertain parameters, more precisely they become x(ξ), r(ξ), s(ξ)

and y(ξ) and the constraints (2.2), (2.4), (2.5) and (2.6) are written for each element of Ξ.

Similarly, the objective function aims to minimize the production cost for this solution in

a given scenario. More precisely, we present the model for the simple lot-sizing without

backlogs and setups.

(LS − U(Ξ)) min κ

st κ ≥
n∑
i=1

cixi(ξ) + hisi(ξ) ∀ξ ∈ Ξ (2.7)

si(ξ) ≥
i∑

j=1

xj(ξ)− dj(ξ) ∀i ∈ H, ξ ∈ Ξ (2.8)

i∑
j=1

xj(ξ)− dj(ξ) ≥ 0 ∀i ∈ H,ξ ∈ Ξ (2.9)

si(ξ), xi(ξ) ≥ 0 ∀i ∈ H, ξ ∈ Ξ

We should add non-anticipativity constraints to ensure that for two different elements

ξ̇ and ξ̈ belonging to the uncertainty Ξ that has the same projection at period i, ξ̇i = ξ̈i

we must have the same decision taken. Mathematically we can translate this constraint
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as the non-anticipativity constraints

xi(ξ) = xi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′) (2.10)

yi(ξ) = yi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′). (2.11)

where Proj[1...i](ξ) denotes the projection of ξ on its first i components.

The other constraints concerning the setups costs, backlog and capacities are presented

below. For the backlog, we have that

ri(ξ) ≥
i∑

j=1

(dj(ξ)− xj(ξ)) and ri(ξ) ≥ 0 ∀i ∈ H, ξ ∈ Ξ. (2.12)

For the setup costs we have

xi(ξ) ≤Myi(ξ) ∀i ∈ H, ξ ∈ Ξ. (2.13)

For the capacity constraints, we have that

xi(ξ) ≤ Ci ∀i ∈ H, ξ ∈ Ξ. (2.14)

We denote the different robust lot-sizing problems by adding (Ξ) to the notation for

the deterministic problem (the problem without uncertainty). To be more precise we

adapt Table 2.1 to the robust problem.

Problem Setup Backlog Capacities Variables Constraints
LS − U(Ξ) no no no xi, si (2.8), (2.10)
LS − C(Ξ) no no yes xi, si (2.8), (2.14), (2.10)
BLS − U(Ξ) no yes no xi, si, ri (2.8),(2.12), (2.10)
BLS − C(Ξ) no yes yes xi, si, ri (2.8),(2.12), (2.14), (2.10)
LS − U setup(Ξ) yes no no xi, si, yi (2.8),(2.13), (2.10),(2.11)
LS − Csetup(Ξ) yes no yes xi, si, yi (2.8),(2.13), (2.14), (2.10),(2.11)
BLS − U setup(Ξ) yes yes no xi, si, ri, yi (2.8),(2.12),(2.13), (2.10),(2.11)
BLS − Csetup(Ξ) yes yes yes xi, si, ri, yi (2.8),(2.12),(2.13), (2.14), (2.10),(2.11)

Table 2.2: Different types of robust lot-sizing problems.
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These problems have been treated in the literature, for example in [Sha11], they are

known to be intractable. To the best of our knowledge, no tractable method is known to

solve all these robust problems in a satisfactory way.

For this reason, we address particular forms of lot-sizing problems in this thesis. In

Chapter 3, we get rid of the non-anticipativity constraints. We end up with a two-stage

robust lot-sizing problem. For the two-stage robust lot-sizing problem, the stock and

backlog are always wait-and-see variables, while the production and the setup can be

here-and-now or wait-and-see variables, depending on the model considered. Notice that

if the production is a here-and-now decision, the setup, if it exists, is a here-and-now

decision too, because the production is already decided. On the other hand, it is possible

that we have a here-and-now setup but a wait-and-see production. Then, we may decide

at each period how much we are willing to produce, but the decision if we produce some

that day or not must be taken in advance, due to technical restrictions for instance.

In Chapters 4 we simplify the problem by considering models where the production

variables are here-and-now decisions. Hence, non-anticipativity constraints only affect

the storage and backlog variables and can, therefore, be removed without affecting the

problem solution. The hypothesis of these chapters is realistic in an environment where

there is no time to adapt the production decisions to the observed demands.
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Part II

Main Contributions
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This part contains the two main contributions of the thesis. In the first one, we study

an appropriated Bender’s decomposition method for a robust two-stage problem that has

a structure similar to robust lot-sizing problems. We present a dynamic programming

algorithm to the adversarial problem as well as an approximation algorithm. The second

contribution (Chapter 4) presents a relaxation for the robust lot-sizing problem. More

precisely, we relax the non-anticipativity constraints and show the effectiveness of such

relaxation. We also study the complexity of the obtained problems.
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Chapter 3

A dynamic programming approach

for a class of two-stage robust

problem

3.1 Introduction

In this chapter we propose a dynamic programming algorithm (DPA) and a unified de-

composition algorithm to solve the following optimization problem. Let d be a vector of

parameters, z be a vector of optimization variables, µi and νi be affine functions for each

i = 1, . . . ,n, and consider the robust constraint

f(ψΣ,z) ≤ dT z, ∀ψ ∈ Ξ, (3.1)

with

f(ψΣ,z) =
n∑
i=1

max{µi(ψΣ
i ,z),νi(ψ

Σ
i ,z)}. (3.2)

and where Ξ gives the uncertainty set and ψΣ
i =

∑i
j=1 ψj denotes the sum of the first i

components of uncertain vector ψ for i = 1, . . . ,n. Consider a cost vector c and a feasibility

set Z. We are interested in solving exactly the following type of robust optimization

47



problems:

min cT z

s.t. z ∈ Z, (3.3)

f(ψΣ,z) ≤ dT z, ∀ψ ∈ Ξ, (3.4)

where (3.3) represents all constraints not affected by the uncertainty, including the pos-

sible integrality restrictions.

Definition (3.2) has its roots in lot sizing problems where, for each period in a given

time horizon, one has to pay either storage or backlog cost. It is common to assume

demand uncertainty in these problems so that the total demand that must be handled

at period i is equal to
∑i

j=1 ψj. For the sake of clarity, we delay to a later section of the

chapter an important extension of our approach where the elements of the summations∑i
j=1 ψj involved in (3.2) depend on the optimization variables z.

Our algorithm further requires that the uncertainty set be the budgeted uncertainty

polytope ΞΓ; for the sake of simplicity we change a little bit the definition of the budgeted

uncertainty set to better fit into the algorithm proposed. In this chapter we assume that

the budgeted uncertainty set is described by

ΞΓ ≡
{
ψ : ψi = ψi + ψ̂iξi,i = 1, . . . ,n, ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ Γ

}
, (3.5)

for positive integers ψ̂i, i = 1, . . . ,n, arbitrary reals ψi, i = 1, . . . ,n, and Γ > 0. The

set is extremely popular in robust programming and network optimization and has been

used in a wide range of applications. The main purpose of the chapter is to study how

to efficiently solve the separation problem for constraint (3.4) and uncertainty set ΞΓ,

namely

(AP) max
ψ∈ΞΓ

f(ψΣ,z).

Traditionally, (AP) is either solved through a DPA based on the value of Γ and on
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the stock levels [BÖ08], a MILP with big-M coefficients [BÖ08], or approximated via

decision rules (e.g. [BGNV05]). More recently, [GdH13] proposed to solve an adversarial

separation problem different from (AP), which is related to the expansion of the maxima

in the definition of f . Differently from these works, we propose here to address (AP)

via a DPA based on Γ and on ψ̂. Hence, our approach can be applied to a wider range

of problems than the seminal work of [BÖ08] that focused on the lot-sizing problem.

The worst-case running time of our approach depends on the value of ψ̂ and Γ, yielding

a pseudo-polynomial time algorithm. When the deviations are small, our numerical

experiments show that the DPA can be orders of magnitude faster than the classical

MILP reformulation. Moreover, we show that our DPA gives rise to a FPTAS for (AP)

and the original robust problem whenever Z is a convex set and an additional technical

assumption is satisfied. We also extend our DPA to combinatorial problems with lower

time windows and inventory distribution problems. Notice also that, unlike [GdH13] that

considers bi-affine functions µi and νi, we consider these functions affine herein.

We mention that dynamic programming has already been successfully applied to other

RO problems with uncertainty set ΞΓ. One of the first works in that aspect is [KN08]

which presents a DPA to solve the robust knapsack problem. The approach is compared

numerically to other solution algorithms in [MPS13] where the authors also study the

space complexity of the algorithm. The seminal idea of [KN08] is extended by [Pos14] to

any robust combinatorial optimization problems with cost uncertainty whose determin-

istic counterpart can be solved by a DPA. Differently from [KN08, MPS13, Pos14] which

solve the full RO problem by a DPA, the authors of [ACF+13] use a DPA to solve the

adversarial problem that arises in robust vehicle routing problems with time windows. A

common characteristic of the aforementioned works is that the deterministic version of the

problem studied therein (or the AP in case of [ACF+13]) can be solved by a DPA. Thus,

these works show how to extend the deterministic DPA to handle the robust versions of

the problems.

The algorithm presented herein is different from the above papers on mainly two
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aspects. First, like [BÖ08], it does not extend an existing deterministic algorithm because

solving (AP) is trivial in the deterministic context. Second, the number of states of our

algorithm depends on Γ and ψ̂, unlike previous works which only involve Γ. Hence, when

each component of ψ̂ is bounded by a polynomial function of the input data, our DPA

runs in polynomial time. Otherwise, its running-time is pseudo-polynomial.

3.2 The framework

We describe in this section the general decomposition algorithm used in this chapter.

Then, we discuss the complexity of the adversarial problem.

3.2.1 Decomposition

We are interested in solving exactly the following type of robust optimization problems:

P min cT z

s.t. z ∈ Z, (3.6)

f(ψΣ,z) ≤ dT z, ∀ψ ∈ ΞΓ. (3.7)

Constraint (3.6) contains all restrictions not affected by uncertainty, including the possible

integrality restrictions on z. Constraint (3.7) is a robust constraint characterized by a

function that satisfies (3.2). For the sake of simplicity, we consider a unique robust

constraint in P , one readily extends the approach described below to problems with K

constraints of type (3.7).

The problem P contains an infinite number of variables and constraints, making it

intractable as such. Here, we tackle the problem by generating a finite subset of variables

and constraints on the fly in the course of the decomposition algorithm presented below.
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Let Ξ0 ⊂ ΞΓ be a finite set. Since Ξ0 is finite, we can reformulate

f(ψΣ,z) ≤ dT z, ∀ψ ∈ Ξ0, (3.8)

as the following finite set of linear inequalities, written for each ψ ∈ Ξ0:

n∑
i=1

ϕψi ≤ dT z, (3.9)

ϕψi ≥ µi(ψ
Σ
i ,z), ∀i = 1, . . . ,n, (3.10)

ϕψi ≥ νi(ψ
Σ
i ,z), ∀i = 1, . . . ,n, (3.11)

where ϕψ is an additional vector of optimization variables. Our approach is based on the

above linear reformulation of (3.8). Specifically, we relax constraints (3.7) for all elements

in ΞΓ but Ξ0 and replace robust constraint (3.7) by its linear reformulation, obtaining

the Master Problem

min cT z

(MP) s.t. z ∈ Z,
n∑
i=1

ϕψi ≤ dT z, ∀ψ ∈ Ξ0,

ϕψi ≥ µi(ψ
Σ
i ,z), ∀ψ ∈ Ξ0, i = 1, . . . ,n,

ϕψi ≥ νi(ψ
Σ
i ,z), ∀ψ ∈ Ξ0, i = 1, . . . ,n.

Given a feasible solution z∗ to (MP), one checks the feasibility of z∗ for P by solving

an adversarial problem. Let ψ∗ be the optimal solution for the adversarial problem. If

f(ψ∗Σ,z∗) > dT z∗, then Ξ0 ← Ξ0 ∪ {ψ∗}, and the corresponding optimization vector ϕψ
∗

and constraints (3.9)–(3.11) are added to (MP). Therefore, the overall algorithm is a

row-and-column generation algorithm in the line of those proposed in [ACF+13, ZZ11].
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3.2.2 Illustration: Robust Lot-Sizing Problem

Consider the Robust Lot-Sizing Problem (RLSP) defined for a finite planning horizon

{1, . . . , n}. For each time period i = 1, . . . ,n, we are given a capacity Ci, holding cost pi,

a shortage cost si, and a production cost ci. We assume that the vector of demands ψ

belongs to set ΞΓ, where ψi represents the nominal demand in period i, and ψ̂i represents

the maximum allowed demand deviation in period i. The amount that needs to be

produced in each time period must be decided before the actual demand value is revealed.

In contrast, stock levels and backlogged demands are adjusted to each individual demand

realization. This model corresponds to BLS − C(Ξ)x in the classification proposed in

Chapiter 2.

The problem BLS − C(Ξ)x can be modeled as follows. Variable xi represents the

amount produced at period i and variable θ represents the total storage and backlog

costs. For each ψ ∈ Ξ, ψΣ
i represents the total demand up to time period i for demand

vector ψ.

min cTx+ θ

s.t 0 ≤ xi ≤ Ci, ∀i = 1, . . . ,n, (3.12)

θ ≥
n∑
i=1

max

{
si

(
ψΣ
i −

i∑
j=1

xj

)
,−pi

(
ψΣ
i −

i∑
j=1

xj

)}
, ∀ψ ∈ ΞΓ. (3.13)

We see readily that the problem is a special case of P for z = (x,θ). Namely, Z is the

set defined by (3.12), the components of d corresponding to x and θ are equal to 0 and

1, respectively, and functions f , µ and ν are defined by
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f(ψΣ,x,θ) =
n∑
i=1

max

{
si

(
ψΣ
i −

i∑
j=1

xj

)
,−pi

(
ψΣ
i −

i∑
j=1

xj

)}
,

µi(ψ
Σ,x,θ) =si(ψ

Σ
i −

i∑
j=1

xj) and

νi(ψ
Σ,x,θ) =− pi(ψΣ

i −
i∑

j=1

xj)

Observe that the adversarial problem depends only on the quantities produced. Hence

the approach holds if more complex models are considered for the decision problem, such

as set-up costs, start-up costs, etc.

3.2.3 Complexity of the adversarial problem

Omitting the dependency on z, the adversarial problem maxψ∈ΞΓ
f(ψΣ) considered in

this chapter optimizes a function of the form f(ψΣ) =
∑n

i=1 fi(ψ
Σ
i ) where fi is a convex

function for each i = 1, . . . ,n. Hence, f is convex so that its maximum is attained at

least at one of the extreme points of polytope ΞΓ, which we denote ext(ΞΓ) :

ext(ΞΓ) ≡
{
ψ : ψi = ψi + ψ̂iξi, i = 1, . . . ,n, ξ ∈ {−1,0,1}n, ‖ξ‖1 ≤ Γ

}
.

There exist a few cases in which problem (AP) is easy. For instance, when Γ is

constant (i.e. it is not part of the input), ext(ΞΓ) contains a polynomial number of

elements so that (AP) can be solved in polynomial time by inspection. More interestingly,

the problem can also be solved in polynomial time whenever Γ = n, which corresponds

to ΞΓ being a box uncertainty set, see [ISS13]. More recently, the authors of [AD16] have

shown that a closely related problem where each function fi involves only component ψi

of the uncertain vector is also easy.

While the NP-hardness of (AP) is still unknown, simple generalizations of the prob-

lem are difficult. For instance, optimizing a general convex function over ext(ΞΓ) is
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APX -hard, as we present below.

Proposition 1. Let f be a convex function. Optimization problem max
ψ∈ΞΓ

f(ψ) is APX -

hard.

Proof. Consider the independent set problem on an undirected graph G = (V,E) with

n nodes where the goal is to decide whether there is an independent set of size at least

k < n. Then, the ΞΓ be the uncertainty set characterized by ψ = 0, ψ̂i = 1 for each

i = 1, . . . ,n and Γ = k, and f be the piecewise linear convex function defined by f(ψ) =

max
z

{
n∑
i=1

ψizi : zi + zj ≤ 1, {i,j} ∈ E, z ≥ 0

}
. For any ψ ∈ ΞΓ, f(ψ) ≤ k. Moreover, G

has an independent set of size at least k if and only if max
ψ∈ΞΓ

f(ψ) = k. Therefore, the

problem of maximizing f over ΞΓ is NP-hard.

To show that the problem is APX -hard, consider the independent set problem on

3-regular (cubic) graphs, which is known to be APX -hard [AK00]. Hence, there is a

constant α > 0 such that it is NP-hard to distinguish whether a cubic graph G = (V,E)

has an independent set of size at least k or at most (1 − α)k. If this is the case that

G has an independent set of size at least k, then maxψ∈ΞΓ f(ψ) = k. Otherwise, if the

independent set of G has size at most (1 − α)k, then one can show that max
ψ∈ΞΓ

f(ψ) ≤

(1− α)k + 3αk
4

=
(
1− α

4

)
h. This implies that maximizing f over ΞΓ is APX -hard.

We study next problems more closely related to (AP). We show that if we generalize

either the uncertainty set ΞΓ or the set of admissible functions fi, the resulting problem

is NP-hard. Namely, consider the following generalization of problem (AP):

(ÃP) max
ψ∈Ξ̃

n∑
i=1

f̃i(ψ
Σ
i ).

• If Ξ̃ is a polytope having a compact description and functions f̃i are convex functions

of the form f̃i(ψ
Σ
i ) = max{µi(ψΣ

i ),νi(ψ
Σ
i )} where µi and νi are affine functions, then

(ÃP) is NP-hard. This result is stated in Proposition 2.

• If Ξ̃ is the set ext(ΞΓ) and f̃i are general non-negative functions such that f̃(ψΣ) =
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n∑
i=1

f̃i(ψ
Σ
i ) is positive, then (ÃP) is NP-hard. This result is stated in Proposition 3.

In view of the above results and of the numerical difficulty of solving problem (AP), our

conjecture is that the problem is NP-hard.

On the other hand, if the deviations are constant or if their size can be bounded by a

polynomial function of the input data then (AP) can be solved in polynomial time. This

is an immediate consequence of the DPA presented in the next section.

