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Thierry Bréchet, Professeur des universités, Université catholique de Louvain
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Abstract

This dissertation investigates the economic mechanisms underlying the transition
to clean technologies and examines policy approaches to achieve the socially opti-
mal path. It studies various policy measures aiming to deal with climate change,
such as adaptation and taxation of non-renewable resources. Furthermore, it
examines the policy instruments that target increasing the use of efficient tech-
nologies and identifies cases in which the policy reaches its objectives or not. It
also analyzes the role of heterogeneity in society on agents’ willingness to support
a pollution tax.

The first chapter studies the energy transition by using an optimal growth model
in which non-renewable and renewable natural resources are imperfect substi-
tutes in providing energy services necessary for production. We characterize the
social optimum and show that the economy converges to the clean state in the
long run. In a general equilibrium framework, we show that the decentralized
economy converges to the same state even if there is no regulation, but with
higher damages to the environment. We then investigate the properties of taxa-
tion trajectory that induces the laissez-faire economy to follow the optimal path,
and show that it can be either increasing or decreasing depending on the initial
and final states of the economy. If the renewable resources have the capacity to
provide all energy services in the long run by themselves and there is economic
growth ahead, then the optimal tax is initially set low and it increases over time.
In contrary, if the renewable resources are not able to substitute non-renewables
in many activities and there is a need for degrowth, then it is set high in the
beginning and it decreases over time.

The second chapter studies the role of adaptation policy on the transition to a
low-carbon economy. It incorporates adaptation policy into the problem of opti-
mal non-renewable resource extraction with pollution externalities, by focusing
on the capital nature of adaptation measures. We characterize the social opti-
mum with general functional forms under economically reasonable assumptions.
Due to adaptation policy, a possibility of a simultaneous resource use regime -a
transition- arises within a model of two perfect substitute resources. The optimal
transition path depends on the initial levels of pollution and adaptation capi-
tal, and can follow different sequences of non-renewable and renewable resource
use regimes. We identify the conditions that distinguish the optimal path and
explore their economic significance. Then we examine the properties of optimal
path for different combinations of initial pollution and adaptation. Finally, we
emphasize the role of durability of adaptation measures on the optimum, which
is represented by the depreciation rate of adaptation capital.

The third chapter focuses on the problem of adopting new technologies in a
micro-economic framework. It studies the behavior of firms when they face a
decision to invest either in a cheap but inefficient production capacity or in an
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expensive but efficient one, by taking into account the presence of a financial
constraint. We present a two-period dynamic game between two firms and show
that the equilibrium behavior is to invest in a mixture of both types of capacity.
Furthermore, under duopoly competition, we show the existence of a symmetric
equilibrium and two asymmetric equilibria with preemption. Accordingly, in
the equilibrium outcome , we may have either identical firms in terms of size
and technology mix, or a preempting firm being inefficient and large and its
opponent being efficient and small. We study different policy instruments aiming
to increase the use of efficient technologies and show the conditions under which
the instruments are successful or not.

The fourth and last chapter investigates the distributional impacts of a pollu-
tion tax by considering a society in which wealth is distributed heterogeneously
among households. We present a static general equilibrium model in which firms
produce with dirty and/or clean technologies, and show novel results on the ef-
fect of a pollution tax on factor prices. When dirty technologies are more capital
intensive, pollution tax leads to a reallocation of production factors towards
cleaner technology, changing the factor prices in favor of workers. As a result,
richer people in the society, who own a larger share of capital, lose a higher pro-
portion of their income compared to the low income households. Consequently,
the loss in their well-being due to the fall of income outweighs the benefits of a
better environment, and their support for a pollution tax declines. These results
propose a theoretical explanation for the question of why the rich may prefer a
low pollution tax.
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Résumé

Cette thèse étudie les mécanismes économiques concernant la transition vers des
technologies propres et examine les approches politiques pour atteindre le sentier
de transition socialement optimal. Elle examine les politiques économiques visant
à faire face au changement climatique, telles que l’adaptation et la taxation des
ressources non-renouvelables. En outre, elle examine les politiques économiques
visant à accrôıtre l’utilisation de technologies efficaces et identifie les cas pour
lesquels la politique atteint ses objectifs ou non. Elle analyse également l’impact
des inégalités de richesse sur le soutien politique aux taxes environnementales.

Le premier chapitre étudie la transition énergétique en utilisant un modèle de
croissance optimal dans lequel les ressources non-renouvelables et renouvelables
sont des substituts imparfaits. Nous caractérisons l’optimum social et montrons
que l’économie converge vers l’état stationnaire propre sur le long terme. Dans
un cadre d’équilibre général, une économie décentralisée converge vers le même
état bien qu’il n’y ait pas de régulation, mais avec plus de dommages environ-
nementales. Ensuite, nous étudions les propriétés de la trajectoire d’imposition
qui amène l’économie du “laissez-faire” à suivre le sentier optimal. Par cette
analyse, il se révèle que la trajectoire peut être toujours croissante ou toujours
décroissante selon les états initiaux et finaux de l’économie. Si les ressources re-
nouvelables ont la capacité de fournir tous les services d’énergie à long terme par
eux-mêmes, et si la croissance économique à long terme est assurée, alors la taxe
optimale est plus faible au début et elle augmente au fil du temps. En revanche,
si elles ne disposent pas de capacité de faire fonctionner toutes les activités et il
y a un besoin de décroissance, la taxe est plus élevée au début et diminue ensuite
au fil du temps.

Le deuxième chapitre étudie le rôle de la politique d’adaptation sur la transition
vers une économie propre. Il intègre la politique d’adaptation dans le problème
de l’extraction optimale des ressources non-renouvelables avec des externalités
de pollution, en mettant l’accent sur la politique d’adaptation en étant une va-
riable de stock. Nous caractérisons l’optimum social avec des fonctions générales,
accompagnées d’hypothèses économiquement raisonnables. En raison de la po-
litique d’adaptation, la possibilité d’exploiter simultanément les ressources re-
nouvelables et non-renouvelables -une transition- s’avère possible. Le sentier de
transition optimale dépend du niveau initial de la pollution et celui du capi-
tal d’adaptation, et peut suivre différentes séquences de régimes d’exploitation
des ressources non-renouvelables et renouvelables. Nous identifions les conditions
qui caractérisent le sentier optimal et proposons des explications économiques.
Ensuite, nous examinons comment le sentier optimal change en fonction de la
pollution initiale et d’adaptation. Enfin, nous soulignons le rôle de la durabilité
des mesures d’adaptation sur l’optimum, qui est représenté par le taux d’amor-
tissement du capital d’adaptation.

Le troisième chapitre se concentre sur le problème de l’adoption des nouvelles
technologies dans un cadre micro-économique. Il regarde le comportement des
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entreprises qui font face à une décision d’investir : soit dans une capacité de
production bon marché mais inefficace, soit dans une capacité plus chère mais
efficace, lorsqu’on prend en compte la présence d’une contrainte financière. Nous
présentons un jeu dynamique de deux périodes entre deux entreprises et nous
montrons que le comportement d’équilibre est d’investir dans une combinaison
des deux types de capacités. Dans un cadre de duopole, nous montrons l’existence
d’un équilibre symétrique et de deux équilibres asymétriques avec préemption.
En conséquence, à l’équilibre, nous pouvons avoir soit des entreprises identiques
en termes de taille et un mélange de technologies, soit une entreprise étant inef-
ficace mais grande par préemption et son adversaire étant efficace et petit. Nous
étudions les différents instruments politiques visant à inciter l’utilisation des
technologies efficaces et donnons les conditions dans lesquelles les instruments
ont réussi ou non.

Le quatrième et dernier chapitre examine les effets distributifs d’une taxe sur
la pollution en considérant une société dans laquelle la richesse est répartie de
manière hétérogène entre les ménages. Nous présentons un modèle d’équilibre
général dans lequel la production peut se faire a partir des technologies polluantes
et/ou des technologies plus propres. Nous montrons de nouveaux résultats par
rapport à la littérature concernant l’effet d’une taxe sur la pollution sur les prix
des facteurs. Lorsque les technologies polluantes sont plus intensives en capital,
une taxe sur la pollution conduit à une réallocation des facteurs de production
vers les technologies propres, en changeant les prix des facteurs en faveur des
travailleurs. Les plus riches de la société, qui possèdent une plus grande part du
capital, perdent une plus grande partie de leur revenu par rapport aux ménages
à faible revenu. Par conséquent, la perte de leur bien-être en raison de la baisse
des revenus l’emporte sur les avantages d’une meilleure qualité environnemen-
tale. Ces résultats proposent une explication théorique à la question de savoir
pourquoi les riches peuvent préférer une taxe sur la pollution plus faible.
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Chapter 1

Introduction

This dissertation investigates the economic principles underlying the tran-

sition to clean technologies and examines policy approaches to achieve the

socially optimal trajectory. It studies various policy measures to deal with

climate change, such as adaptation and taxation of non-renewable natu-

ral resources. Moreover, it examines the policy instruments that target

to incentivize using efficient technologies and identifies the conditions un-

der which the policy is successful or not. It also focuses on the issue of

heterogeneity among households in terms of their wealth and analyzes its

implications on agents’ willingness to support a pollution tax.

It contributes the areas of research on environmental economics, energy

and natural resource economics and economics of technological change by

using the theoretical tools of natural resource economics, macroeconomics,

microeconomics and industrial organization.

Motivation and objectives

The recent scientific evidence shows the consequences of the greenhouse

effect on the Earth’s temperature. The emphasis is put on the role of

carbon dioxide and humanity’s part in contributing its accumulation in
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2 Chapter 1. Introduction

the atmosphere. Accordingly, emissions of CO2 from fossil fuel combustion

and industrial processes contributed about 78% of the total greenhouse gas

emissions (IPCC, 2014). The global temperature increases as these gasses

accumulate in the atmosphere. In a related manner, the adverse effects

of climate change on social welfare, economic performance and ecosystem

have been a main research focus in recent decades (Nordhaus, 1994; Stern,

2007). The consensus is the necessity of a proactive policy action that

applies necessary measures to prevent climate change and enables resilience

to it.

The main approaches to deal with climate change are mitigation policy and

adaptation policy. These two approaches differ in their main objectives.

Mitigation policy aims to reduce the emission of greenhouse gasses by in-

centivizing utilization of cleaner and more efficient technologies. Taxation

of non-renewable resources, increasing the costs of polluting and inefficient

technologies, and subsidizing the use of renewable resources and efficient

technologies are some examples of mitigation policy instruments.

Adaptation policy aims to reduce the adverse effects of climate change

by improving the infrastructure and investing in specific capital. Some

examples of adaptation measures include adapting buildings to extreme

weather events, building flood defenses, raising the levels of dykes and

using scarce water resources more efficiently; which mostly require large

investments in capital and infrastructure.

The common point of both approaches is their dynamic nature, as it re-

quires time to adopt new technologies and change the way of production,

resource utilization and infrastructure. Therefore, a transition process is

necessary to reach their objectives. In this dissertation, we analyze both

policy approaches by focusing on their roles on the transition to a low-

carbon economy.

Transition from an economy that is based on the utilization of non-renewable

resources towards an economy that is based on renewable resources (the
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energy transition), green growth, adoption of new and cleaner technolo-

gies and the policy challenges related to those subjects are currently at the

center of ongoing academic debates (Acemoglu et al., 2012, 2016; Golosov

et al., 2014; van der Ploeg and Withagen, 2012a, 2014).

Furthermore, adaptation policy has recently became a heavily discussed

subject as a measure to deal with climate change. The growing literature

on this subject studies the relationship between adaptation and mitigation

policies in the long run (Bréchet et al. (2013)), the effect of catastrophic

risks (Zemel (2015)), the strategic effects (Buob and Stephan (2011) and

Bréchet et al. (2016)) and the optimal use of adaptation with carbon cap-

ture and storage (Moreaux and Withagen (2015)).

There are many open question that are still under discussion within these

ongoing debates. What is the optimal transition path to clean technolo-

gies when we consider imperfect substitution between natural resources,

and what are the consequences of not regulating the transition? What

is the optimal time profile of taxes on non-renewable resources to induce

the decentralized economy to follow the socially optimal transition path?

What is the role of adaptation policy on the transition? Should we pollute

more and adapt more, or the reverse? What are the consequences of mar-

ket structure on the behavior of firms when they face a decision to adopt

more efficient technologies, and do they bring any policy issues to take into

account? And what is the role of heterogeneity in society on the agents’

willingness to support an environmental policy? These questions are the

main focus of study in this dissertation.

The objective of this dissertation is to investigate the economic mecha-

nisms underlying the optimal transition, to analyze the two main pol-

icy approaches in detail and to contribute these debates by investigating

them within a framework of transition to clean technologies. The chapters

present results from different perspectives that include macro- and micro-

economic frameworks as well as consideration of heterogeneity within the
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society. The following section presents the frameworks used in these anal-

ysis.

Methodology and framework

The framework used in the first two chapters is the model of optimal re-

source extraction with pollution externalities. It addresses the problem of

how to extract a scarce resource when its consumption brings benefit but

also generates pollution which in turn inflicts damages to society. It uses

the methods of optimal control theory. The foundation of this framework

goes back to the infamous work of Hotelling (1931) which presents a simple

and powerful framework to analyze optimal extraction of a non-renewable

resource over time. It has been studied and extended broadly by many

economists within almost a century. Some important contributions are

on the theory of exhaustible resources (Dasgupta and Heal, 1974; Solow,

1974; Stiglitz, 1974), on the role of damages of pollution generated by non-

renewable resource use (Withagen (1994)), on the role of natural decay rate

of pollution (Tahvonen (1997)), and on the relationship between growth,

transition to renewable resources and optimal carbon tax (van der Ploeg

and Withagen (2014)).

The first two chapters take this framework as a benchmark to study the

optimal transition path to renewable resources, the optimal taxation of non-

renewable resources which is the main mitigation policy instrument, and

the role of adaptation policy on the transition by taking into account capital

nature of adaptation measures. The first chapter focuses on the optimum

and general equilibrium by also implementing the tools of optimal growth

theory, whereas the second chapter focuses only on the optimum of the

resource extraction problem with pollution externalities. As the framework

is defined in a general manner, the theoretical analysis yields results on the

economic mechanisms underlying the socially optimal transition and the

optimal trajectories of policy instruments.
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The last two chapters depart from this framework to focus on the different

dimensions of the issue. The third chapter uses the tools of industrial

organization theory to address the problem of technology adoption under

imperfect competition. Some pioneering works that use these tools are

Reinganum (1981) and Fudenberg and Tirole (1985), which address similar

issues such as a game theoretical approach to diffusion of new technologies

and preemption in technology adoption. These tools use the dynamic game

theory as methodology and they enable to study the behavior of firms

when they face a technology adoption decision in a market structure that

is imperfectly competitive. As one of the main objectives of mitigation

policy is to incentivize the utilization of more efficient technologies, this

framework brings results on the impacts of these policy instruments at the

micro-economic level by studying the equilibrium firm behavior.

The fourth chapter uses the framework developed in international trade

theory which is known as Heckscher-Ohlin theory. It originally addresses

the problem of specialization and factor allocation between two countries.

This framework has been applied to many other issues such as the inci-

dence of the corporation income tax (Harberger (1962)), the relationship

between trade, growth and environment (Copeland and Taylor (2004)) and

the incidence of environmental taxes (Fullerton and Heutel (2007)). Ap-

plying this framework to the problem of factor allocation between clean

and dirty technologies allows to analyze the effect of a pollution tax on

factor prices. In a general equilibrium framework that includes households,

firms, and the government, identifying these effects in turn yields results

on the distributional impacts of a pollution tax in a society that consists

of heterogeneity among households.

This dissertation uses these theoretical frameworks as benchmarks to ad-

dress its research questions, and it presents novel results on the economic

mechanisms and on the policy analysis. The next section briefly goes

through each chapter and presents their contributions.
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Contributions

The first chapter, which is a revised version of (Vardar, 2014), studies the

economic mechanisms underlying the energy transition by using a dynamic

general equilibrium framework. It takes into account the imperfect substi-

tutability of non-renewable and renewable resources in providing the energy

services necessary for production. Imperfect substitution between resources

arises due to technical and geographical constraints, as some resources re-

quire certain conditions to operate and they cannot be used in certain

economic activities. Imperfect substitution was considered by Michielsen

(2014) in a partial equilibrium framework with two-periods. The present

work departs from this study by considering a general equilibrium frame-

work with an infinite time horizon. The benchmark model used in this

chapter is the one studied by van der Ploeg and Withagen (2014), which

investigates the relationship between growth and transition to renewable

resources, as well as the path of optimal carbon tax. The problem of the

social planner is to decide on the paths of resource utilization, consump-

tion and investment in production capital when the utilization of scarce

non-renewable resources generates pollution that irreversibly accumulates

in the atmosphere. We present novel results on the transition path to re-

newable resource, on the trajectory of the optimal tax rate on fossil fuels,

and on the roles of renewable resources and the degree of substitution by

taking into account the imperfect substitution between resources.

We characterize the social optimum and decentralized equilibrium of the

economy that consists of households, resource extraction firms and final

good producing firms. We show that, due to the scarcity of non-renewable

resources, the economy will eventually reach a clean state in which it uses

only renewable resources. This is the case for both the social optimum and

the decentralized equilibrium. However, considering the damages caused by

pollution accumulation, what matters for welfare is the speed at which the

economy reaches the clean state. As the firms in a decentralized equilibrium
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do not internalize the negative externality of pollution, they extract more

and pollute more compared to the socially optimal levels, therefore the

transition takes longer and ends up with higher damages without policy

intervention. A tax on the use of non-renewable resources can correct

this market failure and induce the decentralized equilibrium to follow the

socially optimal transition path.

Furthermore, we study the optimal trajectory of a carbon tax which is

considered to be the main mitigation policy instrument to deal with cli-

mate change. We show that the optimal carbon tax can be increasing or

decreasing over time depending on the initial state of the economy as well

as the properties of the final green state that it will eventually reach. This

means that the level of current economic development, the cost efficiency of

renewable resources and the degree of substitution between non-renewable

and renewable resources play an important role on the determination of the

optimal time profile of a policy action. If the renewable resources have the

capacity to provide all energy services in the long run by themselves and

there is economic growth ahead, then the optimal tax is initially set low

and it increases over time. In contrary, if they are not able substitute non-

renewable resources in many activities and there is a need for degrowth,

then it is set high in the beginning and it decreases over time. The first

chapter presents results that contribute the line of research by Ulph and

Ulph (1994), van der Ploeg and Withagen (2012a), Golosov et al. (2014)

and van der Ploeg and Withagen (2014).

The second chapter (Bréchet and Vardar, 2016) incorporates adaptation

policy into the problem of optimal non-renewable resource extraction with

pollution externalities. It focuses on the capital nature of adaptation mea-

sures, as these measures mostly require large investments in infrastructure

and specific capital. The damage of pollution can be reduced by increasing

the stock of adaptation capital. This is done by investment in adaptation

capital. These investments has an increasing opportunity cost to society
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which raises due to allocating efforts to adaptation policies rather than

other uses that would provide benefit. We take into account the presence

of a renewable resource that is a perfect substitute to the non-renewable

one, and study the optimal trajectories of investment in adaptation and

resource use. The benchmark framework we use is the one studied in de-

tail and extended by Withagen (1994), Tahvonen (1997), van der Ploeg

and Withagen (2012a). We include adaptation policy as a stock variable

in that framework by using the vulnerability function that has been intro-

duced by Bréchet et al. (2013). As the way we consume fossil fuels (oil,

coal, natural gas, etc.) directly relates to the adaptation policy, making

the link between resource extraction and adaptation brings novel results

on the economic mechanism underlying adaptation policy and its role on

the transition to a low-carbon economy.

We study the optimal transition path with general functional forms un-

der economically reasonable assumptions. As adaptation policy affects the

marginal damage of pollution, the driver formula for the marginal cost of

non-renewable resource (the modified Hotelling rule) significantly departs

from the model without adaptation. The results show that, due to adapta-

tion policy, a possibility of a simultaneous resource use regime -a transition-

arises within a framework of two perfect substitute resources. This is be-

cause of the fact that adaptation policy reduces the marginal damage of

pollution which in turn drags the total marginal cost of the non-renewable

resource, making the non-renewable resource still beneficial to extract even

though it is as costly as the renewable resource. The damage of pollu-

tion that is generated by resource extraction is compensated by increasing

the stock of adaptation capital. However, this compensation mechanism

cannot go on forever because investment in adaptation has an increasing

opportunity cost. For a given level of pollution, there exists an efficient

level of adaptation capital that equalizes the marginal cost of maintaining

that level to the marginal benefit gained by reduction in damage of pollu-

tion. Above this level, it is no more beneficial to adapt more and extract



9

more. Showing this trade-off is a new result in the literature.

We characterize the optimum and show the existence of steady state. At

the steady state, the rent of resource is equalized to its marginal damage

and the stock of adaptation capital maintained at its level efficiently. We

then identify different regions of the behavior of the optimal path depend-

ing on the initial states of pollution and adaptation capital. The optimal

path can follow different sequences of resource use regimes which are only

non-renewable use, simultaneous use of resources and only renewable use.

For example, if the initial levels pollution and adaptation are low, then

it is optimal to use only non-renewable resource and increase adaptation

capital by large investments in the beginning. At a certain date, the cost

of non-renewable reaches that of renewable and a gradual transition starts.

Following a path of resource extraction on which the marginal damage is

compensated by increased adaptation, the optimal path reaches the steady

state and stays there indefinitely by using only renewable resource. In other

initial situations such as high pollution and low adaptation, it is never op-

timal to extract the non-renewable resource. Only renewable resource will

be used and adaptation capital will be adjusted to its efficient level.

We also put emphasis on the role of the depreciation rate of adaptation

capital, which can differ due to the nature of capital and damages, on

the efficient level of adaptation as well as on the transition to the renew-

able resource. When adaptation investments are oriented towards to less

durable capital (which means a high depreciation rate), the benefits of

adaptation are going to be limited due to high cost of maintenance. On

the contrary, more durable adaptation investments decreases its cost which

in turn leads to a longer transition to the renewable resource and larger

amount of resource extraction. These theoretical findings are contributions

to the literature that studies optimal extraction of non-renewable resources

and adaptation policy measures such as Withagen (1994), Tahvonen (1997),

van der Ploeg and Withagen (2012a), Bréchet et al. (2013), Zemel (2015)
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and Moreaux and Withagen (2015).

The third chapter (Fagart and Vardar, 2016) studies the adoption of a new

production tool technology in an imperfectly competitive market. Pro-

duction tool innovation (new machines, robots, vehicles etc.) differs from

process innovation (efficient management techniques, new recipes for pro-

cessing inputs etc.), as firms have to purchase and install new production

capacity that embody the new-efficient technology. We investigate the be-

havior of firms when they face a decision to invest either in a cheap but

inefficient production capacity or in an expensive but efficient one, by tak-

ing into account imperfect competition between firms and the presence of

a financial constraint in the investment opportunities of firms. The issue of

technology adoption is a heavily studied subject on the literature of indus-

trial organization and environmental economics, and our work contributes

to these literature by studying production tool innovation under imperfect

competition.

We present a dynamic game theoretical model of capacity investment be-

tween two firms that includes two periods. Firms compete in the level of

production capacity à la Cournot. We show that, when firms have no inter-

est to delay investment (meaning not financially constrained) they would

invest as soon as possible. This investments are only in the capacity using

the most efficient technology, and they invest in the quantities that are

optimal for given market parameters. However, when firms are financially

constrained, investing in the technology with the cheapest purchasing price

allows firms to grow faster in the short run. Accordingly, firms may wish

to invest in this inefficient technology in order to increase their short run

profits, even though it reduces their future profits by increasing their pro-

duction costs. The inefficient technology also generates a strategic effect:

it allows one firm to preempt its opponent, building more capacity in the

short run and reducing the future investment incentives of its opponent.

Showing these effects are new results in the literature on technology adop-
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tion.

We characterize the equilibrium strategies and show that there may exist

symmetric and asymmetric equilibria when the firms are financially con-

strained. In the symmetric equilibrium, firms invest in a mixture of two

technologies that maximize their discounted total profits. Each firm has

the same mixture of efficient and inefficient technology as its competitor,

and the same market share. An important result is that the total quantity

of production does not change when firms have access to larger credits,

an increase in financial endowment instead induces firms to produce the

same quantity but with more efficient capacity. There may also exist other

equilibria that are asymmetric, in which one of the firms overinvests in the

inefficient capacity in the first period. This allows the firm to increase its

total capacity in the short run and commit itself to a larger production in

the long run. The opponent reacts to this preemption by investing less in

the first period, focusing on the efficient capacity. The preempting firm

finishes with a larger market share, producing mostly with the inefficient

technology whereas the preempted firm stays smaller but more efficient.

When we compare the outcomes of monopoly and duopoly cases, we see

that firms in a duopoly competition use more old capacity compared to

a monopoly when there is a financial constraint. Moreover, we show that

some policy instruments such as increasing the investment price of inef-

ficient technologies may not yield the desired outcomes.Indeed, when the

price of inefficient capacity increases, firms have to decrease their total ca-

pacity since they are financially constrained. To avoid a too large reduction

of their total capacity, they decrease their investment in efficient capacity

to purchase more of the inefficient one. Hence, an increase in the purchas-

ing price of inefficient capacity may lead to an increase in its quantity used.

Other policy instruments work as expected, increasing the marginal cost

of inefficient technology (for example a pollution tax), and decreasing the

price of efficient technologies incentive firms to increase their investments
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in efficient capacity. These results contribute some strands of literature

in industrial organization, operation research, energy economics and cor-

porate investment (Fazzari et al., 1988; Feichtinger et al., 2008; Fudenberg

and Tirole, 1985; Gaimon, 1989; Meunier, 2010; Milliou and Petrakis, 2011;

Reinganum, 1981).

The fourth chapter (Arabzadeh and Vardar, 2015) investigates the policy

challenges in implementation of a pollution tax within a framework that

uses the modeling approach of international trade theory. We study the

distributional impacts of a pollution tax by considering a society in which

the wealth of households is heterogeneously distributed. The framework we

use is a static general equilibrium model that includes households, firms,

and the government. We study an economy in which firms produce a generic

good by using two different technologies, dirty and clean, with each of them

using capital, labor and pollution as an input to produce the final output.

This way of modeling production structure is called as joint production

technology and it has been used in some works such as Copeland and

Taylor (2004), Fullerton and Heutel (2007). In this framework, the factor

prices of capital and labor are determined endogenously in the equilibrium,

for a given level of pollution tax that is determined by the government. The

household revenues depend on the factor prices. Therefore, in the general

equilibrium, the effect of a pollution tax on household income is going to

vary when the factor endowments are distributed heterogeneously among

households.

The results show that when the dirty technologies are more capital inten-

sive, a pollution tax leads to a reallocation of production factors towards

cleaner technology, changing the factor prices in favor of workers. This

is because the reallocation of factors in more labor intensive technologies

decreases the productivity of capital, thus the interest rate always declines

with the pollution tax. But what happens to wage depends on two effects.

On the one hand, the increase in cost of pollution pushes the wage down-
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ward because a higher pollution tax induces a decline in factor productivity.

On the other hand, factor reallocation towards the labor intensive technol-

ogy pushes the wage upward since labor productivity rises. We show that

the dominating effect depends on the comparison of the relative intensi-

ties of pollution and capital between the two production technologies. In

particular, we show that the wage rate increases when the relative pollu-

tion intensity respect to capital is higher in the dirty technology, and vice

versa. These results differ from many studies in the literature that study

the effects of a pollution tax on factor prices (Copeland and Taylor (2004),

Fullerton and Heutel (2007), Dissou and Siddiqui (2014)).

On the household side, we investigate the household’s decision about its

preferred pollution tax and we show the trade-off that they face between

a higher consumption and a better environmental quality. We identify

the two opposing effects that determine the role of wealth on households’

willingness to support a pollution tax. The first one is the satiation effect,

which says that the households with high wealth consume more and their

marginal utility of consumption is low, thus they would be more willing to

sacrifice from their consumption for a better environmental quality. The

second channel is the income burden effect, which says that the households

with high wealth have large capital investments in the market, thus, when

the return of capital falls their revenues are going to be reduced more

by the pollution tax compared to low-income households. Accordingly,

whether the pollution tax increases or decreases with wealth depends on

which one of these effects dominates. We show that, in fact, it depends

on the pollution tax elasticity of consumption that is determined by the

pollution tax elasticities of the factor prices.

In the general equilibrium, we show that the richer people in the society

who own a larger share of capital lose a higher proportion of their income

compared to the low income households. Consequently, the loss in their

well-being due to the fall of income outweighs the benefits of a better envi-
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ronment, and their support for a pollution tax declines. These results pro-

pose a theoretical explanation for the question of why the rich may prefer a

low pollution tax, and they contribute the line of research by Copeland and

Taylor (2004), Fullerton and Heutel (2007), Chiroleu-Assouline and Fodha

(2014) and Dissou and Siddiqui (2014).
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Chapter 2

Optimal energy transition and

taxation of non-renewable

resources

Baris Vardar

2.1 Introduction

Energy transition refers to the process in which renewable resources are sub-

stituted for non-renewables over time and the economy eventually reaches

a green, no-polluting state. Due to the dynamic nature of the problem,

what matters for energy transition is not only the current level of policy

measures but also their planned time paths. When policies are suboptimal,

in terms of their levels and paths, the speed of transition can be too slow

or too rapid. The consequence of a too slow transition is that the envi-

ronment will be damaged more than the socially optimal level. Similarly,

when the transition is too rapid, the substitution costs -which depend on

the degree of substitution between resources- will offset the environmental

benefits. These issue raise the importance of studying the optimal pol-

icy measures for a decentralized economy that goes through the course of

17
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energy transition.

What is the optimal transition path to clean technologies and what are

the consequences of not regulating the transition? What is the optimal

time profile of taxes on non-renewable resources to induce the decentral-

ized economy to follow the socially optimal transition path? Should we tax

low at the beginning and tighten it over time so that we let the economy

develop while giving the firms increasingly higher incentive to substitute

the renewables? Or should we tax very high and loosen it over time so

that we initially stimulate the use of renewables? In this study, we address

these classical questions by first characterizing the optimal transition path

to clean technologies and identifying its determinants. Second, we char-

acterize the optimal path of taxation on the non-renewable resources and

we identify the main channels that it depends on by comparing the social

optimum with laissez-faire equilibrium. As a novel approach, we take into

account the imperfect substitution between non-renewable and renewable

resources in a general equilibrium setting and we analyze the role of the

degree of substitution between them.

The debate on the optimal taxation path of non-renewable resources was

pioneered by Sinclair (1994) and Ulph and Ulph (1994). Both studies argue

that the time profile of taxation is all that matters for regulating non-

renewable resource extraction. On the one hand, Sinclair claims that the

ad-valorem tax rate has to be initially set to a high value and should fall over

time to postpone current extractions and to smooth consumption of non-

renewables. On the other hand, Ulph and Ulph show cases where the tax

rate should first rise and then fall. Other studies such as Chakravorty et al.

(2006) pointed out that the time path of optimal carbon tax is inverted-U

shaped when we consider an admissible carbon stabilization cap. Recently,

van der Ploeg and Withagen (2014) identify the conditions under which the

optimal tax rate rises or decreases by establishing four different regimes of

energy use depending on the initial stocks of oil and capital. They also
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discuss the role of a renewable resource which is a perfect substitute of oil.

Golosov et al. (2014) also contribute the debate by stating that the optimal

tax rate should be proportional to output and they show that whether the

optimal tax rises or falls depends on the output growth rate and the increase

rate of non-renewable resource price.1 But these studies do not focus on

the course of gradual and smooth transition to a clean economy as well as

the presence of the renewable resources that are used simultaneously with

non-renewables at all times.2

The framework in this work is an optimal growth model with capital and

energy services as factors of production, which is similar to the one in

van der Ploeg and Withagen (2014). We consider an economy that con-

sists of households, final good producing firms and resource extraction

firms. The firms use capital and energy services to produce the final good.

Energy services are provided by non-renewable and renewable resources,

which are imperfect substitutes. The marginal cost of renewable resource

is exogenously given and constant while the shadow price of non-renewable

resource is endogenously determined. The extraction cost of non-renewable

resource increases as the firms extract more of it (à la Heal (1976)). More-

over, utilization of non-renewable resource damages the environment in an

irreversible way.3

The results show that it is always optimal to use both non-renewable and

renewable resources simultaneously. As these resources are imperfect sub-

stitutes, there are situations in which a resource is rational to use even

1Under some specific assumptions on the utility, production and damage functions
and on the accumulation dynamics of capital and pollution.

2For example, van der Ploeg and Withagen (2014), by considering non-renewable and
renewable resources as perfect substitutes, show transition towards a cleaner economy
with simultaneous use of resources but under specific conditions. Golosov et al. (2014)
consider many non-renewable and renewable resources being used simultaneously and
in their numerical example they use a CES-type of energy production, but they do not
investigate the optimal transition path and the role of renewable resources.

3See Tahvonen and Withagen (1996) and Toman and Withagen (2000) for a compari-
son of policy outcomes with reversible and irreversible pollution accumulation dynamics.
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though it is the expensive one.4,5 Furthermore, as extraction cost increases

over time, it is optimal to reduce the share of non-renewables and sub-

stitute renewables in production. When the utilization of non-renewable

resource approaches zero, the optimal path converges to a steady state in

which only the renewable resource is used. An important result is that

the decentralized economy converges to the same steady state in terms of

capital and consumption whether there is a regulator intervention or not.

What matters for welfare, however, is the speed at which the economy

approaches the clean state - the energy transition. The optimal energy

transition depends on the level of environmental damages that the society

is willing to accept in the long run.

Even though the profit-motivated firms do not internalize the environmen-

tal damages of non-renewable resource extraction in the laissez-faire econ-

omy, the equilibrium path also converges to the clean state in the long

run. On this path, households consume more and firms extract the non-

renewable resource more rapidly, thus damage the environment more and

faster compared to the optimal transition path. The energy transition is

slower than the optimal one in the absence of regulation. The policy maker

can correct this market failure by taxing non-renewable resource extraction.

The optimal tax rate is equal to the present value of all future marginal

damages caused by one unit of non-renewable resource extraction. Its

formula includes the endogenous net rental rate of capital, the marginal

damages to the environment and the marginal utility of consumption. Ac-

cordingly, the optimal tax rate depends on the endogenous variables such

as the capital stock, consumption, cumulative extraction and the shadow

4Imperfect substitution captures the technical or geographical constraints in substi-
tution possibilities. For instance, some resources require specific geographical properties
and the firms cannot use them even though they are the cheapest. Similarly, in some in-
dustries it may take time to adopt new technologies, hence the cheaper resource cannot
be used immediately.

