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Abstract

Multi-objective problems arise in many real world scenarios where one
has to find an optimal solution considering the trade-off between

different competing objectives. Typical examples of multi-objective prob-
lems arise in classification, information retrieval, dictionary learning, on-
line learning etc. In this thesis, we study and propose algorithms for
multi-objective machine learning problems.

We give many interesting examples of multi-objective learning prob-
lems which are actively persuaded by the research community to mo-
tivate our work. Majority of the state of the art algorithms proposed
for multi-objective learning comes under what is called “scalarization
method”, an efficient algorithm for solving multi-objective optimization
problems.

Having motivated our work, we study two multi-objective learning
tasks in detail. In the first task, we study the problem of finding the op-
timal classifier for multivariate performance measures. The problem is
studied very actively and recent papers have proposed many algorithms
in different classification settings. We study the problem as finding an
optimal trade-off between different classification errors, and propose an
algorithm based on cost-sensitive classification. In the second task, we
study the problem of diverse ranking in information retrieval tasks, in
particular recommender systems. We propose an algorithm for diverse
ranking making use of the domain specific information, and formulat-
ing the problem as a submodular maximization problem for coverage
maximization in a weighted similarity graph.

Finally, we conclude that scalarization based algorithms works well
for multi-objective learning problems. But when considering algorithms
for multi-objective learning problems, scalarization need not be the “to
go” approach. It is very important to consider the domain specific infor-
mation and objective functions. We end this thesis by proposing some of
the immediate future work, which are currently being experimented, and
some of the short term future work which we plan to carry out.
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This chapter introduces the theory behind multi-objective optimization
which is at the heart of multi-objective learning. Unlike scalar opti-

mization problems, a multi-objective optimization problem has a vector
valued objective function and often, different components of the objec-
tive function are “competing“. Hence, many notions of scalar optimiza-
tion problems like minima and maxima do not hold in multi-objective
optimization. Here, we introduce the concepts of minimal/maximal ele-
ments and describe the scalarization principle; an efficient and commonly
employed technique to solve multi-objective optimization problems. We
start the chapter with the context of this work, and proceed to motivate
our work by giving many interesting examples of multi-objective ma-
chine learning problems actively studied by both academia and industry.

1





1.1. Context 3

1.1 Context

For the past couple of years “machine learning” is a buzzword in the sci-
ence community. The advent of powerful, cheaper computation facilities,
storage methods, and the availability of large scale data helped scientists
to solve complex tasks using machine learning based approaches. Now,
machine learning algorithms are used in almost all scientific fields: high
energy physics, astronomical physics, behavioural studies, economics
and medical studies to name a few; to learn predictive statistical models
with well bounded generalization performance. Such models, however,
are limiting in the sense that they do not consider the interplay between
different objectives, often competing with each other, of the problem in
the hand.

Consider the problem of learning a ranking function in the context of
web search. Here we are interested in building a ranking function which
returns a list of web pages related to a given query. From the supervised
learning perspective, one learn a ranking function from the given train-
ing data by minimizing a loss function (or maximizing an utility func-
tion) such that the most relevant web pages to the given query appear at
the top ranked positions. In such framework, performance of the learned
function depends on the loss function we optimize, which is often de-
signed with a single objective in mind. In web retrieval, the loss function
is based only on the relevance aspect of the web page to the given query.
Hence, the results of such a ranking function might contain very relevant
but redundant pages at the top ranked positions. However, in practice
a diverse list is much preferred covering many aspects of the query as
advocated by Spärck-Jones et al. (2007). To design such a ranking func-
tion, one need to consider different conflicting objectives of the problem
in hand, like relevance and diversity here.

In many applications of practical importance, we should design learn-
ing algorithms taking into account the different objectives at stake. Hence
the study and development of algorithms for multi-objective learning is
a very important task with practical importance. In this work we study
multi-objective learning from both the theoretical and the application
point of view. The application domains where the multi-objective learn-
ing plays an important role is prohibitively large. So we limit our focus
on two multi-objective problems; (i) multi-variate performance metric op-
timization in classification problems and (ii) diverse ranking in recom-
mender systems. We study the state of the art algorithms for the above
two problems in detail, and propose new algorithms which take into ac-
count the trade-off between different competing objectives of the selected
problem.

In this chapter, we motivate our work by giving examples of many
multi-objective learning problems of both theoretical and practical in-
terest. We briefly describe these problems in Section 1.2. The heart of



4 Chapter 1. Introduction

any multi-objective learning algorithm is the multi-objective optimiza-
tion techniques. In Section 1.3, we give a brief introduction to the the-
ory of multi-objective optimization and the scalarization method; a very
popular method for solving multi-objective optimization problems. We
conclude the chapter in Section1.4.

1.2 Motivations

Multi-objective learning fits very naturally in many real world applica-
tion systems due to the inherent trade-off between different variables
defining the system. We can view the structured risk minimization (SRM)
paradigm employed in supervised learning tasks as a multi-objective (bi-
objective) learning problem. The SRM based learning algorithm selects a
learner with the optimal trade-off between the approximation-estimation
error or equivalently the bias-variance terms. In this section, we exem-
plify the motivation for our work with many interesting multi-objective
machine learning problems.

Many examples of multi-objective learning problems can be found in
scientific literature, though sometimes the problems are stated as scalar-
objective. Some examples include multi-variate loss minimization in clas-
sification problems, relevance-diversity trade-off in recommender sys-
tems and information retrieval in general and choosing a learner with
a lower error bound with respect to few experts at the expense of higher
error bound with respect to the rest of the experts in online learning set-
tings. In this section, we briefly explain some of these problems which
serve as the motivation for a detailed study of multi-objective learning
algorithms.

Binary Classification

Binary classification is the quintessential classification problem exten-
sively studied by the machine learning community. The problem essen-
tially is a bi-criterion problem, where one tries to find a classifier with op-
timal trade-off between true positive rate and true negative rate. Equiv-
alently we can frame the problem as choosing a classifier with optimal
trade-off between different errors associated with the binary classifica-
tion like false positive rate and false negative rate or any combination of
error rates and true predictive rates.

Given a set of independent and identically distributed training set
(X ,Y) with Y = {+1,−1} and a probability measure P over the joint
distribution (X ×Y), a binary classifier returns a hypothesis of the form
h(x) = wTx + b from the given hypothesis class h ∈ H (for simplicity we
restrict ourselves to linear classifiers only) such that the expected error
rate on the unseen data is minimal. The error rate can be written as
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Figure 1.1 – Optimal Trade-off curve for binary classification problem. The blue line
represents the trade-off curve for true positive rate and true negative rate by varying the
bias term(b) and the red line represents the optimal trade-off curve which can be obtained
using the linear combination of two classifiers (Bach et al. 2006)

.

Ey|x
[
P(y = +1|x)1(h(x) 6= +1) + P(y = −1|x)1(h(x) 6= −1)

]
, where E

is the expectation and 1 is the indicator function. The first term in the
sum corresponds to the false negative error rate and the second term
corresponds to false positive error rate. In practice there exists trade-off
between these two error rates and the problem can be considered as a
bi-criterion optimization problem.

Kim et al. (2006) studied the problem of selecting a Pareto optimal
linear classifier for a given true positive rate or a given negative rate for
Gaussian and mixture of Gaussian class conditional probabilities by solv-
ing a convex objective function at each step. The trade-off curve between
true positive rate and true negative rate for binary classification on an
artificial data is given in Figure 1.1

Similarly, Bach et al. (2006) studied the problem of generating
optimal-classifiers when the costs associated with misclassification rates,
false positive rate and false negative rate, are different. They proposed an
algorithm to select the optimal classifier by generating the full Receiver
Operating Characteristic (ROC) curve by varying both the slope (w) and
bias (b) terms of a linear classifier.
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Optimizing Multi-variate Performance Metrics for classification

In general classification schemes, one has to consider different optimiza-
tion criterion depending on the application settings. A large class of
optimization criterion used in classification tasks comes under the la-
bel “multi-variate performance measures” (Parambath et al. 2014, Koyejo
et al. 2014, Narasimhan et al. 2014; 2015, Koyejo et al. 2015, Narasimhan
et al. 2015). These measures are defined over the classification outcomes
of the entire set of test data, and can not be decomposed into the sum
of the classification outcomes of individual examples. Moreover, such
measures are non-linear functions of classification outcomes. Examples
for such metrics include Fβ-measure in binary, multiclass and multil-
abel classifications, Jaccard index and many others (Koyejo et al. 2014,
Narasimhan et al. 2014). These metrics trade-off false positive rate and
false negative rate of the classifier, and in many application settings like
imbalanced data classification, it is required to find classifiers which re-
sults in optimal performance with respect to the chosen multi-variate
performance measure.

Diverse Ranking in Information Retrieval

In many information retrieval tasks like web search and recommender
systems, it is very important to rank the items such that top-k listings
contain diverse items. The need for diversity is usually derived from the
uncertainty in the information need of the user or the inherent limita-
tions of the information system to represent and capture complex user
requirements.

In a typical web search settings, the user provides a short query to
the search engine which often does not represent the exact user intent.
For example, consider the classical example of the ambiguous query
“jaguar”. The query might indicate the animal Jaguar, the aircraft en-
gine Jaguar, the fictional novel Jaguar, the movie Jaguar or the Jaguar
cars. When such a query is issued to the search engine, it should return
results which cover all the aspects of the associated query and diversifi-
cation is a means to achieve it. Similarly in recommender systems, top-k
recommendations should contain diverse items to increase user satisfac-
tion and reduce the effect of popularity bias.

Diversity is often achieved at the expense of relevance. To induce di-
versity, one often trades-off the relevance of an item with the dissimilarity
of the other items already added to the recommendation set. Such a sys-
tem will help in reducing the redundancy of the results, and by promot-
ing more dissimilar results, it may result in diverse recommendations.
Clearly, here the problem of diversification is again a bi-objective opti-
mization problem, where the task is to rank the items with the optimal
trade-off between relevance and diversity.
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Subset Selection Problem

In general, subset selection problem refers to the class of problems where
one aims to select the best set of representative set from a given ground
set. Given a ground set of variables, subset selection problem is defined
as selecting a subset of variables from the ground set such that an objec-
tive function is optimized. The subset selection problem arises in many
application like feature selection, dictionary learning, etc.

Formally, given a set of ground variables, X = {x1, · · · xm}, and an
objective function f : 2X → R, subset selection algorithm outputs a set
S such that argminS⊆X f (S) such that |S|≤ k. The equation have two
conflicting objectives, (i) to minimize the objective function f with (ii) the
cardinality constraint on the set S . Here the trade-off is such that, a set
with larger number of variables (higher k values) will give optimal value
for the objective function f . The sparse regression problem is a classical
representative example of subset selection problem. In sparse regression,
we aim to estimate the response variable by linear regression using only
a subset of the original predictor or feature vectors, and the quality of
the estimation is measured using mean squared error or equivalently
squared multiple correlation (Das and Kempe 2011, Qian et al. 2015).

Online Learning with experts

Consider the online learning settings with expert advice. In this task, a
prediction algorithm is given access to a set of experts and it needs to
make a sequence of decisions (number of sequence is not known in gen-
eral, and we simply term it as horizon) with the objective of performing
as good as the best expert in hindsight. Given a finite set of expert set
(|E |= k), our task is to make predictions such that the cumulative regret
L̂i − Lj

i with respect to each expert j is minimized. Here L̂i is the cumula-
tive loss of the predictor with respect to a given loss function ` and Lj

i is
the cumulative loss of the expert j with respect to the same loss function.
The predictor should be independent of the sequence of the outcomes
i.e. the regret of the predictor is minimum for all sequences of outcomes
(Cesa-Bianchi and Lugosi 2006).

State of the art algorithms, like exponentially weighted prediction or
hedge algorithm achieve a regret bound of

√
n

2log(k) over a sequence of

size n . The bound is uniform over the choice of experts i.e. the regret
bound holds with respect to every given expert. However, in practice one
would expect a trade-off between the performance of the different ex-
perts. In such practical situations, one would prefer an algorithm where
the regret with respect to some “good” experts is very low at the expense
of increased overhead with respect to “bad” experts.
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1.2.1 Objectives

Given the above examples, it is evident that multi-objective learning is
of vital importance in many application settings. In this work, we aim
to study and analyze the multi-objective machine learning problems and
propose new algorithms for such problem. In this study, we limit our
attention to bi-objective optimization problems. The class of problems
comes under bi-objective optimization is prohibitively large to study
within a course of three years. Hence we concentrate on two problems of
practical importance from the list of problems given above. We study in
detail the problem of (i) Optimizing multi-variate performance measures
for classification and (ii) Diverse ranking in information retrieval.

1.3 Multi-Objective Learning

Multi-objective learning is a natural extension to the single-objective
learning problem. In case of single-objective learning problems, our goal
is to develop a learning algorithm which returns a function (from a given
restricted function class) which has optimal expected value with respect
to the given single-objective loss or utility function on the future un-
known data. To achieve this goal, in single-objective learning, we make
use of scalar optimization techniques. The multi-objective learning prob-
lem consists of multiple objectives i.e. the objective function consists of
multiple components and each component corresponds to a single objec-
tive. Often, the component objectives of a multi-objective learning prob-
lems are competing in the sense that an increase in one component ob-
jective may result in the decrease of another objective. In such cases, we
say that there is a trade-off between multiple objectives.

Given a set of training data, the goal of multi-objective learning is
to find a function (from a given restricted function class) which jointly
optimizes the different components of the multi-objective function. Sim-
ilar to the case of single objective learning problems, in case of multi-
objective learning problems we make use of multi-objective optimization
techniques.

In this section, we give answers to the following questions

• What is a multi-objective optimization problem?

• What is the meaning of optimal solution in case of multi-objective
optimization?

• How can we solve multi-objective optimization problem in practice?

We assume that our optimization problem is a minimization task and our
discussion is from the minimization task point of view. The discussion
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applies to maximization problem also. Any maximization problem can
be converted to an equivalent minimization problem by changing the
sign of the objective function.

1.3.1 Multi-Objective Optimization

A single objective optimization problem can be formally defined as,

minimize f (x)
subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q.

Here, our goal is to find the value (assuming the solution is unique
otherwise values) of the independent variable x ∈ Rn which results in
the minimum value of the function f (x), and in addition also satisfy
the conditions gi(x) ≤ 0, i = 1, . . . , p, and hi(x) = 0, i = 1, . . . , q. The
function f (x) is called the objective function and it is scalar valued, i.e.
f : Rn → R. Similarly the functions gi(x) and hi(x) are also scalar valued,
i.e. gi : Rn → R and hi : Rn → R. The function gi is called the inequality
constraint function and hi is called equality constraint function. There is a
total of p inequality constraints and q equality constraints. The constraint
functions define the acceptable values of x for the problem in hand. The
set of acceptable values of x which satisfies the constraint functions is
called feasible set.

Now, as stated earlier, in case of multi-objective optimization prob-
lem, the objective function is vector valued i.e. the objective function can
be considered as having multiple components. The output vector cor-
responds to the values of different components (objectives) for a given
value of x. For example, in case of the binary classification problem given
in Section 1.2, the output vector consists of two components, one corre-
sponds to the first objective; misclassification rate with respect to the true
class 1; and the second corresponds to the misclassification rate with re-
spect to the true class 2. In general for k-objective optimization problem,
we have f : Rn → Rk, and the goal is to find the value of x such that
the vector returned by f is minimum which also satisfies the constraints.
In case of k-objective optimization problem, we can consider that the ob-
jective function as composed of k components f1, f2, · · · fk where each
component corresponds to a scalar objective.

