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RÉSUMÉ

Le projet ASTRID, réacteur nucléaire français de quatrième génération refroidi au sodium, est
actuellement en cours de développement par le Commissariat à l’énergie atomique et aux énergies
alternatives (CEA). Dans ce projet, le développement de techniques de surveillance pour un réacteur
nucléaire en fonctionnement est identifié comme un problème majeur pour augmenter la sécurité du
réacteur. L’utilisation de techniques de mesure par ultrasons (par exemple thermométrie, visualisation
d’objets internes) est considérée comme un puissant outil d’inspection des réacteurs rapides refroidis
au sodium, y compris ASTRID en raison de l’opacité du sodium liquide.

À l’intérieur d’un circuit de refroidissement au sodium, l’hétérogénéité du milieu se produit du
fait de l’état d’écoulement complexe, notamment lorsque le réacteur est en fonctionnement, et les
effets de cette hétérogénéité sur la propagation des ondes acoustiques ne sont pas négligeables. Ainsi,
il est nécessaire d’effectuer des expériences de vérification pour les développements de technologies
pour les composants, sachant que de telles expériences utilisant du sodium liquide peuvent être des
expériences à relativement grande échelle. C’est pourquoi les méthodes de simulation numérique sont
essentielles avant d’effectuer des expériences physiques en laboratoire, et en complément des résultats
expérimentaux, qui sont nécessairement limités en nombre. Bien que diverses méthodes numériques
aient été utilisées pour modéliser la propagation d’ondes acoustiques dans le sodium liquide, la com-
munauté n’a toujours pas de méthode de modélisation de formes d’ondes complètes qui soient bien
validées dans le cas de modèles tridimensionnels de grande taille présentant des hétérogénéités. De
plus, à l’intérieur d’un coeur de réacteur, c’est-à-dire une région couplée acoustique-élastique com-
plexe, il est également difficile de simuler de manière précise de tels problèmes avec des techniques
numériques qui soient basées sur du tracé de rais conventionnel.

L’objectif de l’étude menée dans le cadre de ma thèse est donc de contribuer à résoudre ces
deux points en appliquant une méthode de calcul tridimensionnelle par la technique numérique des
éléments spectraux, qui est une méthode d’éléments finis d’ordre élevé calculée dans le domaine tem-
porel, qui peut modéliser nos objets d’étude (par exemple le milieu caloporteur sodium à l’intérieur
du réacteur nucléaire) de manière plus précise que les méthodes de simulation plus classiques.

Nous étudierons d’abord le potentiel de développement de la thermométrie ultrasonique dans
un environnement sodium liquide fluctuant similaire à celui d’un réacteur rapide refroidi au sodium,
et étudierons si et comment la thermométrie ultrasonique peut être utilisée pour surveiller le flux de
sodium à la sortie du coeur du réacteur. Nous obtiendrons des variations de temps de vol claires dans
le cas d’une faible différence de température de 1% dans le cas d’un gradient de température statique
ainsi qu’en présence d’une fluctuation aléatoire du champ de température dans le flux turbulent. Nous
vérifierons que de petites variations de température dans le flux de sodium de par exemple environ
1% de la température du sodium, c’est-à-dire environ 5 degrés Celsius, peuvent avoir une signature
acoustique mesurable de manière fiable. Pour ce calcul, le domaine cible sera modélisé comme un
processus aléatoire bidimensionnel et Gaussien appliqué pour générer une fluctuation de la tempéra-
ture dans le sodium liquide.

Afin d’étudier l’hétérogénéité tridimensionnelle et des champs de température plus réalistes
dans le milieu, dans un deuxième temps dans cette thèse nous effectuerons une seconde étude nu-
mérique, cette fois-ci à trois dimensions. Pour représenter l’hétérogénéité du sodium liquide, nous
appliquerons un champ de température quadridimensionnel (trois dimensions spatiale et une dimen-
sion temporelle) calculé par modélisation numérique en dynamique des fluides avec une simulation
LES (Large-Eddy Simulation) réalisée par CEA STMF au lieu d’une méthode conventionnelle plus



6 Résumé en français

classique et moins chère (par exemple un processus aléatoire Gaussien). Nous montrerons qu’à partir
de cette expérience numérique tridimensionnelle, nous serons en mesure d’analyser les effets tridi-
mensionnels de l’hétérogénéité réaliste dans le milieu de propagation sur les ondes acoustiques se
propageant dans le sodium liquide, dans une expérience de mélange de jets appelée PLAJEST. Nous
montrerons également que l’on peut déduire des mesures acoustiques des informations pertinentes
pour des études de conception dans le domaine de la thermo-hydraulique : fréquence des fluctuations
de température, délimitation de la zone de plus fortes fluctuations de température, et température
moyenne en fonction de l’altitude.
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SUMMARY

The ASTRID project, a French sodium-cooled nuclear reactor of 4th generation, is currently
under development by the French Alternative Energies and Atomic Energy Center (CEA). In this
project, development of monitoring techniques for a nuclear reactor in operation is identified as an
important issue to improve the plant safety. The use of ultrasonic measurement techniques (e.g.
thermometry, visualization of internal objects) is regarded as a powerful inspection tool for sodium-
cooled fast reactors, including ASTRID due to the opacity of liquid sodium.

Inside a sodium cooling circuit, heterogeneity of the medium occurs because of a complex flow
state, especially when the reactor is in operation, and then the effects of this heterogeneity on acoustic
wave propagation are not negligible. Thus, it is necessary to carry out verification experiments for
development of component technologies, and such kind of experiments using liquid sodium may be
relatively large-scale, i.e., difficult and expensive. This is a reason why numerical simulation methods
are essential before performing real laboratory experiments, or in addition to the number of experi-
mental results, which is necessarily limited due to their difficulty and cost. Though various numerical
methods have been applied to model wave propagation in liquid sodium, the community still does
not have a verified and fully tested full-wave method for numerical modeling of wave propagation
in large-scale three-dimensional heterogeneous sodium reactors. Moreover, inside of a reactor core
i.e. in a complex acoustic-elastic coupled region, it is also difficult to simulate such problems with
conventional ray-based methods.

The objective of the study in the thesis is to contribute to solving these two points by resorting
to a three-dimensional spectral-element method, which is a high-order time-domain finite-element
method that we will show to be suitable to model our targets (i.e. sodium coolant inside a nuclear
reactor) more accurately than more classical numerical simulation methods.

We will first study the development potential of ultrasonic thermometry in a liquid fluctuating
sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if
and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor
core. We will obtain clear time-of-flight variations in the case of a small temperature difference of one
percent in the case of a static temperature gradient as well as in the presence of a random fluctuation
of the temperature field in the turbulent flow. We will verify that small temperature variations in the
sodium flow of e.g. about 1 % of the sodium temperature, i.e. about 5 degrees Celsius, can have a
reliably-measurable acoustic signature. For this calculation, the target domain will be modeled as a
two-dimensional medium, and a Gaussian random process will be applied to generate fluctuations of
temperature in the liquid sodium.

To investigate 3D heterogeneity and more realistic temperature fields in the medium, in a second
part of the thesis we will carry out a numerical study for 3D models of the reactor core. To repre-
sent the heterogeneity of liquid sodium, a four-dimensional temperature field (three spatial and one
temporal dimension) calculated by computational fluid dynamics based on a Large-Eddy Simulation
performed by CEA STMF will be applied instead of using a cheaper, more classical method such as
e.g. a Gaussian random process. We will show that based on that numerical experiment we will be
able to analyze the 3D effects of realistic heterogeneity in the propagation medium on the propaga-
tion of acoustic waves in liquid sodium, in a jet-mixing experiment called PLAJEST. We will show
that from acoustic measurements we can deduce information relevant to design studies in thermal-
hydraulics: frequency of temperature variations, delimitation of the zone of greater fluctuation of
temperature, and average temperature with respect to altitude.





Chapter 1

Brief summary of the state of the art of
ultrasound probing for liquid sodium

In this chapter, let us introduce the general context of the thesis, and its main goals. In subsec-
tion 1.1.1 we will thus briefly recall some international research and development projects related to
the new fourth-generation nuclear reactors, which is the background of this thesis. Then in subsec-
tion 1.1.2 we will recall how ultrasound measurement techniques are used in nuclear reactors. We
will indicate methods that have been proposed in past research projects. In the following sections
(subsection 1.2.1), the acoustic properties of the coolant medium (i.e. liquid sodium) of the SFRs
are presented. The heterogeneous thermo-fluidal state of the medium in an operating situation of the
reactor is explained, referring to former studies, in section 1.3. Finally the possible effects of hetero-
geneity of the medium on acoustic wave propagation, which are discussed in the literature, and the
objectives of this thesis will be explained (subsection 1.4.3 and section 1.5).

1.1 Sodium-cooled fast reactors and the need for ultrasound mea-
surements

1.1.1 The Generation-IV forum and ASTRID project

Research & development (R&D) of next-generation nuclear power systems is being pursued under
the "Framework agreement for international collaboration on research and development of generation
IV nuclear energy systems" by countries belonging to the Generation IV International Forum (GIF)
GIF (2005). Initially, in 1999, the United States advocated the concept of Generation-IV nuclear
reactors and then proposed to other countries to organize an international forum for international
collaboration to develop fourth-generation nuclear power systems. In response to this, in July 2001,
a charter that defines the principles of GIF was formalized by the Republic of Argentina, Brazil,
Canada, France, Japan, the Republic of Korea, South Africa, the United Kingdom and the United
States. After subscriptions by the European Atomic Community (i.e. Euratom), People’s Republic of
China, Russia and Switzerland, GIF is nowadays being operated by 12 countries and one international
organization.
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Generation IV (Gen-IV) is defined as a new nuclear power system following the nuclear reactors
at the beginning of nuclear reactor technology from the 1950’s to the first half of the 1960’s (Gen-I),
commercial light-water reactors built from the latter half of the 1960’s to the first half of the 1990’s
(Gen-II) and their improved versions from the latter half of the 1990’s to the 2010’s (Gen-III and
Gen-III+). The objectives of GIF were clearly identified as:

• achieve sustainable development of nuclear energy by optimizing the use of natural uranium
resources and by reaching the highest levels of nuclear safety,

• minimize the production of the most radioactive waste, in particular long-lived waste,

• ensure high resistance to nuclear proliferation,

• develop applications of nuclear energy for other uses than production of electricity.

After the analysis phase for designing plans, the GIF consortium selected six concepts of nuclear
reactors that exhibited promising potentials to achieve the above-mentioned objectives (GIF 2014).

• SFR: Sodium-cooled Fast Reactor

• GFR: Gas-cooled Fast Reactor

• LFR: Lead-cooled Fast Reactor

• SCWR: Supercritical Water-cooled Reactor

• VHTR: Very High Temperature Reactor

• MSR: Molten Salt Reactor.

Advantageous thermo-physical properties of the coolant, liquid sodium for SFR concept leading to
normal atmospheric pressure, (i.e. high boiling point, heat of vaporization, heat capacity and thermal
conductivity) lead to a large safety margin for coolant boiling, and this contributes to important safety
features of Sodium-Cooled Fast Reactors (SFRs), which is one of the design purposes of Gen-IV
nuclear reactors. Thus, SFR was adopted as one of the possibilities for Gen-IV, and its R&D is carried
out internationally in France, Japan, Russia, USA, Republic of Korea and China. This limited number
of countries implied in SFR explains the small number of international references in the bibliography.

Before GIF, the development of SFR has been undertaken in many countries through operations
of several experimental, prototype and demonstration reactors, for example Rapsodie, Phenix, Super-
Phenix in France, PFR in the United Kingdom, BN-550, BN-600 and BN-800 in Russia and Monju
and Joyo in Japan. In France, an R&D project aimed at technological innovation concerning SFR
has now been launched in collaboration with the French Alternative Energies and Atomic Energy
Commission (CEA), Areva (now called Framatome) and Electricity de France (EDF) in 2007. As a
part of this global project, a first prototype industrial-sized SFR development is ongoing. It is called
the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration). This
project pursuits four technical targets (CEA 2012):

• Design of a high-performance core with improved safety: in particular, concerning prevention
of severe accidents likely to cause complete core meltdown,
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Figure 1.1 Pre-conceptual design for the ASTRID reactor block (taken from Baqué et al. (2015)).

• Improved resistance to severe accidents and external aggressions: in particular, design of re-
dundant and diversified decay heat removal systems, as well as aspects related to the risk of
re-criticality accident (i.e. uncontrolled nuclear fission chain reaction) and to molten core con-
tainment,

• Search for an optimized and safe power conversion system intended to reduce or even com-
pletely remove the risk of interaction between sodium and water,

• Reactor design options to make inspection and maintenance easier and, more generally, to im-
prove the availability, performance and general economic characteristics of the facility (Figure
1.1 shows the pre-conceptual design of the planned ASTRID reactor).

Because of their high reactivity with sodium, the coolant circuit of SFR needs to be completely sealed
from air and water, thus further development of inspection and monitoring techniques are one of the
keys for practical applications of SFR (GIF 2014).

1.1.2 Ultrasound as a monitoring technique for ASTRID for in-service inspec-
tion and repair and for continuous surveillance

We give below a short summary of acoustic applications that are being developed in the framework
of the ASTRID project. Similar developments have been or are being made in other frameworks;
some of them will be reported in this dissertation. Schematically, two main reactor environmental
conditions are to be considered:

• Operation periods, which are associated with high temperature (550◦C approx.), high coolant
flow, and high levels or radiation (neutron plus gamma),

• Shutdown periods, which are associated with lower temperature (200◦C approx.), lower coolant
flow, and lower levels of radiation.
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In the field of applications, two domains are also classically considered:

• In-Service Inspection and Repair (ISI&R), which is generally associated with the shutdown
periods. Some typical applications are:

– non-destructive-evaluation, periodic inspection of welds,

– periodic inspection of structure integrity, locations and displacements of structures,

– imaging of objects and structures,

• Continuous Surveillance (CS), which is generally associated with the operating periods. Some
typical applications are:

– boiling detection in the primary circuit, and leakage detection in the secondary circuit,

– gas monitoring: sizing argon bubbles, and void fraction measurements,

– structure displacements,

– sub-assembly displacement monitoring,

– sub-assembly outlet temperature monitoring, ...

A third domain focuses on the refueling periods of the reactor, at shutdown conditions. Some
typical applications are:

– monitoring of refueling operations versus mechanical conditions,

– monitoring of refueling safety versus subassembly characteristics and history, sub-assembly
identification.

The use of a sodium environment results in strong limitations in terms of available investigation
techniques, for the continuous surveillance / operation period conditions, as well as for the routine
in-service inspection / shutdown period conditions (sodium draining is considered as an exceptional
procedure, for the sake of repair for example). Sodium is a metallic element, with a high electrical
conductivity and a magnetic behavior, and is rather opaque to electromagnetic waves. Magnetic and
electrical fields can be induced at very short distances, for instance with Electromagnetic Acoustic
Transducers (EMAT), to produce acoustic waves. However, electromagnetic (including optical) and
electrical techniques are unusable in sodium for long distance measurements, as mentioned above.

Acoustic techniques have been regarded as convenient ones for the above purposes, in a passive
"receiver" mode (noise detection of boiling and of leaks, generally at low frequencies), as well as in
an active "transmitter-receiver" mode (telemetry-based measurements, generally at high frequencies).
Indeed, pure liquid sodium has rather good acoustic properties, with low attenuation and a moder-
ate acoustic wave speed (about 2400 m s−1, with suitable wavelengths), and acoustic techniques can
thus be used in a broad frequency domain (currently up to 5 MHz for instance). Specific acoustic
transducers have been and are still being developed to fulfill the shutdown and the operation physical
conditions, as well as the acoustic specifications.

It is known that temperature and flow heterogeneities and fluctuations will affect acoustic prop-
agation (signal amplitude and signal-to-noise ratio, time of flight, path deflection, ...), with effects that
increase with the propagation distance. These effects are far stronger in operation conditions than in
shutdown conditions (which may be considered as isothermal and steady, in first stages of acoustic
studies at least).
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Our studies thus mostly focus on continuous surveillance conditions, and two representative
applications, in the active mode, will be considered in subsection 1.2.2 and in this dissertation:

• Ultrasonic temperature measurement at the outlet of fuel sub-assemblies (with possibly long
propagation distances), which was the starting point for the studies of ultrasound propagation
in heterogeneous sodium at CEA, and is studied in the general framework of SFR as a possible
alternative to thermocouple-based measurements,

• Ultrasonic sub-assembly displacement monitoring (with shorter propagation distances), which
has already been implemented in the Phenix reactor (using the SONAR device), and is studied
in the framework of the ASTRID project as well.

The description of this medium, from an acoustic point of view, is presented in the next section.

1.2 Ultrasonic waves in liquid sodium

1.2.1 Properties of liquid sodium for ultrasound

To describe acoustic wave propagation in liquid sodium, it is necessary to know two main properties:
density and wave speed. Both of them are temperature dependent. The characteristics of liquid
sodium and its temperature-dependent properties were reported in Sobolev (2011). That study shows
that at normal atmospheric pressure, the density difference of liquid sodium with temperature change
between the temperature range from the normal melting point to the normal boiling point may be
calculated with the linear relation:

ρ [kg m−3] = 1014− 0.235 · T [kelvin]. (1.1)

The sound speed of liquid sodium decreases monotonically with temperature, which is caused by
decreasing of the inter-atomic interactions. In the range of the normal melting - boiling point (371-
1155◦K), sound speed in pure liquid sodium may be described based on a linear relation:

cp [m s−1] = 2723− 0.531 · T [kelvin]. (1.2)

In this study, these two formulations are applied for acoustic properties of liquid sodium because the
valid temperature range for these equations matches the in-operation situation of the ASTRID.

Because of these characteristics, an acoustic field may be influenced and modified by the het-
erogeneity of temperature in liquid sodium. A visualization of such modified acoustic rays can be
found in the introduction part of published studies that are mentioned in the later part of this chapter
(Figure 1.21 in subsection 1.4.3 for instance). Variations of the acoustic impedance Z (Z = ρcp)
affect the transmission of ultrasonic waves (attenuation), and variations of the acoustic speed accel-
erate, decelerate or deviate the acoustic wave (refraction of the acoustic wave). This may lead to
well-known undesirable effects when the amount of modification becomes large: degradation of the
signal-to-noise ratio, focusing or defocusing of the acoustic beam, and creation of acoustic shadow
zones. What makes this matter very complex is the fact that the behavior of the heterogeneity changes
spatially and temporally at the same time. Thus it is important to obtain information on the tempera-
ture state of a coolant flow when one designs acoustic devices for SFR.
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1.2.2 Ultrasonic measurements in liquid sodium

Several applications of acoustic measurement in liquid sodium have been studied in the literature.
Thermometry (i.e. an acoustic telemetry technique for the measurement of temperature) is one of
them. Monitoring the thermo-fluidal state of the coolant is a very important perspective to reach a
safe operation of nuclear reactors. Hence, for previous French reactors such as Phenix and Super-
phenix, measurement of the sodium temperature at the core outlet was already performed based on
thermocouples.

Acoustic thermometry is not the only way to measure temperature of the upper core region
i.e. the method using thermocouples, but acoustic thermometry may be applied to SFR because of its
advantages (Massacret 2014). One of the main advantages of this method is its ability to perform high-
frequency measurement; for acoustic measurements, there is no duration for heat transfer to the sensor
through thermally-inert materials, which inevitably occurs in the case of thermocouples. This ensures
a very fast measurement, whose frequency may possibly be up to a few kiloHertz, which makes
it possible to monitor the fast temperature evolutions that may result from incidents or accidents.
Another advantage of this method is that multiple locations on an acoustic path may be measurable at
the same time. This may reduce the number of measurement devices.

Thermometry needs to use two reflections of an acoustic echo from reflecting objects that are
present on the acoustic path. When distances between an acoustic source and those objects are known,
the average sound speed between the two objects may be calculated by

c′ij =
2(di − dj)
ti − tj

, (1.3)

where c′ij is the average sound speed between the i-th and j-th reflective objects, di is the distance
from an acoustic source to the i-th object, and ti is the so-called acoustic time of flight (TOF) i.e. the
travel time from the emitter to the receiver. All reflection points and acoustic source are assumed to
be aligned. From equations 1.2 and 1.3, the average temperature between two objects is estimated.
Figure 1.2 shows a drawing of this concept of thermometry (McKnight et al. 1987). For 20 years, this
technique was licensed as a U.S. patent no. US4655992A. As one can see in Figure 1.2, one of the
advantages of this technique is that local temperature values of multiple points are measurable with a
single acoustic device.

In 1992, ultrasonic thermometry was tested in the loop called HIPPO. HIPPO was a 1/2 scale
representation of the core of a reactor of the European Fast Reactor (EFR) type (Taylor & Birch
1992). The objective of the experimentation was to observe the effects of a turbulent water flow on
the ultrasonic measurement of temperature at the outlet of sub-assemblies. The use of a core mock-
up made it possible to determine the influence of subassembly vibrations and potential false echoes
occurring in the vicinity of assemblies. The fluid medium used in this experiment was water, and the
subassembly outlets were made of plastic. During the experiments, the flow rate in each assembly
was 3.3 liter s−1 (representing a flow speed of about 1.5 m s−1, half the real-life speed) and the water
was at ambient temperature in the whole loop. An 5 MHz ultrasonic transducer was placed above the
core and was aiming at an alignment of six assemblies, as shown in Figure 1.3. This transducer was
similar to the transducers designed for actual EFRs.

It was verified that temperature measurement between the edges of the outlets of the sub-
assemblies was possible with an uncertainty of only ±0.6◦C, i.e. about 0.6 to 2.0% of the average
temperature (10 to 30 ◦C). The result of this study (Taylor & Birch 1992) also indicates that the ul-
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Figure 1.2 Conceptual diagrams of thermometry, taken from McKnight et al. (1987).

Figure 1.3 Application of ultrasonic thermometry in the HIPPO loop, taken from Taylor & Birch (1992).
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trasonic measurement was not disturbed either by the flow of water nor by the potential assembly
vibrations. It would have been interesting to determine the influence of the size reduction of the
geometry of the assemblies, which directly relates to the size of the thermal-hydraulic fluctuation
patterns, on the propagation of ultrasounds whose wavelength is full size (while the size of the sub-
assemblies was half). Nevertheless, the accuracy of the temperature measurements achieved by this
technique, together with the absence of vibration effects, should encourage its implementation and
further studies like ours.

The acoustic telemetry technique has also been used for the monitoring of the position of sub-
assembly heads. CEA for instance developed an acoustic measurement system called SONAR in
order to study the generation mechanism of four scrams by overpassing the reactivity threshold (an
event called AURN) that occurred in the operation of the French Phenix fast breeder reactor (FBR)
(Berton & Loyer 1996). The objective of the SONAR system was to examine an hypothesis that
AURN was caused by a small radial displacement of the subassembly. SONAR measures the position
of the subassembly head by tracking the change of time-of-flight between the transducer surface and
the subassembly head.

Figure 1.4 Image of the SONAR rod installation, taken from Berton & Loyer (1996).

Figure 1.4 shows the description of the SONAR design. The left image indicates the relation
between the position of the SONAR rod and that of the target edges of the subassembly. The right
image is the cross-sectional image explaining the composition of the SONAR experiment. There are
multiple acoustic transducers in a rod. C1 and C4 are used for measuring the time-of-flight to and from
a subassembly edge. The transducer C2 is used to measure the movement of the SONAR rod itself,
caused by the flows. As indicated in the left image, the acoustic ray does not pass through the central
axis position of the sodium jets in this configuration, but the effect of the medium heterogeneity occurs
nonetheless for this position, as can be observed in the recorded signal in Figure 1.5A.

Berton & Loyer (1996) show the measured signal fluctuation in the reactor at 550◦C. The first
curve in Figure 1.5 is the estimated distance between the transducer and the subassembly edge for the
C1 transducer. The second curve is the measured distance between the C2 transducer and the wall of
the sleeve, which indicates the movement of the SONAR rod. The third curve is the estimated distance
between C1 and the targeted subassembly edge, for which the effect of a change in the rod position
is subtracted. The noise in this curve gives an idea of the effect of thermo-hydraulic fluctuations in
the SFR. Fontaine et al. (2011) studied deformation states of the subassembly and changes of fuel
reactivity, and controlled the flowering (radial expansion) state of a subassembly rod mechanically.
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They measured the induced displacement of the subassembly head using the SONAR system in the
Phenix reactor. Figure 1.5B shows the radial displacement measured by the SONAR device versus
their mechanical control states of subassembly flowering, indicated as "Vertical piston position". The
sodium temperature was 350◦C.

Figure 1.5 Measured displacement of a subassembly head measured by SONAR, taken from Berton & Loyer
(1996) (left) and Fontaine et al. (2011) (right).

As shown in Berton & Loyer (1996) and Fontaine et al. (2011), SONAR can thus measure small
displacements of the tracked subassembly head. The sensitivity of the measurement strongly depends
on the noise created by the SONAR rod vibrations and by the thermal-hydraulic fluctuations. Because
the displacement is a short transient one, it is not possible to enhance the signal-to-noise ratio based
on time-averaging techniques for example. One must thus evaluate the error that thermal-hydraulic
fluctuations can induce. Also correcting vibratory perturbations, Berton & Loyer (1996) shows that
measured distance fluctuation is ± 0.7 mm when the reactor is in operation (which is equivalent to
a ± 10◦C temperature fluctuation). Generally speaking, the sensitivity will depend on numerous
factors: position of the transducer, ultrasonic path (whether it passes through the hot sodium jets or
not), sodium recirculation, size of the jets, and flow speed (which is itself related to subassembly
head design). This is one of the reasons why numerical simulation can be a powerful tool to optimize
devices involved in SFR studies. One must also study the amplitude and shape of the echo, and study
the elastic interaction between the subassembly head and the incident acoustic wave. In the case of 3D
circular head geometries with complex machined parts, an accurate 3D numerical simulation, which
could be performed based on the SPECFEM3D software package for instance, may be necessary.

1.3 State of the art of sodium flow modeling for SFR

In the sections above, application methods of ultrasonic monitoring for SFRs and ultrasonic properties
have been briefly recalled. Because of the dependency of sound speed on the medium temperature, as
described, it is crucial to understand the state of sodium circulation in order to estimate the usefulness
and potential practical use of ultrasound measurements, and in particular characterize the typical
error levels that they can lead to for telemetry-based measurements in sodium flows. In this section
(section 1.3), let us briefly review some of the latest studies on sodium flows in SFRs. Pure thermo-
fluid dynamical studies are cited because a thermo-fluidal state is formed based on the history that
the fluid has experienced. Our study concerns only the flow state of the upper-core region, i.e. the
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Figure 1.6 Sodium flow in the core of the current ASTRID conceptual design (taken from Barbier et al. (2017)).

region located just above the sodium outlet of the sub-assemblies. Three thermo-fluid studies will be
recalled briefly in order to have knowledge on how sodium flows in the region of the core.

