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Résumé

Les capacités de résistance de l’argilite Callovo-Oxfordian (COx), qui est une roche
hôte potentielle pour le dépôt souterrain profond de déchets radioactifs de haute
activité en France, sont étudiées. À une échelle microscopique, des micros pores
peuvent être observés dans la matrice. Une première étape d’homogénéisation a été
réalisée afin d’évaluer le critère de résistance de la matrice. L’analyse microstructurale
de ce matériau à quelques centaines d’échelle, référencée échelle échelle mésoscopique,
montre une matrice argileuse et une distribution aléatoire d’inclusions minérales
(quartz et calcite).

Dans le but de déterminer le domaine de résistance à l’argilite COx, un premier outil
numérique a été développé dans le contexte du comportement élastoplastique de la
matrice. Plusieurs modèles morphologiques du volume élémentaire représentatif ont
été considérés, et soumis à un chargement incrémental dans des conditions périodiques
jusqu’à la charge limite. A la suite de ce calcul élastoplastique, un point de la frontière
du domaine de résistance est obtenu. Ce dernier est alors obtenu par des calculs
élastoplastiques successifs.

Une alternative aux simulations élastoplastique directes, des approches cinéma-
tiques et statiques du calcul à la rupture sont réalisées. Une méthode du type
éléments finis basée sur la construction d’un champ de contrainte (dans l’approche
statique) et d’un champ de vitesse (dans l’approche cinématique) est développé
dans un outil numérique permettant de calculer une limite inférieure et une limite
supérieure de domaine de résistance.

Keywords: Homogénéisation périodique; non linéaire; calcul à la rupture; do-
maine de résistance macroscopique; programmation conique.



Abstract

The strength capacities of Callovo-Oxfordian (COx) argillite which is a potential host
rock for the deep underground repository of high-level radioactive waste in France
are investigated. At a micro-scale, micro-pores can be observed in the matrix. A first
strength homogenization step has been performed in order to evaluate the matrix
strength criteria. The microstructure analysis of this material at some hundreds of
µm scale, referred at meso-scale, shows a clay matrix and a random distribution of
mineral inclusions (quartz and calcite).

Aiming to the determination of COx argillite strength domain, an FEM nu-
merical tool has been developed in the context of the elastoplastic behavior of the
matrix. Several morphological patterns of the representative elementary volume
have been considered and subjected to an incremental loading in periodic conditions
until collapse occurs. As a result of such elastoplastic calculation, one point of the
boundary of the strength domain is obtained. The latter then could be reached by
successive elastoplastic calculations.

As an alternative to direct elastoplastic simulations, kinematic and static ap-
proaches of limit analysis are performed. The stress-based (static approach) and
the velocity-based (kinematic approach) finite element method are used to develop
a numerical tool able to derive a lower bound and upper bound of strength domain,
respectively.

. Keywords: Periodic homogenization; nonlinear; limit analysis; macroscopic
strength domain; Second-Order Cone Programming.
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1.1. Introduction

1.1 Introduction

It is well known that large classes of natural materials e.g. soils, rocks, chalk, hard/
soft tissues, etc. but also artificial ones such as concrete or plaster, bioengineered

tissues, etc., are heterogeneous and multi-component. They often have a rich, com-
plex internal structure. They can be, among other things, composite solids, porous
matrices, mixtures, multi-component or contain randomly dispersed inclusions. Some
geomaterials are composed of a clay matrix and a random distribution of mineral
particles (e.g. quartz, calcite). These are referred as general composites which result
from the combination of two or more constituents. They can be continuous reinforced
composites (fibre) or discontinuous composites (pores, inclusions) depending on how
they are arranged.

Despite the increased demand for capacity studies of natural geomaterials and
the composition optimization of artificial ones for performance and cost, the deter-
mination of the mechanical properties of these heterogeneous materials is always
one of the major challenges in fields related to the engineering sciences: it must be
ensured that they can serve as geological barriers for the deep storage of wastes,
both solid (radioactive waste) and gaseous (storage of CO2) or applied in the field
of civil engineering to studying and emerging techniques in the soils to improve (or/
and reinforce) their resistance capacities for other construction purposes where the
internal structure, the microstructure, plays a key role in studying and understanding
macroscopic behavior of such materials.

In general, while the use of these heterogeneous materials has become widespread
and diversified, the theory of their imitation is greatly hampered by their complex
heterogeneity. This makes it difficult to determine their behaviors by conventional
mechanical techniques. Consequently calculation and simulation methods for the
mechanical behaviors of such materials still require numerous developments, both
theoretically (techniques of homogenization) and numerically.

Many studies have mainly concentrated on the use of micromechanics to derive
suitable models of the ductile failure of porous materials. Indeed, by using realistic
and typical objects and conditions, the so-obtained models and theories are studied,
and explicit theoretical achievements are extracted either by analytical or numerical
tools then a comparison with experimental sampling is executed.
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Chapter 1. General introduction

On the one hand, sedimentary clay-rich formations are considered by many
countries as potential hosts for radioactive waste disposal facilities: Callovo-Oxfordian
(France), Opalinus Clay (Mont Terri, Switzerland), Boom Clay (Bure and Mol,
Belgium) ([79], [3]). More concretely, by [3], the Callovo-Oxfordian argillites is
identified as a potential host rock for the repository which is planned to be situated
at the surface in the middle of the Callovo-Oxfordian clay. On the other hand, recent
studies have been carried out on this subject by the Multi-Echelle team, Navier
laboratory, École National des Ponts et Chaussée for years; it has been possible
to evaluate the macroscopic criterion of a porous medium with a purely coherent
matrix by limit analysis approaches referred to the conceptual model of Gurson
([43]) who firstly presented a strength criterion of ductile porous media based on a
kinematic approach of limit analysis on a hollow sphere model in which the solid is
rigid-plastic and conforming to a von Mises criterion ([92]), which is exactly suitable
for spherical stress states. The scientific context of this thesis is the determination of
the macroscopic properties of composite materials by numerical studies, viz nonlinear
homogenization calculations integrated into a code of finite element computation in
three-dimensional space with porous matrix conforming to an elliptic criterion then
especially applied to a Callovo-Oxfordian claystone at so-called meso scale (hundreds
of µm).

The introductory chapter begins with a quick overview of porous materials,
concretely Callovo-Oxfordian claystone which is a suitable host rock for the deep
underground repository of high-level radioactive waste in France.

The second part is then devoted to the presentation of the calculation methods
commonly used by engineers and being the subject of current research. We can
distinguish two main families, i.e. analytical methods based on homogenization
techniques and finite element numerical approaches. The description of these different
methods and the difficulty in implementing them are also briefly discussed. Finally,
this bibliographic study concludes with an exposition of the objective of this thesis
and its general structure is then described.

4



1.2. An argillite porous geomaterial, Callovo-Oxfordian claystone

1.2 An argillite porous geomaterial, Callovo-
Oxfordian claystone

Callovo-Oxfordian argillite is the main claystone from the eastern region of France
and its geological formation has been selected as the host formation for installation of
a future underground radioactive waste disposal facility in France. This sedimentary
clayey formation, about 150m thick from bottom to top, is an argillaceous rock which
lies at ca.-500m depth ([3]). A typical geological schema (from [3] and [53]) of the
eastern region of France is illustrated as figure 1.1.

As the studies of [24] and [79] have confirmed, the basic characteristics of

Barrois limestones

Marl Kimméridgien

Oxfodien limestone

Callovo-Oxfodien

Dogger

Bedrock

~ 150 (m)

~ -500 (m)

Figure 1.1: Geological schema of the eastern region of France (compiled from [3] and
[53]).

this claystone depending on stratigraphic sequence are 15% − 30% tectosilicates
(mainly quartz and feldspars), 20% − 25% carbonates (mainly calcite and dolomite),
35%− 60% clays rate (mainly illite and interstratified illite/smectite, kaolinite, mica,
and chlorite) and 0%− 3% pyrite.

From the material composition point of view, Callovo-Oxfordian argillite can

5



Chapter 1. General introduction

be conceptualized at two scales ([22], [55]): At meso scale (millimeter to micrometer),
is generally described by a connected fine-grained shale matrix surrounding coarser
non-clay inclusions (tectosilicates, carbonates and heavy minerals with grain size
in the range of 1µm to 50µm). Furthermore, as pointed out by [78], the spatial
distribution of porosity is mainly controlled by the spatial distribution of the clay
matrix (the porosity of the clay matrix is 40% − 45% on average) and low porosities
(0% − 4%) of quartz and carbonate mineral grains. At this scale Callovo-Oxfordian
argillite is a matrix-reinforced rock. At the microscopic scale, the clayed matrix itself
can be represented as a composite of a solid phase of clay matrix (formed mainly
by clay mineral particles and calcite microcrystals) and pores (see figure 1.2 for the
microstructure of Callovo-Oxfordian argillite described at different scales).

Porous clayed matrix

Inclusions
Solid phase
of clay matrixPore

-500m

0m

Callovo-Oxfordian

Surface photograph
of sampleMineral map at

meso scale

Calcite
grain

Quartz
grain

Clay matrix
at micro scale

100nm

10 nm

Pores

Figure 1.2: Microstructure of Callovo-Oxfordian argillite description on different scales:
sample at the laboratory [54], mineral map and considered as composite material of porous
clay matrix and inclusions at meso scale and the clay matrix itself presented as solid phase
matrix and pores at micro scale (pointed out in [78], [79], [22] and compiled from figures
which are the property of Andra [3]).
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1.3. Brief introduction of the micromechanical approach of the nonlinear
behavior of geomaterials

1.3 Brief introduction of the micromechanical ap-
proach of the nonlinear behavior of geomaterials

1.3.1 Analytical estimation using homogenization approach

Historically, the determination of mechanical behavior of heterogeneous materials
based on the micro mechanical properties at the microscopic scale (matrix and
inclusions) is the first solution. The method of homogenization appears as an
interesting alternative one for heterogeneous material properties determination that
allows to address the problems in a very strict way. This method is developed in
order to substitute a heterogeneous medium by an equivalent homogeneous fictitious
medium. This homogeneous medium then behaves on average as the heterogeneous
medium providing the macro mechanical properties in a macroscopic scale. Several
analytical approaches based on homogenization techniques, notably on the Eshelby
model, have been developed in [33], [49], [34], [32], [44], [88], [90], etc. Nonlinear
homogenization approaches to study porous media (as reviews in [11], [37]) has also
been introduced by [23] based on the variational principles and by [84] using the
estimation techniques.

The theory of limit analysis calculation as formulated by [80] constitutes a
suitable framework for conducting a strength homogenization, since it requires
only the knowledge of the local resistance criterion of the solid phase. However,
the direct (analytical or numerical) resolution of the problem on the composite
structure is difficult due to the strong heterogeneities of the material constituent.
This difficulty can be overcome when it can be assumed that, on the one hand, the
size of heterogeneities are small compared to the dimensions of the studied structure,
and on the other hand, these heterogeneities are regularly distributed.

In the context of periodic composite materials, the effective properties of those
can be determined using the periodic homogenization method. The theoretical basis
of this method can be found in [1], [82] and [56]. It is then possible to determine
its resistance capacities on a macroscopic scale by the limit analysis or yield design
method applied to the periodic media. The basics of this method have been introduced
by [85] in a general framework or by [27] in the context of reinforced soils mechanics
from the solution to a limit analysis boundary value problem relative to the unit
periodic cell. Indeed, this method makes it possible to evaluate the macroscopic
resistance criterion of the composite, based on the knowledge of material constituent.

7



Chapter 1. General introduction

In particular, it is an effective method able to obtain the anisotropy of resistance of
such materials.

The first study by [30] is possible to determine a resistance domain coincides
with the exact result, numerically determined by [77], in the case where the base cell
is subjected to isotropic compression, isotropic tensile or pure shear, but remains very
coarse with respect to any loading. The object of the thesis is to determine numerical
approaches to the macroscopic criterion by implementing the elastoplastic and the
limit analysis using homogenization approach in the context of the periodic media
with a porous matrix.

1.3.2 Numerical implementation

As studied and pointed out by [8], most of the strength homogenization simulations
where discretized using the finite element method and solver either by using incremen-
tal elastoplastic procedure (e.g. by [46], [91] according to the periodic homogenization
method implemented in the context of an elastoplastic behavior (e.g. [86], [2]) or
by directly second-order programming solvers (e.g. [41], [39]). Exceptions to these
in [12], [13], [70], [72] are carried out by FFT-based method based on the efficient
numerical method. This is a direct mesh free method initially introduced in linear
elasticity by [75] and [74] with it complex microstructures can be simply solved.

Most of these numerical studies are restricted to the exploration of loading
modes comprising a hydrostatic part combined either to a pure shear mode or to
an axi-symmetric shear mode, thus involving only two or three values of the Lode
angle. The lack of studies combining both complex microstructures and complex
loading modes is mainly due to the high computational cost of the involved non
linear problems. To over come this limitation, [8] was successfully proposed a
slight adaptation of the mesh free, FFT-based method (by [70] and [73]) using the
Augmented Lagrangian and Uzawa scheme.

We recall here the basic steps of finite element method (FEM) introduced in
[36], applied for macroscopic behavior estimations. These steps are shown schemati-
cally in figure 1.3.

First step, mathematical model, or idealization, is a very important process to

8



1.4. Contents

transfer from a physical system to a mathematical model of the system, where the
term model is understood. Indeed, the representative elementary volume (section
3.2.1) of the heterogeneous materials is first identified and modeled based on philo-
sophical designs and suppositions.

Next, in the numerical FEM process, the representative elementary volume is

Discrete
model

Discrete
solution

IDEALIZATION

Realization and identification

Heterogeneous
material

DISCRETIZATION SOLUTION

Mathematical
model

FEM

Continuification

Figure 1.3: The basic steps of FEM for macroscopic behavior estimation of heteroge-
neous materials.

meshed by discretizing it into two (or three)-dimensional finite elements depending on
the expression of mathematical model chosen. The boundary conditions and loadings
are also introduced in this step. These conditions are generally associated with
macroscopic loading modes or in agreement with periodicity conditions in the case of
periodic composite materials. Finally, by means of an averaging of the microscopic
fields, the macroscopic strain and stress tensors are evaluated. Mechanical properties
of the representative elementary volume could then be estimated.

In this thesis, both elastoplastic (chapter 2) and direct second-order cone pro-
gramming (chapter 3) numerical codes are developed to estimate the macroscopic
behaviors of the heterogeneous material studied.

1.4 Contents

In order to study the nonlinear behavior of the heterogeneous geomaterials by
micromechanical approach, analytical estimation and numerical deployment, the
thesis is structured into three main parts. The first deals with the estimation of

9
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the macroscopic resistance of the composite materials as a result of an elastoplastic
procedure. The second one involves macroscopic criterion analytical studies of hetero-
geneous geomaterials based on the theory of limit analysis using the homogenization
method. Finally, the third part, based on adapting numerical aspects, completes the
study of the macroscopic strength domain of Callovo-Oxfordian claystone consisting
of a matrix with elliptic criterion reinforced by rigid inclusions.
In detail, the thesis is organized as follows:

1.4.1 A homogenization approach for assessing the macro-
scopic strength domain - An elastoplastic numerical es-
timation

The developed finite element method tool is presented in chapter 2 in the context
of the compressible behavior of the matrix. Several morphological patterns of
the representative elementary volume are considered and subjected to incremental
loading in periodic conditions until collapse occurs. As a result of such elastoplastic
calculation, one point of the boundary of the strength domain is obtained. Other
points can then be reached by successive elastoplastic calculations.

1.4.2 Limit analysis of heterogeneous materials with an elliptic
resistance criterion matrix based on the homogenization
approach

Chapter 3 presents a numerical development of static and kinematic (using continuous
and discontinuous velocity fields) of limit analysis formulation for heterogeneous ma-
terial with an elliptic resistance criterion matrix using the homogenization approach.

After pointing out the limitations of such an analytical approach, we proceed
to the second section to develop a numerical method for the determination of the
macroscopic resistance criterion, based on both static and kinematic definition. We
show how, by restricting to finite-dimensional subspaces of the space of stress and
velocity fields of a base cell, the resolution of these problems are reduced to problems
of minimization of a convex function of a finite number of scalar variables.

10
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1.4.3 Numerical estimates of the Callovo-Oxfordian claystone
strength domains

The strength capacities of Callovo-Oxfordian claystone which is a potential host
rock for the deep underground repository of high level radioactive waste in France
is considered as meso mechanical model by the consideration porosity [48], is the
main investigation of this chapter. The clay matrix of this material is considered as
a porous plastic homogenized material which is formed by a solid phase and inclusions.

Micro-pores can be observed in the matrix at the so-called micro-scale. The
microstructure analysis of this material at some hundreds of µm shows a clay matrix
and a random distribution of mineral inclusions.

A first strength homogenization step has been performed (in [47]) in order to
evaluate the porous matrix strength criteria. Aiming the determination of the
Callovo-Oxfordian claystone macroscopic strength domain, the second strength
homogenization step is performed. The stress-based (static approach) and the
velocity-based (kinematic approach) finite element method are used to perform
the numerical calculation for a lower bound and upper bound of strength domain
approximation of Callovo-Oxfordian claystone which concerns porous materials and a
clay matrix reinforced by rigid inclusions, respectively.

After showing how the properties of symmetry and periodicity make it possible
to simplify the boundary conditions and the loading imposed on the unit cell (the
periodicity conditions replaced by conventional boundary conditions), the macroscopic
strength domains are then derived on the basis of numerical limit analysis calculations
performed on the representative elementary volume for the different morphological
patterns (the rigid inclusions are placed into the matrix following a simple periodic
Primitive Cubic and Face-Centered Cubic arrangement) in three-dimensional space
including comparison with the results of elastoplastic estimations. The significant
influence of the inclusion distribution on the macroscopic strength properties and on
the local mechanical fields is studied as well.

