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xi Link between structural and electronic properties of moirés of graphene studied by scanning tunneling microscopy
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Le sujet de cette thèse est l'étude expérimentale du lien entre la structure et les propriétés électroniques des couches tournées de graphène par microscopie et spectroscopie à eet tunnel à basse température.

Alors que l'eet de l'angle entre les couches sur les propriétés électroniques a déjà été étudié en détail, la modication de celles-ci par une déformation des couches n'a été envisagée que récemment. La première partie de ce travail expérimental étudie la modication par la déformation des propriétés électroniques de couches de graphène tournées d'un angle de 1.26 • , crûes sur carbure de silicium. La déformation en question est diérente dans les deux couches et son eet apparait clairement dans la densité locale d'états électroniques du moiré mesurée par spectroscopie tunnel. La diérence de déformations entre les couches (déformation relative) modie fortement la structure de bandes, transformant les cônes de Dirac en bandes plates. Ce changement radical est induit par de faibles valeurs de déformations relatives mises en évidence par l'analyse des images de microscopie tunnel. Les résultats, confortés par des calculs de liaisons fortes, montrent notamment que vii la déformation d'une couche par rapport à l'autre est beaucoup plus ecace pour modier les propriétés électroniques qu'une déformation appliquée aux deux couches.

Alors que cette déformation relative était spontanément présente, la deuxième partie de cette thèse s'intéresse à l'eet d'une déformation appliquée directement aux couches de graphène. Cette déformation vient d'une interaction induite par l'approche de la pointe STM vers la surface de graphène. La modication active de la densité d'états est gouvernée par le choix des conditions tunnels qui xent la distance entre la pointe et la couche de graphène. Ces eets dépendent de la position de la pointe dans le moiré avec l'apparition d'instabilités périodiques lorsque la distance entre la pointe et l'échantillon est très faible.

La troisième partie de cette thèse concerne l'étude d'un autre type de modication des propriétés électroniques consistant en l'induction de supraconductivité dans les couches de graphène. Cette modication est eectuée par une croissance du graphène en une seule étape sur du carbure de tantalum supraconducteur. Les résulats montrent la formation d'une couche de carbure de tantale de grande qualité sur laquelle les couches de graphène forment des moirés. La mesure à basse température de la densité d'états de ces moirés met en évidence la présence d'un eet de proximité supraconducteur induit par le carbure de tantale à travers les couches de graphène. viii SUMMARY Recent years have seen the emergence of two-dimensional crystalline layers, called 2D materials. Examples include the well-known graphene, insulating hexagonal boron nitride and superconducting niobium diselenide. The stacking of these 2D materials can be controlled to achieve desirable electronic properties under the form of van der Waals heterostructures. One of the simplest van der Waals heterostructures is the misaligned stacking of two graphene layers. Twisted graphene layers show a moiré pattern which can be viewed as a superperiodic potential that depends on the twist angle. The electronic properties of the twisted graphene layers are strongly linked to this moiré pattern.

The subject of the present thesis is the experimental study of the link between the structural and the electronic properties of twisted graphene layers by means of low-temperature Scanning Tunneling Microscopy and Spectroscopy (STM/STS).

While the eect of the twist angle has already been studied in great details, the modulation of the electronic properties by the deformation of the layers has been explored only recently. In the rst part of this experimental work, a strain-driven modication of the electronic properties is probed in graphene layers with a twist angle of 1.26 • , grown on silicon carbide. The determined strain is found to be dierent in the two layers leading to a clear signature in the local electronic density of states of the moiré probed by Scanning Tunneling Spectroscopy. This dierence of strain between the layers (relative strain) modies strongly the electronic band structure, transforming the Dirac cones in at bands. This radical change is triggered by low relative strain magnitudes evidenced by the analysis of the Scanning Tunneling Microscopy images. The results, backed by tight-binding calculations, show notably that straining one layer with respect to the other is much more ix eective in changing the electronic properties compared to applying strain in both layers.

While this relative strain is natively present, the second part of the work explores the eect of an applied strain in the layers. This is realized by approaching the STM tip to the graphene surface to trigger an interaction between the two. The resulting active modication of the density of states is governed by the choice of the tunneling conditions that set the distance between the tip and the graphene layer. These eects also depend on the position on the moiré, leading to periodic instabilities at very low tip-sample distances.

In the third part of the work, another type of modication of the electronic properties is studied when superconductivity was induced in the graphene layers. This is done by growing graphene on superconducting tantalum carbide in a single-step annealing. The results show the formation of a highquality tantalum carbide layer on which graphene layers form moiré patterns. The low-temperature density of states of these moirés show evidence of a superconducting proximity eect coming from the tantalum carbide across the graphene layers.

x

INTRODUCTION

In 2004 was reported the isolation of graphene, a one-atom-thick layer of carbon [START_REF] Novoselov | Electric Field Eect in Atomically Thin Carbon Films[END_REF]. The layered structure of graphite allowed to reduce it to its thinnest form by mechanical exfoliation. This drew a lot of interest from the scientic community as it was the rst time that a two-dimensional material was made available by table-top techniques. The particular properties of graphene also made it very interesting for both fundamental studies and applications.

It was then discovered that a whole family of layered materials could be exfoliated like graphite. This led to the isolation of numerous one-atom thick layers such as MoSe 2 , NbSe 2 , hexagonal boron nitride or phosphorene, now known as 2D materials [START_REF] Novoselov | Two-dimensional atomic crystals[END_REF]. These 2D materials are a rich family in which insulating, semi-conducting, conducting or superconducting 2D compounds can be found. To combine these properties, it was proposed to simply stack these materials, taking advantage of the weak out-of-plane van der Waals bonding to avoid any structural damage [START_REF] Geim | Van der Waals heterostructures[END_REF][START_REF] Novoselov | 2D materials and van der Waals heterostructures[END_REF]. By designing such so-called van der Waals heterostructures, devices with unique physical properties can be built from atomically thin materials.

Notably, one of the simplest van der Waals heterostructures can be realized by the misorientated stacking of two graphene layers. The mismatch between the atomic lattices of the two layers leads to the appearance of a superperiodic feature called a moiré pattern in analogy with optical moiré patterns. This moiré pattern can be viewed as an interference of the atomic periods and acts as an additional periodic potential on the electrons. Due to this, moirés of graphene show a very strong link between structural parameters and the electronic band structure [START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF][START_REF] Lopes Dos Santos | Graphene Bilayer with a Twist: Electronic Structure[END_REF][START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF][START_REF] Trambly De Laissardière | Localization of Dirac Electrons in Rotated Graphene Bilayers[END_REF][START_REF] Trambly De Laissardière | Numerical studies of conned states in rotated bilayers of graphene[END_REF]. This system is particularly suitable to Scanning Tunneling Microscopy and Spectroscopy (STM-STS) [START_REF] Brihuega | Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis[END_REF][START_REF] Kim | Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene[END_REF][START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF][START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF][START_REF] Yan | Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer[END_REF][START_REF] Yan | Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers[END_REF] as it allows both to resolve the strucxiii ture of the moiré and to measure locally the electronic density of states.

The eect of strain in twisted graphene layers (and more generally in van der Waals heterostructures) on their electronic properties has very rarely been investigated. This is surprising given the remarkable demonstrated modulation of electronic properties of monolayers by strain [START_REF] Amorim | Novel eects of strains in graphene and other two dimensional materials[END_REF]. The aim of this thesis is to study the link between applied strain and electronic properties in twisted graphene layers using STM/STS at low temperature.

Chapter 1 begins with the introduction of the properties of pristine graphene. The changes induced by the stacking of two graphene layers is discussed in detail with the introduction of the commensurability formalism of moirés and of the rich physics that depend strongly on the angle between the layers. A discussion on the experimental available techniques to obtain twisted graphene layers concludes the chapter. Chapter 2 is devoted to the experimental methods used to obtain the presented experimental data. It includes a description of the principle of STM/STS and of the low-temperature STM/STS system. It also gives the details of the realization of the samples and of the experimental data analysis. The focus of Chapter 3 is the eect of strain on the density of states in twisted graphene layers. We rst review the existing literature and design a simple geometrical model to highlight the possibility to apply strain dierently between the layers (relative strain). Such relative strain is evidenced experimentally by the structural analysis of STM images of a moiré pattern. This relative strain has a strong signature in the density of states measured by STS as supported by tight-binding calculations. Chapter 4 is the continuation of the study as strain was applied directly by the STM tip to the probed moiré pattern. The experimental study shows that this tip-induced interaction follows the moiré period and depends on the tunneling conditions, particularly the bias, that determine the tip-sample distance. STS measurements reveal also an active variation of the density of states leading to instabilities at very low tip-sample distances. Another route to modulate the electronic properties of graphene was taken in Chapter 5 that presents the study of graphene layers grown on a superconductor: tantalum carbide. The growth uses an original process to yield simultaneously tantalum carbide covered with graphene layers which are investigated by transport measurements. The graphene layers grown on tantalum carbide are then studied by STM/STS revealing superconducting moirés of graphene. 

Crystallography of graphene

Graphene is a two-dimensional layer of carbon atoms arranged in a honeycomb lattice. The honeycomb lattice is not a Bravais lattice as it cannot be generated from a single atom and two translation vectors. The Bravais lattice of graphene is in fact a triangular lattice with a repeating pattern of two inequivalent atoms, usually called A and B, as shown in Fig. 1.1. The lattice vectors of this triangular lattice are given by

a 1 = ax (1.1) a 2 = - a 2 x + a √ 3 2 ŷ (1.2)
where a = 2.46 Å is the lattice parameter of graphene. One can nd the lattice vectors G 1 and G 2 of the reciprocal lattice by using a i .G j = 2πδ ij where δ ij is the Kronecker delta:

G 1 = 2π a x + 2π a √ 3 ŷ (1.3) G 2 = 4π a √ 3 ŷ (1.4)
which also generate a triangular lattice as shown Fig. (in purple). The rst Brillouin zone is shown in bold with its high-symmetry points: Γ at the center in black, M i midpoints in red and at the corners the K (green) and K (cyan) points. hexagonal with high-symmetry points named Γ (center), M i (midpoints of the borders) and K and K inequivalent corners of the Brillouin zone. Only these two corners are inequivalent as the others can be linked to the K and K' points through a linear combination of the G i vectors. For the same reason, the M i points are also inequivalent.

G 1 G 2 Γ K K' M 1 M 2 M 3 k x k y

Band structure of graphene

The band structure of graphene was rst derived in 1947 by Wallace [START_REF] Wallace | The Band Theory of Graphite[END_REF] by a tight-binding model. As the name suggests, the calculations are made supposing that the electrons are 'tightly-bound' to the atoms. In more formal terms, the atomic orbitals of the isolated atoms are supposed to be a suitable basis for the electronic wavefunctions when the atoms are arranged in a crystal. Therefore, the use of the model imposes to rstly determine the atomic orbitals.

In the honeycomb lattice of graphene, each carbon atom is covalently bound to three neighbors by σ bounds. These σ bonds are overlaps of the hybridized orbitals of the carbon atoms. These orbitals are called sp 2 as the two 2p x and 2p y orbitals hybridize with the 2s orbital to form the three bonding sp 2 orbitals (Fig. 1.3). The remaining out-of-plane 2p z atomic orbitals form a delocalized π bond that is responsible for the electronic properties in graphene. As a consequence, the tight-binding model is quite simple as it needs to take only these 2p z orbitals into account. When considering only nearest-neighbor coupling, the only relevant hopping term is t 0 = 2.7 eV which connects the 2p z orbitals of an atom belonging to the sublattice A and of an atom belonging to the sublattice B. Indeed, one can easily see from Fig. 1.1 that the nearest neighbors of A atoms are B atoms and the other way around. The tight-binding derivation leads to the following dispersion relation [START_REF] Wallace | The Band Theory of Graphite[END_REF]:

E(k) 2 =t 2 0 (1 + 4 cos 2 ( k y a 2 ) + 4 cos( k y a 2 ) cos( k x √ 3a 2 
))

(1.5)

=t 2 0 (3 + 2 cos(k y a) + 4 cos( k y a 2 ) cos( k x √ 3a 2 )) (1.6) 
which gives two solutions symmetric with respect to E = 0:

E(k) = ± t 0 3 + 2 cos(k y a) + 4 cos( k y a 2 ) cos( k x √ 3a 2 
) .

(1.7)

These solutions are plotted Fig. 1.4 in red for the negative energies (the valence band) and in blue for the positive energies (the conduction band). We can see on the gure that the two bands touch at the K (green) and K' (cyan) points on the border of the Brillouin zone (in black) at E = 0. It is particularly interesting as a calculation of the lling of the bands shows that E = 0 is in fact the Fermi level of undoped graphene. Therefore, many of the particular electronic properties of graphene are explained by the band structure near these touching points. To have a clearer view of this, we can approximate the dispersion relation near these specic points situated at K and K = -K. If we set k = K + δk for a small variation δk around K, a second-order Taylor expansion in δk of Eq. (1.6) yields

E(K + δk) = ± at 0 √ 3 2 |δk| = ± v F |δk| (1.8)
where we dened the Fermi velocity of graphene v F as

at 0 √ 3 2
. The numerical estimation of this velocity yields v F = 1.1 × 10 6 m/s. The dispersion relation near the K and K' points is therefore linear as testied by the conical shape of the bands shown Fig. 1.4. This linear dependence is at odds with the parabolic bands encountered in textbook solid-state physics and has strong implications on the low-energy electronic excitations in graphene.

Massless Dirac fermions in graphene

Equation (1.8) is very similar to the relativistic relation that links the energy E and the momentum p of a particle of rest mass m

E 2 = |p| 2 c 2 + m 2 c 4 (1.9)
where c is the speed of light. Indeed, setting m to 0 and c to v F yields Eq. (1.8) squared. In fact, the similarity between particle physics and electrons in graphene can be traced back to the Hamiltonian. A derivation of the lowenergy Hamiltonian using second-quantization 1 gives a form very similar to the Dirac-Weyl equation for massless fermions. As a consequence, low-energy electronic excitations in graphene behave like massless Dirac fermions. By metonymy, the K and K' points are called Dirac points and the band structure near them Dirac cones.

In addition, while the Dirac equation is an extension of the Schrödinger equation for a relativistic particle, Weyl showed that the wavefunction of such a particle can be described by a two-component spinor. In the case of a massless particule, the two spinor components are independent and the wavefunction has therefore two additional well-dened eigenvalues called the chirality. Due to this, another quantum number enters in the description of the wavefunction of electronic excitations of graphene and is usually called pseudo-spin or isospin. This pseudo-spin adds another degree of freedom linked to the valleys (K and K points). 1 See Ref. 7 or 17 for the full treatment 

Van Hove singularities

Van Hove singularities arise in the density of states at critical points where ∇ k E -→ 0. [START_REF] Van Hove | The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal[END_REF]. For a 2D system such as graphene, the critical points consist in minima, maxima and saddle points leading to dierent shaped singularities as shown in Fig. 1.5. The saddle points are particular as they are local minima along a direction and local maxima in the orthogonal direction. Such points leads to logarithmic divergences in the density of states which are the most interesting type of singularities. As a consequence, in the manuscript, the term 'van Hove singularity' will be used only to refer to this particular divergence. Theoretical studies have predicted that electronic instabilities should arise at these singularities triggering the appearance of phases with strong electron-electron interactions such as magnetism or superconductivity [START_REF] González | Magnetic and Kohn-Luttinger instabilities near a Van Hove singularity: Monolayer versus twisted bilayer graphene[END_REF] 2 .

Figure 1.4 shows that the graphene band structure display saddle points at the M points of the Brillouin zone and therefore van Hove singularities in the density of states. Unfortunately, these van Hove singularities are located at high energies (∼ ±3 eV), far from the Fermi level. The study of the phenomena linked to van Hove singularities requires then very heavy doping making it very challenging. Twisted graphene layers, consisting in the misorientated stacking of two graphene layers, oer a way to circumvent this problem. It was indeed reported in 2009 [START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF] that the density of states of twisted graphene layers shows van Hove singularities at low-energy. In addition, the energy of these singularities is tunable with the twist angle θ between the layers, varying between a few meV to almost 1 eV above the Dirac point. This opened a new avenue of research on graphene bilayers, a system that is now presented.

Graphene bilayers

Before describing the properties of twisted graphene layers, we start with the particular case of graphene bilayers with no twist angle: aligned layers. 

1.2.1.a AA stacking

The situation where the atoms of the top layer are all above atoms of the bottom layer is called AA stacking (left part of Fig. 1.6). For such a stacking, most of the considerations of single-layer graphene still hold. A tight-binding calculation [START_REF] Rozhkov | Electronic properties of graphene-based bilayer systems[END_REF] shows that the Dirac cones of both layers are indeed conserved but that they are shifted in energy by the interlayer coupling t AA :

E 1 AA (K + δk) = -t AA ± v F |δk| (1.10) E 2 AA (K + δk) = t AA ± v F |δk| . (1.11) 
Note that we have two electronic bands (right part of Fig. 1.6) as we added a supplementary free electron by the introduction of another layer.

1.2.1.b AB stacking

The AB stacking is a shift of this AA stacking so that only the A atoms of the top layer are above the B atoms of the bottom layer, hence the name (left part of Fig. 1.7). Such stacking is also named Bernal stacking or graphitic stacking as it is the naturally occuring stacking in graphite crystals discovered by J.D. Bernal in 1924 [START_REF] Bernal | The Structure of Graphite[END_REF]. Contrary to the AA stacking, the AB stacking breaks the inequivalence between the A and B sublattices present in single layer graphene. A tight-binding calculation shows that the dispersion is no 

E 1 AB (K + δk) = ± 2 v 2 F t AB |δk| 2 (1.12) E 2 AB (K + δk) = ±(t 0 + 2 v 2 F t AB |δk| 2 ) . (1.13)
1.2.2 θ = 0 • : twisted graphene layers and moiré pattern

The application of the twist angle θ = 0 • is more complex than what was presented in Section 1.2.1. Indeed, in the AA and AB stacked cases, the system was still translationally invariant by the lattice vectors of graphene. Fig. 1.8 shows that it is no longer the case for twisted graphene layers as the mismatched lattices interfere to give a superperiodic pattern called a moiré. The properties of the twisted graphene layers pattern are strongly linked to the moiré pattern that must therefore be properly described. We will hence 

1.2.2.a Commensurability formalism

As seen on Fig. 1.8, a moiré pattern is formed of alternating areas when the two interfering lattices are in phase (AA regions for twisted graphene layers) and in antiphase (AB regions for twisted graphene layers) with a continuous transition in between. For the sake of simplicity, we start with a one-dimensional example.

Moirés and beatings in 1D Fig. 1.9 shows two mismatched 1D atomic lattices (top layer in orange of periodicity a t and bottom layer of periodicity a b ) with its equivalent in the form of lines to show visually the 1D moiré pattern (of periodicity a m ). 'Bright' regions appear when the lines overlap which is when the two lattices are in phase. The commensurability formalism consists in nding coincidence relations between the moiré and the atomic lattices. In this simple case, to go from one overlap of the lines to the next one, we need to span 5 green lines and 6 orange lines. The coincidence or commensurability relations are then given by a m = 6a t (1.14) or in terms of spatial frequencies k = 2π/a:

a m = 5a b (1.15)
k t = 6k m (1.16
)

k b = 5k m .
(1.17)

Given the atomic lattices, the moiré pattern is therefore fully dened by the integers [START_REF] Artaud | Universal classication of twisted, strained and sheared graphene moiré superlattices[END_REF][START_REF] Amorim | Novel eects of strains in graphene and other two dimensional materials[END_REF]. A similar but not equivalent case is presented in Fig. 1.10. In this case, the coincidence relations are given by a m = 11a t (1.18)

a m = 9a b (1.19)
When considering the line model, it looks like that there is a bright region at the dashed line location where the lattices seem in phase. However, this bright region is not equivalent to the ones at the edges as shown by the difference of local stacking in the ball model. This means that the alternation of bright regions, appearing similar to the eye and in the STM images shown later, called the beating, does not match the real periodicity (the moiré periodicity) a m shown in gray. While it is possible to spot visually the dierence between the 'bright' regions in the simple presented case, it becomes very dicult when dealing with larger moiré periods and even more when dealing with STM images.

Graphene bilayers

More generally, the relation between the spatial frequencies

k t = ik m (1.20) k b = mk m (1.21)
can be used to give the beating frequency k beat , coming from the interference between the wavevectors k t and k b :

k beat = |k t -k b | = |(i -m)k m | . (1.22)
It shows that the beating, the visually seen alternation, coincides with the moiré periodicity only if i -m = ±1 which was the case of Fig. 1.9 but not of Fig. 1.10. While the beating is the alternation of similar but not equivalent atomic arrangements, the moiré period is the true periodicity of the system. This distinction is primordial to determine the exact structure of the moiré and the lattices forming it.

