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Thèse soutenue publiquement le 5 Février, 2018,
devant le jury composé de :
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Joël SOMMERIA
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Internal waves and mean flow in the presence of topography

Abstract

In English

Internal waves play an important role in many processes in oceans. The interaction be-

tween internal waves and ocean topography has been an active field of research for long. Yet

there are many questions remaining on the topic. In this thesis, two main processes are ex-

amined namely, the reflection of internal wave beams on a slope, and generation of lee waves

over a three-dimensional obstacle, using laboratory experiments and numerical simulations.

The nonlinear reflection of an internal wave beamon a uniform slope is studied using two-

dimensional inviscid theory and numerical simulations. The resonant triadic interactions

among the incident, reflected and second harmonic wave beams are investigated developing

on existing theory and verifying them with results for numerical simulations.

In the case of reflection of three-dimensional internal wave beams, a strongmean horizon-

tal flow is found to be induced by the wave beam, which perturbs the wave field and weakens

the second harmonics. The generation of this wave-induced mean flow is examined using

results from experiments and three-dimensional numerical simulations. Furthermore, the

effects of background rotation on the wave inducedmean flow are also studied using numer-

ical simulations.

The Antarctic Circumpolar Current is considered as one of the main sources of mixing in

oceans. Laboratorymodellingof theAntarcticCircumpolarCurrentwas done in theCoriolis

platform at LEGI to study the topography induced drag on the current. The experiment and

its results are also presented.
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In French

Lesondes internes jouent un rôle important dans de nombreux processus dans les océans.

L’interaction entre les vagues internes et la topographie océanique a longtemps été un champ

de recherche actif. Pourtant, il restebeaucoupdequestions sur le sujet. Dans cette thèse, deux

processus principaux sont examinés, à savoir la réflexionde faisceauxd’ondes internes sur une

pente, et la génération d’ondes sous le vent sur un obstacle tridimensionnel, en utilisant des

expériences de laboratoire et des simulations numériques.

La réflexion non linéaire d’un faisceau d’onde interne sur une pente uniforme est étudiée à

l’aide de la théorie des invisques bidimensionnels et de simulations numériques. Les interac-

tions triadiques résonnantes entre les faisceaux d’ondes incidentes, réfléchies et de deuxième

harmonique sont étudiées en développant la théorie existante et en les vérifiant avec des ré-

sultats pour des simulations numériques.

Dans le cas de la réflexion de faisceaux d’ondes internes tridimensionnels, un fort flux hor-

izontal moyen est induit par le faisceau d’onde, qui perturbe le champ d’onde et affaiblit les

secondes harmoniques. La génération de ce flux moyen induit par les vagues est examinée à

l’aide des résultats d’expériences et de simulations numériques tridimensionnelles. De plus,

les effets de la rotationde fond sur le débitmoyen induit par les vagues sont également étudiés

à l’aide de simulations numériques.

Le courant circumpolaire antarctique est considéré comme l’une des principales sources

demélange dans les océans. Lamodélisation en laboratoire du courant circumpolaire antarc-

tique a été réalisée sur la plate-forme de Coriolis à LEGI pour étudier la traînée induite par la

topographie sur le courant. L’expérience et ses résultats sont également présentés.

iv
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Gaveshanam
noun
origin : Sanskrit (an ancient Indo-European language)
1. research
2. (literal) looking for cows
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Nature uses only the longest threads to weave her patterns, so
that each small piece of her fabric reveals the organisation of
the entire tapestry.
Richard Feynman, The Character of Physical Law (1965)

1
Introduction

One of the key features that helped life to flourish on earth is its ability to continuously
adapt and evolve to its environment. Life on earth survived aeons of hardships, environ-
mental catastrophes and natural disasters by adapting and evolving to the environment. The
evolution follows Darwinian natural selection, wherein a genetic trait that appears randomly
in a species is naturally selected if it is beneficial for the survival of the species and is heritable.
This form of generation, transmission and assimilation of information (genetic in this case)
was critical for life to thrive in one form or the other on earth. We, human beings, though
verymuch part of the said process and through the said process, have developed the concept
of information beyond just genetic information. Our curiosity has led to the emergence of
what is called a culture, which is the totality of all the generated information in the popula-
tion, and perfected tools and methods for much faster transmission of these information so
that it may be assimilated if found beneficial. One important aspect of the human culture is
the emergence of what is called scientific method, a systematic way of organising knowledge
through observations, experiments and forming testable explanations and predictions. Un-
derstanding the natural world helps us to adapt to the environment and survive, and in some
cases, engineer the environment for our benefit. Moreover, it is important to be able to ac-
curately predict the effects of human activities on the environment, so that we avoid taking
actions that threaten our own survival in the environment. Thus, studying the natural world
systematically and transmitting the knowledge, so that it can be assimilated in order to guide
future actions, is an essential function for our survival.

We as living things are composed of and surrounded by fluids. Our planet is enveloped
with an atmosphere and ismostly coveredwith vast oceans. Amajor part of the natural world
around us involve fluid phenomena. Oceans and atmosphere are hosts to myriads of fluid
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phenomena varying different space and time scales forced by primarily the energy from the
sun. The interaction between the oceans and atmosphere and the land, and spontaneous
instabilities that arise in the fluids lead to the appearance of different structures such as jets,
vortices, waves and turbulence. These dynamical processes play an important role in shaping
the larger climate system on the scale of the planet.

Recent observations have found that the global mean surface temperature has been rising
since the beginning of the last century. The Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report concluded that “It is extremely likely that human influence
has been the dominant cause of the observed warming since the mid-20th century.” Stocker et al.
(2013) In order to understand the response of climate to a forcing (climate sensitivity), it is
crucial to precisely understand the various feedbacks that are present in the climate system.
This requires a better knowledge of the physics of various fluid processes in the oceans and
atmosphere. The global climate model cannot take into account many of the processes that
are too small in scale or too short in time compared to the resolution of the model. How-
ever, the effect of all those processes has to be included in themodel by parameterising those
processes. The accuracy of the parameterisation depends on howwell we understand the dy-
namics of the said process. Thus, these processes have to be studied in detail independently.
One of such processes is internal gravity waves, the topic of this thesis.

1.1 Internal gravity waves

Waves are familiar to all of us. Yet, defining what is a wave is not as easy as perceiving one.
Scales and Snieder (1999) explored this issue of the definition of a wave and concluded it to
be an organised propagating imbalance. Nature loves stable equilibria. Whenever this stable
equilibrium is perturbed it tries to restore using the forces that are present. The perturba-
tion and the force trying to restore the equilibrium create an oscillation. This oscillation can
propagate as long as it is in the field of the force, as a wave. While doing so, the wave trans-
ports energywith orwithout actual transport ofmatter. This createsmany interesting physics
related to waves.

Waves in the surface of the oceans are a pretty familiar sight. The interface between air and
water in oceans is in stable equilibrium owing to the force of gravity. Any perturbation to this
stable equilibrium can generate wavemotions with gravity as the restoring force. The oceans
and the atmosphere are also stratified within. The density varies with height in the oceans
because of variations in salinity and temperature. The temperature (and density) varies with
height in the atmosphere too. This stable density stratification of the oceans and atmosphere
canbe imagined as having an infinite number of interfaceswithin them. Although these inter-
faces are not as strong as the one between air and water on the surface of the ocean, they can
support wave motions when perturbed. Owing to the uniform stratification of the medium,
the waves can propagate not just on one of the interfaces but across the interfaces too. These
waves, which exists inside the fluid medium, are called ‘internal gravity waves’.
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Figure 1.1.1: (Top) Image of internal waves off northern Trinidad, taken from In-
ternational Space Station (ISS) on 18 January 2013; (Bottom) NASA satellite image
(MODIS imager on board the Terra satellite) of a wave cloud forming off of Amsterdam
Island in the far southern Indian Ocean taken on 19 December 2005.

* A small high-five to René Magritte
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Depending on the scale of themotions, the earth’s diurnal rotation can also affect thewave
propagation. Since we are in a rotating frame of reference that is earth, motions in this frame
will appear to be affected by theCoriolis force. Since it is always perpendicular to the velocity
vector, the Coriolis force does not do anywork. It cannot initiate anymotion, but can deflect
an already existing motion. The Coriolis force can also act as a restoring force on internal
waves through this deflection. The internal waves with Coriolis force as the only restoring
force are called ‘inertial waves’, and those waves for which both gravity and Coriolis force act
as restoring forces are called ‘inertia-gravity waves’. In this thesis, the term ‘internal waves’ is
used to refer ‘inertia-gravity waves’ unless in the case of no rotation, where the term ‘internal
gravity waves’ is used. Furthermore, in this thesis, we deal with only internal waves in oceans.
Though the physics of internal waves in oceans and atmosphere is similar, the main focus in
this thesis will be on internal wave dynamics in oceanic context.

Even though internal waves propagate inside the fluid, their presence can be revealed occa-
sionally through a visible response. The velocity fluctuations associated with internal waves
in oceans can extend to the surface, which then modify the roughness of surface waves. This
can be detected by satellites, thereby observing indirectly, the presence of internal waves in
the ocean. Clouds at times make it possible to visualise internal waves in the atmosphere.
The adiabatic expansion cooling in the wave’s crests will take themoisture in the atmosphere
to its dew point, thereby forming clouds in the wave crests. In the troughs, adiabatic heating
will lead to the evaporation of the clouds. Thus, clouds get arranged in bands, forming wave
clouds. Figures 1.1.1 show themanifestation of internal waves in oceans and atmosphere. In-
ternal waves may also dominate fluctuations in stratosphere, which can be studied using star
scintillation. Signatures of internal waves can also be detected on other planets and even in
stellar interiors.

The presence of internal waves has been reported long back. Sailors travelling close to the
mouth of a river or a fjord, where fresh water flows into salty sea water withoutmuchmixing,
sometimes find a puzzling resistance on their ship. Sailing ships at times stop completely and
will not respond to the tiller. Motor boats would lose their speed suddenly and might stop
dead in the water. Sailors called it ‘dead water phenomenon’. Various methods were used by
the mariners to beat the ‘dead water’. In the olden days, it was believed that the dead water
was caused by remoras or sucker-fish getting attached to the hull. Sailors would, therefore,
fire guns into the water, beat and slash the water beside the boat with oars, drag a hawser
beneath the vessel and so on. They also found that when they stopped their vessel for a few
minutes and allowed the sternwaves to pass, they seemed to have gotten rid of the deadwater.

The deadwater phenomenonwas encountered by theNorwegian oceanographer, Fridtjof
Nansen, during his Fram expedition in August 1893 in the Nordenskiöld Archipelago near
the Taymyr Peninsula. Later, based on the observations byNansen, his student V.W. Ekman
studied this phenomenon during his PhD (Ekman, 1904) and explained the origin of dead
water. When fresh water flows into the sea without mixing, it forms a layer atop the denser
saltywater. When the ship travels in this two layers of different densitywater, the disturbance
creates underwater waves in the interface of the two layers. The energy of the boat is spent on
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Figure 1.1.2: Image from the experiment performed by Mercier et al. (2011). Shown
here is a toy boat dragged by a falling weight in a two layer fluid. The boat excited
waves in the density interface of the two layers, spending energy in the process. This
causes the drag experienced by the boat.

exciting the internalwave rather thanpropelling it forward, thus experiencing awave-induced
drag. Dead water phenomenon was revisited experimentally in the laboratory using modern
techniques byMercier et al. (2011), extending its description tomore general situations such
as a three-layer fluid or a linearly stratified fluid in the presence of a pycnocline.

During the Fram expedition, Nansen also noticed that temperature profiles below the sur-
face in oceans sometimes change substantially within the course of just a few hours. Helland-
Hansen and Nansen (1909) referred to the presence of some ‘puzzling waves’ from his ob-
servation. He reports, “the most feasible explanation, according to our view, is therefore, that the
changes of temperature, observed at the same depths, are due to oscillatory movements of the hor-
izontal water-strata, at intermediate depths; and owing to their difference of density, these strata
rest one on the top of another for a very long time, with more or less sharply defined boundaries
horizontally.” [p. 90] These internal waves are excited due to the stratification of the ocean
below the surface. Typical time period and amplitude of these internal waves are larger than
surface gravity waves in oceans because the density gradient inside the fluid is much smaller.
Wavelength of an internal wave can vary from centimetres to kilometres and time periods
vary from seconds to hours. Nevertheless, the internal waves provide the source for the ‘in-
ner unrest’ in the oceans (Gerkema and Zimmerman, 2008). Helland-Hansen and Nansen
(1909) concluded that the knowledge of the exact nature and causes of these waves are of
signal importance to oceanography and is one of its greatest problems that urgently calls for
a solution.
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1.2 Generation of internalwaves in oceans

The sources of internal waves can include interaction of a mean current or ocean tides with
topography, wind stress fluctuation and many others. The cascades of nonlinear interaction
often makes it impossible to trace the source of the waves (Staquet and Sommeria, 2002).
Principal sources of internal waves in most of the oceans are wind and internal tides.

The winds force the top layer of the ocean. The top layer is typically not stratified and
is called the mixed layer. However, the disturbances caused by the atmosphere in the mixed
layer close to the surface of the ocean throughwind can lead to variations in the bottomof the
mixed layer. As these variations evolve towards equilibrium through geostrophic adjustment,
internal waves are emitted. These internal waves have frequencies very close to the inertial
frequency associate with Earth’s diurnal rotation and therefore can be called as near-inertial
waves. They are found to be the most energetic part of the internal-wave spectrum in the
oceans. The energy input of the winds into near-inertial internal wave band can be studied
using a slab model representation of the ocean’s mixed layer. The estimates of winds’ energy
input can range from0.3TerraWatt to1.3TerraWatt. Alford (2003a)has estimated the energy
input to be 0.5 TerraWatt from his slab model (figure 1.2.1b).

Another major source of internal waves in oceans is internal tides. These are formed by
the motion of barotropic tides over the rough features at the bottom of the ocean, such as
ridges, canyons and sea-mounts. The barotropic tides moving over the ocean topography
give rise to a baroclinic response, allowing pressure anomalies to travel across the isopycnals.
This baroclinic response leads to the generation of internal tides. Internal tides have the same
frequency of that of the tides. The theory of internal tide generation in the oceans was given
byBell (1975a),Bell (1975b), Baines (1982) andwas reviewed recently byGarrett andKunze
(2007).

Barotropic tides are generatedby the gravitational pull of themoonand to someextent, the
sun. These forces together with the rotation of Earth, create barotropic tides in the oceans.
The generation of barotropic tides in the oceans on Earth affects as a drag on the angular
velocity of the moon. This leads to the increase of the moon’s orbit which can be measured
from observations. This gives us a measure of how much energy is input into the barotropic
tides in oceans (the oceanic tides extract major part of the energy compared to the tides in
the mantle and the atmosphere; see figure 1.3.1). The energy that goes into the barotropic
tides in the oceans is estimated to be about 3.5 TerraWatt. Most of this power is dissipated by
bottom friction. About 1 TerraWatt of barotropic tidal power was found to be transferred to
internal tides. The first large-scale estimates of global internal tide energy flux were provided
by Egbert and Ray (2000), using sea surface altimetry data from satellites (figure 1.2.1a).

Apart from the tidal motions, a steady mean current over the ocean topography can also
generate internal waves. These are usually high frequency internal waves propagating from
the lee-side of the topography and therefore are called lee waves. Themean current could be
strong tidal currents over topographic featureswithwidths less than a tidal excursion (Garrett
and Kunze, 2007), or it could be strong bottom flows such as in the Southern Ocean
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Figure 1.2.1: Maps showing energy input into internal waves by (a) semidiurnal tides,
and (b) winds. (a) The semi-diurnal internal tide energy input was estimated using the
TopeX poseidon Global inverse solution tidal assimilation model (Egbert and Ray, 2000).
(b) Annual-mean wind energy input to near-inertial mixed-layer motions as estimated by
the model of Alford (2003a). Both panels show vectors of energy flux as measured by
mooring records at various sites in the global ocean. Alford (2003b) provides additional
details of these maps. Figure adapted from Alford (2003b).
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1.3 Role of internalwaves in oceans

In the oceans, diapycnal mixing is essential to compensate the deep water formation in high
latitudes in order to maintain the meridional overturning circulation (MOC). The strength
of theMOCdepends upon the intensity and distribution of the oceanmixing. In the absence
of diapycnal mixing, in a few millenia, the ocean would turn into a stagnant reservoir of cold
saline water with near-surface mixing and weak convectively driven circulation maintaining
a local equilibrium (Munk andWunsch, 1998). The stable stratification of the oceans makes
this diapycnal mixing difficult.

It has been showedbyMunk (1966) that in order to balance the effects of downward diffu-
sion andupwelling in the global ocean, a basin averaged eddydiffusivity of about10−4m2s−1

is needed. This particular value was reached by Munk (1966) by assuming the global bal-
ance of downward diffusion and upwelling to be applicable point-wise and using density and
radio-carbon data from central Pacific ocean.

However, Ledwell et al. (1993) using direct dye release in the open ocean at a depth of
about 310m noticed that themixing coefficient in the interior of the ocean is almost an order
of magnitude lesser than the prediction of Munk (1966). This is in agreement with micro-
structure measurements done to measure diapycnal mixing in the ocean (Polzin et al., 1997,
Gregg, 1998). Osborn (1980) had proposed the relation between diapycnal diffusivityκ and
the mixing rate ϵ using flux Richardson numberRf and buoyancy frequencyN as

κ =
Rf

1−Rf

ϵ

N2
< 0.2

ϵ

N2
(1.1)

Using this relation, from the micro-structure data from South Atlantic Ocean, Polzin et al.
(1997) noted that the diapycnal diffusivity is about 10−5m2s−1 above smooth abyssal ter-
rain, however, thediffusivity is very large throughout thewater column(about5×10−4m2s−1

close to the bottom) above the Mid-Atlantic ridge.
(Munk and Wunsch, 1998) suggests that it is not fruitful to compare the basin averaged

Figure 1.3.1 (following page): From Munk and Wunsch (1998). An impressionistic
budget of tidal energy flux. The traditional sink is in the bottom boundary layer (BBL)
of marginal seas. Preliminary results from Egbert (1997) based on TOPEX/-POSEIDON
altimetry suggest that 0.9 TW (including 0.6 TW of M2 energy) are scattered at open
ocean ridges and sea-mounts. Light lines represent speculation with no observational
support. “14 Hawaiis” refers to an attempted global extrapolation of surface to internal
tide scattering measured at Hawaii, resulting in 0.2 TW available for internal wave gen-
eration. The wind energy input is estimated from Wunsch (1998), to which 0.2 TW was
added to balance the energy budget. This extra energy is identified as wind-generated
internal waves - radiating into the abyss and contributing to mixing processes.
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eddy diffusivity calculated by Munk (1966) with point-measurements at different places in
the ocean. They argue that the oceanmixing is not uniformwith very highmixing in concen-
trated source regions of buoyancy flux.

Mixing across density layers requires power. Various processes have been proposed to be
the source of the power for diapycnal mixing. (Munk and Wunsch, 1998) argues that tides
and wind are the dominant sources (figure 1.3.1). The power available from tides and wind
matches with the power required to maintain the abyssal stratification in the oceans, as pro-
posed in figure 1.3.1. In the open ocean, far from the topography, internal wave field is the
major contributor of vertical mixing. Using fine and micro-structure data from a free falling
profiler, Polzin et al. (1995) have found that the breaking of internal waves is the leading con-
tributor to turbulent mixing in the interior of the ocean away from the surface or bottom
boundary layers. They show that the internal wave activity correlates well with the intensity
of turbulent fluctuations. This ‘pelagic’ (ocean interior) dissipation is the one measured to
be giving a diffusivity of around 10−5m2s−1. Internal waves can interact with the bottom
topography and these interactions can cause localised turbulent patches, which account for
the high value of diffusivity measured close to the topography.

Internal tides generated from deep ocean ridges or sea mounts can propagate large dis-
tances before breaking and transferring energy to small scales. Lefauve et al. (2015) have
created a three dimensional map of tidal dissipation over abyssal hills based on linear wave
theory with a nonlinear parameterisation for wave breaking and have found that the dissipa-
tion drops exponentially with height from the bottom but has a maximum at mid-depth due
to the interplay of wave amplitude with stratification.

Observations have shown that the internal wave kinetic energy and turbulent energy dissi-
pation are enhanced in the first kilometre above the ocean topography in the SouthernOcean
where ACC is active ((Garabato et al., 2004b), (Sloyan, 2005)). From these observations,
we can surmise that the internal lee waves generated by the flow of ACC over ocean topog-

Figure 1.3.2 (following page): (a) Turbulent mixing (curly arrows) is driven by break-
ing internal waves in the ocean interior. (b) Physical processes involving the interaction
of internal waves on sloping topography. Moving from the top left to right these are (i)
lee wave generation by flow over topography, (ii) wave generation by oscillatory flow,
particularly those of tidal period, (iii) resonant interaction between incident and reflected
waves and, (iv) wave breaking when the incident is near or at critical frequency. The
second row, left to right, shows (v) wave steepening and the formation of fronts upon
reflection, (vi) the generation of upslope Eulerian mean flows, VE , and along-slope La-
grangian mean flows, UL , as waves reflect, and (vii) mixing produced by reflecting sub-
critical waves when the first harmonic is near critical. The final illustration, bottom left,
represents Eulerian mean flows, UE , generated by waves, which break and lose momen-
tum at the boundary (courtesy of S. Thorpe; taken from Muller and Briscoe (2000).
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(a)

(b)
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raphy break in the ocean bottom layer causing the enhanced turbulence in those regions.
Nikurashin and Ferrari (2010) uses a weakly nonlinear theory to study the generation of in-
ternal lee waves by geostrophicmotions interacting with small scale topography. They found
that strong inertial oscillations are drivenby the internalwaves generated at steep topography,
and this along with geostrophic flow result in enhanced wave breaking and mixing. The im-
pact of realistic, multi-scale abyssal hill topography on internal wave generation in the Drake
passage of the Southern Ocean was discussed using 2D and 3D simulations by Nikurashin
et al. (2014).

Internal waves play a crucial role in promotingmixing in the ocean. Identifying and quan-
tifying the various mechanisms that act as a sink of energy in the internal waves spectrum
is still to be done exhaustively. Thorpe (1975) presents an early review of various physical
processes affecting the interaction and dissipation of internal waves in deep ocean. Among
manyof the processes that involve internalwaves, amajor share of themare close to the ocean
bottom topography. Internal waves generated by wind close to the surface of the ocean may
interact with themselves and contribute towards mixing. However, the major contributions
come from regions close to the topography (figure 1.3.2(a)).

The nonlinear interactions of internal waves form a major part of the dynamics of inter-
nal waves. Nonlinear interactions facilitate the energy cascade from large scales to smaller
scales and promotemixing. Muller et al. (1986) review the nonlinear interactions of internal
waves. They describe resonant interactions of internal waves and mention a few strong in-
teractions as well. Resonant interactions are one of the ways in which internal waves steepen
and ultimately break to inducemixing. In the inviscid, diffusionless case, a pure planewave in
uniform stratification feeds secondary waves through resonant interactions, and is therefore
always unstable. Many of these processes have a chance of occurring when internal waves
interact with the bottom topography (figure 1.3.2(b)).

Staquet and Sommeria (2002) have described different mechanisms by which internal
waves steepen and break to form wave turbulence of which one of the main mechanisms is
internal wave reflection. Internal waves get focused upon reflection on a slope of suitable an-
gle. Due to the simple, but unusual, reflection laws for internal waves, there exists a critical
angle for which the reflected wave will have infinite amplitude, zero group velocity and in-
finitesimal wavelength according to the linear theory. Thus, the linear theory breaks down
near critical angle (Dauxois and Young, 1999). Numerous studies have been done on the
breaking of internal waves during reflection on a slope close to the critical angle, and has
been observed in the oceans as well (Eriksen, 1998).

Reflection of internal waves from boundaries creates higher harmonics (Rodenborn et al.,
2011) which can interact resonantly with the primary waves leading to energy cascade from
the primary waves. Teoh et al. (1997) and Javam et al. (2000) have observed non-resonant
wave-wave interactions in colliding waves which create evanescent modes that lead to trap-
ping of wave energy in the interaction region and ultimate overturning of the density fields in
the interaction region. This can occur close to the topography where several rays of internal
waves are generated as reflected waves or higher harmonics.
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Waves are known to irreversibly induce a mean flow when propagating in a dissipative
medium (Lighthill, 1978). This is much more familiar in the context of surface water waves.
ThemeanLagrangian velocity (velocity following thefluidparcels) due to thewave is the sum
of the Eulerian mean velocity (mean velocity of the fluid at a given point) and a Stokes drift.
Longuet-Higgins (1953)derived anexpression for Stokesdrift for viscouswaterwaves. These
calculationshavebeen further extendedandused in someparticular cases suchaswavesprop-
agating along a sloping sea bed in Longuet-Higgins (1969). When a surfacewave approaches
a beach at an oblique angle, a mean current parallel to the coastline is generated by the wave
through radiation stress facilitating sediment transport (Longuet-Higgins, 1970). Surface
wave driven currents in barred beaches were studied analytically and numerically by Bühler
and Jacobson (2001).

Internal waves in oceans also play an important role with their ability to transport energy
and momentum over large distances. Bretherton (1969b) showed that internal waves can
induce mean motions of second order in the wave amplitude. He also derived an expression
for the mean flow caused by a internal wave packet propagating into a quiescent fluid. In the
oceans, the meanmotions induced by internal waves have many consequences. New (1988)
have found enhanced phytoplankton activity near the continental shelf-break in the Bay of
Biscay because of the internal tide assisted vertical transport of nutrient rich abyssal water
to the sunlit upper layers of the ocean. Cacchione et al. (2002) have proposed that internal
tides reflecting and the associated sediment transport can shape continental slopes in ocean
basins.

Internal waves interacting with a vertically varying mean flow can lead to acceleration of
themean flow at a level. This is famous in the atmospheric context where a vertically varying
horizontal wind traps vertically propagating internal waves at the altitude where the phase
speed of the wave is equal to the wind velocity. The trapped waves break at that altitude and
thereby in effect act as a transporting mechanism for energy and momentum in vertical di-
rection. This process can be imagined to happen in oceans too where there is strong mean
flows, for instance in the Southern Ocean. This vertical transport of momentum and energy
by internal waves has profound dynamical significance in oceans (Bretherton, 1969a). Fur-
thermore, close to the bottom topography, internal waves may get refracted by a background
mean flow and may reach critical condition before reflecting from a slope. Internal waves re-
flecting from a slope are also known to induce a mean flow in the region where the incident
and reflected waves interact. Sutherland (2001) proposed that the reflecting internal wave
can resonantly interact with this induced mean flow and become unstable. Thus, in various
ways, mean flow and internal waves interaction can lead to instability and breaking of the
waves.

Internal waves, thus, play an important role in many processes in oceans. The dynamics
of internal waves is an active field of research today. Further insights into the ways in which
internal waves contribute towards ocean dynamics can be obtained by detailed study of in-
ternal waves in idealised setting through laboratory experiments and numerical simulations
wherein we can isolate and understand each of the many aspects of it.



Chapter 1: Introduction 14

Figure 1.4.1: Various ways of generating internal waves in laboratories. The generating
mechanism and the resulting wave field are shown for (a) a vertically oscillating cylinder,
(b) paddle-like generator, (c) parametric excitation principle, (d) wave beam generator
and (e) mean flow over topography. Images from Gostiaux et al. (2007),Hunt and Sny-
der (1980) and Dalziel et al. (2011).

1.4 Internalwaves in the laboratory

Internal waves have been investigated in laboratories starting from the second half of the last
century. One of the first instances of visualising internal waves in a laboratory was done by
Görtler (1943) in Göttingen, using a two dimensional setup of vertically oscillating cylinder
as shown in figure 1.4.1 (a). Perhaps because of the complications of thewar, this experiment
was largely forgotten. The next similar experiment was performed by Mowbray and Rarity
(1967b), which paved way for further experiments on internal waves.

The development of the Particle Image Velocimetry (PIV) technique by the end of the
last century spurred numerous experimental studies on internal waves. Similarly the advent
of synthetic Schlieren method also lead to quantitative analysis of internal waves in labora-



15 Chapter 1: Introduction

tories. PIV technique gives access to time resolved velocity fields, while synthetic Schlieren
method provides time resolved density fields (in narrow vertical tanks). Thesemethodsmay
be used to study internal waves generated by different methods. Gostiaux et al. (2007) has
given a short review of different methods of exciting internal waves in the laboratory, while
presenting their own wave generator.