In fact, the above mentioned minimization problem implies minimiza-
tion over vectors, and it is necessary to specify an ordering on Rk to de-
fine the meaning of minima (similarly maxima). We define a partial order
on Rk with respect to a proper cone in Rk. A cone K is called proper, if

• K is convex
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• K is pointed

• K has non-empty interior

• K is closed

A set S is convex, if ∀s1, s2 ∈ S , the linear combination θs1 + (1−
θ)s2 ∈ S, 0 ≤ θ ≤ 1. A set is pointed, if it contains no lines, i.e. it contains
only rays. In a nutshell, it implies that the set corresponding to a proper
cone contains an origin vector (zero vector) and does not contain any
additive inverse vectors. A set with non-empty interior contains elements
other than the boundary elements. A set is closed, if it contains all the
limit points , equivalently if all the sequence of rays in the cone converges
to the limit ray. We encourage the readers to refer to Rudin (1991), Boyd
and Vandenberghe (2004) for more details about the concepts related to
proper cones.

Given two vectors s, r ∈ S , we define a generalized inequality con-
sisting of the partial ordering in Rk with respect to the proper cone K

as,
s � r ⇐⇒ s− r ∈ K, and
s � r ⇐⇒ s− r ∈ int(K).

Here, int(K) denotes the interior of the cone K. Similarly, we use the
notation r ≺ s for s � r and r � s for s � r. Boyd and Vandenberghe
(2004) define a multi-criterion optimization problem as a multi-objective
optimization where the proper cone associated with the generalized in-
equality is always the non-negative orthant of Rk denoted as Rk

+. In our
discussion we always assume that the proper cone associated with the
generalized inequality is the non-negative orthant Rk

+.

Formally, we define the multi-objective optimization problem as given
below, where we follow the same notation as in the case of the scalar
optimization problem

minimize f(x) with respect to the proper cone K

subject to gi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q.

(1.1)

The input space (Rn) is called the decision space and the output space
(Rk) is called the objective space. The set of feasible solutions for Eq 1.1
forms the feasible decision space and the corresponding output values
form the set of feasible objective space. Figure 1.2 depicts the feasible
decision and objective spaces of a bi-objective optimization problem.

Pareto Optimal Solution

The ordering associated with the generalized inequality defined with re-
spect to the proper cone K is partial. The concepts of minimum (simi-
larly infimum) and maximum (similarly supremum) is different in case
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Figure 1.2 – The feasible decision and objective spaces of a bi-objective optimization
problem

of partial ordering. Here we define the concepts of minimum and min-
imal elements in case of partial ordering defined over the proper cone
K.

Definition 1 (Minimum Element) Given a set S , an element s ∈ S is the minimum element
of S with respect to the generalized inequality defined over the proper cone K, if

s � r, ∀r ∈ S

In simpler terms, an element is a minimum element if the element
can be compared with all the other elements of the set, and it has lower
value. The minimum element of a set S is depicted in Figure 1.3. In
the plot, the element e can be compared with all other elements of the
set S , as all the other elements lie on the upper right side of e, and it
has lowest value according to the partial ordering defined by the proper
cone R2

+. If a minimum element exists for a set S , it should be unique.
Unfortunately a minimum element exists only in the cases where the ob-
jectives are noncompeting i.e. the cases where the function does not have
to make any compromise between different components of the objective.
In other terms, an increase in one component of the objective does not
cause a decrease in another component of the objective. In case of com-
peting objectives, we define the minimal element of S with respect to the
generalized inequality defined over the proper cone K.

Definition 2 (Minimal Element) Given a set S , an element s ∈ S is the minimal element of
S with respect to the generalized inequality defined over the proper cone K, if
∀r ∈ S , r � s only if r = s.
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S

•e

Figure 1.3 – The point e is the minimum element of the objective space S

A minimal element is a feasible element that has the minimum value
with respect to the proper cone K among all the vectors comparable to
it. A multi-objective optimization can have multiple minimal elements. A
minimal element is called Pareto optimal and the set of minimal elements
define a Pareto front. In two dimensional real space (R2) the Pareto front
is a Pareto curve. The Pareto curve for the bi-objective optimization prob-
lem in Figure 1.2 is marked in red. The Pareto front gives the trade-off
values between different objectives of the multi-objective function.

1.3.2 Scalarization

The scalarization principle is one of the most popular, effective and ef-
ficient method to solve multi-objective optimization problems. The idea
behind scalarization is to transform the given multi-objective problem
into a single-objective problem. The new single objective problem will
have parameters called weights which are not in the original problem
formulation. The scalarization guarantees optimality i.e. a solution to the
scalarized objective function will be a Pareto optimal solution for the
original multi-objective problem (under some constraints on the weight
parameters) and for different values of the scalarization parameter we
obtain (possibly) different Pareto optimal solutions. The scalarization
method is also called by the name weighted-sum approach (Ehrgott and
Gandibleux 2002).

Formally, the original multi-objective problem given in Eq 1.1 is trans-
formed to the below scalar objective function

minimize λTf(x)
subject to gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q
λ > 0

(1.2)

Here λ is the scalarization parameter (weights) called weight vector.
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It should be noted that even though for any λ > 0, scalarization re-
turns a Pareto optimal value, not all Pareto optimal solutions can be ob-
tained using the scalarization method. Convexity of the objective space
plays an important role here. The only Pareto optimal solutions which
can be obtained using scalarization are the one which are at the boundary
of the convex hull of the objective space. Moreover, the solution obtained
using scalarized objective function defines a supporting hyperplane at
the point x i.e. λTf(x) is a supporting hyperplane to the objective space
at the point x. A Pareto optimal solution and corresponding hyperplane
defined by the scalarized objective function is shown as cyan line in Fig-
ure 1.2.

1.4 Conclusion

We introduced the problem of multi-objective learning in this chapter.
Many of the practical problems studied by the machine learning com-
munity under many subfields like online learning, recommender sys-
tems, etc are inherently multi-objective. We gave many examples of such
problems to motivate our study. We also gave a brief introduction to the
multi-objective optimization problem which is at the heart of the multi-
objective learning algorithms. The most popular and efficient method for
solving multi-objective optimization problem is the scalarization method.
We gave a brief introduction to the scalarization method in this chapter.
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algorithms. For example, F-measure is a commonly used non-linear per-
formance measure in classification problems. We study the theoretical

15



16 Chapter 2. Multivariate Performance Measure Optimization

properties of a subset of non-linear performance measures called pseudo-
linear performance measures which includes F-measure and Jaccard in-
dex. We establish that many notions of F-measures and Jaccard index are
pseudo-linear functions of the per-class false negatives and false positives
for binary, multiclass and multilabel classification schemes. Based on this
observation, we present a general reduction of such performance mea-
sure optimization problem to cost-sensitive classification problem with
unknown costs. We then propose an algorithm with provable guaran-
tees to obtain an approximately optimal classifier for the F-measure by
solving a series of cost-sensitive classification problems. The strength
of our analysis is to be valid on any dataset and any class of classi-
fiers, extending the existing theoretical results on binary F-score, which
are asymptotic in nature. Our analysis shows that thresholding cost-
insensitive scores, a common technique employed to optimize F-measure,
yields sub-optimal results. We also establish the multi-objective nature of
the F-measure maximization problem by linking the algorithm with the
weighted-sum approach used in multi-objective optimization. We present
numerical experiments to illustrate the relative importance of cost asym-
metry and thresholding when learning linear classifiers on various F-
measure optimization tasks.
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2.1 Introduction

Different performance measures exist to assess the efficiency of learning
algorithms in different practical settings. For example, the misclassifi-
cation rate is one of the most commonly used performance measure in
classification problems of balanced dataset. Like many other measures,
which we will investigate in this paper, it is defined over the set of clas-
sification outcomes. The four possible outcomes of a classifier are the
true positive (TP), true negative (TN), false Negative (FN) and false posi-
tive (FP) (See Section 2.3 for the formal definitions). The misclassification
rate is a linear function of these quantities, defined as the sum of FP and
FN. Conceptually, classification algorithms solve an optimization problem
where the loss function corresponds to the performance measure is min-
imized or equivalently a utility function is maximized (see Devroye et al.
1996, Anthony and Bartlett 2009). A loss function maps the success or
failure of an event to a real value (mostly non-negative). It measures how
well the prediction for an event is closer to the actual event. For exam-
ple, the loss function that corresponds to misclassfication rate is 0-1 loss
(Devroye et al. 1996).

As mentioned, misclassification rate is a commonly used performance
measure, albeit unsuitable for specific categories of problems. For exam-
ple, consider the binary classification of an imbalanced dataset of size
100 with 95 being samples of one specific class (let us say negative) and
5 being other class (say positive). A trivial classifier of the form ‘always
predict negative’ results in a high accuracy albeit useless classifier. In this
specific example, Fβ (Rijsbergen 1979) can be considered as a more mean-
ingful performance measure than misclassification rate. It is to be noted
that Fβ is a utility function whereas misclassfication rate is a loss function.
In general, performance measures like Fβ, are extensively used in prac-
tical problems (Cheng et al. 2012, Kim et al. 2013). One of the striking
characteristics of these performance measures is the non-linearity with
respect to the false negatives and false positives, whereas misclassifica-
tion rate is a linear function of false negatives and false positives. More-
over, there is no convex surrogate loss function (or equivalently no con-
cave surrogate utility function) that exists for non-linear measures like
Fβ-measure. Another interesting property of F-measure is: it is a sample
level measure and does not decompose over individual examples. These
three aspects make the optimization problem a difficult and interesting
one.

In the current chapter, we study the theoretical and algorithmic as-
pects pertaining to the optimization of the pseudo-linear performance
measures. The commonly used performance measure F1 is an example
of pseudo-linear performance measure. Less commonly used measures
like Jaccard index also come under this title, among many others. Here,
we focus primarily on pseudo-linear notions of F-measures. We consider
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the setting in which a dataset is to be classified such that the F-measure
(restricted to pseudo-linear versions only) of the resulting classification
is (approximately) optimal. In the literature, F-measures are also often
called F-scores. Here, we will stick to the first terminology, which refers
to the measurement of performance, in order to avoid any confusion
with classification scores, that is, the real-valued scores that may be pro-
vided by classifiers and that are thresholded to produce decisions. Unless
otherwise explicitly stated, all the discussion in this chapter refers to F-
measure optimization. At a later point, we generalize the results to other
pseudo-linear measures.

Our principal goal is to study the algorithms for optimality of pseudo-
linear F-measures on the sample level. Given a training set, our analy-
sis proves that optimal F classifier for pseudo-linear F-measures can be
found by minimizing the total misclassification cost of a cost-sensitive
classification (Elkan 2001). Since the costs are not known a priori, ap-
proximately optimal F classifier can be obtained by searching over a dis-
cretized cost space and solving corresponding cost-sensitive classification
problem. Optimality in the state of the art algorithms for pseudo-linear
F-measures are asymptotic whereas our results are valid in the non-
asymptotic regime without any assumption on the underlying data dis-
tribution. It can also be showed that our proposed method is in fact an in-
stantiation of the weighted-sum approach used in the multi-objective op-
timization. Our experiments reveal the importance of thresholding classi-
fication scores to optimize F-measures which has been proposed recently
to obtain optimal Fβ classifier when using proper losses (Narasimhan
et al. 2014, Koyejo et al. 2014; 2015, Narasimhan et al. 2015).

This chapter is an extended version of an already published confer-
ence paper (Parambath et al. 2014). The chapter is organized as follows.
Section 2.2 introduces basic definitions and notations used throughout
this chapter. We also present a brief study of the state of the art algo-
rithms for F-measure optimization. Section 2.3 presents the theoretical
analysis, where we establish the pseudo-linearity of different practical
F-measures, and prove that optimal F classifier can be found by min-
imizing the total misclassification cost of a cost-sensitive classification.
Since the cost values are not known a priori, we also derive the values
for the approximate costs for many pseudo-linear F-measures. We es-
tablish the multi-objective view of the F-measure optimization problem
and link our proposed approach to the popular weighted-sum approach
for solving multi-objective optimization problems. Section 2.5 presents
the experimental results. Also, we empirically show that thresholding is
important for finding optimal solutions. We conclude the paper in Sec-
tion 2.6.
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2.2 Background and Related Work

Here, we introduce the notations and give a brief review of the state
of the art methods for F-measure maximization. We start by introducing
the notations used throughout in the chapter; we also formally define the
Fβ-measure in binary, multiclass and multilabel classification schemes.

2.2.1 Notation and Basic Definitions

We are given (i) a measurable space X ×Y , where X is the feature space
and Y is the (finite) prediction set, (ii) a probability measure µ over X ×
Y , and (iii) a set of (measurable) classifiers H from the feature space X
to Y . We distinguish here the prediction set Y from the label space L =
{1, ..., L}: in binary or single-label multiclass classification, the prediction
set Y is the label set L, but in multilabel classification, Y = 2L is the
powerset of the set of possible labels. In that framework, we assume that
we have an i.i.d. sample drawn from an underlying data distribution P on
X × Y . The empirical distribution of this finite training (or test) sample
will be denoted by P̂. Then, we may take P as measure µ to get results at
the population level (concerning expected errors), or we may take µ = P̂

to get results on a finite sample. Likewise, the set of classifiers H can
be a restricted set of functions such as linear classifiers if X is a finite-
dimensional vector space, or may be the set of all measurable classifiers
from X to Y to get results in terms of Bayes-optimal classifiers. Finally,
when required, we will use bold characters for vectors and normal font
with subscript for indexing.

Most of the previous work on pseudo-linear measure is centered
around the Fβ-measure in binary settings. The Fβ-measure is defined as
the weighted harmonic mean of precision and recall. Precision is defined
as the fraction of predicted positive instances that are indeed positive
and recall is defined as the fraction of positive instances that are cor-
rectly predicted as positive. Formally, we can define these metrics using
classifier outcomes. Given a binary dataset and classifier, TP corresponds
to the correct prediction of a positive label, TN corresponds to the correct
prediction of a negative label, FN corresponds to the incorrect prediction
of a positive label as a negative label, and FP corresponds to the incorrect
prediction of the negative label as positive. In general, these outcomes
are depicted using a confusion matrix, also called contingency table (See
Table 2.1). The confusion matrix of a multiclass and multilabel will be a
|L|×|L| matrix. In terms of the confusion matrix entries (TP, TN, FN, FP),
we formally define precision, recall and Fβ associated with a binary clas-
sifier h ∈ H as:
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(precision) Precision(h) =
TP(h)

TP(h) + FP(h)

(recall) Recall(h) =
TP(h)

TP(h) + FN(h)

(binary−Fβ) Fβ(h) =
(1 + β2)TP(h)

(1 + β2)TP(h) + β2FN(h) + FP(h)

In the Fβ definition, the parameter β weights precision and recall in
Fβ: F0 corresponds to precision, F∞ corresponds to recall, and F1, the
most widely used, corresponds to equal weighting to both precision and
recall. In case of the binary classification example mentioned in the in-
troduction, classifying a sample of 100 instances, the precision, recall and
F1 values for the trivial classifier is zero, but the misclassification error
rate is 0.95. But precision does not consider the effect of false negatives,
and recall does not consider the effect of false positives i.e. precision does
not account for classifying a correct label as incorrect and recall does not
account for labelling an incorrect label as correct. So in practical prob-
lems F1 (or in general Fβ) is preferred. One important property to note
here is unlike misclassification rate, F-measure is not invariant under la-
bel switching i.e. if we change the positive label to negative, we get a
different value of F-measure. Hence it is used in problems where cor-
rect classification of minority label is of vital importance. In multilabel
and multiclass settings, three different definitions of F-measure can be
found; namely instance-wise, macro and micro F-measures. We will give
formal definition of these in Section 2.3 in connection with our theoretical
framework.