Moirés in 2D Artaud et al. [START_REF] Artaud | Universal classication of twisted, strained and sheared graphene moiré superlattices[END_REF] developed a two-dimensional extension of this formalism with the relation between the moiré lattice vectors (a m 1 ,a m 2 ), the lattice vectors of the top layer (a t 1 ,a t 2 ) and of the bottom layer (a b 1 ,a b 2 ) given by

a m 1 = ia t 1 + ja t 2 = ma b 1 + na b 2 (1.23) a m 2 = ka t 1 + la t 2 = qa b 1 + ra b 2 (1.24)
where (i, j, k, l, m, n, q, r) are integers. Such relations can be written in matrix formalism:

a m 1 a m 2 = i j k m a t 1 a t 2 = m n q r a b 1 a b 2 . (1.25)
For practical purposes, in the following, we are going to study commensurability in the Fourier space. It is therefore useful to translate these relations in the reciprocal space: More importantly, the commensurability analysis allows to derive the structural relations between the layers. These relations can be written in a general form using the Park-Madden matrix:

k t 1 k t 2 = i k j m k m 1 k m 2 (1.26) k b 1 k b 2 = m q n r k m 1 k m 2 (1.
a t 1 a t 2 = A B C D a b 1 a b 2 (1.28) 
where A, B, C and D must be rational numbers (∈ Q) to achieve commensurability [START_REF] Park | Annealing changes on the (100) surface of palladium and their eect on CO adsorption[END_REF]. The coecients of the Park-Madden matrix are in fact the coordinates of the vectors (a t 1 , a t 2 ) in the basis of (a b 1 , a b 2 ) as shown in the left part of Fig. 1.11. The Park-Madden matrix can be linked to the integers (i, j, k, l, m, n, q, r): 

A B C D = 1 il -jk lm -jq ln -jr -km + iq -kn + ir . ( 1 
a t 1 a t 2 =    P 1 (cos θ 1 + sin θ 1 √ 3 ) 2P 1 √ 3 sin θ 1 - 2P 2 √ 3 sin θ 2 P 2 (cos θ 2 - sin θ 2 √ 3 )    a b 1 a b 2 (1.30)
when considering a hexagonal support lattice. The parameters P 1 , P 2 , θ 1 and θ 2 can be found from the commensurability by identifying this matrix with the Park-Madden matrix dened in (1.28):

P 1 = √ A 2 + B 2 -AB (1.31) P 2 = √ C 2 + D 2 -CD (1.32) θ 1 = arctan B √ 3 2A -B (1.33) θ 2 = arctan C √ 3 2C -D . (1.34)
The strains levels between the layers ε biaxial and ε uniaxial are then given by

ε biaxial = X - √ W -1 (1.35) ε uniaxial = X + √ W -X - √ W (1.36) where X = 2(P 2 1 + P 2 2 ) + A 3 , Y = 4P 2 1 P 2 2 -A 2 3 and W = X 2 -Y 2 .
The commensurability gives then a robust framework to study moiré patterns as every structural parameter (strain, shear and rotation between the two layers) will fall directly from the set of integers (i, j, k, l, m, n, q, r). Moreover, the distinction between beatings and moiré can be discussed within this formalism, similarly to the 1D case. An example of two similar moirés formed by the misorientated stacking of two unstrained graphene layers is presented Fig. 1.12. The top moiré comes from a twist angle 4.41 • and was generated by a set of commensurability indices chosen so that i -m = 1. In this case, the beating coincides with the moiré as Eq. (1.22) yields k beat = k m . The distance between two bright spots is the real periodicity of the system as evidenced by the same exact atomic arrangement of neighboring AA regions (AA1 and AA2). On the other hand, the bottom moiré comes from a close twist angle 4.47 • but was generated by a set of commensurability indices chosen so that i -m = 2. This time, Eq. (1.22) yields k beat = 2k m meaning that the moiré periodicity is in fact twice the distance between two bright spots. To have the exact same atomic arrangement, it is therefore necessary to span two beatings. The closer inspection shows indeed that the two atomic arrangements are not exactly the same between neighboring AA regions (AA1 and AA2).

Commensurable and incommensurable moirés The commensurability has dierent denitions depending on the authors. In this manuscript, unstrained graphene layers with a set of commensurability indices so that i -m = 1. The beating coincides with the true moiré periodicity so that neighboring AA regions show the same exact atomic arrangement. Bottom: Moiré generated from two misorientated (θ = 4.47 • ) unstrained graphene layers with a set of commensurability indices so that i -m = 2. The moiré periodicity is two times the beating so that neighboring AA regions show dierent atomic arrangements. a moiré pattern that verify the relations (1.23) and (1.24) is called commensurate with the atomic periodicities forming it 3 . We can picture it as the possibility to nd sites where the lattices overlap exactly. It means that the two-layers system acquires a new periodicity that is the moiré period. Such 1D commensurate moirés were shown on Fig. 1.9 and Fig. 1.10. On the contrary, in the incommensurate case, starting from a site where the lattices of the two layers overlap, it is impossible to nd exactly again the same overlap in the whole system. An incommensurate system is therefore not periodic. A 1D example is the system where a t = √ 2a b .

1.2.2.b Commensurability analysis of twisted graphene layers

The presented approach presents a robust framework to study moiré patterns that relies on the determination of the indices (i, j, k, l, m, n, q, r). This section explains how to practically nd these indices for experimental imaged moiré patterns. The starting point is the following set of equations of the reciprocal space:

k t 1 k t 2 = i k j m k m 1 k m 2 (1.37) k b 1 k b 2 = m q n r k m 1 k m 2 .
(1.38)

These equations show that the commensurability indices are simply the coordinates of (k t 1 , k t 2 ) and (k b 1 , k b 2 ) in the basis of (k m 1 , k m 2 ). A decomposition of the Fourier transform in the basis of (k m 1 , k m 2 ) will then allow to nd these integers as will be presented in the following example.

Example In this example, we will show how to derive the commensurability indices of the moiré pattern presented Fig. 1.13. The Fourier transform of this image shows the spots of the graphene layers and of the beating corresponding to the alternation in brightness as explained in the previous section. The Fourier transform is then decomposed in the mesh generated by the beating vectors, in gray on Fig. For the case considered here, the graphene reciprocal vectors have integer coordinates in the basis of the beating reciprocal vectors as the graphene spots fall on nodes of the basis. The beating coincides with the moiré periodicity allowing us to read the commensurability indices directly. The reciprocal vectors of the top layer are easy to nd as they are the most intense in the Fourier transform. The bottom layer is not directly observed by STM which means that we should not see the bottom layer spots in the Fourier transform. They can however be deduced from the beating and top layer vectors as k beat = k t -k b . Therefore, one of the beating overtones near the top layer spot corresponds to the bottom layer spot. We chose it to be the closer in length to the top layer vector since both vectors are Fourier transforms of graphene lattices. We then nd the coordinates of the graphene and substrate vectors in the mesh, respectively in cyan and red on Fig. 1.14 with the commensurability indices: i = 15 j = -14 k = 14 l = 29 m = 14 n = -15 q = 15 r = 29 .

(1.39)

From these indices, the Park-Madden matrix is found and through it the extended Woods' notation of the twisted graphene layers system: .40) This shows that the lattice vectors of the top layer have the same modulus than the ones of the bottom layers but are rotated by θ = 2.28 Indices for unstrained graphene layers In fact, in the case of unstrained twisted graphene layers, the symmetries of the system imposes relations between the commensurability indices:

(P 1 Rθ 1 × P 2 Rθ 2 ) = (1R2.28 • × 1R2.28 • ) . ( 1 
k t 1 k t 2 k b 2 k b 1 k m 1 k m 2
k = -j l = i -j m = -j n = -i q = i r = i -j .
(1. [START_REF] Ito | Ultralow contact resistivity in annealed titanium edge contacts for multilayered graphene[END_REF] This means that the two indexes (i, j) fully describe the structure of unstrained twisted graphene layers with a given angle θ. Consequently, we have a direct relation between the angle θ and the integers (i, j) for the commensurate moiré patterns 4 :

cos θ = 4ij -i 2 -j 2 2(i 2 + j 2 -ij) .
(1.42)

In the presented example, the two indices are i = 15 and j = -14 which leads to θ = 2.28 • . This formalism describing bilayers described by two indices forms the basis for the theoretical studies of the twisted graphene layers as it allows to derive easily periodic moiré structures of almost any desired twist angle θ [START_REF] Campanera | Density functional calculations on the intricacies of Moiré patterns on graphite[END_REF]. It was therefore widely used for theoretical investigations of the electronic properties of twisted graphene layers [START_REF] Lopes Dos Santos | Graphene Bilayer with a Twist: Electronic Structure[END_REF][START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF][START_REF] Mele | Commensuration and interlayer coherence in twisted bilayer graphene[END_REF][START_REF] Trambly De Laissardière | Localization of Dirac Electrons in Rotated Graphene Bilayers[END_REF][START_REF] Trambly De Laissardière | Numerical studies of conned states in rotated bilayers of graphene[END_REF] that are discussed in the following section.

Electronic properties of twisted graphene layers

The band structure of twisted graphene layers can be derived from a tight-binding model with hoppings between the layers to take into account the interlayer coupling. Two characteristic interaction regimes can be described: the large angle regime (θ > 2 • ) where the layers are mostly decoupled with the interlayer interaction acting as a perturbation and the small angle regime (θ < 2 • ) where the strong interaction between the layers leads to the appearance of new phenomena.

1.2.3.a Large angles (θ > 5 • )

The graphene layers are mostly decoupled for large angles θ between them. In reciprocal space, the bilayer can therefore be described by the two The interlayer coupling only manifests itself at the two energies (symmetric with respect to the Dirac point) where the Dirac cones cross each other as shown in Fig. 1.15. It induces an anti-crossing of magnitude 2t θ = 0.216 eV, the interlayer hopping term. This hopping term is independent from θ for large angles [START_REF] Trambly De Laissardière | Numerical studies of conned states in rotated bilayers of graphene[END_REF]. Each anti-crossing leads to the formation of a saddle point and of a local extremum in the band structure. The anti crossing energy level closer to the Dirac energy is the saddle point with a maximum of the band structure in the ∆K direction and a minimum in the orthogonal direction. Therefore, the density of states of twisted graphene layers show two van Hove singularities at positive and negative energy with respect to the Dirac point.
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These moiré van Hove singularities were rst reported by Li et al. [START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF].

Their results displayed in Fig. 1.16 show the dierential conductance, proportional to the local density of states, measured by Scanning Tunneling Spectroscopy in regions without (G) and with a moiré pattern (M1,M2) imaged by Scanning Tunneling Microscopy. The density of states in moiré regions shows sharp van Hove singularities centered around the Dirac point which are absent from the G area. An interesting property of these van Hove singularities is that their energy is tunable with the angle θ. One can easily see from Fig. 1.15 that the energy of the crossing depends on the wavevector ∆K and therefore on θ. As the energy dispersion is given by E(k) = v F k, the crossing energy between the 

E( ∆K 2 ) = v F ∆K 2
. The anticrossing of the cones then induces a shift in energy of t θ so that the energy of the saddle point is given by

E saddle = v F ∆K 2 -t θ . (1.44)
The splitting of the vHs from this simple geometric approach is then

∆E vHs = 2E saddle = v F ∆K -2t θ (1.45)
which is exactly what was derived from a continuum model in Ref. [START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF]. This angle dependence has been experimentally investigated by several groups [START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF][START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF][START_REF] Yan | Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers[END_REF]. We present here the work by Brihuega et al. [START_REF] Brihuega | Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis[END_REF] that studied several moiré patterns of dierent twist angles shown Fig. 1.17. The authors were then able to compare the experimental energies of the van Hove singularities to the energies calculated by tight-binding and given by Eq. (1.45). Figure 1.18 shows that the agreement between the experiment, tight-binding and continuum equation is quite good despite a slight underestimation of the splitting by the theoretical results.

1.2.3.b Small angles (2 • < θ < 5 • ): Fermi velocity renormalization

At small angles, the Dirac cones are so close that the layers cannot be considered decoupled anymore. Notably the continuum equation cannot be In twisted graphene layers of large twist angle, the Fermi velocity in the layers equals that of monolayer graphene: v 0 F = 1.1 × 10 6 m/s. Numerous theoretical studies [START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF][START_REF] Lopes Dos Santos | Graphene Bilayer with a Twist: Electronic Structure[END_REF][START_REF] Trambly De Laissardière | Localization of Dirac Electrons in Rotated Graphene Bilayers[END_REF][START_REF] Trambly De Laissardière | Numerical studies of conned states in rotated bilayers of graphene[END_REF] have shown that this is no longer the case for small twist angles as the Fermi velocity is reduced when the angle decreases as shown on While the complete localization of electrons can only be achieved for certain magic angles, a weaker form of this localization exists for the low-energy electronic states in structures with a small twist angle. Li et al. [START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF] already reported that for θ = 1.16 • the van Hove singularities were more intense in AA regions (peak) than in AB regions (valley) of the moiré as shown Fig. 1.20. The dI/dV maps at low energies show that the electronic states are indeed localized in AA regions for these energies. This result is conrmed by theoretical investigations by tight-binding calculations [START_REF] Trambly De Laissardière | Localization of Dirac Electrons in Rotated Graphene Bilayers[END_REF]. Figure 1.21 shows that the electronic states at E = 0 (red dots) are concentrated in AA regions for the small angle structure (right) but not for the large angle struc- ture (left). The absence of this localization eect for large angles has also been observed experimentally [START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF]. Twisted graphene layers oer therefore a way to achieve localization of the electrons in graphene tunable with the twist angle θ.

Higher order moiré bands The reduction of the twist angle θ decreases the energy of the van Hove singularities but also of the features involving higher order moiré bands. Figure 1.22 from Ref. [START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF] shows indeed that additional dips appear in the local density of states following the same angle dependence as the van Hove singularities. The rst dip is easily explained as it arises from the already discussed anti-crossing due to interlayer coupling. This translates as a decrease of the density of states at the energies immediately above the saddle point which is what is observed. The second dip is however more dicult to interpret. Several groups [START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF][START_REF] Ohta | Evidence for Interlayer Coupling and Moiré Periodic Potentials in Twisted Bilayer Graphene[END_REF][START_REF] Yan | Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer[END_REF] interpret them as superlattice Dirac points that are predicted to form when a periodic potential is applied to a graphene layer [START_REF] Park | Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials[END_REF]. Such superlattice points were observed by Landau levels spectroscopy for graphene on hexagonal boron nitride (hBN) [START_REF] Ponomarenko | Cloning of Dirac fermions in graphene superlattices[END_REF]. A concurrent interpretation by Wong et al. [START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF] and Kim et al. [START_REF] Kim | Tunable Moir\'e Bands and Strong Correlations in Small-Twist-Angle Bilayer Graphene[END_REF] is the partial opening of a gap (or 'mini-gap') induced by the periodic potential of the moiré. This would be very similar to the origin of the rst dip but for higher order moiré bands and will give therefore the same signature in the LDOS. 

Experimental techniques to form moirés of graphene

To be able to study the phenomena described in the previous section, the rst step is to get experimental realizations of moirés of graphene that are energetically less favorable than untwisted graphene layers. We review here several experimental techniques that can be used to obtain moirés of graphene.

Graphene on graphite

The rst observations of moirés of graphene were done in the early STM studies of graphite samples as shown in Fig. 1.23. At that time, it was seen as an 'anomalous superperiodicity' [START_REF] Kuwabara | Anomalous superperiodicity in scanning tunneling microscope images of graphite[END_REF] and several explanations were proposed such as multiple-tip eects [START_REF] Albrecht | Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip eects[END_REF] or networks of dislocations [START_REF] Garbarz | Dislocation networks in graphite: A scanning tunnelling microscopy study[END_REF]. It is now admitted that the observed superperiodicities are moiré patterns due to graphene akes that are misaligned with the graphite substrate [START_REF] Zhao | Electronic eects in scanning tunneling microscopy: Moiré pattern on a graphite surface[END_REF][START_REF] Xhie | Giant and supergiant lattices on graphite[END_REF]. While such stacking faults are routinely found, it is also possible to trigger them by tearing and folding the topmost ake of a graphite sample. This can be done by a scanning probe [START_REF] Gan | STM investigation on interaction between superstructure and grain boundary in graphite[END_REF] or when cleaving the sample [START_REF] Beyer | Monolayers of graphite rotated by a dened angle: Hexagonal superstructures by STM[END_REF]. The angle between the layers is therefore determined by the angle of the fold. Later on, various studies [START_REF] Faugeras | Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations[END_REF][START_REF] Li | Scanning Tunneling Spectroscopy of Graphene on Graphite[END_REF][START_REF] Ugeda | Electronic and structural characterization of divacancies in irradiated graphene[END_REF] used the graphene on graphite system to easily get a decoupled graphene layer as the angle between the twisted layers is often large.

Transferring graphene on graphene

Graphene layers can be obtained by numerous fashions but not always on desired substrates. To solve this, techniques to transfer graphene layers from one substrate to another have been developed [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF][START_REF] Liang | Toward Clean and Crackless Transfer of Graphene[END_REF]. Figure 1.24 shows dierent techniques to transfer graphene from the growth substrate to the target substrate. They consist mostly of the same process: the graphene layer is rst transferred to a resist layer ('stamp' or 'carrier substrate') either by etching the growth substrate away or using a resist with stronger adherence. The layer can then can be transferred on another substrate by dissolving the resist or triggering the release of the layer by annealing. If the angle between the layer on the nal substrate is controlled, it is possible to create moirés of graphene of any desired angle by using a graphitic target substrate such as graphite or graphene on SiC. For example, the twisted graphene layers studied in Ref. 9 were realized by transferring a graphene layer grown by CVD on graphene on SiC.

The main drawback of this method is that it can deteriorate the transferred layer. The graphene layer is indeed exposed to solvents and resist during the transfer process that can leave residues. Such residues are hard to remove even with additional cleaning steps such as annealing.

Graphene on silicon carbide

Silicon carbide has long been known to dissociate by heating to form graphitic lms [START_REF] Badami | X-Ray studies of graphite formed by decomposing silicon carbide[END_REF][START_REF] Van Bommel | LEED and Auger electron observations of the SiC(0001) surface[END_REF]. The dissociation leads to the sublimation of silicon and the remaining carbon atoms rearrange in graphene layers. As silicon carbide is a material that has inequivalent faces, the growth occurs dierently on the two polar faces. Silicon carbide also displays many polytypes with 4H and 6H being the most used for graphene growth. The unit cell of the 6H (Fig. 1.25) shows a face terminated by silicon atoms (Si-face or SiC(0001) surface) and a face terminated by carbon atoms (C-face or SiC(000 1) surface). These inequivalent faces are also present in the 4H polytype and have dierent implications on the graphene growth. Such dierences were extensively studied in the review by Norimatsu and Kusunoki [START_REF] Kusunoki | Growth and Features of Epitaxial Graphene on SiC[END_REF] and will be only briey reviewed here.

On the silicon-terminated face (Si-face), the rst carbon layer that is grown is strongly bound to the substrate satisfying most of the many dangling bonds remaining after the dissociation. As a consequence, it does not have the electronic band structure of graphene and is instead called the buer layer. It indeed acts as an intermediate between the silicon carbide and the layers grown afterwards. The graphene layers grown on the top of this buer layer are indeed preserved of any substrate-interaction except for ntype doping due to the surplus of electrons of the dangling bonds. The layers stack as in graphite with a AB or Bernal stacking meaning that the trademark linear dispersion of graphene is only obtained when a single graphene layer is grown on the top of the buer layer. As a consequence, the electronic mobility of untreated lms grown on SiC reaches only 1000 cm 2 V -1 s -1 [START_REF] Heer | Epitaxial graphene electronic structure and transport[END_REF] when 2 × 10 6 cm 2 V -1 s -1 has been achieved for suspended graphene layers [START_REF] Mayorov | How Close Can One Approach the Dirac Point in Graphene Experimentally?[END_REF].

On the carbon-terminated face (C-face), there is no such buer layer as the growth occurs in a dierent fashion. The C-face is highly reactive so that nucleation happens at many dierent places. The growth is then much faster than on the Si-face and many more graphene layers are grown. While this could be viewed as a drawback, the fast growth implies that the layers stack with rotational disorder (also called turbostratic) instead of Bernal stacking. The appearance of out-of-plane ripples, that can be easily observed by Atomic Force Microscopy, stabilizes this unfavorable stacking. Twisted graphene layers with various twist angles are therefore easily formed but in an uncontrolled fashion. The electronic mobility of the graphene grown in this way is above 10 000 cm 2 V -1 s -1 [START_REF] Heer | Epitaxial graphene electronic structure and transport[END_REF].

Conclusion

Our aim is to realize STM studies of twisted graphene layers that require a clean surface. While the transferring of graphene layers seems the ideal technique to realize moirés of controlled twist angle, the residues left by the process are highly detrimental to STM studies. Out of the two remaining techniques, the growth of graphene on the carbon-face of silicon carbide seems the most promising one to routinely get twisted graphene layers with a large variety of twist angles. Moreover, the very high temperature needed for the growth allows to have clean surfaces due to ecient desorption. For these reasons, we chose this last technique for the realization of the samples in the presented work.

CHAPTER 2 EXPERIMENTAL METHODS

The Scanning Tunneling Microscope (STM) was developed in the nineteen eighties by G. Binnig and H. Rohrer [START_REF] Binnig | Tunneling through a controllable vacuum gap[END_REF]. It was a revolution in surface science as it gave access to the local properties of surfaces at sub-nanometer scales. It can indeed be used to image the sample surface as will be discussed in Section 1 or to measure the local electronic density of states of the sample as will be discussed in Section 2 of the present chapter. The third and fourth sections are devoted to the presentation of the experimental setups used to perform the low-temperature Scanning Tunneling Microscopy and Spectroscopy studies. The fth section explains the process of growth of graphene on silicon carbide while the nal section gives details on the softwares and methods used for the data analyses.