* *
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*
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2.1. Introduction

2.1 Introduction

Over at least thirty years, many studies have been developed with the object of
predicting the overall strength properties of heterogeneous material from the

understanding of resistance characteristics of their individual components (matrix
and inclusions) related to such key parameters as reinforcement volume fraction,
especially for inclusion-reinforced composites.

In order to study the macroscopic strength domain properties of the composite
medium consisted of a matrix and inclusions, both the porous one and the matrix
reinforced with rigid cores are investigated.

To begin, the review of the homogenization method is briefly recalled (detailed
presentation can be founded in [85], [27], [29], [28], [2] and [76]) and then, according
to the periodic homogenization method implemented in the context of an elastoplastic
behavior (introduced by [86] and [27]), we are interested in a numerical formulation
of the composite model in the framework of the elastoplastic behavior of the different
components.

Next, a finite element method (FEM) based program designed to simulate macroscopic
strength domain properties of composite structures with an elliptic matrix criterion, as
a result of an elastoplastic procedure, is developed under periodic boundary conditions.

Lastly, as an application, the strength domain properties of several morpholo-
gies made up of both pore and rigid inclusions surrounded by studied matrix is
concerned and the effects of the third invariant of its macroscopic stress are quantita-
tively discussed.
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2.2 A homogenization approach for the macroscopic
strength domain as a result of the elastoplastic
procedure

2.2.1 Theory review of the strength homogenization

2.2.1.1 Representative elementary volume (REV )

To examine macroscopic structure behaviors, we only need to study the material
properties at the macroscopic scale if it is statically homogeneous. The value of a
macroscopic variable at a point is obtained by averaging the microscopic values of this
variable over a certain volume of heterogeneous material. One of the main interesting
aims in micromechanics is to obtain the material properties, at the macro structure,
from the results of the studies in microscopic structures.

In classical micromechanics, there are two hierarchical level elements, macro-
element and micro-element, which belong to two-level hierarchical mechanical
structure: macroscopic structure and microscopic structure respectively (see figure
2.1). At the macroscopic scale, a continuum is created of many material points
related to the microscopic scale where we can use continuum equations and copy the
characteristics of the material as a whole. At the microscopic scale, a REV should be
compounded of a huge number of micro-elements (inclusions, matrices, pores, etc.)
such that it can be a representative element of the local continuum properties.

As mentioned in [31], if d is presented as the characteristic scale length of

Figure 2.1: Microstructure and an REV of the heterogeneous materials.

the local continuum, typically the inclusion size in heterogeneous materials, then the
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condition:

d ≪ l (2.1)

permits us to consider that the elementary volume is representative, where l is the
characteristic length of the elementary volume and meets the condition:

l ≪ L (2.2)

Combination of two conditions (2.1) and (2.2) above, then the two-condition of the
size of the REV must be:

d ≪ l ≪ L (2.3)

2.2.1.2 REV periodic boundary condition

The REV boundary, denoted ∂Ω, is composed of two parts: a positive part, ∂Ω+,
and a negative part, ∂Ω−, with the associated outward normal vector n+ = −n− at a
corresponding point x+ ∈ ∂Ω+ and x− ∈ ∂Ω−, respectively (see figure 2.2), that must
be fulfill the condition: {

∂Ω+ ∪ ∂Ω− = ∂Ω

∂Ω+ ∩ ∂Ω− = ∅
(2.4)

Mathematically, the periodic boundary condition expresses the periodicity of the
velocity vector and anti-periodicity of the stress field as follows:{

σ (x+)n+ = −σ (x−)n−

Uper (x+) = Uper (x−)
,∀x+ ∈ ∂Ω+ and matching x− ∈ ∂Ω− (2.5)

2.2.1.3 Averaging operation

The averaging operation of the field a(x) on the REV is defined as follows:

⟨a⟩ = 1

|Ω|

∫
Ω

a (x) dΩ (2.6)
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Figure 2.2: REV periodic boundary conditions.

This integration is over the volume Ω of the REV.

2.2.1.4 Homogenous boundary conditions

The homogenization is an association of a micro-level tensor field with a macro-level
tensor through an averaging operation (more details can be founded in [83]). In order
to establish this connection between the two behaviors, microscopic and macroscopic,
we consider the problematic of the macroscopic loading definition applied to the REV.

The first problem is so-called "homogeneous stress" condition (see figure 2.3.(a)),
imposed at the point x on the border ∂Ω of the REV, and defined by:

T (x) = Σ.n. (x) , ∀x ∈ ∂Ω (2.7)

Where n (x) is the normal vector at the considered point and Σ is the macroscopic
strain.

If the tress tensor σ (x) is statically admissible field with the macroscopic strain
Σ and, by definition, is subject to the above boundary conditions and verifies the
equilibrium condition: divσ = 0. It can be shown that the imposed macroscopic
strain Σ is equal to the average of the stress field σ (x) over the domain Ω:
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Σ =
⟨
σ
⟩
=

1

|Ω|

∫
Ω

σ (x) dΩ (2.8)

Ω

( )a

n

vΩ
T= .nΣ

x
Ω

vΩ

x

(  )b

=    .xx ∈

Figure 2.3: Homogenous boundary conditions.

The alternative boundary condition is homogeneous strain (see figure 2.3.(b)):

ξ (x) = ∈.x, ∀x ∈ ∂Ω (2.9)

Where ∈ is interpreted as the macroscopic strain and ξ (x) denotes the local displace-
ment at point x.
We note ε (x) = ∇sξ (x) is a kinematically admissible strain field with macroscopic
strain ∈ prescribed to the border ∂Ω of the REV. The following average relation is
verified:

∈ =
⟨
ε
⟩
=

1

|Ω|

∫
Ω

ε (x) dΩ (2.10)

2.2.1.5 Hill’s lemma

Homogeneous boundary conditions (in strain or stress) make it possible to establish
the Hill’s lemma ([50] and [68]). The form of an energy coherence rule concerning the
quantity of "strain work" as follows:

⟨
σ∗ : ε′

⟩
=
⟨
σ∗⟩ : ⟨ε′⟩ (2.11)

Where σ∗ is a static admissible stress field which satisfying the condition divσ∗ = 0

and ε′ is a kinematic admissible strain field which satisfying the condition of geometric
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compatibility. The statement (2.11) occurs if either the stress fields σ∗ or the strain
fields ε′ satisfies a uniform type boundary condition or if the periodic boundary
conditions are satisfied.

In the case of homogeneous stress imposed on the boundary of the REV or of
the periodic boundary conditions, this lemma makes it possible to demonstrate that
the macroscopic strain ∈ is equal to the average of the field of the microscopic strains
ε follow equation (2.8): ∈ =

⟨
ε
⟩
. Similarly, for the case of homogeneous strain

imposed on the boundary of the REV or of the periodic boundary conditions, the
macroscopic stress must be defined as the average of the field of the microscopic
stresses σ follow equation (2.10): Σ =

⟨
σ
⟩
.

Finally, in order to determine the effective rigidity of a medium, a macroscopic
stress Σ is imposed on a REV and the macroscopic strain ∈ is calculated by taking
the mean of the microscopic strain fields in the REV, or a macroscopic strain ∈ and
the macroscopic stress Σ is then calculated by taking the mean of the microscopic
stress fields in the REV. Let us denote Chom the effective stiffness tensor of the studied
material, the effective law of this behavior is expressed in the following form:

Σ = Chom : ∈ (2.12)

2.2.2 Yield strength properties of the matrix

A composite material as shown in figure 2.4 may be modeled as a ’geo-composite’
material constituted of a regular array of inclusions embedded into the matrix.
The strength criterion of the matrix is isotropic and can be expressed as follows:

f
(
σ
)
≤ 0 (2.13)

matrix

inclusions

Figure 2.4: ’Geo-composite’ material model.
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2.2.3 Macroscopic strength condition

The macroscopic strength criteria F and the corresponding homogenized domain
Ghom can be derived from solving a yield design problem attached to the REV
and called a auxiliary problem (more expression of the auxiliary problem may be
found in [42]). More precisely, the macroscopic strength condition is defined as follows:

Σ ∈ Ghom ⇔ F (Σ) ≤ 0 ⇔

{
∃σ statically admissible with Σ

∀x ∈ Ω, f
(
σ(x)

)
≤ 0

(2.14)

where Ω is the REV sub-domain occupied by the matrix.
A stress field σ is statically admissible with Σ if it complies with the following
conditions:

⋄ In absence of body forces, the equilibrium state (of the stress tensor σ(x) in Ω)
is governed by the equilibrium equation:{

divσ(x) = 0

∀x ∈ Ω
(2.15)

⋄ The stress vector remain continuous across any possible discontinuity surfaces
of the stress field: [

σ
]
.n = 0 (2.16)

where
[
σ
]

is the stress jump of the stress tensor σ across such a surface following
its unit normal n (see figure 2.5).

n( )x

[ ] =s s s( ) ( )- ( )x x x

1

2

2 1

Figure 2.5: Stress jump field of a discontinue surface.

⋄ σ.n is anti-periodic ∀x on ∂Ω

⋄ The macroscopic stress Σ is equal to volume average of the microscopic stress
field σ over the REV :

Σ =
1

|Ω|

∫
Ω

σdΩ =
⟨
σ
⟩

(2.17)
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Note that, the third condition, anti-periodic means σ.n takes opposite values
at any couple of points located on the opposite sides of the REV and the forth
condition which is related to the macroscopic stress Σ are both expressed in the
context of the periodic homogenization.

2.2.4 Macroscopic strength domain as a result of an elastoplas-
tic procedure

The determination of the macroscopic strength domain is carried out by means of a
numerical elastoplastic procedure performed on the REV, leading to the evaluation of
limit loads along prescribed loading paths. More precisely, the REV is subject to a
strain controlled loading path. This means that a macroscopic strain of the form:

∈(t) = λ(t)∆ (2.18)

is prescribed to the REV, where λ(t) is a scalar multiplier increased from zero to its
maximum value corresponding to the limit load and ∆ is the macroscopic strain tensor.

The solution of the elastoplastic auxiliary problem consists of finding at each
time of the loading path a velocity field u̇(x) kinematically admissible with the
loading path

⟨
ε̇(u̇)

⟩
= λ̇∆ along with a statically and plastically admissible stress field

σ associated in each point to the velocity field through the elastoplastic constitutive
behavior of the matrix.

t ∈ [0, T ] : ∈̇(t) = λ̇(t)∆ →
{
u̇(t), σ̇(t)

}
→ Σ̇(t) =

⟨
σ̇(t)

⟩
(2.19)

The corresponding loading path in the space of stresses is pictured in figure 2.6 with
the limit load Σ∗ identified as the intersecting point with the macroscopic strength
surface. Such limit loads are characterized by the occurrence of an un-contained
plastic flow mechanism on the REV, which means that the stress field in equilibrium
with Σ∗ remains constant while the load multiplier λ can be arbitrarily increased. The
associated plastic flow rule being assumed for the elastoplastic constituent materials
at the microscopic scale, the macroscopic strain rate and then ∆ is outward normal
to the macroscopic strength domain at point Σ∗.
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Skl

Sij

G
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Î l D= .

stress path

limit load S
*

F( 0S)=

. .

Figure 2.6: Elastoplastic stress response to a strain controlled loading and associated
limit load.

2.3 Elastoplastic formulation for the composite
medium composed by a matrix and inclusions

A volume Ω occupied by a composite medium consisting of a matrix obeying to a
perfectly plastic elastic behavior and a rigid inclusion is considered. As pointed out
in [45], let’s recall here the equations governing the evolution of such a system:

⋄ Equilibrium equation
divσ (x, t) + ρF (x, t) = 0 (2.20)

Where σ is the stress tensor of the matrix and ρF is the density of external forces.

⋄ Elastoplastic behavior
The strain tensor ε is expressed as a function of the displacement field ξ as follows:

ε =
1

2

(
gradξT + gradξ

)
(2.21)

The strain ε decomposes into the sum of an elastic part ε
e

(reversible) and a
plastic part ε

p
(irreversible):

ε = ε
e
+ ε

p
(2.22)
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The stress tensor of the matrix is related to the elastic strains as follows:

σ = C :
(
ε− ε

p

)
(2.23)

where C is the elastic tensor of the matrix.

⋄ Plastic criterion
Assuming that the matrix is elastic perfectly plastic, the elastic domain C of
this matrix is conventionally defined as the set of stress fields, within which all
evolution is reversible (elastic). This domain is characterized by the function f ,
so-called load function, as follows:

f
(
σ
)

< 0 if σ is inside C

= 0 if σ is on the border of C
> 0 if σ is outside C

(2.24)

The plastic criterion of the matrix is then written:

f
(
σ (t)

)
≤ 0 ⇔ σ (t) ∈ C (t) (2.25)

⋄ Flow rule
The rate of plastic strains is given by the flow rule which is written:

ε̇
p
= η̇

∂f

∂σ

(
σ
)

with η̇

{
> 0 if f

(
σ
)
= ḟ

(
σ
)
= 0

= 0 else
(2.26)

Where η̇ is a plastic multiplier and in this case, the flow rule is said to be
associated, reflecting the normality of the rate of plastic strain with respect to
the boundary of the elastic domain.

⋄ Boundary conditions

σ (x, t) .v (x, t) = T pd (v) on ∂ΩT (2.27)

ξ (x, t) = ξ
pd
(x, t) on ∂Ωξ (2.28)

with
∂ΩT ∪ ∂Ωξ = ∂Ω (2.29)

and
∂ΩT ∩ ∂Ωξ = ∅ (2.30)
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Where T dp (v) and ξ
dp

are the prescribed effort and displacement on the
complementary parts (∂ΩT and ∂Ωξ) of ∂Ω.

2.4 Temporal discretization of the loading process

Given the incremental nature of the equations describing the elastoplastic behavior of
the composite medium, the loading process is conventionally subdivided into loading
steps.
Note that {Q} is a vector of the total loading parameters and {∆Q} (i) is the loading
increment applied to the composite medium at time ti, i = 1, ..., n,defined by:

{∆Q} (i) = {Q (i+ 1)} − {Q (i)} (2.31)

Assuming that the solution of the problem of evolution at time ti, under the loading
{Qi}, in terms of the field of displacement ξ (ti), stress fields σ (ti) and plastic
strain field σ

p
(ti), the solution of the problem of evolution at time ti+1 by the data

of the increments of the displacement fields and the stress fields ∆ξ (ti) such that
the total fields ∆σ (ti) satisfied the equations (2.20) to (2.30). These fields are given by:

ξ (ti+1) = ξ (ti) + ∆ξ (ti) (2.32)

σ (ti+1) = σ (ti) + ∆σ (ti) (2.33)

ε
p
(ti+1) = ε (ti+1)−

(
C

)−1

: σ (ti+1) (2.34)

Assuming the increments of plastic strain are defined by:

∆ε
p
(ti+1) = ε

p
(ti+1)− ε

p
(ti) (2.35)

In the following, the dependence of time is omitted. The resolution of the problem of
incremental elastoplasticity is equivalent to that of the following problem of elasticity:{

∆σ

∆ε
p

}
= Elas

[
{∆Q} ;

{
∆ε

p

}]
(2.36)

That means a problem of elasticity in which the plastic strain field increments is
given.
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The increment of the stress field in the matrix, from (2.23), is written:

∆σ = C :
(
∆ε−∆ε

p

)
(2.37)

And the increments of the plastic strain ∆ε
p

are given by the plastic flow rule (2.26),
written in incremental form as follows:

∆ε
p
= ∆η

∂f

∂σ

(
σ +∆σ

)
with ∆η

{
> 0 if f

(
σ +∆σ

)
= 0

= 0 if not
(2.38)

The two follow cases of evolution are considered, elastic or elastoplastic, or in an
analogous manner depending on the position of the stress field σ + ∆σ with respect
to the convex C:

• Stress field inside the convex is:

f
(
σ +∆σ

)
< 0 (2.39)

The evolution undergone by the matrix is elastic. The increment of the plastic
strain ∆ε

p
is zero.

• Stress field on the border of the convex is:

f
(
σ +∆σ

)
= 0 (2.40)

The matrix underwent elastoplastic evolution. The stress field is then formu-
lated, by combining (2.37) and (2.38): σ +∆σ = σ + C : ∆ε

= σ + C : ∆ε− C : ∆η ∂f
∂σ

(
σ +∆σ

) and ∆η > 0 (2.41)

Furthermore, the plastically admissible stress field defined as follows:

σ
p.a.

= proj
C

.

{
σ + C : ∆ε

}
(2.42)

Where notation proj
C

represents the orthogonal projection on the convex C in

the sense of the scalar product defined from the quadratic form of the elastic
energy of the matrix, namely:

⟨
σ, σ′⟩ = 1

2
σ : C : σ′ (2.43)
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It follows that σ
p.a.

is the solution of the minimization problem:

Min
σ′∈C

{(
σ + C : ∆ε− σ′

)
:

(
C

)−1

:

(
σ + C : ∆ε− σ′

)}
(2.44)

That is equivalent to the minimization problem under constraints:

 Min
σ′

(
σ + C : ∆ε− σ′

)
:

(
C

)−1

:

(
σ + C : ∆ε− σ′

)
f
(
σ′) ≤ 0

(2.45)

Then, by classically introducing the Lagrange function L:

L
(
σ′, λ

)
= −

(
σ + C : ∆ε− σ′

)
:

(
C

)−1

:

(
σ + C : ∆ε− σ′

)
−λf

(
σ′) , λ ≥ 0

(2.46)
The solution σ

p.a.
of the problem (2.45) satisfies the following conditions under

the Kuhn and Tucker theorem [57]:


∂L
∂σ′

(
σ
p.a.