2.2.2 Related Work

Before the recent surge in the study of F-measure optimization, the
problem was studied very limitedly (Musicant et al. 2003, Jansche 2005,
Joachims 2005, Jansche 2007, Fujino et al. 2008). The last couple of years
witnessed an increasing interest in this domain (Dembczynski et al. 2011,
Nan et al. 2012, Pillai et al. 2012, Dembczynski et al. 2013, Cheng et al.
2012, Lipton et al. 2014, Koyejo et al. 2014, Narasimhan et al. 2014, Waege-
man et al. 2014). The majority of the work was confined to F-measure
maximization in binary classification settings, whereas very little work
was done on multilabel and multiclass F-measure maximization tasks
(Pillai et al. 2012, Dembczynski et al. 2011). Jansche (2005) suggested an
algorithm for learning a non-deterministic classifier with locally optimal
F1-measure for binary classification problems by approximating the clas-
sification outcomes using logistic models. Since the objective function
used is non-convex, the resulting classifier does not guarantee global
optimality. A workaround; running the procedure multiple times with
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different seeds and select the best classifier from the set of classifiers is
also proposed by the author. The orthogonal problem of inferring the hy-
pothesis with optimal F1 from a probabilistic model is discussed by Jan-
sche (2007). In the scientific literature, the two problem formulation has
been referred to as empirical utility maximization (EUM) and decision-
theoretic approach (DTA) respectively (Nan et al. 2012).

The two formulations differ with respect to the definition of the ex-
pected F-measure. In case of the EUM based approach, the population
F-measure is defined as the F-measure of the expected TP,FP and FN. For-
mally, in EUM, the expected F-measure is defined as

FEUM
β (h) =

(1 + β2)E[TP(h)]
(1 + β2)E[TP(h)] + β2E[FN(h)] + E[FP(h)]

An optimal EUM classifier can be defined as

h∗ = argmax
h∈H

FEUM
β (h)

A general strategy for EUM based algorithm is to estimate the classifica-
tion score or the class conditional probability from the training data and
select a classifier from the set of thresholded classifiers obtained by set-
ting a threshold on the classification score or class conditional probability
a posteriori.

In DTA, the expected F-measure is formally defined as

FDTA
β (h) = E(x,y)∼P[Fβ(h)]

An optimal DTA classifier is of the form

h∗ = argmax
h∈H

FDTA
β (h)

A general strategy for DTA based algorithm is to build a probabilistic
model for the classifier using the training set, and infer the optimal clas-
sifier in an inference step. The inference step requires exponentially many
classifier evaluations.

From an algorithmic point of view, DTA based algorithms are com-
putationally more expensive than EUM based algorithms. DTA based
algorithms require an efficient method to estimate the class probabilities
and iterate over exponentially many combinations of hypothesis h and
labels y; and the problem of estimating exact probabilities is harder than
the original problem. Moreover, DTA is a set classifier in the sense that
in case of DTA, expectation is taken over the set of fixed size. Hence, an
optimal classifier in DTA is the one with maximal expected F-measure
among all the classifiers for a fixed size of training examples. The algo-
rithm given by Jansche (2007) runs in O(n4), where n is the number of
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test examples. The proposed algorithm makes use of a reduction strategy
and instead of searching over exponentially many hypotheses, it searches
over n + 1 “best” hypotheses (for a test set size of n). Similarly, assuming
i.i.d samples and considering the functional properties of F-measure (it
can be written as a function of integer counts), the expectation over the
label space Y can be carried out in O(n3). Nan et al. (2012) improved
the efficiency of this algorithm by reducing the complexity to O(n3), us-
ing dynamic programming to solve the expectation over the label space
Y . They also remark that in case of EUM based algorithms, the optimal
classifier for binary F1 is of the form sign(p(y = 1|x)− δ∗), where δ∗ is
a threshold score dependent on the underlying distribution. Dembczyn-
ski et al. (2011) followed a similar approach, and extended the algorithm
given by Jansche (2007). They proposed a method to calculate optimal Fβ

classifier with O(n3) complexity in time, given n2 + 1 parameters of the
joint distribution p(y). This algorithm was used in a multilabel setting
for instance-wise F-measure (see Remark 3). In addition to the high com-
putational footprint, there is no optimality guarantee on finite samples.
In general, optimality in DTA algorithms are asymptotic in nature (Nan
et al. 2012).

On the other hand, EUM based approaches are computationally less
demanding, and are based on the structured risk minimization (SRM)
principle. Here, we minimize an approximate surrogate loss function,
and select the hypothesis with minimal error on the validation set. The
most commonly employed EUM approach is to threshold the score ob-
tained using linear classifiers like logistic regression or support vector
machines (SVM) such that F1 is maximized. An approximate surrogate
function based approach named SVMperf is given by Joachims (2005),
based on the structured SVM method for dependent output Tsochan-
taridis et al. (2005). In the suggested method, the discriminant function
is defined over the linear combination of the feature vectors, where the
scalar multiplier is the label associated with each feature vector in the
training sample. Even though the reported experimental results were
promising, the method does not offer any theoretical optimality guar-
antee. Our experiments confirm that SVMperf is a sub-optimal method.
Musicant et al. (2003) also advocated for SVMs with asymmetric costs
i.e. different costs for false negatives and false positives for F1-measure
optimization in binary classification. However, their argument, specific
to SVMs, is not methodological but technical (relaxation of the SVM ob-
jective function).

In case of multilabel classification, Pillai et al. (2012) argued that the
multilabel-micro-F-measure can be optimized by thresholding the classi-
fication scores (they used the term class confidence score), one label at
a time. Pillai et al. (2012) used k-nearest neighbors and SVM to generate
the class confidence scores. In general, thresholding cost-insensitive SVM
scores does not guarantee empirical optimality since the hinge loss is not
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a proper loss (Reid and Williamson 2010), and the paper does not address
the issue of hyperparameter selection of the classification algorithm (k of
k-nearest neighbor and regularization coefficient of SVM).

Fujino et al. (2008) proposed a framework for designing a classifier
for optimal F1-measure based on the linear combination of multiple clas-
sifier models. The weights of the classifier combination is estimated such
that F1-measure is maximized in cross-validation, and the model param-
eters for the individual classifier models are estimated independent of
each other on a validation set. They combined two logistic models, (i)
maximum likelihood logistic regression with a fixed threshold value and
(ii) a concave approximation for F1-measure where the parameters are
estimated using logistic regression by running multidimensional opti-
mization techniques (see Jansche 2005) to maximize multilabel micro,
macro and instance-wise F-measure. This line of work comes under mul-
tiple classifier systems. Multiple classifier systems are not widely used for
F-measure maximization. In our knowledge, no proper statistical study
regarding the optimality of the multiple classifier systems for F-measure
maximization has been done so far.

Apart from F-measure, some of the most recent work discusses non-
linear performance measures like Jaccard index (Koyejo et al. 2014,
Narasimhan et al. 2014, Waegeman et al. 2014). Following the footsteps
of Nan et al. (2012), Koyejo et al. (2014) and Narasimhan et al. (2014)
proposed algorithms to maximize many non-decomposable performance
measures including linear-fractional measures like Fβ-measure by thresh-
olding the conditional class probability independently. The algorithm
returns a Fβ optimal classifier by running a two-phase procedure. In
the first phase a class conditional probability estimator is learned on a
training set, and in the second phase a threshold is chosen such that Fβ-
measure is maximal on the validation set. The proposed algorithms are
consistent if the empirical conditional probabilities converge to the true
class conditional probabilities. Reid and Williamson (2010) studied the
loss functions for conditional probability estimation, and proved that a
conditional probability estimator is consistent only when the loss func-
tion is proper i.e. the proposed algorithms by Koyejo et al. (2014) and
Narasimhan et al. (2014) give a consistent Fβ classifier if the classification
loss function is a proper loss. (Koyejo et al. 2015) extended the algo-
rithm for microF-measure in multilabel classification, where the optimal
micro-Fβ classifier is obtained in a similar fashion. A conditional prob-
ability estimator for each class label is obtained in the first step, and a
global threshold on the conditional probability is chosen that maximizes
micro-Fβ in the second step.

An algorithm that returns an optimal microFβ-measure for multiclass
classification is proposed by Narasimhan et al. (2015). They iteratively
build a classifier and corresponding contingency table on training and
validation data. At each iteration a new classifier is build by optimizing
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a loss defined over the contingency table. Like in the above mentioned
algorithms, the classifier is based on the conditional probability estima-
tor and for the consistency results to hold the loss function should be a
proper loss.

In this work, we aim to perform empirical risk minimization-type
learning, that is, to find a classifier with highest population-level F-
measure by maximizing its empirical counterpart. In that sense, we fol-
low the EUM framework. Nonetheless, regardless of how we define the
generalization performance, our results can be used to maximize the em-
pirical value of the Fβ-measure. Our theoretical results are more general
in the sense that there is no assumption regarding the underlying proba-
bility distribution nor any particular properties of the loss function.

2.3 Theoretical Framework and Analysis

In this section, we present the theoretical framework which is at the
heart of this work. Our results are mainly motivated by the maximiza-
tion of F-measures for binary, multiclass, and multilabel classification.
They rely on a general property of these performance measures, namely
their pseudo-linearity with respect to the false negative and false positive
probabilities.

For binary classification, we prove that, in order to optimize the F-
measure, it is sufficient to solve a binary classification problem with dif-
ferent costs allocated to false positive and false negative errors (Propo-
sition 4). However, these costs are not known a priori, so in practice we
propose to learn several classifiers with different costs, and to select the
best one according to the F-measure in a second step. Propositions 5 and
6 provide approximation guarantees on the F-measure which can be ob-
tained by following this principle.

We first establish the results for the Fβ-measures in binary classifi-
cation, and then extend to other cases of F-measures with similar func-
tional forms that are used in multiclass and multilabel classification. We
also briefly describe a pseudo-linear notion of Jaccard index, which can
also be solved using our framework (Propositions 5 and 6) . We present
the results and proofs for the binary case, succeeded by multiclass and
multilabel F-measures.

2.3.1 Error Profiles and Pseudo-Linearity

Error Profiles

The performance of a classifier h on distribution µ can be summarized
by the elements of the contingency table (See Table 2.1) which contains
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Table 2.1 – Contingency and cost table for binary classification

the summary of errors. For all classification tasks (binary, multiclass and
multilabel), the F-measures we consider here are functions of the non-
diagonal elements of this contingency table, which themselves are de-
fined in terms of the marginal probabilities of classes and the per-class
false negative/false positive probabilities. The marginal probabilities of
label k will be denoted by Pk. The per-class false negative/false positive
probabilities of a classifier h are denoted by FNk(h) and FPk(h), and the
per-class true positive/true positive probabilities are denoted by TPk(h)
and TNk(h) respectively. Their definitions are given below:

(binary/multiclass) Pk = µ({(x, y)|y = k}), FNk(h) = µ({(x, y)|y = k and h(x) 6= k})
FPk(h) = µ({(x, y)|y 6= k and h(x) = k})
TPk(h) = µ({(x, y)|y = k and h(x) = k})
TNk(h) = µ({(x, y)|y 6= k and h(x) 6= k})

(multilabel) Pk = µ({(x, y)|y ∈ k}), FNk(h) = µ({(x, y)|k ∈ y and k 6∈ h(x)})
FPk(h) = µ({(x, y)|y 6∈ k and k ∈ h(x)})
TPk(h) = µ({(x, y)|y ∈ k and k ∈ h(x)})
TNk(h) = µ({(x, y)|y 6∈ k and k 6∈ h(x)})

The error probabilities of a classifier h (FN and FP) can then summa-
rized by the error profile E(h):

E(h) =
(
FN1(h), FP1(h), ..., FNL(h), FPL(h)

)
∈ R2L .

Pseudo-Linear Functions

Throughout the paper, we rely on the notion of pseudo-linearity of a
function, which itself is defined from the notion of pseudo-convexity (See
Cambini and Martein 2009, Definition 3.2.1): a differentiable function F :
D ⊂ Rd → R, defined on a convex open subset of Rd, is pseudo-convex if

∀r, e′ ∈ D , F(r) > F(e′) ⇒
〈
∇F(r), e′ − r

〉
< 0 ,
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where 〈., .〉 is the canonical dot product on Rd.

Moreover, F is pseudo-linear if both F and −F are pseudo-convex. In
practice, working with gradients of non-linear functions may be cumber-
some, so we will use the following characterization, which is a rephrasing
of Cambini and Martein (2009, Theorem 3.3.9), basically stating that level
sets of pseudo-linear functions are hyperplanes:

Theorem 1 (Cambini and Martein 2009) A non-constant function F : D → R, defined and
differentiable on the open convex set D ⊆ Rd, is pseudo-linear on D if and
only if ∀r ∈ D , ∇F(r) 6= 0 , and: ∃a : R → Rd and ∃b : R → R such that,
for any t in the image of F:

F(r) ≥ t ⇔ 〈a(t), r〉+ b(t) ≤ 0 and F(r) ≤ t ⇔ 〈a(t) , r〉+ b(t) ≥ 0 .

Pseudo-linearity is the main property of linear-fractional functions
(ratios of linear functions).

Proposition 2 (Linear-fractional function) A linear-fractional function F : D ⊆
Rd → R is the ratio of linear functions, F(r) = α0+〈γ,r〉

α1+〈δ,r〉 . A non-
constant linear-fractional function is pseudo-linear on the open half-space
D =

{
r ∈ Rd|α1 + 〈δ, r〉 > 0, α1 6= 0

}
.

Proof A linear-fractional function F : r ∈ Rd 7→ α0+〈γ,r〉
α1+〈δ,r〉 , α1 + 〈δ, r〉 > 0

is pseudo-linear.

F(r) ≤ t⇔α0 + 〈γ, r〉 ≤ t(α1 + 〈δ, r〉)
⇒(α0 − tα1) + 〈γ− tδ, r〉 ≤ 0

Now reversing the inequality, we obtain;

F(r) ≥ t⇔ (α0 − tα1) + 〈γ− tδ, r〉 ≥ 0

The above equations represent open hyperplanes.