In a SFR, the central part of the core is composed of hexagonal sub-assemblies that contain the
nuclear fuel. Figure 1.6 shows the typical sodium flow in the primary coolant system, and Figure
1.7 shows the diagram of the ASTRID core assembly at the end of the conceptual design phase. The
version of core design taken into account is number four, and this version of the ASTRID core is
called CFV version 4. The core assembly of version 4 is composed of 288 fuel sub-assemblies with
a 17.17 cm pitch. Each fuel subassembly includes 217 fuel pins. The diameter of the pins is 9.7 mm
(Venard et al. 2017). Each pin is surrounded by helical wire spacers (Figure 1.8, B). In the core, the
sodium flow orbits through the heat exchanger and core assemblies driven by electromagnetic pumps.
Inside the heat exchangers, thermal energy is passed to the secondary coolant system and then the
temperature of sodium decreases. This cooled sodium flow is heated again while the sodium flow
passes through the sub-assemblies, which may have the highest temperature within the entire cooling
circuit, and which is exhausted from the subassembly heads.

Because of the complexity of the geometry in which the sodium flow comes out, estimation for
flow and heat transfer state is quite important for the optimization of the SFR core, the subassembly
design, and also for considering thermal fatigue. CEA has thus performed several numerical studies
of core thermal hydraulics of SFR by splitting them into three scales (Gerschenfeld et al. 2017):

• the global reactor scale, i.e. the reactor system scale,

• the local core scale, i.e. the individual subassembly scale,

• the scale of the other regions in which three-dimensional convection phenomena happen, ex-
cluding the subassembly part, for instance the inter-wrapper gaps and the hot pool plenum.
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Figure 1.7 Diagram for the planned ASTRID core assembly at the end of the conceptual design phase (taken
from Venard et al. (2017)).

Figure 1.8 Design of a subassembly. A: entire image and its cross-section. B: Neutron-shielding part. C:
Subassembly head. D: Extracting head of neutron shielding (taken from Beck et al. (2017)).
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This separation is currently unavoidable (in terms of computational cost) in order to be able to obtain
the necessary resolution for the computation grids for each target and to maximize the volumes of
the modeled domains. However, the interaction between the simulation of each of these scales needs
to be considered because local scale phenomena may sometimes have a strong feedback effect on
the global behavior of the reactor (Gerschenfeld et al. 2017). In order to take into account all of
phenomena with different scales and the interactions between them, CEA takes a calculation strategy
that consists in first computing the system-scale thermal-hydraulic states, based on a numerical code
called CATHARE. In a second step, the state of the local core scale is calculated by taking into
account the first system-scale simulation result as the initial condition. For that step, the TrioMC
code is used for the subassembly simulation, and another code called TrioCFD is used to compute
the other regions in the reactor in which three-dimensional convection occurs. Finally, once again the
global-scale simulation is carried out with the data of local scale simulations using a coupling code
called MATHYS (Multi-scale ASTRID Thermal-HYdraulics Simulation).

For example, Saxena (2014) performed a numerical study for a subassembly of ASTRID (Figure
1.9) to estimate the amount of pressure drop and hot spots (i.e. the place where temperature becomes
high locally) happening around the supporting wires of fuel pins. The pressure drop and hot spots may
cause boiling of liquid sodium, and this may lead to local clad meltdown. In order to investigate the
possibility of occurrence of relatively small hot spots, Saxena (2014) used a Large Eddy Simulation
(LES) turbulent model in addition to a Reynolds Averaged Navier-Stokes method (RANS) turbulent
model.

Figure 1.9 Thermal-hydraulic simulation for a subassembly made by Saxena (2014). A: Simulation mesh for
a bundle of fuel pins and spacing wires. B: Three-dimensional temperature field. C: Streamlines of flow with
evolution of temperature (around the hexagonal can). D: Calculated temperature difference in a cross section
around a central fuel pin. The color map shows the difference of temperature based on the lowest temperature
of each cross section.
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CEA is currently developing another code for the simulation of an individual subassembly
model: the so-called TrioMC numerical simulation tool (MC stands for the abbreviation of Core
Model in French). This code allows one to calculate the temperature distribution of all cladding and
sodium parts from a given mass flow rate. Figure 1.10, taken from Conti et al. (2015), shows an
example of calculation for sodium temperature of sub-channels, i.e. spaces surrounding fuel pins, in
a subassembly. The vertical axis indicates temperature values, and each color means the altitude in
the subassembly. This calculation estimates that a temperature gradient with a higher temperature
at the center of the subassembly will be generated, and the radial magnitude of the gradient will be
maximum at the highest altitude, with ∆T about 60 ◦C when x =0.08 m (a more detailed figure can
be found in Conti et al. (2015)).

Figure 1.10 Temperature map calculated by the CEA numerical simulation code TrioMC. A: Calculated (lines)
and experimental (arrows) temperatures at each altitude of a subassembly. B: Comparison on 2D intersections
at several altitudes. The lines represent calculated values and the symbols represent experiment values. The Z
value is altitude in millimeters. Taken from Conti et al. (2015).

After achieving the whole core temperature simulation, thermal-hydraulic calculations for the
inter-wrapper and for the hot pool plenum zone are carried out by coupling the results of the calcula-
tion of the sub-assemblies with a three-dimensional TrioCFD model (Figure 1.11). The thermo-fluid
data for the upper core region may then be numerically obtained, for the regions where ultrasound
transducers will be installed (i.e., typically the region shown with the purple rectangle in Figure 1.11).
This result illustrates the great technical and numerical challenge that needs to be addressed to ob-
tain quantitative information for ultrasound measurements in the upper core region, as the above-core
structure greatly modifies the sodium flow. As a result, the state of the flow and the distribution of the
thermal gradient become heterogeneous. From the temperature dependency, which has been recalled
in subsection 1.2.2, these complex heterogeneities lead to uncertainty/difficulty of ultrasound mea-
surements in the upper-core region. This thesis will thus focus on how to try to compute and analyze
such complexity and uncertainty.

A more detailed numerical study on the flow state at a subassembly head was carried out by
Beck et al. (2017). The aim of that study was design optimization of pins configuration and geometry
of the extraction head (Figure 1.8). In Figure 1.12, pre-optimization and optimized geometry and
simulated flow and temperature fields are shown. From the results for the pre-optimization geometry,
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Figure 1.11 A,B: 3D TrioCFD model of inter-wrapper model and the hot pool plenum, including the upper-
core region. C: Calculated temperature map (color scale) and flow state (arrows). Taken from Conti et al.
(2015).
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the maximum difference of temperature at the position of the monitoring system (A.2-2) is about
20 ◦C. From the results for the optimized geometry, the size of the temperature gradient (B.2-2)
at the same position is about 7 ◦C and the velocity magnitude field (B.1-2) is more homogeneous
than the pre-optimization result (A.2-1). We consider that, in reality, the state of the sodium flow
becomes more complex than these calculation results because of the effect of mixing with colder
sodium around the outlet of a subassembly, and also because of convection. Let us also mention that
a Reynolds Averaged Navier-Stokes (RANS) model is used as the turbulent model, which means that
the resulting size of the heterogeneities is averaged for the point of view of ultrasounds, i.e. the size
of the wavelength being much smaller than the resulting size of heterogeneities in the CFD results for
a sodium flow in the SFRs that are currently available.

Figure 1.12 Geometry A: before optimization of an inner head of a subassembly; cross-sectional flow field
(A.1-1) and temperature field (A.2-1) in the long axial direction, and velocity magnitude field (A.1-2) and
temperature field (A.2-2) in a perpendicular cross-section at the position of the monitoring system, i.e. at the
place where the thermocouples and flow-meter are located. B: after optimization: cross-sectional flow field
(B.1-1) and temperature field (B.2-1) in the long axial direction, and velocity magnitude field (B.1-2) and
temperature field (B.2-2) in a perpendicular cross-section, taken from Beck et al. (2017). The inner diameter of
the head is 15 cm and the length of the cylindrical part (not hexagonal) of the head (i.e. from the left boundary
of the A.1-1 image to the "S/A head outlet" part) is 27 cm.
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The latest numerical analysis, which was carried out by CEA for the upper core region and the
hot pool plenum at nominal reactor power, shows that the possible radial flow rate is about 4.5 m s−1,
and the maximum variation rate of radial temperature is about 23.4◦C par 10 cm (Haubensack 2016).
It also shows that the modification of the acoustic field depends on the three-dimensional angle and
curvature of the temperature gradient versus a direction of an acoustic propagation ray. For this reason
it is necessary to take into account the medium heterogeneities to ensure the accuracy of acoustic
measurement methods (Massacret 2014). The main objective of this thesis is thus going to be to study
how an acoustic wave propagates in a model of a sodium flow that has realistic heterogeneity.

1.4 Thermal-hydraulics studies with fluctuation of sodium jets,
and acoustic point of view

As mentioned above, several thermal-hydraulic studies on the state of the sodium coolant fluid in the
primary circuit of SFR have been carried out in the literature. These studies, except Saxena (2014), use
the Reynolds-Averaged Navier-Stokes (RANS) model for their turbulence model for the upper core
domain, which is the place on which we want to focus in this thesis. Turbulence models generally
used for computational fluid dynamics (CFD) may be broadly divided into three types: RANS, Large-
Eddy Simulation (LES), and Direct Numerical Simulation (DNS). The appropriate model to use in a
given situation is selected based on the purpose of the simulation (for instance the level of accuracy
needed etc.) and the amount of computer resources required:

• RANS divides the flow variables (i.e. velocity, pressure and temperature) into a time-averaged
part and a fluctuating part (a process called Reynolds decomposition), and then a time-averaged
thermo-fluid field is calculated,

• LES defines a cut-off threshold on the spatial size. Eddies larger than this threshold are calcu-
lated directly, and the smaller eddies are modeled and calculated as more isotropic ones than
those directly calculated,

• DNS solves the set of equations without any approximation, thus this model has the highest
resolution and accuracy among these three models. However this method requires enormous
amounts of computer resources and this is why the application of DNS for the analysis of
a whole nuclear core or a large part of a nuclear core is currently still not feasible (but will
become feasible one day).

Figure 1.13 shows the schematic representation of turbulent models and numerical results of
each model (Poitou (2009), Saxena (2014)). From this figure it is clear that a RANS-based simulation
would not give a description of the temporal fluctuations of the jets. The acoustic wavelength of
1 MHz, which is one of the possible acoustic frequencies considered to be used in the ASTRID core,
is small: approximately 1 mm in the operating situation. This is the reason why a thermal-hydraulic
field that would be averaged too much may sometimes not be suitable to perform realistic acoustic
simulations, because the spatial and temporal resolutions of averaged thermal-hydraulic results are
coarser than the resolution of the acoustic simulations.

As we recalled in the previous sections, in the upper core region, hot sodium jets, which have a
temperature within the range 450◦C (control rod) to 550◦C (hotter subassembly), and ambient sodium,
which may be 50◦C colder than the hottest jets, are mixed. This can cause complex and poorly known
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thermal-hydraulic phenomena. For this reason, several studies exist on the thermo-fluidal fluctuation
of sodium jets. The main purpose of these studies is the observation of a mixing phenomenon in the
jets of liquid sodium, and estimation of thermal fatigue of the metal material that is present in a SFR
core. In those studies, the thermal fluctuation cycle is investigated in details, thus we may use these
results for our acoustic studies, as there are similarities with the objectives of our study.

Figure 1.13 Left: Schematic representation of the three classical types of turbulent models used in numerical
simulations. Right: modeling of a flame. Taken from Poitou (2009) and Saxena (2014).

Figure 1.14 Test section of the NAJECO loop (taken from Tenchine et al. (1994a)).

1.4.1 The NAJECO experiment

In order to determine the characteristic length Lθ of these thermal heterogeneities in different fluids,
Tenchine et al. (1994a) and Tenchine et al. (1994b) performed several experiments in the NAJECO
and AIRJECO test loops. The objective of these experiments was to determine the similarities be-
tween the thermal fluctuations of a flow of sodium and a flow of air and to determine if air is appro-
priate for the simulation of sodium with temperature heterogeneity. To this end, the two test sections
had identical geometries and generated coaxial fluids at different temperatures.



26 Chapter 1 – Brief summary of the state of the art of ultrasound probing for liquid sodium

Table 1.1 Characteristic length of the thermal heterogeneities at different points of the flow, 50 cm above the
nozzles (taken from Tenchine et al. (1994a)).

Radius R [m] Speed U [m s−1] Length Lθ [m]
0 1.05 0.037
0.016 1 0.039
0.04 0.8 0.032
0.10 0.3 0.024

For the NAJECO experiment, the two concentric sodium jets have different temperatures and
flow rates: 150 m3 h−1 at 280◦C and 30 m3 h−1 at 200◦C. The trial section of this loop is represented in
Figure 1.14. This test section generates two coaxial jets at different temperatures, and thus generates
thermal heterogeneities that can be encountered at the subassembly outlet, mainly where the coaxial
jets from sub-assemblies and inter-sub-assemblies mix. The study of this experiment makes it possible
to better understand which types of heterogeneities may develop above the reactor core.

In this experiment, a thermocouple was placed with the aid of a pole at different points of
the flow, which made it possible to record temperature fluctuations, to measure the spectrum of the
thermal fluctuations, and to deduce the characteristic lengths of the flow. Table 1.1 shows the results
of this experiment at a distance of 0.05 m from the sodium outlet. U is the speed of the flow at the
measurement point and R is the distance from the measurement point to the vertical axis (Figure
1.14). The characteristic length of the temperature fluctuation Lθ is calculated from the measured
values based on

Lθ =
U

2πfθ
, (1.4)

where fθ is the peak frequency of the measured temperature temporal fluctuation.

Thus, for a sodium flow of this type, the characteristic length of the thermal heterogeneities
50 cm above the tubes discharging the sodium ranges between 2 cm and 4 cm. It is also important to
note that heterogeneity size decreases with increasing distance between the measurement point and
the center of the flow. To understand why these variations occur, radial and axial measurement of
the temperature fluctuations were performed in the NAJECO experiments; the results are presented
in Figure 1.15. This profile indicates that most of the thermal fluctuations do not occur in the axis of
the exit flow but rather on a ring centered on the flow, where the two coaxial jets mix. On both sides
of this ring the temperature heterogeneities are thus smaller. It should be noted that these profiles are
also given far from the jet outlets (50 cm).

These results show that in spite of the high thermal conductivity of sodium, which tends to
homogenize the medium temperature, thermal heterogeneities can be observed as a result of the flow
velocity field. These experimental results would not be simply compared to the expected SFR sodium
flow, as the direction of the flows are not identical. Nevertheless it is likely that, in a horizontal plane
very close to the subassembly outlet, circular homogeneous temperature zones can be observed, their
radius being of the order of that of the assembly. These zones would be separated by zones in which
the temperature fluctuations are large and the characteristic size of the temperature heterogeneities is
about a few centimeters.

It should also be noticed that these experiments were run without any obstacle and high above
the jet outlets, the flows implemented here being different from those implemented in the case of a
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actual reactor in which sodium flows are disturbed by the upper-core structures situated about 40 cm
above the assembly outlet. The findings of this study may therefore be modified by the presence of
the upper-core structures. More precise knowledge of the flow above the core will be necessary to
conclude on the presence of a small disturbed zone above the assemblies.

Figure 1.15 Radial profile of the intensity of the fluctuations in sodium and in air, at altitude Z = 50 cm (taken
from Tenchine et al. (1994a)).

1.4.2 The PLAJEST experiment, and numerical modeling based on large-eddy
simulation

Another program, called PLAJEST, is a collaboration between the Japanese Atomic Energy Agency
(JAEA), the U.S. Department of Energy (DOE), and CEA in France. The main purpose of PLAJEST
is to observe heat conduction at a liquid-solid boundary in a sodium cooling circuit, because the
thermal fluctuations lead to high-frequency thermal fatigue and thus possibly to cracks in adjoining
structures of SFRs. The configuration of this experiment is shown in Figure 1.16. After the experiment
made by JAEA (Kimura et al. 2005, 2008), thermo-fluid analysis was done by CEA in its Service
de thermo-hydraulique et de mécanique des fluides (STMF) (Angeli (2015), Figure 1.17). In that
analysis, the results A and B indicate a good fit on time-averaged normalized temperature (A) and
its fluctuation (B) between experimental and numerical values. Moreover the power spectral density
curves of temperature at the middle point of the domain under study also exhibit a good fit (D).

While these PLAJEST studies are not based on ultrasound propagation, and we did not carry out
an acoustic experiment with the PLAJEST configuration in this thesis, we will use the thermo-fluid
computation results of case A1 as a CFD simulation results that is well validated by the experiment for
our full-wave propagation numerical simulations (in Chapter 3) in realistic conditions. CEA/STMF
used a Large-Eddy Simulation turbulence model for this simulation, thus we may utilize these tem-
perature fields with higher spatio-temporal resolution.
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Figure 1.16 Geometry of the PLAJEST experiment (A,C,D) and three different initial conditions of the flow
state (B), taken from Kobayashi et al. (2015). Water (A2) and sodium (A1, B1) are used for each medium.

1.4.3 Thermal fluctuation models used in previous acoustic studies in the lit-
erature

In previous studies published in the literature on acoustic wave propagation in heterogeneous liquid
sodium, a stochastic modeling was always applied for modeling of medium fluctuations and hetero-
geneities of sodium flow in SFRs, because pertinent thermal-hydraulic input data were not available,
and/or because realistic numerical modeling was too complex or too expensive to perform. This
stochastic method is still the fastest and cheapest way to prepare a fluctuating acoustic propagation
medium. Several such studies are briefly recalled in this section.

David Fiorina, in his PhD thesis (Fiorina 1998), generated fluctuating fields of sound velocity
based on isotropic and homogeneous Gaussian random processes in 2D. He studied the effects of this
heterogeneity in the propagating medium on an acoustic wave using a Gaussian beam summation
method. A point and line source were used in his calculation, and he analyzed the effect on the
acoustic rays, time-of-flights, and variance of sound intensity (Figure 1.18). In that simulation, the
medium used was water. The average temperature was 30◦C, and variance of the temperature was
25◦C with Lθ = 0.03 m. He concluded that when the propagation distance is shorter than about
34 times the value of Lθ (the characteristic length of heterogeneities), the simulated curve and the
theoretical solution are in very good agreement. However, when the propagation distance becomes
longer than that length, the difference between the analytical solution and the result of the calculation
becomes larger. Let us mention that in this thesis, a Gaussian random process following this approach
will be used in Chapter 3.
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Then, Iooss et al. (2000) extended this method to a geometrically-anisotropic homogeneous
Gaussian random process in 2D. This extension was motivated by the demand coming from the fact
that the fluctuation pattern is not isotropic when the flow velocity is not small. The Gaussian beam
summation method was again applied in that study, and the case of a plane wave and then a spherical
wave were examined as types of acoustic emission. Figure 1.19 shows the isotropic temperature and
flow velocity fields (A) and anisotropic sound celerity field (B). In Iooss et al. (2002) the authors
concluded that:

• In 3D modeling, the effects of the mean and turbulent fields are theoretically stronger on the
travel times than in 2D modeling,

• A fluctuating pattern generated based on a stochastic model is far from realistic fluctuating
patterns,

• Deterministic fluid mechanics can provide realistic temperature and velocity fields.

Lü (2011) and Lü et al. (2012) applied a Gaussian random process to 3D simulation, and also
proposed to apply the Gaussian random process not to the generation of a physical quantity field (i.e.
temperature and flow velocity field) but rather to the propagation field (i.e. times of flight and acoustic
amplitudes) itself. In these works, the propagation field is first calculated as wave propagation in a
homogeneous medium, and then the heterogeneous effects are calculated in transversal planes (Figure
1.20 A) as a function of propagation distances, and then added to the homogeneous fields. Figure
1.20B shows an example of time-of-flight fluctuations in the transversal plane at a distance from
the source of 30lε, where lε is the characteristic length of the medium fluctuations. Sub-figure C
is an example of a fluctuating acoustic field calculated based on the stochastic model that we use.
A circular transducer with diameter 30 mm was used. The source signal is a Gaussian-modulated
sinusoidal pulse with a dominant frequency of 2 MHz. D: Profiles of amplitude at x = 1.4 m extracted
from the results presented in C. The red curve shows the result obtained in the case of homogeneous
medium conditions.

Lü et al. (2012) called this method a stochastic method, and called the former a deterministic
method. The stochastic method provides faster generation of the fluctuating propagation field than
a deterministic method. The size of the calculated volume in that work is 0.1 m < x < 1.4 m and
−0.05 m < y < 0.05 m, with 2000 calculation points. For the deterministic model the calculation time
was about 1.5 h, while for the stochastic model it was only 10 s, i.e., more than 500 times cheaper.
The results taken from that paper and presented in Figure 1.20 D show a mean deviation of about
10 mm and a standard deviation of about 7.6 mm at x = 1.4 m. Let us mention that the stochastic
method in Lü et al. (2012) was validated using a ray-tracing technique.

Massacret (2014) simulated wave propagation just above the heads of the sub-assemblies under
the assumption that in this region the fluctuation of the medium is weak enough and can thus be
ignored. The only heterogeneity taken int account is a static heterogeneous temperature that creates a
temperature gradient along the wave path. His results show that under such an assumption, acoustic
rays may be affected significantly and deviated (Figure 1.21). A ray-tracing code called AcRaLiS was
developed for this simulation. To describe the temperature field, the author performed an interpolation
of the physical values of the field onto the spatial points that are used for the ray-tracing calculation
using a Delaunay triangulation. Massacret (2014) also applied the temperature and flow velocity map
calculated for the PLAJEST experiment based on a RANS turbulent model (see the above section)
and obtained estimates of the change of times of flight for the wave front.
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Figure 1.17 Computational Fluid Dynamics results for the A1 case of the PLAJEST experiment configuration,
obtained by Angeli (2015). A: Time-averaged normalized temperature field and comparison with experimental
data. B: Time-averaged normalized temperature fluctuation and comparison with experimental data. C: Exam-
ple of a non-time-averaged temperature field at a given time. D: Power spectral density curve at the middle
point of the studied domain.
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Figure 1.18 Results of a Gaussian summation simulation obtained by Fiorina (1998). A: Calculated acoustic
rays emitted from a point source. The value of each axis is divided by the characteristic length of fluctuations
L = Lθ. B: Variance of time-of-flights versus propagation length. C: Normalized variance of fluctuations of
sound intensity (σT (x)2 =

∑
i(Ii−Iaverage)/Iaverage)2, Ii = pi∗|vi|, i : index forxpositions, p : pressure,v :

velocity vector) versus propagation length. Taken from Fiorina (1998).

Figure 1.19 A: An example of isotropic temperature and flow velocity fields of water. B: Anisotropic sound
celerity field in liquid sodium. The velocity of the ambient flow is 16 m s−1 tilted at 11.5◦. Taken from Iooss
et al. (2000).
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Figure 1.20 A: Definition of the transversal plane on which the fluctuating part of a propagation field is
calculated. B: Time of flight fluctuation on a transversal plane. C: One of fluctuating acoustic field calculated
based on the stochastic model. D: Profiles of Amplitude at x = 1.4 m extracted from C. Taken from Lü et al.
(2012).
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Figure 1.21 A: Acoustic rays obtained based on a ray-tracing simulation code called AcRaLis above the
subassembly heads without fluctuations (left) and acoustic energy 63 cm away from the acoustic source (right).
B: Deviated acoustic rays calculated with a temperature field obtained from the PLAJEST simulation data. C:
Plotted wave front. Taken from Massacret (2014).
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To finish the overview of previous studies, let us mention some studies currently being per-
formed in Belgium. SCK-CEN, the Belgian Nuclear Research Center is currently developing MYRRHA,
a Generation-IV liquid-metal-cooled research nuclear reactor (Aït Abderrahim et al. 2012). Lead-
bismuth eutectic, which is also optically opaque, is used as the coolant medium in this reactor. In
this project, one of the possible applications of the acoustic measurement technique is the detection
and localization of potentially lost fuel assemblies. For this purpose, the acoustic propagation dis-
tance may be about 2.5 m and thus the effects of the heterogeneous temperature and velocity fields
on acoustic wave propagation need to be examined. To do this, Van de Wyer et al. (2014) developed
an experimental facility called TAUPE. Water is used as the propagation medium in that experiment
(Figure 1.22 A,B). The corresponding medium, in terms of flow velocity and temperature gradient,
were simulated in TAUPE, and acoustic wave propagation was observed by means of acoustic signal
and shadow-graph visualization. The authors of this experiment also developed a ray-tracing code
and validated it based on their experimental results. They concluded that their ray-tracing code esti-
mates the effects of temperature gradients on wave propagation accurately (Figure 1.22 D), while the
effects of the flow velocity field are overestimated. As Massacret et al. (2013), they also concluded
that the effect of the flow velocity field is negligible but that the effect of the temperature gradient is
not negligible when the propagation distance is greater than about 2.5 m, which is the required length
for object detection and visualization.

Figure 1.22 A: Configurations of the TAUPE experiment. S1 is the emitter. Two angles of acoustic propa-
gation direction are examined. B: Visualized wavefront in water without a temperature gradient nor velocity
field. C: Visualized wavefront in water with a temperature gradient and velocity field. D: Comparison between
experimental results and calculations made based upon a ray-tracing code, depending on the temperature gra-
dient. E: Comparison between experimental results and calculations made based upon that ray-tracing code,
depending on the rotation of the flow generator. Taken from Wyer et al. (2015). The authors find that the
amount of (vertical) beam deviation increases when the magnitude of the temperature gradient becomes larger.
The same trend is also found when the rotational speed of the flow generator becomes faster, i.e. when the flow
speed becomes faster.
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1.5 Summary of the main goals of this thesis

The main goals of this thesis are thus:

• The development and application of a full-wave propagation numerical method for the numer-
ical analysis of acoustic wave propagation in the sodium coolant of a SFR, for the first time in
the literature to our knowledge. We selected the spectral-element method (SEM), which is a
type of high-order time-domain finite element method. As described above, to our knowledge
only ray-based methods have been applied so far in the literature for acoustic wave propagation
in such a medium,

• Improving the sodium flow description to take into account spatial fluctuations of the medium
at the ultrasonic scale,

• Using the latest development of CFD calculations for sodium flows made by Service de thermo-
hydraulique et de mécanique des fluides (STMF) at CEA, we will study the effect of not only
taking into account a 3D environment but also temporal variations of the heterogeneities and
fluctuation of liquid sodium on acoustic wave propagation. Time slices of the temperature field
will be used to describe the medium conditions for our acoustic simulations.

Such developments should thus help the acoustic community to improve knowledge on these aspects,
for instance for the design of future ultrasonic measurement devices in such environments.

In Chapter 2, we will recall basic properties of the modeling methods (i.e. SEM, Finite Differ-
ence Time Domain methods (FDTD) and ray methods) for acoustic wave propagation.

In Chapter 3, we will first perform a comparative study between SEM and FDTDs for acoustic
wave propagation in a thermally-heterogeneous medium, in order to validate our numerical simulation
techniques. We will then perform a two-dimensional simulation study based on the spectral-element
method to investigate in detail the possibility of performing acoustic thermometry for sodium jets. A
Gaussian random process method will be used to represent the thermal fluctuations.

In Chapter 4, we will introduce and develop a three-dimensional acoustic wave propagation
simulations, again based on the spectral-element method but in the significantly more difficult three-
dimensional case this time, and will analyze its results. Temperature fields calculated for the PLA-
JEST geometry by CEA STMF Saclay, and with a Large-Eddy Simulation turbulent model, will be
used as input. The amount of possible deviation of acoustic waves resulting from variations of the
temperature field with time will be analyzed and discussed.