Proposition 2. Let Ξ̃ be an arbitrary uncertainty polytope. Optimization problem max
ψ∈Ξ̃

f(y(ψ))

is NP-hard.

Proof. We consider in this proof function f̂(ψ) =
n∑
i=1

∣∣∣∑i
j=1 ψj

∣∣∣ , obtained from (2) by

choosing µi(yi(ψ)) = yi(ψ) and νi(yi(ψ)) = −yi(ψ) for each i = 1, . . . ,n where the

dependency on z is omitted for the sake of simplicity. We prove first that problem

max
ψ∈Ξ̃

f̂(ψ) (3.14)

has the same optimal solution cost as problem

max
ψ∈Ξ̃′

f ∗(ψ), (3.15)

with f ∗(ψ) =
∑n

i=1 |ψi| and Ξ̃′ a linear transformation of Ξ̃. To see this, consider invertible

linear transformation

α(ψ) = (ψ1,ψ1 + ψ2,ψ1 + ψ2 + ψ3, . . . ,ψ1 + ψ2 + . . .+ ψn).

Then,

max
ψ∈Ξ̃

f̂(ψ) = max
ψ∈Ξ̃

n∑
i=1

∣∣∣∣∣
i∑

j=1

ψj

∣∣∣∣∣ = max
ψ∈Ξ̃

n∑
i=1

|αi(ψ)| = max
ψ∈Ξ̃

f ∗(α(ψ)) = max
ψ∈α(Ξ̃)

f ∗(ψ),

and the equality holds for Ξ̃′ = α(Ξ̃). Notice that Ξ̃′ can be described by the same
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number of inequalities as Ξ̃ and these can be computed in polynomial time. Therefore,

the NP-hardness of (3.14) follows from the NP-hardness of (3.15), which was proven in

[Gus02, Lemma 3.2].

Proposition 3. Let f̃i be a non-negative function for each i = 1, . . . ,n and f̃(y(ψ)) =
n∑
i=1

f̃i(yi(ψ)), with yi(ψ) =
i∑
t=1

ψt, be a positive function. Optimization problem max
ψ∈ext(ΞΓ)

f̃(y(ψ))

is NP-hard.

Proof. The decision problem associated with the optimization problem takes the following

form: given ψ,ψ̂, and Γ > 0, non-negative functions f̃i(yi(ψ)), i = 1, . . . ,n, and A ∈ R,

is there a ψ ∈ ext(ΞΓ) such that
n∑
i=1

f̃i(yi(ψ)) ≥ A? We show below that the partition

problem can be reduced to the above decision problem. Recall that in the partition

problem we are given m positive integers ai, i ∈ M = {1, . . . ,m} and wish to determine

whether there exists a partition (S,M \ S) of M such that
∑
i∈S

ai =
∑

i∈M\S
ai =

∑
i∈M

ai/2.

For the reduction consider n = m + 2, ψi = 0, i ∈ N = {1, . . . , n}, ψ̂i = ai, i ∈

M, ψ̂m+1 = ψ̂m+2 = 0. Let A =
n∑
i=1

ai and define f̃i(yi(ψ)) = 0, i ∈M, and

f̃m+1(ym+1(ψ)) = min

{
n∑
i=1

ψi,
A

2

}
, f̃m+2(ym+2(ψ)) = min

{
A−

n∑
i=1

ψi,
A

2

}
.

Hence, from the definition of f̃i for i = 1, . . . ,m+2, it follows directly that
n∑
i=1

fi(yi(ψ)) ≤

A. Moreover, the equality holds if and only if f̃m+1(ym+1(ψ)) = f̃m+2(ym+2(ψ)) = A/2

which is equivalent to find a partition of N with
∑

i∈S ai =
∑

i∈M\S ai = A
2

where

S = {j ∈ {1, . . . ,n} : ψj = ψ̂j}.

3.3 A dynamic programming algorithm

We present in Section 3.3.1 a simple DPA to solve the adversarial problem for a simpli-

fication of ΞΓ. We show then in Section 3.3.2 how to approximate (AP) and P through

a FPTAS when some additional assumptions are satisfied. We show how to extend the
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DPA to the general set ΞΓ and to larger classes of functions in Section 3.3.3 and in

Section 3.3.4, respectively.

3.3.1 Exact algorithm

For the sake of simplicity, we consider in what follows that Γ is integer and that Ξ does

not include downward deviations (ξ ∈ {0,1}n). We discuss in Section 3.3.3 how these

simplifications can be relaxed. We further assume that z is fixed throughout the section

so that, for each i = 1, . . . , n, we can simplify the writing of affine functions µi(ψ
Σ
i , z)

and νi(ψ
Σ
i , z) by removing the explicit dependency on z. We obtain affine functions

µi(ψ
Σ
i ) = µ0

i + µ1
iψ

Σ
i and νi(ψ

Σ
i ) = ν0

i + ν1
i ψ

Σ
i ,

where the dependency on z is hidden in the independent terms µ0
i and ν0

i . Then, we

define fi(ψ
Σ
i ) = max{µi(ψΣ

i ),νi(ψ
Σ
i )}, for each i = 1, . . . ,n and f(ψΣ) =

∑n
i=1 fi(ψ

Σ
i ).

We are interested here in solving the optimization problem max
ψ∈ΞΓ

f(ψΣ). Notice that

because f is convex, its maximum is always reached at an extreme point of ΞΓ, yielding

discrete optimization problem

max
ψ∈ext(ΞΓ)

f(ψΣ). (3.16)

Problem (3.16) may be difficult to solve since ext(ΞΓ) contains an exponential number of

elements and function f is non-linear. However, recall that, because of the definition of

ΞΓ, we do not need to know the entire vector ψ ∈ ext(ΞΓ) to compute f(ψΣ). In fact,

it is enough to know the cumulative uncertainties ψΣ
i =

∑i
t=1 ψt for each i = 1, . . . ,n,

which are equivalent to the cumulative deviations
∑i

t=1 ψt−
∑i

t=1 ψt for each i = 1, . . . ,n

because ψ ∈ [ψ,ψ + ψ̂]. With this in mind, we introduce

f ′i(φi) = max{µi(ψ̄Σ
i ) + µ1

iφi,νi(ψ̄
Σ
i ) + ν1

i φi},

obtained from fi by treating separately the cumulative mean ψ̄Σ
i =

∑i
t=1 ψt and the
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cumulative deviation φi = ψΣ
i − ψ̄Σ

i . Namely, let ξ ∈ {0,1}n be a binary vector that

satisfies ‖ξ‖1 ≤ Γ and let ψ ∈ ext(ΞΓ) be the associated vector of uncertain parameters,

defined as ψi = ψi+ ψ̂iξi for each i = 1, . . . ,n. As µ and ν are affine functions, one readily

checks that fi(ψ
Σ
i ) = f ′i(φi) if and only if φi =

∑i
t=1 ψ̂tξt. Therefore, adversarial problem

(3.16) can be rewritten as

max
n∑
i=1

f ′i(φi)

(AP) s.t. φi =
i∑
t=1

ψ̂tξt, ∀i = 1, . . . ,n,

n∑
i=1

ξi ≤ Γ,

ξi ∈ {0, 1}, ∀i = 1, . . . ,n.

Up to now we have shown that the optimal solution cost of (AP) only depends on

the cumulative deviations φi for each i = 1, . . . ,n. To obtain a DPA, we still need a way

to enumerate only the most promising cumulative deviations. Let φ be the maximum

allowed cumulative deviation, that is, φ = max
S⊆{1,...,n}:|S|=Γ

∑
i∈S ψ̂i. We define α(j,γ,φ), for

each triple of integers 1 ≤ j ≤ n,0 ≤ γ ≤ Γ and 0 ≤ φ ≤ φ, as the optimal value of the

restricted problem for set {1, . . . ,j} with at most γ deviations and a cumulative deviation

of φ:

α(j,γ,φ) = max

j∑
i=1

f ′i(φi)

s.t. φj = φ, (3.17)

φi =
i∑
t=1

ψ̂tξt, ∀i = 1, . . . ,j, (3.18)

j∑
i=1

ξi ≤ γ, (3.19)

ξi ∈ {0, 1}, ∀i = 1, . . . ,j. (3.20)
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Let α(j,γ,φ) = −∞ if the feasible set defined by (3.17)−(3.20) is empty because the value

of φ cannot be reached by a sum of deviations. Hence, we have that α(1,0,0) = f ′1(0),

α(1,γ,ψ̂1) = f ′1(ψ̂1) for each 1 ≤ γ ≤ Γ, and α(1,γ,φ) = −∞ for the remaining cases.

We see immediately that the optimal solution cost of the adversarial problem (AP),

denoted by opt(AP), can be computed as opt(AP) = max
φ=0,...,φ

α(n,Γ,φ). Moreover, we see

easily by contradiction that α(n,γ,φ) satisfies the functional equation stated below.

Lemma 1. For j > 1, each α(j,γ,φ) can be obtained using the following recursion:

α(j,γ,φ) = f ′j(φ) + max{α(j − 1,γ,φ),α(j − 1,γ − 1,φ− ψ̂j)}, (3.21)

for each j = 2, . . . ,n, γ = 0, . . . ,Γ, and φ = 0, . . . , φ.

The computation of f ′j(φ) can be done in constant time for each j = 2, . . . ,n and

φ = 0, . . . , φ, yielding a pseudo-polynomial worst-case complexity for our DPA.

Lemma 2. Problem (AP) can be solved by a DPA in O(nΓφ) operations.

Using the equivalence between separation and optimization (e.g. [GLS93]), it follows

that P can be solved in pseudo-polynomial time whenever Z is an easy convex set, which

is the case for the RLSP.

Corollary 1. Consider problem P and let Z be a convex set that has a polynomial time

separation oracle. Then, problem P can be solved in pseudo-polynomial time.

Proof. We present next a simple cutting-plane algorithm for solving P . Let J be a non-

negative integer and f ji (z) be an affine function of z for each 1 ≤ i ≤ n, 1 ≤ j ≤ J . We

solve P by a cutting-plane algorithm based on the following relaxation:

min cT z

(R) s.t. z ∈ Z,
n∑
i=1

f ji (z) ≤ dT z, ∀j = 1, . . . , J,
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initialized with J = 0. Given a feasible solution z∗ to (R), we solve the adversarial

problem. If max
ψ∈ΞΓ

f(ψΣ,z∗) > dT z∗, we let ψ∗ be an optimal solution of the maximization

problem, set J ← J + 1, and add a new constraint to (R) where f ji (z) = µi(ψ
∗Σ,z) if

µi(ψ
∗Σ,z∗) = max{µi(ψ∗Σ,z∗),νi(ψ∗Σ,z∗)} and f ji (z) = νi(ψ

∗Σ,z), otherwise.

Lemma 2 states that solving the adversarial problem using the proposed dynamic

approach can be considered an interesting option when the sum of deviations φ is not

too large. The cases when the deviations are large correspond to the situations where

the uncertain parameters can assume a wide range of values and therefore the decision

maker is very conservative or very little is known about the uncertain parameters. We

also see that the algorithm is polynomial when Γ is constant since φ can take at most nΓ

different values.

3.3.2 Fully polynomial time approximation scheme

We show next how to modify our DPA to obtain a FPTAS for problems P that satisfy

additional assumptions. Our approach works in two steps. First, we adapt to (AP) the

FPTAS proposed for the knapsack problem by [IK75]. Their main idea is to reduce the

precision on the parameters by dividing them with a well-chosen number, identical for all

parameters. Our approach holds whenever functions fi and µi satisfy the the technical

assumption stated below. Then, we show that whenever Z is convex, a FPTAS for (AP)

can be turned into a FPTAS for P .

Assumption 1. Consider problem (AP) described by (µ0,µ1,ν0,ν1,z) and let ξ = max
i=1,...,n

ψ̂i.

There exists a function χ of (µ0,µ1,ν0,ν1) such that LB =

ξχ(µ0,µ1,ν0,ν1) is a lower bound for opt(AP) and

max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }

χ(µ0,µ1,ν0,ν1)
≤ P(n), (3.22)

where P(n) is a polynomial in n.
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Let us illustrate Assumption 1 on the RLSP, assuming that all components of h and

p are positive. For that problem, we see that a lower bound for the optimal solution of

the problem is LB = ξ min{hn,pn}
2

, so that (3.22) becomes
max

i=1,...,n
{hi,pi}

min{hn,pn} ≤ P(n) for some

polynomial P(n). For instance, requiring that P(n) be equal to some constant λ > 0

yields the set of instances for which
max

i=1,...,n
{hi,pi}

min{hn,pn} ≤ λ. Considering polynomials of higher

degrees yields a larger set of admissible instances while increasing the computational

complexity of the resulting FPTAS.

Lemma 3. Consider problem (AP) such that Assumption 1 holds. There exists a FPTAS

for (AP).

Proof. For any ε > 0, we let K = εξχ(µ0,µ1,ν0,ν1)

2nΓ max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }

and define the new mean value

ψ
′
i = ψi

K
and deviation ψ̂′i = b ψ̂i

K
c for each i = 1, . . . ,n, and φ

′
= maxS⊆{1,...,n}:|S|=Γ

∑
i∈S ψ̂

′
i.

Then, execute the DPA presented in the previous section to (AP) using the vector of

deviations ψ̂′. Using notation ξ′ = b ξ
K
c, we see that the running time of the algorithm is

polynomial in (n,Γ,1/ε) since

O(nΓφ
′
) = O(nΓ2ξ′) = O

(
nΓ2

⌊
ξ

K

⌋)
= O

(
nΓ2

⌊
nΓP(n)

ε

⌋)
.

We are left to show that the optimal solution to the problem with ψ̂′ is an (1 − ε)-

approximate solution for the original problem.

Let ξ′,ξ∗ ∈ {ξ|ξ ∈ {0,1}n,‖ξ‖1 ≤ Γ} be the solution returned by the above algorithm

and the optimal solution, respectively, and let profit(·) and profit′(·) denote the profit

of any element of {0,1}n using deviations ψ̂ and ψ̂′, respectively. Clearly, profit(ξ′) ≤

opt(AP). Then, recall from the definition that K profit′(ξ) =

n∑
i=1

max

{
µ0
iK + µ1

i

i∑
t=1

(
Kψt + ξtK

⌊
ψ̂t
K

⌋)
,ν0
iK + ν1

i

i∑
t=1

(
Kψt + ξtK

⌊
ψ̂t
K

⌋)}
,

for any ξ ∈ {ξ|ξ ∈ {0,1}n,‖ξ‖1 ≤ Γ} and observe that ψ̂t −K
⌊
ψ̂t
K

⌋
≤ K. Hence, for any
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ξ ∈ {ξ|ξ ∈ {0,1}n,‖ξ‖1 ≤ Γ} we have that

| profit(ξ)−K profit′(ξ)| ≤ nΓK max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }. (3.23)

Therefore,

profit(ξ′) ≥ K profit′(ξ′)− nΓK max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }

≥ K profit′(ξ∗)− nΓK max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }

≥ profit(ξ∗)− 2nΓK max
i=1,...,n

{µ0
i ,µ

1
i ,ν

0
i ,ν

1
i }

= opt(AP)− εLB ≥ (1− ε)opt(AP),

proving the result.

The lemma below shows that the existence of a FPTAS for (AP) can be translated

into a FPTAS for special cases of problem P .

Lemma 4. Consider the following special case of problem P

min cT z + θ

(P′) s.t. z ∈ Z

f(ψΣ,z) ≤ θ, ∀ψ ∈ ΞΓ.

Assume that Z is a convex set that has a polynomial time separation oracle and that there

exists a FPTAS for max
ψ∈ΞΓ

f . There exists a FPTAS for (P′).

Proof. We must show that for each ε > 0, we can provide in polynomial time an (1 + ε)-

approximate solution to (P′). Our approach relies on the cutting-plane algorithm from

Corollary 1 with the difference that each (AP) is now solved with the FPTAS to provide

an 1
1+ε

-approximate solution. Let (z′, θ′) be the solution returned by the approximate

cutting plane algorithm. We claim that (z′, (1+ ε)θ′) is the desired approximate solution.
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Clearly, (z′, (1 + ε)θ′) is computed in polynomial time. Then, we must verify that

opt(P′) ≤ cT z′ + (1 + ε)θ′ ≤ (1 + ε)opt(P′).

To prove the first inequality, we rewrite (P′) as

min
z∈Z

cT z + F (z),

where F (z) = maxψ∈ΞΓ
f(ψΣ,z). Since θ′ is an 1

1+ε
-approximate solution of the corre-

sponding (AP), we have that θ′ ≥ 1
1+ε

F (z′). Hence,

cT z′ + (1 + ε)θ′ ≥ cT z′ + F (z′) ≥ opt(P′).

We prove the second inequality by contradiction. Assuming the inequality does not hold,

we obtain:

opt(P′) <
cT z′

1 + ε
+

1 + ε

1 + ε
θ′ ≤ cT z′ + θ′. (3.24)

Moreover, because θ′ is an approximate solution of the corresponding maximization

problem (AP), we have, because z′ is optimal.

cT z′ + θ′ ≤ cT z′ + F (z′) ≤ opt(P′),

which is in contradiction with (3.24).

3.3.3 General budgeted uncertainty set

We discuss below how to extend the DPA to handle the general uncertainty set ΞΓ.

Downward deviations Downward deviations of ψ can be handled by replacing con-

straints (3.19) and (3.20) in the definition of α(j, γ, φ), by
∑j

i=1 |ξi| ≤ γ and ξi ∈

63



{−1, 0, 1}, respectively. The recursion formula (3.21) is then adapted to:

α(j,γ,φ) = f ′j(φ) + max{α(j − 1,γ,φ),α(j − 1,γ − 1,φ− ψ̂j),α(j − 1,γ − 1,φ+ ψ̂j)},

for each j = 2, . . . ,n, γ = 0, . . . ,Γ, and φ = 0, . . . , φ. The FPTAS for (AP) still holds in

this case.