∇F(r) =
(α1 + 〈δ, r〉)γ− (α0 + 〈γ, r〉)δ

(α1 + 〈δ, r〉)2 6= 0

The gradient term is constant if δ and γ are proportional and non-
zero otherwise. The above conditions confirm the requirements for the
pseudo-linearity given in Theorem 1 and hence the result. �

2.3.2 Pseudo-Linearity of F-measures

Several notions of F-measures used in practical problems are pseudo-
linear. Here, we establish that binary Fβ and multiclass/multilabel
macro/micro F-measures are pseudo-linear functions.
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Figure 2.1 – Surface plot of F1 as a function of FN1 and FP1 with level sets

Binary Classification

In binary classification, we have FN2 = FP1 and we can write F-measures
only by reference to class 1. Then, for any β > 0 and any binary classifier
h, the Fβ-measure is

Fβ(h) =
(1 + β2)(P1 − FN1(h))

(1 + β2)P1 + FP1(h)− FN1(h)
.

We can immediately notice that Fβ is linear-fractional and hence by
Proposition 2 it is pseudo-linear in FN1 and FP1. Thus, with a slight (yet
convenient) abuse of notation, we write the Fβ-measure for binary classi-
fication as a function of vectors in R4 = R2L:

(binary) ∀r ∈ R4, Fβ(r) =
(1 + β2)(P1 − r1)

(1 + β2)P1 + r2 − r1

where ri represents the ith element of the error profile r. A surface plot
of F1 as a function of FN1 and FP1 with level sets is given in Figure 2.1.
As stated in Theorem 1, it can be verified from the plot that level sets are
hyperplanes.

Multilabel Classification

In multilabel classification, there are several definitions of F-measures.
For those based on the error profiles, we first have the macro-F-measure



28 Chapter 2. Multivariate Performance Measure Optimization

(denoted by MFβ), which is the average over class labels of the Fβ-
measure of each binary classification problem associated to the predic-
tion of the presence/absence of a given class:

(multilabel–Macro)MFβ(r) =
1
L

L

∑
k=1

(1 + β2)(Pk − r2k−1)

(1 + β2)Pk + r2k − r2k−1

MFβ is not a pseudo-linear function of an error profile r. However, if the
multilabel classification algorithm learns independent binary classifiers
for each class (a method known as one-vs-rest or binary relevance, see
e.g. Tsoumakas and Katakis 2007), then the k-th binary problem depends
only on r2k−1 and r2k. The maximization of the macro-F-measure with
respect to all binary classifiers is then a separable problem which boils
down to independently maximizing the Fβ-measure for L binary classifi-
cation problems. In other words, optimizing MFβ consists in maximizing
the pseudo-linear functions in r2k−1 and r2k that correspond to each Fβ

optimization.

There are also micro-F-measures for multilabel classification. They
correspond to Fβ-measures for a new binary classification problem over
X × L, in which one maps a multilabel classifier h : X → Y (Y is here
the power set of L) to the following binary classifier h̃ : X × L → {0, 1}:
we have h̃(x, k) = 1 if k ∈ h(x), and 0 otherwise. The micro-Fβ-measure,
written as a function of an error profile r and denoted by mFβ(r), is the
Fβ-measure of h̃ and can be written as:

(multilabel–micro)mFβ(r) =
(1 + β2)∑L

k=1(Pk − r2k−1)

(1 + β2)∑L
k=1 Pk + ∑L

k=1(r2k − r2k−1)

This function is also linear-fractional, and thus pseudo-linear in r.

Multiclass Classification

The last example we take is from multiclass classification. It differs from
multilabel classification in that a single class must be predicted for each
example. This restriction imposes strong global constraints that make the
multiclass classification significantly harder. As for the multilabel case,
there are many definitions of F-measures for multiclass classification, and
in fact several definitions for the micro-F-measure itself. We will focus
on the following one, which is used in information extraction (e.g in the
BioNLP Challenge Kim et al. 2013). Given L class labels, we will assume
that label 1 corresponds to a “default” class, the prediction of which is
considered as not important. In information extraction, the default class
corresponds to the (majority) case where no information should be ex-
tracted. Then, a false negative is an example (x, y) such that y 6= 1 and
h(x) 6= y, while a false positive is an example (x, y) such that y = 1 and
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h(x) 6= y. This micro-F-measure, denoted mcFβ can be written as:

(multiclass–micro)mcFβ(r) =
(1 + β2)(1− P1 −∑L

k=2 r2k−1)

(1 + β2)(1− P1)−∑L
k=2 r2k−1 + r1

Once again, this kind of micro-Fβ-measure is linear-fractional and hence
pseudo-linear in r.

Remark 3 (Non-pseudo-linear F-measures) In multilabel settings, the notion of instance-wise
Fβ has been used in the past (Fujino et al. 2008, Dembczynski et al. 2011, Pet-
terson and Caetano 2010; 2011, Cheng et al. 2012, Dembczynski et al. 2013).
It is similar to the micro-F-measure (mFβ) for multilabel case defined above,
but defined over samples (instances) instead of labels. It is defined as the aver-
age of the per-instance F-measure. Hence, we calculate the F-measures for each
instance independently (i.e. estimate mFβ for each individual example by calcu-
lating tp, fp, fn for each example in the sample) and take the average (arithmetic
mean) over the number of samples. This measure can not be written as a linear-
fractional function of “error profile” terms, hence it can not be solved using our
framework.

2.3.3 Optimizing F-Measure by Reduction to Cost-Sensitive
Classification

The Fβ-measures presented above are non-linear aggregations of false
negative/positive proportions that can not be written in the usual ex-
pected loss minimization framework; usual learning algorithms are thus,
intrinsically, not designed to optimize this kind of performance measures.
We show in Proposition 4 that the optimal classifier for a cost-sensitive
classification problem with label dependent costs (Elkan 2001, Zhou and
Liu 2010) is also an optimal classifier for the pseudo-linear F-measures
(within a specific, yet arbitrary classifier set H). In cost-sensitive classi-
fication, each entry of the error profile is weighted asymmetrically by a
non-negative cost, and the goal is to minimize the weighted average er-
ror. Efficient, consistent algorithms exist for such cost-sensitive problems
(Abe et al. 2004, Steinwart 2007, Scott 2012). Even though the costs cor-
responding to the optimal F-measure are not known a priori, we show
in Proposition 5 that we can approximate the optimal classifier with ap-
proximate costs. These costs, explicitly expressed in terms of the optimal
F-measure, motivate a practical algorithm. Even though the discussion in
this section is more general and applies to any pseudo-linear functions,
we start with the discussion in the binary setting. We give the proofs and
results for binary Fβ and extend the results to multilabel and multiclass
F-measures in Section 2.3.4.
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Reduction to Cost-Sensitive Classification

Let F : D ⊂ Rd → R be a fixed pseudo-linear function. We denote by
a : R→ Rd the function mapping values of F to the corresponding level
set of Theorem 1. We assume that the distribution µ is fixed, as well as the
(arbitrary) set of classifierH. We denote by E (H) the closure of the image
of H under E, i.e. E (H) = cl({E(h) , h ∈ H}) (the closure ensures that
E (H) is compact and that minima/maxima are well-defined), and we
assume E (H) ⊆ D. Finally, for the sake of discussion with cost-sensitive
classification, we assume that a(t) ∈ Rd

+ for any r ∈ E (H), that is, lower
values of errors entail higher values of F.

Proposition 4 Let F? = max
r∈E(H)

F(r). We have: r? ∈ argmin
r∈E(H)

〈
a
(

F?
)
, r
〉
⇔ F(r?) = F?.

Proof Let r? ∈ argmaxe′∈E(H) F(e′), and let a? = a(F(r?)) = a
(

F?
)
. We

first notice that pseudo-linearity implies that the set of r ∈ D such that
〈a?, r〉 = 〈a?, r?〉 corresponds to the level set {r ∈ D|F(r) = F(r?) = F?}.
Thus, we only need to show that r? is a minimizer of e′ 7→ 〈a?, e′〉 in
E (H). To see this, we notice that pseudo-linearity of F (see Theorem 1)
implies

∀e′ ∈ D, F(r?) ≥ F
(
e′
)
⇒ 〈a?, r?〉 ≤

〈
a?, e′

〉
,

and since r? maximizes F in E (H), we get r? ∈ argmine′∈E(H) 〈a?, e′〉 . �

This proposition shows that a
(

F?
)

are the cost vectors, which are or-
thogonal to the level set of F at F? and may not need to be unique,
that should be assigned to the error profile in order to find the opti-
mal classifier in H with respect to the measure F. Hence maximizing F
amounts to minimizing

〈
a
(

F?
)
, E(h)

〉
with respect to h, that is, amounts

to solving a cost-sensitive classification problem. This observation sug-
gests that the optimization of pseudo-linear measures could be a wrapper
of cost-sensitive classification algorithms. The costs a

(
F?
)

are, however,
not known a priori. The following result shows that having only approxi-
mate costs is sufficient to have an approximately optimal solution, which
gives us the main step towards a practical solution.

Proposition 5 Let ε0 ≥ 0 and ε1 ≥ 0, and assume that there exists Φ > 0 such that for all
r, e′ ∈ E (H) satisfying F(e′) > F(r), we have:

F
(
e′
)
− F(r) ≤ Φ

〈
a
(

F(e′)
)

, r− e′
〉

. (2.1)

Then, let us take r? ∈ argmaxe′∈E(H) F(e′), and denote a? = a(F(r?)). Let
furthermore â ∈ Rd

+ and h ∈ H satisfying the following conditions:

(i) ‖â− a?‖2 ≤ ε0 , (ii) 〈â, r〉 ≤ min
e′∈E(H)

〈
â, e′

〉
+ ε1 .
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We have: ∀r ∈ E (H) , F(r) ≥ F(r?) − Φ · (2ε0M + ε1), where M =
max

e′∈E(H)

∥∥e′
∥∥

2 .

Proof Let e′ ∈ E (H), we can write 〈â, e′〉 = 〈a?, e′〉+ 〈â− a?, e′〉.
Applying Cauchy-Schwarz inequality and condition (i), we get

〈
â, e′

〉
≤
〈
a?, e′

〉
+ ‖â− a?‖2

∥∥e′
∥∥

2

≤
〈
a?, e′

〉
+ ε0M .

In particular, we have:

min
e′∈E(H)

〈
â, e′

〉
≤ min

e′∈E(H)

〈
a?, e′

〉
+ ε0M

≤ 〈a?, r?〉+ ε0M , (2.2)

since r? ∈ argmine′∈E(H) 〈a?, e′〉 as shown in Proposition 4.

Similarly, we have 〈a?, r〉 = 〈â, r〉 + 〈a? − â, r〉; applying Cauchy-
Schwarz and conditions (i) and (ii), we have:

∀r ∈ E (H) , 〈a?, r〉 ≤ 〈â, r〉+ ‖a? − â‖2 ‖r‖2

≤ 〈â, r〉+ ε0M
≤ min

e′∈E(H)

〈
â, e′

〉
+ ε1 + ε0M . (2.3)

Combining Inequalities (2.2) and (2.3), we get

∀r ∈ E (H) , 〈a?, r〉 ≤ 〈a?, r?〉+ ε1 + 2ε0M
∀r ∈ E (H) , 〈a?, r− r?〉 ≤ ε1 + 2ε0M ,

and the final result follows from Assumption (2.1). �

The above proposition suggests that pseudo-linear measures could
be optimized by wrapping cost-sensitive classification, in an inner loop,
with an outer loop setting the appropriate costs. This proposition also
gives an upper bound on the achievable optimal F-score. This value de-
pends on the size of the maximum error associated with the given hy-
pothesis space M, measured in `2 sense and the constant Φ. The value
of M depends on the selected hypothesis class (E (H)). We call Φ a dis-
cretization factor as it defines the granularity of the approximation. It
depends on the specific form of F-measure and training sample. We can
find an approximately optimal classifier using a procedure, where we
search for an approximately optimal cost and associated error profile
by iterating through the pre-selected cost interval in small steps. Thus
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searching for a cost such that ε0 is close to zero, we can find an approx-
imately optimal F classifier. The ε1 can be regarded as the approximation
guarantee provided by the underlying cost-sensitive classification algo-
rithm. Practical implementations use convex surrogate loss instead of the
non-convex 0-1 loss. A discussion on convex approximation of 0-1 loss
can be found in (Rosasco et al. 2004). The discretization factor, Φ gives
the magnitude of the step size. A larger value of Φ indicates more fine-
grained discretization (very small step size), and a smaller value of Φ
indicates coarse- grained discretization. Later, we will derive the exact
values of Φ and the cost interval for specific F-measures.

Discretization Factor and Cost Interval for Fβ

Here, we derive the values of the discretization factor (Φ) and the range
of the cost interval (a) for binary Fβ-measure.

Proposition 6 Fβ defined in Section 2.3.2 satisfy the conditions of Proposition 5 with:

(binary) Fβ : Φ =
1

β2P1
and a : t ∈ [0, 1] 7→ (1+ β2− t, t, 0, 0)

Proof Since Fβ is linear-fractional as a function of the error profile, it is
pseudo-linear on the open convex set {r ∈ Rd|(1 + β2)P1 − e1 + e2 > 0}
(i.e. when the denominator is strictly positive). Moreover, for every set
of classifiers H, we have E (H) ⊆ D0 = [O, P1]× [0, 1− P1]× [1− P1]×
[1, P1].

Now, by the definition of Fβ, we have

∀r ∈ D0, Fβ(r) ≤ t ⇔ (1 + β2 − t)r1 + tr2 + (1 + β2)P1(t− 1) ≥ 0

and the equation still holds by reversing the inequalities. We thus have
that a(t) = (1 + β2 − t, t, 0, 0) satisfy the condition of Theorem 1 (with
b(t) = (1 + β2)P1(t− 1)).

We now show that the condition of Equation 2.1 is satisfied for a(t) =
(1 + β2 − t, t, 0, 0) and all r, r′ ∈ D0 by taking Φ = 1

β2P1
. To that end, let

r and e′ in E (H) and t and t′ in R such that t′ = Fβ(e′) > Fβ(r) = t.
Denote by ε the quantity 〈a(t′), r− e′〉. Note that ε > 0 and that:

0 = 〈a(t), r〉 + b(t) = (1 + β2 − t)r1 + tr2 + (1 + β2)P1(t− 1)

0 = 〈a(t′), e′〉 + b(t′) = (1 + β2 − t′)e′1 + t′e′2 + (1 + β2)P1(t′ − 1)

ε = 〈a(t′), r− e′〉 = (1 + β2 − t′)r1 + t′r2 + (1 + β2)P1(t′ − 1)
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where the first two equalities are given by the definition of hyperplane
corresponds to Fβ(r) = t and Fβ(e′) = t′, and the last one is obtained
from the definition of 〈a(t′), r− e′〉. Taking the difference of the third
and first equality, we obtain:

ε = (t− t′)r1 + (t′ − t)r2 + (1 + β2)P1(t′ − t)

From which we get, since (1 + β2)P1 − r1 + r2 > 0 for r ∈ D0:

Fβ(e′)− Fβ(r) = t′ − t = ε
(
(1 + β2)P1 − r1 + r2

)−1 ≤ ε

β2P1
,

because β2P1 the minimum of (1 + β2)P1 − r1 + r2 on D0 (taking r1 = P1
and r2 = 0). We obtain the result since ε = 〈a(t′), r− e′〉 by definition. �

This proposition gives the exact values of Φ and the range for a in bi-
nary settings. Here, the discretization factor depends on the marginal
probability of the positive class (assuming label 1 represents positive
class). A larger value of the discretization factor demands smaller step
size in the cost interval. Looking at the approximation guarantee in
Proposition 5, with a larger value of Φ, reasonable approximation can
be obtained by taking ε0 close to zero. Intuitively, we can think of this
as follows, higher values of Φ indicates a highly imbalanced data with
very few positive examples, hence to eliminate the influence of class-
imbalance, we need to discretize in smaller step through cost interval.
Given the error profile (in the form of contingency table) and associated
costs as a matrix, as shown in in Figure 2.1, corresponding Fβ-measure is
the sum of the elements of the Hadamard product of the two matrices.