In Chapter 5, we will finally draw conclusions and will discuss future studies.





Chapter 2

Derivation of wave equations and numerical
models of wave propagation

In this chapter, we will briefly recall how acoustic wave equations for a static medium and also for a
moving medium can be derived from two fundamental equations in fluid dynamics i.e. the equation
of continuity and Euler’s equation (Newton’s second law). An acoustic wave will classically be
introduced as a small adiabatic fluctuation of a fluid. The elastic wave equation will then also be
derived. The main ideas behind numerical modeling for wave propagation based on ray methods,
Finite-Difference Time-Domain (FDTD) methods, Time-domain Finite Element Methods (FEM) and
Spectral Element Methods (SEM) will also be briefly recalled. To conclude, a classical open-source
numerical code for wave propagation called SPECFEM will be briefly reviewed. In the next chapters
we will use it extensively for our numerical simulations of ultrasonic wave propagation in parts of
Sodium-cooled Fast Reactors (SFR).

2.1 Summary of the main ideas behind the classical derivation of
ultrasonic wave equations

2.1.1 Acoustic wave propagation equation in a static medium

The basic equations for several types of acoustic wave propagation are generally derived from gen-
eral aspects of continuum mechanics. This means that the discontinuity caused from the molecular
structure of matter may be ignored by considering it macroscopically. Those derivations start from
two fundamental equations in fluid dynamics (e.g., Landau & Lifshitz (1959)), i.e. the equation of
continuity:

∂ρ̃

∂t
+∇ · (ρ̃ν̃) = 0, (2.1)

and Euler’s equation (Newton’s second law):

∂ν̃

∂t
+ (ν̃ · ∇)ν̃ = −1

ρ̃
∇p̃, (2.2)
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where ρ̃ stands for density, t stands for time, ν̃ is the distribution of particle velocity, ∇ represents a
gradient∇· represents the divergence of a given physical quantity, and p̃ is pressure. Fields, quantities
and components here and below may depend on time t and position r , e.g. ν̃(r, t) = ν̃(x, y, z, t) in
three-dimensional Cartesian coordinates.

A sound wave is introduced as an oscillatory motion with small amplitude in a compressible
fluid, and this oscillation is considered approximately as an adiabatic process. Thus the equation of
state relating pressure and density and a condition for an isentropic process are added:

p̃ = p̃(ρ̃, S̃), (2.3)(
∂

∂t
+ ν̃ · ∇

)
S̃ = 0, (2.4)

where S̃ stands for entropy. Considering an isentropic or adiabatic process means that the diffusion
of components in a fluid and the thermal conductivity are neglected (Brekhovskikh & Godin 1998).

By multiplying both sides of equation 2.3 by the material derivative (d/dt = ∂/∂t+ν0 ·∇) and
expanding it with total derivative, and substituting equation 2.4, a relationship between density and
pressure may be obtained: (

∂

∂t
+ ν̃ · ∇

)
p̃ = c̃2

(
∂

∂t
+ ν̃ · ∇

)
ρ̃, (2.5)

where c̃2 = ∂p̃(ρ̃, S̃)/∂ρ̃ is the definition of the squared sound velocity, which includes the fluc-
tuation part caused by wave propagation, while the squared adiabatic sound speed is defined as
c2

0 = ∂p(ρ0, S0)/∂ρ0.

In the above equations, source terms and also acceleration due to gravity are ignored for now.
Thus each component in equations 2.1 to 2.5 may be split in two parts as ρ̃ = ρ0 + ρ, ν̃ = ν0 + ν,
p̃ = p0 + p, S̃ = S0 + s, c̃ = c0 + c. ρ0, ν0, p0, S0, c0 are the values in the absence of the wave and
ρ, ν, p, s, c are fluctuations caused by the sound wave. By substituting these split components into
2.1, 2.2, 2.3 and 2.5, one gets governing equations for a fluid state including the vibration of a sound
wave:

dρ0

dt
+ ρ0∇ · ν0 +

dρ

dt
+∇ · (ρ0ν) + ρ∇ · ν0 = 0, (2.6)

dν0
dt

+
1

ρ0

∇p0 +
dν

dt
+ (ν · ∇)ν0

∇p
ρ0

− ρ∇p0

ρ2
0

= 0, (2.7)

dS0

dt
+
ds

dt
+ (ν · ∇)S0 = 0, (2.8)

p0

dt
+
dp

dt
+ (ν · ∇)p0 = c2

0

(
dρ0

dt
+
dρ

dt
+ (ν · ∇)ρ0

)
+ 2c0c

dρ0

dt
. (2.9)

where d/dt = ∂/∂t+ν0 · ∇ is a material derivative. All second-order terms (e.g. (ν · ∇)ρ etc.) were
neglected by regarding them as small in this process called linearization, and the derived equations
are thus the linearized wave equation.

These four equations may again be divided into fluid mechanics equations for the ambient flow
(by separating zero-order terms):

dρ0

dt
+ ρ0∇ · ν0 = 0, (2.10)
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dν0
dt

+
1

ρ0

∇p0 = 0, (2.11)

dS0

dt
= 0, (2.12)

dp0

dt
= c2

0

dρ0

dt
(2.13)

and linear equations for the wave-induced perturbation:

dρ

dt
+∇ · (ρ0ν) + ρ∇ · ν0 = 0, (2.14)

dν

dt
+ (ν · ∇)ν0 +

∇p
ρ0

− ρ∇p0

ρ2
0

= 0, (2.15)

ds

dt
+ (ν · ∇)S0 = 0, (2.16)

dp

dt
+ (ν · ∇)p0 = c2

0

(
dρ

dt
+ ν · ∇ρ0

)
+ 2c0c

dρ0

dt
(2.17)

These four equations 2.14, 2.15, 2.16 and 2.17 are the general linearized equations for acoustic
wave propagation, excluding terms for a source and acceleration due to gravity, i.e. every component
may change in time and space as well.

If the sound speed is defined as c̃2 = c2
0 + c2 in equation 2.5, equation 2.17 becomes

dp

dt
+ (ν · ∇)p0 = c2

0

dρ

dt
+ (c2

0 + c2)(ν · ∇)ρ0 (2.18)

instead. The former formulation may be found for instance in Godin (2011) and the latter in Brekhovskikh
& Godin (1998).

In the case of a static medium, the term for the ambient flow ν0 is equal to zero, which makes
equations 2.14,2.15,2.17 or 2.18 become:

∂ρ

∂t
+∇ · (ρ0ν) = 0, (2.19)

∂ν

∂t
+

1

ρ0

∇p = 0, (2.20)

∂p

∂t
= c2

0

∂ρ

∂t
, (2.21)

where ambient pressure is assumed to verify ∇p0 = 0 (i.e. du0/dt from 2.11). Also, from ν0 = 0,
2.10 and 2.13, dρ0/dt, dp0/dt = 0 are enforced automatically. In this assumption the type of ambient
flows is limited, but it can still be time-dependent i.e. unsteady, and also spatially heterogeneous.

By substituting 2.19 into 2.21 in order to cancel ∂ρ/∂t, then differentiating it partially in time
and substituting 2.20 to eliminate ∂ν/∂t, the wave equation for pressure is derived as:

∂

∂t

(
1

ρ0c2
0

∂p

∂t

)
−∇ ·

(
1

ρ0

∇p
)

= 0. (2.22)
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In this equation, ν0 = 0 and ∇p0 = 0 are assumed. This formulation is thus usable for wave
propagation in a heterogeneous, non-steady-state medium at rest (Brekhovskikh & Godin 1998).

By adding some assumptions to 2.22, i.e. by making the assumptions ν0 = 0, ∇p0 = 0,
∇ρ0 = 0 and ∂ρ0/∂t = ∂c0/∂t = 0, one obtains the simpler form:

∇2p− 1

c2
0

∂2p

∂t2
= 0. (2.23)

This equation is valid for a homogeneous, steady-state medium. In the same way, the wave equation
for density perturbation may be derived as well.

One can also derive the wave equation for particle velocity by taking the divergence of equa-
tion 2.19 and the time derivative of 2.20, and then combining them using 2.21 to get the wave equation
for particle velocity as:

1

ρ0

∇(c2
0∇ · (ρ0ν))− ∂2ν

∂t2
= 0. (2.24)

By using the relation between particle velocity ν and particle displacement u, i.e. ν = ∂u/∂t, the
wave equation for particle displacement is derived in the same way:

1

ρ0

∇(c2
0∇ · (ρ0u))− ∂2u

∂t2
= 0. (2.25)

This transform is possible because one has already assumed time-independent density and sound
velocity here.

By assuming that density and sound speed is spatially constant, equation 2.25 may be rewritten
with the same form as with pressure equation 2.23:

∇2u− 1

c2
0

∂2u

∂t2
= 0. (2.26)

Velocity and displacement forms are more rarely used because they are vectorial rather than
scalar and also because they involve spatial derivatives of density and sound velocity.

Next, the wave equation for a displacement potential can also derived. The displacement
scalar potential χ is defined by:

u = ∇χ (2.27)

Using the displacement potential, one may derive a simple equation without having to assume that
sound velocity is spatially constant, but having to make such an assumption for density. After inserting
2.27 into 2.25 the equation below is obtained:

1

ρ0

∇
(
ρ0c

2
0∇2χ− ∂2χ

∂t2

)
= 0. (2.28)

To satisfy this equation,

∇2χ− 1

c2
0

∂2χ

∂t2
= 0 (2.29)
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is sufficient.

Another way to define a scalar potential is to resort to a potential of "density times displace-
ment":

ρ0u = ∇χ. (2.30)

By substituting 2.30 to 2.19, 2.20 and 2.21, the wave equation for the "density times displacement"
potential is derived as:

χ̈− c2
0∇ · ∇χ = 0, (2.31)

or, using the acoustic bulk modulus λ = ρ0c
2
0,

1

λ
χ̈ =

1

ρ
∇ · ∇χ. (2.32)

This formulation is used in SPECFEM (Cristini & Komatitsch 2012) because of its advantages in
implementation, which automatically suppresses numerical artefacts that are known for appearing in
the displacement formulation (Hamdi et al. 1978).

2.1.2 Acoustic wave propagation equation in a moving medium

Equations 2.14, 2.15, 2.16, 2.17 or 2.18 already include the description of wave propagation in a
heterogeneous moving medium. These equations, however, may be transformed into simpler forms
by applying restrictions for physically-realizable fluid flows. In Godin (2011), a closed-form equation
for acoustic pressure is derived. First, some assumptions regarding the type of ambient flow are made:

dν0
dt

= 0, (2.33)

d

dt
(∇νj) = 0, j = 1, 2, 3, (2.34)

∇ · ν0 = 0. (2.35)

From relations between these three conditions and equation 2.10, 2.11, 2.13, dρ0/dt = 0, dp0/dt =
0,dc0/dt = 0 and ∇p0 = 0 are implied. The general linearized wave equations 2.14,2.15 and 2.17
may then be simplified as:

dρ

dt
+ ρ0∇ · ν + (ν · ∇)ρ0 = 0, (2.36)

dν

dt
+ (ν · ∇)ν0 +

∇p
ρ0

= 0, (2.37)

dp

dt
= c2

0

(
dρ

dt
+ (ν · ∇)ρ0

)
. (2.38)

From 2.36 and 2.38, dρ/dt may be eliminated and one obtains

1

ρ0c2
0

dp

dt
+∇ · ν = 0. (2.39)
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By applying the divergence operator to equation 2.37 and d/dt to 2.39, one gets

d

dt

(
1

ρ0c2
0

dp

dt

)
−∇ · ∇p

ρ0

= 2
∂ν0k

∂xi

∂νi
∂xk

(2.40)

Here j, k are indices following the Einstein notation convention of implicit sum over repeated indices.
These indices come from the divergence of the second term in the left-hand side of 2.37, i.e. ∇ · ((ν ·
∇)ν0) and also from ∇ · (dν

dt
) − d

dt
(∇ · ν). Also, considering the difference between ∇(dν

dt
) and

d
dt

(∇ν), equation 2.35 and 2.37 become

d

dt

∂νi
∂xk

=
∂

∂xk

dνi
dt
− ∂νi
∂xj

∂ν0j

∂xk
= − ∂

∂xk

(
1

ρ0

∂p

∂xi

)
+ νj

∂2ν0j

∂xj∂xk
+

νj
∂xk

∂ν0i

∂xj
− ∂νi
∂xj

∂ν0j

∂xk
, (2.41)

and using 2.34 we get

d

dt

(
∂ν0k

∂xi

∂νi
∂xk

)
= −∂ν0k

∂xi

∂

∂xk

(
1

ρ

∂p

∂xi

)
. (2.42)

After applying d/dt to equation 2.40 and then combining it with 2.42, the acoustic wave equation
for pressure in a heterogeneous moving medium is derived,

d

dt

[
d

dt

(
1

ρ0c2
0

dp

dt
−∇ · ∇p

ρ0

)]
+ 2

∂ν0
∂xi
· ∇
(

1

ρ

∂p

∂xi

)
= 0. (2.43)

Let us note that this equation includes a third-order time derivative, which may be difficult to handle
in classical numerical time-marching schemes.

2.1.3 Elastic wave propagation equation

From Newton’s second law, the total body force and surface force and the kinematic state of a volume
V and its surface S satisfy the condition

d

dt

∫
V

ρνdV =

∫
S

n · T dS +

∫
V

ρfdV, (2.44)

where ρ is density, ν is particle velocity, T is the stress tensor, f is a body force and n is an out-
ward unit normal vector. Here d/dt is again a material derivative. By applying Gauss’ theorem (i.e.
d
dt

∫
V
ρνdV =

∫
V
ρdν
dt
dV ) this equation becomes,∫

V

[
∇ · T + ρf − ρdν

dt

]
dV = 0. (2.45)

This integral is valid everywhere in an arbitrary volume:

∇ · T + ρf − ρdν
dt

= 0. (2.46)

This equation is Cauchy’s equation of motion i.e. Euler’s equation.

Applying the small deformation approximation in the material derivation of particle velocity
leads to

du

dt
=
∂u

∂t
+ (ν · ∇)u ∼=

∂u

∂t
and

dν

dt
=
∂ν

∂t
+ (ν · ∇)ν ∼=

∂2u

∂t2
. (2.47)
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Then 2.46 may be expressed as

∇ · T + ρf = ρ
∂2u

∂t2
= ρü. (2.48)

The strain tensor is εij = 1
2
(ui,j + uj,i), with the notation ui,j = ∂i/∂xj . In the elastic solid, the

relation between stress and strain, i.e. Hooke’s law, can be expressed as

τij = Cijklεkl, (2.49)

where τij are the components of the stress tensor, εkl are the components of the strain tensor, and Cijkl
are the components of the fourth-order elastic stiffness tensor.

For isotropic materials, Hooke’s law has the simpler expression

τij = λδijεkk + 2µεij = λδijuk,k + µ(ui,j + uj,i), (2.50)

where λ and µ are the two Lamé parameters, and δij is the Kronecker delta symbol, which is equal to
1 when i = j and to zero otherwise.

2.2 A few classical numerical methods to simulate wave propa-
gation

There exists several classical ways to numerically model wave propagation in complex media. These
methods are divided broadly into two parts: ray-based methods, and full wave methods. Each has
its own pros and cons, and thus an appropriate modeling method should be chosen depending on the
purpose of a given calculation, and also on the numerical cost that one is willing to pay. Usually,
ray-based methods are used in situations in which the computation speed and cost of computational
resources are important. Full wave methods, including FDTD, time-domain or frequency-domain
FEM, and SEM, are used when problems require high accuracy, and/or when cost is a less critical
issue, or can be afforded.

2.2.1 Ray-based methods

Ray-based models have been used for many years in optics, electromagnetics, seismology and acous-
tics. Ray theory was first developed in optics, which initially considered only the deflection from
Snell’s law, but nowadays ray methods are increasingly varied and also sophisticated. In the scientific
community, nowadays the use of ray methods is not the usual choice because its high-frequency (in
fact, infinite frequency) approximation leads to a degradation of the accuracy (Jensen et al. 2011).
However, these methods are still sometimes chosen because of their great advantages in terms of cal-
culation speed and low computational resources. In recent application studies for sodium-cooled fast
reactors, as presented in Chapter 2, Massacret et al. (2014) used a ray method for the analysis of inho-
mogeneity effects on sound propagation taking into account temperature gradients and flow velocities.
Lü et al. (2012) developed a faster and more efficient ray-tracing method for inhomogeneous media.
In this method, an acoustic field is initially calculated for a homogeneous medium, and then the effect
of the heterogeneity of the medium is calculated for only specific spatial positions instead of calcu-
lating it for the fluctuating medium in the whole simulated region. Lü et al. (2016) made a detailed
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comparison study between multiple ray-tracing methods in terms of accuracy of reflection/scattering
phenomena for a wedge model, i.e. a reflective object that has an edge with a shallow angle. The
commercial software "CIVA" for sound propagation analysis also uses such a technique, in a better
and more modern approach based on so-called "fat rays" or "pencils". It therefore performs ray trac-
ing in inhomogeneous and anisotropic elastic media based on such a pencil technique (Gengembre &
Lhémery 2000). The studies that apply ray-based method are presented in Chapter 2.

2.2.2 Finite Differences in the Time Domain (FDTD) methods

Finite Differences in the Time Domain (FDTD) methods were initially introduced by Yee (1966) as a
numerical simulation method for electromagnetic fields, with work by Chorin (1968) on this technique
for the Navier-Stokes equations, also at the end of the 1960s. This method was then applied for
acoustics, for example ocean acoustics and seismology (Madariaga 1976; Virieux & Madariaga 1982;
Virieux 1984, 1986; Saenger et al. 2000; Michéa & Komatitsch 2010). In a finite-difference scheme,
the spatial domain is discretized as grid points, which are usually evenly-spaced, and all physical
properties are defined only at these fixed grid points (or also in the middle between these grid points,
in the case of so-called spatially-staggered schemes). This restriction on the placement of physical
values, as well as the use of symmetric differentiation operators, which would require fictitious grid
points located beyond the boundary, causes difficulties for accurate expressions of material boundaries
and of boundary conditions, especially if the shape has complex geometry. There are several studies
on FDTD methods for media that include curved boundaries (e.g. Jurgens et al. (1992); Moczo
et al. (1997); Kristek & Moczo (2003); Tarrass et al. (2011)) which use e.g. an interpolation method
based on the distance between a discretized point and a (potentially curved) boundary, but they are
only partially satisfactory in terms of accuracy and also make FDTD techniques more complex, thus
partially losing one of their main advantages, which is their simplicity.

The general derivation of finite difference (FD) schemes starts from expanding a sufficiently-
smooth function spatially by performing a Taylor expansion:

f(x+ h) = f(x) + h
∂f(x)

∂x
+

1

2
h2∂

2f(x)

∂2x
+ · · · , (2.51)

f(x− h) = f(x)− h∂f(x)

∂x
+

1

2
h2∂

2f(x)

∂2x
− · · · , (2.52)

where, in a 1D example, x is the coordinate of a point at which the partial derivative of f(x) is
approximated, and h is the spatial grid-cell size. By subtracting 2.52 from 2.51 FD schemes can
compute partial derivatives. Depending on the order (in terms of powers of h) of the terms which
cancel out and of the terms that remain as residuals, variable types of FD schemes have been proposed.
Nowadays, in many cases a staggered grid is used to improve the order of convergence, i.e. h = ∆x/2
where ∆x is the grid spacing, and some unknowns are located half way between grid points. The first-
order derivative is approximated as:

∂f(x)

∂x
≈ dxf(x)

2h
. (2.53)

dxf(x) is the Finite Difference (FD) operator.

Below is an example of the simplest case of a second-order FD operator, of second-order accu-
racy:

dxf(x) = f(x+ h)− f(x− h). (2.54)
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The fourth-order accurate FD operator is:

dxf(x) = c1[f(x+ h)− f(x− h)] + c2[f(x+ 3h)− f(x− 3h)], (2.55)

with c1 = 9/8, c2 = −1/24 (Levander 1988). In the wave equation for a static acoustic medium

1

ρ0c2
0

∂2p

∂t2
= ∇ · ( 1

ρ0

∇p), (2.56)

where ρ0 and c0 are ambient values of the propagation medium and p is the fluctuation of pressure,
the FD operator can be applied twice to the first-order spatial derivative in one time step to calculate
the values of the right-hand side of 2.56. One can then for instance use a Newmark scheme for
temporal discretization (Hughes 1987) to calculate the pressure values at the next time step. These
are classical FDTD schemes developed until the end of the 1980s. Based on these classical methods,
the development of FDTD techniques has continued in the community over the years in order to
improve the accuracy and stability of the methods, in particular by going to higher-order operators in
terms of Taylor expansion (e.g. in 2.51 and 2.52).

In our study, we applied two classical FD schemes, i.e. classical second-order and fourth-order,
and two more modern methods called Non-standard FDTD (JafarGandomi & Takenaka 2009) and
Fourth-order optimized FD (Bilbao & Hamilton 2013). In these latter modern FD schemes, the nodes
(or grid points) used to calculate a FD operator for one direction are not limited only to the line of
points going in that direction, but rather spreading in two dimensions or three dimensions, depending
on the spatial dimension of the problem. The distribution of these nodes is called a "stencil", and each
FD scheme has its shape of stencil. Below we recall the main ideas in these two modern schemes.

Non-standard FDTD

The main idea of the Non-standard FDTD scheme is to optimize the scheme for a sine wave
with fixed frequency by introducing parameters to be optimized. In Non-standard FDTD, the FD
operator is defined as:

∂f(x)

∂x
≈ dxf(x)

S(∆x)
, (2.57)

where S(∆x) is the so-called correction function. Second- and fourth-order correction functions are
derived respectively by replacing f(x) with a plane wave solution eikx (k being the wave number),

S2nd(∆x) =
2

k
sin(

k∆x

2
), (2.58)

S4th(∆x) =
2

k
sin(c1

k∆x

2
+ c2

3k∆x

2
). (2.59)

A correction function is also defined for the time step ∆t in the same manner:

St,2nd(∆t) =
2

ω
sin

(
ω∆t

2

)
, (2.60)

St,4th(∆t) =
2

ω
sin

(
c1
ω∆t

2
+ c2

3ω∆t

2

)
. (2.61)
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In fourth-order Non-standard FDTD, two FD operators are defined for each spatial dimension.
In the 2D case,

d
(1)
x,∆xf(x, z) = f

(
x+

∆x

2
, z

)
− f

(
x− ∆x

2
, z

)
, (2.62)

d
(2)
x,∆xf(x, z) =

1

2

[
f

(
x+

∆x

2
, z + ∆z

)
− f

(
x− ∆x

2
, z + ∆z

)
+f

(
x+

∆x

2
, z −∆z

)
− f

(
x− ∆x

2
, z −∆z

)]
(2.63)

JafarGandomi & Takenaka (2009) introduce a broader stencil that uses the additional two FD opera-
tors below:

d
(1)
x,3∆xf(x, z) = f

(
x+

3∆x

2
, z

)
− f

(
x− 3∆x

2
, z

)
, (2.64)

d
(2)
x,3∆xf(x, z) =

1

2

[
f

(
x+

3∆x

2
, z + 3∆z

)
− f

(
x− 3∆x

2
, z + 3∆z

)
+f

(
x+

3∆x

2
, z − 3∆z

)
− f

(
x− 3∆x

2
, z − 3∆z

)]
(2.65)

FD operators for the z direction are straightforwardly obtained by replacing x with z. Finally, the
parameters to be optimized are introduced in the definition of the fourth-order FD Laplacian:

D
(0)
4th =

d
(1)
x d

(0)
x

[S4th∆x]2
+

d
(1)
z d

(0)
z

[S4th∆z]2
, (2.66)

where

d(i)
x = c1d

(i)
x,∆x + c2d

(i)
x,3∆x (i = 0, 1), (2.67)

d
(0)
x,∆x = q1d

(1)
x,∆x + (1− q1)d

(2)
x,∆x, (2.68)

and for broader stencil

d
(0)
x,3∆x = q2d

(1)
x,3∆x + (1− q2)d

(2)
x,3∆x, (2.69)

where q1 and q2 are the parameters to be optimized. Again, these FD operators for the z direction can
be obtained by replacing x with z in each formulation. q1, q2 are obtained by minimizing the equation

dk2 =

∫ π/2

0

∣∣∣∣∣D(0)
4thf(x, z)

f(x, z)
+ |k0|2

∣∣∣∣∣ dθ, (2.70)

where the wave vector k0 = (k0sinθ, k0cosθ) and f(x, y) = eik0·r (r = (x, z)) is substituted when
this optimization problem is solved. Applying this operator to the wave equation (right-hand side of
2.56) leads to the approximated version

1

ρ0c2
0

d2
tp

S2
t (∆t)

=

[
d

(1)
x

S4th(∆x)x
,

d
(1)
z

S4th(∆z)

]
· 1

ρ0

[
d

(0)
x

S4th(∆z)
,

d
(0)
z

S4th(∆z)

]T
p, (2.71)
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where []T denotes the transpose of a vector. Values calculated by the first application of FD operators,
i.e. the right-hand side of the center dot in 2.71, are stored at all the middle nodes of the staggered
grid, and then, when the FD operators are applied a second time, i.e. for the left-hand side of the
center dot, they allow for the calculation of the second-order time-derivative at all the grid points.

Fourth-order optimized FDTD

In this method, the FD approximation is applied directly to the Laplacian operator, i.e. to
second-order spatial derivatives, rather than applying FD operators for first-order spatial derivatives
twice. This leads to a significant reduction of the calculation cost, of about a factor of two. However,
this means that the medium is assumed to be locally homogeneous, or with very smooth and small
local variations, to make it possible to neglect the gradient of the physical parameters and convert the
operator to a Laplacian. In this case, the following wave equation is used:

1

ρ0c2
0

∂2p

∂t2
=

1

ρ0

∆p (2.72)

where ∆ is the Laplacian. The term 1/ρ0 is moved out of the gradient because the air is considered
homogeneous. This means that this equation and this scheme models the propagation medium without
any change of temperature nor wave speed, or extremely smooth variations. This can be valid in the
case of aeroacoustics, however using such an approximation for a sodium reactor is more problematic.
From 2.51 and 2.52, the second-order partial derivative of a function in 1D becomes

∂2f(x)

∂x2
=
f(x− h)− 2f(x) + f(x+ h)

h2
+ residuals, (2.73)

where h is the size of a grid cell. When the FD operator is applied to the Laplacian, the half grid
step is no longer necessary because the approximation of the second-order derivative does not involve
staggered grid points.

Figure 2.1 Visual representation of νi in each partial stencil Ωi (Bilbao & Hamilton 2013).

