Imad Ahmad

Guillaume Fadila

Zina Je N'

ince 2004, online social medias have grown hugely. This fast development had interesting effects to increase the connection and information exchange between users, but some negative effects also appeared, including fake accounts number growing day after day.

Sockpuppets are multiple fake accounts created by a same user. They are the source of several types of manipulation such as those created to praise, defend or support a person or an organization, or to manipulate public opinion.

In this thesis, we present SocksCatch, a complete process to detect and group sockpuppets, which is composed of three main phases: the first phase objective is the process preparation and data pre-processing; the second phase objective is the detection of the sockpuppet accounts using machine learning algorithms; the third phase objective is the grouping of sockpuppet accounts created by a same user using community detection algorithms. These phases are declined in three stages: a model stage to represent online social medias, where we propose a general model of social media dedicated to the detection and grouping of sockpuppets; an adaptation stage to adjust the process to a particular social media, where we instantiate and evaluate the SocksCatch model on a selected social media; and a real-time stage to detect and group the sockpuppets online, where SocksCatch is deployed online on a selected social media.

Experiments have been performed on the adaptation stage using real data crawled from English Wikipedia. In order to find the best machine learning algorithm for sockpuppet's detection phase, the results of six machine learning algorithms are compared. In addition, they are compared with the literature, and the results show that our proposition improves the accuracy of the detection of sockpuppets. Furthermore, the results of five community detection algorithms are compared for sockpuppet's grouping phase, in order to find the best community detecton algorithm that will be used in real-time stage.

i J e souhaite remercier en premier lieu mon directeur de thèse, M. Laurent Vercouter, pour m'avoir accueilli au sein de son équipe. Je lui suis également reconnaissant pour le temps conséquent qu'il m'a accordé, ses qualités pédagogiques et scientifiques, sa franchise et sa sympathie. J'ai beaucoup appris à ses côtés et je lui adresse ma gratitude pour tout cela.

J'adresse de chaleureux remerciements à mon co-encadrant de thèse, M. Julien Saunier, pour son attention de tout instant sur mes travaux, pour ses conseils avisés et son écoute qui ont été prépondérants pour la bonne réussite de cette thèse. Son énergie et sa confiance ont été des éléments moteurs pour moi. J'ai pris un grand plaisir à travailler avec lui.

Je voudrais remercier les rapporteures de cette thèse Mme. Christine Largeron, et Mme. Zahia Guessoum pour l'intérêt qu'elles ont porté à mon travail. J'associe à ces remerciements M. Cyrille Bertelle, et M. Babak Esfandiari, pour avoir accepté d'examiner mon travail.

Ces remerciements seraient incomplets si je n'en adressais pas à mes collègues qui sont devenus mes amis. Je les remercie pour les moments agréables qu'on a partagés ensemble, pour les discussions scientifiques et non scientifiques. Vous êtes nombreux, je vais essayer de vous citer mais excusez moi si j'ai oublié quelqu'un. Merci

RÉSUMÉ

D

epuis 2004, les médias sociaux en ligne ont connu une croissance considérable. Ce développement rapide a eu des effets intéressants pour augmenter la connexion et l'échange d'informations entre les utilisateurs, mais certains effets négatifs sont également apparus, dont le nombre de faux comptes grandissant jour après jour.

Les sockpuppets sont les multiples faux comptes créés par un même utilisateur. Ils sont à l'origine de plusieurs types de manipulations comme la création de faux comptes pour louer, défendre ou soutenir une personne ou une organisation, ou pour manipuler l'opinion publique.

Dans cette thèse, nous présentons SocksCatch, un processus complet de détection et de groupage des sockpuppets composé de trois phases principales : la première phase a pour objectif la préparation du processus et le pré-traitement des données ; la seconde phase a pour objectif la détection des comptes sockpuppets à l'aide d'algorithmes d'apprentissage automatique ; la troisième phase a pour objectif le regroupement des comptes sockpuppets créés par un même utilisateur à l'aide d'algorithmes de détection de communautés. Ces phases sont déclinées en trois étapes : une étape "modèle" pour représenter les médias sociaux en ligne, où nous proposons un modèle général de médias sociaux dédié à la détection et au regroupement des sockpuppets ; une étape d'adaptation pour ajuster le processus à un média social spécifique, où nous instancions et évaluons le modèle SocksCatch sur un média social sélectionné ; et une étape en temps réel pour détecter et grouper les sockpuppets en ligne, où SocksCatch est déployé en ligne sur un média social sélectionné.

Des expérimentations ont été réalisées sur l'étape d'adaptation en utilisant des données réelles extraites de Wikipédia anglais. Afin de trouver le meilleur algorithme d'apprentissage automatique pour la phase de détection de sockpuppet, les résultats de six algorithmes d'apprentissage automatique sont comparés. En outre, ils sont comparés à la littérature où les résultats de la comparaison montrent que notre proposition améliore la précision de la détection des sockpuppets. De plus, les résultats de cinq algorithmes de détection de communauté sont comparés pour la phase de regroupement de Sockpuppet, afin de trouver le meilleur algorithme de détection de communauté qui sera utilisé en temps réel.

A ma famille, A Vous, Mon père et ma mère, pour votre support, affection, confiance et vos prières.

Social medias

Since 2004, the social web has become a dominant force on the Internet. As of 2017, there are 2.78 billion active social media accounts [START_REF] Simon | Digital in 2017: Global overview[END_REF] and each internet user has an average of 7 social media accounts [START_REF] Alex | 47 social media statistics to bookmark for 2017[END_REF]. For instance, in 2017, Facebook members represent 79% of all Internet users [START_REF] Mary | 40 essential social media marketing statistics for 2017[END_REF], and there are nearly 1.9 billion unique monthly Facebook users [START_REF] Andrew | Top social network demographics 2017. Social Media Today[END_REF].

Over the years, social media have evolved hugely, putting part of the users personal lives to virtual spaces. However, this evolution also has negative effects. According to the U.S. Bureau of Justice Statistics, an estimated 16.6 million Americans were victims of identity theft in 2012. Financial losses for these victims added up to $24.7 billion. For identity thieves, social media is a hunting ground for targets' personal information [START_REF] Ambika Choudhary | The evolution of social media 2004 -2014: The good, the bad and the ugly of it ! Daze Info[END_REF].

Through APIs like 'Sign in with Twitter', users can register and connect to third party websites using their twitter account. The simplicity of the process has enabled these websites to benefit from the access to personal information of a large number of accounts. However, as the importance of social media grows, the number of manipulators increases. As a major power, social medias are particularly targeted by a series of attacks, ranging from social engineering [START_REF] Bisson | Social engineering attacks to watch out for[END_REF] to cyber attacks [START_REF] Goolsby | On cybersecurity, crowdsourcing, and social cyber-attack[END_REF].

Nowadays, traditional media are no longer the only source of news because major news stories routinely break on Twitter before traditional news media [START_REF] Mathew | If you think twitter doesn't break news, you're living in a dream world[END_REF].

Online Social Media (OSM) have therefore become a preferential media for diffusion of information (e.g. mass birthday celebration) or opinions (e.g. on a product or on a public person) and to promote ideas (i.e. activism, call for vandalism or riots). In the case of events that can lead to civil security or homeland security issues, reactivity in detecting these messages, in identifying originators, "barkers", and followers as well as the processes of information diffusion is needed to prevent acts or events before they occur. Similarly, for governments, public personalities and companies, the control of information diffusion has become a major issue.

Manipulation in social medias

A manipulator is a person who uses the rules of life in society, in this case those of the social medias, to obtain advantages and personal benefits or exercise control over one or more users. Manipulation on social media can be made through verbal communication (e.g. video, audio, or text) and/or non-verbal behavior (eg: number of friend requests per hour, or the size/quality of added text. . .) using many techniques like spams or Sybil 1.1. CONTEXT AND MOTIVATION attacks [START_REF] Douceur | The sybil attack[END_REF].

A frequent manipulation technique uses multiple identities by creating sockpuppets;

accounts created and controlled by the same individual for the same deception objective.

Sockpuppets are used to perfom various malicious activities such as manipulating presidential election [START_REF] Jordan | How to hack an election[END_REF], influencing financial market [START_REF] John | Could the stock market ever be hacked? CNBC[END_REF],

disseminating spams, phishing URLs, and malware [Thomas et al., 2011a] as well as harvesting private user data [START_REF] Bilge | All your contacts are belong to us: automated identity theft attacks on social networks[END_REF]. Another problem is that sockpuppets have the ability to influence other users and impose attitudes, behaviors and opinions on them. That makes them a relevant source of communication for organizations that want to promote a brand, product, service, or idea [START_REF] Patel | Une approche hybride pour la détection d'influenceurs dans les médias sociaux[END_REF]. Therefore, the detection of sockpuppets in OSMs is a urgent research problem.

Most works on manipulation detection address individual malicious accounts, but manipulators often act in pairs or larger groups [START_REF] Vrij | Pitfalls and opportunities in nonverbal and verbal lie detection[END_REF]. Due to the difficulty of obtaining ground-truth data about sockpuppets, some researches are built on assumptions about the behavior of sockpuppets, for example, assuming that they have similar usernames [START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF], that they are only used to support one another [Zheng et al., 2011b], or that they write sentences similar to each other [START_REF] Bu | A sock puppet detection algorithm on virtual spaces[END_REF]. Further research examines pairs of sockpuppets controlled by the same sockpuppeteer, and find that sockpuppets are more likely to post at the same time and post in the same discussion than random pairs of ordinary users. In addition, they find that pairs of sockpuppets write more similarly to each other than to ordinary users [START_REF] Kumar | An army of me: Sockpuppets in online discussion communities[END_REF].

OSMs are interested in finding all the accounts corresponding to a single individual inside a single social media [START_REF] Goga | Matching user accounts across online social networks: methods and applications[END_REF] in order to protect their platforms. Users are supposed to open only one account in a social media (as stipulated in the Terms of Service), however some users create multiple accounts. Furthermore, malicious users can impersonate honest users. For both cases, we need grouping techniques to find the accounts of a single individual.

Research questions

To resolve the problem of multiple identities in OSMs, our objective is to detect the sockpuppets and group them with their sockpuppeteer. This implies to study the behaviors of OSM's users, in order to (1) find the behavioral differences between sockpuppets and legitimate accounts and (2) identify the similarities between the behaviors of the sockpuppets created by the same manipulator.

Therefore, the following research questions are raised:

Q1: How to differentiate between the behavior of sockpuppets and legitimate accounts ?

Q2: Can sockpuppets be automatically detected ?

Q3: How to relate together sockpuppets?

Q4: Can the sockpuppets that correspond to a single malicious user be grouped together?

Q5: What are the common characteristics between different types of online social media that can be exploited to propose a generic model for sockpuppets detection?

Q6: How to adapt the solution to a specific online social media?

Contribution

In order to find answers to these questions, a process is proposed in this thesis to detect and group the sockpuppets created by a same manipulator.

The main contributions of this thesis are:

C1: A global process to detect and group the sockpuppet accounts: Sockscatch;

1.2. ORGANIZATION C2: A set of features to differentiate between the behavior of sockpuppet and legitimate accounts;

C3: A set of graphs to relate and group sockpuppets that have close behavior using community detection algorithms;

C4: An adaptation process to instantiate the features and select the best algorithms for a particular OSM;

C5: An evaluation of Sockscatch on English Wikipedia.

Organization

This dissertation is organized as follows.

Chapter 2 -Manipulations in Social Media Chapter 2 introduces a brief history of social medias. Then, it shows the classification of social medias with a brief description of each type. Furthermore, it develops the main social attacks and finally it presents the protection systems of different social medias.

Chapter 3 -Malicious Behavior: Detection and Grouping Chapter 3 presents the state of the art in the field of detection of malicious accounts and communities in online Social Media (OSM). It identifies and categorizes different criteria to detect and group manipulators. Then, it defines the basic concepts of machine learning used in this thesis. It continues by reviewing the solutions that detect a single fake account such as spam accounts and multiple identities accounts. Then, It presents community detection algorithms used to group multiple identities. Finally, it reviews the solutions to group malicious behavior accounts created for the same objective in order to achieve common attacks from different identities.

Chapter 4 -The SocksCatch Process Chapter 4 presents a global overview of the SocksCatch process, that aims at detecting and grouping sockpuppets. First, it introduces the overall process of SocksCatch. Then it proposes a model to represent online social medias, in order to represent their basic elements. Finally, it presents our use case, english Wikipedia, and how to adapt the SocksCatch process to it.

Chapter 5 -Sockpuppet Detection Chapter 5 presents the phase of the detection of sockpuppets, where several features justified by our analysis of sockpuppet and legitimate account's behaviours on social medias are proposed. Then, it presents the instantiation of these features on English Wikipedia. Finally, it evaluates these features and determines the best machine learning algorithm to be used in real time on this OSN.

Chapter 6 -Grouping Sockpuppets Chapter 6 details the phase of grouping the sockpuppets created by the same manipulator. This phase comprises two steps: the grouping of sockpuppets based on the actions performed in the same pages then the grouping based on accounts' behavior. This chapter presents also how to adapt and evaluate this phase on English Wikipedia.

Chapter 7 -Conclusions and Perspectives Chapter 7 presents the conclusions of the thesis and exposes some perspectives. et al., 2010]. Thus, Web 2.0 is the ground conducive to the development of social medias.

Social medias have been the new trend of the 2000s. According to studies, teens now spend up to nine hours a day on social platforms, while 30% of all time spent online is now allocated to social media interaction. The majority of that time is on mobiles -60% of social media time spent is facilitated by a mobile device [START_REF] Evan | How much time do people spend on social media? Social Media Today[END_REF].

Across today's most popular social media platforms, people are spending 1 hour and 56 minutes daily averages on these platforms where 40 minutes are spent on Youtube, 35 minutes on Facebook, 25 minutes on Snapchat, 15 minutes on Instagram and 1 minute on Twitter [START_REF] Mediakix | How much time do we spend on social media? Media Kix[END_REF].

In a short time, social medias have become a true media of social interaction. They are based on the creation and the sharing of content and on the users' personal networks.

In this document, we define social media according to the terms of [START_REF] Kaplan | Users of the world, unite! the challenges and opportunities of social media[END_REF]: "Social Media is a group of Internet-based applications that build on the ideological and technological foundation of Web 2.0 and that allow the creation and exchange of UGC".

The beginnings of social media go back to the late 1970s, even before the creation of the Web: at the time, the first online forums for communication were Bulletin Board Systems (BBS). They operated over phone lines and the system was incredibly slow. The conversation remained mostly local because long-distance rates did apply. But it is at the end of the 1990s that social media really began to develop and democratize, particularly in the United States. Online thematic communities appear to find old classmates, share cooking recipes, and so on. Sixdegrees.com, created in 1997, marks the true birth of Social networking services as they are known today. The main objective of the site was to allow its users to stay in touch with their friends, family members and more distant knowledge through the creation of profiles and the exchange between members of their personal network. After the site was closed in 2000, a series of social networking platforms was launched such as Friendster in 2002, an improved version of Sixdegrees.com promoting friendship. The site has been victim of its success: the proliferation of fake member profiles, known as "Fakesters", led to the abandonment of the site by thousands of [START_REF] Zephoria | The top 20 valuable facebook statistics[END_REF], Facebook is nowadays the leader of social media.

As a major power, it is natural that social medias are now targeted by a series of attacks, ranging from social engineering [START_REF] Bisson | Social engineering attacks to watch out for[END_REF] to cyber attacks [START_REF] Goolsby | On cybersecurity, crowdsourcing, and social cyber-attack[END_REF]. For instance, many Facebook accounts have fake profile data [START_REF] Gao | Detecting and characterizing social spam campaigns[END_REF].

Using fake accounts, the deception, also called manipulation, on social medias is performed through many techniques, and it varies from a site to another. A fake account can be either be a hijacked profile with the name, address, and image of another person or an identity created from scratch. They are created by physical persons or robots with very often bad intentions. Beyond the classic wallet scams, one of the new missions of these manipulators is to harm the image of a company or a person, with for example negative opinions and comments. These fake accounts are constantly increasing, social medias and researchers are putting actions in place to protect the users.

In the next section, we present a classification of social medias with a brief description of each type, then we develop the main social attacks and finally we present the protection systems of different social medias.

Social Media Classification

Social medias are online platforms that feature the capability for users to collaborate in content creation (wikis), information exchange (forums, blogs, comments ...) or content sharing (articles, photos, videos, messages ...).

Social medias use collective intelligence to create online collaboration through interaction between individuals or groups of individuals. These individuals are thus led to create content, to prioritize it in order to share it with other individuals. This content is constantly evolving, linked to changes that other users can make (such as comments or collaborative working documents). The collaboration can take many forms where the user can:

• give an opinion on a subject, product, service or website;

• interact with other users;

• contribute to participatory projects;

• aggregate information for later sharing.

While the content and modes of interaction differ between OSM, they all feature a common grounding: They allow users to share information and interact, both in public and private ways.

In order to achieve this, they are usually based on accounts to uniquely identify users.

These accounts have some common properties between all OSM such as usernames and the time of creation of each account.

[[START_REF] Kaplan | Users of the world, unite! the challenges and opportunities of social media[END_REF] [START_REF] Short | The social psychology of telecommunications[END_REF]. Media richness theory [START_REF] Daft | Organizational information requirements, media richness and structural design[END_REF], also known as information richness theory [START_REF] Daft | Information richness. a new approach to managerial behavior and organization design[END_REF], refers to the amount of information that can be transmitted in a given time. The others factors come from selfrepresentation and self-disclosure theories. Self-representation theory states that people want to control their impression formation on others in social interactions [START_REF] Erving | The presentation of self in everyday life[END_REF]. However, self-disclosure theory points out the connection between higher quality relationships among people and the development of psychological well-being [START_REF] Kaplan | Users of the world, unite! the challenges and opportunities of social media[END_REF].

This first classification in six main types of social medias was expended in 2011 to include micro-blogging which stands "halfway between traditional blogs and social networking sites" [START_REF] Kaplan | The early bird catches the news: Nine things you should know about micro-blogging[END_REF] . Table 2.1 depicts the classification of social media [Kaplan andHaenlein, 2010, 2011] where the first row presents the social medias that provide users with a lot of freedom for presenting themselves while the second row presents the social medias that force users to adapt to certain roles or have no option for disclosing parts of their identities. Moreover, the social medias vary in social presence and media richness, such as collaborative projects that offer just text and sparse images for communication, while virtual social worlds are aimed to simulate the real world using all types of media.

Social presence / Media richness

There is a great amount of literature on social media for all of these classifications [START_REF] Botha | How sociable? an exploratory study of university brand visibility in social media[END_REF][START_REF] Mangold | Social media: The new hybrid element of the promotion mix[END_REF][START_REF] Weinberg | Social spending: Managing the social media mix[END_REF]. A short description for each type of social medias is provided here for reference:

Blogs

A blog is a kind of online journal that allows the publication of diary-style text entries displayed in a chronological way, and dealing with various themes such as politics, music, cinema, literature, fashion... Any type of content can be published: texts, images, videos, audio clips. Appearing at the end of the 1990s, it is one of the first manifestations of social media. There are many platforms that facilitate the creation of a blog such as Skyblog in France, which popularized the blog among adolescents in the early 2000s.

In general, a single author is behind a blog but in 2010 "multi-author blogs" appeared so that several people can associate and contribute to the same blog. The comments posted by the Internet users allow a permanent interaction between the readers and the blogger. It can also bring together a true community as its audience grows, and even transform itself into a leader of opinion.

The blog is not reserved to a small group of experts but is open to anyone with an Internet connection and willing to express himself on any subject. Its use is simple and truly democratizes the publication of content. Figure 2.1 depicts an example of a blog.

Microblogging

Microblogging is a derivative of the blog, that allows its users to publish small elements of contents such as short sentences, individual images, or video links, to the attention of a circle of "Followers" of the stream. First called tumblelog, it takes the name of microblog around 2006.The functionalities of this type of platform remain relatively basic, the relational aspect is privileged and the community dimension reduced to its simplest expression. Among the most well-known microblogging sites are Twitter, which offers the user the possibility of posting "Tweets", that are short messages limited to 140

Collaborative Projects

Collaborative projects are one of the most important social medias in terms of audience and contributions. For example, Wikipedia was visited in April 2015 by 104.40 million of unique US visitors [START_REF] Statista | Number of unique u.s. visitors to wikipedia[END_REF].

Collaborative projects also feature unique characteristics in OSM: they can be edited by multiple approved people, all edits are tracked in the page's history, any bad edition can easily be reverted. Examples of such sites are Wikipedia, WikiHow, and Distributed

Wikis [START_REF] Davoust | Distributed wikis: a survey[END_REF].

The most known collaborative project is Wikipedia, a crowd-sourced encyclopedia, in which anyone can edit most of its articles either with or without creating an account on it.

The sets of pages on Wikipedia, called namespaces, are composed of pages with

Social Networking Sites

The most widely known and widely used social medias are social networks. These platforms allow contact between users through the creation of personal profiles that friends, family members and acquaintances can access. It also provides instant messaging and chat services. Social networks encourage the exchange of various content such as photos, videos, press articles, websites, opinions, statuses, etc. They promote communication by allowing members to keep in touch and fuel a sense of community.