Corollary 7 For the F1-measure, the optimal classifier is the solution to the cost-sensitive
binary classifier with costs

(
1− F?

2 , F?

2

)
Proof From Proposition 4, by putting β = 1, we have

(2− F?)r1 + r2F? + 2P1(F? − 1) ≥ 0

dividing by 2, we get

(1− F?

2
)r1 + r2

F?

2
+ P1(F? − 1) ≥ 0

Cost vector, a(t), according to Theorem 1 is (1− F?

2 , F?

2 ). �

This proposition extends the result obtained by Lipton et al. (2014)
to the non-asymptotic regime. If we take H as the set of all measurable
functions, the Bayes-optimal classifier for this cost is to predict class 1

when µ(y = 1|x) ≥ F?

2 (see Lipton et al. 2014, Steinwart 2007).
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Algorithm 1: Optimization of the Fβ-measure
Input : Training Data D, β

1 F∗ = 0 ;
2 Split Training Data into two Dtra, Dval;
3 for t = (0 . . . 1 + β2) ; // actual cost
4 do
5 h, δ, F = F_Cost_Sensitive_Learner(Dtra, Dval, t, β) ; // learn

cost-sensitive model. It returns the model h,
an optimal threshold δ and corresponding Fβ

score F
6 if F > F∗ then
7 h∗ = h, δ∗ = δ, F∗ = F;

Output: h∗

Algorithm for Fβ Maximization

Based on the above results, we give a practical algorithm to find optimal
Fβ. In case of Fβ, the cost function a : [0, 1] → Rd, which assigns costs
to probabilities of error, is Lipschitz-continuous with Lipschitz constant
equal to max(1, β2). Hence it is sufficient to discretize the interval [0, 1]
to have a set of evenly spaced values {t1, ..., tC} (say, tj+1 − tj = ε0/2)
to obtain an ε0-cover {a(t1), ..., a(tC)} of the possible costs. Using the ap-
proximate guarantee of Proposition 5, learning a cost-sensitive classifier
(hi) for each a(ti) and selecting the one with minimum total misclas-
sification cost(〈a(ti), hi(r)〉) on a validation set is sufficient to obtain a
Φ(2ε0M + ε1)-optimal solution where ε1 is the approximation guarantee
of the cost-sensitive classification algorithm. Our proposed algorithm is
presented in Algorithm 1.

The cost-sensitive classification algorithm that is used in the inner
loop of Algorithm 2 returns a cost sensitive classification model on
the training set with cost t′. The get_total_cost method in Algorithm 2

retruns the total misclassification cost on the validation set w.r.to the
actual cost t. The computeFmeasure method returns the optimal thresh-
old and corresponding Fβ-measure on the validation set. Even though
our theoretical results do not suggest thresholding the scores a posteri-
ori, experimental results indicate the need for a posterior thresholding
of the scores. We will elaborate on this point in Section 2.5. This meta-
algorithm can be instantiated with any cost-sensitive learning algorithm
(cost_sensitive_learner in Algorithm 2). The actual algorithm may sim-
ply consist of adjusting the hyper-parameters of a cost-insensitive clas-
sifier so as to optimize cost-sensitive classification, as in many practical
implementation of cost-sensitive algorithm. This rudimentary approach
results in considerable savings in computational time compared to meth-
ods where one has to re-train the algorithm for every parameter settings.
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Algorithm 2: F_Cost_Sensitive_Learner
Input : Dtra = Training Set, Dval = Validation Set, a=cost, β

1 c∗ = +∞ ;
2 for t′ = (0 . . . 2(1 + β2)) ; // surrogate cost
3 do
4 ĥ = cost_sensitive_learner(Dtra, t′) ; // generic

cost-sensitive learner

5 c= get_total_cost(ĥ, Dval, t) ; // get total
misclassification cost w.r.to t

6 if c∗ > c then
7 c∗ = c;
8 h = ĥ;

9 δ, F= computeFmeasure(h, Dval, β) ; // get optimal
threshold and corresponding Fβ-measure

Output: h, δ, F

2.3.4 Beyond Binary F-measure

As mentioned earlier, many notions of F-measures in multiclass and mul-
tilabel problems are pseudo-linear and can be solved using our frame-
work. Here, we derive the values for cost vector and discretization factor,
and propose optimal F-measure algorithm for pseudo-linear F-measures
described in Sections 2.3.2 and 2.3.2.

Multilabel micro-F-measure

Proposition 8 multilabel micro-F(mFβ) defined in Section 2.3.2 satisfies the conditions of
Proposition 5 with:

(multilabel–micro) mFβ : Φ =
1

β2 ∑L
k=1 Pk

and ai(t) =

{
1 + β2 − t if i is odd
t if i is even

Proof

mFβ(r) ≤ t =⇒ (1 + β2)∑L
k=1(Pk − r2k−1)

(1 + β2)∑L
k=1 Pk + ∑L

k=1(r2k − r2k−1)
≤ t

=⇒ (1 + β2 − t)
L

∑
k=1

r2k−1 + t
L

∑
k=1

r2k + (1 + β2)(t− 1)
L

∑
k=1

Pk ≥ 0

Thus, we have that

ai(t) =

{
1 + β2 − t if i is odd
t if i is even
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Following the same arguments as in Proposition 6, we get

mFβ(e′)−mFβ(r) = t′ − t = ε

[
(1 + β2)

L

∑
k=1

Pk −
L

∑
k=1

r2k−1 +
L

∑
k=1

r2k

]−1

≤ ε

β2 ∑L
k=1 Pk

because β2 ∑L
k=1 Pk the minimum of (1 + β2)∑L

k=1 Pk − ∑L
k=1 r2k−1 +

∑L
k=1 r2k in the respective domain (taking r2k−1 = Pk and r2k = 0). We

obtain the result since ε = 〈a(t′), r− e′〉 by definition. �

Here, the discretization factor depends on the sum of marginal prob-
abilities of each label. A large value of Φ indicates that majority of the
labels are rare, and smaller value of Φ indicates that few labels are rare.
Since the impact of misclassification of rare labels does not influence the
micro-F-measure to a greater extend (F-score is independent of true neg-
atives), we have to discretize in a smaller step only if the majority of the
classes are rare. Given the above result on cost vector a and discretiza-
tion factor Φ, and following the arguments given for Fβ (here also the cost
function a is Lipschitz-continuous with Lipschitz constant taking value
max(1, β2)), we can develop an algorithm for finding optimal classifier
for mFβ. Like in binary case, here we run cost-sensitive learner with dis-
cretized cost values to find the classifier with lowest total misclassifica-
tion cost(〈a(ti), hi(r)〉). Our proposed algorithm is given in Algorithm 3.
The algorithm is similar to the Fβ algorithm given in Algorithm 1. The
most important thing to note is that the threshold is chosen with respect
to all the labels such that it maximizes the mFβ-measure. This observation
is theoretically confirmed by Koyejo et al. (2015). We also need the cardi-
nality of the label space as an additional input parameter to estimate the
actual and surrogate cost values.

Multiclass micro-F-measure

Proposition 9 multiclass micro-F(mcFβ) defined in Section 2.3.2 satisfies the conditions of
Proposition 5 with:

(multiclass–micro) mcFβ : Φ =
1

β2(1− P1)
and

ai(t) =


1 + β2 − t if i is odd and i 6= 1
t if i = 1
0 otherwise
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Algorithm 3: Optimization of the mFβ-measure

Input : D = Data, L = |L|, β
1 mF∗ = 0 ;
2 Split Training Data into two Dtra, Dval ;
3 for t = (0 . . . 1 + β2) ; // Actual Cost
4 do
5 a = gen_mFβ_cost_vector(L, t, β) ; // get the cost values

as given in Proposition 8
6 h, δ, mF = mF_Cost_Sensitive_Learner(Dtra, Dval, a, β) ;

// learn cost-sensitive model which returns
the model, the optimal threshold and
corresponding mFβ-measure

7 if (mF > mF∗) then
8 h∗ = h ;
9 δ∗ = δ ;

10 mF∗ = mF ;

Output: h∗

Proof

mcFβ(r) ≤ t =⇒ (1 + β2)(1− P1 −∑L
k=2 r2k−1)

(1 + β2)(1− P1)−∑L
k=2 r2k−1 + r1

≤ t

=⇒ (1 + β2 − t)
L

∑
k=2

r2k−1 + tr1 + (1 + β2)(t− 1)(1− P1) ≥ 0

Thus, we have that

ai(t) =


1 + β2 − t if i is odd and i 6= 1
t if i = 1
0 otherwise

Following the same arguments as in Proposition 6 , we get

mcFβ(e′)−mcFβ(r) = t′ − t = ε

[
(1 + β2)(1− P1)−

L

∑
k=2

r2k−1 + r1

]−1

≤ ε

β2(1− P1)

because β2(1− P1) the minimum of (1 + β2)(1− P1)−∑L
k=2 r2k−1 + r1 in

the respective domain (taking ∑L
k=2 r2k−1 = 1− P1 and r1 = 0). We obtain

the result since ε = 〈a(t′), r− e′〉 by definition. �

Following the arguments given for multilabel micro-F-measure, we
can use the Algorithm 3 for finding optimal mcFβ with a small modifica-
tion to the gen_mFβ_cost_vector method. The new cost generation method
for multiclass micro-F-measure follows result of proposition 9.
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Algorithm 4: mF_Cost_Sensitive_Learner
Input : Dtra = Training Set, Dval = Validation Set, a = Actual Cost

Vector, β
1 c∗ = +∞ ;
2 for a′ = (0 . . . 2a) ; // surrogate cost
3 do
4 ĥ = cost_sensitive_learner(Dtra, a′) ; // generic

cost-sensitive learner with surrogate cost

5 θ, c= get_total_cost(ĥ, Dval, a) ; // get total
misclassification cost w.r.to actual cost

6 if (c∗ > c) then
7 c∗ = c ;
8 h = ĥ ;

9 δ, mF= computemFmeasure(h, Dval, β) ; // get optimal
threshold and corresponding mFβ-measure

Output: h, δ, mF

Remark 10 (Beyond F-Measures) The Jaccard index is a set-based similarity measure. Given
two sets, the Jaccard index is defined as the ratio of intersection to union. Like
F1-measure, it ranges from 0 to 1, where 0 indicates distinct sets and 1 indicates
identical sets (Kaufman and Rousseeuw 2009). It is used in cluster analysis and
co-citation analysis to name a few applications. Some recent work (Waegeman
et al. 2014, Koyejo et al. 2014) examined the use of Jaccard index as a perfor-
mance measure in classification problems. The Jaccard index is a pseudo-linear
performance function of per-class false negatives and false positives. We can de-
fine Jaccard indexes for binary, multiclass and multilabel problems in terms of
the error profile entries,

(binary) ∀r ∈ R4, Jac(r) =
P1 − r1

P1 + r2

(multilabel–micro) ∀r ∈ R2L, mJac(r) =
∑L

k=1(Pk − r2k−1)

∑L
k=1 Pk + ∑L

k=1 r2k

(multiclass–micro) ∀r ∈ R2L, mcJac(r) =
1− P1 −∑L

k=2 r2k−1

(1− P1) + r1

As we can see from the above equations, these quantities are pseudo-linear and
hence, we can use the methodology developed in Section 2.3.3, thresholding cost-
sensitive classifiers, to find the optimal Jaccard index classifier. Our analysis
confirms the remark of Waegeman et al. (2014) “We also see that algorithms
maximizing the F-measure perform the best for Jaccard index".
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2.4 Relationship to Multi-Objective Optimization

Finding “good” classifiers amounts to finding good trade-offs between
the different types of errors. In any case, it is a natural requirement that
the chosen classifier has an error profile that is a minimal element of
E (H) according to the partial order of Pareto dominance, which is de-
noted by � and is defined as:

∀r, e′ ∈ Rd , r � e′ ⇔ ∀k ∈ {1, ..., d} , rk ≤ e′k .

The set of optimal solutions defines the Pareto front (see Chapter 1).

Multi-objective optimization defines methods for finding the Pareto
front, or approximations of it (Ehrgott and Gandibleux 2002), and one of
the motivations is to find (approximately) optimal solutions of a vector
function that is hard to optimize. The process is to generate candidate
points in the Pareto front, and take that candidate with optimal value
of the vector function. The advantage is generating candidate points is
faster than the direct optimization of the vector function. In our case,
the goal is to find h ∈ E (H) that achieves small values of 〈a, r(h)〉 for a
predefined cost vector a.

The reduction from pseudo-linear functions to cost-sensitive classifi-
cation exactly corresponds to this Pareto front method. In fact, a general
way of finding Pareto-optimal solutions of a multi-objective problem is
called the weighted-sum method (see e.g. Ehrgott and Gandibleux 2002,
Boyd and Vandenberghe 2004). Applied to error profiles, the weighted-
sum method would minimize positive weighted combinations of the
elements of the error profiles, which corresponds to solving a cost-
sensitive classification problem. In usual multi-objective optimization set-
tings, such a Pareto set method is not useful for pseudo-linear aggre-
gation functions, because most such functions are linear-fractional, and
single-objective problems with a linear-fractional objective function can
be rewritten in terms of a linear objective with linear constraints (see
e.g. Boyd and Vandenberghe 2004). In our context however, the lineariza-
tion would not help because it introduces constraints involving values
of the error profiles, which are not linear in general. What we gain
with the reduction to cost-sensitive classification (or, equivalently, with
the weighted-sum method), is that efficient algorithms for cost-sensitive
classification, which are known to work in practice and are asymptot-
ically optimal, are already known. In addition, weighted-sum method
requires the user to know the relative preferences of the objectives in
advance, which is not known in general. Hence the weight components
are unbounded. Our reduction gives approximate values for the possible
weight vector a(t).