The FD operator, which cancels the residuals in 2.73, is then applied by introducing the two-
dimensional 25-point stencil and the coefficients to be optimized:

D∆,α,γf(r) =
5∑
j=1

αj
κj
h2

|Ωj |∑
i=1

(f(r + vih)− 2f(r) + f(r − vih)) , (2.74)

where the position vector is (x, z), and the parameters α ∈ R5 are optimized based on the condition

5∑
j=1

αj = 1 (2.75)
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corresponding to partial stencils divided into 5 parts from the whole 25-point stencil Ω ⊂ R2, Ω =∑5
i=1 Ωi. Vector elements (for instance in 2.74) included in each partial stencil may be expressed

with 2D Cartesian basis vectors ex, ey,

Ω1 = [ex, ez] ,

Ω2 = [ex ± ez] ,
Ω3 = 2Ω1,

Ω4 = [2ex ± ez, ex ± 2ez] ,

Ω5 = 2Ω2 (2.76)

and

κj =
2

|Ωj|||v||2
, (2.77)

where |Ωj| is the index of the vector and ||v||2 is the second-order norm (Euclidean norm) of any
vi ∈ Ωj .

2.1 shows the visual representation of the partial stencils. One finally uses Υ = [Ω1,Ω2,Ω3,Ω4,Ω5].
The optimized parameters α are obtained by minimizing the relative phase velocity for the wave vec-
tor. More details may be found in Walstijn & Kowalczyk (2008) and Bilbao & Hamilton (2013). 2.2
shows the drawing of stencils of each of the FDTD schemes that we consider. Only the stencils for
the x direction are shown, except for the optimized FDTD scheme, which is 2D by design and thus
cannot be split into independent 1D components.

Figure 2.2 Stencils for each of the FD schemes that we consider. The function value at the central node is
calculated from the values at points represented by the circular symbols. Only the stencils for the x direction are
shown, except for the optimized FDTD scheme, which is 2D by design and thus cannot be split into independent
1D components.

Compact schemes

The main idea of compact FD schemes is to consider the calculation of FD-approximated spatial
derivatives in 1D obtained by solving a 2D linear system, and then obtain the spatial derivatives of
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not only one point but also its adjacent point at the same time. Here is the general derivation taken
from Hixon (2000) for the 1D case:

[B] [D] =
1

∆x
[C][f ], (2.78)

where D is a 1D matrix that includes spatial derivatives of function f , and B is a 2D matrix of
coefficients. C is also a 2D matrix of coefficients. The expansion of 2.78 at point i at eighth order is
then

γ(Di+2 +Di−2) + β(Di+1 +Di−1) + (1− γ − β)Di (2.79)

=
1

∆x
[ϕ(fi+2 + fi−2) + η(fi+1 + fi−1)] . (2.80)

When gamma and beta are both zero, this becomes the equation for an explicit scheme. The spatial
derivatives are then obtained:

[D] = [B]−1 1

∆x
[C][f ]. (2.81)

In Hixon (2000), D is split in two parts in order to change theB matrix from tridiagonal to bidiagonal
for fourth and sixth-order schemes. This scheme was initially developed for aeroacoustics but has
also been successfully applied to linear wave propagation phenomena (Rona et al. 2017).

2.2.3 Time domain Finite-Element Method and Spectral-Element Method

In order to distinguish from the case of static problems (e.g. a small deformation problem of solid
mechanics), finite element methods when applied to dynamic problems are sometimes referred to as
Finite-Element Time-Domain methods (FETD or TDFE). The main difference between FETDs and
the Spectral-Element Method (SEM) will be recalled below; it is mostly the fact that Gauss-Lobatto-
Legendre points will be used, while Gauss points are used in classical FETDs. In other words, the
SEM uses higher-order basis functions and a modified formulation that leads to a perfectly diagonal
mass matrix, thus trying to combine the geometrical flexibility of classical finite-element methods
with the high accuracy of pseudospectral methods. Spectral methods are a class of discretization
for differential equations, whose theory was for instance detailed by Gottlieb & Orszag (1977), and
then in the 1980s spectral methods began to be applied for problems involving complex domains or
media. The SEM itself was introduced for computational fluid dynamics by Patera (1984), and later
became very successful and widely used to model the propagation of seismic wave in seismology
(Komatitsch & Tromp 1999; Fichtner 2010; Peter et al. 2011) because the SEM can handle complex
shapes of model boundaries in the simulated domain and also may accurately compute surface waves.
In addition, the SEM can easily model the anisotropy of a propagation medium (Komatitsch et al.
2000a) as well as fluid-solid boundaries (Komatitsch et al. 2000b).

Finite-element discretization

In a finite-element discretization, a domain Ω is divided into a set of non-overlapping elements
Ωe as

Ω ≈ Ω̂ =
∑
e

Ωe. (2.82)
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Similarly, the boundary of Ω is also divided as

Γ ≈ Γ̂ =
∑
e

Γe (2.83)

A differential equation is discretized based on the FEM or SEM schemes in the general form{
Lu− f = 0 in Ω,
u = uΓ on Γ,

(2.84)

where L is a positive definite differential operator (this assumption is required in order to fulfill the
Lax-Milgram theorem, which is necessary for converting these equations to a weak formulation), u is
some physical quantity (e.g. displacement etc.) and f is a given function. For example in the acoustic
wave case, from Equation 2.32 the corresponding equation is

1

ρ
∇2χ− 1

λ
χ̈ = 0. (2.85)

It is generally not possible to obtain the exact solutions of second-order partial differential equa-
tions such as Equations 2.84 or 2.85. The finite-element discretization scheme adopts the so-called
weighted residual formulation to solve these equations in an approximate way. The general form
obtained is then

(Lu− f, w)W = 0, (2.86)

where ∀u ∈ U (= L2(Ω)) is called a trial function and ∀w ∈ W (= L2(Ω)) a test function (here
L2 means the Lp space or Lebesgue space with p = 2). This inner product in Equation 2.86 is a
projection on the space of the test function W . This product may be written as∫

Ω

(Lu− f)wdΩ = 0. (2.87)

Based on this formulation, the condition 2.84 needs to be satisfied in a domain Ω instead of in every
defined point of Lu− f .

To obtain a discretized formulation, the trial function is discretized by choosing a suitable sub-
space Uh ⊂ U and its basis function ϕi (i = 0, 1, · · · , N),

uh =
N∑
i=0

ciϕi. (2.88)

Then, using this approximated solution, 2.84 is discretized as

Lhuh − f = rh, (2.89)

where rh in Ω is called the residual of the equation. The goal of the weight residual formulation is to
determine ci by finding a solution that makes (rh, w)W be equal to zero, i.e.,

(Lhuh − f, wh)W = 0, (2.90)
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with the reduced space of test function ∀wh ∈ W h ⊂ W , where the W h = {ψj}Ni=0 ; ψj (j =
0, 1, · · · , N) is the basis. By substituting them into 2.87, the discretized weighted residual formulation
becomes

N∑
i=0

ci

∫
Ω

(Lhϕi)ψjdΩ =

∫
Ω

fψjdΩ ; i, j = 0, 1, · · · , N. (2.91)

Thus, the problem comes down to finding ci that fulfill Equation 2.91.

Weak form

From the definition of the L2 inner product of Equations 2.86 and 2.87, the acoustic wave
equation 2.85 may be rewritten as ∫

Ω

1

ρ
(∇2χ)wdΩ =

∫
Ω

1

λ
χ̈wdΩ. (2.92)

Integrating by parts and using the Green first identity on this term, Equation 2.92 may be written as

−
∫

Ω

1

ρ
∇χ · ∇wdΩ +

∫
Γ

(∇χ · n)wdΓ =

∫
Ω

1

λ
χ̈wdΩ, (2.93)

where Γ is the boundary of the domain Ω and n is a unit outward normal vector along Γ.

This formulation is referred to as the weak form, while the differential form above is called the
strong form. From the Lax-Milgram theorem it is known that the equations in strong form and weak
form have the same unique solution.

Polynomial approximations

In the formulation of the finite-element discretization, there are two parts where a polynomial
approximation is applied. The first one is used to define the shape functions that map an element
in the real physical domain to the corresponding one in a reference domain. The second is for the
representation of a function (for instance describing the unknowns) inside the finite elements.

Mapping

Every integration term is calculated after mapping from a real domain to a reference domain.
This mapping (or affine transformation) is defined for each element depending on its shape in the real
physical domain. In finite-element schemes, a shape function Na is defined in a reference domain on
each node by using a nl-th order Lagrange polynomial

lnlα (ξ) =
∏

0≤j≤nl;j 6=α

ξ − ξj
ξα − ξj

, lnlα (ξβ) = δαβ, (2.94)

where a indicates the node index (i.e., the index of a given anchor point) out of a total of na geomet-
rical anchor nodes, ξ is a position vector in a reference domain, and δ denotes the Kronecker delta
symbol, which is equal to 1 when i = j and to 0 otherwise. The function at an arbitrary position ξ
may be calculated by interpolating from the values at the nodes by using

ξ =
na∑
a=1

Naξa. (2.95)
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For example in the 2D case, ξ = ξ(ξ, η) and ξa = ξ(ξa, ηa), the two parameters being in the ranges
(−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1). Generally for the definition of the geometrical shape functions in a
TDFEM or in a SEM, it is not necessary to use high-order polynomials to define the shape function.
A degree nl = 1 or 2 is classically used. When nl = 2, the corresponding number of control nodes
(anchor nodes) is then 9 in a 2D quadrangular element case and 27 in a 3D hexahedral element case.
It is 4 and 8, respectively, when nl = 1. In that case of nl = 1, l20(ξ) = (1− ξ)/2, l11(ξ) = (1 + ξ)/2,
and when nl = 2, l20(ξ) = ξ(ξ − 1)/2, l21(ξ) = 1 − ξ2 and l22(ξ) = ξ(ξ + 1)/2. The shape functions
are defined as a product of these polynomials, for example in two-dimensional and nl = 1 case:
N1(ξ, η) = l10(ξ)l10(η), N2(ξ, η) = l11(ξ)l10(η), N3(ξ, η) = l11(ξ)l11(η) and N4(ξ, η) = l10(ξ)l11(η).
The transformation from the real physical domain to the reference domain may then be expressed as∫
f(x)dx =

∫
f(ξ)Jdξ, where f is a function defined on the elements, x is the position vector in

the real domain, and J is the determinant of the Jacobian transformation, which is defined as

J =

∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ in 2D, J =

∣∣∣∣∂(x, y, z)

∂(ξ, η, ζ)

∣∣∣∣ in 3D, (2.96)

where x, y, z are the coordinates in the physical domain. The derivatives of ξ may be calculated by

∇ξ =
na∑
a=1

(∇Na)ξa. (2.97)

Polynomial representation of functions on elements

In differential pseudospectral methods as well as in variational spectral-element methods, the
functions are approximated based on orthogonal polynomials as in Equation 2.88. Different options
exist for the selection of the orthogonal polynomials to be used. Here we use the Gauss-Lobatto-
Legendre formulation that is traditionally used in SEM techniques, and in particular in the SPECFEM
software package that I will use in this thesis. The definition of the set of orthogonal polynomials
based on a polynomial Pn(x) of degree n is∫ 1

−1

Pn(x)Pm(x)dµ(x) =

∫ 1

−1

w(x)Pn(x)Pm(x)dx = 0, if m 6= n, (2.98)

where µ is the Lebesgue measure. When w(x) = 1, Pn(x) is referred to as a Legendre polynomial.
By using this Legendre polynomial, the Gaussian quadrature (or Gaussian integration)∫ 1

−1

f(x)dµ(x) =

∫ 1

−1

f(x)dx =
n∑
i=0

wif(xi) for all f ∈ P2n+1, (2.99)

is obtained for an arbitrary function f of degree 2n + 1, q, r of degree n and the relation f =
qn+1Pn+1(x) + r, which leads to∫ 1

−1

f(x)dx =

∫ 1

−1

q(x)Pn+1(x)dx+

∫ 1

−1

r(x)dx =
N∑
1

wif(xi). (2.100)

This type of Gaussian integral is well known in the context of finite elements, but roots corre-
sponding to the collocation points are not defined at the end points of the discretization interval
(i.e. x = −1 and 1 are not Gauss points), which may create problems for instance to enforce
boundary conditions. By generalizing this Gaussian integration, using the supplemental definition
q(x) = PN+1+aPN+bPN−1 (a and b are determined from the boundary condition q(−1) = q(1) = 0),
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one obtains the roots x0 = −1, xN = 1, which are referred to as Gauss-Lobatto-Legendre points (or,
more generally, Gauss-Lobatto integration for any choice of w(x)), which include both end points +1
and -1.

The roots (i.e. the Gauss-Lobatto-Legendre points) are obtained by numerically solving

(1− x2)P ′n(x) = 0, (2.101)

where P ′n denotes the derivative of the Legendre polynomial (i.e. d
dx
Pn(x)). The weights wi are

wi =
2

n(n+ 1)

1

Pn(xi)
, i = 0, 1, · · · , n. (2.102)

The Legendre polynomial Pn(x) may be derived from the singular Sturm-Liouville problem

d

dx
((1− x2)P ′n(x)) + n(n+ 1)Pn(x) = 0. (2.103)

When the Legendre polynomials is normalized as Pn(1) = 1,

Pn(x) =
1

2n

n/2∑
l=0

(−1)l

(
k
l

)(
2k − 2l
k

)
xk−2l. (2.104)

The recursion relation for these polynomials is

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x), P0(x) = 1, P1(x) = x. (2.105)

Detailed explanations about such Gauss-type polynomials can be found in Davis & Rabinowitz (1984)
and Canuto et al. (2011). In the spectral-element method, functions on a given spectral element are
approximated by the Lagrange polynomial defined by Equation 2.94 with Gauss-Lobatto-Legendre
(GLL) points (Equation 2.101).

A function value at ξ(ξ, η, ζ) in the reference domain may be expressed based on Lagrange
polynomials as

f(ξ) ≈
nl∑

α,β,γ=0

fαβγlα(ξ)lβ(η)lγ(ζ), (2.106)

where fαβγ is a function value at the nodes α, β, γ, and lα is the Lagrange polynomial of nl degrees.
The gradient of a function∇f = ∂f

∂x
x̂1 + ∂f

∂y
x̂2 + ∂f

∂z
x̂3 is then

∇f(ξ) =
3∑
i=1

x̂i∂if(ξ)

≈
3∑
i=1

x̂i

nl∑
α,β,γ=0

fαβγ[l′α(ξ)lβ(η)lγ(ζ)∂iξ + lα(ξ)l′β(η)lγ(ζ)∂iη + lα(ξ)lβ(η)l′γ(ζ)∂iζ],

(2.107)

where a prime denotes differentiation, and x̂i is a basis vector.
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The integration over a given element Ωe may be discretized as∫
Ωe

f(x)d3x =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ(ξ, η, ζ))J(ξ, η, ζ)dξdηdζ

≈
nl∑

α,β,γ

wαwβwγf
αβγJαβγ, (2.108)

where wα, α = 0, 1, · · · , nl is the weight at a given Gauss-Lobatto-Legendre point, and Jαβγ =
J(ξα, ηβ, ζγ).

By applying this polynomial approximation, the acoustic wave equation in the weak form 2.93
for each element Ωe and its surrounding boundary Γe is discretized as∫

Ωe

1

ρ
∇χ · ∇wdΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

ρ(ξ)
∇χ(ξ) · ∇w(ξ)J(ξ)d3ξ, (2.109)

where, w(ξ) is the test function. For the SEM, one chooses

w(ξ) ≈
nl∑

α,β,γ=0

wαβγlα(ξ)lβ(η)lγ(ζ). (2.110)

On the right-hand side of Equation 2.109,∇χ(ξ) and∇w(ξ) are discretized using Equation 2.107 as

∇χ(ξ) ≈
3∑
i=1

x̂i

nl∑
α,β,γ=0

χαβγ[l′α(ξ)lβ(η)lγ(ζ)∂iξ + lα(ξ)l′β(η)lγ(ζ)∂iη + lα(ξ)lβ(η)l′γ(ζ)∂iζ],

(2.111)

∇w(ξ) ≈
3∑
i=1

x̂i

nl∑
α,β,γ=0

wαβγ[l′α(ξ)lβ(η)lγ(ζ)∂iξ + lα(ξ)l′β(η)lγ(ζ)∂iη + lα(ξ)lβ(η)l′γ(ζ)∂iζ],

(2.112)

and then finally the first term of the acoustic wave equation in the weak form is discretized as∫
Ωe

1

ρ
∇χ · ∇wdΩ

≈
∑
α,β,γ

wαwβwγJ
αβγ 1

ραβγ

3∑
i,j=1

x̂i · x̂j∑
α?,β?,γ?

χα
?β?γ? [l′α?(ξα)lβ?(ηβ)lγ?(ζγ)∂iξ + lα?(ξα)l′β?(ηβ)lγ?(ζγ)∂iη + lα?(ξα)lβ?(ηβ)l′γ?(ζγ)∂iζ]∑

α�,β�,γ�

ωα
�β�γ� [l′α�(ξα)lβ�(ηβ)lγ�(ζγ)∂jξ + lα�(ξα)l′β�(ηβ)lγ�(ζγ)∂jη + lα�(ξα)lβ�(ηβ)l′γ�(ζγ)∂jζ]

=
∑
α,β,γ

wαwβwγJ
αβγ 1

ραβγ

3∑
i=1[∑

α?

χα
?βγl′α?(ξα)∂iξ +

∑
β?

χαβ
?γl′β?(ηβ)∂iη +

∑
γ?

χαβγ
?

l′γ?(ζγ)∂iζ

]
[∑

α?

ωα
?βγl′α?(ξα)∂iξ +

∑
β?

ωαβ
?γl′β?(ηβ)∂iη +

∑
γ?

ωαβγ
?

l′γ?(ζγ)∂iζ

]
. (2.113)
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The second term of the acoustic wave equation 2.93 for each element Γe may be discretized as (for
example, for the surface where n = (0, 0, 1))

∫
Γe

(∇χ · n)wdΓ ≈
∑
α,β

wαwβw
αβnlJαβ

3∑
i=1

x̂i · n∑
α?,β?

χα
?β?nl [l′α?(ξα)lβ?(ηβ)lnl(ζnl)∂iξ + lα?(ξα)l′β?(ηβ)lnl(ζnl)∂iη + lα?(ξα)lβ?(ηβ)l′nl(ζnl)∂iζ]

=
∑
α,β

wαwβw
αβnlJαβ

(∑
α?

χα
?βnll′α?(ξα)∂3ξ +

∑
β?

χαβ
?nll′β?(ηβ)∂3η + χαβnll′nl(ζnl)∂3ζ

)
.

(2.114)

Finally, the third term of 2.93 is discretized as

∫
Ωe

1

λ
χ̈wdΩ ≈

∑
α,β,γ

wαwβwγJ
αβγ 1

λαβγ
wαβγχ̈αβγ. (2.115)

Temporal discretization

The spatially-discretized formulation may be written in matrix form as

Mχ̈n + Cχ̇n +Kχn = Fn, (2.116)

where M is the mass matrix, C is the damping matrix (for instance to represent viscous damping),
K is the stiffness matrix, and F is force source vector at time step n. In a classical explicit SEM,
one of the possible choices for time discretization is the explicit, second-order, conditionally-stable
Newmark method, which links the acoustic potential values at adjacent time steps t = n and t = n+1
(Hughes 1987) by:

(
M +

1

2
∆tC

)
χ̈n+1 = Fn+1 − C

(
χ̇n +

∆t

2
χ̈n

)
−K

(
χn + ∆tχ̇n +

∆t2

2
χ̈n

)
(2.117)

The summations of potential terms in the brackets ˆ̇χn+1 = χ̇n+ ∆t
2
χ̈n and χ̂n+1 = χn+∆tχ̇n+ ∆t2

2
χ̈n

are called predictors.

Figure 2.3 shows a diagram of a classical implementation of the Newmark explicit time scheme,
which is the implementation that is used in the SPECFEM software package that I will use in this
thesis. At the beginning of each time step, the predictors are calculated from the values of the potential
at the previous time step. Mχ̈n+1 is then obtained based on the sum of the stiffness term and of the
force source term. Finally, the value of ˆ̇χn+1 is obtained by multiplying the inverse of the mass matrix
M−1, which is pre-computed and stored at the initialization step of the entire simulation. As in the
SEM the mass matrix is perfectly diagonal, by construction of the SEM technique, that mass matrix
is in fact a vector (i.e., only the diagonal of the mass matrix is non zero and thus needs to be stored),
and inverting it is straightforward, since the matrix is diagonal. Its inverse is thus also a simple vector.
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Figure 2.3 Newmark-beta explicit time stepping scheme, as detailed for instance in Hughes (1987).

2.3 Supercomputers, High-Performance Computing (HPC), and
the SPECFEM software package

2.3.1 Supercomputers and High-Performance Computing (HPC)

Imaging what is inaccessible to direct observation, i.e. wave propagation and tomography / imaging
in complex media, is a classical issue that encompasses many scientific and engineering domains,
with a wide range of scientific as well as societal applications: non-destructive testing, acoustic prob-
ing, medical imaging, study of earthquake-prone regions and related seismic hazard, seismic imaging
for oil and gas exploration, CO2 storage and sequestration, geothermic energy... The key idea in
these different imaging problems is to make use of the interactions of acoustic waves with the hetero-
geneities of the medium that they travel in to detect and characterize these heterogeneities. In order to
address these different challenges, a necessary tool is high-performance computing (HPC) in order to
be able to successfully achieve these calculations for real applications. Indeed, simulation has nowa-
days become the so-called third pillar of science, together with theory and experimentation, being
critical for advancing our understanding of complex natural systems such as the oceans, the Earth,
the atmosphere, and even the human body. Numerical modeling of acoustic wave propagation has
a long history dating from the 1970s, but until a decade ago was reserved to computer experts with
expensive dedicated equipment; it is now easily accessible to both academic and industrial laborato-
ries. The success of the Partnership for Advanced Computing in Europe (PRACE) of the European
Union has shown this very clearly, and the Horizon2020 program puts even more emphasis on that.
Quoting the President of the European Union Jean-Claude Juncker, "mega data and high-performance
computing favor economic growth as well as innovation and benefit all economic sectors as well as
society as a whole, for science, research and sharing of knowledge". High-performance computing
and big data are now converging, and the next big challenge we as a society are facing can be seen as
High Performance Data Analytics (HPDA).

The first supercomputers appeared in the 1960s. What the word supercomputer stands for varies
over time, because the most powerful computers in the world at one point in time tend to be matched,
and then surpassed, by other, more recent machines with sometimes different technology over the
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Table 2.1 The different standard names used for the speed of current and future supercomputers, illustrating
their capacity (computational speed) in terms of the total number of floating-point operations they can compute
in one second. Past names, in increasing order of speed, were: megaflop (106), gigaflop (109), teraflop (1012).

Name Number of floating-point Date of that technology
operations per second

petaflop 1015 current, since 2009
exaflop 1018 around 2020
zettaflop 1021 around 2030?
yottaflop 1024 around 2040??

years. The first supercomputers were simple single-processor computers. In the 1970s, most super-
computers adopted a vector processor, which decoded an instruction once and applied it to a series of
operands. It was only towards the end of the 1980s that the technique of massively parallel systems
was adopted, with the use of thousands of processors in the same supercomputer.

Currently, supercomputers are most often designed as unique models by traditional computer
builders. Supercomputers are used for all tasks that require very high computing power, such as
weather forecast, climate studies, modeling of chemical molecules, physical simulations (aerody-
namic simulations, material resistance calculations, simulation of nuclear weapon explosion, study
of nuclear fusion, etc.), cryptanalysis, or simulations in finance and insurance. Civil and military
research institutions are among the largest users of supercomputers. In France, these machines are
found in national computational centers, such as the Grand Équipement National de Calcul Intensif
(GENCI), the Institut du développement et des ressources en informatique scientifique (IDRIS), the
Centre informatique national de l’enseignement supérieur (CINES), the Très Grand Centre de Calcul
(TGCC), the Commissariat à l’énergie atomique et aux énergies alternatives (CEA), and also some
large companies like Total, EDF or Météo-France.

Nowadays, these computers are capable of processing and communicating very large volumes
of data in a very short time. Their design must ensure that this data can be read, transferred and
stored quickly. If that were not the case, the computing power of the processors would be under-used
(bottleneck). The memory architecture of the supercomputers is thus studied and carefully optimized
to continuously supply the data to each processor in order to make the most of its computing power.

Figure 2.4 shows that so-called petaflops supercomputers, i.e., parallel computers capable of
calculating 1015 floating-point operations per second (see Table 2.1), which are the current state-
of-the-art technology1, have become standard and easily available around 2018 (blue line), and that
around 2020 the first exascale/exaflops machine (i.e., 1000 times faster than petaflops) will appear
somewhere in the world (orange line). Even more importantly, it shows that it takes about nine
years, from 2008 to 2017, for petaflop supercomputing to go from the largest machine in the world to
something relatively easily available; thus the same will happen for exascale computing, which should
therefore be easily available around 2029 or so. We are thus confident that the calculation techniques
that we will develop in Chapter 4 of this thesis based on (currently) expensive 3D calculations on a
large parallel computer will become standard in the future, because the machines to use them will
become widely available.

1The speed of the current fastest supercomputer (as of February 2018) being about 93 petaflops, but supercomputers
around 1 petaflops being more widely available.
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As mentioned by Gropp & Sterling (2015) in their review article on the evolution of HPC, the future
of high-performance computing is now being expressed and analyzed both from the point of view of
how it will be implemented from a technological point of view and, more importantly, of the ways in
which it will impact large fields in science and technology, commerce, industry, security and society.
The trend of having increasingly more powerful supercomputers each year should continue, because
in the past years, intra-node parallelism on high-performance computers has continuously been in-
creasing, either because of the increasing number of processor cores available on CPUs, or because
of accelerating computing units such as GPU graphics cards (GPU computing) or Intel accelerators
(Intel Xeon Phi, Intel Many Integrated Core Architecture "Knights Landing" i.e. MIC KNL). This
trend is particularly reflected in the latest TOP500 list that ranks the 500 fastest supercomputers in the
world, in which the first two supercomputers are heterogeneous systems equipped with accelerators.
In order to fully benefit from this hardware evolution, software packages and computing applications
often require substantial modifications. Exascale machines will start to appear around 2020; with
such machines, 3D calculations for wave propagation in complex nuclear reactor core models, as
introduced in this thesis, will become something routinely used.

In this thesis, we will mostly use the French national OCCIGEN / GENCI (Grand Équipement
National de Calcul Intensif) machine located at CINES (Centre Informatique National de l’Enseignement
Supérieur) in Montpellier, France. It is a parallel supercomputer built by the BULL Atos company
that comprises 4212 Intel processors of the Haswell and Broadwell types with a total of 85824 pro-
cessor cores, and a total of 283 terabytes of memory, with a peak processing speed of 3.5 petaflop per
second. As of February 2018 it is the 54th largest supercomputer in the world.

Figure 2.4 Speed of the fastest supercomputer in the world (in orange) and its projected evolution over the
years, as well as the speed of the 500th, i.e. of a machine typical of moderate-size supercomputers easily
available to researchers at regional or laboratory sites (in blue). The extrapolation is reliable, as shown by the
very good fit over the first twenty years. In log scale, adapted from www.top500.org.
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2.3.2 The SPECFEM software package: A very efficient numerical code for
acoustic or seismic wave propagation simulation

SPECFEM is an open-source software package that can model acoustic or seismic wave propaga-
tion in complex media, using the spectral-element method. The first versions of this codes were
developed by Dimitri Komatitsch and Jean-Pierre Vilotte at Institut de Physique du Globe (IPGP)
in Paris, France from 1995 to 1997 and then by Dimitri Komatitsch and Jeroen Tromp at Harvard
University and Caltech, USA for seismic wave propagation simulation. It has more recently been
applied to ultrasonic non-destructive testing and to ocean acoustics. The code is being developed
on Github (http://github.com/geodynamics), which is a development platform for open-
source projects. It is also available on the Computational Infrastructure for Geodynamics (CIG) plat-
form, which is widely used in Earth Sciences. 2D, 2.5D (axisymmetric, Bottero et al. (2016)) and
3D versions of the package are available. The software package simulates acoustic or seismic wave
propagation at the local or regional scale and performs full waveform imaging (FWI) or adjoint to-
mography based upon the spectral-element method (SEM).