Fractional Γ If Γ is fractional one can take advantage from the fact that the extreme

points of ΞΓ can have at most one fractional ξi. Let ΓI = bΓc and ΓF = Γ − ΓI . Hence

(AP) can be solved by applying the DPA n + 1 times, with Γ replaced by ΓI . In the

first iteration, we suppose that ξ has no fractional component (no other change in data

is required). In each of the remaining n iterations, we assume that ξj = ΓF . Then, we

redefine ψj as ψj + ΓF ψ̂j and ψ̂j as 0 for that iteration. This approach works because the

DPA does not require that ψi be integer. The FPTAS for (AP) also holds in this case.

3.3.4 Other objective functions

We discuss next whether the DPA and the related FPTAS can be extended to more

general functions. One the one hand, the DPA holds when fi : R → R is any quasi-

convex function (quasi-convexity is required for replacing ΞΓ by ext(ΞΓ)). Clearly, the

computational complexity of the resulting DPA increases according to the computational

cost of evaluating each function fi. For instance, for the type of functions fi considered

in this chapter, this complexity is O(1). A simple example of non-linear function arises

in scheduling problems that minimize the squared deviation, where the cost of finishing

a job i having a deadline di at time ψΣ
i is defined as fi(ψ

Σ) = (ψΣ
i − di)2. On the other

hand, the FPTAS extends easily only to functions fi defined as the maxima of K affine

functions. This extension could be used to address lot-sizing problems with piecewise

linear convex holding costs for instance [TG15]. The extension to K affine functions

(instead of 2 as in (3.2)) carries over immediately to problems P and (P′). However, the
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row-and-column generation algorithm described in Section 3.2.1 and its cutting-plane

version used in Corollary 1 are not designed to handle the more general quasi-convex

functions mentioned for the DPA.

The separation problem is not affected by the dependency of f on z, so that the

DPA and FPTAS extend directly to more complex functions of z. However, the row-and-

column generation algorithm would then involve solving non-linear (MP). For instance,

allowing µi and νi to be bi-affine functions, as seen in the recent literature on robust

optimization [GdH13, AD16], would lead to bilinear (MP) when considering the more

general models described in the next section.

3.4 Variable order

3.4.1 Introducing permutations

We discuss in this section how to extend the algorithmic framework discussed in Sec-

tion 3.2 to handle problems where the order used to define ψΣ
i =

∑i
j=1 ψj must depend

on the values taken by the optimization variables z. Consider for instance the one-machine

scheduling problem that minimizes tardiness. Namely, each job i has a given deadline

di and there is a cost for finishing the job after the deadline that is proportional to the

delay. One readily sees that the finishing times of the jobs in a schedule, denoted by z,

can be defined by cumulative sums similar to ψΣ but depending on the order used in the

schedule z. More precisely, the order of the jobs in z can be described by a permutation

of the jobs {1, . . . ,n}. Let τz(i) denote the order of job i in the schedule z. The finishing

time of job i is given by

yi(ψ,z) =

τz(i)∑
j=1

ψτ−1
z (i).

Given a penalty weight wi for each job i, the total penalty cost of the schedule z is

f(ψ,z) =
n∑
i=1

max{wi(yi(ψ,z)− di),0}.
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We detail in the next subsection a similar construction for the vehicle routing problem

with deadlines. Notice that for more complex problems it is useful to introduce two dis-

tinct functions. For instance, in assignment type project scheduling problems [BDM+99],

the processing time of a job depends on the amount of resource that is assigned to the

job. Hence a solution z would not only describe the order of the jobs, but also their

processing times. We would then let τz represent the order in which the jobs are realized,

while πz would be a function from {1, . . . ,n} to {1, . . . ,m} that would characterize the

processing times of the jobs among the m available processing times. Notice that our

framework does not handle repetitions of the components of ψ in the partial summations

so that πz must be an injective function.

With these applications in mind, we generalize problem P as follows. We consider

two positive integers n and m, such that m ≥ n and ΞΓ ⊂ Rm and consider the robust

constraint

f(y(ψ,z),z) ≤ dT z, ψ ∈ ΞΓ, (3.25)

with f defined as follows.

Assumption 2. For every z ∈ Z, we can define a permutation τz of {1, . . . ,n} and an

injective function πz : {1, . . . ,n} → {1, . . . ,m} with yi(ψ,z) =

τz(i)∑
j=1

ψπz(j) such that

f(y(ψ,z),z) =
n∑
i=1

max{µi(yi(ψ,z),z),νi(yi(ψ,z),z)}. (3.26)

When z is fixed, we use the shorter notation f(y(ψ),z).

The following extends the algorithm proposed in Section 3.2.1 by considering a vector

of optimization variables yψ for each ψ ∈ Ξ, which models the function y(ψ,z) in the

new master problem. Namely, let us denote by Y the of solutions that satisfy the linear

restrictions that link optimization vectors z and yψ such that for any z ∈ Z the projection

of Y on yψ is reduced to singleton {(
∑τz(1)

t=1 ψπz(t), . . . ,
∑τz(n)

t=1 ψπz(t))}. We illustrate the
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set in the next subsection. The counterpart of P under Assumption 2 is

min cT z

(Pvar) s.t. z ∈ Z,

(z,yψ) ∈ Y , ∀ψ ∈ ΞΓ, (3.27)

f(yψ,z) ≤ dT z, ∀ψ ∈ ΞΓ.

The difference between P and (Pvar) lies in constraints (3.27), which ensure that the

optimization vector yψ takes the right value for any z ∈ Z and ψ ∈ ΞΓ. The row-and-

column-generation algorithm depicted in Section 3.2.1 extends naturally to cope with

the new variables and constraints. More precisely, given a feasible solution z∗ to (MP),

one checks the feasibility of z∗ for (Pvar) by solving an adversarial problem, which is

identical to (AP) because z∗ is fixed. Let ψ∗ be the optimal solution for the adversarial

problem. If f(yψ
∗
,z∗) > dT z∗, then Ξ0 ← Ξ0 ∪ {ψ∗}, and the corresponding optimization

vectors yψ
∗

and ϕψ
∗

and constraints (z,yψ
∗
) ∈ Y and

n∑
i=1

ϕψ
∗

i ≤ dT z

ϕψ
∗

i ≥ µi(y
ψ∗ ,z), ∀i = 1, . . . ,n

ϕψ
∗

i ≥ νi(y
ψ∗ ,z), ∀i = 1, . . . ,n

are added to (MP).

We show next that the problems modeled by (Pvar) must involve non-connected

feasibility sets Z. Roughly speaking, the next result formalizes the intuitive idea that

the permutations are non-trivial only if Z is non-connected, which happens in mixed-

integer linear programs for instance.
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Lemma 5. If Z is a connected set, then for all z,z′ ∈ Z it holds that

τz(i)∑
t=1

ψπz(t) =

τz′ (i)∑
t=1

ψπz′ (t), for each i = 1, . . . ,n. (3.28)

Proof. Let ψ ∈ ext(ΞΓ) be fixed and let the projection of Y on its component y be

represented by function Y(z) = Y ∩ {z}, for all z ∈ Z. Function Y is continuous in z,

because its image is characterized by constraints that are affine functions of z. Suppose

now that Z is connected and that there exists z,z′ ∈ Z such that (3.28) does not hold

and let δ > 0 be a positive real. Denote by
−→
zz′ a path in Z from z to z′ and consider

a,b ∈
−→
zz′ with ‖a − b‖ ≤ δ such that (3.28) does not hold. By assumption and recalling

that ψ̂ is integer, there exists an index i such that

|Yi(a)−Yi(b)| =

∣∣∣∣∣∣
τa(i)∑
t=1

ψπa(t) −
τb(i)∑
t=1

ψπb(t)

∣∣∣∣∣∣ ≥ 1,

proving the discontinuity of Y at a.

The lemma implies that when Z is connected, constraints (3.27) can be removed from

(Pvar) getting back to the simpler version P .

3.4.2 Illustration: Robust Traveling Salesman Problem with

deadlines

Here we consider a variant of the Traveling Salesman Problem where a deadline is consid-

ered for the visit to each client. The resulting problem is called the TSPD. The problem

occurs in many practical situations and has been studied previously in the stochastic

programming literature, see for instance [CT08].

The Robust TSPD, denoted RTSPD, is defined as follows. We are given a complete

digraph G = (V,A) with V = {0,1, . . . ,n} where node 0 is the depot, costs cij for crossing

arc (i,j) ∈ A, and a deadline bi associated with each node but the depot. If the vehicle
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arrives after time bi, a penalty cost, denoted by vi, is incurred per time unit of the

violated time. We assume that the traveling times ψij are uncertain and belong to the

aforementioned budgeted polytope where ψij is the regular traveling time and ψ̂ij is the

maximum possible delay.

In our formulation below, binary variable xij indicates whether arc (i,j) is in the

solution or not, and continuous variable yψi represents the time of visit to vertex i when

the vector of traveling times ψ is considered. We assume node 0 is the depot, from where

the vehicle departs. The RTSPD can be modeled as follows.

min
n∑
i=1

n∑
j=1

cijxij + θ (3.29)

s.t.
n∑
i=1

xij = 1, ∀j ∈ V, (3.30)

n∑
j=1

xij = 1, ∀i ∈ V, (3.31)

yψ0 = 0, ∀ψ ∈ ΞΓ, (3.32)

yψj ≥ yψi + ψij −M(1− xij), ∀ψ ∈ ΞΓ, (i,j) ∈ A, (3.33)

θ ≥
n∑
i=1

max{vi(yψi − bi), 0}, ∀ψ ∈ ΞΓ, (3.34)

xij ∈ {0,1}, ∀(i,j) ∈ A, (3.35)

where M is a big-M constant. Constraints (3.30) and (3.31) ensure that each node is

visited once. Constraints (3.32) and (3.33) define the time variables for the visit to each

node, which also forbids cycles. Constraints (3.34) models the penalty incurred for not

meeting the deadline at each node, and adds the penalty to θ.

We have yet to show that the above formulation is a special case of (Pvar). Here,

set Z contains all z = (x,θ) where θ is an unrestricted real and x is a Hamiltonian cycle,

that is, a binary vector that satisfies constraints (3.30) and (3.31) and whose associated

subgraph does not contain cycles. Strictly speaking, the above formulation is not a

special case of (Pvar) because cycles are forbidden through constraints (3.33), which are
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constraints that characterize Y and should therefore not contribute to the definition of Z

as introduced in Section 3.4.1. Hence, to be truly coherent with (Pvar), one should add to

the model classical constraints to forbid cycles (e.g. subtour inequalities, cut inequalities,

MTZ inequalities, ...), which we omit to keep our model as simple as possible. Set Y is

then defined by constraints (3.32) and (3.33). Namely, consider a fixed z = (x,θ) ∈ Z

where x is a fixed Hamiltomian cycle, and let τz(i) denote the position of node i in the

cycle, starting from the depot (τz(0) = 0), and let πz(i) denote the arc that comes in

position i in the cycle. One readily verifies that (3.32) and (3.33) yield the following

restriction for yψi for each i = 1, . . . ,n:

yψi ≥
τz(i)∑
t=1

ψπz(i). (3.36)

Again, to be faithful to (Pvar), constraint (3.36) should hold to equality. Although this

could be enforced by complementing the formulation with additional linear constraints

with big-M constants, these are unnecessary because the equality holds in any optimal

solution of the RTSPD. Finally, function f(y(ψ,z),z) can be defined from the rhs of (3.34),
n∑
i=1

max{vi(yi(ψ,z)−bi), 0}, which satisfies Assumption 2. Therefore, the decomposition of

the problem can be done similarly to Section 3.2. Given a solution z ∈ Z to the master

problem, the adversarial problem looks for the scenario ψ that maximizes f(y(ψ),z),

namely,

opt(AP) = max
ψ∈ΞΓ

{
n∑
i=1

fi(ψ)

}
where fi(ψ) = max{vi(yi(ψ)− bi), 0}.

Differently from the RLSP presented in the previous subsection, we see that the meaning

of yi(ψ,z) depends here on vector z = (x,θ), since the order in which the nodes and arcs

are visited depends on the specific Hamiltonian cycle x.
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3.5 Extensions

In this section we discuss two extensions of the adversarial problem and the DPA. For

the sake of simplicity, these extensions are presented for specific optimization problems.

3.5.1 A simple inventory distribution problem

In this section we consider an example of the case where the adversarial problem can

be separated into k subproblems with a single linking constraint which is the constraint

imposing a maximum number of Γ deviations. Each subproblem coincides with (AP).

The approach consists in solving each subproblem (AP) with the DPA for each possible

number of deviations and then, in a second stage, combine the k subproblems.

We exemplify this situation below with a robust variant of a simplistic inventory

distribution problem. We are given a set k of retailers and a set of n time periods. The

company controls the inventory at the retailers and needs to decide when and how much to

deliver in each time period at each retailer. We define the following parameters: C is the

distribution capacity per period for each retailer and ψij, sij, pij, fij represent for retailer

j in period i, the demand, backlogging cost, holding cost and fixed transportation cost,

respectively. As before, demand vector ψ is uncertain and belong to uncertainty set ΞΓ
IR

defined as ΞΓ
IR =

{
ψ : ψij = ψij + ψ̂ijξij, i = 1, . . . ,n, j = 1, . . . ,k, ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ Γ

}
.

Hence, Γ is the total number of deviations allowed.

In our simplistic variant presented below, the only distribution variables are the con-

tinuous variables xij that describe the quantity delivered to retailer j in period i. Hence,

xij plays the role of the former production variable xi used in Section 3.2.2. A formulation
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for the Robust Inventory Routing Problem RIRP follows.

min fTx+ θ

s.t 0 ≤ xij ≤ C, ∀i = 1, . . . ,n,j = 1, . . . ,k,

θ ≥
n∑
i=1

k∑
j=1

max

{
sij

i∑
t=1

(ψtj − xtj) ,−pij
i∑
t=1

(ψtj − xtj)

}
, ∀ψ ∈ ΞΓ

IR. (3.37)

Unlike the simple lot-sizing from Section 3.2.2, it is not possible here to sum up total

demands up to period i in variable yψi since the latter depends also on the particular

retailer. One way to avoid this difficulty is to ignore the correlation of demands for

different retailers, replacing the above model with

min fTx+
k∑
j=1

θj

s.t 0 ≤ xij ≤ C, ∀i = 1, . . . ,n,j = 1, . . . ,k,

θj ≥
n∑
i=1

max

{
sij

(
ψΣ
i −

i∑
t=1

xtj

)
,−pij

(
ψΣ
i −

i∑
t=1

xtj

)}
,

∀j = 1, . . . ,k,ψ ∈ ΞΓj

uncor,

with ΞΓj

uncor =
{
ψ : ψi = ψi + ψ̂iξi, i = 1, . . . ,n, ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ Γj

}
, and ψΣ

i =
i∑
t=1

ψt.

The uncorrelated model yields k adversarial problems, each of them identical to the

adversarial problem of the RLSP. Still, it may not be satisfactory in some applications to

ignore the correlations of demands among different retailers. Hence, we explain below how

to solve the adversarial problem induced by constraint (3.37). As mentioned previously,

for each retailer j ∈ {1, . . . ,k}, we have an adversarial problem which coincides with

the adversarial problem of the RLSP. The k problems are linked through the maximum

number of deviations Γ. For each j ∈ {1, . . . ,m}, γ ∈ {0, . . . ,Γ} let δjγ denote the value

of the adversarial problem for the RLSP for retailer j with γ deviations, computed by

the DPA from Section 3.3. The value of the adversarial problem for the RIRP is given
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by the best combination of these k subproblems:

opt(AP′) = max

{
k∑
j=1

Γ∑
γ=0

δjγujγ :
k∑
j=1

Γ∑
γ=0

γujγ ≤ Γ, ujγ ∈ {0,1},

j = 1, . . . ,k, γ = 0, . . . ,Γ

}
.

where ujγ is a binary variable that indicates whether γ deviations are considered for re-

tailer j. This linking problem, known as the Linking Set Problem can be solved by dynamic

programming in O(kΓ) operations, see [AR09]. Recall that φ = max
S⊆{1,...,n}:|S|=Γ

∑
i∈S

ψ̂i. We

obtain the following result.

Lemma 6. Problem (AP′) can be solved by a DPA in O(nΓφ+ kΓ) operations.

Notice that, for the sake of clarity, we presented a simplistic inventory routing problem.

However, our approach extends directly to inventory routing problems where the routing

and/or distribution is modeled by introducing binary variables (e.g. [SCL12]), as well

as problems with different capacities, since these refinements do not affect (AP′). We

also point out that similar adversarial problems occur in other problems such as the

vehicle routing problems with deadlines with uncertain traveling times where the number

of delays is bounded by Γ. In the latter problem, it can be important to bound the total

number of delays for all vehicle by a single value of Γ.

3.5.2 The TSP with time-windows

The RTSPD considered in the previous section is a simplification of the widely studied

TSP where a full time window [ai, bi] is associated to each node different from the depot,

thus complementing the deadline bi with a lower limit ai. The difficulty of handling a full

time window, instead of a deadline, depends on the type of constraints considered: soft

or hard, where a soft constraint can be violated at some cost, and a hard constraint must

always be satisfied. For instance, the deadline introduced for the RTSPD in the previous
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section is a soft constraint. A hard left constraint imposes that if the salesman arrives at

node before ai he must wait until ai. We examine next the four different combinations

for left and right time limits. If left and right time limits are soft, with unitary penalty

costs denoted by u and v, respectively, the resulting problem can be formulated as the

RTSPD studied previously replacing constraint (3.34) with

θ ≥
n∑
i=1

max{ui(yψi − bi),−vi(y
ψ
i − ai)}, ∀ψ ∈ ΞΓ.