The simplest internal wave generation method is using oscillating bodies in a stratified
medium. The internal wave forcing using an oscillating cylinder is alreadymentioned above.
An oscillating cylinder produces four beams of internal waves (figure 1.4.1(a) right side)
making a constant angle with the vertical (dictated by the dispersion relation). Three dimen-
sional experiments of a moving sphere in a stratified medium were carried out by Mowbray
and Rarity (1967a) with the aim of verifying the linear theory of internal waves. Later, Pea-
cock and Weidman (2005) performed three dimensional experiments using an oscillating
sphere in a stratified and rotating medium and they observed a double cone wave pattern.
They claim to be the first ones to compare the theoretically predicted dispersion relation of
inertia-gravity waves with real experimental data.

Another way of exciting internal waves is by using a multi-bladed folding paddle as shown
in figure 1.4.1 (b) beingmoved horizontally with a frequency (Cacchione andWunsch, 1974,
Teoh et al., 1997, Gostiaux, 2006). Such a forcing generates two wave beams that propagate
in opposite directions. In figure 1.4.1 (b) right side, we can see that a vertical wall in the west
side of the domain prevents the propagation of one of the beams (left propagating beam),
which reflect on the wall and continue propagating rightwards.

Internal waves can also be generated by a vertical periodic motion of the fluid tank itself
as in the experiments of Benielli and Sommeria (1998). Figure 1.4.1 (c) shows the exper-
imental setup and the generated waves. This kind of motion acts as a perturbation of the
gravitational force on the system. Among the many modes that are possible, the resonant
modes in accordance with the geometry of the fluid domain will grow.

All the above methods have limitations in controlling different parameters of the inter-
nal wave. In order to generate a monochromatic plane internal wave beam, Gostiaux et al.
(2007) proposed a new solution for generating internal waves, a wave generator. Their wave
generator consists of horizontal plates attached to camshafts placed in a sinusoidally shifted
position when at rest. These plates oscillate back and forth when the camshafts rotate. The
motion of the plates create an upward propagating sinusoid on the surface of the wave gen-
erator. The wave generator is shown in the figure 1.4.1 (d), left side. This wave generator can
excite internal wave beams of finite width in the horizontal and vertical directions. Figure
1.4.1 (d) right side shows the propagating monochromatic internal wave beam.

Internal waves have been investigated in laboratories using topographies to generate them.
In the previous section, we mentioned that a major source of internal waves in the environ-
ment is through large scale fluidmotion over ocean topography or mountains. The tidal mo-
tion over ocean topography generates internal tides, and a mean flow over the topography
generates internal lee waves. Hunt and Snyder (1980) have studied the generation of lee
waves and eddies when stratified fluid flows over a three dimensional mountain as sketched
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in figure 1.4.1 (e) toppanel. Similar experimentswere also donebyDalziel et al. (2011)where
they studied leewaves generated by a hemisphere as shown in the bottompanel of figure 1.4.1
(e).

Recent improvements in the visualisation techniques and advancements in image process-
ing have stimulated more and more research on internal waves in the laboratories. Develop-
ments such as the wave generators have opened new vistas for internal wave research. Lab-
oratory experiments compliment as well as motivate theoretical developments, and our un-
derstanding of the dynamics of internal waves is increasing day after day. This thesis is the
latest example of laboratory experiments triggering an investigation, adding on to what we
know of internal waves.

1.5 This thesis

There are two aspects of internal waves andmean flows that are dealt with in this thesis. One
is the reflection of an internal wave beam on a simple slope and forcing of mean flows in the
process. The other is the interaction of a mean flow with a bottom topography to generate
internal lee waves.

The present chapter introduced internal waves in general, its role in ocean dynamics and
the ways in which it is studied in laboratories. In chapter 2, the physics of linear internal
waves are presented, in order to establish the notations and definitions we use in this thesis.
A short introduction to internal wave beams is also presented in chapter 2 in order to setup
the discussions in the following chapters.

The nonlinear reflection of two-dimensional internal wave beams is discussed in chapter
3. The resonant interactions among the incident, reflected and second harmonic waves dur-
ing the reflection of internal waves on a simple slope was examined by Thorpe (1987). In
chapter 3, we present an extension of this theory to internal wave beams in the presence of
background rotation. The theoretical work was done by Dr. Matthieu Leclair (ETH Zurich)
during his post-doctoral work in LEGI.The theorywas tested using two-dimensional numer-
ical simulations by this author. The results presented in chapter 3 are planned to be submitted
as an article in Journal of Fluid Mechanics.

The three-dimensional internal wave beams reflecting on a slope was studied using labo-
ratory experiments in LEGI in 2009-2012. The results from the experiments were published
in Grisouard (2010) and Grisouard et al. (2013). However, the mechanism of generation
of strong horizontally recirculating mean flow was not clear. Three-dimensional numerical
simulations were done by this author to understand the wave-induced mean flow for differ-
ent wave parameters. The results from the laboratory experiment and numerical simulations
are presented in chapter 4 in the form of the draft of an article that is planned to be submitted
in Journal of Fluid Mechanics.

The effects of background rotation on the reflection of three-dimensional internal wave
beams are presented in chapter 5. This problem has not been addressed so far o the best of
our knowledge. We find that the Coriolis force discourages the streaming of Eulerian mean
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flow by the wave beams.
The last chapter (chapter 6) presents the laboratory modelling of Antarctic Circumpolar

Current (ACC) performed in the Coriolis platform of LEGI inMarch-April 2016. The inter-
nal lee waves and the wake of eddies formed by a spherical in a mean geostrophic flow was
studied with and without background rotation. Furthermore, the effect of bottom drag by a
random topography in the Southern ocean was examined using several spherical caps in the
mean flow, with and without background rotation.
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Physics is like sex: sure, it may give some practical results, but
that’s not why we do it.

Richard Feynman, Scary Monsters and Bright Ideas
(2000)

2
Physics of InternalWaves

The principle of Archimedes states that a body immersed in a fluid experiences an up-
ward force equal to the weight of the fluid displaced by it. This upward force, called the force
of buoyancy (indicated as b) is due to the difference in pressure between the top and bottom
of the submerged body. The pressure is different at different depths because the weight of
the fluid above a certain depth is balanced by the pressure at that depth, in order to maintain
the hydrostatic equilibrium.

If we consider a systemwith fluids of different densities, the buoyancy force tends to raise
the lighter fluids above the heavier fluids, so that in equilibrium in such a system, a stable
stratification of density develops. When a perturbation is applied on this system the buoy-
ancy acts as a restoring force to bring back the system into its initial status. The action of
restoring force creates oscillations which may propagate in the fluid. Internal gravity waves
are propagating disturbances in stratified fluids. We, thus, begin our discussion of physics of
internal waves through a brief introduction to stably stratified fluids.

The fundamental results for linear internal waves are presented in this chapter to establish
the notations and conventions we will use in this thesis. A more exhaustive treatment of
the subject has been done in several textbooks such as Gerkema and Zimmerman (2008),
Sutherland (2010) or Vallis (2017).

2.1 Stably stratified fluid

Afluidmedium is said to be stratified if there is amean vertical gradient of (potential) density
that is large compared with its horizontal gradient. Let us consider a parcel of fluid that is

19
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displaced adiabatically from z to z+δz. The parcel preserves its potential density ρθ when it
is moved adiabatically. Without loss of generality, let the pressure at z + δz be the reference
pressure. Then we have,

ρ(z + δz) = ρθ(z + δz) (2.1)

The density ρ can be written as,

ρ = ρ0 + ρ̂(z) + ρ′(x, y, z, t) (2.2)

where ρ′ is the density perturbation over the vertical density profile ρ̂ and ρ0 is a constant
reference density. When the parcel at z with the density ρ0 + ρ̂(z) is moved to z + δz, it
finds that the ambient density is ρ0+ ρ̂(z+ δz). The difference in the densities of the parcel
and the ambient δρ can be written as,

δρ = ρparcel|z+δz − ρambient|z+δz (2.3)
= ρ(z + δz)− ρ̂(z + δz) (2.4)
= ρθ(z + δz)− ρ̂θ(z + δz) (2.5)
= ρθ(z)− ρ̂θ(z + δz) (2.6)
= ρ̂θ(z)− ρ̂θ(z + δz) (2.7)

= −∂ρ̂θ
∂z

δz (2.8)

The net force on the displaced fluid parcel is the buoyancy force on that fluid minus its
weight, which is given by,

F = −δρg = g
∂ρ̂θ
∂z

δz (2.9)

∂2δz

∂t2
=

(
g

ρ

∂ρ̂θ
∂z

)
δz (2.10)

If the displacement and the acceleration have the same direction then the system is unstable.
This will give us the condition for stability as follows.

∂ρ̂θ
∂z

=

{
< 0, Stably stratified
> 0, Unstably stratified

(2.11)

2.1.1 Brunt-Väisälä frequency

From equation 2.10, we can notice that for a stably stratified fluid, a perturbation on its equi-
librium will setup oscillations with a frequencyN given by,

N2 = −
(
g

ρ

∂ρ̂θ
∂z

)
(2.12)
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Figure 2.1.1: A parcel is adiabatically displaced upward from level z to z + δz, pre-
serving its potential density, which it takes from the environment at level z . If z + δz
is the reference level, the potential density there is equal to the actual density. The par-
cel’s stability is determined by the difference between its density and the environmental
density; if the difference is positive the displacement is stable, and conversely.

This is the natural frequency of the stratified system and is called Brunt-Väisälä or buoy-
ancy frequency.

2.2 Linear internalwaves

The vertical variation of density in many naturally occurring continuously stratified media is
rather small compared to the reference density ρ0. We may exploit this smallness of density
variation and use an approximation in the governing equations. In the equation 2.2, we can
fairly assume that ρ0 >> |ρ̂(z)|, |ρ′(x, y, z, t)|. This is called the Boussinesq approximation.
The consequence of this assumption is that the vertical variation of density in themomentum
equation is taken into account only in the buoyancy term.

Similarly, we may also attempt another approximation. The angular velocity of the Earth,
Ω, has two components,Ωy andΩz at any point on Earth. However, if our system does not
involve flows over large length scales (compared to the radius of Earth), we can assume that
Ωy is negligible compared toΩz . Then, the Coriolis parameter f = 2Ωz can be considered
to be a constant in our equations. This is called the f-plane approximation.

Using these approximations we can simplify the governing equations. For the velocity
vectoru, pressure p and density ρwith a reference density ρ0, the governing equations after
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using the above approximations are as follows.

∂u

∂t
+ u.∇u = −∇p− f êz × u− ρg

ρ0
êz + ν∇2u (2.13a)

∂ρ

∂t
+∇.(uρ) = κ∇2ρ (2.13b)

∇.u = 0 (2.13c)

We can use the decomposition of ρ given in equation 2.2. The pressure p can also be de-
composed as,

p = p̂(z) + p′(x, y, z, t) (2.14)

where p′ is the pressure perturbation over the background pressure field p̂. We also have the
hydrostatic balance given by,

dp̂(z)

dz
= −g

(
ρ0 + ρ̂

ρ0

)
(2.15)

Using the definition of Brunt-Väisälä frequency, we can write,

dρ̂(z)

dz
= −ρ0

g
N2 (2.16)

Using these definitions and neglecting the nonlinear term we get the following linearised
system of equations.

∂u

∂t
+
∂p′

∂x
− fv − ν∇2u = 0 (2.17a)

∂v

∂t
+
∂p′

∂y
+ fu− ν∇2v = 0 (2.17b)

∂w

∂t
+
∂p′

∂z
− b− ν∇2w = 0 (2.17c)

∂b

∂t
+N2w − κ∇2b = 0 (2.17d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.17e)
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where b is the buoyancy defined as,

b = −ρ
′g

ρ0
(2.18)

If we write,
ϕ = [ u v w p b ]T (2.19)

then the equations 2.17 can be written as,

( ∂
∂t
− ν∇2) −f 0 ∂

∂x
0

f ( ∂
∂t
− ν∇2) 0 ∂

∂y
0

0 0 ( ∂
∂t
− ν∇2) ∂

∂z
−1

0 0 N2 0 ( ∂
∂t
− κ∇2)

∂
∂x

∂
∂y

∂
∂z

0 0


ϕ = 0 (2.20)

The system has non-trivial solutions only if the coefficientmatrix is singular. The determi-
nant of the coefficient matrix equals to zero leads to the following equation,{

∂

∂t

(
∂2

∂t2
∇2+N2∇2

h+f
2 ∂

2

∂z2

)
−ν∇2

(
2
∂2

∂t2
∇2−ν ∂

∂t
∇4+N2∇2

h

)}
ϕ = 0 (2.21)

We shall consider the inviscid case here to further simplify the equation. Thus neglecting
the viscosity, we obtain, (

∂2

∂t2
∇2 +N2∇2

h + f 2 ∂
2

∂z2

)
ϕ = 0 (2.22)

This is a wave equation. We can use the following ansatz to seek a wave solution.

ϕ = Φei(K.x−ωt) = Φei(kx+ly+mz−ωt) (2.23)

Using the ansatz in the wave equation, we get the following dispersion relation.

ω2 = N2 k2 + l2

k2 + l2 +m2
+ f 2 m2

k2 + l2 +m2
(2.24)

We can re-write the dispersion relation as,

ω2 = N2 sin2 θ + f 2 cos2 θ (2.25)
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Figure 2.2.1: A snapshot from the simulation of an internal wave beam with a thick-
ness of 4 wavelengths. The colour indicates the u-velocity (ms−1) and dotted lines mark
each wavelength. The wave propagates in the direction of its group velocity Cg but the
phase propagates perpendicular to that in the direction of phase velocity up. The wave
vector K is in the same direction as the phase velocity. The fluid velocity is shown as
u. The fluid particles oscillate forward or backward along the group velocity according
to the phase.

where θ is then the angle between the wave vector and the direction of gravity.

The velocity of propagation of the phase of the wave (phase velocity up) can be written
as,

up =
ω

|K|2
K (2.26)

The wave energy does not propagate at the same velocity as the phase. The velocity of
propagation of wave energy (group velocityCg) can be written as,

Cg =
∂ω

∂K
=
N2 − f 2

|K|2ω
(
km2, lm2,−m(k2 + l2)

)
(2.27)

We can rotate our coordinate system such that the wave vector is in the x− z plane. This
rotation will remove the wavenumber l and variations in y direction (∂/∂y = 0). With this
simplification, we have the wave vector as follows.

K = (k,m) = |K|(sin θ, cos θ) (2.28)
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Thephase velocity (the velocity in which the constant phase linesmove) of internal waves
can be calculated as the following.

up =
(N2 sin2 θ + f 2 cos2 θ)1/2

|K|
(sin θ, cos θ) (2.29)

The group velocity of the internal wave can be calculated to be,

Cg =
(N2 − f 2) cos θ sin θ

|K|ω
(cos θ,− sin θ) (2.30)

We can infer that θ is also the angle between constant phase lines and the horizontal axis.
We also note that the group velocity and phase speed are perpendicular to each other. The
propagation of energy of the internal wave is along the group velocity and therefore, perpen-
dicular to the phase velocity.

2.3 Linear reflection of plane internalwaves

Let us consider a uniform slope of angleα and a train of plane internal waves with a constant
frequency, ω propagating towards the slope. Let us consider the case where the angle be-
tween the group velocity and the horizontal for the incident wave, θ, to be greater than the
slope angle, α. Since we are considering plane waves, we can introduce a streamfunction, ψ,
as,

u =
∂ψ

∂y
and w = −∂ψ

∂x
(2.31)

The streamfunctions of the incident and reflected waves can be written as,

ψi = Ψie
i(kix+miz−ωit) and ψr = Ψre

i(krx+mrz−ωrt) (2.32)

Since we are considering the linear reflection here, the principle of superposition can be
applied and therefore, the total wave field of internal waves reflecting on the slope is given
by the sum of the incident and reflected streamlines. The total streamfunction must be a
constant at the slope. Without any loss of generality, we can assume the total streamfunction
to be zero at the slope. Therefore, along the slope, we have,

ψi|z=x tanα+ψr|z=x tanα = Ψie
i(kix+mi tanαx−ωit)+Ψre

i(krx+mr tanαx−ωrt) = 0 (2.33)

This can be satisfied only if

ωi = ωr and ki +mi tanα = kr +mr tanα (2.34)

Thuswe see that thewave frequency and thewave vector parallel to the slopeof the internal
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Figure 2.3.1: Schematic of a plane wave reflecting on a slope of angle α. The angle
of the incident wave with the horizontal is given by θ and this angle is preserved during
reflection. The reflected wave rays are shown in dashed lines. The incident and reflected
wave group velocities and wave vectors are given by Cg and K with respective sub-
scripts.

wave are conserved during the reflection. The conservation of the wave frequency under
reflection implies that the anglemade by the incident wave with the horizontal is the same as
the angle made by the reflected wave with the horizontal, which is unlike the more familiar
reflection laws of optics.

Furthermore, from the conservation of the wave vector parallel to the slope, we find that
the magnitude of wave vector of the reflected wave is amplified by a factor γ from the wave
vector of the incident wave. The amplification factor, γ is given by,

|Kr|
|Ki|

=
sin(θ + α)

sin(θ − α)
= γ (2.35)

The wavelength of the reflected wave is therefore γ times less than that of the incident
wave. This would mean that a ray tube reflecting on a sloping boundary may be focused.
Since the flux of energy across the tube section is constant, the energy flux should increase
upon reflection. Thus, the amplitude of the reflected wave will be γ times more than the
amplitude of the incident wave in the linear case.

The reflection we described above is for a shallow slope (α < θ). Such reflections are
called sub-critical reflection. If the slope is steep (α > θ), the reflectionwill be super-critical.
In this case the incident wave will get de-focused after reflection. There is a critical condition
when α = θ. The linear theory predicts the reflected wave to have infinite amplitude and
infinitesimal wavelength. Thus, the linear theory is no more applicable in near critical reflec-
tions.



27 Chapter 2: Physics of Internal Waves

In this thesis, we will be dealing with only sub-critical reflections of internal waves, suf-
ficiently far from the critical condition. Yet, if the amplitude of the incident wave is high
enough, nonlinearities cannot be ignored in the reflectionprocess. The incident and reflected
wave overlap close to the slope during reflection. The nonlinear interactions of incident and
reflected waves can generate higher harmonics and a mean flow. The higher harmonics can
further interact resonantly (or not) with the primary waves and cause further energy trans-
fers.

2.4 Internalwave beams

Internal wave beams are plane internal waves of finite extent in thewave vector direction. The
earliest laboratory experiments using oscillating cylinder in uniformly stratified fluid gener-
ates four wave beams in the shape of ‘St Andrew’s cross’, as we mentioned in section 1.4.
A localised monochromatic disturbance in a uniformly stratified medium generates internal
gravity waves propagating away from the disturbance in the form of wave beams. In two di-
mensional setting, they form ‘St Andrew’s cross’ and in three dimensional setting they form
a double cone structure.

In the oceans, internal tides have been observed to propagate as beamswith a finite extent.
Pingree and New (1989) were one of the first to observe and report internal wave beams in
oceans. They deployed moorings and made a series of semi-diurnal period CTD stations in
Bay of Biscay and observed a distinct internal tide beam. The internal tide beam was gen-
erated at regions of the continental slope where the slope angle matches the internal wave
characteristics. Therewill be onewave propagating up the slope and another towards the bot-
tom. These beams may reflect upon reaching the surface or the bottom topography. Pingree
andNew (1989) observed the beam propagating downwards stopping short of the predicted
bottom reflection (Pingree and New, 1991).

Internal wave beams with its finite dimensions provide a localised region of wave-wave
interaction when it reflects on a surface or when two different beams collide. Nonlinear in-
teractions in this localised region of interaction can generate higher harmonic internal wave
beams. Teoh et al. (1997) have studied the interaction of two colliding internal wave beams
using laboratory experiments and Javam et al. (2000) studied internal wave-wave interaction
in colliding beams using numerical simulations. They found that nonlinear interactions pro-
duced evanescent modes that are trapped in the interaction region. These evanescent modes
caused accumulation of energy in the interaction region leading to overturning of the density
fields.

Internal tidal beams generated by tidal forcing over mountains was studied using numer-
ical simulations by Lamb (2004). The beams generated can interact nonlinearly while re-
flecting or colliding to generate new beams of higher harmonics (figure 2.4.1). He finds that
the beams are narrower and higher harmonic beams are stronger for supercritical topography
(slope of the topography steeper than the propagation angle of the internal waves).
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Figure 2.4.1: Horizontal velocity field generated by an oscillating tidal flow over a two-
dimensional ridge (Lamb, 2004). Reflections and collisions of internal wave beams are
shown by arrows with dashed arrows indicating secondary beams generated by nonlinear
interactions. (Image from Tabaei et al. (2005))

Internal wave beams with finite extent in the wave vector direction have been studied for
many years, and literature abounds in studies of their interactions and stability. However,
internal wave beams of finite extent in lateral direction (in addition to wave vector direction)
has been studied only recently. The finite lateral width of the beam allows it to diffract in
the horizontal plane. Diffraction introduces lateral variations in the velocity fields allowing
for nonlinear interactions of the internal wave beamwith itself in the presence of viscosity to
produce a mean dipole vortical structure in the horizontal plane (Dauxois et al., 2017). Bor-
des et al. (2012) performed laboratory experiments, studying wave beams generated using a
wave generator (explained in section 1.4) of finite lateral width. They observed strong jet of
mean flow in the centre of the wave beam and a recirculating mean flow outside the beam,
with a mean dipole vertical vorticity field. They used asymptotic approximations to derive
an equation for the evolution of mean vertical vorticityΩ given as follows.

∂Ω

∂t
=

1

(2 cos θ)2
∂A2

u

∂x∂y
+ ν∇2Ω (2.36)

where Au is the amplitude of the zonal velocity and θ is the angle made by the wave beam
with the horizontal axis. We can note that the acceleration of the mean vertical vorticity is
due to the horizontal spatial variation of the amplitude of the zonal velocity. The lateral (y-
direction) variation is due to the diffraction of the beam in the horizontal plane and the zonal
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Figure 2.4.2: Comparison of results from the experiment performed by Bordes et al.
(2012) (a,c,e,g) and theoretical solutions derived by Kataoka and Akylas (2015)
(b,d,f,h). The horizontal u-velocity filtered at the forcing frequency is shown in the
top row. The top view figures (e,f) show the finite width in the lateral direction of the
wave beam and the resulting diffraction in the horizontal plane. The bottom row shows
the Eulerian mean u-velocity. The mean flow can be seen recirculating in the horizon-
tal plane in figures (g,h). The wave generator is shown in grey with its moving part in
black. (Image from Dauxois et al. (2017))

Figure 2.4.3: Comparison of experiment, 2D and 3D numerical simulations of reflection
of an internal wave beam (of a finite lateral width in the experiment and 3D simula-
tion). The top row shows the u-velocity (mm s−1) filtered at the forcing frequency and
the bottom row shows the mean u-velocity (mm s−1). We can notice the strong jet
like mean flow in the experiment and 3D simulation due to the finite width of the wave
beam. (Image from Grisouard et al. (2013))
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variation is due to the viscous attenuation of the beam.
Kataoka andAkylas (2015) used amore rigorous asymptotic theorywith appropriate scal-

ings to derive a set of coupled equations for the recirculating mean flow observed by Bordes
et al. (2012). The equations of Kataoka and Akylas (2015) for the evolution of mean zonal
velocity u can be given as follows.

∂TUX +WηUX + i cos θ

(∫ η

∂XUXdη
′ +

cot θ

2

∫ η ∫ η′

∂Y YUXdη
′′dη′

)
−β
2
∂ηηUX = δ(X)f (2.37)

∂TWη = i∂YH
(∫ ∞

−∞
{∂T (U∗

X∂ηUX) + β∂ηU
∗
X∂ηηUX}dη

)
(2.38)

where H refers to Hilbert transform, UX andWη are the complex amplitudes of the scaled
along beam and cross beam velocities of the primary harmonic wave beam (Wη is the mean
cross-beamvelocity). Y , η,X andT are the scaled lateral coordinate, cross beam coordinate,
along beam coordinate and time, respectively, δ(X) denotes the delta function, f is the ex-
ternal wave forcing component andβ is the scaled viscosity parameter. The above expression
clearly shows the importance of viscosity in the generation of recirculating mean flow. The
first term in the right hand side is a contribution of unsteadiness. In a quasi-steady case, the
horizontal spatial variations of the velocity field of the wave in the presence of viscosity gen-
erates the mean flow associated with three-dimensional internal wave beam. The wave beam
and the mean flow observed by Bordes et al. (2012) and those predicted by Kataoka and
Akylas (2015) are shown in figure 2.4.2.

Three dimensional internal wave beamof finite lateral width reflecting on a slopewas stud-
ied by Grisouard et al. (2013) (see also Grisouard (2010)). They observed strong jet like
mean flow in the centre of the beam close to the slope (figure 2.4.3). The mean flow also
recirculates outside the beam. The strong mean flow in the beam centre was observed to be
refracting the wave beam close to the slope and the reflected wave is nearly absent.



The worthwhile problems are the ones you can really solve or
help solve, the ones you can really contribute something to ...
No problem is too small or too trivial if we can really do some-
thing about it.

Richard Feynman, Letter to Koichi Mano, February 3,
1966

3
Nonlinear reflection of two-dimensional

internal wave beams

The reflectionof internalwaves on a slopewas studied formore than half a century
now. The study of ocean mixing and the increasing consensus that internal waves play a key
role in enhancingmixing in oceansmotivated several studies on interaction of internal waves
on ocean topography. The study of nonlinear effects during reflection followed soon. Among
them, the inviscid theory of reflection of a train of finite amplitude internal waves from a uni-
form slope byThorpe (1987) stands apart due to its seminal work on resonance interactions
among the reflecting internal waves and the higher harmonics produced during reflection.

In this chapter, the nonlinear reflection of a finite-width plane internal gravity wave inci-
dent onto a uniform slope is addressed, using the two-dimensional inviscid theory ofThorpe
(1987). The aim of Thorpe’s theory, derived for plane waves of infinite extent, is to deter-
mine the conditions under which the incident and the reflected waves may form a resonant
triad with the second harmonic wave resulting from their nonlinear interaction. The theory
leads to an indeterminacy of the amplitude of the second-order stream function at resonance,
which leads to the common conclusion in the literature that this amplitude diverges at res-
onance. The indeterminacy can be waived and that the amplitude has a finite behaviour at
resonance, increasing linearly from the slope, whether rotation is present or not. Thorpe’s
theory is then revisited for the case of an incident plane wave of finite-width, a simple model
of an oceanic internal wave beam. In this case, nonlinear interactions are confined to the area
where the incident and reflectedwavesmeet implying that the amplitude of the second-order
stream function is now bounded at resonance.

The theory presented in this chapterwas developedbyDr. MatthieuLeclair (ETHZurich)

31
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during his post-doctoral work in LEGI. I performed the numerical simulations to verify Dr.
Leclair’s theory. The contents of this chapter is being prepared to be submitted to Journal of
Fluid Mechanics.

3.1 Introduction

In the oceans, diapycnal mixing is essential to compensate the deep water formation in high
latitudes in order tomaintain themeridional overturning circulation. The stable stratification
of the oceansmakes this diapycnal mixing difficult. It has been showed byMunk (1966) that
in order to balance the effects of downward diffusion and upwelling in the ocean, a basin av-
eraged eddy diffusivity of about 10−4m2s−1 is needed. However, from in situmeasurements
(Ledwell et al., 1993), the mixing in the interior of the ocean was observed to be almost an
order of magnitude lesser than required.

Thenonlinear interactions of internalwaves are responsible for the canonical internalwave
spectrum and play an important part in the cascade of energy from large scales to small scales
by internal waves. The regions close to topographic features in the ocean provide ample op-
portunities for nonlinear interactions of internal waves to take place. Eriksen (1982) suggests
that the increased energy levels at sites such as Muir Sea-mount are due to the reflection of
internal waves on the topographic features.

The linear reflection of internal wave plane on a slope was presented in the last chapter.
Even in the linear regime, reflection of plane internal waves can induce transfer of energy
into smaller scales, as accounted for by a simple geometrical argument proposed by Phillips
(1966). The dispersion relation for internal waves in a stratified rotating fluid is (introduced
in equation 2.25)

ω2 = N2 sin2 θ + f 2 cos2 θ (3.1)

where ω is the wave frequency, N is the Brunt-Väisälä frequency of the fluid, assumed to
be constant in a uniformly stratified fluid, θ is the angle that the group velocity makes with
the horizontal and f is the Coriolis parameter. If the incident wave is propagating onto a
slope of angle α (the scalar product of the incident group velocity and the normal to the
slope is negative), the wave gets focused upon reflection due to the conservation of the wave
frequency and the dispersion relation. If the angle of the slope α is shallower than the angle
of propagation of the wave θ, then the reflection is called sub-critical reflection. The incident
wave coming on to the slope gets reflected up away from the slope. If the slope is steeper so
that θ < α, the reflection is called a super-critical reflection and the reflectedwave propagate
downwards. A critical case exists when θ is close toα. In this case, focusing leads to strongly
nonlinear processes close to the boundary (McPhee-Shaw and Kunze, 2002, Dauxois and
Young, 1999, Chalamalla et al., 2013); organised structures sometimes referred to as bores
are then observed (Hosegood and van Haren, 2004).