There are several types of social networks. Some remain fairly general such as Facebook, the first social network. In 2016 only, Facebook increased its global footprint Other social networks have a professional scope and allow users to create their Curriculum Vitae online to make it available to thousands of recruiters. This is the case of LinkedIn and Viadeo. Finally, thematic social networks are oriented towards a particular community: Spotify's vocation is the diffusion of music, Buds Forward allows former classmates to meet, and so on. There are even social networks whose access is strictly limited to a privileged community and only through invitation such as A Small World.

Figure 2.4 depicts an example of a social network site.

Content Communities

Content Communities are web hosting sites on which users can send, watch and share medias. Youtube can be considered as a social network but it is focused on sharing videos of all kinds. Freshly released video clips reach hundreds of millions of views, from guitar tutorials to broadcasting a large number of videos.

Virtual Social Worlds

Virtual social worlds are platforms that replicate a world that is fantastic or close to real life and allow players to interact through an avatar. They are comparable to video games that require an Internet connection. Players also have instant chat and discussion forums in order to make a strong sense of community belonging among their members.

Virtual social worlds' do not impose restrictions on how to create, behave or interact, but they are economies in their own right.

With regard to economic activities, in some virtual social worlds the avatars have the possibility of offering products and services which they themselves created (i.e. not generated by the owner of the world) and may sell it to other users in exchange for virtual money. Second Life is the most popular virtual social world site. Its virtual currency is called the Linden dollar. Avatars can buy Linden dollars for real money via the SL Exchange at a floating exchange rate.

Virtual Game Worlds

In opposition to virtual social worlds, in virtual game worlds, users are usually required to follow strict rules that determine their behavior and the personalization of their avatar. In addition, virtual game worlds sites do not allow anyone to engage directly into economic activities with other users.

In this category are included platforms "that replicate a three-dimensional environment in which users can appear in the form of personalized avatars and interact with each other as they would in real life" [START_REF] Kaplan | Users of the world, unite! the challenges and opportunities of social media[END_REF]. A known example of virtual game world is "World of Warcraft" with more than 10 million subscribers at its peaks on December 2014 [START_REF] Blizzard | World of warcraft[END_REF], according to Blizzard entertainment. Social medias are growing day after day and they are gathering the most important number of visitors on the internet. Attracted by this success, among the visitors there is also a number of manipulators that try to benefit from the others, which leads to an increase of the number of social attacks. In the next section we present the different social attacks existing on social medias.

Social Attacks

Social attacks are the techniques that aim to broadcast false information in order to manipulate the opinions, or to access confidential information or certain assets by manipulating people who have access to it directly or indirectly. They are applied to the field of informatics via telephone, e-mail and social medias.

The human factor is the central point of these attacks using social engineering. In essence it is about the intelligent manipulation of human natural propensity to trust.

Relationships of trust based on no real interaction history are set up in a calculated way, most often by simple discussion and subsequently exploited to derive maximum benefit from the situation.

Social attacks vary according to the type of social media, for example, Facebook users are subject to social spam, taking advantage of sharing and tagging mechanisms from a big number of users on their spam posts, while linkedIn users are more subject to spear phishing because of the mixed professional/personal nature of the shared information1 .

We use the comprehensive communication model proposed by [START_REF] Madhusudan | On a text-processing approach to facilitating autonomous deception detection[END_REF] to classify manipulation techniques for social media and to evaluate their effectiveness in carrying out manipulation [START_REF] Madhusudan | On a text-processing approach to facilitating autonomous deception detection[END_REF].

Manipulation Model

The model (shown in figure. 2.8) consists of a sender (S), the content or message (I), the channel through which the communication takes place (C), and the receiver (R). If the received model is different from the expected model, then a manipulation has happened.

The objective of a manipulation is to give information and / or modify R's behavior. Hence, the manipulation is achieved if one of the S, I, C elements is manipulated. [START_REF] Tsikerdekis | Online deception in social media[END_REF] apply the model of [START_REF] Madhusudan | On a text-processing approach to facilitating autonomous deception detection[END_REF] to the different types of social media. They show which elements of the model can be manipulated with minimal (i.e. low cost) efforts and at the same times with a fairly high success rate (shown in table 2.3). We develop in the next sections the characteristics and vulnerabilities of each element with regard to social medias types.

Content (I) Manipulation

Manipulating the content or the message is the most frequent way of deceiving others.

This can be achieved in social media by falsifying information, especially for social media that mainly focus on content like blogs, content communities and microblogging, because However, table 2.3 shows that projects like Wikipedia are less likely to be affected by this kind of manipulation (i.e. manipulate I). This is because the content of these types of social media is built using the community of contributors, thus allowing many people to review the content. Virtual game worlds also have a low probability for deception success because of the strongly narrated elements such as having a specific role that forces a player to a specific line of actions.

Sender (S) Manipulation

Sender manipulation is achieved by manipulating the sender's identity information (S).

Impersonation is a common way to support identity deception. The manipulator tries to access an account to obtain all its information such as age, address, e-mail and cell number. The manipulator then tries to authenticate itself in place of its victims. The success of this operation means that the manipulation is successfully done.

Social medias designs that feature in-built high self-presentation and self-disclosure enable sender deception at a low cost. In the same way, new users are not controlled in most blogs and microblogging sites, so that it may lead to stole identities. However, the damage caused by manipulators on these types of social media is low and on the long term the success of this deception is not guaranteed.

In the case of social networking sites and virtual social worlds, the cost of manipulation increases because the access to an individual's social network can lead to gaining people's trust in the network and getting information from them. The target in this case may not necessarily be the person whose identity is stolen but others within his social network.

Social media with low self-presentation and self-disclosure, such as collaborative projects, content communities and virtual game worlds, are likely to be more protected in terms of identity theft, because they are task-based. A user, who wants to obtain access to the impersonated identity's social network will have to perform just as well as the identity being impersonated in tasks and "act the part". The cost is likely to be high and the success of the deception low and short-term.

Communication Channel (C) Manipulation

Manipulating the communication channel is the most difficult because it requires a high level of technical competence, which increases the cost of handling. Attacking the communication channel means modifying in-transit messages, re-routing of traffic, eavesdropping, etc. Jamming communications have been used in virtual game worlds.

Podhradsky et al. argued that multi-player games in consoles can be hacked in order to provide access to a user's Internet Protocol address. Once the intruder has access to the host, he/she can kick the player out and proceed with an identity theft manipulation. In this case the goal of a deceiver may not be to obtain information but to damage a victim's reputation [START_REF] Podhradsky | Xbox 360 hoaxes, social engineering, and gamertag exploits[END_REF].

On social media the manipulator may introduce an instability or delays in a video or an audio in order to conceal his manipulation. On the other side, victims may consider the problem concerns the connection without making attention to the risk of attack.

Social medias with high media richness, such as virtual social worlds and virtual game worlds, are more subject to this kind of attacks because they tend to rely a lot on client software. In addition, social medias that rely on server applications, such as social networking sites and content communities, are safer and less prone to channel manipulation because exploits rely on vulnerabilities of web browsers and web servers are generally hardened and made more secure.

This manipulation has a quite high cost. However, the likelihood of success is also high especially for well-orchestrated attacks.

Online Manipulation

There are different techniques that can be used to manipulate others in social media environments. The main techniques are:

1. Social spam.

2. Identity theft.

3. Spear phishing.

4. Multiple fake accounts (Social sibyls / Sockpuppets).

Social spam

Spams are classically irrelevant or unsolicited messages sent over the Internet. These are usually sent to a large number of users for a variety of use cases such as advertising, spreading malware, etc.

While the most widely recognized form of spam is email spam, the term is applied to similar abuses in social medias.

For several years, social medias have been developing with high success. Social spam, that is, social media spam, has increased dramatically in recent years. Today 40% of accounts and 8% of messages on networks are considered to be spam [START_REF] Rip | Impermium launches social spam index; finds that up to 40 percent of online ids are fake[END_REF]. This percentage varies according to the networks.

The key of social spam is the fake accounts. In order to attack legitimate users they spread fake messages or malicious links created with the intent to harm, mislead or damage a user or their device.

Botnets now regularly steal credentials for social network accounts and use them to transmit spam on social networks [START_REF] Fred | Zeus botnet targets facebook[END_REF][START_REF] Mayur | Users of social networking websites face malware and phishing attacks. Symantec Official Blog[END_REF].

According to Impermium [START_REF] Rip | Impermium launches social spam index; finds that up to 40 percent of online ids are fake[END_REF], spam via networks is much more efficient than spam called "classic" by e-mail. The networks therefore have to fight against this new threat by checking more seriously the identity of their users. This is particularly the case of Twitter, that is increasingly concerned by spam messages. False users use short links to direct the user to viruses and other threats.

Identity theft

Identity theft is the act of taking the identity of another living person without his knowledge and sometimes without even him noticing. However, for a large part of the population, identity theft remains a risk badly known.

The personal information is public by default on most social medias, which means that everyone can find sensitive information about user accounts. Names, dates of birth and personal addresses can then be used to access bank accounts and credit cards, for example, by estimating the "secret questions" used for access in several online services.

Real-world thieves have even started using geographic information in status updates, photo-tags, and "check-ins" to plan home burglaries when occupants are out of town [START_REF] Eric | Twitter, facebook, foursquare: Tools of the modern burglar? CNET Networks[END_REF].

Another example of Identity theft manipulation is to hack into the bank account and thus contract a loan for the victims, withdraw money or open phone lines to their name and never pay the bills. It can also generate false papers such as driver licenses, gray cards, identity cards or passports and insurance card. In 2014, 550 000 people declared themselves victims of identity theft [START_REF] Kelli | Identity theft victims: You might know the culprit[END_REF].

Spear Phishing

Phishing is a cybercrime in which a target or targets are contacted by email, telephone or text message by someone posing as a legitimate institution to lure individuals into providing sensitive data such as personally identifiable information, banking and credit card details, and passwords2 .

Spear phishing is an advanced form of phishing that takes up the mechanism by tailoring them to specific targets to increase their efficiency.

Spear phishing is opposed to traditional phishing, in the sense that it does not target thousands of Internet users at random, but only one -or a few -selected in order to obtain very precise information. This attack is aimed above all at particular profiles, which work for particular organizations (companies, NGOs, governments, etc.). If the objective is often to obtain confidential information about a professional sector, attackers also use personal information to trap their victims. They collect personal information about social media accounts about friends, family and colleagues.

Once manipulators have targeted a person (or a group of individuals), and have gathered a lot of personal information about them, they write and send a fake, highly personalized email, which makes the detection of the trap difficult and convince the user to visit a fake website that is under the control of the attacker. Millions of dollars have been lost because of this type of attack [START_REF] Kim | Condé nast got hooked in $8 million spear-phishing scam[END_REF].

Social Sibyls

Sybil attack is an attack wherein a reputation system is subverted by forging identities in peer-to-peer networks3 .

Social Sibyls is the particular type of sybil attack that is performed on social medias: malicious users create multiple identities with the aim of increasing their own influence in the social medias.

Malicious activity on social medias is mainly based on fake Sybil accounts, which are created and controlled en-mass by attackers. Facebook estimated in 2012 that there are at least 83 million sibyls on their service, which represents nearly 9% of the user base [Technology, 2012]. In addition, the social Sibyls have become a marketable commodity by themselves. There is now a thriving black market for sibyls on social medias [START_REF] Wang | Serf and turf: crowdturfing for fun and profit[END_REF]. Attackers can buy popularity using fake sybil accounts, which has become very easily accessible, especially for Facebook and Twitter. In effect, the problem of popularity by Sibyls has an impact on the market of social advertising. A survey conducted by the BBC revealed that companies lose huge sums of money for paid Facebook ads that get clicks and likes from Sibyls instead of real people. This causes a great danger for most social medias as they depend on advertising as their main source of income.

Fake sybil accounts are used to attack en-mass to conduct social spam, identity theft or phishing attacks. This malicious behavior relies on sockpuppetry. We develop this concept in the next section.

Sockpuppetry

For centuries, the use of pseudonyms and other false identities exist. As mentioned before, the rise of Web 2.0 opened the door to create forums in which people can exchange ideas and remain anonymous at the same time if they wish. A unique user can create and use several accounts with different pseudonyms. This new form of creating fake identities is named sockpuppetry.

On July 9, 1993 the term sockpuppet was used for the first time and it came into general use by 1996. Oxford English Dictionary defines a "sock puppet" as a person who is controlled by someone else. In 2000, U.S. News and World Report, extend the idea of sockpuppeteer as a minion.

The sockpuppets being the multiple fake accounts created by the same user, they are the source of several types of manipulation such as those created to praise, defend or support a person or an organization [START_REF] Stone | The hand that controls the sock puppet could get slapped[END_REF] or to manipulate public opinion [START_REF] Elsner | China uses an army of sockpuppets to control public opinion -and the us will too[END_REF].

Nowadays, online voting has become very common. Malicious users create sockpuppets in order to influence the voting results by submitting multiple votes in favor of the sockpuppeteer. In other cases, they support each others by arguments, manipulate opinion or create the online illusions that many users support the sockpuppeteer or an opinion. This behavior belong to the "Sybil attack" category.

In addition, sockpuppets are used in marketing. In this case, the sockpuppeteer will create sockpuppets in order to support a product or on the contrary in order to fight another product. This type of sockpuppets is known as "Meatpuppet".

Another use of sockpuppets is to make a particular point of view look foolish. The idea is to create a negative sentiment against some ideas by formulating an easily refutable argument and then assigning it to its opponent. These sockpuppets are called "Straw Men".

Generally, sockpuppets are not accepted in user terms of services. In order to ban multiple identities accounts, the websites put in place systems of control and systematic suppression of these reputed malicious users. This is especially true for online gaming, where having a sockpuppet may distort the outcome.

The sockpuppets behavior has particular characteristics because of their attack objectives [START_REF] Kumar | An army of me: Sockpuppets in online discussion communities[END_REF]:

• the user takes part in similar discussions and have the same opinions as the user's main identity;

• he knows remarkably well the methods, rules and members of the community, more than what could be expected of a newcomer;

• he may have the same IP address or the same Internet service provider;

• sometimes, the various accounts have similar names: zazaScok, zazaSockPuppet, zazaE, 1zaza1, and so on;

• all identities have the same hourly habits;

• the vocabulary and the grammar of the various sockpuppets are often close.

In some cases, sockpuppetry is not used for malicious objective, but for protection. For example a sockpuppet software for the US military has been under development since 2011. "The technology support classified blogging activities on foreign-language websites to enable United States Central Command (CentCom) to counter violent extremist and enemy propaganda outside the United States" according to Commender Bill Speaks [START_REF] Fielding | Revealed: Us spy operation that manipulates social media[END_REF].

In the next section we present the current protection solutions used by the social medias in order to protect their users and block the sockpuppets on their sites.

Protection Solutions

The majority of social medias are based on a centralized architecture in which users' data is stored on servers controlled by the social media providers. Facebook is often attacked in order to steal and sell users profiles and private messages [M., 2014].

However, Facebook and other centralized social medias offer solutions to protect the privacy of users. Many of these solutions are based on the contributions of their users. In addition, they create a reporting system where every user can send a notification or a report to the administrators if he find a malicious content. Some social medias created their own tools to help them to detect malicious behavior.

Protection of user information

Social medias strive to inform users on how they can protect their information and what users can do to contribute to this protection. That is why social medias offer guides about the protection of user information in the most user-friendly way possible.

Facebook. Facebook redesigned its guide to security; in the 'How to Keep Your Account Secure' section they offer new recommendations on how to prevent cyber-attacks through interactive graphics. In order to ensure everyone can read these tips, they are available in 40 languages and users can share them on their profile. The guide also warns users of the possibility of a phishing attacks.

LinkedIn. Facebook isn't the only social network which has improved its security information recently. LinkedIn also has a 'Security Blog' with helpful guidelines.

Twitter Twitter show its way of protecting users information in their help center where there is a wide security and protection section, users can access it from the 'help and support' tab in their profile.

Google Google propose a complete manual included in the web 'How to stay safe and secure online' to explain how to prevent cyber-attacks protecting user's passwords, checking Gmail's settings or verifying the emails' sender if the user thinks it might be a scam.

All these guides help the user so that he to knows how to protect his information using a privacy setting section, or by explaining their reporting systems,

Privacy setting

On the most widely used social medias of the market, the private information and personal exchanges can sometimes be more visible than one would like because of a voluntary lack of adjustment of the parameters of confidentiality, by the social medias.

In fact, advertisment enterprises benefit from the tracking of users' information [START_REF] Willis | Why not privacy by default[END_REF].

Social medias such as Facebook, Twitter, LinkedIn and SnapChat leave the choise to their users to adjust the protection of their personal information by explaining to them how to control their online presence.

For example, LinkedIn give the authority to their users to select who can see their activities, i.e. all the contents that users have shared, liked and commented on during their online activities. In addition, users can select who can see their relationships, so that it is possible to set the visibility of users relationships to the visitors visiting their profile. They are also able to ensure that their address book is exclusively private, and not accessible to their contacts. Figure 2.9 depicts an example of privacy setting section in LinkedIn.

Figure 2.9 -LinkedIn's privacy setting section.

Reporting systems

All users of social medias have the option to report a malicious post or a malicious user to the social media's security team, who then check if the reported post or user is malicious

or not and ban it if so.

For example, currently, in Wikipedia, any user that finds a malicious contribution can revert it and if he considers an account to be a sockpuppet, can open an investigation page about this account and report it to the 'check user', a privileged set of users who have access to the IP-address of all accounts, in order to discuss whether it is a sockpuppet or not. The administrators then check manually if this account is a real sockpuppet or not, by studying the account's behavior and the associated IP-addresses in order to block it with all the affected accounts.

Detection tools

Most of current social medias solutions to detect manipulators depend on the contributions and help from their legitimate users. In addition, some social medias such as Facebook and Twitter have detection tools that help their security team to detect the malicious users [START_REF] Stein | Facebook immune system[END_REF].

After receiving a report on a malicious posts or users, the security team checks this report manually and use their detection tool to make sure that the reported user is a manipulator or not. The scope and the specifications of these detection tools are not communicated by social medias, in order to keep the manipulators from learning how to skip from detection.

For example, Facebook [START_REF] Stein | Facebook immune system[END_REF] gives only an overview of their immune system, a defense system against phishing, fraud and spam. The system performs realtime checks and classification on every read and write action on Facebook's database, in order to protect its users from malicious activities. This service is very high level because it takes into account some important details of the undesirable activities on the Facebook site namely false profiles, harassment, compromised accounts, malware and spam. Boshmaf et al. show that this system is able to block only 20% of the accounts used by socialbots [START_REF] Boshmaf | The socialbot network: when bots socialize for fame and money[END_REF].

Facebook has another solution called the EdgeRank algorithm [START_REF] Bilge | All your contacts are belong to us: automated identity theft attacks on social networks[END_REF] which assigns to each post a score according to certain characteristics, such as the number of "likes", the number of comments and the number of reactions posted by a user.

Therefore, the higher then EdgeRank score is, the lower the chance of the user being a spammer is. The disadvantage of this approach is that spammers could also build up a network and post comments between them in order to get a high EdgeRank score.

Twitter was said to be working on a spam bot defense system a few years ago [Twit-terInc., 2012], an idea that was shut down for reasons unknown [START_REF] Zackn | Twitter has a spam bot problem -and it's getting worse[END_REF].

Conclusion

In this chapter, we presented the six types social medias and the manipulation model that can be applied on them. We described also the main social attacks used by manipulators on social medias. Finally, we presented the solutions proposed by social medias in order to protect their users from manipulations.

The social medias solutions against manipulation are not fully automated: a lot of time and effort is spent by human administrators to detect and ban the manipulators.

The mean of life time of a spam in Twitter until detection is about 269 days [START_REF] Yardi | Detecting spam in a twitter network[END_REF], while it takes approximately 75 days in average for a sockpuppet account to get blocked on Wikipedia [Tsikerdekis and Zeadally, 2014a]. This long life gives the manipulator the opportunity to do many attacks before the detection.

In the next chapter, we present the solutions proposed in the literature to detect automatically the manipulations and the manipulators.

C H A P T E R 3

MALICIOUS BEHAVIOR: DETECTION AND GROUPING

As elaborated in the previous chapter, most of social medias have their own solutions to protect their system, but these solutions are not fully automated, thus wasting time and energy in order to detect manipulators. This highlights the importance to create fully automated algorithms to detect these manipulators.

This chapter presents a review of the literature on malicious behavior automatic detection.

Some attacks on social medias are performed using single malicious account while other use groups of malicious accounts. The most well known attack using a single account is the spam. Some manipulators create many malicious accounts in order to spam using multiple identities, distribute malware and perform identity fraud [START_REF] Richmond | Stolen facebook accounts for sale[END_REF]. Other manipulators create false accounts to increase the visibility of niche content, forum posts, and fan pages by manipulating votes or view counts [START_REF] Norajong | Why the number of people creating fake accounts and using second identity on facebook are increasing[END_REF][START_REF] Sture | Fake accounts in facebook -how to counter it[END_REF].