Scanning Tunneling Microscopy

Principle

A STM relies on quantum tunneling of electrons though an insulating gap (air or vacuum) between a metallic tip and the sample surface as shown in Fig. 2.1. If the rate of tunneling is sucient, it is possible to detect a tunneling current I t . To trigger enough tunneling events to measure a net tunneling current, an energy mismatch between the tip and the sample is introduced by applying a voltage bias V b to the sample. At positive V b , the electrons tunnel from the tip to unoccupied sample states while a negative V b leads to tunneling of electrons from the occupied sample states to the tip. The tunneling occurs through the overlap of the electronic wave functions of 

Imaging mode

To realize a STM image, the tip scans the desired area in the x and y directions at a given V b and I t . There are two scanning modes: constantheight or constant-current as shown in Fig. 2.2. In constant-height mode, the tip height is kept constant and variations of the tunneling current I t are recorded. As can be inferred, this technique requires very at surfaces to avoid collisions of the tip with protrusions or loss of the tunneling current. In consequence, the most widespread imaging mode is the constant-current mode. In this mode, the tip height is recorded and adjusted though a feedback loop to keep the tunneling current I t constant during the scanning. All the STM images presented in this work were recorded in constant-current mode and therefore show the variations of the tip height Z.

I(Z) measurements

The tunnel character of the barrier can be probed by I(Z) measurements.

The dependence of the tunneling current I t with the tip-sample distance d is given by

I t ∝ e -2κd (2.1) with κ = 2mφ 2 (2.2)
where m is the free electron mass, the reduced Planck's constant and φ the work function of the tunneling system (or barrier height) that we simply dene as the average of the work function of the surface φ s and of the tip φ t :

φ = φ t + φ s 2 . (2.3)
Work functions are usually of the order of 5 eV leading to κ ∼ 1 Å -1 . This shows that very small variations of the tip height leads to detectable changes of I t , explaining the extremely high vertical resolution of the STM.

The I(Z) measurement consists in recording the tunneling current I t while the tip is retracted from the surface. According to Eq. (2.1), the current decreases exponentially with respect to the tip-sample distance d and therefore with respect to the altitude Z of the tip. The slope of the linear decrease of the logarithm of the current is given by 2κ allowing to extract the value of the barrier height φ. The STM apparatus allows also to do I(Z) measurements on several points to probe any spatial variation of the barrier height.

Scanning Tunneling Spectroscopy 2.2.1 Principle

The large strength from the STM technique is the ability to get spatiallyresolved informations on the local electronic density of states using Scanning Tunneling Spectroscopy (STS). To evidence this, one has to recall that the The value V b (red dot) sets the tip height Z before the STS (blue dot). The STS scans the probed energy range (in purple) by ramping V b . This probed energy range is decoupled from the setpoint value.

tunneling current I t is in fact the integration over energy of all the electronic tunneling events between the tip and the sample. The tunneling current is therefore linked to the electronic states of the tip and the sample:

I t (V b ) ∝ |M | 2 ∞ -∞ N s (E + eV b )N t (E)[f (E + eV b ) -f (E)]dE (2.4)
where M is the tunneling probability assumed to be energy-independent, f the Fermi-Dirac distribution, N s the density of states of the sample and N t the density of states of the tip. Assuming a negligible eect of temperature (k B T << eV ), the Fermi-Dirac distributions become step functions so that the equation becomes

I t (V b ) ∝ |M | 2 E F +eV b E F N s (E + eV b )N t (E)dE (2.5)
where E F is the Fermi energy. Another common assumption made when using metallic tips is that the density of states of the tip is independent of energy in the energy range considered. The only energy-dependent term is therefore the density of states of the sample:

I t (V b ) ∝ E F +eV b E F N s (E + eV b )dE . (2.6)
The dierentiation of the tunneling current with respect to the bias gives now

dI t dV b (V b ) ∝ N s (E F + eV b ) . (2.7)
This equation is the basis of spectroscopy experiments as it shows that derivating the tunneling current with respect to the bias yields a quantity that is proportional to the density of states at the energy E F + eV b , directly tuned by the applied bias. Experimentally, this is done by applying a small AC modulation δV b to the applied bias and detecting the resulting current modulation δI t using phase-sensitive detection by a lock-in amplier. Applying this technique to a given bias window yields the STS spectrum

dI t /dV b (V b ).
The procedure to record such a spectrum is shown in Fig. 2.3. A given setpoint (V b ,I t ) is chosen and sets the tip height. The feedback loop is switched o so that the tip altitude remains constant while the tunneling current I t and its variations δI t are recorded for each V b in the chosen bias window. The resulting data is the dI t /dV b (V b ) curve (usually shorted to dI/dV ) proportional to the local density of states of the sample at E F + V b . We stress here that the choice of setpoint V b is totally decoupled from the probed energy window. While the setpoint V b is usually chosen as the rst probed bias, the measurement can be performed with the setpoint V b inside or outside the energy window as shown in the example in Fig. 2.3.

Spatially-resolved spectroscopies

The spatial resolution of STM can be combined with the spectroscopic measurements to get spatially-resolved measurements of the local density of states of the sample. A common measurement protocol using this is the Current-Imaging Tunneling Spectroscopy (CITS). In a CITS, the tip scans the surface at the setpoint (V b ,I t ) recording the topography while STS spectra are recorded in each point of the image. By picking STS spectra at particular locations, one can assess the dierence between the density of states at these regions. Another representation mode of the CITS is the map of the dierential conductance dI/dV at a given energy. These maps show the spatial variations of the density of states of the sample at this particular energy.

CITS are time-consuming measurements that can take several days to complete. Therefore, several techniques are used to reduce the necessary recording time. The rst one consists in recording STM images with a higher resolution than the CITS by regularly spacing the points at which STS spectra are performed. This allows to get a sucient spatial resolution for the STS without lowering the quality of the recorded STM images. The second technique consists in recording the topography and the STS spectra along a line and not on a full grid. Such line spectroscopies were used in Chapter 4 to probe the eect of the setpoint (V b ,I t ). 

Experimental presentation of the microscope 2.3.1 STM head

A photograph and a colored schematic of our home-built Scanning Tunneling Microscope are presented in Fig. 2.4. The most essential part is the piezoelectric tube (in green in the scheme) on which the tip (in gray) is glued with silver paste. The electrodes of the tube are designed to allow scanning in the X,Y and Z directions. The tube can make images of a size of 30 × 30 µm at room temperature and 3 × 3 µm at low temperatures (50mK-4.2K) due to a loss of eciency of the piezoelectric eect. To image places at greater distances, the scanner tube and the tip can be moved by using the XY motors (in cyan). These motors are piezoelectric legs that move the Al 2 O 3 support, on which the tube is xed, in the X and Y directions with respect to the microscope body (in white).

The sample (in blue) is glued by silver paste to a copper support (in orange) that is connected to the bias. A thermometer and a heater are also xed to this copper support to control and monitor the sample temperature. The copper plate is xed to another Al 2 O 3 support that can move in the Z direction thanks to the same kind of piezoelectric legs (in yellow) to bring the sample in tunneling range. 

STM tip

The STM tips used in this work are commercial STM tips bought from Bruker [START_REF]Bruker AFM Probes[END_REF]. They are mechanically cut in a wire with a diameter of 0.25 mm made of an alloy of platinum/iridium (Pt/Ir). These tips present several advantages. They are designed to have a very sharp tip apex adapted to STM measurements. The metallic alloy composing them is highly resistive to corrosion, preventing any oxide formation on the tip, and also quite sti, reducing the risk of tip oscillations triggered by the feedback loop or external mechanical noise.

Cryogenic apparatuses

All the STM data shown in this work were recorded at low temperatures (< 10 K). To do this, the STM head can be embedded in two dierent cryogenic setups using liquid helium (He). Their working principle and loading procedures are presented here.

Inverted dilution fridge or Sionludi

The inverted dilution fridge uses standard wet dilution processes to reach an operating temperature of 50mK: a mixture of 3 He and 4 He circulates in a closed loop and is cooled by successive stages (100K, 10K, 4.2K, 1K and nally 50mK). The main dierence with a standard dilution fridge lies in the fact that the cryostat is not plunged inside a liquid He dewar. Instead, the 2.4 Cryogenic apparatuses 4K cooling is provided by the circulation of liquid 4 He in the vacuum of the cryostat. This allows it to lay on a table with the coldest part on the top of the fridge, hence the name.

The loading procedure is as follows: the STM is rst xed to the highest stage (which is the coldest when the dilution is operating). Then, copper shields and a stainless steel cover are screwed respectively to prevent radiative losses and to enclose hermetically the cryostat. This space is then pumped to 10 -6 mbar. After this pumping, the mixture is injected in a 'rapid' circulation path. This triggers a pre-cooling to 4.2K thanks to liquid 4 He coming from a He dewar situated below. Then, the injection of the mixture though the 'slow' circulation path triggers the expansion and condensation of the mixture allowing the STM to reach the base temperature of 50 mK.

The damping of external vibrations is done by a bellows on which the STM head is hanged. The whole Sionludi setup also lies on an air-cushioned table.

The data presented in Chapters 3 and 4 were recorded at 50mK by the STM operating in the Sionludi with the help of a Nanonis SPM controller manufactured by SPECS TM .

4 He cryostat or STM 4K

While the inverted dilution fridge allows to reach very low temperatures, it requires a lot of time to load the STM and reach the temperature of 50mK (a few days at best). The STM 4K, on the other hand, is a regular 4 He cryostat that allows to reach low temperatures (down to 1.4 K) within a single day. A schematic of the full setup is shown Fig. 2.5.

The STM head is loaded inside a tube embedded in the empty cryostat. The inside of the tube is pumped to 10 -6 mbar at room temperature. Then, liquid 4 He is transferred into the cryostat to start the cooling. The pumping of the inside of the tube is stopped, the vacuum being maintained by the cryopumping on the cold walls of the tube. To lower the STM temperature, gaseous 4 He is introduced inside the tube to act as exchange gas between the cold 4 He bath and the STM. After usually one hour, the STM has reached the temperature of the 4 He bath: 4.2 K. Subsequently, it is possible to lower this temperature to around 1.4 K by pumping the 4 He bath.

The STM head inside the tube is hanged by a one meter-long spring to decouple it from external vibrations.

All the data presented in Chapter 5 were recorded by the STM 4K with the help of a Matrix SPM controller manufactured by Omicron NanoTechnology. The temperatures of the measurements range from 1.4 K to 10 K by heating of the STM. The crucible is inside the transparent quartz tube and inductively heated by the eld generated by the metallic coil. The gas circuit is shown in red.

Growth of graphene on silicon carbide

Silicon carbide wafers were purchased from Cree and cut by a diamond saw to have substrates of small dimensions. These substrates were then cleaned by acetone and isopropanol and dried under argon before growth. The graphene growth on the C-face was realized by annealing in a graphite crucible with an induction furnace shown in Fig. 2.6. A gas circuit allows to control the atmosphere inside the airtight quartz tube. The annealing of silicon carbide in the furnace can be realized under vacuum, argon (Ar) or a mixture of 90% argon and 10% hydrogen (Ar/H 2 ).

The recipe used to grow graphene samples is shown in Fig. 2.7 and is composed of four steps:

• The temperature is rst raised to 900 • C and stays at this value during 18 min under vacuum to clean the sample by removing adsorbates

• Then the temperature is set to 1600 • C during 30 min under an atmosphere of Ar/H 2 . This step etches the silicon carbide substrate to remove polishing scratches and get at terraces that are around 5 µm wide. • The temperature is lowered to 900 • C with argon owing though the tube to ush any remaining hydrogen. The plateau step lasts 30 min

• To nally grow the graphene, the ow of argon is stopped and the sample is kept under about 1 atm of argon. Then, the temperature is raised to 1600 • C to start the graphitization. The temperature plateau duration can be tuned but is usually between 20 and 30 min. Then, the temperature is slowly decreased to room temperature.

The presented process follows the work of Ref. [START_REF] Kumar | Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure[END_REF] and was used to grow the samples presented in Chapters 3 and 4. Another growth process under vacuum was used for the samples in Chapter 5 and will be presented there.

Data analysis softwares 2.6.1 Gwyddion

The STM images presented in this work are analysed with Gwyddion [START_REF] Ne£as | Gwyddion: An open-source software for SPM data analysis[END_REF]. The post-treatment of the images consists in a mean plane subtraction and an eventual line matching to smooth images. A Fourier transform ltering was sometimes applied to remove noise at a particular frequency (50 Hz for example). After these steps, the minimal tip height was substracted from the data to get the relative tip height Z.

Gwyddion was also employed to get the Fourier transforms used for commensurability analyses. The method computes the modulus of the Fourier coecients with Hann windowing to attenuate edge eects.

STM Data Analysis

To analyse the CITS, line spectroscopies and I(z) maps shown in the thesis, I have developed a data analysis software named STM Data Analysis. This software is written in Python (∼ 1300 lines of code) using various libraries: PyQt for the Graphical User Interface, NumPy/SciPy for the scientic data manipulations and matplotlib for the data plotting [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF]. More generally, the majority of the presented gures were generated by Python programs using the same libraries.

The use of dierent STM controllers led to the recording of data les that have dierent formats. As a consequence, the reading and analysis of these variously-formatted data required the use of dierent data analysis softwares. This state of things prompted the development of the STM Data Analysis software. The aim was to to centralize in a single software the reading of STS data from dierent sources and the features that are helpful to analyze STS data such as picking spectra in a CITS, averaging spectra, switching from dI/dV spectra to I(V) spectra, etc. For an ecient visualization of the data, the Qt library allows to do these tasks dynamically thanks to a Graphical User Interface shown in Fig 2 .8.

Commensurability analyses

The mesh decomposition part of the commensurability analyses presented in this work were done thanks to the vector graphics software Inkscape [START_REF]Draw Freely[END_REF]. The extraction of the structural parameters (lattice parameters, strains, angles) from the commensurability indices is done by a program written by Alexandre Artaud that implements the calculations of the Supplementary Information of Ref. 6.

CHAPTER 3 EFFECT OF RELATIVE STRAIN ON MOIRÉ VAN HOVE SINGULARITIES

Introduction

The interplay (both for large and small angles) of strain with the moiré van Hove singularities has been the subject of very few studies. In this section, we rstly present a geometric approach to the eect of strain on the moiré van Hove singularities and confront it with the existing theoretical studies. We notably introduce the situation where a dierence of strain is present in the layers. Never considered in the literature, such a situation was evidenced in our STM study of twisted graphene layers with a twist angle of θ = 1.26 • in the second part.

Theoretical considerations

Geometric approach of uniaxial strain

As discussed in Chapter 1, the wavevector ∆K that separate the Dirac points of the two twisted layers is the parameter that dictates the energy of the van Hove singularities. The application of strain to the twisted graphene layers will displace their Dirac cones and thus change ∆K. If the strain is not isotropic, the three-fold degeneracy of ∆K is lifted meaning that several values are possible. The presented geometric approach estimates the changes in energy of the van Hove singularities by supposing that these energies are only impacted by the change in ∆K by strain.

bottom top Taking a simple system of unstrained stacked graphene layers with a twist angle θ between them, their lattice vectors are (a b 1 ,a b 2 ) for the bottom layer and (a t 1 ,a t 2 ) for the top layer. From these, the reciprocal vectors of both layers (G b 1 ,G b 2 ) and (G t 1 ,G t 2 ) can de deduced. Consequently, we get the position of the K points for both layers K t 1 and K b 1 :

Γ K t1 K b1 θ K t2 K b2 K b3 K t3 ΔK
K t 1 = G t 1 3 + G t 2 3 (3.1) K b 1 = G b 1 3 + G b 2 3 (3.2)
and of the K' points K t 2 and K b 2 :

K t 2 = G t 1 3 - G t 2 3 (3.3) K b 2 = G b 1 3 - G b 2 3 . (3.4)
The vectors K t 3 and K b 3 are given by

K t 3 = K t 1 -K t 2 (3.5) K b 3 = K b 1 -K b 2 . (3.6)
∆K then simply falls as

∆K = |K t 1 -K b 1 | that is equal to |K t 2 -K b 2 | and |K t 3 -K b 3
| for unstrained layers. This is the situation depicted in Fig. 3.1.

To evaluate the eect of application of a uniaxial strain of magnitude σ along an angle φ s on the ∆K, we model it by the matrix

M str = I 2 + σ cos 2 φ s -γ sin 2 φ s (1 + γ) cos φ s sin φ s (1 + γ) cos φ s sin φ s sin 2 φ s -γ cos 2 φ s (3.7)
where γ is the Poisson ratio set to 0.165 [START_REF] Blakslee | Elastic Constants of Compression-Annealed Pyrolytic Graphite[END_REF]. This matrix is the result of an uniaxial strain of magnitude σ along φ s transposed in the basis of the layers. The angle φ s is given with respect to the rst crystallographic direction of the bottom layer a b 1 . We can then express the strained lattice vectors of the bottom layer noted (a b 1 , a b 2 ) by

a b 1 = M str a b 1 (3.8) a b 2 = M str a b 2 (3.9)
and the same for the top layer by

a t 1 = M str a t 1 (3.10) 
a t 2 = M str a t 2 . (3.11) 
Note that, as the uniaxial strain breaks the symmetry of the lattice, we have in general |a b 1 | = |a b 2 |. In any case, the reciprocal vectors of the strained lattice can be derived and in consequence the positions of the K t and K b points. So we can express the strained case value ∆K i for the three directions i = 1, 2, 3 and in the two following cases.

3.2.1.b Strain in the two layers (Absolute strain)

The eect of the application of strain in both layers is shown in Fig. 3.2. Despite the important deformation of 10%, the moiré pattern does not change drastically. In fact, applying the same strain in both layers leaves the commensurate indices of the moiré unchanged. Consequently, the Park-Madden matrix linking the atomic positions of the the top and bottom layers stays the same. Nevertheless, ∆K (strained case) will be dierent from ∆K (unstrained case) because the two layers are dierently orientated with respect to the direction of the uniaxial applied strain. Uniaxial strain also breaks the lattice symmetry so that we have three possible values of ∆K

∆K i A = |K t i -K b i | for i = 1, 2, 3 (3.12) 
which are shown in dierent shades of blue in Fig. 3.2 and can be evaluated analytically. 

3.2.1.c Strain in only one layer (Relative strain)

Figure 3.3 shows that applying the 10% deformation in only one layer has a visible deformation eect on the moiré. This is because the relative atomic positions between the layers change far more than in the absolute strain case. Also, in the case of relative strain, the commensurability indices are changed meaning that the moiré periodicity changes as well. The analytic formula for ∆K I can be derived similarly to the previous case

∆K i I = |K t i -K b i | for i = 1, 2, 3. (3.13) 
These ∆K i I are shown in dierent shades of green in Fig. 3.3 and appear more strongly modulated by strain compared to the absolute strain case.

3.2.1.d Energy of the van Hove singularities

We recall that in the unstrained case we can evaluate the energy of the singularities with respect to the energy of the Dirac point by

E vHs -E D = ∆E vHs 2 = v F ∆K 2 -t θ (3.14)
using the continuum formula of Eq. 1.45. In the following, we make the assumption that the change in energies of the singularities induced by strain is only due to the change of ∆K. We then evaluate for the three cases i = 1, 2, 3 the energy of the singularities by

E vHs i -E D = ∆E vHs 2 = v F ∆K i 2 -t θ . (3.15) 

3.2.1.e Results

For a given structure (meaning a given twist angle θ), we rst compare the eects of absolute and relative strain at constant strain magnitude σ.

For the unstrained bilayer dened by the indices (3,4) (θ = 9.43 • ), there is only one singularity at positive energy (the other singularity being at opposite energy), given by the continuum formula in Eq. (3.14): E vHs -E D = 905 meV with t θ = 0.108 eV. However, Fig. 3.4 shows that it is no longer the case for the strained cases. As the uniaxial strain has dierent eects depending on the direction considered, three values of ∆K are possible with saddle points and thus van Hove singularities at dierent energies. We then have three singularities instead of only one. Only at particular values of φ s , a crossing of energy of two van Hove singularities occurs which leaves only 0 20 [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF] two distinct singularities. The case where only one layer is strained (blue curves) gives stronger variations of energy with respect to the strain angle φ s than the case where both layers are strained (red, orange and yellow curves).

As inferred previously, straining only one layer changes more eectively the relative atomic positions of layers than straining them both which explains this observation. We also note that, as the directions are equivalent through a rotation of 60 • , the variation of energy follows the same symmetry.

In order to see the inuence of the twist angle θ, we did the same evaluation for θ = 3 • that is shown Fig. 3.5 with van Hove singularities closer to the Dirac point. It is clear that the absolute strain is even less eective in changing the energies of the singularities than in the case θ = 9.43 • because the crystallographic orientations of the layers become closer as the angle θ diminishes. This means that straining both layers becomes less eective in changing the relative atomic positions compared to individually straining one layer.

For θ = 1.26 • (shown Fig. 3.6), the eect of absolute strain is almost null compared to the eect of relative strain. For certain values of φ s , this relative strain even brings the van Hove singularities to the Dirac point (E vHs -E D = 0). This last consideration has to be taken with care as the continuum formula was applied outside of its validity domain. The small twist angles 0 20 [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF] regime is indeed more complex than what can be deduced from this simple geometric approach.

Tight-binding calculations

Tight-binding calculations oers a more accurate method to estimate strain eects and can tackle both small and large angle structures. However, the calculations need to be made on a periodic cell which leaves relative strain dicult to study as it changes the periodicity of the moiré cell. The studies in the literature were therefore made by applying absolute strain to the layers which preserved the periodicity of the moiré cell and will be reviewed now.