Thenonlinear processes were assumed to beweak for cases that are not close to the critical
condition. However, Thorpe (1987) showed that the incident and the reflected plane waves
can forma resonant triadwith a secondharmonicwave resulting from the interaction of these
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waves. He used asymptotic expansion method to derive a solution for the second harmonic
and explored the conditions for the resonant interactions. This result is valid when the slope
is inclined (α ̸= 0) as no harmonics are produced when the incident plane wave reflects on
a flat surface (Thorpe, 1968).

However, as wementioned in the last chapter, in many of the natural flows, internal waves
propagate as beams rather than plane waves (see section 2.4). Internal tides propagate as
beams whose width is determined by the dimension of the source. When internal waves
propagate as beams, harmonics motions are produced when a beam incident on a surface
(whether flat or not) interacts with the reflected beam. A single beam is a solution of the in-
viscidBoussinesq equations (Tabaei andAkylas, 2003)while the superpositionof twobeams
is not; this implies that harmonics will be generated close to the boundary, where the beams
interact (Tabaei et al., 2005).

Tabaei et al. (2005) derived theoretical expressions of the higher-order harmonics gen-
erated by a time-harmonic beam reflecting on a simple slope; colliding beams located in
the same plane were also considered. The generation of higher harmonics by beams (or by
finite-width waves) reflecting either on a flat surface or on an inclined boundary have been
addressed in several numerical and experimental works performed in a two-dimensional (or
quasi-two-dimensional) vertical geometry (Gostiaux et al., 2006, Gostiaux, 2006, Echeverri
et al., 2009, Pairaud et al., 2010, Rodenborn et al., 2011, e.g.). In Gostiaux et al. (2006), a
finite-width incident wave field was produced by the wave generator referred to above and
the structure of the higher harmonics was analysed. Rodenborn et al. (2011) considered a
beam reflecting on a simple slope and investigated empirically the conditions that lead to the
largest amplitude of the second harmonic wave.

This chapter examines the validity of the theory ofThorpe (1987) when the conditions of
a resonant triad involving an incident and a reflected wave and their second-order harmonic
wave are met for internal wave beams in a stratified and rotating fluid. In the first part of
the chapter, we revisit that theory when resonance conditions are met, first by considering a
monochromatic planewave reflecting on a uniform slope. At resonance, it is unclear whether
Thorpe (1987) theory predicts a finite amplitude of the second harmonic wave because the
expression of this amplitude involves an indeterminacy: the numerator and denominator
both vanish, which leads to the common inference in the literature that this amplitude is un-
bounded at resonance. In the second part, the predictions of Thorpe (1987) are considered
when a wave packet of finite width (rather than a plane wave of infinite extent considered
in the theory), to model the incident wave field generated in the laboratory experiments,
reflects on a uniform slope. These predictions are next compared to the results of the two-
dimensional numerical simulations, where viscous effects are present.
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3.2 Nonlinear reflection of a planewave

The governing equations are presented in equations 5.1. Using the definition for buoyancy
as given in equation 2.18 we can write them as follows.

∂u

∂t
+ u.∇u = −∇p− f êz × u+ bêz (3.2a)

∂b

∂t
+ u.∇b+N2w = 0 (3.2b)

∇.u = 0 (3.2c)

where u is the velocity vector, p is the pressure and ρ is the density with ρ0 is a reference
density.

At the slope, we have the boundary condition of no flux through the slope which we can
write as,

u.n|slope = 0 (3.3)

Since the wave is infinite in the lateral direction, we can assume that ∂/∂y = 0. This will
let us use a streamfunction in the x-z plane defined as u = ∂ψ/∂z and w = −∂ψ/∂x.
The definition of the streamfunction ensures that the continuity equation is satisfied. We can
re-write the governing equations 5.1 using the streamfunction as,

∂

∂t
∇2ψ +

∂b

∂x
− f

∂v

∂z
= J(ψ,∇2ψ) (3.4a)

∂v

∂t
+ f

∂ψ

∂z
= J(ψ, v) (3.4b)

∂b

∂t
−N2∂ψ

∂x
= J(ψ, b) (3.4c)

where J is the Jacobian operator defined by

J(a, b) =
∂a

∂x

∂b

∂z
− ∂a

∂z

∂b

∂x
(3.5)

We can combine the equations 3.4 by taking the time derivative of equation 3.4(a) and re-
placing the v and b terms using equations 3.4(b) and 3.4(c). The resulting equation is as
follows.

∂2

∂t2
∇2ψ +N2∂

2ψ

∂x2
+ f 2∂

2ψ

∂z2
=

∂

∂t
J(ψ,∇2ψ)− ∂

∂x
J(ψ, b) + f

∂

∂z
J(ψ, v) (3.6)
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Figure 3.2.1: Sketch of the interaction between the incident and reflected waves in the
(x, z) plane. The incident and reflected wave beams are indicated by blue lines and the
second harmonic wave beam is indicated by red lines. The along slope and normal to
slope coordinates (x′ and z′) are also shown.

We can rotate our coordinate system by the slope angle so that we have the coordinates
(x′, z′) where x′ is the along-slope coordinate and z′ is the normal-slope coordinates. They
are defined as,

x′ = x cosα + z sinα (3.7a)

z′ = z cosα− x sinα (3.7b)

The along-slope and normal-slope wavenumbers in this coordinate system can be written as
k and nk. This is to make further calculations simpler as the along-slope wavenumber k is
conserved during reflection. Then, the dispersion relation can be written as follows.

ω2 = N2 sin2 θ + f 2 cos2 θ = N2 (n sinα− cosα)2

1 + n2
+ f 2 (sinα + n cosα)2

1 + n2
(3.8)

This leads to a quadratic equation in n, in whichN and f disappear (forN ̸= f). The two
roots of the resulting quadratic equation are,

nI =
sin θ cos θ − sinα cosα

sin2 θ − sin2 α
(3.9a)

nR = −sin θ cos θ + sinα cosα

sin2 θ − sin2 α
(3.9b)

These roots correspond to the normal-slope wavenumber of the incident and reflectedwaves
respectively.

We can non-dimensionalise the equations 3.4(b), (c) and 3.6 using the amplitude of the
incident wave velocity U , as a velocity scale, its wavelength λ as a length scale and 1/N as
a time scale. A Froude number can be defined using these scales as, Fr = U/λN , which
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may be interpreted as a non-dimensional amplitude of the incident wave velocity. The equa-
tions 3.4(b), (c) and 3.6 after non-dimensionalising and rotating the coordinate system can
be written as follows.

∂2

∂t2
∇2ψ +N2

(
cosα

∂

∂x′
− sinα

∂

∂z′

)2

ψ + f 2

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)2

ψ =

Fr

[
∂

∂t
J(ψ,∇2ψ)−

(
cosα

∂

∂x′
− sinα

∂

∂z′

)
J(ψ, b)+

f

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)
J(ψ, v)

]
(3.10a)

∂v

∂t
+ f

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)
ψ = Fr J(ψ, v) (3.10b)

∂b

∂t
−N2

(
cosα

∂

∂x′
− sinα

∂

∂z′

)
ψ = Fr J(ψ, b) (3.10c)

We have the boundary condition on the slope which can be written as,

∂ψ

∂x′
|z′=0 = 0 (3.11)

We can consider Fr as a small parameter (i.e. Fr ≪ 1), that is to assume that the wave
dynamics are weakly nonlinear. Theψ, b and v fields can thus be decomposed into amultiple
scale expansion as

ψ = ψ1 + Frψ2 + o(Fr2) (3.12a)

b = b1 + Frb2 + o(Fr2) (3.12b)

v = v1 + Frv2 + o(Fr2) (3.12c)

Introducing these expansions in the equations of motion 3.10, the resulting equations can
be solved order by order, by matching terms multiplied by the same power of Fr. At each
order the solution satisfies the same linear operator with a right hand side determined by
lower order nonlinear terms. Identifying termsmultipliedbyFr0, the first-order fieldsψ1, v1
and b1 are thus found to satisfy the homogeneous linear wave equations. Matching terms
multiplied by Fr shows that the second-order fields ψ2, v2 and b2 are solutions of the same
linear operator forced by nonlinear terms solely involving the first-order fields. The detailed
calculations associated with this general principle are now presented.
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3.2.1 First order solution

The first order equation forψ1 is given by,

∂2

∂t2
∇2ψ1 +N2

(
cosα

∂

∂x′
− sinα

∂

∂z′

)2

ψ1 + f 2

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)2

ψ1 = 0

(3.13)
with the boundary condition on the slope given by,

∂ψ1

∂x′
|z′=0 = 0 (3.14)

We seek solutions of the kind of a monochromatic plane waves with wavenumbers k ad nk
and frequency ω. The dispersion relation has two roots, implying that the solution ψ is a
linear superposition of waves with normal-slope wavenumbersnIk andnRk. After applying
the boundary condition 3.11, we get

ψ1 = a1{sin(kx′ + nIkz
′ − ωt)− sin(kx′ + nRkz

′ − ωt)} (3.15)

The first-order stream function is therefore the sum of a wave incident onto the slope, which
we denote for simplicity as (k, nIk, ω), and of its reflected counterpart (k, nRk, ω). The
wave amplitude a1 is arbitrary. ψ1 is also defined up to a constant additional phase, chosen
to be 0 in the present case, which does not imply any loss of generality.

Onceψ1 is known, v1 and b1 are inferred from the equations

∂v1
∂t

+ f

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)
ψ1 = 0 (3.16)

and
∂b1
∂t

−N2

(
cosα

∂

∂x′
− sinα

∂

∂z′

)
ψ1 = 0 (3.17)

which yields

v1 =
a1fk

ω
{(sinα + nI cosα) sin(kx

′ + nIkz
′ − ωt)−

(sinα + nR cosα) sin(kx′ + nRkz
′ − ωt)} (3.18)

and

b1 = −a1N
2k

ω
{(cosα− nI sinα) sin(kx

′ + nIkz
′ − ωt)−

(cosα− nR sinα) sin(kx′ + nRkz
′ − ωt)} (3.19)
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3.2.2 Second order solution

Matching terms proportional to Fr in equations 3.10 gives the equations for the second-
order component. The equation forψ2 is

∂2

∂t2
∇2ψ2 +N2

(
cosα

∂

∂x′
− sinα

∂

∂z′

)2

ψ2 + f 2

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)2

ψ2 =

Fr

[
∂

∂t
J(ψ1,∇2ψ1)−

(
cosα

∂

∂x′
− sinα

∂

∂z′

)
J(ψ1, b1)+

f

(
sinα

∂

∂x′
+ cosα

∂

∂z′

)
J(ψ1, v1)

]
(3.20)

with the boundary condition
∂ψ2

∂x′
|z′=0 = 0 (3.21)

The solution of equation 3.20 is given by,

ψ2 = 3a21k
2ω

sin2 θ cos2 θ sinα cosα

(sin2 θ − sin2 α)D
{sin(2kx′ +m2kz

′ − ωt)−

sin(2kx′ + (nI + nR)kz
′ − ωt)}

−a
2
1k

2

ω

sin θ cos θ

sin2 θ − sin2 α
sin((nI − nR)kz

′) (3.22)

with

D = N2 sin2 θ(4 sin4 θ − 7 sin2 θ sin2 α + 4 sin2 α− sin2)+

f 2 cos2 θ(4 sin4 θ − 7 sin2 θ sin2 α + 3 sin2 α) (3.23)

and

m2 =
2
√

4 sin2 θN4(1− 4 sin2 θ) + 4 cos2 θf 4(1− 4 cos2 θ) +N2f 2(3− 32 sin2 θ cos2 θ)

N2(4 sin2 θ − sin2 α) + f 2(4 cos2 θ − cos2 α)

− 2 sinα cosα(N2 − f 2)

N2(4 sin2 θ − sin2 α) + f 2(4 cos2 θ − cos2 α)
(3.24)

The second-order stream function in equation 3.22 is the sum of an oscillatory compo-
nent (for α ̸= 0) and a steady component. The oscillatory component, referred to as the
second harmonic wave in the introduction, is made of two terms, associated with the waves
(2k,m2k, 2ω) and (2k, (nI + nR)k, 2ω). The former term is the solution of the homoge-
neous equation associated with equation 3.20 so that the wave (2k,m2k, 2ω) satisfies the
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dispersion relation and radiates energy away from the boundary. This term is called a “free
wave” byThorpe (1987). The equation 3.22 is obtained by adding to this homogeneous solu-
tion a particular solution of the complete equation, referred to as a “forced” wave by Thorpe
(1987), and by prescribing the homogeneous solution parameters through the boundary
condition 3.21. The forced wave becomes a free wave when (2k, (nI + nR)k, 2ω) satis-
fies the dispersion relation, namely whennI +nR = m2; in this case, the incident, reflected
and second harmonic waves form a resonant triad. A sketch of the interaction between the
incident and reflected waves for conditions close to resonance is displayed in figure 3.2.1.

The steady component of equation 3.22 is an Eulerian mean current opposing the Stokes
drift associated with the first-order solution (3.15,3.18,3.19), as stated byThorpe (1987) and
Thorpe (1997). Hence the total Lagrangianmeanflow,which is the sumof theEulerianmean
flow and of the Stokes drift (Longuet-Higgins, 1969), is zero. Indeed, because of the slop-
ing boundary, there cannot be any horizontal mass transport in the present two-dimensional
configuration, implying that the Lagrangian mean flow must vanish.

We now consider the oscillatory component of the second order solution, denoted asψh
2 .

The denominator of its amplitude goes to 0 for values of (α, θ) satisfyingD = 0. For f = 0,
these values span the intervals [0, 8.21o] for α and [0, 30o] for θ, these ranges shrinking to
empty intervals as f/N increases and reaches 0.5. As stated inThorpe (1987), the condition
D = 0 also corresponds to the case of a resonant triad between the primary incident and
reflected waves and the second harmonic free wave. Sincem2 = nI +nR in this case, as just
discussed, the oscillatory component in equation 3.22 is an indeterminate form 0/0 asD →
0. One aimof thepresent paper is to remove this indeterminacy to clarify thebehaviour of the
oscillatory component at resonance. For this purpose, we rewrite the oscillatory component
ofψ2 as

ψh
2 =

[
6a21k

2ω
sin2 θ cos2 θ sinα cosα

(sin2 θ − sin2 α)

sin(δkz′)

D

]
︸ ︷︷ ︸

amplitude of the second harmonic wave

cos(2kx′ + (m2 − δ)kz′ − 2ωt)

(3.25)
where δ = 1

2
(m2 − (nI + nR)). For α ̸= 0, asD → 0, it can be shown that,

δ ≈ D

6 sinα cosα(sin2 θ − sin2 α)ω2
(3.26)

so that
lim
D→0

sin(δkz′)

D
=

kz′

6 sinα cosα(sin2 θ − sin2 α)ω2
(3.27)
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Therefore, asD → 0, the second harmonics wave becomes as follows.

ψh
2 =

[
a21k

2

ω

sin2 θ cos2 θ

(sin2 θ − sin2 α)2
kz′

]
︸ ︷︷ ︸

amplitude at resonance

cos(2kx′ + (nI + nR)kz
′ − 2ωt) (3.28)

The amplitude of the second harmonic wave is thus a periodic function of the distance from
the slope z′ whose period 2π/δk goes to infinity as (α, θ) approaches the resonance con-
dition D = 0. In this case, the amplitude grows linearly from the slope and is therefore
unbounded.

This unbounded amplitude is not physical and is due to the weakly nonlinear character of
the theory: the second-order solution is generated by the nonlinear first-order terms so that
the second-order wave receives energy from the first-order ones. However the latter is not
modified by this energy loss. Hence, at resonance, the second harmonicwave is continuously
fed during its propagation by the unaltered primary wave.

3.3 Resonantinteractionsfornonlinearreflectionofawavebeam

The results presented in section 3.2.2 have been obtained for a plane wave of infinite extent,
namely the wave is spatially and temporally monochromatic. As discussed in the Introduc-
tion, the motivation of the present work was to examine the validity of the theory of Thorpe
(1987) for a resonant triad using joint laboratory and numerical experiments using a wave
generator device in the experiments. From a theoretical point of view, the incident wave
field thus generated is simply modelled as a plane wave with a finite number of wavelengths
in thedirectionnormal towavepropagation. In the remainder of thepaper, we rely onThorpe
(1987) theory to estimate the amplitude of the second-orderwave amplitudewhere resonant
conditions are met for this generation method and compare the theoretical predictions with
numerical simulations for an incident wave with various widths.

We recall that, to be valid, the theory requires the amplitude of Frψ2 to stay small with
respect to the amplitude of ψ1. We thus scale the amplitude of Frψh

2 with that of ψ1. More
precisely, we scaleFr||ψh

2 || by ||ψ1||where norm ||.|| is the infinity norm in space and time.
This norm is defined by ||ψ|| = ∥ψ∥∞,Ω×R = max

(x,t)∈Ω×R
|ψ|, where Ω is the interaction

domain between the incident and reflectedwaves represented by the yellow triangle in figure
3.2.1. At resonance, the amplitudeofψh

2 should reachamaximumvalue at the largest distance
from the slope in the interaction area, which coincideswith the top of the yellow triangle. We
thus compute the ratio

Rth =
Fr||ψh

2 ||
||ψ1||

, (3.29)

the th superscript standing for theoretical. Our purpose here is (i) to examine the depen-
dence of this ratio upon the number of wavelengths in the incident wave and (ii) to investi-
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gate the conditions under which the theory is strictly valid (namelyRth ≪ 1).

Let us compute ||ψ1|| and ||ψh
2 ||. If one rewritesψ1 in the same way asψh

2 ,

ψ1 = 2a1 sin

(
nI − nR

2
kz′

)
cos

(
kx′ +

nI + nR

2
kz′ − ωt

)
, (3.30)

the expressions of ||ψ1|| and ||ψh
2 || are given by

||ψ1|| = 2a1 max
0≤kz′≤kh

{
sin

(
nI − nR

2
kz′

)}
(3.31a)

and ||ψh
2 || = 6a21k

2ω
sin θ cos θ sinα cosα

sin θ − sinα
max

0≤kz′≤kh

{
sin(δkz′)

D

}
, (3.31b)

where h is the height of the interaction triangle normal to the slope. Introducing nλ, the
number of wavelengths contained in the primary wave, and thanks to simple trigonometric
calculations, one can show that

kh = 2π
sin(θ − α) sin(θ + α)

sin(2θ)
nλ = 2π

(sin θ − sinα)

sin(2θ)
nλ =

2π

nI − nR

nλ. (3.32)

This result implies that 0.5 (nI − nR) kz
′ ≤ πnλ for 0 ≤ kz′ ≤ kh. Since nλ ≥ 1, it

ensures that max
0≤kz′≤kh

{sin (0.5 (nI − nR) kz
′)} = 1 and leads to ||ψ1|| = 2a1. Note that

the first equality of equation 3.32 is in agreement with Thorpe (2001).

Theexpressionof ||ψh
2 || cannot be simplified in the sameway, especiallywhen considering

the situation of (α, θ) close to the resonant triad case where δ → 0. For simplicity, we
introduce

M = max
0≤kz′≤kh

{
sin(δkz′)

D

}
(3.33)

M =


kh/(6 sinα cosα(sin θ − sinα)ω2) ifD = 0

1/D ifD ̸= 0 and δkh > π/2

sin(δkh)/D ifD ̸= 0 and δkh ≤ π/2.

(3.34)

(We recall that a second-order oscillatory component is generated when α ̸= 0, which is
assumedhere.) Ameasure of the ratio between the second harmonicwave and the first-order
solution is thus given by

Rth = 3Fra1k
2ω

sin θ cos θ sinα cosα

sin θ − sinα
M. (3.35)

For the sake of completeness, we provide the expressions of the non-dimensional quanti-
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ties a1, k and ω with the scaling defined in section 3.2

a1 = 1/2π, k = 2π sin(α + θ), ω =
√

sin θ + (f/N)2 cos θ, (3.36)

while N and f become equal to 1 and f/N , respectively. In the following, the parameter
f/N is denoted as γ. With this scaling, the expression ofRth becomes:

Rth = 6πFr

√
sin θ + γ2 cos θ sin (θ + α) sin θ cos θ sinα cosα

sin (θ − α)
M. (3.37)

Rth is proportional to Fr and depends upon the angles α and θ and upon the ratio f/N .
Note that, at resonance (D = 0), Rth is also proportional to the number of wavelengths
nλ (through equation 3.32). This implies that, as nλ → ∞, this ratio may well become
much larger than 1 since Fr and nλ are independent parameters. Hence the internal wave
reflection problem is highly nonlinear at resonance, which figures 3.3.1(a) below attest.

Figure 3.3.1(a) displaysRth in a (α, β) diagram for γ = 0 (no rotation),Fr = 0.005 and
for four different values ofnλ equal to1, 2, 4 and8. These values, except fornλ = 8, are those
of the numerical simulations reported in section 3.5. The counterpart diagram for γ = 0.2
is displayed in figure 3.3.1(a). Both figures show that, even if the Froude number is quite
low and nλ is at most equal to 8, Rth reaches in all cases values close to unity at resonance.
Figure 3.3.1(a) also shows that the location of resonant triads (marked with a dashed curve)
differs from the location where Rth reaches a maximum value for small values of nλ, both
locations superimposing as nλ grows. In other words, we recover the predictions of Thorpe
(1987) in the limit of infinite plane waves. The latter statement is confirmed in figure 3.5.4,
further discussed in section 3.5, where Rth is plotted versus α for nλ = 1, 2 and 4 (for
the value of θ = 18.9o considered in the numerical simulations) for nλ ≥ 2, Rth displays
a maximum which is all the more pronounced nλ is larger, and is reached for a value of α
that approaches the theoretical value at which resonance occurs when nλ increases. Thus,
the second harmonic resonance in the sense of a pronounced local maximum forRth in the
(α, θ) plane only arises for high values of nλ which are not likely to occur in reality.

Finally, figure 3.3.1(b) shows that rotation does not qualitatively modify the resonance
process, only making this maximum lower than in the non-rotating case. This behaviour can
be explainedwith equation 3.22. The influence of Coriolis effects in the second-order stream
function amplitude at resonanceonly comes intoplay through the frequencyω in thedenom-
inator of the expression ofψh

2 . All parameters being kept the same, adding rotation increases
ω and therefore lowers the second-order amplitude.
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Figure 3.3.1: (a) Ratio of the second-order to the first-order stream function norms
Rth, defined by (3.37), as a function of the slope angle α and incidence angle θ for a
Froude number Fr = 0.005, in the non-rotating case (γ = 0) and for various widths nλ,
with nλ being the number of wavelengths of the incident wave. The dashed line repre-
sents the location where resonance occurs between the incident, reflected and second
harmonic waves, as predicted by Thorpe (1987) for an incident wave of infinite extent
(corresponding to nλ → ∞). The crosses refer to numerical simulations reported in sec-
tion 3.5. The domain is limited to θ ≤ 30o because the second harmonic free wave be-
comes evanescent above this range. Values of Rth are also not plotted when approach-
ing the critical case α = θ which is beyond the scope of our interest here. (b) Same as
in (a), but for a ratio f/N equal to 0.2.
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3.4 Eulerian mean flow and Stokes drift

In this section, we quickly demonstrate a statement of Thorpe (1987), namely that there is
no mass transport associated with the along slope steady current

ψm
2 = −a

2
1k

2

ω

sin θ cos θ

sin2 θ − sin2 α
sin((nI − nR)kz

′) (3.38)

um2 =
∂ψm

2

∂z′
= −2

a21k
3

ω

sin2 θ cos2 θ

(sin2 θ − sin2 α)2
cos((nI − nR)kz

′) (3.39)

This Eulerian current is indeed found to be compensated by the Stokes drift associated with
the first harmonic wave (where the incident and reflected waves superpose).

Letu1 = (u1, w1) = (∂ψ1/∂z
′,−∂ψ1/∂x

′) be the velocity field of this first harmonic
wave. Assuming that fluid parcel displacements are small comparedwith the length scale over
whichu1 varies, the Stokes drift is defined by (Longuet-Higgins, 1969)

usd2 =

(∫ t

t0

u1(s)ds

)
∂u1
∂x′

+

(∫ t

t0

w1(s)ds

)
∂u1
∂z′

(3.40a)

and

wsd
2 =

(∫ t

t0

u1(s)ds

)
∂w1

∂x′
+

(∫ t

t0

w1(s)ds

)
∂w1

∂z′
(3.40b)

where the overbar designates the time average over one wave period. Using the expression
ofψ1 given by 3.15 yields

usd2 = −us2 and wsd
2 = 0 . (3.41)

3.5 Numerical simulations

Inorder to estimate the validity of the theoretical predictions exposed in theprevious section,
two-dimensional numerical simulations have been performed. As just discussed, including
rotation does not qualitatively change the results so that the non-rotating case is considered
in the present section. All quantities below are dimensional but we keep the same notation
as before for the variables and parameters, for simplicity. The term first harmonic wave refers
to the superposition of the incident and reflected waves.

3.5.1 Numerical configuration

Thesimulationswereperformedwith thenumericalmodelNHOES(NonHydrostaticOcean
model for Earth Simulator) which solves the free-surface non-hydrostatic Boussinesq equa-
tions in a Cartesian coordinate system (Aiki and Yamagata, 2004). A brief summary of the
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numerical model is given in appendix A1. For the present study, equations 5.1 were solved
with a viscous term ν∇2u added to the right-hand-side of equation (5.1a) and a diffusive
term κ∇2b to that of equation (5.1b); ν and κ are the kinematic viscosity and the diffusiv-
ity, respectively. The equation of state is linear and only depends on salinity. The choice
of salinity rather than temperature is dictated by laboratory experiments conducted in par-
allel to the present study in which density variations are created by a vertical profile of salt
concentration. The diffusivity is thus set to 1.49 10−9m2 s−1 while the viscosity is equal to
ν = 1×10−6m2 s−1 (since the Prandtl number of salt dissolved in water is about 700). No
sub-grid scale parameterisation is used. The background stratification is linear, with a value
of the Brunt-Väisälä frequency equal to 0.46s−1 and, as said above, the Coriolis frequency f
is set to 0. These values and all values of the physical and geometrical parameters below are
those of the laboratory experiments.

The numerical setup is displayed in figure 3.2.1. The domain dimensions are 2.56m in
the horizontal direction and 0.8m in the vertical direction. A forcing generating the incident
wave (specified below) is applied at the left boundary and a sponge layer of width 0.3m is
added at the right boundary in order to prevent wave reflection. The bottom boundary con-
dition is of the free-slip type and an implicit free-surface boundary condition is imposed at
the top of the domain.

The incident wave is generated at the left boundary in a forcing layer where all variables
are restored towards the analytical solution of a plane progressivewavemultiplied by theC∞

envelop function

Ez =
1

2

[
1 + tanh

{
3

2
tan

(
− π

2
+

1

2
min[2π,max{0, π(nλ + 1)− kz|z − z0|}]

)}]
(3.42)

This forcing layer is 0.4mwide and the restoring intensity varies from 1 at the left boundary
to 0 at the end of the layer. The vertical wavelength λz in 3.42 and the period of the incident
wave are λz = 0.125m and T = 42.16s, respectively, implying that the wavelength λ
is equal to 0.1183m and the angle of the incident wave is θ = 18.9o. The value of α for
which resonance theoretically occurs in this case, referred to as αres, is equal to 7.848o. The
horizontal velocity amplitude is set to U = 3 × 10−4m s−1 so that the Froude number of
the incident wave isFr = 5× 10−3.

The horizontal and vertical resolutions are equal to 5 × 10−3m and 2.5 10−3m respec-
tively. We have done simulations for horizontal and vertical resolutions 1.25 10−3m and
0.625 10−3m. However, the results were found to be the same.

3.5.2 Results of the numerical simulations

As indicated by the crosses in figure 3.3.1, numerical simulations have been performed for 3
differentwavewidths (nλ = 1,2 and4) and13 slope angles varying from0o to12o, including
the value αres for which resonance is predicted. These simulations have been run over 40
wave periods.
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Theoff-slope velocity (normal to the slope)w′ = −∂ψ/∂x′, filtered at either the incident
wave frequency, denotedw′

1, or twice this frequency, denotedw′
2, is displayed fornλ = 2 and

nλ = 4 in figures 3.5.1 and 3.5.2, respectively. The choice of thew′ variable is dictated by the
forthcoming comparison with the theoretical predictions presented in the previous section.
The harmonic filtering has been performed over the last 8 periods of the simulations.