5This is consistent with the historical data on resource use. See Mattusch (2008)
which shows that non-renewable resource use for energy services dates back to 371
and 287 BC and until industrial revolution nearly all energy services were provided by
renewable resources.
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price of non-renewable resource, as well as the exogenous factors such as the

marginal cost of renewable resource and the degree of substitution between

non-renewable and renewable resources. We investigate how these different

factors affect the optimal tax rate. For example, a larger capital stock leads

to a lower interest rate -hence a higher value of the future- which in turn

makes the environmental quality more valuable and thus raises the optimal

tax rate. A larger capital stock also gives the firms more incentive for ex-

traction to fuel a larger economy that has to be corrected by a higher tax

rate. Similarly, a higher level of consumption will lead to a lower marginal

utility of consumption, more satiated households will care more about the

environmental damages and thus the optimal tax rate will rise.

The time profile of optimal taxation depends on the initial state of the

economy that is defined by the level of capital stock, the level of cumulative

non-renewable resource extraction and the level of pollution, and it is either

always increasing or always decreasing.6 This is consistent with the recent

studies such as van der Ploeg and Withagen (2014), Golosov et al. (2014).

Moreover, we emphasize another point that is not shown in the literature:

the optimal taxation path also depends on the properties of the final (clean)

state that the optimal path converges which is determined by the marginal

cost of renewables and the degree of substitution between non-renewable

and renewable resources.

In the final state of the economy, when only renewable resources are used,

the production suffers from the technological characteristics that make non-

renewable and renewable resources imperfect substitutes. These techno-

logical characteristics are the technical constraints, the geographical con-

straints and the differences in the opportunity costs of using renewable

6Despite that this result is similar to Farzin and Tahvonen (1996), the mechanism
leading to it is different. Farzin and Tahvonen consider a depreciating carbon stock in
the atmosphere together with irreversible carbon accumulation which leads to different
taxation profiles. In the present paper, however, we only consider that non-renewable
resource extraction damages the environment in an irreversible way but we may have
different taxation profiles according to different initial and final levels of capital stock
and pollution.



22 Chapter 2. Optimal energy transition

resources in production. A question arises at this point: are the renewable

resources capable of sustaining today’s level of economic activities by them-

selves? On the one hand, if renewable resources are good substitutes for

non-renewables then economic growth can keep on, the capital stock and

consumption can increase over time as it is considered by many studies. In

this case the optimal tax rate has an increasing time profile. On the other

hand, if renewable resources are not good substitutes for non-renewables

there will be a need for degrowth - meaning that we may need to reduce the

level of capital stock, production and consumption over time to sustain a

clean economy in the long run. In this case, the optimal tax rate is initially

set to a very high level and it decreases over time. 7

The renewable resource plays a crucial role on both the level and the time

profile of optimal taxation. Expensive renewable resources increase the in-

centive of firms to extract more non-renewables. Therefore, the optimal

tax rate rises and its time profile shifts up when the cost of renewable re-

source becomes higher. The role of the degree of substitution between non-

renewable and renewable resources depends on the time period. A strong

degree of substitution makes the economy to benefit from the cheaper re-

source by allocating it in high proportions, and when the shadow price

of non-renewable resource exceeds that of renewable, a rapid substitution

of the renewable resource takes place.8 Consequently, when the degree of

substitution is high, the optimal tax rate is initially set to a high value and

its time profile is remains higher in the short and medium run but lower in

the long run compared to the the case of low degree of substitution.

The results of present work differentiates from the ones in van der Ploeg

and Withagen (2014) in several aspects. Consideration of imperfect substi-

7A similar comparison can be made for two countries with different capital stocks.
For the country with a capital stock that is lower than its long run (clean state) value, the
optimal tax is initially low and increasing, hence not creating a burden for growth while
stimulating energy transition over time. However, for the country which accumulated
capital higher than its long term value, hence over-producing and over-consuming, the
optimal tax is initially set to a high value and decreases over time.

8As in the Herfindahl (1967) principle.
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tution reduces the optimal path to include only a regime of simultaneous

resource use. This eliminates the cases in which there is an instantaneous

switch to the renewable resource. The convergence to a clean state and us-

ing non-renewable resources (even though in small quantities) in the long

run is a realistic outcome, and it allows us to compare the optimal path with

the path of transition without regulation. Moreover, it allows us to em-

phasize the roles of renewable resources and the degree of substitution be-

tween resources on the optimal transition path as well as on the trajectory

of the optimal taxation path. Accordingly, as the cost and substitutabil-

ity of renewable resource determine the final state, they have significant

effect on the paths of resource use and regulation. In addition, Michielsen

(2014) also considered imperfect substitution between resources in a partial

equilibrium framework with two-periods, and studied the issues of Green

Paradox and spatial carbon leakage. The present work departs from this

study by considering a general equilibrium framework with an infinite time

horizon and focusing on the issue of transition to a clean economy.

This work also relates to the wide literature on the optimal taxation of

non-renewable resources as well as on the transition to a renewable re-

source. Early studies such as Withagen (1994) showed that the socially

optimal extraction path consumes less than the laissez-faire path. Hoel

and Kverndokk (1996) considered increasing extraction costs and pollu-

tion with natural absorption and showed that the tax rate should first rise

then fall. Farzin (1996) and Farzin and Tahvonen (1996) showed the tax-

ation path may either be arbitrary, rising or first falling then rising over

time. In the last decade, studies such as Goulder and Mathai (2000), Schou

(2002), van der Zwaan et al. (2002), Grimaud and Rougé (2005), Groth and

Schou (2007), Grimaud and Rougé (2008), Lafforgue et al. (2008) and Gri-

maud et al. (2011) investigated the roles of technical progress, directed

technical change, energy substitution, carbon sinks, innovation, learning-

by-doing and endogenous growth. Belgodere (2009) emphasized that the

time path of optimal tax may differ and the replacement of renewables
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may change the outcome dramatically. There were also other approaches

such as Groom et al. (2005) on the role of discount rate and Daubanes and

Grimaud (2010) on the role of international heterogenities. More recently,

Aghion et al. (2012) stated that increasing taxes are needed to allow the

clean technologies to overtake the dirty ones. van der Ploeg and Withagen

(2012a,b, 2013) and van der Ploeg (2014) studied the relationship between

taxes, backstop technology and the Green Paradox. Rezai et al. (2012)

presented a comparison of the results on taxation with additive and multi-

plicative damages and Gaudet and Lasserre (2013) provided an analytical

overview of the different types of taxes on non-renewable resources.

The remainder of the chapter is structured as follows: Section 2 introduces

the model framework, preferences and technology. Section 3 characterizes

the social optimum. Section 4 presents the decentralized framework, char-

acterizes the equilibrium path and establishes the optimal taxation rule.

Section 5 presents the results of the simulations and Section 6 concludes.

2.2 The model

Time is continuous and infinite. There is an infinitely-lived representative

household that gains utility by consuming the final good. The economy

has two sectors: final good production and resource extraction. In the

final good production sector, capital is used with non-renewable and re-

newable resources which are imperfect substitutes. The extraction of the

non-renewable resource damages the environment in an irreversible way

which in turn reduces the total welfare.

The instantaneous total welfare (V (.)) consists of the household’s utility

from consumption (U(.)) and non-renewable resource extraction’s damage

to the environment (D(.)). We consider the following additively separable

form:

V (C,Z) = U(C)−D(Z)
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where C denotes consumption of the final good and Z denotes cumulative

extraction of the non-renewable resource (Zt = Z0 +
∫ t
s=0

Edsds with Edt

is the instantaneous quantity of extraction). The utility of consumption

is increasing and strictly concave in C (UC(C) > 0 and UCC(C) < 0) and

the damage of cumulative extraction is increasing and strictly convex in Z

(DZ(Z) > 0 and DZZ(Z) > 0)9.

Production of the final good requires capital (K) and energy (E). Energy

is obtained from non-renewable (dirty) (Ed) and renewable (clean) (Ec)

resources which are imperfect substitutes. The function H(.) captures the

imperfect substitution and it is in CES form, H(Ed, Ec) = (γE
1− 1

ε
d + (1−

γ)E
1− 1

ε
c )

ε
ε−1 . In this specification, γ ∈ (0, 1) is a structural parameter

that depends on the shares of non-renewable and renewable resources in

ability to provide energy services. A value of γ higher than 0.5 would

mean that non-renewable resources have a better ability in providing energy

services with the current technology compared to that of renewables. The

parameter ε denotes the degree of substitution; as we consider imperfect

substitution it requires to assume ε > 1.

The use of CES functional specification is a adequate way to capture imper-

fect substitution between resources because it leads to different marginal

productivities for resources. For example, making a unit investment in

renewables by installing a new solar panel in a region where there is not

enough sunshine and making a unit investment in non-renewables by build-

ing a new well in a resource-rich region will not have the same effect on

energy gain as well as on aggregate production. The function H(.) allows

us to capture these differences. In CES specification, these technological

characteristics are embodied in the technological share parameter (γ) and

the degree of substitution parameter (ε).

9In the rest of the text the subscript for a function denotes its derivative respect
to a variable or argument of the function. For example, f1(.) denotes the derivative of
function f respect to its first argument and fx(.) denotes the derivative of function f
respect to the variable x.
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The production function F (.) is Cobb-Douglas, F (K,E) = KαEβ where

α > 0 and β > 0 are the output elasticities of capital and energy in

production respectively, and α + β ≤ 1. Embedding the different types

of resources for energy services in the production function leads to the

following form:

F (K,H(Ed, Ec)) = Kα((γE
1− 1

ε
d + (1− γ)E

1− 1
ε

c )
ε
ε−1 )β

The extraction of non-renewable resource is costly. This cost depends on

the level of cumulative extraction (Z). This approach, which was adopted

by Heal (1976), Hoel and Kverndokk (1996), d’Autume (2012) and many

others before, emphasizes that non-renewable resources are not limited by

the nature but there are economic limitations in the long run. As more

of the resource is extracted , the average extraction cost will increase over

time. This cost consists of both direct and indirect effects of cumulative

extraction such as searching costs for new resources and technical innova-

tion expenditures to harvest deeper deposits. G(Z) denotes the “average

extraction cost” and we assume that it is increasing and strictly convex in

Z (GZ(Z) > 0 and GZZ(Z) > 0). 10

2.3 Social optimum

The social planner solves the following problem:

max
{Ct,Edt,Ect}

∫ ∞
t=0

e−ρt(U(Ct)−D(Zt))dt

K̇t = F (Kt, H(Edt, Ect))−G(Zt)Edt − πcEct − Ct (2.1)

Żt = Edt (2.2)

Ct, Edt,Ect ≥ 0 ∀t

with K0 > 0 and Z0 > 0 are given.

10Throughout the text we refer G(Z) as “extraction cost” to keep the text simple.
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where the marginal cost of renewable resource is exogenously given and

denoted as πc. The current-value Hamiltonian function associated to this

problem is:

HSO
t = U(Ct)−D(Zt)+λt (F (Kt, H(Edt, Ect))−G(Zt)Edt − πcEct − Ct)−µtEdt

where λt denotes the co-state variable associated to capital and is inter-

preted as the shadow value of capital. Similarly, µt denotes the co-state

variable associated to cumulative extraction.

The necessary conditions for an optimum are:

UC(Ct) = λt (2.3)

Edt ≥ 0, λt (F2(Kt, H(Edt, Ect))HEd(Edt, Ect)−G(Zt))− µt ≤ 0

(2.4)

Ect ≥ 0, F2(Kt, H(Edt, Ect))HEc(Edt, Ect)− πc ≤ 0 (2.5)

λ̇t = (ρ− F1(Kt, H(Edt, Ect)))λt (2.6)

µ̇t = ρµt − λtGZ(Zt)Edt −DZ(Zt) (2.7)

lim
t→+∞

e−ρtλt = 0 (2.8)

lim
t→+∞

e−ρtµt = 0 (2.9)

together with the equations (2.1) and (2.2). In order to proceed on resolu-

tion, we define the shadow price of non-renewable resource as follows:

πdt = G(Zt) + µt/λt (2.10)

This definition states that the shadow price of non-renewable resource is

endogenously determined by the average extraction cost and the shadow

value of non-renewable resource in capital units, in other words, the rent

of resource. By taking the time derivative of (2.10) and using (2.2), (2.3),
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(2.6) and (2.7), we obtain the law of motion of πd given by

π̇dt = F1(Kt, H(Edt, Ect)) (πdt −G(Zt))−DZ(Zt)/UC(Ct). (2.11)

Equation (2.11) is the modified Hotelling rule. Using (2.10) we can rewrite

condition (2.4) as

Edt ≥ 0, F2(Kt, H(Edt, Ect))HEd(Edt, Ect)− πdt ≤ 0. (2.4′)

Conditions (2.4′) and (2.5) are complementary slackness (c.s.) conditions

and they show that a type of resource will be used if its marginal pro-

ductivity is equal to its marginal cost. As non-renewable and renewable

resources are imperfect substitutes, on the optimal path both of them is

always used simultaneously, that is, the equalities in conditions (2.4′) and

(2.5) always hold. This property allows us to solve F2(.)HEd(.) = πd and

F2(.)HEc(.) = πc and obtain the optimal quantities of non-renewable and

renewable resources (E∗dt(Kt, πdt, πc) and E∗ct(Kt, πdt, πc)). Using these re-

sults together with conditions (2.1− 2.11) we find the differential equation

system in (Kt, Zt, Ct, πdt). Optimal trajectories should satisfy the following:

K̇t = F (Kt, H(E∗dt(.), E
∗
ct(.)))−G(Zt)E

∗
dt(.)− πcE∗ct(.)− Ct (2.12)

Żt = E∗dt(Kt, πdt, πc) (2.13)

Ċt/Ct = σ(F1(Kt, H(E∗dt(.), E
∗
ct(.)))− ρ) (2.14)

π̇dt = F1(Kt, H(E∗dt(.), E
∗
ct(.)))(πdt −G(Zt))−DZ(Zt)/UC(Ct) (2.15)

As the shadow price of non-renewable resource increases, the economy re-

duces its share in energy services, and it eventually converges to a regime

in which only the renewable resource is used. To find the state that

the optimal path converges, we need to compute the marginal produc-

tivity of energy services as the optimal resource allocation and its path

depends on it. In the optimum, it reduces to F2(Kt, H(E∗dt(.), E
∗
ct(.))) =

(γεπ1−ε
dt + (1 − γ)επ1−ε

c )
1

1−ε which leads us to define the energy price index
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as follows:

Definition 2.1. Let πH be the energy price index given by:

πHt(πdt, πc) = (γεπ1−ε
dt + (1− γ)επ1−ε

c )
1

1−ε

The energy price index has a limit for a given marginal cost of renewable.

As the shadow price of non-renewable increases it tends to a constant,

limπdt→+∞ πHt(πdt, πc) = πc(1− γ)
ε

1−ε , that is illustrated in fig. 2.1.

Note: For πc = 1, γ = 0.5, high degree of substitution ε = 10 and low
degree of substitution ε = 3.

Figure 2.1 – The energy price index with respect to the shadow price of
non-renewable resource

Fig. 2.1 shows that lower degree of substitution results as a higher value of

the energy price index for any given non-renewable resource cost (with the

exception of the case when the two marginal costs are equal). Energy price

index is the marginal productivity of energy services, by definition, and

the marginal productivity of energy services is decreasing in their utiliza-

tion. Therefore, a lower degree of substitution results as lower utilization

of energy services compared to the high degree of substitution case.

In addition, the closer the energy price index to its limit, the lower the

utilization of non-renewable resources. As can be seen from the figure, in
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the case of high degree of substitution the energy price index approaches

its limit right after the cost of non-renewables exceeds that of renewables.

This means that renewable resources are substituted as quickly as possible

when they became the cheaper resource, thanks to the high substitution

possibility. In contrary, lower degree of substitution case shows that the

cost of non-renewables has to increase much more to have the energy price

index get closer to its limit, meaning that much more of non-renewable

resource would be used even if they have very high cost compared to the

renewables.

In the following we will investigate the limit case and investigate the state

that the optimal path converges in the long run. The economy that simulta-

neously uses the non-renewable and renewable resources will asymptotically

converge to the regime in which it uses only the renewable resource with

the following conditions:

lim
t→+∞

π̇dt = 0 (2.16)

lim
t→+∞

πHt(πdt, πc) = πc(1− γ)
ε

1−ε (2.17)

lim
t→+∞

CS(Kt, Zt)− CR(Kt) = 0 (2.18)

Condition (2.16) is derived from the definition of shadow price of non-

renewable resource (2.10). It means that the shadow value of non-renewable

resource must approach zero, thus the resource rent must vanish over time.

Condition (2.17) ensures that the energy price index approaches its limit,

thus the non-renewable utilization approaches zero. In condition (2.18),

CS(.) and CR(.) denote the optimal consumption as a function of the state

variables in simultaneous use regime and only renewable use regime respec-

tively. This condition is to ensure that the state (K,Z) and co-state (λ, µ)

variables of the optimal control problem cannot jump, thus the trajectories

of consumption, capital stock, pollution and resource use will be continuous

over time.
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In the regime that the optimal path converges, the production function

reduces to

F (K,H(Ed = 0, Ec)) = F̂ (K,Ec) = KαEβ
c (1− γ)

βε
ε−1 . (2.19)

Equation (2.19) contains the features resulting from the consideration of

imperfect substitution. Had we considered perfect substitution between

resources, this production function would be F̂ (K,Ec) = KαEβ
c . The ad-

ditional term ((1−γ)
βε
ε−1 ) reduces production for given quantities of capital

and renewable resource and it reflects the limitation of renewable resources

in the absence of utilization of non-renewables.

Using condition (2.5), we obtain the optimal amount of renewable resource

use, E?
c (K). Finally, conditions (2.3, 2.5 and 2.6) allow us to obtain the dif-

ferential equation system in (K,C). Optimal trajectories of the asymptotic

clean regime should satisfy the following:

K̇t = F (Kt, H(0, E?
ct(Kt)))− πcE?

ct(Kt)− Ct (2.20)

Ċt/Ct = σ(F1(Kt, H(0, E?
ct(Kt)))− ρ) (2.21)

Żt = 0 (2.22)

π̇dt = 0 (2.23)

As the extraction of non-renewable resource approaches zero, the dynamics

of endogenous variables in equations (2.12− 2.15) will approach the above

differential equation system (2.20 − 2.23). This system has a stationary

point (Kss, Css) which can be obtained by solving the following equations:

F1(Kss, H(0, E?
c (K

ss))) = ρ (2.24)

Css = F (Kss, H(0, E?
c (K

ss)))− πcE?
c (K

ss) (2.25)

The system given in equations (2.20 − 2.21) has a unique trajectory that

leads to the steady state (Kss, Css). This unique trajectory allows us to
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find the optimal consumption rule in the asymptotic regime, CR(K), which

we referred in condition (2.18). We can see that the steady state depends

on the level of production and the marginal productivity of capital when

only renewable resource is used. This level highly depends on function H(0,

E?
c (K

ss), which is the amount of energy services that can be provided by

only renewable resource. If the degree of substitution is low, this amount

will decrease which in turn lead to a decline in the steady state level of

capital. This decline will modify the optimal path. Moreover, the steady

state does not depend on the pollution due to the assumption of additive

separability between utility of consumption and damage of pollution. In the

contrary case, as the marginal utility of consumption depends on the level

of pollution, the steady state levels of capital and consumption changes

taking into account the level of pollution. In this analysis, we only focus

on the case additively separable utility.

Following proposition states the properties of the optimum.

Proposition 2.1. For a given level of pollution sufficiently low, in the

optimum, the share of the non-renewable resource gradually reduces and

the optimal path converges to a regime in which only the renewable is used.

There exists a unique optimal path {Kt, Zt, Ct, πdt}∞t=0 starting from any

initial state K0 > 0, Z0 > 0 that follows the dynamics in equations (2.12-

2.15) and satisfies conditions (2.16-2.18). This path converges to the steady

state (Kss, Css) given in (2.24,2.25).

Proof. See Appendix A1.

According to Proposition 1, the optimal path of non-renewable and renew-

able resource use is {E∗dt(Kt, πdt, πc), E
∗
ct(Kt, πdt, πc)}∞t=0. Consequently, the

optimal path of renewable use converges to {E?
c (Kt)}∞t=0.
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2.4 Equilibrium analysis

Let us turn to the equilibrium analysis. We assume that there are large

number of final good producing firms and resource extraction firms which

produce with the same technology and there is perfect competition in all

markets. We first investigate the optimal behavior of agents and then

characterize the equilibrium. This will allow us to study the effects of taxes

on the decentralized economy as well as to obtain the optimal taxation rule

that leads to the socially optimal transition path.

2.4.1 Household

The representative household solves:

max
{Ct}

∫ ∞
t=0

e−ρt(U(Ct))dt

s.t. K̇t = rtKt + Πt + Tt − Ct (2.26)

Ct ≥ 0 ∀t

with K0 > 0 is given.

where rt is the net rental rate of capital, Πt profits from the ownership of

final good producing firms and resource extraction firms. Tt denotes the

government transfers and it is equal to the total tax revenues.

The current-value Hamiltonian function associated to this problem is given

by:

HH
t = U(Ct) + λt (rtKt + Πt + Tt − Ct)
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First order conditions for optimality are:

UC(Ct) = λt (2.27)

λ̇t/λt = ρ− rt (2.28)

lim
t→+∞

e−ρtλt = 0 (2.29)

Solving (2.27) and (2.28) gives the following well-known Ramsey rule for

consumption:

Ċt/Ct = σ(rt − ρ) (2.30)

2.4.2 Final good producing firm

The representative final good producing firm aims to maximize its profits

for given input prices. The programme of the firm is:

max
{Kt,Edt,Ect}

F (Kt, H(Edt, Ect))− rtKt − πdtEdt − πcEct

In the case where the resource prices are positive and finite (πdt ∈ (0,+∞)

and πc ∈ (0,+∞)) the firm uses both type of resources simultaneously.

The first order conditions are:

F1(Kt, H(Edt, Ect)) = rt (2.31)

F2(Kt, H(Edt, Ect))HEd(Edt, Ect) = πdt (2.32)

F2(Kt, H(Edt, Ect))HEc(Edt, Ect) = πc (2.33)

By solving (2.32) and (2.33) we obtain the optimal amount of non-renewable

and renewable resources (E?
dt(Kt, πdt, πc) and E?

ct(Kt, πdt, πc)). As a result,

the condition for firm profit maximization reduces to:

F1(Kt, H(E?
dt(.), E

?
ct(.))) = rt (2.34)
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2.4.3 Non-renewable resource extracting firm

The representative non-renewable resource extracting firm maximizes the

discounted value of its intertemporal profits by taking into account the

tax rate and the extraction cost which increases by cumulative extraction.

We introduce the taxation of non-renewable resource as the amount paid

per unit of extraction. This application can be considered as a wedge

on non-renewable resource extraction in this decentralized economy. The

extraction firm solves the following problem:

max
{Edt}

∫ ∞
t=0

e−Rt((πdt − τt)Edt −G(Zt)Edt)dt

s.t. Żt = Edt (2.35)

Edt ≥ 0 ∀t

with Z0 > 0 is given.

where τt denotes the per unit tax rate of the resource at time t and Rt

denotes cumulative interest rate as Rt =
∫ t

0
rsds. The current-value Hamil-

tonian function associated to this problem is:

HEX
t = (πdt − τt)Edt −G(Zt)Edt − µtEdt

The first order conditions for optimality will be as follows:

πdt =G(Zt) + τt + µt (2.36)

µ̇t =rtµt −GZ(Zt)Edt (2.37)

lim
t→+∞

e−Rtµt = 0 (2.38)

In equation (2.36), the taxation appears as a driver of the non-renewable

resource price together with the extraction cost and resource rent. We solve
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(2.36) and (2.37) to obtain the optimal law of motion of πd:

π̇dt = τ̇t + rt(πdt −G(Zt)− τt) (2.39)

The relationship in equation (2.39) is the Hotelling rule for the market

economy. It depends on the net rental rate of capital, extraction cost and

taxation. It also shows that the regulator has to determine both the level

and the time profile of taxation in order to control the resource extrac-

tion. Note that it reduces to the standard Hotelling rule in the absence of

taxation and extraction cost.

2.4.4 Equilibrium

The competitive equilibrium definition we consider is as follows:

Definition 2.2. Given the time profile of taxation {τt}∞t=0, initial capital

stock (K0) and cumulative extraction (Z0), the intertemporal competitive

equilibrium is such that

i the time profiles of consumption {Ct}∞t=0, capital stock {Kt}∞t=0 and net

rental rate of capital {rt}∞t=0 maximize the discounted value of house-

hold’s intertemporal utility, thus (2.26) and (2.30) hold for each t,

ii the time profiles of capital stock {Kt}∞t=0, non-renewable resource price

{πdt}∞t=0, net rental rate of capital {rt}∞t=0, non-renewable resource use

{Edt}∞t=0 and renewable resource use {Ect}∞t=0 maximize the final good

producing firm’s profit at each instant, thus (2.34) holds for each t,

iii the time profiles of net rental rate of capital {rt}∞t=0, non-renewable re-

source price {πdt}∞t=0, non-renewable resource use {Edt}∞t=0 and cumu-

lative extraction {Zt}∞t=0 maximize the discounted value of extraction

firm’s intertemporal profits, thus (2.35) and (2.39) hold for each t.
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Using equations (2.26, 2.30, 2.34, 2.35, 2.39) we obtain the differential equa-

tion system in (K,Z,C, πd) that denotes the law of motion for endogenous

variables in the intertemporal equilibrium. This system is given by:

K̇t = F (Kt, H(E?
dt(.), E

?
ct(.)))−G(Zt)E

?
dt(.)− πcE?

ct(.)− Ct (2.40)

Żt = E?
dt(Kt, πdt, πc) (2.41)

Ċt/Ct = σ(F1(Kt, H(E?
dt(.), E

?
ct(.)))− ρ) (2.42)

π̇dt = τ̇t + F1(Kt, H(E?
dt(.), E

?
ct(.)))(πdt −G(Zt)− τt) (2.43)

Let us first consider the decentralized equilibrium in the absence of taxa-

tion. We define the laissez-faire economy as the tax rate on non-renewable

resource being zero for all t (τt = 0 ∀t).

Proposition 2.2. In the laissez-faire economy, there exists a unique equi-

librium path that is given by {Kt, Zt, Ct, πdt}∞t=0 starting from any initial

state K0 > 0, Z0 > 0 that follows the dynamics in equations (2.40-2.43)

and satisfies conditions (2.16-2.18). This path converges to the steady state

(Kss, Css) given in (2.24,2.25).

Proof. See Appendix A2.

As the price of non-renewable resource increases, the firms gradually reduce

the share of non-renewable resource and the dynamics of endogenous vari-

ables in equations (2.40-2.43) approaches (2.20-2.23). Proposition 2 shows

that the final state is not affected by the absence of regulation. Sooner

or later the market economy converges to the clean production state as

well. However, the speed of transition, which also determines the level of

environmental damages, is driven by the regulator intervention.

This is an interesting result concerning the welfare implications of public

policy on the energy transition. The market economy rationally responds

to the increasing extraction cost of non-renewable resource, therefore the
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firms reduce non-renewable resource extraction and allocate more renew-

ables in production over time also on the equilibrium path. On this equilib-

rium path, as the negative externalities of extraction are not internalized,

the households consume more and the firms extract the non-renewable re-

source faster and thus damage the environment more and faster in the

absence of regulation. The regulator can correct this market failure by

introducing taxation on non-renewable resource extraction. Even though

the final state that the optimal path converges is identical, public policy

induces the decentralized economy to the optimal transition path, hence

leads to a higher welfare level.

2.4.5 Optimal taxation of non-renewable resource

We characterized the equilibrium path of the decentralized economy in the

absence of taxation in Proposition 2. The optimal path of taxation is the

one that induces this equilibrium path to be equivalent to the social op-

timum which we characterized in Proposition 1. In order to obtain the

optimal taxation rule, we consider the social optimum given in equations

(2.12-2.15) and compare it with the decentralized equilibrium given in equa-

tions (2.40-2.43). The first three equations are equivalent in both system of

differential equations. The taxation scheme, therefore, is optimal if (2.43)

is equivalent to (2.15), that is:

τ̇ ?t +F1(.)(πdt−G(Zt)− τ ?t ) = F1(.)(πdt−G(Zt))−DZ(Zt)/UC(Ct) (2.44)

Rearranging (2.44) gives the following law of motion for the optimal tax

rate:

τ̇ ?t = F1(Kt, H(E∗dt(.), E
∗
ct(.)))τ

?
t −DZ(Zt)/UC(Ct) (2.45)

Now we can write the optimal tax rate which is given in Proposition 3 as

follows:

Proposition 2.3. The optimal tax rate of non-renewable resource at a
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given time t is:

τ ?t =

∫ ∞
t

e−
∫ s
t F1(Ku,H(E∗du(Ku,πdu,πc),E

∗
cu(Ku,πdu,πc)))duDZ(Zs)/UC(Cs)ds

(2.46)

When the tax profile is {τ ?t }
∞
t=0, there exists a unique equilibrium path which

is identical to the optimal path that converges to the steady state (Kss, Css)

given in (2.24,2.25).

Proof. Equation (2.46) is a direct conclusion of solving equation (2.45).

The fact that the equilibrium path is identical to the optimal path is guar-

anteed by the comparison of (2.12-2.15) and (2.40-2.43) and taking into

account (2.44). The rest of the proof follows the same procedure of Propo-

sition 1 in Appendix A1.

Proposition 3 shows that the optimal tax rate is a forward-looking variable.

One unit of non-renewable resource should be taxed at a rate which is

equivalent to the present value of all future marginal damages occurred

by itself. The determinants of the optimal tax rate are the net rental

rate of capital (marginal productivity of capital), the marginal damage to

the environment and the marginal utility of consumption. The formula

for the optimal taxation on the non-renewable resource (2.46) has several

similarities to the well-known literature. It, however, has new components

(such as the degree of substitution between resources and the resource

prices) that provide useful and new insights about the different channels

that affect the optimal taxation.

There are four endogenous channels that affect the optimal tax rate of

the non-renewable resource. We call the first channel as the fulfillment

effect : as the household gets more satisfaction in consumption, she will

care more about the environment. The household’s marginal utility of

consumption falls as the level of consumption rises which in turn increases

the household’s care for the environment for a given level of cumulative
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extraction. As a result, the optimal tax rate of non-renewable resource

increases with the level of consumption.

The second channel is the discounting effect : changes in the net rental rate

of capital alters the interest rate. The net rental rate of capital falls as the

stock of capital increases which in turn leads to a lower interest rate. The

value of the future becomes higher, thus the care about the environment

rises as well. Therefore the optimal tax rate increases with the stock of

capital.

One remark about the role of the capital stock on the optimal tax rate is

worth to be mentioned. An economy with a larger stock of capital indeed

requires a higher amount of energy to fuel the production, thus there will be

stronger incentive for the firms to extract more non-renewable resource. To

correct this incentive, the regulator should tighten the wedge on extraction

and thus increase the tax rate on the non-renewable resource.

The third channel is the direct environment effect : more cumulative ex-

traction makes the marginal damage to the environment to be higher. The

value of one unit of extraction’s marginal damage rises which in turn in-

creases the optimal tax rate. The more the cumulative extraction is, the

worse the environmental status is, and therefore the higher the optimal tax

rate is.

The fourth channel is the non-renewable price effect : an increase in the

non-renewable price decreases the net rental rate of capital thus the interest

rate falls. The value of future rises due to the lower discounting, which is

similar to the discounting effect. Therefore the optimal tax rate increases

with the price of non-renewable resource.

These results show that the time profile of optimal tax rate is either always

increasing or decreasing depending on the initial state and the final state

of the economy. We know that the capital stock and consumption both

rise over time if the initial capital stock is less than its steady state value,
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or vice versa. Besides, the non-renewable resource price and cumulative

extraction are always increasing by definition. Therefore, the optimal tax

rate is always increasing over time if the initial capital stock is less than

its steady state value. If the initial capital stock is too large (greater than

its steady state value), however, the tax rate will have a decreasing time

profile. We shall investigate the different time profiles of optimal taxation

in the numerical analysis section.

Let us now turn to the effect of the exogenous factors. A strong degree of

substitution between non-renewables and renewables allows the economy

to benefit from cost differences and allocate the cheaper resource in higher

amounts in production. In the optimum, for a given stock of capital and

resource costs, the total energy use rises if the degree of substitution is

stronger. This leads the marginal productivity of capital to rise and so

does the interest rate. As a consequence of the discounting effect, the

initial optimal tax rate falls if the degree of substitution is stronger.

Higher renewable price, in contrast, reduces the net rental rate of capital

hence the interest rate falls. It also gives incentive to firms to extract a

larger amount of the non-renewable resource, hence the wedge on extraction

should be tightened. Therefore, again due to the discounting effect, the

optimal tax rate increases with the price of renewable resource.

2.5 Numerical analysis

This section illustrates the theoretical results we obtained in the previous

sections. The aim is to investigate the differences between the social opti-

mum and the laissez-faire equilibrium paths, the different time profiles of

optimal taxation according to the initial state of the economy, the role of

the renewable resource and the role of the degree of substitution between

non-renewable and renewable resources.
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For the analytical specification of the functions, we consider that U(C) =

C1− 1
σ

1− 1
σ

with σ > 0, D(Z) = φd
2
Z2 with φd > 0 and G(Z) = φg

2
Z2 with φg > 0

which satisfy the properties given in Section 2.

2.5.1 Calibration

The elasticity of capital in production is set to α = 0.2 and the elasticity of

energy services in production to β = 0.1. We set the technology parameter

γ = 0.5, meaning that non-renewable and renewable resources have same

ability in providing energy services. The discount rate is set to ρ = 0.02 and

the elasticity of intertemporal substitution to σ = 0.5, hence the relative

risk aversion coefficient to be 1/σ = 2. The renewable resource price is

πc = 1, the parameter of marginal cost of extraction is φg = 0.1 and the

parameter of marginal damages to the environment is φd = 0.002. Finally,

the degree of substitution is ε = 3 when we consider it low, and ε = 10

when we consider it high.11

2.5.2 Social optimum vs. Laissez-faire

We investigate the differences between the social optimum and laissez-faire

equilibrium path which are illustrated in fig. 2.2.12 In the laissez-faire,

the damages of extraction are not internalized by the firms and there is

no regulator intervention. The firms thus extract a larger amount of the

non-renewable resource compared to the social optimum which results in

less renewable use over time (fig. 2.2(a,d)). Indeed, the reason of higher

amount of extraction is that the price of non-renewable resource is lower

and rises slower due to the absence of taxation (fig. 2.2(b,e)). In addition,

11This calibration setting is similar to the one in van der Ploeg and Withagen (2014).
12In particular, the solid lines represent the case which is characterized in Proposition

1, and the dashed lines represent a specific case of the equilibrium paths without taxation
on the non-renewable resource, which is characterized in Proposition 2.
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lower price and higher extraction cost leads to a lower rent of non-renewable

resource over time in the laissez-faire case (fig. 2.2(e)).

