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ABSTRACT

S ince 2004, online social medias have grown hugely. This fast development had
interesting effects to increase the connection and information exchange between
users, but some negative effects also appeared, including fake accounts number

growing day after day.
Sockpuppets are multiple fake accounts created by a same user. They are the source

of several types of manipulation such as those created to praise, defend or support a
person or an organization, or to manipulate public opinion.

In this thesis, we present SocksCatch, a complete process to detect and group sock-
puppets, which is composed of three main phases: the first phase objective is the process
preparation and data pre-processing; the second phase objective is the detection of the
sockpuppet accounts using machine learning algorithms; the third phase objective is
the grouping of sockpuppet accounts created by a same user using community detection
algorithms. These phases are declined in three stages: a model stage to represent on-
line social medias, where we propose a general model of social media dedicated to the
detection and grouping of sockpuppets; an adaptation stage to adjust the process to a
particular social media, where we instantiate and evaluate the SocksCatch model on a
selected social media; and a real-time stage to detect and group the sockpuppets online,
where SocksCatch is deployed online on a selected social media.

Experiments have been performed on the adaptation stage using real data crawled
from English Wikipedia. In order to find the best machine learning algorithm for sock-
puppet’s detection phase, the results of six machine learning algorithms are compared.
In addition, they are compared with the literature, and the results show that our propo-
sition improves the accuracy of the detection of sockpuppets. Furthermore, the results of
five community detection algorithms are compared for sockpuppet’s grouping phase, in
order to find the best community detecton algorithm that will be used in real-time stage.
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RÉSUMÉ

Depuis 2004, les médias sociaux en ligne ont connu une croissance considérable. Ce
développement rapide a eu des effets intéressants pour augmenter la connexion
et l’échange d’informations entre les utilisateurs, mais certains effets négatifs

sont également apparus, dont le nombre de faux comptes grandissant jour après jour.
Les sockpuppets sont les multiples faux comptes créés par un même utilisateur. Ils

sont à l’origine de plusieurs types de manipulations comme la création de faux comptes
pour louer, défendre ou soutenir une personne ou une organisation, ou pour manipuler
l’opinion publique.

Dans cette thèse, nous présentons SocksCatch, un processus complet de détection et de
groupage des sockpuppets composé de trois phases principales : la première phase a pour
objectif la préparation du processus et le pré-traitement des données ; la seconde phase a
pour objectif la détection des comptes sockpuppets à l’aide d’algorithmes d’apprentissage
automatique ; la troisième phase a pour objectif le regroupement des comptes sockpuppets
créés par un même utilisateur à l’aide d’algorithmes de détection de communautés. Ces
phases sont déclinées en trois étapes : une étape "modèle" pour représenter les médias
sociaux en ligne, où nous proposons un modèle général de médias sociaux dédié à la
détection et au regroupement des sockpuppets ; une étape d’adaptation pour ajuster
le processus à un média social spécifique, où nous instancions et évaluons le modèle
SocksCatch sur un média social sélectionné ; et une étape en temps réel pour détecter et
grouper les sockpuppets en ligne, où SocksCatch est déployé en ligne sur un média social
sélectionné.

Des expérimentations ont été réalisées sur l’étape d’adaptation en utilisant des
données réelles extraites de Wikipédia anglais. Afin de trouver le meilleur algorithme
d’apprentissage automatique pour la phase de détection de sockpuppet, les résultats de
six algorithmes d’apprentissage automatique sont comparés. En outre, ils sont comparés
à la littérature où les résultats de la comparaison montrent que notre proposition
améliore la précision de la détection des sockpuppets. De plus, les résultats de cinq
algorithmes de détection de communauté sont comparés pour la phase de regroupement
de Sockpuppet, afin de trouver le meilleur algorithme de détection de communauté qui
sera utilisé en temps réel.
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1
INTRODUCTION

1.1 Context and Motivation

1.1.1 Social medias

Since 2004, the social web has become a dominant force on the Internet. As of 2017, there

are 2.78 billion active social media accounts [Simon, 2017] and each internet user has an

average of 7 social media accounts [Alex, 2017]. For instance, in 2017, Facebook members

represent 79% of all Internet users [Mary, 2017], and there are nearly 1.9 billion unique

monthly Facebook users [Andrew, 2017].

Over the years, social media have evolved hugely, putting part of the users personal

lives to virtual spaces. However, this evolution also has negative effects. According

to the U.S. Bureau of Justice Statistics, an estimated 16.6 million Americans were

victims of identity theft in 2012. Financial losses for these victims added up to $24.7

billion. For identity thieves, social media is a hunting ground for targets’ personal

1



CHAPTER 1. INTRODUCTION

information [Ambika Choudhary, 2014].

Through APIs like ’Sign in with Twitter’, users can register and connect to third

party websites using their twitter account. The simplicity of the process has enabled

these websites to benefit from the access to personal information of a large number of

accounts. However, as the importance of social media grows, the number of manipulators

increases. As a major power, social medias are particularly targeted by a series of attacks,

ranging from social engineering [Bisson, 2016] to cyber attacks [Goolsby et al., 2013].

Nowadays, traditional media are no longer the only source of news because major

news stories routinely break on Twitter before traditional news media [Mathew, 2012].

Online Social Media (OSM) have therefore become a preferential media for diffusion

of information (e.g. mass birthday celebration) or opinions (e.g. on a product or on a

public person) and to promote ideas (i.e. activism, call for vandalism or riots). In the

case of events that can lead to civil security or homeland security issues, reactivity in

detecting these messages, in identifying originators, "barkers", and followers as well as

the processes of information diffusion is needed to prevent acts or events before they

occur. Similarly, for governments, public personalities and companies, the control of

information diffusion has become a major issue.

1.1.2 Manipulation in social medias

A manipulator is a person who uses the rules of life in society, in this case those of the

social medias, to obtain advantages and personal benefits or exercise control over one or

more users. Manipulation on social media can be made through verbal communication

(e.g. video, audio, or text) and/or non-verbal behavior (eg: number of friend requests per

hour, or the size/quality of added text. . . ) using many techniques like spams or Sybil
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attacks [Douceur, 2002].

A frequent manipulation technique uses multiple identities by creating sockpuppets;

accounts created and controlled by the same individual for the same deception objective.

Sockpuppets are used to perfom various malicious activities such as manipulating

presidential election [Jordan et al., 2016], influencing financial market [John, 2017],

disseminating spams, phishing URLs, and malware [Thomas et al., 2011a] as well as

harvesting private user data [Bilge et al., 2009]. Another problem is that sockpuppets

have the ability to influence other users and impose attitudes, behaviors and opinions on

them. That makes them a relevant source of communication for organizations that want

to promote a brand, product, service, or idea [Patel et al., 2017]. Therefore, the detection

of sockpuppets in OSMs is a urgent research problem.

Most works on manipulation detection address individual malicious accounts, but

manipulators often act in pairs or larger groups [Vrij et al., 2010]. Due to the difficulty of

obtaining ground-truth data about sockpuppets, some researches are built on assump-

tions about the behavior of sockpuppets, for example, assuming that they have similar

usernames [Liu et al., 2016], that they are only used to support one another [Zheng

et al., 2011b], or that they write sentences similar to each other [Bu et al., 2013]. Further

research examines pairs of sockpuppets controlled by the same sockpuppeteer, and find

that sockpuppets are more likely to post at the same time and post in the same discussion

than random pairs of ordinary users. In addition, they find that pairs of sockpuppets

write more similarly to each other than to ordinary users [Kumar et al., 2017].

OSMs are interested in finding all the accounts corresponding to a single individual

inside a single social media [Goga, 2014] in order to protect their platforms. Users are

supposed to open only one account in a social media (as stipulated in the Terms of

3



CHAPTER 1. INTRODUCTION

Service), however some users create multiple accounts. Furthermore, malicious users

can impersonate honest users. For both cases, we need grouping techniques to find the

accounts of a single individual.

Research questions

To resolve the problem of multiple identities in OSMs, our objective is to detect the

sockpuppets and group them with their sockpuppeteer. This implies to study the behav-

iors of OSM’s users, in order to (1) find the behavioral differences between sockpuppets

and legitimate accounts and (2) identify the similarities between the behaviors of the

sockpuppets created by the same manipulator.

Therefore, the following research questions are raised:

Q1: How to differentiate between the behavior of sockpuppets and legitimate accounts ?

Q2: Can sockpuppets be automatically detected ?

Q3: How to relate together sockpuppets?

Q4: Can the sockpuppets that correspond to a single malicious user be grouped together?

Q5: What are the common characteristics between different types of online social media

that can be exploited to propose a generic model for sockpuppets detection?

Q6: How to adapt the solution to a specific online social media?

1.1.3 Contribution

In order to find answers to these questions, a process is proposed in this thesis to detect

and group the sockpuppets created by a same manipulator.

The main contributions of this thesis are:

C1: A global process to detect and group the sockpuppet accounts: Sockscatch;
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C2: A set of features to differentiate between the behavior of sockpuppet and legitimate

accounts;

C3: A set of graphs to relate and group sockpuppets that have close behavior using

community detection algorithms;

C4: An adaptation process to instantiate the features and select the best algorithms for

a particular OSM;

C5: An evaluation of Sockscatch on English Wikipedia.

1.2 Organization

This dissertation is organized as follows.

Chapter 2 - Manipulations in Social Media Chapter 2 introduces a brief history

of social medias. Then, it shows the classification of social medias with a brief description

of each type. Furthermore, it develops the main social attacks and finally it presents the

protection systems of different social medias.

Chapter 3 - Malicious Behavior: Detection and Grouping Chapter 3 presents

the state of the art in the field of detection of malicious accounts and communities in

online Social Media (OSM). It identifies and categorizes different criteria to detect and

group manipulators. Then, it defines the basic concepts of machine learning used in this

thesis. It continues by reviewing the solutions that detect a single fake account such as

spam accounts and multiple identities accounts. Then, It presents community detection

algorithms used to group multiple identities. Finally, it reviews the solutions to group

malicious behavior accounts created for the same objective in order to achieve common

attacks from different identities.

Chapter 4 - The SocksCatch Process Chapter 4 presents a global overview of the

5



CHAPTER 1. INTRODUCTION

SocksCatch process, that aims at detecting and grouping sockpuppets. First, it introduces

the overall process of SocksCatch. Then it proposes a model to represent online social

medias, in order to represent their basic elements. Finally, it presents our use case,

english Wikipedia, and how to adapt the SocksCatch process to it.

Chapter 5 - Sockpuppet Detection Chapter 5 presents the phase of the detection

of sockpuppets, where several features justified by our analysis of sockpuppet and

legitimate account’s behaviours on social medias are proposed. Then, it presents the

instantiation of these features on English Wikipedia. Finally, it evaluates these features

and determines the best machine learning algorithm to be used in real time on this OSN.

Chapter 6 - Grouping Sockpuppets Chapter 6 details the phase of grouping the

sockpuppets created by the same manipulator. This phase comprises two steps: the

grouping of sockpuppets based on the actions performed in the same pages then the

grouping based on accounts’ behavior. This chapter presents also how to adapt and

evaluate this phase on English Wikipedia.

Chapter 7 - Conclusions and Perspectives Chapter 7 presents the conclusions of

the thesis and exposes some perspectives.
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MANIPULATIONS IN SOCIAL MEDIA

Coined by Dale Dougherty in 2004, the term "Web 2.0" refers to a technological evolution

that allows a set of new practices on the Internet. After this evolution, internet users

can create and publish content; tasks initially reserved to Internet professionals. While

Web 1.0 is the first step in the development of the World Wide Web and has structured

Internet networks and communication, Web 2.0 marks the real awakening of Internet

users, because they are at the heart of exchanges on the Web. Its main new features are

sharing and collaboration. User Generated Content (UGC) is a concept that derives from

these new practices. It is defined as the content created by users such as videos, audio

files, photos, blogs, pod-casts, participation in forums, online product reviews [Lendevrie

et al., 2010]. Thus, Web 2.0 is the ground conducive to the development of social medias.

Social medias have been the new trend of the 2000s. According to studies, teens

now spend up to nine hours a day on social platforms, while 30% of all time spent

online is now allocated to social media interaction. The majority of that time is on

mobiles - 60% of social media time spent is facilitated by a mobile device [Evan, 2017].
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Across today’s most popular social media platforms, people are spending 1 hour and 56

minutes daily averages on these platforms where 40 minutes are spent on Youtube, 35

minutes on Facebook, 25 minutes on Snapchat, 15 minutes on Instagram and 1 minute

on Twitter [Mediakix, 2016].

In a short time, social medias have become a true media of social interaction. They

are based on the creation and the sharing of content and on the users’ personal networks.

In this document, we define social media according to the terms of [Kaplan and Haenlein,

2010]: "Social Media is a group of Internet-based applications that build on the ideological

and technological foundation of Web 2.0 and that allow the creation and exchange of

UGC".

The beginnings of social media go back to the late 1970s, even before the creation

of the Web: at the time, the first online forums for communication were Bulletin Board

Systems (BBS). They operated over phone lines and the system was incredibly slow. The

conversation remained mostly local because long-distance rates did apply. But it is at the

end of the 1990s that social media really began to develop and democratize, particularly

in the United States. Online thematic communities appear to find old classmates, share

cooking recipes, and so on. Sixdegrees.com, created in 1997, marks the true birth of Social

networking services as they are known today. The main objective of the site was to allow

its users to stay in touch with their friends, family members and more distant knowledge

through the creation of profiles and the exchange between members of their personal

network. After the site was closed in 2000, a series of social networking platforms was

launched such as Friendster in 2002, an improved version of Sixdegrees.com promoting

friendship. The site has been victim of its success: the proliferation of fake member

profiles, known as "Fakesters", led to the abandonment of the site by thousands of
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members. Myspace, created in 2003 to compete with Friendster, took advantage of this

general disengagement by offering its members a customizable web space. It became the

first American social network between 2006 and 2008, surpassing Google in terms of

visits. LinkedIn is founded the same year but aims at the creation of professional online

networks. 2004 is a key date in the history of social media since it marks the birth of

Facebook: a social network aimed to the students of Harvard University in the United

States. The site is rapidly gaining momentum and by 2006, anyone who is at least 13

years of age and has an e-mail address can register. With 1.86 billion monthly active

members in 2017 [Zephoria, 2017], Facebook is nowadays the leader of social media.

As a major power, it is natural that social medias are now targeted by a series of

attacks, ranging from social engineering [Bisson, 2016] to cyber attacks [Goolsby et al.,

2013]. For instance, many Facebook accounts have fake profile data [Gao et al., 2010].

Using fake accounts, the deception, also called manipulation, on social medias is

performed through many techniques, and it varies from a site to another. A fake account

can be either be a hijacked profile with the name, address, and image of another person

or an identity created from scratch. They are created by physical persons or robots with

very often bad intentions. Beyond the classic wallet scams, one of the new missions of

these manipulators is to harm the image of a company or a person, with for example

negative opinions and comments. These fake accounts are constantly increasing, social

medias and researchers are putting actions in place to protect the users.

In the next section, we present a classification of social medias with a brief description

of each type, then we develop the main social attacks and finally we present the protection

systems of different social medias.
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2.1 Social Media Classification

Social medias are online platforms that feature the capability for users to collaborate in

content creation (wikis), information exchange (forums, blogs, comments ...) or content

sharing (articles, photos, videos, messages ...).

Social medias use collective intelligence to create online collaboration through inter-

action between individuals or groups of individuals. These individuals are thus led to

create content, to prioritize it in order to share it with other individuals. This content

is constantly evolving, linked to changes that other users can make (such as comments

or collaborative working documents). The collaboration can take many forms where the

user can:

• give an opinion on a subject, product, service or website;

• interact with other users;

• contribute to participatory projects;

• aggregate information for later sharing.

While the content and modes of interaction differ between OSM, they all feature a

common grounding: They allow users to share information and interact, both in public

and private ways.

In order to achieve this, they are usually based on accounts to uniquely identify users.

These accounts have some common properties between all OSM such as usernames and

the time of creation of each account.

[Kaplan and Haenlein, 2010] have proposed a classification for social media based on

social presence/media richness and self-representation/self-disclosure which include six

categories:
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1. Collaborative projects : the user can add, edit, and remove text content in these

websites (e.g.Wikipedia)

2. Blogs : the user can share information, content (text, audio, video), or write reviews

in these websites (e.g., Twitter, TripAdvisor)

3. Content communities : the user can share content like text, audio, photos or

video (e.g., YouTube, SoundCloud)

4. Social Networking sites : the user can create a profile with personal information

and share contents with friends (e.g., Facebook)

5. Virtual game worlds : the user can create a virtual profile and play games with

other players (e.g., World of Warcraft)

6. Virtual social worlds : the user can create a virtual profile and interact with

other users as in real life in virtual worlds (e.g., Second Life) .

This classification is based on principles that come from media theory. The first factor

is social presence theory which was imported from tele-conferencing research. One

of the first analytic frameworks applied to computer-mediated communication (CMC)

was the work of Short et al. in 1976 who argued that various communication media

differed in their capacity to transmit classes of non-verbal communication in addition to

verbal content [Short et al., 1976]. Media richness theory [Daft and Lengel, 1986], also

known as information richness theory [Daft and Lengel, 1983], refers to the amount of

information that can be transmitted in a given time. The others factors come from self-

representation and self-disclosure theories. Self-representation theory states that

people want to control their impression formation on others in social interactions [Erving,
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1959]. However, self-disclosure theory points out the connection between higher quality

relationships among people and the development of psychological well-being [Kaplan

and Haenlein, 2010].

This first classification in six main types of social medias was expended in 2011

to include micro-blogging which stands "halfway between traditional blogs and social

networking sites" [Kaplan and Haenlein, 2011] .

Social presence / Media richness
Low Low-

Medium
Medium High

Self presen-
tation /

High Blogs Microblogging Social net-
working sites

Virtual social
worlds

Self disclo-
sure

Low Collaborative
projects

Content com-
munities

Virtual game
worlds

Table 2.1 – Classification of social media typology.

Table 2.1 depicts the classification of social media [Kaplan and Haenlein, 2010, 2011]

where the first row presents the social medias that provide users with a lot of freedom for

presenting themselves while the second row presents the social medias that force users to

adapt to certain roles or have no option for disclosing parts of their identities. Moreover,

the social medias vary in social presence and media richness, such as collaborative

projects that offer just text and sparse images for communication, while virtual social

worlds are aimed to simulate the real world using all types of media.

There is a great amount of literature on social media for all of these classifica-

tions [Botha et al., 2011; Mangold and Faulds, 2009; Weinberg and Pehlivan, 2011]. A

short description for each type of social medias is provided here for reference:
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2.1.1 Blogs

A blog is a kind of online journal that allows the publication of diary-style text entries

displayed in a chronological way, and dealing with various themes such as politics, music,

cinema, literature, fashion... Any type of content can be published: texts, images, videos,

audio clips. Appearing at the end of the 1990s, it is one of the first manifestations of

social media. There are many platforms that facilitate the creation of a blog such as

Skyblog in France, which popularized the blog among adolescents in the early 2000s.

In general, a single author is behind a blog but in 2010 "multi-author blogs" appeared

so that several people can associate and contribute to the same blog. The comments

posted by the Internet users allow a permanent interaction between the readers and the

blogger. It can also bring together a true community as its audience grows, and even

transform itself into a leader of opinion.

The blog is not reserved to a small group of experts but is open to anyone with an

Internet connection and willing to express himself on any subject. Its use is simple and

truly democratizes the publication of content. Figure 2.1 depicts an example of a blog.

2.1.2 Microblogging

Microblogging is a derivative of the blog, that allows its users to publish small elements

of contents such as short sentences, individual images, or video links, to the attention

of a circle of "Followers" of the stream. First called tumblelog, it takes the name of

microblog around 2006.The functionalities of this type of platform remain relatively

basic, the relational aspect is privileged and the community dimension reduced to its

simplest expression. Among the most well-known microblogging sites are Twitter, which

offers the user the possibility of posting "Tweets", that are short messages limited to 140
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Figure 2.1 – The f word’s blog.

characters, and Tumblr, closer to blogs, that allow to publish text, photos, videos, etc.

Figure 2.2 depicts an example of microblogging.

Figure 2.2 – Cristiano Ronaldo Twitter’s page.

14



2.1. SOCIAL MEDIA CLASSIFICATION

2.1.3 Collaborative Projects

Collaborative projects are one of the most important social medias in terms of audience

and contributions. For example, Wikipedia was visited in April 2015 by 104.40 million of

unique US visitors [Statista, 2015].

Collaborative projects also feature unique characteristics in OSM: they can be edited

by multiple approved people, all edits are tracked in the page’s history, any bad edition

can easily be reverted. Examples of such sites are Wikipedia, WikiHow, and Distributed

Wikis [Davoust et al., 2015].

The most known collaborative project is Wikipedia, a crowd-sourced encyclopedia, in

which anyone can edit most of its articles either with or without creating an account on

it.