, λ∗
)
= 0

∂L
∂λ

(
σ
p.a.

, λ∗
)
= 0

⇔

 −
(
C

)_1

:

(
σ + C : ∆ε− σ

p.a.

)
− λ∗ ∂f

∂σ′

(
σ
p.a.

)
= 0

f
(
σ
p.a.

)
= 0 and λ∗ > 0

(2.47)

where

σ
p.a.

= σ + C : ∆ε− C : λ
∂f

∂σ

(
σ
p.a.

)
, f
(
σ
p.a.

)
= 0 and λ∗ > 0 (2.48)

By comparison with (2.41):

{
σ
p.a.

= σ +∆σ

λ∗ = ∆η
(2.49)

it then emerges that:

σ +∆σ = proj.
C

{
σ + C : ∆ε

}
(2.50)
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2.5 Implicit plasticity algorithm

The solution of the elastoplastic evolution problem returns, as demonstrated in
previous section, to the resolution of a succession of the elastic problems with
prescribed inelastic (plastic) strains. The difficulty consists of the evaluations of
inelastic strains which are gradually corrected until convergence (refer to [4] and [45]).

Beginning the iterative procedure (k = 0) with zero plastic strains, these strains are
then estimated at the iteration (k + 1) from their values in the iteration (k), as follows:

1. Solution calculation by solving an elasticity problem with imposed inelastic
strain, This strain is plastic strain estimated at the iteration (k):{

∆σ

∆ε

}
(k) = Elas

[
∆Q; ∆ε

p
(k)
]

(2.51)

2. Projection of the matrix stress field on the elasticity respective convex,

σ
p.a.

(k) = proj.
C

{
σ (k) + C : ∆ε (k)

}
(2.52)

3. Plastic strain calculation at the iteration (k + 1)

∆ε
p
(k + 1) = ∆ε (k) +

(
C

)−1

:
(
σ (k)− σ

p.a.
(k)
)

= ∆ε
p
(k) +

(
C

)−1

:
(
σ (k) + ∆σ (k)− σ

p.a.
(k)
) (2.53)

4. This procedure should be continued until convergence which corresponds to the
fact that the plastically admissible fields σ

p.a.
(k) and the statically admissible

fields
{
σ +∆σ (k)

}
converge towards the solution in constraint:

lim
i→+∞

σ
p.a.

= lim
i→+∞

(
σ +∆σ (k)

)
= σ +∆σ (2.54)

It should be noted that step 3 and step 4 are relative to the plasticity local treatment,
whereas the first step corresponds to an overall elastic calculation of the system.
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2.6 Finite element method applied to the elastoplas-
tic calculation of composite structures

2.6.1 Principle of minimum potential energy

By denoting
{
ξ′
}
, a kinematic displacement field, and introducing a potential energy

function of this field, we can define this by:

W
(
ξ
)
=

∫
Ω

1

2

[
ε : C : ε

]
dΩ−

∫
Ω

[
ε : C : ε

in.

]
dΩ−

∫
Ω

(ρF ).ξdΩ−
∫

∂ΩT

T pdξdS (2.55)

Generalizing the definition in the case of a natural initial state to the situation where
a field of inelastic strain

{
ε
in.

}
must be taken into account.

The functional potential energy thus defined satisfies the following minimum principle:
Let ξ be the displacement solution of the elasticity problem imposed on inelastic
strain, then:

{ (
ξ′
)
∈ C.A

E
(
ξ
)
≤ E

(
ξ′
) (2.56)

where C.A denotes a kinematically admissible displacement field of the problem.
Let δξ is the deviations of the displacement fields ξ:

δξ = ξ′ − ξ (2.57)

Deviation of the potential energy of the displacement field
(
ξ′
)

solution is given by:

δE = E
(
ξ′
)
− E

(
ξ
)
= E

(
ξ + δξ

)
− E

(
ξ
)

(2.58)

Taking account of (2.55):

δE =
∫
Ω

1
2

[(
ε+ δε

)
: C :

(
ε+ δε

)]
dΩ−

∫
Ω

1
2

[
ε : C : ε

]
dΩ

−
∫
Ω

[(
ε+ δε

)
: C : εin.

]
dΩ +

∫
Ω

[
ε : C : εin.

]
dΩ−

∫
Ω

(ρF ).
(
ξ + δξ

)
dΩ

−
∫

∂ΩT

T pd.
(
ξ + δξ

)
dS +

∫
Ω

(ρF ) .ξdΩ +
∫

∂ΩT

T pd.ξdS

(2.59)
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and therefore, after simplification we have:

δE =
∫
Ω

1
2

[
2ε : C : δε+ δε : C : δε

]
dΩ

−
∫
Ω

[
δε : C : ε

in.

]
dΩ−

∫
Ω

(ρF ) δξd−
∫

∂ΩT

T pd.δξdS
(2.60)

where δε denotes a strain field associated with a displacement field δξ.

Introducing the solution of the problem, the stress field σ is associated with
the strain fields ε by the elastoplastic behavior law as follows:

σ = C :
(
ε− ε

in.

)
(2.61)

Expression (2.58) becomes:

δE =

∫
Ω

[
σ : δε

]
dΩ−

∫
Ω

(ρF ) .δξdΩ−
∫

∂ΩT

T pd.δξdS +

∫
Ω

1

2

[
δε : C : δε

]
dΩ (2.62)

where three first terms simplify with the use of the virtual work principle, whereas the
last term is positive, which archive the demonstration of the minimum principle (2.56).

2.6.2 Variational formulation

Finding the solution ∆ξ (i) of the incremental problem (2.51) returns to solve the
following problem by the application of the principle of the minimum potential energy
established above: {

Calculate
(
∆ξ
)
∈ C.A such as:

∀
(
∆ξ′
)
∈ C.A.: E

(
∆ξ
)
≤ E

(
∆ξ′
) (2.63)

This is equivalent to the following variation problem:{
Calculate

(
∆ξ
)
∈ C.A such as:

∀
(
∆ξ′
)
∈ C.A.: a

((
∆ξ
)
,
(
∆ξ′
))

= L
(
∆ξ′
) (2.64)

where a (., .) is the bilinear form associated with the quadratic form defined by the
functional potential energy which is written:

a
(
∆ξ,∆ξ′

)
=

∫
Ω

[(
∆ε : C : ∆ε′

)]
dΩ (2.65)
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and L (., .) is a linear form given by:

L (∆ξ′) = Φ (∆ξ′) + Φin. (∆ξ′) (2.66)

Φ (., .) being the linear form expressing the work of the external forces:

Φ
(
∆ξ′
)
=

∫
Ω

(ρ∆F ) .∆ξ′dΩ +

∫
∂ΩT

∆T pd.∆ξ′dS (2.67)

and Φin (., .) denotes the linear form expressing the potential of the imposed inelastic
strain:

Φin.

(
∆ξ′
)
=

∫
Ω

[
∆ε : C : ε

in.

]
dΩ (2.68)

2.6.3 Discretized form of the minimum principle

Considering a spatial discretization of the composite structure into elements, the
discretized expression of the strain energy, according to [25], is given by:

W ({∆ξ}) = 1t
2
{∆ξ} . [K] . {∆ξ} (2.69)

where [K] is the global stiffness matrix and {∆ξ} is the node displacement increments
vector of the composite structure.

The potential of the external forces is written in a similar way in matrix form:

Φ ({∆ξ}) = t {∆F} . {∆ξ} (2.70)
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While the potential of the inelastic strain given by (2.68), can be expressed in the form:

Φin. ({∆E}) =
∫
Ω

t {∆Ein.} . [D] . {∆E} dΩ

=
Ne∑
i=1

∫
(νe)i

t {∆Ein.}. [D] . {∆E} (x, y) dxdy

=
Ne∑
i=1

∫
νR

t {∆Ein.}. [D] . {∆E} (ξ, η) .Jdξdη

=
Ne∑
i=1

∫
νR

t{∆Ein.}i. [D] . {B} (∆ξ)i.Jdξd

=
Ne∑
i=1

t{∆Ein.}i.
∫
νR

[D].[B]e.Jdξdη


︸ ︷︷ ︸

t{∆Fin.}i

.{∆ξ}i

= t{∆Fin.}i. {∆ξ}

(2.71)

We thus obtain the discretized expression of the potential energy:

E ({∆ξ}) = W ({∆ξ})− Φ ({∆ξ})

=1
2
t {∆ξ} . [K] . {∆ξ} − t {∆F} . {∆ξ} − t {∆Fin.} . {∆ξ}

(2.72)

So the solution for the minimum leads to the following linear system:

[K] . {∆ξ} = ({∆F}+ {∆Fin.}) (2.73)

2.7 Numerical calculation of the strength domain
based on elastoplastic calculations

This section aims to develop a FEM program based on elastoplastic FEM method,
specially designed to handle an elliptic criterion matrix, for both studying the macro-
scopic strength estimation and studying the effect of the microstructure morphology
on the homogenized strength properties.

2.7.1 Yield strength properties of the matrix

The matrix obeys to an isotropic elliptic strength criterion which can be expressed as
follows:
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f
(
σ
)
=

(
σm − c

a

)2

+
(σd

b

)2
− 1 ≤ 0 (2.74)

where a, b and c depend on inter-granular interfacial strength properties and on
porosity of the matrix.
σm and σd are the mean stress and deviatoric stress which are defined as:

σm =
1

3
tr
(
σ
)
; σd =

√
σ
d
: σ

d
; σ

d
= σ − σm1 (2.75)

In the plane (σm, σd), the boundary of this resistance criterion is an ellipse with axes
a2 along σm and b2 along σd.

2.7.2 REV morphologies

Far from addressing the problem in the general case, we will illustrate through
numerical calculations, the resolution of the problem of elastoplastic computation
posed on a REV in explicit cases where they are made of a homogeneous matrix and
centered pores or rigid cores.

The considered REV is formed of a homogeneous matrix and a network of pe-
riodically pores or rigid cores. Such that the REV is a cube of the unit side.

A FEM code, specially designed to handle the elliptic plasticity criterion (2.74)
of the matrix, is developed and used to construct point by point the macroscopic
strength domain in the three following cases:

• Spherical rigid Cores (SC) are in the axisymmetric condition: The REV is a
sphere rigid core surrounded by an elastic perfectly plastic matrix (figure 2.7.(a)).

• Rigid cores or porous inclusions are placed into the matrix following a simple
periodic Primitive Cubic (PC) arrangement (figure 2.7.(b)).

• Rigid cores or porous inclusions are placed into the matrix with respect to a
Face-Centered Cubic (FCC) arrangement (figure 2.7.(c)).

For the PC and FCC morphologies, two cases are considered: the heterogenous
material is either similar to a granular material related to porous one; either similar
to a matrix-inclusion composite related to matrix reinforced with rigid cores.
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(b) (c)(a)

Figure 2.7: REV morphologies. (a): SC in the axisymmetric condition, (b): PC
model and (c): FCC volume.

2.7.3 Boundary conditions

For the first morphology, SC, axisymmetric uniform strain boundary conditions are
applied to the REV, whereas periodic boundary conditions with three-dimensional
loading are applied to the REV in the two other cases, PC and FCC.

2.7.4 Loading modes

For the first configuration, the macroscopic strain tensor ∆ is axisymmetric and given
by:

∆(α) = cosα∆
1
+ sinα∆

2
(2.76)

where
∆

1
=

1

3
1,∆

2
= (er ⊗ er + eθ ⊗ eθ − 2ez ⊗ ez) (2.77)

α is varied from 0 to π.

For the second and third configurations, the following expression is considered:

∆ = cosα∆
1
+ sinα

(
cos βs

1
+ sin βs

2

)
(2.78)

where
s
1
= 1√

6
(2e3 ⊗ e3 − (e1 ⊗ e1 + e2 ⊗ e2))

s
2
= 1√

2
(e1 ⊗ e1 − e2 ⊗ e2)

(2.79)

The angular stride on the angles α and β involved in the macroscopic strain rate ∆ is
set to π

180
.
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2.7.5 Numerical results

2.7.5.1 First configuration: the SC model

Figure 2.8.(a) shows the SC model as a hollow sphere with the points located at the
internal surface are fixed. The problem is modeled in axisymmetric conditions and
the adopted mesh of T6 FEM-element (the properties of T6 FEM element can be
founded in [45] and [35]) is represented in figure 2.8.(b).

ra and rb denote the internal and external radii, respectively and ρ =
(

ra
rb

)3

(b)(a)

r
a

r
b

x .=l D.x

Figure 2.8: Sphere rigid core: (a). REV and (b). Adopted FEM mesh.

is the inclusion volume fraction.

Uniform strain rate boundary conditions applied on the outer surface of the
hollow sphere are:

ξ = λ∆.x (2.80)

where the macroscopic strain rate ∆ follows equation (2.76).

The obtained macroscopic strength domains of the sphere made of a rigid core
surrounded by an elastic perfectly plastic matrix are displayed in figures 2.9, 2.10 and
2.11 for three values of the aspect ratio of the matrix elliptic criterion a2

b2
=1, 10 and

100, respectively.
For each value of the aspect ratio of the matrix elliptic criterion, the different values
of the volume fraction of the inclusion ( ra

rb
= 0.3, 0.5, 0.7 and 0.8) are performed.

For the different simulations, c (in 2.74) is kept equal to zero.
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In general cases, if c is not equal to zero (c ̸= 0), macroscopic strength do-
mains can be obtained by a translation of those obtained and presented in figures 2.9,
2.10 and 2.11 with a distance of c along the Σm axis.

It should be emphasized that the macroscopic strength domain properties of

 ra/rb=0.3
 ra/rb=0.5
 ra/rb=0.7
 ra/rb=0.8

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

m
/a

q/
b

Figure 2.9: Macroscopic strength domains of the SC model, a2

b2
= 1.

the first configuration depends explicitly on the third stress invariant since the
macroscopic strength domains are not symmetric with respect to q = 0 axis, with
q =

√
2
3
(σrr − σzz).

2.7.5.2 Second configuration: the PC model

The inclusions are displayed in the matrix as a periodic pattern so according to
the symmetry of the problem, only the eighth of the REV is considered (see figure
2.12.(a)).

The boundary condition follows equation (2.80) are applied on the outer sur-
face of the REV as follows:

ξ+ − ξ− = λ∆
(
x+ − x−) (2.81)
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 ra/rb=0.3
 ra/rb=0.5
 ra/rb=0.7
 ra/rb=0.8

-1 0 1
-3

-2

-1

0

1

2

3

m
/a

q/
b

Figure 2.10: Macroscopic strength domains of the SC model, a2

b2
= 10.

 ra/rb=0.3
 ra/rb=0.5
 ra/rb=0.7
 ra/rb=0.8

-1.0 -0.5 0.0 0.5 1.0

-4

-3

-2

-1

0

1

2

3

4

q/
b

m
/a

Figure 2.11: Macroscopic strength domains of the SC model, a2

b2
= 100.
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The macroscopic strain rate ∆ follows equation (2.77). Indeed, as pointed out in [64],
due to the symmetry properties of the considered problem, the periodic conditions
imply uniform strain boundary conditions.

The adopted mesh of 375 20-node hexahedral three-dimensional FEM-elements
and 1991 nodes is represented in figure 2.12. b. More details of the properties of
20-node hexahedral FEM element can be founded in [35].

The results obtained for macroscopic strength criteria of the periodic cubic

(a) (b)

Figure 2.12: The rigid inclusions are placed into the matrix following a periodic cubic
arrangement: (a). REV and (b). Adopted FEM mesh.

arrangement REV are displayed in the figure 2.13 and 2.14 for different values of the
aspect ratio of the matrix elliptic criterion (a2

b2
= 1 , 10 and 100) and two different

volume fractions of the inclusion (ρ = 10% and ρ = 40%).

c (in 2.74) is still kept equal to zero.

2.7.5.3 Third configuration: the FCC model

Finally, the case where the inclusions are placed in the matrix following a periodic
FCC volume is considered figure 2.15.(a). Due to the symmetry of the problem, only
the eighth of the REV is modeled.

The adopted mesh is composed of 445 20-node hexahedral three-dimensional
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PC model, ρ = 10%

a2

b2
= 1, rigid inclusion
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Figure 2.13: Homogenized strength properties of the PC model with ρ = 10%: octa-
hedral plane cuts for Σm

Σmax
m

= 0, 0.5, 0.7, 0.9
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PC model, ρ = 40%
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Figure 2.14: Homogenized strength properties of the PC model with ρ = 40%: octa-
hedral plane cuts for Σm

Σmax
m

= 0, 0.5, 0.7, 0.9.
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FEM-elements and 2569 nodes is shown in figure 2.15.(b).

The macroscopic strain rate ∆ still follows equation (2.77).

The results obtained for macroscopic strength criteria of the FCC volume

(a) (b)

Figure 2.15: FCC volume: (a). REV and (b). Adopted FEM mesh.

REV are displayed in the figure 2.16 and figure 2.17 for different values of the aspect
ratio of the matrix elliptic criterion (a2

b2
= 1 , 10 and 100) and two different volume

fractions of the inclusion (ρ = 10% and ρ = 40%), c (in 2.74) is still kept equal to
zero.

The same conclusions can be drawn for the PC model and FCC volume con-
cerning the dependency of the strength domain properties on the third stress
invariant. These effects increase with the inclusion volume fraction (ρ).