The SEM is a continuous Galerkin technique (Tromp et al. 2008; Peter et al. 2011), which can
easily be made discontinuous (Bernardi et al. 1994; Kopriva et al. 2002; Chaljub et al. 2003; Legay
et al. 2005; Kopriva 2006); it is then close to a particular case of the discontinuous Galerkin technique
(Reed & Hill 1973; Lesaint & Raviart 1974; Hu et al. 1999; Rivière & Wheeler 2003; Dumbser
& Käser 2006), with optimized efficiency because of its tensorized basis functions (Wilcox et al.
2010; Acosta Minolia & Kopriva 2011). In particular, it can accurately handle very distorted mesh
elements (Oliveira & Seriani 2011). Effects due to lateral variations in compressional-wave speed,
shear-wave speed, density, and topography of object interfaces can all be included. The package can
accommodate full 21-parameter anisotropy (see Chen & Tromp (2007)) as well as lateral variations
in attenuation (Savage et al. 2010). Adjoint capabilities and finite-frequency kernel simulations for
imaging of unknown complex media are also included (Tromp et al. 2008; Fichtner et al. 2009; Virieux
& Operto 2009; Monteiller et al. 2015). In fluids, when gravity is turned off, SPECFEM3D uses
the classical linearized Euler equation. The goal in my thesis is to adapt and use this package to
simulate ultrasonic wave propagation in a sodium reactor core, for instance using approximations of
such a complex propagation medium coming from thermal-hydraulic simulations of such a core as
performed by CEA using its TrioCFD software package (Figure 2.5).

It has very good accuracy and convergence properties (Cohen 2002; De Basabe & Sen 2007; Se-
riani & Oliveira 2008; Ainsworth & Wajid 2009; Melvin et al. 2012). The spectral element approach
admits spectral rates of convergence and allows exploiting hp-convergence schemes. It is also very
well suited to parallel implementation on very large supercomputers (Komatitsch et al. 2003; Tsuboi
et al. 2003; Peter et al. 2011) as well as on clusters of GPU accelerating graphics cards (Komatitsch
et al. 2009, 2010; Komatitsch 2011). Tensor products inside each element can be optimized to reach
very high efficiency (Deville et al. 2002), and mesh point and element numbering can be optimized
to reduce processor cache misses and improve cache reuse (Komatitsch et al. 2008). The SEM can
also handle triangular (in 2D) or tetrahedral (in 3D) elements (Wingate & Boyd 1996; Komatitsch
et al. 2001; Mercerat et al. 2006) as well as mixed meshes, although with increased cost and reduced
accuracy in these elements, as in the discontinuous Galerkin method.

Figure 2.6 shows a typical workflow when simulating wave propagation in a complex model
based on the SPECFEM software package. The process is divided into four main steps: mesh creation,
partitioning of the mesh created for parallel processing when running on a parallel computer, simula-

http://github.com/geodynamics
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Figure 2.5 The SPECFEM open-source software package that will be used in this thesis was initially devel-
oped in seismology, to simulate the propagation of seismic waves propagating in the Earth following large
earthquakes (left, from the users manual of SPECFEM); the goal in this thesis is to adapt it and use it to simu-
late ultrasonic wave propagation in a sodium reactor core, for instance using approximations of such a complex
propagation medium coming from thermal-hydraulic simulations of such a core as performed by CEA using its
TrioCFD software package (right, from the CEA home page).

tion database generation, and final resolution and calculation of wave propagation (the so-called solver
step). For explicit time marching, the user can freely choose between different schemes: second-order
Newmark scheme (Newmark 1959), fourth-order four-stage classical Runge-Kutta (Butcher 2016),
or fourth-order six-stage LDDRK (Low-Dissipation and low-Dispersion Runge-Kutta) (Berland et al.
2006). Available mesh types (in terms of geometry of the mesh elements) are 4-node and 9-node
quadrangular elements in the 2D case and 8-node and 27-node hexahedral elements in the 3D case.
For mesh creation, a simple (relatively basic) internal mesh creation tool is provided, but any external
mesh creation tool that can produce hexahedral meshes can also be used, for instance CUBIT/Trelis
(developed by Sandia National Laboratories, USA) or Gmsh (Geuzaine & Remacle 2009). In the
case of infinite or semi-infinite media, the code implements Convolution or Auxiliary Differential
Equation Perfectly Matched absorbing Layers (C-PML or ADE-PML) (Komatitsch & Martin 2007;
Martin et al. 2008, 2010).

The SEM was originally developed in computational fluid dynamics (Patera 1984; Maday & Pa-
tera 1989) and has been successfully adapted to address problems in seismic wave propagation. Early
seismic wave propagation applications of the SEM, utilizing Legendre basis functions and a perfectly
diagonal mass matrix, include Cohen et al. (1993), Komatitsch (1997), Faccioli et al. (1997), Ko-
matitsch & Vilotte (1998) and Komatitsch & Tromp (1999), whereas applications involving Cheby-
shev basis functions and a non-diagonal mass matrix include Seriani & Priolo (1994), Priolo et al.
(1994) and Seriani et al. (1995). In the Legendre version that we use in SPECFEM the mass matrix
is purposely slightly inexact but diagonal (but can be made exact if needed, see Teukolsky (2015)),
while in the Chebyshev version it is exact but non diagonal. For a detailed introduction to the SEM
as applied to regional seismic wave propagation, one can refer to Komatitsch & Vilotte (1998); Ko-
matitsch & Tromp (1999); Chaljub et al. (2007); Tromp et al. (2008) and even more specifically to
Lee et al. (2009b,a). A detailed theoretical analysis of the dispersion and stability properties of the
SEM is available in Cohen (2002), De Basabe & Sen (2007), Seriani & Oliveira (2007) and Melvin
et al. (2012).

In a spectral-element method, some spurious modes, which have some similarities with classical
so-called "Hourglass modes" in finite-element techniques, although in the SEM they are not zero-
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Figure 2.6 Workflow of a typical wave propagation calculation when using the SPECFEM software package.
The process is divided into four main steps: mesh creation, partitioning of the mesh created for parallel process-
ing when running on a parallel computer, simulation database generation, and final resolution and calculation
of wave propagation (the so-called solver step). Taken from the users manual of SPECFEM.

energy modes, can appear in some (but not all) cases in the spectral element in which the source is
located. Fortunately, they do not propagate away from the source element. However, this means that
if you put a receiver in the same spectral element as a source, the recorded signals may in some cases
be wrong, typically exhibiting some spurious oscillations, which are often even non causal. If that is
the case, an easy option is to slightly change the mesh in the source region in order to get rid of these
Hourglass-like spurious modes, as explained in Duczek et al. (2014), in which this phenomenon is
described in details, and in which practical solutions to avoid it are suggested.

All SPECFEM software is written in Fortran2003 with full portability in mind, and conforms
strictly to the Fortran2003 standard. It uses no obsolete or obsolescent features of Fortran. The
package implements parallel programming based upon the Message Passing Interface (MPI) (Gropp
et al. 1994; Pacheco 1997).

The code is particularly well suited to very large parallel supercomputers. SPECFEM3D won
the prestigious Gordon Bell international computer science award for best performance at the Super-
Computing 2003 conference in Phoenix, Arizona (USA) (Komatitsch et al. 2003). It was a finalist
again in 2008 for a run at 0.16 petaflops (sustained) on 149,784 processors of the ‘Jaguar’ Cray XT5
system at Oak Ridge National Laboratories (USA) (Carrington et al. 2008). It also won the BULL
Joseph Fourier supercomputing award in 2010. It reached the sustained one petaflop performance
level for the first time in February 2013 on the Blue Waters Cray supercomputer at the National Center
for Supercomputing Applications (NCSA), located at the University of Illinois at Urbana-Champaign
(USA).





Chapter 3

2D simulations for a simplified upper-core
model
Section 3.2 of this chapter has been published as an article in an international journal, under the reference: Masaru Nagaso,
Joseph Moysan, Saïd Benjeddou, Nicolas Massacret, Marie-Aude Ploix, Dimitri Komatitsch and Christian Lhuillier,
Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent
temperature difference, Ultrasonics, vol. 68, p. 61-70, doi: 10.1016/j.ultras.2016.02.011 (2016).

In this chapter, we will first perform a comparative study between several Finite Difference in
the Time Domain (FDTD) numerical schemes and a Spectral-Element Method (SEM) to simulate
ultrasonic wave propagation in the core of a sodium reactor. From these results, we will show that
the SEM scheme has high computational stability and efficiency for our modeling purposes. After
the experimental study of the accuracy properties of these two numerical simulation techniques, we
will perform a 2D simulation study with a Gaussian random field to introduce heterogeneity in the
propagation medium. We will analyze the effects of stochastically-generated temperature fluctuation
fields on 2D acoustic wave propagation, and the feasibility and accuracy of ultrasonic thermometry at
the upper-core region of a sodium-cooled fast reactor.

3.1 Validation of the SPECFEM numerical code for our prob-
lem, and comparison with other numerical schemes

In order to gain good knowledge about features of numerical modeling methods for ultrasonic wave
propagation in a sodium reactor core, let us compare the acoustic fields calculated based on several
types of full waveform modeling methods. We use the configuration of an experiment performed at
CEA Cadarache and called UPSILON in order to see the effect of temperature heterogeneity on the
accuracy and stability of the numerical simulations. For these purpose, we used the numerical code
SPECFEM for the SEM calculations and SEISMIC_CPML for the FDTD calculations.

3.1.1 SEISMIC_CPML

SEISMIC_CPML is a software package that was developed mostly by Dimitri Komatitsch and Roland
Martin at CNRS. As SPECFEM, SEISMIC_CPML is an open-source code distributed by the Compu-
tational Infrastructure for Geodynamics (CIG, http://geodynamics.org/cig/software/

http://geodynamics.org/cig/software/seismic_cpml
http://geodynamics.org/cig/software/seismic_cpml
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seismic_cpml). It can solve two/three-dimensional isotropic/anisotropic acoustic/elastic and vis-
coelastic/poroelastic wave equation based on finite differences in the time domain. Convolutional
perfectly matched absorbing layers (Komatitsch & Martin 2007) are also implemented to mimic
infinite or semi-infinite propagation media. More details about SEISMIC_CPML can be found at
http://komatitsch.free.fr/README_seismic_cpml.html For our comparisons, we
improved this code by increasing the order of spatial discretization, i.e., we increased the number of
grid points that are used for the calculations of derivatives at a given grid point. We also modified
the 2D version of the code to support parallel computing based on MPI (the 3D version of the code
already had such parallel support based on MPI, but the 2D pressure version did not). Thanks to
these two improvements, we managed to simulate wave propagation for high-frequency (2.25 MHz)
acoustic emission, with low computational error and high stability and with significantly shorter com-
putational time.

3.1.2 Simulation for the UPSILON experiment

UPSILON is an experiment that was designed to observe how an acoustic wave is affected by thermal
heterogeneity in silicon oil. This experiment has initially performed by Nicolas Massacret in his
Ph.D. study at CEA/LIET (Massacret 2014). The heterogeneity of the temperature field in silicon oil
is generated by heating wires, and changes in an acoustic wave front may be observed from recorded
acoustic signals using a Schlieren optical system. Table 3.1 shows the names and specifications of
equipments used in this experiment. We therefore decided to model the UPSILON configuration in
our acoustic wave propagation numerical simulations. The model geometry is shown in Figure 3.1.
We computed wave propagation for two states of the propagation medium, one with a homogeneous
medium and the other with the same geometrical configuration but with a heterogeneous medium.
The sound velocity field is calculated based on

Cp = 1056.60− 2.72TCelcius . (3.1)

Figure 3.1 Configuration of the models for our simulations. The UPSILON experiment is modeled in two
dimensions. The green line is the source line that emits a quasi-plane wave. The elliptical part in orange is the
heated area.

http://geodynamics.org/cig/software/seismic_cpml
http://geodynamics.org/cig/software/seismic_cpml
http://komatitsch.free.fr/README_seismic_cpml.html
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Table 3.1 Names and specifications of the different equipments used in the UPSILON experiment by Massacret
(2014).

Name Manufacturer Product Others
Silicon oil Carl Roth Silicon Oil M 10,000 cSt density at 20◦:

970 - 980 kg/m3

Acoustic
probe
(emitter)

Olympus Panametrics Standard Contact Video
Scan,
V104-RB

Mono-element,
frequency 2.25 MHz,
surface diameter
3.175 cm

needle
hydrophone
(receiver)

No data No data bandwidth 1-10 MHz

The shape of the heated area and medium temperature is defined by Equation 3.2 in all hetero-
geneous simulations. The density of silicon oil was calculated based on the equation of sound speed
for a fluid c =

√
K/ρ where c is sound speed, K is the bulk modulus, and ρ is density. K was

calculated from the known density value of silicon oil from its specification sheet: 970 kg m−3. An
acoustic emission surface is modeled as a line source (represented by the green line in Figure 3.1)
composed of many individual point sources placed on a straight line. A Ricker time wavelet (i.e.,
the second derivative of a Gaussian) is emitted from all these source points, and a Hamming window
function is applied to the amplitude of each emission depending on the distance of that source to the
central point of the line source in order to emit a quasi-plane wave:

T (x, z) = 20.00 + 8.00e−5.00∗104(x−0.03) 1

1 + e400(z−0.08)

1

1 + e400(−z+0.08)
. (3.2)

Figure 3.2 shows the experimental configuration of UPSILON. The formulation for sound ve-
locity 3.1 is an empirical formula that was experimentally established by Massacret (2014). The
ultrasonic emitter at 2.25 MHz has a diameter of 1 inch (i.e. 2.54 cm), and the profile of the acous-
tic field is measured using a quarter-inch plane receiver at 2.25 MHz to obtain a fine measurement.
Thermocouples are used to measure temperature in the area of interest, and a polynomial variation
is used to describe the distribution of temperature. This polynomial expression was then simplified
using the symmetric formula of Equation 3.2 in order to make simulations easier to perform. This
experiment was efficient to illustrate the phenomena that were looked for: deviation of ultrasounds
by temperature gradients, and wave speed variations. To our knowledge it was the first demonstration
that ultrasonic measurement techniques are accurate enough to detect thermal-hydraulic effects on
wave propagation. The originality of this experiment was to create a localized and stable temperature
gradient thanks to the thermal silicon oil properties.

3.1.3 Results of the comparisons between the different numerical schemes

We compared results obtained with the SEM technique with those obtained based on the standard
FDTD, Optimized-FDTD, and NSFDTD schemes presented in the previous chapter. First, we per-
formed convergence tests for both homogeneous and heterogeneous cases of all schemes by changing
the number of grid points per wavelength in the case of FDTD, or the number of spectral elements per
wavelength in the case of the SEM. In the FDTD tests, 10, 20, 25, 30, 35, 40 points per wavelength
were tested.
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Figure 3.2 Experimental configuration of UPSILON, taken from Massacret (2014).

Excellent convergence for this very sensitive (and thus very difficult) test was obtained with 40
points per wavelength for Optimized-FDTD and NSFDTD, but second/fourth order FDTD could not
achieve convergence even with 40 nodes per wavelength in the homogeneous case. For the SEM, we
tested 1, 2, 4, 6 elements per wavelength and achieved excellent convergence with 4 or 6 elements per
wavelength. We compared all schemes based on two criteria: maximum amplitude values recorded at
each receiver point on the receiver line indicated as the orange line in Figure 3.1, and the single signal
recorded at the center of the receiver line.

Figure 3.3 of upper row shows the results of comparison between all schemes for the homoge-
neous simulation, and Figure 3.3 of lower row shows the results for the heterogeneous case. In the
homogeneous results, SEM (SPECFEM2D), optimized-FDTD and NSFDTD converge to extremely
similar results, while the signals of second/fourth-order FDTD still exhibit dispersion of the signal
peaks i.e. they have not yet fully converged. Because this configuration of acoustic emission involves
very high frequency waves, it requires very high resolution for the spatial discretization, and this is
why second/fourth-order spatial orders based on classical schemes are not sufficient for this numerical
experiment, considering also the very large total number of time steps involved, i.e. the cumulative
numerical dispersion involved.

On the other hand, it is clear that the SEM reaches convergence with a smaller number of grid
points than the other schemes, which is directly linked to the reduction of the required amount of com-
putational resources (in the SEM, spectral elements with fourth-order polynomial basis functions have
4 computation nodes for each element, thus 6 elements per wavelength is approximately equivalent to
24 grid points per wavelength). This means that the required number of grid points for convergence
of the SEM calculation is 24 (nodes for SEM)/ 40 (nodes for FDTD) * 2 (the number of dimension)
* 100 (%) = 36 % of the required number of nodes required for FDTD in the two-dimensional case;
for the three-dimensional case, only 24/40 * 3 (dimension) * 100(%) = 21.6 % of the nodes required
for 3D FDTD are necessary for convergence of the 3D SEM calculation.
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In the heterogeneous results in Figure 3.3 at the lower row, the curve of second-order FDTD is not
shown because its calculation did not converge. Again, the fourth-order FDTD results exhibit numeri-
cal errors appearing for instance as dispersion of the peaks. Each temporal signal has two peaks while
the homogeneous case has only one peak. This is because the direct wave which passed through the
center of the heated medium was significantly slowed down. Instead, the wave that traveled through
colder regions of the medium arrives at the central receiver faster by going around the hot spot, and
the slowed direct wave arrives later, which explains why the second peak has a larger value than the
first. The curves obtained based on all the other schemes (on the right-hand side of the figure) are all
very close, however we still find some differences between the curves of the max amplitude (on the
left-hand side of the figure), which comes from the fact that the maximum amplitude curve is very
sensitive to the change of shape of the wave front.

We calculated the correlation coefficients between SEM and other method for homogeneous and
heterogeneous case. To do so, we used the temporal signals recorded at the center of the receiver line.
The results are shown in Table 3.2. It is clear that for both the homogeneous and heterogeneous cases
that NSFDTD and optimized-FDTD have higher correlation coefficients than the two more classical
but less accurate methods.

Figure 3.3 Comparison between SEM, 2nd/4th-order FDTD, Optimized-FDTD, NSFDTD in the homogeneous
case (upper row) and in the heterogeneous case (lower row).

In future work, Massacret’s Upsilon experiment should be improved by using a 2D matrix trans-
ducer in order to be able to perform a 3D comparison between experiments and modeling. This
discussion of such future work will be continued in the Conclusions and perspective chapter (chap-
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Table 3.2 Correlation coefficients between SPECFEM and different FDTD schemes. The temporal signal of
each scheme at the center of the receiver line is used for this comparison.

Computation scheme Homogeneous Heterogeneous

Second-order FDTD 4.221 43× 10−1 Did not converge
Fourth-order FDTD 4.221 05× 10−1 4.576 60× 10−1

NSFDTD 9.538 19× 10−1 9.546 14× 10−1

Optimized-FDTD 9.542 40× 10−1 9.522 61× 10−1

ter 5). We can conclude that the SEM has advantages not only because of its capacity to model curved
geometrical surfaces thanks to the finite-element discretization scheme involved, but also thanks to
its capacity to achieve convergence with smaller computational resources. Let us mention that in
the calculations based on SPECFEM, we used a very accurate Low-dissipation and low-dispersion
Runge-Kutta (LDDRK) time scheme (Berland et al. 2006) for time marching, while for FDTDs we
used a standard Newmark scheme (Hughes 1987). This difference thus favors the SEM results when
a large number of time steps is involved.

3.2 Ultrasonic thermometry simulation in a random fluctuating
medium: Evidence of the acoustic signature of a one-percent
temperature difference

Let us now study the development potential of ultrasonic thermometry in a liquid fluctuating sodium
environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how
ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In
particular we study if small temperature variations in the sodium flow of e.g. about 1 % of the sodium
temperature, i.e., about 5◦C, can have a reliably-measurable acoustic signature. Since to our knowl-
edge no experimental setups are available for such a study, and considering the practical difficulties
of experimentation in sodium, we resort to a numerical technique for full wave propagation called the
spectral-element method, which is a highly accurate finite-element method owing to the high-degree
basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature
difference of one percent in the case of a static temperature gradient as well as in the presence of a
random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline
the potential of ultrasonic thermometry in such a context.

3.2.1 Positioning of the problem

Our work aims at studying potential improvements upon temperature sensors currently used for
sodium temperature measurements, such as thermocouples, by resorting to ultrasonic thermometry.
Ultrasonic thermometry can be implemented based on several approaches. A first one consists of
using an ultrasonic thermometer: by sending an ultrasonic pulse through a thin rod with acoustic dis-
continuities such as notches or sudden diameter changes, and measuring the time between the initial
pulse and the reflections of that pulse, the rod is segmented into a multi-point temperature sensor
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(Daw et al. 2002). For our study however, the starting point regarding thermometry for in-service
temperature measurement at the outlet of the core is a second approach described in a 1985 British
patent registered by A. McKnight et al. entitled "Remote temperature measurement" (McKnight et al.
1987). The main idea in that patent is to use an ultrasonic beam that impinges on the two diametri-
cally opposite edges of a subassembly separated by a known distance. Measuring the time interval
between the two echoes (and knowing the relation between celerity and temperature) then allows one
to deduce the mean temperature of the liquid sodium between these two points.

However, since several parameters can influence the time-of-flight measurement, several chal-
lenging issues need to be addressed in order for such a technique to be usable in practice. The liquid
sodium exiting the core of a nuclear reactor is a turbulent flow with thermal heterogeneities, and lo-
cal flow variations can thus influence wave propagation. The shape of the reflected echoes, which
depends on the fuel assembly geometry, can also be of importance and should be taken into account
in the signal processing method used. In some particular cases, the proportion of gas micro-bubbles
can also vary and modify the relation between celerity and temperature. Recent work has specifically
focused on these aspects of wave propagation in a turbulent medium (Massacret et al. 2014) as well
as evaluation of gas proportion in an SFR (Cavaro et al. 2011).

In this study our goal is to study the development potential of ultrasonic thermometry in liquid
sodium and thus to investigate if and how ultrasonic thermometry could be used to monitor the outlet
of a sodium reactor core. In particular we want to see if small temperature variations (of e.g. about
1 % of the sodium temperature, i.e., about 5◦C) in the sodium flow could have a reliably-measurable
acoustic signature. The gas proportion is considered as constant in our study and flow rate is also
neglected. Since to our knowledge no operating experimental setups would allow us to obtain a
precise description of the fluctuating medium, and considering the practical difficulties related to
experimentation in sodium, we will turn to highly-accurate numerical modeling based on a full wave
modeling technique.

One of the difficulties in order to get a good model is to define what a liquid-sodium fluctuating
medium can be. Its temperature and flow velocity field fluctuate by the interaction of a flow and the
core structure composed of various assemblies, and they also fluctuate due to the thermo-dynamical
equilibrium of the medium. To the best of our knowledge, no Computational Fluid Dynamics code
can accurately generate such media at reasonable cost at a scale compatible with the ultrasonic scale
that we want to target. We will thus turn to physical modeling to generate the fluctuating medium. In
general, physical characteristics of a heterogeneous liquid medium fluctuate spatially and temporally,
depending on its nature and on the environment. Such a heterogeneity is quite complex to model
in a deterministic way because of many uncontrolled factors and thus it is common to model them
based on a stochastic process. This issue has been addressed in the literature regarding modeling of
heterogeneous liquid sodium in the context of wave propagation simulation.

In order to verify the possibility of measuring a small temperature variation in such an envi-
ronment, which is the main goal of our study, it is necessary to consider the effect of temperature
fluctuations caused by turbulent flow. For this purpose, we regard the temperature field as a combina-
tion of a static temperature distribution, which is to be measured, and a fluctuation part. Considering
that fluctuating part, we resort to the Gaussian random field method, which is a random field generator
based on a spectral method introduced by Shinozuka & Jan (1972).

The section will be structured as follows: In subsection 3.2.2 we will describe the thermometry
concept at the outlet of the fuel assembly. In subsection 3.2.3 we will describe the configurations
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defined for our simulations and the definition of the temperature fields. We will then discuss the
results and show that our 2D numerical simulations underline the potential of ultrasonic thermometry
in subsection 3.2.4.

3.2.2 Thermometry at the outlet of nuclear fuel assemblies

Current setups for thermal instrumentation above a reactor core consist of hundreds of thermocouples
assembled in thermo-wells, one above each fuel assembly that needs to be monitored. However, as
indicated above, there is a need for developing more efficient instrumentation for the next generation
of nuclear reactors. One important issue to address is the ability to perform faster measurements, as
the expected response time of the complete temperature instrumentation in these future reactors is
0.1 s or even less instead of at best about 1 s with sheathed thermocouples. Another interest for the
ultrasonic method is that it is less sensitive to sodium jet bending than thermocouples. Additional
improvements could consist of reducing the number of electrical wires located above the reactor core,
which would open new design possibilities.

Acoustic thermometry based on ultrasonic transducers is a good candidate for such improved
monitoring, as such transducers are already under development for instance at French Atomic Com-
mission for various local measurements performed during maintenance operations. For in-service
monitoring however, temperature and sodium flow characteristics are not the same as during main-
tenance operations (temperature is significantly higher, and sodium is flowing instead of idle), but
transducers are designed for very high-temperature (up to 600 ◦C or even more) and should thus still
be suitable for that usage.

Acoustic thermometry is based on the dependence of ultrasonic wave celerity on temperature
in a given medium. Sobolev (2011) has established the following empirical relationship between
temperature and wave celerity in sodium:

cp [m s−1] = 2723− 0.531 · T [kelvin]. (3.3)

where cp is the celerity of ultrasonic waves in meters per second and T is sodium temperature in
Kelvin degrees. Density is also temperature dependent (Sobolev 2011):

ρ [kg m−3] = 1014− 0.235 · T [kelvin]. (3.4)

The 1985 patent mentioned above considered the use of an ultrasonic beam as the basic tool for
monitoring. As the celerity of ultrasonic waves is about 2300 m/s in sodium at 550◦C and as the
distance between the monitored sub-assemblies and the transducer in future reactor designs should
typically vary between a few tens of centimeters and several meters, using ultrasounds should indeed
make measurement with a short response time possible because the time-of-flight will be in the range
of milliseconds. The actual response time of an ultrasonic measurement device would then mainly
be due to signal processing time in that device. Furthermore, with a single transducer operating at
grazing incidence it would then be possible to simultaneously measure the temperature of the sodium
flow at the outlet of several fuel sub-assemblies, allowing for the use of a smaller total number of
measurement devices in the reactor.