Figure 2.2 – Social optimum (solid lines) vs. Laissez-faire (dashed lines)

Despite the fact that there is no regulation, the market economy converges

to the same steady state as the socially optimal path. The consumption is

higher in the short and medium run, but converges to the socially optimal

level in the long run (fig. 2.2(c)). Notwithstanding larger amount of extrac-

tion in the laissez-faire case, the firms reduce the share of non-renewable

resource and the market economy also converges to a steady state in which

it uses only the renewable resource. The speed of this transition, however, is
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slower compared to the socially optimal one (fig. 2.2(a,c,d)). Accordingly,

the damages to the environment are higher which leads to a lower level of

welfare. This is an illustration of the fact that taxation of non-renewable

resources does not affect the final state of the economy. However, it drives

the speed at which the decentralized economy approaches the clean state -

the energy transition.

2.5.3 Time profile of optimal taxation

The speed of transition to the clean state, which depends on the taxation

profile, determines the level of environmental damages hence the welfare

outcome. For the specific example of the initial state in fig. 2.2(f), the

optimal tax rate monotonically increases and approaches a constant value.

But is this the case for all possible initial states? The answer is no. The

optimal tax rate can be either increasing or decreasing depending on the

initial capital stock and cumulative extraction and also depends on the

final state that the optimal path approaches.
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Figure 2.3 – Different time profiles of the optimal tax rate

Fig. 2.3 illustrates some examples of different taxation profiles. The initial

state of the economy plays a crucial role on the time profile of the opti-

mal tax rate. In the case where the initial capital stock is lower than its

steady state level, the economy is always accumulating capital and increas-

ing consumption. The four (positive) channels, which were introduced in

Proposition 4, affect the optimal tax rate and thus it always increases over
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time. The initial optimal tax rate and its time profile rises if the initial

capital stock as well as the initial cumulative extraction are larger, and vice

versa. In contrast, if the initial capital stock is greater than its steady state

value, the households consume the over-accumulated capital which leads to

a decreasing capital and consumption over time. The initial consumption

level is too high and the initial net rental rate of capital is too low. Thus

the optimal tax rate is initially high due to the fulfillment and discounting

effects. As the capital stock melts away and consumption decreases, the

optimal tax rate also decreases over time. Another point to mention is

that the optimal tax rate approaches a unique constant value for any given

initial state (as the optimal path converges to the unique steady state in

the long run).

2.5.4 The role of the degree of substitution between

resources

We investigate the role of the degree of substitution by using fig. 2.4. We

depict two cases: strong degree of substitution (the solid lines) and weak

degree of substitution (the dashed lines).

When the degree of substitution is strong, the firms extract a greater

amount of non-renewable resource until its price reaches the price of re-

newable, then they use more renewable resource compared to the weak

degree of substitution case. Eventually the market economy converges to

a steady state with a larger capital stock and higher consumption (fig.

2.4(a,c,d)). The effect on the price of non-renewable resource depends on

the time period. In the case of strong degree of substitution, the price of

non-renewable is initially set to a higher value and rises more rapidly in

the short and medium run. But it rises slower in the long run as the ex-

traction reduces swiftly after the renewable becomes the cheaper resource.

Consequently, the non-renewable resource is cheaper in the long run when
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the degree of substitution is strong (fig. 2.4(b,e)).

Note: The solid lines represent the strong degree of substitution case (ε = 10) and the
dashed lines represent the weak degree of substitution case (ε = 3).

Figure 2.4 – The role of the degree of substitution on optimal taxation

Due to these dynamics, the effect of the degree of substitution on the time

profile of optimal taxation also depends on the time period. With strong de-

gree of substitution, greater initial consumption and higher non-renewable

price increases the initial optimal tax rate due to the aforementioned chan-

nels. These channels dominate the negative effect of low degree of substi-

tution. Accordingly, when the degree of substitution is high, the optimal

tax rate is higher in the short and medium run but lower in the long run
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(fig. 2.4(f)).

These results underline the differences in the outcome between the cases

of perfect and imperfect substitution. Consideration of perfect substitu-

tion between non-renewable and renewable resources arises the possibility

of different resource use regimes with switches and one including a simul-

taneous use of resources, as shown by van der Ploeg and Withagen (2014).

With imperfect substitution, the optimal path always contains simultane-

ous use of resources while making a gradual transition to the renewable

resource (considering the initial level of pollution being sufficiently low).

Furthermore, in the case of perfect substitution, the steady state level of

capital is going to be at its highest, as there is no loss of energy services

due to imperfect substitution in the final state. When the degree of substi-

tution is low, the steady state level of capital and consumption diminishes,

which in turn changes the optimal transition path. Finally, the trajectory

of optimal tax rate highly shifts with the degree of substitution. When the

resources are perfect substitutes, the optimal tax rate is going to be set

much higher in the beginning compared to the case of imperfect substitu-

tion. This is due to the fact that the damage of pollution is higher when

only non-renewable resource is used, and the initial tax rate becomes the

highest to correct the negative externality. The contrary occurs in the long

run when only renewable resource is used. With imperfect substitution, as

less non-renewable resource is used in the beginning, the optimal tax rate is

lower and it increases steeper compared to the case of perfect substitution.

In the long run, it remains higher as the non-renewable resource is still

being extracted in small quantities.

2.6 Conclusion

It is well known that the time profile of taxation on non-renewable resources

is as important as its current level. The regulator has to decide on both to
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control the resource extraction. But there is still an ongoing debate on the

shape of the time profile of these policy measures.

In this paper we developed an optimal growth model to investigate the op-

timal taxation of a non-renewable resource which is an imperfect substitute

to a renewable resource. We consider a framework with additively seper-

able welfare function in terms of utility from consumption and damages

of pollution. The damages of pollution to the environment are taken into

account to be irreversible. This framework allowed us to investigate the

determinants of the optimal tax rate and its time profile in a decentralized

economy that goes through a gradual transition to a clean, zero-carbon

state.

We showed that the decentralized economy converges to the clean state in

terms of capital and consumption (the same state as the socially optimal

one) in the long run whether there is a regulator intervention or not. What

matters for welfare, however, is the speed at which the economy approaches

there - the energy transition, which determines the level of environmental

damages. The policy problem is to induce the firms in the economy to follow

the paths leading to the level of environmental damages that the society

is ready to accept in the long run. In the laissez-faire economy, the profit

motivated firms do not internalize the environmental damages that they are

causing, thus they extract a greater amount of the non-renewable resource

and the households consume more compared to the optimal transition path.

Consequently, the speed of transition to clean economy is slower in the

absence of regulation. The regulator can correct this market failure by

introducing taxation on non-renewable resource extraction.

We identified the factors that affect the optimal tax rate such as the capital

stock, consumption, cumulative extraction, the resource prices and the de-

gree of substitution between non-renewable and renewable resources. The

endogenous net rental rate of capital, the marginal utility of consumption

and the marginal damages to the environment are the key components of



2.6. Conclusion 49

the optimal tax rate. On the time profile of optimal taxation, the initial

state of the economy is all that matters. If the initial capital stock is lower

than its long term value then the optimal tax is always increasing over

time. However, if the initial capital stock is too large then the optimal

tax will have a decreasing time profile as the over-accumulated capital is

consumed and the capital stock and consumption diminish. Accordingly,

the social cost of suboptimal policies can be in many forms. For instance,

let’s take the example of a constant tax rate. It can initially be too high

that it becomes an obstacle for short term development. In the long term,

however, it can remain insufficient for leading the renewable resources to

overtake the non-renewables.

The results also showed that the renewable resources play a crucial role

on the taxation of non-renewables. More expensive renewables will re-

quire the regulator to increase the tax rate on non-renewables. In contrast,

the technological improvements in the renewable technologies that reduce

the costs will lead the regulator to loosen the policy measures on non-

renewable resource use. Furthermore, if the degree of substitution between

non-renewable and renewable resources becomes higher, the optimal tax

rate rises in the short and medium run, but it will be lower in the long run.

The framework in the present paper can be extended towards several direc-

tions. Further research includes taking into account technological progress

that improves the efficiencies of both non-renewable and renewable re-

sources as well as changes the degree of substitution between resources. In

addition, considering reversible pollution together with irreversible pollu-

tion, a more realistic global carbon cycle, will improve the results. Finally,

incorporating the present modeling into empirical applications can lead to

more realistic policy suggestions.
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Appendix

2.A Proof of Proposition 2.1

The Jacobian of the system in (2.12− 2.15) can be written as:

J =


FK −G(Z)E∗dK − πcE∗cK −GZE

∗
d −1 Fπd −G(Z)E∗dπd − πcE

∗
cπd

E∗dK 0 0 E∗dπd

σCF1K 0 σ(F1 − ρ) σCF1πd

F1K(πd −G(Z)) −(F1GZ +DZZ/UC) DZUCC/(UC)2 F1πd(πd −G(Z)) + F1


(A1.1)

We want to prove that the steady state given in (2.24, 2.25) has the saddle

point properties for the system in (2.12− 2.15). For that, first we evaluate

the Jacobian at the steady state.

Jss =


ρ 0 −1 0

E∗dK 0 0 E∗dπd

σCssF1K 0 0 σCssF1πd

0 −(F1GZ +DZZ/UC) DZUCC/(UC)2 ρ


(A1.2)

The characteristic equation associated with the Jacobian Jss is given by:

ξ4 − (TrJss)ξ3 +M2ξ
2 −M3ξ + det Jss = 0 (A1.3)

where M2 and M3 are the sum of all diagonal second and third order minors

of Jss, respectively. One can show that:

TrJss = 2ρ and −M3 + ρM2 − ρ3 = 0 (A1.4)

Theorem 1 in Dockner (1985) shows that if the equations in (A1.4) are

satisfied then one can write the four roots of the characteristic equation in



2.A. Proof of Proposition 2.1 51

(A1.3) as follows:13

ξ1,2,3,4 =
ρ

2
±
√(ρ

2

)2

− Ω

2
± 1

2

√
Ω2 − 4det Jss (A1.5)

where Ω is the sum of all diagonal second order minors and for Jss it can

be written as:

Ω =

∣∣∣∣∣∣ ∂K̇/∂K ∂K̇/∂C

∂Ċ/∂K ∂Ċ/C

∣∣∣∣∣∣+

∣∣∣∣∣∣ ∂Ż/∂Z ∂Ż/∂πd

∂π̇d/∂Z ∂π̇d/∂πd

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣ ∂K̇/∂Z ∂K̇/πd

∂π̇d/∂Z ∂π̇d/∂πd

∣∣∣∣∣∣ (A1.6)

In Theorem 3 of Dockner (1985) and Theorem of Tahvonen (1991) it is

stated that when the determinant of the Jacobian is positive and Ω is

negative the stationary point has the saddle point properties. Therefore,

to prove that the steady state is a (local) saddle point, it is now sufficient

to show that det Jss > 0 and Ω < 0. First, let us compute the determinant:

det Jss = (

>0︷ ︸︸ ︷
F1GZ +

>0︷ ︸︸ ︷
DZZ/UC︸ ︷︷ ︸
>0

)(

<0︷︸︸︷
E∗dπd

>0︷︸︸︷
σCss

<0︷︸︸︷
F1K︸ ︷︷ ︸

>0

−
>0︷︸︸︷
E∗dK

>0︷︸︸︷
σCss

<0︷︸︸︷
F1πd︸ ︷︷ ︸

<0

) > 0 (A1.7)

Equation (3.29) shows that the determinant of Jss is always positive due

to the assumptions on U(.), F (.), D(.), G(.), as well as the optimal non-

renewable use E∗d(.) which is obtained by (2.4′) and (2.5). To complete the

proof, we compute the value of Ω given in (A1.6) as follows:

Ω = σCF1K︸ ︷︷ ︸
<0

+

<0︷︸︸︷
E∗dπd

>0︷ ︸︸ ︷
(F1GZ +DZZ/UC)︸ ︷︷ ︸

<0

−
<0︷ ︸︸ ︷

σCssF1πd

<0︷ ︸︸ ︷
DZUCC/(UC)2︸ ︷︷ ︸
>0

< 0

(A1.8)

The result in (A1.8) which shows that Ω is always negative, together with

the result in (3.29), ensures that the characteristic equation in (A1.3) con-

sists of two roots with positive real parts and two roots with negative real

13See Dockner (1985) and Dockner and Feichtinger (1991) Appendix 1 for derivation.
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parts. There are two two-dimensional manifolds which contain the steady

state with one of them being stable. If the solution starts on this manifold

then the path will asymptotically approach the steady state. For a given

initial state K0 > 0 and Z0 > 0, it is possible to choose initial values C0 and

πd0 such that the corresponding paths approach the steady state as t→∞.

Moreover, when the conditions in Mangasarian sufficiency theorem (Man-

gasarian (1966)) are satisfied, the saddle point path is the optimal infinite

time solution. The concavity of Hamiltonian is clearly satisfied due to the

assumptions on U(.), F (.), D(.) and G(.), therefore, the path leading to

the saddle point is the optimal infinite time solution.

2.B Proof of Proposition 2.2

In the absence of taxation, the Jacobian of the equilibrium system in (2.40−
2.43) evaluated at the steady state can be written as:

Ĵ
ss

=


ρ 0 −1 0

E∗dK 0 0 E∗dπd

σCssF1K 0 0 σCssF1πd

0 −F1GZ 0 ρ

 (A1.9)

One can show that Ĵ
ss

in (A1.9) also satisfies the equations in (A1.4). By

following the same procedure in the proof of Proposition 1, we can compute

det Ĵ
ss
> 0 and Ω̂ < 0, hence show that the steady state is a (local) saddle

point for the equilibrium system as well as the path leading to the saddle

point is the optimal infinite time solution.
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Chapter 3

The role of adaptation on the

transition to a low-carbon

economy

Thierry Bréchet and Baris Vardar

3.1 Introduction

Adaptation policy has recently became a keystone in the ongoing debates

to deal with climate change. Broadly defined, adaptation is the capacity

to avoid the adverse effects of climate change. Still, the way we consume

fossil fuels (oil, coal, natural gas, etc.) directly relates to the adaptation

policy: should we pollute more and and adapt more, or the reverse? The

contribution of this paper is to link this on-going debate about adaptation

to the issue of the energy transition, i.e. the move from an exhaustible-fossil

based economy to a renewable carbon-free one.

Some examples of adaptation measures include adapting buildings to ex-

treme weather events, constructing flood defenses, raising the levels of dykes

and using scarce water resources more efficiently. These measures mostly

55
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require large investments in capital and infrastructure. Therefore, dura-

bility and cost efficiency of adaptation measures play important roles on

their impacts. In this work, we focus our analysis on the capital nature of

adaptation measures.

We consider the problem of a social planner that maximizes the discounted

value of total welfare by deciding on the paths of resource utilization and

investment in adaptation capital. The problem of optimal resource extrac-

tion without adaptation policy is investigated in detail and extended by

Withagen (1994), Tahvonen (1997), van der Ploeg and Withagen (2012a)

and van der Ploeg and Withagen (2014). These works studied the impact

of damages caused by non-renewable extraction, the role of natural decay

rate of pollution, the existence of Green Paradox, and the relationship be-

tween growth, transition to renewable resources and optimal carbon tax.

This work uses the framework studied in these articles to investigate the

role of adaptation policy on the transition to a low-carbon economy.

There is a growing literature on the role of adaptation policy. Authors

focus on its relationship with mitigation policy on the long run equilibrium

(Bréchet et al. (2013)), the effect of catastrophic risks (Zemel (2015)), the

strategic effects (Buob and Stephan (2011) and Bréchet et al. (2016)) and

the optimal use of adaptation with carbon capture and storage (Moreaux

and Withagen (2015)).

The present study contributes to both streams of the literature by inves-

tigating adaptation policy with the presence of exhaustible resources. The

model includes a non-renewable resource and its average extraction cost

increases as the cumulative quantity of extraction rises (as in Heal (1976)).

This cost arises due to the necessity to develop technologies that will en-

able reaching deeper deposits. We also consider a renewable resource that

is a perfect substitute to the non-renewable one, its marginal cost is exoge-

nously given and constant. Utilization of non-renewable and renewable re-

sources provides benefit, but extraction and consumption of non-renewable
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resource generates pollution which accumulates in the atmosphere irre-

versibly. The accumulated pollution inflicts damages, which are increasing

with the level of pollution. To include adaptation policy into the analysis,

we consider the vulnerability function that is introduced by Bréchet et al.

(2013). The damage of pollution can be reduced by investing in adaptation

capital, and the possibility of reduction in damages can have limitations.

Adaptation capital has the stock property, its quantity depreciates unless

it is maintained by investments. Investment in adaptation capital has an

opportunity cost that increases with its level. We will see that this property

does affect the energy transition path.

As we consider the social optimum, mitigation policy can be viewed as

implicitly included into the analysis. This is because the total marginal

cost of non-renewable resource contains the marginal damage it inflicts as

well as its scarcity rent. Therefore, increasing pollution makes the non-

renewable resource more costly together with rising extraction cost, hence

decreases its utilization. Considering the presence of perfect substitute

renewable resource allows us to investigate the consequences of adaptation

policy on the transition to renewable resource.

We characterize the optimal transition path with general functional forms

under economically reasonable assumptions. As adaptation policy affects

the marginal damage of pollution, the driver formula for the marginal cost

of non-renewable resource (the modified Hotelling rule) sharply departs

from the model without adaptation. An important issue is the possibility

for a simultaneous use regime -a transition- within a model of two per-

fect substitute resources. This possibility arises when the marginal cost

of non-renewable resource (which includes the scarcity rent and marginal

damages) reaches the level of renewable’s marginal cost. At this level, it is

still possible to continue extraction, because being able to adapt more and

reduce the damage of pollution drags the total marginal cost of the non-

renewable resource. The fact is that reducing the damages with adaptation
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makes the non-renewable resource beneficial. As investments in adaptation

becomes more costly, the benefit cannot go on forever. For a given level of

pollution, there exists an efficient level of adaptation capital that equalizes

the marginal cost of maintaining that level to the marginal benefit gained

by reduction in damage of pollution. Above this level, it is no more bene-

ficial to adapt more and extract more. Showing such a trade-off is new in

the literature.

The levels of pollution and adaptation capital that equalize the rent of

resource to its marginal damage (at the level of renewable’s marginal cost)

when the adaptation capital maintained at its level efficiently defines the

unique steady state of the simultaneous use regime. The two boundaries

in the adaptation level-pollution level set determine the behavior of the

optimal path. One boundary equalizes the rent of resource to the marginal

damage of pollution when the cost of non-renewable resource equals to

that of renewable. This boundary defines the highest level of pollution

at which resource extraction is possible, for a given level of adaptation.

Above that level it is optimal to use only renewable resource. The other

boundary is characterized by the efficient level of adaptation for a given

level of pollution. If adaptation capital is too high with respect to the

level of pollution, then it is not optimal to maintain it at that level as

its marginal cost outweighs the marginal benefit it brings. Its stock will

then decrease with lower investments with respect to the depreciation level.

When the adaptation capital is too low, the benefit it brings by reduction

in damage is larger than its cost, so the level of adaptation should increase.

The steady state occurs when these two boundaries are reached, and after

that it is optimal to use only renewable resource indefinitely.

The properties of the optimal path heavily depend on the initial state levels

of pollution and adaptation stocks with respect to these two boundaries.

If the initial levels pollution and adaptation are low, then it is optimal to

use only non-renewable resource and increase adaptation capital by large
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investments in the beginning. At a certain date, the cost of non-renewable

reaches that of renewable and a gradual transition starts. Following a

path of resource extraction on which the marginal damage is compensated

by increased adaptation, the optimal path reaches the steady state and

stays there indefinitely by using only renewable resource. When the initial

pollution is too high but adaptation is low, it is never optimal to extract

the non-renewable resource. Only renewable resource will be used and

adaptation capital will be adjusted to its efficient level. Another case is

low pollution and high level of adaptation. In that case, it is optimal to

extract non-renewable resource from the beginning and to decrease the level

of adaptation by investing less than its depreciating rate. At a certain date,

the optimal path reaches a steady state that can contain a higher level of

pollution compared to the one previously explained. Empirically, one may

assume that our adaptation capital stock is below the optimal steady state

one and that the same holds for the pollution stock associated to a 2 degree

increase with respect to the pre-industrial level.

Indeed, the optimum is determined by the properties of underlying func-

tions which are utility, damage of pollution, extraction cost, vulnerability

and opportunity cost of investment in adaptation. If the cost of invest-

ment in adaptation is too high, then its efficient level will decline. On the

contrary, large damages of pollution will push up adaptation efforts. The

limitations of adaptation are important. If adaptation is not capable of

reducing damages enough, then its efficient level reduces. The durability of

adaptation capital also plays a crucial role in the optimum solution. When

adaptation investments are oriented towards less durable capital (which

means a high depreciation rate), the benefits of adaptation are going to be

limited due to high cost of maintenance. On the contrary, more durable

adaptation investments decreases its cost which in turn leads to a longer

transition to the renewable resource and larger quantity of resource extrac-

tion.
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The following section presents the framework and the social planner’s prob-

lem, Section 3.3 goes through the different regimes of transition, Section

3.4 presents the optimum and discusses its properties, Section 3.5 analyzes

the role of adaptation capital’s depreciation rate, Section 3.6 illustrates the

simulation results and Section 3.7 concludes.

3.2 The model

The model incorporates adaptation policy into the problem of resource ex-

traction with pollution externalities. We consider a non-renewable resource

for which the extraction cost increases with the cumulative quantity of ex-

traction. There is a renewable resource that is a perfect substitute to the

non-renewable one and its marginal cost is given and constant. Utiliza-

tion of non-renewable and renewable resources provides benefit to society,

but non-renewable resource generates pollution as a by-product, which ac-

cumulates irreversibly in the atmosphere. Accumulated pollution inflicts

damages to society that can be reduced by investing in adaptation capital.

Adaptation capital depreciates over time at a constant rate.

The utility of using the resource flow R is denoted by U(R). We assume

the following:

Assumption 3.1. U(R) is increasing and strictly concave in R (U ′(R) >

0, U ′′(R) < 0).

The extraction cost of exhaustible resource (can be oil, coal, natural gas

etc.) depends on the total amount of resource that has been extracted by

time t which is denoted by Zt (Zt = Z0+
∫ t
s=0

Rsds). The average extraction

cost rises with cumulative extraction because of increasing efforts to develop

technologies that are necessary to reach deeper deposits. It is denoted by

G(Z) and we assume the following property for G(.):
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Assumption 3.2. G(Z) is increasing and strictly convex in Z (G′(Z) > 0,

G′′(Z) > 0).

There is also a backstop resource (b) available (can be solar, wind power

etc.) which is a perfect substitute to the exhaustible resource, does not

pollute and have a constant marginal cost pb.

The exhaustible resource flow R generates ϕR amount of pollution (ϕ is the

pollution content of one unit of resource) and it adds up to the pollution

stock. We consider that pollution accumulation is irreversible (Pt = P0 +∫ t
s=0

ϕRsds) and therefore we can write the pollution stock in terms of

cumulative extraction (Pt = P0 +ϕ(Zt−Z0)).1 Furthermore, this allows us

to define the damages of pollution as a function of cumulative extraction

which is denoted by D(Z). We assume:

Assumption 3.3. D(Z) is increasing and convex in Z (D′(Z) > 0, D′′(Z) >

0).

The damages of pollution can be reduced by installing adaptation capital A.

Adaptation capital has a stock property which means that in the absence

of maintenance it depreciates at a rate δ. The function η(A) denotes the

proportional reduction in damages which we call as vulnerability function.

This functional specification of adaptation is similar to the one in Bréchet

et al. (2013). We assume the following:

Assumption 3.4. (a) η(A) is decreasing and convex in A (η′(A) < 0,

η′′(A) > 0). (b) η(0) = 1, (c) η(+∞) = η with η ∈ [0, 1), (d) η′(0) = −ϕ
with ϕ ∈ (0,+∞) and (e) η′(+∞) = 0.

Since η(A) stands for the proportional reduction in damages, the effective

damages -realized impact of pollution- is denoted as η(A)D(Z). This is the

reason for assuming η(0) = 1, meaning that when there is no adaptation

1Due to this relationship, we will refer to Z as cumulative extraction or pollution
whenever it is appropriate in the rest of the text.
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Figure 3.1 – Vulnerability function (η(A))

the impact of pollution will be solely D(Z). Moreover, it is appropriate to

assume that the reduction in damages has a limit, as reducing the adverse

effects of pollution entirely by making adaptation expenditures is not a re-

alistic consideration. Assumption 4(d) says that the first unit of adaptation

spending reduces the damages at ϕ proportion. It can be finite or infinite,

but it is economically more plausible to consider that it is finite.

Investment in adaptation capital I has a cost to society H(I). This cost

raises due to allocating efforts to adaptation policies rather than other uses

that would provide benefit. Higher investment in adaptation capital will

increase its marginal cost to society. Therefore we assume:

Assumption 3.5. H(I) is increasing and convex in I (H ′(I) > 0, H ′′(I) >

0).

The social planner maximizes the discounted value of total welfare given
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by the following programme:

max
{Rt,bt,It}

∫ ∞
t=0

e−ρt(U(Rt + bt)− η(At)D(Zt)−RtG(Zt)− pbbt −H(It))dt

(3.1)

subject to

Żt = Rt

Ȧt = It − δAt

with Z0 ≥ 0 and A0 ≥ 0 given.

The current value Hamiltonian associated to (3.1) is

Ht = U(Rt+bt)−η(At)D(Zt)−RtG(Zt)−pbbt−H(It)−λtRt+γt(It−δAt)
(3.2)

where λ is the co-state variable associated to cumulative extraction and

pollution. It can also be interpreted as the opportunity cost of one more

unit of extraction. The term γ is the shadow value of adaptation capital.

The necessary conditions for an optimum are:

Rt ≥ 0, U ′(Rt + bt) ≤ G(Zt) + λt (3.3)

bt ≥ 0, U ′(Rt + bt) ≤ pb (3.4)

H ′(It) = γt (3.5)

λ̇t = ρλt − η(At)D
′(Zt)−G′(Zt)Rt (3.6)

γ̇t = (ρ+ δ)γt + η′(At)D(Zt) (3.7)

limt→+∞e
−ρtλtZt = 0 and lim

t→+∞
e−ρtγtAt = 0 (3.8)

where (3.3) and (3.4) are complementary slackness (c.s.) conditions. Con-

dition (3.5) allows us to find the optimal investment in adaptation as a

function of adaptation capital’s shadow value: I∗(γt) = H ′−1(γt).

As non-renewable and renewable resources are perfect substitutes, the

cheaper one is going to be utilized at the optimum. To proceed, we define



64 Chapter 3. The role of adaptation on the transition

the total marginal cost of non-renewable resource as follows:

Definition 3.1. Let pt be the total marginal cost of non-renewable resource

given by

pt ··= G(Zt) + λt. (3.9)

Taking the time derivative of pt and using (3.6) yields the optimal law

of motion as ṗt = ρ(pt − G(Zt)) − η(At)D
′(Zt). With the newly defined

variable, complementary slackness conditions (3.3) and (3.4) become the

following:

Rt ≥ 0, U ′(Rt + bt) ≤ pt (3.10)

bt ≥ 0, U ′(Rt + bt) ≤ pb (3.11)

Conditions (3.10) and (3.11) show that there are three possible regimes: the

regime in which only non-renewable resource is used (R > 0 and b = 0),

the regime in which both resources are used simultaneously (R > 0 and

b > 0) and the regime in which only renewable resource is used (R = 0 and

b > 0). The following section investigates these cases.

3.3 Transition regimes

The optimum can contain three different regimes: only non-renewable re-

source use, simultaneous use of non-renewable and renewable resources,

and only renewable resource use. In this section we study each case in

detail.

Regime 1: Only non-renewable resource use (R > 0 and b = 0)

In this regime, the total marginal cost of non-renewable resource is lower

than that of renewable (pt < pb). The optimal resource consumption is ob-

tained by (3.10), R∗1(pt) = U ′−1(pt). The optimal trajectories must satisfy



3.3. Transition regimes 65

the following differential equation system in (Z,A, p, γ):

Żt = R∗1(pt) (3.12)

Ȧt = I∗(γt)− δAt (3.13)

ṗt = ρ(pt −G(Zt))− η(At)D
′(Zt) (3.14)

γ̇t = (ρ+ δ)γt + η′(At)D(Zt) (3.15)

First two equations are the evolution of state variables with the optimal

amounts of resource extraction and investment in adaptation capital. Third

equation drives the marginal cost of resource. The term pt − G(Zt) is the

resource rent and it is always non-negative, and the term η(At)D
′(Zt) is the

effective marginal damages. Hence, equation (3.14) can be viewed as the

modified Hotelling rule for this problem, and it contains the information

on both the scarcity rent and the social cost of carbon. The presence of

adaptation in equation (3.14) plays a crucial role in the optimum. The

reduction in marginal damage of pollution affects the optimal path of the

marginal cost of non-renewable resource, which determines the time span

of resource use as well as the level and accumulation of pollution. The last

equation is the evolution of adaptation capital’s shadow value and we see

that its path is driven by marginal reduction in damages as well as the

deprecation rate of adaptation capital.

This regime is optimal as long as the marginal cost of non-renewable re-

source is lower than that of renewable (pt < pb).

Regime 2: Simultaneous use and transition to renewable resource

(R > 0 and b > 0)

When the total marginal cost of non-renewable resource reaches to the

marginal cost of renewable (pt = pb), a regime of simultaneous use of re-

sources may arise. This is due to the possibility of increasing adaptation

capital and therefore reducing marginal damages to the environment. This
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makes the non-renewable resource still beneficial to use, as reducing the

social cost of pollution will push the total marginal cost of non-renewable

resource downward, which could be used as an opportunity to extract more

resource.

By conditions (3.10) and (3.11) we have U ′(Rt + bt) = pb thus Rt + bt =

U ′−1(pb) is a given constant. Now we need to find the values for Rt and bt.

In this regime pt has to stay constant at the marginal cost of renewable

resource, therefore

ṗt = ρ(pb −G(Zt))− η(At)D
′(Zt) = 0. (3.16)

Equation (3.16) represents the curve on (A,Z) plane on which regime 2 can

exist. Observe that there is no possibility of violating equation (3.16) in

problem (3.1) without adaptation. Damage of pollution will stay constant,

that’s why there is going to be an instantaneous switch to the renewable

resource in that case. However, with adaptation it is possible to reduce

the effective marginal damage (the second term in equation (3.16)), which

would make the non-renewable resource beneficial to extract once again.

The damage due to marginal unit of extraction is going to be compensated

by increased adaptation capital, and vice versa. We search for the quantity

of extraction that equalizes these opposite effects.

Total marginal cost (p) has to stay constant (ṗt = 0), and (p̈t = 0) should

hold true as well. Taking the time derivative of (3.16) yields −ρG′(Zt)Żt−
(η′(At)D

′(Zt)Ȧt + η(At)D
′′(Zt)Żt) = 0. Replacing Żt = Rt and Ȧt =

I∗(γt) − δAt and solving for Rt gives the optimal non-renewable resource

use in Regime 2 as a function of pollution (and marginal extraction cost),

the stock of adaptation capital and the shadow price of adaptation R∗2(Z,
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A, γ):

R∗2(Zt, At, γt) =


−η′(At)D′(Zt)(I∗(γt)−δAt)
ρG′(Zt)+η(At)D′′(Zt)

if I∗(γt) > δAt

0 if I∗(γt) ≤ δAt

(3.17)

Equation (3.17) shows that simultaneous use of resources can occur only if

the investments in adaptation are exceeding the quantity that depreciates

(Ȧ > 0), so adaptation capital must be increasing in regime 2. The optimal

value of renewable resource use is b∗2(Zt, At, γt) = U ′−1(pb)−R∗2(Zt, At, γt).

In regime 2, the optimal trajectories must satisfy the following differential

equation system in (Z,A, γ):

Żt = R∗2(Zt, At, γt) (3.18)

Ȧt = I∗(γt)− δAt (3.19)

γ̇t = (ρ+ δ)γt + η′(At)D(Zt) (3.20)

ṗt = ρ(pb −G(Zt))− η(At)D
′(Zt) = 0 (3.21)

The use of non-renewable resource is null if the investment in adaptation

capital is equal to the quantity of depreciation (R∗2(Zt, At, γt) = 0 if I∗(γt) =

δAt by equation (3.17)). Using this, we can study the existence of a steady

state in regime 2 by the following system of equations:

I∗(γss) = δAss (3.22)

(ρ+ δ)γss = −η′(Ass)D(Zss) (3.23)

ρ(pb −G(Zss)) = η(Ass)D′(Zss) (3.24)

At the steady state, the level of pollution reaches to a level such that

it is no more beneficial to adapt more and extract more of the resource.

Equation (3.22) maintains adaptation capital at its level, (3.23) equalizes

the opportunity cost of investing in adaptation capital to the marginal

benefit gained by reduction in effective damage, and (3.24) equalizes the
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marginal benefit of extraction to effective marginal damage. At a level of

pollution higher than Zss, there may exist a level of adaptation capital that

equalizes rent to damage, but its cost would outweigh its benefit. It cannot

be kept at a steady level efficiently. That’s why an optimal path containing

regime 2 could not have a higher pollution. With the help of the following

definition, we will look for the levels of pollution and adaptation capital

that are optimal and constant.

Definition 3.2. Let Ẑ(A) be the level of pollution such that equations (3.22

and 3.23) hold true (Ȧ = 0 and γ̇ = 0). That is

Ẑ(A) ··= D−1((ρ+ δ)H ′(δA)/(−η′(A))). (3.25)

At this level of pollution, investments in adaptation capital equals to the

quantity that depreciates, and the marginal cost of investment equals to

the marginal benefit gained by reduction in damages. The function Ẑ(A)

can be also interpreted as the level of pollution such that it will be efficient

to keep adaptation capital steady at A. Indeed, this level depends on the

properties of damage (D), adaptation (η) and opportunity cost of invest-

ment in adaptation (H) functions, as well as the social discount rate ρ and

the depreciation rate of adaptation capital δ. The following lemma shows

how this level of pollution changes with the stock of adaptation capital.