2.8 Conclusions

The determination of the macroscopic strength domain properties of composite ma-
terials displaying rigid cores or porous inclusions placed in the matrix is studied from
the elastoplastic solution of an elastoplastic problem attached to the representative
elementary volume.
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FCC model, ρ = 10%
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Figure 2.16: Homogenized strength properties of the FCC volume with ρ = 10%:
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FCC model, ρ = 40%
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Chapter 2. A homogenization approach for assessing the macroscopic
strength domain - An elastoplastic numerical estimation

The resulting properties of strength domains represented in the space of stresses show
a clear dependency on the stress third invariant, especially for the spherical inclusion
placed into the matrix following a periodic cubic arrangement (PC model). The
numerical results clearly show that these effects increase with the inclusion volume
fraction (ρ) and with the matrix criterion aspect ratio (a

b
). The obtained strength

domains are compared to those estimated by means of the FFT-based method. The
agreement is excellent in all studied cases, more details can be found in [8].

The FEM numerical development tool for the macroscopic strength domain cal-
culation of composite materials in this chapter will be used to calculate and compare
to those estimated by means of the static and kinematic approach of limit analysis for
Callovo-Oxfordian claystone in the next steps of the study (chapter 3 and chapter 4).

* *
*
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Chapter 3

Limit analysis of heterogeneous
materials with an elliptic resistance

criterion matrix based on the
homogenization approach
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Chapter 3. Limit analysis of heterogeneous materials with an elliptic
resistance criterion matrix based on the homogenization approach
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3.1. Introduction

3.1 Introduction

Limit analysis using a strength homogenization approach is an innovative microme-
chanics technique which was first introduced by [85], [86] and was developed in

the 1980s in [27], [29], [28], [76], [52], [26]. It is widely applied in the modeling of
multi-layer heterogeneous material calculations nowadays, especially for geomaterials
and composite materials such as frictional porous in [7], [8], [76], [10] or (and)
reinforced media in [6], [63], [91], clay soils in [60], [62], [61], stone column reinforced
soils in [46], [41], [42], [39], [40], composite frames in [19], [17], [15], and heterogeneous
plates in [21], [20], [16], [18], etc.

In this chapter, the developed method by means of two classical limit analysis
theorems, both static and kinematic and the homogenization theory, for the macro-
scopic strength domain determination by nonlinear mathematical programming
associated with an elliptic resistance criterion is considered. Indeed, a generalized
study of the microstructure as a representative volume element selected from a
periodic heterogeneous material to obtain a lower and an upper bound of their
strength domain will be studied.

To start with strength properties description, a background of the homogeniza-
tion method (briefly recalled in section 2.2.1) for the studied case, is introduced with
the developed formulation of the support function applied to studied elliptic criterion
in the kinematic approach of limit analysis (section 3.2.1).

Next, numerical approaches applied to the strength properties calculation of
the materials with the elliptic criterion and periodic boundary conditions are per-
formed in section 3.3.

Finally, limit analysis problems are numerically formulated in section 3.3.3 for
the case of the elliptic criterion by solving second-order cone programming (SCOP)
problems.
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Chapter 3. Limit analysis of heterogeneous materials with an elliptic
resistance criterion matrix based on the homogenization approach

3.2 Limit analysis using the periodic strength homog-
enization approach

3.2.1 Strength properties description

The local resistance criterion can be expressed by an inequality as follows:

f
(
σ
)
6 0 (3.1)

where σ is the stress tensor.

3.2.1.1 Local elliptic resistance criterion

Heterogeneous materials (3.1) with an elliptic resistance criterion can be mathe-
matically expressed by an elliptic (second-order polynomial) equation which can be
applied for most current yield criteria ([60],[61] and [62]) as follows:

σTMσ + σTN ≤ 1 (3.2)

Where M and N are coefficient matrices related to the strength properties of the
material and can be directly defined from its yield criterion. For two-dimensional
problems, the stress vector:

σ = (σ11, σ22, σ12)
T (3.3)

or three-dimensional problems, the stress vector:

σ = (σ11, σ22, σ33, σ23, σ31, σ12)
T (3.4)

are presented by the symmetrical stress tensor σ by regrouping its independent
components, respectively.
If matrix N is equal to vector zeros:

N =
(

0 0 0 0 0 0
)T

(3.5)

then equation (3.2) will be shortened as follows:

f (σ) = σTMσ − 1 ≤ 0 (3.6)
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3.2. Limit analysis using the periodic strength homogenization approach

3.2.1.2 Static description

G(x), assumed convex and must include the null stress σ (x) = 0, is an admissible
set which can be determined the local strength domain at point x in a continuum Ω,
defined by the following general form:

G(x) :=
{
∀x ∈ Ω, f

(
x, σ (x)

)
6 0
}

(3.7)

We get the local strength domain of the elliptic resistance criterion by applying
f
(
x, σ (x)

)
defined by equation (3.6) to equation (3.7):

G(x) :=
{
σ(x)TMσ (x)− 1 ≤ 0;∀x ∈ Ω

}
(3.8)

Recall that, the function f is convex which means ∀σ1 (x) , σ2 (x) ∈ G(x) and ∀λ ∈
[0, 1] we have:

f
(
λσ1 (x) + (1− λ) σ2 (x)

)
6 λf

(
σ1 (x)

)
+ (1− λ) f

(
σ2 (x)

)
(3.9)

This characteristic of the local strength domain G(x) is illustrated in figure 3.1.

skl

sij

G( )x

Convexity

s
1

s
2

Figure 3.1: Convexity of the local strength domain G(x).

3.2.1.3 Kinematic description

Beside the construction of stress fields σ (x) that satisfy the condition (3.8), an
other equivalent description of the strength domain of the material G(x), leads to an
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external approach based on the principle of virtual rates of work with the construction
of kinematically admissible virtual velocity field Û and the calculation of the support
π-function. Details of this method are introduced in [27], [52] and [81].

The support π-function is the maximum resisting rate of work densities related
to G(x) and defined as follows:

π
(
d
)
= sup

σ(x)∈G(x)

(
σ : d

)
(3.10)

where d is a symmetric second order tensor.

Physically, π-function is a dissipation power and d is a strain rate tensor which
is associated with the velocity field Û at all points by the relation:

d (x) =
1

2

(
gradÛ

T
+ gradÛ

)
(x) (3.11)

The admissible stress field σ (x) can be determined by equation (3.1) or equivalently
characterized by equation as follows:

σ (x) ∈ G(x) ⇔ ∀d , σ : d 6 π
(
d
)

(3.12)

If the behavior of the velocity field is discontinuity across the surface S (with unit
normal vector n). Denoting

[
Û
]
(x) = Û

2
(x)− Û

1
(x) is the velocity jump across the

surface S, the expression of the support π-function of the discontinuity velocity field
(see figure 3.2) is:

π
(
n;
[
Û
])

= sup
σ(x)∈G(x)

{(
σ.n
)
.
[
Û
]}

on S (3.13)

The support π-function of the elliptic resistance criterion is described in the section
3.2.2.5.

3.2.2 Homogenization of strength properties

The replacement of the equivalent homogeneous material with the heterogeneous
one in the formulation of yield design problems is an intuitive methodology in the
homogenization method, the strength properties of which being specified by means of
a macroscopic strength criterion.
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3.2. Limit analysis using the periodic strength homogenization approach

n
S

[ ] =U U U( ) ( )- ( )x x x

1

2
2 1

Figure 3.2: The velocity jump
[
Û
]

of the discontinuous velocity field Û through a
surface S.

The macroscopic strength condition and the corresponding domain can be ob-
tained from the solution of a yield design problem attached to the REV (refer to [76],
[52], [46]).

3.2.2.1 REV periodic boundary condition

Periodic homogenization implies that periodic boundary conditions are respected on
the boundary of the REV : If any periodic material is chosen, this means that the
stress field and the velocity field of two points facing each other on two opposite faces
must satisfy conditions of anti-periodicity and periodicity, respectively. More details
can be found in section 2.2.1.2.

3.2.2.2 Auxiliary yield design problems and boundary conditions

As pointed out in section 2.2.3, the auxiliary problem and boundary conditions are
recalled here.
At each point x of Ω described by a local strength domain G(x) which is characterized
equivalently by the strength criterion (3.6), the set of statically admissible stress
fields σ(x) with a macroscopic stress Σ is denoted S

(
Σ
)

is defined by the following
conditions:

⋄ In absence of body forces, the equilibrium state (of the stress tensor σ (x) in Ω)
is governed by the equilibrium equation:

divσ (x) = 0 ∀x ∈ Ω (3.14)
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⋄ The stress vector remain continuous across any possible discontinuity surfaces
of the stress field: [

σ
]
(x) . n = 0 (3.15)

where
[
σ
]
(x) is the stress jump of the stress tensor σ (x) across such a surface

following its unit normal n (see figure 2.5).

⋄ σ.n is anti-periodic ∀x on ∂Ω

⋄ The macroscopic stress Σ is equal to volume average of the microscopic stress
field σ over the REV :

Σ =
1

|Ω|

∫
Ω

σ dΩ =
⟨
σ
⟩

(3.16)

Similarly, the set of velocity fields Û(x) which are kinematically admissible with
a macroscopic strain D which is denoted C

(
D
)

are defined by the following conditions:

⋄ Û (x) is a piecewise continuously differentiable set.

⋄ Û (x)−D.x is periodic ∀x on ∂Ω

⋄ d
(
Û
)

satisfied equation (3.11) and

⋄ D is equal to the volume average of strain field d
(
Û
)

over the REV :

D =
1

|Ω|

∫
Ω

d dΩ =
⟨
d
⟩

(3.17)

If the set C
(
D
)

contains the discontinuous velocity fields, the strain filed d
(
Û
)

must

be included the effect of velocity jump
[
Û
]

across the surface S ([8]):

d
(
Û
)
=
{
d
(
Û
)}

+
[
Û
] s
⊗nδS (3.18)

where
{
d
(
Û
)}

is the regular part of d
(
Û
)

and δS is Dirac distribution of the
discontinuity surface S.
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3.2. Limit analysis using the periodic strength homogenization approach

3.2.2.3 Static definition of homogenized strength

The static definition of the homogenized strength domain Ghom of the heterogeneous
material with a local resistance criterion (3.1) is a set of macroscopic stress Σ for
which it is possible to find a microscopic stress field satisfying the static conditions
with Σ at any point x of the REV [52], [76]. The macroscopic, so-called F (Σ) can be
determined as follows:

Σ ∈ Ghom ⇔ F (Σ) ≤ 0 ⇔ ∃σ that

{
σ(x) ∈ S

(
Σ
)

f
(
σ(x)

)
= σT (x)Mσ (x)− 1 ≤ 0,∀x ∈ Ω

(3.19)

3.2.2.4 Kinematic definition of homogenized strength

The kinematic definition of the homogenized strength domain Ghom of a heterogeneous
material is the determination of the macroscopic support Π-function (figure 3.3),
similarly to (3.12) and (3.13), which is defined by:

Σ ∈ Ghom ⇔ ∀D, Σ : D 6 Πhom
(
D
)
= sup

Σ∈Ghom

Σ : D (3.20)

The same as the static definition, the macroscopic strength domain of the heteroge-

Skl

Sij

G
hom

D

S : D = (D)P
hom

Figure 3.3: Kinematic definition of the macroscopic strength domain.

neous materials is depends on the local resistance criterion (3.1) and the macroscopic
support π-function (refer to [38]) then can be calculated by:
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Πhom
(
D
)
= min

Û∈C(D)

⟨π (d)⟩ = 1

|Ω|

∫
Ω

π
(
d
)
dΩ

 (3.21)

If the velocity filed is discontinuous and expressed as equation (3.18), the average of
the support π-function could be written:

⟨
π
(
d
)⟩

=
1

|Ω|

∫
Ω

π
(
d
)
dΩ +

∫
S

π
(
n, Û

)
dS

 (3.22)

3.2.2.5 Support function of the elliptic resistance criterion

If the local resistance criterion is elliptical, the matrix M in the equation (3.2) is
symmetric and positive semidefinite. An alternative statement of this definition can
be expressed as follows:

f (x, σ (x)) = σ(x)TQTQσ (x)− 1 ≤ 0 (3.23)

⇔ G (x) =
{
σ (x) s.t ∥Qσ (x)∥2 6 1

}
(3.24)

where matrix Q is Cholesky factorization of matrix M, σ is a column vector (definition
3.3 and 3.4) of the the stress components of the tensor σ and ’subject to’ is abbreviated
to ’s.t’.
By introducing a new variable

σ̃ (x) = Qσ (x) (3.25)

equation (3.24) can be rewritten:

G (x) =
{
σ̃ (x) s.t ∥σ̃ (x)∥2 6 1

}
(3.26)

• In case of using continuous velocity fields
As concerns the strain tensor, its components are gathered in column vector
forms as follows:

d =
(

d11 d22 d33 d23 d31 d12

)T
(3.27)

d̃ =
(

d11 d22 d33 2d23 2d31 2d12

)T
(3.28)

Following the definition of support π-function (equation 3.10), it can be obtained:

π
(
d
)
= sup

σ∈G

(
σT d̃

)
= sup

∥σ̃∥61

{
σ̃T Q̃d̃

}
(3.29)
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3.2. Limit analysis using the periodic strength homogenization approach

where
Q̃ =

(
Q−1

)T (3.30)

Denoting

Πd = Q̃Zd (3.31)

with

Zd =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(3.32)

finally the support π-function of the elliptic resistance criterion in case of using
continuous velocity fields is:

π
(
d
)
=
∥∥∥Q̃d̃

∥∥∥ = ∥Πdd∥ (3.33)

• In case of using discontinuous velocity fields
As pointed out in [66], the support π-function of the discontinuity

[
Û
]

of the
velocity field across an interior surface S with unit normal vector n can be
similarly determined by equation (3.33) by replacing the tensor d with the
symmetric tensor χ defined as:

χ =
1

2

(
n⊗

[
Û
]
+
[
Û
]
⊗ n

)
(3.34)

Truly:

π
(
n;
[
Û
])

= sup
σ(x)∈G(x)

{(
σ.n
)
.
[
Û
]}

= sup
σ(x)∈G(x)

{
σ : χ

}
= π

(
χ
)

(3.35)

⇔ π
(
n;
[
Û
])

=
∥∥Πdχ

∥∥ (3.36)

where χ is a vector of the symmetric tensor χ components:

χ =
(

χ11 χ22 χ33 χ23 χ31 χ12

)T
(3.37)

Denoting by n1, n2 and n3, the three components of the unit vector n:

n =
(

n1 n2 n3

)
(3.38)
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and defining the matrix Zn as:

Zn =
1

2



2n1 0 0

0 2n2 0

0 0 2n3

0 n3 n2

n3 0 n1

n2 n1 0


(3.39)

then the relation of the vector χ and the discontinuity velocity field
[
Û
]

by
means of the matrix Zn writes:

χ = Zn

[
Û
]

(3.40)

The support π-function of the discontinuity velocity field
[
Û
]

can be expressed
as follows

⇔ π
(
n,
[
Û
])

=
∥∥∥Π[Û] [Û]∥∥∥ (3.41)

where
Π[Û] = ΠdZn (3.42)

Depending on the value of strain rate tensor d and
(
n;
[
Û
])

, the values of the support
π-function of the given domain G(x) are either finite or infinite so the kinematic
admissible virtual velocity filed Û must be chosen in order that the value of the
π-function remains finite. For example, the support π-function of von Mises criterion
will be infinite if the condition tr(d) = 0 is not satisfied.

3.2.3 Static and kinematic approaches to the homogenized
strength domain

Generally, except some simply particular cases, it is impossible to determine an
exact strength domain of a heterogeneous materials by solving the periodic auxiliary
problems attached to the representative element volume but can be approximated by
optimizing the static (3.19) and kinematic (3.20) problems. The formulations of two
classical method so-called interior static and exterior kinematic methods of the yield
design theory ([27], [52]) can be considered as optimization problems in which the
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3.2. Limit analysis using the periodic strength homogenization approach

results (lower bound and upper bound) will be rigorous bounds of the strength domain.

3.2.3.1 Static approach

The main purpose of the static approach is determining a lower bound of the
homogenized strength domain Ghom by finding a relevant statically admissible stress
field σ(x) ∈ S

(
Σ
)

based on the static definition of homogenized strength Ghom (3.19)
which satisfied the local resistance criterion G(x) that allow the macroscopic stress Σ

pertains to the strength domain Ghom.
Indeed, the first step to determine the approximated lower bound is optimizing the
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S
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Figure 3.4: Static approach of the macroscopic strength domain.

problem (3.19) of a giving load direction Σ̃
i
in the macroscopic strain space to find a

stress field which is statically admissible with that load. Clearly, the maximization
of the macroscopic strain Σ

i
= λiΣ̃i

coincides with the stress field σ
i
= λiσ̃i

which
satisfying the local resistance criterion G(x) at all the points.

Denoting by Σ+

i
= λ+

i Σ̃i
the macroscopic stress tensor located at the boundary

of the strength domain, λstat
i Σ

i
is a lower bound of Σ+

i
and λstat

i is defined by:

λstat
i = sup

{
λi |∀x ∈ Ω , λiσ̃ (x) ∈ G(x)

}
(3.43)

constitutes a lower bound of the extreme value λ+
i .

λstat
i ≤ λ+

i (3.44)
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The repetition of above process with different load directions in the macroscopic
strain space will provide an interior approximation of the strength boundary ∂Ghom.
This convex hull is called Gstat (see figure 3.4).

Gstat ⊆ Ghom (3.45)

In reality, the choice of the statically admissible stress field and the optimization of
the problem (3.43) can be solved by analytical or numerical analysis.

3.2.3.2 Kinematic approach

The starting point of the kinematic approach is to find a relevant velocity field Û

which is kinematically admissible with a macroscopic strain D based on the direct
definition (3.20).