One readily sees that the above robust constraint is defined by a function that satisfies

Assumption 2. If left time limit is soft, with unitary penalty cost p, and right time

limit is hard, the problem can be formulated as the RTSPD studied previously replacing

constraint (3.34) with robust constraints

θ ≥
n∑
i=1

max{0,−vi(yψi − ai)}, ∀ψ ∈ ΞΓ, (3.38)

yψi ≤ bi, ∀i = 1, . . . ,n,ψ ∈ ΞΓ. (3.39)

One readily sees that both robust constraints above are defined by functions that satisfy

Assumption 2. Actually, solving the (AP) associated to constraint (3.39) can be done

in polynomial time since it comes down to computing the Γ highest components of ψ̂

among {ψ̂1, . . . ,ψ̂i} for each i = 1, . . . ,n. If both time limits are hard, the problem

does not enter the framework studied in this chapter. The authors of [ACF+13] propose

different approaches for that problem and show that the corresponding (AP) can be

solved in polynomial time. The last case, denoted RTSPTW in what follows (standing

for Traveling Salesman Problem with Time Windows), considers hard left time limit and

soft right time limit with unitary penalty cost p (see [ACD13] for an application). This

case is more complex than the previous ones. Still, we show in the balance of the section

that the associated adversarial problem can also be solved by a DPA in pseudo-polynomial

time.
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The mathematical model for the RTSPTW is close to the one given for the TSPD. In

addition to (3.29) – (3.35), we must consider a new constraint imposing a lower bound

on the start time of each visit:

yψi ≥ ai ∀ψ ∈ ΞΓ, i ∈ V. (3.40)

Unfortunately, the addition of constraints (3.40) to the formulation of the RTSPD pre-

vents the RTSPTW from being a special case of problem (Pvar). Namely, let z = (θ,x) ∈

Z where x is the incidence vector of a Hamiltonian cycle and θ the worst-case cost due to

the delay, and let τz and πz be the functions defined in Section 3.4.2. To avoid carrying the

functions throughout, we assume without loss of generality that τz(i) = i and πz(i) = i

for each i = 1, . . . ,n. Constraints (3.40) break the structure witnessed for the RTSPD

since the arrival time yi(ψ) at node i can no longer be defined as an affine function of ψ,

such as (3.36) used for the RTSPD. Namely, the wait of the salesman in case he arrives

at node i before ai yields arrival times that can be formulated recursively as

yi(ψ) = max(ai,ai−1 + ψ(i−1)i), (3.41)

for each i = 1, . . . ,n, where we recall that (i−1,i) denotes the arc that enters i and leaves

its predecessor i − 1 in the Hamiltonian cycle. Therefore, penalty function f(y(ψ),z) =
n∑
i=1

max{ui(yi(ψ) − bi), 0}, with yi(ψ) defined in (3.41), does not satisfy Assumption 2

because y is not affine. Fortunately, it is possible to adapt our DPA to handle this

difficulty. For the sake of simplicity, we explain the generalization of the DPA directly

for the RTSPTW, rather than using the general framework depicted in Section 3.4.

Expanding recursively the maxima in (3.41), yi(ψ) can be expressed as (see [ACF+13])

yi(ψ) = max
`=1,...,i

{
a` +

i−1∑
t=`

ψt(t+1)

}
. (3.42)

As for the RTSPD, our objective penalizes the violation of the right time window bi
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with unitary penalty cost hi. Hence the adversarial problem is in this case opt(AP∗) =

max
ψ∈ΞΓ

{
n∑
i=1

fi(ψ)

}
where

fi(ψ) = vi

[
max
`=1,...,i

{
a` +

i−1∑
t=`

ψt(t+1)

}
− bi

]+

= max
`=1,...,i

ui
[
a` +

i−1∑
t=`

ψt(t+1) − bi

]+
 ,

where we used the simplified notation [x]+ for max{0,x}. Let ψ[`i] denote the subvector

{ψt(t+1) : t = `, . . . ,i − 1} and define f `i(ψ[`i]) = vi[a` − bi +
∑i−1

t=` ψt(t+1)]
+. Hence,

fi(ψ) = max
`=1,...,i

f `i(ψ[`i]). Let β(m,γ) be the value of the optimal solution of the restricted

problem defined for the subpath 1, . . . ,m with at most γ deviations:

β(m,γ) = max
ψ∈Ξγ

[1m]

{
m∑
i=1

max
`=1,...,i

f `i(ψ[`i])

}
,

where Ξγ
[`i] ≡

{
ψ : ψt = ψt + ψ̂tξt, t = `, . . . ,i, ξ ∈ {0,1}i−`+1, ‖ξ‖1 ≤ γ

}
. Clearly,

opt(AP∗) = β(n,Γ).

The rest of the section is devoted to the construction of a DPA to compute β(n,Γ).

Notice that for any t,
m∑
i=t

f ti satisfies (3.2), so that the sum can be optimized over the set

Ξγ
[tm] in pseudo-polynomial time by appling the algorithm presented in Section 3.3.1. Let

us denote f
β
(ξ[1m]) =

m∑
i=1

max
`=1,...,i

f `i(ψ[`i]) so that β(m,γ) can be rewritten as

β(m,γ) = max
ψ∈Ξγ

[1m]

f
β
(ξ[1m]).

The algorithm from Section 3.3.1 cannot be used directly to optimize f
β
(ξ[1m]) because

of the maximization involved in the definition of f
β
(ξ[1m]). Hence, we used an alternative

recursion based on the key lemma below. The lemma expresses f
β
(ξ[1m]) from the set of

functions
{
f
β
(ξ[1t]) : 1 ≤ t ≤ m− 1

}
and the sums

{
m∑
i=t

f ti(ψ[ti]) : 1 ≤ t ≤ m

}
. We show

in the balance of the section how this leads to a DPA.

Lemma 7. Let ψ ∈ Ξγ be fixed and m ∈ {2 . . . ,n}. It holds that
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f
β
(ξ[1m]) = max

t=1,...,m

{
f
β
(ξ[1(t−1)]) +

m∑
i=t

f ti(ψ[ti])

}
.

Proof. Since ψ is fixed, we simplify notations and denote f `i(ψ[`i]) as f `i in the rest of the

proof. Notice that from the definition of f `m, the following holds for each i ∈ {`, . . . ,m}:

arg max
`=1,...,i

f `m = arg max
`=1,...,i

f `i.

Therefore, if arg max
`=1,...,m

f `m = t and t ≤ i, then arg max
`=1,...,i

f `i = t. This can be equivalently

written as

f tm = max
`=1,...,m

f `m ⇒ f ti = max
`=1,...,i

f `i for all i = t, . . . ,m. (3.43)

The counterpart of (3.43) for the whole sum
m∑
i=1

max
`=1,...,i

f `i is

f tm = max
`=1,...,m

f `m ⇒
m∑
i=1

max
`=1,...,i

f `i =
t−1∑
i=1

max
`=1,...,i

f `i +
m∑
i=t

f ti,

and the result follows by taking the maximum over all t = 1, . . . ,m because we do not

know in advance which corresponds to arg max
`=1,...,m

f `m.

Using Lemma 7 we have, for each 2 ≤ m ≤ n and 0 ≤ γ ≤ Γ:

β(m,γ) = max
ψ∈Ξγ

[1m]

{
f
β
(ξ[1m])

}
= max

ψ∈Ξγ
[1m]

max
t=1,...,m

{
f
β
(ξ[1(t−1)]) +

m∑
i=t

f ti(ψ[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
max

ψ∈Ξδ
[1(t−1)]

f
β
(ξ[1(t−1)]) + max

ψ∈Ξγ−δ
[tm]

m∑
i=t

f ti(ψ[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1,δ) + max

ψ∈Ξγ−δ
[tm]

m∑
i=t

f ti(ψ[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1,δ) + F (t,m,γ − δ)

}
, (3.44)
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where F (t,m,γ−δ) = max
ψ∈Ξγ−δ

[tm]

m∑
i=t

f ti(ψ[ti]). Furthermore, for m = 1 and each γ ∈ {0, . . . ,Γ},

we have

β(1,γ) = max
ψ∈Ξγ

[11]

f 11(ψ[11]) = v1[a1 − b1]+ = 0. (3.45)

Combining (3.44) and (3.45), we obtain a DPA to solve (AP∗).

We conclude the section by showing that (3.44) yields a pseudo-polynomial DPA.

Notice that function

f̄tm(ψ[tm]) =
m∑
i=t

f ti(ψ[ti])

satisfies Assumption 2 for each 1 ≤ t ≤ m ≤ n. Hence, we can apply the DPA from

Section 3.3 to compute F (t,m,γ) = max
ψ∈Ξγ

[tm]

f̄tm(ψ[tm]) for each 1 ≤ t ≤ m ≤ n and

0 ≤ γ ≤ Γ. Namely, let αt be the table used to compute F (t,n,Γ) through the DPA from

Section 3.3. We readily see that

F (t,m,γ) = max
φ=0,...,φ

αt(m− t,γ,φ),

for each 1 ≤ t ≤ m ≤ n and 0 ≤ γ ≤ Γ. Therefore, we can obtain all values in

{F (t,m,γ) : 1 ≤ t ≤ m ≤ n, 0 ≤ γ ≤ Γ} by applying the DPA from Section 3.3 to

F (t,n,Γ) for each 1 ≤ t ≤ n. This yields a computational time of O(n2Γφ) which is done

in a pre-processing phase. Once all values of F have been computed, (3.44) can be solved

in O(n2Γ2). Since Γ ≤ φ, we obtain the following worst-case complexity.

Lemma 8. Problem (AP∗) can be solved by a DPA in O(n2Γφ) operations.

We finish the section by noticing that constraints similar to time windows appear

also in scheduling problem with release times and deadlines [Tsa03]. In the deterministic

version of the problem, we consider a set N = {1, . . . ,n} of tasks. For each task i ∈ N we

are given a release time ai, which is the time at which task i can start being processed, a

deadline bi and a duration ψi. The objective of the problem is to find a feasible schedule

of the tasks in a single machine such that the weighted sum of the deadline violations are

minimized. In the robust approach, the durations of the tasks are uncertain and belongs to
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n Γ0.10 Γ0.05 Γ0.01

50 11 13 18
100 14 18 24
200 20 25 34

Table 3.1: Values of Γε obtained by rounding up the values prescribed by the probabilistic
bound from [BS04].

uncertainty set ΞΓ. Similarly to the discussion made for the traveling salesman problem,

one can consider different versions of the problem depending on weather the release times

and deadlines are soft or hard constraints. Then one readily sees that for each of these

variants, the adversarial problem is similar to the aforementioned adversarial problems.

3.6 Computational experiments

We compare in this section our DPA and the classical MIP formulation for solving the

lot-sizing problem with row-and-column generation algorithms.

3.6.1 Instances and details

We consider three numbers of periods: 50, 100, and 200. For each one of them we create

four sets of instances: S1, S2, S3 and S4. For all sets we generate the storage cost

for each period randomly and uniformly from an interval [5,10]. The difference between

the sets lies in the backlog cost. For each i ∈ {1,2,3,4}, instances in Si are defined by

backlog cost equal to i times the storage cost in each period. For all instances the nominal

demand is generated randomly from interval [50, 100]. Then, we consider five levels of

deviations, ranging from 10% to 50% of the nominal demand. We round up the obtained

deviations to ensure that they are integer. Finally, we also consider three different values

for the budget of uncertainty Γ, motivated by the probabilistic bounds given in [BS04]

and provided in Table 3.1. Namely, the value of Γε is such that there is a probability of

1 − ε that the real cost will be no higher than the optimal solution cost whenever ψ is

composed of independent and identically distributed random variables.
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n 10% 20% 30% 40% 50%
DPA MIP DPA MIP DPA MIP DPA MIP DPA MIP

50 0.051 18.6 0.078 15.2 0.091 10.2 0.094 7.67 0.115 7.56
100 0.358 70.3 0.519 52.1 0.537 29 0.634 23.5 0.674 21.5
200 2.77 1,600 3.72 940 3.95 417 4.69 326 5.23 183

Table 3.2: Arithmetic means of the solution times.

Our experiments compare the DPA with the well-known MIP reformulation of (AP)

(e.g. [BÖ08]) recalled below:

max
n∑
i=1

ϕi,

s.t. ϕi ≤ µ0
i + µ1

i yi +Miui, ∀i = 1, . . . , n,

ϕi ≤ ν0
i + ν1

i yi +Mi(1− ui), ∀i = 1, . . . , n,

yi =
i∑
i=1

ψi + ψ̂iξi, ∀i = 1, . . . , n,

n∑
i=1

ξi ≤ Γ, ∀i = 1, . . . , n,

ξ ∈ {0,1}n, u ∈ {0,1}n, y ≥ 0.

For each i = 1, . . . ,n, variables ϕi and yi represent the value of functions fi(yi(ψ)) and

yi(ψ), respectively. Then, for each i = 1, . . . ,n variable ui is equal to 0 iff µi(yi(ψ))

is larger than νi(yi(ψ)) and Mi is a large predefined value that cannot be smaller than

|fi(yi(ψ))| for every ψ ∈ ΞΓ.

The DPA was coded in C++ and compiled in a GNU G++ 4.5 compiler. The MIP

formulation was implemented in C++ using Cplex Concert Technology 12.5 [CPL13].

The numerical experiments were carried out in an Intel(R) Core(TM) i7 CPU M60,

2.6Hz 4GB Ram machine.
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Figure 3.1: Geometric mean of (time MIP)/(time DPA).

 0.01

 0.1

 1

 10

 100

 1000

 50  100  200

 

Number of periods

σ for MIP
σ for DPA

(a) Standard deviation represented in
logarithmic scale.

 0

 0.5

 1

 1.5

 50  100  200

 

Number of periods

σ/µ for MIP
σ/µ for DPA

(b) Standard deviation divided by the
arithmetic mean (µ).

Figure 3.2: Standard deviation of the solution times σ when varying the number of time
periods.

3.6.2 Results

We provide in Figure 3.1 geometric means of the solution time of MIP divided by the

solution time of DPA. The standard deviations of the solution times are illustrated on

Figure 3.2 for both approaches. We present on Table 3.2 the arithmetic means of the

solution times for the different number of time periods and levels of deviations.

Figure 3.1 shows that DPA clearly outperforms MIP, with means ranging up to 475

when n = 200 and the deviation is 10%. The different parameters strongly impact the

respective solution times. First, we see on the charts from Figure 3.1 that, as expected

from its theoretical complexity, higher levels of deviation slow down DPA. The number

of time periods strongly affect both approaches, see Table 3.2. When the deviation is

small, Figure 3.1a shows that the ratio between MIP and DPA increases with the value of

n. In contrast, high levels of deviations tend to reduce the ratio between MIP and DPA.

Figure 3.1b depicts the sensitivity of the ratio between the storage and backlog costs.
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Our (unreported) results show that MIP is highly sensitive to the ratio, while DPA is

not affected at all, explaining the results of Figure 3.1b. Finally, Figure 3.1c shows that

higher values of Γ yields smaller ratios on average. Here, both approaches are strongly

affected by the value of Γ, and the figure shows than DPA is more affected than MIP

since the ratio decreases significantly when Γ rises.

The variations of the solution times are represented on Figure 3.2 for DPA and MIP,

through the standard deviation (σ). Figure 3.2a presents these standard deviations in a

logarithmic scale, which shows that the solution times of MIP vary between 2 and 3 order

of magnitude more than the solution times of DPA. Figure 3.2b shows these standard

deviations in a relative scale, dividing them by the associated arithmetic means. The

figure shows that in a relative scale, DPA varies roughly twice as much as MIP. Our simple

experiments show that DPA can be orders of magnitude faster than MIP, especially when

the deviation level is low. Moreover, the absolute variability of MIP is much higher than

the one of DPA, some instances being particularly hard to solve for the former. Notice

also that we compared a simplistic implementation of DPA to the well-engineered MIP

solver from CPLEX. It is likely that rules to eliminate dominated states would further

improve our results, but this is out of the scope of the current chapter.

To conclude we intend to discuss some more general open questions. The dynamic

programming algorithm presented in Chapter 3 can be easily parallelized, a naive strategy

consists in, for each period i build a task to compute the recursive function for each value

of Γ separately. This naive strategy has the downside that the tasks have a different

computational load, a more egalitarian strategy consist in dividing, for a fixed period

i and a fixed number of deviations Γ, the possible number of states for all the tasks.

Notice that the egalitarian strategy has the same computational load for each task, but

it task has little granularity, in this context, we can ask if the egalitarian strategy is even

computationally worth for some size of problem, and if it is the case.
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Chapter 4

Perfect information lower bounds for

the adjustable problems

4.1 Introduction

Adjustable robust optimization is known for being NP-hard, even in the case of a linear

program with only two decision stages. In spite of its theoretical difficulty, the problem

can be solved exactly by decomposition approaches whenever some assumptions hold

[AP16, BCP14, ZZ11]. These approaches consider finite subsets of the uncertainty set and

dynamically increase the number of considered scenarios by solving separation problems.

The numerical tractability of the resulting algorithms highly depends on the complexity

of the separation problem. For instance, the separation problem for the robust vehicle

routing problem can be solved in polynomial time [ACF+13], while the one related to

facility location or network design problems require solving MILP with big-M coefficients

[AP16, BCP14, ZZ11]. These decomposition approaches do not extend to multi-stage

problems, because of the non-anticipativity constraints present in these problems. Stated

simply, non-anticipativity constraints model the fact that optimization variables can only

depend on past realizations of the uncertain parameters; they cannot adjust their decision

to unknown realizations.
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Given the difficulty of adjustable multi-stage robust problems, many researchers have

developed heuristic approaches that try to provide feasible solutions for these problems.

The bottom line of all these approaches is to restrict the set of feasible functions for the

adjustable variables. The seminal paper in this line of research is [BGGN04] which

restricts adjustable variables to affine functions of the uncertainties, which they call

affine decision rules. Subsequent authors have studied more complex decision rules that

offer more flexibility than affine decision rules while providing more or less tractable

optimization problems.

In this chapter we provide a way to compute lower bounds for multistage robust

optimization problems. Our approach relaxes the non-anticipativity constraints of the

problem, thus yielding a relaxation of the original problem. This relaxation is well-

known in the stochastic programming literature as the perfect information relaxation.

We show in the chapter how the perfect information relaxation of the robust lot-sizing

problems can be solved efficiently either through polynomial-time algorithms or MILP

reformulations. Our experiments realized on lot-sizing instances inspired by the literature

seem to indicate that the perfect information relaxation can be very tight. In this chapter,

we pay particular attention to the budget uncertainty set.