Lemma 3.1. Ẑ(A) is increasing in adaptation capital (Ẑ ′(A) > 0).

Proof. See Appendix 3.A.

Substituting Ẑ(A) in equation (3.24) allows us to reduce (3.22-3.24) to a

single equation in A given by

ρ(pb −G(Ẑ(A))) = η(A)D′(Ẑ(A)). (3.26)
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Assumption 3.6. The effective marginal damage is increasing in A at the

steady state

(d(η(A)D′(Ẑ(A)))/dA > 0).

Assumption 3.6 states that, at the steady state, the increase in marginal

damage due to the extraction made by adapting is higher compared to

the level of reduction in marginal damage made by a marginal increase in

adaptation.

The contrary case to Assumption 3.6 is d(η(A)D′(Ẑ(A)))/dA < 0. This

would mean that the effective marginal damage is decreasing in A at the

steady state. Then it would be optimal to increase adaptation capital and

extract more resource that will increase Z, keeping ṗ = 0 in (3.21). In

this case, there is no possibility of having a solution to (3.26) which has

a positive value for the rent of resource. This would violate the necessary

optimality conditions, and we do not treat this case as it is not economically

meaningful.

The system in (3.18-3.21) has a steady state and it is unique when Assump-

tion 3.6 is satisfied. Left hand side (LHS) of (3.26) is a positive constant

(ρpb) when A = 0 and it is decreasing in A because Ẑ ′(A) > 0 as shown

in Lemma 3.1. Right hand side (RHS) is null when A = 0. Then the

existence and uniqueness of the steady state that contains positive val-

ues for LHS and RHS depends on how RHS of (3.26) changes with A. If

d(η(A)D′(Ẑ(A)))/dA > 0 then RHS is increasing in A, therefore we can

conclude that (3.26) has a unique solution given by a positive constant

Ass > 0. This is illustrated in figure 3.1.

Regime 3: Only renewable resource use (R = 0 and b > 0)

In this regime p > pb and only renewable resource is used at quantity

bss = U ′−1(pb). There is no extraction (R = 0) hence Ż = 0, the problem

reduces to a system in (A, γ) given in (3.19-3.20) for given Z. The optimal



70 Chapter 3. The role of adaptation on the transition

Figure 3.1 – Existence and uniqueness of the steady state in regime 2

trajectories will depend on the initial states of pollution and adaptation

capital.

3.4 The optimum

The following proposition presents the solution to the problem given in

(3.1):

Proposition 3.1. Under assumptions 3.1 to 3.6, the problem in (3.1) at-

tains a unique solution. For a given (A0, Z0) there exists a unique optimal

path {Zt, At, pt, γt}Tt=0 that reaches a steady state. Equation (3.16) charac-

terizes the boundary between regimes 1 and 3 in state space (A,Z). The

level of steady state and the occurrences of different regimes depend on the

initial state:

• if A0 ≤ Ass and Z0 ≤ Zss then the steady state is (Ass, Zss) that is

characterized by the system of equations in (3.22-3.24). Depending on
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the initial state, the optimal path can be one of the following sequences

of regimes: (1→ 2→ 3), (1→ 3), (2→ 3), (3→ 2→ 3), (3),

• if A0 ≤ Ass and Z0 > Zss then the optimal path contains only regime

3 and reaches the steady state determined by (3.22 and 3.23) for given

Z0 (Z0 = Ẑ(A′ss)),

• if A0 > Ass then the steady state can be higher than Zss (Z ′ss ≥ Zss)

and the optimal path can be either (1→ 3) or (3).

Proof. See Appendix 3.B.

The occurrence of different regimes depends on the initial state and on the

properties of underlying functions.

Note: Ẑ(A) is the level of pollution given in Definition 3.2 and ṗ = 0 for p = pb is the
curve given by equation (3.16).

Figure 3.1 – Phase diagram in (A,Z) plane

Diagram 3.1 shows the direction of optimal path for a given initial state

(A0, Z0), and it depicts the occurrences of different sequences of regimes.

Having all loci presented on (A,Z) plane allowed us to determine these
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directions. The stability of system in (3.12-3.15) can also be observed in

this diagram. The two curves, equation (3.16) and Ẑ(A), intersect only

once at the steady state (as analyzed by equation (3.26)) and they divide

the (A,Z) plane to four regions. As their importance on the optimum,

we will now look into these two curves in more detail and interpret their

economic meanings.

Equation (3.16) (ṗ = 0 for p = pb) illustrates the highest level of pollution

at which non-renewable resource extraction is possible for a given level of

adaptation capital. At this level, in order to have beneficial extraction

(marginal benefit of extraction being at least as higher as the marginal

damage it inflicts), the total marginal cost of non-renewable must be set

at (p = pb). For a given level of adaptation, a higher level of pollution

will require a higher p in order to have the resource still beneficial to ex-

tract. However, when the non-renewable resource is too costly compared

to the renewable (p > pb), it is optimal to use only the renewable resource

due to perfect substitution between them. At lower levels of pollution,

the marginal damage is lower which drags the total marginal cost of non-

renewable resource down (p < pb). In that case, it is optimal to use only

non-renewable resource. We can see that this curve is increasing in adap-

tation capital, meaning that the highest level of pollution that resource

extraction can take place is higher when there is too much adaptation cap-

ital deployed.

The curve Ẑ(A) illustrates the most efficient level of adaptation capital

for a given level of pollution. On that curve, the marginal cost of keeping

adaptation capital on its level equals to the marginal benefit gained by

reduction in pollution damage. For a given level of pollution, if adapta-

tion capital is higher than this level, it is too costly to maintain it as its

marginal cost outweighs the benefit it provides. In this case, investments

in adaptation capital are lower than the quantity that depreciates, thus

adaptation capital will decrease. If the level of adaptation capital is lower,
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the benefit it provides is greater than its cost, thus its quantity will be

increased by large investments.

As Proposition 3.1 states, the optimal path can follow different sequences of

regimes depending on the initial state. All cases presented in Proposition

3.1 can be viewed from Diagram 3.1. In the following, we explore the

properties of the optimal path for each case.

The first item in Proposition 3.1 is the case of low pollution and low adap-

tation. In this case, the optimal path can be of two types. In one type,

it is optimal to start with using only non-renewable resource and increase

adaptation capital. The level of pollution will rise and at a certain time

the cost of non-renewable resource will be equalized to that of renewable

(p = pb), then a simultaneous use of resources and a gradual transition to

renewable will commence. In this phase, resource extraction continues at a

pace such that the marginal damage it inflicts is compensated by marginal

increase in adaptation, following the path on curve ṗ = 0 for p = pb. This

compensation mechanism can go on until pollution reaches a level such

that it is no more beneficial to extract more and adapt more. Indeed, this

level highly depends on the properties of opportunity cost of investment in

adaptation, as well as on the depreciation rate of adaptation capital (which

will be discussed later on). At that level, it is optimal to stop extraction,

to use only renewable resource and to maintain adaptation capital at its

level indefinitely.

In another type, when the initial level of pollution is too high, but still lower

than its steady state level (Z0 < Zss), the optimal path initially starts with

only renewable resource and deploys more adaptation capital over time,

decreasing the marginal damage of pollution. At a certain time, adaptation

capital reaches a level that makes the non-renewable resource beneficial

to use together with the renewable. Following a gradual transition, the

optimal path reaches the steady state and stays there indefinitely.

The second item in Proposition 3.1 is the case of high pollution and low



74 Chapter 3. The role of adaptation on the transition

adaptation. In this case, the level of pollution is so high that it will never

be optimal to extract resource by increasing adaptation capital. Only re-

newable resource will be used, and adaptation capital will be brought to

its efficient level.

The third item in Proposition 3.1 is the case of too high initial adapta-

tion. In that case, simultaneous use and gradual transition cannot exist.

If the level of pollution is low enough, it is optimal to start by using only

non-renewable resource, and to invest less in adaptation to let it depreciate

towards its efficient quantity. For too high levels of initial adaptation, pol-

lution could be increased to a level that is higher compared to its steady

state value. Increasing pollution and decreasing adaptation will induce a

rise in marginal damage, and at a certain date the non-renewable resource

will no longer be rentable to extract. Following an instantaneous switch,

adaptation capital will be decreased to its efficient while using only renew-

able resource indefinitely. If the initial level of pollution is too high, then it

is never optimal to extract non-renewable resource, and adaptation capital

is drawn down to its efficient level.

Indeed, the properties of all underlying functions (utility, damage, extrac-

tion cost, vulnerability and opportunity cost of investment in adaptation)

play a crucial role on the characteristics of the optimum. In addition, the

depreciation rate of adaptation capital (δ) is also an important parameter

as it affects the cost of maintaining adaptation capital efficiently. Adapta-

tion capital is a specific type of capital for which the rate of depreciation

can be subject to differ. In the following, we study the role of depreciation

rate and see how it affects the optimum.
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3.5 The role of depreciation rate of adapta-

tion capital

In this subsection we discuss the role of depreciation rate of adaptation

capital (δ) and its implications on the outcome of the model. It is not

common to study the depreciation rate of a capital variable as it is usu-

ally considered to be a technology parameter given exogenously. However,

adaptation capital is a specific type of capital and its durability can differ

due to the nature of damages that it involves. Difficulties in implemen-

tation and enforcement of right adaptation policies can also have impact

on their durability. The rate of depreciation of adaptation capital will be

determined by taking into account all of these technological characteristics

underlying adaptation policy. The aim of this analysis is to investigate

the impact of a high rate of depreciation on the optimum characterized in

Proposition 3.1.

We first look at how the function Ẑ(A) changes with the depreciation rate

of adaptation capital.

Lemma 3.2. For a given stock of adaptation capital (A), Ẑ(A; δ) increases

with the depreciation rate of adaptation capital (dẐ(A; δ)/dδ > 0).

Proof. See Appendix 3.C.

Indeed, a much larger proportion of adaptation capital depreciates when

the rate of depreciation is higher, which makes it more costly to maintain

at a certain level. Then it would require the level of pollution high enough

to make it worth to keep a certain quantity of adaptation capital. If the

level of pollution is lower than this level, the marginal cost of maintaining

adaptation capital at its level is too high compared to the marginal benefit

it brings, hence it is not efficient. As a result of Lemma 3.2, the curve Ẑ(A)

on (A,Z) plane in Diagram 3.1 is going to be steeper in the case of a high
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rate of depreciation. The following proposition presents its impacts on the

outcome.

Proposition 3.2. When the depreciation rate of adaptation capital (δ) is

high, the steady state values of adaptation capital and pollution are low.

For a given initial state (A0, Z0), the length of transition is also shorter

when δ increases.

Proof. See Appendix 3.D.

Note: Solid lines are for a low value of δ, dashed ones are for a high value.

Figure 3.1 – The effect of depreciation rate of adaptation capital (δ) on the
steady state and length of transition

Figure 3.1 illustrates Proposition 3.2 with two values of depreciation rate

where δ < δ̄. It shows a decreasing relationship between δ and the length

of transition. As the depreciation rate increases, it becomes more costly

to maintain the adaptation capital installed, therefore the simultaneous

regime in which extraction continues due to increasing adaptation capital

takes shorter time for a given path that contains regime 2 within. This can

also be observed by making Ẑ(A) curve steeper in Diagram 3.1.

Accordingly, more durable adaptation capital increases the possibility of

a simultaneous use of two perfect substitutes resources, by extending the

region that it can exist, and it increases the time span of transition in the

cases that it occurs. In contrary, less durable adaptation capital increases

the cost of maintenance, which leads to a shorter transition and a lower
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level of steady state in terms of adaptation capital and pollution, as well

as the total quantity of resource extraction.

3.6 Numerical analysis

This section presents the numerical analysis based on the theoretical results

of Section 3.2. Our aim is to illustrate an optimal path that includes all

regimes within, study its properties, and provide a comparison with a case

in which the depreciation rate of adaptation capital is high.

The functional specifications we use are as follows: U(R) = log(R), G(Z) =

ϕgZ
2/2 ,D(Z) = ϕdZ

2/2, H(I) = ϕiI
2/2 and η(A) = η + (1 − η)e−φAA.

These specifications satisfy assumptions 3.1 to 3.6. In vulnerability function

η, the parameter η determines the limit reduction of damages, and the

parameter φA determines the curvature of the function.

We use a simple calibration: pb = 10, ρ = 0.02, ϕg = 0.1, ϕd = 0.2, ϕi = 1,

η = 0.5 and φA = 0.5. To present the comparison, we set δ = 0.1 and

δ = 0.15 for the depreciation rate of adaptation capital. We set the initial

pollution Z0 = 0.5 and the initial adaptation stock A = 0.005 and search

for the optimal path that reaches the steady state. The model is simulated

by using an iteration program that calculates the numerical results of the

differential equation systems (regime 1 and 2) with boundary conditions.

It searches for the right initial values of marginal cost of non-renewable

resource (p0) and shadow value of adaptation capital (γ0) that will lead

to a minimum distance from the steady state, and then it iterates until

convergence.

Figure 3.1 depicts the optimal path for the initial state Z0 = 0.5 and

A0 = 0.005. The left side plots the phase diagrams in (A,Z), (A, p) and

(A, γ) planes, and the right side plots the optimal trajectories.

We first focus on the properties of the solid lines (for δ = 0.1). (A,Z)
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Note: Solid lines are for δ = 0.1, dashed lines are for δ = 0.15.

Figure 3.1 – Optimal paths with different rate of depreciation of adaptation
capital

diagram shows that the initial state is contained in the area of regime 1,

which is shown in Diagram 3.1. On the optimal path, the levels of pollution

and adaptation capital increase until the path reaches to the curve ṗ = 0

for p = pb. On this curve it is optimal to use both resources simultaneously,

which is done by decreasing the damage of pollution by more adaptation.

This path proceeds to the steady state (the intersection point of Ẑ(A) and

ṗ = 0 for p = pb curves), in which it is no more optimal to adapt more and

extract more. (A, p) diagram shows the optimal path of adaptation and
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marginal cost of non-renewable resource. It shows that the initial marginal

cost of non-renewable is determined low and it increases as the extraction

cost and marginal pollution damage rises. It reaches the marginal cost of

renewable (p = pb) and stays there indefinitely. (A, γ) diagram illustrates

the optimal path of adaptation capital and its shadow value. The path of

γ can also be viewed as of investments as investment is increasing in γ.

It shows an increasing path of investments until the simultaneous regime

begins. Then the investments are gradually decreases and becomes equal

to the quantity of depreciation at the steady state.

The optimal trajectories of R(t) and b(t) show that initially only non-

renewable resource is used. The quantity of extraction decreases as the

marginal cost of non-renewable rises. Simultaneous use of two resources

begins when the marginal cost reaches that of renewable. At this date, non-

renewable resource extraction is adjusted to a level such that the marginal

damage it inflicts is compensated by a marginal increase in adaptation

capital. As adaptation capital rises and its marginal benefit decreases,

and as the level of pollution increases, the amount of resource extraction

declines and reaches zero at the steady state. After that, only renewable

resource is used indefinitely. The trajectory of pollution (also cumulative

extraction) (Z(t)) shows a rapidly increasing pollution caused by utilization

of only non-renewables. When the simultaneous use regime starts, the level

of pollution rises more slowly and stabilizes at its steady state level.

Finally, we focus on the role of adaptation capital’s depreciation rate (the

dashed lines). (A,Z) diagrams shows that the slope of Ẑ(A) curve had

risen due to high rate of depreciation. It intersects with ṗ = 0 for p = pb

curve at a lower level of pollution and adaptation capital, hence their steady

state quantities are lower. The optimal path follows a steeper increase in

pollution compared to the case of low depreciation rate. It reaches to simul-

taneous use regime at a lower level of adaptation, and follows the boundary

curve to reach its steady state. (A,P ) diagram shows that, when the rate
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of depreciation is higher, the marginal cost of non-renewable resource is set

at a higher level for any given adaptation capital. With too large depre-

ciation, it is too costly to maintain and increase the stock of adaptation

capital. Thus the marginal reduction in damage is lower when δ is higher.

This effect reflects itself in the marginal cost of non-renewable resource as

the marginal damage caused by extraction is larger. (A, γ) diagram shows

that investments in adaptation are much lower when δ is higher. Resource

use trajectories show that simultaneous use of resources begins earlier and

lasts much shorter with a high δ. Due to the high cost of adaptation, a

lower amount of non-renewable resource is extracted while using a larger

quantity of renewables. The level of adaptation capital stabilizes at a lower

level compared to the case of low depreciation rate.

3.7 Conclusion

This work studies the role of adaptation policy on the problem of optimal

non-renewable resource extraction with pollution externalities. It empha-

sizes the capital nature of adaptation by considering it as a stock that

depreciates unless it is maintained. The investments, which are costly,

increase the stock of adaptation capital. This in turn decreases the dam-

age of pollution that is generated by the use of non-renewable resources.

To analyze the transition to a low-carbon economy, the model includes a

renewable resource that is a perfect substitute to the non-renewable one.

For given initial levels of pollution and adaptation capital, we present the

problem of social planner in a general form and characterize the optimal

paths of resource uses and investments in adaptation capital.

As adaptation policy affects the marginal damage of pollution, it appears in

the driver formula for the marginal cost of non-renewable resource (mod-

ified Hotelling rule), which brings different consequences with respect to

the model without adaptation. An important one is the possibility of a si-
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multaneous use regime within a model of two perfect substitute resources.

This is due to the possibility of compensating the marginal damage of gen-

erated pollution by increasing the stock of adaptation, which will keep the

marginal cost of non-renewable resource equal to that of renewable. How-

ever, this cannot go on forever as investments in adaptation are costly.

There is an efficient level of adaptation that equalizes the marginal benefit

gained by reduction in damages to the marginal cost of investment that

maintains the stock at its level. A steady state exists when the adaptation

capital is at that level, and the marginal cost of non-renewable resource

equals to that of renewable. The optimal path reaches this steady state

and after that it uses only renewable resource indefinitely.

The unique optimal path can be one of many different types depending on

the initial state. For example, for a low level of pollution and low adap-

tation, it is optimal to start with using only non-renewable resource, then

reach the steady state by following a gradual transition to the renewable

resource. If pollution is too high and adaptation is low, then it is never op-

timal to use the non-renewable resource, and adaptation capital adjusts to

its efficient level. When the initial adaptation is too high, there is no pos-

sibility for the simultaneous use regime to appear. In this case, adaptation

capital will be decreased by low investments, only non-renewable resource

is going to be used and at a certain date there will be an instantaneous

switch to the renewable resource. The final level of pollution can be higher

if the initial adaptation capital is too high.

Indeed, the optimum highly depends on the properties of underlying func-

tions such as utility, damage, extraction cost, vulnerability and opportunity

cost of investment in adaptation. The efficient level of adaptation decreases

when the investment cost of adaptation is too high, whereas larger dam-

ages will lead to a higher adaptation. If adaptation’s capability of reducing

damages is low, then the steady state levels of adaptation and pollution

will decrease. Another parameter of interest is the depreciation rate of
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adaptation capital. When it is too high, meaning less durable adaptation,

the cost of maintaining adaptation capital rises which in turn lowers the

steady state levels for pollution and adaptation capital and reduces the

time span of transition to renewable resource.

The analysis in this work focuses on the capital aspect of adaptation, and

it abstracts from some factors that could be interest of further research.

Indeed, relaxing the irreversible pollution assumption would change the

characteristics of the optimum. Moreover, the damage function is defined to

be continuous. Consideration of a catastrophic outcome when the pollution

level rises too high, or a cap on pollution accumulation would change the

optimum as well. The transition in the outcome is always beneficial, when

it exists. However, if the transition itself brings costs due to the change of

resource utilization then the compensation mechanism during the transition

would work differently. Finally, taking into account the regional differences

in pollution damages and cost of adaptation would provide more extended

results.
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Appendix

3.A Proof of Lemma 3.1

Let D̃ be the inverse of damage function that is presented in Assumption

3.3 (D̃ ··= D−1). It is increasing and concave in its argument (D̃′ > 0 and

D̃′′ < 0). Taking the derivative of Ẑ(A) with respect to A yields

Ẑ ′(A) = D̃′((ρ+ δ)H ′(δA)/(−η′(A)))(ρ+ δ)

(
δH ′′(δA)

−η′(A)
+
H ′(δA)η′′(A)

η′(A)2

)
, (3.27)

which is positive due to Assumptions 3.3 to 3.5.

3.B Proof of Proposition 3.1

We first investigate if the system in (3.12-3.15) has saddle path property.

The Jacobian of (3.12-3.15) is

Jss =


0 0 R′(p) 0

0 −δ 0 I ′(γ)

−(ρG′(Z) + η(A)D′′(Z)) −η′(A)D′(Z) ρ 0

η′(A)D′(Z) η′′(A)D(Z) 0 ρ+ δ

 (3.28)

The trace of Jacobian is TrJss = 2ρ. We will use the theorem in Dock-

ner (1985) that presents two conditions for the saddle path property of

canonical four dimensional systems. These conditions depend on the sign

of determinant of the Jacobian. The first case is det(Jss) < 0 that ensures

the saddle point property. To check that, we compute the determinant of
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Jss written as follows:

det Jss = (−R′(p)︸ ︷︷ ︸
>0

)(

>0︷ ︸︸ ︷
(η(A)D′′(Z) + ρG′(Z))

>0︷ ︸︸ ︷
(δ(ρ+ δ) + η′′(A)D(Z)I ′(γ))︸ ︷︷ ︸
>0

− (η′(A)D′(Z))2I ′(γ)︸ ︷︷ ︸
>0

) (3.29)

If the value of third term in (3.29) offsets the second term then the sign

of determinant is negative (det(Jss) < 0). In this case the characteristic

equation associated to Jss has two positive and two negative roots. Then

the system has the saddle path property in this case.

In the contrary case, if the sign of determinant is positive (det(Jss) > 0),

the saddle path property of the system can be investigated by calculating

the sum all diagonal second order minors of Jss. Define Ω to be this sum

written as follows:

Ω ··=

∣∣∣∣∣∣ ∂Ż/∂Z ∂Ż/∂p

∂ṗ/∂Z ∂ṗ/∂p

∣∣∣∣∣∣+

∣∣∣∣∣∣ ∂Ȧ/∂A ∂Ȧ/∂γ

∂γ̇/∂A ∂γ̇/∂γ

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣ ∂Ż/∂A ∂Ż/∂γ

∂γ̇/∂A ∂γ̇/∂γ

∣∣∣∣∣∣ (3.30)

The last term is null and the value of Ω is given by

Ω = (R′(p)︸ ︷︷ ︸
<0

)(η(A)D′′(Z) + ρG′(Z)︸ ︷︷ ︸
>0

)− (δ(ρ+ δ) + η′′(A)D(Z)I ′(γ))︸ ︷︷ ︸
>0

.

(3.31)

The sign of Ω is negative (Ω < 0). As the theorem in Dockner (1985)

states, if det(Jss) > 0 and Ω < 0 then the system satisfies the conditions

to have saddle path property.

Therefore, we verify that conditions for the saddle path property are satis-

fied in both cases for the sign of determinant. We conclude that the system

in (3.12-3.15) has the saddle path property.

The existence of the steady state is already shown and discussed by equa-

tion (3.26). Indeed, the occurrence of this steady state depends on the

initial levels of pollution (Z0) and adaptation capital (A0). To proceed

on identification of different possibilities, we will study two boundaries in

(A,Z) space that are characterizing the optimal behavior.
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One boundary is characterized by the curve given in equation ṗt = ρ(pb −
G(Z)) − η(A)D′(Z) = 0 (3.16). Consider a point on this curve in (A,Z)

space by fixing the level of adaptation capital (A). For a given A, if the

level of pollution is higher, (Z ′ > Z) then ρ(pb − G(Z ′)) < η(A)D′(Z ′),

meaning that the marginal benefit of one unit of extraction is lower than

the marginal effective damage it inflicts when p = pb. In order to make the

resource beneficial p must increase. But when p > pb there is no extraction

(R = 0 and Ż = 0) due to conditions (3.10) and (3.11). Hence regime 3 is

going to be optimal for the values of Z that are above this curve. Below

that curve, for (Z ′′ < Z), p takes lower values (p < pb), hence regime 1 is

optimal (Ż > 0).

To analyze the dynamics of pollution and adaptation capital, and occur-

rences of different regimes, we need to study the behavior of the system

around the other loci (Ȧ = 0 and γ̇ = 0). These loci are given by function

Ẑ(A) that is presented in Definition 3.2. Consider a point on this curve

in (A,Z) space, that is (A,Z) = (A, Ẑ(A)). On this point γ̇ = 0, hence

γ = −η′(A)D(Z)/(ρ+ δ) and Ȧ = I∗(−η′(A)D(Z)/(ρ+ δ))− δA = 0. An

increase in Z, (Z ′ > Z) will lead to an increase in I∗(.) since I∗′ > 0 and

∂I∗(.)/∂Z = I∗′(.)(−η′(A)D′′(Z)/(ρ+ δ)) > 0. Then for a given A around

point (A, Ẑ(A)), Ȧ > 0 for the values of Z that are higher than Ẑ(A) and

Ȧ < 0 for the lower values.

These results are presented in diagram 3.1, which shows different possibil-

ities of optimal paths presented in Proposition 3.1. It can be seen that

regime 2 can exist only on curve (3.16), and only for the values below

Z < Zss that is characterized by (3.22-3.24). If Z ≥ Zss, then there

is no possibility of increasing Z and keeping the adaptation capital at a

steady level efficiently. In this case, an optimal path arriving to curve

ṗt = ρ(pb −G(Z))− η(A)D′(Z) = 0 will instantaneously switch to regime

3 if A > Ass and Z ≥ Zss.

Consequently, we conclude that there exists a unique path for any given
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initial state (Z0, A0) that leads to the steady state.

3.C Proof of Lemma 3.2

As in Lemma 3.1, let D̃ denote the inverse of damage function D. When

the stock of adaptation capital is given, the change in Ẑ(A; δ) with respect

to the parameter δ is

dẐ(A; δ)

dδ
= D̃′((ρ+ δ)H ′(δA)/(−η′(A)))

(
H ′(δA) + (ρ+ δ)H ′′(δA)A

−η′(A)

)
, (3.32)

which is positive due to Assumptions 3.3 to 3.5.

3.D Proof of Proposition 3.2

First we will prove the first part of proposition. Recall that the steady

state value of adaptation capital is determined by equation (3.26). We are

interested in how the intersection point of two curves in LHS and RHS

change with the rate of depreciation. To check that, we look how the value

of each side changes with δ for a given A. We have:

dLHS/dδ = −ρG′′(Ẑ(A; δ))
dẐ(A; δ)

dδ
< 0 (3.33)

dRHS/dδ = η(A)D′′(Ẑ(A; δ))
dẐ(A; δ)

dδ
> 0 (3.34)

Equation (3.33) shows that the value of LHS is lower when δ is higher. This

means that LHS decreases faster in A when δ is higher. Similarly, equation

(3.34) shows that the value of RHS is increasing in δ for a given A, which

implies that RHS increases faster in A as δ increases. Consequently, the

intersection point of two curves is going to occur at a lower value of A,

which proves that Ass is decreasing in δ. This is shown in figure 3.1.
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As Ass is decreasing in δ, the pollution level of the steady state (Zss) must

also decrease in δ to keep equation (3.24) hold true. This completes the

first part of the proof.

A conclusion of the first part is that the steady state levels of pollution and

adaptation capital (Zss, Ass) are going to be at their highest when δ = 0.

There is no cost of maintaining adaptation capital as it is irreversible and

it remains indefinitely when installed. In this case, the curve Ẑ(A) is the

flattest (by Lemma 3.2), and ṗ = 0 for p = pb remains on its position

(as it does not depend on δ) in Diagram 3.1. Thus the intersection point

of two curves will be at farthest right, bringing the steady state levels of

pollution and adaptation at their highest level. For a path that contains

simultaneous regime within, the length of transition will be longest in this

case. Then the level of steady state and the time spent on simultaneous

regime are related for a path that contains regime 2. When δ is higher,

the curve Ẑ(A) is going to be steeper and the intersection point will move

below. For a path that contains regime 2, the time of arrival to the steady

state will get shortened and it will be shortest when δ = 1.
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Chapter 4

The role of capacity building

on technology adoption under

imperfect competition

Thomas Fagart and Baris Vardar

4.1 Introduction

New technologies develop rapidly and firms constantly face adoption de-

cisions. The industrial organization and environmental economics litera-

tures usually consider that the adoption of a new technology allows firms

to decrease their marginal cost of production. This is the case when the

new technology corresponds to a more efficient management technique, a

new software or a new method to process inputs. However, technologi-

cal progress also often takes the form of the creation of new production

tools such as a new robot capable of producing a piece more quickly or a

new aircraft consuming less kerosene. In that case, firms have to buy new

production tools to benefit from this new technology. The cost reduction

implied by the new technology is therefore only effective for the production

89
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done using these new tools, and the rest of the production of the firms

remains with the same efficiency that they had before adoption.

This paper studies how the adoption of production tool technology differs

from the adoption of classical marginal cost reducing technology, and how

it changes the way firms compete. It shows the existence of symmetric and

asymmetric equilibria in which firms may use different technologies at the

same time.

For example, in the commercial aircraft market, Airbus sells the A321

model with two different engine options: current engine option (CEO) and

new engine option (NEO). CEO’s price is 114.9 million US dollars and

NEO’s price is 125.7 million US dollars.1 NEO is more expensive to buy

but it reduces the fuel burn per seat by 20 percent (and also improves

payload capacity and range).2 The problem of the airline companies is to

decide to invest in which type of aircraft at which quantity. The orders

and deliveries report shows airline companies ordering either the CEO,

or the NEO, or even the two altogether. For instance, in 2015 Frontier

Airlines ordered 10 CEOs, Air Lease Corp. ordered 30 NEOs, and ANA

Holdings ordered 4 CEOs and 3 NEOs.3 We are interested in the economic

mechanisms underlying this kind of problem and observation.

When firms have no interest to delay investment, they would invest as soon

as possible, and only in the capacity using the most efficient technology,

i.e. the technology with the lowest inter-temporal cost (purchasing price

plus the discounted cost of production). In such case, investments are

done as if the technology was a cost margin reducing technology. However,

when firms are financially constrained, investing in the technology with the

cheapest purchasing price allows the firm to grow faster. Firms then may

wish to invest in this inefficient technology in order to increase their short

1New Airbus aircraft list prices for 2016, Airbus S.A.S, 12 January 2016.
2A321 state-of-the-art capabilities and technical details, Airbus S.A.S, retrieved on

17 January 2016
3Airbus orders and deliveries spreadsheet, Airbus S.A.S, 30 November 2015.
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run profits, even though it reduces their future profits by increasing their

production costs. The inefficient technology also generates a strategic ef-

fect: it permits one firm to preempt its opponent, building more capacity in

the short run and reducing the future investment incentives of its opponent.

These mechanisms explain why firms may use different technologies at the

same time, and imply that the adoption of a production tool technology is

slower than the adoption of a classic marginal cost reducing technology.

More precisely, we develop a two-period model in which firms’ production is

determined by their level of capacities. There are two types of capacity em-

bodying two different types of technology. One type has a purchasing price

higher than the other one, but it produces at a lower cost. This technology

is also assumed to be more efficient, meaning that the inter-temporal cost

of unit production is inferior for the capacity with the higher purchasing

price. Firms compete à la Cournot. In the first period, firms are considered

as entrepreneurs and have no initial capacity, but they possess an initial

amount of funds in order to enter the market. Their capacity investment is

then limited by their initial endowments. In the second period, firms have

access to a perfect credit market and can invest as they wish to increase

their capacities.

The monopoly faces a tradeoff between investing in the efficient capacity in

the first period but growing slowly, and investing in the inefficient capacity

and growing faster but facing a larger production cost in both periods. The

optimal solution is then a mixture of both types of capacity, and the total

capacity of the mixture does not depend on the financial constraint.

When there is a duopoly in the market, there may exist two different types

of equilibrium: symmetric and asymmetric. In the symmetric equilibrium,

firms invest in the same way as the monopoly, but adjusted to duopoly lev-

els. Each firm has the same mixture of efficient and inefficient technology

as its competitor, and the same market share. There may also exist other

equilibria that are asymmetric, in which one of the firms overinvests in the
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inefficient capacity in the first period. This allows the firm to increase its

total capacity above the final total capacity of the symmetric case, com-

mitting itself to a larger production for the second period. The opponent

reacts to this preemption by investing less in the first period, focusing on

the efficient capacity. In the second period the preempted firm is the only

firm to invest, but it does not catch up its rival. The preempting firm

finishes with a larger market share, producing mostly with the inefficient

technology whereas the preempted firm stays smaller but more efficient.

These results lead to two unexpected recommendations for the policy maker.

First, when an industry is financially constrained, a duopoly uses more old

technology compared to a monopoly, thus competition makes the industry

to use more inefficient capacity. In the case where the old technology gener-

ates a negative externality, the increase of competition may lead to a lower

welfare if welfare loss due to the externality exceeds the usual welfare gain

due to competition. Second, an increase in the price of old technology may

increase its utilization. Indeed, when the price of old capacity increases,

the firm has to decrease its total capacity since it is financially constrained.

To avoid a too large reduction of its total capacity, the firm can substitute

its investment in new capacity by old one, and an increase in the price of

old technology may lead to an increase in the quantity of old capacity used.

Other comparative statics are as expected.

The next subsection reviews the related literature. Section 4.2 presents

the model framework. Section 4.3 studies the decision of a monopoly and

Section 4.4 studies the duopoly behavior. Section 5.9 concludes.

4.1.1 Related literature

This work is related to several strands of literature in industrial organiza-

tion, operation research and corporate investment.

In industrial organization, since the pioneering works of Reinganum (1981),
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Fudenberg and Tirole (1985) and Gaimon (1989), there has been a large lit-

erature studying technology adoption. Authors have considered the impact

of learning, timing, uncertainty, environmental impacts and competition.

However, to our knowledge, all papers consider a marginal cost reducing

technology. We differ from this assumption by modeling production tool

technologies.