The relationship between the cost-sensitive classification and the
weighted-sum method allows us to discuss pseudo-linear F-measures in
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classifier x0 x1 x2 Fµ
1 (%)

hA(x) 2 2 2 2.22
hB(x) 2 2 1 2.37
hC(x) 2 1 2 27.22
hD(x) 1 2 2 73.83
hE(x) 1 2 1 72.12
hF(x) 1 1 2 75.24
hG(x) 1 1 1 73.62

Figure 2.2 – Pareto front for a binary classification problem (Y = {1, 2}, the positive
class is 1), where the input space contains three points x1, x2, x3. The table on the
right describes the data distribution, and defines the 8 possible classifiers and gives their
Fµ

1 -measure.

terms of Pareto-optimal solutions. It is well-known that in general, not
all Pareto-optimal solutions can be found by the weighted-sum method;
in fact, only those that are on the boundary of the convex hull of the feasi-
ble set can be reached. In general however, many classification problems
have Pareto-optimal solutions that do not lie on this boundary, especially
if the input space is finite (as is the case on any finite dataset). Figure 2.2
gives the example of the Pareto front of a binary classification problem
with 3 examples. The Pareto front can be depicted on a 2D plane where
the axis are false positives and false negatives; up to a change of basis,
this Pareto front is the ROC curve (Bach et al. 2006, Clémençon and Vay-
atis 2009) for the problem. In the figure, the blue points on the left plot
correspond to Pareto-optimal classifiers (none of them can be improved
both in terms of proportion of false positives and false negatives), while
the red curve is the Pareto set of the convex hull of the error profiles
of the 8 classifiers. Our result of reduction to cost-sensitive classification
proves that only the classifiers whose error profile is both Pareto-optimal
and on the boundary of the convex hull are candidates as optimal clas-
sifiers for any pseudo-linear aggregation function (here, the candidates
are cA, cD, cF), even though all classifiers are optimal for some trade-off
rule. For instance, cB is the optimal classifier for the rule “minimize the
proportion of false negatives under the constraint that the proportion of
false positives is smaller than 0.1”.
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2.5 Experiments

This section assesses the accuracy of the algorithms suggested by our
theoretical framework, using the F1-measure, in binary and multilabel
classification. Our experimental results for binary and multilabel-macro
F-measure (using binary relevance) shows that (i) choosing a classifier by
minimizing 〈a, r〉 results in classifier with optimal F-measure (ii) thresh-
olding the class conditional probabilities or the classification scores of
the cost-sensitive classification often results in classifier with optimal F-
measure.

We compare thresholded cost-sensitive classification, as implemented
by SVMs and logistic regression (LR), with asymmetric costs, to thresh-
olded linear classifiers (SVMs and logistic regression, with a decision
threshold set a posteriori by maximizing the F1-score on the validation
set). Besides, the structured SVM approach to F1-measure maximization
of Joachims (2005), SVMperf, provides another baseline. For complete-
ness, we also report results for non-thresholded cost-sensitive SVMs, non-
thresholded cost-sensitive logistic regression, and for the thresholded
versions of SVMperf.

Since the practical cost-sensitive algorithms are based on convex sur-
rogate loss optimization (Scott 2012), the approximate cost approxima-
tion we presented in Proposition 5 will not hold in general. We call the
cost given in Proposition 5 as actual cost (test cost) and cost used in the
practical surrogate loss based algorithm as surrogate cost (training cost)
(Bach et al. 2006). Since there is no one-to-one mapping between actual
cost and surrogate cost, in practical implementations we have to iterate
over the convex surrogate cost for each value of the actual cost.

SVM and LR differ in the loss they optimize (weighted hinge loss for
SVMs, weighted log-loss for LR), and even though both losses are cal-
ibrated in the cost-sensitive setting (that is, converging toward a Bayes-
optimal classifier as the number of examples and the capacity of the class
of function grow to infinity) (Steinwart 2007), they behave differently on
finite datasets or with restricted classes of functions. We may also note
that asymptotically, the Bayes-classifier for a cost-sensitive binary classi-
fication problem is a classifier which thresholds the posterior probability
of being class 1. Thus, all methods but SVMperf are asymptotically equiv-
alent, and our goal here is to analyze their non-asymptotic behavior on a
restricted class of functions.

For each experiment, the training set was split at random, keeping
1/3 for the validation set used to select all hyper-parameters, based on
the maximization of the F1-measure on this set. For datasets that do not
come with a separate test set, the data was first split to keep 1/4 for test.
All results are averaged over five random splits i.e. hold-out validation
with five random splits. The algorithms have from one to four hyper-
parameters: (i) all algorithms are run with L2 regularization, with a regu-
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larization parameter C ∈ {2−6, 2−5, ..., 26}; (ii) for the cost-sensitive algo-
rithms, the cost for false negatives is chosen in { 2−t

t , t ∈ {0.1, 0.2, ..., 1.9}}
of Proposition 4

1; (iii) for the thresholded algorithms, the threshold is
chosen among all the scores of the validation examples; (iv) for kernel
based SVM, we used radial basis function (RBF) kernel with γ (measure
of influence of a single training example) value γ ∈ {2−6, 2−5, ..., 26}.

The library LIBLINEAR (Fan et al. 2008) was used to implement non-
kernel SVMs2 and logistic regression. LIBSVM (Chang and Lin 2011) li-
brary was used for the kernel SVM. A constant feature with value 100 (to
simulate an unregularized offset) was added to each dataset.

2.5.1 Importance of Thresholding

Although our theoretical developments do not indicate any need to
threshold the scores of classifiers, the practical benefits of a post-hoc ad-
justment of these scores can be important in terms of F1-measure max-
imization, as already noted in cost-sensitive learning scenarios (Grand-
valet et al. 2005, Bach et al. 2006). Recent study also indicated the impor-
tance of thresholding when proper losses are used for binary and mul-
tilabel classifications (Koyejo et al. 2014, Narasimhan et al. 2014, Koyejo
et al. 2015). We study the importance thresholding classification scores
a posteriori using a didactic data called “Galaxy”. The data can be visu-
alized as given in Figure 2.3. The data distribution consist in four clus-
ters of 2D-examples, indexed by z ∈ {1, 2, 3, 4}, with prior probability
µ(z = 1) = 0.01, µ(z = 2) = 0.1, µ(z = 3) = 0.001, and µ(z = 4) = 0.889,
with respective class prior probabilities µ(y = 1|z = 1) = 0.9, µ(y =
1|z = 2) = 0.09, µ(y = 1|z = 3) = 0.9, and µ(y = 1|z = 4) = 0. “Galaxy”
is an example of highly imbalanced dataset.

We drew a very large sample (100,000 examples) from the distribu-
tion, whose optimal F1-measure is 67.5%. Without thresholding the scores
of the classifiers, the best F1-measure among the classifiers is 58.0%, ob-
tained by cost-sensitive SVM, whereas tuning thresholds enables to reach
the optimal F1-measure for SVMperf and cost-sensitive SVM. On the other
hand, LR is severely affected by the non-linearity of the level sets of the
posterior probability distribution, and does not reach this limit (best F1-
measure of 56.5%). Note also that, even with this very large sample size,
the SVM and LR classifiers are very different. This result suggests that
thresholding the classification scores a posteriori may improve the optimal
F-scores, especially thresholding the cost-sensitive classifier scores.

1We take t greater than 1 in case the training asymmetry would be different from the
true asymmetry (Bach et al. 2006).

2The maximum number of iteration for SVMs was set to 50,000 instead of the default
1,000.
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Figure 2.3 – Decision boundaries for the galaxy dataset before and after thresholding
the classifier scores of SVMperf (dotted, blue), weighted SVM (dot-dashed, cyan), un-
weighted logistic regression (solid, red), and weighted logistic regression (dashed, green).
The horizontal black dotted line is an optimal decision boundary.

Name Type Labels Train Test Features Label Freq. (%)
(min/max)

Adult binary 2 32,561 16,281 123 0.32

Galaxy binary 2 18,000 7,000 2 0.02

RCV1 multilabel 101 23,149 10,000 47,236 0.008/46.6
Scene multilabel 6 1,211 1,196 294 13.6/22.8
Siam multilabel 22 21,519 7,077 30,438 1.4/59.8
Yeast multilabel 14 1,500 917 103 25.2/43.0

Table 2.2 – Attributes of the Dataset

2.5.2 Binary Fβ and Multilabel MFβ

The other datasets we use are Adult, RCV1, Scene, Siam and Yeast.
In addition, we used a subsample from the Galaxy data to demonstrate
the empirical validity of the algorithm. Adult, RCV1 and Yeast are ob-
tained from the UCI repository3, and Scene and Siam from the Libsvm
repository4. The attributes of the data used in our empirical study are
given in Table 2.2.

The results for binary-Fβ and multilabel-macro-F (MFβ) are reported
in Table 2.3 and 2.4 respectively. As it is evident from the experimental re-
sults, cost-sensitive learning and thresholded cost-sensitive learning give
optimal results, whereas other methods performs suboptimally. But the
difference between methods is less extreme than on the artificial Galaxy
dataset. The Adult dataset is an example where all methods perform
nearly identical; the surrogate loss used in practice seems unimportant.
On the other datasets, we observe that thresholding has a relatively large

3https://archive.ics.uci.edu/ml/datasets.html
4http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multilabel.html

https://archive.ics.uci.edu/ml/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Table 2.3 – F1-measures (in %) for baseline algorithms with their usual settings (–) and
different options: T for thresholded classification scores, CS for cost-sensitive training,
CS&T for cost-sensitive training and thresholded classification scores

Baseline SVMperf SVM LR

Options – t – t cs cs&t – t cs cs&t

Adult 67.3 67.3 66.9 67.5 67.9 67.8 65.0 67.7 67.7 67.9
Galaxy 48.4 61.7 43.1 61.4 58.0 62.0 35.4 51.9 41.8 56.5

Table 2.4 – Macro-F1-measures MF1 (in %) for baseline algorithms with their usual
settings (–) and different options: T for thresholded classification scores, CS for cost-
sensitive training, CS&T for cost-sensitive training and thresholded classification scores

Baseline SVMperf SVM LR

Options – t – t cs cs&t – t cs cs&t

RCV1 44.0 52.8 46.6 54.2 50.9 54.5 40.9 52.9 48.5 53.3
Scene 68.3 69.6 66.2 69.6 69.6 69.6 67.0 69.9 69.8 70.1
Siam 48.2 52.8 48.1 52.4 52.7 53.4 44.7 51.9 51.7 52.2
Yeast 46.4 46.4 39.1 46.2 47.2 46.3 38.8 47.4 47.4 47.2

impact, especially for SVMperf and cost-insensitive classifiers. The un-
thresholded and cost-insensitive SVM and LR results are very poor com-
pared to thresholded and cost-sensitive versions. The cost-sensitive clas-
sifiers (thresholded and unthresholded) outperforms all other methods,
as suggested by the theory. Te cost-sensitive SVM is probably the method
of choice to optimize binary-Fβ or multilabel-macro-F(MFβ) when pre-
dictive performance is a must. On these datasets, thresholded LR still
performs reasonably well considering its relatively low computational
cost. In general, on the computational cost front, LR converges faster
than SVM or SVMperf.

Table 2.5 presents the optimal MFβ-measure with kernel SVM. We
used Radial Basis Function (RBF) as the kernel function and trained
RBF SVM without a bias term. Our experiments exemplify our theoret-
ical findings in kernel settings. In case of Scene, thresholding the cost-
sensitive scores marginally improves the MF1-score whereas in case of
Yeast data, cost-sensitive kernel SVM outperforms other methods. In
both cases, thresholding the cost-insensitive scores deteriorates the MF1-
scores.

2.5.3 Multilabel mFβ

In case of multilabel-micro-F-measure, we compare our algorithm with a
commonly used method to find best mFβ-score suggested by Fan and Lin
(2007). In the proposed method, one assumes that an optimal classifier for
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Table 2.5 – Macro-F1-measures MF1 (in %) for SVM with RBF kernel with their usual
settings (–) and different options: T for thresholded classification scores, CS for cost-
sensitive training, CS&T for cost-sensitive training and thresholded classification scores

Options – t cs cs&t

Scene 68.9 68.3 70.5 70.9
Yeast 48.6 48.5 48.8 47.9

Table 2.6 – Micro-F1-measures mF1 (in %) for for baseline algorithms with their usual
settings (–) and different options: T for thresholded classification scores, CS for cost-
sensitive training, CS&T for cost-sensitive training and thresholded classification scores.
Two optimization strategies are compared: Cmin for mF1 by proposed algorithm and Fmax

for mF1 corresponding to optimal MF1

Baseline SVMperf SVM LR

Options – t – t cs cs&t – t cs cs&t

RCV1
Cmin 48.2 49.6 47.6 49.7 49.9 50.2 46.3 49.8 49.9 49.9
Fmax 42.8 44.7 47.6 44.1 49.2 44.2 46.4 44.3 49.3 44.5

Scene
Cmin 66.7 68.5 65.4 68.7 68.8 68.6 66.6 69.2 68.6 69.4
Fmax 66.6 68.3 65.2 68.3 68.3 68.3 66.4 69.2 68.6 68.8

Siam
Cmin 59.2 62.5 60.3 62.2 62.6 62.5 60.2 62.4 62.0 62.3
Fmax 59.2 62.0 60.1 62.0 62.3 62.2 59.0 61.8 61.9 62.0

Yeast
Cmin 61.8 65.1 64.1 64.8 65.6 65.2 63.3 64.9 65.3 64.9
Fmax 60.2 60.2 60.6 59.3 60.7 61.2 63.2 59.8 61.0 60.9

macro-F-measure is an optimal classifier for micro-F-measure. Hence, the
micro-F-score corresponds to optimal macro-F-score is deemed as the op-
timal micro-F-score. We compare our algorithm for micro-F-score against
the micro-F-score corresponds to the optimal macro-F-score obtained by
running binary relevance as explained in section 2.3.2.

Table 2.6 contains the multilabel-micro-F (mcFβ) results for the multil-
abel datasets. The results clearly demonstrates that choosing the optimal
classifier for macro-F measure (corresponds to Fmaxin table) for maximiz-
ing micro-F-measure always return suboptimal results. So in practice, al-
gorithms based on per-label macro-F optimization should be avoided for
micro-F optimization. In case of micro-F, effect due to thresholding is not
very significant, except for RCV1 data. The unthresholded classifiers per-
forms nearly as good as the thresholded versions. This is true for SVMperf

also. As suggested by theory, cost-sensitive classification is the preferred
method to optimize multilabel-micro-F. Here also, thresholded LR can be
considered as an alternate option considering the computational cost.

Table 2.7 presents the optimal mcFβ-measure with RBF kernel SVM.
Similar to the MFβ results, thresholding the cost-sensitive score gives
better mFbeta results for kernel SVM.
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Table 2.7 – Micro-F1 for SVM with RBF kernel with their usual settings (–) and differ-
ent options: T for thresholded classification scores, CS for cost-sensitive training, CS&T
for cost-sensitive training and thresholded classification scores. Cmin for mF1 by proposed
algorithm and Fmax for mF1 corresponding to optimal MF1

Options – t cs cs&t

Scene
Cmin 67.2 67.1 67.5 67.1
Fmax 67.0 67.0 67.2 67.4

Yeast
Cmin 65.9 66.3 66.3 66.6
Fmax 59.4 62.9 59.9 63.5
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Figure 2.4 – Plot of micro-F-measure against false negative cost

2.5.4 Cost Space Search Overhead

Since the actual cost associated with misclassification differs from the
cost associated with surrogate loss, it introduces an extra loop in our
algorithm. Hence searching for optimal cost vector in the discretized cost
interval might not be a feasible approach, especially when the value of
Φ is large. A simple workaround is to disregard the difference between
the classifier performance with actual cost and the classifier performance
with surrogate cost. But this will result in choosing suboptimal classifier
as pointed out by Bach et al. (2006).