First harmonic wave

We first consider the incident wave component w′
1 displayed in the left column of figures

3.5.1 and 3.5.2. Before entering the interaction area, the amplitude of this component should
be uniform in space by construction. w′

1 however displays some variability, particularly no-
ticeable for α = 0 and nλ = 4, due to the interaction with weak-amplitude waves reflecting
at the right and top boundaries because of the imperfect damping of the sponge layer. The
right column of these figures show that second-order harmonics are radiated from the forc-
ing region of the incident wave due to the modulation of this wave by the envelope function
3.42. Focusing on the interaction region, the figures (left column) show that w′

1 does not
depend upon z′. Indeed, ignoring viscous effects in this interaction area, the componentw′

1

is the amplitude of ψ1 given by equation 3.30, multiplied by k and, in the present case of a
finite-width wave, by the envelope function 3.42.

Figures 3.5.1 and 3.5.2 (left columns) display amajor feature, which is not accounted for in
the theory. The theory assumes indeed that the off-slope velocity amplitude of the reflected
wave is uniform, equal to that of the incident wave to satisfy the impermeability condition at
the boundarywhile this amplitude is actuallymuchweaker than the incidentwave amplitude
outside the interaction region, all the more so the slope angle is larger.

The latter behaviour has two origins. The main one arises from the focusing of the re-
flected wave and is due to molecular effects. The wavelength of the reflected wave λR =
λ sin(θ − α)/ sin(θ + α) is indeed smaller than the incident wavelength λ so that the vis-
cous (or diffusive) time scale is smaller for the reflected wave as well. When scaled by the
wave period, the viscous time scale decays from 16.8 to 0.9 as α increases from 0o to 12o.
Dissipation thus becomes an important effect in the dynamics of the reflected wave as α in-
creases. The second effect is due to energy transfer to higher harmonic fields. The right col-
umn of figures 3.5.1 and 3.5.2 shows indeed that, asα increases, the amplitude of the second
harmonic wave becomes no longer small compared to the amplitude of the incident wave.
There is thus a non-negligible energy flux from the first harmonic wave to the second one
which also reduces the amplitude of the reflected wave.

Second harmonic wave

We recall thatwhen an incident planewave of infinite extent reflects on a flat surface (α = 0),
no harmonics are produced as the superposition of these twowaves is a solution of the invis-
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Figure 3.5.1: Amplitude of the off-slope velocity field in mm s−1 filtered at the first
harmonic frequency ω (right column) and at the second harmonic frequency 2ω (left
column) for 4 different slope angles α (the angle of incidence θ being constant and set
to 18.9o). The incident and reflected waves are delineated with dashed lines. The unit
of the horizontal axes is in m. The width of the incident wave is two wavelengths (nλ =
2).



Chapter 3: Nonlinear reflection of two-dimensional internal wave beams 48

First Harmonic

α=0 o

0 1 2
-0.8
-0.6
-0.4
-0.2

Second Harmonic

α=0 o

0 1 2
-0.8
-0.6
-0.4
-0.2

α=4 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

α=4 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

α=7.848 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

α=7.848 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

α=12 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

0 0.1 0.2

α=12 o

0 1 2
-0.8
-0.6
-0.4
-0.2

0

0 0.02 0.04 0.06

Figure 3.5.2: Amplitude of the off-slope velocity field in mm s−1 filtered at the first
harmonic frequency ω (right column) and at the second harmonic frequency 2ω (left
column) for 4 different slope angles α for the incident wave of width four wavelengths
(nλ = 4).
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cidBoussinesq equations (Thorpe, 1968). This is attested by the amplitude ofψh
2 in equation

3.22, which vanishes for α = 0. The situation is different when the plane wave is of finite
thickness, as shown more generally by Tabaei et al. (2005) for plane wave beams. Indeed,
while each beam is a solution of the inviscid Boussinesq equations, the superposition of the
two beams close to the boundary results in their nonlinear interaction and the generation
of higher harmonics associated with propagating waves. This is illustrated for instance in
the joint numerical and laboratory experiments of Echeverri et al. (2009) and Pairaud et al.
(2010). For the present simulations, this accounts for a second harmonic wave propagating
from the interaction area in figures 3.5.1 and 3.5.2 for α = 0.

Whenα is non zero, the second-order wave fieldψh
2 is the sum of a forced and a free wave,

as discussed in section 3.2.2. The forced wave only exists in the interaction area between
the incident and reflected waves and, at resonance, is of largest amplitude at the top of the
interaction area. While being also generated inside the interaction area, the free wave can
radiate away from this area, its amplitude being then set by that ofψh

2 at the boundary of the
area. In the absence of viscosity, the free wave propagates with this amplitude.

Figures 3.5.1 and 3.5.2 show that, for α ̸= 0, the second-order free wave is clearly visible
outside the interaction area, radiating with the amplitude of the second-order stream func-
tion at the boundary of this area. Dissipative effects however damp this amplitude, up to the
upper boundary where the free wave reflects. Focusing now on the interaction area, the fig-
ures show that the amplitude of the second harmonic off-slope velocity is constant along the
slope, as predicted by equation (3.30). This is at least visible for α = αres and α = 12o,
and not so clearly for α = 4o, consistent with figure 3.3.1 showing that the second-order
amplitude is much weaker for α = 4o than for the former cases.

3.5.3 Comparison with theoretical predictions

According to equation 3.22, the amplitude of ψh
2 should evolve linearly with the normal to

the slope z′ for α = αres, being otherwise sinusoidal in z′ with period 2π/δk. Figure 3.5.3
shows the amplitude of the second harmonic offslope velocity along the normal to the slope
direction on a line passing through the top vertex of the interaction region for nλ = 4 for
two fluid viscosity values, (a) ν = 10−6m2s−1 and (b) ν = 10−7m2s−1. The theoretical
prediction is shown as a dashed line. We can notice better agreement with the theory as the
fluid viscosity is reduced.

The observations from the numerical simulations lead to a striking conclusion when the
ratio Rth defined by equation 3.37 is compared with its numerical counterpart. Rewriting
Rth as

Rth =
Fr

2

2k||ψh
2 ||

k||ψ1||
=

1

2

Fr||∂x′ψh
2 ||

||∂x′ψ1||
, (3.43)
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Figure 3.5.3: Amplitude of the second harmonic offslope velocity along the normal to
the slope direction on a line passing through the top vertex of the interaction region for
for nλ = 4 and α = αres = 7.848o, for two fluid viscosity values, (a) ν = 10−6m2s−1

and (b) ν = 10−7m2s−1. Thoretical prediction given in equation 3.22 is shown as
dashed lines.

the numerical counterpart of this ratio can be defined as (in dimensional form)

Rnum =
1

2

||w′
2||

||w′
1||
. (3.44)

In the numerical simulations, the norm of the first and second harmonic off-slope veloci-
ties ||w′

1|| and ||w′
2|| are simply defined by the maximum of their respective amplitude over

the interaction area.
Rnum is compared to Rth in figure 3.5.4 for nλ = 1, 2 and 4. The figure shows that

the theory, which involves plane waves, is in very good agreement with the simulations for
nλ = 1 only, namely for the narrowest finite-widthwavewe consider, and forα ranging from
0o to about 8o. For higher values of α and nλ, the two processes mentioned above strongly
damp the amplitude of the reflected wave.

Moreprecisely, the largest theoretical amplitudeof thefirst harmonicwave is always reached
in the simulations, but in the left part of the interaction area where the reflected wave has not
been damped yet. The theoretical maximum is not reached in the numerical simulations for
the second harmonic, except whennλ = 1. This theoretical maximum is expected at the top
of the interaction area but the reflected wave has already weakened there and the second har-
monic field is weaker than predicted as well. Only fornλ = 1 are the left and top parts of the
interaction area close enough and, for α smaller than about 8o, the focusing effect moderate
enough for the reflectedwave to keep an appreciable amplitude. As a consequence, and quite
unexpectedly, numerical simulations only agree with the theoretical predictions for nλ = 1,
the discrepancy increasing with nλ.
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Figure 3.5.4: Comparison of the weakly nonlinear theory presented in section 3.3 with
numerical simulations. The Froude number is Fr = 5 × 10−3, the angle of incidence
is θ = 18.9o and an incident wave with 3 different widths is considered: nλ = 1, 2
and 4. The points represent Rnum, defined by equation 3.44, which is the ratio of the
second to the first harmonic stream function norms as computed from the numerical
simulations. This ratio is compared to the theoretical ratio Rth, defined by equation
3.37, and plotted with a solid line. Each star point corresponds to a simulation with
fluid viscosity ν = 10−6m2s−1, and the triangular points represent simulations fluid
viscosity ν = 10−7m2s−1. The dashed line indicates the value of α for which resonance
is predicted by the theory of Thorpe (1987) (for θ = 18.9o).

3.6 Conclusions

We studied the nonlinear reflection of a finite-width internal gravity wave incident on a uni-
form slope, away from critical incidence, in a two-dimensional vertical plane. The angle of
incidence is larger than the slope angle, leading to focusing of the reflected wave. Our study
has three objectives:

• to revisit the theory of Thorpe (1987) for plane waves of infinite extent, in which the
amplitude of the second-order stream function resulting from the interaction of the
incident and reflected waves is expressed as an indeterminate form at resonance;

• to apply this theory to a wave of finite width, considered as a simple model of an
oceanic internal tide beam;

• to compare the latter theoretical predictionswith results of twodimensional numerical
simulations of a wave of finite width.

ReformulatingThorpe (1987) theory, we show that the indeterminacy at resonance can actu-
ally bewaived and that the amplitude of the second-order stream function is a linear function
of the distance from the slope. It is therefore unbounded for a plane wave of infinite extent.

An incident wave beam of finite width was considered next. In this case, the generation of
the second-order stream function is limited to the areawhere the incident and reflectedwaves
interact. As a consequence, the second-order amplitude is bounded. However, at resonance,
its maximum value scaled by that of the first-order wave can get close to 1 even for small
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Froude number values and moderate wavelength numbers. This implies that the reflection
problemat resonance is highly nonlinear. We also showed that rotation does not qualitatively
change the results obtained in the non rotating case. Numerical simulations of an incident
wave of finite width were thus performed in the latter context to estimate the validity of the
weakly nonlinear theory.

The numerical simulations surprisingly show that the agreement with the weakly nonlin-
ear theory holds for the narrowest width we considered (one wavelength wide), and for a
slope angle smaller than about 8o (the angle of incidence being 18.9o). The reason lies in
the amplitude of the reflected wave, which is assumed to be constant in the theory. The am-
plitude of this wave is actually strongly damped by two effects: molecular effects, because
of focusing, and energy transfer to the second-order stream function. Both of these effects
are weaker for lower slope angles. Hence the better agreement for slope angles smaller than
about 8o.

It follows that, for a finite-width incident wave, (i) the theoretical growth of the second-
order stream function is bounded at resonance; (ii) the lower amplitude of the reflectedwave
should be taken into account in the theory for a closer modelling of the observations.

The analysis presented has been performed in a two-dimensional vertical plane. However
the presence of a third dimensionmodifies the interaction process between the incident and
reflected waves, even for normal incidence to the slope. An internal wave beam with finite
lateral extent produces a strong horizontally recirculating mean flow as observed by Bordes
et al. (2012) in their laboratory experiments, and later theoretically explained by Kataoka
and Akylas (2015). Three-dimensional laboratory experiments and numerical simulations
of an incident wave of finite width in a plane normal to the slope were conducted in parallel
to the present study by Grisouard et al. (2013). In three-dimensional internal wave beam
reflection, a Lagrangianmean flow due to nonlinear and dissipative effects can be induced, as
opposed to the two-dimensional problem, whose presence should also be introduced in the
theory for a complete description of the reflection. Further studies in the reflection of three
dimensional internal wave beams are presented in the following chapter.



In summary, the idea is to try to give all of the information to
help others to judge the value of your contribution; not just the
information that leads to judgement in one particular direc-
tion or another.

Richard Feynman, Surely You’re Joking, Mr. Feynman!

4
Reflection of three-dimensional internal wave

beams

Three-dimensional internal wave beams have been a subject of interest only in the
recent times (Bordes et al., 2012, Kataoka and Akylas, 2013, 2015). Much of the research on
internal wave beams was restricted to beams of infinite lateral extent. The finite lateral width
of the wave beam has started to gain attention only since the development of experimental
apparatuses such as thewave generator developed byGostiaux et al. (2007) (see section 1.4).

Internal tides generated at the ocean topography and over continental shelves propagate
as internal wave beams in the ocean (see section 2.4). These beams of internal tides can re-
flect at the bottom of the ocean, on continental slope or the pycnocline as shown in figure
4.1.1(a). The continental slope descend at more than 4o on average after the shelf-break at
the edge of the continental shelf to the beginning of the ocean basins. The reflection of inter-
nal tide beams on this continental slope can lead to wave focusing and breaking. The shaping
of continental slope has been thought to be influenced by the sediment transport induced by
reflecting internal wave beams (Cacchione et al., 2002).

Zhou and Diamessis (2015) has found that two-dimensional internal wave beam reflect-
ing on the pycnocline can induce small particle dispersion at the reflection region. However,
a when the wave beam is of finite lateral extent (three-dimensional) there can be a strong re-
circulating mean flow induced by the beam itself as found by Bordes et al. (2012). Indeed,
beams of internal tides are of finite lateral extent (compared to their horizontal wavelengths)
in the oceans (see figure 4.1.1(b)). The reflection of a three-dimensional internal wave beam
and wave induced mean flow was studied by Grisouard (2010) and Grisouard et al. (2013).
The extension of their study with more three-dimensional numerical simulations to charac-
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terise the inducedmean flow is presented in this chapter in the formof draft for an article that
is planned to be submitted to Journal of Fluid Mechanics.

4.1 Forcing of mean flows by the reflection of three-dimensional
internalwave beams (article)

The results from one of the experiments presented in Grisouard (2010) is used in combi-
nation with numerical simulations in order to investigate the strong mean flow forced by a
three-dimensional internal wave beam while reflecting on a simple slope.
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The reflection of three-dimensional internal wave beam is analysed. Three-dimensional
internal gravity wave beams in a viscous medium have been observed to cause strong
horizontal mean flows. This strong mean flow is due to the finite extent of the wave beam
and the resulting diffraction. The finite width of the beam in the lateral direction causes
the wave to diffract in the horizontal plane. This creates lateral variations of the velocity
fields, which in turn leads to a positive source term for the mean vertical vorticity. We
investigate this induced mean flow using available experimental data and further three-
dimensional numerical simulations. The setup is such that a wave beam of finite extent
propagates onto a slope and gets reflected. The recirculating mean flow is independent
of the interactions with the slope. The incident and reflected wave interacts close to
the slope creating a weaker, spatially periodic mean flow which is dominated by the
growing recirculating mean flow. The effects of wave beam width, wave amplitude and the
viscosity of the fluid on the forcing of the mean flow are also investigated using numerical
simulations. We also performed energy budget of our system in order to quantify the
dissipation and transfer of energy from the wave to the mean flow and higher harmonics.

Key words:

1. Introduction

The interest of the oceanic community in internal gravity waves lies primarily in their
capacity to vertically mix the ocean, especially in the deep ocean where motions are
generally dominated by these waves. Indeed these waves are dissipated at small scales
after a complex cascade of nonlinear interactions, and part of the dissipated energy is
converted into the potential energy needed for mixing, which brings back cold dense
water from the abyss to the surface of the ocean, across constant density surfaces (Munk
& Wunsch 1998).

Internal waves also transport momentum, so they can produce a mean horizontal
flow by transferring momentum where they are dissipated. This wave streaming effect is
thus a major mechanism for driving stratospheric winds by waves emitted in the lower
atmosphere (Holton 1982). Wave streaming is also well known in the context of breaking
surface waves. It is a major source of currents in near-shore regions (Longuet-Higgins
& Stewart 1964). The case of internal waves in the ocean has been much less studied.
Grisouard & Bühler (2012) have discussed how the internal waves produced by tidal
currents over bottom topography can generate a mean flow by their dissipation far from

† Email address for correspondence: keshav.raja@univ-grenoble-alpes.fr
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their generation region. They model the dissipation by an adhoc linear damping of density
perturbations, without attempting to describe the actual dissipation processes.

We here consider the different problem of mean flow generation by an internal wave
beam impacting a topographic slope. Such wave reflection indeed leads to wave steepening
and energy dissipation by breaking, especially strong near the critical slope, obtained
when the topographic slope matches the angle of wave propagation. In-situ measurements
indeed confirm that such a slope can be an active sink for impinging internal wave energy
(Eriksen 1982). The implications of ocean bottom reflection to internal wave spectra and
mixing were studied in his eponymous paper by Eriksen (1985). Cacchione & Wunsch
(1974) have proposed that the angles in which the energy of semi-diurnal internal tides
propagate may determine the average gradient of continental slopes in ocean basins
through the sediment transports generated by the bottom shear velocities due to this
wave intensification. However the implication in terms of mean flow generation has been
much less investigated. This could be a source of ‘sub-meso scale eddies’ whose importance
in ocean dynamics is increasingly realised.

The linear internal wave propagation and reflection on a slope in a two-dimensional
vertical plane are well known (Phillips 1966). When an internal wave reflects on a slope,
its frequency is conserved but its wavelength changes. In the absence of background
rotation, the dispersion relation of internal waves states that, ω = N sin θ, where ω is
the wave frequency, N the buoyancy frequency (assumed to be constant) and θ the angle
of propagation of wave energy with the horizontal. Owing to this peculiar dispersion
relation, when internal waves propagate toward a sloping bottom with angle α, the
reflected wave is either focused (if θ > α, called supercritical reflection) or defocused
(if θ < α, called sub-critical reflection). In the supercritical reflection case, the amplitude
of the reflected wave increases by a factor, γ where,

γ =
sin(θ + α)

sin(θ − α)
(1.1)

A critical condition occurs when θ = α for which the impinging wave energy gets
focused in an infinitely thin reflected wave beam and the amplitude of the reflected
wave increases infinitely. Dauxois & Young (1999) have specified how this singularity is
smoothed out by nonlinear or transient effects in the limit of small wave amplitude. How-
ever in practice the near-critical condition leads to wave breaking and energy dissipation.
Numerical studies by Chalamalla et al. (2013) indeed show strong turbulence generation
during reflection at critical or near critical angles. These computations involved a plane
wave beam with infinite lateral extent which does not drive a significant mean flow, as
discussed below. Earlier simulations by Slinn & Riley (2001) also performed with a plane
wave beam did not lead to mean flow generation, except for thin intrusions from the mixed
boundary layers. By contrast, Zikanov & Slinn (2001) have shown that with an oblique
incidence of the horizontally projected wave vector, along slope current is generated, in
a similar way as along shore currents produced by surface waves with oblique incidence.

Most previous studies with normal incidence focused on the generation of harmonics
by the nonlinear interaction between the incident and the reflected wave. These higher
harmonics may interact in turn resonantly with primary waves (Thorpe (1987), Thorpe
(1997), Leclair et al. (2017)). The nonlinear non-resonant wave-wave interactions of
internal waves were studied in detail by Teoh et al. (1997) with laboratory experiments,
and by Javam et al. (1999), Javam et al. (2000) with numerical simulations. Nonlinear
effects in reflecting internal wave beams were studied analytically and numerically by
Tabaei et al. (2005) using small-amplitude expansions. The existence of these nonlinear
effects was later verified by laboratory experiments by Peacock & Tabaei (2005). Labo-
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ratory experiments carried out by Gostiaux et al. (2006) displayed higher harmonics and
also evanescent waves of a frequency higher than buoyancy frequency in the reflection
zone. Rodenborn et al. (2011) determined the slope angle that generates the maximum
amplitude of second harmonic waves during reflection, using laboratory experiments and
two-dimensional simulations.

Apart from higher harmonics, wave-wave interactions also generate an Eulerian mean
flow which is periodic in the coordinate normal to the slope. The associated Stokes drift
and Lagrangian mean flow (which is the sum of Eulerian mean flow and Stokes drift)
in internal wave reflection off a free-slip surface were calculated by Zhou & Diamessis
(2015), in a two-dimensional domain. This mean flow is however linked to the wave, and
it desappears as soon as waves cease. By contrast we are here interested in the mean flow
which irreversibly builds up by the dissipation of the impinging wave and persists after
the wave ceases.

Most of the above studies delat with a plane internal wave (Thorpe 1987) or two-
dimensional internal wave beams in a vertical plane (Tabaei et al. 2005). The three-
dimensional aspect of internal wave beams, involving the finite extent of the beam in the
lateral horizontal direction, has gathered attention only recently. Laboratory experiments
and three-dimensional numerical simulations presented by Grisouard et al. (2013) show
that the mean flow generated in the interaction region when internal wave beam reflects
off a slope is markedly different from the one predicted by theory (Thorpe 1987) or
by two dimensional simulations. Grisouard et al. (2013) reported the presence of a
strong, irreversible mean flow of an amplitude exceeding that of the incident wave in
the interaction region (Grisouard 2010).

Following these works, the present paper analyses the reflection of a three-dimensional
internal wave beam on a slope. The laboratory experiments of Grisouard (2010)) are
further analysed in order to study the resonant interactions among the primary (incident
and reflected wave beams) and the second harmonic wave beams. Such interactions were
predicted by Thorpe (1987) for plane waves. However, for three-dimensional wave beams
with finite lateral width, the presence of strong irreversible horizontal mean flow alters
the wave field close to the slope. The primary and second harmonic wave beams are
found to be refracted in the interaction region due to the strong horizontal mean flow,
and reflected wave beam is nearly absent. We here analyse the reflection for different
wave amplitudes, lateral widths and fluid viscosities. We also estimate the flux of energy
from the wave to the mean flow and to higher harmonics during the reflection through
domain integrated energy budget.

The following section briefly summarises the mechanism by which a three-dimensional
internal wave beam induces a horizontal mean flow. In section 3, we describe the
experimental setup and the numerical model we used. Section 4 presents the experimental
and numerical results for a reference case and in section 5, the effects of different wave
parameters are analysed using numerical simulations. Finally in section 6, the energy
budget is presented with an estimate of the energy fluxes from the primary wave to the
mean flow and higher harmonics.

2. Wave induced mean flow

Waves propagating in any medium transport momentum from their source, which
drives a mean flow where they are dissipated. This is the general process of wave
streaming, well known for sound and surface waves. Considering the Navier-Stokes
equations averaged over a wave period, the mean flow acceleration is due to the divergence
of the Reynolds stress of the wave velocity field. This so-called radiation stress is a tensor
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proportional to the square of the wave amplitude. The divergence of this flux is a vector
which corresponds to the net force acting on the mean flow. However this forcing of the
mean flow may be opposed by pressure gradients. This is what happens in the case of a
wave beam in a vertical plane which is unlimited in the lateral direction. By contrast in
a wave beam of finite lateral extent, the divergence of the radiation stess is able to drive
a dipolar flow.

The acceleration of the horizontal mean flow u, v, averaged over a wave period, can
be thus expressed as the result of the Reynolds stress Rij = ũiṽj due to the wave and
pressure effects:

∂u

∂t
= −∂jRxj −

1

ρ
∂xp (2.1)

∂v

∂t
= −∂jRjy −

1

ρ
∂yp (2.2)

We here consider just the initiation of the mean flow; so its viscous dissipation is
neglected, as well as its feedback on the wave by advection and its own non-linear
advection.

These considerations can be made more precise in the case of a wave beam propagating
with an angle θ with respect to the horizontal, and a complex amplitude U in velocity,
aligned with the beam. Defining the coordinates (X, y, Z), with X slantwise along the
beam, y transverse in the horizontal plane (lateral direction), Z transverse in the vertical
plane, we can write the velocity field with a complex amplitude U(X, y) slowly varying
in X and y.

ũX = U(X, y) exp[i(kZ − ωt)] + c.c. = 2|U(X, y)| cos(kZ − ωt+ φ) (2.3)

The dominant wave vector k is perpendicular to the beam, with a corresponding
frequency ω = N sin θ. The momentum flux tensor (Reynolds stress) has a single non-
zero component, aligned with the wave beam, with value 2|U |2 after averaging over a
wave period. In the absence of energy dissipation, this radiative flux remains uniform
along X preventing any spontaneous production of a mean flow. By contrast dissipation
leads to a net slanted volume force −2(d|U |2/dX) whose horizontal projection, is

Fx = −2
d|U |2

dX
cos θ. (2.4)

The rate of decay of the wave beam can be estimated from the rate of energy dissipation
in the wave, equal to (1/2)(ν+κ)k2U2 per unit of volume. This has to be compared to the
energy flux in the beam equal to the group velocity cg = (N/k) cos θ multiplied by the
energy density 4|U |2 (it includes the kinetic energy and potential energy in equipartition).
By equating the divergence of this energy flux 4cgd|U |2/dX with the local dissipation
rate 2(ν + κ)k2|U |2/N , we get

d(|U |2)

dX
= −(ν + κ)

k3|U |2

N cos θ
(2.5)

which leads to a force with horizontal projection given by

Fx = 2(ν + κ)
k3

N
|U |2 (2.6)

This force is however partially balanced by an adverse pressure gradient which is needed
to drive the return flow occuring outside the wave beam.

A vertical force Fx cot θ is similarly produced but it is balanced by a hydrostatic
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vertical pressure gradient. A persistant vertical force is indeed prevented by densisty
stratification. More precisely in the absence of diffusion, the Lagrangian vertical transport
of fluid elements is prevented by the restoring force due to stratification: an Eulerian
vertical mean flow component can exist, if it is balanced by a Stokes drift (the mean
Lagrangian velocity associated to the wave), as described by Thorpe (1987). This mean
flow is however slaved to the square of the wave amplitude, so it does not grow irreversibly
in time once the wave is established, and it desappears when the wave ceases. Furthermore
it oscillates as a function of the distance to the wall. A persistent vertical mean flow
requires irreversible vertical mixing, associated with diffusivity. This will however remain
weak in comparison with the horizontal velocity, so we can consider that the induced
mean flow is horizontal and non-divergent at each altitude z. It is then fully determined
by its (vertical) vorticity field ζ = −∂xu+ ∂yv.

The growth rate of ζ is given by the curl ot the driving force, which eliminates the
pressure effect. In the case of a pure wave beam, the vorticity input associated with the
force given in equation 2.6 is just −∂Fx/∂y, leading to

∂ζ/∂t = 2(ν + κ)
k3

N
|U |2 (2.7)

This fits with equation 2.16 of Fan et al. (2018) (the diffusivity κ is equal to zero in
this paper and our coordinate y is denoted Z, with a non-dimensional form). This can
be also related to a previous analysis by Bordes et al. (2012). These authors consider
a uniform beam with infinite extent in the vertical coordinate, but finite lateral width.
We can then transform d/dX = cosθ ∂/∂x, and express the amplitude of the horizontal
velocity projection U ′ = 2|U |cosθ. The production of vertical vorticity is then obtained
by differentiation of 2.4 along y,

∂ζ/∂t =
∂xy(U ′

2
)

2cos2θ
(2.8)

This is a similar form as equation (3) of Bordes et al. (2012) but larger by a factor of
two.

This simple approach however neglects the transverse velocity component which is not
a priori justified. Indeed the vorticity production is concentrated at the edge of the wave
beam, where lateral gradients of |U |2 are located, but diffraction effects also induce a
transverse propagation along y. We can now generalise these results in an integral form,
taking first the curl of the general equations 2.2. A good characterisation of the mean flow
is the circulation integrated horizontally in the half plane y > 0, and vertically within a
horizontal slice between z = z0 and z1, and along x between x0 and x1, which depends
on z for a sloping bottom. This circulation is therefore

Γ =

∫ ∞
0

dy

∫ z1

z0

dz

∫ x1

x0

ζdx (2.9)

From 2.2, the growth rate of Γ writes

dΓ

dt
=

∫ ∞
0

dy

∫ z1

z0

dz

∫ x1

x0

(−∂y∂jRxj + ∂x∂jRyj) (2.10)

Integrating the first term first with respect to y , we get the integral
∫ z1
z0

dz
∫ x1

x0
∂jRxj |y=0dx

in the vertical plane at y = 0. The integral of ∂xRxx + ∂xRxz can be expressed from
the boundary flux by the divergence theorem, leading to the contour integral

∫
ũũn.ndl.