A group of sockpuppets, i.e. multiple accounts, is a list of accounts created by the same user or by many users with the same objective. Two issues have to be tackled to detect malicious behaviors in social media: the first focus on the detection of single malicious accounts while the second focus on the detection of communities or groups of malicious accounts.

Before starting the overview of the literature solutions, we identify and categorize the different criteria to detect and group manipulators. Then, we define the basic concepts of machine learning that are used in the following sections. We continue by reviewing the solutions that detect a single fake account such as spam accounts and multiple identities accounts.Then, we present the community detection algorithms used to group multiple identities. Finally, we review the solutions to group malicious behavior accounts created for the same objective in order to achieve common attacks from different identities.

Analysis Grid

This section identifies and categorizes the different criteria to detect and group manipulators. We build a set of six main criteria to evaluate the solutions proposed in the literature.

Analysis approaches (AP).

Many solutions were created in order to detect or group the malicious behavior in social medias. In order to achieve this, two main analysis approaches are used: verbal communication (VC) analysis and non-verbal behavior (NVB) analysis.

Detection through verbal communication relies on the analysis of textual content, such as studying the links in post on Facebook, detecting sentiments from tweets on Twitter, or checking repeated words from Reddit's comments.

Detection through non-verbal behavior does not take into account the semantics of 3.1. ANALYSIS GRID the users interactions. Its focus is on the other aspects of the behavior of the user using descriptive values, such as the number of friends' requests on Facebook, the average of tweets every day, the average of added characters in each comment on Reddit.

Method Objective (MO).

Many methods detect single malicious accounts (SMA) such as spammers or sockpuppets, others focus their work on the grouping of multiple identities (GMI).

To evaluate their detection method, most researchers use machine learning algorithms. When the focus is on the grouping of multiple identities accounts the methods use graph structure metrics.

Public information (PI).

The proposed solutions are built on data from social medias, where these data are accessible for anyone (public) or accessible only to authorized users (private) such as system administrators. The dependency on private information has positive and negative effect. Most of the time the use of private information such as IP address will guide to better accuracy, but the negative point is that these solutions are applicable only by the social media engineers. This generates difficulties in the reproduction and generalization of these methods.

Generalization (G).

The proposed methods vary in terms of generalization. Some of them are created for a specific social media site or a particular attack and thus cannot be applied on other social sites. Other methods study the malicious behavior in different

OSMs and propose a general solution that can be applied on most of OSMs.

This set of the criteria raised in our study makes it possible to establish the following analysis grid.

Machine Learning

Machine learning is the subfield of computer science that, according to Arthur Samuel in 1959, gives "computers the ability to learn without being explicitly programmed". Evolved from the study of pattern recognition and computational learning theory in artificial intelligence, machine learning explores the construction of algorithms that can learn from and make predictions on data. Such algorithms overcome strictly static program instructions by making data-driven predictions or decisions, through the building of a model from sample inputs1 . In machine learning a dataset of observations, called vector, will allow for the algorithm to correctly determine the class labels for unseen instances2 .

A subclass of supervised learning problems is binary classification , where there are only two labels for class features. For example, a post or comment in a social media may be either spam or legitimate. Multi-class classification is the supervised learning with

Spam Detection

Spam detection has been for twenty years a prominent field of application for the machine learning algorithms [START_REF] Cohen | Learning rules that classify e-mail[END_REF][START_REF] Cortes | Support-vector networks[END_REF][START_REF] Drucker | Support vector machines for spam categorization[END_REF][START_REF] Joachims | Making large-scale svm learning practical[END_REF][START_REF] Pantel | Spamcop: A spam classification and organization program. learning for text categorization-papers from the aaai workshop[END_REF][START_REF] Sebastiani | Machine learning in automated text categorization[END_REF].

Web and e-mail Spam

Electronic spam is an unsolicited electronic communication, generally posted in large quantities on the same site or sent via e-mail for advertising purposes.

There is a large body of prior work on measuring e-mail spam [START_REF] Anderson | Spamscatter: Characterizing internet scam hosting infrastructure[END_REF][START_REF] Kanich | Spamalytics: An empirical analysis of spam marketing conversion[END_REF][START_REF] Kreibich | Spamcraft: An inside look at spam campaign orchestration[END_REF][START_REF] Xie | Spamming botnets: signatures and characteristics[END_REF]. The first publications on the classification of e-mail spam based on automatic learning date from 1996 [START_REF] Cohen | Learning rules that classify e-mail[END_REF].

The Ripper method [START_REF] Cohen | Learning rules that classify e-mail[END_REF] is a classifier capable of defining the context of a word. This classifier uses a set of rules (presence or absence of dictionary words)

that is automatically constituted during the learning phase. Ripper also performs an optimization phase to readjust the rule sets.

In 1998 two methods [START_REF] Pantel | Spamcop: A spam classification and organization program. learning for text categorization-papers from the aaai workshop[END_REF][START_REF] Sahami | A bayesian approach to filtering junk e-mail. learning for text categorizaton-papers from the aaai workshop[END_REF] propose the use of a

Naïve Bayesian (NB) classifier [START_REF] Russell | A modern approach[END_REF] for spam filtering. Sahami et al. select 500 characteristics of each message and find that the binary classification (ham, spam) is more efficient than the multi-class classification based on the type of the message (eroticism, phishing, etc.) [START_REF] Sahami | A bayesian approach to filtering junk e-mail. learning for text categorizaton-papers from the aaai workshop[END_REF].

A method in 2002 [START_REF] Sebastiani | Machine learning in automated text categorization[END_REF] was interested in the recognition of spam by the thematic classification of messages. It represents the message to be classified in the form of a vector of features. Then it evaluates the distance (usually Euclidean or Manhattan distance) between this vector and the similar vectors of each class (spam or not), associating the message with the one that has the closest prototype vector [START_REF] Drucker | Support vector machines for spam categorization[END_REF]. This method and Ripper showed similar results, but there is an improvement when learning is done individually for each user rather than collectively for all users.

In the literature, several research studies have confirmed the effectiveness of Support

Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] approaches for filtering spam. Kolcz focused on class-specific classification errors [START_REF] Kolcz | Svm-based filtering of e-mail spam with content-specific misclassification costs[END_REF], while Islam et al. select attributes to improve the classification of e-mail spam [START_REF] Islam | An innovative spam filtering model based on support vector machine[END_REF].

Joachims improved linear SVM methods on large scale problems and describes its efficient implementation in a generalized classification context [START_REF] Joachims | Making large-scale svm learning practical[END_REF]. [START_REF] Sculley | Relaxed online svms for spam filtering[END_REF] avoided working on synthetic data and carried out more realistic tests in the learning of messages and the detection of spam. To this end, he deployed a method called ROSVM (Relaxed Online SVM) which slightly improved the efficiency of the classification of spam especially by reducing greatly the computational cost of updating the hypothesis, in particular by training only on actual errors.

Recently, Zhiwei et al. propose a method that uses data mining. The objective is to find the optimal hybrid model with the higher accuracy. The experimental results show accuracy improvement in email spam detection by using hybrid techniques compared to single classifiers.

Social Media Spam

Since the emergence of social medias, and after the large body of work on e-mail spam, researchers have begun measuring social spam as well. Studies such as [Thomas et al., 2011a;[START_REF] Yardi | Detecting spam in a twitter network[END_REF] have focused on measuring spam on Twitter.

Monarch [Thomas et al., 2011a] is a system for identifying spam links on Twitter. The application processed 55 GB of data collected from about 250 000 URLs and processed 107 features/dimensions related to the network and content properties of the pages at each URL. They identify spam campaigns in real time using statistical learning algorithms. Another experiment run on Twitter spam is proposed by [START_REF] Yardi | Detecting spam in a twitter network[END_REF].

They create a hash tag3 on Twitter, and observe the interaction of the spammers with it in order to examine their behavioral patterns. They also study some features that might allow one to distinguish a spammer from legitimate users, such as the number of friends and followers. This study reveals that the behavior of spammers is different from legitimate users, especially by the way tweets are produced, the attitudes of the followers and the fans of their pages.

In the same vein, Whittaker et al. describe their scalable learning method to detect phishing and improve Google's blacklisting system. They train the classifier on a noisy dataset consisting of millions of samples. They identify more than 90% of phishing pages.

However, many social media messages still link to malicious sites, and detecting them remains a challenge [START_REF] Whittaker | Large-scale automatic classification of phishing pages[END_REF].

Spam in blog comments has also attracted the attention of researchers who have deployed automatic learning methods [START_REF] Kolari | Detecting spam blogs: A machine learning approach[END_REF][START_REF] Nagamalai | Bayesian based comment spam defending tool[END_REF] Adaptive Boosting [START_REF] Freund | A desicion-theoretic generalization of on-line learning and an application to boosting[END_REF]) to detect spam in the social bookmarking site BibSonomy. This study leverages features that are unique to social bookmarking sites to isolate spam, such as tag frequency and popularity [START_REF] Markines | Social spam detection[END_REF].

Facebook also attracts researchers to detect its spammers because it contains the highest number of spam of all social networks [START_REF] Adam | Facebook and youtube contain the most spam of all social networks[END_REF]. An example is Gao et al., who start by filtering the data crawled from Facebook to keep only the posts that contain URLs, their hypothesis being that every spammer will try to redirect the social media user to an outside fake site. Then, they link the similar posts by checking if they share the same destination or the same text content. Finally, they cluster 1 402 028 posts with links by checking if the link is guiding to a fake website or not, in order to detect the malicious users and posts. The authors obtain interesting results with this method, since they detect 93.9% of malicious wall posts on their test dataset [START_REF] Gao | Detecting and characterizing social spam campaigns[END_REF]. Bosma et al. use reports of spam generated by users as a tool for building an unsupervised environment for the detection of spam on social networks [START_REF] Bosma | A framework for unsupervised spam detection in social networking sites[END_REF].

Their approach is to count the number of reports issued against a suspicious user, and then weight these reports based on the reputation of the user. The determination of the reputation and the reliability of users in social networks have been well studied [START_REF] Antonio | Feature selection and classification of spam on social networking sites[END_REF] and provides promising features in the classification of social spam. Their model uses a Bayesian classifier and links messages with similar content, regardless of other characteristics. This study is one of the few that has served as a test model on non-public data, including private messages, spam reports and user profiles of a major Dutch social networking site.

A more recent study improves the identification and filtering of spam in social networks using probabilistic methods [START_REF] Xu | Trust evaluation based content filtering in social interactive data[END_REF]. The concept consists in using the established social relationship between the sender and the receiver to determine their proximity, and deduce the confidence value. This value is a determining factor in the calculation of probabilities which serve as an indicator for the classification.

In summary, despite the large number of studies that have focused on detecting social spam, the social medias are still rife with Spam even with all the spam detection methods, because the creation of fake accounts is still easy as the identity verification process can be bypassed [START_REF] Scott | The fake americans russia created to influence the election[END_REF]. Furthermore, most of the proposed methods are not implemented and applied in real time by the developers of social medias [START_REF] Tsikerdekis | Online deception in social media[END_REF].

Another issue is that the attackers, most of time, do not use only one account for attacks, but create multiple fake identities [START_REF] Kelly | 83 million facebook accounts are fakes and dupes[END_REF].

Others tools are needed that leverage deeper, more nuanced data, in order to bolster robustness against evolving attacker strategies and detect the attacks using multiple identities.

Multiple Identities Detection

Multiple identities detection approaches in OSMs can be classified into two categories:

feature-based approach and social-graph-based approach. In the first approach, researchers focus on extracting features from users' profiles [START_REF] Yang | Uncovering social network sybils in the wild[END_REF] (such as acceptance rate of incoming/outgoing requests, invitation frequency, etc.) and observing user activity patterns [START_REF] Wang | You are how you click: Clickstream analysis for sybil detection[END_REF] to derive a machine learning classification to identify fake/Sockpuppet user accounts. In social-graph based approaches, researchers use community detection algorithms in order to detect and group sockpuppets sharing the same interest.

Attacks using multiple identities are one of the most prevalent and practical attacks against systems [START_REF] Douceur | The sybil attack[END_REF]. In this kind of attack, a user creates multiple fake identities, known as Sockpuppets or Sybils, to unfairly increase their power and influence within a target system or community. Attacks using multiple identities proved their efficiency against Peer-To-Peer (P2P) systems [START_REF] Lian | An empirical study of collusion behavior in the maze p2p file-sharing system[END_REF], anonymous communication networks [START_REF] Bauer | Low-resource routing attacks against tor[END_REF], and sensor networks [START_REF] Newsome | The sybil attack in sensor networks: analysis & defenses[END_REF].

Social medias are also targets of multiple identities attacks. Sockpuppets have been identified on most social media sites such as Wikipedia [Solorio et al., 2013a;Tsikerdekis and Zeadally, 2014a], Facebook [Wang et al., 2012a], Twitter [START_REF] Alsaleh | Tsd: Detecting sybil accounts in twitter[END_REF][START_REF] Crabb | Reading between the lines: a prototype model for detecting twitter sockpuppet accounts using language-agnostic processes[END_REF][START_REF] Thomas | Suspended accounts in retrospect: an analysis of twitter spam[END_REF], Renren [START_REF] Yang | Uncovering social network sybils in the wild[END_REF], Forums [START_REF] Bu | A sock puppet detection algorithm on virtual spaces[END_REF][START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF] and Disqus [Zheng et al., 2011a].

Closely related to sockpuppet detection is author identification, that is the task of identifying the original author of a document [START_REF] Johansson | Timeprints for identifying social media users with multiple aliases[END_REF][START_REF] Juola | Detecting stylistic deception[END_REF][START_REF] Narayanan | On the feasibility of internet-scale author identification[END_REF][START_REF] Novak | Anti-aliasing on the web[END_REF][START_REF] Paul | Editing behavior to recognize authors of crowdsourced content[END_REF][START_REF] Qian | Identifying multiple userids of the same author[END_REF]. Recently, researchers have used multiple accounts of users across different social platforms to identify malicious users [START_REF] Venkatadri | Strengthening weak identities through inter-domain trust transfer[END_REF]. In addition, they identify accounts operated by the same user across different social platforms [START_REF] Jain | @ i seek'fb. me': Identifying users across multiple online social networks[END_REF][START_REF] Silvestri | Linking accounts across social networks: the case of stackoverflow, github and twitter[END_REF][START_REF] Zafarani | Connecting users across social media sites: a behavioral-modeling approach[END_REF]Zheng et al., 2011a].

Some researches [START_REF] Kumar | An army of me: Sockpuppets in online discussion communities[END_REF][START_REF] Solorio | Sockpuppet detection in wikipedia: A corpus of real-world deceptive writing for linking identities[END_REF]Tsikerdekis and Zeadally, 2014a;[START_REF] Yang | Uncovering social network sybils in the wild[END_REF]Zheng et al., 2011a] focus on detecting sockpuppetry through author identification. They identify sockpuppets as accounts, without linking them to others sockpuppets created by the same user. This detection, as for the case of spams, is most of the time done through supervised machine learning algorithms and with binary classification to distinguish between fake and legitimate accounts.

The detection of sockpuppets on social medias was introduced in 2011 by Zheng et al.

who propose to detect sockpuppet pairs in one forum and in two different forums [Zheng et al., 2011a]. The authors use a dataset from Uwants and HK discuss. On the basis of Detection Score, they try to find out similar keywords used by different people. They conclude that their method can be used for monitoring the online discussion forum but that the results have to be checked by the police and the forum moderators, because there are still a lot of sockpuppet pairs that the method cannot detect. They apply a SVM classifier to their ground truth dataset of 1 000 normal users and 1 000 Sybils. They randomly partition the original sample into 5 sub-samples, 4 of which are used for the training of the classifier, and the last is used to test the classifier. The results show that the classifier is very accurate, correctly identifying 99% of both Sybil and non-Sybil accounts. This technique works well on Renren but the chosen features cannot be generalized directly. For example, Sybils on Twitter do not need to create social connections, and instead send spam directly to any user using "@" messages [START_REF] Yang | Uncovering social network sybils in the wild[END_REF].

Recently, Kumar et al. study sockpuppetry behavior across nine discussion communities. They show that sockpuppets differ from ordinary users in terms of how they write and interact with other sockpuppets. They also show that pairs of sockpuppets controlled by the same individual are more likely to interact in the same discussion at the same time than pairs of ordinary users [START_REF] Kumar | An army of me: Sockpuppets in online discussion communities[END_REF].

Grouping multiple identities accounts

In the previous sections, we presented the studies that identify the malicious accounts using machine learning to separate malicious and legitimate accounts. As mentioned above, the manipulators may create multiple identities to make their attacks. Hence, several works focus on grouping the malicious accounts created for the same attacks in order to stop these attacks from their source. The approaches are based on social-graph and more precisely they use community detection algorithms.

In this section, we present the most known community detection algorithms, then we review the proposed approaches that group the multiple fake identities.

Community detection

Community detection is a growing field of interest in the area of social medias applications. A large number of algorithms for community detection have been introduced in recent years [START_REF] Largeron | Dancer: dynamic attributed networks with community structure generation[END_REF][START_REF] Lund | Community detection in complex networks[END_REF][START_REF] Zardi | Efficiently mining community structures in weighted social networks[END_REF].

Since there are many proposed approaches, we study in this section an overview of those that have received the most interest from the scientific community [START_REF] Fortunato | Community detection in graphs[END_REF]. These approaches illustrate the diversity of methods and give an overview of the techniques classified according to their methodological principles [START_REF] Danon | Comparing community structure identification[END_REF][START_REF] Lancichinetti | Community detection algorithms: a comparative analysis[END_REF][START_REF] Papadopoulos | Community detection in social media[END_REF]. Many of the algorithms try to maximize modularity [START_REF] Nabaa | Communities detection algorithm to minimize risk during an evacuation[END_REF], a concept proposed by [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] and described in the next section. We continue by presenting the hierarchical methods and then those related to the optimization of quality measures. Finally, we focus our attention on model-based algorithms.

Before proceeding to the examination of the different methods, let us clarify the relationship between the problem of the detection of communities and the partitioning of graphs [START_REF] Papadopoulos | Community detection in social media[END_REF]. On the one hand, graph partitioning consists in grouping the nodes of a graph into a generally predetermined number of homogeneous subgroups by minimizing the number of links between the different groups. On the other hand, the community detection algorithms perform the same operation with or without requiring the knowledge of the number of communities.

A network graph is composed by a set of nodes that represent the accounts and a set of links between these nodes called edges. The interactions between accounts are represented as the edges between nodes. In addition, in weighted graph each edge have a weight, that represent the robustness of link between the two related nodes.

Modularity

Modularity has been introduced by Newman to measure the quality of community detection algorithms [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]. He defines it as the following:

(3.1)

Q n = 1 2 * m i, j (a i, j - d(u i) * d(u j) 2 * m)δ(u i , u j)
where a i, j is 1 if the nodes u i and u j are linked and 0 is not. The variable d(u i) is the number of neighbors of u i , m is the total number of edges in the graph, and δ is 1 if u 1 and u j are members of the same community and 0 if not.

In the case of weighted networks, Blondel provide the following formula [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]:

(3.2) Q = 1 2 * m i, j (wn i, j - k i * k j 2 * m)δ(g i , g j)
where wn i, j represents the weight of the edge between account u i and account u j , k i and k j are the sum of the weights of the edges attached respectively to nodes u i and u j , m is the sum of all of the edge weights in the graph, g i and g j are the communities of the nodes and δ is a simple delta function.

Modularity is one measure of the structure of networks or graphs. It was designed to measure the strength of division of a network into modules (also called groups, clusters or communities). Networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules.

Hierarchical agglomerative algorithms

The general principle of hierarchical classification algorithms consists in grouping the nodes iteratively into communities. At the beginning, each node is a community (there are as many communities as nodes). The communities are merged in pairs until a large community that contains all the nodes of the graph is obtained. At each step of grouping two communities, a metric (quality function) is calculated. The partitioning with the highest value of the metric considered represents the best partitioning of the graph into communities. The result of hierarchical algorithms is a dendrogram, a tree diagram frequently used to illustrate the arrangement of the clusters, containing the history of community joins at each stage. In the following, we present W alktrap and Louvain as examples of agglomerative algorithm, because they have interesting results [START_REF] Fortunato | Community detection in graphs[END_REF].

Walktrap. The W alktrap algorithm [START_REF] Pons | Computing communities in large networks using random walks[END_REF]] is an approach based on random walks. The general idea is that if a random walk is performed on the graph, then it is more likely to stay within the same community because there are only less edges that lead outside of this given community than edges that lead to nodes inside the community. Starting with n communities each containing only one node, the algorithm looks for the two closest communities, merges them and recalculates the distances.

W alktrap calculates for each pair of vertices (i,j) a weight w t (i,j) corresponding to the probability that a random walk goes from i to j in t steps. It deduces a distance between the pairs of nodes, described in the following equation:

(3.3) dist t (i, j) = v∈V |w t (v, i) -w t (v, j)| 2 k v
where k v is the number of neighbors of node k.

Merges are performed until only one community covering the whole graph (see Figure 3.1) is obtained.

Finally, for each of the intermediate cuts, the algorithm evaluates the modularity and retains the scale that gives the highest modularity (see Figure 3.2).