Our goal in this section is to investigate how to develop a method involving the propagation
of an ultrasonic beam towards two surfaces separated by known distance, which will both generate
echoes. As mentioned in the 1985 patent the edges of the fuel subassembly heads are good candidates
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for generating the echoes, i.e., for being these two surfaces. The model to design for such a study
must take into account the fact that in-service thermal-hydraulic conditions above the reactor core
may disturb the propagation of ultrasonic waves between the ultrasonic transducer and the subassem-
bly heads in terms of time delay as well as deflection. There are indeed several sources of thermal
heterogeneities above the core: the temperature difference between sodium flowing out of two neigh-
boring sub-assemblies can reach values as high as 50◦C owing to the design of the core; Moreover, the
sodium that flows in the spaces located between the sub-assemblies as well as the sodium that flows
out of the spaces left clear for insertion of control rods or safety devices is cooler by several tens of
degrees than sodium flowing out of the sub-assemblies. Ultrasonic waves will therefore propagate in
a medium in which temperature is significantly heterogeneous.

In addition, the flow above the core is turbulent, with local flow speeds of about 3 m/s, and
speed gradients are about several meters per second per centimeter. The presence of such a turbulent
field has an impact on the propagation of ultrasonic waves. This phenomenon is used in acoustic
flow-meters to measure the flow speed (Liu et al. (2011) and Weber et al. (2004)). In the case of
acoustic thermometry this could lead to errors in the estimation of temperature if that effect is not
properly taken into account.

In spite of these difficulties, operating solutions have been developed in the past for instance in
the French Phenix reactor using the so-called "SONAR" device, not for thermometry but rather for
telemetry (Berton & Loyer 1996). In that device the transducer was designed to measure a specular
reflection from a small facet of about 3 cm2 machined on the fuel assembly head. Signal-to-noise
ratio was about + 23 dB in a nominal situation.

Since we want to investigate if diffraction echoes could be used for thermometry or telemetry
in a sodium reactor core, let us design a 2D ultrasonic propagation model suitable for such a medium
and with suitable instrumentation to simulate the propagation of ultrasonic waves. Since we are
going to resort to plane wave sources, 2D simulations are a good and significantly less expensive
approximation and it is not necessary to resort to 3D calculations. Performing such simulations will
enable us to quantify the disturbance caused by the thermal-hydraulic characteristics of sodium and
to determine if they could be problematic in the context of acoustic thermometry.

Figure 3.4 describes the 2D geometry that we consider. We model a transducer source (S) using
a line of acoustic point sources of width w. We define a setup with grazing incidence of about 7◦

because measurements performed in water in previous work gave good experimental results in such a
configuration (Tenchine 2010). The solid (stainless steel) tube representing the fuel assembly has an
inner diameter d of 100 mm. The thickness e of the tube is 13 mm. Echoes will arrive from edges E1
and E2, and possibly from edges E1’ and E2’ as well. We will measure time differences between the
main echoes E1 and E2.

3.2.3 Numerical simulations

Modeling of the propagation medium

We consider the framework of an effective medium to model the propagation medium. Density
and wave velocity of the background model are modified to incorporate the effects of a heterogeneous
medium due to the sodium flow, which only implies temperature gradients. As mentioned by Godin
(2002), three conditions have to be met to validate the first hypothesis, which is that of linear behavior,
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Figure 3.4 Ultrasonic thermometry configuration used in our study.

as well as the second hypothesis, which is that of plane (or quasi-plane) wave propagation. These
conditions are that:

• the deviation of the beam must remain weak,

• the gradient of the flow velocity relative to the Mach number must remain moderate,

• the typical size of the heterogeneities must be large compared to the acoustic wavelength.

These three conditions were verified and shown to apply in the cases under study in another study
based on a ray-tracing code (Massacret et al. 2014) and on the analysis of real thermal-hydraulic data
(Tenchine 2010). Characteristic sizes of flow heterogeneities, typically ranging between 0.1 cm and
10.0 cm, are also large compared to the wavelengths of the ultrasonic waves considered (Grewal &
Gluekler 1982).

As the measurement area is located just above the outlet of the fuel assembly, the flow is rela-
tively regular and with smooth variations only and high Reynolds number. In such a case ultrasonic
wave propagation is mainly affected by temperature distribution in the flow, and in our study we can
therefore neglect the effects of the speed of the flow. The assumption of an effective medium is thus
valid and the propagation medium can then simply be described by its density and the bulk modulus
of the fluid, without having to explicitly model the fluid flow.

The study of the PLAJEST experiment of mixing cold and hot sodium flows (Kimura et al.
2007), and its detailed numerical simulation at the French Atomic Commission using the TrioU code
(Brillant et al. 2004) leads us to choose a continuous parabolic variation of temperature inside the jet.
Regarding the possible presence of micro-bubbles, there are not enough data for future reactors to
currently be able to take this parameter into account. Doing so will require a complete study, as the
influence of the presence of such micro-bubbles will depend on bubble sizes as well as on transducer
frequency (Cavaro et al. 2011). The relation between ultrasonic velocity and temperature is given by
equation 3.3, and equation 3.4 gives the density of sodium as a function of temperature T in Kelvin.

In order to perform our spectral-element simulations, we first create a mesh of the structure
under study using the ’Gmsh’ mesh creation tool (Geuzaine & Remacle 2009). The mesh created is
entirely composed of quadrangles, as required by the spectral-element technique. Around the region
of interest we resort to an absorbing boundary layer called the Perfectly Matched Layer (PML, Martin
et al. (2008)) in order to efficiently absorb the outgoing wave field; we use three layers of spectral
elements on the outer edges of the mesh in order to implement it. The computational domain has a size
of 723 mm (width) by 156 mm (height) and contains 448,704 elements. We use a polynomial degree N
= 4 to define the basis functions in the spectral-element method, thus each spectral element contains (N
+ 1)2 = 25 grid points and the total number of unique grid points is 7,108,112. Considering the sound
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velocity in liquid sodium at 450◦C (2339 m/s) and a dominant frequency of the ultrasonic source of
1 MHz, the number of grid points per shortest wavelength in the medium is thus approximately 4.7.
We simulate a total physical time of 202.5 µs using a time discretization step of 7.5 × 10−9s, i.e., a
total of 27,000 time steps.

To speed up the calculations we resort to parallel computing on a cluster of computers (Peter
et al. 2011). Once the mesh is created we thus partition it according to the number of processor
cores to be used for the calculation. Each processor core then carries out the calculations in a sub-
domain, and the results are recombined at the end of each time step of the time-stepping algorithm.
We perform our calculations using 128 processor cores.

Geometry of the assemblies and source description

We select the location to use for the ultrasonic source (S) based on the position of point E1
and on distances a and b in Figure 3.4. Values of a and b equal to 100 mm and 12 mm lead to an
incidence angle of 7◦. To simulate the behavior of the transducer and create a quasi-plane wave of
finite extension we sum 1000 point sources using a Hamming apodization function over a total width
of about 67.6 mm. Each point source has a Ricker (i.e., the second derivative of a Gaussian) wavelet
time function with a dominant frequency of 1 MHz (Cristini & Komatitsch 2012). The height of
the upper part of the stainless steel tube is 50 mm, its thickness is 13 mm and its inner diameter is
100 mm. The ratio between the known propagation distance and the time-of-flight difference between
echoes E2 and E1 enables us to estimate the velocity of sound and then, based on equation 3.3, the
mean temperature of the sodium flow on the outer edge of the tube.

Temperature variations studied

As stated above the propagation medium is in a turbulent state and its temperature distribution
varies in a complicated fashion both in space and in time between, inside and above the assembly
edges. Buffet (1984), Fiorina (1998) and Lü et al. (2012) have studied wave propagation in a turbulent
liquid metal flow and, regarding sound velocity in such a medium, have decomposed the medium into
two parts: a heterogeneous static part, and a random fluctuation part caused by the turbulent flow. In
our study we will first perform simulations in the presence of a static temperature distribution only,
and then in a second step with temperature fluctuations in the whole propagation region, generated
based on a Gaussian random field.

Static temperature fields

As shown in Figure 3.5 we select four simple static temperature distributions in and at the outlet
of the tube (called "medium 2" in the following) as well as in the surrounding sodium (called "medium
1"). In the first temperature profile (T450) we consider a homogeneous medium with a constant
temperature of 450◦C in both medium 1 and medium 2. It will be our reference case. In the second
profile (TVAR) we consider a gradual evolution of temperature in medium 2, using a symmetric
parabolic profile varying from 450◦C to 500◦C between the edge and the axis of the tube. Medium
1 still has a constant temperature of 450◦C. In the third profile (TVAR+5) we use the same kind of
profile as in the second but with an increase of 5◦C, i.e., about 1 %, of the maximum temperature in
medium 2 only. The parabolic profile thus varies from 450◦C to 505◦C. In the fourth profile (T500)
we finally consider a simplified temperature model of 500◦C everywhere in the tube and at its outlet
(medium 2) and 450◦C everywhere in medium 1. In these four media the arrival time of the first
echo does not vary, since medium 1 is unchanged. We thus focus our analysis on the variations of the
second echo (wave reflection at point E2 in Figure 3.4).



74 Chapter 3 – 2D simulations for a simplified upper-core model

Figure 3.5 The four types of static temperature fields that we will use in our study: (a) T450, (b) TVAR,
(c) TVAR+5, (d) T500. They differ only between the two edges of the outlet (vertical dotted lines). Model
T450 has a constant temperature of 450◦C everywhere, TVAR has a parabolic variation from 450◦C to 500◦C
between the two assembly edges, TVAR+5 has a parabolic variation from 450◦C to 505◦C, and T500 has a
constant temperature of 500◦C between the two edges and of 450◦C outside.

Temperature fluctuation using a Gaussian random field

Gaussian random fields have been developed for digital simulation of multivariate, multidimen-
sional, or multivariate-multidimensional random processes. They are used for instance in numerical
analysis of nonlinear structures, numerical solution of stress wave propagation through a random
medium, and eigenvalue problems of structures that have random homogeneous properties. Here we
create Gaussian random fields for the fluctuation of the temperature field given by,

1

T (r)
=

1

T0

(1 + ε(r)), (3.5)

where T (r) is temperature at the spatial position r, T0 is given by each of the static temperature
profiles defined in Figure 3.5, and ε(r) is the fluctuation part calculated by the Gaussian random
field. Following work on wave propagation in turbulent media (e.g. Lü et al. (2012)) we define
the randomness of the temperature fluctuation as an isotropic homogeneous random field by a series
cosine functions, expressing ε(r) as:

ε(r) =
√

2
N∑
k=1

{Sε(ωk)∆ωk}1/2cos(ωk · r + φk), (3.6)

where k is the mode number and N is the total number of modes. ωk is the wave vector, its angle
from a coordinate axis of the wave vector of each mode is θk = cos−1 ωk

|ωk|
, and its modulus |ωk| = ωk

is defined by ωk = ωl + (k − 1)∆ωk, linearly distributing it in the range [ωl, ωu]. ∆ωk = ωu−ωl
N−1

is
the wave vector increment. For this process two random input values θk and φk are necessary: θk is
distributed uniformly and randomly in 0 ≤ θk < 2π. Hence its probability density function Pr from
0 to 2π is Pr[0 ≤ θk < 2π] = 1/2π. The other random variety φk is also uniformly distributed in
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0 ≤ θk ≤ π. Sε(ωk) is the spectral density function and is calculated based on the autocorrelation
function Cε(r) as:

Sε(ωk) =
1

2π

∫ ∞
−∞

Cε(r)e
−iωkrdr, (3.7)

where r is the magnitude of the position vector r (i.e. r = |r|). For a Gaussian random field, the
autocorrelation function is defined by a Gaussian distribution following the central limit theorem:

Cε(r) = σ2
εR(r) = σ2

ε e
−(r2/l2ε ), (3.8)

with Cε(r) the covariance, R(r) the autocorrelation function, σ2
ε the variance of the random value,

and lε the characteristic length of the random pattern. R is the distance between two different points
(r1, r2) in the region in which the random field is simulated, i.e., r = |r1 − r2|.

After applying a Fourier transform to equation 3.7 the spectral density function then writes:

Sε(ωk) =
σ2
ε

2π

∫ ∞
−∞

e−(r2/l2ε )e−iωkrdr =
σ2
ε lε

2
√
π
e−(ω2

kl
2
ε/4). (3.9)

We use typical values from the NAJECO experiment (Tenchine 2010) to choose the characteristic
length lε = 0.03 m. We set the standard deviation of the fluctuation to σε = 0.029 to be able to
generate a maximum difference of about 30 degrees (Figure 3.6), following a thermal-hydrodynamic
calculation result obtained at the French Atomic Commission (Tenchine 2010). The total number of
modesN and the range of the wave vector modulus [ωl, ωu] need to be chosen carefully: N needs to be
large enough to keep a sufficient data set because Equation 3.6 is asymptotically an exact expression
for the covariance function when N tends to infinity (Shinozuka & Jan 1972), and not doing so may
introduce numerical errors (Mantoglou & Wilson 1982). The range [ωl, ωu] needs to be wide enough
to express the entire curve of the spectral density function. After numerical tests and following a
discussion about the minimum requirements of these values in Lee et al. (2009b) we select N = 64,
ωu = 6/lε, and ωj = −ωu. (The range of the wave vector needs to be symmetric because the spectral
density function of the Gaussian process is symmetric).

Figure 3.6 Distribution of the 30 different temperature fluctuation fields. The magnitude of the fluctuation is
defined as the difference with the average temperature calculated from all fluctuation fields (450◦C).
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Figure 3.7 Examples of generated fluctuating temperature fields obtained when using the (a) T450, (b) TVAR,
(c) TVAR+5 and (d) T500 temperature profiles of Figure 3.5.

We generate 30 different patterns of the fluctuation field, and thus obtain 30 temperature fields
to be simulated by superimposing the fluctuation field with the static temperature field based on
Equation 3.5. Figure 3.6 shows the distribution of the magnitude, defined as the difference with the
average temperature (450◦C), of the temperature fluctuation for all 30 fluctuation patterns. Figure
3.7 shows examples of such generated temperature fields. In the generation of the fluctuation field
the origin point of r (i.e., the coordinate of point r1) in Equation 3.5 is set at the upper-left corner
of the nearest assembly edge. In Figure 3.7a the temperature scale is truncated to show the random
patterns more clearly. The temperature changes in the vertical shapes along the sodium jet are due
to the temperature profile (see Figure 3.5); they are right edges in the case of the rectangular profile
(Figure 3.7d) and more variable edges in the case of a parabolic distribution (Figure 3.7b and 3.7c).

We then carried out simulations of wave propagation in these models and calculated times of
flight in the 120 resulting patterns of the temperature field, constructed by overlaying the 30 Gaussian
random field patterns with each of the four types of static temperature profile, as we will describe in
the next section.

3.2.4 Results and discussion

Results with static temperature fields

In Figure 5 we show the pressure of the acoustic wave in the computational domain normalized
between -1 (blue) and +1 (red), with color intensity obeying a power law with exponent 0.3 in order to
significantly enhance small values for visualization purposes. Such a nonlinear color scale amplifies
the real amplitude of the minor echoes such as the second diffraction E1’ in order to observe them
more easily. All amplitudes below 1 % are discarded in order to avoid visually amplifying very small-
amplitude numerical noise. Figure 3.8 highlights several aspects of wave propagation near the upper
part of the fuel assembly. The waves diffracted from edges E1 and E1’ are both clearly observed.
The time t = 88.125 µs at which the figure is drawn allows us to observe the wave just before it
interacts with the second point E2. Since the incidence angle is very small, the lower part of the wave



Chapter 3 – 2D simulations for a simplified upper-core model 77

front goes through the thickness of the tube with a much greater velocity (about 5.8 mm µs−1 in steel
versus about 2.3 mm µs−1 in sodium) and is well seen as a small wave that propagates before the main
one. Figure 3.8 also shows a superimposition of waves: the main wave and the wave diffracted from
E1’. This illustrates the interest of such snapshots as well as movies of wave propagation in the time
domain to facilitate signal analysis and identification of wave fronts in such applications.

Figure 3.8 Snapshot of wave propagation at time t = 88.125 µs simulated using our spectral-element numerical
modeling technique; we display the pressure variation field (blue being negative and red positive).

Figure 3.9 shows the signals recorded at point S of Figure 3.4 for a time window that allows
us to observe the signal reflected off the second edge (point E2) for the four different temperature
configurations. These signals are recorded when the waves come back to the source, i.e. in the so-
called echo mode in non-destructive testing. As wave velocity decreases when sodium temperature
increases (Equation 3.3), the signal is delayed when temperature increases. The respective time delays
of the four signals are qualitatively in agreement with the expected behavior: the hotter medium 2 is,
the larger the delay for the time-of-flight from point E2 is as well. We observe a small time difference
when the parabolic temperature distribution is increased by 5◦, i.e., by about one percent. The small
accelerated wave observed in Figure 3.8 leads to a weaker signal that arrives before the main echo
around time t = 179 µs. This signal is 20 dB lower than the maximum signal because this part of
the beam underwent transmission through steel; in practice in a real experimental setup it could thus
be masked by signal noise. Both of these signals are due to the waves diffracted off point E2. As
the duration of the wave corresponds to about two periods, similar to a highly damped transducer, no
interferences occur between these two waves; this can also be seen in Figure 3.8, in which the waves
are clearly separated.

In order to perform a more quantitative analysis, in Table 3.3 we give the arrival times in µs
of the second echo measured at the signal maximum. Corresponding pressures have arbitrary units
because, since the wave equation is linear, the amplitudes of the signals do not significantly vary and
thus amplitude cannot be used to detect temperature variations in this configuration; we thus analyze
arrival times only in our study. The changes in the time-of-flight of the second echo at point E2
provide information on the ability and sensitivity of the method to detect small temperature variations
in the case of the absence of temperature fluctuation. Between Simulations 2 and 3 we find that the
increase of 5◦C of the maximum of the temperature profile leads to a shift of 68 ns. As the time of
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Table 3.3 Time-of-flight and amplitude of the echo coming back from point E2 for the four different tempera-
ture configurations in the case of a right-angle geometry.

Configuration Arrival time of
the second echo (µs) tE2

Maximum amplitude
(arbitrary units)

1. T450 182.346 1.242 84
2. TVAR 183.000 1.249 71
3. TVAR+5 183.068 1.251 12
4. T500 183.330 1.248 01

flight of echo E1 is always the same, this difference is also the difference between the times of flight
of the echoes on the two edges (tE2 − tE1). In a reactor such a time difference could be measured
using a 1 MHz signal, i.e., a short signal, but that would require good signal-to-noise ratio and signal
stability.

Figure 3.9 Comparison between the echoes reflected off point E2 in the four simulations performed for the
model with right-angle edges.

Results with temperature fluctuation

Effect of temperature fluctuation on time-of-flight

Let us now study the fluctuation in times of flight when temperature fluctuations in the medium
are taken into account and see if it is still possible to detect such short time differences. We simulate
wave propagation for 30 random temperature fields added to each of the four static fields, leading
to a total of 120 different propagation media, and obtain fluctuations of the time of flight for echo
E2 but also for echo E1. We thus consider that the fluctuating media introduce a random noise
around the true time of flight corresponding to a static situation. Figure 3.10 shows the resulting
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distribution of time of flight tE2 for the four static temperature cases. We observe an overlapping of
various times of flight. An averaging procedure would be necessary to reconstruct the true time of
flight as defined above. Table 3.4 summarizes time of flight measurements for both the E1 and E2
echoes without fluctuations (left column) and using averaged times of flight in the case of stochastic
fluctuations (right column). We then calculate the time difference between the two echoes (tE2− tE1),
as this variation of the time difference would be a signature of variation in the sodium jet. The 5◦C
difference between the two parabolic profiles TVAR and TVAR+5 creates a 68 ns difference between
the times of flight difference from edges E2 and E1. This time difference is equal to about 66 ns when
an average process is performed over 30 fluctuating temperature field.

Figure 3.10 Distributions of variation of times of flight resulting from temperature fluctuations for each of
the 120 temperatures profiles considered, i.e. the 30 random profiles superimposed to each of the four static
temperature profiles.

Detection of variations of statistic temperature by averaging

In Figure 3.11 we perform a more complete statistical analysis. If we calculate the standard
deviation of time-of-flight measurements due to the random pattern in the temperature fields we can
evaluate the probability of success to separate times of flight for a 1 % temperature difference, i.e.,
5◦C in our case.

In Table 3.4 we find that the variation in the time-of-flight difference ∆(tE2 − tE1) between
echoes E2 and E1 due to the 1 % temperature difference is 68 ns in the case of static temperature
fields; Considering classical Gaussian statistics, it is possible to statistically separate the two time-
of-flights differences ∆(tE2 − tE1) with a 68 % and 27 % chance of success if the standard deviation
of the time-of-flight measurements is lower than 34 ns (2σ). To improve the chance of success the
standard deviation should be lower than 17 ns (4σ) to separate times of flight with 95 % and 45 % of
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Table 3.4 Variations of time of flight between results for the cases without temperature fluctuations and aver-
aged results from 30 measurements in cases with fluctuations.

tE2 without fluctuation (µs) Averaged tE2 from 30
measurements (µs)

T450 182.346 182.354
TVAR 183.000 183.008
TVAR+5 183.068 183.074
T500 183.330 183.337

tE1 without fluctuation (µs) Averaged tE1 from 30
measurements (µs)

T450 86.250 86.266
TVAR 86.250 86.266
TVAR+5 86.250 86.266
T500 86.250 86.266

Time difference (tE2 − tE1)
without fluctuation (µs)

Time difference
(tE2 − tE1) averaged tE2 from
30 measurements (µs)

T450 96.098 96.088
TVAR 96.750 96.742
TVAR+5 96.818 96.808
T500 97.080 97.071

Variation of time difference
∆(tE2 − tE1) between TVAR
and TVAR+5 without
fluctuation (µs)

Variation of time difference
∆(tE2 − tE1) between TVAR
and TVAR+5 averaged from
30 measurements (µs)

(tE2 − tE1)TV AR 10.500 10.476
(tE2 − tE1)TV AR+5 10.568 10.542
∆(tE2 − tE1) =
(tE2 − tE1)TV AR+5

− (tE2 − tE1)TV AR

68 ns 66 ns
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success, and lower than 11 ns and 33 ns (6σ) to separate times of flight with 99 % and 73 % of success.
Figure 3.11 shows that these levels of confidence are reached when using respectively 15, 24 and 28
measurements.

Figure 3.11 Variation of the standard deviation of the mean time-of-flight with respect to the number of times-
of-flight used to calculate the mean value.

3.3 Conclusions of this chapter

In section 3.1, we demonstrated the accuracy and efficiency of the SEM for our application, i.e.
application to a heterogeneous medium (silicon oil) using a 2.25 MHz acoustic wave. The results
calculated with the SEM were compared with several FDTD methods, including a classic 2nd-order
FDTD, a 4th-order FDTD, and two types of more-recently developed methods, namely the optimized
FDTD and Non-Standard FDTD. Even if those recent FDTD methods showed good convergence
properties, the SEM exhibited higher numerical efficiency for the problems that we want to study.

In section 3.2, we presented a 2D numerical modeling study based on a spectral-element method
in the time domain to analyze variations of time of flight due to temperature changes in a fluid medium.
We have shown that our numerical approach can accurately model the principle of ultrasonic ther-
mometry above the core of a Sodium Fast Reactor. Based on our numerical approach we have illus-
trated the sensitivity of an ultrasonic thermometry method to a relatively weak temperature change. In
the simulations with a static temperature profile we have shown that a temperature variation of about
1 % of the average temperature could be detected, as this temperature variation induces a time shift of
about 68 ns.
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We generated 120 patterns of temperature fields using a Gaussian random field and examined
their effect on the time-of-flight of the signal reflected off the assembly edges. We investigated the
effect of temperature fluctuations on the variations of times-of-flight for four different patterns of
static temperature profiles. Under these thermodynamically and acoustically complex conditions we
found that it may be difficult to detect a 5-degree i.e. one percent variation in the static temperature
field based on a single measurement, but also showed that by averaging times-of-flight coming from
about 30 measurements such detection becomes possible with a high level of confidence.

We took the thermal static heterogeneity of the medium into account by considering a simplified
medium and superimposing fluctuations created based on a random field generator. In the next chapter
of this thesis, we will extend our simulations to take into account a more realistic medium defined
using computational fluid dynamics results for new reactor designs that are currently being performed
in a project called ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration)
(Coz et al. 2011). Taking flow rates i.e. a moving fluid into account will require further development
of our spectral-element technique in future work. In addition to using a more complete description
of liquid sodium above the fuel assemblies, further studies should also focus on better understanding
the origin of signal noise to understand which part could be produced by medium fluctuations such
as eddies or vortices. The results that we have obtained can be useful for ultrasonic thermometry, but
our conclusions should also be valid for telemetry applications in which time-of-flight measurements
are used to accurately locate objects in a liquid medium.

The study in this section relied on the hypothesis that the temperature field in the region near
the outlet may be described by superimposing a static field and a fluctuation field. The static field
was provided as simple profiles, for instance having a parabolic shape. The fluctuation fields were
generated using a Gaussian random field. However, at the moment, the Gaussian random field method
is only validated for fields without strong flows, and thus we are still not sure to what extent a Gaussian
random field hypothesis is applicable for regions in which flows with strong variations may exist. It
is expected that Gaussian random fields are applicable to simulate regions that are located sufficiently
far from the outlets of the sodium flow, but less applicable in regions located closer to the outlets.
Hence, in future studies, it will be necessary to examine the applicability of a Gaussian random field
approximation to represent medium fluctuations, depending on the distance from the sodium outlets,
by comparing the results obtained based on wave propagation in a medium represented by a Gaussian
random field to those coming from a computational fluid dynamics (CFD) simulation.



Chapter 4

3D simulation of acoustic wave propagation
with a realistic temperature field

4.1 Objective of the study in this chapter

In the previous chapter, we studied wave propagation in liquid sodium with temperature heterogeneity
(section 3.1). The heterogeneity of the medium temperature was defined at first as a static medium (i.e.
the temperature field was defined based upon a simple equation and the fluctuation caused by convec-
tion was not included). Next, we applied Gaussian Random Fields (GRF) as a modeling method for
the fluctuation of the medium temperature (section 3.2).

The GRF is considered as an efficient method to describe medium heterogeneity (Fiorina 1998),
however it is for isotropic medium, i.e. GRF is not applicable for media with a flow velocity field, as
mentioned by Iooss et al. (2002). This article also mentions that a two-dimensional fluctuation of the
temperature field may have a weaker effect on wave propagation than a three-dimensional fluctuating
field. This is because in two-dimensional simulations, the curvature factor of temperature boundaries
produces its effects in two directions (i.e. the x and z axes) but not in the third, i.e. geometrical
spreading is two-dimensional. Namely the curvature for the y axis is always infinite under the two-
dimensional approximation.

In this chapter, we will carry out three-dimensional numerical simulations with application to a
more realistic fluctuating propagation medium, i.e. liquid sodium. In the SFRs, the thermo-hydraulic
situation is generated by the sodium jets with high temperature and surrounding sodium with lower
temperature, and mixing phenomena between them. As the modeling target of our study, we selected
an experimental and numerical study called PLAJEST, since it targets the same object in the same
condition, i.e. the upper-core region of a SFR in operation. The configuration of this experiment
performed by JAEA and its numerical simulation by CEA/STMF are explained in subsection 1.4.2.