For example, Stenbacka and Tombak (1994) study the timing of adoption

of a new technology with uncertainty and they emphasize that the level

of uncertainty can affect the dispersion between the equilibrium timings of

adoption. Hoppe (2002) provides a survey of theoretical results and em-

pirical evidence on the timing of adoption of new technologies. Huisman

and Kort (2004) study the adoption decision in the case where firms take

into account possible future technological improvements and Hoppe and

Lehmann-Grube (2005) emphasize the role of R&D costs of process inno-

vation and product innovation that generate a second-mover advantage in

technology adoption games. Milliou and Petrakis (2011) investigate the

timing of adoption with a focus on product market competition and they

present results showing that different market features, such as the type and

toughness of competition, can change the incentives for adoption. About

the environmental impacts, Sanin and Zanaj (2011) study the influence

of technology adoption on the prices of tradable emission permits. These

few examples give a view of the diversity on the literature on technology

adoption.

In operation research, our model is similar to some studies regarding the

electricity generation markets. These studies question whether to invest in

inefficient and cheap generation capacity (e.g. a base-load technology like

coal-fired generator (CFG)) or to invest in efficient and expensive gener-

ation capacity (e.g. combined cycle gas turbines (CCGT)), knowing that

there will be demand or supply uncertainties in the future. For example,

Murphy and Smeers (2005), Tishler et al. (2008), Meunier (2010) and Mil-
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stein and Tishler (2012) study generation capacity mixture and expansion

in different models of investment. They investigate the roles of different

competition structures and show the possibilities of underinvestment or pre-

cautionary investment in electricity markets. The present work abstracts

from the role of uncertainty, showing that the presence of a financial con-

straint is enough to induce the firms to invest in different types of capacity.

The presence of financial constraints is investigated by some studies in

corporate investment literature. Fazzari et al. (1988) stress that internal

funds and external finance are not perfect substitutes due to asymmetric

information and capital market imperfections. They empirically show that

the financial constraint is particularly active in the short run, and for the

start-up ventures or small sized firms. Carpenter and Petersen (2002) dis-

cuss and empirically verify the reasons underlying the financial constraints

in high-tech industry. More recently, Almeida and Campello (2007) show

that firms with low level of asset tangibility are financially constrained in

their investment decisions. Feichtinger et al. (2008) study the differences of

disembodied and embodied technical progress when the firms have finan-

cial constraints. Differences in investment decisions in new or used capital

is studied by Eisfeldt and Rampini (2007). They show that the firms are

attracted to invest in used capital due to the financial constraints. The

financial constraint introduced in this paper is in line with these findings:

It constraints only the small firms, only in the short run. Our work con-

tributes to this branch of literature by showing that the presence of financial

constraints in imperfectly competitive markets can lead to the use of inef-

ficient technologies as well as asymmetric outcomes in terms of technology

and market shares.
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4.2 The framework

4.2.1 The Model

We consider a two-period model of competition in production capacity. At

each period, firms first invest in new units of capacity then determine their

level of production. We assume irreversible investment and full utilization

of capacity.4 The price is determined by the total quantity of the industry.

In the first period, firms start with no initial capacity and face a finan-

cial constraint which limits their investment opportunities. In the second

period, firms are free to invest as they wish.

There are two different types of capacity available in the market that em-

body two different kinds of technology. The purchasing prices of the two

capacities are p and p̃ and the unit costs of production by using the two

capacities are c and c̃, respectively. We call the more efficient technology

as the new technology and it has a lower cost of production (c̃ < c) but

more expensive to purchase (p̃ > p). Thereafter we will speak of old (new)

capacity to name the capacity using the old (new) technology.

We make the following assumption:

Assumption 4.1. The new capacity is more efficient than the old one:

p̃+ c̃ < p+ c.

Assumption 4.1 ensures that firms have incentives to invest in new capacity.

It means that the cost of buying the capacity to produce one unit of output

4Including the possibility of underutilization of capacity would make the model more
realistic but at the cost of computational complexity. This will change our result in two
different ways. If firms prefer to use their old capacity than buying new one in the long
run (p̃ + c̃ > c), then assuming capacity underutilization reduces the possibility of the
existence of asymmetric equilibrium given in Proposition 3, but it still may exists. If
not (p̃ + c̃ < c), the firms always prefer to invest in new capacity than using their old
one in the long run, therefore no preemption using old capacity is possible. In that case,
the asymmetric equilibrium vanishes.
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with new capacity is lower compared to that of old capacity. Under this

assumption, a firm facing no constraint would invest only in new capacity.

In the monopoly case, we denote kt and k̃t the level of old and new capacity

at time t. In the duopoly case, we denote kit and k̃it the capacities of firm

i, with i ∈ {A,B}. Let K be the total capacity of the industry. The profit

of firm i at time t is then:

Πi
t = (kit + k̃it)P (Kt)− ckit − c̃k̃it − p(kit − kit−1)− p̃(k̃it − k̃it−1) (4.1)

under the capacity constraints

kit ≥ kit−1 and k̃it ≥ k̃it−1. (4.2)

For simplicity, assume that the price is linear, P (K) = 1−K, and the unit

production cost of new capacity is zero (c̃ = 0).

We introduce the financial constraint of the first period as follows:

pki1 + p̃k̃i1 ≤ G (4.3)

where G denotes the initial endowment of firm i. This constraint implies

that the purchasing cost of capacity in the first period cannot exceed the

given initial endowment.

Firm i aims to maximize its discounted total profit:

Πi = Πi
1 + δΠi

2 (4.4)

where δ ∈ (0, 1) denotes the discount rate. In this setup, investments in the

first period can be viewed as short run decisions while the second period

represents the long run.5 We focus on sub-game perfect equilibria. Let ~Kt =

5This two-period game is equivalent to an infinite horizon game with a discount
factor β if firms’ capacities are assumed to remain constant after the second period and
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(kit, k̃
i
t, k

j
t , k̃

j
t ) be the vector of capacities at time t. By backward induction,

( ~K∗1 , ~K
∗
2) is a sub-game perfect equilibrium if ~K∗2( ~K1) is a mapping which

verifies:

(
ki∗2 , k̃

i∗
2

)
= max

ki2,k̃
i
2

Πi
2

(
~K1, k

i
2, k̃

i
2, k

j∗
2 , k̃

j∗
2

)
under (4.2), (4.5)

and ~K∗1 verifies:

(
ki∗1 , k̃

i∗
1

)
= max

ki1,k̃
i
1

Πi
(
ki1, k̃

i
1, k

j∗
1 , k̃

j∗
1 , ~K

∗
2(ki1, k̃

i
1, k

j∗
1 , k̃

j∗
1 )
)

(4.6)

under (4.2) and (4.3).

The sub-game perfect equilibrium path is then ( ~K∗1 , ~K
∗
2( ~K∗1)). In order to

emphasize the role of the financial constraint, the next subsection describes

firms’ choices when there is no financial constraint in the first period.

4.2.2 The role of financial constraint

In the absence of a financial constraint, firms would invest in the first

period, as any capacity installed in the first period allows to produce in

both periods. The choice between old and new capacity then reduces to a

simple cost-benefit analysis and firms invest only in new capacity.

Result 4.1. When firms are not financially constrained, firms invest only

in the most efficient capacity and only in the first period.

The profit of the firm in (4.1) can be rewritten as

Πi
t = (kit+k̃

i
t) [P (Kt)− (p̃+ c̃)]+[(p̃+ c̃)− (p+ c)] kit+pk

i
t−1+p̃k̃it−1. (4.7)

δ = β
1−β . In the infinite horizon game in which capacities are not assumed to remain

constant after the second period, there exist equilibria equivalent to the ones defined in
Proposition 2 and 3, but also other equilibria may appear due to punition scheme (as
trigger strategies).
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Given a constant total capacity (kit + k̃it), the profit in (4.7) is decreasing in

kit, as (p̃+c̃ < p+c) due to assumption 4.1. Since old and new capacities are

perfect substitutes in production, in this case firms have interest to invest

only in new (the most efficient) capacity. Moreover, firms invest only in

the first period as every unit of capacity invested in the first period is also

utilized in the second period.

Accordingly, when there is no financial constraint, the introduction of dif-

ferent types of capacities to model the technology choice has no impact

on the firm’s decision as the firm always has an incentive to invest imme-

diately and in only one type of capacity. In reality, however, firms often

delay their investment decisions due to financial constraints that arise from

capital market imperfections and asymmetric information, as discussed in

Section 4.1.1. In the following, we see how the interest to delay investment

generates an incentive to invest in both types of capacities.

4.3 Monopoly

In this section we consider that there is only one firm in the market. The

investment decision of the firm is highly dependent on the financial con-

straint and on the differences between the two technologies. Investing only

in new capacity allows to produce at lower cost (in both periods), but lim-

its the first period production, as the new capacity is more expensive to

purchase compared to the old one. On the contrary, investing only in old

capacity increases the first period production, but also increases the cost

of production in both periods. The optimal strategy of the firm in the first

period is then to invest in a mixture of the two capacities, balancing the

tradeoff between rapid growth and long run cost efficiency.

When the financial constraint is binding and the firm invests in the second

period, its profit in (4.1) can be rewritten as a function of the total capacity
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and old capacity installed in the first period:

Π =
(

1− p̃+ δp̃− (k1 + k̃1)
)(

k1 + k̃1

)
+δ

(
1− p̃

2

)2

−(p+(1 + δ) c−p̃)k1.

(4.8)

The first and second terms of (4.8) represent the profit that the firm would

make if its total capacity was composed only of new capacity.6 The third

term represents the cost of using old capacity instead of new one for a given

total capacity. If there were no links between the level of old capacity and

total capacity, then equation (4.8) shows that the firm would never invest

in old capacity. However, due to the financial constraint, if the firm wants

to increase its total capacity, it has to reduce its level of new capacity in

order to purchase more of old capacity. Rewriting (4.3) yields the level of

old capacity as a function of the total capacity:

k1 =
p̃(k̃1 + k1)−G

p̃− p
. (4.9)

Replacing the level of old capacity in equation (4.8) by (4.9) allows to ex-

press the profit of the firm as a function of total capacity. As we consider

the case in which the financial constraint is binding, all the initial endow-

ment must be spent by investing only in old capacity, only in new capacity

or in a mixture of them. Thus the total capacity belongs to the interval[
G
p̃
, G
p

]
. The objective of the firm then reduces to a simple one dimensional

maximization problem where the decision variable is the total capacity. Let

ΨM be the interior solution of this problem given by:

ΨM =
1− p̃− (1 + δ) p̃

(
c

p̃−p − 1
)

2
(4.10)

This interior solution equalizes the marginal revenue of total capacity and

6More precisely, the first period profit is (1 − k̃1)k̃1 − p̃k̃1 whereas the discounted
second period profit is δ(( 1−p̃

2 )2 + p̃k̃1), as the capacity purchased in the first period is
also used in the second one.
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the marginal cost of changing the composition of capacity mixture. It does

not depend on the financial endowment. When ΨM is outside of the feasible

interval, the solution lies on the boundaries:

(
k∗1, k̃

∗
1

)
=


(
G
p
, 0
)

if ΨM > G
p(

p̃
p̃−p(ΨM − G

p̃
), p

p̃−p(G
p
−ΨM)

)
elsewhere(

0, G
p̃

)
if ΨM < G

p̃

(4.11)

The above analysis assumes that the firm invests in the second period.

This is the case when 1−p̃
2
≤ G

p̃
. Indeed, the capacity maximizing second

period profit is 1−p̃
2

, as the firm in the second period is not financially

constrained. When the firm invests in old capacity (fully in old capacity

or in a mixture), its first period total capacity is always inferior to the

second period’s optimal capacity.7 When the firm uses only new capacity,

it invests in the second period if its financial endowment is sufficiently low

(G
p̃
≤ 1−p̃

2
). In the other case, the firm invests only in the first period, only

in new capacity, and to the level G
p̃

.

Finally, when the firm is not financially constrained, investments are made

only in the first period, only in new capacity, and to the level 1
2

(
1− p̃

1+δ

)
.

This behavior is optimal as long as the financial constraint is not binding(
G
p̃
≥ 1

2

(
1− p̃

1+δ

))
.

The following proposition sums up the monopoly outcome.

Proposition 4.1. Assume 4.1. Then,

• If G
p̃
< 1−p̃

2
, the first period decision of the monopoly is given by the

pair (k∗1, k̃
∗
1) described in equation (4.11). In the second period, the

monopoly installs a total capacity k∗2 + k̃∗2 = 1−p̃
2

and invests only in

new capacity (k∗2 = k∗1).

7As the first period total capacity in a mixture is ΨM < 1−p̃
2 .
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• If 1−p̃
2
≤ G

p̃
< 1

2

(
1− p̃

1+δ

)
, the first period decision of the monopoly is

to invest only in new capacity, to the level G
p̃

. In the second period,

the monopoly does not invest.

• If G
p̃
≥ 1

2

(
1− p̃

1+δ

)
, the first period decision of the monopoly is to

invest only in new capacity, to the level 1
2

(
1− p̃

1+δ

)
. In the second

period, the monopoly does not invest.

Proof. See Appendix.

Proposition 1 shows that the monopoly behavior is highly dependent on

its financial endowment. Figure 4.1 illustrates the role of the financial

endowment on the choice of capacities (total capacity, old capacity, and new

capacity). When the financial endowment is low, the firm wishes to grow as

fast as possible and thus invests only in old capacity. For a higher financial

endowment, the firm balances the tradeoff between the efficiency of new

capacity and the size advantage of old capacity, investing in a mixture of

the two technologies. The total capacity of the firm is constant as long as

it invests in both capacities. However, for a large financial endowment, the

firm invests only in new capacity, and an increase in its endowment once

again increases its total capacity. Finally, when the financial endowment is

too high, the firm behaves as if there is no financial constraint and invests

at a level that is the optimum of the problem without a financial constraint.

The contrast between Result 4.1 and Result 4.2 emphasizes the role of

financial constraint.

Result 4.2. There exists a range of financial endowment such that:

• The monopoly invests in a mixture of the two capacities.

• An increase in the initial endowment (G) increases the share of new

capacity and decreases the share of old one, but does not impact the

total capacity of the firm.
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Figure 4.1 – First period capacity investment with respect to the financial
endowment

The rest of the section presents the comparative static analysis done on this

monopoly behavior. We focus on the range of financial endowment where

the firm invests in a mixture of capacities. We consider that consumers

are only affected by the price, and ignore any externality arising from the

utilization of one or the other technology.

The next result exhibits the differences in outcomes when one of the tech-

nologies is not present in the market, by comparing the mixture outcome

with the cases in which there is only old or only new technology in the

market.

Result 4.3. The profit of the firm is higher with two technologies than with

only one technology. Furthermore:

• The introduction of a new technology is harmful for the consumer in

the short run, but beneficial in the long run.

• The prohibition of the old technology is harmful for the consumer in

the short run and neutral in the long run.
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If there is only old technology in the market, the firm would use all of its

endowment to install old capacity in the first period
(
G
p

)
, before reaching

a long run capacity
(

1−c−p
2

)
that is inferior to the final total capacity of

the case with two technologies
(

1−p̃
2

)
. This is due to the inefficiency of

old capacity (see Assumption 4.1). On the contrary, the total capacity of

the firm in the first period is superior with only old technology. Indeed,

old capacity is cheaper than new one, and more of it can be installed

with a given endowment. As consumer surplus increases with the level of

production, this states Result 4.3.

When the old technology is prohibited, the firm invests all of its endowment

in new capacity, leading to a first period level
(
G
p̃

)
inferior to the total

capacity of the two technology case (ΨM). In the two technology case,

the long run total capacity is determined only by the features of the new

technology, and the prohibition of old technology has no impact on the

consumer.

The next result discusses the impact of a change in the price of old capacity.

One may expect that an increase in the price of old capacity would diminish

its utilization by the firm. However, our result is more ambiguous.

Result 4.4. The effect of a variation in the price of old capacity (p) on

the percentage and quantity of old capacity used in the technology mixture

depends on p:

• for a low value of p, an increase in p increases the utilization of old

capacity (both in the short run and in the long run),

• for a high value of p, an increase in p reduces the utilization of old

capacity (both in the short run and in the long run).8

Moreover, an increase in the price of old capacity always decreases the total

capacity in the short run (and has no impact in the long run).

8See Appendix for the analytic thresholds.
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This unexpected result comes from the fact that an increase in the price

of old capacity has two effects. First, for a given total capacity, the firm

wants to increase its share of new capacity and to reduce its share of old

one, as the new capacity becomes relatively cheaper to purchase. This is

the price effect. However, when the price of old capacity increases, the total

capacity of the monopoly would reduce due to the financial constraint and

the price effect (the price of new capacity remains larger than the price of

old). This increases the marginal profit of total capacity (as the profit is

a concave function of total capacity), and make the firm willing to invest

more in old capacity, i.e. willing to sacrifice more of its long run efficiency

to increase its first period size, which is the substitution effect.

When the difference between the prices of two capacities is sufficiently large,

the substitution effect dominates the price effect and induces the firm to

increase its investment in old capacity. In the contrary, when the prices

are too close, the price effect offsets the substitution effect, and the firm

increases its share of new capacity.

There is no such ambiguity for the other policy tools: the price of new

capacity and the marginal cost of production using old capacity. When

the price of new capacity rises, the price effect and the substitution effect

incentivize the firm to increase its investment in old capacity. Indeed,

the price increase leads to a decline in total capacity, which increases the

marginal profit of total capacity and induces the firm to install more old

capacity. The substitution effect then works in the same direction as the

price effect.

Result 4.5. We have:

• An increase in the price of new capacity (p̃) decreases the percentage

and the quantity of new capacity used in the technology mixture, both

in the short run and in the long run. Moreover, it increases the total

capacity in the short run, but decreases it in the long run.
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• An increase in the marginal cost of production using old capacity (c)

decreases the percentage and the quantity of old capacity used in the

technology mixture, both in the short run and in the long run. More-

over it decreases the total capacity in the short run (and has no impact

in the long run).

To complete the comparative statics of the monopoly case, we discuss the

effect of the time preference of the firm (δ). When the firm is more patient

(a higher δ), the firm increases its level of new capacity and reduces the

level of old capacity. The firm also decreases the total capacity in the short

run (and makes no change in its long run choice of capacities). Indeed, the

firm values more the long run efficiency of the new technology than the

short run growth provided by the old technology.

4.4 Equilibria in the duopoly case

In this section, there are two entrepreneurs, A and B, present in the mar-

ket. Two different equilibria may arise: symmetric and asymmetric. To

investigate these equilibria, let us first focus on what happens in the second

period.

4.4.1 Behavior of firms in the second period

In this period firms are not financially constrained and thus invest only in

the most efficient capacity, the new one. The investment choice of a firm

depends on the level of capacity held by its rival. If the rival’s total capacity

of the first period is inferior to the Cournot outcome (kj1 + k̃j1 <
1−p̃

3
) then

the firm increases its investment to take a larger share of the market until

it reaches the Cournot outcome. In the contrary case (kj1 + k̃j1 > 1−p̃
3

),

the opponent is committed itself to a large production due to the level
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of capacities installed in the first period, and the firm adapts its capacity

according to the opponent’s first period choice.

This is resumed formally as follows. Let ki1 be the level of old capacity of

firm i in the first period and k̃i2 the level of new capacity of firm i in the

second period. Then the optimal investment decision of firm i is:

(k∗i2 + k̃∗i2 ) =

 max
{

1−p̃
3
, ki1 + k̃i1

}
if kj1 + k̃j1 <

1−p̃
3

max
{

1−p̃−Kj
1−K̃

j
1

2
, k̃i1 + ki1

}
if kj1 + k̃j1 >

1−p̃
3

 (4.12)

where k∗i2 = ki1 because the firm always invests in new capacity in the

second period. We summarize the optimal investment decision of the firm

in the second period in the following lemma:

Lemma 4.1. Assume 4.1. For any vector of first period capacities ~K1, the

equilibrium of the second period is to invest only in new capacity in order

to reach the total capacity given in (4.12).

Proof. See Appendix.

Lemma 4.1 shows that the space of total capacities can be separated in

three regions, as presented in Figure 4.1.9

In the area named the no-move zone (which is marked by the gray mesh)

firms have no interest to invest in more capacity. In fact, in that area, the

marginal value of an additional capacity is positive but inferior to the price

of investment. So the firm wishes to produce more, but the return does

not compensate the cost of investment. As we consider that the firms start

with no capacity, no equilibria will take place inside this area.

When the first period total capacity of each firm is inferior to the Cournot

outcome (1−p̃
3

), the equilibrium strategy of period two is, for both firms,

9The formal description of these regions can be found in Appendix.
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Figure 4.1 – The second period investment regions for duopoly

to invest until the Cournot outcome. We name this area the symmetric

zone. This leads to a possible symmetric equilibrium in the first period. In

this equilibrium, firms invest in a mixture of old and new capacities due to

the tradeoff between investing as soon as possible in the first period and

focusing on long run efficiency.

When one firm has a first period total capacity larger than the Cournot

outcome and its opponent has a lower capacity, the equilibrium investment

choice in the second period is for the smaller firm to invest and for the

larger firm to do nothing. We name this area the asymmetric zone. The

firm may reach this area if it preempts its opponent by investing mostly
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in old capacity in the first period, in order to gain an advantage in the

second period. This leads to the existence of an asymmetric equilibrium10,

in which one of the firm (thereafter called the preempting or the leader 11)

invests mainly in old capacity, in order to have a first period total capacity

higher than the Cournot outcome. In this case, the best response of the

other firm (thereafter called the preempted or the follower) is to invest less

than its opponent in the first period, mostly based on new capacity, before

getting closer to its rival in the second period. The preempted firm remains

smaller than its opponent.

Figure 2 illustrates the different equilibrium paths corresponding to these

symmetric and asymmetric outcomes in the industry. The next subsections

investigate these cases in detail.

4.4.2 Case of symmetric equilibrium

Symmetric equilibrium can exist only if firms are not be able to reach the

Cournot outcome by investing only in new capacity in the first period. In

the contrary case the equilibrium is straightforward: firms invest only in

the first period, and only in new capacity.

When their financial endowments are sufficiently low, firms face a tradeoff

between short run growth and long run efficiency. The total capacity that

the firms wish to install in the symmetric equilibrium is given by:

ΨD =
1− p̃− (1 + δ) p̃

(
c

p̃−p − 1
)

3
(4.13)

If the financial endowment is too low that the firms cannot reach ΨD then

the firms invest only in old capacity at the maximum possible level. If the

10There exists some parameter values such that the asymmetric or the symmetric
equilibria do not exist.

11This terminology has no relation with the Stackelberg game, as firms take their
action simultaneously.
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Figure 4.2 – Potential equilibrium paths

financial endowment is too high that the firms can reach ΨD using only new

technology then the firms invest only in new capacity and reach a higher

level than ΨD. We define ksym1 and k̃sym1 , the old and new capacity of the

firm in the first period as:

(
ksym1 , k̃sym1

)
=


(
G
p
, 0
)

if ΨD > G
p(

p̃
p̃−p

(
ΨD − G

p̃

)
, p
p̃−p

(
G
p
−ΨD

))
elsewhere(

0, G
p̃

)
if ΨD < G

p̃


(4.14)

The strategy which consists for each firm to invest (ksym1 , k̃sym1 ) in the first

period is a local equilibrium, meaning that there is no profitable deviation
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inside the symmetric zone. To verify that (4.14) is an equilibrium strategy,

we have to ensure that no firm has an incentive to deviate to an asymmetric

strategy profile when its opponent invests (ksym1 , k̃sym1 ). To characterize this

profile, let ΨBR
Asym = 1

2

[
1− 1

(1+ δ
2)

(
ksym1 + k̃sym1 + (1 + δ) c p̃

p̃−p − δ
p̃
2

)]
, then

the asymmetric strategy profile that is the best response to (ksym1 , k̃sym1 )

given by:

(
kBRasym1 , k̃BRasym1

)
=


(
G
p
, 0
)

if ΨBR
Asym > G

p(
p̃
p̃−p

(
ΨBR
Asym − G

p̃

)
, p
p̃−p

(
G
p
−ΨBR

Asym

))
elsewhere


(4.15)

To ensure that (ksym1 , k̃sym1 ) is an equilibrium, firms must be worse-off by

deviating to the asymmetric best response strategy. Formally, the following

condition must hold:

Π
{(
ksym1 , k̃sym1

)
;
(
ksym1 , k̃sym1

)}
≥ Π

{(
kBRasym1 , k̃BRasym1

)
;
(
ksym1 , k̃sym1

)}
(4.16)

The following proposition characterizes the symmetric equilibrium in the

duopoly case:

Proposition 4.2. Assume 4.1. Then,

- If G
p̃
≥ 1−p̃

3
, there exists a unique sub-game perfect equilibrium of the

game, given by: k̃∗i1 = min
(
G
p̃
,
(
1− p̃

1+δ

))
, k̃∗i2 = k̃∗i1 and k∗i2 = k∗i1 = 0.

- If G
p̃
< 1−p̃

3
, there exists a symmetric sub-game perfect equilibrium if and

only if condition (4.16) is true. In that case, the first period equilibrium ca-

pacities are given by (4.14) and the second period capacities are
(

1−p̃
3
, 1−p̃

3

)
.

Proof. See Appendix.

Proposition 4.2 shows that the symmetric equilibrium strategy of the firms

is similar to the one of monopoly case, but adjusted to duopoly levels.

Therefore, results 2 to 5 of the monopoly hold for the symmetric equilib-

rium.
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Result 4.6. In the symmetric equilibrium of the duopoly, we have:

• When there is a financial constraint, the duopoly invests in a mixture

of the two capacities.

• A decrease in the price of new capacity (p̃) or an increase in the

marginal cost of production (c) or an increase in the discount rate

(δ) reduce the percentage and the quantity of old capacity used in the

industry.

• An increase in the price of old capacity (p) can increase or decrease

the utilization of old capacity depending on the prices of capacities.

4.4.3 Case of asymmetric equilibria

Besides the equilibrium previously considered, there is another possible

behavior of the industry. One of the firms can overinvest in old technology,

in order to increase its total capacity above the Cournot outcome, and

commit itself to a larger production in the next period. In reaction to this

strategy, its opponent reduces its total capacity in the first period, focusing

on the efficient capacity. In the second period, the follower is the only firm

to invest, only in new capacity, but it does not catch up its rival.

The equilibrium depends on the initial financial endowment available to

the entrepreneurs. When this amount is too low, the firms cannot reach

the Cournot outcome even by investing only in old capacity. In this case

no preemption is possible. For larger amounts of financial endowment,

when both firms invest in a mixture of capacity, the total capacity of

the preempting firm is Ψnc
L =

(1+δ)−(1+δ)c p̃
p̃−p

(3+2δ)
and the total capacity of

the preempted one is Ψnc
F =

(1+ δ
2)−(1+δ)2c p̃

p̃−p+( 3
2

+δ)δp̃
(3+2δ)

. If the firms can-

not reach these outcomes then firms have to invest only in one kind of

capacity, in the same way as Proposition 2. When the preempting firm

invests only in old capacity, the total capacity of the preempted firm is
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Ψc
F = 1

2

(
1− G

p
− (1 + δ) c p̃

p̃−p + δp̃
)

, and when the preempted firm in-

vests only in new capacity, the preempting one installs a total capacity

of Ψc
L =

(1+ δ
2)−Gp̃ −(1+δ) cp̃

p̃−p+ δ
2
p̃

2+δ
. This yields the level of capacities of the

asymmetric local equilibrium (the vector of capacities such that there is no

profitable deviation inside the asymmetric zone).

(
kL1 , k̃

L
1

)
=


(

p̃
p̃−p

(
Ψnc
L − G

p̃

)
, p
p̃−p

(
G
p
−Ψnc

L

))
if Ψnc

L ≤ G
p

and Ψnc
F ≥ G

p̃(
p̃
p̃−p

(
Ψc
L − G

p̃

)
, p
p̃−p

(
G
p
−Ψc

L

))
if Ψnc

L ≤ G
p

and Ψnc
F < G

p̃(
G
p
, 0
)

if Ψnc
L > G

p

 ,

(4.17)

and

(
k̃F1 , k̃

F
1

)
=


(

p̃
p̃−p

(
Ψnc
F − G

p̃

)
, p
p̃−p

(
G
p
−Ψnc

F

))
if Ψnc

L ≤ G
p

and Ψnc
F ≥ G

p̃(
p̃
p̃−p

(
Ψc
F − G

p̃

)
, p
p̃−p

(
G
p
−Ψc

F

))
if Ψnc

L > G
p

and Ψnc
F ≥ G

p̃(
0, G

p̃

)
if Ψnc

F > G
p̃


(4.18)

Moreover, as in the case of symmetric equilibrium, we have to ensure that

firms have no incentive to deviate from the asymmetric equilibrium strate-

gies. Let ΨBR
sym = 1

2
(1−kF1 − k̃F1 − (1 + δ)c p̃

p̃−p + δp̃). Preempting firm’s best

response symmetric strategy when its opponent acts following the asym-

metric strategy is as follows:

(
kBRsym1 , k̃BRsym1

)
=


(

p̃
p̃−p

(
ΨBR
sym − G

p̃

)
, p
p̃−p

(
G
p
−ΨBR

sym

))
elsewhere(

0, G
p̃

)
if ΨBR

sym < G
p̃


(4.19)

The preempting firm does not have any incentive to deviate from the asym-

metric strategy if

Π
{(
kL1 , k̃

L
1

)
;
(
kF1 , k̃

F
1

)}
≥ Π

{(
kBRsym1 , k̃BRsym1

)
;
(
kF1 , k̃

F
1

)}
(4.20)
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or

ΨBR
sym >

1− p̃
3

(4.21)

hold true. Now we can characterize the asymmetric equilibrium with the

following proposition:

Proposition 4.3. Assume 4.1. If G
p
> 1−p̃

3
, and (4.20) or (4.21) hold

true, then there exists an asymmetric sub-game perfect equilibrium which

consists of one firm to install (kL1 , k̃
L
1 ) in the first period, and for the other

one to install (kF1 , k̃
F
1 ), before investing as described in Lemma 4.1.

Proof. See Appendix.

Even though the form of the asymmetric equilibrium differs from the sym-

metric one, most of the comparative static results remain valid. Indeed,

results 2 to 5 of the monopoly hold for the asymmetric equilibrium.

Result 4.7. In the asymmetric equilibrium of the duopoly, we have:

• When there is a financial constraint, the duopoly invests in a mixture

of the two capacities.

• A decrease in the price of new capacity (p̃) or an increase in the

marginal cost of production (c) reduce the percentage and the quantity

of old capacity used in the industry.

• An increase in the price of old capacity (p) can increase or decrease

the utilization of old capacity depending on the prices of capacities.

However, in this case, the impact of the discount rate (δ) is ambiguous.

Two effects are in place. When the discount rate increases, firms value the

future more and prefer to invest more in new capacity. This is the direct

effect. There is also a competition effect. When a firm decreases its total

capacity, its opponent wishes to increase its own capacity to recuperate

the abandoned market share. The direct effect is more important for the
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preempted firm than the preempting one, as it invests more in new capacity,

aiming for efficiency. Therefore, the competition effect is more pronounced

for the preempting firm. Consequently, when the discount rate increases,

the preempting firm can increase its total capacity by investing more in old

technology, while the preempted firm invests more in new capacity.12

4.4.4 Impact of competition

This subsection compares the outcomes of the monopoly and of the duopoly

symmetric and asymmetric equilibria. To make a reasonable comparison,

we assume that the financial endowment of the monopoly is twice the finan-

cial endowment of each firm in the duopoly. In that way, the total financial

endowment of the industry remains constant. The first result compares the

level of each type of capacity depending on the strength of competition.

Result 4.8. The effect of competition on the level of capacities is:

• The level of old capacity is inferior under monopoly than under sym-

metric competition, and inferior under symmetric competition than

under asymmetric competition (both in the short run and long run).

• In the long run, the level of new capacity is higher under symmetric

competition than under monopoly or asymmetric competition. The

comparison between monopoly and asymmetric competition is ambigu-

ous.

The first period total capacity of the asymmetric duopoly is superior to the

one of the symmetric duopoly which is superior to the one of monopoly.

The difference between the monopoly and the symmetric duopoly is an ex-

pected competition effect, whereas the difference between symmetric and

12The competition effect does not always dominate as the derivative of the leader’s to-

tal capacity is:
∂ΨncL
∂δ = p̃−p−cp̃

(p̃−p)(3+2δ)2 , and the follower’s:
∂ΨncF
∂δ =

−p̃(c+p−p̃)−(p̃−p) ∂ΨncL
∂δ

(p̃−p)(3+2δ)2 <

0.
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asymmetric duopoly is due to preemption. As firms are financially con-

strained in the first period, the level of old capacity increases with the

strength of competition in the short run. In the long run, this result re-

mains valid as there is no more investment in old capacity.

Due to the financial constraint, the level of new capacity in the short run

decreases with the strength of competition. In the long run, the total

capacity of the firm increases with the strength of competition. To install

a higher total capacity than the monopoly, the symmetric duopoly invests

more in the second period (and only in new) than the monopoly, and ends

up with a higher level of new capacity. This result is reversed for the

comparison between the asymmetric and the symmetric equilibria. The

asymmetric duopoly invest so much in old capacity in the first period, that

even if the total capacity is larger in the long run, its level of new capacity

does not catch up the one of the symmetric duopoly. In fact, the level of

new capacity of asymmetric duopoly may even be inferior to the one of the

monopoly.

These results allow us to discuss the impact of competition on consumers

and firms, assuming that there is no technological externality.13

Result 4.9. For consumers, asymmetric competition is better than sym-

metric competition and symmetric competition is better than monopoly,

both in the short run and in the long run. This ordering is reversed for the

industry profit.

The strength of competition decreases the price, as it increases the total

capacity of the industry (both in the short and long run). Consumers are

then better off with competition. Furthermore, the strength of competition

also increases the level of old capacity, and the profit of the industry is

reduced due to a higher intertemporal cost of capacity (and a lower market

price).

13Consumers solely care about the price, and firms solely care about their profits.
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4.5 Conclusion

This paper studies the adoption of a new production tool technology when

firms are financially constrained. In the short run, firms face a trade-off

between investing in capacity using the old technology and growing rapidly,

and investing in new capacity and producing efficiently. The optimal de-

cision of the monopoly is then to install a mixture of capacities. For the

duopoly, two different types of equilibrium may arise. In the symmetric

equilibrium, the duopoly also invests in a mixture at a level of total capac-

ity larger than the monopoly, due to competition. The duopoly therefore

installs more old capacity. In the asymmetric equilibrium, one of the firms

preempts its opponent by investing more in old capacity, increasing its

short run total capacity. The opponent reacts by focusing on the efficient

technology and reducing its total capacity. In the long run, the preempted

firm is the only investing firm, only in the new technology. It does not

catch up its rival. The utilization of old technology in the industry is thus

higher under asymmetric equilibrium than symmetric equilibrium.