In practice, the upper bound approximation of the strength domain Ghom can
be found first by optimizing equation (3.20) of a given direction of the macroscopic
strain D

i
:

πcine
i

(
D

i

)
= min

Û∈C(D
i
)

{
Prm = |Ω|

⟨
π
(
d
)⟩

;∀x ∈ Ω, π
(
d
)
= sup

σ(x)∈G(x)

(
σ : d

)}
(3.46)

Πhom
(
D

i

)
≤ πcine

i

(
D

i

)
(3.47)

The gap between the πcine
i

(
D

i

)
-function and the macroscopic support function

Πhom
(
D

i

)
is majoring and depends on the choice of the velocity field.

The repetition of above process with different macroscopic strain rate directions in
the macroscopic strain space will provide a convex domain shaped by the intersection
of all the related half-spaces and corresponding to an exterior approximation Gcine of
the macroscopic strength domain Ghom (see figure 3.5).
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Figure 3.5: Kinematic approach of the macroscopic strength domain.

3.3 3D numerical formulation of the auxiliary prob-
lems

3.3.1 Finite element implementation of the static approach

In the static approach, the stress-based finite element method will be used to perform
a numerical calculation of the lower bound of strength domain approximation.
The REV is first discretized into ne finite elements Ω(e),

(
Ω = ∪Ω(e), e = 1, ..., ne

)
and a three-dimensional element chosen for use in the static approach is the four-node
tetrahedron, called TET4-element [35], allowing to build a linear stress field.

Although the TET4-element is one of the simplest solid elements whose geome-
try is a right sides tetrahedron and which needs no complex numerical formulation
such as integration to construct its properties, it provides enough performance for the
stress analysis, especially in this static approach (viz [65] and [67]).

Figure 3.6 shows a typical TET4-element. Clearly, its geometry can be defini-
tively defined by four vertex coordinates with respect to the global coordinate system{

x y z
}

:
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xi, yi, zi (i = 1, ..., 4) (3.48)

In practice, the position of a tetrahedron vertex may be expressed by its global
coordinates system (3.48) or by its simply tetrahedral coordinates [35] as follows

{ζi, i = 1, ..., 4} (3.49)

Recall an interesting property of the TET4-element that any function linear in

domain occupied
by element e

4(x ,y ,z )4 4 4

2(x ,y ,z )2 2 2

1(x ,y ,z )1 1 1

3(x ,y ,z )3 3 3{ }s 3

e

{ }s 4

e

{ }s 1

e

{ }s 2

e

(e)

Figure 3.6: Typical four-node tetrahedron, TET4-element using in the numerical static
approach.

{
x y z

}
, say F (x, y, z), that takes the value {Fi, i = 1, ..., 4} at the vertex of the

TET4-element could be interpolated in terms of the tetrahedral coordinates:

F (ζ1, ζ2, ζ3, ζ4) =
4∑

i=1

Fiζi (3.50)

Thus each element has its own set of stress fields
{
σ
}(e)
i=1,...,4

at four evaluation nodes
corresponding with its four vertices; the stress field of the element can be clearly
interpolated in terms of those nodal stress fields. Where

{
σ
}(e)
i=1,...,4

is the stress tensor
of ith node of the eth element, defined as:

{
σ
}(e)
i

=

 σ
(e)
11,i σ

(e)
12,i σ

(e)
13,i

σ
(e)
21,i σ

(e)
22,i σ

(e)
23,i

σ
(e)
31,i σ

(e)
32,i σ

(e)
33,i

 ; i = 1, ..., 4 (3.51)
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As mentioned in the previous section, we adopt a column vector by gathering the six
independent components of the stress tensor

{
σ
}(e)
i

to correspond to a stress vector,
denoted {σ}(e)i , as follows:

{σ}(e)i =
{

σ
(e)
11,i σ

(e)
22,i σ

(e)
33,i σ

(e)
23,i σ

(e)
31,i σ

(e)
12,i

}
(3.52)

The stress field of the eth element is obtained from the stress vector at each evaluation
point and from the shape function matrix:

{σ}(e) (x) =
4∑

i=1

N
(e)
i (x) {σ}(e)i =[N](e) (x)


{σ}(e)1

{σ}(e)2

{σ}(e)3

{σ}(e)4

 (3.53)

where [N](e) (x) is the shape function matrix of the element e which is formed:

[N](e) (x) =
[
N

(e)
1 (x) [I6] N

(e)
2 (x) [I6] N

(e)
3 (x) [I6] N

(e)
4 (x) [I6]

]
(3.54)

The matrix [I6] denotes an identity matrix of size 6 and note that the linear shape
functions of the element N

(e)
i (x) are simply the tetrahedra’s coordinates:

N
(e)
i (x) = ζi, i = 1, ..., 4 (3.55)

with the condition

N
(e)
i (x) =

{
1 at node i; i = 1, ..., 4

0 at other nodes.
(3.56)

The convex criterion (3.6) is satisfied at any point of a TET4-element unless this
condition is satisfied at the four vertices of the element.

Indeed, at node ith of the element eth, the elliptic criterion of the stress field is
described by:

f
(
{σ}(e)i

)
≤ 0 ⇔

∥∥∥{σ̃}(e)i

∥∥∥2 ≤ 1 (3.57)

where

{σ̃}(e)i = [Q](e)i {σ}(e)i (3.58)

Matrix [Q](e)i is a Cholesky factorization of the coefficient matrix [M](e)i related to
the strength properties of the material at node i of the element e that can be directly
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defined from the yield criterion of the material.

The condition (3.58) can be rewritten in the formulation of the global stress vector
{σ} and {σ̃} for all the vertices i (i = 1, ..., 4) of all elements e (e = 1, ..., ne) as follows:

[Q] {σ} − {σ̃} = {0} (3.59)

where

{σ} =


...

{σ}(e)i
...

 , {σ̃} =


...

{σ̃}(e)i
...

 , i = 1, ..., 4; e = 1, ..., ne (3.60)

and

[Q] =


. . .

[Q](e)i
. . .

 , i = 1, ..., 4; e = 1, ..., ne (3.61)

A statically admissible stress field is built so that the equilibrium and continuity
requirements inside any element and between two neighboring elements are satisfied.
A body load field over the REV such as gravity or centrifugal forces is ignored so the
divergence of the stress field must be equal to zero, we get:

divσ = 0 ⇔


∂σ11

∂x
+ ∂σ12

∂y
+ ∂σ13

∂z
= 0

∂σ21

∂x
+ ∂σ22

∂y
+ ∂σ23

∂z
= 0

∂σ31

∂x
+ ∂σ32

∂y
+ ∂σ33

∂z
= 0

(3.62)

Combining this equation with equation 3.53, we obtain the equation of the equilibrium
with no body force in the REV :

[E] {σ} =


. . . [

[E](e)1 [E](e)2 [E](e)3 [E](e)4

]
. . .





...
{σ}(e)1

{σ}(e)2

{σ}(e)3

{σ}(e)4
...


= {0} (3.63)

The matrix [E](e)i is called elementary equilibrium matrix at node i of the eth element
and has the following definition:
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[E]ei =


∂N

(e)
i

∂x
0 0 0

∂N
(e)
i

∂z

∂N
(e)
i

∂y

0
∂N

(e)
i

∂y
0

∂N
(e)
i

∂z
0

∂N
(e)
i

∂x

0 0
∂N

(e)
i

∂z

∂N
(e)
i

∂y

∂N
(e)
i

∂x
0

 (3.64)

As pointed out in [35], the partial derivatives of the shape functions are:

∂N
(e)
i

∂x
=

ai
6Ω(e)

;
∂N

(e)
i

∂y
=

bi
6Ω(e)

;
∂N

(e)
i

∂z
=

ci
6Ω(e)

(3.65)

So matrix [E](e)i can be express in terms of ai, bi, ci which can be determined in terms
of the vertices’s coordinates.

[E](e)i =
1

6Ω(e)

 ai 0 0 0 ci bi

0 bi 0 ci 0 ai

0 0 ci bi ai 0

 (3.66)

Ω(e) is present the volume of the eth element which can be directly calculated from
four vertices coordinates:

Ω(e) =
1

6
det


1 1 1 1

x
(e)
1 x

(e)
2 x

(e)
3 x

(e)
4

y
(e)
1 y

(e)
2 y

(e)
3 y

(e)
4

z
(e)
1 z

(e)
2 z

(e)
3 z

(e)
4

 (3.67)

The other condition of equilibrium imposes that the stress vector is continuous
through the surfaces of discontinuity which are the triangles separating two adjacent
elements (figure 3.7). This implies that, between each element of the mesh, the jump
of the stress vector is zero (i).
Moreover, since periodic conditions are applied to the REV, the stress vector must be
anti-periodic on two opposite faces of the REV (ii).
These two conditions (i) and (ii) can be solved in a similar way from the numerical

point of view.
Indeed, two adjacent elements (p) and (q) have a joint-triangular face, denoted (s)

(or s+ and s− facing together on two opposite faces of the edge of the REV ). The
normal vector n(s) of this face is:

n(s)=t
{

n
(s)
1 n

(s)
2 n

(s)
3

}
(3.68)

By introducing the stress vectors at the vertex of each element related to the joint-
triangular face (s): {σ}(p)i , {σ}(p)j , {σ}(p)k for element (p) and {σ}(q)i , {σ}(q)j , {σ}(q)k for
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(p) { }s k

(q)

{ }s i

(p)

{ }s j

(q)

{ }s j

(p)

(q)

{ }s i

(q)

{ }s k

(q)

n

s

(s)

Figure 3.7: Triangles surface s of two adjacent elements (p) and (q).

element (q), respectively (figure 3.7), we have the following relation:

[C] {σ} =



. . .  [n](s) [0] [0] −[n](s) [0] [0]

[0] [n](s) [0] [0] −[n](s) [0]

[0] [0] [n](s) [0] [0] −[n](s)


. . .





...
{σ}(p)i

{σ}(p)j

{σ}(p)k

{σ}(q)i

{σ}(q)j

{σ}(q)k
...


(3.69)

The matrix [C] has the dimensions of (18ns × 36ns) with ns is number of joint-triangle
faces and depending on the normal vector matrix [n](s):

[n](s) =

 n
(s)
1 0 0 0 n

(s)
3 n

(s)
2

0 n
(s)
2 0 n

(s)
3 0 n

(s)
1

0 0 n
(s)
3 n

(s)
2 n

(s)
1 0

 (3.70)

In addition to the anti-periodicity conditions of the stress vector, the average operation
of the stress field must be equal to the macroscopic stress tensor Σ, which constitutes
the second specificity related to the resolution of the auxiliary problem.

Σ =
⟨
σ
⟩
=

1

|Ω|

∫
Ω

σdΩ (3.71)
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By definition, using the property that the stress field is linear on each element, the
average operation of the Σkl component is calculated as follows [41]:

Σkl =
1

|Ω|

ne∑
e=1

∫
Ωe

σ
(e)
kl dΩ

(e) =
1

|Ω|

ne∑
e=1

∣∣Ω(e)
∣∣

4

4∑
j=1

σ
(e)
kl,j (3.72)

As explained in section 3.2.2, the macroscopic stress tensor could be obtained for each
tensor Σ̃

i
= Σ̃

(α,β)
through the maximization of the multiplication factor λi = λ(α,β)

such as λ(α,β)Σ̃
(α,β)

is obtained on the boundary of the static approach of the strength
domain.

Thus from equation (3.72) we have the following relation between the unknowns
related to the stress field and the macroscopic stress tensor:

λ(α,β)
{
Σ̃
}(α,β)

= [P] {σ} ;α = 0÷ 180◦; β = 0÷ 360◦ (3.73)

where {
Σ̃
}(α,β)

=
{

Σ̃
(α,β)
11 Σ̃

(α,β)
22 Σ̃

(α,β)
33 Σ̃

(α,β)
23 Σ̃

(α,β)
31 Σ̃

(α,β)
12

}
(3.74)

Matrix [P] is given by the following determinant in terms of the element volumes:

[P ] =
1

|Ω|

[
· · · |Ω(e)|

4

[
[I6] [I6] [I6] [I6]

]
· · ·

]
, e = 1, ..., ne (3.75)

Finally, the static approach reduces to the optimization defined by (3.43). For the
finite element method developed here, one look to maximize the loading factor subject
to the different conditions related to the respect of the local resistance criterion and
the static admissibility conditions.

λstatic = max {λ under conditions: (3.57), (3.59), (3.63), (3.69) and (3.73) } (3.76)

More concretely, that means:

λ+
(
Σ̃

(α,β)
)
≥ λstatic

(
Σ̃

(α,β)
)

= max λ(α,β)

s.t.

∥∥∥{σ̃}(e)i

∥∥∥2 ≤ 1
{0} [Q] − [I24ne ]

{0} [E] [0]

{0} [C] [0]

−Σ̃
(α,β)

[P] [0]




λ(α,β)

{σ}
{σ̃}

 =


{0}
{0}
{0}
{0}


(3.77)
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Next steps, as specified in section 3.2.2, the repetition of the above calculation

with a number of different load directions
{
Σ̃
}(α,β)

by variation of α (0÷ 180◦)

and β (0÷ 360◦) in the macroscopic stress space will provide a lower bound of the
strength boundary ∂Ghom. The convex hull Gstat which is included in the domain Ghom.

3.3.2 Finite element implementation of the kinematic approach

A velocity-based finite element method will be used to perform the numerical
calculation for the approximation of the upper bound of strength domain.
Piecewise quadratic velocity fields are considered and quadratic tetrahedron TET-10
element (see figure 3.8) are used. The use of discontinuous velocity fields is also
discussed.
The TET10-element using is a constant metric element (abbreviation: CM ), it must

domain occupied
by 10-node tetrahedron
element e

4

2

1

3
8

5

6

10

9

7

Figure 3.8: Quadratic element: 10-node quadratic tetrahedron.

be satisfied the six midsize nodes collocation, at the midpoints between adjacent
corners. By mathematically expressed as follows:

x5 = (x1 + x2) /2, x6 = (x2 + x3) /2, ...x10 = (x3 + x4) /2,

y5 = (x1 + x2) /2, y6 = (x2 + x3) /2, ...y10 = (x3 + x4) /2,

z5 = (x1 + x2) /2, z6 = (x2 + x3) /2, ...z10 = (x3 + x4) /2,

(3.78)

The combination of a CM TET10-element with both linearly-varied jump discontin-
uous and continuous velocity fields are presented in the following items.
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⋄ Linear jump discontinuous velocity fields
The REV will be discretized into ne TET10-elements, the velocity field therefore
being quadratic on each element. The discontinuity of the velocity field is
permitted between two adjacent elements (see figure 3.9). The number of nodes
of the mesh is np and each node has three degrees of freedom which correspond
to the three components of its velocity, denoted (u, v, w).
For a given element e, the unknown velocities are gathered in the following vector:

t{U}(e) =
{

u
(e)
1 v

(e)
1 w

(e)
1 · · · u

(e)
10 v

(e)
10 w

(e)
10

}
(3.79)

The strain tensor, denoted d, is linear and coincides with the choosing of velocity
fields. The vector of this tensor components at each vertex i of the eth element
can be written as:

t {d}(e)i =
{

d
(e)
11,i d

(e)
22,i d

(e)
33,i d

(e)
23,i d

(e)
31,i d

(e)
12,i

}
; i = 1, ..., 4 (3.80)

The relation of the strain rate filed {d}(e)i and velocity field {U}(e) of the

(p)

{ }s 4

(p)

{ }s 2

(p)

(q)

{ }s 4

(q)

{ }s 3

(q)s

4

2

1

3
8

5

6

10

9

7

1

5

7

8

{ }U 4

(p) { }U 4

(q)

{ }U 8

(q)

{ }U 1

(q)

{ }U 5

(q)

{ }U 2

(q)

{ }U 3

(q){ }U 3

(p)

{ }s 3

(q)

{ }s 8

(q)

{ }s 1

(q)

{ }s 5

(q)

{ }s 2

(q)

{ }s 8

(p)

{ }s 1

(p)

{ }s 5

(p)

{ }U 8

(p)

{ }U 1

(p)

{ }U 5

(p) { }U 2

(p)

Figure 3.9: Internal evaluation points of the strain field in the kinematic approach.

element eth can be formulated by using the definition of the strain tensor d

(3.11) as follows:

{d}(e)i = [B](e)i {U}(e) (3.81)
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where the matrix [B](e)i takes the form

[B](e)i =


· · ·



∂N
(e)
j

∂x
0 0

0
∂N

(e)
j

∂y
0

0 0
∂N

(e)
j

∂z

0 1
2

∂N
(e)
j

∂z
1
2

∂N
(e)
j

∂y

1
2

∂N
(e)
j

∂z
0 1

2

∂N
(e)
j

∂x

1
2

∂N
(e)
j

∂y
1
2

∂N
(e)
j

∂x
0


· · ·


, j = 1, ..., 10 (3.82)

The conventional (non-hierarchical) shape functions N
(e)
j are given by [35] in

terms of the tetrahedral coordinates:

N
(e)
j = ζj (2ζj − 1) , j = 1, ..., 4

N
(e)
j = 4ζkζl, j = 5, ..., 10 and kl = 12, 23, 31, 14, 24, 34 respectively.

(3.83)

In the global system, the equation (3.81) can be written in terms of global
vector {d} and {U} as follows:

{d} − [B] {U} = {0} (3.84)

The global vector variables {U} and {d} are defined as

{U} =


...

{U}(e)
...

 , {d} =


...

{d}(e)i
...

 ; i = 1, ..., 4; e = 1, ..., ne (3.85)

and

[B] =


. . .