The phenomenon of mixing flows has been actively studied by e.g. Durve et al. (2012), Zang &
New (2015) and Ghahremanian et al. (2014). These studies are not directly related to PLAJEST nor
to liquid sodium flows, but numerous thermo-hydraulic studies show that they have common thermo-
hydraulic behaviors (Massacret et al. 2014). We therefore use the methodology proposed in these
studies to analyze thermo-hydraulics. They identified the mixing state of flows and categorized them
into three types based on the state of the mean velocity (Figure 4.1 A), i.e. the converging region, the
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merging region, and the combined flow region. The converging region starts at the exit of the flow
and continues until the negative mean flow (i.e. the flow going in the opposite direction of the jets)
disappears. The point where the negative flow disappears is called the merging point. At this merging
point, each flow still conserves its own flow and they are not united yet. From the merging point,
these flows start to gradually merge, and finally the mean flow distribution merges as one large flow.
This point is called the combined point.

Figure 4.1 A. Definitions of three mixing states, taken from Durve et al. (2012). B. TFI field on a 2D cross-
section at y = 0.09 m and 1D profiles. Points a, b, and c are the reference points used for 1D sequential analysis.

Durve et al. (2012) also carried out a comparative study on several models for predicting the
mean temperature field and temperature fluctuation field caused by mixing phenomena of the three
jets (Durve et al. 2010). They performed a comparative study of root mean square temperature 1D
profiles along the x horizontal axis depending on the distance from the flow outlet, i.e. the z altitude
direction in our study, Figure 4.2. A comparison was done between one experimental (◦) and three
numerical simulation results (lines). Each image in this figure shows the root mean square value of
temperature measured/estimated for each normalized altitude y/Dn. y stands for the distance from
the outlet of the jets, and Dn is the diameter of the outlet. The length along the horizontal direction (x
axis) is also normalized in the same way with the direction of altitude as x/Dn. The root mean square
values are also normalized by the temperature difference of the cold and hot jets (∆T ). The curves
at each altitude do not match very well because of the difference of the compared model geometries.
For all experiment/simulation data, one can see the same transient behavior of the shape of curves,
i.e. the curves have two peaks at lower altitude, then these two peaks start to merge when the altitude
increases, and finally the peaks merge completely. Following different authors we choose to analyze
the temperature in the medium using an index called the Temperature Fluctuation Intensity (TFI). We
use the definition of TFI as

TFI(r) =

√√√√ 1

N

N∑
i=1

(T (i, r)− T̄ (r))2, r = (x, y, z) , (4.1)

where r is the spatial position vector, i is the time step number, N is the total number of time steps,
T (i, r) is the temperature value at time step i and position r, and T̄ (r) = 1

N

∑N
i=1 T (i, r) is the
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average temperature at r. We process the PLAJEST CFD data to calculate the TFI index in order to
compare the global behavior of the jets with these previous studies. Figure 4.3 shows the same profile
analysis with TFI values. The normalized altitude y/Dn and normalized horizontal position x/Dn

are adjusted to be the same as in Durve et al. (2012)’s figures. TFI values are also normalized with
∆T = 43◦C, which is the temperature difference of the jets in the PLAJEST configuration. Because
of the difference of geometry and also of the medium (PLAJEST uses liquid sodium but the other
studies use air or other liquids), the magnitude of the curves is not identical. However, the shape of
the curves follows the same way (i.e. two separated peaks→ the peaks are merged gradually→ the
peaks are merged completely).

Figure 4.2 Comparison of normalized root mean square of temperature, taken from Durve et al. (2010).

Figure 4.1 B is the 2D cross-section at y = 0.09 m of the calculated 3D TFI field from the CFD
results of PLAJEST. There are three jets in the configuration of PLAJEST (the center position of the
jets are x = −0.070 m, 0.0 m and 0.070 m). Between each jet, two zones with high TFI value arise
by the interaction of these jet flows. From this TFI field, it is found that for the shape of the TFI
profile depending on the altitude, it seems to be possible to define three zones in a similar way as with
the three zones for the mean flow field explained above. First, the two high TFI zones arise around
altitude z = 0.05 m and these two zones are completely separated. Around altitude z = 0.09 m or lower
altitude, the beginning of merging of the high TFI zones becomes clear (the lowest TFI value between
two peeks starts to increase). Here there would be some specific point that we call a merging point
of the TFI zone. The merging of these two zones is confirmed when the altitude becomes higher, and
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then around altitude z = 0.19 m these two zones are completely merged (the peak of the 1D TFI curve
becomes a single one). We call this altitude a combining point of the TFI zone.

In the following section, we will carry out a more detailed analysis to verify the variations
of the TFI profiles and the definition of these two points. When we analyze the results of acoustic
simulation, these two altitudes will be referred to and compared with the thermo-hydraulic state.
Thus, the main objectives of this chapter are to see how an acoustic wave propagation fluctuation
changes depending on the state of mixing flows. In particular, we will try to find the relation between
acoustic fluctuations and the changing points of the TFI 1D curves, which likely divide the TFI field
into three zones (converging, merging and combined regions) as mentioned above.

Figure 4.3 Comparison of TFI 1D profiles calculated from the PLAJEST CFD results.

4.2 Definition of the insonified volume

The insonified volume is defined as a part of the PLAJEST volume displayed as a purple box in Figure
4.4. In the geometry of PLAJEST, three sodium jets outflow from gaps with a 20 mm width. Multiple
simulations are carried out with changing the z coordinate of the extracted region from 40 mm to
340 mm above the outlet, with intervals of 10 mm. The temperature pattern just above the outlets
is simple and stable, while it becomes more complex and unstable when the z coordinate increases.
The magnitude of the fluctuations may be seen based on TFI visualization in Figure 4.1 B. Multiple
insonified volumes are then defined with the same volume size, same relative positions of the acoustic
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source and signal observing surfaces and with different altitudes. In each insonified volume, a circular
plane source is defined as in Figure 4.5. The color shows the maximum amplitudes of the emissions
at each point normalized by the maximum amplitude at the center of the circle. The plane source is
composed of monopole point sources on a circular plane with a diameter of 0.0254 m (i.e. 1 inch).
The intervals of each point sources are the same as the element size of the SPECFEM mesh. Each
source point emits a 1 MHz Ricker wavelet (second derivative of a Gaussian) at the same time. The
maximum amplitude of each emission is multiplied by a Hamming window function depending on
the distance from the center of the circle. Figure 4.6 shows the definitions of the observation surfaces
of the acoustic signals. On each plane, the receiving points where acoustic signals are recorded
are placed with a 0.0005 m pitch. Figure 4.7 shows the positional relation between the insonified
volume (central altitude z = 0.1 m) and the geometry of PLAJEST. The numbers in meters show the
distance from the source to each y-z receiver plane. The near field limit, called Io, is calculated to
be 67.17 mm using Equation 3.3 and an average temperature of 333.167◦C (606.317◦K), considering
a transducer with a 1 inch diameter and 1 MHz frequency. In this virtual setup, only the first two
observation surfaces are in the near field. Thus, in the following analysis we mainly have acoustics
virtual measurements in the far field. In the PLAJEST coordinates the limit of the near field is x =
−0.061 mm.

Figure 4.4 (a) Geometry of the PLAJEST CFD simulation. (b) Snapshot of the CFD result at time 200.0 s, x-y
cross-sectional plane at y = 0.09 m. Visualization for this image is done with VisIt, an open source visualization
tool for massive scientific data (Childs et al. 2012).

4.3 Mesh generation and interpolation of the temperature field
from Tetra4 elements to Hexa27 elements

CEA/STMF used a numerical code for CFD calculations called TrioCFD (known as Trio_U by 2015)
for this PLAJEST numerical simulation, and LES was selected as the turbulence model. Tetrahedral
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Figure 4.5 The circular source plane used for the simulations.

Figure 4.6 Positions of the plane source (blue) and receiver surfaces (orange and red). The x position of the
source plane is −0.128 m.
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Figure 4.7 Relation of the positions in an insonified volume (central altitude z = 0.1 m) and the geometry of
PLAJEST. The points A, B and C are the positions of the reference points used for temporal analysis.

elements with 4 nodes were used for the TrioCFD calculations. The total number of elements was
5 582 706 and the characteristic mesh length was set to 1.40 mm. We removed the first 200 s of their
calculation from their result because that duration corresponds to the stabilization of the flow state.
Thus, 200 to 210s with a time step of 0.1 ms is available as candidates for our wave simulation.
Three jets of sodium exist in this setup. Sodium with lower temperature (304.5◦C) is emitted from the
central jet, and with higher temperature (347.5◦C) from the two outer jets. The average flow velocity is
0.51 m s−1 for every jet (Figure 1.16 B). The simulated temperature field at time = 200.000 s is shown
in Figure 1.17 (C). Their simulation results are in good agreement with the experiment results obtained
by JAEA in terms of normalized time-averaged temperature, normalized time-averaged temperature
fluctuations, spectral power density and standard deviation of temperature values (Figure 1.17 A, B
and D).

For their calculation, a tetrahedral unstructured staggered mesh was used. Temperature field
values are defined at the center of each TrioCFD’s tetrahedral mesh element, and flow velocity val-
ues are defined on the vertex nodes. We thus had to transfer these values to our hexahedral mesh
for SPECFEM3D. To do so, we used interpolation onto each node of the SPECFEM3D hexahe-
dral mesh using the simulation data management tool called MEDCoupling. MEDCoupling is part
of the pre-/post-processing platform SALOME (http://www.salome-platform.org) and
is also available independently as a library. Figure 4.8 shows the temperature field data transfer
and mesh generation steps as a pre-process for SPECFEM3D simulation. Our hexahedral mesh for
SPECFEM3D is built using the meshing software CUBIT developed by Sandia National Laboratories
(USA). Figure 4.9 shows some examples of this step. It is possible to select an arbitrary volume to be
extracted from the entire geometry and meshing is completed automatically, including the assignment
of material characteristics and absorbing surface flags (the fluctuation of the temperature field may
be defined later). In this step, the region to be used for wave propagation simulation is specified in
order to eliminate acoustically uninteresting parts from the PLAJEST geometry and thus reduce the
required amount of computer memory, which is one of the limitations of wave simulations in large
3D models. In order to speed-up this conversion process, we used the IOSS (IO Systems) library in-

http://www.salome-platform.org
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cluded in the finite-element analysis supporting software called SEACAS, also developed by Sandia
National Laboratories. After finishing preparation of mesh data, we carried out the temperature field
transfer, i.e. interpolation of temperature values defined at the barycenter of each tetrahedral finite el-
ement to corner nodes of our hexahedral spectral elements. The flow velocity data is not used for our
simulation because we apply the frozen fluid hypothesis, as in (Massacret et al. 2013). The conver-
sion of the temperature field from TrioCFD tetrahedral mesh to SPECFEM3D nodes is done by using
MEDCoupling. Because the mesh-to-node transfer function does not support HEXA27 (second-order
hexahedral finite elements), if the interpolation-target mesh is of HEXA27 type, then HEXA27 first
needs be split into eight parts of HEXA8 type (first-order hexahedral finite elements).

Determination of the element size to use in our simulations is done based on two conditions,
which are the CFL condition (Equation 4.2) and the number of elements per one wave length:

Cp
∆t

∆xgll
≤ α , (4.2)

where ∆t is the time step and ∆xgll is the minimum interval between two GLL grid points. We
selected the averaged Courant number α = 0.4 and the wave celerity Cp = 2416.268 m s−1 (in sodium
with the lowest temperature value 274.5 ◦C in the CFD simulation) for the calculation of the mesh
size and time step duration. In equation 4.2, ∆xgll is not the mesh size itself, it is the interval between
GLL grid points inside the spectral elements. This led us to use a mesh size ∆x = 8.05× 10−4 m and
a time step of 2.3× 10−8 s. We will simulate a total of 5000 steps in order to have a sufficient total
physical duration for the waves to travel through the entire simulation domain. The mesh used in our
simulations thus 3 250 000 spectral elements and a total number of GLL grid nodes of 215 320 764.

4.4 Results of acoustic wave propagation in a single temperature
field

In this part, we analyze the sensitivity of ultrasound to thermo-hydraulic changes. The goal is to study
how the ultrasonic beam is deflected or deformed by the temperature field. In the following section,
we will study the evolution of measurements as a function of time.

Figure 4.11 shows the visualized 3D wave fronts based on 3D contour visualization. These
waves are visualized from signals received in the y-z receiver planes at time = 200.010 s in the CFD
simulation and at altitude z = 0.14 m. The left image is the wave front recorded at x = 0.105 m and
the right image is recorded at x = −0.035 m. Color variations represent the signal amplitude values.
Blue is negative and red is positive. In order to show the inside structure of the wave front, some
contour surfaces are clipped off of its half or quarter volume. The red part has higher pressure values
and the blue part has lower ones. The y and z axes correspond to the y and z axes of the PLAJEST
geometry. The x axis indicates time. For this 3D visualization, we used a VTK file (Visualization
Toolkit: an open-source, freely available software system for 3D computer graphics, image process-
ing, and visualization. http://www.vtk.org) that we displayed with the visualization software
VisIt. The visual information reveals that the wave fronts having passed through heterogeneous liquid
sodium are deflected and deformed but that the amount of wave deformation is not so large. The
wave forms are different between waves passing from the end of the near field region to a far longer
distance in the far field region (almost 4 × Io, where Io is the near field limit), and the wave front
in the near field has the shape that is more complex than in the far field, as expected. We will carry

http://www.vtk.org
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Figure 4.8 Explanation of data processing for mesh generation and preparation of the heterogeneous medium
to use for our acoustic calculations.
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Figure 4.9 Examples of some interpolations of temperature fields from a tetrahedral mesh to a hexahedral
mesh using the MEDCoupling pre/post-processing library. The temperature field in the tetrahedral elements is
indicated with transparent color on the interpolated field of the hexahedral mesh. The image on the left side is
a close-up on one of these three examples.

Figure 4.10 One of the heterogeneous temperature fields used for our 3D wave propagation calculations. This
field is taken from time step number 10, and the central altitude of the calculation domain is 0.1 m from the
sodium outlet. One mesh contains 3,250,000 spectral elements and the total number of Gauss-Lobatto-Legendre
grid points is 215,320,764.
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Figure 4.11 Visualization of the 3D wave front using contouring and clipping, at position x = A) 0.105 m and
B) −0.035 m calculated at altitude z = 0.14 m, time = 200.010 s of PLAJEST with a heterogeneous medium
temperature.

out a quantitative analysis of the amount of modification in the latter part of this chapter. Figure 4.12
shows part of the acoustic fields obtained from all of the simulations. Here an acoustic field refers to
the maximum pressure values at each spatial point. In figure 4.12, acoustic fields in the x-y, y-z and
y-z plane (for x = 0.035 m and 0.105 m) are indicated for the simulations whose middle z coordinate
value are z = 0.04 m, 0.12 m, 0.24 m and 0.34 m. Additionally, the top row shows the results for the
case with a homogeneous medium. In the homogeneous case, the temperature of medium was set to
333.167◦C, which is the ambient temperature value of the CFD calculations. From this figure, we
find that the acoustic field at z = 0.040 m, which is close to the outlets, and the homogeneous case are
quite similar. This comes from the fact that the temperature boundary just above the outlets is almost
orthogonal to the direction of wave propagation. Also at z = 0.340 m, the mixing of the hot and cold
jets has matured enough and the magnitude of the temperature difference becomes small; therefore, a
wave is less affected by the heterogeneity at this altitude. However, at z = 0.120 m and 0.240 m, it can
be seen that the acoustic fields are bent by the heterogeneity of the field, and the reduction of max-
imum amplitude values with increasing propagation distance becomes greater. This first qualitative
description is then shown in Figure 4.13 with 1D profiles of the acoustic field.

In Figure 4.13, values of the acoustic fields on the z axis of each y-z receiver planes are indi-
cated. The red lines represent the results of the homogeneous case and the blue lines represent all the
results for the heterogeneous cases at each z position of the simulation domain. Amplitude values are
normalized by the maximum amplitude (i.e. pressure) for all simulations. How the maximum am-
plitude of pressure recorded in each y-z receiver plane changes depending on the positional changes
in the z direction of the simulation domains is indicated in Figure 4.14. At planes x = −0.105 m
and −0.080 m, i.e. near the plane source, maximum amplitudes take approximately constant values
regardless of distance from the outlets. In contrast, at the farthest and second farthest y-z planes at x
= 0.105 m and 0.080 m, it is found that the amplitude value of the simulation domain z = 0.120 m is
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approximately 10 % smaller than the other values. At the same time the second peak may be found at
z = 0.240 m. It is considered that the effect of temperature heterogeneity becomes stronger under two
conditions, which are:

• mixing of hot and cold flow are developed enough so that the shape of the temperature boundary
is curved and not parallel to the emitted wave front,

• the temperature difference remains large.

The altitude z = 0.120 m is the distance from the outlets where the temperature boundary starts to
be changed while the temperature difference is still relatively still compared to the region above. On
the other hand, it seems that, at z = 0.240 m, the temperature difference is already small and even
smaller than at z = 0.230 m. This might be caused by the fact that the temperature boundary shape
became a key factor for the whole effects rather than the temperature difference only. As a result, we
find that there is a certain relationship between the strength of effects of temperature heterogeneity on
acoustic fields and the distance from the outlets of the sodium jets, i.e. the state of mixing flows. More
precisely, the importance of these effects on maximum acoustic pressure can vary up to about 10 %
at a certain altitude. Accordingly, we may assume that the magnitude of the temperature difference
in a medium and the shape of the temperature boundary are the key factors that govern the cumulated
effects of medium heterogeneity on wave propagation.

A single time step was examined for this first study. In the next section 4.5, we will perform
simulations with the same PLAJEST configuration for other time steps extracted from the CFD cal-
culation in order to search for a relation between the strength of the medium heterogeneity and the
variations of the ultrasonic signals.

Figure 4.12 Acoustic fields obtained from all the simulations.
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Figure 4.13 Values of the acoustic fields on the z axis at y = 0 of each y-z receiver plane.
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Figure 4.14 The maximum amplitude of pressure recorded in each y-z receiver plane changes depending on
the positional change in the z direction of the simulation domain.

4.5 Analysis of time-varying temperature fields of PLAJEST

4.5.1 Selection of the CFD time steps to extract and analyze

The CFD calculation carried out by CEA STMF has approximately 10 s in total, from 200.000 s
to 210.197 with a 0.001 s interval. The initial 200 s of the calculation was dedicated to ensuring
stabilization of the flow and are thus excluded in our analysis. Because of the limitation of allocated
computation time on the supercomputer that we use for this thesis, it was not possible to run the
temperature field interpolation and wave propagation calculation processes for all of these CFD time
steps. Instead, we had to extract several time steps of the temperature field with a wider interval from
the CFD results. In order to select the time step interval to extract for our acoustic simulation, we
used the power spectrum density curve (Angeli 2015) (Figure 4.15, blue line). This curve indicates
the temperature history at x = −0.015 m (between the left and center jets), y = 0.09 m (middle point
on the y axis) and z = 0.1 m. From this curve, its peak is found lower than 5 Hz (around 3 Hz). Thus,
to be sure to include the frequency of this 5 Hz temperature fluctuation, we extracted the temperature
fields with a 0.1 s interval (i.e. 10 Hz). In a first approximation the peak was estimated to be around
2 Hz, and in that case we could expect to have 5 points per period to keep the peak at 2 Hz. This is the
limit of Shannon’s sampling criterion.

Figure 4.16 shows this relation between the CFD time steps and the extracted (sub-sampled)
time steps for our acoustic simulations. Figure 4.17 shows the temperature histories and PSD curves
of the original CFD results at three selected points, and Figure 4.18 shows the same kind of curves
but with only extracted time steps. These three points have the same y, z position (y = 0.09 m and z
= 0.1 m) and a different x position (x = −0.035 m, 0.0 m and 0.035 m). x = −0.035 m and 0.035 m
are the positions between the two jets, and thus where the TFI will be higher than in the other areas.
x = 0.0 m is in the middle of the central jet. These three points were selected in order to examine
the thermo-hydraulics regime in three characteristic areas. The positional relation with the PLAJEST
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Figure 4.15 Normalized PSD curves of temperature history in the CFD calculation (blue line) at x =−0.015 m,
y = 0.09 m and z = 0.1 m, taken from Angeli (2015). Normalized PSD curves are calculated by dividing the
original PSD with the maximum PSD value.

geometry is indicated by points A,B,C in Figure 4.7, and the relation with the TFI is indicated by
points a,b,c in Figure 4.1. Using all the time steps of the CFD results, we calculated the PSD curves
(Figure 4.17). The peak of the PSD curve is confirmed at 3 Hz. Then PSD curves calculated from
the coarser time step that we use in our acoustic simulations shows that the peak frequency at 3 Hz
is conserved for the central point. From this comparison, we thus verify that the peak frequency of
the temporal temperature fluctuation remains lower than the frequency limit that we selected for our
acoustic simulation. Let us note however than in future work we plan to perform new calculations
with a refined time step to describe these peaks more finely.

4.5.2 Treatment of the massive amount of calculations and management of the
results

In this study, all of simulations were performed on two of the largest supercomputers in Europe:
CURIE (CEA TGCC) and OCCIGEN (CINES), both part of GENCI (Grand Équipement National de
Calcul Intensif). The computation domain was divided into 256 parts, and parallelized calculations
were carried out. The average duration for an acoustic simulation is about 26 minutes, excluding
mesh generation and the interpolation processes of the temperature fields, which are done once and
for all. The duration of the interpolation of a temperature field from a TrioCFD result to SPECFEM3D
is approximately 20 hours using a single CPU for one acoustic simulation altitude of one time step.
We carried out 70 time steps of interpolation of the 3D temperature field, for 22 difference altitudes,
resulting in a total of 1540 acoustic simulations to perform. As a result, the total time needed for
a complete simulation of wave propagation over 7 s of the variable thermo-hydraulic regime is ap-
proximately equal to 687 hours, i.e. 29 days. Because of the huge number of calculations, the result
data cannot be conserved as a 3D volume data because of the limitation of allocated storage on su-
percomputers. Instead of storing all results in 3D, we first selected the 2D planes in which we will
analyze the acoustic signals (Figure 4.6). We then defined time windows for each y-z plane to cut the
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Figure 4.16 Sampling intervals for the original CFD simulation and for our wave propagation simulation.

Figure 4.17 A. PSD curves and B. temperature histories of the CFD results at three different x positions (y =
0.09 m; z = 0.1 m), with a 10 Hz sampling.
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Figure 4.18 A. PSD curves and B. temperature histories of the extracted time steps at three different x posi-
tions, with a 10 Hz sampling.

received signals depending on the arrival time of the wave front. These time-windowed signals were
then gathered as a single, huge HDF5 binary file. The HDF5 (Hierarchical Data Format) format is a
standard and widely-sued binary file format that has been developed to manage extremely large and
complex data collections. By using it, one can access the results faster than with other standard file
formats such as e.g. ASCII, json, csv, pickle (Python-friendly binary data format) etc.

4.5.3 Computing TFI data for comparison with acoustic simulation results

As introduced in Equation 4.1, we resort to an index called Temperature Fluctuation Intensity (TFI),
as used in Angeli (2015). Because of the very large numbers of total time steps and also the huge
number of mesh nodes included in the CFD calculation results, the standard way to calculate the
TFI value based on this equation is not very efficient. To calculate that TFI, we thus selected and
implemented another, more advanced algorithm: the online algorithm, which we will briefly describe
in this section. Figure 4.19 shows the calculated TFI field in 3D, and Figure 4.1 B is the cross-section
at y = 0.09 m. We find that there are two areas where the TFI value becomes high between the sodium
jets at altitude z = 0.08 m to 0.16 m. It should also be noted that the TFI field is not symmetric with
respect to the x center.

The online algorithm is a type of algorithm that calculates some field value from serial data
sequentially and based on a single step (Knuth 1997). This algorithm can be required for serial data
for which each step needs a large amount of computer memory and/or when the number of serial data
is so large that it is very expensive to perform an entire loop of calculations more than twice. We thus
applied this online algorithm for calculation of the TFI, i.e. the standard deviation of the temperature
value at a given point, because computing a standard deviation implies several loop over the whole
time steps, first to calculate the mean temperature, and second to calculate the difference between
a temporal value and the mean value. The PLAJEST CFD data comprise 10,000 time steps of 3D
volume data with 2,039,769 mesh elements. One entire loop calculation for this data takes about 10
hours. By applying the online algorithm for the calculation of the TFI, we only need to do this long
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Figure 4.19 Visualized 3D TFI field.

loop calculation once.

The definition of standard deviation of temperature at a given position r is

σ2(r) =
1

N

N∑
i=1

(T (r, i)− T̄ (r))2 , (4.3)

where N is the total number of time steps and T̄ (r) = 1
N

∑N
i=1 T (r, i) is the average temperature at

position r. In the online algorithm, the averaged value T̄ (r, n) and the term
∑n

i=1(T (r, i)−T̄ (r))2 =
Mr,n are sequentially updated for each time step during the entire loop calculation. For each time step
at n,

T̄r,n = T̄r,n−1 +
Tr,n − T̄r,n−1

n
(4.4)

Mr,n = Mr,n−1 + (Tr,n − T̄r,n−1)(Tr,n − T̄r,n) (4.5)

The standard deviation calculation is then finalized as

σr =

√
Mr,N

N
. (4.6)

Figure 4.20 shows the TFI values on the x axis of y = 0.09 m at several altitudes (i.e. z positions),
and Figure 4.1 B represents these TFI curves drawn in the case of the 2D TFI field. The maximum
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Figure 4.20 TFI values on the x axis and at y = 0.09 m at several altitudes.

Figure 4.21 TFI curves corresponding to the 2D TFI field. The left side shows the z altitude where those lines
are extracted.
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TFI value is found at around altitude z = 0.13 m. The change of shape of the curves depending on
the distance from the exit of the jets seems to match with the result of Durve et al. (2010), i.e. the
curves at low altitude have two TFI peaks, and then these peaks gradually merge when the z altitude
increases. We will further analyze this effect in the next sections of this chapter.

4.5.4 Calculating the "Cumulated TFI" (CTFI) value

The TFI calculated above is the index that evaluates the intensity of the fluctuation at one spatial point,
while acoustic wave propagation will be affected not only by one position but by the whole state along
its propagation path. Thus, in order to find the appropriate thermo-hydraulic index for comparison
in the case of a propagating wave, we define a new index, which we call the cumulated TFI (CTFI).
The CTFI is the value that indicates the amount of TFI that the acoustic wave experiences along the
central axis. We define the CTFI at the position xp in the propagation direction by

Ic(xp, zalt, R) =

∫ xp

xs

∫ R

0

∫ 2π

0

I(r, θ, zalt)w(r)dθdrdx (4.7)

where Ic is the CTFI value, I(x, r, θ) is the TFI value at x, r, θ, xs is the x coordinate of acoustic
source, zalt is the altitude (along the z axis) of the center of the acoustic source plane, R is the
distance from the central axis, and w(r) is a weight function to make TFI values near the central axis
have more effect and TFIs far from the central axis less effect. One can define several versions of the
CTFI, for instance:

1. CTFI in 1D (integrated on the central x axis), with w(r) = 1 and R = one mesh element size,

2. CTFI in 3D A (integrated in a domain where the acoustic beam passes), with w(r) = 1 and
R = the radius of the acoustic source, i.e. 1.27 cm,

3. CTFI in 3D B (integrated in a cylindrical volume where the acoustic beam passes, with a weight-
ing function w(r) = 0.54 + 0.46cosπ r

R
and R = the radius of the acoustic source, i.e. 1.27

cm.