The present work does not model any externality arising from the utiliza-

tion of technologies, such as pollution. However, such externalities are often

in mind of the policy maker. Our results allow to stress some implications.

For example, let’s consider that the old technology generates more nega-

tive externality than the new one. In that case, an increase of competition

may not be desirable as it increases the utilization of old technology. To

produce more, financially constrained industry will invest more in cheap

and inefficient capacity. The welfare loss due to the externality may exceed

the usual welfare gain due to competition.

When we consider policy instruments, such as taxes or subsidies on capacity

prices, cost of production (carbon tax) or financial constraint, most of them

work as expected. Indeed, an increase in the financial constraint does

not change the total capacity of the firms (within a certain range), but it
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increases the share of new technology in the mixture. The consumption

price does not change, but the total welfare increases due to the efficiency

of new technology. In addition, increasing the old technology’s marginal

cost of production or reducing the price of the new technology reduces the

utilization of old technology.

Finally, we show that an increase in the price of old technology may in-

crease its utilization. Indeed, when the price of old capacity increases, the

firm has to decrease its total capacity since it is financially constrained.

When the investment cost of new technology is too high compared to the

old one, increasing the use of new technology can result as a large reduction

production capacity. To avoid this too large reduction, the firm can sub-

stitute its investment in new capacity by old one. In that case, an increase

in the price of old technology may lead to an increase in the quantity of

old capacity used. The policy maker should then be careful if it decides to

use a tax or subsidy on the investment price of old capacity.

The present work can be extended in many directions. Capacity prices

can evolve over time, due to exogenous innovation processes or endogenous

learning effects. Marginal production cost of using capacities can also vary

over time. These may change the technology mixture and the possibility

of preemption. Moreover, in several markets, as the electricity generation

market, both demand and supply uncertainties play an important role in

investment decisions. One possible research direction is to combine our

framework with these uncertainties. Finally, for more applied research,

where the externalities of the technologies are known and measurable, our

framework can be expanded for market-based policy recommendations.
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Appendix

4.A Proof of Proposition 4.1:

To solve the problem of the firm, we proceed by backward induction. In the

second period, the firm is not financially constrained and it invests only in

the most efficient technology as seen in the proof of Result 1. The problem

of the firm in the second period is thus to maximize:

Π2 =
(

1− k1 − k̃2

)(
k1 + k̃2

)
− ck1 − p̃

(
k̃2 − k̃1

)
. (C.1)

with respect to k̃2, taking the first period choice of capacities as given,

under the irreversibility constraint:

k̃2 > k̃1. (C.2)

If the total capacity of the first period, k1 + k̃1, is inferior to 1−p̃
2

the irre-

versibility constraint (C.2) is not binding, and the optimal level of capacity

in the second period is:

k∗2 = k1 and k̃∗2 =
1− p̃

2
− k1. (C.3)

When k1 + k̃1 is greater than 1−p̃
2

, the firm is constrained by its first pe-

riod total capacity and it does not invest in the second period. Thus, the

discounted total profit can be written as a function of the first period total
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capacity:

Π =



(1 + δ)
(

1− p̃
1+δ
− k1 − k̃1

)(
k1 + k̃1

)
− (p+ (1 + δ) c− p̃) k1

, if k1 + k̃1 >
1−p̃

2(
1− p̃+ δp̃− k1 − k̃1

)(
k1 + k̃1

)
+ δ

(
1−p̃

2

)2 − (p+ (1 + δ) c− p̃)k1

, if k1 + k̃1 ≤ 1−p̃
2

(C.4)

The problem of the firm is then to maximize (C.4) under the financial

constraint (4.3).

When the firm is not financially constrained, it does not invest in old

capacity (k1 = 0 due to Result 1) and (C.4) is a concave function that

is maximized at k̃1 =
1− p̃

1+δ

2
. Indeed, the second line of (C.4) is a concave

function that is maximized at k̃1 = 1−p̃+δp̃
2

> 1−p̃
2

. The second line of (C.4)

is then increasing until 1−p̃
2

. The first line of (C.4) is a concave function

that is maximized at k̃1 =
1− p̃

1+δ

2
> 1−p̃

2
as δ > 0. Therefore Π is a concave

function that is maximized at k̃1 =
1− p̃

1+δ

2
.

When the firm is financially constrained

(
1− p̃

1+δ

2
> G

p̃

)
, (C.4) is a concave

function that is maximized at k1 + k̃1 = 1
2

(
1− (1+δ)p̃

p̃−p c+ δp̃
)

. The financial

constraint (4.3) can be written as follows:

k1 =
p̃
(
k1 + k̃1

)
−G

p̃− p
, (C.5)

and (C.5) can be replaced in the intertemporal profit (C.4):

Π =



(1 + δ)
(

1− cp̃
p̃−p −

(
k1 + k̃1

))(
k1 + k̃1

)
+ p+(1+δ)c−p̃

p̃−p G

if k1 + k̃1 >
1−p̃

2(
1 + δp̃− (1+δ)cp̃

p̃−p −
(
k1 + k̃1

))(
k1 + k̃1

)
+ δ

(
1−p̃

2

)2
+ p+(1+δ)c−p̃

p̃−p G

, if k1 + k̃1 ≤ 1−p̃
2

(C.6)

The first line of (C.6) is a concave function that is maximized at k∗1 + k̃∗1 =
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1
2

(
1− cp̃

p̃−p

)
< 1−p̃

2
due to Assumption 4.1. So the first line of (C.6) is

decreasing for the values greater than 1−p̃
2

. The second line of (C.6) is a

concave function that is maximized at k∗1 + k̃∗1 = 1
2

(
1− (1+δ)p̃

p̃−p c+ δp̃
)
≤

1−p̃
2

due to Assumption 4.1. Therefore, Π is a concave function maxi-

mized at k∗1 + k̃∗1 = 1
2

(
1− (1+δ)p̃

p̃−p c+ δp̃
)

. Using (C.5), we can determine

the technology mixture associated with this level of total capacity. If

1
2

(
1− (1+δ)p̃

p̃−p c+ δp̃
)
> G

p
then the firm invests only in old capacity to a

level G
p

, as the firm cannot have a negative amount of one capacity. For

the same reason, if 1
2

(
1− (1+δ)p̃

p̃−p c+ δp̃
)
< G

p̃
then the firm invests only in

new capacity. This establishes (4.11) when G
p̃
<

1− p̃
1+δ

2
. Finally, the firm

does not invest in the second period when G
p̃
< 1−p̃

2
.

4.B Proof of Lemma 4.1:

In the second period the profit of firm i is:

Πi
2 =

(
ki2 + k̃i2

)(
1−

(
ki2 + k̃i2 + kj2 + k̃j2

))
−cki2−p

(
ki2 − ki1

)
−p̃
(
k̃i2 − k̃i1

)
.

(C.7)

As in the case of monopoly, firm i invests only in new technology and

ki2 = ki1, as in Result 1. Then, maximizing the above profit with respect to

the level of new capacity in the second period yields the best response of

firm i as follows:

k̃i2 + ki1 = max

1− p̃−
(
kj2 + k̃j2

)
2

, k̃i1 + ki1

 . (C.8)

If the first period capacities of both firms is inferior to 1−p̃
3

, the equilibrium

is 1−p̃
3

(the Cournot outcome). If they are both superior to 1−p̃
3

then the

equilibrium is not to invest for both firms. When the capacity of firm j is

superior to 1−p̃
3

and the capacity of firm i is inferior to 1−p̃
3

, firm j does not
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invest and firm i invests only if k̃i1 + ki1 <
1−p̃−(k̃j1+kj1)

2
.

4.C Proof of Propositions 4.2 and 4.3:

Lemma 4.1 separates the set of first period capacities in three regions with

different firm behavior in the second period (see Figure 2):

- the no-move zone:

(kA1 , k̃A1 , kB1 , k̃B1 ) | k̃i1 + ki1 ≥
1− p̃−

(
kj1 + k̃j1

)
2

for each i ∈ {A,B}

 , (C.9)

- the symmetric zone:

{(
kA1 , k̃

A
1 , k

B
1 , k̃

B
1

)
| k̃i1 + ki1 <

1− p̃
3

for each i ∈ {A,B}
}

, (C.10)

- the asymmetric zone:

(kA1 , k̃A1 , kB1 , k̃B1 ) | 1− p̃
3
≤ k̃i1 + ki1 <

1− p̃−
(
kj1 + k̃j1

)
2

for each i ∈ {A,B}

 . (C.11)

The aim is to determine the sub-game perfect equilibria of the game. In

the first step, we search for potential equilibria in each region, i.e. if there

are some vectors of capacity without any profitable deviation inside the

region. In the second step, we verify if potential equilibria are Nash by

studying the possibility of a deviation to other regions.
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Case 1: No-move zone

When the first period capacities are inside the no-move zone, firms do not

invest in the second period and their profits are therefore:

Πi = (1 + δ)

(
1− p̃

1 + δ
− ki1 − k̃i1 − k

j
1 − k̃

j
1

)(
ki1 + k̃i1

)
− (p+ c− p̃) ki1.

(C.12)

If the firms are not financially constrained, the equilibrium is then to invest

only in new capacity, and to the level k̃i1 = 1
3

(
1− p̃

1+δ

)
. The firms are

financially constrained when 1
3

(
1− p̃

1+δ

)
≥ G

p̃
. This states the first part of

Proposition 2 when G
p̃
> 1

3

(
1− p̃

1+δ

)
.

If the firms are financially constrained, we can rewrite their profit by using

(C.5):

Πi = (1 + δ)

(
1− p̃

1 + δ
− ki1 − k̃i1 − k

j
1 − k̃

j
1

)(
ki1 + k̃i1

)
− (p+ c− p̃)

p̃
(
k1 + k̃1

)
−G

p̃− p
(C.13)

and the equilibrium total capacity is therefore ki1+k̃i1 = 1
3

(
1− (1+δ)p̃

p̃−p c+ δp̃
)

=

ΨD. There are several possibilities.

• When G
p̃
≥ 1−p̃

3
, G
p̃
≥ ΨD as 1− (1+δ)p̃

p̃−p c+δp̃ < 1− p̃ due to Assumption

4.1. In that case firms never reach the optimal mixture, as they

cannot invest in a negative amount of old capacity. Firms then invest

only in new capacity to the level G
p̃

. This states the first part of

Proposition 4.2 when 1
3

(
1− p̃

1+δ

)
≥ G

p̃
≥ 1−p̃

3
.

• When 1−p̃
3
> G

p̃
≥ ΨD, firms invest only in new capacity to the level

G
p̃

. However G
p̃
< 1−p̃

3
, and firms optimal first period capacity does

not belong to the no-move zone.

• When G
p
≥ ΨD > G

p̃
, firms invest in a mixture of capacity, to a level
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of total capacity ΨD and firms optimal first period capacity does not

belong to the no-move zone.

• When ΨD > G
p

, firms invest only in old capacity, to a level of total

capacity G
p

. Since G
p
< ΨD < 1−p̃

3
, firms optimal first period capacity

does not belong to the no-move zone.

Case 2: Symmetric zone

Assume that the first period capacities are inside the symmetric zone.

Then, firms invest to a level 1−p̃
3

in the second period, and only in new

capacity. The intertemporal profit of firm i is then:

Πi =
[(

1− ki1 − k̃i1 − k
j
1 − k̃

j
1 − p̃+ δp̃

)(
ki1 + k̃i1

)
− ((1 + δ) c+ p− p̃) ki1

]
+ δ

[(
1− 2k̃C

)
k̃C − p̃k̃C

]
. (C.14)

If firm i is not financially constrained, its best response in the first period is

k̃i1 = 1
2

(
1− p̃+ δp̃− kj1 − k̃

j
1

)
(and no investment in old capacity). If both

firms are not constrained at the equilibrium, then k̃i∗1 = 1
3

(1− p̃+ δp̃) >

1−p̃
3

. In this case the first period capacities do not belong to the symmetric

zone anymore. This rules out the possibility of any equilibrium in the

symmetric zone such that none of the firms is financially constrained.

Let then i be the firm which is financially constrained. Using (C.5) we can

rewrite its profit as follows:

Πi =

[(
1− ki1 − k̃i1 − k

j
1 − k̃

j
1 −

(1 + δ) cp̃

p̃− p
+ δp̃

)(
ki1 + k̃i1

)]
+

(1 + δ) c+ p− p̃
p̃− p

G+ δ
[(

1− 2k̃C

)
k̃C − p̃k̃C

]
. (C.15)

This leads the following best response:

ki1 + k̃i1 =
1

2

[
1− kj1 − k̃

j
1 − (1 + δ) c

p̃

p̃− p
+ δp̃

]
. (C.16)
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As the firm cannot invest in a negative amount, the complete best response

of firm i is then:

ki1 + k̃i1 =


G
p

if 1
2

(
1− kj1 − k̃

j
1 − (1 + δ) p̃ c

p̃−p + δp̃
)
> G

p

1
2

(
1− kj1 − k̃

j
1 − (1 + δ) p̃ c

p̃−p + δp̃
)

elsewhere

G
p̃

if 1
2

(
1− kj1 − k̃

j
1 − (1 + δ) p̃ c

p̃−p + δp̃
)
< G

p̃

 (C.17)

In the case where both of the firms are financially constrained, the equilib-

rium is

ki1 + k̃i1 =


G
p

if 1
3

(
1− (1 + δ) p̃ c

p̃−p + δp̃
)
> G

p

1
3

(
1− (1 + δ) p̃ c

p̃−p + δp̃
)

elsewhere

G
p̃

if 1
3

(
1− (1 + δ) p̃ c

p̃−p + δp̃
)
< G

p̃

 . (C.18)

To verify that firm j is also financially constrained, suppose that it is not.

In that case, its best response would be:

k̃j1 =
1

2

(
1− p̃− ki1 − k̃i1

)
, (C.19)

leading to a total capacity in the industry:

ki1 + k̃i1 + kj1 + k̃j1 =
1

3

(
2− (1− δ) p̃− (1 + δ)

cp̃

p̃− p

)
. (C.20)

The capacity of the unconstrained firm at the equilibrium is therefore:

k̃j1 =
1

3

(
1− (2 + δ) p̃+ (1 + δ)

cp̃

p̃− p

)
, (C.21)

This can be rewritten as:

k̃j1 =
1

3

(
1− p̃+ (1 + δ) p̃

(
c

p̃− p
− 1

))
. (C.22)

However, 1
3

(1− p̃) > G
p̃

and c + p > p̃ by Assumption A1. Thus k̃j1 >
G
p̃

,

which is impossible.
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The study of no-move zone and symmetric zone proves Proposition 4.2.

Case 3: Asymmetric zone

When the first period capacities of firms are inside the asymmetric zone,

the profit of the firms are:

- for the preempting firm,

ΠL =

((
1− kL1 − k̃L1

)(
1 +

δ

2

)
− p̃+ δ

p̃

2
−
(
kF1 + k̃F1

))(
kL1 + k̃L1

)
− (p+ (1 + δ) c− p̃) kL1 , (C.23)

- and the preempted firm:

ΠF =
(

1− kF1 − k̃F1 − kL1 − k̃L1 − p̃+ δp̃
)(

kF1 + k̃F1

)
− (p+ (1 + δ) c− p̃) kF1 + δ

(
1− p̃− kL1 − k̃L1

2

)2

. (C.24)

The scheme of the proof is the following: first we assume that both firms

are financially constrained and we express the best response of the leader

and of the follower. Then we verify that there is no possible equilibrium

such that one of the firm is not financially constrained.

Assume that both firm are financially constrained. Then, using (C.5), its

profit can be rewritten:

ΠL =

((
1− kL1 − k̃L1

)(
1 +

δ

2

)
− (1 + δ) cp̃

p̃− p
+ δ

p̃

2
−
(
kF1 + k̃F1

))
∗(

kL1 + k̃L1

)
+
p+ (1 + δ) c− p̃

p̃− p
G. (C.25)
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This give us a best response:

kL1 + k̃L1 =
1

2

[
1− 1(

1 + δ
2

) (kF1 + k̃F1 + (1 + δ) c
p̃

p̃− p
− δ p̃

2

)]
. (C.26)

As the firm cannot invest a negative amount of capacity, the complete best

response function is:

kL1 + k̃L1 =


1
2

[
1− 1

(1+ δ
2)

(
kF1 + k̃F1 + (1 + δ) c p̃

p̃−p − δ
p̃
2

)]
elsewhere

G
p

if G
p
< 1

2

[
1− 1

(1+ δ
2)

(
kF1 + k̃F1 + (1 + δ) c p̃

p̃−p − δ
p̃
2

)]
 .

(C.27)

Remark than we did not include the possibility for the leader to have a total

capacity equal to G
p̃

. This is because the equilibrium total capacity of the

leader has to be higher than the follower’s total capacity in an equilibrium

in the asymmetric zone. It is therefore not necessary to take into account

a best response possibility for the leader to have a total capacity of G
p̃

. For

the same reason, the total capacity of the follower has to be inferior to G
p

.

Similarly, using (C.5), the profit of the preempted firm can be rewritten:

ΠF =

(
1− kF1 − k̃F1 − kL1 − k̃L1 −

(1 + δ) cp̃

p̃− p
+ δp̃

)(
kF1 + k̃F1

)
+
p+ (1 + δ) c− p̃

p̃− p
G+ δ

(
1− p̃− kL1 − k̃L1

2

)2

, (C.28)

which leads to the best response:

kF1 + k̃F1 =
1

2

[
1− kL1 − k̃L1 − (1 + δ) c

p̃

p̃− p
+ δp̃

]
. (C.29)

The complete best response function of the follower is thus:

kF1 + k̃F1 =


1
2

(
1− kL1 − k̃L1 − (1 + δ) c p̃

p̃−p + δp̃
)

if G
p̃
< 1

2

(
1− kL1 − k̃L1 − (1 + δ) c p̃

p̃−p + δp̃
)

G
p̃

if G
p̃
> 1

2

(
1− kL1 − k̃L1 − (1 + δ) c p̃

p̃−p + δp̃
)
 . (C.30)
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These can be rewritten as follows:

kF1 + k̃F1 =


1
2

(
1− kL1 − k̃L1 − (1 + δ) c p̃

p̃−p + δp̃
)

if
(
kL1 + k̃L1

)
< 1− 2G

p̃
− (1 + δ) c p̃

p̃−p + δp̃

G
p̃

if
(
kL1 + k̃L1

)
> 1− 2G

p̃
− (1 + δ) c p̃

p̃−p + δp̃

 . (C.31)

Combining (C.27) and (C.31) yields Proposition 3.

We now have to verify that the financial constraint is binding for both

firms. Due to the same reason for the symmetric zone, at least one firm is

financially constrained. As the leader produces more than the follower, the

leader is necessarily financially constrained. Furthermore, if the preempted

firm is not financially constrained, the maximization of its profit gives the

following best response:

kF1 + k̃F1 = k̃F1 =
1

2

[
1− kL1 − k̃L1 − (1− δ) p̃

]
. (C.32)

However, as the preempting firm does not invest in the second period, the

second period profit of the preempted firm is

πF2 =
(

1− kL1 − k̃L1 − kF1 − k̃F2
)(

kF1 + k̃F2

)
− p̃

(
k̃F2 − k̃F1

)
− ckF1 , (C.33)

which leads to a second period optimal capacity of the preempted firm:

(
kF1 + k̃F2

)
=

1

2

(
1− kL1 − k̃L1 − p̃

)
, (C.34)

which is inferior to the first period best response given by (C.32), mean-

ing that the preempted firm does not invest in the second period. This

contradicts the fact that the potential equilibrium is in the asymmetric

zone.
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4.D Proof of Result 4.4:

Most of the results are directly obtained by taking the derivatives of ca-

pacity amounts given in propositions. However, the effect of the price of

old capacity is less straightforward. The following proves the result for the

monopoly.

The percentage of old capacity is given by:

%Old =
k∗1

k∗1 + k̃∗1
=

p̃

p̃− p
ΨM − G

p̃

ΨM

. (C.35)

The derivative of the percentage is positive if and only if:

∂%Old

∂p
> 0⇔ (ΨM)2 >

G (1 + δp̃)

2p̃
. (C.36)

This condition can be rewritten:

∂%Old

∂p
> 0⇔ p < p̃− c (1 + δ) p̃

1 + δp̃−
√

2G(1+δp̃)
p̃

. (C.37)

The same approach works for the quantity of old capacity:

∂k∗1
∂p

> 0⇔ p < p̃− 2c (1 + δ) p̃

2G− p̃− (p̃)2 . (C.38)

The same approach can be used to prove this result for the symmetric

duopoly. For the asymmetric duopoly, the proof is given in the following.

In the asymmetric equilibrium, the total capacity of the industry can be

written as:

Ψnc
L + Ψnc

F =
6ΨD + 3δΨD + δ

(
1
2
− 1

2
p̃
)

3 + 2δ
. (C.39)

The percentage of old capacity in the industry is therefore:
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%old =

p̃
p̃−p

(
Ψnc
L + Ψnc

F − 2G
p̃

)
Ψnc
L + Ψnc

F

. (C.40)

The derivative of the total capacity according to the price of the old ca-

pacity is decreasing as ∂ΨD
∂p

< 0. Furthermore, the derivative of the old

percentage gives:

∂%old

∂p
=

p̃

(p̃− p)2 −
4G (3 + 2δ) (4 + δ (3 + p̃ (3 + 2δ)))

(4(cp̃+ p− p̃) + 3δ (p+ 2c− 1− p̃) + 2p̃(c+ p− p̃)δ2)2 . (C.41)

Asymmetric equilibrium exists only when condition (4.21) exists. When

the total capacity of the follower is Ψnc
F , this condition can be rewritten:

1

2

(
1−Ψnc

F − (1 + δ)
cp̃

p̃− p
+ δp̃

)
>

1− p̃
3

. (C.42)

This is equivalent to:

c <
p̃− p
p̃

1 + 3
2
δ + p̃

(1 + δ) (2 + δ)
. (C.43)

We will see that this condition implies that

4(cp̃+ p− p̃) + 3δ (p+ 2c− 1− p̃) + 2p̃(c+ p− p̃)δ2 (C.44)

is negative. Indeed, by using (C.43) in (C.44) we obtain:

(C.44) < − (p̃− p) (2 + p̃ (2 + δ) (2δ − 1)) (C.45)

Since 2 + p̃ (2 + δ) (2δ − 1) < 0 for any p̃ < 1 and δ ≥ 0, (C.44) is negative.

This implies that ∂%old

∂p
> 0 if and only if:

4(cp̃+ p− p̃) + 3δ (p+ 2c− 1− p̃) + 2p̃(c+ p− p̃)δ2

− (p̃− p)

√
4G (3 + 2δ) (4 + δ (3 + p̃ (3 + 2δ)))

p̃
< 0 (C.46)
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Therefore,

p <
4(p̃− cp̃) + 3δ (1 + p̃− 2c) + 2p̃(p̃− c− p)δ2 + p̃

√
4G(3+2δ)(4+δ(3+p̃(3+2δ)))

p̃(
4 + 3δ + 2p̃+

√
4G(3+2δ)(4+δ(3+p̃(3+2δ)))

p̃

) . (C.47)

As the total capacity is decreasing, the ambiguity of the percentage proves

the ambiguity of the total capacity.

4.E Proof of Result 4.9:

Let k̃M2 be the level of new capacity in second period for the monopoly:

k̃M2 =
1− p̃

2
− p̃

p̃− p

(
ΨM −

2G

p̃

)
.

Let k̃S2 be the level of new capacity in second period for the symmetric

duopoly:

k̃S2 =
2 (1− p̃)

3
− 2

p̃

p̃− p

(
ΨD −

G

p̃

)
.

Then, k̃M2 < k̃S2 if and only if:

1− p̃
2
− p̃

p̃− p
ΨM <

2 (1− p̃)
3

− 2
p̃

p̃− p
ΨD

As ΨD = 2
3
ΨM , this is always the case.

Let k̃As2 be the level of new capacity in second period for the asymmetric

duopoly:

k̃As2 =
1− p̃−ΨL

2
−ΨF −

p̃

p̃− p

(
ΨL −

G

p̃

)
− p̃

p̃− p

(
ΨF −

G

p̃

)
The difference between the level of new capacity for the asymmetric duopoly

and for the symmetric duopoly is given by:

k̃As2 − k̃S2 =
(1 + δ) (3 + 2δ) p̃2 − pδ − p̃p (3 + 2δ)− cp̃

p̃−p (1 + δ) (p̃ (3 + 2δ)− 3p)

6 (p̃− p) (3 + 2δ)
.
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Due to assumption A1, c
p̃−p > 1, therefore:

k̃As2 − k̃S2 <
−pδ − p̃p (3 + 2δ) + 3pp̃ (1 + δ)

6 (p̃− p) (3 + 2δ)
,

so:

k̃As2 − k̃S2 < δ
pp̃− p

6 (p̃− p) (3 + 2δ)
.

As p̃ < 1 (if not, no firm will enter in the market),

k̃As2 < k̃S2 .

The difference between the level of new capacity for the asymmetric duopoly

and for the monopoly is given by:

k̃As2 − k̃M2 =
p
(

cp̃
p̃−p − 1

)
(1 + δ)

6 (p̃− p) (3 + 2δ)
.

If the cost of adding and using during a single period a capacity is similar

for the old and new technology (c+p ' p̃), then k̃As2 < k̃M2 as p̃ < 1. When

the cost difference is important, k̃As2 > k̃M2 . �
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Chapter 5

Why the rich may want a low

pollution tax?

Hamzeh Arabzadeh and Baris Vardar

5.1 Introduction

Who is willing to give more support for environmental protection? And

what are the sources of differences among households that lead them to

prefer different levels for environmental policy tools such as pollution taxes?

In this study, we focus on these questions and particularly on the dimension

of heterogeneity in wealth and its implications on the preferred pollution

tax of the households. Environmental policies may affect the households

with a higher wealth differently than the ones with a lower wealth because

of the fact that they have more capital invested in the market and their

consumption levels are not the same.1 May the richer people in society

prefer a lower pollution tax than the poorer ones? If yes, then why? This

question is the main interest of this study.

1Throughout the text we treat capital ownership and wealth as identical terms. This
equivalence relies on the assumption that all wealth owned by the households are lent
to the firms in the economy and thus employed in production.

133
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The rich, owning a higher amount of capital then the poor, are in control

of a larger proportion of production factors that are employed by the firms.

Firm decisions can be affected by the policies that aim to reduce the level

of pollution through the adjustment of factor demands. Therefore these

policies can have important impacts on the factor prices such as the wage

and the interest rate. In a general equilibrium setting, changes in factor

prices affect the household revenues. Indeed, when factors are unevenly

distributed within the society, these impacts can lead to differences in the

preferred pollution taxes of households.

There has been a few works, mainly empirical, that study the distributional

impacts of environmental policies. Most of the studies consider a partial

equilibrium framework by focusing only on the uses side of income, which

means the impact of environmental policies on the commodity prices. The

common result is that the pollution taxes are regressive because the dirty

commodities constitute a larger share of the poor households’ expenditures.

Besides, there is a growing literature that consider a general equilibrium

framework and thus taking into account the sources side of income as well,

which are more closer to our framework. For example, Fullerton and Heutel

(2007) study the incidence of environmental taxes in a general equilibrium

framework and they take into account general forms of substitution among

the factors. They show the importance of elasticity of substitution between

dirty and clean goods in both production and consumption sides. Further-

more, using this framework, they identify the impact of a pollution tax on

the factor prices as well as on the prices of the final goods. In more recent

works, Rausch et al. (2011) and Dissou and Siddiqui (2014) show that the

pollution tax can be progressive by considering the sources side of income

by using a similar approach.

The incidence of environmental taxes can also be studied by considering

the heterogeneities among the households in terms of labor income, transfer

income or time preferences. For example, Chiroleu-Assouline and Fodha
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(2014), Fullerton and Monti (2013) and Marsiliani and Rengström (2002)

study the heterogeneity in terms of labor income, Fullerton and Heutel

(2010) and Rausch et al. (2011) study the heterogeneity in terms of transfer

income and Borissov et al. (2014) could be given as an example that study

the heterogeneity in the discount rates of the households. In this paper we

abstract from these and we consider only the case of heterogeneity in terms

of capital endowment.

The income data of the U.S. economy from the 2007 Survey of Consumer

Finances (SCF) show that the revenues from capital constitute 25% of

the total overall income. Moreover, as shown by Fullerton and Heutel

(2010), the fraction of income coming from capital is increasing over income

deciles.2 For example, the fraction of income that comes from capital is

5.7% for the lowest income decile, 7.8% for the fifth income decile and 45.6%

for the highest income decile. Accordingly, neglecting the heterogeneity in

capital revenues generates a significant gap in the theoretical analysis.

In a recent empirical study, by using micro data from European Value Sur-

vey (EVS), Ercolano et al. (2014) show an inverted U-shaped relationship

between income of the households and their willingness to monetary con-

tribute to protection of the environment. This means that for households in

the low and middle income deciles, the higher income they have, the more

they are willing to pay for a better environment. However, for the highest

income percentiles, the willingness to pay for environmental protection de-

creases with the income. What distinguishes the highest percentile income

households from the others is the fact that the share of income coming from

wealth, as well as heterogeneity in wealth, is more pronounced for them, as

shown in data from the SCF. The combination of these two observations

makes us to question if heterogeneity in wealth is the determinant factor to

explain the negative relationship between income and support for pollution

taxes among the very high percentile income households.

2With the exception that the lowest income decile has slightly higher share of capital
in their income compared to the next decile.
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Heterogeneity in wealth is taken into account in a few previous studies.

For example, Rausch et al. (2011) and Dissou and Siddiqui (2014) consider

it but they do not conduct in depth theoretical analysis of its implica-

tions on the households’ preferred pollution taxes. Furthermore, Kempf

and Rossignol (2007) study the relationship between wealth inequality and

environmental protection in a theoretical framework and address the ques-

tions that are similar to ours. By using an endogenous growth model, they

show that the richer households prefer a higher environmental tax and cor-

respondingly inequality is harmful for the environment. But this result

is based on the fact that the relative price of labor to capital is indepen-

dent from the environmental tax since their model does not incorporate

alternative cleaner production technologies. This dimension is indeed the

main focus of our paper and it makes our framework, and thus our results,

significantly different from theirs.

Our aim in this study is two folds. First, to investigate the effects of a

pollution tax on the firm behavior and factor prices in the partial compet-

itive equilibrium and identify the determinants of these effects. Second, in

a general equilibrium setting, to relate these findings with the households’

preferred pollution taxes and eventually identify the cases in which the

pollution tax is regressive or progressive in terms of households’ welfare.3

We develop a static general equilibrium model by taking into account house-

holds, firms and the government. Households have different wealth en-

dowments and their utility depends on their consumption level and the

level of environmental quality. The level of environmental quality depends

negatively on the level of pollution. The production side of the model is

inspired by the works of Harberger (1962), Copeland and Taylor (2004),

Fullerton and Heutel (2007) and many others that apply the international

trade framework of Heckscher-Ohlin. We study an economy with firms that

produce a generic good by using two different technologies, namely dirty

3In this paper, we use the progressivity and regressivity terms always in terms of
welfare.
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and clean, with each of them using capital, labor and pollution as an input

to produce the final output.4 The factor prices of capital and labor are

determined endogenously in the equilibrium, the government determines

the pollution tax and uses its revenues for government spending purposes.

Our results show that the impact of a pollution tax on the factor prices

depends on the characteristics of the production technologies utilized by

the firms in the economy. We find that the relative price of factor that is

more intensively used in the dirty technology will decrease as a response

to an increase in the pollution tax - which is a well-known result in the

literature. Moreover, when we consider the dirty technology is more capital

intensive than the clean one, the interest rate always decreases with the

pollution tax. But, whether the wage increases or decreases depends on

the comparison of the relative intensities of pollution and capital between

the production technologies. In particular, we show that the wage increases

when the relative pollution intensity respect to capital is higher in the dirty

technology, and vice versa. These results, which we summarize in Table

(5.1), differ from the many studies in the literature (for example Copeland

and Taylor (2004), Fullerton and Heutel (2007)). These findings are based

on the fact that in our setting, contrary to theirs, the clean technology also

pollutes thus its pollution intensity matters.

On the household side, we investigate the household’s decision about its

preferred pollution tax and we identify the trade-off that they face between

a higher consumption and a better environmental quality. At this point,

this paper differs from the ones in the literature (such as Fullerton and

Heutel (2007), Dissou and Siddiqui (2014) in two ways. First, we consider

the utility of household depends also on the environmental quality that

leads to the trade-off that we mentioned above. Second, this paper does

not address the uses side effects of the pollution tax. The reason is that our

4The use of pollution as an input in the production process is a well-established
modeling approach in the environmental economics literature and the motivation behind
is explained in Section 2.1.
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model constitute a closed economy in which the firms produce a generic

good by using alternative technologies.5 In this setting, pollution tax has

no effect on the commodity prices. On the contrary, the models presented

by those papers are consistent with a closed economy with two sectors.

Therefore, the pollution tax increases the relative price of the dirty good

to the clean one and thus causes the uses side effect.

Having only the sources side in the setting leads us to find the effect of

wealth on a household’s preferred pollution tax which depends on two op-

posite channels. We call the first one as the satiation effect. It says that

households with a higher wealth consume more and their marginal utility

of consumption is lower, thus they would be more willing to sacrifice from

their consumption for a better environmental quality. And we call the sec-

ond channel as the income burden effect. It says that households with a

higher wealth have larger capital investments in the market, thus, when the

return of capital falls their revenues are more reduced by the pollution tax.

Accordingly, whether the pollution tax increases or decreases with wealth

depends on which one of these effects dominates. We show that, in fact, it

depends on the pollution tax elasticity of consumption that is determined

by the pollution tax elasticities of the factor prices.

By using these results, in the general equilibrium, we show that if the firms

are operating with a single production technology then the richer house-

holds prefer a higher pollution tax, hence the tax is regressive. On the

contrary, if the firms are using the dirty and clean technologies simulta-

neously, the pollution tax leads to a reallocation of resources in the clean

technology. In this case, when the dirty technology is more capital inten-

sive, the richer households lose more from their consumption in percentage

terms which means that they would prefer a lower pollution tax. In other

words, when the economy operates on two technologies the tax is progres-

5Our model can also be interpreted as a small open economy with two sectors in
which the production factors are mobile across sectors but immobile across countries.
In this type of setting, the country engages in goods trade but has an isolated financial
market. This setting is suitable for some of the developing countries today.
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sive.