Writing also ∂jRyj = ũ.∇ṽ, we finally get



6 K. J. Raja, J. Sommeria and C. Staquet

dΓ

dt
=

∫
ũũn.ndl +

∫ z1

z0

dz

∫ x1

x0

∂yũṽ|y=0dx +

∫ ∞
0

dy

∫ z1

z0

dz[ũ.∇ṽ]x1
x0

dx (2.11)

In the case of a free wave beam, we can consider a slice with infinite extent in x, so that
the last term vanishes. The first term reduces to the difference of the flux ũw̃ through
the two planes z0 and z1. This leads to expression 2.8 in an integral form. However we
have the additional term ∂yũṽ which may not be equal to zero in the center of a narrow

beam (even if ũṽ = 0 by symmetry).
Another characterisation of the mean flow is provided by the vorticity moment

Px = −
∫ z1

z0

dz

∫ ∫
yζdxdy (2.12)

integrated over the whole range of y in a slice between z0 and z1. This is obtained by an
integration by part of the usual momentum

∫ ∫
luxdy and differs from it by boundary

terms (Px =
∫ ∫

udxdy+ [
∫
yu]xb0 dx− [

∫
(yvdx]+∞−∞). The growth of Px can be calculated

in a similar way as Γ , using integration by parts in y. This leads to

dPx/dt =

∫ ∞
−∞

dy

∫
ũũn.ndl +

∫ ∞
−∞

dy

∫ z1

z0

dz[ũ.∇ṽ]x1
x0
dx (2.13)

In the case of a free wave beam, the last term again vanishes, and the first term reduces
to the difference of the flux ũw̃ through the two planes z0 and z1. The term in ∂2ũṽ has
been suppressed by the integration in the whole y domain.

Let us considering the model of Bordes et al. (2012) of a wave beam generated at the
vertical wall x = 0 uniformly in z, and damping by viscosity at large x. The momentum
flux difference through the two limiting horizontal planes is equal to zero, since the
beam doe not depend on z, and the only contribution comes from the flux through the
vertical boundary x = 0. The integration of 2.8 from x = 0 to ∞ then yields dPx/dt =∫ ∫

ũũdydz. This is in agreement with an integration of the local expression 2.7. Therefore
it does not agree with the expression of Bordes et al. (2012) differing by a factor of two,
which points out an inconsistency in this analysis.

Coming now to the results of Fan et al. (2018), we need first to relate the viscous effect
to the x derivative of the momentum flux. Writing the equation 2.12 of Fan et al. (2018)
with our notations, we get for a steady wave with no advection by an established mean
flow,

cg
∂U

∂X
= −1

2
(ν + κ)k2U + i

cos2θ

2sinθ

N

k2
∂2U

∂y2
(2.14)

We can deduce from this an equation for the energy |U |2 = U∗U which generalises 2.5
by introducing lateral diffraction effects,

cg
∂|U |2

∂X
= −(ν + κ)k2|U |2 + i

cos2θ

2sinθ

N

k2
[U∗

∂2U

∂y2
− U ∂

2U∗

∂y2
] (2.15)

so that equation 2.8 is now generalised into

∂ζ/∂t =
∂xy(U ′x

2
)

2cos2θ
+ i

cos2θ

2sinθ

N

k2
[U∗

∂2U

∂y2
− U ∂

2U∗

∂y2
] (2.16)

The second term in the right hand side however vanish by integration in the plane y >,
since

∫
∞
0
U ∗∂2yyU = [−U∗∂yU +U∂yU

∗]y=0 +
∫

∞
0
U∂2yyU

∗dy, and by symmetry ∂yU = 0
at y = 0. Similarly we can check that the general relation 2.13 is indeed statisfied.
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4 m
slope: 10%

Wave generator

1.5 m

Vertical laser sheet 
at y = 0 m

Horizontal laser sheet 
at z = -0.57 m

Figure 1. Schematic of the experimental setup.

This will be therefore a good guideline to analyse our results of wave reflection beyond
any multiscale approximation. In this context the last boundary term in 2.13 must be
examined. It vanishes with no-slip boundary conditions on the slope, but this question
must be examined with care with the free-slip boundary condition used in the numerical
simulations.

3. Experimental and numerical approach

3.1. Experimental setup

Laboratory experiments were carried out on the Coriolis platform at LEGI in Grenoble.
It consists of a rotating basin of 13 m in diameter. The large dimensions of the platform
allows us to minimise any influence of the lateral walls of the tank while being able to
reach large Reynolds numbers. A vertically stratified layer can be created by changing the
salinity of the water while filling, using computer controlled volumetric pumps regulating
the flow from each of the tanks.

Internal waves are generated using a wave generator designed by Gostiaux et al. (2007)
(see also Mercier et al. (2010)). The tank is filled with uniformly stratified water with
a Brunt-Väisälä frequency N = 0.42 rad s−1, and with a depth of 0.8 m. The wave
generator is 1.5 m wide in the y-direction and produces internal wave beams of finite
dimensions with wave numbers in x and z directions, according to the forcing frequency
and stratification. The wave generator produces a beam of 4 wavelengths with horizontal
and vertical wave numbers being, kx = 0.17 cm−1 and kz = 0.49 cm−1 respectively.
The amplitude of the zonal (x-direction) velocity of the generated wave is U = 2.5 ×
10−3 m s−1.

A sloping plate of inclination 10% (slope angle, α = 5.71o) is placed in front of the
wave generator so that the internal wave beam is incident normally on the slope. The
sloping plate is 4 m long and 4.5 m wide. The whole setup of wave generator and the
slope (Figure 1) is placed in the centre of the tank.

Measurements are done using Particle Image Velocimetry. The fluid is seeded with
neutrally buoyant fine particles (of around 300 µm diameter) that trace the flow. Images
are captured in a plane illuminated by a laser (laser sheet) using high speed cameras
with a fixed frequency in this plane. Successive images are then cross-correlated to obtain
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the field of two components of velocity using a Matlab toolbox developed in LEGI called
UVMAT. Two separate configurations were used in order to have a horizontal and vertical
planes. The vertical plane is through the centre of the wave beam. The choice of the
horizontal plane is such that it cuts through the incident and the reflected wave beams
in the interaction region close to the slope.

The experiment presented here has a forcing frequency, ω = 0.14 rad s−1. So the
incident wave propagates at an angle of θ = 19.5o with the horizontal. The experiment
was run for 22 wave periods.

3.2. Numerical method

We are using the model called NHOES (Non-Hydrostatic Ocean model for Earth
Simulator) developed by H. Aiki (Aiki & Yamagata 2004). This model solves non-
hydrostatic incompressible Boussinesq equations descretised with Arakawa’s C-grid.The
model introduces a viscous term in the momentum equation with a kinematic viscosity,
ν, and a diffusive term in the advection equation with a diffusivity, κ. The governing
equations 3.1 are solved using a finite volume method in Cartesian coordinates with
uniform grid spacings. A leap-frog scheme is used for time integrations. We used a
linear equation of state depending on salinity alone in order to simulate the laboratory
experiment.

For the velocity vector u, pressure p and density ρ with a reference density ρ0, the
governing equations can be written as follows.

∂u

∂t
+ (∇× u)× u +

1

2
∇u2 = −∇p− ρg

ρ0
ez + ν∇2u (3.1a)

∂ρ

∂t
+ ∇.(uρ) = κ∇2ρ (3.1b)

∇.u = 0 (3.1c)

where ν and κ are the kinematic viscosity and diffusivity of the fluid respectively, and
g is the acceleration due to gravity.

The numerical domain is of dimensions 2.56 m in x-direction, 7.68 m in y-direction and
covers the whole water depth in the experiment (0.8 m) in z-direction with resolutions
of ∆x = ∆y = 0.01 m and ∆z = 0.005 m. We have a linear background stratification
with a buoyancy frequency, N = 0.42 rad s−1. The sloping platform with a slope angle
of α = 5.71o (tanα = 10%) is implemented by a partial step scheme. The boundary
condition at the slope is of free-slip. The domain is open at the left and right zonal
boundaries (x-direction), with a wave forcing at the left and a sponge layer of thickness
0.2 m at the right boundary. The top of the domain is a free surface which is calculated
using a semi-implicit scheme.

The density ρ can be written as the sum of a reference density ρ0, the background
density profile ρ̂ and the density perturbation ρ′. Similary, the pressure p can also be
decomposed into the background pressure field p̂ and the pressure perturbation p′.

ρ = ρ0 + ρ̂(z) + ρ′(x, y, z, t) (3.2a)

p = p̂(z) + p′(x, y, z, t) (3.2b)

At t = 0, the background density ρ̂(z) and pressure p̂(z) are initialised as,

ρ̂(z) =

∫ 0

z

ρ0
g
N2dz (3.3a)
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Figure 2. The envelops in y- and z- directions given by equations 3.4b and 3.4c respectively.

p̂(z) =

∫ 0

z

g

(
ρ0 + ρ̂

ρ0

)
dz (3.3b)

The forcing at the left boundary generates a plane wave solution in a vertical plane
for the zonal velocity, u and density, ρ, which is limited by a smooth envelope in y
and z directions, to mimic the finite sized wave generator in the laboratory experiment.
The wave forcing on the zonal velocity, u with an amplitude, U , wave frequency, ω, and
vertical wave number, kz, is given as follows.

u(0, y, z) = UEyEz(1− e−5t
ω
2π )cos(kzz − ωt) (3.4a)

Ez =
1

2

[
1 + tanh

{
3

2
tan

(
− π

2
+

1

2
min[2π,max{0, π(nλ + 1)− kz|z − z0|}]

)}]
(3.4b)

Ey =
1

2

[
1 + tanh

{
3

2
tan

(
− π

2
+

1

2
min[2π,max{0, kz(W 1

2 b
− |y|)}]

)}]
(3.4c)

The envelop function Ez is centered at z0 and permits nλ number of wavelengths in the
wave beam. The width of the wave beam in lateral direction is given by Wb = 2W 1

2 b
. We

have used nλ = 4 and kz = 48 m−1 for all the simulations, the same as the laboratory
experiment. The wave is found to reach a steady regime in less than 6 wave periods,
however, the mean flow grows for about 30 wave periods before starting to saturate in
the reference case. We ran the simulation for 40 wave periods in all cases.

4. Experimental and numerical results : A reference case

The velocity fields from the experiment and simulation were filtered using a sliding
bandpass filter centered at the forcing wave frequency and with a window of three wave
periods to obtain the primary wave velocity fields. A similar filter centered at twice the
wave frequency was used to get the fields for the second harmonic wave. The Eulerian
mean flow fields were obtained using a sliding time average over three wave periods.
Figure 3 shows the results from the experiment and simulation. The left and right
columns show the results from the laboratory experiment and the numerical simulation
respectively.

The first row (figures 3 (a), (b)) shows the zonal velocity field of the primary wave in a
vertical plane y = 0 m, in the centre of the wave beam . We can notice that the reflected
wave is nearly absent in both experiment and simulation. The energy of the incident
wave is almost completely used up at the slope, through dissipation and transfers to the
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Figure 3. Experimental and numerical velocity fields (in m s−1) are shown for comparison.
The left column shows results from the experiment and the right column shows those from the
numerical simulation. Figures (a) and (b) show the wave velocity obtained by filtering out the
velocity fields at the forcing frequency over the wave periods 17-20 in the central vertical plane
y = 0m (dashed lines represent the wave beams). Figures (c) and (d) show the zonal velocity
field of the primary harmonic in a horizontal plane at z = −0.57m (shown with a solid line in
figures (a) and (b)). The dotted lines in figures (c) and (d) represent the initial lateral width of
the wave beam Wb. The zonal velocity filtered at twice the forcing frequency corresponding to
the second harmonic wave is shown in figures (e) and (f). Figures (g) and (h) show the Eulerian
mean zonal velocity (in colour) and the Eulerian mean velocity vectors obtained using a time
average over the wave periods 17-20 in the central vertical plane y = 0m.
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mean flow and higher harmonics, with very little left of the incident wave energy to be
reflected from the slope.

The second row (figures 3 c, d) shows the top view of the zonal velocity of the primary
wave beam in a horizontal plane z = −0.57 m. We can see that the wave beam, due to
its finite lateral width, diffracts in the horizontal plane as it propagates away from the
forcing region. We can notice the spreading of the wave out of its initial lateral width
and the bending of the wave crests in the horizontal plane. This bending is exacerbated
with the refraction due to the growing mean flow as time progresses.

The zonal velocity of the second harmonic is shown in the third row (figures 3 (e),
(f)). The second harmonic wave is seen to be largely confined to the interaction region in
both experiment and simulation. This is also a key difference from the two-dimensional
reflection where the second harmonic wave was relatively stronger and was propagating
away from the slope. The confinement of the second harmonic wave in the present case
can be due to the refraction caused by the mean flow close to the slope.

The Eulerian mean flow is shown in the fourth row (figures 3 (g), (h)). The Eulerian
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mean flow we find in the experiment and in the simulation is completely different from
that of the two-dimensional Eulerian mean flow calculated by Thorpe (1987). We do
not find a mean flow that is periodic along the normal to the slope coordinate, but a
strong jet-like mean flow in the centre of the beam and close to the slope. Moreover,
the amplitude of the mean flow reaches a value comparable to that of the incident wave
amplitude.

We can also see that the zonal mean flow for the simulation in figure 3 (h) shows
some striations along the slope in the interaction region. These are signatures of the
spatially periodic mean flow due to the interaction of the incident and reflected wave
beams present in the interaction region, as predicted by Thorpe (1987). Thus, we can
observe a superposition of two distinct mean flow structures, namely a spatially periodic
mean flow and a strong jet-like mean flow. The former has a constant amplitude (as
predicted in Thorpe (1987)) and is reversible (disappears when the forcing is removed).
However, the latter grows in time and persists after the forcing. We can see this in figure
5 (a) where the mean flow in the interaction region ((x, y) = (1, 0)m) is plotted over
the vertical coordinate for different time during the simulation. We can see the spatially
periodic mean flow initially before it gets dominated by the growing jet-like mean flow.
We can notice in figure 5 (a) that after 40 wave periods, signatures of the periodicity of
the initial spatialy periodic mean flow remains in the form of striations in the interaction
region.

The mean flow forms a strong jet inside the wave beam and has a return flow component
outside the beam. This recirculating mean flow is similar to the results of Bordes et al.
(2012) and Kataoka & Akylas (2015) and is a form of a steady streaming generated by
Reynolds stresses in the presence of viscosity. The jet-like mean flow in the centre of the
beam and the return flow outside the beam create a dipole mean vorticity field in the
horizontal plane. The recirculating mean flow and the dipole mean vertical vorticity field
for laboratory experiment and numerical simulation are shown in figure 4. The mean
zonal velocity integrated along the zonal coordinate plotted with respect to the vertical
coordinate is shown for different time during the simulation in figure 5 (b). The zonal
integral of the mean flow at a particular height can be considered as an approximation
for the circulation along the edges of one half of the dipole vortex. We can note that
the circulation is maximum close to the height corresponding to the horizontal plane
z = −0.57m in which we showed the vertical vorticity field in figure 4.

The recirculating mean flow is driven by the divergence of Reynolds stresses of the wave
field. The wave beam with a finite width in the lateral direction diffracts in the horizontal
plane as it propagates away from the forcing region. This diffraction causes horizontal
spatial variations in the Reynolds stress terms, the divergence of which, accelerates the
mean flow. Figures 6 (a), (b) show the horizontal velocities of the primary harmonic
along the lateral direction in the interaction region (at x = 1m) for the experiment and
the simulation. The forcing of the wave is along the zonal axis. The wave produced at
the forcing region has only zonal and vertical velocity components. The lateral velocity v
is forced through Reynolds stresses because of the lateral variations in the zonal velocity
u, due to the diffraction of the wave beam.

Wave diffraction is related to an aspect ratio As of the wave beam which is the ratio
of the horizontal wavelength λx to the lateral width of the wave beam at the forcing
region Wb. Diffraction is enhanced if the wave length is comparable to that of the width
of the wave beam. Enhanced diffraction causes strong spatial variations of the wave field
closer to the wave generator and one can observe the mean flow not far from the wave
generator. If As is lower, the wave beam propagates away from the forcing region before
the spatial variations become strong enough to force a mean flow. In the case shown
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Figure 6. The zonal velocities of the primary harmonic, ũ and ṽ along the lateral (y−) in
the interaction region at x = 1m and time = 20T for (a) experiment, and (b) simulation. (c)
Normalised mean vertical vorticity integrated in the half plane y > 0 for the experiment and
the simulation.

above, As is 0.25, while for Bordes et al. (2012), it ranged from 0.44 to 0.95. In figure 3
(c), (d), we can note that the lateral variations of the wave field start to be significant
closer to the slope (from around x = 1m), and clearly in figure 3 (g), (h), we find that
the mean flow is stronger in the interaction region. Since the forcing of the mean flow is
due to the spatial variations in the wave field, this forcing is constant after the wave field
has reached a steady regime. Thus, the mean flow continues to grow until it saturates
because of viscosity. Figure 6 (c) shows the growth of the normalised mean vertical
vorticity integrated in the half plane y > 0 for the experiment and the simulation. The
initial decrease in the normalised mean vertical vorticity for the experiment in figure 6
(c) is sue to pre-existing mean motions in the setup from previous experiments.

5. Effects of wave beam width, wave amplitude and fluid viscosity

As we have mentioned, the Eulerian mean flow induced during the reflection of
internal wave beam of finite lateral width includes the spatially periodic mean flow
in the interaction region and the recirculating mean flow induced by the beam. The
reference case presented in section 4 shows the combined resulting mean flow. The
equations presented by Kataoka & Akylas (2015) show that the forcing of the mean
flow is governed by the primary wave amplitude, spatial variations of the primary wave
amplitude and fluid viscosity. In order to analyse the influence of these parameters, we
performed numerical simulations with the same configuration of that of the reference case,
but varying the wave beam width, wave amplitude and kinematic viscosity of the fluid.
The list of all the numerical simulations we did and their associated non-dimensional
parameters is given in table 1.

5.1. Effect of the lateral width of the wave beam

We mentioned in section 4 that the location of the maximum of the Eulerian mean
flow depends on the width of the wave beam. We have performed numerical simulations
for a narrow beam and a broad beam with their lateral beam widths, half and double
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No. Name α (deg) Wb(m) U(m s−1) ν(m2 s−1) As Fr Re

1 U0.5 5.71 1.50 0.5× 10−3 1.0× 10−6 0.247 0.0027 185

2 U0.5-ν0.1 5.71 1.50 0.5× 10−3 0.1× 10−6 0.247 0.0027 1850

3 U1-ν0.1 5.71 1.50 1.0× 10−3 0.1× 10−6 0.247 0.0064 3700
4 U1-ν0.5 5.71 1.50 1.0× 10−3 0.5× 10−6 0.247 0.0064 740
5 U1 5.71 1.50 1.0× 10−3 1.0× 10−6 0.247 0.0064 370
6 U1-ν2.0 5.71 1.50 1.0× 10−3 2.0× 10−6 0.247 0.0064 185

7 U1.5 5.71 1.50 1.5× 10−3 1.0× 10−6 0.247 0.0097 555

8 U2.5-HalfWb 5.71 0.75 2.5× 10−3 1.0× 10−6 0.494 0.0161 925
9 Reference 5.71 1.50 2.5× 10−3 1.0× 10−6 0.247 0.0161 925
10 U2.5-TwiceWb 5.71 3.00 2.5× 10−3 1.0× 10−6 0.124 0.0161 925

Table 1. Table of simulations and their parameters. Listed are the wave frequency ω, the
slope angle α, the lateral wave beam width at origin Wb, the wave amplitude at origin U , and
the viscosity of the fluid ν. The non-dimensional parameters listed are defined as follows: the
horizontal aspect ratio of the wave As = λx

Wb
, the Froude number, Fr = U

Nλx
and the Reynolds

number Re = Uλx
ν

.
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Figure 7. The zonal mean velocity u for different wave beam widths Wb = 0.75m (left column),
1.50m (central column) and 3.00m(right column) in the central vertical plane y = 0m at time
10T and 40T.
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Figure 8. The zonal velocity for the primary harmonic for different wave beam widths
Wb = 0.75m (left column), 1.50m (central column) and 3.00m(right column) in the horizontal
plane z = −0.57m at time 10T and 40T.

that of the reference case. The As for the narrow beam case (U2.5-HalfWb) is 0.494 close
to the value in the experiments of Bordes et al. (2012).

In Figure 7, we show the evolution of zonal mean flow for wave beams with three
different lateral widths. The narrow beam case (U2.5-HalfWb) is given in the left column,
the reference case in the centre and the broad beam case (U2.5-TwiceWb) in the right
column. We show the mean flow field in the central vertical plane (y = 0m) at two
different instances during the simulations, just after the reflection has been completed
and after 40 wave periods. The group velocities and other wave parameters are all same
for the three cases.

We can notice that in the narrow beam case in figure 7 (a), there is a mean flow as
soon as the reflection is completed, at time 10T . We can notice that the mean flow is
located closer to the wave generator in the region of incident wave beam. The reflected
wave that has started to propagate away from the slope has started to interact with the
incident wave to form the spatially periodic mean flow in the interaction region. In the
reference case shown in figure 7 (b), the recirculating mean flow just started to appear
in the interaction region but with notable striations in the normal to the slope direction,
resulting from the addition of the periodic mean flow present there. Whereas in the broad
beam case in figure 7 (c), the recirculating mean is not yet present, however the periodic
mean flow is completely formed, resembling a two-dimensional reflection case.

By the end of our simulations at 40 wave period, the recirculating mean flow has almost
fully formed in the broad beam case (figure 7 (f)), compensating the negative parts of
the spatially periodic mean flow in the interaction region. For the narrow beam and
reference cases, the recirculating mean flow has continued to grow and viscous dissipation
has started to balance the acceleration of the mean flow (figure 7 (d) and (e)).

As the mean flow grows, it also refracts the primary wave field, enhancing the bending
of the phase lines in zonal direction. The wave diffracts in the horizontal plane and this
diffraction creates a laterally bent wave field. This initial bending is later enhanced due to
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Figure 9. The zonal velocity of the primary harmonic (left column), zonal mean velocity (central
column) and density field with isopycnals in the central vertical plane y = 0m for different
incident wave amplitudes (a), (b) and (c) U = 0.5 mm s−1, (d), (e) and (f) U = 1.0 mm s−1,
(g), (h) and (i) U = 1.5 mm s−1, (j), (k) and (l) U = 2.5 mm s−1

the refraction caused by the recirculating mean flow. In figure 8, we show the fundamental
wave field in the horizontal plane at two points in time, after 10 wave periods and after
40 wave periods. We can see that at 10 wave periods, the wave field for the narrow
beam and control cases already show prominent bending of their phase lines. The wider
beam experience less diffraction and hence are not bent in the beginning, except at the
boundaries of the beam. At the end of 40 wave periods, we can see that the wave field is
severely refracted in all cases because of the recirculating mean flow.

5.2. Effect of incident wave amplitude

The mean flow induced by the internal wave beam is forced through the nonlinear
term in the mean momentum equation, which is proportional to the square of the wave
amplitude. Thus, we expect the amplitude of the mean flow generated by the internal
wave beam to be proportional to the square of the wave amplitude.

As we mentioned in the introduction, the amplitude of the reflected wave will be ampli-
fied by a factor γ. Moreover, in the interaction region near the slope, the superposition of
the incident and the reflected wave further increases the amplitude. This can lead to the
overturning of isopycnals near the slope and wave breaking. The amplitude of the wave
in our reference case is high enough to have wave breaking close to the slope. In order to
study the effect of wave amplitude on the generation of mean flow without any additional
effects due to wave breaking, we look at the reflection of waves of lower wave amplitudes.
Figure 9 shows the zonal velocity fields of the primary harmonic in the left column, the
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Figure 10. Normalised mean vertical vorticity ζ integrated in the horizontal half-plane y > 0m
at z = −0.57m for (a) different wave amplitudes for ν = 1.0 × 10−6m2 s−1 and (b) different
fluid viscosity values for U = 1mm s−1.

zonal mean velocity in the central column and the density field with isopycnals in the
right column in the vertical plane, y = 0, for different wave amplitudes.

We can notice that for lower amplitude cases, the reflected wave is more prominent.
The wave field close to the slope suffers less refraction too in lower amplitude cases. This
implies that the near absence of reflected wave in the reference case (shown here in the
bottom row of figure 9) is due to the dissipation of incident wave due to wave breaking
on the slope. The strong mean flow close to the slope refracts the wave field and steepens
it until it breaks.

We can notice that as wave amplitude increases, the vertical displacements of the
isopycnals in the interaction region increases and for U = 2.5×10−3 m s−1 (the amplitude
of the reference case presented in section 4) the isopycnals overturn close to the slope.
When the isopycnals overturn, the wave breaks and the wave field is disturbed. The
source term for the recirculating mean flow comes from the gradients of wave velocity
field especially in the interaction region because the resulting amplitude is higher there.
When the wave field is disturbed because of breaking, this source term is diminished.

When the wave breaks, the momentum of the wave is transferred to the mean flow.
This is a yet another source of a mean flow; the one caused by the breaking of the wave
on the slopes. However, we find that the mean flow caused by the breaking is not strong
enough to compensate for the lost recirculating mean flow due to breaking. Thus, we see
that for the high amplitude reference case, the mean flow is smaller than what we would
expect following the trend of the amplitude of the mean flow being proportional to the
square of the wave amplitude.

As mentioned earlier, the mean flow due to the interaction of incident and reflected
waves is spatially periodic and does not grow in time. We expect only the recirculating
mean flow to grow in time. The recirculating mean flow in the horizontal plane due to
the finite lateral width of the beam can be quantified by the mean vertical vorticity
ζ integrated in the half domain y > 0. Figure 10(a) shows the mean vertical vorticity
ζ normalised with the square of the wave amplitude U2 and the time period T of the
wave. We observe that for lower amplitudes, the growth of the normalised mean vertical
vorticity collapses into a linear profile, which proves that the evolution of the mean
vertical vorticity is proportional to the square of the wave amplitude. For the higher
amplitude case, we notice a departure from the linear profile, as time progresses. Indeed,
in this case, the wave breaks at the slope and the reflected wave is almost absent, thus
diminishing the contribution towards the growth of the mean vorticity.
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Figure 11. The zonal velocity of the primary harmonic (left column), zonal mean velocity
(central column) and the zonal velocity of the second harmonic (right column) for fluid viscosity
values ν = 0.1 cm2 s−1 (a,b,c), ν = 0.5 cm2 s−1 (d,e,f), ν = 1.0 cm2 s−1 (g,h,i) and
ν = 2.0 cm2 s−1 (j,k,l) for the wave amplitude U = 1mm s−1.

5.3. Effect of fluid viscosity

The viscosity of the fluid is essential to induce irreversible mean flow by waves.
However, the viscosity also leads to the attenuation of the wave field that induce the
mean flow. Moreover, the induced mean flow also gets affected by the viscosity. In figure
10 (b) we show the growth of the normalised mean vertical vorticity integrated in the
half plane y > 0 at height z = −0.57m, for different values of viscosity. We can note that
the growth of the mean vertical vorticity decreases with increasing viscosity for a given
wave amplitude. When we decrease the wave amplitude to U = 0.5 mm s−1 for the fluid
viscosity value ν = 0.1 cm2 s−1, we can see in figure 10 (a) that the growth of the mean
vertical vorticity increases with viscosity.

The equations derived by Kataoka & Akylas (2015) depict the role of viscosity in
generating the mean flow. Equation for the evolution of mean flow of Kataoka & Akylas
(2015) suggests that for a quasi-steady internal wave beam of finite extent, there will be
no mean flow in the absence of viscosity. This can be thought of as a consequence of the
non-acceleration theorem. However, the effect of viscosity on the mean flow is not easy to
infer from the coupled system of equations of Kataoka & Akylas (2015), because of the
wave-mean flow coupling given by the wave equation given in Kataoka & Akylas (2015).
The wave field that generates the mean flow is also affected by the viscosity.

In our case, for a fixed wave amplitude (U = 1mms−1), when the value of the kinematic
viscosity increases, the attenuation of the amplitude of the wave increases and the growth
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of the mean flow decreases. Figure 11 shows the zonal wave velocity (left column), zonal
mean flow velocity (central column) and the zonal velocity of the second harmonic (right
column) for different fluid viscosities with fixed wave amplitude. We can see that the
mean flow and the second harmonics are diminished as fluid viscosity increases for the
given wave amplitude.