4.2 The robust model

In this section we recall some definitions presented earlier in the manuscript and present

some results and models related to robust lot-sizing problems. We consider an uncertainty

polytope Ξ and we suppose that the demand at time period i is defined by the deviation

function di(ξ), which takes as argument an element of the uncertainty set Ξ and that such

deviation function has an affine dependence of the uncertainty parameter, more clearly,

di(ξ) = d̄i +
∑
j∈H

D̂ijξj, (4.1)

84



where d̄i can be seen as the mean value of the clients demands for time period i and

D̂ is the deviation matrix (which can be estimated from historical data) that represents

all temporal relations among demands. Equation (4.1) is sometime written shortly as

di(ξ) = d̄i + D̂iξ where D̂i represents the i-th row of matrix D̂. We also assume that the

demand functions are non-negative, more precisely di(ξ) ≥ 0 for all i ∈ H and ξ ∈ Ξ..

In the robust context, holding and backlog costs depend on the specific scenario

ξ. Hence, they are represented by functions si(ξ) and ri(ξ) for each time period i. The

situation is more complex with production and setup costs. One could suppose that these

features are independent of ξ, which would model the fact that all decisions must be taken

at the beginning of the planning horizon, see for instance [ASNP16, BÖ08, BT06]. In

this paper, we consider a more subtle approach where the productions and setups can

be adjusted according to past demand realizations. Hence, these decisions are modeled

by functions xi(ξ) and yi(ξ) for each time period i. Notice that, for each time period i,

these functions must depend only on the demand revealed up to time period i. This is

modeled by the non-anticipativity constraints

xi(ξ) = xi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′)

yi(ξ) = yi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′).

where Proj[1...i](ξ) denotes the projection of ξ on its first i components. Said differently,

the non-anticipativity constraints model the fact that x and y do not depend on future

knowledge of the uncertainty. The mathematical formulation for the robust model follows.
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((P′)) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

(4.2)

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

(4.3)

xi(ξ) ≤Myi(ξ) ∀i ∈ H,∀ξ ∈ Ξ

(4.4)

xi(ξ) = xi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′) ∀i ∈ H,

(4.5)

yi(ξ) = yi(ξ
′) ∀ξ,ξ′ ∈ Ξ,Proj[1...i](ξ) = Proj[1...i](ξ

′) ∀i ∈ H,

(4.6)

y(ξ) ∈ {0, 1}n, x(ξ), s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ.

In this chapter, we will study bounding procedures for problem BLSU setup(Ξ) as well

as problems BLSUysetup(Ξ) and BLSU(Ξ). The first one considers that the setup decisions

must be taken before knowing anything about the demand; that is, y becomes a vector

of optimization variables that are independent of ξ. The second one looks at the problem

without setup costs, which can be modeled by setting all components of y and g to 1

and 0, respectively. We denote these simplifications as BLSUysetup(Ξ) and BLSU(Ξ),

respectively. Each of the tree models is relevant for specific applications. For instance,

BLSU(Ξ) is close to the classical supply chain model addressed in most papers from

the robust lot-sizing literature (e.g. [BT06, GdH13]). In contrast, models BLSUysetup(Ξ)

and (P′) are relevant for applications that involve fixed costs for the production due, for

instance, to machine configurations.

In general, we assume that Ξ can be any non-empty polytope, described by the matrix
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W with m rows and |H| = n columns

Ξ = {ξ | Wξ ≤ q, ξ ≥ 0} . (4.7)

In addition to general polytopes, we will also take a closer look at the complexity of

the optimization problems when using the budgeted uncertainty polytope introduced in

[BS04]. Given a positive real Γ, the budgeted polytope is defined as

ΞΓ =

{
ξ |
∑
i∈H

|ξi| ≤ Γ, −1 ≤ ξi ≤ 1,∀i ∈ H

}
. (4.8)

Strictly speaking, ΞΓ is not a special case of (4.7) because the uncertain parameters are

allowed to take negative values in ΞΓ. This detail could be avoided by considering instead

an extended formulation for ΞΓ, whith ξi = ξ+
i − ξ−i , ξ+,ξ− ≥ 0 and doubling the number

of rows of matrix D̂. To simplify the exposure of the paper, we do not further comment

on this and derive our results for the context specified above.

4.3 Bounds

We present in Subsections 4.3.1 and 4.3.2 approaches from the literature that provides

upper and lower bounds for the optimal solution of the adjustable robust problems. Notice

that these approaches cannot be applied to robust multi-stage optimization problems that

contain adjustable integer variables, such as (P′). Hence, in the following two sections,

we assume that y does not depend on ξ, either because it is a nonadjustable vector of

optimization variables (as in BLSU(Ξ)) or because each of its components has been fixed

to 1 (as in BLSUysetup(Ξ)).

4.3.1 Affine decision rules in lot-sizing problems

The main idea of the approach is to impose that functions si,ri and xi depend affinely

on ξ. Formally, these restrictions are modeled with constraints
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xi(ξ) = x0
i +

i∑
j=1

xjiξj, (4.9)

si(ξ) = s0
i +

n∑
j=1

sjiξj, (4.10)

ri(ξ) = r0
i +

n∑
j=1

rji ξj. (4.11)

where x0
i ,s

0
i ,r

0
i and xji ,s

j
i ,r

j
i for i,j ∈ H are optimization variables. The right-hand side

of (4.9) involves only the components of Proj[1...i](ξ) = Proj[1...i](ξ). Hence, the equation

models implicitly the non-anticipativity constraints introduced in the previous section.

Substituting xi(ξ),si(ξ), and ri(ξ) in the rhs of (4.2)–(4.4) for each i ∈ H, we obtain

an upper bound for BLSU(Ξ) and BLSUysetup(Ξ). Then, one can apply classical tools

from robust optimization to the formulation to reformulate the upper bound as a compact

linear program.

4.3.2 Dual affine decision rules

Recently, the authors of [KWG11] have proposed lower bounds for problems BLSU(Ξ)

and BLSUysetup(Ξ), which they call dual affine decision rules. To be more precise, their

approach is developed to provide lower bounds for multi-stage stochastic linear programs.

To apply this technique to robust multi-stage programs, one needs to introduce artificial

probability weights for the scenarios in Ξ. These probability weights are then used to

formulate a lower bounding problem where the robust constraints are relaxed to expec-

tation constraints. Then, a subtle reformulation allows them to provide a compact linear

mixed integer formulation for the lower bounding problem. The reformulation is based

on the use of convex duality and probability theory. One of the main difficulties of the

method relies in the computation of the expectation matrix M = E(ξT ξ). We redirect

the interested reader to [KWG11] for full details.
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4.3.3 Perfect information relaxation

The major impediment to the efficient solutions of problems (P′), BLSU(Ξ) and BLSUysetup(Ξ)

lies in the presence of the non-anticipativity constraints. Expressing non-anticipativity

constraints is not easy in general and strongly depends on the particular structure of

the considered set Ξ. In what follows, we propose a lower bounding problem for (P′)

that relaxes the non-anticipativity constraints from (P′), which we call the problem with

perfect information. Unlike the affine decision rules and the dual version presented in

the previous sections, the perfect information relaxation can be applied to (P′) regard-

less to the dependency of y on ξ. The associated optimization problems are denoted by

PI − BLSU setup(Ξ), PI − BLSUysetup(Ξ), and PI − BLSU(Ξ), for (P′), BLSUysetup(Ξ)

and BLSU(Ξ) respectively.

(PI − BLSU setup(Ξ)) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

xi(ξ) ≤ yi(ξ)M ∀i ∈ H,∀ξ ∈ Ξ

y(ξ) ∈ {0, 1}n, x(ξ),s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ.

Hence, a formulation for problem PI − BLSUysetup(Ξ) can be obtained from the above for-

mulation by removing the dependency of ξ from y, while a formulation for PI − BLSU(Ξ)

is obtained by removing the variables y and constraints associated with it. This approach

is well-known in stochastic optimization to examine the quality of proposed solutions. In

particular, it is used to compute the so-called expected value of perfect information which

defines the maximum price that one would be ready to pay to obtain perfect information

about the actual scenario, see [BL11].
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4.4 Solving the problem with perfect information

Let us first introduce some useful definitions. The cumulative cost wij represents the

unitary cost of producing at time period i to satisfy the demand of time period j:

wij = ci +

j−1∑
l=i

hl +
i−1∑
l=j

pl.

Notice that the above is well-defined, since for a fixed period i, i 6= j, only one of the

two summations is not empty. For the sake of simplicity, we denote by ωj the minimum

cumulative cost for period j, the smallest among values {wij, i ∈ H}. Finally, we denote

by opt(X) the optimal solution cost of any optimization problem X.

In the following, we discuss how to solve the optimization problems obtained by relax-

ing the non-anticipativity constraints. We first focus on problem PI − BLSU(Ξ), then we

address problem PI − BLSUysetup(Ξ), and we finish with problem PI − BLSU setup(Ξ).

For each problem, we present a generic solution algorithm that can handle general un-

certainty poltyopes and more efficient algorithms that are tailored for the budgeted un-

certainty polytope.

4.4.1 No setup

We first deal with the robust problem without setup costs PI − BLSU(Ξ), which can be

formulated as follows

(PI − BLSU(Ξ)) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

x(ξ),s(ξ), r(ξ) ≥ 0 ∀i ∈ H,∀ξ ∈ Ξ.
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We show that PI − BLSU(Ξ) is equivalent to problem

max
ξ∈Ξ

∑
i∈H

ωidi(ξ),

where ωi is the minimum cumulative cost of period i as defined previously. Hence,

the result shows that the complexity of PI − BLSU(Ξ) is related to the complexity of

optimizing an affine function over Ξ.

Theorem 1. Let Let Ξ be any uncertainty set. Then,

opt(PI − BLSU(Ξ)) = max
ξ∈Ξ

∑
i∈H

ωidi(ξ)

Proof. Because there is no capacity constraint, one readily verifies the following. For each

time period i, there exists a unique time period j for which all demand of i is produced,

which corresponds to the period that provides the minimum cumulative cost to serve the

demand of time period i. Hence, given any ξ ∈ Ξ, we have to pay the total cost

∑
i∈H

ωidi(ξ)

Then, the absence of setup costs implies that the time period yielding the minimum

production cost does not depend on ξ, proving the result.

Theorem 1 implies that PI − BLSU(Ξ) is polynomially solvable since linear pro-

gramming is polynomially solvable. We show in the next result that we can get faster

algorithms for Ξ when Γ is integer.

Corollary 2. Let Ξ = ΞΓ and define the subset Γ(ωT D̂) ⊆ H that contains the indices

of the Γ largest elements of the vector (|
∑

i∈H ωiD̂ij|,j ∈ H), and Γ′(ωT D̂) that denotes
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the (Γ+1)-largest element of that vector. The following holds:

opt(PI − BLSU(Ξ)) =
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

|ωT D̂i|+ (Γ− bΓc)|ωT D̂Γ′(ωT D̂)|.

Moreover, opt(PI − BLSU(Ξ)) can be computed in O(n2).

Proof. We obtain immediately from Theorem 1 that

opt(PI − BLSU(Ξ)) = max
ξ∈ΞΓ

∑
i∈H

ωidi(ξ)

= max
ξ∈ΞΓ

∑
i∈H

(
ωid̄i +

∑
j∈H

ωiD̂ijξj

)

=
∑
i∈H

ωid̄i + max
ξ∈ΞΓ

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i + max∑
i∈H

|ξi|≤Γ

−1≤ξi≤1

∑
i,j∈H

ωiD̂ijξj

=
∑
i∈H

ωid̄i +
∑

i∈Γ(ωT D̂)

|ωT D̂i|+ (Γ− bΓc)|ωT D̂Γ′(ωT D̂)|

Regarding the complexity, notice that we must calculate all cumulative costs, which

takes O(n2). Then, we must calculate the minimum cumulative cost for every period,

which takes O(n2). Finally, we must compute the vector (|ωT D̂i|,i ∈ H), which takes

O(n2) and chooses the Γ larger values of it, which takes O(Γ log n). Hence, the complexity

of this strategy is O(3n2 + Γ log n) = O(n2).

4.4.2 Non-adjustable setup

In this section, we address problem PI − BLSUysetup(Ξ), which can be formulated as
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(PI − BLSUysetup(Ξ)) min κ

s.t κ ≥
∑
i∈H

(cixi(ξ) + giyi + hisi(ξ) + piri(ξ)) ∀ξ ∈ Ξ

si+1(ξ) = xi(ξ)− di(ξ) + si(ξ)− ri−1(ξ) + ri(ξ) ∀i ∈ H,∀ξ ∈ Ξ

xi(ξ) ≤ yiM ∀i ∈ H,∀ξ ∈ Ξ

x(ξ),s(ξ), r(ξ) ≥ 0 ∀ξ ∈ Ξ

y ∈ {0, 1}n.

We address in this section PI − BLSUysetup(Ξ) for general polytopes and show how

the problem can be reformulated as mixed-integer linear program.

Theorem 2. Let Ξ be the uncertainty polytope defined in (4.7). The problem PI − BLSUysetup(Ξ)

can be solved by the following mixed integer linear program

opt(PI − BLSUysetup(Ξ)) = min
m∑
l=1

qlzl +
∑
i,j∈H

vijwijdj +
∑
j∈H

gjyj

s.t
m∑
l=1

Wlkzi ≥
∑
i,j∈H

vijwijD̂jk ∀k ∈ H,

∑
i∈H

vij = 1 ∀j ∈ H

vij ≤ yi ∀i,j ∈ H

v ∈ {0,1}n2

, y ∈ {0,1}n, z ≥ 0,

Proof. Consider a fixed binary vector y for problem PI − BLSUysetup(Ξ). We let PI − BLSUysetup(Ξ)(y)

be problem PI − BLSUysetup(Ξ) with the values of the setup fixed according to vector y.

It is clear that

opt(PI − BLSUysetup(Ξ)) = min
y∈{0,1}n

opt(PI − BLSUysetup(Ξ)(y)). (4.12)
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Problem PI − BLSUysetup(Ξ)(y) is a problem without setup costs, that is, it is a special

case of PI − BLSU(Ξ). Let us define

ωj(y) = min

{∑
i∈H

vijwij s.t.
∑
i∈H

vij = 1, vij ≤ yi, ∀i ∈ H v ∈ {0,1}n2

}
(4.13)

as the smallest cumulative cost for period j, among all costs wij such that yi = 1.

Applying Theorem 1 to PI − BLSUysetup(Ξ)(y), we obtain that

opt(PI − BLSUysetup(Ξ)(y)) = gjyj+max
ξ∈Ξ

∑
j∈H

ωj(y)dj(ξ) = max
ξ∈Ξ

∑
j∈H

ωj(y)dj+
∑
j,k∈H

ωj(y)D̂jkξk+
∑
j∈H

gjyj.

(4.14)

Since Ξ is non-empty and bounded, we can apply the linear programming strong

duality to the maximization problem defined over Ξ = {ξ | Wξ ≤ q, ξ ≥ 0} in the rhs of

(4.14). Introducing the non-negative dual variables {zl, l = 1, . . . ,m} for the constraints

defining Ξ, (4.14) becomes

opt(PI − BLSUysetup(Ξ)(y)) = min
m∑
l=1

qlzl +
∑
j∈H

ωj(y)dj +
∑
j∈H

gjyj

s.t
m∑
l=1

Wlkzl ≥
∑
j∈H

ωj(y)D̂jk ∀k ∈ H,

z ≥ 0.

Plugging the definition (4.13) of ωj(y) into the above formulation and removing the

minimization over v from the constraints, we obtain
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opt(PI − BLSUysetup(Ξ)(y)) = min
m∑
l=1

qlzl +
∑
i,j∈H

vijwijdj +
∑
j∈H

gjyj

s.t

m∑
l=1

Wlkzi ≥
∑
i,j∈H

vijwijD̂jk ∀k ∈ H,

∑
i∈H

vij = 1 ∀j ∈ H

vij ≤ yi ∀i,j ∈ H

v ∈ {0,1}n2

, z ≥ 0,

and the result follows from (4.12).

4.4.3 Adjustable setup

In this section we present a linear program that computes the value of opt(PI − BLSU setup(Ξ))

for general polytopes Ξ. Similarly to Theorem 1, we show that the complexity of problem

PI − BLSU setup(Ξ) is related to the complexity of optimizing an affine function over Ξ.

This time however, the linear program to be solved contains O(n3) constraints in addition

to those describing Ξ. Let us first recall a well-known dynamic programming algorithm

to solve the deterministic problem P .

Lemma 9 (Dynamic Program [PW06]). Problem P can be solved by the following recur-

sive function

opt(P) = G(n)

where

G(j) = min
{i,k|i<k≤j}

(
G(i) + gk +

j∑
l=i+1

wkldl

)
, (4.15)

where G0 = 0.

To compute PI − BLSU setup(Ξ), it will be useful to reformulate the above dynamic

program as the linear program provided in the next lemma.
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Lemma 10. The optimal solution cost of P is equal to the optimal solution cost of the

following linear program, with optimization variables ui for each i ∈ H

max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl ∀i < k ≤ j, i ∈ H ∪ {0}, j ∈ H.

u0 = 0

Proof. We introduce optimization variable ui to represent the value of G(i). The coun-

terpart of equation (4.15) for u is

uj = min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
. (4.16)

Then, we relax the equality in (4.16) to

uj ≤ min
{i,k|i≤k≤j}

(
ui + gk +

j∑
l=i

wkldl

)
, (4.17)

and ensure that the objective function of the linear program maximizes the value of uj.

Constraint (4.17) can be easily linearized to

uj ≤ ui + gk +

j∑
l=i

wkldl ∀i ≤ k ≤ j, i ∈ H. (4.18)

Combining linear constraints (4.18) with the objective function that maximizes un yields

the result.

Using the above results, we propose a linear programming reformulation for PI − BLSU setup(Ξ).

Theorem 3. For any uncertainty set Ξ, problem PI − BLSU setup(Ξ) can be solved by
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the following linear program in optimization vectors u and ξ

PI − BLSU setup(Ξ) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H

ξ ∈ Ξ

Proof. We define PI − BLSU setup(Ξ)(ξ), as the problem PI − BLSU setup(Ξ) restricted

to a fixed element ξ ∈ Ξ. One readily sees that

opt(PI − BLSU setup(Ξ)) = max
ξ∈Ξ

opt(PI − BLSU setup(Ξ)(ξ))

and moreover, PI − BLSU setup(Ξ)(ξ) is a deterministic lot-sizing problem. Hence, we can

apply Lemma 9 and use the following dynamic program for solving problem PI − BLSU setup(Ξ)(ξ)

opt(PI − BLSU setup(Ξ)(ξ)) = Gξ(n)

where

Gξ(j) = min
{i,k|i≤k≤j}

(
Gξ(i) + gk +

j∑
l=i

wkldl(ξ)

)
.