3.2.2.a Energy modulation of the van Hove singularities by strain

Chu et al. [START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF] studied the strain applied to the zigzag direction of the rst layer (φ s = 0). They therefore used the following strain matrix

M Chu = M str (φ s = 0) = I 2 + σ 1 0 0 -γ (3.16)
applied to a system of unstrained graphene layers with a twist angle θ. The band structure of the subsequent structure was calculated by tight-binding. The uniaxial strain lifts the degeneracy of the saddle points with respect to direction giving rise to three van Hove singularities. Adapted from [START_REF] Nguyen | Strain-induced modulation of Dirac cones and van Hove singularities in a twisted graphene bilayer[END_REF] The authors specically assumed 'that the lattice deformation [...] does not lift the degeneracy of the Dirac points' at odds with the geometrical approach above. The strained system shows therefore only one van Hove singularity for each polarity whose energy changes with strain as derived from their tight-binding calculations. Fig. 3.7 condenses their results for θ = 3.9 • showing that the energy of the van Hove singularities is reduced when applying tensile strain (σ > 0) while it augments when applying compressive strain (σ < 0). This trend is well reproduced by the geometric approach along the direction 1 and 2 (red and orange lines in Fig. 3.7) even if the magnitudes do not match. The dierence between the tight-binding calculations and the geometric approach grows with the strain magnitude as this latter approach is only valid for small strains.

3.2.2.b Lift of degeneracy of the van Hove singularities by strain

Similarly to Chu et al., Nguyen and Dollfus [65] also performed tightbinding calculations on twisted graphene layers deformed by the application of a strain matrix to both layers. As they did not consider a single direction but all values of φ s , the strain matrix used was kept in its general form where

M N D = I 2 + σ cos 2 φ N D -γ sin 2 φ N D (1 + γ) cos φ N D sin φ N D (1 + γ) cos φ N D sin φ N D sin 2 φ N D -γ cos 2 φ N D (3.
φ N D is linked to φ s though φ N D = φ s + θ 2
due to a dierent denition of the strain angle. Another dierence with Chu et al. is that they implicitly did not make the hypothesis that the Dirac points stay degenerate. Their results are consequently in agreement with the geometric approach as the lift of degeneracy make six van Hove singularities (three for each polarity of the energy with respect to the Dirac point) appear in the strained case. The band structure and the density of states are compared for the unstrained and strained case in Fig. 3.8 showing indeed that the saddle points occur at dierent energies for each direction giving rise to three van Hove singularities. The eect of the strain angle φ N D on the energy of these three van Hove singularities was also studied. Figure 3.9 shows the energy of the van Hove singularities as a function of the strain angle φ N D for the same twist angle (θ = 9.43 • ) and for the strain magnitudes σ = 0, 6 and -6%. The energy of the van Hove singularities is modulated with respect to φ N D with a crossing of two singularities for φ N D = 30 • . The comparison with the geometric approach for the same parameters (right of Fig. 3.9) is again favorable in terms of the trends but not in magnitude. This underestimation of energies shows that the strain eect on van Hove singularities is not only governed by the change in ∆K but by additional phenomena, not taken into account by design in the geometric approach. These eects are probably linked to nontrivial modications of the electronic band structures such as strain-driven variations of Fermi velocity [START_REF] Fernando De Juan | Space Dependent Fermi Velocity in Strained Graphene[END_REF]. 3.3 Relative strain in twisted graphene layers (θ = 1.26 • )

The previous section showed that the energy and the number of van Hove singularities are modulated by absolute strain but also more eectively by relative strain. The following section gives the rst experimental observation of a strain-driven modulation of the van Hove singularities which is traced back to the electronic band structure. with a gr the lattice parameter of graphene [START_REF] Pong | A review and outlook for an anomaly of scanning tunnelling microscopy (STM): Superlattices on graphite[END_REF]. The angle between the layers is very small as this gives here θ = 1.26 • ± 0.08. Figure 3.10b shows typical STS measurements performed in AA and AB regions. The most striking feature is the presence of a group of resonances located near zero energy and strongly localized in AA regions. The V shape of the density of states at high energy (dashed line) allows to conclude that this group of states is in fact centered around E = -25 meV which corresponds to the typical doping of graphene grown on the carbon-face of SiC. [START_REF] Sun | Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene[END_REF] Additional peaks are seen at higher energies and are found to be more pronounced in AB regions.

STM/STS results

We interpret the three observed peaks as the eect of uniaxial relative strain in the layers on the moiré van Hove singularities. To evalulate this strain, we performed a commensurability analysis of the twisted graphene layers as described in Chapter 1.

Commensurability analysis

The Fourier transform of the STM topograph of the moiré pattern with atomic resolution is shown Fig. 3.11. As discussed in Chapter 1, the STM image is sensitive to the beating that is the alternation of bright regions. The spots at the center of the Fourier transform (top right of Fig. 3.11) correspond therefore to the beating reciprocal vectors (k beat 1 , k beat 2 ) that are used to decompose the Fourier transform (black mesh in Fig. 3.11). In the presented case, the graphene reciprocal vectors cannot be decomposed in integer coordinates in the mesh of the beating reciprocal vectors. This indicates that the beating does not match the true periodicity of the moiré, a situation unveiled in Section 1.2.2. In direct space, the moiré period is then larger than the distance between two bright spots (beating) so that the moiré reciprocal vectors are smaller than the beating reciprocal vectors. To nd the moiré periodicity, a closer inspection of the graphene spots in the bottom right of Fig 3 .11 is needed. The graphene spots are at one third of the mesh of the beating reciprocal vectors which means that the moiré reciprocal vectors are three times smaller than the beating reciprocal vectors. Therefore, in direct space, the moiré system spans three inequivalent beatings in each direction. By dening Zoom on the graphene spots situated in the bottom right regions (purple square). The spots do not fall on the black beating mesh but instead on the green moiré mesh that is three times smaller.

k m 1 = 1 3 k beat 1 = 1 3 (k t 1 -k b 1 ) and
k m 2 = 1 3 k beat 2 = 1 3 (k t 2 -k b 2 )
, the commensurate structure is dened by

k t 1 = 167k m 1 -88k m 1 (3.19) k t 2 = 90k m 1 + 60k m 2 (3.20) k b 1 = 167k m 1 -91k m 2 (3.21) k b 2 = 93k m 1 + 57k m 2 . (3.22)
At this stage, the commensurability relations can be written using the Park-Madden matrix introduced in Eq. 1.29:

a t 1 a t 2 = 1 17940 18210 450 -510 17703 a b 1 a b 2 . (3.23)
We are then able to nd the parameters of the extended Wood's relation using Eq. 1.34

(P 1 Rθ 1 × P 2 Rθ 2 ) = (1.00274R1.241 × 1.00104R1.381) . (3.24) 
Firstly, the layers are only very slightly rotated so that the system falls in the small angle regime described in Section 1.2.3.b. Secondly, we can extract the relative strains between the layers from this relation using Eqs. (1.35) and (1.36): a small uniaxial relative strain ε rel uni = 0.35%(±0.03%) and an even smaller biaxial relative strain ε rel bi = -0.06%(±0.005%). To model the eect of these strains on the electronic properties, we need to take them into account in tight-binding calculations. A handy way to do this is to generate directly the periodic computation cell of the atomic positions of the two layers from the commensurability relations.

Tight-binding calculations with relative strain

The generating lattice vectors of the top and of the bottom layers are linked though Eq. (3.23). One set of lattice vectors allows to generate the other and consequently the whole moiré structure. In the presented case, we used unstrained lattice vectors for the bottom layer to generate the full structure. We show later that starting from a strained bottom layer does not change the electronic properties as long as the commensurability relations, and therefore the relative strain between the layers, are the same. The atomic positions for the top and bottom layer are shown in respectively red and blue in Fig. 3.12. The vectors (a m 1 , a m 2 ) of the moiré are also found from the commensurability relations. These vectors form a periodic cell that is suitable for tight-binding calculations that comprises 3 × 3 = 9 inequivalent beatings. The generated periodic cell contains 71844 atoms: 35880 for the top layer and 35964 for the bottom layer and is called structure 1.

The local density of states calculated using the cell presented above are shown in the left part of Fig. 3.13 for the AA and AB regions. The calculation reproduces the three resonances seen in the STS measurements of Fig. 3.10.

In addition, the central peaks in the local density of states are much more pronounced in AA regions than in AB regions which has to be related to the localization of electrons in AA regions by the moiré potential [START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF][START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF][START_REF] Shallcross | Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer[END_REF][START_REF] Trambly De Laissardière | Localization of Dirac Electrons in Rotated Graphene Bilayers[END_REF][START_REF] Uchida | Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes[END_REF]. The high energy resonances marked by arrows and their predominance in AB regions is also captured. These peaks ank dips that indicate a partial band gap opening in higher energy moiré bands [START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF][START_REF] Kim | Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene[END_REF][START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF]. The localization of these peaks in AB regions for small angles has not been reported and deserves further theoretical work.

For comparison, the right part of Fig. 3.13 shows the calculated density of states for the bilayer [START_REF] Dynes | Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor[END_REF][START_REF] Faugeras | Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations[END_REF] of same rotation angle (θ = 1.25 • ) but exempt of relative strain. In this case, the only two resonances are van Hove singularities that arise from saddle points in the band structure [START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF][START_REF] Brihuega | Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis[END_REF][START_REF] Li | Observation of Van Hove singularities in twisted graphene layers[END_REF][START_REF] Lopes Dos Santos | Graphene Bilayer with a Twist: Electronic Structure[END_REF][START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF][START_REF] Shallcross | Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer[END_REF]9092,[START_REF] Van Hove | The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal[END_REF][START_REF] Wong | Local spectroscopy of moiréinduced electronic structure in gate-tunable twisted bilayer graphene[END_REF]. To have more insight on the phenomena giving rise to the multiple resonances observed experimentally, we performed tight-binding calculations of the complete band structure E(k).

Modication of the electronic band structure by strain 3.3.4.a Generation of the tight-binding cell

The structure used previously to compute the local density of states (structure 1) is composed of 71844 atoms which makes full band structure calculations dicult to perform with reasonable calculation times. A solution would be to restrict the computation to a smaller cell comprising only one beating and therefore less atoms. For this approach to be valid, it is necessary to demonstrate that the structural inequivalence of the beatings has no eect on the electronic properties of the moiré system.

From the experimental side, the local density of states measurements performed in neighboring (and therefore inequivalent) AA regions (left of Fig. 3.14) do not show any remarkable deviation from one another. This is in agreement with tight-binding calculations which show very little differences of the local density of states computed on inequivalent AA regions (right of Fig. 3.14). The absence of any meaningful dierence in the local density of states was also predicted by the continuum model of Ref. [START_REF] Lopes Dos Santos | Continuum model of the twisted graphene bilayer[END_REF] where the authors concluded that a cell of multiple beatings is a quasi-periodic rep- etition of a single beating cell. It also indicates that it is possible to restrict the study of the electronic properties to one beating even in the case of a cell of multiple beatings.

As a consequence, a second structure (structure 2) was generated containing only one beating and 7988 atoms that is shown in the left part of Fig. 3.15. This structure was generated by modifying the commensurability indices of the structure 1 to get an approximate single beating cell (i -m = 1). The indices generating this cell were then tuned by hand to get the closest strain levels. The extended Woods' notation reads in this case (1.00324R1.24 × 1.0013R1.392) while the relative strain is ε rel uni = 0.38% and ε rel bi = 0.04%. The calculated local density of states of the two structures are extremely similar as shown in the right part of Fig. 3.15. The following band structure calculations were therefore performed using the structure 2. of states in AA and AB regions. The middle panel shows the calculated energy map of the rst band above E F . Lines correspond to the trajectory of the cuts in the band structure presented in the lower panel which shows the dispersion of the valence band and the rst ten bands above E F .

3.3.4.b Electronic band structure calculations

For the unstrained case which is presented in the center column of Fig. 3.16, the conduction band presents six saddle points (S) within the Brillouin zone which are marked by crosses. We note in passing that, contrary to large rotation angles, the saddle points are not located along KK for such small rotation angle. The result of the calculations with relative strain (using structure 2) is shown in the left column of Fig. 3.16. The middle panel shows that the conduction band is completely reconstructed by relative strain. The threefold symmetry is lost and additional saddle points arise at points marked S 1 , S 2 , S 1 and S 2 . In addition, weakly dispersing regions appear around points S 1 and S 2 at the corners of the Brillouin zone from which the zero energy resonance in the local density of states originates. The other resonances originate from the saddle points (S ). Cuts in the band structure presented in the left lower panel demonstrate that the entire band structure is modied by the small relative strain when comparing it to the cuts for the unstrained case in the center lower panel. Notably, the linear dispersion is replaced by at bands when relative strain is applied. 
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3.3.4.c Eect of absolute strain

The eect of absolute strain was also investigated as a verication since previous tight-binding calculations [START_REF] Nguyen | Strain-induced modulation of Dirac cones and van Hove singularities in a twisted graphene bilayer[END_REF] have shown that such strain can also alter the band structure of twisted graphene layers with large rotation angles. For consistent comparison between absolute and relative strain, we performed tight-binding calculation with 0.35 % of absolute uniaxial strain (described by the matrix M str ) applied in the x direction to the bilayer [START_REF] Dynes | Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor[END_REF][START_REF] Faugeras | Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations[END_REF]. The right panels of Fig. 3.16 show that in this case the local density of states is similar to the unstrained situation and the band structure is only weakly aected. This has to be expected since, as the layers are stretched together, the interlayer relative atomic positions evolve much slower than for relative strain.

Calculations on the same system using larger values of absolute strain, shown in the left part of Fig 3 .17, evidence that a magnitude of 2% is required to reproduce the multiple peaks observed in the experimental local density of states. Such strain is much larger than observed in typical Raman measurements of our sample presented in Fig. 3.18. The position of the G peak position is observed at 1587.9 cm -1 and the 2D peak at 2711.3 cm -1 . In rotated graphene layers, the position of the 2D band is dicult to interpret as the 2D Raman process depends strongly on the electronic dispersion [START_REF] Ferrari | Raman spectroscopy as a versatile tool for studying the properties of graphene[END_REF]. The G peak is more straightforward to analyze since it is not aected by the rotation angle [START_REF] Havener | Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene[END_REF] but only by doping and strain. The STS spectra in Fig. 3.10 show a n-doping of 25 meV which is too small to have any visible eect on the Raman spectrum [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[END_REF]. The G peak in our sample is therefore only aected by uniaxial strain which is supposed to split the G peak for strains higher than 0.2%. Since we do not observe such a splitting, the strain in our sample has to be smaller than 0.2%, in agreement with previous measurements [START_REF] Beechem | Rotational Disorder in Twisted Bilayer Graphene[END_REF]. The application of absolute strain through a strain matrix allows to explore the eect of the angle θ s along which the strain is applied as was done in Ref. [START_REF] Nguyen | Strain-induced modulation of Dirac cones and van Hove singularities in a twisted graphene bilayer[END_REF]. Right part of Fig. 3.17 shows the local density of states for σ = 2% for dierent θ s . The angles θ s = 0 • and θ s = 60 • are equivalent and show the three van Hove singularities already observed. As for θ s = 30 • , the signature of strain is quite dierent as there are four peaks in the local density of states. At intermediate angles, a continuous transition from three peaks to four peaks occurs showing that the strain angle acts as an additional tuning parameter. While not related to the experimental data, it may be very interesting to explore in detail this angular dependence by calculations of the electronic band structures.

Our experimental system of twisted graphene layers with θ = 1.26 • shows a native relative strain between the layers with almost no absolute strain. The occurrence of this situation seems surprising and calls for a discussion on the origin of the relative strain. This is the aim of the following section where we also discuss the possible eect of a dierent distribution of the relative strain between the layers. The small native relative strain originates from the pinning of the top layer at its boundaries during the growth as shown in Fig. 3.19. The STS measurements described above were performed in the blue square shown in the left part of Fig. 3.19. This region sits at the center of the graphene grain where the moiré pattern appears (TGL region in the right part of Fig. 3.19). The variation in the moiré pattern near the edges of this grain (yellow circles in the left part of Fig. 3.19) provides evidence that strain is applied at the grain boundary where most probably the top layer is pinned. Indeed, since the moiré results from an interference eect between the layers, any deformation of the atomic lattice is magnied by the moiré pattern. The bottom layer being much more extended (spanning at least the blue and red region in the right part of Fig. 3.19), it is not aected by this local strain or to a much lesser extend. Such a dissymmetry spontaneously induces a relative strain between the two layers. Away from the boundary, the moiré pattern becomes regular indicating that this relative strain is uniform and has reached the measured values. 

3.3.5.b Eect of the distribution of the relative strain in the two layers

The calculations on relatively strained layers are performed on a structure where the relative strain is conned in a single layer, the other layer being considered strain-free. We have investigated the situation where strain is distributed in the two layers. For this purpose, we applied half of the uniaxial strain to the atomic positions of the bottom layer and determined those of the top layer through the commensurability relations in order to keep the relative strain unchanged. Fig. 3.20 shows the tight-binding calculations of the local density of states in AA regions for both situations, where the relative strain is either conned in one layer or distributed between the two layers. The two results are very similar, with three resonances at the same energies, conrming the robustness of our model to this assumption.

Conclusion and perspectives

In this chapter, we gave the rst experimental evidence of an straindriven alteration of the band structure of twisted graphene layers. Notably, the Dirac cones turns into at band under the application of relative strain in the considered system. This considerable change in the electronic band structure can be achieved with relative strain of low magnitude. Much higher amplitudes of absolute strain would be necessary to get the same eects.

The commensurability analysis proves itself an eective tool to evaluate such strains and to couple the experimental details of the atomic positions to tight-binding calculations. This method is very general and can be applied easily to other bilayer systems to get informations on the structure and on the electronic properties.

Nonetheless, we emphasize that the presented eect of relative strain is realized by deformations that are already present in the layers. To go beyond this, our idea would be to apply locally a controlled strain to get desired modications of the density of states of the bilayer. A rst step towards such active manipulations is the focus of the next chapter where we studied the eect on interactions induced by the STM tip on the structural and electronic properties of twisted graphene layers.

CHAPTER 4 TIP-INDUCED INTERACTIONS IN MOIRÉS OF GRAPHENE

Introduction

In theory, in normal operating mode, STM is an non-invasive technique that allows to probe the sample without acting on it due to the tunneling gap between the tip and the surface of the sample. In practice, extremely short tip-sample distances can lead to interactions between the tip and the sample when imaging the surface. Such interactions are highly dependent on the tunneling conditions: voltage bias (V b ) and current setpoint (I t ).

For example, changing from a high to a low bias across the tunnel junction at a given current setpoint will reduce the number of electronic states available for tunneling. To keep the same tunneling current, one should lower the tunnel barrier and therefore the tip-sample distance favoring short-distance interactions. Similarly, to get a higher current at a given bias value, one should increase the rate of tunneling of the electrons by again lowering the tunnel barrier.

Such considerations about tip-induced deformations are particularly relevant when imaging moiré patterns of graphene on SiC. Firstly, graphene is a material prone to deformations that can sustain elastically above 20% of inplane strain [START_REF] Lee | Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[END_REF]. Secondly, the graphene layers grown on SiC rest on a 'mattress' of graphene layers allowing elastic out-of-plane deformations. Thirdly, the moiré pattern, resulting from an interference between the atomic lattices, magnies deformations of the lattices allowing an easier study of strains [START_REF] Miller | Structural analysis of multilayer graphene via atomic moiré interferometry[END_REF]. Finally, as shown in Chapter 3, native (relative) strain modies the local density of states of the twisted graphene layers system both in the number and position of the van Hove singularities. A mechanical interaction of the tip with the sample could then potentially inuence the electronic properties.

The study in Chapter 3 was done by setting high V b and low I t leading to high tip-sample distances and therefore corresponding to a non-interacting regime. In this chapter, we reduced the tip-sample distance to study the eect of the tunneling conditions on the STM imaging and STS spectra of the moiré pattern studied in Chapter 3. This led to the emergence of two interacting regimes. For moderate tip-sample distances, the regime is called elastic as both the forces exerted by the tip and the substrate on the topmost layer can be modeled using simple springs. For very small tip-samples distances, an non-elastic regime appears where the elastic spring model breaks down and the density of states of the twisted graphene layers needs to be taken into account to explain the observations.

Elastic regime 4.2.1 Eect of the bias value on STM imaging of moiré patterns

To evidence the presence of an eventual interaction between the tip and the surface, we realized successive atomically-resolved STM images of the same moiré pattern with dierent tunneling biases while keeping the same tunneling current (I t = 100 pA). The resulting images (Fig. 4.1) show a deformation of the moiré pattern that is enhanced with the reduction of the bias voltage. We interpret this deformation as a tip-sample interaction that is stronger when the bias is reduced as the tip-sample distance is decreased. The increase of the anisotropy of the deformation probably reects the tip shape that is brought closer and closer. An anisotropic tip shape can indeed lead to modications of STM images of the atomic lattice of graphite that are strikingly similar to the deformations of the moiré observed here [START_REF] Mizes | Multiple-tip interpretation of anomalous scanning-tunneling-microscopy images of layered materials[END_REF].

I(Z) measurements

To have more insight on this interaction, we performed I(Z) measurements The logarithm of the current for both regions is well tted by a linear function (black solid lines) except for large Z as the measured current value reaches the noise level. This shows that the dependence of the current is exponential with respect to the tip altitude Z. Assuming the graphene layer xed (Z g constant), the variation of the tip altitude Z is the same as the variation of the tip sample distance d = Z -Z g so that the exponential dependence is given by the tunnel equation Eq. (2.1):

I t = Ae -2κd . (4.1)
We can therefore extract κ and the experimental barrier height φ from the linear ts, Eq. (2.2) giving

φ = 2 κ 2 2m . (4.2)
For the curves on Fig. 4.2, we get dierent values for the AA and AB regions:

κ AA = 3.14 nm -1 → φ AA = 0.36 eV (4.3) κ AB = 1.82 nm -1 → φ AB = 0.12 eV (4.4)
which are both extremely low compared to the expected value for the graphene/Pt-Ir system φ ≈ 5 eV.