Louvain. The Louvain community detection algorithm [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]] is a greedy optimization method that attempts to optimize the modularity of a partition of the network. The optimization is performed in two steps. Firstly, the method looks for small communities by optimizing modularity locally. At the beginning each node is considered as one community. The nodes are scanned in a random order. Then, the method verifies for each node if its placement in the community of one of its neighbors brings a gain in modularity. If this is the case, the node is moved to that community, otherwise it remains in the old community. Secondly, it aggregates the nodes belonging to the same community and builds a new network whose nodes are the communities.

These steps are repeated iteratively until the modularity does not grow anymore and a hierarchy of communities is produced.

Hierarchical divisive algorithms

The divisive algorithms consist in splitting a network into several communities by iteratively eliminating the links between the nodes. They begin with a single community (the whole network), at the top of the dendrogram, until n communities with a single node representing the leaves of the dendrogram are found. At each iteration, any connected network is considered as a community. Existing methods differ in the choice of the links to be eliminated and in the weight given to the links. We retain the Ed ge -Beetweness Central it y as an example of a divisive algorithm.

Edge-Betweenness Centrality. The Edge-Betweenness Centrality algorithm [Newman and [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] is the most classical separative method, based on a measure of centrality. For a given edge e i , this measure is calculated as:

(3.4) EBC(e i) = i, j,i = j NP u i ,u j (e i) NP u i ,u j
Where NP u i ,u j (e i) is the number of shortest paths from nodes u i to u j through the edge e i and NP u i ,u j the total number of shortest paths from nodes u i to u j .

This measure is defined as the number of the shortest paths of the graph that pass through this edge. There are, in fact, few edges connecting the different communities and the shortest paths between two nodes of two different communities have a high probability of passing through these edges. The proposed algorithm calculates the centrality of intermediation for each link of the graph, and then removes the link with the strongest centrality (i.e. having the highest EBC value). Then the centrality of intermediation for all the links of the resulting graph is recalculated and the process is iterated until all the links have been removed and there are as many communities as nodes in the graph (see Figure 3.3). where m is the number of links and n is the number of nodes. It can therefore only be used on small graphs.

Quality optimization algorithms

There is a number of methods that are founded on the optimization of graph-based measures of community quality, and especially the measure of modularity. Approximate modularity maximization schemes abound in the literature. Apart from the seminal greedy optimization technique [START_REF] Newman | Fast algorithm for detecting community structure in networks[END_REF], and speeded up versions of it, such as max-heap based agglomeration [START_REF] Clauset | Finding community structure in very large networks[END_REF] and iterative heuristic schemes [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF], more sophisticated optimization methods have been proposed. For instance, we can cite extremal optimization [START_REF] Duch | Community detection in complex networks using extremal optimization[END_REF], simulated annealing [START_REF] Massen | Identifying communities within energy landscapes[END_REF] and spectral optimization [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]. Methods aiming at the optimization of local measures of community quality, such as local and subgraph modularity [START_REF] Luo | Exploring local community structures in large networks[END_REF], also belong to this category.

One of the fastest and most well known algorithm [START_REF] Fortunato | Community detection in graphs[END_REF] is Fast Greed y.

Fast Greedy. The Fast Greedy algorithm [START_REF] Clauset | Finding community structure in very large networks[END_REF] uses the modularity function Q defined in equation 3.1. Each possible division of the graph has a value Q.

This value is high for a good division of the graph and weak for the bad divisions. By observing all the possible divisions of the graph, we note that the exhaustive computation of Q takes an exponential amount of time in the number of nodes. This method can be used on networks of small size (about twenty or thirty nodes) to have a reasonable time of execution.

Optimization strategies have been proposed to improve the execution time of this algorithm. It begins by considering each node as a community apart, then merge the communities into pairs, choosing at each stage the pair of communities whose fusion gives the largest increase of Q in relation to the previous iteration. Since the merging of non-adjacent communities never produces a larger increase in Q, several possible mergers are avoided. In this case, there are m pairs and n -1 possible mergers to link all communities together. Thus, the total execution time is in O(mn). The algorithm stops when it is not possible to increase the modularity any more. The maximum value of Q corresponds to the best community structure.

Model-based algorithms

A large category of methods considers a dynamic process taking place on the network that reveals its communities, or that an underlying model of statistical nature can generate the division of the network into communities. Examples of dynamic processes are label propagation [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF], synchronization of Kuramoto oscillators [START_REF] Arenas | Synchronization reveals topological scales in complex networks[END_REF], and diffusion flow, better known as Markov Cluster Algorithm [[START_REF] Van | Graph clustering by flow simulation[END_REF]. In addition, community detection can be cast as a statistical inference problem [START_REF] Hastings | Community detection as an inference problem[END_REF], assuming some underlying probabilistic model, such as the planted partition model, that generates the community structure and estimates the parameters of this model.

Other model-based approaches rely on the principle that a good clustering is determined by a low encoding cost. Thus they perform community detection by finding the cluster structure that results in the lowest possible cluster encoding cost [START_REF] Chakrabarti | Autopart: Parameter-free graph partitioning and outlier detection[END_REF][START_REF] Rosvall | The map equation[END_REF]. We detail two of most known and efficient algorithms [Fortunato, 2010] below : Label P ropagation and I n f oMap.

Label Propagation. The Label Propagation community detection algorithm [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF] is an approach in which every node is assigned one of k labels. The method then proceeds iteratively and re-assigns labels to nodes so that each node takes the most frequent label of its neighbors in a synchronous manner. The method stops when the label of each node is one of the most frequent labels in its neighborhood. It is very fast but yields different results based on the initial configuration (which is decided randomly).

InfoMap. The Infomap algorithm [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] is often considered as the most effective model-based algorithm. It seeks to find an optimal encoding of the graph. To do this, it seeks to minimize the length of the description of the path traveled by a random walker, the nodes being described according to a prefixed numbering. Each node is thus described by the identifier of the community to which it belongs and a unique identifier within this community.

When describing the path of a walker, it begins by giving the identifier of the community in which it is located, then the identifier of the node on which it is. As long as the walker remains within the same community, it can describe the new node that it reaches by its "local" identity within the community, without repeating the identifier of this community. When its move takes it out of the community, to describe the new node on which it is on, it give the identifier of the new community, then the identifier of the node within the community. It is a simple system such as that used for postal addresses:

there are many streets in France called Victor Hugo (node identifier), but they can be differentiated by the element in which they are included (city name, corresponding to the community identifier). The operation of the algorithm is illustrated in figure 3.4.

Figure 3.4 -Illustration of the InfoMap process (from [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF]).

The image A represents the path of a random walker, which one wishes to encode. The image B presents a basic means of making this encoding: a binary identifier is assigned to each node, and the sequence of the identifiers is used to encode the path (in black, below). The images C and D show how to optimize this encoding by assigning identifiers to the clusters, and, for each node, an internal identifier has its cluster. We can see that the encoding (below, colored) is more efficient than in case B. This is the solution leading to the minimal encoding that InfoMap seeks.

In addition to its efficiency, InfoMap is very fast and thus allows to process very large graphs.

These presented methods have been used by researchers [START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF][START_REF] Stringhini | Evilcohort: detecting communities of malicious accounts on online services[END_REF] in order to group the malicious accounts, and especially sockpuppets.

Grouping Sockpuppets

As mentioned in chapter 2, sockpuppets are the multiple fake accounts created by the same user in order to manipulate on social medias. As presented before, Social sybils are a special type of sockpuppets created in order to influence voting results by submitting multiple votes, or in order to support each others by arguments. They can also manipulate opinions by creating an online illusion that many users support an opinion.

To address the problem of multiple identities on OSMs, researchers have developed graph-based algorithms for the grouping of sockpuppets in different types of OSM such as online discussion forums [START_REF] Bu | A sock puppet detection algorithm on virtual spaces[END_REF]Zheng et al., 2011a] and social networks [START_REF] Gani | Towards multiple identity detection in social networks[END_REF][START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF][START_REF] Viswanath | An analysis of social network-based sybil defenses[END_REF]Zheng et al., 2011a].

Sybil Community Detectors. SybilGuard [START_REF] Yu | Sybilguard: defending against sybil attacks via social networks[END_REF], SybilLimit [Yu et al., 2008a], and SybilInfer [START_REF] Danezis | Sybilinfer: Detecting sybil nodes using social networks[END_REF] are algorithms that perform decentralized detection of Sybil nodes on social graphs. In fact, all of these algorithms are based on a common hypothesis that sybils have difficulty forming relations with legitimate accounts (honest nodes).

The rarity of these relations causes the sybil nodes to be outliers in the graph, i.e.

there is a small quotient-cut separating the sybil nodes from the "honest" regions of the graph. SybilGuard, SybilLimit, and SybilInfer all leverage specially engineered random walks for this purpose. Although all of these algorithms are implemented differently, they all generalize to the problem of detecting communities of Sybil nodes [START_REF] Viswanath | An analysis of social network-based sybil defenses[END_REF].

SybilRank [START_REF] Cao | Aiding the detection of fake accounts in large scale social online services[END_REF] allows OSM to rank users according to their perceived likelihood of being fake (Sybils). SybilRank can scale to graphs with hundreds of millions of nodes. The authors implemented SybilRank in the Italian telecoms operator Tuenti.

They observe large clusters of Sybil users in regular topologies (star, mesh, tree, . . .) that are connected to the honest communities through a limited number of attack edges.

SybilRank is notable because it is the only Sybil community detector that has been successfully evaluated and deployed on a real social graph against attackers, while the other studies all base their results on simulated attacks.

Sockpuppets Communities.

Other researchers base their approach on the usernames that sockpuppets use (e.g. considering that they are similar [START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF]), their opinion towards topics (e.g. considering that they have the same opinion [START_REF] Bu | A sock puppet detection algorithm on virtual spaces[END_REF]), and their interactions (e.g. considering that they reply in support of each other's posts [Zheng et al., 2011a]).

Liu et al. propose to detect sockpuppets groups by analyzing the sentiment orientation of user accounts based on emotional sentences written in their posted comments. A graph with edges between the user accounts that have similar orientations to most topics is built. Then, after analyzing the behavior features of user accounts according to their posts and comments, they propose a method based on multiple random walks to remeasure the weight of each edge iteratively. Finally, they detect sockpuppet groups (gangs) using multiple community detection algorithms. They evaluate the modularity and the community size of their method on two Chinese forum's datasets using two community detection algorithms [START_REF] Liu | Sockpuppet gang detection on social media sites[END_REF].

Bu et al. propose a sockpuppet detection algorithm which combines authorshipidentification techniques and link analysis. Firstly, they create a social network model in which links between two accounts are built if they have a similar attitude to most topics.

Finally, the link-based community detection for sockpuppet network is performed. The algorithm is evaluated on two Chinese datasets, but the accuracy of the detection is low; between 13.1% and 44.5% depending on the selected dataset [START_REF] Bu | A sock puppet detection algorithm on virtual spaces[END_REF].

Other researches group malicious accounts by studying the social behavior [START_REF] Beutel | Copycatch: stopping group attacks by spotting lockstep behavior in social networks[END_REF][START_REF] Cao | Uncovering large groups of active malicious accounts in online social networks[END_REF] or by checking the common IP addresses [START_REF] Stringhini | Evilcohort: detecting communities of malicious accounts on online services[END_REF].

Stringhini et al. developed a system to detect malicious communities such as botnets acting on online services. This approach uses a bipartite graph between the set of online accounts and the set of IP addresses. Then, it performs clustering in order to find malicious communities that are accessed by a common set of IP addresses using a community detection algorithm (Louvain method described in section 3.5.1.2). Finally, it is evaluated on two real-world datasets. This method can detect accounts even if they do not perform any malicious activity as it works only on accounts accessed by multiple IP addresses. However, it does not distinguish between fake and compromised accounts [START_REF] Stringhini | Evilcohort: detecting communities of malicious accounts on online services[END_REF], and it uses non-public information.

Two other works, SynchoTrap by [START_REF] Cao | Uncovering large groups of active malicious accounts in online social networks[END_REF] and CopyCatch by [START_REF] Beutel | Copycatch: stopping group attacks by spotting lockstep behavior in social networks[END_REF], also focus on grouping malicious identities. These techniques look at the behavior of a group of accounts and check whether they have anomalous or malicious behavior.

However, they are both limited, because they focus on detecting a specific attack behavior : loosely synchronized actions, where a group of malicious identities behave similarly at around the same time. For example, a group of sockpuppets following a set of Instagram profiles at around the same time can potentially be detected by such schemes.

Credit Networks. The previously mentioned algorithms are designed to detect multiple identities on OSMs, presumably so they can be banned. Other algorithms are designed to make social networks resistant to sockpuppetry. SumUp [START_REF] Tran | Sybil-resilient online content voting[END_REF], GateKeeper [START_REF] Tran | Optimal sybil-resilient node admission control[END_REF], and Bazaar [START_REF] Post | Bazaar: Strengthening user reputations in online marketplaces[END_REF] use max-flow techniques [START_REF] Goldberg | A new approach to the maximum-flow problem[END_REF] to limit the influence of Sybils attempting to attack social applications. SumUp focuses on collecting votes from legitimate accounts in a polling application, while Bazaar is designed to exclude fraudulent accounts from online marketplaces. SumUp assumes that all graph edges have a weight of one (e.g. one user, one vote), but GateKeeper and Bazaar expand upon this by assigning custom weights to the edges (using tickets in the former case, and positive transaction feedback in the latter case).

Synthesis

In the introduction, we proposed a set of criteria to evaluate the researchers approaches with respect to the issue of automatic detection and grouping of sockpuppets. In this section, we develop the proposed analysis grid by evaluating the presented solutions.

Table 3.3 is a sum up of the related works presented in this chapter based on the mentioned criteria.

This table shows that the methods used to detect the spams use verbal communication analysis more than non-verbal behavior, and that in addition they only detect single accounts.

The methods that detect multiple identities share the same criteria as spams detection methods, with one difference in the analysis approaches: multiple identities solutions use non-verbal behavior more the than the verbal communication.

The final category is the grouping of multiple identities where the proposed solutions use most of time the non-verbal behavior. By design, they cannot detect the single accounts. Most of grouping solutions use public information, but some of them are applicable to all social medias, and the others are proposed for a specific platform of MO Category Approach AP SMA GMI PI G [START_REF] Cohen | Learning rules that classify e-mail[END_REF][START_REF] Islam | An innovative spam filtering model based on support vector machine[END_REF][START_REF] Joachims | Making large-scale svm learning practical[END_REF][START_REF] Kolcz | Svm-based filtering of e-mail spam with content-specific misclassification costs[END_REF][START_REF] Pantel | Spamcop: A spam classification and organization program. learning for text categorization-papers from the aaai workshop[END_REF][START_REF] Sahami | A bayesian approach to filtering junk e-mail. learning for text categorizaton-papers from the aaai workshop[END_REF][START_REF] Sculley | Relaxed online svms for spam filtering[END_REF][START_REF] Sebastiani | Machine learning in automated text categorization[END_REF]Thomas et al., We conclude also that the detection of malicious accounts without knowing the associated accounts created for the same objective is not accurate, because if a fake account is blocked, the sockpuppeteer can create another one and continue his manipulation.

However, there does not exist a single method in the literature that both detect and group sockpuppets.

Based on this review of the literature, we deduce that the best criterias that should be used to obtained a reasonable accuracy are in a general method built on well selected public features of non-verbal behavior to detect and group the malicious accounts of different social medias.

In the next chapters we present our proposed process SocksCatch which is composed of three phases. The first phase prepares the process and describes what type of data should be collected. The second phase detects the sockpuppet accounts using non-verbal features applied on machine learning algorithms. Finally, the third phase groups the detected sockpuppets using community detection algorithms.

C H A P T E R 4

THE SOCKSCATCH PROCESS

As we have seen in the previous chapters, social medias are a privileged target for manipulators. In order to tackle this problem, researchers proposed several solutions to detect them. Part of these solutions only detects malicious accounts, but after the detection the manipulators can continue their attack rapidly by using another (fake)

account. The other part of these solutions groups the malicious accounts by creating a graph containing all the platform accounts types (legitimate and fake). They split up this graph in trust and attackers zones. The trust zone is where the legitimate accounts are grouped together. The attackers zone is where the fake accounts are grouped together.

The negative point of these methods is that they group all the accounts in the same graph, thus a legitimate account might be added in the attackers zone, and a fake account might be added to the trust zone.

In order to improve the methods presented in the literature, we propose a general process that can be applied on several social media types with little adaptation. This process detects sockpuppets and groups together fake accounts created by a same sock-puppeteer, in order to stop all the attacks performed by a same user using different sockpuppet accounts.

In this chapter we present a global overview of the SocksCatch process, that aims at detecting and grouping sockpuppets in social medias. First, we introduce the overall process of SocksCatch. Then we propose a model of online social medias, in order to represent their common elements. Finally, we introduce an application of the SocksCatch process on the most significant collaborative project: english Wikipedia.

SocksCatch: Overall Process

Currently, as seen in section 2.3, many social medias have partial solutions for the detection and/or grouping of malicious accounts, but most of them need a manual validation.

That means that the administrators of these sites have to check the accounts and their histories in order to take a decision to ban an account or not, thus wasting a lot of time and effort [Tsikerdekis and Zeadally, 2014a]. In addition, a manipulator may attack many victims before being banned.

To the best of our knowledge, there does not exist an automatic method that can at the same time detect malicious accounts and group together the sockpuppets created by a same sockpuppeteer.

Building on these conclusions we introduce SocksCatch, a complete process to detect and group sockpuppets automatically (shown in Fig. 4.1). This process is composed of three main phases. The first phase objective is the selection and pre-processing of data.

The second phase objective is the detection of sockpuppet accounts using a machine learning algorithm. The third phase objective is the grouping of sockpuppet accounts created by a same user using a community detection algorithm. As shown in figure 4.1, SocksCatch distinguishes three stages:

• First stage is the SocksCatch model, where we propose a general model of social media dedicated to the detection and grouping of sockpuppets. This stage is the generic part of sockscatch, i.e. it proposes features and models that exist in all social media although they may be instatiated differently.

• Second stage is SocksCatch adaptation, where we instantiate and evaluate SocksCatch model on a selected social media, in order to find the best machine learning algorithm for the second phase, and the best community detection algorithm for the third phase. This stage relies on a specific data collection to train and select the machine learning and community detection algorithms. This stage has to be done independently for each social media when the feature instantiation differs.

• Third stage is the deployment of SocksCatch in real time, where SocksCatch is applied online on a selected social media using the best learned machine learning algorithm and the best community detection algorithm founded on the evaluation of the second stage. In this stage, the data comes from the site activity, and the detection and grouping of sockpuppets is automated.

Let us note that in this thesis the first stage is proposed and the second stages is instantiated on a social media. The third stage (deployment) can only be done by social medias administrators to apply the findings of the two previous stages.

The first phase of SocksCatch is dedicated to the pre-processing of the data used in each stage. In the model stage, we represent our social medias model that will be used in the following phases in order to support SocksCatch. In adaptation stage, the first phase comprises two steps: data extraction from the site's history (I) and accounts selection (II) (Fig. 4.2). Their objective is to crawl a dataset with a specific number of accounts from a social media site in order to evaluate SocksCatch on real accounts and to check its accuracy. In real time stage the data is retrieved directly from the database of the selected social media directly. The second phase objective is the detection of sockpuppets. In model stage of this phase, we propose a set of general features that can be applied on different social media sites. These features should differentiate the behavior of sockpuppet from that of legitimate accounts. The adaptation stage of this phase comprises two steps: feature adaptation and computation (III) and detection of sockpuppet accounts using machine learning algorithms (IV) (Fig. 4.3). In the step III, we instantiate the proposed features on the dataset of a selected social media, then we compute them for each selected account.

In the step IV, the computed features of each account are evaluated on several trained and tested machine learning algorithms in order to detect sockpuppets. The selection of the best machine learning algorithm for a particular site depends on the results of the evaluation applied to the dataset of the selected social media in the first phase.

The real time stage uses this trained algorithm to detect the sockpuppets.

The last phase objective is the grouping of sockpuppets. In model stage of this phase we propose to create a set of graphs to be used by community detection algorithms to group the sockpuppets created by the same user, and a set of features to represent the accounts behaviors. The adaptation stage of this phase comprises two steps: grouping based on actions in same pages (step V) and grouping based on accounts features (step VI) (Fig. 4.4). In the step V, a graph is created by relating each detected sockpuppet account with the pages where it performed actions. From this first graph another graph that links the accounts to each other is extracted. Then, sockpuppets are grouped from this extracted graph using a community detection algorithm. In the last step (VI), we improve the detected groups by relating the remaining single sockpuppets (non-grouped)

to the detected groups based on their behavior similarities.

As in the case of the selection of machine learning algorithm, the best community detection algorithm is identified from the results of the experiment of SocksCatch.

The real time stage uses this algorithm and features to group the sockpuppets.

In the next section we define formally the model of social medias used to support the SocksCatch process in stage 1.

A model of social media (Stage 1, Phase 1)

We define an online social media as a tuple of the main elements that characterize the users and their interactions with the medium. Those were selected as abstractions of features existing in the majority of social media .