Using Lemma 10, PI − BLSU setup(Ξ)(ξ) has the same optimal solution as the linear

program

opt(PI − BLSU setup(Ξ)(ξ)) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H.

(4.19)
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Now, as opt(PI − BLSU setup(Ξ)) = max
ξ∈Ξ

opt(PI − BLSU setup(Ξ)(ξ)) we have that

opt(PI − BLSU setup(Ξ)) = max un

s.t uj ≤ ui + gk +

j∑
l=i

wkldl(ξ) ∀i ≤ k ≤ j, i ∈ H, j ∈ H

ξ ∈ Ξ

Recalling that d(ξ) is an affine function of ξ ends the proof.

4.5 Numerical experiments

In this section, we present the experimental results obtained with the relaxation presented

in the last sections for problems BLSUysetup(Ξ) and BLSU(Ξ). We use the budgeted

polytope ΞΓ as uncertainty set due to its importance in the literature and the identity as

the deviation matrix, so that the demand can be expressed as d(ξ)i = d̄i + d̂iξi.

We compare the quality of our lower bound with the one provided by dual affine

decision rules from [KWG11], recalled in Section 4.3.2. We also compare these lower

bounds with the upper bound provided by the affine decisions rules (called primal affine

decision rules [KWG11]), recalled in 4.3.1. We do not carry out experiments for problem

(P′) because the primal and dual affine decision rules methods cannot be applied to this

problem so that we have no comparison possible for our method.

Concerning the probabilistic distribution used in dual affine decision rules, we use a

uniform distribution over the extremes points of the uncertainty polytope. The reasons

for that are two-fold: first we need a distribution that allows us to calculate simply

matrixM (the expectation matrix); second, we do not have a dominating element among

the extreme points of the considered polytope, contrasting with the problem studied in

[KWG11].

The tests were carried out on an Intel(R) Core(TM) i7 CPU M60, 2.6Hz 4GB Ram

machine and all formulations and algorithms were coded in C++, compiled with a GNU
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G++ 4.5 compiler and IBM CPLEX 12.3. In the next subsection, we explain how the

instances are built and which experiments are carried out.

4.5.1 Instances

We start with the description of the instances. We consider two sets of instances: DYN

and DOWN. The instances in the set DYN represent lot-sizing problems in which the costs

associated are seasonal. The instances of that set are inspired by [BGGN04] and they

fulfill a criteria known as Wagner-Within, which has been introduced in [PW94]. Roughly

speaking, this criteria implies that it is always cheaper to produce the client demands

of each period at the period itself. More precisely, we have for each period i that ci =

20 + 5 sin( iπ
12

), hi = 5 + 2 sin( iπ
12

) and pi = 7 + 2 sin( iπ
12

).

To contrast with that set of instances, we use a second set of instances that do not

fulfill the Wagner-Within criteria. In the set of instances named DOWN, for each each

period i is cheaper to produce the client demand at period 3b i
3
c. More precisely, we have

that ci = 10 + 5(i mod 3), hi = 3 and pi = 4.

We consider the deviations fixed as 20% of the nominal demand, and the nominal

deviations are given by the formula 100 + 50 sin( iπ
12

) for each period i. We consider

horizons of planning that have 20, 30, 40, 50, 60, 70, 80, 90 and 100 periods. We tested

two different values of the parameter Γ for each number of periods in the horizon of

planning, each of them inspired by the probabilistic bounds computed in [BS04], see also

[Pos14]. Table 4.1 presents the values used for the experiments.

4.5.2 Lot-Sizing problem without setup costs

We report below a comparison of the two lower bounds and as well as their solution times.

Let AFFINE stand for the affine decision rules presented in the Section 4.3.1, PI for

the perfect information proposed and DUAL for the dual affine decision rules presented

in Section 4.3.2. We compare the optimality gaps of PI and DUAL using the solution
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H Γ0.01 Γ0.1

10 5 8
20 7 11
30 8 14
40 9 16
50 10 17
60 11 19
70 12 20
80 12 22
90 13 23
100 14 24

Table 4.1: Values of parameter Γ inspired by the probabilistic bounds from [BS04].

of the approach AFFINE as upper bound. Specifically, we define the approximative

optimality gap for PI for the instance I as

opt(AFFINE(I))− opt(PI(I))

opt(AFFINE(I))
.

We define similarly the approximative approximation gap for the problem DUAL con-

cerning the instance I as

opt(AFFINE(I))− opt(DUAL(I))

opt(AFFINE(I))
.

In the following, we report the approximative optimality gap and the solution times,

computed for each number of periods and each set of instances.

Instances DOWN

The approximation obtained by PI is nearly constant at 8% while the one of DUAL is

slightly decreasing with the number of periods, see Figure 4.1. In any case, approach PI

still provides a reliable approximation with a computation time much smaller than the

one required by DUAL as presented in Figure 4.2
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Figure 4.1: The optimality gaps for PI − BLSU(Ξ) for the instances in DOWN.
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Figure 4.2: Elapsed time of PI − BLSU(Ξ) for the instances in DOWN.
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Figure 4.3: The optimality gaps for PI − BLSU(Ξ) for the instances in DYN.

Instances DYN

The bound provided by PI can prove the optimality of the affine decisions rules while

the dual affine decision rules decrease to reach a gap of 5%, see in Figure 4.3. It seems
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Figure 4.4: Elapsed time of PI − BLSU(Ξ) for the instances in DYN.

that the Wagner-Within criteria, where it is also always cheaper to produce the demand

of some period i at the period itself, strongly reduces the impact of the non-anticipativity

constraints. As for the computation time, our approach is much faster than the other

two, as reported in Figure 4.4. One can also notice that the dual affine decision rules are

more time consuming for the instance set DYN than they are for the instance set DOWN.

4.5.3 Lot-Sizing problem with setup costs

As before, AFFINE stands for the affine decision rules presented in the Section 4.3.1, PI

for the perfect information proposed in this paper and DUAL for the dual affine decision

rules presented in Section 4.3.2. We compare the optimality gaps of PI and DUAL using

the solution cost of AFFINE as upper bound.

In the following, we report the approximative optimality gap and the solution times,

computed for each number of periods and each set of instances. Two remarks must be

done at this point. First, we solve the problem PI with the MILP proposed in Corollary 2.

Instances DOWN

The approximation obtained by PI is nearly constant at 11% while the one of DUAL is

decreasing with the number of periods, see Figure 4.5. Figure 4.6 then shows that PI

can be solved much faster than DUAL.
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Figure 4.5: The optimality gaps for PI − BLSU(Ξ) for the instances in DOWN.
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Figure 4.6: Elapsed time of PI − BLSU(Ξ) for the instances in DOWN.
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Figure 4.7: The optimality gaps for PI − BLSU(Ξ) for the instances in DYN.
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Figure 4.8: Elapsed time of PI − BLSU(Ξ) for the instances in DYN.

Although we are not able to prove the optimality of the affine decision rules, the lower

bound provided by PI is really close to the solution cost provided by AFFINE (roughly

1%). And again, concerning the elapsed time, the proposed method is 2, some times 3

magnitudes orders faster than the dual affine decision rules. Again, Figure 4.8 shows PI

to be much faster than DUAL.

4.6 Concluding remarks

We have adapted in this paper the perfect information relaxation, well-known in the

stochastic programming literature, to the robust lot-sizing problem, yielding a lower

bound for the robust problem. We could prove that computing the bound can be done

in polynomial time for several variants of the problem, using dedicated combinatorial

algorithms or linear programs. Our numerical results, realized on instances inspired by

the literature, suggest that the new lower bound can be tight and can be solved much

faster than the bounds based on decision rules. In addition, our approach can handle

binary adjustable variables, which is not the case of primal and dual affine decision rules.

The tractability of our lower bound is highly problem-dependent. Hence, it would be

interesting to investigate its tractability for other class of multi-stage robust optimization

problems and other uncertainty sets. Concerning the extensions of the problems under
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study, we think it may be interesting to consider problems with capacities on the produc-

tion and the storage. An alternative extension would consider problems with multiple

items. Concerning the uncertainty set, it could be interesting to look for dedicated al-

gorithms for ellipsoidal uncertainty sets, which have recently been the topic of several

papers in the combinatorial robust optimization literature (e.g. [BBI14]).

Another interesting aspect of the perfect information relaxation is that it turns multi-

stage problems into two-stages problems, for which several papers have recently proposed

exact solution algorithms based on variants of the Benders decomposition (e.g. [AP16,

BCP14, ZZ11]). Hence, one could use these algorithms to solve the relaxation for much

more general problems than the variants of the lot-sizing considered herein, and assess

the quality of the obtained lower bound.
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Part III

Other Contribution
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This part contains the second set of contributions. The main contribution of this

part concerns the sensor location problem, a special case of facility location problem. We

manage to provide a linear formulation of different variety of this problem and especially

provide a full study of the equitable robust sensor location problem.
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Chapter 5

Proportional and maxmin fairness

for the sensor location problem with

chance constraints

5.1 Introduction

In this chapter, we consider the problem of installing facilities at strategic locations

in order to monitor and protect numerous important locations. Each location can be

simultaneously protected by multiple facilities. Concrete examples include airports where

various locations, such as terminals, baggage areas, control towers, gates, runways, etc.

must be protected. Other examples include shopping malls and entertainment parks (e.g.,

Disney World) where large numbers of people assemble at many locations, and strategic

complexes such as hospitals, power plants, and military installations. The objective is to

provide (i) equitable protection to all locations when the number of sensors that can be

placed is limited (ii) robust protection under possibly full or partial failures of sensors.

The Equitable Sensor Location Problem [IK88, Lus12, LNPS16] is an extension of the

Equitable Facility Location Problem, see Ogryczak [Ogr97]. The latter considers placing

facilities, such as police stations, emergency rooms, etc., so as to provide equitable service
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to all neighborhoods, where people in each of the neighborhoods are served by the closest

facility. Versions of this problem are proposed in Neidhardt, Luss, and Krishnan [NLK08],

and in Luss [Lus12] [Section 7.2.2].

In this study we explore models with two different objective functions often used

to model optimization problems with fairness criteria: (i) Lexicographic maximin (or

minimax) optimization and (ii) Proportional fairness optimization. The contribution of

this work stands in providing a full study on the different variants of the probabilistic

equitable sensor location problem. The contribution is twofold: (i) modeling and solving

the probabilistic equitable sensor location problem and the resilient variant; (ii) modeling

and solving the ambiguous equitable sensor location problem. Note that the resilient

variant of the equitable sensor location stands for the case when sensors are subject to

failures while the ambiguous equitable sensor location problem considers the case with

uncertain probabilities. The paper is organized as follows. Section 2 gives preliminaries

on equity and proportional fairness together with a new result. Section 3 studies the

basic equitable sensor location problem and proposes an integer linear program. The

same trick is used to compute the proportionally fair solution in linear time. Next, we

present a similar model for the equitable resilient sensor location problem, assuming that

sensors can fail in some situation. Section 4 is devoted to the ambiguous sensor location

problem, where probabilities are assumed to vary in a finite set. We prove that the the

proportional fairness version of the ambiguous problem is NP-hard in the strong sense

and present mixed-integer linear programming formulations. Section 5 presents numerical

results. The numerical results show the value of the resilient and ambiguous solutions

when compared to the deterministic ones.

5.2 Preliminaries

This section is devoted to preliminaries on equity and proportional fairness together with

a new result which will be very useful in writing down the linear integer model for the basic
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sensor location problem. Next, we deduce the mathematical formulation of the problem

and discuss solution methods for both equitable and proportionally fair variants.

Let us start by introducing formally the notion of equity as discussed in this paper.

The equity notion is closely related to lexicographic optimization as remarked in numer-

ous studies, [BGH92, LB05, NP08, Lus12, OLP+14] etc. We recall some definitions on

lexicographic ordering, useful for a better understanding of the study. A vector γ is lexi-

cographically greater (resp. lower) than γ′ if there exists s ∈ {1, ..., n} such that γp = γ′p,

for all p ∈ {1, ..., s − 1} and γs > γ′s (resp. γs < γ′s). A vector γ is lexicographically

maximal (resp. minimal) in X if for every vector γ′ ∈ X, γ is lexicographically greater

(resp. lower) than or equal to γ′.

Let −→γ (resp. ←−γ ) be the vector γ with its indices reordered so that the components

are in non-decreasing (resp. non-increasing) order. A feasible vector is defined as leximin

maximal [LB05] as follows: A vector γ ∈ X is leximin maximal if for every vector

γ′ ∈ X, −→γ is lexicographically greater than or equal to
−→
γ′ . Similarly, one can define

leximax minimality as follows: a vector γ ∈ X is leximax minimal if for every vector

γ′ ∈ X, ←−γ is lexicographically lower than or equal to
←−
γ′ .

Let us look now at the solution methodology. We define Γ ⊂ Rm as the set of vectors

γ for which the following set is non-empty:

{fi(x) ≥ γi; i ∈ 1, ...,m, x ≥ 0, x ∈ Rn}. (5.1)

We say that γ is feasible if γ ∈ Γ. Let us focus on the feasible vectors γ that are leximin

maximal. Computing a leximin maximal vector for the inequation’s system (5.1) when

fi(x) are linear is relatively easy as shown in [NO07]. Then, one can compute a leximin

maximal vector among the feasible vectors by solving a sequence of at most m linear

programs. At iteration i one computes the highest value that can take the ith smaller

component of the solution vector.
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Similar results can be drawn for the following system of functions:

{fi(x) ≤ γi; i ∈ 1, ...,m, x ≥ 0, x ∈ Rn}, (5.2)

where we look for a feasible vector γ which is leximax minimal.

The above results are shown for the systems where x ∈ Rn. Nevertheless, an ef-

fective iterative method based on OWA (Ordered Weighted Average) criteria developed

in [KOW04] allows to solve optimally the problem for the discrete case (i.e. x ∈ Zn+).

Generally speaking, the authors make the connection between the notion of equitably

efficient solutions and the Pareto-optimality concept by proposing some special types of

aggregations, especially the Ordered Weighted Averaging aggregations initially proposed

in [Yag88]. The principle of the method is to reformulate the LP problem with an ob-

jective function involving the cumulated OWA and with some extra linear constraints

and integer variables. This formulation is valid for non-convex (discrete) feasible sets Γ,

where the first approach is not applicable.

Let us consider some strictly increasing function φ and the system composed of func-

tions φ ◦ fi. Recall that the operator ◦ stands for the function composition operator. It

can be shown that the following result holds.

Proposition 4. Let φ be a strictly increasing function in R. A vector γ feasible for (5.1)

is leximin maximal if and only if the vector (φ(γ1), . . . ,φ(γm)) is leximin maximal for the

corresponding system composed of functions {φ ◦ fi, i ∈M}.

Proof. The proof follows easily by contradiction. Namely, suppose that γ leximin maximal

for (5.1) and that (φ(γ1), . . . ,φ(γm)) (denoted φ(γ) for short) is not leximin maximal for

the corresponding system. Hence, there exists vector η 6= φ(γ) that is leximin maximal

for the system corresponding to φ◦f . Therefore, φ−1(η) 6= γ is leximin maximal for (5.1),

yielding the contradiction. The reverse is shown similarly.

It is straightforward to see that the above result can be extended to x ∈ Zn+.
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5.3 The stochastic equitable sensor location problem

5.3.1 Problem description

The Equitable Sensor Location Problem can be represented by a bipartite graphG(N,M,A)

with a set of nodes N = {1, . . . ,n} representing candidate sensor locations, a set of nodes

M = {1, . . . ,m} representing locations that should be protected and a set A of directed

links. A link from node i ∈ N to node j ∈ M implies that a sensor at i monitors node

j. If there is no link from node i to node j, then a sensor at i does not monitor j. We

assume that we have K sensors available to be placed in the candidate locations in order

to protect the selective locations. Consider the bipartite graph in Figure 5.1a. Suppose

(a) Graph representation of the equi-
table sensor location problem

(b) Graph representation of the solu-
tion obtained by choosing the vertices
1 and 5

Figure 5.1: Graphical representation of the basic problem.

that sensors are located at nodes 1 and 5, as represented in Figure 5.1b. Then, locations

2, 3 and 5 are monitored by both sensors and location 4 is monitored only by the sensor

at node 5. If sensors are located at nodes 1 and 4, locations 3 and 5 are protected by

both sensors, and locations 2 and 4 are protected by a single sensor.

We consider in this paper a probabilistic version of the problem, where the effective

monitoring of node j by node i is represented by random variable aij. Specifically, aij is

a Bernoulli random variable that takes value 1 with a given probability pij. Hence, pij

represents the probability that a sensor at node i detects an intruder at node j under
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normal operating conditions. We further assume that the random variables {aij, i ∈

N, j ∈ M} are independent. Notice that the case of pij = 0 is represented by the lack

of link from i to j in the graph representation. Also, if all detection probabilities are

equal to one, the problem reduces to the Equitable Facility Location Problem since each

sensitive location is fully protected by a single monitoring sensor.

5.3.2 Mathematical formulation

Let binary optimization variable xi represent whether or not a sensor is placed in the

candidate location i and qj(x) denote the probability that an intruder is not detected at

node j. We obtain

qj(x) = P

(∑
i∈N

aijxi < 1

)

= P (aijxi < 1,∀i ∈ N) (aij is binary)

=
∏
i∈N

P (aijxi < 1) (independence)

=
∏
i∈N

(1− pijxi)

=
∏
i∈N

(1− pij)xi (xi is binary.)