The sets of pages on Wikipedia, called namespaces, are composed of pages with

information or discussions about Wikipedia. Currently, Wikipedia has 34 namespaces

[table 2.2]: 16 subject namespaces, 16 corresponding talk namespaces, and 2 virtual

namespaces. Each subject namespace has a corresponding talk namespace, for example

the main namespace that contains the articles has a namespace called Talk, and the

User namespace that contains the user pages and other pages created for personal use

also has a corresponding namespace called User Talk. The two virtual namespaces are

not related to pages stored in the database. For example, the Media namespace is used

to link directly to a file rather than to the file description page.

Figure 2.3 depicts an example of collaborative project.
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Subject ID Subject names-
paces

Talk namespaces Talk ID

0 (Main/Article) Talk 1
2 User User talk 3
4 Wikipedia Wikipedia talk 5
6 File File talk 7
8 MediaWiki MediaWiki talk 9
10 Template Template talk 11
12 Help Help talk 13
14 Category Category talk 15
100 Portal Portal talk 101
108 Book Book talk 109
118 Draft Draft talk 119
446 Education Program Education Program

talk
447

710 TimedText TimedText talk 711
828 Module Module talk 829
2300 Gadget Gadget talk 2301
2302 Gadget definition Gadget definition

talk
2303

Virtual namespaces
-1 Special
-2 Media

Table 2.2 – Wikipedia namespaces.

2.1.4 Social Networking Sites

The most widely known and widely used social medias are social networks. These plat-

forms allow contact between users through the creation of personal profiles that friends,

family members and acquaintances can access. It also provides instant messaging and

chat services. Social networks encourage the exchange of various content such as photos,

videos, press articles, websites, opinions, statuses, etc. They promote communication by

allowing members to keep in touch and fuel a sense of community.

There are several types of social networks. Some remain fairly general such as

Facebook, the first social network. In 2016 only, Facebook increased its global footprint
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Figure 2.3 – Wikipedia’s encyclopedia home page.

by 363 million monthly active accounts, and deliver year-on-year growth of 24%. More

than one billion persons use Facebook every day, meaning that more than half of all

active Facebook users use the service on a daily basis [Simon, 2017].

Figure 2.4 – Mark Zuckerberg’s Facebook page.
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Other social networks have a professional scope and allow users to create their

Curriculum Vitae online to make it available to thousands of recruiters. This is the

case of LinkedIn and Viadeo. Finally, thematic social networks are oriented towards a

particular community: Spotify’s vocation is the diffusion of music, Buds Forward allows

former classmates to meet, and so on. There are even social networks whose access is

strictly limited to a privileged community and only through invitation such as A Small

World.

Figure 2.4 depicts an example of a social network site.

2.1.5 Content Communities

Content Communities are web hosting sites on which users can send, watch and share

medias.

Figure 2.5 – Popular on YouTube - France, YouTube’s channel.

Popular content communities include YouTube, Flickr, and SlideShare. After regis-

tering an account, individuals upload their materials, describe them, and make them
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publicly available. Visitors search the content communities by keyword, subscribe to

individual users, and provide feedback on the content.

Youtube can be considered as a social network but it is focused on sharing videos of

all kinds. Freshly released video clips reach hundreds of millions of views, from guitar

tutorials to broadcasting a large number of videos.

Figure 2.5 depicts an example of content communities.

2.1.6 Virtual Social Worlds

Virtual social worlds are platforms that replicate a world that is fantastic or close to

real life and allow players to interact through an avatar. They are comparable to video

games that require an Internet connection. Players also have instant chat and discussion

forums in order to make a strong sense of community belonging among their members.

Virtual social worlds’ do not impose restrictions on how to create, behave or interact,

but they are economies in their own right.

With regard to economic activities, in some virtual social worlds the avatars have

the possibility of offering products and services which they themselves created (i.e. not

generated by the owner of the world) and may sell it to other users in exchange for virtual

money. Second Life is the most popular virtual social world site. Its virtual currency

is called the Linden dollar. Avatars can buy Linden dollars for real money via the SL

Exchange at a floating exchange rate.

Figure 2.6 depicts an example of virtual social worlds.
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Figure 2.6 – Second Life World.

2.1.7 Virtual Game Worlds

In opposition to virtual social worlds, in virtual game worlds, users are usually required

to follow strict rules that determine their behavior and the personalization of their

avatar. In addition, virtual game worlds sites do not allow anyone to engage directly into

economic activities with other users.

In this category are included platforms "that replicate a three-dimensional environ-

ment in which users can appear in the form of personalized avatars and interact with

each other as they would in real life" [Kaplan and Haenlein, 2010]. A known example of

virtual game world is "World of Warcraft" with more than 10 million subscribers at its

peaks on December 2014 [Blizzard, 2014], according to Blizzard entertainment.

Figure 2.7 depicts an example of virtual game worlds.

Social medias are growing day after day and they are gathering the most important

number of visitors on the internet. Attracted by this success, among the visitors there

is also a number of manipulators that try to benefit from the others, which leads to an
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Figure 2.7 – World of Warcraft game.

increase of the number of social attacks. In the next section we present the different

social attacks existing on social medias.

2.2 Social Attacks

Social attacks are the techniques that aim to broadcast false information in order to

manipulate the opinions, or to access confidential information or certain assets by

manipulating people who have access to it directly or indirectly. They are applied to the

field of informatics via telephone, e-mail and social medias.

The human factor is the central point of these attacks using social engineering. In

essence it is about the intelligent manipulation of human natural propensity to trust.

Relationships of trust based on no real interaction history are set up in a calculated way,

most often by simple discussion and subsequently exploited to derive maximum benefit

from the situation.

Social attacks vary according to the type of social media, for example, Facebook users
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are subject to social spam, taking advantage of sharing and tagging mechanisms from a

big number of users on their spam posts, while linkedIn users are more subject to spear

phishing because of the mixed professional/personal nature of the shared information1.

We use the comprehensive communication model proposed by Madhusudan in 2003

to classify manipulation techniques for social media and to evaluate their effectiveness

in carrying out manipulation [Madhusudan, 2003].

2.2.1 Manipulation Model

The model (shown in figure. 2.8) consists of a sender (S), the content or message (I), the

channel through which the communication takes place (C), and the receiver (R). If the

received model is different from the expected model, then a manipulation has happened.

The objective of a manipulation is to give information and / or modify R’s behavior. Hence,

the manipulation is achieved if one of the S, I, C elements is manipulated. [Tsikerdekis

and Zeadally, 2014b] apply the model of [Madhusudan, 2003] to the different types of

social media. They show which elements of the model can be manipulated with minimal

(i.e. low cost) efforts and at the same times with a fairly high success rate (shown in

table 2.3). We develop in the next sections the characteristics and vulnerabilities of each

element with regard to social medias types.

2.2.1.1 Content (I) Manipulation

Manipulating the content or the message is the most frequent way of deceiving others.

This can be achieved in social media by falsifying information, especially for social media

that mainly focus on content like blogs, content communities and microblogging, because

1https://us.norton.com/spear-phishing-scam-not-sport/article
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Figure 2.8 – Interaction without/with deception.

Social Media Type Low difficulty High deception success
Blogs S, I S, I

Collaborative projects I -
Microblogging S, I S, I

Social networking sites S, I, C S, I, C
Content communities I I
Virtual social worlds S, I, C S, I, C
Virtual game worlds I, C C

Table 2.3 – Manipulation of Sender’s identity information (S), Content (I), and Communi-
cation channel (C) with low difficulty and high deception success.

they are very sensitive to such manipulation due to their structure based on contents

added by users.

However, table 2.3 shows that projects like Wikipedia are less likely to be affected by

this kind of manipulation (i.e. manipulate I). This is because the content of these types of

social media is built using the community of contributors, thus allowing many people to

review the content. Virtual game worlds also have a low probability for deception success

because of the strongly narrated elements such as having a specific role that forces a

player to a specific line of actions.
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2.2.1.2 Sender (S) Manipulation

Sender manipulation is achieved by manipulating the sender’s identity information (S).

Impersonation is a common way to support identity deception. The manipulator tries

to access an account to obtain all its information such as age, address, e-mail and cell

number. The manipulator then tries to authenticate itself in place of its victims. The

success of this operation means that the manipulation is successfully done.

Social medias designs that feature in-built high self-presentation and self-disclosure

enable sender deception at a low cost. In the same way, new users are not controlled in

most blogs and microblogging sites, so that it may lead to stole identities. However, the

damage caused by manipulators on these types of social media is low and on the long

term the success of this deception is not guaranteed.

In the case of social networking sites and virtual social worlds, the cost of manipula-

tion increases because the access to an individual’s social network can lead to gaining

people’s trust in the network and getting information from them. The target in this case

may not necessarily be the person whose identity is stolen but others within his social

network.

Social media with low self-presentation and self-disclosure, such as collaborative

projects, content communities and virtual game worlds, are likely to be more protected in

terms of identity theft, because they are task-based. A user, who wants to obtain access

to the impersonated identity’s social network will have to perform just as well as the

identity being impersonated in tasks and "act the part". The cost is likely to be high and

the success of the deception low and short-term.
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2.2.1.3 Communication Channel (C) Manipulation

Manipulating the communication channel is the most difficult because it requires a

high level of technical competence, which increases the cost of handling. Attacking

the communication channel means modifying in-transit messages, re-routing of traffic,

eavesdropping, etc. Jamming communications have been used in virtual game worlds.

Podhradsky et al. argued that multi-player games in consoles can be hacked in order to

provide access to a user’s Internet Protocol address. Once the intruder has access to the

host, he/she can kick the player out and proceed with an identity theft manipulation. In

this case the goal of a deceiver may not be to obtain information but to damage a victim’s

reputation [Podhradsky et al., 2013].

On social media the manipulator may introduce an instability or delays in a video or

an audio in order to conceal his manipulation. On the other side, victims may consider

the problem concerns the connection without making attention to the risk of attack.

Social medias with high media richness, such as virtual social worlds and virtual

game worlds, are more subject to this kind of attacks because they tend to rely a lot

on client software. In addition, social medias that rely on server applications, such as

social networking sites and content communities, are safer and less prone to channel

manipulation because exploits rely on vulnerabilities of web browsers and web servers

are generally hardened and made more secure.

This manipulation has a quite high cost. However, the likelihood of success is also

high especially for well-orchestrated attacks.
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2.2.2 Online Manipulation

There are different techniques that can be used to manipulate others in social media

environments. The main techniques are:

1. Social spam.

2. Identity theft.

3. Spear phishing.

4. Multiple fake accounts (Social sibyls / Sockpuppets).

2.2.2.1 Social spam

Spams are classically irrelevant or unsolicited messages sent over the Internet. These

are usually sent to a large number of users for a variety of use cases such as advertising,

spreading malware, etc.

While the most widely recognized form of spam is email spam, the term is applied to

similar abuses in social medias.

For several years, social medias have been developing with high success. Social spam,

that is, social media spam, has increased dramatically in recent years. Today 40% of

accounts and 8% of messages on networks are considered to be spam [Rip, 2011]. This

percentage varies according to the networks.

The key of social spam is the fake accounts. In order to attack legitimate users they

spread fake messages or malicious links created with the intent to harm, mislead or

damage a user or their device.

Botnets now regularly steal credentials for social network accounts and use them to

transmit spam on social networks [Fred, 2009; Mayur, 2009].
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According to Impermium [Rip, 2011], spam via networks is much more efficient than

spam called "classic" by e-mail. The networks therefore have to fight against this new

threat by checking more seriously the identity of their users. This is particularly the

case of Twitter, that is increasingly concerned by spam messages. False users use short

links to direct the user to viruses and other threats.

2.2.2.2 Identity theft

Identity theft is the act of taking the identity of another living person without his

knowledge and sometimes without even him noticing. However, for a large part of the

population, identity theft remains a risk badly known.

The personal information is public by default on most social medias, which means

that everyone can find sensitive information about user accounts. Names, dates of birth

and personal addresses can then be used to access bank accounts and credit cards, for

example, by estimating the "secret questions" used for access in several online services.

Real-world thieves have even started using geographic information in status updates,

photo-tags, and "check-ins" to plan home burglaries when occupants are out of town [Eric,

2012].

Another example of Identity theft manipulation is to hack into the bank account and

thus contract a loan for the victims, withdraw money or open phone lines to their name

and never pay the bills. It can also generate false papers such as driver licenses, gray

cards, identity cards or passports and insurance card. In 2014, 550 000 people declared

themselves victims of identity theft [Kelli, 2015].

27



CHAPTER 2. MANIPULATIONS IN SOCIAL MEDIA

2.2.2.3 Spear Phishing

Phishing is a cybercrime in which a target or targets are contacted by email, telephone

or text message by someone posing as a legitimate institution to lure individuals into

providing sensitive data such as personally identifiable information, banking and credit

card details, and passwords2.

Spear phishing is an advanced form of phishing that takes up the mechanism by

tailoring them to specific targets to increase their efficiency.

Spear phishing is opposed to traditional phishing, in the sense that it does not target

thousands of Internet users at random, but only one - or a few - selected in order to

obtain very precise information. This attack is aimed above all at particular profiles,

which work for particular organizations (companies, NGOs, governments, etc.). If the

objective is often to obtain confidential information about a professional sector, attackers

also use personal information to trap their victims. They collect personal information

about social media accounts about friends, family and colleagues.

Once manipulators have targeted a person (or a group of individuals), and have

gathered a lot of personal information about them, they write and send a fake, highly

personalized email, which makes the detection of the trap difficult and convince the user

to visit a fake website that is under the control of the attacker. Millions of dollars have

been lost because of this type of attack [Kim, 2011].

2.2.2.4 Social Sibyls

Sybil attack is an attack wherein a reputation system is subverted by forging identities

in peer-to-peer networks 3.

2http://www.phishing.org/what-is-phishing
3https : //en.wikipedia.org/wiki/Sybilattack
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Social Sibyls is the particular type of sybil attack that is performed on social medias:

malicious users create multiple identities with the aim of increasing their own influence

in the social medias.

Malicious activity on social medias is mainly based on fake Sybil accounts, which

are created and controlled en-mass by attackers. Facebook estimated in 2012 that

there are at least 83 million sibyls on their service, which represents nearly 9% of the

user base [Technology, 2012]. In addition, the social Sibyls have become a marketable

commodity by themselves. There is now a thriving black market for sibyls on social

medias [Wang et al., 2012b]. Attackers can buy popularity using fake sybil accounts,

which has become very easily accessible, especially for Facebook and Twitter. In effect,

the problem of popularity by Sibyls has an impact on the market of social advertising. A

survey conducted by the BBC revealed that companies lose huge sums of money for paid

Facebook ads that get clicks and likes from Sibyls instead of real people. This causes a

great danger for most social medias as they depend on advertising as their main source

of income.

Fake sybil accounts are used to attack en-mass to conduct social spam, identity theft

or phishing attacks. This malicious behavior relies on sockpuppetry. We develop this

concept in the next section.

2.2.3 Sockpuppetry

For centuries, the use of pseudonyms and other false identities exist. As mentioned

before, the rise of Web 2.0 opened the door to create forums in which people can exchange

ideas and remain anonymous at the same time if they wish. A unique user can create

and use several accounts with different pseudonyms. This new form of creating fake
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identities is named sockpuppetry.

On July 9, 1993 the term sockpuppet was used for the first time and it came into

general use by 1996. Oxford English Dictionary defines a "sock puppet" as a person who

is controlled by someone else. In 2000, U.S. News and World Report, extend the idea of

sockpuppeteer as a minion.

The sockpuppets being the multiple fake accounts created by the same user, they are

the source of several types of manipulation such as those created to praise, defend or

support a person or an organization [Stone and Richtel, 2007] or to manipulate public

opinion [Elsner, 2013].

Nowadays, online voting has become very common. Malicious users create sockpup-

pets in order to influence the voting results by submitting multiple votes in favor of

the sockpuppeteer. In other cases, they support each others by arguments, manipulate

opinion or create the online illusions that many users support the sockpuppeteer or an

opinion. This behavior belong to the "Sybil attack" category.

In addition, sockpuppets are used in marketing. In this case, the sockpuppeteer will

create sockpuppets in order to support a product or on the contrary in order to fight

another product. This type of sockpuppets is known as "Meatpuppet".

Another use of sockpuppets is to make a particular point of view look foolish. The idea

is to create a negative sentiment against some ideas by formulating an easily refutable

argument and then assigning it to its opponent. These sockpuppets are called "Straw

Men".

Generally, sockpuppets are not accepted in user terms of services. In order to ban

multiple identities accounts, the websites put in place systems of control and systematic

suppression of these reputed malicious users. This is especially true for online gaming,
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where having a sockpuppet may distort the outcome.

The sockpuppets behavior has particular characteristics because of their attack

objectives [Kumar et al., 2017]:

• the user takes part in similar discussions and have the same opinions as the user’s

main identity;

• he knows remarkably well the methods, rules and members of the community,

more than what could be expected of a newcomer;

• he may have the same IP address or the same Internet service provider;

• sometimes, the various accounts have similar names: zazaScok, zazaSockPuppet,

zazaE, 1zaza1, and so on;

• all identities have the same hourly habits;

• the vocabulary and the grammar of the various sockpuppets are often close.

In some cases, sockpuppetry is not used for malicious objective, but for protection. For

example a sockpuppet software for the US military has been under development since

2011. "The technology support classified blogging activities on foreign-language websites to

enable United States Central Command (CentCom) to counter violent extremist and enemy

propaganda outside the United States" according to Commender Bill Speaks [Fielding

and Cobain, 2011].

In the next section we present the current protection solutions used by the social

medias in order to protect their users and block the sockpuppets on their sites.

31



CHAPTER 2. MANIPULATIONS IN SOCIAL MEDIA

2.3 Protection Solutions

The majority of social medias are based on a centralized architecture in which users’ data

is stored on servers controlled by the social media providers. Facebook is often attacked

in order to steal and sell users profiles and private messages [M., 2014].

However, Facebook and other centralized social medias offer solutions to protect the

privacy of users. Many of these solutions are based on the contributions of their users. In

addition, they create a reporting system where every user can send a notification or a

report to the administrators if he find a malicious content. Some social medias created

their own tools to help them to detect malicious behavior.

2.3.1 Protection of user information

Social medias strive to inform users on how they can protect their information and what

users can do to contribute to this protection. That is why social medias offer guides about

the protection of user information in the most user-friendly way possible.

Facebook. Facebook redesigned its guide to security; in the ’How to Keep Your

Account Secure’ section they offer new recommendations on how to prevent cyber-attacks

through interactive graphics. In order to ensure everyone can read these tips, they are

available in 40 languages and users can share them on their profile. The guide also

warns users of the possibility of a phishing attacks.

LinkedIn. Facebook isn’t the only social network which has improved its security

information recently. LinkedIn also has a ’Security Blog’ with helpful guidelines.

Twitter Twitter show its way of protecting users information in their help center

where there is a wide security and protection section, users can access it from the ’help

and support’ tab in their profile.
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Google Google propose a complete manual included in the web ’How to stay safe

and secure online’ to explain how to prevent cyber-attacks protecting user’s passwords,

checking Gmail’s settings or verifying the emails’ sender if the user thinks it might be a

scam.

All these guides help the user so that he to knows how to protect his information

using a privacy setting section, or by explaining their reporting systems,

2.3.2 Privacy setting

On the most widely used social medias of the market, the private information and

personal exchanges can sometimes be more visible than one would like because of a

voluntary lack of adjustment of the parameters of confidentiality, by the social medias.

In fact, advertisment enterprises benefit from the tracking of users’ information [Willis,

2014].

Social medias such as Facebook, Twitter, LinkedIn and SnapChat leave the choise to

their users to adjust the protection of their personal information by explaining to them

how to control their online presence.

For example, LinkedIn give the authority to their users to select who can see their

activities, i.e. all the contents that users have shared, liked and commented on during

their online activities. In addition, users can select who can see their relationships, so

that it is possible to set the visibility of users relationships to the visitors visiting their

profile. They are also able to ensure that their address book is exclusively private, and

not accessible to their contacts. Figure 2.9 depicts an example of privacy setting section

in LinkedIn.
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Figure 2.9 – LinkedIn’s privacy setting section.

2.3.3 Reporting systems

All users of social medias have the option to report a malicious post or a malicious user to

the social media’s security team, who then check if the reported post or user is malicious

or not and ban it if so.

For example, currently, in Wikipedia, any user that finds a malicious contribution can

revert it and if he considers an account to be a sockpuppet, can open an investigation page

about this account and report it to the ’check user’, a privileged set of users who have

access to the IP-address of all accounts, in order to discuss whether it is a sockpuppet or

not. The administrators then check manually if this account is a real sockpuppet or not,

by studying the account’s behavior and the associated IP-addresses in order to block it

with all the affected accounts.