6. Energy budget

The results from our laboratory experiment and numerical simulations reveal that a
strong recirculating mean flow is induced by the finite-width internal wave beam as it
reflects on the slope. We argued that the recirculating mean flow is due to the finite-width
of the beam and is independent of the spatially periodic mean flow induced on the slope
due to the interaction of incoming and reflected waves. In our results, we also see that
the energy of the reflected wave is highly diminished. There is hardly any reflected wave
visible in our reference case in figures 3 (a), (b). We noted that the internal wave beam
in the reference case breaks and dissipated its energy on the slope while also inducing
a strong mean flow (see section 5.2 and figures 9 (k) and (l)). Most of the energy of
the incoming internal wave beam is either dissipated or transferred to the mean flow
and higher harmonics in the reference case. We are evaluating the energy balance of
the reference case in our simulation in this section. We are also estimating the power
transferred from the wave to the mean flow and the higher harmonics.

6.1. Energy balance of the reference case

The domain V chosen for calculating the energy budget includes all of our numerical
domain except for regions close to the boundaries to avoid the forcing region and sponge
layers. Within the numerical domain, the domain V is [7,230] cm in x-direction, [-358,358]
cm in y-direction and from the slope to 150cm in z-direction. Let A be the surface of the
our domain V with a unit normal n.

The total energy balance equation in the domain can be written as,

d

dt

∮
V
edV = −

∮
A
u(e+ p′).ndA+

∮
V

(
νu.∇2u +

κ

N2
b∇2b

)
dV (6.1)

where

e =
1

2
u2 +

b2

2N2
, b = −ρ

′g

ρ0
(6.2)

and ρ′ and p′ are density and pressure anomalies.

The first term on the right hand side of equation 6.1 is the net flux of energy into the
domain and the last term is the dissipation of energy in the domain. So we may rewrite
equation 6.1 as,

∂E

∂t
= (Energy influx− Energy efflux) + Dissipation (6.3)

Figure 12 (a) shows the terms of equation 6.3 for the reference case. We can notice that
the energy in the control volume becomes steady by around 15 wave period and then
there is not much changes happening as far as the integral energy balance is concerned.
Almost all of the energy that comes into the domain is dissipated within the domain,
making the energy going out of the domain very small.
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Figure 12. (a) Energy balance for the reference case of reflection, (b) energy balance terms for
the primary harmonic field, (c) energy balance terms for the mean fields, and (d) rate of energy
transfer from the primary hamonic to the mean flow and higher harmonics as percentage of the
influx of primary harmonic wave energy.

6.2. Energy balance of wave and mean fields

The energy balance equation can be written for the fundamental wave and mean fields
separately. For ψ = (u, v, w, ρ, p′), we can write

ψ = ψ̃ + εψ +O(ε2)... (6.4)

where ψ̃ is the fundamental wave field and ψ is the mean flow field.
Using the decomposition 6.4 in the energy balance equation 6.1, we can write,

d

dt

∮
V
ẽ dV = −

∮
A
ũ(ẽ+ p̃′).n dA+

∮
V

(
νũ.∇2ũ +

κ

N2
b̃∇2b̃

)
dV + F (ψ̃ψ̃) (6.5a)

d

dt

∮
V
e dV = −

∮
A
u(e+ p′).n dA+

∮
V

(
νu.∇2u +

κ

N2
b∇2b

)
dV +G(ψ̃ψ̃) (6.5b)

where

ẽ =
1

2
ũũ +

b̃ b̃

2N2
, e =

1

2
u u +

b b

2N2
(6.6)

and F and G are functions containing work by Reynolds stresses. The function G
represents the source of mean flow energy. We will assume that the mean flow is induced
by only the fundamental wave through the action of Reynolds stresses. The higher
harmonics can also induce some mean flow, but the transfer of energy from higher
harmonics to the mean flow is negligible compared to that from fundamental wave because
of the difference in their amplitudes. So the source of the mean flow energy is the wave
energy in the domain. The function F represents the sink of energy from the wave field.
This includes the energy transferred from the wave to the mean flow as well as to the
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Run Ei Eo Ew2m Ew2h D

U0.5 0.88 0.04 (4.5%) 0.02 (2%) 0.26 (29%) 0.58 (65%)

U0.5-ν0.1 0.89 0.32 (36%) 0.04 (5%) 0.24 (27%) 0.29 (32%)

U1-ν0.1 3.75 1.07 (28%) 0.22 (6%) 1.95 (52%) 0.52 (14%)
U1-ν0.5 3.66 0.46 (12%) 0.25 (7%) 1.43 (38%) 1.57 (43%)

U1 3.57 0.18 (5%) 0.29 (8%) 0.96 (27%) 2.12 (59%)
U1-ν2.0 3.44 0.08 (2%) 0.22 (6%) 0.76 (22%) 2.45 (70%)

U1.5 8.29 0.47 (6%) 1.43 (17%) 1.82 (22%) 4.47 (54%)

U2.5-HalfWb 10.13 0.54 (5.3%) 2.69 (27%) 1.48 (15%) 5.27 (52%)
Reference 22.93 0.69 (3%) 8.63 (38%) 2.64 (12%) 10.65 (47%)

U2.5-TwiceWb 49.06 2.85 (6%) 14.12 (29%) 8.27 (17%) 23.19 (47%)

Table 2. Energy balance terms (µW ) for the wave and mean fields at the end of 40 wave
periods. Ei, Eo, Ew2m, Ew2h and D are the wave energy influx, the wave energy efflux, the flux
of energy from wave to the mean flow, the flux of energy from wave to higher harmonics and
the dissipation of wave energy in the domain, respectively. The percentage values in parentheses
are with respect to the wave energy influx, Ei.

higher harmonics. We can estimate the source of the energy for the mean flow from the
mean flow energy balance equation and the sink of wave energy from the wave energy
balance equation.

We may rewrite the equations 6.5 as

∂Ewave
∂t

= (Influxwave − Effluxwave) + Dissipwave + (Sink) (6.7)

∂Emean
∂t

= (Influxmean − Effluxmean) + Dissipmean + (Source) (6.8)

The energy balance terms for the wave and mean fields integrated in the energy budget
domain, are shown in figures 12 (b) and (c), respectively. We can identify the sink of
energy of the wave field and the source of energy for the mean field. The difference
between the sink of wave energy and the source of mean flow energy can be estimated
to be the energy transferred to higher harmonics. The transfer of energy from the wave
to the mean flow and to the higher harmonics are shown in figure 12 (d) as a percentage
of the total wave influx of energy into our domain. We find that after 40 wave periods,
about 38% of wave energy entering the domain is transferred to the mean flow, and about
12% of it is transferred to the higher harmonics, with most of the remaining is dissipated
within the domain.

6.3. Discussion

The influx of energy of the primary harmonic wave Ei, the efflux of energy of the
primary harmonic wave Eo, the power transferred from the primary harmonic wave to
the mean flow Ew2m, the power transferred from the primary harmonic wave to higher
harmonics Ew2h and the dissipation rate of the primary harmonic wave energy D, are
shown in table 2 for all the simulations at the end of the simulation (40 wave periods).
The values in the brackets are the values as percentage of the primary wave energy influx.

We can notice that the energy flux into the mean flow (Ew2m) increases with the
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Figure 13. Normalised energy flux to (a) the mean flow and (b) the higher harmonics,
plotted as a function of the Froude number. The cases with the same kinematic viscosity
(ν = 1.0× 10−6m2 s−1) and wave beam width (Wb = 1.5m) are shown in red colour.

incident wave amplitude. As we have mentioned before, the amplitude of the mean flow
is proportional to the square of the wave amplitude since mean flow is forced by the
divergence of Reynolds stress. The energy of the mean flow is, therefore, proportional
to the fourth power of the wave amplitude. Thus, the energy flux into the mean flow as
percentage of the influx of wave energy increases as the square of the wave amplitude.
We can notice this trend in the table 2 in the cases U0.5, U1, U1.5 and Reference. The
energy flux into the mean flow (Ew2m) normalised with the influx of wave energy (Ei) is
shown with respect to the Froude number in figure 13(a).

We also can see that the efflux of primary harmonic wave energy Eo (associated with
the reflected wave) remains almost the same (varies between 3% and 6%) with the increase
in the incident wave amplitude. In the reference case, we have seen that the wave breaks at
the slope and there is hardly any reflected wave. In cases of lower incident wave amplitude,
the reflected wave is mostly dissipated as it propagates away from the slope. The reflected
wave suffers more dissipation because the wave is focused after reflection. The difference
for lower amplitude cases, however, is that in the absence of wave breaking, the interaction
between incident and reflected wave gives rise to prominent second harmonics. We can
notice in the table 2 that the power transferred to the higher harmonics as percentage of
the influx of wave energy decreases with the increasing amplitude with a sudden drop for
the largest amplitude in the Reference case (when the wave breaks). The energy flux into
the higher harmonics (Ew2h) normalised with the influx of wave energy (Ei) is shown
with respect to the Froude number in figure 13(b).

For the simulations with different values of kinematic viscosity, namely, U1-ν0.1, U1-
ν0.5, U1 and U1-ν2.0, we can see that the the outgoing flux of primary harmonic wave
energy decreases with increasing viscosity. Indeed, the reflected wave is dissipated more
when the viscosity increases. We can also note that the disspation rate of the wave energy
in the domain increases with the increase in the viscosity. However, the surprising thing
is that the energy flux to the mean flow remains almost the same (varies between 6% and
8%) with the change in viscosity. This implies that the power transferred to the mean flow
depends only on the Froude number and is independent of the kinematic viscosity. The
power transferred to the higher harmonics can be seen to be decreasing with increasing
viscosity. This can be because of the dissipation of the primary wave in the interaction
region leading to reduced transfer to the higher harmonics.
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7. Conclusions

We have studied the reflection of a three-dimensional internal wave beam on a slope
using laboratory experiment and numerical simulations. The reflection of an internal
wave beam with a finite lateral width is fundamentally different from that of an infinite
plane wave or two-dimensional wave beam because of the presence of a strong jet-like
Eulerian mean flow induced by the wave beam. The wave induced mean flow diminishes
the generation of second harmonic wave close to the slope thereby making it difficult for
resonant interactions as predicted by Thorpe (1987).

The Eulerian mean flow observed in the laboratory experiment and numerical sim-
ulation has two distinct mean flow structures namely, a spatially periodic mean flow
produced by the nonlinear interaction of incident and reflected waves near the slope
and a jet-like mean flow induced by the wave-wave interaction of the finite-width wave
beam. The spatially periodic mean flow is confined to the interaction region close to the
slope and its amplitude is constant in time. However, the jet-like mean flow grows in
time with a return flow component outside the wave beam, forming a pair of vortices
in the horizontal plane. The growing jet-like mean flow dominates the spatially periodic
mean flow as time passes with the periodicity of the latter forming distinct striations in
the mean flow in the interaction region. The generation of a similar jet-like mean flow
through wave-wave interactions was observed for a propagating internal wave beam with
finite lateral width by Bordes et al. (2012). Kataoka & Akylas (2015) derived a coupled
system of equations explaining the evolution of the mean flow induced by a finite-width
internal wave beam.

The jet-like mean flow is forced by the divergence of Reynolds stress of the wave field.
So the forcing of the mean flow is proportional to the square of the wave amplitude. The
forcing of the mean flow also depends on the spatial variations of the wave field. This
is also evident from the coupled system of equations of Kataoka & Akylas (2015). They
find that the lateral spatial variations of the wave field is essential for the growth of the
jet-like mean flow. The wave beam with finite lateral width diffracts in the horizontal
plane resulting in the bending and spreading of the wave crests creating lateral variations
in the wave beam. Apart from the spatial variations, viscosity is also essential for forcing
the mean flow. However, viscosity also diffuses the wave field decreasing the forcing of
the mean flow. In order to test these, we have performed numerical simulations varying
the lateral width of the wave beam, amplitude of the wave and the kinematic viscosity
of the fluid.

When the lateral width of the wave beam is decreased, we observed that the jet-like
mean flow appeared sooner, closer to the wave generator and was observed to grow faster.
The diffraction of the wave beam in the horizontal plane depends on the aspect ratio
As = λx/Wb. When the width is decreased (As increases), the diffraction is more efficient,
increasing the forcing of the mean flow. Thus, the mean flow grows faster and reaches
saturation sooner than for reference case. When the width of the beam was increased,
the growth of the mean flow was slower.

Increasing the incident wave amplitude increases the amplitude of the induced mean
flow quadratically. For the highest wave amplitude we studied, the wave breaks at the
slope and the generation of mean flow is less efficient. This is because the wave breaking
perturbs the wave field diminishing the streaming of jet-like mean flow.

The generation of irreversible mean flow requires fluid viscosity. However, we find that
increasing the fluid viscosity decreases the growth rate of the mean flow for a given wave
amplitude. Indeed, fluid viscosity acts on the wave field as well and attenuation of the
wave amplitude results in the decreae of the induced mean flow amplitude. However,
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when we decrease the wave amplitude, we notice that mean flow amplitude decreases
with decreasing fluid viscosity.

The energy flux into the mean flow and the second harmonic wave was estimated from
the energy balance equation for the primary wave field (the sink term in the energy
balance equation). The energy balance equation for the mean field gave an estimate of
the energy flux into the mean flow from the primary wave. The difference between the
sink of energy flux of the primary wave and the source of the mean flow was assumed
to be the energy flux into the second harmonic wave field. The following results were
observed from this analysis –
• The energy flux into the mean flow Ew2m normalised with the wave energy influx

Ei increases quadratically with the increase in Froude number. The energy flux into the
mean flow is proportional to the square of the mean flow amplitude and the influx of
wave energy is proportional to the square of the wave amplitude. Therefore, the energy
flux into the mean flow is proportional to the fourth power of the wave amplitude. As
mentioned above, in the highest amplitude case that we studied (reference case), we find
a departure from this trend because of wave breaking.
• The normalised energy flux into the second harmonic wave (Ew2h/Ei) decreases

with increase in the Froude number. This is in contrast with the predictions of weakly-
nonlinear theory. Indeed, all the wave amplitudes we studied are in the strongly nonlinear
regime.
• For different wave beam widths, the normalised energy flux into mean flow was

found to be higher for the reference case than both narrow (U2.5-HalfWb) and broad
(U2.5-TwiceWb) beam cases. This points towards a possible optimum aspect ratio for
maximum transfer of energy to the mean flow.
• The fluid viscosity does not seems to have any effect on the energy flux into the

mean flow. Indeed, the dissipation of the wave field decreases with the decrease of fluid
viscosity. However, this decrease in wave attenuation is reflected on a stronger reflected
wave and enhanced second harmonic wave; the enhancement of energy flux into second
harmonic wave being the result of a stronger reflected wave.

We have only analysed three of the parameters involved in the reflection of three-
dimensional internal wave beam, namely the wave amplitude, width of the beam and
fluid viscosity. The influence of parameters such as the slope angle, wave frequency or
stratification and no-slip boundary condition at the slope need to be studied in future.
The equations derived by Kataoka & Akylas (2015) should be re-written to shed more
light into the influence of some of these parameters in inducing a recirculating mean flow
by a finite-width internal wave beam. Attempts are underway by some of the authors
to find a simpler steady-state solution of the mean flow induced by a three-dimensional
internal wave beam of finite lateral width.

Another important effect that can influence the mean flow generated by the internal
wave beam is background rotation. Three-dimensional numerical simulations similar to
those presented in this paper are used to investigate the reflection of finite-width inertia-
gravity wave beams under different Rossby number. The authors are in preparation of
an article on that topic.

The laboratory experiment presented here was performed by Louis Gostiaux and
Nicolas Grisouard in the Coriolis platform at LEGI, Grenoble with the help of Samuel
Viboud during Nicolas’s PhD preparation with Chantal Staquet. The three-dimensional
numerical simulations were started by Matthieu Leclair. We thank them all for their
insights and contributions to this project. We also thank Hidenori Aiki for all his help in
running the NHOES code he developed.



Internal waves reflection 25

REFERENCES

Aiki, H. & Yamagata, T. 2004 A numerical study on the successive formation of meddy like
lenses. J. Geophys. Res. 109, (C6).

Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T. 2012 Experimental
observation of a strong mean flow induced by internal gravity waves. Physics of Fluids
24, 086602.

Cacchione, D. & Wunsch, C. 1974 Experimental study of internal waves over a slope. J. Fluid
Mech. 66, 223–239.

Chalamalla, V. K., Gayen, B., Scotti, A. & Sarkar, S. 2013 Turbulence during the
reflection of internal gravity waves at critical and near-critical slopes. J. Fluid Mech. 729,
47–68.

Dauxois, T. & Young, W. R. 1999 Near-critical reflection of internal waves. J. Fluid Mech.
390, 271–295.

Eriksen, C. C. 1982 Observation of internal waves reflection off sloping bottom. J. Geophysical
Research 87, 525–538.

Eriksen, C. C. 1985 Implications of ocean bottom reflection for internal wave spectra and
mixing. J. Physical Oceanography 15, 1145–1156.

Fan, Boyu, Kataoka, T & Akylas, TR 2018 On the interaction of an internal wavepacket
with its induced mean flow and the role of streaming. Journal of Fluid Mechanics 838.

Gostiaux, L., Dauxois, T., Didelle, H., Sommeria, J. & Viboud, S. 2006 Quantitative
laboratory observations of internal wave reflections on ascending slopes. Physics of Fluids
18, 056602.

Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves
generator. Experiments in Fluids 42, 123–130.
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Figure 4.1.1: (a) Schematic representation of the internal tide generation, propagation,
reflection and dissipation. Internal tidal beam can be seen reflecting on the continental
slope and the pycnocline. Image from Francis Auclair. (b) Global M2 1st mode internal
tide map (in-phase, cm). Notice that internal tide beams have finite lateral extent and
therefore are three-dimensional wave beams. Image from Egbert and Erofeeva (2014).
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I was born not knowing and have had only a little time to
change that here and there.

Richard Feynman, Letter to Armando Garcia J,
December 11, 1985

5
Three-dimensional inertia-gravity wave beams

The effects of rotation on streaming of amean flow by three-dimensional internal wave
beamswith finite lateralwidth are investigated in this chapter. With theCoriolis force provid-
ing a restoring force in addition to gravity, internal waves propagate as inertia-gravity waves
with a dispersion relation is given in equation 2.25.

Internalwaveswith frequencies close to theCoriolis frequency (near-inertial) are a ubiqui-
tous phenomenon in the ocean, and the inertial peak usually dominates the oceanic internal-
wave spectrum. As we mentioned in chapter 1, near-inertial waves in oceans are mostly gen-
erated by atmospheric disturbances through wind stress on the upper layers of the ocean.
Alford (2003a) has constructed a global map of the input of near-inertial energy shown in
figure 1.2.1(b). However, laboratory or numerical studies of inertia-gravity waves are not nu-
merous to the best of our knowledge. The effects of rotation on internal wave dynamics were
investigated almost exclusively in he context of plane inertia-gravity waves.

The dynamics of linear internal waves in the ocean taking into account the vertical and
horizontal component of Earth’s rotation (not assuming f-plane approximationmentioned in
section 2.2) was analysed by Gerkema and Shrira (2005b). They found that the horizon-
tal inhomogeneities in the Coriolis parameter enable a transition from super-inertial to sub-
inertial waves and thus effectively facilitates an irreversible transformation of large-scale into
small-scale motions providing a mechanism for mixing in the deep ocean.The propagation
of linear near-inertial waves in the specific case of β-plane approximation was considered in
Gerkema and Shrira (2005a).

Reflection of plane internal waves obliquely incident on a slope in a stratified rotating fluid
was examined by Thorpe (1997) using asymptotic analysis to study the nonlinear interac-
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tions in the reflection region. However, he also noted the presence of an along-slope lat-
eral drift when the field of the incident internal waves is anisotropic in lateral direction. This
anisotropy can be due to the presence of background rotation, background mean currents,
or local topography constraining the directionality of the wave field or where local sources
of waves exist. Later Thorpe (2000) summarised the effects of rotation on the reflection
of internal waves on a slope and concluded that for reflecting plane waves, the Lagrangian
along-slope drift is enhanced in the presence of rotation and a drift is generated even when
the incidence is normal to the slope. The Eulerian upslope current was also found to be en-
hanced by a factorO(2).

Weakly nonlinear reflection of internal waves from uniform slopes in a stratified rotat-
ing fluid was studied under Traditional and Non-traditional approximations by Gerkema
(2006). They examined the effects of Non-traditional approximations on the resonant forc-
ing of second harmonics and found that Non-traditional effects favour resonant forcing at
near-tidal frequencies.Gerkema (2006) also discussed the results from two-dimensional nu-
merical simulations of reflection of internal wave beams.

Hitherto, studies of inertia-gravity waves were limited to considering propagation and re-
flection of plane internal waves or internal wave beams in a two-dimensional vertical plane.
There is no literature available discussing a three-dimensional inertia-gravity wave beam to
the best of our knowledge.

5.1 Numerical model and forcing

Weare using themodel calledNHOES(Non-HydrostaticOceanmodel for Earth Simulator)
developed byH. Aiki (Aiki and Yamagata, 2004). Thismodel solves non-hydrostatic incom-
pressible Boussinesq equations descretised with Arakawa’s C-grid.The model introduces a
viscous term in the momentum equation with a kinematic viscosity, ν , and a diffusive term
in the advection equation with a diffusivity, κ. The governing equations 5.1 are solved us-
ing a finite volume method in Cartesian coordinates with uniform grid spacing. A leap-frog
scheme is used for time integrations. We used a linear equation of state depending on salinity
alone in order to simulate the laboratory experiment.

For the velocity vectoru, pressure p and density ρwith a reference density ρ0, the govern-
ing equations can be written as follows.

∂u

∂t
+ (∇× u)× u+

1

2
∇u2 = −∇p− f êz × u− ρg

ρ0
ez + ν∇2u+ Fxêx (5.1a)

∂ρ

∂t
+∇.(uρ) = κ∇2ρ (5.1b)

∇.u = 0 (5.1c)

where ν and κ are the kinematic viscosity and diffusivity of the fluid respectively, f is the
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No. ω (rad s−1) f (s−1) N (s−1) θ (deg) Cg (m s−1) f/ω

1 0.1991 0.15 0.42 19.5 0.0048 0.7534
2 0.2349 0.20 0.42 19.5 0.0036 0.8514
3 0.2742 0.25 0.42 19.5 0.0026 0.9117
4 0.3157 0.30 0.42 19.5 0.0017 0.9503

Table 5.1.1: Table of simulations performed with their relevant parameters. The simu-
lations are done for 4 different values of Coriolis parameter f keeping the angle of prop-
agation of the wave beam with the horizontal axis θ kept as a constant by changing the
wave frequency ω appropriately. The Brunt-Väisälä frequency N is also fixed for all sim-
ulations. The group velocity Cg and a non-dimensional parameter f/ω are also listed for
the simulations.

Coriolis parameter and g is the acceleration due to gravity andFx is the wave forcing.
The following forcing function is added to the right hand side of the x-momentum equa-

tion at the left boundary of the domain.

Fx(0, y, z) = UEyEz

(
(1−e−

5t
T )ω sin(kzz−ωt)+

(
5t

T

)
e−

5t
T cos(kzz−ωt)

)
(5.2a)

Ez =
1

2

[
1 + tanh

{
3

2
tan

(
− π

2
+

1

2
min[2π,max{0, π(nλ + 1)− kz|z − z0|}]

)}]
(5.2b)

Ey =
1

2

[
1 + tanh

{
3

2
tan

(
− π

2
+

1

2
min[2π,max{0, kz(W 1

2
b − |y|)}]

)}]
(5.2c)

where Fx is the wave forcing in the zonal direction with a velocity amplitude U , wave fre-
quency ω, wave period T , and vertical wave number kz . The forcing at the left boundary
generates a plane wave in a vertical plane for the zonal velocity, u and density, ρ, which is
limited by a smooth envelope in y and z directions to produce a wave beam of finite dimen-
sions. The envelop function Ez is centred at z0 and permits nλ number of wavelengths in
the wave beam. Thewidth of the wave beam in lateral direction is given byWb = 2W 1

2
b. We

have used nλ = 4 and kz = 48m−1 for all the simulations.
The numerical domain is of dimensions 2.56m in x-direction, 7.68m in y-direction and

0.8m in z-directionwith resolutions of∆x = ∆y = 0.01m and∆z = 0.005m. We have a
linear background stratification with a buoyancy frequency,N = 0.42s−1. The background
rotation is varied in the simulations. The sloping platform with a slope angle of α = 5.710
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Figure 5.1.1: The zonal velocity u fields for the (left column) primary harmonic wave
(filtered around the forcing frequency ω), (central column) Eulerian mean (averaged
over 3 wave periods) and (right column) second harmonic wave (filtered around twice
the forcing frequency), for the numerical experiments listed in table 5.1.1 at 90T.
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(tan α = 10%) is implemented by a partial step scheme. The boundary condition at the
slope is of free-slip. The domain is open at the left and right zonal boundaries (x-direction),
with awave forcing at the left and a sponge layer of thickness 0.2m at the right boundary. The
top of the domain is a free surface which is calculated using a semi-implicit scheme.

The numerical simulations performed are listed in table 5.1.1. Simulations are done for
four different values of background rotation rates. We chose to maintain the angle of propa-
gation of the incident wave beam as θ = 19.5o by changing the value of the wave frequency
ω appropriately. The value of θ was chosen to be the same as that for the cases without back-
ground rotation presented in the previous chapter. This is to keep the geometry of the reflec-
tion that same, so that we can distinguish the effect of background rotation on the forcing of
the mean flow and reflection.

A natural non-dimensional parameter that can be identified is the ratio of the timescales
of the primary harmonic wave ω and the background rotation f . The value of f/ω is close
to 1 implying the waves are near-inertial. We are presenting results for four values of f/ω.

The group velocity of the wave beams depend on the Coriolis parameter f and decreases
with increasing f (for constant θ) as shown in table 5.1.1. Therefore, the energy of the in-
cident wave beam takes longer time to reach the slope for cases with higher rotation rates.
We have run all the simulations for 90 wave periods in order to ensure that the wave beam
had time to propagate and complete the reflection in all cases. For the highest rotation rate
f/ω = 0.9503, the simulation was run for 150 wave periods, but no significant changes
were observed after 90wave periods.

5.2 Induced mean flow and effect of Coriolis force

The velocity fields were filtered using a sliding band-pass filter centred at the forcing wave
frequency andwith awindowof threewaveperiods toobtain theprimarywave velocity fields.
A similar filter centred at twice the wave frequency was used to get the fields for the second
harmonicwave. TheEulerianmeanflowfieldswereobtainedusing a sliding time averageover
three wave periods. Figure 5.1.1 shows the results from the simulations for different values
of f/ω. The left column shows the zonal velocity field of the primary harmonic wave, the
centre column shows the zonal Eulerianmean velocity and the right column shows the zonal
velocity field of the second harmonic wave.

We can readily notice in the figures in the central column of 5.1.1 that the Eulerian mean
velocity decreases drastically with increasing rotation rate (increasing f/ω) and the ampli-
tude of the mean velocity is weaker than the non-rotating cases in chapter 4. We can also
notice in figure 5.1.1(b) that the mean velocity develops vertically outside the wave beam.
This is due to the induced mean velocity being in geostrophic balance. In the highest rota-
tion rate we analysed, there was no Eulerianmean velocity induced by the wave beams as can
be seen in figure 5.1.1(k).

In the leftcolumnoffigure5.1.1, we can see theprimaryharmonicwave. Wecannotice that
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Figure 5.2.1: The zonal velocity fields of the primary harmonic (left column), the lon-
gitudinal velocity fields of the primary harmonic (central column) and the zonal Eulerian
mean velocity fields (right column) for the numerical experiments listed in table 5.1.1 at
90T.
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the reflected wave is nearly absent in all cases, suggesting that almost all of the incident wave
energy is either dissipated or transferred to the mean flow or higher harmonics. We can also
observe that the incidentwave beams are attenuated as they propagate towards the slope. The
attenuation increases in severity with the increase in the rotation rate, somuch so that for the
highest rotation rate, the incident wave hardly reaches the slope in figure 5.1.1(j). Therefore,
the interaction of the incident and reflected wave beams close to the slope is suppressed in
the case of higher f/ω. This is why we do not see the spatially periodic Eulerian mean flow
in these cases (figures 5.1.1(h) and (k)).

In the right columnof figure 5.1.1, we can see the second harmonic waves generated by the
interaction of incident and reflected wave beams. As wementioned above, the interaction of
incident and reflected wave beams occur only for lower rotation rates. Thus we can clearly
see that the second harmonic waves are generated only for cases with lower f/ω (figures
5.1.1(c) and (f)). For the lowest value of f/ω, in figure 5.1.1(c), we can also notice that the
second harmonic wave beam is refracted by the vertically developing zonal mean flow as it
propagates away from the slope.