Definition [Online Social Media]:

An Online Social Media OSM is a tuple {U, P, C, A} such as :

• U is the set of user accounts.

• P is the set of pages.

• C is the set of categories.

• A is the set of actions.

In the following, we detail each of these sets:

Accounts: the set of existing user accounts is noted U = {u 1 , ..., u |U| }. Features are used to describe accounts. The set of all defined features is F, where

F = { f 1 , ..., f |F| }.
The relation between accounts and features is represented by the two following functions.

Definition [Relation between accounts and features]:

An account has a list of features. Therefore, each feature represents a part of the behavior of the account. The uF eatures function gives the features value of an account.

uF eatures : U xF → R
An account u i is a virtual representation of a user in a particular OSM. Let us note that a single user can create several accounts.

Each set of accounts created by the same user forms a group. Thus, a group contains either one account or multiple accounts. We define the set of groups as GRP where GRP = {gr p 1 , ..., gr p |GRP| }.In the same way than single accounts, each group has a set of features, calculated from the features of its members.

The relation between accounts, features and groups is represented by the following functions.

Definition [Relation between accounts, features and groups]:

An account belongs to one and only one group. Therefore, each group includes one or more accounts.

The uGrou p function gives the group of an account.

uGrou p : U → GRP
The list of accounts corresponding to a given group is obtained by the gr pAccounts function.

gr pAccounts : GRP → 2 U

A group has a list of features that represent the behavior of its members. The gr pF eatures function gives the features of a group.

gr pF eatures : GRP xF → R

If uGrou p(u 1) = gr p 1 , uGrou p(u 2) = gr p 1 and uGrou p(u 3) = gr p 2 , then the accounts u 1 and u 2 belong to a same group gr p 1 and u 3 belong to the group gr p 2 .

Inversely, gr pAccounts(gr p 1) = {u 1 , u 2 } and gr pAccounts(gr p 2) = {u 3 }. The relation between pages and categories is represented by the two following functions.

Example

Definition [Relation between pages and categories]:

A page belongs to one and only one specific category. Therefore, each category includes several pages. The pCate gor y function gives the category of a page.

pCate gor y : P → C

The list of pages corresponding to a given category is obtained by the cPages function.

A = |U|,|P| i=1, j=1 A i, j
A i, j is the set of actions produced by the account u i on page p j . Each of these sets is represented by A i, j = {a 1 i, j , ..., a |A i, j | i, j }, an action a k i, j being the k -th action performed by account u i on page p j .

We complete these basic definitions with several functions that give the basic properties of the accounts and of the actions.

We include in the general model the time of events such as the creation of an account, Additionally, each action is described by a set of properties. Among the general properties of interest to characterize an account behavior, we represent the number of bytes added or removed by an action thanks to the function aB ytes.

A second function, aD el, is used to indicate that an action has been reported after its public release. A report action is a general term to catch the possibility for users to notify an action as being malicious. As a matter of fact, this possibility exists in most of existing OSM using different forms (revert on Wikipedia, delete post on Facebook, report tweet on Twitter. . .).

Definition [Action properties]:

The number of bytes added or removed by an action is given by:

aB ytes : A i j → Z
The aD el function returns 1 if an action has been reported, 0 otherwise.

aD el : A i j → {0, 1}
The social media model represents users, accounts, pages, categories and their interactions. In the next sections, we build SocksCatch graphs based on this model that will be used in the phase 3 of stage 1.

Action graph

Using the previous definitions, we can represent a social media as a graph that links accounts and pages through actions.

A graph is broadly defined as G = (V , E) where V is the set of nodes (also called vertices) and E is a set of edges that connect nodes. In our model, the nodes are the accounts and pages, and the edges represent the actions between these nodes. Edges are weighted, that is, a value is assigned to them. A strong weight then indicates a high intensity relation.

In order to represent the global activity of accounts on pages, we define a weighted bipartite graph called action graph. In terms of notation, the action graph is thus defined as G act = (V act , E act) where G act stands for the whole platform, V act stands for the set of nodes, and E act for the set of all edges. The edges of this action graph are the interactions between an account node u i and a "page" node p j . Hence, V act = U ∪ P and U ∩ P = . Therefore the edges represent relations between nodes in sets U and P. We note e act i, j ∈ E act an edge that connects the account u i with the page p j . The edges are extracted from the actions A. In order to represent the period when an account has been active on a page, the weight w act i, j of e act i, j is calculated as the average of the timestamps of each action of u i on p j .

w act i, j = a∈A i, j
aT ime(a)

|A i, j |
Algorithm 1 shows the construction of this graph. For all accounts (line 3), and for each page visited by this account (line 4), the attributes related to the actions done by the user (number of actions, time of these actions) is computed. Then, the algorithm sets the average of time of actions made by account in the same page as the weight and creates the edges between the users and the pages.

Algorithm 1 Create Action graph G act = newBi partiteGraph (); 3:

for each u i ∈ U do 4:

for each p j ∈ uPages (u i) do 5:

sumActionT ime [p j] = 0;

6:

for each a k ∈ A i, j do 7:

sumActionT ime [p j] + = aT ime (a k); As described above, the algorithm adds an edge between the account and the page where he performed action and it adds the average of timestamp of actions performed in this page as weight for the edge, for example u 1 performed two actions in the same page p 1 at "2005-07-23 22 : 42 : 15" and "2005-07-23 22 : 42 : 01". Hence, the average time is 2005 -07 -23 22 : 42 : 08 and the weight in seconds between u 1 and p 1 is:

w act 1,1 = 1122147735 + 1122147721 2 = 1122147728

Relationship Graph

From the action graph, we extract another weighted undirected graph to be used in community detection algorithms called relationship graph. In terms of notation, the relationship graph is thus defined as G rel = (V rel , E rel) where G rel stands for the whole graph, V rel stands for the set of nodes, and E rel for the set of all edges. This graph is used to group the accounts using a community detection algorithm. It represents the relationship between accounts based on the actions they performed in the same pages.

On the contrary to the action graphs, an edge is a symetric relation between two nodes of same nature. In this graph, the edges link only the accounts (U) between each others: V rel = U. An edge e rel i, j is created between u i ∈ U and u j ∈ U if there exists at least one page in which both accounts have contributed:

(4.1)

∀e rel i, j ∈ E rel / ∃p k ∈ P / |A i,k | > 0 ∧ |A j,k | > 0
The weight of each edge is obtained from a calculation on actions attributes to represent the degree of relation between the accounts u i and u j . This weight is the inversed euclidean distance between the normalized average of the actions' time of u i and u j . Hence, the edge between two accounts is "strong" if they made their actions in a short time window.

The euclidean distance is calculated as follows:

(4.2) d(u i , u j) = p k ∈uPages(u i)∩uPages(u j) (wn act i,k -wn act j,k) 2
where wn act i,k and wn act j,k are respectively the normalized weight of edges between the account u i with page p k and the account u j with page p k in the action graph, and they are calculated as follows:

(4.3)

wn act i,k = w act i,k -min(W act) max(W act) -min(W act)
where W act = (w act 1,1 , ..., w act N u ,N p

).

The inverted euclidean distance is then calculated as follows in order to make the smallest distance as the highest weight:

(4.4) The normalized weight of action's graph edges, where max(W act) = 1131443805 and min(W act) = 1118808615, is:

w rel i, j = 1 1 + d(u i , u j)
wn act 1,1 = 1122147728 -1118808615 1131443805 -1118808615) = 0.264 wn act 2,1 = 1122220727 -1118808615 1131443805 -1118808615) = 0.270
The euclidean distance between the normalized weights of u 1 and u 2 is: The inverted euclidean distance of u 1 and u 2 is:

d(1, 2) = (0.264 -0.270) 2 = 0.006

Example

w rel 1,2 = 1 1 + 0.006 = 0.994

Groups Graph

By giving the relationship graph to the community detection algorithms, the core groups detected from this relationship graph are detected. Using these groups we create another weighted undirected graph that relate the groups based on features similarities called groups graph. In terms of notation, the groups graph is thus defined as G gr = (V gr , E gr) where G gr stands for the whole graph, V gr stands for the set of nodes, and E gr for the set of all edges. This graph represents the relationship between groups based on the similarity between the features of each group.

In groups graph, an edge is a relation between two nodes of the same nature. In this graph, the edges link the groups (GRP) that have one member (account) with other singleton groups or with groups that have multiple members. That means that no edge may be created between groups that already contain multiple members: V gr = GRP. An edge e gr i, j is created between gr p i ∈ GRP,and gr p j ∈ GRP if there exists at least one group with only one account:

(4.5) ∀e gr i, j ∈ E gr / ∃ gr p i ∈ GRP ∧ gr p j ∈ GRP i f (|gr pAccounts(gr p i)| = 1 ∧ |gr pAccounts(gr p j)| ≥ 1)

∨ i f (|gr pAccounts(gr p i)| ≥ 1 ∧ |gr pAccounts(gr p j)| = 1)
The weight of each edge is obtained from a calculation on groups' features to represent the degree of similarity between gr p i and gr p j . This weight is the inversed euclidean distance between the features of gr p i and gr p j . Hence, the values of features of each group are the average of the features of the group's members.

The euclidean distance is calculated as follows:

(4.6) d g(gr p i , gr p j) = N f k=1 (gr pF eatures(i, k) -gr pF eatures(j, k))

2
where gr pF eatures(i, k) and gr pF eatures(j, k) are respectively the k th feature of the group gr p i and the group gr p j

The inverted euclidean distance is then calculated as follows in order to obtain the smallest distance as the highest weight: while the second reifies how this behavior links the accounts with each other. The groups graph shows if there is a similarity in the behavior of different groups.

In the next section, we present the most used collaborative project, english Wikipedia.

We then show how we mapped our proposed social media model on Wikipedia, in order to use its data for adaptation stage where we will instantiate and evaluate Sockscatch.

SocksCatch's application on Wikipedia's sockpuppets (Stage 2, Phase 1)

As seen in chapter 2, collaborative projects present several advantages to test and apply our approach, such as the big number of collaborators and manipulators at the same time.

The collaborative project with the highest number of collaborators is English Wikipedia. Furthermore, Wikipedia offers the ability to collect all logs and history of interactions of all the accounts publicly.

Another important feature is that it have common features with other social medias • Pages P are articles and discussion pages.

• Actions A are called contributions such as a modification in an article and a comment in a discussion page.

As mentioned above, the data collection phase of SocksCatch is created for the adaptation stage, because the collected data will be used to evaluate the process. This phase is composed of two steps, where in the data extraction step we collect all the required data for our experiment from English Wikipedia, then in the accounts selection step we select from the collected data the accounts used to evaluate SocksCatch.

Data extraction

Until April 2015, the total amount of data contained in English Wikipedia was about 10 TB uncompressed 3 , so that it is not efficient to retrieve the whole data and process it.

Hence, we start by only crawling the accounts (blocked and legitimate), without their activities history, from February 2004 to April 2015.

There are several reasons to block an account (such as spam, vandalism, or threats), and each reason implies a limited or unlimited time of blocking. For our model, we decide to study the accounts that are blocked for sockpuppet reason and for infinite time. The total number of accounts blocked for this reason amounts to 118 414 accounts. When an account is blocked because of sockpuppetry, the administrators state to which original account the blocked one was linked. This allows to create the real clustering Cl (groups) of accounts created by the same user.

3 100 GB compressed using 7-Zip

Account selection

For this study, the 118 414 sockpuppets are grouped and referred to their sockpuppeteer, the first malicious account created by the user. 12 088 groups, are obtained ranging from 2 to 557 members. Among those groups, 5 000 sockpuppet accounts that are in a group with more than 3 sockpuppets are randomly selected, in order to be sure that these accounts are for users who tried many times to manipulate. These 5 000 sockpuppets are filtered to keep only the sockpuppets that have at least a contribution in one namespace.

The final number of sockpuppets used for this phase is 4 869 sockpuppets and they are members of 1 402 groups.

An example of such groups is that of the owner of the account "YCWebCrawler", who has created 4 supplementary accounts (Fixthemistakes, Wordslayer, Wikidirt and PageOneEditor) to manipulate on Wikipedia. All these accounts are blocked as sockpuppet accounts in English Wikipedia because they were created solely for the deletion of material on the Dennis L. Montgomery page. All these accounts use similar language about protecting family members in summaries.

Example

After selecting sockpuppet accounts, we need to select also active accounts, in order to train the machine learning algorithms on the acceptable behaviors. We randomly select 5 000 active accounts, which fulfill two criteria: they have been active for more than one year and they have made at least one contribution on Wikipedia. These criteria were selected in order to have a high probability that these accounts are not sockpuppets undiscovered yet.

Once these accounts were found, we crawl all related data in the thirty namespaces mentioned in table 2.2 page 16. Furthermore, we also retrieved all information about the namespaces' pages, in order to know the behavior of other accounts towards the account's modifications. This allows for example to automatically detect whether the modifications done by a specific account are kept by other users or reverted.

The final database used in this study thus contains 71 GB of information.

The list of selected accounts with their status (Sockpuppet or Active) is available for researchers4 .

Conclusion

We have presented in this chapter the three stages and phases of SocksCatch. Then we defined a model for social medias. Using this model, we describe how to build a bipartite graph that represents the activities of accounts on social media. In addition, we presented a relationship graph that relates accounts based on their activities performed in the same pages. Furthermore, the groups graph that relate the group of accounts based on their behavior similarity is detailed. Finally, the use case and our collected data that is used to evaluate SocksCatch is introduced.

In the next chapter, we develop the sockpuppet detection phase. In this phase several features are proposed in order to differentiate between a sockpuppet and an active account, then we show how these features can be adapted on English Wikipedia. Finally, the adapted features on English Wikipedia are evaluated using different machine learning algorithms.

C H A P T E R

SOCKPUPPET DETECTION

As we have seen in the previous chapter, SocksCatch is composed of three phases: preparation phase, sockpuppets detection phase and sockpuppets grouping phase. In addition, SocksCatch distinguishes three stages: model stage, adaptation stage and real time stage.

In this chapter, we develop the second phase of SocksCatch : detection of sockpuppets using machine learning algorithms.

In the model stage, we propose a set of general features, in order to differentiate the sockpuppet and legitimate account's behaviors on social medias. These features can be adapted and applied on different OSMs.

In the adaptation stage, we adapt and instantiate the proposed features on English Wikipedia. Then, we introduce the experimental part: we present the metrics that evaluate the computed features on six trained and tested machine learning algorithms.

The machine learning algorithm with the highest accuracy is selected in order to be used in the real time stage of sockpuppets detection phase.

Sockpuppet Detection's Features (Stage 1, Phase

2)

In order to differentiate between a sockpuppet and a legitimate account, we propose several features F detect , where F detect ⊂ F and F is the set of features (definition 4.2, page 73). These features focus on three main axes: action behavior, other accounts behavior toward an account's actions, and account characteristics.

Concerning the action behavior, we assume that the goal of a sockpuppet is to manipulate contributions on a specific topic or category of an OSM. Thus, the number of actions performed by an account in specific categories is interesting. We have also observed that some fake accounts try to remove specific pieces of information or to add misinformation. The average of bytes added and/or removed in each action and the average of the actions of each account in the same page are then promising features.

The behavior of the other accounts towards the studied account is also an indication.

The number of reported actions of an account is another important feature because some other users can notify malicious contributions.

Finally, the account characteristics can be a sign of malicious behaviour. While in general, legitimate users register and contribute directly (the registration being done in order to contribute), some manipulators create many accounts at the same time and leave most of them sleeping until the active account is blocked. In order to detect these cases, we propose a feature that subtracts the time of the first action performed and the time of account's registration. These features will be instantiated on a social media platform, in order to be computed for each account. Then the list of accounts with their calculated features will be used to train and test the machine learning algorithms.

The proposed features are detailed below:

Number of account's actions in different OSM categories:

This is a set of features to represent the activity of an account in each of the OSM categories to detect the focus of the selected account. Hence, each category correspond to a feature, using the number of actions performed in these categories.

If we take Facebook as an example, the number of added comments in Facebook pages as a feature, and the number of added comments in friends posts as another feature is taken into account.

The features ActionN b(u i , c k) are calculated as follows:

∀c k ∈ C, ∀u i ∈ U, ActionNb(u i , c k) = |A u i ,c k | with A u i ,c k = {a i, j |a i, j ∈ A and pCategory(p j) = c k }

Average of bytes added or removed in each action:

The goal of a fake account may also be detected through its addition/removal behavior.

Hence, we propose two features to compute the average of bytes added by writing actions or/and the average of the bytes removed by writing action.

Let A + u i be the set of actions consisting in adding bytes and A - u i be the set of actions consisting in removing bytes, they are defined as:

∀u i ∈ U, A + u i = {a i, j |a i, j ∈ A u i and aBytes(a i, j) > 0}
A - u i = {a i, j |a i, j ∈ A u i and aBytes(a i, j) < 0}

The feature Addition(u i) and R emoval(u i) are then:

• if A + u i = , Addition(u i) = 0. • if A + u i = ,
(5.1)

Addition(u i) = a∈A + u i
aB ytes(a)

|A + u i | • if A - u i = , R emoval(u i) = 0. • if A - u i = , (5.2) R emoval(u i) = a∈A - u i
aB ytes(a)

|A - u i |

Focus of an account's actions:

Some fake accounts try many times to change or to add the same (mis)information in the same page. They focus on the same pages, because they have a specific objective to manipulate an information or idea. This feature is calculated as a ratio between the number of actions and the number of pages modified by an account.

The feature F ocus(u i) is defined as:

∀u i ∈ U, • if |uPages(u i)| = , F ocus(u i) = 0. • if |uPages(u i)| = , (5.3) F ocus(u i) = |A u i | |uPages(u i)|

Number of reported actions of an account:

As mentioned in chapter 2, most of OSM platforms give the ability for the accounts to report or to delete other accounts action if they are considered as malicious or inappropriate. Using this reporting system the OSM platforms benefit from the contribution of their users to detect the malicious actions, which is very helpful because most of platforms have a huge number of users, and in addition the human detection is reliable. In this feature, we compute the number of reports performed by other accounts toward the selected account.

Let A u i be the set of actions of an account and A re p u i ⊂ A u i the set of its reported actions i.e,

∀u i ∈ U, A u i = N p j=1 A i, j A re p u i = {a i, j |a i, j ∈ A u i and aDel(a i, j) = 1}
The feature R e ported(u i) is then:

(5.4) R e ported(u i) = |A re p u i |

Delay between account's creation and first action:

The policies of most OSM platforms do not allow the creation of multiple accounts by the same user [START_REF] Elizabeth | Facebook does not allow multiple accounts[END_REF][START_REF] Twitter | The twitter rules[END_REF]], but at the same time they can be created technically. The manipulators benefit from this technical issue to create many accounts at the same time, and they leave most of them sleeping until their active account is blocked, where they begin using a backup one. We propose this feature that calculates the difference between the creation time of an account and its first action, in order to detect the sleeping accounts.

The feature D ela y(u i) is defined as:

(5.5) D ela y(u i) = uF irstActT ime(u i) -uR e gT ime(u i)

In the next section, we present the adaptation stage of sockpuppet detection phase, where we start by the adaptation of the proposed features on Wikipedia environment, then we compute and evaluate the adapted features using machine learning algorithms.

Sockpuppets Detection Adaptation (Stage 2, Phase 2)

The objective of this section is to evaluate the efficiency of the proposed features in the detection of sockpuppets on english Wikipedia.

This phase of SocksCatch adaptation is composed of two main steps. In first step, we adapt and compute the proposed features in SocksCatch model stage on english Wikipedia. Then, in second step, we evaluate these computed features using machine learning algorithms, in order to know if the proposed features are efficient in the case of wikipedia and which is (are) the best algorithm(s) that should be used in SocksCatch's real-time stage.

Features Adaptation on Wikipedia

As mentioned in the previous chapter, we applied SocksCatch on english Wikipedia.

Hence, the set of features F detect proposed in second phase of SocksCatch's model stage is instantiated in order to be adapted and computed on Wikipedia data.

The adapted features that detect the behavior of the accounts on Wikipedia are described below.

Number of account's contributions by namespaces:

These features are instantiated from "Number of account's actions in different OSM categories". Six features are created based on the following namespaces: article, article discussion, user page, user discussion page, project namespace and other (all other namespaces, mentioned in table 2.2 page 16, are combined under one feature, because they are rarely used).

Average of bytes added and removed in all the contributions:

As mentioned in the section 5.1 and more precisely in the description of the feature "Average of bytes added or removed in each action", the goal of a manipulator may be detected sometimes from its addition/removal behavior.

In Wikipedia, we can apply the two original features, where A + u i is the set of bytes added in each contribution and A - u i is the set of bytes removed in each contribution.

For example, let say that an account u 3 performed 5 contributions in different articles, where it added respectively 400, 600, 100 bytes of information in contributions a 1 , a 2 , a 5 and it removed respectively 200, 600 bytes of information in contributions a 3 , a 4 . The values of features Addition(u 3) and R emoval(u 3) are then:

Addition(u 3) = 400 + 600 + 100 3 = 550 b ytes R emoval(u 3) = 200 + 600 2 = 400 b ytes

Example

Average of contribution in the same articles:

In this feature, the "focus of an account's actions" is instantiated to one feature where the average number of contributions in the same article for each account is calculated.