2.3.4 Detection tools

Most of current social medias solutions to detect manipulators depend on the contri-

butions and help from their legitimate users. In addition, some social medias such as

Facebook and Twitter have detection tools that help their security team to detect the

malicious users [Stein et al., 2011].
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After receiving a report on a malicious posts or users, the security team checks this

report manually and use their detection tool to make sure that the reported user is a

manipulator or not. The scope and the specifications of these detection tools are not

communicated by social medias, in order to keep the manipulators from learning how to

skip from detection.

For example, Facebook [Stein et al., 2011] gives only an overview of their immune

system, a defense system against phishing, fraud and spam. The system performs real-

time checks and classification on every read and write action on Facebook’s database,

in order to protect its users from malicious activities. This service is very high level

because it takes into account some important details of the undesirable activities on the

Facebook site namely false profiles, harassment, compromised accounts, malware and

spam. Boshmaf et al. show that this system is able to block only 20% of the accounts

used by socialbots [Boshmaf et al., 2011].

Facebook has another solution called the EdgeRank algorithm [Bilge et al., 2009]

which assigns to each post a score according to certain characteristics, such as the

number of "likes", the number of comments and the number of reactions posted by a user.

Therefore, the higher then EdgeRank score is, the lower the chance of the user being a

spammer is. The disadvantage of this approach is that spammers could also build up a

network and post comments between them in order to get a high EdgeRank score.

Twitter was said to be working on a spam bot defense system a few years ago [Twit-

terInc., 2012], an idea that was shut down for reasons unknown [Zackn, 2017].
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2.4 Conclusion

In this chapter, we presented the six types social medias and the manipulation model that

can be applied on them. We described also the main social attacks used by manipulators

on social medias. Finally, we presented the solutions proposed by social medias in order

to protect their users from manipulations.

The social medias solutions against manipulation are not fully automated: a lot of

time and effort is spent by human administrators to detect and ban the manipulators.

The mean of life time of a spam in Twitter until detection is about 269 days [Yardi

et al., 2009], while it takes approximately 75 days in average for a sockpuppet account

to get blocked on Wikipedia [Tsikerdekis and Zeadally, 2014a]. This long life gives the

manipulator the opportunity to do many attacks before the detection.

In the next chapter, we present the solutions proposed in the literature to detect

automatically the manipulations and the manipulators.
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As elaborated in the previous chapter, most of social medias have their own solutions to

protect their system, but these solutions are not fully automated, thus wasting time and

energy in order to detect manipulators. This highlights the importance to create fully

automated algorithms to detect these manipulators.

This chapter presents a review of the literature on malicious behavior automatic

detection.

Some attacks on social medias are performed using single malicious account while

other use groups of malicious accounts. The most well known attack using a single

account is the spam. Some manipulators create many malicious accounts in order to spam

using multiple identities, distribute malware and perform identity fraud [Richmond,

2010]. Other manipulators create false accounts to increase the visibility of niche content,

forum posts, and fan pages by manipulating votes or view counts [Norajong, 2010; Sture,

2010].

A group of sockpuppets, i.e. multiple accounts, is a list of accounts created by the
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same user or by many users with the same objective. Two issues have to be tackled

to detect malicious behaviors in social media: the first focus on the detection of single

malicious accounts while the second focus on the detection of communities or groups of

malicious accounts.

Before starting the overview of the literature solutions, we identify and categorize the

different criteria to detect and group manipulators. Then, we define the basic concepts of

machine learning that are used in the following sections. We continue by reviewing the

solutions that detect a single fake account such as spam accounts and multiple identities

accounts.Then, we present the community detection algorithms used to group multiple

identities. Finally, we review the solutions to group malicious behavior accounts created

for the same objective in order to achieve common attacks from different identities.

3.1 Analysis Grid

This section identifies and categorizes the different criteria to detect and group manip-

ulators. We build a set of six main criteria to evaluate the solutions proposed in the

literature.

Analysis approaches (AP). Many solutions were created in order to detect or

group the malicious behavior in social medias. In order to achieve this, two main analysis

approaches are used: verbal communication (VC) analysis and non-verbal behavior (NVB)

analysis.

Detection through verbal communication relies on the analysis of textual content,

such as studying the links in post on Facebook, detecting sentiments from tweets on

Twitter, or checking repeated words from Reddit’s comments.

Detection through non-verbal behavior does not take into account the semantics of
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the users interactions. Its focus is on the other aspects of the behavior of the user using

descriptive values, such as the number of friends’ requests on Facebook, the average of

tweets every day, the average of added characters in each comment on Reddit.

Method Objective (MO). Many methods detect single malicious accounts (SMA)

such as spammers or sockpuppets, others focus their work on the grouping of multiple

identities (GMI).

To evaluate their detection method, most researchers use machine learning algo-

rithms. When the focus is on the grouping of multiple identities accounts the methods

use graph structure metrics.

Public information (PI). The proposed solutions are built on data from social me-

dias, where these data are accessible for anyone (public) or accessible only to authorized

users (private) such as system administrators. The dependency on private information

has positive and negative effect. Most of the time the use of private information such as

IP address will guide to better accuracy, but the negative point is that these solutions

are applicable only by the social media engineers. This generates difficulties in the

reproduction and generalization of these methods.

Generalization (G). The proposed methods vary in terms of generalization. Some

of them are created for a specific social media site or a particular attack and thus cannot

be applied on other social sites. Other methods study the malicious behavior in different

OSMs and propose a general solution that can be applied on most of OSMs.

This set of the criteria raised in our study makes it possible to establish the following

analysis grid. Table 3.3 in section 3.6 use this grid to compare the different approach

based on the mentioned criteria.
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MO
Category Approach AP SMA GMI PI G

Table 3.1 – Analyses grid for the criteria of evaluation for the detection and group-
ing of manipulation solutions. The abbreviations used to present the criteria are:
AP : Analysis approaches; MO : Method Objective; SMA : Single malicious accounts; GMI
: Grouping of multiple identities; PI : Public information; G : Generalization.

3.2 Machine Learning

Machine learning is the subfield of computer science that, according to Arthur Samuel in

1959, gives "computers the ability to learn without being explicitly programmed". Evolved

from the study of pattern recognition and computational learning theory in artificial

intelligence, machine learning explores the construction of algorithms that can learn

from and make predictions on data. Such algorithms overcome strictly static program

instructions by making data-driven predictions or decisions, through the building of a

model from sample inputs1. In machine learning a dataset of observations, called vector,

comprises a number of variables called features or attributes.

Supervised learning is the machine learning task of inferring a function from labeled

training data. The training data consist of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector) and a

desired output value. A supervised learning algorithm uses the training data to produce

an inferred function, which can be used for mapping new examples. An optimal scenario

will allow for the algorithm to correctly determine the class labels for unseen instances2.

A subclass of supervised learning problems is binary classification , where there are

only two labels for class features. For example, a post or comment in a social media may

be either spam or legitimate. Multi-class classification is the supervised learning with

1https : //en.wikipedia.org/wiki/Machine l earning
2https : //en.wikipedia.org/wiki/Supervisedl earning
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multiple labels for class feature.

Table 3.2 shows a small loan application dataset with four attributes. The first

attribute is Age, which has three possible values, young, middle and old. The second

attribute is Has_Job, which indicates whether an applicant has a job. Its possible values

are true (has a job) and false (does not have a job). The third attribute is Own_house,

which shows whether an applicant owns a house. The fourth attribute is Credit_rating,

which has three possible values, fair, good and excellent. The last column is the binary

Class attribute, which shows whether each loan application was approved (denoted by

Yes) or not (denoted by No) in the past.

ID Age Has_job Own_house Credit_rating Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes

10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

Table 3.2 – An example of a supervised learning for a loan application dataset.

From this data, the machine learning algorithm has to learn a classification model

that can be used to classify future loan applicants. That is, when a new customer comes

into the bank to apply for a loan, after inputing his/her age, whether he/she has a job,

whether he/she owns a house, and his/her credit rating, the classification model should

predict whether his/her loan application should be approved.
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3.3 Spam Detection

Spam detection has been for twenty years a prominent field of application for the machine

learning algorithms [Cohen et al., 1996; Cortes and Vapnik, 1995; Drucker et al., 1999;

Joachims, 1998; Pantel and Lin, 1998; Sebastiani, 2002].

3.3.1 Web and e-mail Spam

Electronic spam is an unsolicited electronic communication, generally posted in large

quantities on the same site or sent via e-mail for advertising purposes.

There is a large body of prior work on measuring e-mail spam [Anderson et al., 2007;

Kanich et al., 2008; Kreibich et al., 2009; Xie et al., 2008]. The first publications on the

classification of e-mail spam based on automatic learning date from 1996 [Cohen et al.,

1996].

The Ripper method [Cohen et al., 1996] is a classifier capable of defining the context

of a word. This classifier uses a set of rules (presence or absence of dictionary words)

that is automatically constituted during the learning phase. Ripper also performs an

optimization phase to readjust the rule sets.

In 1998 two methods [Pantel and Lin, 1998; Sahami et al., 1998] propose the use of a

Naïve Bayesian (NB) classifier [Russell and Norvig, 1995] for spam filtering. Sahami et

al. select 500 characteristics of each message and find that the binary classification

(ham, spam) is more efficient than the multi-class classification based on the type of the

message (eroticism, phishing, etc.) [Sahami et al., 1998].

A method in 2002 [Sebastiani, 2002] was interested in the recognition of spam by

the thematic classification of messages. It represents the message to be classified in

the form of a vector of features. Then it evaluates the distance (usually Euclidean or
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Manhattan distance) between this vector and the similar vectors of each class (spam or

not), associating the message with the one that has the closest prototype vector [Drucker

et al., 1999]. This method and Ripper showed similar results, but there is an improvement

when learning is done individually for each user rather than collectively for all users.

In the literature, several research studies have confirmed the effectiveness of Support

Vector Machine (SVM) [Cortes and Vapnik, 1995] approaches for filtering spam. Kolcz

focused on class-specific classification errors [Kolcz and Alspector, 2001], while Islam et

al. select attributes to improve the classification of e-mail spam [Islam et al., 2005].

Joachims improved linear SVM methods on large scale problems and describes its

efficient implementation in a generalized classification context [Joachims, 1998]. [Sculley

and Wachman, 2007] avoided working on synthetic data and carried out more realistic

tests in the learning of messages and the detection of spam. To this end, he deployed

a method called ROSVM (Relaxed Online SVM) which slightly improved the efficiency

of the classification of spam especially by reducing greatly the computational cost of

updating the hypothesis, in particular by training only on actual errors.

Recently, Zhiwei et al. propose a method that uses data mining. The objective is to

find the optimal hybrid model with the higher accuracy. The experimental results show

accuracy improvement in email spam detection by using hybrid techniques compared to

single classifiers.

3.3.2 Social Media Spam

Since the emergence of social medias, and after the large body of work on e-mail spam,

researchers have begun measuring social spam as well. Studies such as [Thomas et al.,

2011a; Yardi et al., 2009] have focused on measuring spam on Twitter.
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Monarch [Thomas et al., 2011a] is a system for identifying spam links on Twitter. The

application processed 55 GB of data collected from about 250 000 URLs and processed

107 features/dimensions related to the network and content properties of the pages

at each URL. They identify spam campaigns in real time using statistical learning

algorithms. Another experiment run on Twitter spam is proposed by [Yardi et al., 2009].

They create a hash tag3 on Twitter, and observe the interaction of the spammers with

it in order to examine their behavioral patterns. They also study some features that

might allow one to distinguish a spammer from legitimate users, such as the number

of friends and followers. This study reveals that the behavior of spammers is different

from legitimate users, especially by the way tweets are produced, the attitudes of the

followers and the fans of their pages.

In the same vein, Whittaker et al. describe their scalable learning method to detect

phishing and improve Google’s blacklisting system. They train the classifier on a noisy

dataset consisting of millions of samples. They identify more than 90% of phishing pages.

However, many social media messages still link to malicious sites, and detecting them

remains a challenge [Whittaker et al., 2010].

Spam in blog comments has also attracted the attention of researchers who have

deployed automatic learning methods [Kolari et al., 2006; Nagamalai et al., 2010], res-

pectively SVM algorithm and Bayesian classifiers. Mishne et al. use linguistic modeling

to find semantic differences between blogs containing spam links in comments and the

targeted sites to which they refer (for example, containing adult content) [Mishne et al.,

2005]. Similarly, Markines et al. have applied machine learning algorithms (SVM and

Adaptive Boosting [Freund and Schapire, 1995]) to detect spam in the social bookmarking

3a word or phrase preceded by a hash sign (#), used on social medias to identify messages on a specific
topic.
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site BibSonomy. This study leverages features that are unique to social bookmarking

sites to isolate spam, such as tag frequency and popularity [Markines et al., 2009].

Facebook also attracts researchers to detect its spammers because it contains the

highest number of spam of all social networks [Adam, 2013]. An example is Gao et al.,

who start by filtering the data crawled from Facebook to keep only the posts that contain

URLs, their hypothesis being that every spammer will try to redirect the social media

user to an outside fake site. Then, they link the similar posts by checking if they share

the same destination or the same text content. Finally, they cluster 1 402 028 posts with

links by checking if the link is guiding to a fake website or not, in order to detect the

malicious users and posts. The authors obtain interesting results with this method, since

they detect 93.9% of malicious wall posts on their test dataset [Gao et al., 2010].

After a study by Hu et al. on Sina Weibo, the most used social network in China, three

characteristics inherent to the behaviors of spammers can be identified: their aggressive-

ness in advertising, the duplication of the contents of others posters and the aggressive

behavior of the followers. In their work, the authors adopt a particular approach, based

on the combination of models to construct groups of classifiers. The different groups of

classifiers formed are then tested on each of the three characteristics generated, and

function jointly as a single anti-spam classifier. The goal of this combination of classifiers

is to improve the performance of the spam filter. The classification accuracy obtained is

82.06% [Hu et al., 2013].

Bosma et al. use reports of spam generated by users as a tool for building an unsu-

pervised environment for the detection of spam on social networks [Bosma et al., 2012].

Their approach is to count the number of reports issued against a suspicious user, and

then weight these reports based on the reputation of the user. The determination of the

45



CHAPTER 3. MALICIOUS BEHAVIOR: DETECTION AND GROUPING

reputation and the reliability of users in social networks have been well studied [Antonio

et al., 2012] and provides promising features in the classification of social spam. Their

model uses a Bayesian classifier and links messages with similar content, regardless

of other characteristics. This study is one of the few that has served as a test model on

non-public data, including private messages, spam reports and user profiles of a major

Dutch social networking site.

A more recent study improves the identification and filtering of spam in social

networks using probabilistic methods [Xu et al., 2013]. The concept consists in using the

established social relationship between the sender and the receiver to determine their

proximity, and deduce the confidence value. This value is a determining factor in the

calculation of probabilities which serve as an indicator for the classification.

In summary, despite the large number of studies that have focused on detecting

social spam, the social medias are still rife with Spam even with all the spam detection

methods, because the creation of fake accounts is still easy as the identity verification

process can be bypassed [Scott, 2017]. Furthermore, most of the proposed methods are

not implemented and applied in real time by the developers of social medias [Tsikerdekis

and Zeadally, 2014b].

Another issue is that the attackers, most of time, do not use only one account for

attacks, but create multiple fake identities [Kelly, 2012].

Others tools are needed that leverage deeper, more nuanced data, in order to bolster

robustness against evolving attacker strategies and detect the attacks using multiple

identities.
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3.4 Multiple Identities Detection

Multiple identities detection approaches in OSMs can be classified into two categories:

feature-based approach and social-graph-based approach. In the first approach, re-

searchers focus on extracting features from users’ profiles [Yang et al., 2014] (such as

acceptance rate of incoming/outgoing requests, invitation frequency, etc.) and observing

user activity patterns [Wang et al., 2013] to derive a machine learning classification to

identify fake/Sockpuppet user accounts. In social-graph based approaches, researchers

use community detection algorithms in order to detect and group sockpuppets sharing

the same interest.

Attacks using multiple identities are one of the most prevalent and practical attacks

against systems [Douceur, 2002]. In this kind of attack, a user creates multiple fake

identities, known as Sockpuppets or Sybils, to unfairly increase their power and influence

within a target system or community. Attacks using multiple identities proved their effi-

ciency against Peer-To-Peer (P2P) systems [Lian et al., 2007], anonymous communication

networks [Bauer et al., 2007], and sensor networks [Newsome et al., 2004].

Social medias are also targets of multiple identities attacks. Sockpuppets have been

identified on most social media sites such as Wikipedia [Solorio et al., 2013a; Tsikerdekis

and Zeadally, 2014a], Facebook [Wang et al., 2012a], Twitter [Alsaleh et al., 2014; Crabb

et al., 2015; Thomas et al., 2011b], Renren [Yang et al., 2014], Forums [Bu et al., 2013;

Liu et al., 2016] and Disqus [Zheng et al., 2011a].

Closely related to sockpuppet detection is author identification, that is the task

of identifying the original author of a document [Johansson et al., 2015; Juola, 2012;

Narayanan et al., 2012; Novak et al., 2004; Paul et al., 2015; Qian and Liu, 2013]. Re-

cently, researchers have used multiple accounts of users across different social platforms
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to identify malicious users [Venkatadri et al., 2016]. In addition, they identify accounts

operated by the same user across different social platforms [Jain et al., 2013; Silvestri

et al., 2015; Zafarani and Liu, 2013; Zheng et al., 2011a].

Some researches [Kumar et al., 2017; Solorio et al., 2013b; Tsikerdekis and Zeadally,

2014a; Yang et al., 2014; Zheng et al., 2011a] focus on detecting sockpuppetry through

author identification. They identify sockpuppets as accounts, without linking them to

others sockpuppets created by the same user. This detection, as for the case of spams, is

most of the time done through supervised machine learning algorithms and with binary

classification to distinguish between fake and legitimate accounts.

The detection of sockpuppets on social medias was introduced in 2011 by Zheng et al.

who propose to detect sockpuppet pairs in one forum and in two different forums [Zheng

et al., 2011a]. The authors use a dataset from Uwants and HK discuss. On the basis of

Detection Score, they try to find out similar keywords used by different people. They

conclude that their method can be used for monitoring the online discussion forum but

that the results have to be checked by the police and the forum moderators, because

there are still a lot of sockpuppet pairs that the method cannot detect.

Solorio et al. use natural language processing techniques to detect on Wikipedia

the users who maintain multiple accounts based on their verbal communications. The

features rely on the text analysis such as alphabet count, number of tokens, emoticons

count or the use of words without vowels (e.g. try, cry,. . . ). These features are tested

on all revisions made by the users on pages throughout Wikipedia. A Support Vec-

tor Machine (SVM) algorithm shows 68.83% overall accuracy using an experimental

dataset of 77 cases of legitimates users and sockpuppets [Solorio et al., 2013a]. Further

research expands the dataset to 623 cases, where the reported best result gives 73%
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F-Measure [Solorio et al., 2013b]. These approaches only use verbal behavior features,

but these are not always accurate because the manipulators can change their writing

method in order to skip from automatic detection.

Tsikerdekis and Zeadally propose a method to detect identity deception through the

use of non-verbal user behavior such as the number of revisions made by a user in a

specific time window since their initial registration to the website, and the total number

of bytes added and total number of bytes removed. They use publicly available data from

Wikipedia, and classify them on machine learning algorithms. For testing purpose, they

sample 7 500 cases of sockpuppets and include several machine learning algorithms such

as Support Vector Machine (SVM), Random Forest (RF) and Adaptive Boosting (ADA).

The overall accuracy is 71.3%. This detection method focuses only on the sockpuppet

account itself and does not group the sockpuppets created by the same user [Tsikerdekis

and Zeadally, 2014a].

Yang et al. integrate a real time detection of sybil accounts in the Chinese OSM

RenRen by studying non-verbal behavior. They characterize the RenRen accounts ac-

cording to the following features: Invitation Frequency, Outgoing Requests Accepted,

Incoming Requests Accepted and a measure of the mutual connectivity of a user’s friends.

They apply a SVM classifier to their ground truth dataset of 1 000 normal users and

1 000 Sybils. They randomly partition the original sample into 5 sub-samples, 4 of which

are used for the training of the classifier, and the last is used to test the classifier. The

results show that the classifier is very accurate, correctly identifying 99% of both Sybil

and non-Sybil accounts. This technique works well on Renren but the chosen features

cannot be generalized directly. For example, Sybils on Twitter do not need to create social

connections, and instead send spam directly to any user using "@" messages [Yang et al.,
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2014].

Recently, Kumar et al. study sockpuppetry behavior across nine discussion communi-

ties. They show that sockpuppets differ from ordinary users in terms of how they write

and interact with other sockpuppets. They also show that pairs of sockpuppets controlled

by the same individual are more likely to interact in the same discussion at the same

time than pairs of ordinary users [Kumar et al., 2017].

3.5 Grouping multiple identities accounts

In the previous sections, we presented the studies that identify the malicious accounts

using machine learning to separate malicious and legitimate accounts. As mentioned

above, the manipulators may create multiple identities to make their attacks. Hence,

several works focus on grouping the malicious accounts created for the same attacks in

order to stop these attacks from their source. The approaches are based on social-graph

and more precisely they use community detection algorithms.