Apparent barrier height model

Tip-induced interactions were reported numerous times in early STM studies of graphite [START_REF] Mate | Direct measurement of forces during scanning tunneling microscope imaging of graphite[END_REF][START_REF] Terso | Tip-dependent corrugation of graphite in scanning tunneling microscopy[END_REF][START_REF] Yamada | Experimental study of forces between a tunnel tip and the graphite surface[END_REF] and more recently, in STM studies of graphene on various substrates [START_REF] Altenburg | Local work function and STM tip-induced distortion of graphene on Ir(111)[END_REF][START_REF] Georgi | Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field[END_REF][START_REF] Masho | Bistability and Oscillatory Motion of Natural Nanomembranes Appearing within Monolayer Graphene on Silicon Dioxide[END_REF][START_REF] Matthew Yankowitz | Pressure-induced commensurate stacking of graphene on boron nitride[END_REF]. The resulting deformations of the layers were used to explain the enhanced atomic contrast in STM images of graphite [START_REF] Soler | Interatomic forces in scanning tunneling microscopy: Giant corrugations fo the graphite surface[END_REF], the contrast inversions in STM images of carbon nanostructures [START_REF] Ondrá£ek | Forces and Currents in Carbon Nanostructures: Are We Imaging Atoms?[END_REF] and the extremely low barrier heights measured by I(Z) measurements [START_REF] Coombs | Properties of vacuum tunneling currents: Anomalous barrier heights[END_REF][START_REF] Mamin | Contamination-mediated deformation of graphite by the scanning tunneling microscope[END_REF]. Such low barrier height values were dubbed apparent barrier heights.

They are explained by the presence of a force applied by the tip that pulls the graphene layer as the tip is retracted. The distance between the tip and the sample d, which is the real tunneling distance, decreases more slowly than the tip altitude Z which makes the barrier height appears lower in I(Z) measurements. This means that our previous hypothesis that the graphene layer at Z g does not move should be revised.

It is possible to build a model of the interaction to get more quantitative results by evaluating Z g as a function of Z. Mamin et al. [START_REF] Mamin | Contamination-mediated deformation of graphite by the scanning tunneling microscope[END_REF] argued that the deformation of the surface by the tip is mediated by a contaminating (insulating) layer between the tip and the topmost graphene layer which is represented by a spring of constant k t . The graphene layer is also maintained in place by the underlying graphene layers which act also as a spring of constant k g . We get then the model schemed in Fig. 4.3 where the two springs act on the probed graphene layer. We see that the tip-sample distance d is varying not only as Z changes but Z g as well. The aim is therefore to deduce d = Z -Z g from the model. Assuming a mechanical quasi-equilibrium of the graphene layer when retracting the tip, the forces of the springs are equal which gives

SiC

k g (Z g -l 0,g ) = k t (Z -Z g -l 0,t ). (4.5)
where l 0 are the lengths of the unstrained springs. We derive then Z g :

Z g = k t k t + k g Z - k t k t + k g l 0,t + k g k t + k g l 0,g = k t k t + k g Z + C 0 (4.6)
gathering the constants in C 0 . From this equation, we get d as a function of

Z: d = Z -Z g = Z - k t k t + k g Z -C 0 = 1 1 + k t /k g Z -C 0 . (4.7)
We can replace the obtained expression of d in the logarithm of Eq. (4.1) to get ln(I t /I 0 ) as a function of Z: with φ app = φ (1 + k t /k g ) 2 , the apparent barrier height. Eq. (4.10) shows that the dependence of the current with respect to the tip altitude Z is still exponential but with an apparent barrier height φ app which is smaller than φ whatever k t and k g . This explains the reduction of the measured barrier height by a factor 10 in our experiment which is in agreement with the early reports on graphite [START_REF] Coombs | Properties of vacuum tunneling currents: Anomalous barrier heights[END_REF].

ln(I t /I 0 ) = ln(A/I 0 ) -2 √ 2mφ d (4.8) = ln(A/I 0 ) + 2 √ 2mφ C 0 -2 √ 2mφ (1 + k t /k g ) Z (4.9) = ln(A/I 0 ) + 2 √ 2mφ C 0 -2 2mφ app Z ( 

Dierence in barrier height between AA and AB regions

Within this formalism, we can study the dependence of the apparent barrier height φ app with respect to the position on the moiré pattern. Figure 4.4 shows a map of φ app deduced from the linear ts of the I(Z) measurements on every pixel. It clearly appears that the AA regions show higher values of φ app compared to the other moiré regions. A similar spatial modulation of the apparent barrier height φ app was also measured for a moiré formed by a single graphene layer on Pt(111) [START_REF] Yamada | Moiré-like distribution of local tunneling barrier height of the monolayer graphite adsorbed on Pt (111) surface[END_REF] which prompted two interpretations.

The rst one is that the dierent apparent barrier height φ app are ex-plained by a spatial modulation of the spring constant value k g if we assume that the barrier height φ and the tip interaction k t are the same on every point of the moiré. Combined STM and AFM measurements on epitaxial graphene on the Si-face of SiC [START_REF] Antonio | Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6HSiC(0001) surface during scanning tunneling and atomic force microscopy studies[END_REF] and on STM studies of graphene on hBN [START_REF] Matthew Yankowitz | Pressure-induced commensurate stacking of graphene on boron nitride[END_REF] both evidenced a deformation of the layer modulated by the moiré formed by the underlying layer. In this case, our results imply that the substrate is stier in the AA regions as we have:

φ app,AA > φ app,AB → k g,AA > k g,AB . (4.11)
However, theoretical predictions of the out-of-plane elastic constant C 33 , which can be considered as the spring constant k g per surface unit, are not in direct agreement with this. Density Functional Theory (DFT) calculations with van der Waals correction give a higher elastic constant for AB stacking (C 33,AB = 42 GPa) than for AA stacking (C 33,AA = 30 GPa) [START_REF] Savini | Bending modes, elastic constants and mechanical stability of graphitic systems[END_REF]. The discrepancy with the experimental result of Eq. (4.11) could be related to the fact that the graphene layer is in fact pulled over an area larger than a AA or AB region so that the evidenced interaction cannot be attributed to a single local spring.

The other interpretation relies on the hypothesis that the real microscopic work function of the surface φ s changes as a function of the location on the moiré while k t and k g are constant. For graphene on Pt(111) [START_REF] Yamada | Moiré-like distribution of local tunneling barrier height of the monolayer graphite adsorbed on Pt (111) surface[END_REF], the dierent surface work functions are explained by a change of the electronic coupling between carbon atoms and the underlying Pt atoms for the bright and dim regions of the moiré. This argument makes sense in the case of the moiré of graphene studied here. The strong interlayer coupling induced by the small angle between the layers induces a dierence of the electronic properties between AA and AB regions as shown in Chapter 3. For the measured moiré, we would then have:

φ app,AA > φ app,AB → φ AA > φ AB .
(4.12)

However, such a modulation of the work function was never reported nor studied theoretically for twisted graphene layers. The validation of this hypothesis would then need theoretical investigations of the local work function in moirés of graphene.

Non-elastic regime

The previous measurements were discussed in terms of a simple spring model without taking into account any eect linked to the density of states of the sample. We will show in the present section that when the bias approaches the energy of the van Hove singularities, additional phenomena appear that cannot be explained by the spring model.

STM imaging at very low bias

The left part of Fig. 4.5 shows a constant-current STM image taken at very low bias (V b = -15 mV) of the moiré pattern imaged in Fig. 4.1. The moiré pattern is strongly deformed but the image also shows abrupt changes in the tip altitude which will be called 'jumps' in the following. This is evidenced by the prole taken along the white arrow (right part of Fig. 4.5) that shows a jump in the tip altitude of almost 1 nm. The jumps were reproducible and located at the same place when scanning in the reverse direction. (φ app,AA = 0.11 ± 0.02 eV and φ app,AB = 0.05 ± 0.02 eV) indicating an enhancement of the interaction. The most unexpected feature occurs however in the I(Z) recorded at the jump location (purple): the current starts to decrease but then increases when retracting the tip. This is very surprising because according to the tunneling theory, the current is always supposed to decrease with the tip retraction. This increase of the current when doing I(Z) measurements occurs at the place of the moiré pattern where the jumps in the tip height are observed when scanning. This evidences the presence of an instability in the tip-sample distance that cannot be explained by the simple spring model.

We showed in Chapter 3 that the density of states of moirés of graphene is aected by the local strain. A deformation of the graphene layers could therefore provoke changes in the density of states at the energies involved in the tunneling processes. These could potentially trigger a sudden increase in tunnel current as observed in the I(Z) measurements. In the scanning mode, this sudden increase of the current would result in an abrupt correction of the tip altitude by the feedback loop to keep a constant current, i.e. a jump. In order to verify this hypothesis, we realized bias-dependent dI/dV measurements to probe the density of states of the twisted graphene layers at dierent tip-sample distances. between the tip height in bright regions and the height in dark regions, with no jump in the tip height for this bias. For a moderate bias V b = -200 mV, the recorded topography (Fig. 4.9) shows that the corrugation of the moiré increases. But the most striking feature in the local density of states recorded for this bias (Fig. 4.8) is that the energy positions of the van Hove singularities seem to change along the line. This is particularly visible if we compare the spectrum of the intermediate region (in green) and the spectrum of the AA region (in red): the three low-energy resonances are clearly shifted in energy. These changes in energy position are not monotonous as the energy dierence between the van Hove singularities decreases and increases along the probed line. Also, it appears that the van Hove singularities intensities diminish in the jump region as seen in the corresponding spectrum (in purple).

The same behavior is also observed for a smaller bias V b = -125 mV shown Fig. 4.8. These eects even appear to be enhanced at this lower bias with a higher moiré corrugation and larger changes in energy of the van In Chapter 3, the density of states of twisted graphene layers was modied by native strain. The changes in energy of the van Hove singularities, observed at low bias, show that this modication can be triggered by the application of external strain. At small tip-sample distance, the tip can indeed induce a local strain in the graphene layers that changes the separation in energy of the van Hove singularities. It is however dicult to estimate the amount of strain applied as the tip probably induces a non-trivial combination of biaxial, uniaxial strain and rotation in the layers which inuences the density of states dierently.

The vanishing of the van Hove singularities observed at the jump region may also be due to a tip interaction eect. If the tip can also induce local relative rotation of the layers, the angle between the layers could be locally equal to a magic angle leading to electronic states localized only in the AA regions, the rst magic angle 0.88 • being indeed very close to the studied angle 1.26 • . The left part of Fig. 4.10 shows that the LDOS in the intermediate region becomes a single peak when the bias is very low. This single peak is very similar to the calculation of the LDOS for the magic angle shown Fig 4 .11. In addition, the calculation shows very few electronic states at low energy in the AB regions. This is in agreement with the right part of Fig. 4.10 that shows that the intensities of the van Hove singularities diminish in the jump region as the bias setpoint is reduced (and thus the interaction augmented). The fact that traces of the features of respectively the AA and AB regions are observed in the intermediate and jump regions is linked to the fact that the tip probably deforms an area of dimensions larger than the moiré periodicity. This means that the tip interaction acts on all the regions (AA,AB and intermediate) even if the measurement is realized in a single region. In consequence, the local stacking may change in presence of tip-induced interactions with respect to what was observed in the unstrained case.

Our interpretation of the tip-interaction eects at low biases is described schematically in Fig. 4.12. The observed instability is in fact linked to the vanishing of the van Hove singularities induced by the tip interaction which has a strong eect when measuring at low bias. When scanning at high bias, even if the tip interaction could lead to such a vanishing, the integration of the local density of states to yield the tunneling current is done on a large range of energies so that it is unnoticed. However, when scanning at low bias, most of the electronic states that contribute to the tunneling are aected by this disappearance of electronic states. Therefore, when the tip interaction leads to the reappearance of electronic states, the tunneling current increases abruptly which triggers through the feedback loop a jump in the tip height as observed in Fig. 4.12. The inverse phenomena happens when scanning in the other direction: the sudden vanishing of the electronic states triggers a drop in the tip height to keep the tunneling current constant. This is the situation in the topography of Fig. 4.9 for V b = -50 mV.

This scenario, explaining why the instability is observed only for very low biases, is strengthened by the results of Fig. 4.13. For each bias setpoint, the measured dI/dV spectrum, normalized at high energy (-0.2 eV), was numerically integrated on the bias window [V b , 0] at each point of the line. The relative variation with respect to the mean LDOS is then plotted in Fig. 4.13. Variations along the line are observed for each bias. However, for V b = -50 mV, there is an abrupt and strong diminution of the LDOS in the jump regions. To keep the same tunneling current in these regions, the tip height must therefore abruptly diminish to lower the tunnel barrier as is experimentally observed.

The anomalous I(Z) measurements in the jump region described in the Section 4.3.2 can be explained within the same mechanism. As the tip is retracted at the location where the singularities vanished, the interaction between the tip and the graphene layers is reduced. The increase of the current is then also explained by the appearance of many electronic states in the integrated bias window. The fact that both phenomena, the tip height 

Eect of the tunneling current value

The presented interpretation is highly focused on the eect of the applied bias that both sets the energy window of probed electronic states and the tip-sample distance. However, the tip-induced interaction appears when decreasing the tip-sample distance which can be achieved also by increasing the tunneling current. If the interpretation shown Fig. 4.12 is correct, we should not observe instabilities at any tunneling current value if the bias value is above the energy of the van Hove singularities. To check this, dI/dV measurements were performed along a line (Fig. 4.14) at dierent tunneling currents while keeping the initial bias at a value far above the energy of the van Hove singularities (V b = -400 mV).

Figure 4.15 shows the result for the dierent I t presented in the same format of the previous section: dI/dV map at the left and individual spectra at the right. For a low tunneling current of 400 pA (top part), there is no observable tip-induced eect as we recover the three peaks in AA regions due to native strain as discussed in Chapter 3 and for the highest bias in Fig. 4.8. For I t = 1.4 nA, we start to see changes in the energy of the van Hove singularities in the dI/dV map similarly to the bias case of Fig. 4.8. The results for I t = 3 nA, presented just below, show an enhancement of these eects with a visible vanishing of the van Hove singularities in the so-called jump region. The tip-induced interaction can therefore also be modulated by the tunneling current value as it acts on the same parameter as the applied bias value: the tip-sample distance, which is the relevant parameter to consider. The results for highest tunneling current value used (I t = 4 nA) are shown at the bottom of Fig. 4.15. Again, we see in the dI/dV map that there is an even larger modulation of the energy position of the van Hove singularities along the line. The spectrum in the intermediate region (in green) shows again that at this location the singularities are almost merged. Also, the vanishing of the density of states is observed in the jump region.

This set of measurements shows that the same eects on the local density of states are observed when increasing the tunneling current and decreasing the bias, even if they are more dicult to distinguish in the case of the increasing current. The left part of Fig. 4. [START_REF] Campanera | Density functional calculations on the intricacies of Moiré patterns on graphite[END_REF] shows that the spectra in the intermediate region vary from a broad bump at low tunneling current to almost a single peak at high tunneling current in agreement with the left part of Fig. topography recorded during the measurements (Fig. 4.17). In particular, no jump in tip height are observed (the dip at the beginning of the measurement being unreliable due to the fact that the tip was not stable yet) although the lowest tunnel resistance R t = V b /I t is almost twice smaller than for the lowest bias probed in Fig. 4.8 where the jumps are observed (here, R t = 100 MΩ < R t = 166 MΩ for V b = -50 mV). This is consistent with our instability model presented Fig. 4.12. Even if the intensities of the van Hove singularities are modied when increasing the tunneling current, the bias value is large enough so there are always enough available tunneling states preventing any tip height jump. In this case, we always are in the so-called elastic regime.

Eect of bias on the moiré corrugation

The measurements in Fig. 4.8 showed a visible eect of the bias on the moiré corrugation, that is the dierence in tip height between bright (AA) regions and dark (AB) regions. To discuss it, we use the STM images at dierent biases shown in Fig. 4.1 where proles were taken along the white arrow from a dark spot to a bright spot. These proles shown in the left panel of Fig. 4.18 evidence an increase of the corrugation of the moiré pattern when the bias decreases. We realized such proles and determined the corrugation for the full dataset. The results, shown in the right panel of The non-elastic regime shows an abrupt increase in the corrugation reaching more than 1 nm due to the modication of the density of states by the tip as discussed above.

The maximal value of Z is obtained for AA regions whereas the minimum is for AB regions. The observed corrugation can be rst be interpreted as a dierence of interplanar distances for the two stackings. DFT computations showed that the interlayer spacing in a moiré pattern changes locally between AA and AB regions [START_REF] Uchida | Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes[END_REF]. This study also shows that the dierence in interlayer spacing increases when the twist angle θ is reduced. For θ approaching 0 • , the maximal moiré corrugation is then d AA -d AB with the computed interlayer distances d AB = 3.34 Å for a AB stacked bilayer and d AA = 3.61 Å for a AA stacked bilayer. This means that, at most, the moiré corrugation would be 0.27 Å which is one order of magnitude smaller than our lowest observed value of 0.3 nm for V b = -295 mV. We therefore exclude a dierence of interlayer spacing as the sole origin of our observations. Rong and Kuiper [START_REF] Zhao | Electronic eects in scanning tunneling microscopy: Moiré pattern on a graphite surface[END_REF] observed the increase of the moiré corrugation for twisted graphene layers from 0.1 nm to 0.25 nm when decreasing the bias from 535 mV to 75 mV. They explain their observations by the presence of a tip-induced interaction that is enhanced when reducing the bias. Such eects are known to increase articially the atomic corrugation of graphite [START_REF] Hofer | The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes[END_REF][START_REF] Soler | Interatomic forces in scanning tunneling microscopy: Giant corrugations fo the graphite surface[END_REF]. This interpretation is highly relevant as our previous experiments proved the presence of such an interaction in our case and that our moiré corrugation values for the elastic regime are in agreement with their study. However, these considerations are only correct for the elastic regime and our study reveals again that the non-elastic regime must be treated apart by taking into account the local density of states. To do this, a Terso-Hamann calculation of the STM topography using the density of states of a strained structure may be useful in simulating the resulting STM image [START_REF] Terso | Theory of the scanning tunneling microscope[END_REF].

Conclusion

The results of Chapter 3 were the starting point of the work discussed in this Chapter as we tried to go a step further by actively modifying the van Hove singularities by applying local strain with the tip.

The I(Z) measurements at dierent biases rstly gave the evidence of a tip-induced deformation of the graphene layers and of dierent interaction regimes. The apparent barrier height model, designed from a spring model, allowed to nicely t the results at high and moderate biases and to interpret the dierences between the dierent stacking regions without considering the local density of states. This is the elastic regime.

The appearance of a non-elastic regime with jumps in the STM topography while scanning and in the tunneling current while performing I(Z) measurements triggered the investigation by doing dI/dV measurements with dierent tunneling currents. This allowed to demonstrate the active modication of the van Hove singularities via tip-induced strain by changes in the tunneling conditions for small tip-sample distance. This was a requirement to explain the observed jumps that appear when the bias approaches the energy window of the van Hove singularities. However, further careful investigations are needed to go beyond the qualitative considerations given here. It is dicult to link our measurements to the actual mechanical properties of the system since too many parameters are unknown: tip characteristics (radius, shape, spring constant), number of involved graphene layers, etc. STM studies at constant height and additional data at constant current would be very useful to have more insight on the observed eects. CHAPTER 

GRAPHENE ON TANTALUM CARBIDE

Introduction

We discussed in the preceding chapters that the substrate can act on the properties of graphene through its elastic response. More generally, without any strain involved, the substrate can have direct eects on the behavior of electrons in graphene. A well-known example is silicon dioxide, a very common substrate for graphene, where trapped charges limit the electronic mobility of graphene [START_REF] Vincent | Mobility and saturation velocity in graphene on SiO2[END_REF].

In particular, growing graphene on a superconducting substrate allows to add superconductivity to the long list of interesting properties of graphene thanks to the proximity eect. Notably, it allows to study the combination of superconductivity with the ballistic transport in graphene. The geometry resulting from the growth of graphene on a superconducting substrate is very desirable for Scanning Tunneling Microscopy (STM) studies as the clean graphene layer, which protects the substrate from contamination, can directly be probed with atomic resolution. A low-temperature STM allows then to study locally the superconducting proximity eect in the graphene layer. This strategy was adopted by Tonnoir et al. [START_REF] Tonnoir | Induced Superconductivity in Graphene Grown on Rhenium[END_REF] for graphene on rhenium.

Rhenium is a superconducting metal with a critical temperature of T c = 1.7 K that was used as substrate for the growth of graphene by Chemical Vapor Deposition (CVD). The low temperature spectroscopic study of the density of states of the graphene layer reveals a superconducting gap that closes with temperature following closely the Bardeen-Cooper-Schrieer (BCS) theory. Unfortunately, the coupling between the graphene and the rhenium is so strong that the characteristic electronic properties of the graphene grown in We propose to study a similar system of graphene on a superconductor but with a dierent substrate to avoid the extremely strong coupling regime observed in graphene on rhenium. To do this, we realized the growth of graphene on transition metal carbides: niobium carbide (NbC) and tantalum carbide (TaC) both superconducting below 10 K. Our rst investigations resulted in a publication that focused mostly on the characterization of the electrical contact between graphene and NbC and showed that it was possible to couple graphene to a high-quality superconducting carbide [START_REF] Le Quang | Epitaxial electrical contact to graphene on SiC[END_REF]. The last chapter of this thesis aims to complement this study by local STM studies of graphene on TaC. The rst section will describe the growth process used to realize graphene on TaC. Section 5.3 is a detailed study of the electrical contact of graphene with TaC along the lines of the published work in Ref. [START_REF] Le Quang | Epitaxial electrical contact to graphene on SiC[END_REF]. Finally, Section 5.4 is dedicated to STM/STS studies of graphene on TaC at low temperature investigating structural eects and the induced superconductivity in the grown graphene layers.