For example, let say that an account u 12 contributes 5 times in article p 1 and 2 times in article p 2 . The value of feature F ocus(u 12) is then:

F ocus(u 12) = 5 + 2 2 = 3.5

Example

Number of revert after each contribution in the articles:

In collaborative projects, each page or article is managed by many contributors. It is the reason why we consider that some malicious contributions will be reverted directly by another contributor.

Since in Wikipedia the articles are the main namespace, we decided to instantiate the feature "number of reported actions of an account", described in section 5.1, to the number of direct revert after each contribution in an article without taking into consideration the revert of contributions in other namespaces because the manipulation that should be deleted occurs on articles and not on other namespaces. (5.9) This metric indicates the fraction of true positives and true negatives returned over the total number of cases.

Accurac y = TP + T N TP + T N + FP + F N
(5.10)

F -measure = 2 * P recision * TPR P recision + TPR
This metric indicates the test of a model's accuracy that combines TPR and precision.

(5.11)

MCC = TP * T N -FP * F N (TP + FP)(TP + F N)(T N + FP)(T N + F N)
Matthews correlation coefficient (MCC) metric indicates a balanced measure which can be used even if the classes are of very different sizes.

Area under ROC curve (AUC) = TPR-FPR+1

2

(5.12)

Area under a ROC curve (AUC) estimates the probability that a randomly chosen positive instance will be ranked higher than a randomly chosen negative instance.

In the next section, we present the experiment realized on the computed features in order to evaluate the accuracy of sockpuppet's detection using machine learning algorithms.

Sockpuppet's detection: experiment and results

This experiment uses the dataset that comprises 10 000 accounts, half blocked accounts and half legitimate accounts. keep the default value of the number of randomly chosen attributes as 0 which mean int(log 2 (#predictors) + 1) is used. For the remaining classifiers, the best accuracy is obtained when the number of iterations to be performed is 30 for Adaptive Boosting, the number of neighbors to use (K) is 1 and the distance weighting method used is W ei ght b y 1-distance for KNN, the cost parameter C is 5 for SVM with Poly kernel. We set useSu pervisedD iscretization as T rue, to convert numeric attributes to nominal ones for Naïve Bayesian and we keep the default values of the parameters of Bayesian Network. The results in tables 5.4 and 5.5 show that the compared algorithms Random forest, SVM, Adaptive Boosting, K-Nearest Neighbor, Naïve Bayesian and Bayesian Network are suitable using our features for automatic suppression of sockpuppets accounts, and they also show decent results.

Machine Learning Algorithms comparison

Early detection of sockpuppet

In order to check the accuracy of of the early sockpuppet's detection of SocksCatch, we identify the differences in accuracy as time progresses for the sockpuppet's detection phase, we calculated several models (Mt) for t = 1 day of activity after registration (8 253 accounts). Time-dependent variables are likely to affect our model depending on the time t we would set when testing their performance.

Table 5.6 compares these temporal models using Random Forest; the algorithm with the best accuracy percentage on the full dataset. In this table we can see that the accuracy is increasing with time where SocksCatch can predict 67.2% of sockpuppets after 1 day of activity and arrive to 71.9% after 1 month of activity. However, the accuracy is increasing slowly because many sockpuppets accounts are created as sleeping accounts, and do not start their activities directly after creation, where some of them rest sleeping for many months before they start their first contribution.

The features of M 1 model are evaluated using correlation attribute evaluation method and it shows that the best three features are the number of contributions in the articles, then the number of revert after each contribution in the articles and the third is the number of contributions in the discussion of user page. From this evaluation, we can conclude that the malicious contribution of most sockpuppets are early detected and reverted by legitimate users. In addition, the number of contributions of sockpuppets in main areas are significantly different from legitimate users.

Based on these results, we can say that the early sockpuppet's detection is efficient if it is used to report suspect accounts so that administrators can keep a close eye on or restrict certain features for suspect accounts for a time period.

Literature Comparison

In order to compare our results to previous literature, table 5.7 presents a comparison between the results of our sockpuppet's detection phase and Tsikerdekis [Tsikerdekis and Zeadally, 2014a] method. This method is the closest to our work and it presents the best accuracy between the literature's methods.

We implemented this method and compute its features on our dataset, then we train, validate and test them in the same way as presented in section 5.2.3. The results obtained for this method are the same as those published by the original authors. In table 5.7, we can observe that our sockpuppet's detection phase gives better accuracy percentage than previous work using all presented machine learning algorithms.

The accuracy of Tsikerdekis's method is the highest using Random Forest algorithm with 73% while it is 91% using our process.

Another significant difference of 17% between the two methods arises when using K-Nearest Neighbor algorithm, where we arrive to 81.5% and Tsikerdekis's method to 64.8%.

Comparing the two studies, only the feature selection is significantly different and explains the results variation.

Discussion of results

The results presented in the previous sections show that the Random Forest algorithm has the best accuracy between all other algorithms, and that the other algorithms are nearly as efficient. The fact that five different algorithms show accuracy results over 81% is an indication of the robustness of our features selection.

Since we arrive to an accuracy of 91% we can consider that the selected features are robust and accurate and they can be used to detect sockpuppet accounts. This accuracy is due to the big number of data used in the learning algorithms and to the selected features that can differentiate between a sockpuppet and a legitimate account. The force of these features is that they cover three axes of social media's account: account's action behavior, other accounts behavior toward an account's actions, and account characteristics.

We evaluate our list of features using correlation attribute evaluation method and we found that the best three features are the delay between the time of account's registration and his first contribution, then the number of revert after each contribution in the articles and the third is the average of added bytes.

The comparison with literature shows that our features improve the accuracy of the detection of sockpuppets with 18% using Random Forest algorithm.

One of the reason that our process can be considered as effective in the detection of sockpuppet accounts is that the manipulators are not necessarily aware of the non-verbal indicators, and it is difficult to manipulate all the selected features, for example the revert number after each revision is a very good indicator because the manipulator cannot control this feature to try to hide from detection. The non-trivial data preprocessing may also create a difficulty for the manipulators to be aware that there is a method that detects the time difference between the registration and the first contribution.

Finally, it is very difficult for a manipulator to be aware that he should change the writing behavior from time to time in order to skip from the detection.

Conclusion

In this chapter, we presented the phase of sockpuppets' detection, where we detailed all our proposed features that should differentiate between the behavior of sockpuppet and legitimate accounts. In addition, we show how to adapt and instantiate these proposed features on Wikipedia case. Furthermore, we presented the metrics used in order to evaluate the sockpuppets' detection phase.

In the evaluation of the second phase we detect sockpuppet accounts with an accuracy over 81% in 5 machine learning algorithms where the remaining algorithm detect over 73.7% of sockpuppets. This success is due to a good selection of the features that are the inputs to the algorithms, because they differentiate very well between a sockpuppet account and a legitimate account. These machine learning algorithms were trained and evaluated using 10 fold cross validation method using 10 000 cases as dataset.

We can conclude that in SocksCatch real time stage, Random Forest is the best machine learning algorithm that should be used in order to detect the sockpuppets on Wikipedia.

In the next chapter, we detail the third phase of SocksCatch process. This phase is the one that groups the detected sockpuppet created by the same sockpuppeteer in one group.

C H A P T E R 6

GROUPING SOCKPUPPETS

The previous chapter describes the second phase of SocksCatch, where we propose in the model stage a set of features that should detect the behavior of accounts. Then, during

SocksCatch adaptation stage, we instantiate and evaluate these features on English Wikipedia using a machine learning algorithm, where we conclude, for the dataset that have been used, that Random Forest is the algorithm that must be used in real time stage in order to detect the sockpuppet accounts on Wikipedia.

However, in social medias, manipulators attack using many sockpuppet accounts for increasingly complex criminal endeavors. They are the source of several types of manipulation such as those created to praise, defend or support a person or an organization [START_REF] Stone | The hand that controls the sock puppet could get slapped[END_REF] or to manipulate public opinion [START_REF] Elsner | China uses an army of sockpuppets to control public opinion -and the us will too[END_REF]. For this reason, each sockpuppet should be grouped with other sockpuppets that have the same behavior.

In this chapter, we detail SocksCatch's third phase, that aims at grouping together the sockpuppets created by the same manipulator.

In this phase of SocksCatch model stage, we propose a process that comprises two steps: the grouping of sockpuppets based on the actions performed in the same pages then the grouping based on accounts' behavior. In SocksCatch adaptation stage, we describe how we adapt this process on English Wikipedia. Then, we evaluate it using different community detection algorithm, in order to find the best community detection algorithm that should be used during the real time stage.

Grouping Sockpuppets Process (Stage 1, Phase

3)

Grouping sockpuppets based on actions in the same pages

This step of SocksCatch consists in creating a relation between the sockpuppets that performed actions in the same pages. In order to identify the strength of the relationship between these sockpuppets, the process studies the approximate time between the sockpuppets' actions in each page. Then, it groups together the sockpuppets that performed actions in the same pages in a short time span.

Algorithm 2, resumes the step of grouping accounts using the actions performed in OSM pages.

Algorithm 2 Grouping accounts based on actions performed in same pages 1: G act = createActionGraph(U); 2: G rel = G act .bi partite_pro jection(accounts , eucl idean_distance); 3: grou ped Accounts = communit yD etection(G rel , communit yD etectionAl gorithm);

Graphs construction

First, the action graph (detailed in section 4.2.1) is created by relating each sockpuppet to the pages where it performs actions (algorithm 1, page 79). If an account performed several actions in the same page, the average time of these actions is calculated and added as weight for the relation. Otherwise, the time of action itself is considered as weight of relation.

From this action graph (example in fig. 4.5, page 80), the relationship graph (detailed in section 4.2.2, page 81) that represents the relations between sockpuppets based on their actions performed in the same pages is projected (algorithm 2, line 2), using the inversed euclidean distance as weight for edges (equation 4.3, page 82).

In this first graph, there are three types of accounts:

1. Accounts without any actions -that means that they do not have any edge in the relationship graph with any other account.

2. Accounts with actions performed in common pages with other accounts -that means that these accounts have at least one edge with other accounts, based on the pages of actions, such as u1 and u2 in fig. 4.5, page 80.

3. Accounts with actions but in pages where no other accounts performed action in the same page-that means that they also do not have any edge in the relationship graph with any other account, such as u3, u4 and u5 in fig. 4.5, page 80.

Our process cannot detect the groups of the type (1) because these accounts do not have actions in the OSM so we do not have data for them1 . Hence, these accounts are excluded from the detection phase, because we cannot detect this type of sockpuppets based on their behavior.

In order to group the two remaining types of accounts, we group type (2) in the next section then type (3) in the section 6.1.3.

Grouping sockpuppets

After the creation of the relationship graph (example in fig. 4.6, page 83), we use a community detection algorithm in order to produce the first set of sockpuppet groups (algorithm 2, line 3). In this example four groups are created grp1, grp2, grp3 and grp4, where grp1 has two members u1 and u2, and the others groups grp2, grp3, and grp4 have respectively one member u3, u5 and u4. Let us note that in this example the account of groups with one member are the accounts that performed actions but not in the same pages where others accounts performed, because, as mentioned above, the first type of accounts is excluded.

Example

In order to tackle this issue, we propose a second step to improve the grouping.

Grouping sockpuppets based on accounts' behavior

This step of SocksCatch improves the first groups sets, by creating additional edge between groups and sockpuppets with close behavior. The previous step produces a set of sockpuppets groups. However, this set is composed from two types of groups:

• Groups with multiple members, such as grp1 in fig. 6.1.

• Groups with one member (non-grouped sockpuppets), such as grp2 in fig. 6.1.

In order to group the non-grouped sockpuppets, we propose to add relations between groups and sockpuppets based on their behavior's similarity.

Algorithm 3 summarizes the steps used to group the sockpuppets using behavior's similarities. First, we add features to all the detected groups (line 1). This step is detailed in algorithm 4. Then we create the groups graph using these features (line 2), where this step is detailed in algorithm 5. Finally, we detect and draw the final set of groups using a community detection algorithm (lines 3, 4 and 5).

Algorithm 3 Grouping accounts after adding features

Input: grou ped Accounts 1: grou psW ithF eatures = addF eaturesT oGrou ps(GRP); 2: G gr p = createGrou psGraph(grou psW ithF eatures); 3: Grou ped grou ps = communit yD etection(G gr p , communit yD etectionAl gorithm);

4: f inal AccountsGrou ps = extractGrou ps(Grou ped grou ps, grou ped Accounts); 5: drawGraph(f inal AccountsGrou ps);

Account's Features

We start by defining a set of features F gr p that will be computed for each account, where F gr p ⊂ F. These features represent the behavior of the account from his actions in order to detect if there are many accounts that try to remove or add the same information, or concentrate on a specific subject with a close number of actions.

We re-use a part of the features from phase 2 (section 5.1) such as "number of account's actions in different OSM categories" and "average of bytes added or removed in each action".

In addition, other features are proposed and described below:

Total number of actions performed Some manipulators perform lot of actions in OSM and others perform only few actions.

This features will lead to connect the sockpuppets that performed actions in the same range.

∀u i ∈ U, TotalActionNb(u i) = |A| k=1 ActionNb(u i , c k) (6.1)

Maximum number of actions performed in the same pages

We consider that some sockpuppets in the same group will focus their manipulation on the same page and others will not. This feature will help to know the type of concentration of a group.

∀u i ∈ U, MaxActionInPage(u i) = max |uPages(u i)| j=1 |A i j | (6.2)

Groups graph construction

In order to get the final set of sockpuppets' groups, we create a groups graph (detailed in section 4.2.3, page 83), then we re-use a community detection algorithm to group the sockpuppets' groups.

There are two types of nodes in this new graph: Group Nodes representing the groups with multiple members, and Singleton Nodes representing the groups with one member.

Each node has the same list of features F gr p mentioned in section 6.1.3. However, the values of these features are computed in the following way:

• Singleton Node : We add the same features values of the group's member.

• Group Node : Each feature takes the average value of the values of the group members. In this example, we assume that their are four categories in the social media (c1, c2, c3 and c4). Each account has a list of eight features, where F gr p = Ac- We compute the features similarities between each Singleton Node and between all others nodes (Group Node and other Singleton Node) using the euclidean distance (equation 4.6, page 84). Then, a new edge is added between the Singleton Node and all the others nodes. The weight of each edge is the inverted euclidean distance and it is calculated using the equation 4.7, page 84.

Example

Example

In order to relate the most similar groups only, we keep the edge with the highest weight between each singleton node and the others nodes. In addition, we delete all the remaining edges that have a low weight under a defined threshold.

In this way, the groups graph that relates the groups based on the most similar d g = eucl idean_distance(gr pF eatures(gr p i), gr pF eatures(gr p j));

Example

Grouping sockpuppets

The groups graph with the edges that relate the most similar groups (example fig. 6.5), is used as input to a community detection algorithm. The final set of sockpuppets' groups is formed from the Singleton Nodes that are not grouped in the final step, and the "Group Nodes" that contains the accounts grouped through both steps. At the end of this example, three groups of sockpuppets are created grp1, grp2 and grp3, where grp1 has always two members u1 and u2. Additionally, u3 and u4 are grouped together after using the features similarities in grp2. However, u5 is still alone in grp3, because its behavior is not similar to others account.

Example

Sockpuppets Grouping Adaptation (Stage 2, Phase 3)

The objective of this section, is to evaluate the efficiency of the proposed process in the grouping of sockpuppets created by the same sockpuppeteer on English Wikipedia. This phase of SocksCatch's adaptation is composed of two main steps. In first step, we group together the sockpuppets that contribute in the same pages using a community detection algorithm. Then, in second step, we adapt and compute the proposed features in SocksCatch model stage on English Wikipedia, in order to create relations between the sockpuppets that have a close behavior. Furthermore, we re-group the sockpuppets with strong relation using a community detection algorithm.

At the end of the evaluation of this phase we will know if the proposed process is efficient on the case of Wikipedia and which are the two best community detection algorithms that will be used in the two steps of SocksCatch's real time stage.

In the following we start by presenting the metrics that are used in order to evaluate the final set of detected groups. These metrics are used to compare the similarity between the detected groups during SocksCatch adaptation stage and the real groups detected manually by the administrators of English Wikipedia. Furthermore, we present how we adapt and instantiate the proposed features in the second step on Wikipedia case.

Finally, we experiment and evaluate both steps of SockCatch's grouping phase.

Evaluation Metrics : Measures to compare two clusters

In our experiment, we used modularity (described in section 3.5.1.1, page 51) and different measures to compare two clusters in order to evaluate the grouping phase of SocksCatch adaptation stage. We compare the output clustering Cl (groups) of SocksCatch's grouping process with the real clustering Cl using different metrics that are most used in this field.

The used metrics are the variation of information (V I) [START_REF] Meil Ȃ | Comparing clusterings-an information based distance[END_REF], normalized mutual information (N M I) [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining multiple partitions[END_REF], split-join distance [START_REF] Dongen | Performance criteria for graph clustering and markov cluster experiments[END_REF],

Rand index (R I) [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF] and adjusted Rand index (AR I) [START_REF] Hubert | Comparing partitions[END_REF].

These metrics are chosen because they measure the similarities between the clusters in different ways, so that we can compare the results of similarities from different perspective.

These metrics can be divided in three types where each type measure the similarity in a way: V I and N M I use the information-theoretical mutual information, S pl it -J oin uses the summation of set overlaps, and R I and AR I use the counting of pairs of elements.

Variation of Information

Meila proposed a measure called variation of information (V I) between two clusterings. It corresponds to the amount of information lost and gained in changing from clustering Cl to clustering Cl . The V I score range between 0 (identical clusterings) and log N where N is the total number of elements in the clustering. Kraskov et al. detail a formulation to normalize V I (NV I) where NV I range from 0 and 1 (identical clusterings) [START_REF] Kraskov | Hierarchical clustering using mutual information[END_REF].

Normalized Mutual Information

Normalized mutual information (NMI) introduced by Strehl et al. measures the similarity of the two sets of clusterings, ignoring permutations. An N M I score of 1 implies that the labels correlate perfectly, and an NMI score of zero indicates that the labels have no correlation with each other.

Split-Join

Dongen proposed Split-Join metric which is the number of changes (splits and joins) required to transform one clustering into the other, and in that sense it ranges from 0 (identical clustering) to 2 * N where N is the total number of elements in the clustering.

Rand Index

The principal of Rand Index (R I), proposed by Rand, is to check for each pair of elements in Cl, if they are classified is the same way (together or separately) in Cl . The value of R I depends on the number of clusters and the number of elements. It ranges from 0 (no pair classified in the same way under both clusterings) to 1 (identical clusterings).

Morey and Agresti showed that the Rand Index is highly dependent upon the number of clusters [START_REF] Morey | The measurement of classification agreement: an adjustment to the rand statistic for chance agreement[END_REF].

Adjusted Rand Index

Hubert et al. introduced the Adjustment Rand Index (AR I) to correct the problem with Rand Index of two random clustering that does not take a constant index (e.g. zero). Thus, Adjusted Rand Index is the (normalized) difference of the Rand Index. It ranges between -1 and 1 (identical clustering).

Features adaptation on Wikipedia

As in the sockpuppet's detection phase, the set of features proposed in the SocksCatch model stage for the second grouping of sockpuppets is adapted on Wikipedia data. These features are proposed in order to relate together the sockpuppet's group (with one member and multiple members) detected in the first step of this third phase.

The adapted features that relate the sockpuppets' groups with close behavior are described below: "Number of account's contributions by namespaces" and "Average of bytes added and removed from each contribution" These are the features described in section 5.2.1, page 96 instantiated respectively from "Number of account's actions in different OSM categories" and "Average of bytes added or removed in each action".

Total number of contributions in all the namespaces

This feature is instantiated from "Total number of actions performed".

Maximum number of contribution in the same articles

This feature, "Maximum number of actions made in the same pages" is instantiated to one feature where the maximum number of contributions in the same article for each account is calculated.

For example, let say that an account u 6 contributes 3 times in article p 10 , 12 times in article p 3 and 8 times in article p 6 .

The value of feature MaxActionI nPage u 6 is then:

MaxActionI nPage u 6 = max(3, 12, 8) = 12

Example

In the following, we experiment the efficiency of the grouping sockpuppets phase proposed in SocksCatch model stage.

Grouping sockpuppets: experiments and results

In order to evaluate the third phase of SocksCatch adaptation stage we use the same sockpuppets detected in the second phase.

As mentioned above, the final number of sockpuppets used is 4 869 sockpuppets and they are members of 1 402 groups.

We use the API of python-igraph2 to evaluate this phase of SocksCatch model, so after selecting the sockpuppet accounts, we create the action graph then we extract from it the first relationship graph, and create the groups of sockpuppets based on the contributions of accounts in the same pages using a community detection algorithm. In this graph each color represents a group and we can observe that there are a lot of singleton nodes (group with one sockpuppet). From this figure we present in table 6.1 some statistics about the number of groups in relation to the number of their members.

In this table we can see that the number of singleton nodes is 1 402 groups.