In this section, we present the most known community detection algorithms, then we

review the proposed approaches that group the multiple fake identities.

3.5.1 Community detection

Community detection is a growing field of interest in the area of social medias applica-

tions. A large number of algorithms for community detection have been introduced in

recent years [Largeron et al., 2017; Lund, 2017; Zardi et al., 2016].

Since there are many proposed approaches, we study in this section an overview of

those that have received the most interest from the scientific community [Fortunato,

2010]. These approaches illustrate the diversity of methods and give an overview of the
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techniques classified according to their methodological principles [Danon et al., 2005;

Lancichinetti and Fortunato, 2009; Papadopoulos et al., 2012]. Many of the algorithms try

to maximize modularity [Nabaa et al., 2010], a concept proposed by [Newman and Girvan,

2004] and described in the next section. We continue by presenting the hierarchical

methods and then those related to the optimization of quality measures. Finally, we focus

our attention on model-based algorithms.

Before proceeding to the examination of the different methods, let us clarify the

relationship between the problem of the detection of communities and the partitioning

of graphs [Papadopoulos et al., 2012]. On the one hand, graph partitioning consists in

grouping the nodes of a graph into a generally predetermined number of homogeneous

subgroups by minimizing the number of links between the different groups. On the other

hand, the community detection algorithms perform the same operation with or without

requiring the knowledge of the number of communities.

A network graph is composed by a set of nodes that represent the accounts and a

set of links between these nodes called edges. The interactions between accounts are

represented as the edges between nodes. In addition, in weighted graph each edge have

a weight, that represent the robustness of link between the two related nodes.

3.5.1.1 Modularity

Modularity has been introduced by Newman to measure the quality of community

detection algorithms [Newman and Girvan, 2004]. He defines it as the following:

(3.1) Qn = 1
2∗m

∑
i, j

(ai, j −
d(ui)∗d(u j)

2∗m
)δ(ui,u j)

where ai, j is 1 if the nodes ui and u j are linked and 0 is not. The variable d(ui) is the

number of neighbors of ui, m is the total number of edges in the graph, and δ is 1 if u1
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and u j are members of the same community and 0 if not.

In the case of weighted networks, Blondel provide the following formula [Blondel

et al., 2008]:

(3.2) Q = 1
2∗m

∑
i, j

(wni, j −
ki ∗k j

2∗m
)δ(g i, g j)

where wni, j represents the weight of the edge between account ui and account u j, ki

and k j are the sum of the weights of the edges attached respectively to nodes ui and u j,

m is the sum of all of the edge weights in the graph, g i and g j are the communities of

the nodes and δ is a simple delta function.

Modularity is one measure of the structure of networks or graphs. It was designed to

measure the strength of division of a network into modules (also called groups, clusters

or communities). Networks with high modularity have dense connections between the

nodes within modules but sparse connections between nodes in different modules.

3.5.1.2 Hierarchical agglomerative algorithms

The general principle of hierarchical classification algorithms consists in grouping the

nodes iteratively into communities. At the beginning, each node is a community (there

are as many communities as nodes). The communities are merged in pairs until a large

community that contains all the nodes of the graph is obtained. At each step of grouping

two communities, a metric (quality function) is calculated. The partitioning with the

highest value of the metric considered represents the best partitioning of the graph into

communities. The result of hierarchical algorithms is a dendrogram, a tree diagram

frequently used to illustrate the arrangement of the clusters, containing the history of

community joins at each stage. In the following, we present Walktrap and Louvain as
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examples of agglomerative algorithm, because they have interesting results [Fortunato,

2010].

Walktrap. The Walktrap algorithm [Pons and Latapy, 2006] is an approach based

on random walks. The general idea is that if a random walk is performed on the graph,

then it is more likely to stay within the same community because there are only less

edges that lead outside of this given community than edges that lead to nodes inside the

community. Starting with n communities each containing only one node, the algorithm

looks for the two closest communities, merges them and recalculates the distances.

Walktrap calculates for each pair of vertices (i,j) a weight wt (i,j) corresponding to the

probability that a random walk goes from i to j in t steps. It deduces a distance between

the pairs of nodes, described in the following equation:

(3.3) distt(i, j)=
√ ∑

v∈V

|wt(v, i)−wt(v, j)|2
kv

where kv is the number of neighbors of node k.

Merges are performed until only one community covering the whole graph (see

Figure 3.1) is obtained.

Finally, for each of the intermediate cuts, the algorithm evaluates the modularity

and retains the scale that gives the highest modularity (see Figure 3.2).

Louvain. The Louvain community detection algorithm [Blondel et al., 2008] is a

greedy optimization method that attempts to optimize the modularity of a partition

of the network. The optimization is performed in two steps. Firstly, the method looks

for small communities by optimizing modularity locally. At the beginning each node

is considered as one community. The nodes are scanned in a random order. Then, the

method verifies for each node if its placement in the community of one of its neighbors

brings a gain in modularity. If this is the case, the node is moved to that community,
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Figure 3.1 – Example of a hierarchical structure of communities found by Walktrap
(Extract from [Pons and Latapy, 2006]). The corresponding dendrogram is shown in
Figure 3.2.

Figure 3.2 – Dendrogram associated with the communities of Figure 3.1 found by the
Walktrap algorithm (Extracted from [Pons and Latapy, 2006]). The Q results represents
the modularity. The partition presented by a horizontal section of the dendrogram is the
one with the maximum modularity.

otherwise it remains in the old community. Secondly, it aggregates the nodes belonging

to the same community and builds a new network whose nodes are the communities.

These steps are repeated iteratively until the modularity does not grow anymore and a

hierarchy of communities is produced.
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3.5.1.3 Hierarchical divisive algorithms

The divisive algorithms consist in splitting a network into several communities by

iteratively eliminating the links between the nodes. They begin with a single community

(the whole network), at the top of the dendrogram, until n communities with a single node

representing the leaves of the dendrogram are found. At each iteration, any connected

network is considered as a community. Existing methods differ in the choice of the

links to be eliminated and in the weight given to the links. We retain the Edge −

Beetweness Centrality as an example of a divisive algorithm.

Edge-Betweenness Centrality. The Edge-Betweenness Centrality algorithm [New-

man and Girvan, 2004] is the most classical separative method, based on a measure of

centrality. For a given edge e i, this measure is calculated as:

(3.4) EBC(e i)=
∑

i, j,i 6= j

NPui ,u j (e i)

NPui ,u j

Where NPui ,u j (e i) is the number of shortest paths from nodes ui to u j through the edge

e i and NPui ,u j the total number of shortest paths from nodes ui to u j.

This measure is defined as the number of the shortest paths of the graph that pass

through this edge. There are, in fact, few edges connecting the different communities and

the shortest paths between two nodes of two different communities have a high probabil-

ity of passing through these edges. The proposed algorithm calculates the centrality of

intermediation for each link of the graph, and then removes the link with the strongest

centrality (i.e. having the highest EBC value). Then the centrality of intermediation for

all the links of the resulting graph is recalculated and the process is iterated until all

the links have been removed and there are as many communities as nodes in the graph

(see Figure 3.3).
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Figure 3.3 – Edge-Betweenness Centrality calculation in a network

However, the execution time of this algorithm is very high. The calculation of central-

ity of intermediation is costly and has to be executed at each iteration. The algorithm

has a complexity of the order of O(m2n) where m is the number of links and n is the

number of nodes. It can therefore only be used on small graphs.

3.5.1.4 Quality optimization algorithms

There is a number of methods that are founded on the optimization of graph-based mea-

sures of community quality, and especially the measure of modularity. Approximate mod-

ularity maximization schemes abound in the literature. Apart from the seminal greedy

optimization technique [Newman, 2004], and speeded up versions of it, such as max-heap

based agglomeration [Clauset et al., 2004] and iterative heuristic schemes [Blondel et al.,

2008], more sophisticated optimization methods have been proposed. For instance, we

can cite extremal optimization [Duch and Arenas, 2005], simulated annealing [Massen

and Doye, 2005] and spectral optimization [Newman and Girvan, 2004]. Methods aiming

at the optimization of local measures of community quality, such as local and subgraph

modularity [Luo et al., 2008], also belong to this category.
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One of the fastest and most well known algorithm [Fortunato, 2010] is Fast Greed y.

Fast Greedy. The Fast Greedy algorithm [Clauset et al., 2004] uses the modularity

function Q defined in equation 3.1. Each possible division of the graph has a value Q.

This value is high for a good division of the graph and weak for the bad divisions. By

observing all the possible divisions of the graph, we note that the exhaustive computation

of Q takes an exponential amount of time in the number of nodes. This method can be

used on networks of small size (about twenty or thirty nodes) to have a reasonable time

of execution.

Optimization strategies have been proposed to improve the execution time of this

algorithm. It begins by considering each node as a community apart, then merge the

communities into pairs, choosing at each stage the pair of communities whose fusion

gives the largest increase of Q in relation to the previous iteration. Since the merging

of non-adjacent communities never produces a larger increase in Q, several possible

mergers are avoided. In this case, there are m pairs and n−1 possible mergers to link all

communities together. Thus, the total execution time is in O(mn). The algorithm stops

when it is not possible to increase the modularity any more. The maximum value of Q

corresponds to the best community structure.

3.5.1.5 Model-based algorithms

A large category of methods considers a dynamic process taking place on the network that

reveals its communities, or that an underlying model of statistical nature can generate

the division of the network into communities. Examples of dynamic processes are label

propagation [Raghavan et al., 2007], synchronization of Kuramoto oscillators [Arenas

et al., 2006], and diffusion flow, better known as Markov Cluster Algorithm [Van and
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Stijn, 2001]. In addition, community detection can be cast as a statistical inference

problem [Hastings, 2006], assuming some underlying probabilistic model, such as the

planted partition model, that generates the community structure and estimates the

parameters of this model.

Other model-based approaches rely on the principle that a good clustering is deter-

mined by a low encoding cost. Thus they perform community detection by finding the

cluster structure that results in the lowest possible cluster encoding cost [Chakrabarti,

2004; Rosvall et al., 2009]. We detail two of most known and efficient algorithms [Fortu-

nato, 2010] below : Label Propagation and Inf oMap.

Label Propagation. The Label Propagation community detection algorithm [Ragha-

van et al., 2007] is an approach in which every node is assigned one of k labels. The

method then proceeds iteratively and re-assigns labels to nodes so that each node takes

the most frequent label of its neighbors in a synchronous manner. The method stops

when the label of each node is one of the most frequent labels in its neighborhood. It is

very fast but yields different results based on the initial configuration (which is decided

randomly).

InfoMap. The Infomap algorithm [Rosvall and Bergstrom, 2008] is often considered

as the most effective model-based algorithm. It seeks to find an optimal encoding of the

graph. To do this, it seeks to minimize the length of the description of the path traveled

by a random walker, the nodes being described according to a prefixed numbering. Each

node is thus described by the identifier of the community to which it belongs and a

unique identifier within this community.

When describing the path of a walker, it begins by giving the identifier of the com-

munity in which it is located, then the identifier of the node on which it is. As long as
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the walker remains within the same community, it can describe the new node that it

reaches by its "local" identity within the community, without repeating the identifier of

this community. When its move takes it out of the community, to describe the new node

on which it is on, it give the identifier of the new community, then the identifier of the

node within the community. It is a simple system such as that used for postal addresses:

there are many streets in France called Victor Hugo (node identifier), but they can be

differentiated by the element in which they are included (city name, corresponding to

the community identifier). The operation of the algorithm is illustrated in figure 3.4.

Figure 3.4 – Illustration of the InfoMap process (from [Rosvall and Bergstrom, 2008]).
The image A represents the path of a random walker, which one wishes to encode. The
image B presents a basic means of making this encoding: a binary identifier is assigned
to each node, and the sequence of the identifiers is used to encode the path (in black,
below). The images C and D show how to optimize this encoding by assigning identifiers
to the clusters, and, for each node, an internal identifier has its cluster. We can see that
the encoding (below, colored) is more efficient than in case B. This is the solution leading
to the minimal encoding that InfoMap seeks.

In addition to its efficiency, InfoMap is very fast and thus allows to process very large

graphs.

These presented methods have been used by researchers [Liu et al., 2016; Stringhini

et al., 2015] in order to group the malicious accounts, and especially sockpuppets.
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3.5.2 Grouping Sockpuppets

As mentioned in chapter 2, sockpuppets are the multiple fake accounts created by the

same user in order to manipulate on social medias. As presented before, Social sybils are

a special type of sockpuppets created in order to influence voting results by submitting

multiple votes, or in order to support each others by arguments. They can also manipulate

opinions by creating an online illusion that many users support an opinion.

To address the problem of multiple identities on OSMs, researchers have developed

graph-based algorithms for the grouping of sockpuppets in different types of OSM such as

online discussion forums [Bu et al., 2013; Zheng et al., 2011a] and social networks [Gani

et al., 2012; Liu et al., 2016; Viswanath et al., 2010; Zheng et al., 2011a].

Sybil Community Detectors. SybilGuard [Yu et al., 2008b], SybilLimit [Yu et al.,

2008a], and SybilInfer [Danezis and Mittal, 2009] are algorithms that perform decentral-

ized detection of Sybil nodes on social graphs. In fact, all of these algorithms are based

on a common hypothesis that sybils have difficulty forming relations with legitimate

accounts (honest nodes).

The rarity of these relations causes the sybil nodes to be outliers in the graph, i.e.

there is a small quotient-cut separating the sybil nodes from the "honest" regions of the

graph. SybilGuard, SybilLimit, and SybilInfer all leverage specially engineered random

walks for this purpose. Although all of these algorithms are implemented differently,

they all generalize to the problem of detecting communities of Sybil nodes [Viswanath

et al., 2010].

SybilRank [Cao et al., 2012] allows OSM to rank users according to their perceived

likelihood of being fake (Sybils). SybilRank can scale to graphs with hundreds of millions

of nodes. The authors implemented SybilRank in the Italian telecoms operator Tuenti.
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They observe large clusters of Sybil users in regular topologies (star, mesh, tree, . . . )

that are connected to the honest communities through a limited number of attack edges.

SybilRank is notable because it is the only Sybil community detector that has been

successfully evaluated and deployed on a real social graph against attackers, while the

other studies all base their results on simulated attacks.

Sockpuppets Communities. Other researchers base their approach on the user-

names that sockpuppets use (e.g. considering that they are similar [Liu et al., 2016]),

their opinion towards topics (e.g. considering that they have the same opinion [Bu et al.,

2013]), and their interactions (e.g. considering that they reply in support of each other’s

posts [Zheng et al., 2011a]).

Liu et al. propose to detect sockpuppets groups by analyzing the sentiment orientation

of user accounts based on emotional sentences written in their posted comments. A graph

with edges between the user accounts that have similar orientations to most topics is

built. Then, after analyzing the behavior features of user accounts according to their

posts and comments, they propose a method based on multiple random walks to re-

measure the weight of each edge iteratively. Finally, they detect sockpuppet groups

(gangs) using multiple community detection algorithms. They evaluate the modularity

and the community size of their method on two Chinese forum’s datasets using two

community detection algorithms [Liu et al., 2016].

Bu et al. propose a sockpuppet detection algorithm which combines authorship-

identification techniques and link analysis. Firstly, they create a social network model in

which links between two accounts are built if they have a similar attitude to most topics.

Finally, the link-based community detection for sockpuppet network is performed. The

algorithm is evaluated on two Chinese datasets, but the accuracy of the detection is low;
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between 13.1% and 44.5% depending on the selected dataset [Bu et al., 2013].

Other researches group malicious accounts by studying the social behavior [Beutel

et al., 2013; Cao et al., 2014] or by checking the common IP addresses [Stringhini et al.,

2015].

Stringhini et al. developed a system to detect malicious communities such as botnets

acting on online services. This approach uses a bipartite graph between the set of

online accounts and the set of IP addresses. Then, it performs clustering in order to

find malicious communities that are accessed by a common set of IP addresses using a

community detection algorithm (Louvain method described in section 3.5.1.2). Finally,

it is evaluated on two real-world datasets. This method can detect accounts even if

they do not perform any malicious activity as it works only on accounts accessed by

multiple IP addresses. However, it does not distinguish between fake and compromised

accounts [Stringhini et al., 2015], and it uses non-public information.

Two other works, SynchoTrap by [Cao et al., 2014] and CopyCatch by [Beutel et al.,

2013], also focus on grouping malicious identities. These techniques look at the behavior

of a group of accounts and check whether they have anomalous or malicious behavior.

However, they are both limited, because they focus on detecting a specific attack behavior

: loosely synchronized actions, where a group of malicious identities behave similarly at

around the same time. For example, a group of sockpuppets following a set of Instagram

profiles at around the same time can potentially be detected by such schemes.

Credit Networks. The previously mentioned algorithms are designed to detect

multiple identities on OSMs, presumably so they can be banned. Other algorithms

are designed to make social networks resistant to sockpuppetry. SumUp [Tran et al.,

2009], GateKeeper [Tran et al., 2011], and Bazaar [Post et al., 2011] use max-flow
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techniques [Goldberg and Tarjan, 1988] to limit the influence of Sybils attempting to

attack social applications. SumUp focuses on collecting votes from legitimate accounts

in a polling application, while Bazaar is designed to exclude fraudulent accounts from

online marketplaces. SumUp assumes that all graph edges have a weight of one (e.g.

one user, one vote), but GateKeeper and Bazaar expand upon this by assigning custom

weights to the edges (using tickets in the former case, and positive transaction feedback

in the latter case).

3.6 Synthesis

In the introduction, we proposed a set of criteria to evaluate the researchers approaches

with respect to the issue of automatic detection and grouping of sockpuppets. In this

section, we develop the proposed analysis grid by evaluating the presented solutions.

Table 3.3 is a sum up of the related works presented in this chapter based on the

mentioned criteria.

This table shows that the methods used to detect the spams use verbal communication

analysis more than non-verbal behavior, and that in addition they only detect single

accounts.

The methods that detect multiple identities share the same criteria as spams de-

tection methods, with one difference in the analysis approaches: multiple identities

solutions use non-verbal behavior more the than the verbal communication.

The final category is the grouping of multiple identities where the proposed solutions

use most of time the non-verbal behavior. By design, they cannot detect the single

accounts. Most of grouping solutions use public information, but some of them are

applicable to all social medias, and the others are proposed for a specific platform of
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MO
Category Approach AP SMA GMI PI G

[Cohen et al., 1996; Islam et al.,
2005; Joachims, 1998; Kolcz and
Alspector, 2001; Pantel and Lin,
1998; Sahami et al., 1998; Sculley
and Wachman, 2007; Sebastiani,
2002; Thomas et al., 2011a; Whit-
taker et al., 2010]

VC X x x x

Spam

[Gao et al., 2010; Hu et al., 2013;
Markines et al., 2009; Thomas
et al., 2011a; Whittaker et al.,
2010]

VC X x X X

[Xu et al., 2013] NVB X x x X
[Bilge et al., 2009] NVB X x x x
[Antonio et al., 2012; Bosma et al.,
2012; Kolari et al., 2006; Mishne
et al., 2005; Nagamalai et al.,
2010; Yardi et al., 2009]

VC X x X x

[Solorio et al., 2013a,b; Zheng
et al., 2011a]

VC X x X x

Multiple
identities

[Yang et al., 2014] NVB X x x x
[Kumar et al., 2017; Tsikerdekis
and Zeadally, 2014a]

NVB X x X x

Grouping

[Beutel et al., 2013; Cao et al.,
2012, 2014; Danezis and Mittal,
2009; Yu et al., 2008a,b]

NVB x X X X

[Bu et al., 2013; Liu et al., 2016] VC x X X x
[Stringhini et al., 2015] NVB x X x X

Table 3.3 – Comparison between different literature methods based on
selected criteria. The abbreviations used to present the criteria are:
AP : Analysis approaches; VC : Verbal communication; NVB : Non-verbal behav-
ior; MO : Method Objective; SMA : Single malicious accounts; GMI : Grouping of multiple
identities; PI : Public information; G : Generalization.
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social medias.

In this chapter, we have seen that verbal and non-verbal communications are in-

teresting axis, but that the overall sockpuppet detection rate was not sufficient for

automatic discovery of such behavior. In fact, the manipulator can skip quite easily from

the detection of deception through verbal communication because (1) he can change the

text content and (2) the automatic detection of similar content through different verbal

expressions is not reliable enough.

We conclude also that the detection of malicious accounts without knowing the asso-

ciated accounts created for the same objective is not accurate, because if a fake account

is blocked, the sockpuppeteer can create another one and continue his manipulation.

However, there does not exist a single method in the literature that both detect and

group sockpuppets.

Based on this review of the literature, we deduce that the best criterias that should

be used to obtained a reasonable accuracy are in a general method built on well selected

public features of non-verbal behavior to detect and group the malicious accounts

of different social medias.