The unimodularity of the Fβ-measure (a pseudo-linear function is
pseudo-convex) with respect to the costs suggests a way to limit the
search over the cost space using bracketing based approaches. By using
The bracketing based approach, we limit the search over specific inter-
val of cost space by keeping track of the Fβ-score obtained at each iter-
ation. Figure 2.4 contains the plot of micro-F-measure against varying
false negative cost. An idea similar to this, based on bisection, is used by
Narasimhan et al. (2015) in case of multi-class micro-F score.

Bracketing methods (Press et al. 2007) are extensively used to find
global maxima of unimodal functions like quasi-concave function. We
will not be able to use the exact bracketing algorithm to find the optimal
cost, since it requires the knowledge of error profile associated with each
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value of F-measure). But we can use the idea of bracketing to limit the
discretization interval.

Here, we find three cost vectors (p, q, r), such that F(p) < F(q) >
F(r), then instead of discretizing the whole interval, we can limit the
discretization only to the sub-interval (p, r). We start with two intervals
defined by the three points: start of the interval (0), median of the interval
((1 + β2)) and the end of the interval (2(1 + β2)). Then we search for
the triplets (p, q, r) within the two subintervals recursively. We could use
binary search to search for the subinterval containing the approximately
optimal F-measure. Depending up on the F-measure values obtained at
each subinterval, we limit the discretization only to the corresponding
cost interval. In the best case, we requires exponentially fewer cost values.

2.6 Conclusion

We presented an analysis of F-measures, leveraging the property of
pseudo-linearity of specific notions of F-measures to obtain a strong
non-asymptotic reduction to cost-sensitive classification. The results hold
on any dataset, for any class of function and on any data distribution.
We suggested algorithms for F-measure optimization based on minimiz-
ing the total misclassification cost of the cost-sensitive classification. We
demonstrated experiments on linear classifiers, showing the theoretical
interest of using cost-sensitive classification algorithms rather than prob-
ability thresholding. It is also shown that for F-measure maximization,
thresholding even the cost-sensitive algorithms helps to achieve good
performances.

Empirically and algorithmically, we only explored the simplest case
of our result (Fβ-measure in binary classification and macro-Fβ-measure
and micro-Fβ-measure in multilabel classification), but much more re-
mains to be done. Algorithms for the optimization of the non-pseudo-
linear notions of F-measures like instance-wise-Fβ-measure in multilabel
classification received interest recently as well (Dembczynski et al. 2011,
Cheng et al. 2012), but are for now limited. We also believe that our re-
sult can lead to progresses towards optimizing the micro-Fβ measure in
multiclass classification.
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Here, we study the problem of diverse ranking in information retrieval
tasks. The problem was first studied in the context of document re-

trieval as a way to increase end user satisfaction and reduce the query
abandonment rate (Carbonell and Goldstein 1998, Zhai et al. 2003, Zhang
et al. 2005). Now, diversification algorithms are used in many information
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retrieval tasks including web search, recommender systems and summa-
rization. It has been established that submodular functions can be used to
promote the notion of diversity using the ‘diminishing return’ property
of the submodular function. State of the art diversification algorithms
make use of this property, but achieve it by explicitly trading-off the
linear combination of a relevance objective function and a diversity ob-
jective function, thus resulting in a two-step procedure. In this chapter,
we propose a diversification algorithm based on a submodular objective
function which does not trade-off relevance and diversity explicitly, and
compare the performance with the state of the art diversification algo-
rithms on benchmark datasets.
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3.1 Introduction

Most information retrieval systems are designed with the assumption
that the relevance of the answers to the query are independent of each
others, commonly referred as “Probability Ranking Principle” (Rijsber-
gen 1979) in the scientific literature. The ‘Probability Ranking Principle’
states that “If a reference retrieval system’s response to each request is a
ranking of the documents in the collection in order of decreasing proba-
bility of relevance to the user who submitted the request, where the prob-
abilities are estimated as accurately as possible on the basis of whatever
data have been made available to the system for this purpose, the overall
effectiveness of the system to its user will be the best that is obtainable on
the basis of those data.” However, in many real world applications, like
web search and recommender systems, the usefulness of results depend
on each other. For example, if a web search engine provides a user with
10 most relevant results to a given query, which are near duplicates but
having highest probability of relevance to the query, the overall effective-
ness of the system is zero if the result does not satisfy the user. More-
over, often information retrieval system results in imprecise responses
due to the inherent limitations to represent and capture the complex and
time-varying user requirements (Spärck-Jones et al. 2007). The above two
factors demand a system to respond with diverse results.

The above argument regarding the shortcoming of the “Probability
Ranking Principle” suggests that a good information retrieval system de-
sign should consider aspects other than relevance when retrieving items.
In general, this notion of “other aspects” aim to make the system re-
sponses more diverse. In scientific literature, the problem of diversifica-
tion is studied from different points of view like decreasing redundancy,
increasing novelty, increasing serendipity, increasing freshness etc. But
we argue that intrinsically all the above capture the idea of diversifica-
tion. By decreasing redundancy, one aim to limit the number of duplicate
relevant items by adding dissimilar items, thus making the items diverse
with respect to each other. Similarly, other notions like novelty, freshness
and serendipity can be increased by including more diverse items. Hence,
in abstract sense all these notions imply each other.

Often in practice, the relevance of an item is indicated using a non-
negative numeric score. For example, in web search relevance of a web
page to a query is expressed using an ordinal scale between one and
five where five indicates that the page is very relevant to the query and
one indicates that the page is irrelevant to the query. Similarly, in movie
recommender systems, preference of a user to a movie is indicated us-
ing similar ordinal scale, where five indicates the most preferred movie
and one indicates the least preferred movie. Thus, we could associate
non-negative utility scores to each item in a given set. In this regard,
by diversification, we aim to rank the items such that items with higher
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utility values but different from one another appears in the top rank-
ings. Formally, we require the rankings to have the “diminishing return”
property i.e. “if an item with high utility values is added to the list, the
marginal utility (increase in utility score by adding a new item to the list)
of adding a similar item should be less than adding a dissimilar item”.
Submodular function can be used to model this notion of diminishing re-
turn. Submodular functions are extensively studied (Fujishige 2005) and
found applications in many machine learning problems including diver-
sification , extractive summarization, structured sparse norm etc (Bach
2013, Krause and Golovin 2012).

Our approach is grounded on the idea of submodular function max-
imization. We view items as nodes in a similarity graph, and we define
the coverage of a set of items by another set of items from the similar-
ities between pairs of nodes. The objective is then to generate a set of
unrated items that covers the set of items that were positively rated by
the user. In this approach, diversity is obtained by defining the coverage
as a submodular function: there is little gain in improving the coverage
of a rated item that is already covered, whereas there can be a large gain
in covering a new positively rated item.

As in the case of other diversification algorithms, which we describe
in Section 3.4, the submodularity of the objective function provides ap-
proximation guarantees to the greedy algorithm iteratively building the
set of recommended items. We also experiment with a slightly more in-
volved inference algorithm based on a convex relaxation of the problem,
but with limited success. We conclude that the greedy algorithm gives
satisfactory results in practice.

In contrast to existing approaches that rely on two separate objec-
tives for relevance and diversity, coverage accounts for both relevance
and diversity: relevance is captured through the set to be covered, de-
fined by positively rated items, and diversity through the preference
towards lightly covering many items instead of covering heavily a few
items. We compare our approach to existing baselines for the diver-
sity/relevance trade-off in recommender system settings where our ap-
proach is grounded on the item-based collaborative filtering setup (Sar-
war et al. 2001), and web search diversification where our approach is
grounded on the transductive semi-supervised learning (Chapelle et al.
2006) settings on benchmark datasets, and show that our algorithm com-
pares favorably in terms of various relevance and diversity metrics.

The remainder of this chapter is structured as follows. We give a brief
introduction to submodular function in 3.2 before discussing our algo-
rithm and its applications in many diversification task. Section 3.3 de-
scribes our framework, the optimization problem, greedy algorithm and
the convex relaxation,and its relationship with other well-known prob-
lems. We carry out large scale experiments on benchmark data in the



3.2. Background & Preliminaries 53

context of movie recommendation systems in section 3.4.We conclude
the chapter in Section 3.5 with some future directions.

3.2 Background & Preliminaries

We briefly describe many interesting properties of the submodular func-
tions which are useful in our context. The results given in this section
are stated here for the sake of completeness and improved readability.
We use calligraphic letters for sets, bold capital letters for matrices, bold
small letters for vectors, and indexed small letters for individual compo-
nents of vectors wherever applicable.

3.2.1 Submodular Functions

Submodular functions are a special class of real valued functions defined
over lattices Fujishige (2005). Here, we limit ourself to the set lattice with
set intersection and set union as the meet and join operation. Given the
ground set of objects E = {e1, e2, · · · , en}, we define a submodular func-
tion having the property,

Definition 3 (Submodular Function) A set function F : 2E → R is submodular, if, ∀A,B ⊆
E ,

F(A) + F(B) ≥ F(A∪ B) + F(A∩ B) (3.1)

One of the most important defining characteristic of a submodular
function is the “diminishing return property”. Submodular function can
be defined in terms of the diminishing return property.

Definition 4 (Submodular Function) A set function F : 2E → R is submodular, if, ∀A ⊆
B ⊆ E and e ∈ E \ B,

F(A∪ {e})− F(A) ≥ F(B ∪ {e})− F(B) (3.2)

Lemma 11 Definition.4 is equivalent to Definition.3

Proof Let, C = {c1, c2, · · · ck} be the set of elements not in B i.e. B∩C = ∅
and B ∪ C = E .
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By Equation 3.2,

F(A∪ {c1})− F(A) ≥ F(B ∪ {c1})− F(B)

Now iteratively adding the elements, we get

F(A∪ {c1, · · · , ci−1} ∪ {ci})− F(A∪ {c1, · · · , ci−1}) ≥
F(B ∪ {c1, · · · , ci−1} ∪ {ci})− F(B ∪ {c1, · · · , ci−1})

Adding the k equations for i = 1 · · · k, we get

F(A∪ {c1, · · · , ck})− F(A) ≥ F(B∪{c1, · · · , ck})− F(B)

We define D = A∪C, and G = B, thenA = D∩G and B∪C = D∪G.
Putting these values in the above equation, we get

F(D)− F(D ∩F ) ≥ F(D ∪ G)− F(G)
Rearranging, we get F(D) + F(G) ≥F(D ∪ G) + F(D ∩ G)

Now, to prove the reverse,

Assume A ⊆ B ⊆ E , c /∈ B, and by Equation 3.1, ∀C,D ⊆ E

F(C) + F(D) ≥ F(C ∪ D) + F(C ∩ D)

Define, C = A∪{e} andD = B, then C ∪D = B∪{e} and C ∩D = A.
Putting the values in the above equation

We get,

F(A∪ {e}) + F(B) ≥ F(B ∪ {e}) + F(A))

rearranging, we get

F(A∪ {e})− F(A) ≥ F(B ∪ {e})− F(B)

�

We use one more equivalent definition of submodularity which is
useful in the forthcoming sections.

Definition 5 (Submodular Function) A set function F : 2E → R is submodular, if, ∀A ⊆ E ,
and e1, e2 ∈ E \ A,

F(A∪ {e1})− F(A) ≥ F(A∪ {e1, e2})− F(A∪ {e2}) (3.3)

Lemma 12 Definition.5 is equivalent to Definition.4

Proof This can be verified, by putting B = A∪ {e2} in (3.2). �
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Definition 6 (Monotonic Submodular Function) A submodualr function F is monotonic non-
decreasing, if ∀A ⊆ B ⊆ E , F(A) ≤ F(B) and monotonic non-increasing, if
∀A ⊆ B ⊆ E , F(A) ≥ F(B).

Definition 7 (Polymatroid) A normalized (F(∅) = 0) monotonic non-decreasing submodular
function is called polymatroid .

Definition 8 (Supermodular Function) A set function F : 2E → R is supermodular, if −F is
submodular,

Definition 9 (Modular Function) A set function F : 2E → R which is both supermodular
and submodular is called modular, i.e, ∀A,B ⊆ E ,

F(A) + F(B) = F(A∪ B) + F(A∩ B) (3.4)

Lemma 13 if F(A) is a modular function, then F(A) = F(∅) + ∑
e∈A

(F({e} − F(∅))

Proof Let A = {e1, · · · , ek}, by definition of modular function,

F({e1, e2} = F({e1}) + F({e2})− F(∅)

F({e1, e2, e3}) = F({e1}) + F({e2}) + F({e3})− 2F(∅)

continuing for the entire set A, we get

F({e1, · · · , ek} = F({e1}) + · · · F({ek})− (k− 1)F(∅)

= F(∅) + ∑
e∈A

(F({e} − F(∅))

�

Lemma 14 Let g be a concave function and F : 2E → R+ be a non-negative modular
function, then ∀A ⊆ E , g(F(A)) is a submodular function. If g is monotonic
then g(F(A)) is also monotonic.

Proof Due to the non-negativity of the modular function and by
Lemma13 F(A) = ∑

e∈A
F(e) ≥ 0. For any e1, e2 ∈ E \ A, such that

0 < F(e1) < F(e2), due to the fact that a concave function has mono-
tonically non-increasing differential quotient, we have

g(F(A) + F(e1))− g(F(A)) ≥ g(F(A) + F(e1) + F(e2))− g(F(e2)

It is equivalent to the Definition 5 of submodularity. �

3.2.2 Submodular Function Maximization

An interesting and practically important problem associated with the
submodular function is the constrained maximization problem. Consider
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the problem of submodular function maximization with cardinality con-
straints. Here, the problem is to select a subset objects of given cardinality
(k) from a given ground set of objects such that the submodular function
defined over the set is maximal. Formally, the problem can be stated as

A∗ = argmax
A⊆E
|A|≤k

F(A) (3.5)

A trivial algorithm requires us to evaluate the function on exponentially
many instances (|2E |). The problem can be reduced to the maximum
set coverage problem, a well known NP-Hard problem.There does not
exist any exact algorithm to solve the submodular function maximiza-
tion problem. The general strategy to solve the submodular maximiza-
tion problem is based on the greedy heuristic as given by Nemhauser
et al. (1978). The algorithm iteratively selects an element from the ground
set such that it gives the maximum value for the incremental update
value (F(A ∪ {e})− F(A) : A ⊆ E , e ∈ E \ A) at each iteration, where
the ties are broken arbitrarily. In case of polymatroids with cardinality
constraints, Nemhauser et al. (1978) gives a worst case lower bound on
the optimality gap between the optimal solution and greedy solution
as given in Theorem 15. In fact, the bound holds for any polymatroids
with matroid constraints and cardinality is a special kind of matroid con-
straint.

Theorem 15 (Nemhauser et al. 1978) For a non-decreasing submodular function F : 2E →
R+, let A∗ be the optimizer of (3.5) and Â be the set returned by the greedy
heuristic outlined above, then

F(Â) ≥ (1− (1− 1
k )

k) F(A∗) ≥ (1− 1
e ) F(A∗)

Interchange heuristic is another familiar method to approximately
solve a non-decreasing submodular maximization problem with cardi-
nality constraints. Here, we start with an arbitrary solution set matching
the cardinality constraint, and at each iteration another set with same
cardinality is selected which shares a predefined number of elements
with the solution set in the previous iteration. The sets are updated
only if there is an improvement in the objective value. As pointed out
by Nemhauser et al. (1978), the worst case performance of interchange
heuristic, in terms of the optimality gap obtained, is par below the greedy
heuristic. Moreover, interchange heuristic performance heavily depends
on the intermediate element selection procedure to find improved solu-
tions. Hence, we do not consider the interchange heuristic in our study.