After grouping the sockpuppets, we compute the features mentioned in section 6.2.2 for each sockpuppet. We use 0.00022 as threshold of similarity, based on a manual calibration to find the best threshold. Then, we create the groups graph that contains the new relations between the singleton nodes and the most similar other nodes.

Finally, we group sockpuppets from the groups graph using the same community detection algorithm used in the previous step. We use the same community in both steps, because it is very time consuming to test with all the combinations of algorithms, but it will be interesting in the future to test this phase with more combinations other than the same algorithms in both steps.

Fig. 6.8 represents the graph of the final created groups using the InfoMap algorithm.

In this graph each color represents a group and we can observe that most accounts are in a group with at least two members. From this figure we present in table 6.2 some statistics about the number of groups in relation to the number of their members. We can conclude from this table, that the number of singleton nodes has decreased after the second grouping from 1 402 to 795. In addition, the number of groups that have between 3 and 10 members has increased from 225 to 334 groups.

Since our objective in this section is to evaluate our model, we test this phase using the following community detection algorithms:

• FastGreed y [START_REF] Clauset | Finding community structure in very large networks[END_REF].

• I n f oMap [START_REF] Rosvall | The map equation[END_REF][START_REF] Rosvall | Maps of information flow reveal community structure in complex networks[END_REF].

• LeadingEi genV ector [START_REF] Newman | Finding community structure in networks using the eigenvectors of matrices[END_REF].

• LabelP ropagation [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF].

• W alkT rap [START_REF] Pons | Computing communities in large networks using random walks[END_REF]].

These algorithms are those that have received the most interest from the scientific community [START_REF] Fortunato | Community detection in graphs[END_REF]. In addition, these approaches illustrate the diversity of methods and give an overview of the techniques classified according to their methodological principles [START_REF] Danon | Comparing community structure identification[END_REF][START_REF] Lancichinetti | Community detection algorithms: a comparative analysis[END_REF][START_REF] Papadopoulos | Community detection in social media[END_REF].

Let us note that the grouping can be done through different methods such as community detection algorithms or graph partitioning. However, we decided to solve the problem of the grouping using the community detection algorithms, because the graph partitioning consists in grouping the nodes of a graph into a generally predetermined number of homogeneous subgroups by minimizing the number of links between the different groups. On the other hand, the community detection algorithms perform the same operation with or without requiring the knowledge of the number of communities, which is the case in this study.

Community detection algorithms comparison

The metrics described in the sections 3.5.1.1, page 51 and 6.2.1, page 124 are used to quantify the quality of the predicted groups.

Table 6.3 compares the results of different community detection algorithms used by our process. It represents the number of the groups created by SocksCatch in the two steps (using the contributions in same pages then using the behavior similarity). The grouping based on contributions in same pages and the number of created groups is very high in comparison with the real number which is 1 402, by example using Fast Greedy algorithm, the step 1 creates 1 658 groups. In fact, this high number is due to the random dataset selection, that leads to a big numbers of singleton node that contributes in some pages where no other account from the same dataset contributes in them. We can observe that the values of the modularity 1 are lower than the values of the modularity 2, because in first step of this phase the detection of the communities is more complicated due to the number of edges which is much higher than in second step.

We can observe that using InfoMap algorithm, the number of SocksCatch groups is the closest to the number of initial groups. But a close number of groups does not mean a good grouping. In order to compare between the created groups and the initial groups we used the comparison metrics exposed in section 6.2.1, where Cl represents our created groups and Cl represents the original groups .

Table 6.4 represents the different results of the metrics used to evaluate the similarity between SocksCatch created groups and the initial groups. From this table we can see that the values of Rand Index are over 98% for two algorithms, but in fact, Fowlkes et al. [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF] show that the Rand Index converges to 1 as the number of clusters increases which is undesirable for a similarity measure, so it could be unrealistic in these cases. Also, we can see that the Rand index is greater than the adjusted Rand index. In fact, the range of values is greater for the adjusted Rand index ([-1, +1] than for the Rand index ([0, +1]), but it is also affected by the number of clusters.

From table 6.4 we can deduce that the algorithms InfoMap and Walk Trap have very close results. In addition, they have the best results for most of the similarity metrics between all other algorithms, for example, The NMI value is 0.868 for InfoMap and 0.873 for Walk Trap, which means that the created groups are ≈ 87% similar to the initial groups using NMI metric. Also we can observe that Split-Join value of InfoMap is the lowest which means that it is the best between all the algorithms as it measures the number of changes (splits and joins) required to transform one clustering into the other, which means that the nearest number to 0 is most similar. Also, for the V I metric where the lowest number is the best. However the NV I which is a normalized value of V I has the best value for InfoMap and Walk Trap and which is equal to 0.858, that means that for V I metric, SocksCatch create ≈ 86% of sockpuppets' groups similar to the real groups on English Wikipedia.

Hence, we can conclude that the best algorithm that will be used in SocksCatch's with a difference of 0.5% only in the term of the number of groups.

Figure 6.8 -Final groups of sockpuppets detected through InfoMap algorithm.

Conclusion

In this chapter, we present the phase of grouping the sockpuppets created by the same sockpuppeteer. In this phase, we propose a grouping process that is divided into two main steps. First, we group the sockpuppets that perform actions in the same pages in a close time. Then, we improve the detected groups by relating the groups with single member to others groups (single and multiple members) thanks to the comparison of their behavior using a set of proposed features. Furthermore, we presented how we adapt and evaluate the proposed process on English Wikipedia.

In the evaluation of the third phase we created a set of sockpuppets' groups with an ≈ 86% of similarity with the real sockpuppet's groups (according to N M I and NV I metrics), with a difference of 0.5% in the number of total groups between the created and the real groups. In this evaluation, we experiment the two steps of this phase using the same community detection algorithms, but an interesting perspective is to evaluate them using different combination to check if they give better results.

From the results of our experiment, we can conclude that during the application of SocksCatch in real time on the dataset extracted from Wikipedia, InfoMap in the best community detection that must be used in both steps, with a threshold equal to 0.00022 in the second step, in order to group together the sockpuppets create by the same manipulators.

phase objective is the grouping of sockpuppet accounts created by a same user using a community detection algorithm.

The introduction of this thesis raises six questions that have been addressed by our SocksCatch proposal:

Q1: How to differentiate between the behavior of sockpuppets and legitimate accounts ?

A1: The non-verbal behavior of sockpuppets are studied. Chapter 3 shows that nonverbal behavior analysis are more efficient than verbal communication because they give better results. Furthermore, users that have an objective to manipulate a precise article will find a difficulty to skip from the detection and to change their non-verbal behavior if they want to achieve their goal.

To answer this question, a set of characteristics to differentiate the behavior of sockpuppets from that of legitimate accounts is proposed such as the number of reported actions of an account, and the delay between account's creation and first action.

Q2: Can sockpuppets be automatically detected ?

A2: In the second phase of SocksCatch, data is collected from English Wikipedia, then our proposed characteristics are adapted on Wikipedia environment. Furthermore, these characteristics are instantiated and computed for a set of 10 000 accounts (half sockpuppets and half legitimates). Finally, the computed characteristics are evaluated using different machine learning algorithms to automatically detect sockpuppets. Our experiment shows that SocksCatch detects around 91% of the selected sockpuppets using Random Forest algorithm on this evaluation dataset, which proves the feasibility of the approach.

Q3: How to relate together sockpuppets that have a close behavior ?

A3: Non-verbal behaviors analysis are used in order to find out the common elements and the differences in the behavior of sockpuppets. Furthermore, the third phase of SocksCatch propose to create a set of graphs that relate all sockpuppets contributing in the same areas in a close time and with a close behavior using a set non-verbal behavior characteristics.

Q4: Can the sockpuppets that correspond to a single malicious user be grouped together?

A4: The same 4 869 sockpuppets collected from English Wikipedia are used. Then, the proposed graphs are applied on these accounts, in order to group and relate together the sockpuppets created by the same manipulator. In addition, the proposed characteristics are adapted and computed on Wikipedia environment. The applied graphs are evaluated using different community detection algorithms. Our experiment shows that SocksCatch's grouped sockpuppets and the real sockpuppet's groups are similar around 87%, according to the cluster's comparison measures: normalized variation of information (NVI) and normalized mutual information (NMI).

Q5: What are the common characteristics between different types of online social media that can be exploited to propose a generic model for sockpuppets detection? A5: Chapter 2 shows that OSMs are founded on common grounding because they are usually based on accounts to uniquely identify users. These accounts have some common properties between all OSMs such as usernames and the time of creation of each account.

The action possibilities can also be modeled independently from the particular cases, for example all OSMs include ways to add information. Our generic model of OSMs presented in chapter 4 benefits from these common characteristics, where it shows how to present an OSM from a general point of view, without depending from the specification of this OSM.

Q6: How to adapt the solution to a specific online social media? A6: Chapters 4, 5 and 6 presents a concrete example for the adaptation of our proposed process (SocksCatch) on a social media: English Wikipedia. This adaptation shows how to instantiate and apply the general model and characteristics on accounts from Wikipedia, by adapting the features of each phase and selecting the best machine learning and community detection algorithms.

As mentioned above, SocksCatch's detection phase is experimented using machine learning algorithms. However, the success of a machine learning algorithm depends on the selection of features that are the inputs of the algorithm. In this way, in the evaluation of the second phase, an accuracy over 81% is achieved with five algorithms: Random Forest, Adaptive Boosting, Naïve Bayesian, Bayesian Network and K-Nearest Neighbor.

We believe that these good results come from a relevant selection of characteristics, which cover well the differentiating information between a sockpuppet account and a legitimate account. These machine learning algorithms were trained, evaluated and tested using 10 fold cross validation method using 10 000 cases as dataset.

In order to check if SocksCatch can detect sockpuppets early before performing their attacks, it is evaluated after different time of sockpuppet's activities, where we found that our proposed process is capable to detect 67.2% of sockpuppets on Wikipedia after 1 day of activity after their registration using Random Forest algorithm. Based on this result, we can say that the detection phase is efficient if it is used to report suspect accounts so that administrators can keep a close eye on or restrict certain features for suspect accounts for a time period. Furthermore, the behavior of sockpuppets is significantly different from that of legitimate users as soon as they begin their activity

The detection phase of SocksCatch is also compared with the literature where the result of comparison shows that our features improve the accuracy of the detection of sockpuppets with 18% using Random Forest algorithm.

The evaluation of the third phase shows ≈ 86% of similarity between the sockpuppets' groups detected by our algorithm and the real sockpuppet's groups (according to N M I and NV I metrics), with a difference of 0.5% in the number of total groups between the created and the real groups.

This work demonstrates that SocksCatch can be successfully used on English Wikipedia using Random Forest as machine learning algorithm for the detection phase, and In-foMap as community detection algorithm for the grouping phase.

Perspectives

As we have seen, SocksCatch shows very good results in the detection and grouping of sockpuppets. In the future, it must be evaluated on different social media data, like Facebook or Twitter. To achieve this, the different features proposed in the SocksCatch process have to be instantiated depending on the distinctive characteristics of each social media, and depending on which data is available.

It is possible to use or adapt the features proposed in the SocksCatch model for several social media. For example, table 7.1 shows an example of the characteristics that can be used on data from Twitter and from Facebook to automatically calculate features similar to those used in this thesis. The adaptation to these social medias environments may be direct (e.g. the interval between the user registration and his first post, or the number of contributions in each namespace / page type) or indirect (e.g. reverts do not exist in some social media, but a comment deletion may be assimilated to a revert). Note that some of these data are not publicly available, and thus would necessitate to have an administrator access to be put in practice. These features should be evaluated in the Non-verbal indicators cannot be manipulated as easily as verbal communications, for example the revert number after each revision is a good indicator because the manipulator cannot control this feature to try to hide from detection. The non-trivial data pre-processing may also create a difficulty for the manipulators to be aware that there is a method that detects the time difference between the registration and the first contribution. In the future, other features that are more difficult to be known by manipulators can be added, in order to make the sockpuppets detection more accurate such as the number of reports that an account performs on other accounts, and the delay between the contributions' time of an account.

Another perspective concerns the grouping phase of SocksCatch. It is composed by two steps, where the same community detection algorithm is used in the application of both steps. It would be interesting to evaluate different community detection algorithms, and test all their combinations in first and second step.

Finally, the implementation of SocksCatch to automatically detect and group Sockpuppets in Wikipedia would be helpful to its administrators in terms of time spent to achieve this task manually, as it is currently the case. However, we should note that the online performance of our method is not tested, where the machine learning algorithm will be trained before running the real time process. In addition, an extended solution must be made if the behavior of sockpuppets change over time, where the machine learning algorithm learn incrementally in real time about the new behaviors. Furthermore, the groups would have to be updated progressively when detecting a new sockpuppet.

 adaptation on Wikipedia . 6.2.3 Grouping sockpuppets: experiments and results 6.3 Conclusion .

3. 1

 1 Example of a hierarchical structure of communities found by Walktrap (Extract from[START_REF] Pons | Computing communities in large networks using random walks[END_REF]). The corresponding dendrogram is shown in Figure3.2. 3.2 Dendrogram associated with the communities of Figure 3.1 found by the Walktrap algorithm (Extracted from [Pons and Latapy, 2006]) 3.3 Edge-Betweenness Centrality calculation in a network 3.4 Illustration of the InfoMap process . xv 4.1 SocksCatch's main stages and phases. 69 4.2 SocksCatch's first phase's steps. 70 4.3 SocksCatch's second phase's steps. 71 4.4 SocksCatch's third phase's steps. 72 4.5 An example of action graph with relations between sockpuppets and pages where they performed actions. 80 4.6 An example of relationship graph between five sockpuppets based on their actions made in the same pages. 83 4.7 Groups graph containing four groups where only gr p 2 and gr p 4 are related with an edge of 0.026 as weight. 85 5.1 Schematic compression of performances' results between different machine learning algorithms. 5.2 ROC curve for Random Forest. 5.3 ROC curve for SVM. 6.1 An example of the created groups of sockpuppets based on the pages of actions and using Fast Greedy community detection algorithm. 6.2 An example of the detected groups in addition to the computed features of each account. 6.3 An example of the groups graph in addition to the computed features of each group and to the distance and weight between the groups. 6.4 An example of the groups graph in addition to the cuts of the edges that have a low weight. 6.5 An example of the groups graph with the edges that relate the most similar groups. .

Figure 2 . 1 -

 21 Figure 2.1 -The f word's blog.

Figure 2 .

 2 Figure 2.2 depicts an example of microblogging.

Figure 2

 2 Figure 2.2 -Cristiano Ronaldo Twitter's page.

Figure 2

 2 Figure 2.3 -Wikipedia's encyclopedia home page.

Figure 2

 2 Figure 2.4 -Mark Zuckerberg's Facebook page.

Figure 2 . 5 -

 25 Figure 2.5 -Popular on YouTube -France, YouTube's channel.

Figure 2 .

 2 Figure 2.5 depicts an example of content communities.

Figure 2 .

 2 Figure 2.6 depicts an example of virtual social worlds.

Figure 2

 2 Figure 2.6 -Second Life World.

Figure 2 .

 2 Figure 2.7 depicts an example of virtual game worlds.

Figure 2

 2 Figure 2.7 -World of Warcraft game.

Figure

 Figure 2.8 -Interaction without/with deception.

 comprises a number of variables called features or attributes. Supervised learning is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value. A supervised learning algorithm uses the training data to produce an inferred function, which can be used for mapping new examples. An optimal scenario

 After a study byHu et al. on Sina Weibo, the most used social network in China, three characteristics inherent to the behaviors of spammers can be identified: their aggressiveness in advertising, the duplication of the contents of others posters and the aggressive behavior of the followers. In their work, the authors adopt a particular approach, based on the combination of models to construct groups of classifiers. The different groups of classifiers formed are then tested on each of the three characteristics generated, and function jointly as a single anti-spam classifier. The goal of this combination of classifiers is to improve the performance of the spam filter. The classification accuracy obtained is 82.06%[START_REF] Hu | Social spammer detection in microblogging[END_REF].

Figure 3

 3 Figure 3.1 -Example of a hierarchical structure of communities found by Walktrap (Extract from [Pons and Latapy, 2006]). The corresponding dendrogram is shown in Figure 3.2.

Figure 3

 3 Figure 3.2 -Dendrogram associated with the communities of Figure 3.1 found by the Walktrap algorithm (Extracted from[START_REF] Pons | Computing communities in large networks using random walks[END_REF]). The Q results represents the modularity. The partition presented by a horizontal section of the dendrogram is the one with the maximum modularity.

Figure 3

 3 Figure 3.3 -Edge-Betweenness Centrality calculation in a network

Figure 4

 4 Figure 4.1 -SocksCatch's main stages and phases.

Figure 4

 4 Figure 4.2 -SocksCatch's first phase's steps.

Figure 4

 4 Figure 4.3 -SocksCatch's second phase's steps.

Figure 4

 4 Figure 4.4 -SocksCatch's third phase's steps.

Pages:

 Pages are represented by P = {p 1 , ..., p |P| }.The pages correspond to the concrete spaces in OSM where all public information is exchanged in, e.g. a wall of an account or of a specific group in Facebook, an article or a user discussion page in Wikipedia, image pages in Instagram, or profile pages in Twitter. Each page belongs to a specific category. Categories: Categories are represented by C = {c 1 , ..., c |C| }.Each category c i corresponds to a semantic category of which nature depends on the kind of OSM, e.g. set of walls or set of groups in Facebook, set of articles or set users discussions in Wikipedia, set of images in Instagram or set of users profiles in Twitter. The basic hypothesis is that different categories carry different weight in social medias, in terms of use and visibility.

cPages : C → 2 P

 2 If pCate gor y(p 1) = c 1 , pCate gor y(p 2) = c 1 and pCate gor y(p 3) = c 5 , then the pages p 1 and p 2 belong to a same category c 1 and p 3 belongs to the category c 5 .Inversely, cPages(c 1) = {p 1 , p 2 } and cPages(c 5) = {p 3 }ExampleActions: actions refer to the activity of accounts in social media pages such as writing/reporting a post or a comment in Facebook, a tweet in Twitter, or adding/deleting a photo in Instagram. The set of actions A is composed by the set of activities performed by each account on pages and might depend on the characteristics of each social media.

 the time of the first action and when an action occurs because they provide a temporal information about the actions. They are obtained by the 3 following functions (with T being the set of timestamps): Definition [Account creation time]: The creation time of an account is obtained by the function uR e gT ime : U → T Definition [Account first action time]: The time of the first action of an account is obtained by the function uF irstActT ime : U → T Definition [Action occurrence time]: The occurrence time of an action is obtained by the function aT ime : A → T In addition, the set of pages edited by an account (i.e. all the pages for which there exists an action performed by this account is defined as follows: Definition [Edited pages by an account]: The set of edited pages by an account is obtained by the function uPages : U → 2 P

Fig. 4 .

 4 Fig. 4.5 represents an example of an action graph formed by five sockpuppets (u 1 , u 2 , u 3 , u 4 and u 5) and six pages (p 1 , p 2 , p 3 , p 4 , p 5 and p 6) where these sockpuppets performed actions.

Fig. 4 .

 4 Fig. 4.6 represents the example of the extracted relationship graph between the

Figure 4

 4 Figure 4.6 -An example of relationship graph between five sockpuppets based on their actions made in the same pages.

 Fig. 4.7 represents the example of a groups graph. It contains four groups where only

Figure 4

 4 Figure 4.7 -Groups graph containing four groups where only gr p 2 and gr p 4 are related with an edge of 0.026 as weight.

 ActionN b(u i , ns0) : number of contributions in the articles ActionN b(u i , ns1) : number of contributions in the discussion of articles ActionN b(u i , ns2) : number of contributions in the user page ActionN b(u i , ns3) : number of contributions in the discussion of user page ActionN b(u i , ns4) : number of contributions in the page that contains informations about Wikipedia ActionN b(u i , nsOthers) : number of contributions in all the rest of namespaces Average of bytes added or removed in each action Addition(u i) : average of bytes added in all the contributions R emoval(u i) : average of bytes removed in all the contributions Focus of an account's actions F ocus(u i) : average of contribution in the same articles Number of reported actions of an account R e ported(u i) : number of revert after each contribution in the articles Delay between account's creation time and first action D ela y(u i) : time in seconds between the time of the registration in Wikipedia and the time of the first contribution This metric indicates the rate of truly detected sockpuppet.This metric indicates the fraction of returned cases that are valid sockpuppet cases.

Figure 5 . 1 -

 51 Figure 5.1 -Schematic compression of performances' results between different machine learning algorithms.

Figure 5

 5 Figure 5.3 -ROC curve for SVM.

Fig. 6 .

 6 Fig. 6.1 represents an example of the grouped sockpuppets using Fast Greedy commu-

Figure 6

 6 Figure 6.1 -An example of the created groups of sockpuppets based on the pages of actions and using Fast Greedy community detection algorithm.

Fig. 6

 6 Fig. 6.2 represents an example of the detected groups in the previous step, in addition

Figure 6

 6 Figure 6.2 -An example of the detected groups in addition to the computed features of each account.

Fig. 6 .

 6 Fig. 6.3 represents an example of the groups graph in addition to the computed

Figure 6

 6 Figure 6.3 -An example of the groups graph in addition to the computed features of each group and to the distance and weight between the groups.