In the next chapters we present our proposed process SocksCatch which is composed

of three phases. The first phase prepares the process and describes what type of data

should be collected. The second phase detects the sockpuppet accounts using non-verbal

features applied on machine learning algorithms. Finally, the third phase groups the

detected sockpuppets using community detection algorithms.
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THE SOCKSCATCH PROCESS

As we have seen in the previous chapters, social medias are a privileged target for

manipulators. In order to tackle this problem, researchers proposed several solutions

to detect them. Part of these solutions only detects malicious accounts, but after the

detection the manipulators can continue their attack rapidly by using another (fake)

account. The other part of these solutions groups the malicious accounts by creating a

graph containing all the platform accounts types (legitimate and fake). They split up this

graph in trust and attackers zones. The trust zone is where the legitimate accounts are

grouped together. The attackers zone is where the fake accounts are grouped together.

The negative point of these methods is that they group all the accounts in the same graph,

thus a legitimate account might be added in the attackers zone, and a fake account might

be added to the trust zone.

In order to improve the methods presented in the literature, we propose a general

process that can be applied on several social media types with little adaptation. This

process detects sockpuppets and groups together fake accounts created by a same sock-
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puppeteer, in order to stop all the attacks performed by a same user using different

sockpuppet accounts.

In this chapter we present a global overview of the SocksCatch process, that aims

at detecting and grouping sockpuppets in social medias. First, we introduce the overall

process of SocksCatch. Then we propose a model of online social medias, in order to

represent their common elements. Finally, we introduce an application of the SocksCatch

process on the most significant collaborative project: english Wikipedia.

4.1 SocksCatch: Overall Process

Currently, as seen in section 2.3, many social medias have partial solutions for the detec-

tion and/or grouping of malicious accounts, but most of them need a manual validation.

That means that the administrators of these sites have to check the accounts and their

histories in order to take a decision to ban an account or not, thus wasting a lot of time

and effort [Tsikerdekis and Zeadally, 2014a]. In addition, a manipulator may attack

many victims before being banned.

To the best of our knowledge, there does not exist an automatic method that can at

the same time detect malicious accounts and group together the sockpuppets created by

a same sockpuppeteer.

Building on these conclusions we introduce SocksCatch, a complete process to detect

and group sockpuppets automatically (shown in Fig. 4.1). This process is composed of

three main phases. The first phase objective is the selection and pre-processing of data.

The second phase objective is the detection of sockpuppet accounts using a machine

learning algorithm. The third phase objective is the grouping of sockpuppet accounts

created by a same user using a community detection algorithm.
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Figure 4.1 – SocksCatch’s main stages and phases.

: Data Flow; : Algorithm provided as output/input.

As shown in figure 4.1, SocksCatch distinguishes three stages:

• First stage is the SocksCatch model, where we propose a general model of social

media dedicated to the detection and grouping of sockpuppets. This stage is the

generic part of sockscatch, i.e. it proposes features and models that exist in all

social media although they may be instatiated differently.

• Second stage is SocksCatch adaptation, where we instantiate and evaluate SocksCatch

model on a selected social media, in order to find the best machine learning algo-

rithm for the second phase, and the best community detection algorithm for the

third phase. This stage relies on a specific data collection to train and select the
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Figure 4.2 – SocksCatch’s first phase’s steps.

machine learning and community detection algorithms. This stage has to be done

independently for each social media when the feature instantiation differs.

• Third stage is the deployment of SocksCatch in real time, where SocksCatch is

applied online on a selected social media using the best learned machine learning

algorithm and the best community detection algorithm founded on the evaluation

of the second stage. In this stage, the data comes from the site activity, and the

detection and grouping of sockpuppets is automated.

Let us note that in this thesis the first stage is proposed and the second stages is

instantiated on a social media. The third stage (deployment) can only be done by social

medias administrators to apply the findings of the two previous stages.

The first phase of SocksCatch is dedicated to the pre-processing of the data used in

each stage. In the model stage, we represent our social medias model that will be used in

the following phases in order to support SocksCatch. In adaptation stage, the first phase

comprises two steps: data extraction from the site’s history (I) and accounts selection

(II) (Fig. 4.2). Their objective is to crawl a dataset with a specific number of accounts

from a social media site in order to evaluate SocksCatch on real accounts and to check

its accuracy. In real time stage the data is retrieved directly from the database of the

selected social media directly.
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Figure 4.3 – SocksCatch’s second phase’s steps.

The second phase objective is the detection of sockpuppets. In model stage of this

phase, we propose a set of general features that can be applied on different social

media sites. These features should differentiate the behavior of sockpuppet from that

of legitimate accounts. The adaptation stage of this phase comprises two steps: feature

adaptation and computation (III) and detection of sockpuppet accounts using machine

learning algorithms (IV) (Fig. 4.3). In the step III, we instantiate the proposed features

on the dataset of a selected social media, then we compute them for each selected account.

In the step IV, the computed features of each account are evaluated on several trained

and tested machine learning algorithms in order to detect sockpuppets. The selection of

the best machine learning algorithm for a particular site depends on the results of the

evaluation applied to the dataset of the selected social media in the first phase.

The real time stage uses this trained algorithm to detect the sockpuppets.

The last phase objective is the grouping of sockpuppets. In model stage of this phase

we propose to create a set of graphs to be used by community detection algorithms to

group the sockpuppets created by the same user, and a set of features to represent the

accounts behaviors. The adaptation stage of this phase comprises two steps: grouping

based on actions in same pages (step V) and grouping based on accounts features (step

VI) (Fig. 4.4). In the step V, a graph is created by relating each detected sockpuppet

account with the pages where it performed actions. From this first graph another graph
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Figure 4.4 – SocksCatch’s third phase’s steps.

that links the accounts to each other is extracted. Then, sockpuppets are grouped from

this extracted graph using a community detection algorithm. In the last step (VI), we

improve the detected groups by relating the remaining single sockpuppets (non-grouped)

to the detected groups based on their behavior similarities.

As in the case of the selection of machine learning algorithm, the best community

detection algorithm is identified from the results of the experiment of SocksCatch.

The real time stage uses this algorithm and features to group the sockpuppets.

In the next section we define formally the model of social medias used to support the

SocksCatch process in stage 1.

4.2 A model of social media (Stage 1, Phase 1)

We define an online social media as a tuple of the main elements that characterize the

users and their interactions with the medium. Those were selected as abstractions of

features existing in the majority of social media .
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Definition [Online Social Media]: An Online Social Media OSM is a tuple {U ,P,C, A}

such as :

• U is the set of user accounts.

• P is the set of pages.

• C is the set of categories.

• A is the set of actions.

In the following, we detail each of these sets:

Accounts: the set of existing user accounts is noted U = {u1, ...,u|U |}. Features are

used to describe accounts. The set of all defined features is F, where F = { f1, ..., f|F|}.

The relation between accounts and features is represented by the two following

functions.

Definition [Relation between accounts and features]: An account has a list of

features. Therefore, each feature represents a part of the behavior of the account. The

uFeatures function gives the features value of an account.

uFeatures : UxF 7→R

An account ui is a virtual representation of a user in a particular OSM. Let us note

that a single user can create several accounts.

Each set of accounts created by the same user forms a group. Thus, a group contains

either one account or multiple accounts. We define the set of groups as GRP where

GRP = {grp1, ..., grp|GRP|}.In the same way than single accounts, each group has a set

of features, calculated from the features of its members.
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The relation between accounts, features and groups is represented by the following

functions.

Definition [Relation between accounts, features and groups]: An account be-

longs to one and only one group. Therefore, each group includes one or more accounts.

The uGroup function gives the group of an account.

uGroup : U 7→GRP

The list of accounts corresponding to a given group is obtained by the grpAccounts

function.

grpAccounts : GRP 7→ 2U

A group has a list of features that represent the behavior of its members. The grpFeatures

function gives the features of a group.

grpFeatures : GRPxF 7→R

If uGroup(u1)= grp1, uGroup(u2)= grp1 and uGroup(u3)= grp2, then the

accounts u1 and u2 belong to a same group grp1 and u3 belong to the group

grp2.

Inversely, grpAccounts(grp1)= {u1, u2} and grpAccounts(grp2)= {u3}.

Example

Pages: Pages are represented by P = {p1, ..., p|P|}.The pages correspond to the con-

crete spaces in OSM where all public information is exchanged in, e.g. a wall of an account
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or of a specific group in Facebook, an article or a user discussion page in Wikipedia,

image pages in Instagram, or profile pages in Twitter. Each page belongs to a specific

category.

Categories: Categories are represented by C = {c1, ..., c|C|}.Each category ci corre-

sponds to a semantic category of which nature depends on the kind of OSM, e.g. set of

walls or set of groups in Facebook, set of articles or set users discussions in Wikipedia,

set of images in Instagram or set of users profiles in Twitter. The basic hypothesis is that

different categories carry different weight in social medias, in terms of use and visibility.

The relation between pages and categories is represented by the two following func-

tions.

Definition [Relation between pages and categories]: A page belongs to one and

only one specific category. Therefore, each category includes several pages. The pCategory

function gives the category of a page.

pCategory : P 7→ C

The list of pages corresponding to a given category is obtained by the cPages function.

cPages : C 7→ 2P

If pCategory(p1)= c1, pCategory(p2)= c1 and pCategory(p3)= c5, then the

pages p1 and p2 belong to a same category c1 and p3 belongs to the category c5.

Inversely, cPages(c1)= {p1, p2} and cPages(c5)= {p3}

Example
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Actions: actions refer to the activity of accounts in social media pages such as

writing/reporting a post or a comment in Facebook, a tweet in Twitter, or adding/deleting

a photo in Instagram. The set of actions A is composed by the set of activities performed

by each account on pages and might depend on the characteristics of each social media.

A =
|U |,|P|⋃

i=1, j=1
A i, j

A i, j is the set of actions produced by the account ui on page p j. Each of these sets is

represented by A i, j = {a1
i, j, ...,a

|A i, j |
i, j }, an action ak

i, j being the k−th action performed by

account ui on page p j.

We complete these basic definitions with several functions that give the basic proper-

ties of the accounts and of the actions.

We include in the general model the time of events such as the creation of an account,

the time of the first action and when an action occurs because they provide a temporal

information about the actions. They are obtained by the 3 following functions (with T

being the set of timestamps):

Definition [Account creation time]: The creation time of an account is obtained by

the function

uRegTime : U 7→T

Definition [Account first action time]: The time of the first action of an account is

obtained by the function

uFirstActTime : U 7→T
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Definition [Action occurrence time]: The occurrence time of an action is obtained

by the function

aTime : A 7→T

In addition, the set of pages edited by an account (i.e. all the pages for which there

exists an action performed by this account is defined as follows:

Definition [Edited pages by an account]: The set of edited pages by an account is

obtained by the function

uPages : U 7→ 2P

Additionally, each action is described by a set of properties. Among the general

properties of interest to characterize an account behavior, we represent the number of

bytes added or removed by an action thanks to the function aBytes.

A second function, aDel, is used to indicate that an action has been reported after

its public release. A report action is a general term to catch the possibility for users to

notify an action as being malicious. As a matter of fact, this possibility exists in most of

existing OSM using different forms (revert on Wikipedia, delete post on Facebook, report

tweet on Twitter. . . ).

Definition [Action properties]: The number of bytes added or removed by an action

is given by:

aBytes : A i j 7→Z

The aDel function returns 1 if an action has been reported, 0 otherwise.

aDel : A i j 7→ {0,1}

The social media model represents users, accounts, pages, categories and their inter-

actions. In the next sections, we build SocksCatch graphs based on this model that will

be used in the phase 3 of stage 1.
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4.2.1 Action graph

Using the previous definitions, we can represent a social media as a graph that links

accounts and pages through actions.

A graph is broadly defined as G = (V ,E) where V is the set of nodes (also called

vertices) and E is a set of edges that connect nodes. In our model, the nodes are the

accounts and pages, and the edges represent the actions between these nodes. Edges

are weighted, that is, a value is assigned to them. A strong weight then indicates a high

intensity relation.

In order to represent the global activity of accounts on pages, we define a weighted

bipartite graph called action graph. In terms of notation, the action graph is thus

defined as Gact = (V act,Eact) where Gact stands for the whole platform, V act stands for

the set of nodes, and Eact for the set of all edges. The edges of this action graph are the

interactions between an account node ui and a "page" node p j. Hence, V act =U ∪P and

U ∩P =;. Therefore the edges represent relations between nodes in sets U and P. We

note eact
i, j ∈ Eact an edge that connects the account ui with the page p j. The edges are

extracted from the actions A. In order to represent the period when an account has been

active on a page, the weight wact
i, j of eact

i, j is calculated as the average of the timestamps of

each action of ui on p j.

wact
i, j =

∑
a∈A i, j

aTime(a)

|A i, j|

Algorithm 1 shows the construction of this graph. For all accounts (line 3), and for

each page visited by this account (line 4), the attributes related to the actions done by

the user (number of actions, time of these actions) is computed. Then, the algorithm

sets the average of time of actions made by account in the same page as the weight and
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creates the edges between the users and the pages.

Algorithm 1 Create Action graph
1: function CREATEACTIONGRAPH(U)
2: Gact = newBipartiteGraph ();
3: for each ui ∈ U do
4: for each p j ∈ uPages (ui) do
5: sumActionTime [p j] = 0;
6: for each ak ∈ A i, j do
7: sumActionTime [p j] += aTime (ak);
8: end for
9: wi, j = sumActionTime [p j] / length (A i, j);

10: Gact.addEdge (ui, p j, wi, j);
11: end for
12: end for
13: return Gact;
14: end function

Fig. 4.5 represents an example of an action graph formed by five sockpuppets (u1,

u2, u3, u4 and u5) and six pages (p1, p2, p3, p4, p5 and p6) where these sockpuppets

performed actions.

Let us assume the following:

u1 performed two actions in p1 at "2005−07−23 22 : 42 : 15" and "2005−07−

23 22 : 42 : 01".

u2 performed one action in p1 at "2005−07−24 18 : 58 : 47" and another one in

p2 at "2005−07−24 18 : 58 : 22".

u3 performed one action in p3 at "2005−08−26 12 : 34 : 56".

u4 performed one action in p4 at "2005−11−08 11 : 56 : 45".

u5 performed two actions in p5 at "2005− 06− 16 20 : 15 : 11" and "2005−

06−16 20 : 03 : 17" and two actions in p6 at "2005−06−15 16 : 29 : 21" and

Example
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Figure 4.5 – An example of action graph with relations between sockpuppets and pages
where they performed actions.

"2005−06−14 21 : 51 : 09".

As described above, the algorithm adds an edge between the account and the

page where he performed action and it adds the average of timestamp of actions

performed in this page as weight for the edge, for example u1 performed two

actions in the same page p1 at "2005−07−23 22 : 42 : 15" and "2005−07−23 22 :

42 : 01". Hence, the average time is 2005−07−23 22 : 42 : 08 and the weight in

seconds between u1 and p1 is:

wact
1,1 = 1122147735+1122147721

2
= 1122147728
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4.2.2 Relationship Graph

From the action graph, we extract another weighted undirected graph to be used in

community detection algorithms called relationship graph. In terms of notation, the

relationship graph is thus defined as Grel = (V rel ,Erel) where Grel stands for the whole

graph, V rel stands for the set of nodes, and Erel for the set of all edges. This graph is

used to group the accounts using a community detection algorithm. It represents the

relationship between accounts based on the actions they performed in the same pages.

On the contrary to the action graphs, an edge is a symetric relation between two

nodes of same nature. In this graph, the edges link only the accounts (U) between each

others: V rel = U. An edge erel
i, j is created between ui ∈ U and u j ∈ U if there exists at

least one page in which both accounts have contributed:

(4.1) ∀erel
i, j ∈ Erel / ∃pk ∈ P / |A i,k| > 0 ∧ |A j,k| > 0

The weight of each edge is obtained from a calculation on actions attributes to

represent the degree of relation between the accounts ui and u j. This weight is the

inversed euclidean distance between the normalized average of the actions’ time of ui

and u j. Hence, the edge between two accounts is "strong" if they made their actions in a

short time window.

The euclidean distance is calculated as follows:

(4.2) d(ui,u j)=
√ ∑

pk∈uPages(ui)∩uPages(u j)
(wnact

i,k −wnact
j,k )2

where wnact
i,k and wnact

j,k are respectively the normalized weight of edges between the

account ui with page pk and the account u j with page pk in the action graph, and they

are calculated as follows:
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(4.3) wnact
i,k =

wact
i,k −min(Wact)

max(Wact)−min(Wact)

where Wact = (wact
1,1 , ...,wact

Nu,Np
).

The inverted euclidean distance is then calculated as follows in order to make the

smallest distance as the highest weight:

(4.4) wrel
i, j = 1

1+d(ui,u j)

Fig. 4.6 represents the example of the extracted relationship graph between the

five sockpuppets mentioned above where only u1 and u2 performed actions in

the same page. In order to compute the weight of the edge between u1 and u2,

we calculateb the following values :

The normalized weight of action’s graph edges, where max(Wact) = 1131443805

and min(Wact) = 1118808615, is:

wnact
1,1 = 1122147728−1118808615

1131443805−1118808615)
= 0.264

wnact
2,1 = 1122220727−1118808615

1131443805−1118808615)
= 0.270

The euclidean distance between the normalized weights of u1 and u2 is:

d(1,2)=
√

(0.264−0.270)2 = 0.006

Example
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Figure 4.6 – An example of relationship graph between five sockpuppets based on their
actions made in the same pages.

The inverted euclidean distance of u1 and u2 is:

wrel
1,2 = 1

1+0.006
= 0.994

4.2.3 Groups Graph

By giving the relationship graph to the community detection algorithms, the core groups

detected from this relationship graph are detected. Using these groups we create another

weighted undirected graph that relate the groups based on features similarities called

groups graph. In terms of notation, the groups graph is thus defined as Ggr = (V gr,Egr)

where Ggr stands for the whole graph, V gr stands for the set of nodes, and Egr for the

set of all edges. This graph represents the relationship between groups based on the

similarity between the features of each group.

In groups graph, an edge is a relation between two nodes of the same nature. In

this graph, the edges link the groups (GRP) that have one member (account) with other
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singleton groups or with groups that have multiple members. That means that no edge

may be created between groups that already contain multiple members: V gr =GRP. An

edge egr
i, j is created between grpi ∈ GRP,and grp j ∈ GRP if there exists at least one

group with only one account:

(4.5) ∀egr
i, j ∈ Egr / ∃ grpi ∈GRP ∧ grp j ∈GRP

i f (|grpAccounts(grpi)| = 1 ∧ |grpAccounts(grp j)| ≥ 1)

∨ i f (|grpAccounts(grpi)| ≥ 1 ∧ |grpAccounts(grp j)| = 1)

The weight of each edge is obtained from a calculation on groups’ features to represent

the degree of similarity between grpi and grp j. This weight is the inversed euclidean

distance between the features of grpi and grp j. Hence, the values of features of each

group are the average of the features of the group’s members.

The euclidean distance is calculated as follows:

(4.6) dg(grpi, grp j)=
√√√√ N f∑

k=1
(grpFeatures(i,k)− grpFeatures( j,k))2

where grpFeatures(i,k) and grpFeatures( j,k) are respectively the kth feature of the

group grpi and the group grp j

The inverted euclidean distance is then calculated as follows in order to obtain the

smallest distance as the highest weight:

(4.7) wgrp
i, j = 1

1+dg(grpi, grp j)

Fig. 4.7 represents the example of a groups graph. It contains four groups where only

grp2 and grp4 are related with an edge of 0.026 as weight.

The action graph and the relationship graph are two different points of view on the

OSM. The first characterizes the behavior of the different accounts in the social media,
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Figure 4.7 – Groups graph containing four groups where only grp2 and grp4 are related
with an edge of 0.026 as weight.

while the second reifies how this behavior links the accounts with each other. The groups

graph shows if there is a similarity in the behavior of different groups.

In the next section, we present the most used collaborative project, english Wikipedia.

We then show how we mapped our proposed social media model on Wikipedia, in order

to use its data for adaptation stage where we will instantiate and evaluate Sockscatch.

4.3 SocksCatch’s application on Wikipedia’s

sockpuppets (Stage 2, Phase 1)

As seen in chapter 2, collaborative projects present several advantages to test and apply

our approach, such as the big number of collaborators and manipulators at the same time.

The collaborative project with the highest number of collaborators is English Wikipedia.

Furthermore, Wikipedia offers the ability to collect all logs and history of interactions of

all the accounts publicly.

Another important feature is that it have common features with other social medias
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like commenting on other user’s page and writing in a personal way.

Wikipedia contributors are expected to edit the pages using only one account. Hence,

the improper use of multiple Wikipedia user accounts is not allowed based on Wikipedia

rules.

Currently, in Wikipedia, any user that finds a malicious contribution and considers

an account as being a sockpuppet can open an investigation page and notify the ’check

user’, a privileged set of users who have access to the IP-address of all accounts and

contributions, in order to discuss with others whether this account is malicious or not.