The velocity fields presented in figure 5.1.1 suggest that the wave momentum is not trans-
ferred to themean flow or higher harmonics for cases with higher background rotations. The
zonal and lateral velocity (u and v, respectively) fields of the primary harmonic and the Eu-
lerian mean velocity fields in the horizontal plane z = −0.57m are shown in figure 5.2.1.
The lateral velocity v of the primary harmonic is forced by the Coriolis force (fu). There-
fore, the amplitude of the lateral velocity can be seen to be increasing with increasing f/ω
(central column in figure 5.2.1). We can also see the mean flow decreasing with increasing
f/ω.

We are forcing the system in the zonal direction at the left boundary wall. In the presence
of background rotation, the zonal velocity of the inertia-gravity waves forces wavemotions in
the lateral direction. Thus, with background rotation, the zonal wavemomentum is deflected
by theCoriolis force in the lateral direction, causing lesser transfer to the zonalmeanmotions
than in the case without rotation. As f/ω increases, the Coriolis force increases andmost of
the zonal wave momentum is deflected in lateral direction, causing stronger lateral velocity
and no zonal mean flow in figure 5.2.1(k) and (l), respectively.

The deflection of zonal wave momentum to force wave motions in the lateral direction
leaves a very weak forcing for themean vertical vorticity in the horizontal plane, unlike in the
cases without rotation. We can see the mean vertical vorticity (in colour) andmean velocity
vectors in the horizontal plane z = −0.57m in figure 5.2.2 for the simulations with f/ω =
0.7534 and 0.8514. For simulations, with higher f/ω, the mean vertical vorticity field is
too weak to be displayed in the same scale. We can observe an asymmetric vortex dipole for
f/ω = 0.7534 in figure 5.2.2(a), but for f/ω = 0.8514 in figure 5.2.2(b), there is hardly
a coherent vortex structure within the beam. We can also note some strong vorticity in the
edge of the beam close to the forcing wall. This can be associated with Kelvin waves that
propagate along the forcing wall close to the wave envelop.

Thevortexdipole shown infigure5.2.2 grows in timeandcontinue to turn in thehorizontal
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Figure 5.2.2: Mean curl of the horizontal velocity fields (in colour in s−1) and the
velocity vectors (arrows) for the numerical experiments with f/ω = 0.7534 and
f/ω = 0.8514 at 90T.

plane. Since there is no fixed horizontal axis of symmetry, the evolution of the vortex field
can be quantified using the first moment of the vertical vorticity (which is also equal to the
mean momentum integrated in the horizontal plane) defined as follows.

Px =

∫
S
yΩzdxdy

(
=

∫
S
udxdy

)
(5.3)

Py = −
∫
S
xΩzdxdy

(
=

∫
S
vdxdy

)
(5.4)

where Ωz is the mean vertical vorticity in the horizontal plane. The integration is done in
an area avoiding the regions close to the boundaries. S is the area of integration defined as
(x, y) = (0.27 : 2.30,−2.20 : 2.20)m. The evolution of the components of the moment
of the mean vertical vorticity are shown in figure 5.2.3 (a) and (b). The evolution of the
moment for the case f/ω = 0 (the reference case in chapter 4) is also shown in black dotted
line. The amplitude of the moment is shown in figure 5.2.3 (c) and the angle made by the
moment with the x-axis is shown in figure 5.2.3 (d) for 90 wave periods.

We can readily notice that the mean vorticity is much weaker in the presence of back-
ground rotation. However, as with the non-rotating case, the x-component of the moment
in the horizontal planePx grows with time for rotating cases too, implying the growth of the
horizontal mean flow. The growth is lower as f/ω increases. The vorticity field is very weak
for higher values of f/ω, so we show only for f/ω = 0.7534 and f/ω = 0.8514. We can
notice in figures 5.2.3 (b) and (d) that the dipole vortex slowly oscillates with respect to the
x-axis. For f/ω = 0.8514, the dipole is making a larger angle with respect to the x-axis. This
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Figure 5.2.3: The components of the moment of the vertical vorticity (a) Px and (b)
Py in the horizontal plane z = −0.57m for f/ω = 0.7534 (red) and f/ω = 0.8514
(blue). The amplitude of the moment of vertical vorticity is shown in (c) and the angle
of the moment with respect to the x-axis is shown in (d). The black dotted line cor-
responds to f/ω = 0 (reference case in chapter 4), plotted here to show the effect of
background rotation.
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No. Ei Eo Ew2m Ew2h D

1 10.44 0.52 (5.0%) 0.72 (6.9%) 0.84 (8.0%) 8.35 (79.9%)
2 7.98 0.22 (2.7%) 0.36 (4.5%) 0.43 (5.4%) 6.96 (87.3%)
3 6.45 0.08 (1.0%) 0.13 (2.0%) 0.00 (0.0%) 6.24 (96.7%)
4 4.87 0.04 (0.8%) 0.00 (0.0%) 0.00 (0.0%) 4.83 (99.2%)

Table 5.2.1: Energy balance terms (µW ) for the wave and mean fields at the end of 90
wave periods. Ei, Eo, Ew2m, Ew2h and D are the wave energy influx, the wave energy
efflux, the flux of energy from wave to the mean flow, the flux of energy from wave to
higher harmonics and the dissipation of wave energy in the domain, respectively. The
percentage values in parentheses are with respect to the wave energy influx, Ei.

might be due to the domination of the vorticity arising from the edge of the wave beam

5.3 Energy budget

Wehave also performed energy budget of the system in the sameway as described in chapter
4 in order to estimate the transfer of energy from the wave to the mean flow. The energy
balance equations for the primary harmonic and mean fields can be written as follows.

∂Ewave

∂t
= (Influxwave − Effluxwave) + Dissipwave + (Sink) (5.5)

∂Emean

∂t
= (Influxmean − Effluxmean) + Dissipmean + (Source) (5.6)

We can identify the sink of energy of the wave field and the source of energy for the mean
field. The difference between the sink of wave energy and the source of mean flow energy
can be estimated to be the energy transferred to higher harmonics. In the table 5.2.1, the
influx of primary harmonic wave energy (Influxwave = Ei), the efflux of primary harmonic
wave energy associatedwith the reflectedwave (Effluxwave =Ei), the flux of energy from the
primary harmonic to the mean flow (Source = Ew2m), the flux of energy from the primary
harmonic to the higher harmonics (Sink − Source = Ew2h) and the dissipation rate of the
primary harmonic wave energy (Dissipwave =D) are shown.

We can notice that almost all of the incomingwave energy is dissipated in the domain. The
outgoing energy flux associatedwith the reflectedwave beam is very small (6% of the incom-
ing wave energy flux) even for the lowest value of f/ω and decreases further with increasing
f/ω. The rate of energy transfer from the wave to the mean flow and higher harmonics also
decrease with increasing value of f/ω.
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5.4 Conclusions

We have studied the reflection of three-dimensional internal wave beam under background
rotation using numerical simulations. We performed 4 simulations of varying Coriolis fre-
quencies. The angle of propagation of the wave beam was kept constant (same as the cases
in chapter 4) in all those simulations by varying the wave frequency accordingly, so that the
geometry of the reflection is the same. The amplitude of the zonal velocity of the wave, wave-
lengths, width of the beam and fluid viscosity are same as the reference case in chapter 4.
With the change in wave frequencies and Coriolis frequencies, the group velocities will also
change. In order to give the wave energy time to reach the slope in all our simulations, we
performed the simulation for 90 wave periods.

We can see that the mean flow is highly diminished in the presence of rotation (even for
the lowest f/ω case, the mean flow is 2.5 times lower than the reference case in chapter 4)
and continue to decrease as f/ω is increased. As f/ω approaches the value of 1, there is no
mean flow induced by the wave (in the case of f/ω = 0.9503 in our simulations).

In the presence of background rotation, the zonal momentum is deflected by the Corio-
lis force to lateral direction in order to force wave motions in that direction. The forcing of
lateral wave motions decreases the forcing of the inducedmean flow. Themean velocity that
is present for lower f/ω values is also deflected by the Coriolis force, thereby distorting the
dipole vortex structure in the horizontal plane.

The growth of the mean flow can be quantified using horizontal moment of the vertical
vorticity in a horizontal plane z = −0.57m. We noticed that the growth of the mean flow
decreases with increasing f/ω. The dipole vortex formed by the mean flow slowly oscillates
with respect to the x-axis.

Wealsoperformed the energybudget (in the sameway asmentioned in chapter 4) inorder
to estimate the energy flux into the mean flow and higher harmonics. We find that in all our
cases, almost all of the wave energy (more than 80%) is dissipated in the domain and the
dissipation increases with f/ω. The energy flux into the mean flow and second harmonics is
very small (less than 10%) in the case of lowest f/ω and it decreases further with increasing
f/ω. For the highest value of Coriolis frequency we studied (f/ω = 0.9503), the energy
flux into the mean flow and second harmonics is less than 0.1%.

Thepropagation and reflectionof three-dimensional inertia-gravitywavebeamswithfinite
lateral extent have never been studied before, to the best of our knowledge. The effect of
Coriolis force on the generation of mean flow by internal wave beams is yet to be explained
analytically. There are ongoing attempts by some to derive a steady state solution for the
propagation of inertia-gravity wave beams with finite lateral extent in collaboration with the
author.
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It doesn’t matter how beautiful your theory is, it doesn’t mat-
ter how smart you are. If it doesn’t agree with experiment, it’s
wrong.

Richard Feynman, on scientific method (talk)

6
Laboratorymodelling of AntarcticCircumpolar

Current

Antarctic Circumpolar Current (ACC) is a major eastward flowing ocean current in
the Southern Ocean around the continent of Antarctica. ACC is the only ocean current that
completes a circumpolar loop unobstructed by any landmasses. ACCwas discovered by the
English astronomer, Edmund Halley*, while he was surveying the Southern ocean on board
HMS Paramore during 1699-1700. Ever since that, ACC has been notorious among many * of Halley’s

comet famesailors for its strength and the rough seas it creates.
The Antarctic Circumpolar Current is often called the “great ocean conveyor”, as it con-

nects the Atlantic, Indian and Pacific oceans and facilitates the transport of mass and energy
among these ocean basins (figure 6.0.1). It is one of the largest ocean current with a mean
transport of about 100-150 Sverdrups*. In the Drakes passage (the narrowest part of the * 1 Sverdrup =

106m3s−1Southern ocean at southern tip of South America), the ACCwasmeasured usingmoored in-
struments in the upper 2.5 Km and it was estimated to be carrying around 118-143 Sverdrups
of ocean water (Whitworth III, 1983) However with the recent measurements, it has been
found that these estimates might be short by about 30% (Donohue et al., 2016).

The northern boundary of the ACC is defined by the Sub-antarctic Front which is found
between 48oS and 58oS in the Pacific and Indian oceans and between 42oS and 48o in the
Atlantic. The southern boundary is defined by an upwelling region called the Antarctic Di-
vergence (Nowlin and Klinck, 1986). However, Orsi et al. (1995) proposes the southern
edge of the Upper Circumpolar Deep Water to be the southern edge of the ACC. These put

95
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Figure 6.0.1: The map shows the speed of the clockwise Antarctic Circumpolar cur-
rent on May 12, 2006, increasing from slow-moving blue water to dark red indicating
speeds above one mile per hour. (Image courtesy: M. Mazloff, MIT; Source: San Diego
Supercomputer Center, UC San Diego)

the southern boundary of the ACC to be roughly between 60oS and 70oS.

The forcing of ACC comes from strong, persistent westerly winds with an average wind
speed of 15 to 24 knots in the southern ocean. It can be found that the surface wind stress
is enough to drive ACC (the velocity of the current being the result of a balance between
the surface wind stress and bottom friction). However, the mechanisms by which the input
momentum exits the system is still an active topic of research. The balance among the input
surface wind stress, form stress across bottom topography, interfacial form stress and the net
meridional transport in each layer contributes to the average transport in theACC.Themean
velocity of ACC is about 10 cm s−1, rising to about 2-3 times this value near fronts.
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Figure 6.1.1: (a) Strong westerly winds (grey) over the Southern Ocean force the
Antarctic Circumpolar Current (blue). The current would keep accelerating over time
except that it becomes unstable, giving rise to strong eddies that are visible to satellites
as bumps or dips in sea surface height. Although the mean current at depth is weak,
eddies (green) can be strong, leading to internal wave generation by flow over rough to-
pography. The internal waves then generate turbulence (red) that provides a source of
energy for the mixing of abyssal waters, which, in turn, hastens the global overturning
circulation (Image from MacCready (2014)). (b) Energy cascade in the southern ocean.

6.1 Dissipation of energy in the SouthernOcean

The Antarctic Circumpolar Current is considered as one of the main sources of mixing in
oceans, asmentioned in the chapter 1. Recent observations byGarabato et al. (2004a) in the
southern ocean have shown that the interaction of ACC with the ocean bottom topography
can generate internal waves which transport momentum vertically contributing to bottom
friction. These waves break in the ocean interior leading to turbulent mixing playing an im-
portant role in the upward transport of water closing the meridional overturning circulation
(Polzin et al., 1995).

The generation and dissipation of internal waves by geostrophic motions impinging on
ocean topography was studied theoretically by Nikurashin and Ferrari (2010). They used
weakly nonlinear theory and idealised two-dimensional simulations to study the generation
of waves by the mean flow and the feedback of the dissipating waves on the zonally averaged
mean flow. They found that the waves generated at steep topographies drive vigorous in-
ertial oscillations. The strong vertical shear associated with these inertial oscillations drive
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enhanced wave breaking and high mixing rates above rough topographies. The theoretical
estimates agree well with the observations of Garabato et al. (2004a).

Nikurashin and Ferrari (2011) estimated the global distribution of generation of internal
waves by ocean currents and eddies using linear lee-wave theory. They found that the total
energy flux into lee waves in the global ocean was around 0.2 TW which is about 20% of
the total wind power input into the ocean system (see section 1.2). They also found that the
geographical distribution of the energy flux into lee waves is largest in the Southern Ocean
which accounts for half of the total energy flux into lee waves. Scott et al. (2011) also used
linear lee-wave theory to come to an estimate of about 0.4 TW of energy conversion into
lee waves with higher concentration in the Southern ocean. Nikurashin and Ferrari (2013)
have produced a three-dimensional distribution of internal wave-driven diapycnal mixing by
combining the global energy flux to lee waves with a turbulent mixing parameterisation. Us-
ing this, they estimated that the mixing caused by lee waves can sustain 20-30 Sverdrups of
water-mass transformation, and almost one third of this transformation can be attributed to
lee waves generated by the ACC in the Southern ocean.

The various ways in which the energy of the geostrophic flow is dissipated in the South-
ern ocean was studied by Nikurashin et al. (2013) using a high resolution model resolving
mesoscale and sub-mesoscale eddies and as well as internal waves generated by the topog-
raphy. In Southern ocean, where lateral boundaries are absent, geostrophic eddies must
transfer their energy to smaller scale unbalanced motions by generating sub-mesoscale ed-
dies in the upper oceans or interacting with the bottom topography (Waterman et al., 2013).
Nikurashin et al. (2013) showed thatmost of the conversion of geostrophic eddies to smaller
scales happen in the abyssal ocean, catalysed by rough, small-scale topography. The bulk of
the energy is dissipated in the region close to the topography but about one fifth of it is radi-
ated away into ocean interiors as lee waves which might break and sustain turbulent mixing.
The remaining conversion of geostrophic eddies should come from generation of fronts and
sub-mesoscale eddies in the upper ocean.

However,more recent observations from theDiapycnal and IsopycnalMixingExperiment
in the Southern ocean (DIMES) (St. Laurent et al., 2012) finds that the linear theory and ide-
alised two-dimensional numerical models overestimate the observed turbulent energy dis-
sipation in the Southern ocean. Nikurashin et al. (2014) performed two-dimensional and
three-dimensional numerical simulations using realistic topography and found that the in-
ternal wave generation at three-dimensional topography is reduced compared to the case of
two-dimensional topography. The difference between the two likely arises due to the fact
that in the three-dimensional topography case, the fluid has the option to flow horizontally
around the topography.
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Figure 6.2.1: A sketch of the mean flow–topography interaction: (top) sub-critical
topography limit and (bottom) critical topography limit; (left) vertical plane view and
(right) horizontal plane view. The bottom two panels illustrate the blocking and split-
ting effects arising in the critical topography limit. (Image courtesy: Nikurashin et al.
(2014))

6.2 Stratified flowover three-dimensional topography

Stably stratified flow over an obstacle have been studied for a long time as it represents a
fundamental problem in geophysical fluid dynamics. The generation of lee waves by a uni-
formmean flowover a topography is a well-studied problem (Scorer (1949),Miles andHup-
pert (1968), Bell (1975a), Lighthill (1978), Baines (1998), Dalziel et al. (2011)). The lin-
ear theory (refers to linearised boundary condition) for a steady stratified flow over a three-
dimensional topographywasgivenbyDrazin (1961). It is valid for topographicheight smaller
than the vertical internal wave scale (sub-critical topography). If the topography is expressed
as z = h(x, y) and the steady mean flow velocity as U0, the boundary condition w =
w0(x, y) can be applied at z = 0 rather than applying u.∇(z − h) = 0 on the surface
of the topography. Then the linearised boundary conditions can be written as

w0 = U0
∂h

∂x
(6.1)

The linearised boundary condition implicitly assumes that the mean flow has sufficient ki-
netic energy to rise up and over the topography. If we note that the work required to raise a
fluid parcel in a uniformly stratified fluid by a height h is 1

2
gh2 dρ̂

dz
and the energy available to

the flowwith a mean velocityU0 is its kinetic energy given by 1
2
ρ0U

2, then the condition for
the flow to completely rise over the topography is given by

1

2
ρ0U

2
0 ≥ 1

2
gh2

dρ̂

dz
=⇒ Frh =

U0

Nh
≥ 1 (6.2)
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Figure 6.2.2: (i) From the theoretical calculations of Miles and Huppert (1968) for
two-dimensional topography (for high Froude numbers, 3D topography behaves like
2D one), contours showing the displacement of isopycnal surfaces resulting from uni-
formly stratified flow upstream of speed U0 moving over a semi-circular hill of radius R.
Vertically propagating internal waves are launched more efficiently as the Froude num-
ber decreases. (ii) Sketches from Richards et al. (1992) of the separated flow behind a
three-dimensional hill for (a) a non-rotating flow (perspective view) and (b) a rapidly ro-
tating flow (plan view). The vortices are shed when there is background rotation, while
it remains as trailing vortices in the absence of rotation.

where Frh is a Froude number. In two-dimensional simulations, if the flow has a Froude
number Frh < 1, then the flow will be partially blocked by the topography and a stagnant
layer form upstream (6.2.1).

For an isolated three-dimensional obstacle in an otherwise flat plane, Drazin (1961) has
proposed that the flowcanbe considered tobe split into two regions. Theflowbelowa critical
height hc of the topography is essentially two-dimensional and moves horizontally around
the obstacle (splitting). Then a vortical wake is produced, with the possibility of periodic
vortex shedding as we will mention below. The flow above the critical height hc can go over
the topography and generate lee waves. It can be showed that for an axisymmetric mountain
of radius R, the critical height hc is given by

hc = R(1− αTFrR) (6.3)

where αT is a constant of order one and depends on the shape of the obstacle (we shall as-
sumeαT to be 1.0 in the rest of our chapter) andFrR is a Froude number based on the radius
of the sphere (FrR = U0/NR).

This is similar to the concept of a ‘dividing streamline height’ (the height from which a
parcel of the fluid must originate far upstream if it is to pass over the topography rather than
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go around it) first proposed by Sheppard (1956) using the same energy based argument.
Through many experimental and numerical studies that followed, Sheppard’s formula was
found to be working well at least for obstacles of low span-wise aspect ratio.

Drazin’s theory was generalised and verified using experiments by Brighton (1978) for
vertically varying stratified mean flow over a three-dimensional obstacle. The experiments
of Brighton (1978) were using a recirculating tank for strongly stratified flows (low Froude
numbers) and were visualised using dyes. They observed most of the flow went around the
obstacle except for the tops of the obstacle, and noted a cow-horn shaped horizontally ori-
ented eddy downstream of the topography. They also observed shedding of vortices for large
Reynolds number and low Froude number cases.

Experimental study todescribe theflowstructure for stratifiedflowover a three-dimensional
(bell-shaped) hill was done byHunt and Snyder (1980) for a range of Froude numbers. They
also verifiedDrazin’s theory for lowFroudenumbers andobserved lee-wavepatterns and sep-
arated flow regions for higher Froude numbers.

Hopfinger et al. (1991) studied the generation of internal waves and the turbulent wake
of a sphere towed through a stratified fluid using fluorescent dye technique. They found that
when Froude number increases (with Reynolds number the same), there is a transition from
the lee wave regime to internal waves generated by the coherent turbulent structures in the
wake of the sphere. They noted that the transition occurs for a Froude number FrR = 4.
Further experiments using stratified towing tanks were performed by Vosper et al. (1999)
with a range of three-dimensional obstacles such as different sizes of hemispheres and cones.
They measured the drag for all obstacles and found that as Froude number (based on the
obstacle height) decreases, the drag coefficient increases. They also observed that vortices
were shed for lower Froude numbers and it is a major contributor to the total drag.

The generation of low Froude number lee waves by a hemisphere in a uniform flow of
linearly stratified fluid was studied byDalziel et al. (2011) using a recirculating channel. They
recovered the simple linear theory predictions ofDrazin (1961) for lowFroudenumber flows
and observed the division of the flow region into a wave-generating cap of heightRFR and
a blocking base of heightR(1 − FR). They also noted that the structure of the lee waves is
extremely sensitive to departures from horizontal flow.

The energy input into internal waves generated by a towed sphere at low Froude num-
bers was investigated experimentally by Brandt and Rottier (2015). They also noted (like
Hopfinger et al. (1991)) that for Fr > 1, the turbulent wake of the sphere can be the dom-
inant source in exciting internal waves. They also found a resonance in the coupling of the
input wake energy to the internal wave field at a Froude number of about 0.5.

Experiments on flow of stratified rotating fluid past isolated obstacles were done by Boyer
et al. (1987) for a range of Rossby, Ekman and Burger numbers. When the stratification was
stronger, they observed vortex shedding for even for lower Reynolds number, owing to the
flowbeing forced to go around the obstacle rather than above it. They also noted that if vortex
shedding occurs, the vortex streets exhibit an asymmetry with stronger cyclonic eddies and
weaker anticyclonic eddies if the background rotation is cyclonic (this was observed also
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for homogeneous rotating flow around an obstacle by d’Hieres et al. (1989)). Boyer et al.
(1987) also observed that for vertically upward rotation, the lee waves on the right, facing
downstream, have a larger amplitude than their counterparts at the same location on the left.

Theatmospheric vortex streets in thewakeof large islands and the vortex shedding in some
cases were observed by many . Etling (1989) proposed that the observed vortex shedding
in the wake of the islands can be due to viscous boundary layer separation like in Karman
vortex streets. Etling (1990) compared the observations with laboratory experiments and
concluded that the vortex shedding in the wake of three-dimensional obstacles is influenced
by both stratification and rotation. They found a critical Froude number of around 0.4 below
which the vortex shedding was observed. Variations in Froude number gave different types
of wakes such as line, wavy or vortex wake.

Richards et al. (1992) performed laboratory experiments of stratified rotating flow over a
three-dimensional hill using towing tanksplaced in a rotatingplatform, to study theboundary
layer separation for different Rossby numbers (fromRo = 1−6). The separationwas found
to be strongly influenced by rotation. The topology of the flow was found to be different to
that of non-rotating case in the way that they found only one dominant trailing vortex and a
much narrower turbulent wake.

Three-dimensional numerical simulationsweredonebySchär andDurran (1997) to study
the stratified non-rotating flow around an axisymmetric mountain. They showed that oscil-
latingKarman vortex street appear when they introduce asymmetries with respect to the axis
of the incident flow. They proposed that the transition into the vortex shedding regime is as-
sociated with an absolute instability of the symmetrical wake, which feeds upon the shear
present at the edges of the wake

Theoretical modelling of the drag on a sphere moving horizontally in a stratified non-
rotatingfluidwasdonebyGreenslade (2000)using linear gravitywave theory for largeFroude
numbers. For small Froude numbers, a new theory based on separating the contributions
of wave generation and the wake was proposed. Starting from Greenslade’s model, Voisin
(2007) developed a detailed asymptotic analysis of the generation of lee waves by stratified
mean flow past a sphere for large and small Froude numbers. The analysis also predicted the
wave drag more accurately with the dependence of wave drag with Froude number, which
was validated by comparison with existing experimental observations.

6.3 Experimental method

The cylindrical tank of the ‘Coriolis’ platform, 13m in diameter, is filled with water linearly
stratified in density by salinity, up to a total heightH = 91.5cm. A uniform circular current
is produced by a small sudden change of the tank rotation speed (spin-up). This circular cur-
rent persists by inertia for the duration of the experiment, typically 15 minutes, over which
the flow conditions can be considered quasi-steady. A spherical cap is fixed on the flat hori-
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Figure 6.3.1: Experimental setup for the flow over an isolated spherical cap. (a)
Schematic of the spherical cap and the mean flow. (b) Photo of the spherical cap before
placement on the Coriolis platform. (c) Schematic of the experimental setup (the red
circle represent the spherical cap, green circle at the centre represents the laser setup
and green lines represent the edge of the laser sheet, light green rectangles represent
the field of view of the three high-speed cameras and small red squares represent the
position density probes). (d) Photo of the experimental setup after filling the tank with
stratified water.



Chapter 6: Laboratory modelling of Antarctic Circumpolar Current 104

Parameters Definition Value Unit
RT Radius of the tank 6.50 m
Rc Radial position of the cap centre 4.50 m
H Total water height 0.915 m
L Horizontal scale of the flow 6.50 m
h Height of the cap 0.20 m
d Length of the cap at base 0.69 m
N Buoyancy frequency 0.48 s−1

f Coriolis frequency 0.19 s−1

h/d Aspect ratio 0.29
N/f Frequency ratio 2.5

Table 6.3.1: Parameters of the spherical cap and experimental setup.

No. of caps Background rotation Name U0 (cm/s) Fr Ro Re

Single cap

Without rotation

A1 3 0.31 ∞ 6000
B1 6 0.62 ∞ 12000
C1 9 0.93 ∞ 18000
D1 12 1.24 ∞ 24000

With rotation

A2 3 0.31 0.24 6000
B2 6 0.62 0.48 12000
C2 9 0.93 0.72 18000
D2 12 1.24 0.96 24000

Multiple caps

Without rotation

A3 3 0.31 ∞ 6000
B3 6 0.62 ∞ 12000
C3 9 0.93 ∞ 18000
D3 12 1.24 ∞ 24000

With rotation

A4 3 0.31 0.24 6000
B4 6 0.62 0.48 12000
C4 9 0.93 0.72 18000
D4 12 1.24 0.96 24000

Table 6.3.2: Table of the experiments performed.
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Figure 6.3.2: (a) Schematic of the experimental setup for flow over multiple spherical
caps. The red circle represents a reference to define our coordinate system. It corre-
sponds with the spherical cap used in the single mountain experiment. Blue circles rep-
resent the additional 17 spherical caps. Green circle at the centre represents the laser
setup and green lines represent the edge of the laser sheet, light green rectangles repre-
sent the field of view of the three high-speed cameras. Small red squares represent the
position density probes. (b) Photo of the spherical caps beneath the laser sheet in the
stratified fluid.

zontal bottomof the tank, centered at a distance2mfrom the tank edge (at radius r0 = 4.5m
from the tank centre) such that the lateral confinement of the wake is marginal. The cap has
a height h = 20cm and a diameter d = 69cm at its basis, see figure 6.3.1(a). It is cut from
a sphere of radius R = 40cm. The buoyancy frequency is set to N = 0.48s−1 in all the
experiments (corresponding to δρ/ρ = 2.15% over the water height H). The multiple cap
experiments are done in a similar way with a pavement of 18 identical caps as sketched in the
lower part of figure 6.3.2(a). All fixed parameters of the experiment are listed in table 6.3.1.

The ‘non-rotating’ case (f = 0) is obtained by suddenly starting the tank rotation at angu-
lar speed∆Ω (anticlockwise), while the water remains at rest by inertia, yielding a clockwise
fluid velocity in the reference frame of observation. The fluid velocityU0 = r0∆Ω produced
above the cap is set to 3, 6, 9 or 12cm s−1, such that the Froude number Fr = U0/(Nh)
takes the values 0.31 to 1.25 (see table 6.3.2).

The ‘rotating’ case is similarly obtained by first preparing the stratified water layer with
a tank rotation at a constant angular velocity Ω = 0.095rad/s (0.9 turns/minute). This
yields a Coriolis parameter f = 2Ω = 0.19s−1, so that f/N = 0.4. At the experiment
start t = 0, the tank velocity is suddenly increased by the amount∆Ω producing a clockwise
fluid rotation in the reference frame like in the non-rotating case.