Figure 6

 6 Figure 6.4 -An example of the groups graph in addition to the cuts of the edges that have a low weight.

Fig. 6 .Algorithm 4

 64 Fig. 6.4 represents an example of the groups graph in addition to the cuts of the edges

Figure 6

 6 Figure 6.5 -An example of the groups graph with the edges that relate the most similar groups.

Fig. 6 .

 6 Fig. 6.6 represents an example of the final set of the grouped sockpuppets using Fast

Figure 6

 6 Figure 6.6 -An example of the created groups of sockpuppets after using features similarities.

Figure 6

 6 Figure 6.7 -First set of sockpuppets' groups with the relations between accounts detected through InfoMap algorithm.

Fig. 6

 6 Fig.6.7 represents the graph of the created groups using the InfoMap algorithm.

 Average of bytes added in each tweet and in each comment Average of added bytes in the personal profile and on the others wall Diversity of pages modified by an account's actions Average of tweets and comments for the same hashtag Average of contributions on the hall of a friend or in a page or in a group Number of reported actions of each account Number of received reports on account tweet and the number of deleted comments Number of received reports and the number of deleted comments Delay between account's creation and first action Delay between the time of account's registration and the time of his first action on twitter Delay between the time of account's registration and the time of his first action on Facebook future using the adaptation stage of the SocksCatch process.

TABLE Page 2

 Page Table representing the confusion matrix used to evaluate the efficiency of our proposed method. 5.3 Table presenting the parameters' values that give the best accuracy of the selected machine learning algorithm while the validation of our model. Table comparing the performances' results between different machine learning algorithms. 5.6 Table comparing the accuracy percentage of our proposed process over time. . 5.7 Table comparing the results between our sockpuppet's detection phase and Tsikerdekis method [Tsikerdekis and Zeadally, 2014a] 6.1 Number of first set of groups in relation to the number of their members. . . . 6.2 Number of final set of groups in relation to their number of members.

.1 Classification of social media typology. 12 2.2 Wikipedia namespaces. 16 2.3 Manipulation of Sender's identity information (S), Content (I), and Communication channel (C) with low difficulty and high deception success. 23 3.1 Analyses grid for the criteria of evaluation for the detection and grouping of manipulation solutions. 40 3.2 An example of a supervised learning for a loan application dataset. 41 3.3 Comparison between different literature methods based on selected criteria. 64 5.1 a brief description of the instantiate features adapted on Wikipedia data . . . 5.2 5.4 Table comparing the accuracy percentage of our proposed process over different machine learning algorithms. xiii 5.5 6.3 Number of created groups and modularity over different community detection algorithms. 6.4 Similarities between our created groups and the original groups over different community detection algorithms. 7.1 Comparison between the general proposed features and the instantiated features for Twitter and Facebook data . xiv FIGURE Page 2.1 The f word's blog. 2.2 Cristiano Ronaldo Twitter's page. 2.3 Wikipedia's encyclopedia home page. 2.4 Mark Zuckerberg's Facebook page. 2.5 Popular on YouTube -France, YouTube's channel. 2.6 Second Life World. 2.7 World of Warcraft game. 2.8 Interaction without/with deception. 2.9 LinkedIn's privacy setting section. .

 members. Myspace, created in 2003 to compete with Friendster, took advantage of this general disengagement by offering its members a customizable web space. It became the first American social network between 2006 and 2008, surpassing Google in terms of visits. LinkedIn is founded the same year but aims at the creation of professional online networks. 2004 is a key date in the history of social media since it marks the birth of Facebook: a social network aimed to the students of Harvard University in the United States. The site is rapidly gaining momentum and by 2006, anyone who is at least 13

years of age and has an e-mail address can register. With 1.86 billion monthly active members in 2017

 Collaborative projects : the user can add, edit, and remove text content in these

	websites (e.g.Wikipedia)
	2. Blogs : the user can share information, content (text, audio, video), or write reviews
	in these websites (e.g., Twitter, TripAdvisor)
	3. Content communities : the user can share content like text, audio, photos or
	video (e.g., YouTube, SoundCloud)

have proposed a classification for social media based on social presence/media richness and self-representation/self-disclosure which include six categories: 1. 4. Social Networking sites : the user can create a profile with personal information and share contents with friends (e.g., Facebook) 5. Virtual game worlds : the user can create a virtual profile and play games with other players (e.g., World of Warcraft) 6. Virtual social worlds : the user can create a virtual profile and interact with other users as in real life in virtual worlds (e.g., Second Life) . This classification is based on principles that come from media theory. The first factor is social presence theory which was imported from tele-conferencing research. One of the first analytic frameworks applied to computer-mediated communication (CMC) was the work of Short et al. in 1976 who argued that various communication media differed in their capacity to transmit classes of non-verbal communication in addition to verbal content

Table 2

 2

		Low	Low-	Medium		High
			Medium		
	Self presen-	High Blogs	Microblogging Social	net-	Virtual social
	tation /			working sites	worlds
	Self disclo-	Low Collaborative		Content com-	Virtual game
	sure	projects		munities		worlds

.1 -Classification of social media typology.

Table 3 .

 3 1 -Analyses grid for the criteria of evaluation for the detection and grouping of manipulation solutions. The abbreviations used to present the criteria are:

	MO

Table 3.3 in section 3.6 use this grid to compare the different approach based on the mentioned criteria. AP : Analysis approaches; MO : Method Objective; SMA : Single malicious accounts; GMI : Grouping of multiple identities; PI : Public information; G : Generalization.

Table 3 .

 3 2 shows a small loan application dataset with four attributes. The first attribute is Age, which has three possible values, young, middle and old. The second attribute is Has_Job, which indicates whether an applicant has a job. Its possible values are true (has a job) and false (does not have a job). The third attribute is Own_house, which shows whether an applicant owns a house. The fourth attribute is Credit_rating, which has three possible values, fair, good and excellent. The last column is the binary

	ID	Age	Has_job Own_house Credit_rating Class
	1	young	false	false	fair	No
	2	young	false	false	good	No
	3	young	true	false	good	Yes
	4	young	true	true	fair	Yes
	5	young	false	false	fair	No
	6 middle	false	false	fair	No
	7 middle	false	false	good	No
	8 middle	true	true	good	Yes
	9 middle	false	true	excellent	Yes
	10 middle	false	true	excellent	Yes
	11	old	false	true	excellent	Yes
	12	old	false	true	good	Yes
	13	old	true	false	good	Yes
	14	old	true	false	excellent	Yes
	15	old	false	false	fair	No
	Table 3.2 -An example of a supervised learning for a loan application dataset.
	From this data, the machine learning algorithm has to learn a classification model
	that can be used to classify future loan applicants. That is, when a new customer comes
	into the bank to apply for a loan, after inputing his/her age, whether he/she has a job,

3.2. MACHINE LEARNING

multiple labels for class feature.

Class attribute, which shows whether each loan application was approved (denoted by Yes) or not (denoted by No) in the past. whether he/she owns a house, and his/her credit rating, the classification model should predict whether his/her loan application should be approved.

 [START_REF] Solorio | Sockpuppet detection in wikipedia: A corpus of real-world deceptive writing for linking identities[END_REF]. These approaches only use verbal behavior features, but these are not always accurate because the manipulators can change their writing method in order to skip from automatic detection.Tsikerdekis and Zeadally propose a method to detect identity deception through the use of non-verbal user behavior such as the number of revisions made by a user in a specific time window since their initial registration to the website, and the total number of bytes added and total number of bytes removed. They use publicly available data from

	count or the use of words without vowels (e.g. try, cry,. . .). These features are tested
	on all revisions made by the users on pages throughout Wikipedia. A Support Vec-
	tor Machine (SVM) algorithm shows 68.83% overall accuracy using an experimental

Solorio et al. use natural language processing techniques to detect on Wikipedia the users who maintain multiple accounts based on their verbal communications. The features rely on the text analysis such as alphabet count, number of tokens, emoticons dataset of 77 cases of legitimates users and sockpuppets

[Solorio et al., 2013a]

. Further research expands the dataset to 623 cases, where the reported best result gives 73% F-Measure [Wikipedia, and classify them on machine learning algorithms. For testing purpose, they sample 7 500 cases of sockpuppets and include several machine learning algorithms such as Support Vector Machine (SVM), Random Forest (RF) and Adaptive Boosting (ADA).

The overall accuracy is 71.3%. This detection method focuses only on the sockpuppet account itself and does not group the sockpuppets created by the same user

[Tsikerdekis and Zeadally, 2014a

].

Yang et al. integrate a real time detection of sybil accounts in the Chinese OSM

RenRen by studying non-verbal behavior. They characterize the RenRen accounts according to the following features: Invitation Frequency, Outgoing Requests Accepted, Incoming Requests Accepted and a measure of the mutual connectivity of a user's friends.

Table 5 .

 5 1 -a brief description of the instantiate features adapted on Wikipedia data

	Feature's title	Adapted features F detect for account u i
	Number of account's actions in dif-	
	ferent OSM categories	

Table 5 .

 5 2 -Table representing the confusion matrix used to evaluate the efficiency of our proposed method.

		Predicted sockpuppet Predicted Legitimate Accounts
	Sockpuppet	True Positive (TP)	False Negative (FN)
	Legitimate accounts	False Positive (FP)	True Negative (TN)

Table 5 .

 5 3 -Tablepresentingthe parameters' values that give the best accuracy of the selected machine learning algorithm while the validation of our model.

	Machine Learning Algorithm	Weka Parameters
	SVM	Cost = 5
		Kernel = Poly Kernel
	Random Forest	# of Trees = 100
		Maximum depth = unlimited
	Naïve Bayesian	useSupervisedDiscretization = True
	K-Nearest Neighbor	K=1
		Distance Weighting = Weight by 1-distance
	Bayesian Network	All default values
	Adaptive Boosting	# of iterations = 30

Table 5

 5

	.4 compares the precision of our proposed model over different machine learning
	algorithms, It shows that an accuracy over 81% is obtained with five algorithms : Random
	Forest 91%, Adaptive Boosting 86%, Bayesian Network 82.1%, Naïve Bayesian 82%, and
	K-Nearest Neighbor 81.5%.
	The results of the remaining algorithm are also good results, with SVM at 73.7%.

Table 5 .

 5 5 and Fig. 5.1 compares the different values of our proposed model metrics between many machine learning algorithms. It shows that TP Rate, Precision, RecallTable 5.4 -Tablecomparingthe accuracy percentage of our proposed process over different machine learning algorithms. Measure using Random Forest algorithm are 0.911, and that the MCC and AUC are respectively 0.824 and 0.961. The AUC using Naïve Bayesian give 0.887, 0.801 using KNN and 0.939 using Adaptive Boosting.

	Machine Learning Algorithm Sockpuppet's Detection Phase Accuracy
	SVM	73.7%
	Random Forest	91%
	Naïve Bayesian	82%
	K-Nearest Neighbor	81.5%
	Bayesian Network	82.1%
	Adaptive Boosting	86%
	and F-	

Table 5 .

 5 5 -Table comparing the performances' results between different machine learning algorithms.

		TP Rate FP Rate Precision Recall F-Measure MCC AUC
	SVM	0.737	0.263	0.820	0.737	0.719	0.551 0.737
	Random Forest	0.911	0.089	0.913	0.911	0.911	0.824 0.961
	Naïve Bayesian	0.820	0.180	0.827	0.820	0.819	0.647 0.887
	K-Nearest Neighbor	0.817	0.184	0.818	0.817	0.817	0.634 0.801
	Bayesian Network	0.822	0.178	0.829	0.822	0.821	0.651 0.891
	Adaptive Boosting	0.861	0.139	0.871	0.861	0.860	0.731 0.939
		Figure 5.2 -ROC curve for Random Forest.		

Table 5 .

 5 6 -Table comparing the accuracy percentage of our proposed process over time.

	Model Random Forest's Accuracy
	M 1	67.2%
	M 10	69.1%
	M 20	70.4%
	M 30	71.9%
	accounts), t = 10 days of activity after registration (8 945 accounts), t = 20 days of activity
	after registration (9 132 accounts), and t = 30 days of activity after registration (9 233

Table 5 .

 5 7 -Table comparing the results between our sockpuppet's detection phase andTsikerdekis method[Tsikerdekis and Zeadally, 2014a]

	Machine Learning Algorithm Tsikerdekis method	Our Sockpuppet's Detection
		Accuracy	Phase Accuracy
	SVM	60.9%	73.7%
	Random Forest	73%	91%
	Naïve Bayesian	67.4%	82%
	K-Nearest Neighbor	64.5%	81.5%
	Bayesian Network	67.4%	82.1%
	Adaptive Boosting	71%	86%

Table 6 .

 6 1 -Number of first set of groups in relation to the number of their members.

	Number of groups' members Number of groups
	Singleton member	1402
	Two members	171
	between 3 and 10 members	225
	between 11 and 20 members	49
	More than 20 members	22
	Table 6.2 -Number of final set of groups in relation to their number of members.
	Number of groups' members Number of groups
	Singleton member	795
	Two members	205
	between 3 and 10 members	334
	between 11 and 20 members	52
	More than 20 members	23

Table 6 .

 6 3 -Number of created groups and modularity over different community detection algorithms.

	Community	First detected	Modularity 1 Final detected	Modularity 2
	detection algo-	groups #		groups #	
	rithm				
	Fast Greedy	1658	0.379	1207	0.998
	InfoMap	1869	0.366	1409	0.998
	Label Propaga-	1677	0.177	1235	0.981
	tion				
	Leading Eigen	1559	0.341	1107	0.998
	Vector				
	Walk Trap	2918	0.288	2015	0.999

 Table 6.4 -Similarities between our created groups and the original groups over different community detection algorithms. InfoMap because it has the best results in most similarity metrics, in addition it detect the nearest groups' number (1 409) to the real groups' number (1 402),

	Community detection Algorithm	VI	NVI	NMI Split-Join	RI	ARI
	Fast Greedy	3.021 0.749 0.729	3537	0.882 0.021
	Infomap	1.701 0.858 0.868	3041	0.987 0.126
	Label propagation	3.609	0.7	0.658	3649	0.727 0.008
	Leading Eigen Vector	3.741 0.689 0.635	3707	0.769 0.011
	Walk Trap	1.707 0.858 0.873	3075	0.991 0.125
	real time stage is					

Table 7 .

 7 1 -Comparison between the general proposed features and the instantiated features for Twitter and Facebook data

	General features	Twitter features	Facebook features
	Number of account's ac-	Number of account's tweets	Contributions' number by
	tions in different OSM	or comments in different cat-	the user in the different
	categories	egories (home, tweets . . .)	types of Facebook pages
			(groups, profile, friend page
			. . .)
	Average of bytes added or		
	removed in each writing		
	action		

https://us.norton.com/spear-phishing-scam-not-sport/article

http://www.phishing.org/what-is-phishing

https : //en.wiki pedia.or g/wiki/S ybil a ttack

2.2. SOCIAL ATTACKS

https : //en.wiki pedia.or g/wiki/Machine l earning

https : //en.wiki pedia.or g/wiki/Su pervised l earning

a word or phrase preceded by a hash sign (#), used on social medias to identify messages on a specific topic.

http://pagesperso.litislab.fr/~jsaunier/EnWikipedia_users_list.txt

http://weka.wikispaces.com

This means they were detected originally through private data such as IP addresses

http://igraph.org/python

Remerciements

like commenting on other user's page and writing in a personal way.

Wikipedia contributors are expected to edit the pages using only one account. Hence, the improper use of multiple Wikipedia user accounts is not allowed based on Wikipedia rules.

Currently, in Wikipedia, any user that finds a malicious contribution and considers an account as being a sockpuppet can open an investigation page and notify the 'check user', a privileged set of users who have access to the IP-address of all accounts and contributions, in order to discuss with others whether this account is malicious or not. The page's administrators and 'check users' will then check manually if this account is a real sockpuppet or not by studying the account's behavior and by checking the IP-address for some cases like sleeper 1 accounts. If the account is considered as being malicious, the administrator mentions in the ban commentary the main account of the user (sockpuppeteer).

All this data with the reason of ban is publicly available 2 . This makes a verifiable use case to test algorithms/features to detect this kind of manipulation in OSMs.

In order to evaluate our proposed model of SocksCatch we instantiate it on English Wikipedia data.

The tuple {U, P, C, A} of social medias described in section 4.2 is mapped on Wikipedia as following :

• Accounts U are the registered accounts and the IP address of unregistered accounts.

• Categories C are namespaces such as set of articles and set of discussion pages (table 2.2 : page 16).

1 Accounts that are created as a backup for a malicious user.

Example

Delay between the time of account's registration and his first contribution:

This feature is the same as proposed in the process, where it can detect the accounts created but not used yet.

The 11 obtained features are summarized in table 5.1.

In the next section, we present the evaluations metrics used in order to evaluate the second phase of SocksCatch's adaptation stage.

Evaluation Metrics

The second phase of SocksCatch uses machine learning algorithms. Thus before evaluating this phase at adaptation stage, we present the metrics used to evaluate their results in order to select the best machine learning algorithm that should be used in real time stage.

We first show the model accuracy n and then use the confusion matrix shown in Table 5.2. This matrix is used to visualize the performance of the different algorithms using the following metrics:

(5.6)

T rueP ositiveRate(TPR) = TP TP + F N Php scripts that work on raw pages have been developed in order to calculate all the instantiated features values for each account, to pre-process the data, to use them in training and testing of machine learning algorithms.

Supervised learning is used in order to detect sockpuppet accounts. The relevance of the selected features is evaluated through several machine learning algorithms in order to prove the accuracy and robustness of the proposed method.

The following machine learning algorithms are used to evaluate the efficiency of the detection of sockpuppets phase:

• Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF].

• Random Forest (RF) [START_REF] Breiman | Random forests[END_REF].

• Naïve Bayesian (NB) [START_REF] Robertson | Relevance weighting of search terms[END_REF]].

• K-Nearest Neighbor (KNN) [START_REF] Altman | An introduction to kernel and nearest-neighbor nonparametric regression[END_REF].

• Bayesian Network (BN) [START_REF] Pearl | Bayesian networks: A model of self-activated memory for evidential reasoning[END_REF].

• Adaptive Boosting (ADA) [START_REF] Freund | A desicion-theoretic generalization of on-line learning and an application to boosting[END_REF].

Let us note that all these algorithms are considered ideal for binary classification [START_REF] Witten | Data Mining: Practical machine learning tools and techniques[END_REF], as it was the case in our study.

The dataset was randomly split to 2/3 (6 666 accounts) for learning and validation and 1/3 (3 334 accounts) for testing. We should note that the 6 666 accounts are members of groups different from the groups of 3 334 accounts. We separate the data in this way, in order to be sure that while testing our dataset, the machine learning algorithm will not benefit from a similar behavior learned from accounts in same group.

In order to detect the best parameters of the machine learning algorithms, the 2/3 of the dataset was validated using ten-fold cross-validation for each algorithm. Then, the best detected parameters' values of each algorithm are set for the testing phase.

During validation, the 6 666 accounts are split randomly into ten folds where each fold contains 667 accounts; nine folds (6003 accounts) of them are used to build a model while one fold (663 accounts) is used for testing the model. Then we record the values of the metrics described in section 5.2.2. This process is repeated ten times and each time we used a different seed for splitting the dataset. The average of the ten recorded values of each metric is calculated at the end.

We used ten-fold cross-validation because it has been previously proven to produce highly accurate estimates in terms of how models (and as a result our overall method) would perform in previously unseen data [START_REF] Hall | Data mining: Practical machine learning tools and techniques[END_REF].

Weka 1 toolbox is used to experiment the features, where the metrics described in the section 5.2.2 are used to quantify the quality of prediction.

The obtained results are shown in the table 5.4, table 5.5 and Fig. 5.1. These results are discussed in the following paragraphs.

Machine Learning Algorithms optimization

All the results are obtained after the optimization of the parameters of each classifier on Weka using ten-fold cross-validation method.

Table 5.3 presents the parameters' values that give the best accuracy of the selected machine learning algorithm while the validation of our model.

The best accuracy is obtained for Random Forest when we set the number of trees to be generated as 100, the maximum depth of the tree as 0 (for unlimited) and we C H A P T E R 7

CONCLUSIONS AND PERSPECTIVES

Sockpuppets have become an increasingly important issue in social medias. Many solutions were created in order to detect malicious behaviors on social medias. Two main approaches are used: verbal communication analysis and non-verbal behavior analysis.

Detection through verbal communication relies on the analysis of textual content, such as studying the links in post on Facebook, detecting sentiments from tweets on Twitter, or checking repeated words from Reddit's comments.

Detection through non-verbal behavior does not take into account the semantics of the users interactions. Its focus is on the other aspects of the behavior of the user using descriptive values, such as the number of friends' requests on Facebook, the average of tweets every day, the average of added characters in each comment on Reddit.

In this thesis, we present SocksCatch, a process to detect and group sockpuppets on social medias using non-verbal behavior analysis. It is divided in three main phases:

The first phase objective is the preparation of the process. The second phase objective is the detection of sockpuppet accounts using a machine learning algorithm. The third