The page’s administrators and ’check users’ will then check manually if this account

is a real sockpuppet or not by studying the account’s behavior and by checking the

IP-address for some cases like sleeper1 accounts. If the account is considered as being

malicious, the administrator mentions in the ban commentary the main account of the

user (sockpuppeteer).

All this data with the reason of ban is publicly available2. This makes a verifiable

use case to test algorithms/features to detect this kind of manipulation in OSMs.

In order to evaluate our proposed model of SocksCatch we instantiate it on English

Wikipedia data.

The tuple {U, P, C, A} of social medias described in section 4.2 is mapped on Wikipedia

as following :

• Accounts U are the registered accounts and the IP address of unregistered accounts.

• Categories C are namespaces such as set of articles and set of discussion pages

(table 2.2 : page 16).

1Accounts that are created as a backup for a malicious user.
2 through https://en.Wikipedia.org/w/index.php?title=Wikipedia:sockpuppet_

investigations/Cases/Overview&offset=&limit=500&action=history
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• Pages P are articles and discussion pages.

• Actions A are called contributions such as a modification in an article and a

comment in a discussion page.

As mentioned above, the data collection phase of SocksCatch is created for the

adaptation stage, because the collected data will be used to evaluate the process.

This phase is composed of two steps, where in the data extraction step we collect

all the required data for our experiment from English Wikipedia, then in the accounts

selection step we select from the collected data the accounts used to evaluate SocksCatch.

4.3.1 Data extraction

Until April 2015, the total amount of data contained in English Wikipedia was about 10

TB uncompressed3, so that it is not efficient to retrieve the whole data and process it.

Hence, we start by only crawling the accounts (blocked and legitimate), without their

activities history, from February 2004 to April 2015.

There are several reasons to block an account (such as spam, vandalism, or threats),

and each reason implies a limited or unlimited time of blocking. For our model, we decide

to study the accounts that are blocked for sockpuppet reason and for infinite time. The

total number of accounts blocked for this reason amounts to 118 414 accounts. When an

account is blocked because of sockpuppetry, the administrators state to which original

account the blocked one was linked. This allows to create the real clustering Cl′ (groups)

of accounts created by the same user.

3100 GB compressed using 7-Zip
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4.3.2 Account selection

For this study, the 118 414 sockpuppets are grouped and referred to their sockpuppeteer,

the first malicious account created by the user. 12 088 groups, are obtained ranging from

2 to 557 members. Among those groups, 5 000 sockpuppet accounts that are in a group

with more than 3 sockpuppets are randomly selected, in order to be sure that these

accounts are for users who tried many times to manipulate. These 5 000 sockpuppets are

filtered to keep only the sockpuppets that have at least a contribution in one namespace.

The final number of sockpuppets used for this phase is 4 869 sockpuppets and they are

members of 1 402 groups.

An example of such groups is that of the owner of the account "YCWebCrawler",

who has created 4 supplementary accounts ( Fixthemistakes, Wordslayer, Wikidirt

and PageOneEditor) to manipulate on Wikipedia. All these accounts are blocked

as sockpuppet accounts in English Wikipedia because they were created solely

for the deletion of material on the Dennis L. Montgomery page. All these ac-

counts use similar language about protecting family members in summaries.

Example

After selecting sockpuppet accounts, we need to select also active accounts, in order

to train the machine learning algorithms on the acceptable behaviors. We randomly

select 5 000 active accounts, which fulfill two criteria: they have been active for more

than one year and they have made at least one contribution on Wikipedia. These criteria

were selected in order to have a high probability that these accounts are not sockpuppets

undiscovered yet.
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Once these accounts were found, we crawl all related data in the thirty namespaces

mentioned in table 2.2 page 16. Furthermore, we also retrieved all information about the

namespaces’ pages, in order to know the behavior of other accounts towards the account’s

modifications. This allows for example to automatically detect whether the modifications

done by a specific account are kept by other users or reverted.

The final database used in this study thus contains 71 GB of information.

The list of selected accounts with their status (Sockpuppet or Active) is available for

researchers 4.

4.4 Conclusion

We have presented in this chapter the three stages and phases of SocksCatch. Then

we defined a model for social medias. Using this model, we describe how to build a

bipartite graph that represents the activities of accounts on social media. In addition, we

presented a relationship graph that relates accounts based on their activities performed

in the same pages. Furthermore, the groups graph that relate the group of accounts

based on their behavior similarity is detailed. Finally, the use case and our collected data

that is used to evaluate SocksCatch is introduced.

In the next chapter, we develop the sockpuppet detection phase. In this phase several

features are proposed in order to differentiate between a sockpuppet and an active

account, then we show how these features can be adapted on English Wikipedia. Fi-

nally, the adapted features on English Wikipedia are evaluated using different machine

learning algorithms.

4http://pagesperso.litislab.fr/~jsaunier/EnWikipedia_users_list.txt
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SOCKPUPPET DETECTION

As we have seen in the previous chapter, SocksCatch is composed of three phases:

preparation phase, sockpuppets detection phase and sockpuppets grouping phase. In

addition, SocksCatch distinguishes three stages: model stage, adaptation stage and real

time stage.

In this chapter, we develop the second phase of SocksCatch : detection of sockpuppets

using machine learning algorithms.

In the model stage, we propose a set of general features, in order to differentiate the

sockpuppet and legitimate account’s behaviors on social medias. These features can be

adapted and applied on different OSMs.

In the adaptation stage, we adapt and instantiate the proposed features on English

Wikipedia. Then, we introduce the experimental part: we present the metrics that

evaluate the computed features on six trained and tested machine learning algorithms.

The machine learning algorithm with the highest accuracy is selected in order to be

used in the real time stage of sockpuppets detection phase.

91



CHAPTER 5. SOCKPUPPET DETECTION

5.1 Sockpuppet Detection’s Features (Stage 1, Phase

2)

In order to differentiate between a sockpuppet and a legitimate account, we propose

several features Fdetect, where Fdetect ⊂ F and F is the set of features (definition 4.2,

page 73). These features focus on three main axes: action behavior, other accounts

behavior toward an account’s actions, and account characteristics.

Concerning the action behavior, we assume that the goal of a sockpuppet is to

manipulate contributions on a specific topic or category of an OSM. Thus, the number

of actions performed by an account in specific categories is interesting. We have also

observed that some fake accounts try to remove specific pieces of information or to add

misinformation. The average of bytes added and/or removed in each action and the

average of the actions of each account in the same page are then promising features.

The behavior of the other accounts towards the studied account is also an indication.

The number of reported actions of an account is another important feature because some

other users can notify malicious contributions.

Finally, the account characteristics can be a sign of malicious behaviour. While in

general, legitimate users register and contribute directly (the registration being done

in order to contribute), some manipulators create many accounts at the same time and

leave most of them sleeping until the active account is blocked. In order to detect these

cases, we propose a feature that subtracts the time of the first action performed and the

time of account’s registration.

These features will be instantiated on a social media platform, in order to be computed

for each account. Then the list of accounts with their calculated features will be used to
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train and test the machine learning algorithms.

The proposed features are detailed below:

Number of account’s actions in different OSM categories:

This is a set of features to represent the activity of an account in each of the OSM

categories to detect the focus of the selected account. Hence, each category correspond to

a feature, using the number of actions performed in these categories.

If we take Facebook as an example, the number of added comments in Facebook pages

as a feature, and the number of added comments in friends posts as another feature is

taken into account.

The features ActionNb(ui, ck) are calculated as follows:

∀ck ∈ C,∀ui ∈U ,

ActionNb(ui,ck)= |Aui ,ck | with

Aui ,ck = {ai, j|ai, j ∈ A and pCategory(p j)= ck}

Average of bytes added or removed in each action:

The goal of a fake account may also be detected through its addition/removal behavior.

Hence, we propose two features to compute the average of bytes added by writing actions

or/and the average of the bytes removed by writing action.

Let A+
ui

be the set of actions consisting in adding bytes and A−
ui

be the set of actions

consisting in removing bytes, they are defined as:

∀ui ∈U ,

A+
ui

= {ai, j|ai, j ∈ Aui and aBytes(ai, j)> 0}

A−
ui

= {ai, j|ai, j ∈ Aui and aBytes(ai, j)< 0}

The feature Addition(ui) and Removal(ui) are then:
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• if A+
ui

=;, Addition(ui)= 0.

• if A+
ui

6= ;,

(5.1) Addition(ui)=

∑
a∈A+

ui

aBytes(a)

|A+
ui |

• if A−
ui

=;, Removal(ui)= 0.

• if A−
ui

6= ;,

(5.2) Removal(ui)=

∑
a∈A−

ui

aBytes(a)

|A−
ui |

Focus of an account’s actions:

Some fake accounts try many times to change or to add the same (mis)information

in the same page. They focus on the same pages, because they have a specific objective

to manipulate an information or idea. This feature is calculated as a ratio between the

number of actions and the number of pages modified by an account.

The feature Focus(ui) is defined as:

∀ui ∈U ,

• if |uPages(ui)| =;, Focus(ui)= 0.

• if |uPages(ui)| 6= ;,

(5.3) Focus(ui)=
|Aui |

|uPages(ui)|

Number of reported actions of an account: As mentioned in chapter 2, most of OSM

platforms give the ability for the accounts to report or to delete other accounts action if

they are considered as malicious or inappropriate. Using this reporting system the OSM

platforms benefit from the contribution of their users to detect the malicious actions,
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which is very helpful because most of platforms have a huge number of users, and in

addition the human detection is reliable. In this feature, we compute the number of

reports performed by other accounts toward the selected account.

Let Aui be the set of actions of an account and Arep
ui ⊂ Aui the set of its reported

actions i.e,

∀ui ∈U ,

Aui =
Np⋃
j=1

A i, j

Arep
ui = {ai, j|ai, j ∈ Aui and aDel(ai, j)= 1}

The feature Reported(ui) is then:

(5.4) Reported(ui)= |Arep
ui |

Delay between account’s creation and first action: The policies of most OSM plat-

forms do not allow the creation of multiple accounts by the same user [Elizabeth, 2015;

Twitter, 2017], but at the same time they can be created technically. The manipulators

benefit from this technical issue to create many accounts at the same time, and they

leave most of them sleeping until their active account is blocked, where they begin using

a backup one. We propose this feature that calculates the difference between the creation

time of an account and its first action, in order to detect the sleeping accounts.

The feature Delay(ui) is defined as:

(5.5) Delay(ui)= uFirstActTime(ui)−uRegTime(ui)

In the next section, we present the adaptation stage of sockpuppet detection phase,

where we start by the adaptation of the proposed features on Wikipedia environment,

then we compute and evaluate the adapted features using machine learning algorithms.
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5.2 Sockpuppets Detection Adaptation (Stage 2,

Phase 2)

The objective of this section is to evaluate the efficiency of the proposed features in the

detection of sockpuppets on english Wikipedia.

This phase of SocksCatch adaptation is composed of two main steps. In first step,

we adapt and compute the proposed features in SocksCatch model stage on english

Wikipedia. Then, in second step, we evaluate these computed features using machine

learning algorithms, in order to know if the proposed features are efficient in the case of

wikipedia and which is (are) the best algorithm(s) that should be used in SocksCatch’s

real-time stage.

5.2.1 Features Adaptation on Wikipedia

As mentioned in the previous chapter, we applied SocksCatch on english Wikipedia.

Hence, the set of features Fdetect proposed in second phase of SocksCatch’s model stage

is instantiated in order to be adapted and computed on Wikipedia data.

The adapted features that detect the behavior of the accounts on Wikipedia are

described below.

Number of account’s contributions by namespaces:

These features are instantiated from “Number of account’s actions in different OSM

categories”. Six features are created based on the following namespaces: article, article

discussion, user page, user discussion page, project namespace and other (all other

namespaces, mentioned in table 2.2 page 16, are combined under one feature, because

they are rarely used).
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Average of bytes added and removed in all the contributions:

As mentioned in the section 5.1 and more precisely in the description of the feature

“Average of bytes added or removed in each action”, the goal of a manipulator may be

detected sometimes from its addition/removal behavior.

In Wikipedia, we can apply the two original features, where A+
ui

is the set of bytes

added in each contribution and A−
ui

is the set of bytes removed in each contribution.

For example, let say that an account u3 performed 5 contributions in different

articles, where it added respectively 400, 600, 100 bytes of information in con-

tributions a1, a2, a5 and it removed respectively 200, 600 bytes of information

in contributions a3, a4. The values of features Addition(u3) and Removal(u3)

are then:

Addition(u3)= 400+600+100
3

= 550 bytes

Removal(u3)= 200+600
2

= 400 bytes

Example

Average of contribution in the same articles:

In this feature, the “focus of an account’s actions” is instantiated to one feature where

the average number of contributions in the same article for each account is calculated.
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For example, let say that an account u12 contributes 5 times in article p1 and 2

times in article p2. The value of feature Focus(u12) is then:

Focus(u12)= 5+2
2

= 3.5

Example

Number of revert after each contribution in the articles:

In collaborative projects, each page or article is managed by many contributors. It is

the reason why we consider that some malicious contributions will be reverted directly

by another contributor.

Since in Wikipedia the articles are the main namespace, we decided to instantiate

the feature “number of reported actions of an account”, described in section 5.1, to

the number of direct revert after each contribution in an article without taking into

consideration the revert of contributions in other namespaces because the manipulation

that should be deleted occurs on articles and not on other namespaces.
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For example, an account u4 contributes 20 times in Wikipedia pages, but had

10 out of 20 contributions reverted (|Arep
u4 |). The value of feature Reported(u4)

is then:

Reported(u4)= 10

Example

Delay between the time of account’s registration and his first contribution:

This feature is the same as proposed in the process, where it can detect the accounts

created but not used yet.

The 11 obtained features are summarized in table 5.1.

In the next section, we present the evaluations metrics used in order to evaluate the

second phase of SocksCatch’s adaptation stage.

5.2.2 Evaluation Metrics

The second phase of SocksCatch uses machine learning algorithms. Thus before evaluat-

ing this phase at adaptation stage, we present the metrics used to evaluate their results

in order to select the best machine learning algorithm that should be used in real time

stage.

We first show the model accuracy n and then use the confusion matrix shown in

Table 5.2. This matrix is used to visualize the performance of the different algorithms

using the following metrics:

(5.6) TruePositiveRate(TPR)= TP
TP +FN

99



CHAPTER 5. SOCKPUPPET DETECTION

Table 5.1 – a brief description of the instantiate features adapted on Wikipedia data

Feature’s title Adapted features Fdetect for account ui
Number of account’s actions in dif-
ferent OSM categories

ActionNb(ui,ns0) : number of contributions
in the articles
ActionNb(ui,ns1) : number of contributions
in the discussion of articles
ActionNb(ui,ns2) : number of contributions
in the user page
ActionNb(ui,ns3) : number of contributions
in the discussion of user page
ActionNb(ui,ns4) : number of contributions
in the page that contains informations about
Wikipedia
ActionNb(ui,nsOthers) : number of contri-
butions in all the rest of namespaces

Average of bytes added or re-
moved in each action

Addition(ui) : average of bytes added in all
the contributions
Removal(ui) : average of bytes removed in
all the contributions

Focus of an account’s actions Focus(ui) : average of contribution in the
same articles

Number of reported actions of an
account

Reported(ui) : number of revert after each
contribution in the articles

Delay between account’s creation
time and first action

Delay(ui) : time in seconds between the time
of the registration in Wikipedia and the time
of the first contribution

This metric indicates the rate of truly detected sockpuppet.

(5.7) FalsePositiveRate(FPR)= FP
FP +TN

This metric indicates the rate of falsely detected sockpuppet.

(5.8) Precision = TP
TP +FP

This metric indicates the fraction of returned cases that are valid sockpuppet cases.

(5.9) Accuracy= TP +TN
TP +TN +FP +FN
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Table 5.2 – Table representing the confusion matrix used to evaluate the efficiency of our
proposed method.

Predicted sockpuppet Predicted Legitimate Accounts
Sockpuppet True Positive (TP) False Negative (FN)

Legitimate accounts False Positive (FP) True Negative (TN)

This metric indicates the fraction of true positives and true negatives returned over the

total number of cases.

(5.10) F −measure = 2∗Precision∗TPR
Precision+TPR

This metric indicates the test of a model’s accuracy that combines TPR and precision.

(5.11) MCC = TP ∗TN −FP ∗FNp
(TP +FP)(TP +FN)(TN +FP)(TN +FN)

Matthews correlation coefficient (MCC) metric indicates a balanced measure which can

be used even if the classes are of very different sizes.

Area under ROC curve (AUC) = TPR−FPR+1
2(5.12)

Area under a ROC curve (AUC) estimates the probability that a randomly chosen positive

instance will be ranked higher than a randomly chosen negative instance.

In the next section, we present the experiment realized on the computed features

in order to evaluate the accuracy of sockpuppet’s detection using machine learning

algorithms.

5.2.3 Sockpuppet’s detection: experiment and results

This experiment uses the dataset that comprises 10 000 accounts, half blocked accounts

and half legitimate accounts.
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Php scripts that work on raw pages have been developed in order to calculate all the

instantiated features values for each account, to pre-process the data, to use them in

training and testing of machine learning algorithms.

Supervised learning is used in order to detect sockpuppet accounts. The relevance of

the selected features is evaluated through several machine learning algorithms in order

to prove the accuracy and robustness of the proposed method.

The following machine learning algorithms are used to evaluate the efficiency of the

detection of sockpuppets phase:

• Support Vector Machine (SVM) [Cortes and Vapnik, 1995].

• Random Forest (RF) [Breiman, 2001].

• Naïve Bayesian (NB) [Robertson and Jones, 1976].

• K-Nearest Neighbor (KNN) [Altman, 1992].

• Bayesian Network (BN) [Pearl, 1985].

• Adaptive Boosting (ADA) [Freund and Schapire, 1995].

Let us note that all these algorithms are considered ideal for binary classification [Wit-

ten et al., 2016], as it was the case in our study.

The dataset was randomly split to 2/3 (6 666 accounts) for learning and validation

and 1/3 (3 334 accounts) for testing. We should note that the 6 666 accounts are members

of groups different from the groups of 3 334 accounts. We separate the data in this way,

in order to be sure that while testing our dataset, the machine learning algorithm will

not benefit from a similar behavior learned from accounts in same group.
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In order to detect the best parameters of the machine learning algorithms, the 2/3 of

the dataset was validated using ten-fold cross-validation for each algorithm. Then, the

best detected parameters’ values of each algorithm are set for the testing phase.

During validation, the 6 666 accounts are split randomly into ten folds where each

fold contains 667 accounts; nine folds (6003 accounts) of them are used to build a model

while one fold (663 accounts) is used for testing the model. Then we record the values of

the metrics described in section 5.2.2. This process is repeated ten times and each time

we used a different seed for splitting the dataset. The average of the ten recorded values

of each metric is calculated at the end.

We used ten-fold cross-validation because it has been previously proven to produce

highly accurate estimates in terms of how models (and as a result our overall method)

would perform in previously unseen data [Hall et al., 2011].

Weka1 toolbox is used to experiment the features, where the metrics described in the

section 5.2.2 are used to quantify the quality of prediction.

The obtained results are shown in the table 5.4, table 5.5 and Fig. 5.1. These results

are discussed in the following paragraphs.

Machine Learning Algorithms optimization

All the results are obtained after the optimization of the parameters of each classifier on

Weka using ten-fold cross-validation method.

Table 5.3 presents the parameters’ values that give the best accuracy of the selected

machine learning algorithm while the validation of our model.

The best accuracy is obtained for Random Forest when we set the number of trees

to be generated as 100, the maximum depth of the tree as 0 (for unlimited) and we
1http://weka.wikispaces.com
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Table 5.3 – Table presenting the parameters’ values that give the best accuracy of the
selected machine learning algorithm while the validation of our model.

Machine Learning Algorithm Weka Parameters
SVM Cost = 5

Kernel = Poly Kernel
Random Forest # of Trees = 100

Maximum depth = unlimited
Naïve Bayesian useSupervisedDiscretization = True

K-Nearest Neighbor K=1
Distance Weighting = Weight by 1-distance

Bayesian Network All default values
Adaptive Boosting # of iterations = 30

keep the default value of the number of randomly chosen attributes as 0 which mean

int(log2(#predictors)+1) is used. For the remaining classifiers, the best accuracy is

obtained when the number of iterations to be performed is 30 for Adaptive Boosting,

the number of neighbors to use (K) is 1 and the distance weighting method used is

Weight by 1−distance for KNN, the cost parameter C is 5 for SVM with Poly kernel. We

set useSupervisedDiscretization as True, to convert numeric attributes to nominal

ones for Naïve Bayesian and we keep the default values of the parameters of Bayesian

Network.

5.2.3.1 Machine Learning Algorithms comparison

Table 5.4 compares the precision of our proposed model over different machine learning

algorithms, It shows that an accuracy over 81% is obtained with five algorithms : Random

Forest 91%, Adaptive Boosting 86%, Bayesian Network 82.1%, Naïve Bayesian 82%, and

K-Nearest Neighbor 81.5%.