We consider two distinct objective functions in this section, the lexicographic one and

the proportional one. Let us first focus on the lexicographic case. With respect to the

qj(x) criterion, system (5.2) can be written as:

{
qj(x) ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
, (5.3)

where one looks for a feasible leximax minimal vector γ. The above problem seems hard

at first sight since the criteria qj(x) is clearly non-linear. This is where Proposition 4

comes into play. We can use the logarithmic function as function φ, which combined with
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the fact that x is a binary solution vector, allows to linearize the functions involved:

log(qj(x)) = log

(∏
i∈N

(1− pij)xi
)

=
∑
i∈N

(log(1− pij))xi,

and system (5.3) becomes

{∑
i∈N

(log(1− pij))xi ≤ γj, j ∈M,
∑
i∈N

xi = K, x ∈ {0, 1}n
}
.

Therefore, computing the leximax minimal vector can be done using the approach shown

in [KOW04].

Let us now turn to the problem minimizing the proportional fairness, which is formally

defined as ∑
j∈M

log(qj(x)). (5.4)

In view of (5.4) above, solving the proportional fair sensor location problem amounts to

solve

min
∑
j∈M

∑
i∈N

(log(1− pij))xi

s.t.
∑
i∈N

xi = K

xi ∈ {0,1},∀i ∈ N.

Clearly, the above problem is tractable as it can be solved in O(|N ||M |+ |N | log |N |) by

ordering the n coefficients {
∑
j∈M

log(1− pij),i ∈ N} in increasing order and choosing the

K first elements.

5.3.3 The resilient sensor location problem

This subsection is devoted to the resilient sensor location problem. We consider the

problem when some failures can occur and the system needs to be properly dimensioned
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in order to cover all possible failure’s states.

Figure 1 presents the problem when all four sensors are operating and all links con-

necting nodes in N to nodes in M are operational. However some of these links may fail.

For example all links emanating from node 1 in set N may fail (which is equivalent to a

failure of the sensor in node 1). Figure 2 presents the scenario where the sensor at node

1 failed (the dashed links do not provide protection anymore). Under this scenario each

of the locations 2, 3, 4, and 5 is now protected by a single sensor. If a partial failure of

the sensor at node 1 occurs, only one or two of the outgoing links from node 1 do not

provide protection.

(a) Graphical representation of the so-
lution obtained by choosing the vertices
1 and 5

(b) Graphical representation when all
outgoing links from node 1 failed

Figure 5.2: Graphical representation of the resilient sensor location problem.

Let us introduce some additional notation. Let S ⊆ 2K be the set of possible failure

states, each state S is composed of a subset of sensors in N not operational at the same

time; and qSj (x) is the value of qj(x) over state S ∈ S. In this context, we need to find a

solution (a placement of the sensors) such that each location ensures equitable protection

level in all the possible states contained in S.

Proceeding as before we obtain the following set:

{
qSj (x) ≤ γj, j ∈M, S ∈ S,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
. (5.5)
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This system can be handled similarly to system (5.3). The respective proportional fair

problem is formulated below:

min
∑
j∈M

∑
i∈S;S∈S

(log(1− pij))xi

s.t.
∑
i∈N

xi = K

x ∈ {0,1}n,

which can be solved in O(|M ||N ||S|+ |N | log |N |) using a sort algorithm.

5.4 The ambiguous sensor location problem

In this section, we consider an ambiguous variant of the probabilistic sensor location

problem, where probabilities pij are uncertain. This assumption makes sense in practice

as the probabilities describe the normal operating conditions of the sensors. These are,

however, likely to be affected by many sources of uncertainty, most of which are hard

to predict accurately. Consider, for instance the location of surveillance cameras in an

airport to secure points of interest. It may happen that some object is placed temporar-

ily between the vision-field of the camera and the point of interest, thus reducing the

probability of detecting an intruder in the point of interest.

This is modeled by introducing an ambiguity set that contains the possible prob-

ability distributions. Specifically, we are given nominal values and deviations for the

probabilities, respectively denoted by p and p̂, and we assume that p can be any discrete

probability measure in the ambiguity set

P := {p ∈ Rn×m
+ | pij = pij − p̂ijξ

j
i , ξ

j ∈ Ξj},

where set Ξj ⊂ {0,1}n is any 0 − 1 set. Notice that, since p is a probability measure,

we must define p and p̂ such that 0 ≤ pij ≤ 1 for each i ∈ N,j ∈ M and p ∈ P , which
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amounts to impose that 0 ≤ p̂ij ≤ pij ≤ 1 for each i ∈ N and j ∈M .

In the ambiguous setting, we replace the probability qj(x) that an intruder is not

detected at node j by the worst-case probability that an intruder is not detected at node

j, denoted qj(x). Recalling from Section 5.3 that the effective monitoring of node j by

node i is represented by the set of independent Bernouilli random variables aij, we can

define qj(x) formally as

qj(x) = max
p∈P

P

(∑
i∈N

aijxi < 1

)
= max

p∈P

∏
i∈N

(1− pijxi).

Ambiguity sets have already been used in the context of ambiguous probabilistic con-

straints [EI06] and distributionally robust optimization [DY10]. The main difference of

our approach with these frameworks is that we stick here to ambiguity sets that contain

only Bernouilli probability distributions, while the aforementioned works consider sets of

continuous distributions that satisfy, for instance, moment-based constraints.

5.4.1 Linearizing the probability

We show in this section how the worst-case probability can be handled by using classical

techniques of robust optimization. Given ξj ∈ Ξj
Γ for each j ∈ M , we denote in the

following qξj (x) as the value of qj(x) associated to probability distribution given by pij =

pij − p̂ijξ
j
i for each i ∈ N, j ∈M , namely,

qξj (x) =
∏
i∈N

(1− (pij − p̂ijξ
j
i )xi).

Hence by definition, qξj (x) and qj(x) are linked through

qj(x) = max
ξ∈Ξj

qξj (x). (5.6)
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We show below that, using basic properties of logarithmic functions, we can rewrite qξj (x)

as a linear function of ξ:

log(qξj (x)) = log

(∏
i∈N

(1− (pij − p̂ijξ
j
i )xi)

)
(5.7)

=
∑
i∈N

log(1− (pij − p̂ijξ
j
i )xi) (5.8)

=
∑
i∈N

log(1− pijxi) +
∑
i∈N

log

(
1 +

p̂ij
1− pij

ξji xi

)
(5.9)

=
∑
i∈N

log(1− pij)xi +
∑
i∈N

log

(
1 +

p̂ij
1− pij

)
ξji xi, (5.10)

where (5.8) comes from the fact logarithmic function of a product reduces to the product

of respective logarithmic functions, (5.9) is obtained when developping the logarithmic

of a summation formula and last (5.10) follows from the fact that xi and ξji are binary.

To simplify notations, we introduce αij = log(1− pij) and α̂ij = log(1 +
p̂ij

1−pij
), yielding

log(qξj (x)) =
∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi. (5.11)

5.4.2 Proportional fairness

Similarly to (5.4), the proportional fairness considers the logarithm of the worst-case

probabilities qj(x). We obtain for each j ∈M that

log(qj(x)) = log

(
max
ξ∈Ξj

qξj (x)

)
(5.12)

= max
ξ∈Ξj

log(qξj (x)) (5.13)

= max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

)
, (5.14)

where (5.12) follows from (5.6), (5.13) holds because the logarithm is a monotone increas-

ing function, and (5.14) follows from (5.11). The resulting sensor location problem is a
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classical min max robust optimization problem:

min
x

(∑
j∈M

max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

))
(5.15)

s.t.
∑
i∈N

xi = K (5.16)

xi ∈ {0,1},∀i ∈ N. (5.17)

where

αij = log(1− pij) (5.18)

α̂ij = log(1 +
p̂ij

1− pij
). (5.19)

We prove below that the above problem is NP-Hard if the sets Ξj are arbitrary.

Specifically, assuming that |M | = 1 we show that the proportional ambiguous sensor

location problem is NP-hard in the weak sense when |Ξ| = 2 while the problem is NP-

hard in the strong sense when the cardinality of Ξ is part of the input. These results

are in line with the complexity results obtained for the robust counterparts of classical

polynomially solvable combinatorial optimization problems, see the survey of [ABV10].

To verify the first claim we present in Theorem 4 a polynomial reduction from the

partition problem, defined as follows. Given a set L = {a1, . . . ,a|L|} of |L| integers, one

wants to find a subset S of L of cardinality |L|/2 such that
∑

l∈S al =
∑

l∈S\L al.

Theorem 4. The partition problem polynomially reduces to the decision version of the

proportional ambiguous sensor location problem where |Ξ| = 2.

Consider an instance of the partition problem given by set L, and let us define for

each i ∈ N

ai = min

(
ai,

2

|L|
∑
k∈N

ak − ai

)
and ai = max

(
ai,

2

|L|
∑
k∈N

ak − ai

)
.
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We first construct an instance of problem (5.15)–(5.17) that corresponds to the given

instance of the partition problem, and show later how to construct the corresponding

instance of the proportional ambiguous sensor location problem. Consider |M | = 1,

|N | = |L|, K = |L|/2, ᾱi = ai and α̂i = ai − ai for every i ∈ N . Finally, we define Ξ as

{ξ1,ξ2} where ξ1 and ξ2 are defined for each i ∈ N by

ξ1
i =

ai − ai
ai − ai

and ξ2
i =

2
|L|
∑

k ak − ai − ai
ai − ai

.

With these definitions, we see that ᾱi + α̂iξ
1
i = ai and ᾱi + α̂iξ

2
i = 2

|L|
∑

k∈N ak − ai.

Let x be any vector feasible for problem (5.15)–(5.17) and let S ⊂ N be the set of

indices where xi = 1. Then,

max
ξ∈Ξ

∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi = max

(∑
i∈S

ai,
∑
k∈N

ak −
∑
i∈S

ai

)
(5.20)

= max

∑
i∈S

ai,
∑
i∈N\S

ai

 . (5.21)

Hence, the instance of the partition problem is a yes instance if and only if the optimal

solution cost of problem (5.15)–(5.17) is less than or equal to
∑
i∈N ai

2
.

We construct next an equivalent instance for the proportional ambiguous sensor loca-

tion problem. First, notice that, due to constraints (5.16), we can add a constant M to

all components of α without affecting the optimal solution of the problem. Then, using

(5.18) and (5.19), we define

pi = 1− eαi+M (5.22)

p̂i = (eα̂i − 1)(1− pi) (5.23)

for each i ∈ N . One readily verifies that choosing

M = −max
k∈N

ᾱk + α̂k
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yields values of pi and p̂i that satisfy 0 ≤ p̂i ≤ pi ≤ 1 for each i ∈ N . Moreover, the

input pi and p̂i can be expressed by a number of digits that is polynomial in the number

of digits of the original input.

The second claim is obtained through a reduction from the decision version of the

stable set problem, presented in Theorem 5. Given a simple graph G = (V,E), where V

is the set of vertices and E is the set of edges, a stable set S ⊆ V is a set of vertices such

that for all u,v ∈ V we have that (uv) /∈ E. Hence, the decision version of the stable

set problem can be stated as follows: given a graph G and an integer k, one wants to

determine if there is a stable set of cardinality at least k.

Theorem 5. The decision version of the stable set problem polynomially reduces to the

decision version of the proportional ambiguous sensor location problem.

Corollary 3. The proportional ambiguous sensor location problem is NP-hard in the

weak sense when |Ξ| = 2 and in the strong when the cardinality of Ξ is part of the input.

Consider an instance for the stable set problem, given by the graph G = (V,E) and

the integer k. We construct an instance for the proportional ambiguous sensor location

problem as follows: |M | = 1, |N | = |V |, K = k, p̄i = 1− eθ and p̂i = (eψ − 1)eθ for each

i ∈ N where θ and ψ are real numbers chosen such that 0 ≤ p̂i ≤ pi ≤ 1 for each i ∈ N .

Using the previous reformulation and definitions (5.18) and (5.19), we obtain an instance

of problem (5.15)–(5.17) defined by ᾱi = θ and α̂i = ψ for every i ∈ N . In order to

define Ξ, let us consider ch(e) the characteristic vector of an edge e = (uv) ∈ E, meaning

ch(e) ∈ {0,1}|V | and chi(e) = 1 if and only if i = u or i = v. Then, we consider the finite

uncertainty set Ξ = ∪e∈Ech(e).

Next, we show that there is a stable set of cardinality at least k in the graph G if and

only if the optimal solution cost of the proportional ambiguous sensor location problem

associated is smaller than or equals to kθ + ψ. Now we look at the two possible cases:

There exists a stable set of cardinality k : Let S ⊆ V be a stable set of cardinality

at least k. Consider the solution vector x for the proportional ambiguous sensor
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location problem defined as xi = 1 if and only if i ∈ S. Notice that

max
ξ∈Ξ

(∑
i∈N

θxi +
∑
i∈N

ψξixi

)
=
∑
i∈N

θxi + max
e∈E

∑
i∈V

ψchi(e)xi ≤ kθ + ψ

There exists no stable set of cardinality k : By contradiction, suppose that

max
ξ∈Ξ

(∑
i∈N

θx∗i +
∑
i∈N

ψξix
∗
i

)
≤ kθ + ψ

for a solution x∗ and we do not have a stable set of cardinality at least k. As x∗ is

a binary vector we have that

max
ξ∈Ξ

(∑
i∈N

θx∗i +
∑
i∈N

ψξix
∗
i

)
=
∑
i∈N

θx∗i + max
ξ∈Ξ

∑
i∈N

ψξix
∗
i

= kθ + ψmax
ξ∈Ξ

∑
i∈N

ξix
∗
i

≤ kθ + ψ,

which means that ∑
i∈V

chi(e)x
∗
i ≤ 1

for every e ∈ E. Hence S∗ = {i ∈ V |x∗i = 1} is a stable set of G with cardinality at

least k.

In view of the above complexity results, we address the problem through mixed-integer

linear programming. Hence, assume that each set Ξj corresponds to the set of extreme

points of a polytope having a compact formulation. Said differently, Ξj = ext({Ajξ ≤

bj, ξ ≥ 0}), where the matrix Aj ∈ Rk×n and the vector bj ∈ Rk characterize the polytope.

Well-known examples of such sets are the budgeted uncertainty set from [BS03]

conv(Ξj
Γ) :=

{
0 ≤ ξji ≤ 1, i ∈ N, j ∈M,

∑
i∈N

ξji ≤ Γ

}
,
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and its extension to multi-band uncertain by [BDR13]. Then, we use classical techniques

to reformulate problem (5.15)–(5.17) as a MILP by dualizing the inner maximization

problems. Defining K = {1, . . . ,k}, we obtain

max
ξj∈Ξj

(∑
i∈N

αijxi +
∑
i∈N

α̂ijξ
j
i xi

)
=
∑
i∈N

αijxi + max
ξj∈Ξj

∑
i∈N

α̂ijξ
j
i xi

=
∑
i∈N

αijxi + max
ξj∈conv(Ξj)

∑
i∈N

α̂ijξ
j
i xi

=
∑
i∈N

αijxi +


min
u≥0

∑
k∈K

bjkuk

s.t.
∑
k∈K

Ajkiuk ≥ α̂ijxi, i ∈ N

=


min
u≥0

∑
i∈N

αijxi +
∑
k∈K

bjkuk

s.t.
∑
k∈K

Ajkiuk ≥ α̂ijxi, i ∈ N
. (5.24)

Therefore, the problem minimizing the proportional fairness amounts to solve the follow-

ing MILP in optimization vectors x and u

min
∑
j∈M

∑
i∈N

αijxi +
∑
j∈M

∑
k∈K

bjkuk

s.t.
∑
i∈N

xi = K

∑
k∈K

Ajkiuk ≥ α̂ijxi, i ∈ N

xi ∈ {0,1},∀i ∈ N

u ≥ 0.

When A contains non-negative coefficients, an alternative approach proposed by

[BS03] and extended in [Pos16] relies on solving a sequence of deterministic problems.

Specifically, let us denote by A
′

the submatrix obtained from A by not considering the

upper bounds on ξ and let k′ be the number of lines of A′ (for instance, k′ = 1 for the

budgeted uncertainty set Ξj
Γ). The iterative algorithm proposed in [BS03, Pos16] solves
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the above min max robust optimization problem by solving O((k′m)k
′m(nm)k

′m) prob-

lems minimizing the proportional fairness with known probabilities. In particular, the

min max robust problem is polynomially solvable if k′ and m are constant.

5.4.3 Max-min fairness

The ambiguous counterpart of system (5.3) is

{
qj(x) ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n
}
,

where one looks for a feasible leximax minimal vector γ. Notice that, combining (5.14)

with (5.24), we obtain immediately the following relation

log(qj(x)) =


min
u≥0

∑
i∈N

αijxi +
∑
k∈K

bjkuk

s.t.
∑
k∈K

Ajkiuk ≥ α̂ijxi, i ∈ N
. (5.25)

Using again Proposition 4, and replacing log(qj(x)) by the rhs of (5.25),the problem

amounts to find the leximax minimal vector γ feasible for system

 min∑
k∈K

A
j
ki
uk≥α̂ijxi, i∈N

u≥0

∑
i∈N

αijxi +
∑
k∈K

bjkuk ≤ γj, j ∈M,
∑
i∈N

xi = K, x ∈ {0, 1}n

 , (5.26)

Then, one readily verifies that, given γ, x is feasible for each constraint

min∑
k∈K

A
j
ki
uk≥α̂ijxi, i∈N

u≥0

(∑
i∈N

αijxi +
∑
k∈K

bjkuk

)
≤ γj

if and only there exists a vector u ≥ 0 that satisfies
∑
k∈K

Ajkiuk ≥ α̂ijxi for each i ∈ N such

that x satisfies ∑
i∈N

αijxi +
∑
k∈K

bjkuk ≤ γj
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for each j ∈M . Hence, we can replace system (5.26) with the following one

{∑
i∈N

αijxi +
∑
k∈K

bjkuk ≤ γj, j ∈M,

∑
i∈N

xi = K, x ∈ {0, 1}n,
∑
k∈K

Ajkiuk ≥ α̂ijxi, i ∈ N, u ≥ 0

}
. (5.27)

We can finally find a leximax minimal vector γ feasible for system (5.27) using the algo-

rithm proposed in [KOW04].

5.5 Numerical results

In this section, we report on the computation experiments obtained by applying the

above models for different variants of the proportional equitable sensor location problems,

namely Proportional Fair, Proportional Fair Resilient and Proportional Fair Ambiguous.