Vertical density profiles aremeasured before and during the experiment by twomotorised
profilers equippedwith conductivity probes. Velocity fields aremeasuredbyParticle Imaging
Velocimetry in horizontal planes with three cameras covering a field of width 2 m centered
at the radius r0 = 4.5m of the reference cap, spanning a quarter of the periphery, see figure
6.3.1(c) and (d). The flow is illuminated by a laser sheet, produced by a rapidly oscillating



Chapter 6: Laboratory modelling of Antarctic Circumpolar Current 106

mirror (100Hz) from a 6 watt continuous Yag laser located at the tank centre. The laser
sheet is vertically scanned at 10 successive heights z, repeated in a periodic way. A set of
100 images (during typically 25s) is obtained at each level. Each experiment is reproduced
twice to scan either the lower wake either the upper layers where waves propagate. A few
experiments with a fixed laser position are also performed to get continuous time series. The
fluid is seeded by polystyrene particles of diameter 0.2mm sorted in density to provide a
uniform concentration at different heights.

The Antarctic Circumpolar Current is characterised by a buoyancy frequencyN = 7 ×
10−4s−1 and a velocity U0 = 10cm/s in the deep ocean and a Coriolis parameter f =
1.5× 10−4s−1, so that f/N = 0.2 (see e.g. Nikurashin et al. (2013)). Our range of Froude
numbers0.31 to1.25 thencorresponds to a topographicheighth = U0/(NFr) in the range
460−115m, and a base diameter 1600−400m, if we keep the same aspect ratiod/h = 3.5.
Accounting for the ratio f/N twice lower than the experiment, a better similarity is however
expected for a twice flatter topography, with base diameter 3200 − 800m. Indeed the ratio
(f/N)(d/h) is generally the relevant similarity parameter to compare situations with differ-
ent aspect ratios (this is exact within the hydrostatic approximation). Our experiments with
rotation are therefore representative of the effect of circular sea mounts a few kilometres in
diameter and a few hundred meters in height. The Reynolds number U0h/ν is in the range
6000 − 24000, which is of course smaller that in the ocean but sufficient to get instabilities
and turbulent processes.

6.4 Results

6.4.1 Lee waves

The PIV images obtained from the three CCD cameras were processed using UVMAT to
obtain the velocity fields and were merged together to form a single image of the entire test
section. Owing to the curvature of the tank, the fields have to be transformed into polar coor-
dinates in order to visualise the horizontal flow clearly. The transformedfields are re-scaled to
approach a cartesian geometry, hence straightening the curved streamlines associated with
the circular flow around the tank. Thus x is the clockwise angular displacement with respect
to the cap centre re-scaled by its reference radius Rc = 4.5m, while y = r − Rc is the
shifted radius. A reference velocity is subtracted to the azimuthal velocity to extract the wave
oscillations from the mean flow. This reference is obtained at each radius as the upstream
velocity measured at x = −72 cm (it increases linearly with radius r).

The streamwise velocity u and cross-stream velocity v at a height of z = 25 cm (5 cm
above the spherical cap) for experiments with single cap and without background rotation
(A1-D1) are shown in figure 6.4.1. We can indeed see lee waves downstream of the spherical
cap. Thewave pattern is set after typically 100 s (the time of advection through themeasured
field for the smallest velocity U0 = 3 cm/s), and it then remains quasi-steady during the
whole experiment.
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Figure 6.4.1: Horizontal cut showing the lee wave as a colour map of the stream-wise
velocity perturbations for the experiments A1-D1 (no rotation) at a level z = 25 cm,
time t = 500 s. The horizontal streak in the centre is due to the wake of a density
probe. Oblique black lines mark the boundaries between the three camera views.
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Exp. Name U0 (cm/s) λ (cm) ω (rad/s) θ (deg) hs (cm) ds (cm)
A1 3.0 46 0.41 31 6.25 43
B1 6.0 86 0.43 24 12.5 58
C1 9.0 125 0.44 23 18.7 68
D1 12.0 170 0.44 22 20.0 69

A2 3.0 40 0.47 13 6.25 43
B2 6.0 80 0.47 13 12.5 58
C2 9.0 134 0.42 32 18.7 68
D2 12.0 190 0.40 37 20.0 69

Table 6.4.1: Calculated lee wave parameters from the experiments with single cap. The
dominant wavelength λ was measured from the stream-wise velocity fields, the wave
frequency ω is estimated as 2πU0/λ, the angle of the wavevector is deduced from the
dispersion relation tan θ =

√
(N2 − ω2)/(ω2 − f2), the estimated height of the spher-

ical cap above the dividing streamline hs = Fr h and the corresponding diameter at the
dividing streamlineds = 2

√
(2R− hs)hs.

The mean velocity profile remains uniform during a time 2πRc/U0 (equal to 500 s for
U0 = 6 cm/s), after which the lower velocity is perturbed upstream by the return of the
wake perturbations after one revolution around the tank. Therefore the main measurements
are performed in the time range100−500 s. The leewave structure in the absence of rotation
is in reasonable agreement with the linear theory of Voisin (2007) for the wave emission of
a spherical cap emerging from the horizontal plane of the dividing streamline defined above.
The velocity perturbations calculated forU0 = 3 and 6 cm/s byDr. Bruno Voisin are shown
in figure 6.4.2. However, significant nonlinear effects already occur even at the lower Froude
number investigated (Fr = 0.31 forU0 = 3 cm/s).

For experiments with background rotation for a single cap (A2-D2), the streamwise ve-
locity u and cross-stream velocity v obtained are shown in figure 6.4.3 at a height of z = 25
cm. An asymmetry between the two sides is clearly visible in this case, with a stronger wake
observed for y > 0 (figure 6.4.3). A fluid element impinging on the cap at y > 0 is first
deviated away with positive transverse velocity v, then goes back to 0with a positive stream-
wise velocity perturbationu (due to the lateral squeezing of the streamlines), and then comes
backwith v < 0. The velocity vector rotates clockwise in this process which fits with the nat-
ural behaviour of the inertia-gravity wave. The opposite rotation is forced on the other side,
explaining the less efficient wave generation. In the case with background rotation no theory
for stratified flow over an obstacle has been published to our knowledge.

The velocities weremeasured at different heights in the water column. The average stream
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Figure 6.4.2: Perturbation velocity component u (stream-wise) for (a) U0 = 3 cm/s
and (b) U0 = 6 cm/s, calculated by Dr. Bruno Voisin for our experimental configuration
using his linear theory for stratified, non-rotating flow over a sphere presented in Voisin
(2007).
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Figure 6.4.3: Same as in figure 6.4.1 but for experiments A2-D2 (with rotation).
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Figure 6.4.4: Profiles of the stream-wise velocity component along x at different levels
z, for U0 = 3 cm/s (left) and U0 = 6 cm/s (right), with f = 0 (top) and f/N = 0.4
(bottom). The time t is ranging from 300 s to 570 s from top to bottom. The velocity
is averaged in the range y = −17 to +17 cm. Curves are shifted by 1 cm/s to distin-
guish the different levels.
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Figure 6.4.5: The vertical vorticity component (in s−1 ) in the wake region for the
experiments (a) A1, (b) A2, (c) B1 and (d) B2, horizontal cut at z = 10 cm, time
t = 400 s.

wise velocities at different heights for experiments withU0 = 3 cm/s andU0 = 6 cm/s are
shown in figure 6.4.4 for rotating and non-rotating cases.

The principal wavelength of the lee wave can be calculated from the distance between the
twofirstminimaon the stream-wise velocityprofiles aty = 0. Thecalculatedwavelengths for
all the experiments with single cap are shown in table 6.4.1. We can see that the wavelengths
increase with the increase in Froude number. This increase can be partly explained by the
widening of the cap of height hs which effectively emits the wave, according to the dividing
streamline argument. Its diameter ds is also shown in the tables 6.4.1.

However the ratio λ/ds also increases with the Froude number, which shows that nonlin-
ear effects are at stake. For the highest Froude numbers, a turbulent wake is produced over a
height around h = 20 cm behind the obstacle and the wave emission occurs at the interface
of this wake rather than at the obstacle itself. The intrinsic frequency ω ≈ (2π/λ)U0 can
also be calculated from the wavelength and is shown in the tables. The calculated values of
ω are found to be close toN for each of the experiments, so that their wave vectors are close
to horizontal. The angle θ of the wave-vector with respect to the horizontal, obtained by the
dispersion relation ω/N = cos θ, is also displayed in table 6.4.1.

6.4.2 Wake of eddies

According to theFroudenumber of the flow, the part of the capbelow the dividing streamline
heighths blocks themean flow and forces themean flow to go around the cap. This results in
a wake laterally delimited by two bands of opposite vorticity. Thewake of eddies can be seen
for the lower Froude numbers (forU0 = 3 cm/s and U0 = 6 cm/s), and they are shown in
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figure 6.4.5 for the non-rotating and rotating cases. For the mean velocities ofU0 = 9 cm/s
and U0 = 12 cm/s, the part of the cap that is below the dividing streamlines are too small
(h− hs = 1.3 cm and 0 cm, respectively) to produce an effective wake of eddies.

In the absence of rotation (left hand side), thewake is fairly straight. By contrast, the back-
ground rotation favours a floworganisation into aKarmanvortex street (right hand side)with
periodic shedding of coherent vortices. The Strouhal number S = fsdm/U0 can be calcu-
lated from themeasured shedding frequencyfs and the obstacle diameterdm = 54 cm taken
at z = 10 cm, mid-height of the cap. With this definition we find that S = 0.20 for both
cases U0 = 3 cm/s and U0 = 6 cm/s, which corresponds to the usual vortex shedding in
the wake of a cylinder. For higher values of the velocity, Fr > 1, the periodic shedding
disappears. Then the dividing streamline reaches the tank bottom z = 0, so that the whole
obstacle height is involved in wave emission, with no remaining quasi two dimensional layer
vortex shedding.

6.4.3 Multiple caps experiments and induced drag

The experiments with multiple caps were performed in order to study the effect of topo-
graphic drag in the Antarctic Circumpolar Current. Eighteen identical spherical caps were
placed in the arrangement shown in figure 6.3.2. Lee waves and vortices shed by each cap in-
teract in a complex way, andwe here discuss the global effect on themean flow. Wemeasured
the mean stream-wise velocity in a domain 1× 1m2 centered at y = 0 and x = 3m, about
2m away from the last row of caps to avoid local effects. The decay of the mean stream-wise
velocity at different levels z for experiments B1-4 (U0 = 6 cm/s) is shown in figure 6.4.6.

We can notice that the decay of the mean velocity for a single cap without background ro-
tation is negligible for the duration of our experiment. However, with the addition of back-
ground rotation, a single cap can induce enough drag to reduce the mean velocity by about
one-third in the duration of the experiment (900 s = 27 inertial periods). We also notice
that the bottom friction effect influences throughout the water column with similar decay at
each level.

For the caseswithmultiple caps, in the absence of rotation (bottom, left hand side in figure
6.4.6), the velocity is observed to decay at the lowest level z = 10 cm first, then to the levels
z = 13 and 15 cm. The flow remains quasi-unchanged above the topography top, so the
bottom friction effect hardly penetrates upward. The behaviour with background rotation is
different (bottom, right hand side in figure 6.4.6), with a similar decay at each level at least
in the early stage up to t = 300 s, showing that the bottom friction is efficiently transferred
to the whole water column. An exponential decay time τ = 500 s can be deduced from the
plot. The decay however stalls in the upper layers in the late stage (t > 300 s).

It has been shown by Nikurashin and Ferrari (2010) that the internal waves generated by
the topography can produce low frequency inertial oscillations through nonlinear interac-
tions, and the inertial oscillations thus produced create a background shear that facilitates
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Figure 6.4.6: Decay of the mean stream-wise velocity in the experiments B1-4 (U0 = 6
cm/s). The velocity is averaged in the range y = [−0.5 0.5] m and x = [2.5 3.5] m.
At each level z, the curve is made of discontinuous set of time series measured when the
laser sheet is positioned at this level, joined by straight lines.
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Figure 6.4.7: (a) Mean stream-wise velocity and (c) mean cross-stream velocity with
time, in experiment B4 (multiple caps, with rotation and U0 = 6 cm/s), measured at
level z = 60 cm, averaged in the range y =[−0.5 0.5] m and x = [2.5 3.5] m. (b)
Stream-wise velocity oscillations in experiment B4 at level z = 60 cm, obtained from
the original signal after removing the linear trend of the mean velocity decay. (d) Cross-
stream velocity oscillations at level z = 60 cm. (e) Stream-wise and cross-stream veloc-
ity oscillations filtered around the inertial frequency f/(2π).
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enhanced wave breaking.
Figure 6.4.7 shows the the stream-wise and cross-stream velocities in the experiment B4

(multiple caps, with rotation and U0 = 6 cm/s). The mean velocities are shown in figures
6.4.7 (a) and (c). We can notice that the velocity decays for t < 300 s, and then remains
more or less constant. Low frequency oscillations develop over the main decay as shown in
figure 6.4.7 (b) and (d). Those contain a significant contribution of inertial oscillations, with
amplitude about 0.25 cm/s.

The velocities of inertial oscillations are extracted in the figure of the figure 6.4.7 (e) using
band-pass filtering of the signals (velocity components averaged in the 1 × 1m2 domain)
around the inertial frequency f/(2π)Hz. The two velocity components oscillate in quadra-
ture with u in advance of a quarter period with respect to v, as expected for inertial oscilla-
tions.

6.5 Conclusions

The purpose of our experiment is to model the Antarctic Circumpolar Current in the labo-
ratory and understand the topographic effects on the current. We modelled the ACC in the
Coriolis rotating platform and introduced spherical caps as bottom topographies. Experi-
ments were done with a single cap and multiple caps with and without background rotation
for different values of Froude numbers.

Internal lee waves are emitted from the top part of the spherical cap while the bottom part
makes the flow go around the cap creating a wake of eddies. The dividing streamline height is
given by hc = R(1−Fr)where R is the radius of curvature of the spherical cap. We notice
that for lower Froude numbers the wake of eddies are clearly visible in the bottompart of the
cap (below the dividing streamline) where as for higher Froude numbers it is not (dividing
streamline height is below the cap height). This is in agreement with previous studies of
stratified flow over an obstacle. For the rotating case, the lee waves emitted from a single cap
are asymmetric with respect to the stream-wise axis.

The linear theory of Voisin (2007) was adapted to the case of a spherical cap. The results
from the theory match well with the experimental observations for lee waves emitted from
a single cap without background rotation. Further work is being done by Bruno Voisin and
others at LEGI to make a better quantitative comparison.

Thewakeof the cap in the lower levels (below thedividing streamline) are characterisedby
a symmetric vortex dipole in the non-rotating case. In the casewith rotation, vortex shedding
was observed as a result of viscous boundary layer separation at the lee of the spherical cap.
The decay of the mean flow was observed to be negligible for a single cap without rotation,
while with rotation there is uniform decay at all levels for a single cap.

In the experiments with multiple caps, the internal waves from each cap are thought to
interact and break. In the cases with background rotation, the nonlinear interactions of the
internalwaves generate inertial oscillationswhich further enhanceswave breaking. Themean
flow in the experiments with multiple caps decay just at the lower levels in the absence of
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background rotation, whereas with background rotation, the decay is uniform throughout
the fluid column. However, with background rotation, the decay rates drop at higher levels
later in time, indicating the release of momentum by breaking lee waves at those levels.

One of the fundamental question in Southern Ocean dynamics is how the internal waves
generated by the mean flow over the ocean topography transport momentum vertically and
influence the mean flow itself. The present experiment was done only with horizontal laser
sheets andhencewecouldnotquantify the verticalmomentumflux. Further experiments are
being planned in LEGI with velocity measurements in a vertical plane, that will help in get-
ting a clearer picture of the vertical transport of momentum. Three-dimensional numerical
simulations are also underway in LEGI to study this problem in more detail.
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7
Denouement

Internal waves in oceans play an important role by facilitating mixing and transport of
energy and momentum over large distances. In spite of its importance in ocean dynamics,
there are still many unanswered questions related to the physics of internal waves. In this the-
sis, we studied mainly one of those questions namely, the reflection of internal wave beams.
Apart from the reflection, the last chapter of the thesis also describes the laboratory mod-
elling of Antarctic Circumpolar Current to study the generation of lee waves over a three-
dimensional topography.

The generation of internal waves in oceans and its role in ocean dynamics was explained
briefly in the introduction (chapter 1). The importance of understanding the physics of in-
ternal waves and various ways in which internal waves are studied in a laboratory are also
mentioned in that chapter, laying out the context of this thesis.

The interaction of internal waves with ocean bottom topography is an important process
with varied dynamic importance in the ocean. Internal waves play a major role in promoting
mixing in the ocean. Amajor share of the various physical processes affecting the interaction
and dissipation of internal waves in deep ocean are close to the ocean bottom topography.
Nonlinear interactions among internal waves facilitate the energy cascade from large scales
to smaller scales and promote mixing. Nonlinear resonant interactions are one of the ways
in which internal waves steepen and ultimately break to induce mixing. Many of these pro-
cesses have a chance of occurring when internal waves interact with the bottom topography.
The reflection of internal waves on the topography is one of those processes that facilitate
nonlinear wave-wave interactions that can lead to energy transfers across scales. Reflection
of internal waves from boundaries creates higher harmonics which can interact resonantly
with the primary waves leading to energy cascade from the primary waves.
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In chapter 3, we saw thenonlinear reflectionof a finite-width internal gravitywave incident
on a uniform slope, away from critical incidence, in a two-dimensional vertical plane. The re-
flection of a train of internal gravity waves on a slope, the generation of higher harmonics
and the resonant interactions between the harmonics were discussed byThorpe (1987). We
revisit the theory of Thorpe (1987) in the presence of background rotation and apply it to
a wave beam. The theoretical predictions are verified using numerical simulations. In the
theory of Thorpe (1987), the amplitude of the second-order stream function resulting from
the interaction of the incident and reflected waves is expressed as an indeterminate form at
resonance. We show that the indeterminacy at resonance can actually be waived and that
the amplitude of the second-order stream function is a linear function of the distance from
the slope. It is therefore unbounded for a plane wave of infinite extent. We also showed that
rotation does not qualitatively change the results obtained in the non rotating case. Numeri-
cal simulations of an incident wave of finite width were thus performed without background
rotation to estimate the validity of the weakly nonlinear theory.

The reflection of internal wave beams in a two-dimensional vertical plane has been well
studied and still is a hot topic of research. Our analysis is an extension of the theory presented
by Thorpe (1987). Yet, we haven’t included fluid viscosity in our model. This can be an
interestingwork for the future. We have used a free-slip boundary condition on the reflecting
slope. The effect of bottom boundary layer when the slope has no-slip boundary condition
on the resonant interactions can also be worth investigating. Indeed, the presence of a third
dimension modifies the interaction process between the incident and reflected waves, even
for normal incidence to the slope. However, for internal wave beams with very long lateral
extent behaves like a two-dimensional (in vertical plane) wave beam.

Chapter 4 describes the reflection of a three-dimensional internal wave beam of finite lat-
eral width. Results from laboratory experiment and three-dimensional numerical simula-
tions were used to study the reflection. The initial purpose of the laboratory experiment was
to investigate the resonant interactions among the wave and higher harmonics as predicted
byThorpe (1987). However, the laboratory experiment revealed that for thewave amplitude
used, the reflected wave and the second harmonic wave are considerably weaker compared
to the incident wave, and there is a strong induced mean flow (contrary to the predictions
ofThorpe (1987)) in the interaction region which refracts the incident wave beam and leads
it to break at the slope. The results of the experiment were published in Grisouard (2010),
however, the generation of the strong mean flow was a mystery. Later, more experiments
and three-dimensional numerical simulations were done to investigate further by Grisouard
et al. (2013) and found that a finite-width (in lateral direction) internal wave beam induced
a recirculating (in the horizontal plane) Eulerian mean flow. Bordes et al. (2012) have also
performed laboratory experiments and found that a propagating internal wave beam of finite
lateral extent produces a strong horizontally recirculating mean flow even before reflection.
Kataoka and Akylas (2015) used asymptotic analysis to derive a coupled set of equations to
model this recirculating mean flow induced by an internal wave beam.

We have used results from the experiment presented in Grisouard (2010) and Grisouard
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et al. (2013), and performed numerical simulations with various wave beam widths, wave
amplitudes and fluid viscosities to understand the wave inducedmean flow. We find that the
strong mean flow found in the interaction region in the experiments is a combination of two
mean flow structures namely, a spatially periodic Eulerianmean flow (as predicted byThorpe
(1987)) and a growing jet-like mean flow. The former is produced by the nonlinear interac-
tion between the incident and reflected wave beam and does not grow in time. The latter
is forced by wave-wave interaction of a single wave beam as found in the studies of Bordes
et al. (2012) and Kataoka and Akylas (2015), and grows in time, eventually dominating the
spatially periodic mean flow. The wave-wave interaction that forces the jet-like mean flow is
caused by lateral spatial variations in the wave field due to the diffraction of the wave beam in
the horizontal plane (this is evident from the equations of Kataoka and Akylas (2015) too).
The effects of lateral width of the wave beam, wave amplitude and fluid viscosity were also
discussed. We performed an energy budget of the process to estimate the flux of energy from
the incident wave to themean flow and higher harmonics. These results are also described in
the chapter.

The effect of background rotation on the reflection of a finite width internal wave beam is
discussed in chapter 5. Numerical simulations with four different Coriolis frequencies were
performed to study the influence of Coriolis force on the generation of mean flow. The angle
of propagationof thewavebeamwaskept constant (sameas the cases in chapter 4) in all those
simulations by varying thewave frequency accordingly, so that the geometry of the reflection
is the same. We found that the mean flow is diminished with the presence of background
rotation. In the presence of background rotation, the zonal momentum is deflected by the
Coriolis force to lateral direction in order to forcewavemotions in that direction. The forcing
of lateral wave motions decreases the forcing of the induced mean flow. We also performed
the energy budget and found that most of the energy of the incident wave is dissipated in the
domain with only very little (less than 10%) transfer to the mean flow or higher harmonics.

The three-dimensional internal wave beams have gathered attention only recently. There-
fore, there are still many questions remaining on their dynamics. Three-dimensional instabil-
ities of internal wave beams are being investigated byKataoka andAkylas (2016). The theory
proposed by Kataoka and Akylas (2015) are being extended to the case with background ro-
tation by Fan andAkylas (2016) and Fan et al. (2017). The author of the present thesis is also
collaborating with Felix Beckebanze, Utrecht University in deriving a steady state solution
for the wave induced mean flow. The effect of background rotation should be investigated in
more detail too, with further theoretical analysis.

In chapter 6, the laboratory experiment tomodel theAntarcticCircumpolarCurrent is de-
scribed. Theexperimentwasperformed in theCoriolis platformatLEGI inorder to study the
interaction of a mean current on a mountain (spherical cap) with and without background
rotation. We observed the generation of lee waves from the top part of the spherical cap and
a wake of eddies from the bottom part, in agreement with previous studies of stratified rotat-
ing flow over an obstacle. However, we found that with increase of the mean flow velocity,
the attached boundary layer on the spherical cap increases the essential size of the obstacle
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leading to increase in the wavelength of emitted lee waves. In the case with rotation, the gen-
erated lee waves are observed to be asymmetric in lateral direction and in the wake of eddies,
vortex shedding was observed as a result of viscous boundary layer separation at the lee of
the spherical cap. We also performed experiments with several spherical caps to study the
drag caused by a random topography on ACC. We find that in the absence of background
rotation, the mean flow decay just at the lower levels whereas with background rotation, the
decay is uniform throughout the fluid column.

The physics of Antarctic Circumpolar Current has a very high significance in ocean dy-
namics. The experiments we performed measured only velocity fields in a horizontal plane.
This makes it difficult to observe vertical transport of momentum by the waves. More labo-
ratory experiments and three-dimensional numerical simulations are being planned at LEGI
to further study these processes.



A1
NHMmodel

Non-hydrostatic Ocean model for the Earth Simulator (NHOES) was initially written by
Nori Aiki (Nagoya University, Japan). A prototype of the model was used by Nori Aiki in
Aiki and Yamagata (2004) and Aiki et al. (2006). Later, Bach Lien Hua and Sylvie Le Gen-
til (IFREMER, France) made significant improvements in its visualisations and user inter-
face. The model is based on MITgcm albeit with some key differences. NHOES has two
versions, NHM (Non-hydrostatic ocean Model) and NRM (Non-hydrostatic Rectangular
ocean Model). For the results presented in this thesis, we have been using NHM.

The basic formulation is based on non-hydrostatic, incompressible Boussinesq equations
descretised with Arakawa’s C-grid as presented in Marshall et al. (1997). Some of the differ-
ences of NHM with MITgcm (as given in the README file of NHM) are:

• parallelisation is the first priority in coding

• non-hydrostatic pressure is solvedbyabi-conjugate gradient stabilisedmethod(BiCGSTAB2)

• free sea surface solved by splitting external/internal modes

• vector-invariant form is adopted for momentum equations

• a leap-frog scheme is used for time integrations

• three-dimensional biharmonic operator for the subgrid-scale mixing

• all binary output (snapshot and restart files) can be done in either the NetCDF or
GrADS format

• Flux Corrected Transport scheme for the advection of passive tracers
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• horizontal grids are in generalised curvilinear coordinates

• bottom topography can be represented by the partial step scheme

Themain programfile isnh_main.F90. It calls for different routines defined in other files
for defining constants, setting up the grid and the topography, allocatingmemory for various
variables, initialising the variables and beginning the time marching cycle.

The following are the variables solved in the model.

u,v,w velocities in x, y and z axes
T passive tracer (equal to density ρ)
phy hydrostatic pressure
pnh non-hydrostatic pressure
ps surface pressure

The equations solved and the corresponding files where it is solved in the source code are
given below.

∂T

∂t
=

see nh_fctf.F90︷ ︸︸ ︷
−u∂T

∂x
− v

∂T

∂y
− w

∂T

∂z
+F T︸ ︷︷ ︸

tracer updated in nh_next_tracer.F90

(A1.1)

whereF T is a forcing term on the tracer advection equation.

ρ = T︸ ︷︷ ︸
see nh_density.F90

(A1.2)

phy =
g

ρ0

∫ 0

z

(ρ− ρ0)dz︸ ︷︷ ︸
set in nh_hydrostatic.F90

(A1.3)

∂u

∂t
= −∂pnh

∂x
− ∂ps
∂x

−∂phy
∂x

set in nh_vorticity.F90︷ ︸︸ ︷
−u∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ fv+F u︸ ︷︷ ︸

=Gu set in nh_momentum.F90 before moving to equation A1.7︸ ︷︷ ︸
after executing equation A1.7, velocity updated in nh_next_velocity.F90, before moving to equation A1.8

(A1.4)
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whereF u is a forcing term on x-momentum equation.

∂v

∂t
= −∂pnh

∂y
− ∂ps

∂y
−∂phy

∂y

set in nh_vorticity.F90︷ ︸︸ ︷
−u∂v

∂x
− v

∂v

∂y
− w

∂v

∂z
− fu+F v︸ ︷︷ ︸

=Gv set in nh_momentum.F90 before moving to equation A1.7︸ ︷︷ ︸
after executing equation A1.7, velocity updated in nh_next_velocity.F90, before moving to equation A1.8

(A1.5)

whereF v is a forcing term on y-momentum equation.

∂w

∂t
= −∂pnh

∂z

see nh_vorticity.F90︷ ︸︸ ︷
−u∂w

∂x
− v

∂w

∂y
− w

∂w

∂z
+Fw︸ ︷︷ ︸

=Gw set in nh_momentum.F90 before moving to equation A1.7︸ ︷︷ ︸
not solved when USE_CONTI is turned on, except thatGw is used in equation A1.7

(A1.6)

whereFw is a forcing term on z-momentum equation.

(
∂2

∂x2
+

∂2

∂y2

)
(pnh + ps) +

∂2

∂z2
pnh =

set in nh_poisson.F90︷ ︸︸ ︷
∂

∂x
Gu +

∂

∂y
Gv +

∂

∂z
Gw︸ ︷︷ ︸

solved in nh_scg.F90 before moving to the time stepping part of equations A1.4 and A1.5

(A1.7)

w = − ∂

∂x

(∫ z

−Hb

udz

)
− ∂

∂y

(∫ z

−Hb

vdz

)
︸ ︷︷ ︸
set in nh_incompressible.F90 when USE_CONTI is turned on

(A1.8)
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