The results of the remaining algorithm are also good results, with SVM at 73.7%.

Table 5.5 and Fig. 5.1 compares the different values of our proposed model metrics

between many machine learning algorithms. It shows that TP Rate, Precision, Recall
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Table 5.4 – Table comparing the accuracy percentage of our proposed process over
different machine learning algorithms.

Machine Learning Algorithm Sockpuppet’s Detection Phase Accuracy
SVM 73.7%

Random Forest 91%
Naïve Bayesian 82%

K-Nearest Neighbor 81.5%
Bayesian Network 82.1%
Adaptive Boosting 86%

and F-Measure using Random Forest algorithm are 0.911, and that the MCC and AUC

are respectively 0.824 and 0.961. The AUC using Naïve Bayesian give 0.887, 0.801 using

KNN and 0.939 using Adaptive Boosting.

Figure 5.1 – Schematic compression of performances’ results between different machine
learning algorithms.

Figures 5.2 and 5.3 show respectively the ROC curve for Random Forest (highest

accuracy) and SVM (lowest accuracy).
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Table 5.5 – Table comparing the performances’ results between different machine learn-
ing algorithms.

TP Rate FP Rate Precision Recall F-Measure MCC AUC
SVM 0.737 0.263 0.820 0.737 0.719 0.551 0.737

Random Forest 0.911 0.089 0.913 0.911 0.911 0.824 0.961
Naïve Bayesian 0.820 0.180 0.827 0.820 0.819 0.647 0.887

K-Nearest Neighbor 0.817 0.184 0.818 0.817 0.817 0.634 0.801
Bayesian Network 0.822 0.178 0.829 0.822 0.821 0.651 0.891
Adaptive Boosting 0.861 0.139 0.871 0.861 0.860 0.731 0.939

Figure 5.2 – ROC curve for Random Forest.

Figure 5.3 – ROC curve for SVM.

The results in tables 5.4 and 5.5 show that the compared algorithms Random forest,

SVM, Adaptive Boosting, K-Nearest Neighbor, Naïve Bayesian and Bayesian Network

are suitable using our features for automatic suppression of sockpuppets accounts, and

they also show decent results.

5.2.3.2 Early detection of sockpuppet

In order to check the accuracy of of the early sockpuppet’s detection of SocksCatch, we

identify the differences in accuracy as time progresses for the sockpuppet’s detection

phase, we calculated several models (Mt) for t = 1 day of activity after registration (8 253
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Table 5.6 – Table comparing the accuracy percentage of our proposed process over time.

Model Random Forest’s Accuracy
M1 67.2%
M10 69.1%
M20 70.4%
M30 71.9%

accounts), t = 10 days of activity after registration (8 945 accounts), t = 20 days of activity

after registration (9 132 accounts), and t = 30 days of activity after registration (9 233

accounts). Time-dependent variables are likely to affect our model depending on the time

t we would set when testing their performance.

Table 5.6 compares these temporal models using Random Forest; the algorithm with

the best accuracy percentage on the full dataset. In this table we can see that the accuracy

is increasing with time where SocksCatch can predict 67.2% of sockpuppets after 1 day of

activity and arrive to 71.9% after 1 month of activity. However, the accuracy is increasing

slowly because many sockpuppets accounts are created as sleeping accounts, and do not

start their activities directly after creation, where some of them rest sleeping for many

months before they start their first contribution.

The features of M1 model are evaluated using correlation attribute evaluation method

and it shows that the best three features are the number of contributions in the articles,

then the number of revert after each contribution in the articles and the third is the

number of contributions in the discussion of user page. From this evaluation, we can

conclude that the malicious contribution of most sockpuppets are early detected and

reverted by legitimate users. In addition, the number of contributions of sockpuppets in

main areas are significantly different from legitimate users.

Based on these results, we can say that the early sockpuppet’s detection is efficient if

it is used to report suspect accounts so that administrators can keep a close eye on or
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restrict certain features for suspect accounts for a time period.

5.2.3.3 Literature Comparison

In order to compare our results to previous literature, table 5.7 presents a comparison

between the results of our sockpuppet’s detection phase and Tsikerdekis [Tsikerdekis

and Zeadally, 2014a] method. This method is the closest to our work and it presents the

best accuracy between the literature’s methods.

We implemented this method and compute its features on our dataset, then we train,

validate and test them in the same way as presented in section 5.2.3. The results obtained

for this method are the same as those published by the original authors.

Table 5.7 – Table comparing the results between our sockpuppet’s detection phase and
Tsikerdekis method [Tsikerdekis and Zeadally, 2014a]

Machine Learning Algorithm Tsikerdekis method
Accuracy

Our Sockpuppet’s Detection
Phase Accuracy

SVM 60.9% 73.7%
Random Forest 73% 91%
Naïve Bayesian 67.4% 82%

K-Nearest Neighbor 64.5% 81.5%
Bayesian Network 67.4% 82.1%
Adaptive Boosting 71% 86%

In table 5.7, we can observe that our sockpuppet’s detection phase gives better

accuracy percentage than previous work using all presented machine learning algorithms.

The accuracy of Tsikerdekis’s method is the highest using Random Forest algorithm with

73% while it is 91% using our process.

Another significant difference of 17% between the two methods arises when using

K-Nearest Neighbor algorithm, where we arrive to 81.5% and Tsikerdekis’s method to

64.8%.
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Comparing the two studies, only the feature selection is significantly different and

explains the results variation.

5.2.3.4 Discussion of results

The results presented in the previous sections show that the Random Forest algorithm

has the best accuracy between all other algorithms, and that the other algorithms are

nearly as efficient. The fact that five different algorithms show accuracy results over

81% is an indication of the robustness of our features selection.

Since we arrive to an accuracy of 91% we can consider that the selected features are

robust and accurate and they can be used to detect sockpuppet accounts. This accuracy is

due to the big number of data used in the learning algorithms and to the selected features

that can differentiate between a sockpuppet and a legitimate account. The force of these

features is that they cover three axes of social media’s account: account’s action behavior,

other accounts behavior toward an account’s actions, and account characteristics.

We evaluate our list of features using correlation attribute evaluation method and we

found that the best three features are the delay between the time of account’s registration

and his first contribution, then the number of revert after each contribution in the articles

and the third is the average of added bytes.

The comparison with literature shows that our features improve the accuracy of the

detection of sockpuppets with 18% using Random Forest algorithm.

One of the reason that our process can be considered as effective in the detection of

sockpuppet accounts is that the manipulators are not necessarily aware of the non-verbal

indicators, and it is difficult to manipulate all the selected features, for example the revert

number after each revision is a very good indicator because the manipulator cannot

109



CHAPTER 5. SOCKPUPPET DETECTION

control this feature to try to hide from detection. The non-trivial data preprocessing may

also create a difficulty for the manipulators to be aware that there is a method that

detects the time difference between the registration and the first contribution.

Finally, it is very difficult for a manipulator to be aware that he should change the

writing behavior from time to time in order to skip from the detection.

5.3 Conclusion

In this chapter, we presented the phase of sockpuppets’ detection, where we detailed all

our proposed features that should differentiate between the behavior of sockpuppet and

legitimate accounts. In addition, we show how to adapt and instantiate these proposed

features on Wikipedia case. Furthermore, we presented the metrics used in order to

evaluate the sockpuppets’ detection phase.

In the evaluation of the second phase we detect sockpuppet accounts with an accuracy

over 81% in 5 machine learning algorithms where the remaining algorithm detect over

73.7% of sockpuppets. This success is due to a good selection of the features that are

the inputs to the algorithms, because they differentiate very well between a sockpuppet

account and a legitimate account. These machine learning algorithms were trained and

evaluated using 10 fold cross validation method using 10 000 cases as dataset.

We can conclude that in SocksCatch real time stage, Random Forest is the best

machine learning algorithm that should be used in order to detect the sockpuppets on

Wikipedia.

In the next chapter, we detail the third phase of SocksCatch process. This phase is

the one that groups the detected sockpuppet created by the same sockpuppeteer in one

group.
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GROUPING SOCKPUPPETS

The previous chapter describes the second phase of SocksCatch, where we propose in the

model stage a set of features that should detect the behavior of accounts. Then, during

SocksCatch adaptation stage, we instantiate and evaluate these features on English

Wikipedia using a machine learning algorithm, where we conclude, for the dataset that

have been used, that Random Forest is the algorithm that must be used in real time

stage in order to detect the sockpuppet accounts on Wikipedia.

However, in social medias, manipulators attack using many sockpuppet accounts

for increasingly complex criminal endeavors. They are the source of several types of

manipulation such as those created to praise, defend or support a person or an organiza-

tion [Stone and Richtel, 2007] or to manipulate public opinion [Elsner, 2013]. For this

reason, each sockpuppet should be grouped with other sockpuppets that have the same

behavior.

In this chapter, we detail SocksCatch’s third phase, that aims at grouping together

the sockpuppets created by the same manipulator.
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In this phase of SocksCatch model stage, we propose a process that comprises two

steps: the grouping of sockpuppets based on the actions performed in the same pages

then the grouping based on accounts’ behavior. In SocksCatch adaptation stage, we

describe how we adapt this process on English Wikipedia. Then, we evaluate it using

different community detection algorithm, in order to find the best community detection

algorithm that should be used during the real time stage.

6.1 Grouping Sockpuppets Process (Stage 1, Phase

3)

6.1.1 Grouping sockpuppets based on actions in the same pages

This step of SocksCatch consists in creating a relation between the sockpuppets that

performed actions in the same pages. In order to identify the strength of the relationship

between these sockpuppets, the process studies the approximate time between the sock-

puppets’ actions in each page. Then, it groups together the sockpuppets that performed

actions in the same pages in a short time span.

Algorithm 2, resumes the step of grouping accounts using the actions performed in

OSM pages.

Algorithm 2 Grouping accounts based on actions performed in same pages

1: Gact = createActionGraph(U);
2: Grel =Gact.bipartite_pro jection(′accounts′,′ euclidean_distance′);
3: groupedAccounts = communityDetection(Grel , communityDetectionAl gorithm);
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Graphs construction

First, the action graph (detailed in section 4.2.1) is created by relating each sockpuppet

to the pages where it performs actions (algorithm 1, page 79). If an account performed

several actions in the same page, the average time of these actions is calculated and

added as weight for the relation. Otherwise, the time of action itself is considered as

weight of relation.

From this action graph (example in fig. 4.5, page 80), the relationship graph (detailed

in section 4.2.2, page 81) that represents the relations between sockpuppets based on

their actions performed in the same pages is projected (algorithm 2, line 2), using the

inversed euclidean distance as weight for edges (equation 4.3, page 82).

In this first graph, there are three types of accounts:

1. Accounts without any actions - that means that they do not have any edge in the

relationship graph with any other account.

2. Accounts with actions performed in common pages with other accounts - that

means that these accounts have at least one edge with other accounts, based on

the pages of actions, such as u1 and u2 in fig. 4.5, page 80.

3. Accounts with actions but in pages where no other accounts performed action in

the same page- that means that they also do not have any edge in the relationship

graph with any other account, such as u3, u4 and u5 in fig. 4.5, page 80.

Our process cannot detect the groups of the type (1) because these accounts do not

have actions in the OSM so we do not have data for them1. Hence, these accounts are

excluded from the detection phase, because we cannot detect this type of sockpuppets

based on their behavior.

1This means they were detected originally through private data such as IP addresses
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In order to group the two remaining types of accounts, we group type (2) in the next

section then type (3) in the section 6.1.3.

Grouping sockpuppets

After the creation of the relationship graph (example in fig. 4.6, page 83), we use a

community detection algorithm in order to produce the first set of sockpuppet groups

(algorithm 2, line 3).

Fig. 6.1 represents an example of the grouped sockpuppets using Fast Greedy commu-

nity detection algorithm.

In this example four groups are created grp1, grp2, grp3 and grp4, where grp1

has two members u1 and u2, and the others groups grp2, grp3, and grp4 have

respectively one member u3, u5 and u4. Let us note that in this example the

account of groups with one member are the accounts that performed actions but

not in the same pages where others accounts performed, because, as mentioned

above, the first type of accounts is excluded.

Example

In order to tackle this issue, we propose a second step to improve the grouping.

6.1.2 Grouping sockpuppets based on accounts’ behavior

This step of SocksCatch improves the first groups sets, by creating additional edge

between groups and sockpuppets with close behavior.
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Figure 6.1 – An example of the created groups of sockpuppets based on the pages of
actions and using Fast Greedy community detection algorithm.

The previous step produces a set of sockpuppets groups. However, this set is composed

from two types of groups:

• Groups with multiple members, such as grp1 in fig. 6.1.

• Groups with one member (non-grouped sockpuppets), such as grp2 in fig. 6.1.

In order to group the non-grouped sockpuppets, we propose to add relations between

groups and sockpuppets based on their behavior’s similarity.

Algorithm 3 summarizes the steps used to group the sockpuppets using behavior’s

similarities. First, we add features to all the detected groups (line 1). This step is detailed

in algorithm 4. Then we create the groups graph using these features (line 2), where this

step is detailed in algorithm 5. Finally, we detect and draw the final set of groups using

a community detection algorithm (lines 3, 4 and 5).
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Algorithm 3 Grouping accounts after adding features
Input: groupedAccounts

1: groupsWithFeatures = addFeaturesToGroups(GRP);
2: Ggrp = createGroupsGraph(groupsWithFeatures);
3: Groupedgroups = communityDetection(Ggrp, communityDetectionAl gorithm);

4: f inalAccountsGroups = extractGroups(Groupedgroups, groupedAccounts);
5: drawGraph( f inalAccountsGroups);

6.1.3 Account’s Features

We start by defining a set of features F grp that will be computed for each account, where

F grp ⊂ F. These features represent the behavior of the account from his actions in order

to detect if there are many accounts that try to remove or add the same information, or

concentrate on a specific subject with a close number of actions.

We re-use a part of the features from phase 2 (section 5.1) such as "number of

account’s actions in different OSM categories" and "average of bytes added or removed in

each action".

In addition, other features are proposed and described below:

Total number of actions performed

Some manipulators perform lot of actions in OSM and others perform only few actions.

This features will lead to connect the sockpuppets that performed actions in the same

range.

∀ui ∈U ,

TotalActionNb(ui)=
|A|∑
k=1

ActionNb(ui, ck)(6.1)

Maximum number of actions performed in the same pages

We consider that some sockpuppets in the same group will focus their manipulation on

the same page and others will not. This feature will help to know the type of concentration
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of a group.

∀ui ∈U ,

MaxActionInPage(ui)=max
|uPages(ui)|∑

j=1
|A i j|(6.2)

Groups graph construction

In order to get the final set of sockpuppets’ groups, we create a groups graph (detailed

in section 4.2.3, page 83), then we re-use a community detection algorithm to group the

sockpuppets’ groups.

There are two types of nodes in this new graph: Group Nodes representing the groups

with multiple members, and Singleton Nodes representing the groups with one member.

Each node has the same list of features F grp mentioned in section 6.1.3. However,

the values of these features are computed in the following way:

• Singleton Node : We add the same features values of the group’s member.

• Group Node : Each feature takes the average value of the values of the group

members.

Fig. 6.2 represents an example of the detected groups in the previous step, in addition

to the computed features of each account.

In this example, we assume that their are four categories in the social media

(c1, c2, c3 and c4). Each account has a list of eight features, where F grp = Ac-

Example
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Figure 6.2 – An example of the detected groups in addition to the computed features of
each account.

tionNb(c1), ActionNb(c2), ActionNb(c3), ActionNb(c4), TotalActionNb, Addition,

Removal MaxActionInPage. These features are calculated for the five users.

We compute the features similarities between each Singleton Node and between

all others nodes (Group Node and other Singleton Node ) using the euclidean distance

(equation 4.6, page 84). Then, a new edge is added between the Singleton Node and all

the others nodes. The weight of each edge is the inverted euclidean distance and it is

calculated using the equation 4.7, page 84.

Fig. 6.3 represents an example of the groups graph in addition to the computed

features of each group and to the distance and weight between the groups.
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Figure 6.3 – An example of the groups graph in addition to the computed features of
each group and to the distance and weight between the groups.

In this figure grp2, grp3 and grp4 are Singleton Node , grp1 is a Group Node,

and each node (grp1, grp2, grp3 and grp4) has a list of eight features where the

features values of the group node (grp1) are the average value of the values of

group’s members. The edges between the nodes are weighted by inversing the

euclidean distance of the features values of each node.

Example

In order to relate the most similar groups only, we keep the edge with the highest

weight between each singleton node and the others nodes. In addition, we delete all the

remaining edges that have a low weight under a defined threshold.

In this way, the groups graph that relates the groups based on the most similar
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Figure 6.4 – An example of the groups graph in addition to the cuts of the edges that
have a low weight.

features is built.

The algorithm 5 details how the groups graph are constructed.

Fig. 6.4 represents an example of the groups graph in addition to the cuts of the edges

that have a low weight.
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Algorithm 4 Add groups features
1: function ADDFEATURESTOGROUPS(GRP)
2: sumFeatures, setGroupFeatue = new array();
3: for each grpi ∈ GRP do
4: for each fk ∈ F grp do
5: for each u j ∈ grpAccounts (grpi) do
6: sumFeatures [i][k] += uFeatures(u j, fk);
7: end for
8: end for
9: for l = 1 to |F grp| do

10: grpi.setGroupFeature (l, sumFeatures [i][l]/|grpAccounts(grpi)|);
11: end for
12: end for
13: return GRP;
14: end function

Algorithm 5 Create groups graph
1: function CREATEGROUPSGRAPH(GRP)
2: Ggrp = newGroupsGraph ();
3: minDistance = MAX_INTEGER;
4: for each grpi ∈ GRP do
5: for each grp j ∈ GRP do
6: if |grpAccounts(grpi)| = 1 or |grpAccounts(grp j)| = 1 then
7: dg = euclidean_distance(grpFeatures(grpi), grpFeatures(grp j));
8: weight = 1/(1+dg);
9: if (dg < minDistance) and (weight >

SIMILARITY _THRESHOLD) then
10: minDistance = dg;
11: minJ = j;
12: wgrp = weight;
13: end if
14: end if
15: end for
16: Ggrp.addEdge(i,minJ,wgrp);
17: end for
18: return Ggrp;
19: end function
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Figure 6.5 – An example of the groups graph with the edges that relate the most similar
groups.

In this figure grp2, grp3 and grp4 are Singleton Node and grp1 is Group Node,

and each node (grp1, grp2, grp3 and grp4) has a list of eight features where the

features values of the group node (grp1) are the average value of the values of

group’s members. The edges between the nodes are weighted by inversing the

euclidean distance of the features values of each node.

Example

Grouping sockpuppets

The groups graph with the edges that relate the most similar groups (example fig.6.5), is

used as input to a community detection algorithm. The final set of sockpuppets’ groups is

formed from the Singleton Nodes that are not grouped in the final step, and the "Group

Nodes" that contains the accounts grouped through both steps.

Fig. 6.6 represents an example of the final set of the grouped sockpuppets using Fast

Greedy community detection algorithm.
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Figure 6.6 – An example of the created groups of sockpuppets after using features
similarities.

At the end of this example, three groups of sockpuppets are created grp1, grp2

and grp3, where grp1 has always two members u1 and u2. Additionally, u3 and

u4 are grouped together after using the features similarities in grp2. However,

u5 is still alone in grp3, because its behavior is not similar to others account.

Example

6.2 Sockpuppets Grouping Adaptation (Stage 2,

Phase 3)

The objective of this section, is to evaluate the efficiency of the proposed process in the

grouping of sockpuppets created by the same sockpuppeteer on English Wikipedia.

This phase of SocksCatch’s adaptation is composed of two main steps. In first step,

we group together the sockpuppets that contribute in the same pages using a community

detection algorithm. Then, in second step, we adapt and compute the proposed features
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in SocksCatch model stage on English Wikipedia, in order to create relations between

the sockpuppets that have a close behavior. Furthermore, we re-group the sockpuppets

with strong relation using a community detection algorithm.

At the end of the evaluation of this phase we will know if the proposed process

is efficient on the case of Wikipedia and which are the two best community detection

algorithms that will be used in the two steps of SocksCatch’s real time stage.

In the following we start by presenting the metrics that are used in order to evaluate

the final set of detected groups. These metrics are used to compare the similarity between

the detected groups during SocksCatch adaptation stage and the real groups detected

manually by the administrators of English Wikipedia. Furthermore, we present how

we adapt and instantiate the proposed features in the second step on Wikipedia case.

Finally, we experiment and evaluate both steps of SockCatch’s grouping phase.

6.2.1 Evaluation Metrics : Measures to compare two clusters

In our experiment, we used modularity (described in section 3.5.1.1, page 51) and

different measures to compare two clusters in order to evaluate the grouping phase

of SocksCatch adaptation stage. We compare the output clustering Cl (groups) of

SocksCatch’s grouping process with the real clustering Cl′ using different metrics that

are most used in this field.