Growth process

Silicon carbide is not the only carbide on which graphene can be grown. For example, Foster, Long and Stumpf showed that graphite lms can be grown on aluminum carbide by annealing [START_REF] Foster | Production of graphite single crystals by the thermal decomposition of aluminum carbide[END_REF]. However, the usual techniques to grow superconducting carbides such as NbC and TaC yield rarely highquality samples leading to reduced superconducting temperatures [START_REF] Giorgi | Eect of Composition on the Superconducting Transition Temperature of Tantalum Carbide and Niobium Carbide[END_REF]. We avoided this by realizing simultaneously the growth of graphene and of the carbide using the process shown in Fig. 5.1 that consists in two steps. Annealing After the deposition step, the substrate with the evaporated metal lm was annealed in the induction oven used for the graphene growth. At rst, we used the same annealing protocol as for the graphene growth on SiC, presented in Chapter 2, that consists in the substrate-etching step under Ar/H 2 and a graphene growth step under argon. But our previous experiments on NbC have shown that this led to a contamination of the metallic layer (Left of Fig. 5.2) which results in poor electrical properties. The substrate-etching step was therefore removed, being irrelevant when all the SiC is covered by tantalum, and the annealing was done under vacuum to avoid any contamination from the gases. The resulting growth program is presented in the right part of Fig. 5.2 and consists of an annealing step at 900 • C for 30 min to clean the sample followed by a graphitization step at 1360 • C for 20 min using slow temperature ramps. The bottom of Fig. 5.1 provides a sketch of the probable growth scenario [START_REF] Le Quang | Epitaxial electrical contact to graphene on SiC[END_REF]. Tantalum has a high melting temperature (T melting ∼ 3000 • C) which allows it to withstand the annealing temperature. The SiC however starts to dissociate by silicon sublimation leaving excess carbon atoms. These carbon atoms diuse in the tantalum layer, carbonizing it partly to form TaC x , x being the carbon to Figure 5.3 compares the aspect of the tantalum lm before and after annealing. It shows that, starting from a uniform tantalum layer, we get granular TaC which is an evidence of the solid-state reaction during the annealing.

Transport measurements

Before taking interest in the graphene layer grown on the top of TaC, the quality of the TaC resulting from the growth process was investigated. This was done by transport measurements determining the superconducting critical temperature and critical eld.

Critical temperature and critical eld of TaC

The TaC crystal structure is of the rock-salt (NaCl) type with tantalum atoms arranged in a face centered cubic lattice and carbon atoms in the octahedral sites so that the carbon to tantalum ratio is 1. If not all the sites are occupied (carbon vacancies), the carbon to metal ratio x is inferior to 1 and the chemical formula is noted TaC x . The presence of carbon vacancies reduces the superconducting critical temperature of TaC x [START_REF] Giorgi | Eect of Composition on the Superconducting Transition Temperature of Tantalum Carbide and Niobium Carbide[END_REF]. For a compound of high stoichiometry (x close to 1), the critical temperature can reach 10.35 K. On the other hand, TaC x is no longer superconducting for The low-temperature resistivity was measured using a 4-probes van der Pauw geometry to remove the resistive contributions from the contacts [START_REF] Van Der Pauw | A method of measuring the resistivity and Hall coecient on lamellae of arbitrary shape[END_REF]. The resulting resistivity curve at low temperature is shown on the right part of Fig. 5.4 with a clear superconducting transition occurring at 10.15 K. This temperature is far above the critical temperature of tantalum (4.45 K) and quite close to the critical temperature of fully stoichiometric TaC (10.35 K). Reporting this value of the critical temperature (in blue) in the left part of Fig. 5.4, we deduce that the carbon to metal ratio x is superior to 0.99 which proves that the annealing process yields high-quality TaC.

The critical eld H c2 of the same lm was also studied with respect to the temperature. Left part of Fig. 5.4 shows the resistivity with respect to the magnetic eld at several temperatures. As expected, the superconducting transition occurs at lower magnetic elds when increasing the temperature. We note some unexpected features such as sharper transitions accompanied by an overshoot of the resistivity for high temperatures. This overshoot is frequently observed for type-II superconductors and known as the peakeect. The origin of this anomaly is however unclear. It was shown to occur when measuring an inhomogeneous sample with 4-points geometry leading to an inhomogeneous current redistribution at the superconducting transition [START_REF] Vaglio | Explanation of the resistance-peak anomaly in nonhomogeneous superconductors[END_REF]. Another proposed explanation is the breaking of the vortex lattice with disorder-order transitions due to vortex pinning [START_REF] Ling | Nature of vortex lattice disordering at the onset of the peak eect[END_REF]. In any case, the presence of this eect evidences inhomogeneity in the TaC layer which can be expected in view of the granularity of the lm in the SEM images in Fig. 5.3.

All transitions show an inexion point at higher elds that could also have the same origin as the peak eect or comes from a second superconducting transition at higher eld. To avoid the inuence of these deviations in the ρ(H) transition, the critical eld H c2 was taken at the onset of the transition when the resistivity exceeds 7% of the resistivity in the normal state (dashed red line). The H c2 (T ) data determined by this method are shown in the right part of Fig. 5.5 with respect to the reduced temperature t = T /T c . The Werthamer-Helfand-Hohenberg (WHH) theory for orbital pair-breaking in an applied magnetic eld [START_REF] Werthamer | Temperature and Purity Dependence of the Superconducting Critical Field, ${H}_{c2}$. III. Electron Spin and Spin-Orbit Eects[END_REF] (solid green line) is then tted to the experimental data to get the critical eld at T=0 K: H c2 (0) = 0.7 T. A previous study on a TaC sample of similar quality [START_REF] Fink | High-Field Superconductivity of Carbides[END_REF] reported a slightly lower value of H c2 = 0.5 T. The discrepancy between the experimental data and the WHH theory can be solved by taking into account other pair-breaking mechanisms like spin-orbit scattering that lower the H c2 (0) deduced from the WHH theory.

Transmission Line Measurements

The presented graphene growth process leads to a highly-transparent electrical contact between the metallic carbide and the graphene layers [START_REF] Le Quang | Epitaxial electrical contact to graphene on SiC[END_REF]. The 1.

2.

3.
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Gr/SiC good quality of the contact is thought to come from a charge transfer between the graphene and the carbide and from the formation of edge contacts during the growth. These two phenomena were separately shown to reduce the contact resistance [START_REF] Park | Extremely Low Contact Resistance on Graphene through n-Type Doping and Edge Contact Design[END_REF][START_REF] Wang | One-Dimensional Electrical Contact to a Two-Dimensional Material[END_REF] and are here realized simultaneously in a single step.

Transmission Line Measurements (also known as Transfer Length Measurements or TLM) were used to probe the quality of the electrical contact. This method consists in measuring graphene ribbons of dierent widths and lengths to have dierent spacings between the carbide contacts. The resistance of such a device can be decomposed into two contributions: the resistance of the graphene in the ribbon and the contact resistance, which are in series. Assuming a homogeneous specic contact resistance R c to the graphene ribbon and a uniform sheet resistance R s of the graphene, the resistance R of a ribbon of width W and length L is given by

R × W = 2R c + R s × L . (5.1)
This means that the product R × W at zero-length gives directly twice the specic contact resistance 2R c .

In practice, we measure the resistance of ribbons of dierent lengths to nd the linear dependence and extrapolate the zero-length value. The samples for TLM were realized by the following process steps shown in the upper part of Fig. 5.6:

1. Denition of tantalum contact geometry using standard optical lithography techniques 2. Simultaneous growth of TaC and graphene, realizing the electrical contact between the two

Denition of graphene ribbons of dierent widths by oxygen plasma etching

The used lithography mask allows to have in principle up to 32 measurable devices per sample with widths ranging from 3 to 10 µm and lengths from 1 to 20 µm. In practice, there are around 20 exploitable devices per sample due to usual lithography problems such as external contaminations.

The results for the three measured samples are displayed in Fig. 5.7. The standard deviation of the product R × W , depending only on the length according to Eq. (5.1), was derived from the variation of the resistance of devices of dierent widths with the same length.

The rst sample had no exploitable devices for lengths below 5 µm but shows a small standard deviation of the product R×W for the larger lengths. superconducting (insulator or normal metal) junction between two superconducting contacts [START_REF] Josephson | Possible new eects in superconductive tunnelling[END_REF]. This supercurrent arises from the coherent transport of Cooper pairs through the normal part from one contact to the other. The eciency of this process depend highly on the transparency of the interfaces between the superconducting parts and the normal part. The presence of a Josephson eect is therefore an indicator of transparent interfaces between the carbide and the graphene. TaC-graphene-TaC junctions were realized as shown Fig. 5.8 following the fabrication steps 1 and 2 described above but omitting the etching step 3 for simplicity. Despite the granularity of the contacts, the interface seems better dened compared to the TLM devices. The voltage-current characteristic was recorded at dierent temperatures by biasing the junction with a DC current, shown in the right part of Fig. 5.8. At 100 mK (bluest curve), the junction sustains a current up to 0.6 mA in the junction without any voltage drop: this is a clear signature of the Josephson eect.

When the temperature is raised, there is a weakening of the supercurrent due to the appearance of thermal uctuations governed by the thermal energy k B T that overcomes the Josephson energy I c /2e for T = 3.3 K (reddest curve) where the supercurrent disappears. At this temperature, the TaC contacts are still superconducting but the superconducting pair correlations are no longer transmitted coherently between them. The establishment of the supercurrent is then limited by the decoherence of the interfering quasiparticle excitations due to the diusion across the graphene in the so-called long junction regime.

We also studied the critical current I c of the junction with respect to the out-of-plane magnetic eld B. In an ideal Josephson junction, the critical current density J c (x) is uniform along the interface. To have the critical current of the junction at zero-eld, the integration over the width W is then straightforward:

I c (B = 0) = | W 0 J c (x)dx| = J c W .
(5.2)

When applying a out-of-plane magnetic eld, it can be shown [START_REF] Tinkham | Introduction to Superconductivity[END_REF] that, due to quantum interference eects, the critical current density is sinusoidally modulated along the width of the junction:

J c (x, B) = J c (x) sin 2π Φ 0 t b Bx (5.3) 
where Φ 0 = h/2e is the quantum of magnetic ux and t b is the length on which the magnetic eld penetrates the junction. t b = L+2λ L is taken as the sum of the length L of the normal part and of the London penetrating depth λ L of the magnetic eld in the superconducting contacts, with λ L = 100 nm as a typical value. The critical current is given by

I c (B) = W 0 J c (x) sin 2π Φ 0 t b Bx dx (5.4)
which is nothing else than the modulus of the Fourier transform of J c (x). In the case of a uniform J c , the critical current with respect to magnetic eld is 99 5.4 Low-temperature STM measurements then

I c (B) = I c sin π Φ 0 t b W B π Φ 0 t b W B (5.5)
which is a cardinal sine function similarly to the diraction by a gate function.

The critical current therefore shows a Fraunhofer pattern as shown in the left panel of Fig. 5.9 with the zeros corresponding to the situation when ux through the junction area Φ = t b W B equals to an integer number times the ux quantum Φ 0 .

For a situation where J c is non-zero at only two positions (Superconducting QUantum Interference Device or SQUID-like geometry), the situation is very similar to the Young slits experiment and I c shows sinusoidal oscillations instead:

I c (B) = I c cos πφ Φ 0 . ( 5.6) 
The critical current with respect to magnetic eld for the probed junction is shown in the right panel of Fig. 5.9 and shows oscillations. But these oscillations deviate from the cardinal sine and resembles more to a sinus: they all have the same width and do not appear to decay as strongly as for a cardinal sine. This is probably due to variations in the junction length along the width of the junction, due to the granularity of TaC. This creates preferential current paths leading to a current distribution that is between a SQUID-like and a homogeneous distribution. Moreover, these current paths are not symmetric with respect to middle of the width of the junction as evidenced by the non-complete vanishing of the critical current when sweeping magnetic eld.

The periodicity of the measured oscillations was used to extract the area of the junction A B = t B W = 0.114 µm 2 . This value is much smaller than the area of the normal region estimated from the SEM image A L SEM = (L SEM + 2λ L ) × W SEM = 0.66 µm 2 , even when neglecting the London penetrating depths A SEM = (L SEM ) × W SEM = 0.24 µm 2 . This means that the supercurrent does not ow in the full width of the junction. A possible explanation is the presence of grains, visible in the SEM image, between the contacts that probably reduce the overall junction area.

Low-temperature STM measurements

The transport measurements revealed many eects due to the inhomogeneity of the superconducting TaC layer prompting us to investigate it at the local scale. Using the described process, a granular tantalum carbide layer with graphene layers on the top was grown which oers a clean and oxide-free surface to perform low-temperature STM studies. This system also allows to have more insight on the local properties of the graphene grown on TaC.

Granular structure characterization

Left part of Fig. 5.10 shows a large scale (1 × 1) µm 2 STM image of the sample showing the granularity of the underlying TaC. The grains have dimensions of about 200 nm 2 in agreement with the grains observed on the SEM image presented in Fig. 5.3. While doing the STM image, the local dierential conductance dI/dV was recorded by STS for every 10 pixels. As the measurement was done at 4.2 K, the TaC should be superconducting and a drop of the dierential conductance at zero bias (Fermi level) should be observed due to the presence of a superconducting gap in the local density of states of the TaC.

The resulting map of the local dierential conductance for V b = 0 mV is shown in the right part of Fig. 5.10. The surface may not be extremely clean as most of the recorded spectra are noisy and show abrupt changes in the dI/dV. This led to an inhomogeneous map but with several regions that show a uniform and very low dierential conductance indicated by the colored circles. Reporting the circles on the STM image, we see that these regions correspond to clean at grains. Typical normalized dI/dV (V ) spectra recorded in these regions are given in Fig. 5.11 (left for the black region and right for the red region). Two dierent behaviors are observed as the density of states reaches almost zero in the black circled region whereas it is only reduced by half in the red circled region. To give more quantitative results, the spectra have been tted by the BCS density of states of the superconductor with taking account for the sample temperature.

Derivation of the BCS t function

The electronic density of states in a superconductor for a given energy E is given by the BCS theory [START_REF] Tinkham | Introduction to Superconductivity[END_REF]:

N s (E) = N n E √ E 2 -∆ 2 for E > ∆ (5.7) N s (E) = 0 for E < ∆ (5.8)
where N n is the density of states in the normal state and ∆ the superconducting gap. To take into account additional pair-breaking events, an imaginary part is added to the energy so that E becomes E + iΓ. Γ, called the Dynes parameter [START_REF] Dynes | Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor[END_REF], introduces in the model the nite lifetime of the quasiparticle excitations. Recalling Eq. (2.4) without neglecting the eect of temperature, the tunnel current (shorted to I) with respect to the bias (shorted to V ) is given by

I(V ) ∝ ∞ -∞ N s (E + eV )N t (E)[f (E + eV ) -f (E)]dE .
(5.9)

A change of variable in the integral = E + eV yields

I(V ) ∝ ∞ -∞ N s ( )N t ( -eV )[f ( ) -f ( -eV )]d .
(5.10)

The derivation with respect to V to obtain the dierential conductance dI/dV gives

dI/dV ∝ ∞ -∞ -eN s ( )N t ( -eV )[f ( ) -f ( -eV )] -eN s ( )N t ( -eV )f ( -eV )d . (5.11)
Under the common assumption that the tip is metallic with a constant density of states (N t (E) = N t ), the dierential conductance is

dI/dV ∝ ∞ -∞ -eN s ( )N t f ( -eV )d (5.12)
and depends only on the density of states of the superconducting sample N s given above and the derivative of the Fermi-Dirac distribution:

f ( ) = -1 4k B T ch 2 ( 2k B T ) (5.13)
where T is the electronic temperature of the tip and k B the Boltzmann constant. The dierential conductance can therefore be computed with three tting parameters: the electronic temperature T , the Dynes parameter Γ and nally the superconducting gap ∆.

The results of the ts are given in the table in Fig. 5.11. In both cases, the electronic temperature was set at 4.2 K, equal to the temperature at which the spectra were recorded, and the Dynes parameter to 0, as it was unnecessary to t the spectra. The only tting parameter is therefore the superconducting gap ∆ whose results are shown in the table 5.11. The corresponding critical temperature can be deduced using the universal BCS formula [START_REF] Tinkham | Introduction to Superconductivity[END_REF] .14) For this black region, the deduced critical temperature T B c = ∆ B /1.764k B = 10.5 ± 0.5 K corresponds to the expected critical temperature of stoichiometric TaC. As for the red region, the superconducting gap is two times smaller so that T R c = ∆ R /1.764k B = 5.2 ± 0.5 K. We can interpret the dierence in critical temperature as a dierent composition (carbon to metal ratio) of the red grain. In Ref. [START_REF] Shuck | Solid-ame: Experimental validation[END_REF], the authors argue that, during annealing, the carbon atoms diuse in the tantalum by grain boundaries so that the composition of grains can be dierent depending on their surface-to-volume ratio. However, the growth process used in their case was dierent so that additional investigations are needed in our case to conrm this scenario.

T c = ∆ 1.764k B . ( 5 
Another interpretation of this superconducting gap variation from grain to grain is linked to the presence of a potential proximity eect as there are a few graphene layers that cover the TaC grains. A higher number of graphene layers on the top of the red grain would then explain the observed weakening of the superconductivity.

Temperature dependence of the superconducting gap

We studied the temperature dependence of the superconducting gap appearing in the STS spectra on a dierent location of the sample compared to the experiment described in the previous section. The STM image of this location (Fig. 5.12) showed again a granular structure. We recorded STS spectra at dierent temperatures regulated with the heater placed on the sample holder. The temperature of the sample was monitored by the thermometer also placed on the sample holder. We then were able to record spectra from 1.4 K (helium bath pumped below the lambda point) to around 10 K. Figure 5.13 shows the experimental dierential conductance for three temperatures in blue data points. The recorded spectra were not as clean as the ones of the previous section so that the BCS ts (solid line) are far from ideal for any temperature. Still, the ts allow to extract an estimate of the superconducting gap ∆ as a function of the sample temperature T . This is shown in Fig. 5.14 for all the probed temperatures. The variation of the superconducting parameter ∆ with temperature can be derived using the BCS theory [START_REF] Tinkham | Introduction to Superconductivity[END_REF]. The resulting prediction ∆ BCS (T ) is shown in Fig. 5.14 for the expected critical temperature T c = 10.15 K in solid black line. A slighty better matching is achieved by taking T c = 6.5 K (black dashed line). At temperatures between 1.4 K and 5 K, there is a decrease in the experimental gap amplitude which is very roughly tted by the BCS theory. However, the presence of a gap of around 0.5 meV at higher temperatures (around 9 K) is at odds with the abrupt decrease predicted by theory.

A possible explanation is that the data are too poor to get any meaningful results. Notably, it is very surprising to get a temperature dierence of 7 K between the tip and the sample for the BCS t at 9.0 K (Fig 5 .13). This casts doubt on the validity of the BCS ts at high temperatures. Another explanation is that the gap observed is induced by the superconducting proximity eect of TaC in the graphene layers. This proximity gap is not expected to follow the BCS theory and the temperature dependence should be studied in the framework of the Usadel equations which is beyond the scope of this work.

Moiré patterns on TaC

After having characterized the grains at the micron scale, we tried to have insight on the local structure of the graphene layers grown on TaC by doing measurements at a smaller scale. topmost boundary, due to a misorientated stacking of two graphene layers on TaC. Similar moirés were repeatedly observed in other places on the TaC samples covered with graphene indicating that the graphene layers grow in a turbostratic fashion on TaC like on the C-face of SiC. The appearance of this stacking is an unexpected boon as it is not the most energetically favorable one and allows to decouple the graphene layers preserving their Dirac-like dispersion for large twist angles.

The right part of Fig. 5.15 shows a close-up STM image of the moiré pattern with the graphene atomic lattice. As presented previously, we can get the graphene lattice parameter a gr , the twist angle θ and the moiré parameter D m by doing a commensurability analysis. The values averaged over all directions are given below: a gr = 2.464 ± 0.004 D m = 5.27 ± 0.26 nm θ = 2.69 ± 0.01 • .

θ is above 2 • so that the top graphene layer can be considered as mostly electronically decoupled from the bottom layer with van Hove singularities in the local density of states at several hundreds of millivolts above the Dirac energy. As superconductivity involves excitations on an energy scale of the superconducting gap around the Fermi energy, we do therefore not expect to have any variation of the superconducting gap at the moiré scale. shows that it is the case as dI/dV spectra recorded on dierent places of the moiré (AA, AB and intermediate regions) do not deviate strongly from each other. The BCS t gives superconducting gaps ∆ of around 0.8 meV as observed in the large-scale characterization of the grain. These spectra were recorded with the helium-4 bath cooled to the lambda point (T = 2.2 K) which was set as the electronic temperature for the BCS tting functions. The Γ values obtained are still rather small compared to the superconducting gap.