The following section presents the model. Section 3 presents the firm deci-

sion and analyzes the impact of a pollution tax on the factor prices, Section

4 explains the role of the government and how the proceeds from the pol-

lution tax are used, Section 5 presents the household decision, Section 6

characterizes the general equilibrium for this economy and Section 7 shows

the conditions for the impact of the wealth on the preferred pollution tax

of an household. Then Section 8 discusses the implications of the cases

when some of the assumptions that we made are relaxed. Finally Section

9 concludes.

5.2 The framework

Within a static framework, we analyze a closed economy that consists of

households, firms and the government. We consider a continuum of house-

holds indexed by i ∈ (0, 1) with each of them supplying one unit of labor

inelastically. Each household i has an initial capital (wealth) endowment

ki, and he total capital in the economy is K̄ =
∫ 1

0
kidi.

Household’s utility V (c, E) depends on consumption of the generic good

(c) and the level of environmental quality (E) that decreases with the

level of pollution (z). The firms produce the generic good in a perfectly

competitive market by using capital (k), labor (l) and pollution. The factor

prices of capital and labor (r and w) are determined endogenously in the

equilibrium. The government determines the unit price of pollution (τ)

and uses the collected tax revenue for its expenditures.

In the following sections we explain the aims and the decision making

processes of the firms, the government and the households in detail and

study the outcome in a general equilibrium framework.
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5.3 Production

The production of the generic good is a function of capital (k), labor (l)

and pollution (z). We consider the price of the generic good as numeraire.

In line with Siebert et al. (1980), Copeland and Taylor (1994), Copeland

and Taylor (2004), Fullerton and Heutel (2007), we take into account pol-

lution as an input in the production process. This approach for modeling

production is usually called as “joint production technology”.

One way of motivating this is to think about two production processes:

the first one is the production of the final good and the second one is the

abatement of pollution. The first production process uses capital and labor

as inputs and produces the final good as well as pollution as a by-product.

The second one also employs capital and labor to produce equipment which

are used to reduce the level of pollution that is generated by the first pro-

duction process. These two production processes can be transformed into

a joint production technology, which is depicted in figure 5.1. Jouvet et al.

(2005) also shows a similar exercise of this transformation and conclude by

obtaining a production function homogenous of degree one of capital, labor

and pollution.

Figure 5.1 – Joint production technology

We assume functional separability between pollution and the physical in-
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puts in the joint production technology. Hence, the production function

is denoted as F (z,G(k, l)) where the first argument of F (., .) is pollution

(z) and the second argument is the conjoint physical input of capital and

labor (G(k, l)). This way of specification is similar to and more general

than the one in Copeland and Taylor (2004).6 Functional separation im-

plicitly assumes that the relative factor demands are identical in both final

good production process and the pollution abatement process. 7 As will

be shown later on, this restriction is necessary to analyze the single pro-

duction technology (Section 2.1.1) while it is not necessary for multiple

production technologies (Section 2.1.2). We prefer to keep this form to

maintain consistency throughout the text.

This nested structure for production function captures the fact that the

physical inputs for production (capital and labor) are having a bilateral

elasticity of substitution between them and pollute to operate the produc-

tion process. Moreover, the conjoint physical input of capital and labor

has an elasticity of substitution with pollution. The shapes of F (., .) and

G(., .) determines the substitutability (or complementarity) of each input

respect to the others. We assume the following properties for the produc-

tion function:

Assumption 5.1. The production function satisfies the following proper-

6Copeland and Taylor (2004) assumes that the production function is Cobb-Douglas
in pollution and conjoint physical input of capital and labor, that is x = zα(F (Kx,
Lx))1−α.

7See Appendix 5.K for details. Note that this certain assumption is necessary just for
this motivation of the production function and it does not have any role in our results.
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ties:8,9

(i) F (., .) and G(., .) are homogenous of degree one.

(ii) F1(., .) > 0, F11(., .) < 0, F2(., .) > 0, F22(., .) < 0, F12(., .) > 0

(iii) G1(., .) > 0, G11(., .) < 0, G2(., .) > 0, G22(., .) < 0, G12(., .) > 0

Assumption 5.1 means that the production technology embodies constant

returns to scale. It also implies that each factor’s marginal productivity

is positive and decreasing in its amount and is increasing in other factors’

amounts. 10

We proceed step by step for the decision making process of the firms. Our

aim is to analyze the effect of a change in the pollution tax on the prices

of capital and labor and on the allocation of resources in the economy. We

first investigate a simple case in which there is only a single production

technology available. Then we study the case in which there are two al-

ternative production technologies with different factor intensities. We will

show that these two cases may have contrasting results depending on the

characteristics of the production technologies.

8Throughout the text we use the following notations for a derivative of a function:
f ′(x) = ∂f/∂x, f ′′(x) = ∂2f/∂x2, fi(x, y) = ∂f/∂i and fij(x, y) = ∂2f/∂i∂j where i
and j denote the order of the arguments of f . For example, f1(x, y) = ∂f/∂x, f2(x,
y) = ∂f/∂y, f11(x, y) = ∂2f/∂x2 and f12(x, y) = ∂2f/∂x∂y.

9These assumptions on the production function are satisfied by most commonly used
production functions such as Cobb-Douglas and CES. We consider to proceed on the
analysis by using the general form in order to cover a larger family of functional forms.

10The assumptions on capital and labor are straightforward and standard, however,
the ones on pollution still need to be justified. Total output increases if we increase
pollution keeping the amount of capital and labor constant (F1(., .) > 0). One can think
that in this case the amount of capital and labor allocated for abatement activities are
reallocated in the production of the final good. Therefore pollution will increase due to
decreased abatement and total output will increase due to higher amount of capital and
labor employed in the final good production process. Of course a technology is more
dirty if it needs more amount of capital and labor relocated from final good production
to the pollution abatement for having a unitary decrease in pollution.
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5.3.1 Single production technology

In this framework there is only one production technology available. The

firms take the prices of input factors as given and minimize their cost by

deciding on their factor demands (αz, αk, αl) for producing one unit of the

output. The problem of the representative firm is:

min
{αz ,αk,αl}

{ταz + rαk + wαl} (5.1)

subject to F (αz, G(αk, αl)) = 1 (5.2)

and 0 ≤ αj for j ∈ {z, k, l}

where r, w and τ denote the interest rate, wage and unit pollution tax

respectively. The cost minimization problem in (5.1) yields the following

first order conditions:

F1(αz, G(αk, αl)) = τ (5.3)

F2(αz, G(αk, αl))G1(αk, αl) = r (5.4)

F2(αz, G(αk, αl))G2(αk, αl) = w (5.5)

Since marginal productivity of each factor is always positive and we assume

perfect competition among the firms, capital and labor will be employed at

their highest quantities (K̄ and L̄) in the equilibrium. Constant returns to

scale property of the production function implies that the relative intensity

of capital to labor is fixed by the factor endowment in the economy.

αk
αl

=
K̄

L̄
(5.6)

Equations (5.2 to 5.6) allow us to obtain factor intensities and the prices

of capital and labor as a function of the pollution tax (αz(τ), αk(τ), αl(τ),

w(τ), r(τ)). Furthermore, by taking into account the fact that K̄ = αk(τ)

F (αz(τ), G(αk(τ), αl(τ))) or L̄ = αl(τ)F (αz(τ), G(αk(τ), αl(τ))) we can
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determine the equilibrium level of output.

In the equilibrium, an increase in pollution tax decreases the pollution

intensity of production (α′z(τ) < 0). A lower pollution intensity reduces

the marginal productivity (and hence the price) of conjoint physical input

(F2(., G(.))). Moreover, the relative price of capital and labor will not

change since the relative intensity of capital to labor is fixed by the total

endowment (eq. (5.6)). As a result, the prices of labor and capital will

decrease at the same rate.

Proposition 5.1. When firms operate by using a single production technol-

ogy, in the partial equilibrium, the wage and the interest rate are decreasing

in the pollution tax (w′(τ) < 0, r′(τ) < 0). Moreover, both has the same

elasticity respect to the pollution tax, εw,τ = εr,τ < εR,τ < 0.11 where R

denotes the gross interest rate.12

Proof. See Appendix 5.A.

To summarize, in this basic framework the interest rate and the wage de-

creases with the same elasticity as a response to an increase in the pollution

tax. This result relies on the following assumptions: (i) only one technol-

ogy is available in the economy, (ii) the production function is constant

returns to scale and it is separable between pollution and conjoint physical

input of capital and labor, (iii) the endowment of capital and labor is fixed

in the economy, (iv) labor supply is inelastic.

In the following subsection, we will relax the first assumption and we in-

vestigate how the results will change. More specifically, we will investigate

how the responses of factor prices to an increase in pollution tax will change

when an alternative production technology is available to use.

11The term εx,y denotes the elasticity of x respect to y (∂x/∂yx/y )
12Here we also report the differences respect to the elasticity of gross capital return

because they will be useful for the analysis of the household’s problem.
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5.3.2 Two production technologies: dirty and clean

In this framework, we consider that the generic good can be produced

by using two different technologies: dirty (X) and clean (Y ).13 The two

technologies both require the use of capital (k), labor (l) and pollution (z)

and they are denoted as X = FX(zx, G
X(kx, lx)) and Y = F Y (zy, G

Y (ky,

ly)). The functions F i(.) and Gi(.) for i ∈ {X, Y } satisfy the properties

given in Assumption 5.1.

The representative firm takes the factor prices as given and minimizes its

unit cost of production for each technology with the following programme:

min
{αXz ,αXk ,αXl ,αYz ,αYk ,αYl }

{
τ(αXz + αYz ) + r(αXk + αYk ) + w(αXl + αYl )

}
(5.7)

subject to F i(αiz, G
i(αik, α

i
l)) = 1 for i ∈ {X, Y } (5.8)

and 0 ≤ αij for i ∈ {X, Y } and j ∈ {z, k, l}

The cost minimization problem leads to the following first order conditions:

FX
1 (αXz , G

X(αXk , α
X
l )) = F Y

1 (αYz , G
Y (αYk , α

Y
l )) = τ (5.9)

FX
2 (αXz , G

X(αXk , α
X
l ))GX

1 (αXk , α
X
l ) = F Y

2 (αYz , G
Y (αYk , α

Y
l ))GY

1 (αYk , α
Y
l ) = r

(5.10)

FX
2 (αXz , G

X(αXk , α
X
l ))GX

2 (αXk , α
X
l ) = F Y

2 (αYz , G
Y (αYk , α

Y
l ))GY

2 (αYk , α
Y
l ) = w

(5.11)

where {αiz, αik, αil} for i ∈ {X, Y } are the derived demands of pollution, cap-

ital and labor, respectively, for producing one unit of output by using tech-

nology i. The six first order equations in (5.9 - 5.11) allow us to obtain the

13Studying only two technologies case is not too restrictive because even if we had
taken into account an economy with n technologies, in this framework, the firms would
utilize maximum two of them. This assertion is valid in the case where F i(.) and Gi(.)
for i ∈ {1, ..., n} are homogenous of degree one. See Appendix 5.J for details.
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unit factor demands as a function of the factor prices: {αiz(r, w, τ), αik(r, w, τ),

αil(r, w, τ)}. In fact, when we consider profit maximization problem which

is the dual of problem (5.7), we have the same first order conditions and

the same functions for factor demands. Substituting the factor demands

into the iso-unit cost function leads to an implicit relationship between the

factor prices such that C(r, w, τ) = 1. This implicit relationship is the

factor price frontier. Indeed, it corresponds to the minimum value of the

cost in (5.7) under all technical conditions including the constraint of one

unit of production given in (5.8). In the following, we show that at least

one factor price (w and/or r) decreases as a response to an increase in the

pollution tax. That is consistent with the factor price frontier.

Replacing the factor demands we obtained before ({αiz(r, w, τ), αik(r, w, τ),

αil(r, w, τ)}) into the two equations in (5.8), we can find wage and interest

rate as a function of pollution tax (w(τ), r(τ)). Hence, we find the intensi-

ties of all factors in each sector and prices of capital and labor as a function

of pollution tax. Note that contrary to the single technology framework,

factor intensities, wage and interest rate are independent from the total

resource endowment (K̄ and L̄).

We define the technology with higher pollution intensity as the dirty one

and we assume no factor intensity reversal to ensure that the dirty technol-

ogy, according to this definition, always remains as the dirty one. Moreover,

we assume that the dirty technology is more capital intensive as well. Re-

cently, Fullerton and Heutel (2010) calculated the factor intensities of the

US economy in clean and dirty sectors, in which they defined petroleum re-

fining, electricity and transportation industries as the dirty sector, and all

remaining industries as the clean one. They showed that relative intensity

of capital with respect to labor in dirty industries is
αXk (τ)

αXl (τ)
= 1.28 whereas

the same indicator for the clean industries is
αYk (τ)

αYl (τ)
= 0.60. Therefore as-

suming the dirty technology being more capital intensive is reasonable.

Moreover, our framework contains only capital and labor as production
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factors, and it does not include energy and fossil-fuel use. These two fac-

tors are among the main contributors of pollution, and they are intensively

used in dirtier industries. One can think that these factors are included in

the capital variable in this model, which will imply that the dirty technol-

ogy is more capital intensive than the clean one. Formally, we assume the

following:

Assumption 5.2. The dirty technology (X) is assumed to be more capital

intensive than the clean technology (Y ):

αXz (τ) > αYz (τ), αXk (τ) > αYk (τ) αXl (τ) < αYl (τ).

Note that in Assumption 5.2 we compare the factor intensities ( zx
X
> zy

Y
,

kx
X
> ky

Y
, lx
X
< ly

Y
) between the technologies to define the type of production

technology. This approach is equivalent to the comparison of factor shares

in production ( τzx
X
> τzy

Y
, rkx
X
> rky

Y
, wlx
X
< wly

Y
).

As we stated before, the factor intensities and the factor prices are indepen-

dent from the aggregate level of capital and labor. However, the allocation

of resources between the two technologies will depend on the total resources.

The total demand for factor j in technology a can be computed by mul-

tiplying the unit demand for that factor and the total production of that

technology. Therefore, the total resource constraint implies the following:

XαXk (τ) + Y αYk (τ) = K̄ (5.12)

XαXl (τ) + Y αYl (τ) = L̄ (5.13)

where X and Y represent total production by the dirty and clean tech-

nology respectively. Solving these two equations for total output of each
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technology (X and Y ) yields to the following relations:

FX(zx, G
X(kx, lx)) = X(τ) =

αYl (τ)K̄ − αYk (τ)L̄

αXk (τ)αYl (τ)− αXl (τ)αYk (τ)
(5.14)

F Y (zy, G
Y (ky, ly)) = Y (τ) =

αXl (τ)K̄ − αXk (τ)L̄

αYk (τ)αXl (τ)− αYl (τ)αXk (τ)
(5.15)

Using equations (5.14) and (5.15) we can obtain the allocation of each

factor between the technologies, that is, zx(τ) = X(τ)αXz (τ), kx(τ) =

X(τ)αXk (τ), lx(τ) = X(τ)αXl (τ), zy(τ) = Y (τ)xy(τ), ky(τ) = Y (τ)αYk (τ),

ly(τ) = Y (τ)αYl (τ).

Now that we obtained all the factor intensities, the factor prices, the

amounts of each factor employed in each technology and the total amounts

of production made by using each technology, we can characterize the par-

tial competitive equilibrium:

Definition 5.1. For a given pollution tax (τ), the unique partial compet-

itive equilibrium for this economy is characterized by the vector of factor

intensities in each technology {αXz , αXk , αXl , αYz , αYk , αYl }, the vector of labor

and capital prices {w, r}, the vector of the factors amounts employed in

each technology {zx, kx, lx, zy, ky, ly} and the the total production in each

technology {X, Y } such that:

(i) The firms minimize their costs, thus (5.8 to 5.11) hold.

(ii) The markets clear, thus the resource constraints ( (5.14 and 5.15)) hold.

By using the definition above, we determine the level of total output and

allocation of factors between the two technologies, as well as the factor

intensities and the factor prices at the equilibrium as a function of the

pollution tax. So how does the pollution tax affects these variables, in

particular the prices of capital and labor?

An increase in the pollution tax makes pollution more expensive as an

input. Hence both sectors will use pollution less intensively which causes
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an adverse effect on the productivities of labor and capital. Since the dirty

technology is more pollution intensive, an increase in the tax affects the

use of this technology at most. It will be more profitable for the firms to

use the clean technology, thus, some of the resources that are used in the

dirty technology will be reallocated in the clean one. Consequently, the

share of the clean technology, which is more labor intensive, will increase

in aggregate production. This leads to an increase in relative productivity

of labor respect to capital.

Accordingly, a rise in the pollution tax affects the factor prices from two

channels: (i) a decline in pollution intensity and (ii) reallocation of capital

and labor from the dirty technology to the clean one. Both channels impose

a negative impact on the interest rate while they push the wage in two op-

posite directions. On the one hand, less pollution intensity pushes the wage

downward, and on the other hand, factor reallocation from capital intensive

technology to the labor intensive one pushes it upward. Whether the wage

increases or decreases depends on which one of these effects dominates.

In the following proposition we show that in fact it depends on the relative

intensity of pollution and capital between the two technologies:

Proposition 5.2. When the economy operates using both technologies, the

interest rate decreases in the pollution tax (r′(τ) < 0). However, the change

in the wage (w′(τ) Q 0) depends on the technologies’ relative pollution

intensities respect to capital.

(i) if
αXz
αXk

<
αYz
αYk

then r′(τ) < 0, w′(τ) < 0 and εr,τ < εR,τ < εw,τ < 0

(ii) if
αXz
αXk

=
αYz
αYk

then r′(τ) < 0, w′(τ) = 0 and εr,τ < εR,τ < εw,τ = 0

(iii) if
αXz
αXk

>
αYz
αYk

then r′(τ) < 0, w′(τ) > 0 and εr,τ < εR,τ < 0 < εw,τ

Proof. See Appendix 5.B.

The comparison of the two cases ((i) and (iii)) in Proposition 5.2 is illus-
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trated in fig.(5.2). As it is clear from the figure, pollution will be used less

intensively in both technologies when the pollution tax increases. Besides,

as Proposition 5.2 asserts, the interest rate declines in both cases as a re-

sponse to an increase in the pollution tax. This makes firms to use capital

more intensively in both technologies. However, the wage can increase or

decrease once the pollution tax rises. When the relative pollution intensity

of the dirty technology to the clean one (α
X
z

αYz
) is lower than the relative

capital intensity (
αXk
αYk

) then the wage decreases and so labor is employed

more intensively in both technologies. (fig.(5.2,a)). In the contrary case

(α
X
z

αYz
) > (

αXk
αYk

), higher pollution tax leads to an increase in the wage, there-

fore more environmental protection leads to a decline in labor intensities

of both technologies. fig.(5.2,b).
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Note: Panel (a) illustrates the case where
αXz
αXk

<
αYz
αYk

and panel (b) illustrates the case

where
αXz
αXk

>
αYz
αYk

. The solid curves are for the dirty technology (X) and the dashed

curves are for the clean one (Y ). The squares, triangles and circles mark the unit factor
demand curves for capital, labor and pollution respectively.

Figure 5.2 – Example unit factor demands respect to the pollution tax

Whether the relative intensity of capital to labor increases or decreases in

the two technologies depends on how their relative price changes with the

pollution tax. Proposition 5.2 implies that the relative price of capital to

labor will decrease as a response to higher pollution tax. Therefore, more

environmental protection makes the firms to use capital more intensively.

This leads us to the following proposition:

Proposition 5.3. If the economy operates using both technologies, and if
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Assumption 5.1 and Assumption 5.2 hold, then higher pollution tax will

increase relative intensity of capital to labor in both technologies.

d(αik(τ)/αil(τ))

dτ
> 0 for i ∈ {X, Y } (5.16)

where, αij is the unit-demand for factor j in technology i.

Proof. See Appendix 5.C.

As it can be seen in Appendix 5.B, functional separability between pollution

and physical inputs is not necessary for Proposition 5.2. But, Proposition

5.3 is conditional on that assumption.

Proposition 5.3 implies two extreme cases: In one extreme case, when the

pollution tax is sufficiently high, all the resources will be allocated only

in the clean technology and at this point capital/labor ratio in the clean

technology equals to the ratio between total capital and total labor in the

economy. As the tax decreases, the resources will be reallocated in the

dirty technology and both technologies will become more labor intensive.

In the other extreme case, the tax will be low enough such that all resources

will be allocated only in the dirty technology. Obviously, in this case the

capital/labor ratio in the dirty technology equals to the ratio of their total

endowments in the economy.

Accordingly, we can define two thresholds for the pollution tax: (i) the dirty

threshold and (ii) the clean threshold. In the case where the pollution tax

is lower than the dirty threshold only the dirty technology is used and if

it is greater than the clean threshold the firms operate by using only the

clean technology. When the tax is between these thresholds, the firms will

operate by using both of the technologies simultaneously in production.

Proposition 5.4. If τdirty and τclean satisfy
αXk (τdirty)

αXl (τdirty)
= K̄

L̄
and

αYk (τclean)

αYl (τclean)
=
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K̄
L̄

, then:

(i) if τ ≤ τdirty then firms use only dirty technology, kx = K̄, lx = L̄

ky = 0, ly = 0.

(ii) if τdirty < τ < τclean then firms use dirty and clean technologies

simultaneously kx > 0, lx > 0, ky > 0, ly > 0 with kx + ky = K̄, lx + ly = L̄

(iii) if τ ≥ τclean then firms use only clean technology, kx = 0, lx = 0,

ky = K̄, ly = L̄.

Proof. See Appendix 5.D.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Τ

0.2

0.4

0.6

0.8

1.0

kxHΤL,kyHΤL

Note: The solid lines are for K̄/L̄ = 0.5, the dashed lines are for
K̄/L̄ = 0.7.

Figure 5.3 – Illustration of Proposition 5.4

As it is shown in Proposition 5.4, τdirty and τclean depend only on the rela-

tive endowment of capital and labor in the economy. Using the definition

of these thresholds and equation (5.16), we can show that both of the

thresholds are increasing in K̄
L̄

. For a given amount of labor force, the more

capital endowed in the economy is, the more profitable the dirty technology

would be compared to the clean one. Therefore, it would require a higher
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pollution tax to induce the firms to use the cleaner technology. This is

illustrated in figure 5.3. The following corollary presents this result.

Corollary 5.1. τdirty and τclean are both increasing in the ratio of total cap-

ital and labor in the economy, ∂τdirty/∂(K̄/L̄) > 0 and ∂τclean/∂(K̄/L̄) > 0.

Proof. See See Appendix 5.E.

Table (5.1) summarizes the results of Proposition 5.1 and Proposition 5.2

that show the impact of an increase in the pollution tax on the prices of

capital and labor.

Single technology Dirty&clean technologies

αXz /α
X
k < αYz /α

Y
k αXz /α

X
k > αYz /α

Y
k

Interest rate r′(τ) < 0 r′(τ) < 0 r′(τ) < 0

Wage w′(τ) < 0 w′(τ) < 0 w′(τ) > 0

Elasticities εr,τ = εw,τ < εR,τ < 0 εr,τ < εR,τ < εw,τ < 0 εr,τ < εR,τ < 0 < εw,τ

Table 5.1 – Impact of an increase in pollution tax on factor prices and their
tax elasticities

We can conclude the analysis of production side by stating that the effects

of an increase in the pollution tax on factor prices depend on the charac-

teristics of the production technologies available and utilized by the firms

in the economy. When the production technologies satisfy the properties

given in Assumption 5.1 and Assumption 5.2, meaning that the technologies

embody constant returns to scale and the dirty technology is more capital

intensive than the clean one, the impact of an increase in the pollution tax

on the factor prices will be as shown in Table (5.1) in the equilibrium.

5.4 Government

The government collects the pollution tax and uses it to finance its expen-

diture. Note that static nature of the model implies that government will
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not save and and its budget must be balanced (G = τZ). To avoid mixing

fiscal policy and climate policy, we consider that government expenditure

does not include any kind of redistribution neither in the form of public

services nor in the form of transfer to the households. This assumption

allows us to keep our focus on households’ trade-off between consumption

and environmental quality and to abstract from redistributional impacts of

fiscal policy. Besides, it provides analytical tractability and convenience.

Therefore, in line with Harberger (1962), Chiroleu-Assouline and Fodha

(2006), Fullerton and Heutel (2007) and others, we consider that the gov-

ernment uses the collected tax revenues to buy the goods from the market

which has no effect on the households’ utility.

5.5 Households

Household i’s utility V (ci, E) depends on its level of consumption (ci) and

the level of environmental quality (E).14 We impose the following assump-

tions for the utility function:

Assumption 5.3. The utility function V (ci, E) is additively separable in

ci and E (VcE(.)=0), increasing and concave in c (Vc(.) > 0 and Vcc(.) < 0)

and increasing and concave in E (VE(.) > 0 and VEE(.) < 0). We assume

that:

V (ci, E) = v(ci) + h(E) (5.17)

These assumptions about the effects of consumption and environmental

quality on utility are standard and widely used in the literature. However,

the assumption on the additive separability is rather restrictive. In Section

5.8.1, we study the impact of relaxing this assumption but, for the rest of

this section, we abstract from the cross relationship between consumption

14See Michel and Rotillon (1995) and Weitzman (2010) for a detailed discussion of
this type of preferences.
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and environmental quality in the household’s utility. This leads us to have

a more clear analytic resolution.

Environmental quality is a decreasing function of pollution (E(z) with

E ′(z) < 0). Thus we can rewrite the utility function as V (ci, E(z)) = U(ci,

z) where U(.) is increasing and concave in ci (Uc(.) > 0 and Ucc(.) < 0)

and decreasing and concave in z (Uz(.) < 0 and Uzz(.) < 0). Thereafter we

will use the utility function U(.) in our analysis.

Due to the static nature of our framework, households that maximize their

utility will consume all of their revenue which consists of the wage and the

gross return of their capital. In Section 5.3, we showed that the wage and

the interest rate are determined by the pollution tax in the partial compet-

itive equilibrium. Therefore, in the general equilibrium, the consumption

level of the household i will depend on the pollution tax and its wealth,

that is

ci(τ, ki) = w(τ) + (1 + r(τ))ki (5.18)

The following section characterizes the general equilibrium in this economy.

5.6 General Equilibrium

We first start by studying the goods market equilibrium, which implies

that total consumption (public and private) must be equalized to total

production:

Y (τ) +X(τ) = C(τ) +G(τ) = ((1 + r(τ))K̄ + w(τ)L̄) + τZ(τ) (5.19)

The left hand side of equation (5.19) is the aggregate production in terms

of numeraire price and the right hand side denotes total private and pub-

lic consumption. Now we can investigate the effect of pollution tax on

aggregate production, private and public consumption by looking at the
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derivative of equation (5.19) with respect to the pollution tax:15

Y ′(τ) +X ′(τ) = (r′(τ)K̄ + w′(τ)L̄) + Z(τ) + τZ ′(τ) = τZ ′(τ) < 0

(5.20)

An increase in the pollution tax decreases the total private consumption

due to the decrease in the factor revenues. This holds true even in the

case where the wage increases in the pollution tax because the effect of the

decrease in the interest rate on total private consumption dominates the

gains from the increase in the wage.16 Moreover, the aggregate production

is also decreasing in the pollution tax. Hence there is no room for double

dividend in this model. The impact on government revenue remains am-

biguous since an increase in pollution tax leads to a decrease in the tax

base.

Now we can characterize the general equilibrium in this economy:

Definition 5.2. For a given pollution tax (τ), the unique general equilib-

rium for this economy is characterized by the vector of factor intensities in

each technology {αXz , αXk , αXl , αYz , αYk , αYl }, the vector of labor and capital

prices {w, r}, the vector of the factors amounts employed in each technol-

ogy {zx, kx, lx, zy, ky, ly}, the total production in each technology {X, Y }, the

government spending {G}, the consumption level of each household {ci}1
i=0

15See Appendix 5.F for the proof.
16Note that in the case where the wage is increasing in the pollution tax, there may

exist some households with a very low wealth such that their consumption increases in
the pollution tax. Total consumption of the households, however, is always decreasing
in pollution tax.
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and the total consumption {C =
∫
ci} such that:

(i) The firms minimize their costs, thus the eight equations

in (5.8 to 5.11) hold.

(ii) The markets clear, thus the resource constraints (5.12 and 5.13) hold.

(iii) The government budget is balanced (G = τ(zx + zy)) hold.

(iv) Households consume all their revenue. (5.18) holds for each i

5.7 Preferred pollution tax of households

This section aims to investigate preferred pollution tax of households which

is defined as the level of tax that maximizes household i’s utility. Then we

will examine how it is affected by capital endowment of households. In

this paper, we consider progressivity and regressivity of the tax always in

terms of welfare. Hence, the pollution tax progressive if it harms (favors)

the poor less (more) than the rich. Then, households with a higher capital

endowment will prefer a lower pollution tax if the tax is progressive (vice

versa for regressivity):

Pollution tax is progressive⇐⇒
∂(∂u(τ,ki)

∂τ
)

∂ki
< 0⇒ sign(

∂τ ?i (ki)

∂ki
) < 0

Therefore, all of our results about the impact of capital endowment on pre-

ferred pollution tax can be equivalently interpreted as progressivity/regressivity

of the pollution tax in terms of welfare.

To find the preferred pollution tax of a household we consider the following

maximization programme:

max
{τ | τ≥0}

{U(ci(τ, ki), z(τ))} (5.21)
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which leads to the following first order condition:

∂U(ci(τ
?
i , ki), z(τ

?
i ))

∂τ ?i
= Uc(.)

∂ci(τ
?
i , ki)

∂τ ?i
+ Uz(.)

∂z(τ ?i )

∂τ ?i
= 0 (5.22)

Condition (5.22) clearly reflects the trade-off between higher consumption

and better environmental quality. On the one hand, the pollution tax has

an adverse effect on consumption due to its impact on factor prices which

decreases the revenue of the household (the first term in the RHS of eq.

(5.22)). This effect indeed has a negative impact on the household’s utility.

On the other hand, it decreases the level of pollution hence has a positive

effect on the utility from the environmental well-being channel (the second

term in the RHS of eq. (5.22)). Therefore one may expect that there is a

preferred pollution tax for a household that balances these opposite effects.

In Proposition 5.2 we showed that when the firms are operating by using

dirty and clean technologies, we may have a case such that the wage is

increasing in the pollution tax (w′(τ) > 0). In this case, the pollution tax

may increase the total revenues of some households which have a low wealth

because the increase in wage may dominate the loss from their gross capital

return. Thus, the pollution tax will not impose a trade-off as in equation

(5.22) for these households and their utility will obviously increase in tax.

However, as shown in Proposition 5.4, there exists a threshold for pollution

tax above which only the clean technology is used. Above this threshold,

independent of their wealth, the trade-off in equation (5.22) will be valid

for all households because when the firms are operating by using a single

technology the wage decreases in pollution tax (w′(τ) < 0) as shown in

Proposition 5.1.

To proceed further, we assume the following:

Assumption 5.4. Once τ ?i exists for household i, its marginal utility is
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decreasing with respect to the pollution tax (τ) at this tax level, that is

∂2U(ci(τ
?
i , ki), z(τ

?
i ))

∂τ ?i
2 < 0 (5.23)

This assumption implies that the utility of household reaches a peak when

the equation (5.22) holds. Note that while for discussing about preferred

pollution tax we need the assumptions on the sign of the second deriva-

tive of utility function as well as on the existence of preferred pollution

tax, we do not need any of these assumptions to analyze the progressiv-

ity/regressivity of the tax.

Equation (5.22) shows that household’s preferred pollution tax depends on

its wealth. To investigate the effect of an increase in the household’s wealth

on its preferred pollution tax, we take the derivative of equation (5.22) and

solve it for ∂τ ?i /∂ki which yields the following result:17

sign(
∂τ ?i (ki)

∂ki
) = sign(Ucc(.)

∂ci(τ
?
i , ki)

∂ki

∂ci(τ
?
i , ki)

∂τ ?i︸ ︷︷ ︸
>0 ; Satiation effect

+ Uc(.)
∂2ci(τ

?
i , ki)

∂τ ?i ∂ki︸ ︷︷ ︸
<0 ; Income burden effect

)

(5.24)

The first term in the RHS(5.24), which has a positive sign, can be called as

the satiation effect. When a household is richer, its level of consumption is

relatively higher and thus its marginal utility of consumption is lower. This

results in a lower marginal rate of substitution between consumption and

environmental quality. In other words, richer households care less about the

loss from their consumption due to the pollution tax. Therefore, through

this channel richer households would prefer a higher pollution tax.

The second term in the RHS(5.24) , which has negative sign, can be called

as the income burden effect. It reflects the fact that, in absolute terms,

richer households lose more from their consumption due to an increase

in pollution tax. This is because of the fact that richer households have

17See See Appendix 5.G.
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greater amount of capital invested in the market and so their revenue is

more affected by the decline in return to capital. Consequently, through

this channel richer households will prefer a lower pollution tax. There-

fore, whether the households with higher capital endowment would prefer

a higher or a lower pollution tax will depend on which one of these two

effects dominates.

In the case that v(c) in household utility has logarithmic form, we can

analytically show that the dominating effect depends only on the pollution

tax elasticity of consumption.

Proposition 5.5. If the household’s utility satisfies the properties given

in Assumption (5.3) and assumption (5.4), and moreover v(ci) = log(ci),

then the preferred pollution tax of a household is increasing in its wealth

if and only if the pollution tax elasticity of consumption is increasing in

wealth. Formally:

sign(
∂τ ?i (ki)

∂ki
) = sign(

∂εci,τ
∂ki

) (5.25)

Proof. See Appendix 5.H.

Proposition 5.5 shows that, for the logarithmic form of utility, the richer

households want a higher environmental protection if and only if their per-

centage loss in consumption due to the pollution tax is lower than the

poorer households. Since our framework is static and households consume

all and only the revenues from their factor supplies, the pollution tax elas-

ticity of consumption is decreasing in wealth if and only if the ratio of

gross capital return to wage (R
w

) decreases with respect to the pollution

tax. In this case, the richer households will experience a higher percentage

loss from their consumption due to an increase in the tax compared to the

poorer households. This fact, combined with the assertion in Proposition

5.5 leads to the following result:

Proposition 5.6. If the household’s utility satisfies the properties given in

Assumption (5.3) and assumption (5.4), and moreover v(ci) = log(ci), the
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preferred pollution tax is increasing in the household’s wealth if and only

if the pollution tax elasticity of gross interest rate is greater (less negative)

than the one of the wage. Formally:

sign(
∂τ ?i (ki)

∂ki
) = sign(εR,τ − εw,τ ) (5.26)

Proof. See Appendix 5.I.

