Résolution d’un problème quadratique non convexe avec contraintes mixtes par les techniques de l’optimisation D.C. - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Solving a binary quadratic problem with mixed constraints by D.C. optimization techniques

Résolution d’un problème quadratique non convexe avec contraintes mixtes par les techniques de l’optimisation D.C.

Résumé

Our objective in this work is to solve a binary quadratic problem under mixed constraints by the techniques of DC optimization. As DC optimization has proved its efficiency to solve large-scale problems in different domains, we decided to apply this optimization approach to solve this problem. The most important part of D.C. optimization is the choice of an adequate decomposition that facilitates determination and speeds convergence of two constructed suites where the first converges to the optimal solution of the primal problem and the second converges to the optimal solution of the dual problem. In this work, we propose two efficient decompositions and simple to manipulate. The application of the DC Algorithm (DCA) leads us to solve at each iteration a convex quadratic problem with mixed, linear and quadratic constraints. For it, we must find an efficient and fast method to solve this last problem at each iteration. To do this, we apply three different methods: the Newton method, the semidefinite programing and interior point method. We present the comparative numerical results on the same benchmarks of these three approaches to justify our choice of the fastest method to effectively solve this problem.
Notre objectif dans cette thèse est de résoudre un problème quadratique binaire sous contraintes mixtes par les techniques d'optimisation DC. Puisque l'optimisation DC a prouvé son efficacité pour résoudre des problèmes de grandes tailles dans différents domaines, nous avons décidé d'appliquer cette approche d'optimisation pour résoudre ce problème. La partie la plus importante de l'optimisation DC est le choix d'une décomposition adéquate qui facilite la détermination et accélère la convergence de deux suites construites. La première suite converge vers la solution optimale du problème primal et la seconde converge vers la solution optimale du problème dual. Dans cette thèse, nous proposons deux décompositions DC efficaces et simples à manipuler. L'application de l'algorithme DC (DCA) nous conduit à résoudre à chaque itération un problème quadratique convexe avec des contraintes mixtes, linéaires et quadratiques. Pour cela, il faut trouver une méthode efficace et rapide pour résoudre ce dernier problème à chaque itération. Pour cela, nous appliquons trois méthodes différentes: la méthode de Newton, la programmation semi-définie positive et la méthode de points intérieurs. Nous présentons les résultats numériques comparatifs sur les mêmes repères de ces trois approches pour justifier notre choix de la méthode la plus rapide pour résoudre efficacement ce problème.
Fichier principal
Vignette du fichier
Al_Kharboutly_Mira_2018.pdf (1.37 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01798846 , version 1 (24-05-2018)

Identifiants

  • HAL Id : tel-01798846 , version 1

Citer

Mira Al Kharboutly. Résolution d’un problème quadratique non convexe avec contraintes mixtes par les techniques de l’optimisation D.C.. Optimisation et contrôle [math.OC]. Normandie Université, 2018. Français. ⟨NNT : 2018NORMLH06⟩. ⟨tel-01798846⟩
256 Consultations
3350 Téléchargements

Partager

Gmail Facebook X LinkedIn More