5.4.3.b Van Hove singularities

As for now, we made the hypothesis that the moiré was occuring due to a twist angle between the two top graphene layers. The atomic resolution shows that the top layer is indeed graphene but moirés can be also observed by STM when a single graphene layer lies on a mismatched substrate (metal, hBN...). To be able to make the distinction, we searched for low-energy van Hove singularities that would only appear in the LDOS when the moiré is composed of twisted graphene layers. To check the presence of van Hove singularities, the LDOS of a moiré system needs to be probed at much higher energies than the superconducting gap. This was done on the moiré shown in the left part of Fig. 5.17 found on the top of another TaC grain. The commensurability analysis of the moiré gives a slight biaxial deformation (ε b = -0.12%) with no uniaxial deformation. The graphene lattice parameter a gr and the moiré parameter D m are therefore uniform and given by a gr = 2.458 ± 0.004 D m = 7.03 ± 0.46 nm θ = 2.00 ± 0.01 • .

The STS spectra recorded in the AA and AB regions on this moiré are shown in the right part of Fig. 5.17. Both show two well-dened peaks separated by ∆E = 123 ± 10 meV. This is very close from the expected separation ∆E vHs = 159 ± 1 meV given by tight-binding calculations on the unstrained bilayer (16,17) (θ 16,17 = 2.00 • ). Moreover, the peaks are more intense in AA regions than in AB regions as expected for moirés of small angle (2 • and lower) where the van Hove singularities localize in AA regions. This proves that the observed moiré is composed of two twisted graphene layers. No localization eect are expected for this angle so that the LDOS is the same in any point of the moiré. The dI/dV spectrum recorded on the moiré is shown in red in the right panel of Fig. 5.18. The dI/dV shows broad peaks that are underlined by red arrows.

We then compare this data with the tight-binding calculations on the commensurate structure (black curve). As uniaxial strain is taken into account, multiple van Hove singularities appear in the calculation as shown in Chapter 3. Although there are no direct observation of these multiple singularities in the experimental data, the mean separation between them is well reproduced by the broadening of the experimental peaks hinting that the experimental data is not resolved enough to observe this multiplicity. The energy of the experimental peaks is also in excellent agreement with the calculation assuming a n-doping of E D = -120 meV which strongly supports that these are van Hove singularities of twisted graphene layers. The origin of this doping is unclear and would need detailed investigations of the charge transfer at the TaC/graphene interface.

Conclusion

It was demonstrated that the graphene on superconducting TaC is a promising system to study induced superconductivity in graphene layers. The original growth process notably yields a high-quality superconducting TaC layer with a high critical temperature and a good electrical coupling to graphene. Achieving ne control of the growth would be helpful for further studies of the superconducting proximity eect by realizing dierent types of TaC/graphene interfaces for example. It could also give insight on the observed turbostratic stacking of graphene on the TaC and the nature of the graphene-TaC interface.

The strong link between the structural parameters and the electronic properties of twisted graphene layers was explored in this manuscript. The introductory Chapter 1 showed that the link is quite important in monolayer graphene, the crystallographic structure leading to the apparition of another electronic degree of freedom. This is even more relevant in twisted graphene layers where the apparition of the moiré pattern leads to a strong dependence of the electronic properties with respect to the twist angle between the layers. This calls for a tool to accurately study experimental moiré patterns under the form of the presented commensurability analysis.

The commensurability analysis is notably the only way to evidence relative strain in the layers. The relative strain modies strongly the electronic properties of twisted graphene layers as shown in Chapter 3. It is expected that this method could be useful in the studies of other stackings of 2D materials to take into account previously unaccessible structural details. More generally, relative strain could be used to tune eciently the properties of such heterostructures.

A rst step towards this was presented in Chapter 4 which showed possibilities of an active modication of the electronic and mechanical properties of moirés of graphene by local interactions between the tip and the graphene surface. Several regimes of interaction were shown to occur with an elastic regime, well-described by a simple spring model, and a non-elastic regime that depends on the electronic properties of the graphene system. A ne manipulation of the observed periodic instability would be very interesting to design a self-assembled superlattice of mechanical switches whose periodicity could be tuned by the twist angle between the layers. Such control is dicult to achieve in our setup as the interaction is probably mediated by a contaminating layer. It would be interesting to reproduce the experiment in a Ultra-High-Vacuum setup to avoid contamination and see if the same eects can be observed. The interpretation of the measurement was also made dicult by the complex spectroscopic signature of the studied moiré system. Reproducing the experiment on an other moiré, of higher twist angle for example, could give more insight on the phenomena at work.

The change of the electronic properties of graphene by the underlying substrate is also a promising route. This was shown in Chapter 5 where a superconducting proximity eect in moirés of graphene induced by the underlying tantalum carbide was observed. While the geometry led to a efcient coupling between the tantalum carbide and the graphene, it prevents a complete study of the superconducting proximity eect. It would be ideal to observe to weakening of the proximity eect by increasing the distance between the probed graphene and the superconducting interface. For this purpose, some samples were designed to show a planar interface between tantalum carbide and graphene. It was however dicult to locate the interface by STM and the measurements did not yield signicant results for now. Continuing such experiments would help in the interpretation of the presented results. It would also be another step towards the realization of Andreev billards, normal metal islands surrounded by a superconductor, to study the interplay of superconductivity and ballistic transport.

CONCLUSION ET PERSPECTIVES

Le lien fort existant entre la structure et les propriétés électroniques des couches tournées de graphène a été étudié dans ce manuscrit. Le chapitre 1 introductif a montré que ce lien est déjà très fort dans le graphène monocouche avec l'apparition d'un nouveau dégré de liberté électronique due à la structure cristallographique. L'étude de ce lien est encore plus pertinente dans le cas des couches tournées de graphène où l'apparition d'un moiré donne lieu à une forte dépendence des propriétés électroniques avec l'angle entre les couches. Cette étude requiert un outil pour étudier très précisément les moirés expérimentaux qui est l'analyse de commensurabilité présentée dans ce même chapitre.

L'analyse de commensurabilité est notablement la seule manière de mettre en évidence une déformation relative dans les couches. Le chapitre 3 montre que la présence d'une déformation relative modie très fortement les propriétés électroniques des couches tournées de graphène. Notons que cette méthode pourrait être utile dans l'étude d'autres empilements de matériaux 2D pour prendre en compte des détails de leur structure autrement inaccessibles. D'une manière plus générale, la déformation relative pourrait être utilisée pour changer de manière ecace et contrôlée les propriétés de telles hétérostructures.

Une première étape d'une telle utilisation contrôlée de la déformation a été présentée dans le chapitre 4. Ce chapitre décrit la possibilité de modier activement les propriétés mécaniques et électroniques des moirés de graphène grâce aux interactions locales entre la pointe et le graphène en surface. Plusieurs régimes d'interactions apparaissent : un régime élastique, pouvant être simplement modélisé avec des ressorts, et un régime non-élastrique qui fait intervenir les propriétés électroniques du système. Une manipulation adroite de l'instabilité périodique observée serait très intéressante pour con-cevoir un réseau d'interrupteurs mécaniques auto-assemblés dont la périodicité pourrait être réglée par l'angle entre les couches. Un tel contrôle est dicile dans notre système expérimental car l'interaction est probablement transmise par une couche de contaminants. Il serait intéressant de reproduire ces expériences dans une installation Ultra-Haut-Vide pour éviter toute contamination and voir si les mêmes eets peuvent être observés. L'interprétation des mesures a été de plus rendue dicile par la signature spectroscopique complexe du moiré étudié. Reproduire l'expérience avec un autre moiré, avec un angle entre les couches plus important, pourrait donner plus d'informations sur les phénomènes mis en jeu.

La modication des propriétés électroniques du graphène par le substrat est également une voie prometteuse. Ceci fut décrit dans le chapitre 5 où un eet de proximité supraconducteur induit par un substrat de carbure de tantale a été observé dans des moirés de graphène. Bien que la géometrie mène à un couplage ecace entre le carbure de tantale et le graphène, elle empêche une étude complète de l'eet de proximité supraconducteur. Il serait en eet idéal d'observer l'aaiblissement de l'eet de proximité en fonction de la distance entre le graphène sondé et l'interface supraconductrice. Pour cela, plusieurs échantillons ont été conçus de manière à avoir une interface plane entre le carbure de tantale et le graphène. Il a été cependant dicile de localiser l'interface par STM and les mesures n'ont pas donné de résultats signicatifs pour le moment. Continuer ces expériences pourrait aider dans l'interprétation des résultats présentés. Ce serait également un nouvelle étape vers la réalisation de billards d'Andreev, des ilôts de métal normal entourés par un supraconducteur, pour étudier l'interaction entre la supraconductivité et le transport ballistique.
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 12 Figure 1.2: Reciprocal lattice of graphene with its lattice vectors (G 1 , G 2 )

Figure 1 . 3 :

 13 Figure 1.3: Top : Hybridization of the 2s, 2p x and 2p y orbitals to get the sp 2 orbitals while the 2p z stays unchanged. Bottom : σ bond formed by the overlap of the sp 2 orbitals and delocalized π bond formed by the overlap of the 2p z orbitals. From Ref. 7
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 14 Figure 1.4: Left: Band structure of graphene given by Eq. (1.7). The valence band (in red) and the conduction band (in blue) touch at K (green) and K' (cyan) points situated on the border of the Brillouin zone (in black). Right : Zoom at the K point showing the conical structure of the band structure.
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 15 Figure 1.5: Critical points of the band structure and corresponding singularities shapes in 2D systems. Left: Minimum. Center: Maximum. Right: Saddle point.
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 216 Figure 1.6: Left: AA stacking of two graphene layers (top layer in blue, bottom layer in red) Right: Low-energy band structure of the AA stacked bilayer for t AA = 0.35 eV. The Dirac cones are preserved and shifted in energy.

1. 2 . 1 θ 2 ABFigure 1 . 7 :

 21217 Figure 1.7: Left: AB stacking of two graphene layers (top layer in blue, bottom layer in red) Right: Low-energy band structure of the AB stacked bilayer for t AB = 0.35 eV. The dispersion is no longer linear but parabolic.
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 18 Figure 1.8: Graphene layers with a twist angle θ = 5.09 • between them. The black rhombus represents the cell of the superperiodic moiré pattern which consists in an alternation of local AA stacked regions and AB stacked regions.
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 19 Figure 1.9: Mismatched 1D lattices : top layer in orange, bottom layer in green. The bottom part is a ball model of the atomic lattices whereas the top part shows the same lattices but with lines to make the 1D moiré pattern visually appear. The beating matches the moiré periodicity (see text)

Figure 1 . 10 :

 110 Figure 1.10: Mismatched 1D lattices : top layer in purple, bottom layer in green. The bottom part is a ball model of the atomic lattices whereas the top part shows the same lattices but with lines to make the 1D moiré pattern visually appear. The beating underlined by the dashed line does not match the moiré periodicity which is two times larger (see text)
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 1 Figure 1.12: Top: Moiré generated from two misorientated (θ = 4.41 • )

Figure 1 . 13 :

 113 Figure 1.13: Left: STM image of a moiré formed by two twisted graphene layers (V b = 1 V, I t = 500 pA) Right: Fourier transform of the STM image showing the graphene spots encircled in red and the beating spots encircled in green
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 114 Figure 1.14: Decomposition of the Fourier transform of the STM image in Fig. 1.13 in the basis of the beating vectors, that coincide with the moiré vectors in this case. Inset: Center of the Fourier transform showing the beating/moiré vectors

Figure 1 . 15 :

 115 Figure 1.15: Left: Brillouin zones of the rotated layers (top layer in blue, bottom layer in red). The ∆K are shown in black double arrows. Right: Anti-crossing Dirac cones of the two layers

M1Figure 1 .

 1 Figure 1.16: Left: Scanning Tunneling Microscopy image showing the regions without (G) and with moiré pattern (M1,M2). Right: STS measurements in the regions G, M1 and M2. Van Hove singularities appear in the regions M1 and M2 that shows the moiré pattern. Adapted from Ref. 50
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 1 Figure 1.17: Top: Scanning Tunneling Microscopy of twisted graphene layers of dierent twist angles θ. Bottom left: Scanning Tunneling Spectroscopy spectra showing the van Hove singularities for the dierent moiré patterns (arrows). Bottom right: Energy of the probed van Hove singularities with respect to the twist angle between the layers. After Ref. 15

Figure 1 .

 1 Figure 1.18: Left: Tight-binding calculation of the density of states of moiré patterns with dierent θ. Right: Splitting of the van Hove singularities for the experimental data (orange dots), the tight-binding calculations (black triangles) and the continuum equation (solid line). After Ref. 15.

Figure 1 . 19 :

 119 Figure 1.19: Ratio between the Fermi velocity of the twisted graphene layers (v F ) and the one of monolayer graphene (v 0 F ). The dots show results of tight-binding calculations, the blue line the continuum model from Ref. 54 and the orange line the continuum model from Ref. 13. The red stars correspond to the magic angles where v F = 0. Adapted from Ref. 91

Fig. 1 .

 1 [START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF]. For θ > 5 • , tight-binding calculations on twisted graphene layers5 agree with the large-angles continuum model of Ref. 54 (blue line in Fig.1.19) which predicts a monotonous decrease of the Fermi velocity. This model however breaks down for θ < 2 • where the tight-binding calculations and the small-angles continuum model of Ref. 13 predict a non-trivial dependence of the Fermi velocity with θ. There is a certain set of angles, called magic angles (red stars in Fig.1.[START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF]), for which the Fermi velocity is equal to 0. It means that for this series of angles, given approximately by θ n = 1.05 • n[START_REF] Bistritzer | Moiré bands in twisted double-layer graphene[END_REF], the conduction and valence bands of graphene are at leading to the complete localization of the electrons at low energy. Such behavior has yet to be observed experimentally.

Figure 1 . 20 :

 120 Figure 1.20: Top left: STM image of a moiré pattern with θ = 1.16 • . Top right: STS spectra recorded in the AA region (peak) and AB region (valley) showing localization of the vHs in the AA regions. Bottom: dI/dV maps at dierent indicated bias showing localization in the AA region at low energies. All scale bars are 2 nm. From Ref. 50

Figure 1 . 21 :

 121 Figure 1.21: Repartition of one eigenstate at K with Dirac energy, E=0, for θ = 5.08 • (left) and θ = 1.08 • (right). Black small dots are the positions of all atoms, red large dots are atoms on which 80% of the electronic state is localized. Insert: Tight-binding density of states (states per atom): The solid red line is the local density of states on atoms located at the center of a AA zone, the dashed black line is the total density of states. Adapted from Ref. 90
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 1 Figure 1.22: Left: STS spectra for dierent moiré patterns that show van Hove singularities and additional features (dips). Right: Dependence of the observed features with respect to the moiré parameter λ g-g . From Ref. 101.

Figure 1 .

 1 Figure 1.23: 100 × 100 nm 2 STM image of a graphite sample showing a moiré pattern. The bottom part is the tip height along the line from C to D. Ref. 47.

Figure 1 . 24 :

 124 Figure 1.24: Techniques to transfer graphene from the growth substrate to the target substrate. From Ref. 18.

Figure 1 . 25 :

 125 Figure 1.25: Crystal structure of 6H-SiC with silicon atoms in red and carbon atoms in blue showing the two inequivalent faces, Si and C faces. The right part shows a schematic of the SiC after the growth of few layers of graphene (FLG) on the Si-face and multilayer graphene (MLG) on the C-face. From Ref. 66.
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 21 Figure 2.1: Principle of Scanning Tunneling Microscopy. Left: Energy diagram showing the overlap between the wavefunction of the tip ψ 1 and of the sample ψ 2 that leads to tunneling through the tunnel barrier of length d. Right: Schematics of a STM. By application of a bias V , a tunneling current I is detected by the tip. The position of the tip is controlled by piezoelectric motors. From Ref. 30.

Figure 2 . 2 :

 22 Figure 2.2: Left: Illustration of the constant-current imaging mode: the tip height follows the surface to keep a constant tunneling current. Right: Illustration of the constant-height imaging mode. Variations of the current are measured during a constant-height scan. From Ref. 30.
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 23 Figure 2.3: Bias V b and tip height Z versus time during a STS measurement.

Figure 2 . 4 :

 24 Figure 2.4: Photograph and colored schematics of the microscope head with the essential components pointed out. The moving Al 2 O 3 supports are in purple and the xed microscope body in white.
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 25 Figure 2.5: Left: Photograph of the Sionludi. Right: Scheme of the STM 4K, microscope included.
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 26 Figure 2.6: Induction furnace in function used for the graphene growth.

Figure 2 . 7 :

 27 Figure 2.7: Temperature prole and gases used for the growth of the samples presented in Chap. 3 and 4.

Figure 2 . 8 :

 28 Figure 2.8: Graphical User Interface of STM Data Analysis with a CITS loaded. The left part is the dI/dV map and the right part shows the picked spectra.
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 31 Figure 3.1: Left: Moiré pattern formed by two unstrained twisted graphene layers. Right: Brillouin zones of the layers (top layer in dark grey, bottom layer in light grey) with single-valued ∆K in red
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 132133 Figure 3.2: Left: Moiré pattern formed by two strained twisted graphene layers. The deformation is applied along the horizontal direction and has a magnitude of 10%. Right: Brillouin zones of the layers (top layer in dark grey, bottom layer in light grey) with three values of ∆K in dierent shades of blue.
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 34 Figure 3.4: Energy of the van Hove singularities as a function of the strain angle φ s for the three directions with θ = 9.43 • and σ = 1% in the case of strain in the two layers (absolute) and in only one layer (relative). The black line is the constant energy of the van Hove singularity for the unstrained case.
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 3536 Figure 3.5: Energy of the van Hove singularities as a function of the strain angle φ s for the three directions with θ = 3 • and σ = 1% in the case of strain in the two layers (Absolute) and in only one layer (Relative). The black line is the constant energy of the van Hove singularity for the unstrained case.
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 37 Figure 3.7: Energy of the van Hove singularities as a function of strain amplitude σ for the three directions estimated for θ = 3.9 • and φ s = 0 • in the case of strain in the two layers (Absolute). The black line is the constant energy of the van Hove singularity for the unstrained case. The blue points are results of the tight-binding calculations of Chu et al.[START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF] 

Figure 3 . 8 :

 38 Figure 3.8: Band structure at positive energies (density of states in inset)for θ = 9.43 • , calculated by tight-binding without strain (left) and with strain (σ = 6% and φ N D = 20 • ) (right). The uniaxial strain lifts the degeneracy of the saddle points with respect to direction giving rise to three van Hove singularities. Adapted from[START_REF] Nguyen | Strain-induced modulation of Dirac cones and van Hove singularities in a twisted graphene bilayer[END_REF] 
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 39 Figure 3.9: Energy of the van Hove singularities calculated by tight-binding (left) in [65] and estimated from the geometric approach (right) for θ = 9.43 • . The strain angle shift of θ/2 between the two data sets comes from a dierent denition of φ s (see text).
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 310 Figure 3.10: Left: 26.4×26.4 nm 2 STM topograph of twisted graphene layers showing the moiré pattern (V b = -400 mV, I t = 50 pA). The twist angle between the graphene layers was estimated to be θ=1.26 • . Inset : Zoom on the image showing the honeycomb lattice of the carbon atoms in the top layer. The scale bar is 1 nm. Right: dI/dV(V) spectra recorded by STS at the spots marked with colored dots in Fig. 3.10a (red and blue dots for AA and AB regions respectively) showing multiple peaks in AA regions (red arrows) and well resolved peaks at higher energy in AB regions (blue arrows) (V b = -400 mV, I t = 300 pA). The energy of the Dirac point E D = -25 mV (black arrow) was deduced from the V-shape of the density of states at high energies.
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 3 Figure 3.10a shows a constant-current STM image of a moiré composed of twisted graphene layers grown on SiC. The angle between the layers can be estimated from the moiré periodicity D m using

Figure 3 . 11 :

 311 Figure 3.11: Left: Fourier transform of the STM topograph of the moiré pattern with atomic resolution. The black mesh decomposes the FT in the basis of the beating reciprocal vectors (see text). The numbers are the coordinates of the graphene reciprocal vectors in the basis of the moiré reciprocal vectors. Top right: Center of the Fourier transform (orange square) with enhanced contrast to see the decomposing vectors of the mesh which are the beating reciprocal vectors (k beat 1 , k beat 2 ) = (3k m 1 , 3k m 2 ). Bottom right:
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 312 Figure 3.12: Generated atomic positions (structure 1) for the tight-binding calculations of the local density of states (red points: top layer, blue points: bottom layer). The green rhombus represents the beating cell and the black rhombus the moiré cell which describes the true periodicity of the system.
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 313 Figure 3.13: Left: Local density of states in AA regions (red) and in AB regions (blue) calculated by tight-binding on the commensurate structure with relative uniaxial and biaxial strain. The peaks match well in number and position with the STS experiment shown in Fig 3.10 Right: Calculated local density of states on unstrained twisted graphene layers of twist angle θ =1.25 • that shows two van Hove singularities localized in AA regions (red) and higher energy peaks in AB regions (blue).
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 314 Figure 3.14: Left: Averaged STS spectra taken at dierent AA regions showing the reproducibility of the multiple van Hove singularities and the absence of signicant dierences between successive AA regions. Inset : (27.2 × 14) nm 2 STM topograph (V b = -400 mV,I t = 50 pA) with colored rectangles taken for the area of averaging for the corresponding colored spectra. Right: Tight-binding calculation of the local density of states at dierent AA regions of the moiré cell containing 9 beatings. Only very slight variations of the amplitude of the van Hove singularities are seen. Inset : moiré pattern generated from the commensurability with colored rectangles indicating the location at which the local density of states were calculated.
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 3315 Figure 3.16 shows electronic bands E(k) computed by tight-binding in order to reveal the inuence of strain in twisted graphene layers. The gure is organized in columns. In each column the top panel shows the density
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 316 Figure 3.16: Tight binding calculations with and without relative strain. Left: Result for the structure with relative strain of 0.35 % corresponding to the experimental situation (structure 2). Center: Result for the unstrained bilayer (26,27). Right: Result for the bilayer (26,27) with an absolute strain of 0.35 %. In the lower part of the bottom panel, for simplicity, we have plotted cuts in ΓC and M C since the degeneracy at K and K points is lifted by absolute strain as pointed in Ref. 65.