[B](e)i
. . .

 , i = 1, ..., 4; e = 1, ..., ne (3.86)

Related to the discontinuity velocity condition, as mentioned in [67], the expres-
sion of the linear-jump velocity field of the face s of two adjacent elements: (p)

and (q) at point ′ij′ (see figure 3.10) can be written as follows:[
Û
]
ij
=

1

2

([
Û
]
i
+
[
Û
]
j

)
(3.87)

Using the definition (3.13) of the jump velocity across the surface s at points
′i′,′ j′ and ′ij′, extending to all discontinuity surfaces in the global system,
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(p)

(q)
s

i

k

j

ik

ij

ki

{ }U i

(p)

{ }U i

(q)

{ }U k

(q)

{ }U j

(q)

{ }U j

(p)

{ }U k

(p)

[ ]U k

[ ]U i

[ ]U j

[ ]U ki

[ ]U ij

[ ]U ik

Figure 3.10: Velocity jump at the discontinuity face of two adjacent TET10-elements.

equation (3.87) can be rewritten as follows:

[
Ĉd

]
{U} =


. . . [

2 [I3] [I3] [I3] −2 [I3] − [I3] − [I3]
]

. . .





...
{U}(p)ij

{U}(p)i

{U}(p)j

{U}(q)ij

{U}(q)i

{U}(q)j
...



= {0}

(3.88)
As previously explained (section 3.2.2.4), a macroscopic strain D(α,β), completely
defined by a set of angle (α, β), is applied to the REV. Then the velocity field
must be kinematically admissible with this macroscopic strain tensor.

This condition leads to a linking equation of the velocity at two opposite
points on two opposite faces of the REV (figure 2.2).

Let us take two opposite faces of the boundary of the REV : ∂Ω+ and
∂Ω−. The components of the velocities of the six nodes which belong to one
face of the other ones are grouped in an elementary vector {U}i±, such that
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{U}i± =
{

ue
i± vei± we

i±

}
; i = 1, ..., 6 (3.89)

where the node i+ belonging to the face ∂Ω+ and the opposite node i− is
situated on the face ∂Ω−, respectively.
The kinematic admissible condition is then expressed in the equation as follows:

{U}i+ − {U}i− = D(α,β){∆x}i (3.90)

where the vector {∆x}i expresses difference between the coordinates of related
nodes:

{∆x}i =


xi+ − xi−

yi+ − yi−

zi+ − zi−

 (3.91)

The global matrix [X], in the global system, will then be constructed to express
the kinematically admissible boundary conditions of the REV as follows:

[X] {U} =



. . .  1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1


. . .




...

{U}i+
{U}i−

...

 =
{
X̃(α,β)

}

(3.92)
with the definition of the vector

{
X̃(α,β)

}
:

{
X̃(α,β)

}
=



...
D11 (xi+ − xi−) +D12 (yi+ − yi−) +D13 (zi+ − zi−)

D21 (xi+ − xi−) +D22 (yi+ − yi−) +D23 (zi+ − zi−)

D31 (xi+ − xi−) +D32 (yi+ − yi−) +D33 (zi+ − zi−)


...


(3.93)

On the other hand, the other boundary conditions, consisting of fixing one or
more components of velocity at certain points can be taken into account by a
linear relationship:

[P] {U} = {0} (3.94)
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Finally, it is necessary to calculate the resisting work associated with the
velocity field and (expressed previously in 3.21). The mean of the support
function π

(
d
)

(equation 3.41) can be written as follows:

⟨
π
(
d
)⟩

= 1
|Ω|

(∫
Ω

π
(
d
)
dΩ +

∫
S
π
(
n, Û

)
dS
)

= 1
|Ω|

(
ne∑
e=1

∫
Ω(e)

π
(
d
)
dΩ(e) +

ns∑
s=1

∫
S(s)

π
(
n, Û

)
dS(s)

) (3.95)

where ns is the total number of discontinuity faces S(s).

We specifically mention the simplest numerical integration rule, the one
point rule (refer to [35]), which finds application in the evaluation of the
resisting work for the CM quadratic tetrahedron element and its discontinuity
face in terms of the variables at their vertices, respectively. The equation (3.95)
is then rewritten:

⟨
π
(
d
)⟩

≈ 1

|Ω|

(
ne∑
e=1

∣∣Ω(e)
∣∣

4

∥∥∥Π(e)
d d

(e)
∥∥∥+ ns∑

s=1

∣∣S(s)
∣∣

3

∥∥∥∥Π(s)

[Û]

[
Û
](s)∥∥∥∥

)
(3.96)

where 
d
(e)

=
4∑

r=1

[I4] {d}(e)r[
Û
](s)

=
3∑

t=1

[I3]
{[

Û
]}(s)

t

(3.97)

with r and t are the number of vertices and faces of the quadratic tetrahedron
element, respectively.
Expression (3.97) can be taken as the configuration in the global system as
follows:

{
d
}
=


. . . [

[I4] [I4] [I4] [I4]
]

. . .

 {d} = [R] {d} (3.98)

and

{[
Û
]}

=


. . . [

[I3] [I3] [I3]
]

. . .

{[Û]} = [T ]
{[

Û
]}

(3.99)
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Thus, by referring to the definition (3.46) of the auxiliary problem, the result
of the numerical kinematic approach is reduced to the minimization of the
maximum dissipation energy under the constraints related to the kinematic
admissibility and other conditions:

πkine(α,β) = min
{⟨

π
(
d
)⟩

under conditions (3.57), (3.88), (3.93), (3.94), (3.98), (3.99)
}

(3.100)
Using the different explicit form introduced previously (3.77), we have:

πhom(α,β)
(
D(α,β)

)
≤ πkine(α,β)

(
D(α,β)

)
(3.101)

where

πkine(α,β)
(
D(α,β)

)
= min 1

|Ω|

(
ne∑
e=1

|Ω(e)|
4

∥∥∥Π(e)
d d

(e)
∥∥∥+ ns∑

s=1

|S(s)|
3

∥∥∥∥Π(s)

[[Û]]

[
Û
](s)∥∥∥∥)

s.t.

− [I24ne ] [B] [0] [0] [0]

[0] [X] [0] [0] [0]

[0] [P ] [0] [0] [0]

[0]
[
Ĉd

]
[0] [0] [0]

[R] [0] − [I24ne ] [0] [0]

[0] [0] [0] [T ] − [I9ns ]





{d}
{U}{
d
}{[
Û
]}{[

Û
]}


=



{0}{
X̃(α,β)

}
{0}
{0}
{0}
{0}


(3.102)

For the next steps, similarly in the static approach, the repetition of above
calculation with a number of different load directions D(α,β) by variation of α
and β (α = 0÷ 180◦; β = 0÷ 360◦) in the macroscopic strain space will provide
an upper bound of strength domain Ghom. Gkine is a convex hull which envelope
the domain Ghom.

⋄ Continuous velocity fields
In case of discontinuity absence, a continuous condition of the velocity field of
all points at the surface of two adjacent elements must be added:
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[
Ĉc

]
{U} =



. . .  [I3] [0] [0] − [I3] [0] [0]

[0] [I3] [0] [0] − [I3] [0]

[0] [0] [I3] [0] [0] − [I3]


. . .





...
{U}(p)ij

{U}(p)i

{U}(p)j

{U}(q)ij

{U}(q)i

{U}(q)j
...



= {0}

(3.103)
The evaluation of the dissipation energy (3.97) can be used with the elimination
of the item related to discontinuity expression:

⟨
π
(
d
)⟩

≈ 1

|Ω|

(
ne∑
e=1

∣∣Ω(e)
∣∣

4

∥∥∥Π(e)
d d

(e)
∥∥∥) (3.104)

The result of the numerical kinematic approach is then reduced to the mini-
mization of the maximum dissipation energy under the constraints related to
the kinematic admissibility and other conditions:

πkine(α,β) = min
{⟨

π
(
d
)⟩

under conditions (3.57), (3.88), (3.93), (3.94), (3.98) and (3.103)
}

(3.105)
And in the explicit form:

πhom(α,β)
(
D(α,β)

)
≤ πcine(α,β)

(
Dα,β

)
= min 1

|Ω|

ne∑
e=1

|Ω(e)|
4

∥∥∥Π(e)
d d

(e)
∥∥∥

s.t.
− [I24ne ] [B] [0] [0] [0]

[0] [X] [0] [0] [0]

[0] [P] [0] [0] [0]

[0]
[
Ĉc

]
[0] [0] [0]




{d}
{U}{
d
}
 =


{0}{
X̃(α,β)

}
{0}
{0}


(3.106)

3.3.3 Formulation as a SOCP problem

A variety of material resistance criteria can be written as a system of the second-order
cones as introduced in [58] and [14]. Several efficient applications in limit analysis
have been developed and widely applied recent years ([59], [15], [65], etc).

SOCP is a nonlinear convex problem which can be a linear or convex quadratic
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program and its algorithm is able to solve problems with large amounts of variables
with impressive CPU times and can be guaranteed to identify overall optimal solutions
([59]).

In this section, the development of how SOCP can be used to solve both lower-bound
and upper-bound convex optimization problems is presented.

3.3.3.1 Convex quadratic optimization

A second order problem consists of optimizing an objective function subject to conic
constraints has the following form:

minhT z

s.t.

∥Aiz + qi∥ ≤ uT
i z + ti; i = 1, ..., Z

(3.107)

where the optimization variables: z ∈ Rn, h ∈ Rn, Ai ∈ Rmxn, qi ∈ Rm and ti ∈ Rn

are the problem parameters.
For limit analysis problems, the most common second-order cones are as follows:

• Quadratic cone

Cr =

z ∈ Rk+1|z1 ≥

√√√√k+1∑
j=2

zj2 =
∥∥z2→k+1

∥∥ (3.108)

• Rotated quadratic cone

Cs =

{
z ∈ Rk+2|2z1z2 ≥

k+2∑
j=3

zj
2 =
∥∥z3→k+2

∥∥2; z1, z2 ≥ 0

}
(3.109)

m = 3 if the problem is in 3D and in case of m = 1, the SOCP becomes a linear
programming problem.

3.3.3.2 Lower bound programming

By introducing an auxiliary variable for each node i of the eth element:

{z̃}(e)i =
{

z
(e)
i,1 = 1

2
z
(e)
i,2 = 1

}
(3.110)
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3.3. 3D numerical formulation of the auxiliary problems

where σ̃
(e)
k acts as z

(e)
j ; j = 3, ..., 9; k = 1, ..., 6, respectively.

The constraint condition (3.58) can be transformed into a linear equality constraint
coupled with a rotated quadratic cone (3.109):

Cs, i
(e) =

{
{z}(e) ∈ R9 : 2z

(e)
1 z

(e)
2 >

9∑
j=3

(
z
(e)
j

)2
; z

(e)
1 , z

(e)
2 > 0

}
(3.111)

The maximizing problem (3.77) becomes a rotated conic optimization where the
objective function being a load multiplier λ (It is obviously linear, as required for the
use of SOCP).

Maximize λ(α,β)

s.t.



{z}(e)i ∈ C
(e)
i ; ∀i ∈ {1, ..., 4} , ∀e ∈ {1, ..., ne}


{0} [Q] − [I24ne ] [0]

{0} [E] [0] [0]

{0} [C] [0] [0]

−Σ̃
(α,β)

[P ] [0] [0]

{0} [0] [0] [I2ne ]




λ(α,β)

{σ}

{z} =

{
{σ̃}
{z̃}

}
 =



{0}
{0}
{0}
{0}

...{
1
2

1

}
...




(3.112)

here {z̃} is global auxiliary variable defined as:

{z̃} =



...{
z
(e)
1

z
(e)
2

}
...

 and {z}(e)i =

{
{z̃}(e)i

{σ̃}(e)i

}

3.3.3.3 Upper bound programming

⋄ Discontinuous velocity fields
To begin, note that our problem can be modeled by using the following
optimization problem:

Mininize
m∑
i=1

wi ∥si∥+
n∑

i=1

vi ∥ti∥ (3.113)
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To convert problem (3.113) to a standard SOCP, we have to add constraints{
∥si∥ ≤ yi, i = 1, ...,m

∥ti∥ ≤ zi, i = 1, ..., n
(3.114)

Then, the problem (3.113) can be modeled by a standard SOCP as follows:

Mininize
m∑
i=1

wiyi +
n∑

i=1

vizi s.t.


∥si∥ ≤ yi, i = 1, ...,m

∥ti∥ ≤ zi, i = 1, ..., n

yi, zi ≥ 0

(3.115)

We can now apply (3.115) to formulate (3.77) as a standard SOCP problem by
adding new variables  se = Π

(e)
d d

(e)
,∀e = 1, ..., ne

ts = Π(s)

[[Û]]

[
Û
](s)

, ∀s = 1, ..., ns

(3.116)

then

πcine(α,β) = Minimize

(
ne∑
e=1

weye +
ns∑
s=1

vszs

)
s.t.



∥se∥ ≤ ye,∀e = 1, ..., ne

∥ts∥ ≤ zs, ∀s = 1, ..., ns

ye, zs ≥ 0

− [I24ne ] [B] [0] [0] [0]

[0] [X] [0] [0] [0]

[0] [P ] [0] [0] [0]

[0]
[
Ĉd

]
[0] [0] [0]

[R] [0] − [I24ne ] [0] [0]

[0] [0] [0] [T ] − [I9ns ]





{d}
{U}{
d
}{[
Û
]}{

Û
}


=



{0}{
X̃(α,β)

}
{0}
{0}
{0}
{0}


(3.117)

where

we =
1

4

∣∣∣∣Ω(e)

Ω

∣∣∣∣ and vs =
1

3

∣∣∣∣S(s)

Ω

∣∣∣∣ (3.118)

⋄ Continuous velocity fields
Simply, the problem (3.106) can be modeled by the SOCP as follows:
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πcine(α,β) = Minimize
ne∑
e=1

weye

s.t.

∥se∥ ≤ ye,∀e = 1, ..., ne;

ye ≥ 0
− [I24ne ] [B] [0] [0] [0]

[0] [X] [0] [0] [0]

[0] [P] [0] [0] [0]

[0]
[
Ĉc

]
[0] [0] [0]




{d}
{U}{
d
}
 =


{0}{
X̃(α,β)

}
{0}
{0}



(3.119)

3.4 Conclusions

This chapter has shown the development of the formulations related to two limit
analysis approaches by applying them to solve the auxiliary problems defined in the
context of periodic homogenization.

Thanks to the second order cone programming, it is possible to deal with gen-
eral three-dimension problems corresponding to the elliptic resistance criteria for the
determination of the macroscopic resistance domain of heterogeneous materials. In
this chapter a FEM based numerical formulation using the statical and kinematical
approaches and taking into account periodic boundary conditions has been developed.
This formulation is performed to build a numerical FEM based tool to estimated the
macroscopic strength domain of the Callovo-Oxfordian claystone, the obtained results
are presented in the next chapter.

* *
*
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4.1. Introduction

4.1 Introduction

Natural heterogeneous materials and many engineering composites are multi-phase
and multi-scale material systems. As explained in the introduction of Chapter

1, the need to determine the mechanical properties of these composite materials is
rather great. More explanation of applying numerical approaches to actual cases in
order to estimate macroscopic resistance domains of their heterogeneous materials is
presented here.

Indeed, the macroscopic resistance criteria of such composite materials, in gen-
eral, and Callovo-Oxfordian claystone, in particular, cannot be defined simply by
analytical formulate; only the use of numerical calculations makes it possible to
evaluate them. They are then obtained in the form of polyhedra, depending on a very
large number of hyper-planes, which makes their direct use in any set of calculations
very difficult, if not impossible.

This chapter, by applying the methods posited in chapter 2 and chapter 3, deals with
numerical resolutions for the determination of the macroscopic strength criterion of
Callovo-Oxfordian argillite, a claystone which displays a clay matrix reinforced by
rigid inclusions which will be studied using the limit analysis attached to the several
different morphological representative elementary volumes in three-dimensional space.
These estimations can be used to determine lower and upper bounds load magnitudes
of various classical geotechnical works (e.g. the bearing capacity of a soil under the
action of an inclined loading, analysis of the stability of damaged zones, etc.). The
study of the dependency of the macroscopic strength domain on the stress third
invariant, especially for the spherical inclusion placed into the matrix following a
periodic cubic arrangement will be studied as well.

To start with, the micro-meso transition of the Callovo-Oxfordian claystone is
presented in section 4.2. Herein, the elliptic resistance criterion is applied to results
of the analysis in [43] with a suitable description for the strength of the clay matrix
in question. Then the transition from the mesoscopic scale to the macroscopic
scale which constitutes the second homogenization step to estimate the macroscopic
strength domain i.e. the main study of this chapter is presented.

Then, several morphologies are described in section 4.4 after a description of
the macroscopic loading in section 4.3.
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To obtain lower and upper bound estimations of the macroscopic resistance cri-
terion, in section 4.5, techniques for the approximation of the homogenized strength
domain are presented for the static and kinematic approaches, respectively.

It is currently impossible to obtain an exact evaluation of the criterion of the
macroscopic resistance domain (except for special cases such as multilayered materi-
als) for a given geometrical and material configurations. We only know that the exact
macroscopic resistance domain Ghom is between Gstat and Gcine, but its exact position
remains unknown (see figure 4.1).