The used metrics are the variation of information (V I) [Meilă, 2007], normalized

mutual information (NMI) [Strehl and Ghosh, 2002], split-join distance [Dongen, 2000],

Rand index (RI) [Rand, 1971] and adjusted Rand index (ARI) [Hubert and Arabie, 1985].

These metrics are chosen because they measure the similarities between the clusters

in different ways, so that we can compare the results of similarities from different

124



6.2. SOCKPUPPETS GROUPING ADAPTATION

perspective.

These metrics can be divided in three types where each type measure the similarity in

a way: V I and NMI use the information-theoretical mutual information, Split− Join

uses the summation of set overlaps, and RI and ARI use the counting of pairs of

elements.

6.2.1.1 Variation of Information

Meila proposed a measure called variation of information (V I) between two clusterings. It

corresponds to the amount of information lost and gained in changing from clustering Cl

to clustering Cl′. The V I score range between 0 (identical clusterings) and log N where

N is the total number of elements in the clustering. Kraskov et al. detail a formulation

to normalize V I (NV I) where NV I range from 0 and 1 (identical clusterings) [Kraskov

et al., 2005].

6.2.1.2 Normalized Mutual Information

Normalized mutual information (NMI) introduced by Strehl et al. measures the similarity

of the two sets of clusterings, ignoring permutations. An NMI score of 1 implies that

the labels correlate perfectly, and an NMI score of zero indicates that the labels have no

correlation with each other.

6.2.1.3 Split-Join

Dongen proposed Split-Join metric which is the number of changes (splits and joins)

required to transform one clustering into the other, and in that sense it ranges from 0

(identical clustering) to 2∗N where N is the total number of elements in the clustering.
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6.2.1.4 Rand Index

The principal of Rand Index (RI), proposed by Rand, is to check for each pair of elements

in Cl, if they are classified is the same way (together or separately) in Cl′. The value

of RI depends on the number of clusters and the number of elements. It ranges from 0

(no pair classified in the same way under both clusterings) to 1 (identical clusterings).

Morey and Agresti showed that the Rand Index is highly dependent upon the number of

clusters [Morey and Agresti, 1984].

6.2.1.5 Adjusted Rand Index

Hubert et al. introduced the Adjustment Rand Index (ARI) to correct the problem with

Rand Index of two random clustering that does not take a constant index (e.g. zero).

Thus, Adjusted Rand Index is the (normalized) difference of the Rand Index. It ranges

between -1 and 1 (identical clustering).

6.2.2 Features adaptation on Wikipedia

As in the sockpuppet’s detection phase, the set of features proposed in the SocksCatch

model stage for the second grouping of sockpuppets is adapted on Wikipedia data. These

features are proposed in order to relate together the sockpuppet’s group (with one

member and multiple members) detected in the first step of this third phase.

The adapted features that relate the sockpuppets’ groups with close behavior are

described below:

“Number of account’s contributions by namespaces” and “Average of bytes

added and removed from each contribution”

These are the features described in section 5.2.1, page 96 instantiated respectively
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from “Number of account’s actions in different OSM categories” and “Average of bytes

added or removed in each action”.

Total number of contributions in all the namespaces

This feature is instantiated from “Total number of actions performed”.

Maximum number of contribution in the same articles

This feature, “Maximum number of actions made in the same pages” is instantiated

to one feature where the maximum number of contributions in the same article for each

account is calculated.

For example, let say that an account u6 contributes 3 times in article p10, 12

times in article p3 and 8 times in article p6.

The value of feature MaxActionInPageu6 is then:

MaxActionInPageu6 =max(3,12,8)= 12

Example

In the following, we experiment the efficiency of the grouping sockpuppets phase

proposed in SocksCatch model stage.

6.2.3 Grouping sockpuppets: experiments and results

In order to evaluate the third phase of SocksCatch adaptation stage we use the same

sockpuppets detected in the second phase.

As mentioned above, the final number of sockpuppets used is 4 869 sockpuppets and

they are members of 1 402 groups.
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We use the API of python-igraph2 to evaluate this phase of SocksCatch model, so after

selecting the sockpuppet accounts, we create the action graph then we extract from it the

first relationship graph, and create the groups of sockpuppets based on the contributions

of accounts in the same pages using a community detection algorithm.

Figure 6.7 – First set of sockpuppets’ groups with the relations between accounts detected
through InfoMap algorithm.

Fig. 6.7 represents the graph of the created groups using the InfoMap algorithm.

In this graph each color represents a group and we can observe that there are a lot of

singleton nodes (group with one sockpuppet). From this figure we present in table 6.1

some statistics about the number of groups in relation to the number of their members.

In this table we can see that the number of singleton nodes is 1 402 groups.

After grouping the sockpuppets, we compute the features mentioned in section 6.2.2

for each sockpuppet. We use 0.00022 as threshold of similarity, based on a manual

2http://igraph.org/python
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Table 6.1 – Number of first set of groups in relation to the number of their members.

Number of groups’ members Number of groups
Singleton member 1402

Two members 171
between 3 and 10 members 225

between 11 and 20 members 49
More than 20 members 22

Table 6.2 – Number of final set of groups in relation to their number of members.

Number of groups’ members Number of groups
Singleton member 795

Two members 205
between 3 and 10 members 334

between 11 and 20 members 52
More than 20 members 23

calibration to find the best threshold. Then, we create the groups graph that contains

the new relations between the singleton nodes and the most similar other nodes.

Finally, we group sockpuppets from the groups graph using the same community

detection algorithm used in the previous step. We use the same community in both steps,

because it is very time consuming to test with all the combinations of algorithms, but it

will be interesting in the future to test this phase with more combinations other than

the same algorithms in both steps.

Fig. 6.8 represents the graph of the final created groups using the InfoMap algorithm.

In this graph each color represents a group and we can observe that most accounts are

in a group with at least two members. From this figure we present in table 6.2 some

statistics about the number of groups in relation to the number of their members. We

can conclude from this table, that the number of singleton nodes has decreased after the

second grouping from 1 402 to 795. In addition, the number of groups that have between

3 and 10 members has increased from 225 to 334 groups.
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Since our objective in this section is to evaluate our model, we test this phase using

the following community detection algorithms:

• FastGreed y [Clauset et al., 2004].

• Inf oMap [Rosvall et al., 2009; Rosvall and Bergstrom, 2007].

• LeadingEigenV ector [Newman, 2006].

• LabelPropagation [Raghavan et al., 2007].

• WalkTrap [Pons and Latapy, 2006].

These algorithms are those that have received the most interest from the scientific

community [Fortunato, 2010]. In addition, these approaches illustrate the diversity of

methods and give an overview of the techniques classified according to their method-

ological principles [Danon et al., 2005; Lancichinetti and Fortunato, 2009; Papadopoulos

et al., 2012].

Let us note that the grouping can be done through different methods such as com-

munity detection algorithms or graph partitioning. However, we decided to solve the

problem of the grouping using the community detection algorithms, because the graph

partitioning consists in grouping the nodes of a graph into a generally predetermined

number of homogeneous subgroups by minimizing the number of links between the

different groups. On the other hand, the community detection algorithms perform the

same operation with or without requiring the knowledge of the number of communities,

which is the case in this study.
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Table 6.3 – Number of created groups and modularity over different community detection
algorithms.

Community
detection algo-
rithm

First detected
groups #

Modularity 1 Final detected
groups #

Modularity 2

Fast Greedy 1658 0.379 1207 0.998
InfoMap 1869 0.366 1409 0.998
Label Propaga-
tion

1677 0.177 1235 0.981

Leading Eigen
Vector

1559 0.341 1107 0.998

Walk Trap 2918 0.288 2015 0.999

6.2.3.1 Community detection algorithms comparison

The metrics described in the sections 3.5.1.1, page 51 and 6.2.1, page 124 are used to

quantify the quality of the predicted groups.

Table 6.3 compares the results of different community detection algorithms used by

our process. It represents the number of the groups created by SocksCatch in the two

steps (using the contributions in same pages then using the behavior similarity). The

grouping based on contributions in same pages and the number of created groups is

very high in comparison with the real number which is 1 402, by example using Fast

Greedy algorithm, the step 1 creates 1 658 groups. In fact, this high number is due to the

random dataset selection, that leads to a big numbers of singleton node that contributes

in some pages where no other account from the same dataset contributes in them. We can

observe that the values of the modularity 1 are lower than the values of the modularity 2,

because in first step of this phase the detection of the communities is more complicated

due to the number of edges which is much higher than in second step.

We can observe that using InfoMap algorithm, the number of SocksCatch groups is

the closest to the number of initial groups. But a close number of groups does not mean a
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good grouping. In order to compare between the created groups and the initial groups we

used the comparison metrics exposed in section 6.2.1, where Cl represents our created

groups and Cl′ represents the original groups .

Table 6.4 represents the different results of the metrics used to evaluate the similarity

between SocksCatch created groups and the initial groups. From this table we can see

that the values of Rand Index are over 98% for two algorithms, but in fact, Fowlkes

et al. [Fowlkes and Mallows, 1983] show that the Rand Index converges to 1 as the

number of clusters increases which is undesirable for a similarity measure, so it could

be unrealistic in these cases. Also, we can see that the Rand index is greater than the

adjusted Rand index. In fact, the range of values is greater for the adjusted Rand index

([−1,+1] than for the Rand index ([0,+1]), but it is also affected by the number of clusters.

From table 6.4 we can deduce that the algorithms InfoMap and Walk Trap have very

close results. In addition, they have the best results for most of the similarity metrics

between all other algorithms, for example, The NMI value is 0.868 for InfoMap and 0.873

for Walk Trap, which means that the created groups are ≈ 87% similar to the initial

groups using NMI metric. Also we can observe that Split-Join value of InfoMap is the

lowest which means that it is the best between all the algorithms as it measures the

number of changes (splits and joins) required to transform one clustering into the other,

which means that the nearest number to 0 is most similar. Also, for the V I metric where

the lowest number is the best. However the NV I which is a normalized value of V I has

the best value for InfoMap and Walk Trap and which is equal to 0.858, that means that

for V I metric, SocksCatch create ≈ 86% of sockpuppets’ groups similar to the real groups

on English Wikipedia.

Hence, we can conclude that the best algorithm that will be used in SocksCatch’s
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Table 6.4 – Similarities between our created groups and the original groups over different
community detection algorithms.

Community detection Algorithm VI NVI NMI Split-Join RI ARI
Fast Greedy 3.021 0.749 0.729 3537 0.882 0.021

Infomap 1.701 0.858 0.868 3041 0.987 0.126
Label propagation 3.609 0.7 0.658 3649 0.727 0.008

Leading Eigen Vector 3.741 0.689 0.635 3707 0.769 0.011
Walk Trap 1.707 0.858 0.873 3075 0.991 0.125

real time stage is InfoMap because it has the best results in most similarity metrics, in

addition it detect the nearest groups’ number (1 409) to the real groups’ number (1 402),

with a difference of 0.5% only in the term of the number of groups.

Figure 6.8 – Final groups of sockpuppets detected through InfoMap algorithm.
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6.3 Conclusion

In this chapter, we present the phase of grouping the sockpuppets created by the same

sockpuppeteer. In this phase, we propose a grouping process that is divided into two

main steps. First, we group the sockpuppets that perform actions in the same pages in

a close time. Then, we improve the detected groups by relating the groups with single

member to others groups (single and multiple members) thanks to the comparison of

their behavior using a set of proposed features. Furthermore, we presented how we adapt

and evaluate the proposed process on English Wikipedia.

In the evaluation of the third phase we created a set of sockpuppets’ groups with

an ≈ 86% of similarity with the real sockpuppet’s groups (according to NMI and NV I

metrics), with a difference of 0.5% in the number of total groups between the created

and the real groups. In this evaluation, we experiment the two steps of this phase using

the same community detection algorithms, but an interesting perspective is to evaluate

them using different combination to check if they give better results.

From the results of our experiment, we can conclude that during the application

of SocksCatch in real time on the dataset extracted from Wikipedia, InfoMap in the

best community detection that must be used in both steps, with a threshold equal to

0.00022 in the second step, in order to group together the sockpuppets create by the

same manipulators.
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7
CONCLUSIONS AND PERSPECTIVES

Sockpuppets have become an increasingly important issue in social medias. Many so-

lutions were created in order to detect malicious behaviors on social medias. Two main

approaches are used: verbal communication analysis and non-verbal behavior analysis.

Detection through verbal communication relies on the analysis of textual content,

such as studying the links in post on Facebook, detecting sentiments from tweets on

Twitter, or checking repeated words from Reddit’s comments.

Detection through non-verbal behavior does not take into account the semantics of

the users interactions. Its focus is on the other aspects of the behavior of the user using

descriptive values, such as the number of friends’ requests on Facebook, the average of

tweets every day, the average of added characters in each comment on Reddit.

In this thesis, we present SocksCatch, a process to detect and group sockpuppets on

social medias using non-verbal behavior analysis. It is divided in three main phases:

The first phase objective is the preparation of the process. The second phase objective

is the detection of sockpuppet accounts using a machine learning algorithm. The third
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phase objective is the grouping of sockpuppet accounts created by a same user using a

community detection algorithm.

The introduction of this thesis raises six questions that have been addressed by our

SocksCatch proposal:

Q1: How to differentiate between the behavior of sockpuppets and legitimate accounts ?

A1: The non-verbal behavior of sockpuppets are studied. Chapter 3 shows that non-

verbal behavior analysis are more efficient than verbal communication because they give

better results. Furthermore, users that have an objective to manipulate a precise article

will find a difficulty to skip from the detection and to change their non-verbal behavior if

they want to achieve their goal.

To answer this question, a set of characteristics to differentiate the behavior of

sockpuppets from that of legitimate accounts is proposed such as the number of reported

actions of an account, and the delay between account’s creation and first action.

Q2: Can sockpuppets be automatically detected ?

A2: In the second phase of SocksCatch, data is collected from English Wikipedia,

then our proposed characteristics are adapted on Wikipedia environment. Furthermore,

these characteristics are instantiated and computed for a set of 10 000 accounts (half

sockpuppets and half legitimates). Finally, the computed characteristics are evaluated

using different machine learning algorithms to automatically detect sockpuppets. Our

experiment shows that SocksCatch detects around 91% of the selected sockpuppets using

Random Forest algorithm on this evaluation dataset, which proves the feasibility of the

approach.

Q3: How to relate together sockpuppets that have a close behavior ?

A3: Non-verbal behaviors analysis are used in order to find out the common elements
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and the differences in the behavior of sockpuppets. Furthermore, the third phase of

SocksCatch propose to create a set of graphs that relate all sockpuppets contributing in

the same areas in a close time and with a close behavior using a set non-verbal behavior

characteristics.

Q4: Can the sockpuppets that correspond to a single malicious user be grouped together?

A4: The same 4 869 sockpuppets collected from English Wikipedia are used. Then, the

proposed graphs are applied on these accounts, in order to group and relate together the

sockpuppets created by the same manipulator. In addition, the proposed characteristics

are adapted and computed on Wikipedia environment. The applied graphs are evaluated

using different community detection algorithms. Our experiment shows that SocksCatch’s

grouped sockpuppets and the real sockpuppet’s groups are similar around 87%, according

to the cluster’s comparison measures: normalized variation of information (NVI) and

normalized mutual information (NMI).

Q5: What are the common characteristics between different types of online social media

that can be exploited to propose a generic model for sockpuppets detection?

A5: Chapter 2 shows that OSMs are founded on common grounding because they are

usually based on accounts to uniquely identify users. These accounts have some common

properties between all OSMs such as usernames and the time of creation of each account.

The action possibilities can also be modeled independently from the particular cases,

for example all OSMs include ways to add information. Our generic model of OSMs

presented in chapter 4 benefits from these common characteristics, where it shows how

to present an OSM from a general point of view, without depending from the specification

of this OSM.

Q6: How to adapt the solution to a specific online social media?
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A6: Chapters 4, 5 and 6 presents a concrete example for the adaptation of our proposed

process (SocksCatch) on a social media: English Wikipedia. This adaptation shows how to

instantiate and apply the general model and characteristics on accounts from Wikipedia,

by adapting the features of each phase and selecting the best machine learning and

community detection algorithms.

As mentioned above, SocksCatch’s detection phase is experimented using machine

learning algorithms. However, the success of a machine learning algorithm depends on

the selection of features that are the inputs of the algorithm. In this way, in the evaluation

of the second phase, an accuracy over 81% is achieved with five algorithms: Random

Forest, Adaptive Boosting, Naïve Bayesian, Bayesian Network and K-Nearest Neighbor.

We believe that these good results come from a relevant selection of characteristics,

which cover well the differentiating information between a sockpuppet account and a

legitimate account. These machine learning algorithms were trained, evaluated and

tested using 10 fold cross validation method using 10 000 cases as dataset.

In order to check if SocksCatch can detect sockpuppets early before performing their

attacks, it is evaluated after different time of sockpuppet’s activities, where we found that

our proposed process is capable to detect 67.2% of sockpuppets on Wikipedia after 1 day

of activity after their registration using Random Forest algorithm. Based on this result,

we can say that the detection phase is efficient if it is used to report suspect accounts

so that administrators can keep a close eye on or restrict certain features for suspect

accounts for a time period. Furthermore, the behavior of sockpuppets is significantly

different from that of legitimate users as soon as they begin their activity

The detection phase of SocksCatch is also compared with the literature where the

result of comparison shows that our features improve the accuracy of the detection of
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sockpuppets with 18% using Random Forest algorithm.

The evaluation of the third phase shows ≈ 86% of similarity between the sockpuppets’

groups detected by our algorithm and the real sockpuppet’s groups (according to NMI

and NV I metrics), with a difference of 0.5% in the number of total groups between the

created and the real groups.

This work demonstrates that SocksCatch can be successfully used on English Wikipedia

using Random Forest as machine learning algorithm for the detection phase, and In-

foMap as community detection algorithm for the grouping phase.

Perspectives

As we have seen, SocksCatch shows very good results in the detection and grouping

of sockpuppets. In the future, it must be evaluated on different social media data, like

Facebook or Twitter. To achieve this, the different features proposed in the SocksCatch

process have to be instantiated depending on the distinctive characteristics of each social

media, and depending on which data is available.

It is possible to use or adapt the features proposed in the SocksCatch model for

several social media. For example, table 7.1 shows an example of the characteristics that

can be used on data from Twitter and from Facebook to automatically calculate features

similar to those used in this thesis. The adaptation to these social medias environments

may be direct (e.g. the interval between the user registration and his first post, or the

number of contributions in each namespace / page type) or indirect (e.g. reverts do not

exist in some social media, but a comment deletion may be assimilated to a revert). Note

that some of these data are not publicly available, and thus would necessitate to have

an administrator access to be put in practice. These features should be evaluated in the
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Table 7.1 – Comparison between the general proposed features and the instantiated
features for Twitter and Facebook data

General features Twitter features Facebook features
Number of account’s ac-
tions in different OSM
categories

Number of account’s tweets
or comments in different cat-
egories (home, tweets . . . )

Contributions’ number by
the user in the different
types of Facebook pages
(groups, profile, friend page
. . . )

Average of bytes added or
removed in each writing
action

Average of bytes added in
each tweet and in each com-
ment

Average of added bytes in
the personal profile and on
the others wall

Diversity of pages mod-
ified by an account’s ac-
tions

Average of tweets and com-
ments for the same hashtag

Average of contributions on
the hall of a friend or in a
page or in a group

Number of reported ac-
tions of each account

Number of received reports
on account tweet and the
number of deleted com-
ments

Number of received reports
and the number of deleted
comments

Delay between account’s
creation and first action

Delay between the time of
account’s registration and
the time of his first action
on twitter

Delay between the time of
account’s registration and
the time of his first action
on Facebook

future using the adaptation stage of the SocksCatch process.

Non-verbal indicators cannot be manipulated as easily as verbal communications,

for example the revert number after each revision is a good indicator because the

manipulator cannot control this feature to try to hide from detection. The non-trivial

data pre-processing may also create a difficulty for the manipulators to be aware that

there is a method that detects the time difference between the registration and the

first contribution. In the future, other features that are more difficult to be known by

manipulators can be added, in order to make the sockpuppets detection more accurate

such as the number of reports that an account performs on other accounts, and the delay

between the contributions’ time of an account.

Another perspective concerns the grouping phase of SocksCatch. It is composed by
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two steps, where the same community detection algorithm is used in the application of

both steps. It would be interesting to evaluate different community detection algorithms,

and test all their combinations in first and second step.

Finally, the implementation of SocksCatch to automatically detect and group Sockpup-

pets in Wikipedia would be helpful to its administrators in terms of time spent to achieve

this task manually, as it is currently the case. However, we should note that the online

performance of our method is not tested, where the machine learning algorithm will be

trained before running the real time process. In addition, an extended solution must

be made if the behavior of sockpuppets change over time, where the machine learning

algorithm learn incrementally in real time about the new behaviors. Furthermore, the

groups would have to be updated progressively when detecting a new sockpuppet.
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