All experiments have been carried out on an Intel(R) Core(TM) i7 CPU M60, 2.6Hz 4GB

Ram machine and all formulations and algorithms were coded in C++, compiled with a

GNU G++ 4.5 compiler and IBM CPLEX 12.3. In the rest of the section, we present the

benchmark used in our computations as well as different numerical tests with respect to

the proportionally fair sensor location problem and the resilient one. We finish with the

ambiguous equitable sensor location problem and conclude with some discussion of the

obtained results.

5.5.1 Benchmark generation

To the best of our knowledge, there are no probabilistic instances defined for the sensor

(facility) location problem, we tested our algorithm on a set of incremental instances

generated randomly. We have built 10 instances per scenario (N,M), where we consider

3 different values for N (the set of candidate locations), 10, 20 and 30; and three other

values for the sensitive locations to be protected respectively 30, 40 and 50. We consider

a quadratic grid of 100× 100 as the space where both sensors and points of interest are

125



placed randomly. We have also considered two possible cost values (30 and 50) which are

assigned randomly to each candidate location.

We assume that we have for each instance a number A of high quality sensors that

are produced using a new and yet less mature technology. For the instances where

N = 10 we have 3 of such sensors, for the instances where N = 20 we have 4 and in the

instances where N = 30 we have 5. This will be important for analyzing the resilient

solution and will be discussed in more details ahead. Finally, the surveillance probabilities

assigned to a candidate sensor for a sensitive location are expressed as the function of its

generation and the distance between both locations. Specifically, the probability that a

sensor i ≥ A protects a location j is valuated as (1− d(i,j)√
2∗100

. 1
40

) and for i < A is evaluated

as (1− d(i,j)√
2∗100

. 1
20

). Hence, the closer a sensor is to a location, the higher is the probability

of protection for that location by that sensor. Similarly, the more expensive the sensor

is, the better is the protection it provides.

Following above, we have generated 10 instances for each scenario (10,30), (10,40),

and (10,50). Next, for scenarios (20,30), (20,40), (20,50) we have taken the first set of

instances and added 10 new locations to each of them. The same routine is used to

generate (30,30), (30,40), (30,50) using instances for (20,30), (20,40), (20,50).

5.5.2 Proportionally fair sensor location problem

We analyze the quality regarding mean surveillance probability and standard deviation

dispersion of the solutions obtained by the model presented for the proportionally fair

sensor location problem. Indeed, a proportionally fair solution intends to reach a com-

promise between two objectives: the max-min fairness which seeks to reduce inequality

among the protected locations versus the overall sum of protecting levels.

Table 5.1 presents the results for the proportionally fair sensor location problem. We

present the mean and the variance of the surveillance probability according to the number

of installed sensors. Notice that, as expected, the surveillance probability is higher as

the number of available sensors rises and the obtained solutions have very low variances.
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N M Protection Variance
10 30 88.35% 4.69
10 40 94.99% 4.22
10 50 89.17% 5.25
20 30 89.11% 3.70
20 40 95.22% 3.84
20 50 89.95% 3.85
30 30 89.08% 4.84
30 40 95.22% 3.84
30 50 90.17% 3.53

(a) Choosing 5 sensors

N M Protection Variance
10 30 93.14% 3.88
10 40 97.57% 2.27
10 50 94.81% 2.80
20 30 95.10% 2.28
20 40 97.67% 2.41
20 50 95.30% 2.44
30 30 95.17% 2.38
30 40 97.78% 2.16
30 50 95.56% 2.18

(b) choosing 7 sensors

Table 5.1: Results for the proportionally fair sensor location problem. We report the
median surveillance value as well as the variance.

Notice that choosing more sensors allows us not only to improve the protection but also

to decrease the variance, meaning that discrepancy between the protection levels in the

different places are decreasing, turning the solution more fair.

5.5.3 Resilient sensor location problem

Concerning the resilient sensor location problem we tested the same instances presented

before under a set of scenarios that represents all the possibilities of failure of 1, 2 or 3

sensors over the A sensors from the new technology. Intuitively, this represents the fact

that these sensors provide a larger surveillance probability, but they are unstable. This is

the case in many real instances, for example, we can imagine that the three first sensors

are “new” or “untested” sensors, they provide better surveillance than the sensors we

already have, but they are not fully reliable.

Tables 5.2-5.5, present the results for the resilient sensor location problem. In Ta-

ble 5.2 we present the mean and the variance of the surveillance probability according to

the number of installed sensors for the scenario without any sensor in failure. Notice that

the solution obtained by solving the proportinally fair resilient model (called resilient

solution) and the solution obtained by solving the proportional fair model (called also
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N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 88.35% 4.69 80.72% 5.59
10 40 94.99% 4.22 94.70% 3.94
10 50 89.17% 5.25 85.45% 5.68
20 30 89.11% 3.70 87.19% 6.82
20 40 95.22% 3.84 94.93% 4.32
20 50 89.95% 3.85 88.10% 5.00
30 30 89.08% 4.85 88.10% 4.69
30 40 95.22% 3.84 94.55% 5.11
30 50 90.17% 3.53 88.86% 3.98

(a) Choosing 5 sensors

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 93.14% 3.88 90.32% 4.22
10 40 97.57% 2.27 97.05% 2.10
10 50 94.81% 2.80 93.25% 2.66
20 30 95.10% 2.28 93.92% 3.63
20 40 97.67% 2.41 97.64% 2.38
20 50 95.30% 2.44 93.98% 3.48
30 30 95.17% 2.38 94.37% 3.73
30 40 97.78% 2.16 97.63% 2.45
30 50 95.56% 2.18 94.84% 2.50

(b) Choosing 7 sensors

Table 5.2: Results for the resilient sensor location problem. We report the mean surveil-
lance value as well as the variance for the scenario without failures.

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 82.71% 5.38 80.72% 5.59
10 40 93.04% 4.73 94.70% 3.94
10 50 84.16% 5.47 85.45% 5.68
20 30 83.63% 4.84 87.19% 6.82
20 40 95.22% 3.84 94.93% 4.32
20 50 84.83% 4.53 88.10% 5.00
30 30 83.69% 6.13 88.10% 4.69
30 40 95.22% 3.84 94.55% 5.11
30 50 85.01% 4.60 88.86% 3.98

(a) Choosing 5 sensors

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 89.95% 4.66 90.32% 4.22
10 40 96.63% 2.61 97.05% 2.10
10 50 92.46% 2.99 93.25% 2.66
20 30 92.41% 4.03 93.92% 3.63
20 40 96.87% 2.62 97.64% 2.38
20 50 93.04% 2.89 93.98% 3.48
30 40 97.78% 2.16 97.63% 2.45
30 30 92.79% 3.24 94.37% 3.73
30 50 93.32% 2.80 94.84% 2.50

(b) Choosing 7 sensors

Table 5.3: Results for the resilient sensor location problem. We report the mean surveil-
lance value as well as the variance for the worst-case among the three scenarios where
one sensor in {1,2,3} fails.

equitable solution) are quite close to each other regarding the surveillance level and even

the variation with some advantage to the equitable solution.

Nevertheless, the situation changes when we look at the scenarios where we have

some sensors failing. In Table 5.3, we compare between the behavior of the equitable

and resilient solutions in scenarios where one “high-tech” sensor fails. Notice that, the

surveillance levels are very close, with a little advantage to the resilient solution. In

Table 5.4 we have the comparison for the scenario where two “high-tech” sensors fail. We

see that the differences between the two models are more perceivable. It is even more so
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N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 71.33% 6.70 80.72% 5.59
10 40 88.92% 7.27 94.70% 3.94
10 50 84.16% 5.47 85.45% 5.68
20 30 72.64% 7.03 87.19% 6.82
20 40 92.31% 6.17 94.93% 4.32
20 50 84.83% 4.53 88.10% 5.00
30 30 72.96% 8.54 88.10% 4.69
30 40 92.31% 6.17 94.55% 5.11
30 50 85.01% 4.60 88.86% 3.98

(a) Choosing 5 sensors

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 83.58% 6.04 84.14% 5.50
10 40 94.70% 3.94 97.05% 2.10
10 50 89.34% 3.91 93.25% 2.66
20 30 87.19% 6.82 93.92% 3.63
20 40 94.93% 4.32 97.64% 2.38
20 50 93.04% 2.89 93.98% 3.48
30 30 88.10% 4.69 94.37% 3.73
30 40 96.41% 3.57 97.63% 2.45
30 50 93.32% 2.80 94.84% 2.50

(b) Choosing 7 sensors

Table 5.4: Results for the resilient sensor location problem. We report the mean surveil-
lance value as well as the variance for the worst case among the scenarios where two
sensors in {1,2,3} fail.

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 57.30% 6.76 80.72% 5.59
10 40 61.82% 6.31 81.98% 5.03
10 50 72.36% 10.96 85.45% 5.68
20 30 72.64% 7.03 87.19% 6.82
20 40 75.44% 5.46 83.86% 4.35
20 50 74.14% 7.36 88.10% 5.00
30 30 72.96% 8.54 88.10% 4.69
30 40 75.44% 5.46 83.68% 5.61
30 50 74.86% 5.87 88.86% 3.98

(a) Choosing 5 sensors

N M Prop. Fair PF Resilient
Prot Var Prot Var

10 30 76.09% 5.59 84.14% 5.50
10 40 81.98% 5.03 89.52% 3.94
10 50 81.55% 7.39 88.48% 4.49
20 30 87.19% 6.82 93.92% 3.63
20 40 83.86% 4.35 92.58% 3.11
20 50 88.10% 5.00 93.98% 3.48
30 30 88.10% 4.69 94.37% 3.73
30 40 89.30% 4.06 92.90% 2.95
30 50 88.86% 3.98 94.84% 2.50

(b) Choosing 7 sensors

Table 5.5: Results for the resilient sensor location problem. We report the mean surveil-
lance value as well as the variance for the scenarios where the sensors numbered as 1,2
and 3 fail.

the case where we have three “high-tech” sensors failing represented in Table 5.5.

To conclude, notice that, as expected, the surveillance probability of the resilient

solution is higher than the proportional fair solution in the case where we have sensors in

failure as well as the variance is smaller. Notice also that, even in the scenario without

sensors in failure, and the resilient solution provides a median surveillance probability

that is reasonable, while in failure cases it gives solutions notably better comparing to

the proportional fair solution.
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5.5.4 Ambiguous sensor location problem

Here we adopt the budgeted uncertainty polytope described before. We consider a devi-

ation of 25% for all the probability values on all the instances for all the sensors, except

for the sensors numbered from 1 to |A| in which case, the deviation is set to be equal

to the probability surveillance, meaning that these sensors can, in a way, become totally

inoperational. We set the value 5 for the parameter Γs (the maximum number of proba-

bilistic deviations for each sensor s), for all the sensors, except for the first three sensors

we have Γs = 30. We computed the Proportional Fair Ambiguous solution for the latter

case and compared its behaivor with that of the standard Proportional Fair solution for

two different scenarios. The first set of scenarios is built as follows: for each instance

we set the probability values at their nominal value (i.e., no deviations are taken into

account). For the second scenario we set the surveillance probabilities of each sensor s to

their worst value for the lowest Γs of them while keep at their nominal value for the rest

of probabilities. As we did before, we report the mean surveillance probability values and

the standard deviations for both solutions, the basic proportionally fair solution and the

proportionally fair ambiguous solution.

N M Prop. Fair PF. Ambiguous
Prot Var Prot Var

10 30 88.35% 4.69 80.72% 5.59
10 40 94.99% 4.22 95.45% 3.12
10 50 89.17% 5.25 89.59% 3.81
20 30 89.11% 3.70 87.19% 6.82
30 30 89.08% 4.85 88.10% 4.69
20 40 95.22% 3.84 94.19% 5.21
30 40 95.22% 3.84 93.69% 6.32
20 50 89.95% 3.85 87.73% 5.68
30 50 90.17% 3.53 89.97% 3.88

(a) Choosing 5 sensors

N M Prop. Fair PF. Ambiguous
Prot Var Prot Var

10 30 93.14% 3.88 92.06% 3.72
10 40 97.57% 2.27 97.57% 2.27
10 50 94.81% 2.80 94.81% 2.80
20 30 95.10% 2.28 93.92% 3.63
20 40 97.67% 2.41 97.64% 2.38
20 50 95.30% 2.44 94.94% 2.30
30 30 95.17% 2.38 94.37% 3.73
30 40 97.78% 2.16 97.63% 2.45
30 50 95.56% 2.18 95.39% 2.31

(b) Choosing 7 sensors

Table 5.6: Results for the ambiguous sensor location problem, first scenario

Notice that for both scenarios the proportionally fair solution and the ambiguous

solution have mean surveillance probabilities close to each other, with a slight advantage
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N M Prop. Fair PF. Ambiguous
Prot Var Prot Var

10 30 77.78% 26.736 78.44% 5.93
10 40 92.05% 9.293 94.58% 3.56
10 50 86.36% 12.502 88.79% 4.71
20 30 79.59% 27.248 85.36% 7.59
20 40 91.91% 10.651 93.33% 5.76
20 50 87.95% 8.578 87.20% 6.05
30 30 79.78% 27.521 86.51% 5.67
30 40 92.05% 10.652 92.91% 6.62
30 50 87.64% 10.919 89.39% 4.82

(a) Choosing 5 sensors

N M Prop. Fair PF. Ambiguous
Prot Var Prot Var

10 30 82.68% 28.28 90.12% 4.09
10 40 94.68% 9.16 97.01% 2.60
10 50 92.48% 8.87 94.02% 3.17
20 30 84.94% 28.90 92.58% 4.11
20 40 95.10% 8.51 97.22% 2.65
20 50 93.32% 8.81 94.62% 2.73
30 30 85.35% 29.04 92.99% 4.65
30 40 95.01% 9.29 97.25% 2.59
30 50 94.00% 6.58 95.05% 2.94

(b) Choosing 7 sensors

Table 5.7: Results for the ambiguous sensor location problem, second scenario

to the ambiguous solution in the second scenario. An interesting result is that the variance

is lower in the ambiguous solution for all tested cases of the second scenario, which shows

the robustness of such solutions.
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Chapter 6

Conclusion

This chapter concludes the thesis and presents a brief summary of the main findings as

well as some suggestions for future research on the perspective of what we have done but

also in a more general context with respect to Robust Optimisation area. This thesis

has had as a primary focus the question of methods for robust optimization and robust

lot-sizing as the enlighting application. From our point of view, the main achievements

of this thesis stand in exploring the multistage optimization problems under uncertainty,

an important class of RO problems, for which some new advances are proposed. In

particular, with respect to the budgeted model of Bertsimas and Sim, we have to propose

a new dynamic programming algorithm to solve the separation problems which are based

on the maximum number of deviations allowed and on the size of such deviations. Another

important finding is about the robust multistage optimization problems for which a new

relaxation method based on the approach of perfect information is developed.Lot-sizing

has been one of the main applications used to illustrate the above developments. We have

also tried to make the connection between the fairness and the robustness for a special

study case which is the equitable sensor location problem, a special case of equitable

facility location problem.

Although, the work presented in this thesis is still an ongoing work and the robust

optimization area remains from about 15 years an open research area. With respect to
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the work presented in this thesis, several points may have been further explored.

We may cite the need to assess the quality of solutions obtained by the approximation

algorithm proposed in Chapter 3 by comparing with an exact method. Another point of

interest here is to know if some of the adversarial problems, solved by it, are polynomial.

Specifically, the adversarial problem related to the lot-sizing problem. Notice that we

know that this problem is polynomial for Γ = |H| and Γ fixed, we suspect that this

problem is polynomial although we believe that general adversarial problem is NP-hard.

Concerning the perfect information relaxation, it will be interesting to find a bound to

measure the gap between the exact solution and this obtained with perfect information

relaxation. It will also be interesting to study this relaxation for different problems,

especially robust integer adjustable problems, where the conventional methods for lower

bounding do not work. Concerning the relaxations presented in Chapter 4, we show

that must of them are polynomially solvable even for polytopes more complex than the

traditionally budgeted uncertainty set. Two questions arise naturally in this context:

first, is there a compact linear polytope such that the relaxations presented areNP-hard?

Second, is there a property for the uncertainty set that allows solving the adversarial

problem polynomially.e, how this egalitarian strategy compares to the simple strategy

presented before.

The last point is related to the connection between fairness and robustness. Ensuring

fairness intrinsically brings some robustness, but when one includes the uncertainty, this

becomes interesting. The work presented in Chapter 5 is restricted to a special application

case but it seems easily extendable to the general case.

133



Bibliography

[ABV10] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. General approx-

imation schemes for min-max (regret) versions of some (pseudo-)polynomial

problems. Discrete Optimization, 7(3):136–148, 2010.

[ACD13] Agostinho Agra, Marielle Christiansen, and Alexandrino Delgado. Mixed

integer formulations for a short sea fuel oil distribution problem. Trans-

portation Science, 47(1):108–124, 2013.

[ACF+13] Agostinho Agra, Marielle Christiansen, Rosa M. V. Figueiredo, Lars Magnus

Hvattum, Michael Poss, and Cristina Requejo. The robust vehicle routing

problem with time windows. Computers & OR, 40(3):856–866, 2013.

[AD16] Amir Ardestani-Jaafari and Erick Delage. Robust optimization of sums of

piecewise linear functions with application to inventory problems, 2016.

[AK00] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.

Theoretical Computer Science, 237(12):123 – 134, 2000.

[AP14] Bita Analui and Georg Ch. Pflug. On distributionally robust multiperiod

stochastic optimization. Computational Management Science, 11(3):197–

220, 2014.

[AP16] Josette Ayoub and Michael Poss. Decomposition for adjustable robust linear

optimization subject to uncertainty polytope. Computational Management

Science, 13(2):219–239, 2016.

134



[AR09] A. Agra and C. Requejo. The linking set problem: a polynomial special case

of the multiple-choice knapsack problem. Journal of Mathematical Sciences,

161(6):919–929, 2009.

[ASNP16] Agostinho Agra, Marcio C. Santos, Dritan Nace, and Michael Poss. A dy-

namic programming approach for a class of robust optimization problems.

SIAM Journal on Optimization, 26(3):1799–1823, 2016.
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