Figure 3 . 17 :

 317 Figure 3.17: Left: Local density of states in AA regions of the bilayer (26,27) (θ = 1.25 • ) calculated by tight-binding for dierent absolute uniaxial strain magnitudes along θ s = 0 • . The observed experimental signature is only reproduced for σ = 2% which is six times the observed relative strain. All curves have been shifted vertically for clarity. Right: Local density of states in AA regions of the bilayer (26,27) (θ = 1.25 • ) calculated by tight-binding for σ = 2% along dierent θ s .
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 318 Figure 3.18: Raman spectrum of graphene grown on SiC(000 1) showing the typical G,D and 2D resonances. The shape and position of the G peak indicates a strain value smaller than 0.2%.

Figure 3 . 19 :

 319 Figure 3.19: Left: STM image of the domain of the probed moiré pattern (V =-500 mV, I =1 nA). Deformation of the moiré is seen at the boundaries (yellow circles) where pinning of the top layer occurs. The STM and STS studies were done in the blue square where the moiré is regular, far from the boundaries. Right: Color model showing the bottom layer (BL) in blue and the twisted graphene layers area (TGL) in red. The gray and black regions are other domains separated by grain boundaries.
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 35 Discussion on relative strain 3.3.5.a Origin of relative strain
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 320 Figure 3.20: Local density of states in AA regions of the top layer calculated by tight-binding for the case where the uniaxial and biaxial strains are concentrated in the top layer and for the case where the relative uniaxial strain was distributed in the two layers. The green curve has been shifted for clarity.
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 41 Figure 4.1: (25 × 25) nm 2 STM images taken at dierent tunneling conditions. Left: V b = -800 mV and I t = 300 pA. Center: V b = -295 mV and I t = 100 pA. Right: V b = -55 mV and I t = 100 pA.
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 42 Figure 4.2: Left: STM image of the moiré pattern recorded during the I(Z) measurements (V b = -200 mV, I t = 100 pA). Right: ln(I t /I 0 ) (I 0 = 100 pA) curves as function of the relative tip altitude recorded at AA and AB regions (colored rectangles location). The black solid lines are linear ts and the dashed line represents the cut-o value for the t.

  on the moiré pattern. The STM image recorded at V b = -200 mV and I t = 100 pA is presented in the left part of Fig. 4.2. On every pixel on this image, a I(Z) measurement was performed under the same conditions. The right part of Fig 4.2 shows the natural logarithm 1 of the current I t divided by the current setpoint I 0 = 100 pA with respect to the relative altitude of the tip for AA and AB regions, Z 0 being the tip altitude at the beginning of the measurement.
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 43 Figure 4.3: Spring model of the tip-sample interaction. The left part is the situation at the beginning of the I(Z) measurement. The right part is the situation during the I(Z) measurement.
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 44 Figure 4.4: Map of the apparent barrier height φ app deduced from the linear ts of the I(Z) measurements.
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 45 Figure 4.5: Left: (25 × 25) nm 2 STM image of the moiré pattern imaged in Fig. 4.1 at low bias (V b = -15 mV, I t = 100 pA). Right: Tip height prole taken along the white arrow.
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 3246 Figure 4.6: Left: (30 × 30) nm 2 STM image recorded when performing I(Z) measurements at very low bias (V b = -25 mV, I t = 100 pA). Right: ln(I t /I 0 ) (I 0 = 100 pA) curves as function of the relative tip altitude recorded at the colored locations. The black solid lines are linear ts and the dashed line represents the cut-o value for the t.

  V b = 50 mV

Figure 4 . 8 :

 48 Figure 4.8: Left: Map of the dI/dV measurements along the line at I t = 300 pA for dierent V b . From top to bottom: V b = -800 mV, V b = -200 mV, V b = -125 mV and V b = -50 mV. Right: dI/dV measurements performed at the colored locations. 77

Figure 4 . 9 :

 49 Figure 4.9: Tip height (or topography) recorded during the dI/dV measurements along the line for the dierent biases.

  Hove singularities. Notably, the spectrum in the intermediate region appear to show only two resonances instead of the three in the AA region. Compared to the previous case V b = -200 mV, the resonances in the intermediate regions are even more shifted in energy with respect to the resonances in the AA region. We also again observe a diminution in intensities of these resonances in the jump region.
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 410 Figure 4.10: Left: dI/dV measurements performed at the intermediate location for the dierent bias setpoints in Fig. 4.8. The curves were vertically shifted for clarity. Right: dI/dV measurements performed at the jump location for the dierent bias setpoints in Fig. 4.8. The curves are not shifted here.
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 4 Figure 4.11: LDOS calculated by tight-binding for the rst magic angle θ = 0.88 • .

Figure 4 . 12 :

 412 Figure 4.12: Phenomenological interpretation of the observed jumps in tip height when scanning and increase of current when retracting the tip in I(Z) measurements at very low biases.

Figure 4 . 13 :

 413 Figure 4.13: Result of the integration of the dI/dV spectrum on the bias window along the line for the dierent bias setpoints.

Figure 4 .

 4 Figure 4.14: STM image (V b = -400 mV, I t = 50 pA) recorded before performing STS with dierent tunneling currents along the white line. The individual spectra shown Fig. 4.15 were recorded at the colored locations. Inset: Location of the STS measurements with respect to the STM image of Fig. 4.5
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 415416 Figure 4.15: Left: Map of the dI/dV measurements along the line at V b = -400 mV for dierent I t . From top to bottom: I t = 400 pA, I t = 1.4 nA, I t = 3 nA and I t = 4 nA. Right: dI/dV measurements performed at the colored locations. 84
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 410417 Figure 4.17: Tip height (or topography) recorded during the dI/dV measurements along the line shown in Fig. 4.14 for the dierent currents.

Figure 4 . 18 :

 418 Figure 4.18: Left: Proles of the tip height taken along the white arrows in Fig. 4.1 for dierent biases. Right: Corrugations determined from the proles for dierent biases.

Fig. 4 .

 4 Fig.4.18, demonstrate that the increase of the corrugation follows a linear behavior with respect to the bias when remaining in the elastic regime. The non-elastic regime shows an abrupt increase in the corrugation reaching more than 1 nm due to the modication of the density of states by the tip as discussed above.The maximal value of Z is obtained for AA regions whereas the minimum is for AB regions. The observed corrugation can be rst be interpreted as a dierence of interplanar distances for the two stackings. DFT computations showed that the interlayer spacing in a moiré pattern changes locally between AA and AB regions[START_REF] Uchida | Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes[END_REF]. This study also shows that the dierence in interlayer spacing increases when the twist angle θ is reduced. For θ approaching 0 • , the maximal moiré corrugation is then d AA -d AB with the computed interlayer distances d AB = 3.34 Å for a AB stacked bilayer and d AA = 3.61 Å for a AA stacked bilayer. This means that, at most, the moiré corrugation would be 0.27 Å which is one order of magnitude smaller than our lowest observed value of 0.3 nm for V b = -295 mV. We therefore exclude a dierence of interlayer spacing as the sole origin of our observations. Rong and Kuiper[START_REF] Zhao | Electronic eects in scanning tunneling microscopy: Moiré pattern on a graphite surface[END_REF] observed the increase of the moiré corrugation for twisted graphene layers from 0.1 nm to 0.25 nm when decreasing the bias from 535 mV to 75 mV. They explain their observations by the presence of a tip-induced interaction that is enhanced when reducing the bias. Such eects are known to increase articially the atomic corrugation of graphite[START_REF] Hofer | The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes[END_REF][START_REF] Soler | Interatomic forces in scanning tunneling microscopy: Giant corrugations fo the graphite surface[END_REF]. This interpretation is highly relevant as our previous experiments proved the presence of such an interaction in our case and that our moiré corrugation values for the elastic regime are in agreement with their study. However, these considerations are only correct for the elastic regime and our

Figure 5 . 1 :

 51 Figure 5.1: Top: Process steps to obtain graphene on tantalum carbide (TaC). Bottom: Model of the annealing process: the carbon atoms rst saturate the tantalum layer to form TaC and then go through the TaC layer to form graphene layers

Vacuum
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 52 Figure 5.2: Left: SiC substrate with Nb annealed under Ar and Ar/H 2 . The bottom is a zoom of the inhomogeneous metallic layer. Center: SiC substrate with Nb annealed under vacuum. The bottom is a zoom of the metallic layer that shows a gray and homogeneous aspect. Right: Temperature prole used for the annealing under vacuum
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 53 Figure 5.3: Left: Scanning Electron Microscopy (SEM) image of the tantalum lm before annealing. Right: SEM image of the same lm after annealing showing the granularity of TaC.
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 54 Figure 5.4: Left: Critical temperature T c of TaC x and NbC x with respect to the carbon to metal ratio x. Data for the measured sample in blue. Adapted from Ref. 36. Right: Resistivity of the produced TaC lm with respect to temperature showing a superconducting transition at T c = 10.15 K.
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 55 Figure 5.5: Left: Resistivity of the TaC lm with respect to magnetic eld for dierent temperatures. The dashed line is the threshold of detection of the normal state to determine H c2 (T ). Right: Extracted critical eld H c2 with respect to the reduced temperature t = T /T c (blue dots) with the t from the Werthamer-Helfand-Hohenberg theory (solid line).
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 156 Figure 5.6: Top: Procedure to realize Transmission Line Measurements devices composed of Few Layers of Graphene (FLG) and tantalum carbide contacts. Adapted from Ref. 48. Bottom left: Optical microscope picture of the dierently spaced tantalum contacts before growth (Step 1). Bottom right: SEM picture of an etched graphene ribbon contacted by TaC after the full processing (Step 3).
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 58 Figure 5.8: Left: SEM picture of the junction with TaC contacts Right: Temperature dependence of the current-voltage characteristic of the TaC junction (from T = 100 mK to 3.3 K in steps of 200 mK).
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 59 Figure 5.9: Left: Critical current density distribution and Fraunhofer pattern of the critical current for an ideal Josephson junction [78]. Right: Critical current for the TaC-graphene-TaC junction with respect to magnetic eld.

Figure 5 .

 5 Figure 5.10: Left: 1 × 1 µm 2 STM image (V b = -5 mV, I t = 1 nA) of the tantalum carbide grains covered by graphene. Right: Dierential conductance map at V b = 0 mV at the same location. The colored circles enclose regions where the conductance is uniform and approaches 0.

1 Figure 5 . 11 :

 1511 Figure 5.11: Left: dI/dV spectrum (black dots) taken at 4.2 K in the black region of Fig. 5.10 with the BCS t (gray solid line). Right: dI/dV spectrum (red dots) taken at 4.2 K in the red region of Fig. 5.10 with the BCS t (orange solid line). Bottom: Parameters extracted from the BCS t.
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 512 Figure 5.12: 900×900 nm 2 STM image (V b = -1 V, I t = 600 pA) of the TaC grains on which the temperature dependence was performed.

1 Figure 5 . 13 :

 1513 Figure 5.13: Top: Experimental STS spectra (blue dots) for dierent sample temperatures with BCS t (green line). Bottom: Parameters extracted from the presented ts (Γ set to 0).

  BCS (T) for T c = 10.15 K BCS (T) for T c = 6.5 K from BCS fits

Figure 5 . 14 :

 514 Figure 5.14: Values of the superconducting parameter ∆ extracted from the BCS ts (green dots) and the prediction by BCS theory of ∆ BCS (T ) for T c = 10 K (black solid line) and T c = 6.5 K (black dashed line)

5. 4 Figure 5 .

 45 Figure 5.15: Left: 100 × 100 nm 2 STM image (V b = -50 mV, I t = 1 nA) recorded on the red grain in Fig. 5.10 showing layer boundaries and the appearance of moiré spots in the middle and upper part. Right: 13×13 nm 2 STM image (V b = -4 mV, I t = 1 nA) of the moiré pattern of the upper part.

Figure 5 . 16

 516 

Figure 5 . 16 :

 516 Figure 5.16: Top: Experimental dI/dV spectra recorded at 2.2 K (V b = -4 mV, I t = 1 nA) in dierent regions of the moiré (dots) with their corresponding BCS t (solid line). Bottom: Parameters extracted from the BCS t for the dierent regions.
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 517 Figure 5.17: Left: 16×16 nm 2 STM image (V b = -1 V, I t = 1 nA) of a moiré found on a TaC grain. The angle between the layers is estimated to be θ = 2.0 • . Right: dI/dV spectra recorded in the AA region (red) and AB region (blue) of the moiré

Moiré 7 . 25 •Figure 5 . 18 :

 725518 Figure 5.18: Left: 6×6 nm 2 STM image (V b = -1 V, I t = 500 pA) of a moiré found on a TaC grain. The angle between the layers is estimated to θ = 7.25 • . Z is in arbitrary units due to a corrupted calibration le. Right: dI/dV spectra recorded in the moiré (red) showing broad van Hove singularities (red arrows) and tight-binding calculations performed on the strained commensurate structure (black).
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  [START_REF] Faugeras | Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations[END_REF] where(k t 1 , k t 2 ),(k b 1 , k b 2 ) and (k m 1 , k m 2 )are the reciprocal lattice vectors of respectively the top layer, the bottom layer and the moiré.
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	Figure 1.11: Left : Relations between (a b 1 , a b 2 ) and (a t 1 , a t 2 ) written using Park-Madden coecients Right : Relations written using extended
	Wood's notation										

  .[START_REF] Fink | High-Field Superconductivity of Carbides[END_REF] It can be more straightforward to express separately the relation between a t 1 and a b 1 and the relation between a t 2 and a b 2 . This can be done in the most general case with the extended Wood's notation (P 1 Rθ 1 ×P 2 Rθ 2 ) whereP 1 = |a t 1 | |a b 1 | , θ 1 isthe angle between a t 1 and a b 1 , P 2 = |a t 2 | |a b 2 | and θ 2 is the angle between a t 2 and a b 2 . The vector a t 1 is therefore linked to a b 1 by a scaling of ratio P 1 and a rotation of angle θ 1 which can be more easily pictured (right part of Fig. 1.11). In this formalism, the matrix linking (a t 1 ,a t 2 ) and (a b 1 ,a b 2 ) is given by

  If the moiré reciprocal vectors (k m 1 , k m 2 ) do not coincide with the beating reciprocal vectors (k beat 1 , k beat 2 ), the graphene reciprocal vectors do not have integer coordinates in the basis of decomposing beating

	1.14.
	The commensurability hypothesis (Eqs. 1.38) imposes for the graphene
	reciprocal vectors to have integer coordinates in the basis of the moiré re-
	ciprocal vectors.

Van Hove singularities are notably a considered explanation for the presence of superconductivity in high-T c compounds such as cuprates.

In that sense, we adopt the Euclid's denition of commensurability which was 'the ratio of two distances gives a rational number', distances being in our case lattice parameters.

Note that this formula depends on the convention used for the graphene lattice vectors. The given formula is given for an angle of 120 • between the direct lattice vectors of unstrained graphene.

Dened by their two indices (i, j) as discussed previously

In the following, logarithm will always design the natural logarithm of base e (ln).

dI/dV measurements for dierent bias setpoints

To probe the eect of the bias setpoint on the density of states of the dierent stacking regions, the dI/dV measurements were performed along the line shown in the left part of Fig. 4.7 crossing AA, AB and intermediate stacking regions. The right part of Fig. 4.7 shows that the jump appearing at very low bias in Fig. 4.5 is located between the AB and intermediate regions at the point named Jump. The dI/dV measurements were performed along this line with dierent bias setpoints and the same tunneling current (I t = 300 pA). As explained in Chapter 2, the value of the bias setpoint sets the functioning point (I t ,V b ) and therefore the tip altitude at the start of the measurement. The tip height is then kept xed while the chosen bias window is swept during the dI/dV measurement (from -0.2 V to 0.2 V in this case).

Figure 4.8 shows the result for several bias setpoints (V b = -800 mV, -200 mV, -125 mV and -50 mV): the left gures show the recorded dI/dV color map as a function of the position along the line and the bias V b . Individual spectra are picked at the colored locations that show dierent stackings (AB, intermediate and AA) or a jump at low bias (Jump). The recorded spectra are plotted on the right of the gure with the corresponding colors. For V b = -800 mV (top gure), given the high bias value, we expect no tip eect and a probing of the intrinsic density of states of the sample. In fact, the local density of states in AA regions are in agreement with the study of Chapter 3 with multiple resonances near the Dirac energy in AA regions due to native relative strain. These dI/dV curves will therefore serve as references when studying the tip-induced eects on the density of states. The STM topography recorded along the line shown in Fig. 4.9 oers supporting information as it shows a weak moiré corrugation, dened as the dierence The linear t allowed to extract a specic contact resistance of R c = 80 ± 2360 Ω.µm which is extremely low but with a large error margin. The smalllength devices of the second sample were exploitable and allowed to have more experimental data points. We get in this case a negative contact resistance of R c = -2.0 ± 2.5 kΩ.µm which is surprising but still within a large error margin. Finally, the third sample showed huge standard deviations in R × W compared to the previous ones. Nevertheless, the linear t gives a more realistic value of R c = 2.55 ± 0.36 kΩ.µm. The best contact resistances values reported for graphene are of the order of 150 -200 Ω.µm [START_REF] Ito | Ultralow contact resistivity in annealed titanium edge contacts for multilayered graphene[END_REF][START_REF] Wang | One-Dimensional Electrical Contact to a Two-Dimensional Material[END_REF] but are technologically challenging to achieve. Typical values of R c are usually of the order of 2 -3kΩ.µm [START_REF] Politou | Transition metal contacts to graphene[END_REF] which is what we observe while realizing the contact in a single growth step. Our previous experiments on NbC resulted in even lower contact resistances [START_REF] Le Quang | Epitaxial electrical contact to graphene on SiC[END_REF] which indicates that the measured values could probably be improved.

The results for the investigated samples tend to show that the TLM model is in fact not very adapted to describe the measurements. The hypotheses of the model, the homogeneity of the contacts and the uniformity of the material between the two, are probably not respected in our case. The SEM image (bottom right of Fig. 5.6) shows indeed an interface of large granularity with even holes in the TaC layer. This indicates that the current injection in the case of the TaC contacts is probably very inhomogeneous.

Josephson junctions

To check the transparency of the contact between the graphene layer and the carbide, Josephson junctions of TaC-graphene-TaC have been investigated. The Josephson eect is the ow of a supercurrent in a non-

APPENDIX A COMMENSURABILITY ANALYSES OF THE MOIRÉS IN CHAPTER 5

In the following, we present the commensurability analyses of the three moiré structures discussed in Chapter 5 that make use of the general formulas introduced in Chapter 1.

A.1 Moiré shown Fig. 5.15: θ = 2.69

The commensurability analysis of the moiré shown in Fig. 5.15 gives the following decomposition in the basis of beating reciprocal vectors:

As we get integer coordinates in the basis of the beating reciprocal vectors, the beating coincides with the full moiré periodicity. The moiré vectors are then the beating vectors. Using the decomposition of Eq. (1.27), the commensurability indices are therefore directly read: The mean angle between the layers falls directly from this relation:

To nd the moiré parameter D m , the commensurability indices are plugged in Eq. 1.25 to deduce a m 1 and a m 2 . For the case considered here, The mean moiré parameter is then

The relative strain between the layers is then given by Eqs. 1.36 and 1.36:

ε uni = 0.51% (A.9) The commensurability analysis of the moiré shown in Fig. 5.17 gives the following decomposition in the basis of the beating reciprocal vectors:

As we get integer coordinates in the basis of the beating reciprocal vectors, the beating coincides with the full moiré periodicity. The moiré vectors are then the beating vectors. The commensurability indices are therefore i=15 k=18 m=16 q=17 j=-18 l=33 n=-17 r=33

The structural relation between the top and the bottom layer, given by the Park-Madden matrix, is

which gives, in terms of the extended Wood's notation

Here, the moiré is fully isotropic so that the angle between the layers and the moiré parameter are θ = 2.002 • (A.17 The relative strain between the layer is given by ε uni = 0.% (A. [START_REF] Chu | Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer[END_REF]) The commensurability analysis of the moiré shown in Fig. 5.18 gives the following decomposition in the basis of the beating reciprocal vectors:

As we have fractional coordinates in the basis of the beating reciprocal vectors, the beating does not coincide with the full periodicity of the moiré. The moiré reciprocal vectors are then given by k beat 1 = 3k m 1 and k beat 1 = 3k m 2 to have the following integer decomposition in the basis of the moiré reciprocal vectors:

(A.28)

In direct space, it means that the moiré cell spans 3 beatings in the rst direction a m 1 = 3a beat 1 and 3 beatings and the second direction a m 2 = 3a beat 2 .

The commensurability indices are then i=27 k=-11 m=27 q=-14 j=12 l=16 n=-14 r=13

The structural relation between the top and the bottom layer, given by the Park-Madden matrix, is The relative strain between the layer is given by ε uni = 0.62% (A.33) .34)