——–

Skl

Sij

G
hom

G
stat

¶G
hom

G
kine

Figure 4.1: Relative position of the exact macroscopic resistance domain Ghom between
Gstat and Gkine

Gstat ⊆ Ghom ⊆ Gkine (4.1)

Finally, the macroscopic strength criteria are numerically studied and derived in
section 4.7 in cases of different matrix criterion aspect ratios by a the developed
elastoplastic and limit analysis based tool is presented in section 4.6.
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4.2 Transition from micro to the meso scale: matrices
with elliptic criterion and support function

As described in section 1.2, at the microscopic scale, micro pores can be observed in
clay matrices. A first strength homogenization step has been performed by [23] using
the appropriate nonlinear homogenization technique in order to evaluate the matrix
strength criteria. The meso-structural analysis of this material at some hundreds of
µm scale, referred here as the mesoscopic scale, shows a clay matrix and a random
distribution of mineral inclusions (quartz and calcite) which is illustrated in figure
4.2.

An assumption of a separation between the microscopic and mesoscopic scales

Equivalent
homogenized
material

(a) (b) (c)

Porous matrix
Quartz

Calcite

Solid phase
of clay matrix

Pore

Homogenization Homogenization

Figure 4.2: Different scales of the argillite Callovo-Oxfordian. (a) macroscopic scale,
(b) argillite at mesoscopic scale and (c) porous matrix at microscopic scale.

allows performancing a two-step homogenization: an appropriate homogenization
technique [43] is used for the first step which deals with the transition from micro-
scopic scale to the mesoscopic scale. Here, the matrix is described as a heterogeneous
material made up of pores and a solid phase of the matrix in contact through cohesive
frictional interfaces. The result of this first homogenization step is the derivation of
the strength properties of the matrix at the mesoscopic scale where it is considered as
a homogenous material.
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4.2.1 Green criterion

Assuming the results of the analysis in [23] provide a suitable description for the
strength of the clay matrix, as introduced by [5] and [31], the strength criterion is
isotropic and can be useful to express as an ellipse, called the Green criterion in [8],
in general as follows:

fG
(
σ
)
=
(σm

a

)2
+
(σd

b

)2
− 1 6 0 (4.2)

where a, b depends on intergranular interfacial strength properties and on the porosity
of the material. σm and σd are the mean stress and deviatoric stress which are defined
as:

σm =
1

3
tr
(
σ
)
; σd =

√
σ
d
: σ

d
; σ

d
= σ − σm1 (4.3)

In the plane (σm, σd), the boundary of this resistance criterion is a half of an ellipse
with axes a2 along σm and b2 along σd.
Equation (4.2) can be reformulated as the form of an elliptic resistance criterion (3.6)

fG (σ) = σ(x)TMGσ (x)− 1 ≤ 0 (4.4)

where σ is presented to the symmetric stress tensor σ by regrouping its independent
components as defined by equation (3.4) and

MG =



k1 k2 k3 0 0 0

k2 k5 k4 0 0 0

k3 k4 k6 0 0 0

0 0 0 k7 0 0

0 0 0 0 k8 0

0 0 0 0 0 k9


(4.5)

with 
k1 = k5 = k6 =

1
9a2

+ 2
3b2

k2 = k3 = k4 =
1

9a2
− 1

3b2

k7 = k8 = k9 =
2
b2

(4.6)

In the framework of limit analysis theory [52], a dual characterization of the strength
criterion fG (σ) ≤ 0 is the support function π:

π
(
d
)
= sup

σ(x)∈G(x)

(
σ : d

)
(4.7)
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of the convex set of admissible stress states with the kinematic admissible strain field
of d.
The local strength domain at point x in a continuum Ω is now defined as:

G(x) :=
{
fG (σ) = σ(x)TMGσ (x)− 1 ≤ 0; ∀x ∈ Ω

}
(4.8)

Recall section (3.2.2.5) applied for the domain G(x), the support function π
(
d
)

of the
domain G(x) for the Green criterion (4.4) is:

• For continuous velocity fields:
The support function of the domain (4.8) is follow equation (3.33) and

• For discontinuous velocity fields:
Clearly, the matrix MG is symmetry and positive semi definitive; it is possible
to obtain its Cholesky factorization: Q.
The support function of the domain (4.8) in case of using discontinuous velocity
fields is defined by equation (3.41) with the matrix Π[Û] is defined by equation

(3.42), and Q̃ is defined as:

Q̃ =
(
Q−1

)T (4.9)

4.2.2 Problem formulation for other yield criteria

The formulations of other yield criteria, such as the Von Mises strength criterion or
Hill’s yield criterion which are not used here, are presented in Appendix A.

4.3 Macroscopic loading modes on the REV

The FEM simulations are carried on the unit cell, accounting of symmetry properties.

• Static approach
For the static approach, the study is restricted to the following imposed
macroscopic stress:

Σ(α,β) =
cos (α)

3
1 + sin (α)

[
cos (β)u

1
+ sin (α)u

2

]
(4.10)
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where u
1

and u
2

are orthogonal unit tensors which are defined as follows:

u
1
=

√
2

3

(
e3 ⊗ e3 +

e1 ⊗ e1 + e2 ⊗ e2
2

)
(4.11)

u
2
=

e1 ⊗ e1 − e2 ⊗ e2√
2

(4.12)

• Kinematic approach
The study of the kinematic problem is restricted to the following imposed
macroscopic strain rates:

D(α,β) =
cos (α)

3
1 +

√
2

3
sin (α)

[
− cos

(
β + π

3

)
e1 ⊗ e1 − cos

(
β − π

3

)
e2 ⊗ e2

+cos (β) e3 ⊗ e3

]
(4.13)

The direction of loading is modified by varying angles α and β

(α = 0÷ 180◦; β = 0÷ 360◦) with successive increments of these angles.

For a unit cell displaying three planes of symmetry with normals e1, e2 and e3,
([64]), the symmetry properties imply that for the loading modes given by equation
(4.13) the macroscopic stress tensor Σ, located at the point of boundary of the ho-
mogenized strength domain with outward normal D, is diagonal in the (e1, e2, e3) basis.

4.4 Description of the studied mesostructure

For this model, REV at the mesoscopic scale is a composite structure with reinforcing
inclusions surrounded by the homogenized matrix resulting from the micro-meso
transition (figure 4.3).

The rigid inclusions are distributed throughout the porous matrix following a
regular pattern. The matrix is assumed homogeneous obeying a three-dimensional
resistance criterion, characterized by a convex domain in the three-dimensional space.
In our concern, the matrix obeys a Green elliptic criterion (4.2).

The inclusions are supposed rigid resistant and perfectly bounded to the matrix. The
reinforcement volume fraction ρ (also called replacement ratio) is used and classically
defined as the ratio between the volume occupied by the inclusions and the volume of

86



4.4. Description of the studied mesostructure

Porous matrix

Inclusion

Figure 4.3: Rigid inclusion reinforced porous matrix and microstructure of the unit
cell Ω.

the unit cell.

4.4.1 Morphologies

The structure discussed is conceptualized as a homogeneous matrix comprising a
network of inclusions, distributed at a three-dimensional periodicity. The cell includes
an inclusion, centered in its middle.
A FEM code, specially designed to handle the Green criterion of three-dimensional
problems, is developed and used to construct the macroscopic strength domain in the
two following cases in the three-dimensional space:

• The rigid inclusions are placed into the matrix following a simple periodicity
Primitive Cubic (PC) arrangement. Figure. 4.4.(a).

• The unit cell is a Face-Centered Cubic (FCC) volume. Figure. 4.4.(b).

4.4.2 Symmetry properties of the considered three dimensional
unit cell

The symmetry property of the strength domain is defined by the symmetry property
of the elliptic criterion and those of the unit cell. More details of these properties can
be found in [27] and [69]. In our cases, these properties can be summarized as follows:
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(a) (b)

Figure 4.4: Considered microstructure of the unit cell. (a): PC model and (b): FCC
model.

• The homogenized strength domain Ghom takes over the symmetry property of
the local elliptic strength domain G(x)

∀x ∈ Ω, σ ∈ G(x) ⇒ −σ ∈ G(x)
⇒
(
Σ ∈ Ghom ⇒ −Σ ∈ Ghom

) (4.14)

in the same way, for the macroscopic loading direction:

Πhom
(
D (α, β)

)
= Πhom

(
D (α + π, β)

)
(4.15)

Σ
(
Σm,Σd, β =

π

3

)
∈ ∂Ghom ⇒ Σ (−Σm,Σd, β = 0) ∈ ∂Ghom (4.16)

• In the kinematic approach, when the direction e1, e2 and e3 are equivalent for
the REV of the unit cell (figure 4.4) and the local elliptic strength domain
is isotropic, the boundary ∂Ghom of the macroscopic strength domain has
the periodicity of β∗ = 2

3
π with respect to the Lode angle β, mathematically

expressed by the expression below:

Πhom
(
D (α, β)

)
= Πhom

(
D (α, β + β∗)

)
(4.17)

4.5 Approximation of the homogenized strength do-
main

By numerically performing the static and kinematic approaches of the limit analysis,
it was possible to determine a lower bound Gstat and a upper bound Gkine of the
macroscopic domain. The definition of these (numerical) resistance criteria depends
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on the discretization retained for the loading space.

The approximation of the boundary ∂Ghom of the homogenized strength do-
main Ghom is gained by the hyper-planes Σ : D = Πapp

up

(
D
)

in the kinematic approach
and point by point in the static approach (figure 4.5).

Gapp
low ⊆ Gstat ⊆ Ghom ⊆ Gkine ⊆ Gapp

up (4.18)

Skl

Sij

G
hom

G
stat

¶G
hom

G
kine

G
app

G
app

low

up

Figure 4.5: Representation of the different evaluations of a macroscopic strength do-
main Ghom

4.5.1 Lower bound approximation

The lower bound approximation to the strength domain may be obtained directly by
performing the static approach of yield design (3.19). In practice, with a number of
different load directions Σ by variation of α (0÷ π) and β (0÷ 2π) in the macroscopic
stress space will provides a lower bound of Ghom, which is a convex hull Gapp

low included
in the domain Gstat.

4.5.2 Upper bound approximation

The upper bound of homogenized strength domain can be practically estimated as
follows (refer to [8]):
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• Several simulations are carried out for different values of α (0÷ π) and β
(
0÷ π

3

)
,

the direction of the macroscopic strain rate D will be changed. The result of
each simulation is the approximated macroscopic support function Πapp

up

(
D
)
.

• Definition of a hyper-plane Σ : D = Πapp
up

(
D
)

in the macroscopic stress states
space whose normal is D and whose distance to the origin (or free stress state)
is Πapp

up

(
D
)
.

• The interior convex hull of the hyper-planes obtained for all studied directions D
then provides an exterior approach to the boundary ∂Ghom of the homogenized
strength domain Ghom.

Under consideration of the symmetry property of the strength domain and the sym-
metry property of the elliptic criterion and the morphologies, following equation (4.17):

Πapp
kine

D (α, β)
α=0÷π
β=0÷π

 =

Πapp
kine

D (α, β)
α=0÷π
β=0÷π/3

 ; Πapp
kine

D (α, β + β∗)
α=0÷π
β=0÷π/3

 ; Πapp
kine

D (α, β + 2β∗)
α=0÷π
β=0÷π/3




(4.19)

4.6 3D-FEM tool development

In this section, the proposed numerical method (presented in Chapter 3, section
3.3) is applied to evaluate the macroscopic strength domain. Three-dimensional
microstructures are considered and each model is solved first the using static approach
(with TET4-element) and then the kinematic approach, in both TET10-elements
combined with discontinuities and continuous velocity fields, respectively.

In the static approach, with the number of elements ne and the number of
nodes of each element nnode, the system is solved with (1 + 6× nnode × ne) +

(6× nnode + 2× nnode)× ne number of optimization variables and nnode × ne of SCOP
cones.

The system in the kinematic approach is solved with 6 × nnode × ne +

(10× 3 + 6 + 6 + 1) × ne number of optimization variables, ne of SCOP cones
where using continuous velocity fields and with 6×nnode×ne+(10× 3 + 6 + 6 + 1)×
ne+(3 + 3 + 1)×nf number of optimization variables, (ne + ns) of SCOP cones using
discontinuous velocity fields.
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The computations of all systems are performed using the conic interior-point
optimizer MOSEK package [71] solvers.

• First configuration- The rigid inclusions are placed into the matrix
following a periodic cubic arrangement - PC model.
The inclusions are placed into the matrix as a periodic pattern, only an eighth

of the unit cell is considered, shown as figure 4.6.(a). The finite element mesh is
shown in figure 4.6.(b).
The rigid inclusion is replaced by the appropriate boundary condition and the

(a) (b)

Figure 4.6: Periodic cubic arrangement model (PC). (a): REV and (b): Adopted
mesh of the one eighth model.

macroscopic stress and strain rate follow equation (4.10) and (4.13), respectively.
Indeed, due to the symmetry properties of the considered unit cell, the periodic
boundary conditions imply uniform strain rates boundary conditions [64].

With PC morphology, the maximum value of the reinforcement volume
fraction can be modeled ρmax ≈ 52% where the radius of the sphere is equal to
the size of the unit cell.

• Second configuration - The unit cell is a FCC (face-centered cubic)
volume.
The unit cell of the rigid inclusions placed into the matrix following a periodic

FCC cubic arrangement is shown in figure 4.7.(a). The adopted mesh of an
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eighth of the unit cell is shown in figure 4.7.(b).
The maximum value of the reinforcement volume fraction of the FCC model is

(a) (b)

Figure 4.7: Face-Centered Cubic volume. (a): REV and (b): Adopted mesh of the
one eighth model.

ρmax ≈ 74% where the sphere’s radius is equal to one half of the diagonal of a
face of the unit cell.

4.7 Numerical results

4.7.1 The effect of mesh density on the numeric calculations

The object of this chapter is the estimation, through numerical calculations, of the
convex macroscopic strength domain of the Callovo-Oxfordian claystone described as
a periodic structure. Preliminarily, static limit analysis calculation is carried out for
a simple morphology of a PC model with a low inclusion density ρ = 10% and the
matrix phase follows the Green criterion (4.4) to approximate a lower bound of the
strength domain where α and β are equal to zero in equation (4.10) and elliptical
parameters to: a = 3.0; b = 5.0 (MPa). This condition is related to a triaxial tension
test and the stress tensor reads in the cartesian basis:

Σ =

 1/3 0 0

0 1/3 0

0 0 1/3

 (4.20)

In the second step, the same material parameters and the number of elements of the
PC models are applied with α = β = 0 for macroscopic strain in equation (4.13)
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to find the approximated upper bound of the strength do main. Two cases using
continuous and discontinuous displacement fields are studied and the matrix of the
values of the strain tensor coinciding with a triaxial tension test is expressed hereafter:

D =

 1/3 0 0

0 1/3 0

0 0 1/3

 (4.21)

All simulations were performed on a 2.4 GHz Core i7 PC with 8GB RAM under
Microsoft windows 10. The results of evaluation are shown in table 4.1.

Clearly from the obtained results, on the one hand, it can be concluded that

Model mesh
Number of iterations CPU time (s) Value

Coarse Medium Fine Coarse Medium Fine Coarse Medium Fine

λstat 10 9 9 2.23 28.97 101.80 9.000 9.000 8.999

Πkine using Vcon 13 12 15 2.13 90.25 309.70 3.497 3.511 3.516

Πkine using Vdis 31 39 56 18.56 871.31 12302 3.497 3.511 3.516

TABLEAU 4.1: Mesh density effect on numerical calculations

for a predetermined problem, the CPU time cost depends greatly on the mesh
density, but the value of the solutions do not. Furthermore, using static approach
and kinematic approach with continuous velocity fields, the solution can be obtained
after only few iterations with a short length of CPU running time. On the other
hand, comparing the performance of the elements in the kinematic approach, the
solution of using continuous and discontinuous displacement fields are closed but
using continuous displacement field gives a significantly better solution with a shorter
CPU running time required for the given mesh and material. In particular, the CPU
time spend is nearly 3.42 hours of optimization process to estimate an upper bound
solution in case of fine mesh using discontinuous velocity fields, forty times more than
when using continuous velocity fields.

4.7.2 Comparison with the elastoplastic FEM

In this section, in order to compare the performance of static and kinematic ap-
proaches with elastoplastic FEM simulation, a morphology of Primitive Cubic model
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with a inclusion density of ρ ≈ 10% and ρ ≈ 40% is chosen. The simulations are
carried out on the one eighth of the PC unit cell, accounting for symmetry properties.

The matrix phase follows the Green criterion (4.4) with parameters: a = 7.31; b = 5.78

(MPa) which are roughly corresponding to Callovo-Oxfordian argillite (refer to [9]).

The adopted constructed mesh of the elastoplastic FEM is composed of 375
20-node hexahedral elements and 1991 nodes (figure 4.8.(a)).

The macroscopic strain (2.76) is classically divided into small loading steps and
applied incrementally to the unit cell. A kinematically admissible velocity field
and a statical and plastic stress field associated to the velocity field are derived at
each loading step. The ultimate load is characterized by the occurrence of a failure
mechanism of the unit cell, for which the macroscopic stress tensor remains constant
whereas the loading can be arbitrarily increased.
The adopted mesh of limit analysis calculations are composed of 581 TET4 elements
and 2324 nodes (static approach), 581 TET10 elements and 5500 nodes (kinematic
approach), respectively (figure 4.8.(b)).
The angular stride on the angles α and β involved in the macroscopic loads (equation

(a) (b)

Figure 4.8: Adopted mesh of one eighth PC unit cell. (a): for elastoplastic FEM
performance and (b): for limit analysis FEM performance.

4.10 and 4.13) is set to ( π
60
).