Using a larger w(r) allows us to take into account the whole ultrasonic beam. A more complex
function will be needed to take into account the beam divergence. In this thesis, we only use the first
definition of the CTFI, i.e. the CTFI in 1D, as a first analysis. The other possible choices may be
examined in future work.

Figure 4.22 indicates the CTFI curves on the x axis at y = 0.09 m and at several z altitudes. The
left image shows the CTFI depending on the x position, i.e. the propagation distance. The source
plane is positioned at x = −0.128 m. Each line represents the z altitude at which the curves are
extracted. The magnitude of the CTFI becomes largest around the altitude z = 0.03 m. The curves for
a lower z altitude exhibit a two-step increment, as there are two peaks of TFI as we saw in the last
section. At a position higher than 0.16 m, this two-step increment is no longer seen. The right image
represents the CTFI values versus altitude z. Each line represents the x position, i.e. propagation
distance (the acoustic source is placed at x = −0.128 m). The farther the x position becomes, the
larger the magnitude of the CTFI becomes as well. We find that the peak of the CTFI positions is
around 0.13 m to 0.15 m. For the x position = 0.0 m just after the first (left side of) the high TFI
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zone and the middle of the central jet, the CTFI peak is slightly shifted to a higher z altitude. This
is caused by the slight difference is the shape and position of the high TFI zones, as one can see in
Figure 4.23. Figure 4.24 shows the second derivatives of the CTFI curves. The inflection points are
found around x = 0.09 m and 0.19 m. These points are the same altitudes as what we defined as the
merging point and combining point of the standard TFI. Thus, from this result, we find that we can
define the merging and combing points of the TFI as the inflection points of the second derivatives of
the CTFI curve.

In the following part of this chapter, we will study the acoustic fluctuation state based on these
merging and combining points.

Figure 4.22 CTFI curves on the x axis at y = 0.09 m and at several z altitudes.

4.6 Comparison with acoustic simulation results

4.6.1 Fluctuation of acoustic signals

First, we investigate the transition of the deviated wave front at the farthest y-z receiving plane (i.e.
x = 0.105 m and at a distance from the source of 0.233 m). Figure 4.25 shows the impact points,
i.e. the position where the pressure value becomes maximum in the y-z receiving plane. In order
to show temporal changes of the positions of the impact points more clearly, the positions of the
impact points are linked by arrows in temporal order, and digits are added to indicate the order in
which the position of the impact point changes. Histograms for the y and z axis directions are also
placed, showing the mean and standard deviation values. We confirm that the standard deviation
increases when altitude z becomes higher, and the standard deviation is the largest at altitude z =
0.13 m (number 3 of 4.25). This is in good agreement with the peak z position of the CTFI in Figure
4.22. At lower altitude z = 0.04 m and 0.09 m, the distribution of the impact points exhibits directivity,
i.e. the standard deviation for the y-axis direction is larger than for the z-axis direction. This result
illustrates the fact that the 3D temperature fluctuation pattern before maturing of the mixing state
has directivity. Namely, approximating the fluctuation of the acoustic celerity field using an isotropic
Gaussian random process may not be very accurate for the regions where the flow is still strong.
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Figure 4.23 CTFI curves corresponding to the 2D TFI field. On the left side once can see the altitude z at
which these lines are extracted.

Figure 4.24 Second derivatives of the CTFI 1D profiles. Each line indicates the x position.
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From this result, we can confirm the observation by Iooss et al. (2002) of the non-applicability of an
isotropic Gaussian random field for this region in a quantitative way. Part of this directivity effect
may be caused by the geometry of PLAJEST, because the cross-sections on the y axis of PLAJEST
always have the same shapes. However, in the real geometry of a SFR, for instance ASTRID, which
has outlet tubes with a larger diameter (0.15 m) than in the PLAJEST experiment (0.02 m), the same
effect may occur depending on the directions of the acoustic beam towards the sodium jets, even if
the shape of the jets is cylindrical.

Figure 4.25 Movement of acoustic impact points (i.e. the position at which acoustic pressure becomes the
largest) in the y-z receiving plane at x = 0.105 m, and histograms for the y and z directions. Movements of
only the seven initial time steps are indicated with red arrows and with digits in magenta.

We also carried on an acoustic fluctuation analysis. Figure 4.26 shows the history of maximum
amplitude and the time at which the maximum amplitude is received, as well as the normalized PSD
curves. Maximum amplitude values are taken from the envelope of each received signal. The figures
on the left column are the history of maximum amplitude value (in blue), receiving times (in red) and
temperature (in green). The figures on the right column are the PSD curves of the three values, in the
same colors as the history curves. The results received at four different altitudes, at x = 0.105 m, y =
0.09 m and z = 0.04 m, 0.09 m, 0.14 m and 0.21 m are shown. At the lowest altitude (z = 0.04 m), the
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magnitude of fluctuation of the signal is the smallest among the four positions. At altitude z = 0.09 m
and 0.14 m, the magnitude of fluctuation becomes larger, and then at a higher altitude (z = 0.21 m), the
magnitude of fluctuation again becomes smaller than at z = 0.09 m and 0.14 m. Compared with the
CFTI values, the shape of fluctuation magnitude seems to match with the CTFI curve. From the PSD
at altitude z = 0.04 m, the peak of both amplitude and receiving time is before 1 Hz. When the altitude
becomes higher, only the peak of receiving time becomes 3 Hz, as the peak frequency of temperature
fluctuation in Figure 4.17. However, in the PSD curve of maximum amplitude, the peak seems to be
found around 1.8 Hz, but it is weak (i.e. there are other small peaks). At this x position, temperature
fluctuation is almost zero. Thus it is not possible to compare the temperature fluctuation and the
fluctuation of acoustic signals. In order to see if the fluctuation state of temperature has an effect on
the acoustic fluctuation at x = 0.105 m, the same history curves and PSD are indicated for different
x positions in Figure 4.27. At x = 0.0 m, maximum amplitude, receiving time and temperature have
no peaks on their PSD curves. At x = 0.035 m, a peak at 3 Hz is found for the PSD of temperature as
well as for the PSD of receiving time, but maximum amplitude has no peak. It should be noted that
the magnitude of the temperature fluctuation is the largest among other x positions. At x = 0.105 m,
temperature has no fluctuation while the peak at 3 Hz of the PSD of receiving time remains. Maximum
amplitude still has only a weak peak around 1.8 Hz. These results show that the fluctuation of time
of flight at one receiving position may result not only from the fluctuation state of temperature at the
receiving point only, but also from other locations around the propagation path, where the magnitude
of temperature fluctuation is strong and that may thus have a dominant effect on the acoustic signal
observed later in the propagation. In summary, the spectral analysis of the amplitude fluctuations
does not make it possible to highlight a dominant frequency. The spectrum in particular is strongly
noisy. On the other hand, the spectrum of time of flight fluctuations, especially when they are of
great amplitude (in the merging region), reveals a dominant frequency that is consistent with the
frequency of temperature fluctuations in the mixing zone. These preliminary results could be refined
by a frequency analysis performed with a smaller time step.

4.6.2 Standard deviation analysis

In order to get additional information that will help to interpret the fluctuation of the acoustic signals,
we also carried out a standard deviation and mean value analysis for the whole of z altitudes based on
the following four acoustic quantities:

• maximum amplitude at the impact point and at the center of the y-z plane,

• amount of deviation r,

• angle at the impact point θ,

• receiving time of the maximum amplitude at the center of the y-z plane.

Figure 4.28 shows the definition of the impact point, of r, and of θ.

Figure 4.29 shows the standard deviation and mean values of maximum amplitude values recorded
at the center and at the impact point of each y-z plane. Part 1 shows the standard deviation and mean
value of maximum amplitudes at the center of the y-z planes for each z altitude. Part 2 shows the
same values but recorded at the impact points. Each line is the mean value, and the error bar is the
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Figure 4.26 History of maximum amplitude (in blue), arrival time (in red) and temperature (in green), and the
normalized PSD curves, for four different altitudes, at x = 0.105 m, y = 0.09 m and z = 0.04 m, 0.09 m, 0.14 m

and 0.21 m.
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Figure 4.27 History of maximum amplitude (in blue), arrival time (in red) and temperature (in green), and the
normalized PSD curves, for three different x position, at x = 0.0 m, 0.035 m and 0.105 m, y = 0.09 m and z =
0.09 m.
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Figure 4.28 Definition of the impact point, of the amount of deviation r, and of the deviation angle θ.

standard deviation at each position. The scale of values on the vertical axis is the same for the mean
values, and the length of the error bars as well. We note that the mean values of maximum amplitude
of each x position are not very different between the different z altitudes. In Part 3, only the mean
values of maximum amplitude are plotted (solid line: y-z center, dashed line: impact point). At the
x positions far from the acoustic source (x = 0.035 m, 0.08 m and 0.105 m), differences of means
between the y-z center and the impact point are observed. This comes from the fact that the impact
points always records the maximum amplitude of an acoustic wave front, thus the mean value may
be larger than at the y-z center. x = −0.08 m is in the near-field (or Fresnel) zone, thus the difference
between the maximum pressure value and the value of pressure on the axis (i.e. pressure at the center
of the y-z plane) is large. Part 4 shows standard deviations divided by mean values at each z altitude.
At altitudes in the range z = 0.10 m to 0.15 m, the standard deviation at each x position becomes
larger than at other altitudes. By applying a moving average triangular window with a window length
of 8, we obtain Part 5. The scatter plots are the standard/mean values before smoothing, and the lines
represent smoothed curves. The curves have similar peak positions as the CTFI curves of Figure 4.22
and also exhibit the same position of their inflection points when computing their second derivatives
(Part 6). Thus, the inflection points of standard/mean curves of maximum amplitudes occur at the
altitudes of the merging point and combining point of the TFI values.

Figure 4.30 is the analysis of the deviation length r. Part 1 indicates mean curves with solid lines
and Part 2 shows standard deviation curves. The peak positions are also similar with the maximum
amplitude curves, i.e. the peaks of the x = 0.035 m, 0.08 m and 0.105 m curves occur around altitude
z = 0.13 m to 0.14 m. The curves in Part 3 are smoothed mean curves, and Part 4 shows the second
derivatives of these means. Part 5 and Part 6 are smoothed standard deviations and their derivatives.
Using Part 4 and Part 6, we can also find the inflection points for the mean and standard deviation
curves at the merging point and combining point of the TFI.

Figure 4.31 shows the mean and standard deviations of theta as defined in Figure 4.28. The
solid lines are the mean angles and the dashed lines are the mean plus standard deviations and mean
minus standard deviations. At altitudes lower than 0.15 m, the mean angle is shifted in the first
quadrant. Thus, in this region, the deflection of acoustic beams has directivity. At altitudes higher
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Figure 4.29 1: Comparison of maximum magnitude at the center of each y-z receiving plane. 2: Compari-
son of maximum magnitude at the acoustic impact point, i.e. the location where the pressure value becomes
maximum in each y-z plane. 3: Comparison of the mean value of maximum amplitudes. The solid lines are
the values at the y-z plane center, and the dashed lines are the values at the impact points. 4: Comparison of
standard deviation values divided by the mean value for each z altitude. 5: Standard/mean curves smoothed by
a moving average window. 6: Second derivatives of smoothed standard/mean curves.
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Figure 4.30 1: Comparison of the mean and standard deviation of deviation length r. The solid line is the
mean value and the dashed line is the mean plus the standard deviation. 2: Comparison of standard deviation
only. 3: Mean curves smoothed with a moving average window. 4: Second derivatives of the smoothed mean
lines. 5: Standard deviation curves smoothed with a moving average window. 6: Second derivatives of the
smoothed standard deviation lines.
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than 0.15 m, the mean angle is still shifted but from the deviation length r, which has smaller values at
these high altitudes as seen in Figure 4.30, and there is no more directivity of deflection. From these
results, we find that the directivity of the deflection effect on acoustic propagation exists at lower
altitude, where the sodium flow is still strong and mixing between jets has not matured yet. Because
of this, the isotropic Gaussian random field representation is not applicable for this area because
isotropic Gaussian fields have no directivity effects on wave propagation. This altitude 0.15 was the
position at which CTFI curves for x = 0.105 m became maximum.

Figure 4.31 Comparison of standard deviation and mean values of deviation angle θ.

Finally, let us analyze the simulation results based on the fluctuation of times of flight, i.e. the
receiving time of the signal. Figure 4.32 shows the definition of the initial wave and of the time of
flight. The position where simulation time is taken equal to zero is the center of the Ricker wavelet
(second derivative of a Gaussian). We define the receiving time (the time of flight) as the peak position
of the signal envelope. Let us recall that there are several classical (and different) ways to measure
time of flight in practice. Using the signal envelope is one of them, and it is useful in particular when
the beginning of the signal can be masked by the noise (Chaki et al. 2007). The figures in 4.33 show
the change of mean and standard deviation of times of flight at each z altitude of each x position. In
the figure for x = −0.105 m, almost no fluctuation of time of flight is found, except at altitudes in the
range 0.18 m to 0.22 m. As one can see in the TFI field of Figure 4.21, even if the x position is before
the first jet, a fluctuation of the medium still occurs because the fluctuating field diffuses when the
flows go higher. At x = −0.08 m, this character of the mixing jet can be confirmed from the fact that
the altitudes at which time of flight values fluctuate become wider and located a little lower than x =
−0.105 m. Then, at x = −0.035 m the standard deviation curve becomes wider, with its peak position
located at about z = 0.16 m, while the mean curve has its peak at lower altitude, at about 0.08 m. This
peak position of the mean time of flight is caused by the difference of mean temperature from the
acoustic source to the receiving point between different altitudes.

Figure 4.34 Parts 1 and 2 show the transition of mean temperature from the acoustic source to
the receiving point. Parts 3 and 4 show the mean sound speed profiles. From Part 3 it is clearly seen
that around x = −0.035 m the mean sound speed becomes low, especially when the altitude is low.
This is the reason why the mean time of flight curve at x = −0.035 m has its peak at low altitude. On
the other hand, around x = 0.035 m, the mean sound speed becomes higher when the altitude is high,
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and this causes smaller values of the mean time of flight (Figure 4.33). Figure 4.35 shows the second
derivatives calculated from mean values (left) and from standard deviations (right) of the times of
flight. A moving average window is applied to both the mean and standard derivative curves to obtain
these second derivatives in an accurate way. As the other derivative curves presented previously,
i.e. for maximum amplitude and for r, these curves also exhibit two inflection points. It is worth
noticing that these two points are still in agreement with the possible merging point and combining
point defined from the thermo-hydraulic regime.

Figure 4.32 Definition of the source time function (left) and of time of flight (right).

Figure 4.33 Comparison of standard deviation (magenta) and mean (blue) values of receiving time. The range
of the horizontal axis of each figure is the same for both the mean and the standard deviation.

4.7 Conclusions of this chapter

In this chapter, we studied the effect of a realistic heterogeneous temperature field on wave propaga-
tion in four dimensions (i.e., three spatial dimensions + time). We first simulated wave propagation
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Figure 4.34 1: Mean temperatures from source to receiver. 2: Mean temperatures from source to receiver,
depending on z. 3: Mean sound speed. 4: Mean sound speed, depending on z.

Figure 4.35 Second derivatives of the mean (left) and standard deviation (right) of time of flight.
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at a (single) given instant of an existing CFD simulation, changing the altitude of the insonified zone
in order to find the amount of effect of the sodium state in the PLAJEST experiment on wave prop-
agation. We exhibited certain altitude ranges at which a strong effect may occur on acoustic wave
propagation. We then carried out the same acoustic simulation but for multiple CFD time steps in
order to investigate the relation between the altitude of the insonified zone and the thermal-hydraulic
state. A standard deviation and mean analysis was done in order to study the possible amount of fluc-
tuation of the acoustic signals. From an analysis of temperature fluctuation, we defined two altitudes
at which the state of temperature fluctuation changes: one is the merging point, where the two high
TFI zones between each of three jets start to merge, and the other is the combining point of the TFI,
where the merging of the TFI zones is completed. These altitude can be detected as inflection points
of the second derivative of the CTFI curves.

From the 1D comparison between the fluctuation of temperature, of maximum amplitude and
of time of flight, we showed that the fluctuation of time of flight at one receiving position may be
affected not only from the fluctuation state of temperature at the receiving point only, but also from
the temperature fluctuation state at other locations along the propagation path, which may have a
dominant effect on the acoustic signal when the magnitude of temperature fluctuation is strong at
these locations. We also showed that the frequency of temperature fluctuations in the merging zone
could be deduced from the frequency of fluctuations of acoustic measurements, at least in the case
of times of flight. As a result of our standard deviation and mean analysis, we found that at the low
altitude where the mixing of flows is not enough matured, the temperature heterogeneity may cause
directive fluctuation of acoustic propagation. This means that the application of an isotropic Gaussian
random field may not take into account the directive response of fluctuation of acoustic signals. This
comes from the fact that the fluctuating values generated by an isotropic Gaussian random field always
have a normal distribution and no directivity. We also found that the second derivatives of the mean
and standard deviation of acoustic fluctuations (maximum amplitude, amount of deviation r, and time
of flight) may have inflection points at altitudes close to those at which we defined the merging and
combining points.





Chapter 5

Conclusions and perspectives

In Chapter 1 we discussed the general state of the art and background for the fields studied in this the-
sis. The history and international R&D projects for Sodium-cooled Fast Reactors (SFR) were briefly
reviewed. The required conditions for acoustic measurement systems for SFRs were then explained.
There are several factors that may decrease the quality of acoustic measurements in a SFR. For this
thesis, we selected the medium heterogeneity as main target among these factors. The recent studies
on thermo-hydraulic state in the core of SFRs were also summarized. Then, former studies on wave
propagation in heterogeneous media, including liquid sodium, were reviewed. We also discussed for-
mer studies on simulation methods for fluctuating media for SFRs. It was mentioned that the Spectral
Element Method (SEM) can be applied as a numerical simulation method to calculate wave prop-
agation not only in heterogeneous acoustic media but also in elastic media, handling reflection and
transmission at acoustic-elastic boundaries accurately. In this thesis, this will lead to the first-ever
application of the SEM for simulation of wave propagation in the cooling medium of SFRs.

In Chapter 2, the derivation of the propagation equations for acoustic and elastic waves in het-
erogeneous and/or moving media were recalled. Then, we also briefly summarized several classical
numerical methods for wave propagation simulation, including the SEM and Finite-Difference Time-
Domain (FDTD) methods. The numerical code SPECFEM was introduced, which we use to perform
the SEM calculations in this thesis; it is an open-source software package with great efficiency, op-
timized for high-performance computing, in particular on large computers and on supercomputing
centers.

In Chapter 3, we carried out studies for 2D wave propagation simulations in heterogeneous
media. We summarized an experiment called UPSILON, which uses silicon oil as the propagation
medium. This experiment was done by a previous Ph.D. student. Using the configuration of UP-
SILON, we carried out a comparison study between the SEM and some FDTD methods. The result
showed the numerical advantage and efficiency of the SEM for our application. We then applied the
SEM to a simplified upper-core region, i.e., the sodium outlet and its surrounding region, and analyzed
the possible amount of acoustic fluctuation for thermometry installed in such a simplified upper-core
region of a SFR. We applied a 2D Gaussian random field technique to represent the medium fluctua-
tions in this part of the study. We demonstrated that a 1% change in temperature can be detected by
variations in time of flight measured by an ultrasonic transducer.

In Chapter 4, 4D simulations, i.e. spatially 3D with multiple time steps of the medium state,
were carried out using an experimental configuration called PLAJEST. An important result was ob-
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tained: we demonstrated that ultrasonic measurements could follow thermo-hydraulic fluctuations
with high sensitivity. We defined a new measurement index called CTFI to describe the variations in
the thermo-hydraulic conditions. We demonstrated a correlation between the second derivative of this
index and the second derivative of several ultrasonic measurements, including time of flight, which
would be the easiest to use in practice in a true production setup. We also showed that frequency
variations could be detected using ultrasounds.

Several perspectives for future work can be proposed to further develop the results of this work:

Schlieren visualization of acoustic waves in a heterogeneous medium

A first interesting one is to develop comparisons between simulations and experiments to validate all
numerical developments with real data. The experiment UPSILON (see Chapter 3) may be upgraded
to propose a 3D validation by acquiring 3D experimental data. During this PhD work we began to
develop an UPSILON II experiment by using an array of transducer. Figure 5.1 shows the results that
we obtained using Schlieren observations. These results confirm those obtained by Massacret and are
in accordance with the simulations performed with SPECFEM. The next step would be to develop 3D
acquisition with an array of transducers. This experiment could also be used to create benchmarks
to compare SPECFEM results to those obtained with other software packages dedicated to ultrasonic
NDT simulation, such as CIVA, and to real data. In that case, introducing the precise modeling of an
array of transducers in SPECFEM could also be an interesting new development for this code. An
array of transducers may also be a more suitable device to follow in a precise way thermo-hydraulic
conditions such as the deviation of the spot (maximum of the wave), as in Figure 4.28.

Figure 5.1 Schlieren visualization of wave distortion due to thermal gradient, and corresponding simulations
with SPECFEM. a. Wave propagation between the transducer (bottom) and the electric wires (up). b. Wave
front without a temperature gradient. c. Wave front simulation using SPECFEM2D. d. Wave front with a
temperature gradient. e. Wave front simulation including a thermal gradient in the medium (see Chapter 3).
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3D numerical simulations for a complex geometry

A second perspective is to use the 3D potential of SPECFEM to perform simulations for realistic,
and thus complex, geometries of targets. As an example, in Figure 5.2 we generated (using SOLID-
WORKS) a geometry resembling the sodium outlet tube of the Phenix reactor. Part (c) of the figure
shows the model meshed with tetrahedral elements, and (b) and (d) are the model meshed with hex-
ahedral elements. Part (b) represents the whole model, i.e. the acoustic (liquid sodium) part and the
elastic (steel) part. The elements in red in Part (e) are those whose Jacobian values are negative, i.e.
those for which the mesh created is not usable because it is too distorted. Such meshing failure can
occur for instance when a hexahedra-meshed geometry contains shapes such as holes or concavities.
Most finite-element methods used in industry thus resort to tetrahedral elements because they almost
never lead to such elements with a negative Jacobian (but quality degradation by sliver elements may
happen) and mesh generation is done almost automatically without manual intervention by a skilled
computer-aided engineer (CAE), which is almost always necessary for hexahedral-meshed models in
the case of its having complex geometry. However, hexahedra-based techniques (such as the SEM,
among others) lead to tensorized basis functions and thus to very significantly faster calculations.
At the moment SPECFEM3D supports only hexahedral elements, in order to take advantage of such
tensorized basis functions, and thus a drastically reduced number of nested loops in the calculations.
In addition, as mentioned above, the SEM has the advantage of the high accuracy of the calculations
because of spectral-like convergence properties (Komatitsch et al. 2001). In future work it could thus
be worth investigating the use of triangular elements in 2D or tetrahedral elements in 3D in addition
to hexahedra, following for instance the ideas of Dubiner (1993), Komatitsch et al. (2001) and Pas-
quetti & Rapetti (2004) in 2D and their extension to 3D by Sherwin & Karniadakis (1995). Note
however that to mix tetrahedra with hexahedra, for geometrical reasons, due to the need to have a
geometrically-conforming mesh, one would also need to introduce pyramidal elements for the transi-
tion region. Note also that the geometry of the ASTRID reactor sub-assembly heads is expected to be
simpler than those of Phenix, or with complex geometry only far from the top of the heads, and thus
such meshing difficulties based on hexahedra only may also not occur in practice.

Calculation methods for a moving medium and for temporal changes of the
medium heterogeneity

In this thesis we have used the so-called ‘frozen fluid’ hypothesis, i.e. the flow velocity field did
not have an effect on wave propagation and the state of the heterogeneous medium did not change
during a given calculation. This resorted to using snapshots taken at different times in such a moving
medium, and performing numerical simulations for each of them (independently), considering each
of them as static. This assumption was applied following the result of Massacret et al. (2013), who
said that the effect of the flow velocity temporal gradient is less important than the effects coming
from temperature gradients, at least for his simplified upper-core region model (the effects coming
from the flow velocity temporal gradient was about five times smaller than that coming from the
temperature gradient). However that study also mentions that it is not clear if the ‘frozen fluid’
hypothesis is applicable to more complex gradient fields (in the study of Massacret et al. (2013), a
gradient field having a simple cylindrical shape was used for their ray-tracing calculation). Also,
when the propagation distance is very long, the gradient field may change during the propagation and
thus the ‘frozen fluid’ approximation may not be applicable any more.
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At the end of this thesis, we still have no new knowledge about how the amount of acoustic fluctuation
will be changed by the influence of temporal changes of the medium heterogeneity, as the general
hypothesis of frozen fluid seems to be valid even for the PLAJEST experiment. Thus, in order to study
the effect of such a transient medium, further studies will be necessary. For instance, acoustic wave
propagation simulations that take into account the flow gradient field, with a realistic heterogeneous
medium coming for instance from the PLAJEST data, could be performed. However we currently
have no SEM code that may take into account such a moving medium. Support for moving media,
following for instance the initial numerical work of Käser & Dumbser (2008) for a flow with constant
and uniform velocity, should be added. However, this may be technically complex because in such
a case Equation 2.43 needs to be used, but this equation has a third-order temporal derivative term,
which would imply changing the whole time scheme that is used in the SPECFEM code as well as
in other classical SEM software packages. One possible option to consider would be to calculate
this third-order derivative using some approximation; Ashyralyev & Arjmand (2007) for instance
proposed an approximation using a Taylor decomposition. Another option would be to implement a
new time-marching scheme, suitable for third-order time derivatives.

Figure 5.2 Examples of 3D meshing of a realistic geometry. (a) is an example of 3D relatively complex
geometry resembling the sodium outlet of Phenix, created using SOLIDWORKS. (b) shows the entire geometry
meshed with hexahedral elements. (c) is the meshed tube with tetrahedral elements. (d) is the same geometry
but meshed with hexahedral elements. (e) shows the hexahedral elements that have a negative Jacobian and are
thus unsuitable for numerical calculation.
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Our work shows that acoustic measurements could help in thermal hydraulic mock-up studies, as
a complement to thermal measurements. Ultrasonic temperature measurements and SONAR stud-
ies could be improved by considering realistic temperature fluctuations at the outlet of subassembly
heads, provided that time histories are available in the same way as in the PLAJEST simulation using
a LES turbulent model. The SEM could be a powerful tool to study the effects of thermal hydraulics
on acoustic wave propagation and take into account the elastic interaction of the waves with the 3D
targets. We also think that the use of supercomputers to perform such expensive simulations, as has
been demonstrated in this work, will become even more useful in the near future because of the mas-
sive amount of data (‘big data’) that has to be handled nowadays. Such tools should be able to provide
new insights to enrich future discussions between thermo-hydraulicians and acousticians.
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