From Section 5.3 we know that (R
w

) is increasing with respect to the tax in

the case where firms operate by using a single technology and it is deceasing

in the two-technology case. Combining these results with Proposition 5.6

leads us to the central claims of this subsection.

Proposition 5.7. When firms operate using a single production technology,

the preferred pollution tax of an household is increasing in its wealth and

the tax is regressive,
∂τ?i (ki)

∂ki
> 0.

Proof. Direct conclusion of Proposition 5.1 and Proposition 5.6.

Proposition 5.8. When firms operate using dirty and clean production

technologies which satisfy the properties in Assumption 5.2, the preferred

pollution tax of an household is decreasing in its wealth and the tax is

progressive,
∂τ?i (ki)

∂ki
< 0.

Proof. Direct conclusion of Proposition 5.2 and Proposition 5.6.

Proposition 5.8 shows that when the pollution tax leads to a realloca-

tion of factors in cleaner technologies, which are more labor intensive, the

rich prefers a lower pollution tax compared to the low-income households.

Therefore pollution tax is progressive in this case. The richer people in the

society who own a larger share of capital lose a higher proportion of their

income compared to the low income households. Consequently, the loss in

their well-being due to the fall of income outweighs the benefits of a better

environment, and their support for a pollution tax declines.
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In the following section, we will discuss the outcome when some of the

model assumptions are relaxed.

5.8 Discussion

5.8.1 The case of non-separable utility function

The assumptions on the utility function have crucial effects on the results

presented in the previous section. An important one is the additive separa-

bility of utility of consumption and disutility of pollution, meaning Ucz = 0

in our framework. Michel and Rotillon (1995) studied the cases in which

the utility function is non-separable, naming the case of Ucz < 0 as the

“distaste effect” and the case of Ucz > 0 as the “compensation effect”.

They study the impact of these assumptions on the outcome within an

endogenous growth framework. In this section, we will discuss how our

results could differ when we consider a non-separable utility function.

Additive separability of the utility function with respect to consumption

and environmental quality have two implications: (i) the marginal utility of

consumption does not depend on pollution and (ii) the marginal utility of

environmental quality is independent from the level of consumption. When

this assumption is relaxed, the households’ preferred pollution taxes will

vary as the marginal utility of consumption depends on the environmental

quality.

To evaluate the effect of Ucz(.) on the household’s preferred pollution tax

and, hence, on progressiveness of the pollution tax, we rewrite equation

(5.24) for the case in which Ucz(.) 6= 0:
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sign(
∂τ ?i (ki)

∂ki
) = sign(Ucc(.)

∂ci(τ
?
i , ki)

∂ki

∂ci(τ
?
i , ki)

∂τ ?i︸ ︷︷ ︸
>0 ; Satiation effect

+ Uc(.)
∂2ci(τ

?
i , ki)

∂τ ?i ∂ki︸ ︷︷ ︸
<0 ; Income burden effect

+ Ucz(.)
∂ci(τ

?
i , ki)

∂ki︸ ︷︷ ︸
>0

Z ′(τ)︸ ︷︷ ︸
<0

) (5.27)

We can see that another term is added in (5.24), which played crucial role in

propositions 5.5 to 5.8. Equation 5.27 shows that the value of the new term

will be added in either satiation effect or income burden effect depending

on its sign.

When we consider the distaste effect (Ucz(.) < 0), which means that the

marginal utility of consumption decreases in the level of pollution, the sign

of last term will be positive and the cross effect of consumption and pol-

lution is going to be added to the satiation effect. In this case, higher

pollution tax improves the utility of households not only by enhancing

environmental quality, but also by improving the marginal utility of con-

sumption. As the rich consume more, the latter effect is more pronounced

for them. From this channel, the rich wants a higher pollution tax. Con-

sidering all the effects that we discussed previously, taking into account the

distaste effect makes the tax less progressive. In extreme cases where the

distaste effect is very strong, it can even make the tax regressive compared

to the separable utility case.

In the contrary case in which there is a compensation effect (Ucz(.) > 0),

a higher consumption decreases the disutility of pollution. This makes the

sign of the last term to be negative and it contributes in the income burden

effect. This in turn makes the pollution tax more progressive compared to

the separable utility case.
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5.9 Conclusion

We showed that the households with uneven wealth endowments prefer dif-

ferent levels of pollution tax. This is due to the fact that wealth inequality

implies two distinctions between the rich and the poor households: (i) their

consumption levels are not the same and (ii) the amounts of capital that

they invest in the market are different. In fact, these differences correspond

to the channels that we identified as the determinant of the household’s pre-

ferred pollution taxes which we called as the satiation effect and the cost

of pollution tax effect. The satiation effect means that the marginal util-

ity of consumption is lower for the richer households, henceforth, they are

more willing to sacrifice from their consumption for a better environmental

quality. The cost of pollution tax effect refers to the fact that the revenue

of the rich is more reduced by the pollution tax due to their higher capital

investment in the market. Furthermore, we showed that the effect that

dominates depends on the pollution tax elasticity of consumption. This

means that the effect of household’s wealth on its preferred pollution tax

depends on its percentage and not on its absolute loss from consumption

due to the tax. Moreover, the tax elasticity of consumption obviously de-

pends on how the revenues of the households are affected by the increase

in the pollution tax.

By using a general equilibrium framework, we showed that the impact of

the pollution tax on the household revenue (which comes from the wage

and the interest rate) depends on the characteristics of the production

technologies employed by the firms. We identified the cases in which the

wage and the interest rate move in the same or different direction as a

response to an increase in the pollution tax. When the firms operate by

using only one production technology, the pollution tax elasticity of the

wage and the interest rate are identical which makes the rich to lose less

than the poor from their consumption in percentage terms. Thus, in this

case, the rich prefer a higher pollution tax and the tax is regressive. This
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result changes when the firms operate by using two technologies: (i) dirty

and more capital intensive and (ii) cleaner and more labor intensive. In this

case, an increase in the pollution tax leads to a reallocation of factors from

the dirty technology to the clean one. This reallocation leads to a relatively

higher decrease in the returns of capital. Consequently, in this case, the

rich loses more than the poor from their consumption in percentage terms

and thus they prefer a lower pollution tax and the tax is progressive.

Our results suggest that the pollution tax always decreases the wealth

inequality in the economy since the rich always loses more from their con-

sumption in absolute terms. This is due to the fact that we abstracted

from the wage inequality and the redistributional effects of the pollution

tax. Further research could include these dimensions. For example, the

labor supply side of the model can be improved to allow heterogeneities

in labor income and the government transfers that are not neutral can be

considered.

We discussed about relaxing a few of the assumptions that we made through-

out the text and in the discussion section. Relaxing the other key assump-

tions of this framework can lead to further research on this subject. For

example, transforming the model into the dynamic framework will allow to

investigate intertemporal effects of environmental policies in the existence

of wealth inequality. Introducing consumer preferences towards dirty and

clean products will allow to study both the sources and the uses sides of

income. Moreover, the extension of the model for multiple countries will

provide benefits that are many fold. A simple model of two countries with

different wealth distributions, factor endowments and production technolo-

gies would allow to analyze concepts such as pollution havens as well as to

identify patterns of factors in response to environmental policies. Further-

more, imperfections in capital mobility and labor mobility can result with

different implications.

Moreover, our setting is more compatible with the reality compared to other
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studies in the literature since we consider that the clean technology also

pollutes. Using this framework will allow to have more robust results in the

empirical research on this subject. Finally, this study provided a potential

benchmark for further analysis in political economics research concerning

environmental policies and wealth inequalities.
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Appendix

5.A Proof of Proposition 5.1

We use the first order conditions given in (5.3 to 5.5). First we use (5.3)

to obtain:

z(τ) = F−1
1 (τ ;G(K̄, L̄)) (5.28)

Note that since G(K̄, L̄) is given and constant, it affects z(τ) as a parame-

ter. By using the properties of the production function given in Assumption

1, we know that F−1
11 (., .) < 0 hence

z′(τ) < 0 (5.29)

Now that we have z(τ), we replace it in equations (5.4 and 5.5) to get the

following:

F2(z(τ), G(K̄, L̄))G1(K̄, L̄) = r (5.30)

F2(z(τ), G(K̄, L̄))G2(K̄, L̄) = w (5.31)

We can now compute the wage and interest rate as a function of pollution

tax and how they change according to that.

r′(τ) = z′(τ)F21(z(τ), G(K̄, L̄))G1(K̄, L̄) < 0 (5.32)

w′(τ) = z′(τ)F21(z(τ), G(K̄, L̄))G2(K̄, L̄) < 0 (5.33)

since z′(.) < 0, F21(.) > 0, G1(.) > 0 and G2(.) > 0 which completes the

first part of the proof.
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The elasticities of wage and interest rate respect to the pollution tax are:

εr,τ =
r′(τ)

r(τ)/τ
=
z′(τ)F21(z(τ), G(K̄, L̄))G1(K̄, L̄)τ

F2(z(τ), G(K̄, L̄))G1(K̄, L̄)

= z′(τ)
F21(z(τ), G(K̄, L̄))τ

F2(z(τ), G(K̄, L̄))
< 0 (5.34)

εw,τ =
w′(τ)

w(τ)/τ
=
z′(τ)F21(z(τ), G(K̄, L̄))G2(K̄, L̄)τ

F2(z(τ), G(K̄, L̄))G2(K̄, L̄)

= z′(τ)
F21(z(τ), G(K̄, L̄))τ

F2(z(τ), G(K̄, L̄))
= εr,τ < 0 (5.35)

εR,τ =
R′(τ)

R(τ)/τ
=

r(τ)

R(τ)

r′(τ)

r(τ)/τ
=

r(τ)

1 + r(τ)
εr,τ (5.36)

which completes the second part of the proof.

Note that this property implies the following relationships:

w(τ)

r(τ)
=
w′(τ)

r′(τ)
=
w′′(τ)

r′′(τ)
(5.37)

Equation (5.37) can be obtained as follows:

r′(τ)

r(τ)
=
w′(τ)

w(τ)
(5.38)

⇒ Log(r′(τ))− Log(r(τ)) = Log(w′(τ))− Log(w(τ)) (5.39)

⇒ r′′(τ)

r′(τ)
− r′(τ)

r(τ)
=
w′′(τ)

w′(τ)
− w′(τ)

w(τ)
(5.40)

⇒ w′′(τ)

r′′(τ)
=
w′(τ)

r′(τ)
=
w(τ)

r(τ)
(5.41)

5.B Proof of Proposition 5.2

We use the first order conditions (5.9 to 5.11) of the cost minimization

problem in (5.7) to obtain the derived unit production demands for fac-

tors in both of the two technologies. For the dirty technology we have{
αXz (τ), αXk (τ), αXl (τ)

}
and for the clean technology we have

{
αYz (τ), αYk (τ),

αYl (τ)
}

. From now on we will drop functional arguments (τ) for notational
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simplicity.

Let ηx = αXk /α
X
l , ηy = αYk /α

Y
l , ζx = αXz /α

X
l and ζy = αYz /α

Y
l . By Defini-

tion 1 (αXz > αYz , αXk > αYk and αXl < αYl ) we have ηx > ηy and ζx > ζy.

Perfect competition implies:

ταXz + r(τ)αXk + w(τ)αXl = p̄ (5.42)

ταYz + r(τ)αYk + w(τ)αYl = p̄ (5.43)

where p̄ is the price of the generic good and we take is as numeraire hence

p̄ = 1. Now we will compute how the unit cost changes with the pollution

tax. For that we take the derivative of equations (5.42 and 5.43) respect to

τ . Note that all the derived demands depend on the pollution tax, however,

they are obtained from the cost minimization problem which means that

when we apply the envelope theorem we will have τa′z(τ) + r(τ)a′k(τ) +

w(τ)a′l(τ) = 0 for i ∈ {x, y}. Applying this to the derivative of equations

(5.42 and 5.43):

αXz + r′(τ)αXk + w′(τ)αXl = 0 (5.44)

αYz + r′(τ)αYk + w′(τ)αYl = 0 (5.45)

We divide (5.44) by αXl and (5.45) by αYl to obtain:

ζx + r′(τ)ηx + w′(τ) = 0 (5.46)

ζy + r′(τ)ηy + w′(τ) = 0 (5.47)

Subtracting (5.47) from (5.46) gives:

r′(τ) = − ζx − ζy
ηx − ηy

< 0 by Definition 1 (5.48)

Furthermore, we multiply (5.47) by ηx/ηy and subtract the resulting equa-
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tion from (5.46) to obtain:

w′(τ) =
ζxηy − ζyηx
ηx − ηy

(5.49)

The sign of w′(τ) depends on the relative factor intensities between the two

technologies. We have:

w′(τ) > 0 if
ζx
ηx

>
ζy
ηy
⇔ αXz

αXk
>
αYz
αYk

(5.50)

w′(τ) = 0 if
ζx
ηx

=
ζy
ηy
⇔ αXz

αXk
=
αYz
αYk

(5.51)

w′(τ) < 0 if
ζx
ηx

<
ζy
ηy
⇔ αXz

αXk
<
αYz
αYk

(5.52)

which completes the first part of the proof. For the elasticities, we can

rewrite equations (5.42) and (5.43) as follows:

ζxτ + ηxr(τ) + w(τ) =
p̄

αXl
(5.53)

ζyτ + ηyr(τ) + w(τ) =
p̄

αYl
(5.54)

Multiplying equation (5.53) by ζy and equation (5.54) by ζx and subtracting

the latter from the former, we get:

(1+r(τ))(ζyηx−ζxηy)+w(τ)(ζy−ζx) = p̄(
ζy
αXl
− ζx
αYl

) =
p̄

αXl α
Y
l

(αYz −αXz ) < 0

(5.55)

Dividing LHS of inequality (5.55) by (ηx − ηy) and using equations (5.48)

and (5.49), we can show:

− w′(τ)r(τ) + w(τ)r′(τ) < 0 (5.56)

Therefore:
r′(τ)

r(τ)
<
w′(τ)

w(τ)
⇔ εr,τ < εw,τ (5.57)
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Moreover, since r′ < 0 , εr,τ < εR,τ < 0.

Finally, equation (5.50) define the conditions for the sign of εw,τ and it

completes the second part of the proof.

5.C Proof of Proposition 5.3

From equations (5.10) and (5.11), we have:

r = F a
2 (αXz , G

a(αXk , α
X
l ))Ga

1(αXk , α
X
l ) (5.58)

w = F a
2 (αXz , G

a(αXk , α
X
l ))Ga

2(αXk , α
X
l ) for a ∈ {x, y} (5.59)

Dividing equation (5.58) by (5.59) we get:

r

w
=
Ga

1(αXk , α
X
l )

Ga
2(αXk , α

X
l )

(5.60)

Proposition 3 implies that d(r/w)
dτ

< 0 and so:

d(
Ga1(αXk ,α

X
l )

Ga2(αXk ,α
X
l )

)

dτ
< 0⇔

d(ak
al

)

dτ
> 0 for a ∈ {x, y} (5.61)

5.D Proof of Proposition 5.4

Resource Constraints for capital and labor imply that:

XαXk + Y αYk = K̄ (5.62)

XαXl + Y αYl = L̄ (5.63)
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Solving equations (5.62) and (5.63) for X and Y will result in the followings:

X =
αYl K̄ − αYk L̄
αXk α

Y
l − αXl αYk

(5.64)

Y =
αXl K̄ − αXk L̄
αXl α

Y
k − αXk αYl

(5.65)

Therefore:

X = 0⇔ αYk (τclean)

αYl (τclean)
=
K̄

L̄
(5.66)

Y = 0⇔ αXk (τdirty)

αXl (τdirty)
=
K̄

L̄
(5.67)

The denominator in RHS of equation (5.66) is positive. Since
d(
ak
al

)

dτ
>

0 for for a ∈ {x, y}, if pollution tax is higher than τclean, then the pro-

duction in dirty technology will be negative which is not possible. There-

fore, for pollution tax higher than τclean, economy will use only the clean

technology. With the same method, it is easy to show that for the pollution

tax lower than τdirty the economy will operate only by the dirty technology.

5.E Proof of Corollary 5.1

From equations (5.66) and (5.67), we know that:

d(
αYk (τclean)

αYl (τclean)
)

d( K̄
L̄

)
= 1 > 0 (5.68)

d(
αXk (τdirty)

αXl (τdirty)
)

d( K̄
L̄

)
= 1 > 0 (5.69)
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And from Proposition 5.4 we know that d(ak(τ)/al(τ))
dτ

> 0 for a ∈ {x, y}.
Therefore:

d(τclean)

d( K̄
L̄

)
> 0 (5.70)

d(τdirty)

d( K̄
L̄

)
> 0 (5.71)

5.F Proof of equation (5.20)

Multiplying equation (5.44) by total production of the dirty technology (X),

and multiplying equation (5.45) by total production of the clean technology

(Y) results in the following:

Zx + r′(τ)kx + w′(τ)lx = 0 (5.72)

Zy + r′(τ)ky + w′(τ)ly = 0 (5.73)

By adding the two last equations, we have:

Z = −(r′(τ)K̄ + w′(τ)L̄ = −C ′(τ) (5.74)

Using equation (5.74) in the RHS of the first equality in equation (5.20),

will lead to the second equality of that equation. Moreover, since Z > 0,

total private consumption is decreasing in pollution tax.

5.G Proof for equation (5.24)

We start from the first order condition resulted from household’s maxi-

mization programme given in equation (5.21):

∂Ui(ci(τ
?
i , ki), z(τ

?
i ))

∂τ ?i
= Uc(.)

∂ci(τ
?
i , ki)

∂τ ?i
+ Uz(.)

∂z(τ ?i )

∂τ ?i
= 0 (5.75)
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To find
∂τ?i (ki)

∂ki
we take the derivative of (5.75) with respect to ki at τ ?i (ki):

Ucc(.)
∂c

∂ki
c1(τ, ki) + Ucz(.)z

′(τ)
∂τ ?

∂ki
c1(τ, ki) + Ucc(.)(c1(τ, ki))

2∂τ
?

∂ki

+ Uc(.)c11(τ, ki)
∂τ ?

∂ki
+ Uc(.)c12(τ, ki)

+ Ucz(.)c2(τ, ki)z
′(τ) + Ucz(.)c1(τ, ki)

∂τ ?

∂ki
z′(τ)

+ Uzz(.)(z
′(τ))2∂τ

?

∂ki
+ Uz(.)z

′′(τ)
∂τ ?

∂ki
= 0 (5.76)

Setting Ucz(.) = 0 (by Assumption 3) and collecting ∂τ?

∂ki
we obtain:

∂τ ?(ki)

∂ki
= −S1

S2

(5.77)

where S1 =Ucc(.)c2(τ, ki)c1(τ, ki) + Uc(.)c12(τ, ki) (5.78)

S2 =Ucc(.)(c1(τ, ki))
2 + Uc(.)c11(τ, ki) + Uz(.)z

′′(τ)

+ Uzz(.)(z
′(τ))2 (5.79)

Equation (5.79), S2, corresponds to the second order condition and it is

negative (S2 < 0) by Assumption 4 . Therefore S1 determines the sign of

∂τ?

∂ki
.

5.H Proof for Proposition 5.5

If v(ci) = log(ci), then, Uc(.) = 1
ci

and Ucc(.) = −1
c2i

. By replacing these two

equations in equation (5.78), we will have:

s1 = − 1

c2
i

∂ci
∂ki

∂ci
∂τ

+
1

ci

∂2ci
∂ki∂τ

(5.80)

And equivalently:

s1 =
∂( 1

ci

∂ci
∂τ

)

∂ki
=

1

τ

∂εci,τ
∂ki

(5.81)
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5.I Proof for Proposition 5.6

εci,τ =
∂ci
∂τ

τ

ci
=

r′(τ)ki + w′(τ)

(1 + r(τ))ki + w(τ)
τ (5.82)

Therefore:

∂εci,τ
∂ki

=
r′(τ)ci − (1 + r(τ))c′i

c2
i

τ =
τ

ci
(r′(τ)w(τ)− (1 + r(τ))w′(τ))

=
(1 + r(τ))w(τ)

c2
i

(εR,τ − εw,τ ) (5.83)

Using equation 5.83 and equation 5.81, we can get:

s1 =
(1 + r(τ))w(τ)

τc2
i

(εR,τ − εw,τ ) (5.84)

Which establishes the proof for Proposition 5.7.

5.J The case of n technologies

We claim that in our framework, where the economy is open and operating

in n-sectors (thus, prices in all the sectors are fixed), or equivalently, where

the economy is closed but producing and consuming only one generic good

with n-technologies, the economy will operate using maximum two sec-

tors/technologies.

We have endowment constraints:

n∑
i=1

ki = K̄ (5.85)

n∑
i=1

li = L̄ (5.86)

For each sector i, we have: Qi = F i(zi, Gi(ki, li)) which has a market price

piQ that is exogenously given. The prices of capital and labor (r and w) are
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endogenously determined, however, the price of z (τ) is exogenously given

(by the government). The firms solve the following problem:

max
{zi,ki,li}

{
n∑
i=1

(piQF
i(zi, Gi(ki, li))− rki − wli − τzi)

}
subject to (5.85), (5.86) and zi ≥ 0 ∀i

First order conditions for an interior solution are:

piQF
i
1(zi, Gi(ki, li)) = τ (5.87)

piQF
i
2(zi, Gi(ki, li))Gi

1(ki, li) = r (5.88)

piQF
i
2(zi, Gi(ki, li))Gi

2(ki, li) = w (5.89)

Therefore, we have:

{5.85, 5.86, 5.87, 5.88, 5.89} ⇒ 3n + 2 equations and {{ki, li, zi} , r, w} ⇒
3n+ 2 variables.

Now we will show that if the functions F (.) and G(.) are homogeneous of

degree 1 then these equations are not independent when n > 2. Therefore

the solution for n > 2 does not exist. In other words, it is not possible that

the economy operates with more than two technologies. To show that, we

define:

ηi =
ki

li
(5.90)

ζ i =
zi

li
(5.91)
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Using the property of homogenous of degree 1 for F (.) and G(.), we can

rewrite equations (5.87) to (5.89) as follows:

piQF
i
1(

ζ i

Gi(ηi, 1)
, 1) = τ (5.92)

piQF
i
2(

ζ i

Gi(ηi, 1)
, 1)Gi

1(ηi, 1) = r (5.93)

piQF
i
2(

ζ i

Gi(ηi, 1)
, 1)Gi

2(ηi, 1) = w (5.94)

For n sectors, we have {{ηi, ζ i, ki, li, zi} , r, w} ⇒ 5n+2 variables and (5.85,

5.86, 5.90, 5.91, 5.92, 5.93, 5.94) ⇒ 5n + 2 equations. At this point, the

number of equations equals the number of variables and, thus, the system

of equations seems to have a solution. However, a subset of this equation

system, equations (5.92, 5.93, 5.94) contain 3n equations with 2n + 2 vari-

ables. Therefore, if n > 2 then the number of equations is greater than

the number of variables. This fact concludes that the system of equations

are not independent. Hence there is no solution for n > 2 when all of the

n-technologies are being operated by the economy. In other words, the

economy will use maximum two technologies for a given τ .

In fact, we can generalize the results above. Consider an economy with

n-technologies (sectors) where all of the technologies are homogenous of

degree 1 and they use m factors as inputs. In the case where the prices

of s factors are given, meaning that m − s factors’ prices are determined

endogenously (and their total amount must be constrained by endowment

or ceiling constraints), we can conclude that maximum m− s technologies

will be operated by the economy.
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5.K An alternative setting: pollution as a

byproduct

In this alternative setting the firms are involved in two processes. In the

first process, they hire capital and labor (kP , lP ) to produce the final good.

Pollution (z) is byproduct of this process. Since we assume that the pol-

lution is taxed (τ), the firms will get involved in the abatement activities

in which they use capital and labor (kA, lA) to produce equipment that is

used to reduce pollution. Therefore, in this alternative setting, pollution

is a function of final good production (H(kP , lP )) and abatement process

(B(kA, lA)):

z = Φ(H(kP , lP ), B(kAk , l
A))

Where: Φ1(.) > 0,Φ2(.) < 0,Φ11(.) > 0,Φ22(.) > 0

where jP and jA are demands of factor j for production of final good and

for pollution abatement respectively. Since factor prices and pollution tax

are given to the firms, their cost-minimization problem for producing one

unit of final good is as follows:

min
{az ,ak,al}

{
(aPk + aAk )r + (aPL + aAL)w + Φ(H(aPk , a

P
L), B(aAk , a

A
L))τ)

}
(5.95)

subject to: H(aPk , a
P
L) = 1 (5.96)

Here, aPj and aAj are demand of factor j for unit production of final good

and for corresponding pollution abatement respectively. Factor demands

in our main setting az, ak, al can be translated to this setting as follows:
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az = Φ(H(aPk , a
P
L), B(aAk , a

A
L)) (5.97)

ak = aPk + aAk (5.98)

al = aPL + aAL (5.99)

Constant returns to scale form assumption for F (.) and G(.) in our main

setting can be translated to constant returns to scale property of H(.), B(.)

and Φ(.) in this alternative setting. Firms’ minimization problem leads to

the following first order conditions:

r = H1(aPk , a
P
L)(1− Φ1(H(aPk , a

P
L), B(aAk , a

A
L))τ)

= τΦ2(H(aPk , a
P
L), B(aAk , a

A
L))B1(aAk , a

A
L) (5.100)

w = H2(aPk , a
P
L)(1− Φ1(H(aPk , a

P
L), B(aAk , a

A
L))τ)

= τΦ2(H(aPk , a
P
L), B(aAk , a

A
L))B2(aAk , a

A
L) (5.101)

Besides, resource constrains imply:

Y (aPk + aAk ) = K̄ (5.102)

Y (aPl + aAl ) = L̄ (5.103)

Where:Y = H(
aPk K̄

aPk a
A
k

,
aPl L̄

aPl a
A
l

) (5.104)

Equations (5.100) to (5.104) provides seven equations and seven variables:{
aPk , a

P
L , a

A
k , a

A
L , w, r, Y

}
. Therefore, factor demands and input prices can be

found as a function of pollution tax (τ). For the sake of notation simplicity,

in the following, we don’t write (τ) knowing that all these variables are

function of this variable.

As we explained in Section 2.1, the assumption of functional separability

directly implies that, once there is only one technology used in the economy,
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wage and interest rate will have the identical pollution tax elasticity. Now,

we can investigate the implication of this result in this alternative setting.

Below, we will prove that, in this alternative setting, relative price of wage

to interest rate remains unchanged, if and only if, production process and

pollution abatement process have identical relative factor intensity.

Dividing equation (5.100) by equation (5.101) results in:

r

w
=
H1(aPk , a

P
L)

H2(aPk , a
P
L)

=
B1(aAk , a

A
L)

B2(aAk , a
A
L)

(5.105)

Thus:

d( r
w

)

dτ
= 0⇒


d(
H1(a

P
k ,a

P
l )

H2(a
P
k
,aP
l

)
)

dτ
= 0

d(
B1(a

A
k ,a

A
l )

B2(a
A
k
,aA
l

)
)

dτ
= 0

⇒


d(
aPk
aP
l

)

dτ
= 0

d(
aAk
aA
l

)

dτ
= 0

(5.106)

Since H(.) is constant returns to scale and by definition H(aPk , a
P
L) = 1,

the first equality in equation (5.106) implies that aPk and aPl are constant.

Therefore:

aPk
′
= aPl

′
= 0 (5.107)

Moreover, resource constraint and CRS property of production function

implies the following:

aPk + aAk
aPl + aAl

=
K̄

L̄
(5.108)

Making derivative from equation (5.108) and applying equation (5.107)

leads to the following:

aAk
′
(aPl + aAl ) = aPl

′
(aPk + aAk ) ⇒︸︷︷︸

by eq. (5.106)

aAk a
P
l = aAl a

P
k ⇒

aAk
aAl

=
aPk
aPl

(5.109)
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The intuition behind this observation is that if pollution tax increases,

firms will hire more capital and labor for abatement process. In overall,

hence, the input hired in production process will decrease while that hired

in pollution abatement process will increase. Consequently, if, compared

to the former process, the latter uses one factor relatively more intensively

than the other one, the price of that factor will increase relatively. Hence,

relative price of factors will remain constant only if both process employ

the factors with the same relative intensity.

Finally, we can investigate what dirty and clean technology mean when

our main setting is transformed to this alternative one: If two produc-

tion technologies, (Hd(.), Hc(.)),are available, Hd(.) is dirty if and only if

the pollution it generates to produce one unit of final good is more than

the pollution that Hc(.) generates for producing the same amount of final

good.
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Chapter 6

Conclusion

This dissertation investigated the economic mechanisms underlying the

transition to clean technologies and showed the roles of different policy

measures aiming to deal with climate change, such as adaptation and tax-

ation of non-renewable resources. It presented novel results on the optimal

transition path to a clean economy, on the optimal trajectory of a carbon

tax, on the effects of adaptation measures on transition, on the issue of

technology adoption of firms when they face financial constraints in imper-

fectly competitive market structures, and on the role of heterogeneity in

wealth on agents’ willingness to support a pollution tax. These results con-

tribute to the literature on environmental economics, energy and natural

economics and economics of technological change.

Each chapter has its own further research directions. The first chapter can

be expanded for a better understanding of the role of renewable resources

and technical change on energy transition. This analysis can be done by

including the different features of the type of renewable resources such as

wind power, solar power and biofuels. Furthermore, a novel structural

decomposition approach can be applied to the production function that is

used in this chapter. These extensions would lead to a useful tool to provide

accurate estimations of crucial parameters as well as market-based policy

instruments. Moreover, taking into account technological progress that

183
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improves the efficiencies of both non-renewable and renewable resources as

well as changes the degree of substitution between resources would provide

new results.

On the role of adaptation measures, relaxing the irreversible pollution as-

sumption would change the characteristics of the optimum. Moreover, the

damage function is defined to be continuous. Consideration of a catas-

trophic outcome when the pollution level rises too high, or a cap on pollu-

tion accumulation would change the optimum as well. The transition in the

outcome is always beneficial, however, if the transition itself brings costs

due to the change of resource utilization then the compensation mechanism

during the transition would work differently. Finally, taking into account

the regional differences in pollution damages and cost of adaptation is one

of the potential future extensions.

At the firm level analysis of technology adoption, the present work can

be extended by including the uncertainties in energy supply and demand

sides. This extension would allow the modeling approach to suit better

to the electricity generation markets, which is a mainly studied subject at

the intersection of energy economics, industrial organization and operation

research fields. Another potential future research direction is to take into

account negative externalities that arise due to utilization of inefficient

production technologies (such as pollution). This would allow to investigate

a social optimum and study the optimal policy instruments that will induce

decentralized equilibrium to reach the socially optimal production capacity

and technology mixture.

On the policy challenges in implementation of a carbon tax due to wealth

inequality, further research includes the transformation of the model into

a dynamic framework. This would allow to investigate the intertempo-

ral effects of environmental policies in the existence of wealth inequality.

Moreover, the extension of the model for multiple countries would allow to

analyze issues such as pollution havens as well as to identify patterns of
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factor movements in response to environmental policies.
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Abstract

This dissertation investigates the economic mechanisms underlying the transition
to clean technologies and examines policy approaches to achieve the socially opti-
mal path. It studies various policy measures aiming to deal with climate change,
such as adaptation and taxation of non-renewable resources. Furthermore, it
examines the policy instruments that target increasing the use of efficient tech-
nologies and identifies cases in which the policy reaches its objectives or not. It
also analyzes the role of heterogeneity in society on agents’ willingness to support
a pollution tax.

The first chapter studies the energy transition by using an optimal growth model
in which non-renewable and renewable natural resources are imperfect substi-
tutes in providing energy services necessary for production. The second chapter
studies the role of adaptation policy on the transition to a low-carbon economy.
It incorporates adaptation policy into the problem of optimal non-renewable re-
source extraction with pollution externalities, by focusing on the capital nature
of adaptation measures. The third chapter focuses on the problem of adopting
new technologies in a micro-economic framework. It studies the behavior of firms
when they face a decision to invest either in a cheap but inefficient production
capacity or in an expensive but efficient one, by taking into account the presence
of a financial constraint. The fourth and last chapter investigates the distri-
butional impacts of a pollution tax by considering a society in which wealth is
distributed heterogeneously among households.

Keywords: energy transition, climate change, optimal taxation, non-renewable
resource, renewable resource, mitigation policy, adaptation policy, capacity build-
ing, technology adoption, market structure, financial constraint, heterogeneity
in wealth, distributional impacts.





Résumé

Cette thèse étudie les mécanismes économiques concernant la transition vers des
technologies propres et examine les approches politiques pour atteindre le sen-
tier de transition socialement optimal. Elle examine les politiques économiques
visant à faire face au changement climatique, telles que l’adaptation et la tax-
ation des ressources non-renouvelables. En outre, elle examine les politiques
économiques visant à accrôıtre l’utilisation de technologies efficaces et identi-
fie les cas pour lesquels la politique atteint ses objectifs ou non. Elle analyse
également l’impact des inégalités de richesse sur le soutien politique aux taxes
environnementales.

Le premier chapitre étudie la transition énergétique en utilisant un modèle de
croissance optimal dans lequel les ressources non-renouvelables et renouvelables
sont des substituts imparfaits. Le deuxième chapitre étudie le rôle de la poli-
tique d’adaptation sur la transition vers une économie propre. Il intègre la
politique d’adaptation dans le problème de l’extraction optimale des ressources
non-renouvelables avec des externalités de pollution, en mettant l’accent sur la
politique d’adaptation en étant une variable de stock. Le troisième chapitre se
concentre sur le problème de l’adoption des nouvelles technologies dans un cadre
micro-économique. Il regarde le comportement des entreprises qui font face à une
décision d’investir: soit dans une capacité de production bon marché mais ineffi-
cace, soit dans une capacité plus chère mais efficace, lorsqu’on prend en compte
la présence d’une contrainte financière. Le quatrième et dernier chapitre exam-
ine les effets distributifs d’une taxe sur la pollution en considérant une société
dans laquelle la richesse est répartie de manière hétérogène entre les ménages.

Mots-clés: transition énergétique, changement climatique, taxation optimale,
ressource non-renouvelable, ressource renouvelable, politique d’abattement, poli-
tique d’adaptation, capacité, adoption de technologie, structure du marché, con-
trainte financière, hétérogénéité de la richesse, effets distributifs.
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