• In case of low inclusion density, ρ ≈ 10%

The approximated strength domains Ghom are presented in (Σ11,Σ22,Σ33) space
(figure 4.9) and in the deviatoric plane (figure 4.10) for different values of Σm:
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Σm = 0, 0.5, 0.7 and 0.9 of the maximum macroscopic isotropic tensile strength
Σmax

m .
The comparison of the strength domain boundary cuts including the deviatoric
plane at Σm = 0 and the plane of the equation Σ11+Σ22 = 0 of the corresponding
method are presented in figure 4.11.(a) and 4.11.(b), respectively.
The agreement is logical and appropriate.
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Figure 4.9: Macroscopic strain domains of PC model, low inclusion density ρ ≈ 10%, in the
space (Σ11,Σ22,Σ33).
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Figure 4.10: Homogenized strength properties of the PC model, low inclusion density ρ ≈
10%, in planes of Σm = const with different values of Σm = 0, 0.5, 0.7 and 0.9 of the maximum
macroscopic isotropic tensile strength Σmax

m . (a): lower bound, (b): elastoplastic FEM and
(c): upper bound estimation.

• In case of high inclusion density, ρ ≈ 40%

The approximated strength domains Ghom are presented in (Σ11,Σ22,Σ33) space
(figure 4.12) and in the deviatoric plane (figure 4.13) for different values of Σm:
Σm = 0, 0.5, 0.7 and 0.9 of the maximum macroscopic isotropic tensile strength
Σmax

m .
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Figure 4.11: The comparison of the strength domain boundary cuts including the deviatoric
plane at Σm = 0 (a) and the plane of the equation Σ11 + Σ22 = 0 (b) of the corresponding
method for the PC model, low inclusion density ρ ≈ 10%.

The comparison of the strength domain boundary cuts including the deviatoric
plane at Σm = 0 and the plane of the equation Σ11+Σ22 = 0 of the corresponding
method are presented in figure 4.14.(a) and 4.14.(b), respectively.
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Figure 4.12: Macroscopic strain domain of PC model, high inclusion density ρ ≈ 40%,
in the space (Σ11,Σ22,Σ33).

At low inclusion density (ρ ≈ 10%), the numerical results of limit analysis approaches
give the noteworthy agreement with the elastoplastic ones, however the gap between
the strength properties derived by the kinematic and elastoplastic approaches exceeds
the one obtained for high inclusion densities (figure 4.11).

Estimations performed on the same model properties with increasing inclusion
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Figure 4.13: Homogenized strength properties of the PC model, high inclusion density
ρ ≈ 40%, in planes of Σm = const with different values of Σm = 0, 0.5, 0.7, and 0.9 of the
maximum macroscopic isotropic tensile strength Σmax

m . (a): lower bound, (b): elastoplastic
FEM and (c): upper bound estimation.
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Figure 4.14: The comparison of the strength domain boundary cuts including the deviatoric
plane at Σm = 0 (a) and the plane of the equation Σ11 + Σ22 = 0 (b) of the corresponding
method of the PC model, high inclusion density ρ ≈ 40%.
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density (ρ ≈ 40%) are shown higher overestimation of the kinematic approach result.
A clear dependency on the stress third invariant of the kinematic approach esti-
mation was also seen whose graph is totally similar with elastoplastic one (figure 4.14).

These numerical estimations also show that the sensitivity to inclusion density
is highly significant, especially for the kinematic approach and elastoplastic estima-
tions. More studying of this aspect will be presented in the following section.

4.7.3 Study of unit cell effects for the Green elliptic criterion
matrix reinforced with inclusions

In studying of unit cell effects for the Green elliptic criterion matrices reinforced
with inclusions, the same types of calculations are carried out for aspect ratios of the
resistance domain of the clay matrix with a2

b2
=1 , 10 and 100. Two volume fractions

of inclusions are studied: ρ=10% and ρ=40% reinforcement, respectively.

For the purpose of legibility, only sections with planes Σm = const are pre-
sented. This study indicates that the macroscopic resistance domain has an increased
dependence on the Lode angle when the aspect ratio a2

b2
of the domain of resistance of

the clay matrix is small, as well as volume fractions ρ of inclusions.

4.7.3.1 First configuration- PC model

• With ρ = 10%, the results obtained for lower bound and upper bound macro-
scopic strength criteria of the periodic cubic arrangement cell are displayed in the
figure 4.15 for different values of the aspect ratio of the matrix elliptic criterion
a2

b2
.

More results of the static and kinematic approaches are shown in figure B.1,
figure B.2 and figure. B.3 (Appendix B) for a2

b2
=1, 10 and 100, respectively.

• With ρ = 40%, the obtained results for lower bound and upper bound macro-
scopic strength criteria of the periodic cubic arrangement cell are displayed in the
figure. 4.16 for different values of the aspect ratio of the matrix elliptic criterion
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Figure 4.15: PC model with ρ = 10%.
Lower (a) and upper (b) bound homogenized strength properties in planes of Σm = const:
the different values of Σm = 0, 0.5, 0.7, and0.9 of the maximum macroscopic isotropic tensile
strength Σmax

m .
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a2

b2
.

More results of the static and kinematic approaches are shown in figure B.4,
figure B.5 and figure B.6 (Appendix B) for a2

b2
=1, 10 and 100, respectively.

It should be emphasized that macroscopic strength domain of the first configuration
depends explicitly on the third stress invariant.

4.7.3.2 Second configuration, FCC volume

• With ρ = 10%, the results of lower bound and upper bound macroscopic strength
criteria of the second configuration- FCC volume are displayed in the figure 4.17.
More results of those approaches are unillustrated in figure B.7, figure B.8 and
figure B.9 (Appendix B) for a2

b2
=1, 10 and 100, respectively.

• With ρ = 40%, the results of lower bound and upper bound macroscopic strength
criteria of the second configuration- FCC volume are displayed in the figure 4.18.
More results of those approaches are unillustrated in figure B.10, figure B.11 and
figure B.12 (Appendix B) for a2

b2
=1, 10 and 100, respectively.

The same conclusion could be drawn concerning the dependency of the strength
domain on the third stress invariant for the second configuration, FCC volume. More
clearly for the kinematic approach, these effects increase with the inclusion volume
fraction as well.

4.8 Conclusions

In this chapter, the determination of the macroscopic strength criterion of the Callovo-
Oxfordian argillite, considered as a heterogeneous material with a matrix reinforced
by rigid inclusions with the Green criterion, is studied from the solution of limit
analysis problems attached to the representative elementary volume for the Primitive
Cubic and Face Centered Cubic morphological patterns in three-dimensional space.
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Figure 4.16: PC model with ρ = 40%.
Lower (a) and upper (b) bound homogenized strength properties in planes of Σm = const:
the different values of Σm = 0, 0.5, 0.7, and0.9 of the maximum macroscopic isotropic tensile
strength Σmax

m .
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Figure 4.17: FCC model with ρ = 10%.
Lower (a) and upper (b) bound homogenized strength properties in planes of Σm = const:
the different values of Σm = 0, 0.5, 0.7, and0.9 of the maximum macroscopic isotropic tensile
strength Σmax

m .
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Figure 4.18: FCC model with ρ = 40%.
Lower (a) and upper (b) bound homogenized strength properties in planes of Σm = const:
the different values of Σm = 0, 0.5, 0.7, and0.9 of the maximum macroscopic isotropic tensile
strength Σmax

m .
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The studied models concern heterogeneous materials consisted of rigid inclusions
surrounded by a clay matrix.

For that purpose, the contribution has targeted the second step of homogeniza-
tion (transition meso to macro scale) in a two steps homogenization procedure
by developing a limit analysis FEM tool to numerically estimate the macroscopic
strength domain whereas the first homogenization step deals with the micro-meso
scale transition as the result of [43].

The obtained strength criteria (the upper and lower bound) of the Callovo-
Oxfordian argillite has been determined by numerical graphs and compared to results
estimated by means of elastoplastic FEM technique on the basis of the nonlinear
homogenization approach successively applied to similar problems ([8], [46], [41], [42],
[39], [40], etc.). Moreover, additional comparison of static solutions to the kinematic
limit analysis one is derived in order to prove the accuracy of the strength domain
estimations.

The resulting strength domains represented in the macroscopic stress space
show a clear dependency on the stress third invariant, especially for the spherical
inclusion placed into the matrix following a periodic cubic arrangement. It has been
clearly shown from the numerical results that these effects increase with the inclusion
volume fraction (ρ) and with the matrix criterion aspect ratio (a

b
).

* *
*
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Chapter 5

Conclusions and perspectives

The homogenization method is a powerful alternative direct calculation for studying
the performance and the resistance of heterogeneous structures and materials.
These homogeneous media provided with the macro mechanical properties at the
macroscopic scale behave on average like the heterogeneous medium. It is also an in-
teresting method for studying behaviors and properties of complex three-dimensional
morphologies.

By applying the numerical formulae to the resolution of the auxiliary problem,
the strength capacities of Callovo-Oxfordian claystone which is a potential host rock
for the deep underground repository of high-level radioactive waste in France are
investigated.

First, from the point of view of elastoplastic behavior, aiming the determina-
tion of the argillite strength domain, a variational approach based on the principle
of a discretized minimum is studied to obtain numerical formulae describing the
macroscopic elastoplastic behavior of the ’geo-composite’ material considered. A
numerical FEM tool is developed, in chapter two, in the context of the elastoplastic
behavior of the matrix with the elliptic criterion of the heterogeneous material. In the
numerical simulations, three morphological patterns of the representative elementary
volume are considered and subjected to an incremental loading in periodic conditions
until collapse occurs: Spherical rigid Cores (SC, in the axisymmetric conditions), rigid
cores or porous inclusions placed into a matrix following a simple periodic Primitive
Cubic (CP) arrangement and rigid cores or porous inclusions placed into a matrix with
respect to a Face-Centered Cubic (FCC) arrangement. One point of the boundary
of the strength domain is obtained as a result of such elastoplastic calculation. The
whole boundary strength then could be reached by successive elastoplastic calculations.

Next, with regard to the strength domain of the ’geo-composite’ material by
an alternative direct method, the use of limit analysis theory, allowed us to treat this
by applying the homogenization method to the unit cell at the microscopic scale, it
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is then possible to obtain a definition of the macroscopic strength domain of these
heterogeneous materials. The implementation of the static and kinematic approach of
limit analysis computations led us to frame numerically, these strength domains in a
rigorous way. Starting from hypotheses on the stress and velocity fields (considering
both continuous and discontinuous ones), a development of the numerical formulation
of the limit analysis approaches for macroscopic strength domains of a composite with
elliptic criterion matrix is presented in chapter three.

Finally, desirous of being able to study the strength domain of Callovo-Oxfordian
claystone, we applied the numerical tools which is introduced in the chapter two and
three to the material studied. Indeed, the result of the first homogenization step
(performed by [43]) which deals with the transition from the microscopic scale to the
mesoscopic scale of the claystone is the derivation of the strength properties of the
matrix at the mesoscopic scale where it is considered as a homogenous material. The
contribution is targeted the second step of homogenization (transition meso to macro
scale) by developing a limit analysis FEM tool to numerically estimate the macro-
scopic strength domain. The stress-based (static approach) and the velocity-based
(kinematic approach) finite element method are used to derive a lower bound and
upper bound of strength domain of Callovo-Oxfordian claystone, respectively.

Using the entire numerical approaches mentioned above, it is found that the
sensitivity to inclusion density is highly significant, especially for the kinematic
approach and elastoplastic estimations. The dependency on the stress third invariant
is pointed out in obtained strength domains, especially for the spherical inclusion
placed into the matrix following a periodic cubic arrangement. It has been also shown
from the numerical results that these effects clearly depend on the inclusion volume
fraction and on the matrix criterion aspect ratio.

Future work could focus on an extension of the present methods to deal with
other composite materials with an elliptic local strength criterion (e.g. Hill’s yield
criterion, Tsai-Hill and Tsai-Wu criterion ([87], [89])), other types of the representative
elementary volume morphologies and similar heterogeneous media with imperfect
interfaces between constituents.
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Appendix A

Yield criteria formulated as ecliptic
resistance criteria and support

functions

A.1 Von Mises strength criterion

Isotropic von Mises strength criterion corresponds to the asymptotic case of equation
(4.2) when lim

a→∞
a
b
= +∞ (more details can be founded in [51]):

fV
(
σ
)
=
(σd

b

)2
− 1 6 0 (A.1)

As a particular case of (4.2), Equation (A.1) can be also reformulated as an elliptic
resistance criterion with the material coefficient matrix MV in the form of (4.5) with:

k1 = k5 = k6 =
2
3b2

k2 = k3 = k4 = − 1
3b2

k7 = k8 = k9 =
2
b2

(A.2)

Note that, if σs is uniaxial yield stress of the material then ks =
1

2σ2
s
, we get:

k1 = k5 = k6 =
1
σ2
s

k2 = k3 = k4 = − 1
2σ2

s

k7 = k8 = k9 =
3
σ2
s

(A.3)

The support function of the Von Mises criterion can be founded in [8]:

π
(
d
)
=

{ √
bdd if dv = 0

+∞ else
(A.4)

Where dυ = tr
(
d
)
= 0, pertinent strain rates must be incompressible.

The the function π relative to a discontinuity of velocity as follows:
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π
(
n;
[
Û
])

=

{
k
[
Û
]

if
[
Û
]
.n = 0

+∞ else
(A.5)

A.2 Hill’s yield criterion

Hill’s yield criterion is frequently used for anisotropic materials and it takes the form:

f
(
σ
)
= F (σ22 − σ33)

2+G(σ33 − σ11)
2+F (σ11 − σ22)

2+2
(
Lσ2

23 +Mσ2
32 +Nσ2

12

)
−1 6 0

(A.6)
The ellipsoid equation (3.6) can be extended of using to define Hill’s yield criterion
by setting matrix MH with:

k1 = G+H, k2 = −H, k3 = −G

k4 = −F, k5 = H + F, k6 = F +G

k7 = 2N, k8 = 2L, k9 = 2M

(A.7)

F ,G ,H ,L ,M ,N are constants characteristic of the current state of anisotropy.
If X , Y , Z are the tensile yield stresses in the principal anisotropic direction, we have:

1
X2 = G+H; 2F = 1

Y 2 +
1
Z2 − 1

X2

1
Y 2 = H + F ; 2G = 1

Z2 +
1
X2 − 1

Y 2

1
Z2 = F +G; 2H = 1

X2 +
1
Y 2 − 1

Z2

 (A.8)

and if R, S, T are the yield stresses in shear with respect to the principal axes of
anisotropy, then: 

2L = 1
S2
1

2M = 1
S2
2

2N = 1
S2
3

(A.9)

108



Appendix B

Lower bound and upper bound
estimation comparisons

The comparison of lower bound and upper bound properties of the Green elliptic
criterion matrix reinforced with inclusions (section 4.7.3 of the chapter 4) are displayed
as follows:

B.1 First configuration- PC model

• With ρ = 10%, more results of the static and kinematic approaches are illus-
trated in figure B.1, figure B.2 and figure B.3 for a2

b2
=1, 10 and 100, respectively.

• With ρ = 40%, more results of the static and kinematic approaches are unillus-
trated in figure B.4, figure B.5 and figure B.6 for a2

b2
=1, 10 and 100, respectively.

B.2 Second configuration, FCC volume

• With ρ = 10%, more results of the static and the kinematic approaches are
unillustrated in figure B.7, figure B.8 and figure B.9 for a2

b2
=1, 10 and 100, re-

spectively.

• With ρ = 40%, more results of the static and the kinematic approaches are
unillustrated in figure B.10, figure B.11 and figure B.12 for a2

b2
=1, 10 and 100,

respectively.



Appendix B. Lower bound and upper bound estimation comparisons
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Figure B.1: PC model with ρ = 10%, a2

b2
= 1.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume

(a) Macroscopic strain domain Ghom
low in

the space (Σ11,Σ22,Σ33).
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Figure B.2: PC model with ρ = 10%, a2

b2
= 10.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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Appendix B. Lower bound and upper bound estimation comparisons

(a) Macroscopic strain domain Ghom
low in
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Figure B.3: PC model with ρ = 10%, a2

b2
= 100.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume

(a) Macroscopic strain domain Ghom
low in

the space (Σ11,Σ22,Σ33).
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Figure B.4: PC model with ρ = 40%, a2

b2
= 1.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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Appendix B. Lower bound and upper bound estimation comparisons

(a) Macroscopic strain domain Ghom
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Figure B.5: PC model with ρ = 40%, a2

b2
= 10.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume

(a) Macroscopic strain domain Ghom
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Figure B.6: PC model with ρ = 40%, a2

b2
= 100.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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Appendix B. Lower bound and upper bound estimation comparisons

(a) Macroscopic strain domain Ghom
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Figure B.7: FCC model with ρ = 10%, a2

b2
= 1.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume

(a) Macroscopic strain domain Ghom
low in

the space (Σ11,Σ22,Σ33).
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Figure B.8: FCC model with ρ = 10%, a2

b2
= 10.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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Appendix B. Lower bound and upper bound estimation comparisons

(a) Macroscopic strain domain Ghom
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Figure B.9: FCC model with ρ = 10%, a2

b2
= 100.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume
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Figure B.10: FCC model with ρ = 40%, a2

b2
= 1.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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Appendix B. Lower bound and upper bound estimation comparisons

(a) Macroscopic strain domain Ghom
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Figure B.11: FCC model with ρ = 40%, a2

b2
= 10.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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B.2. Second configuration, FCC volume

(a) Macroscopic strain domain Ghom
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Figure B.12: FCC model with ρ = 40%, a2

b2
= 100.

Lower (a) and upper (b) bound homogenized strength and comparison of the strength domain
boundary cuts including the deviatoric plane at Σm = 0 (c) and the plane of the equation
Σ11 +Σ22 = 0 (d).
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