3.3 Submodular Diversity Function

We consider a general information retrieval system framework wherein
we are given a set of objects and few of the objects are already rated by the
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user. For example, in a personalized recommender system, each object
corresponds to an item (e.g. movie/book), and the rating corresponds to
the preference score given by the user to the object. In case of web search,
each object corresponds to a webpage and the rating corresponds to the
relevance score of the page to a query, as given by the editors. We define
a general submodular diversity function based on the coverage of the set
of rated objects by the set of objects which are not yet rated by the user.
This section forms the crux of this chapter.

3.3.1 Utility-Weighted Coverage for Relevant Diverse Sets

We are given a set of n objects X = {x1, . . . , xn}, together with a similarity
measure defined over the set of objects.We do not assume the similarity
function to be symmetric or transitive. We use the similarity matrix W =
(Wij)i,j=1...n to represent the similarity values of n objects in X . We can
view (X , W) as a weighted graph, where Wij, which weights the edge
between objects xi and xj, should be interpreted as how much item xi
is similar to item xj. Our goal is to return diverse relevant items, and
we formalize it as a property of the returned solution set S , based on
the coverage of the subset of nodes in the graph X representing already
rated objects R.

3.3.2 Coverage of a Node

From now on, to simplify the notation, we identify the set of nodes X
with {1, . . . , n}. For a subset S of X , given a node i /∈ S , we define the
coverage score of i by S as:

cov(i,S) = f
(

∑
j∈S

f−1(Wij)
)

. (3.6)

where f : R+ → R+ is a non-decreasing invertible concave function, so as
to ensure that S → cov(i,S) is non-decreasing with respect to inclusion
and submodular. We call the function f in (3.6) the saturation function,
because its main usage is to make the coverage of a single node of the
graph saturate as we enlarge S .

3.3.3 Utility-Weighted Coverage of a Set of Nodes

We now extend the definition of the coverage of a node to a set of nodes
through the utilities attached to the nodes {υ1, . . . , υn}. Utility is a degree
of liking for an item given by a user, such as the rating given to this item.
We assume that υj ≥ 0. Given a set of m itemsR = {κ1, . . . , κm} ⊂ X with
their corresponding observed utility values Υ = {υ1, . . . , υm}, we define
the profile of the user as P = {(κj, υj)}j=1,...,m. In the recommendation
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example, the profile is the set of pairs (item, rating) known for a user and
in the web search the profile is the set of pairs (webpage, rating) for a
given query.

Now, given a profile P and a set of items S such that S ⊂ X \R, the
coverage of profile P by S is defined as:

cov(P ,S) = ∑
(κ,υ)∈P

υ cov(κ,S) . (3.7)

Here, we use a slight abuse of notation for cov, which can take as first
argument either a profile or an item, but we assume that the context
is clear considering the use of calligraphic notation for sets. From now
on, we use the terminology of point-wise coverage for (3.6) and profile
coverage for (3.7).

3.3.4 Optimal Utility-Diversity Trade-Off

The profile of a user is a representation of his/her different interests.
Given a fixed saturation function, a set S with cardinality khaving higher
value of profile-coverage compared to other sets of cardinality kindicates
that the set S covers a larger spectrum of users interest compared to
other sets of same cardinality. We define diversity as a measure of users
interest coverage. In that sense, a set covering larger spectrum of users
interest will be the one with the best utility-diversity trade-off.

Formally, a set S∗ realizes the optimal utility-diversity trade-off if it
solves:

max
S⊂X\R
|S|≤k

cov(P ,S) . (3.8)

When f in (3.6) is non-decreasing concave, the objective function of prob-
lem (3.8) is submodular as per Lemma 14. The problem is equivalent to
one given in 3.5. As a result, the greedy approximation heuristic by Ed-
monds (1971) can be used to approximately solve (3.8), with the approx-
imation guarantees stated in Theorem 15. The greedy algorithm for the
maximal profile coverage is given in Algorithm 5. We call our proposed
greedy algorithm “Submodular Diverse Ranking” (SDR) algorithm.

The computational complexity of the greedy algorithm depends on
the computational complexity of the evaluation oracle for the cov func-
tion. At each step of the greedy algorithm, we need to call the evalua-
tion oracle k times with a maximum over the set. Hence the computa-
tional complexity of the greedy algorithm becomes O(kp).O(cov) where
p = n − m. The cov evaluation oracle has the time complexity O(mk),
thus the greedy algorithm has time complexity O(mpk2). Minoux (1978)
proposed an “accelerated” version of the greedy algorithm which returns
the greedy solution in the fewest possible running time. The algorithm
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Algorithm 5: Submodular Diverse Ranking (SDR) Algorithm
Input : set of items X , profile P , similarity matrix W, # of

recommendations k
1 X = X \R,S = ∅ ;
2 repeat
3 i∗ = argmaxi∈X cov(P ,S ∪ {i}) ;
4 S = S ∪ {i∗} ;
5 X = X \ {i∗} ;
6 until |S|= k;

Output: set of diverse items S

Algorithm 6: Submodular Diverse Ranking (SDR) Accelerated
GreedyAlgorithm

Input : set of items X , profile P , similarity matrix W, # of
recommendations k

1 X = X \R,S = ∅ ;
2 for i ∈ X do
3 ∆(i) = cov(P , {i}) ; // compute and store the

marginal gain for each item in a priority
queue

4 repeat
5 i∗ = argmaxi∈X ∆(i) ;
6 δ = cov(P ,S ∪ {i∗})− cov(P ,S) ;
7 ∆(i∗) = δ ;
8 if δ < maxi∈X\{i∗} ∆(i∗) then
9 goto 5

10 S = S ∪ {i∗} ;
11 X = X \ {i∗} ;
12 until |S|= k;

Output: set of diverse items S

makes use of priority queues (Cormen et al. 2001) for faster retrieval. The
accelerated greedy algorithm is given in Algorithm 6.

The priority queue implementation enables constant retrieval time
(O(1)) of argmax and O(log) priority queue updation time. Previous ex-
perimental results on large scale datasets showed that accelerated greedy
algorithm gives substantial performance boost Leskovec et al. (2007).

3.3.5 Convex Relaxation for Inference

Instead of solving Problem (3.8) approximately using the greedy Algo-
rithm 5, another approach is to solve exactly a convex relaxation of Prob-
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Algorithm 7: Algorithm Based on Frank-Wolfe
Input : Set of items X , profile P , similarity matrix W, # of

recommendations k
1 i = 1, tol = 10−6, maxiter = 106 ;
2 S = X \R, αi = 0 ;
3 repeat

4 Li = -∇α

(
∑(κ,υ)∈P υ f

(
∑n

j=1 f−1(Wκ j)αj
))∣∣∣

αi
;

5 αi+1 = argminα∈Rn αTLi ; // subject to the
constraints in (3.9)

6 δ = αi+1 − αi ;
7 αi+1 = αi + 2

2+i δ;
8 i = i + 1 ;
9 until

(
abs(δ) ≤ tol

)
∨
(
i ≥ maxiter

)
;

Output: Indexes of k largest elements in α

lem (3.8). As f is concave, the constrained problem:

max
α∈Rn ∑

(κ,υ)∈P
υ f

(
n

∑
j=1

f−1(Wκ j)αj

)
such that ∀j ∈ R , αj = 0

∀j ∈ X \R , 0 ≤ αj ≤ 1

∑n
j=1 αj = k ,

(3.9)

has a concave objective with simple linear constraints, which can be
solved efficiently using the Frank-Wolfe algorithm (Frank and Wolfe
1956) given in Algorithm 7. The inequality constraints are expected to
have a sparsifying effect, leading to a vast majority of the αj to be zero.
In any case, a solution of cardinality kcan always be returned by taking
the kitems with largest values of αj.

3.3.6 A Graphical Intuition

Here, we give an intuitive explanation of the algorithm using a small set
of artificial data. Consider the partially labelled data in Figure 3.1(a). The
data can be considered as clusters of movies or clusters of web pages
for a learning type query. The four clusters correspond to the groups of
objects which are similar in some aspects, like thematic content. For ex-
ample, in case of movie recommendation, each cluster can be regarded as
similar movies, like genre similarity or cast similarity etc. The blue circles
in the clusters represent relevant items, the cyan triangles represent less
relevant items with respect to a user ratings, and the black triangle down
symbol represents the items with no relevance labels (actual unlabelled
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(a) (b)

(c) (d)

Figure 3.1 – (1) (a) contains the clusters corresponding to an artificial data. The blue
circles represent the already available relevant items for a user, the black down triangle
symbol represents unrated items and the cyan triangle represents irrelevant items. (2)
Top 3 ranking on the artificial data. The red rectangle represents the predictions made
by the algorithms (b) MSD (c) MMR (d) SDR (with saturation function f (t) = t0.1

.

data contains a mix of relevant and irrelevant objects but we randomly
removed the relevance information). Out of the four clusters, one clus-
ter contain no relevant items and one cluster contains very few relevant
items compared to the irrelevant items. A good diversification algorithm
should be able to retrieve one relevant item per the relevant clusters and
should avoid the non-relevant cluster.

The results of state of the art diversification algorithms on this artifi-
cial data for top three rankings are plotted in Figure: 3.1(b)&(c) and the
result obtained using our coverage based greedy algorithm is given in
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Figure: 3.1(d). As it is very evident, our algorithm retrieves items cover-
ing all the relevant clusters. More details about the compared algorithms
and experiments is described in Section 3.4.

3.3.7 Special Cases

The non-linearities of the saturation function, if any, are the critical fea-
tures that will allow us to make the trade-off between cumulated utility
and diversity in profile coverage. We already established that for any
non-decreasing concave saturation function, profile coverage is a sub-
modular function. Here, we investigate other functional formulations for
the saturation function which are of practical importance.

0/1 Saturation Function and Covering Problems

We first consider the limiting case where f (t) = limε→0 tε. For the sake
of clarity, we assume that υ = 1 for every (k, υ) ∈ P , and that items are
embedded in a metric space.

Covering R with balls: Let us assume that Wij is 1 if i lies in the ball
of radius ρ centered on j and 0 otherwise, for some fixed radius ρ > 0.
Then, cov(P ,S) counts the number of items of R that are covered by the
balls of radius ρ centered on the items of S . Maximizing cov(P ,S) with
a cardinality constraint on S corresponds to finding a maximum subset
of R that is covered with kballs of radius ρ centered in points of X \ R.
Problem (3.8) is then a maximal coverage problem.

k-nearest neighbors and clusters: If W is the adjacency matrix of a k-
nearest neighbor graph, then cov(P ,S) counts the number of items in R
that are in the k-nearest neighbors of items in S . Likewise, assume that
the items are clustered and that the similarity Wij is 1 if i and j belong to
the same cluster and 0 otherwise. Then, cov(P ,S) is the number of items
in S that are in the same cluster as at least one item in R.

Linear Saturation Function

Here, we consider the case where the saturation function is a linear. If
f is, say the identity function, then maximizing coverage boils down to
choosing the set of items j ∈ S such that ∑(κ,υ)∈P υWκ j is maximal. In
recommender system settings, this corresponds to one way of performing
item-based collaborative filtering (Sarwar et al. 2001).
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3.4 Diversity in Recommender Systems

Here, we demonstrate the applicability of our proposed algorithm in the
recommender system framework. We consider the diversity/relevance
trade-off in the context of item based collaborative filtering methods. In
that context, personalized recommendations propose items that are sim-
ilar to items that are known to be of interest to the user. Collaborative fil-
tering based recommender systems have proved effective in practice (e.g.
Sarwar et al. 2001); they are also particularly relevant in online recom-
mendation settings since recommendations can be generated on-the-fly.

In recommender systems, a user may have eclectic tastes, and diversi-
fication is a mean to cover items from all relevant types. The most usual
way of inducing diversity is to perform a two-step approach, in which
a ranked list of top-kresults is first retrieved, and a re-ranking algorithm
is then run on the list such that diverse results appear at the top rank-
ing positions. The re-ranking algorithms optimize an objective function
that explicitly trades-off a relevance term and a diversity term. There are
many variants of this scheme and we broadly refer to them as re-ranking
algorithms for diversification. We do a brief literature review about the
diversification algorithms in the recommender systems, followed by the
experimental settings and results.

3.4.1 Related Work

Considerable work on recommender system diversification stem from
the diversification work in web retrieval. The recommendation list diver-
sification problem was studied from different points of view in the past
(Vargas and Castells 2011, Vargas et al. 2014, Ashkan et al. 2015, Hurley
2013, Su et al. 2013, Oh et al. 2011, Wu et al. 2016). Here, we do a brief
literature review about the diversification algorithms confined to the rec-
ommender system research.

The majority of the work on diversification is based on the Maximal
Marginal Relevance (MMR) algorithm suggested by Carbonell and Gold-
stein (1998), originally proposed for web search diversification. MMR
is based on the scalarization principle in multi-objective optimization
techniques (Ehrgott and Gandibleux 2002). In MMR, two objectives, one
corresponding to relevance aspect and the other one corresponding to
dissimilarity (a measure of diversity) are linearly combined. The result-
ing objective is submodular, and diverse items are re-ranked using a
greedy approach. Vargas and Castells (2011) propose a unified view of
the state of the art metrics used in recommender system diversification.
Vargas et al. (2014) discuss a diversity metric based on probabilistic mod-
els for genre coverage, and propose a re-ranking algorithm to diversify
the recommendation list obtained using a baseline recommender sys-
tem. Ashkan et al. (2015) maximize a modular objective function with
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submodular constraints to maximize the genre coverage of movies and
demonstrate the effectiveness of the approach on benchmark datasets.
The proposed method maximizes the genre coverage of a list by choosing
the most relevant item with largest number of genres. They used a collab-
orative filtering algorithm based on matrix factorization as their baseline
recommender system. Hurley (2013) proposes a diversification method
which does not require a ranked list beforehand, by weighting the pair-
wise rank difference with the dissimilarity score within the framework
of RankALS (Takács and Tikk 2012). However, the theoretical properties
of the objective function do not give a clear insight about the relevance-
diversity trade-off. A similar approach, proposed by Su et al. (2013), cre-
ates a user profile based on relevant and irrelevant items, and diverse
items are generated by optimizing a set-oriented AUC (area under the
curve) objective function. Interestingly, Su et al. (2013) integrate the rel-
evance and diversity estimation in a single objective function, where the
objective is based on latent factor models augmented with a diversity
inducing part. However the diversity term is defined over the item cate-
gories and in practice category information might not be readily avail-
able. Oh et al. (2011) proposed an algorithm for novel movie recom-
mendation by accounting for popularity bias. The proposed algorithm
predicts a set of recommendations such that it is matching with the indi-
vidual personal popularity tendency, a popularity measure defined over
the gross market collection of a movie, and at the same time aligns with
the average popularity tendency of the dataset. Like many other diversi-
fication algorithm, the algorithm require a base recommender system to
be run in the first stage. A closely related approach to our proposed algo-
rithm is suggested by Wu et al. (2016). The proposed algorithm is based
on maximizing coverage of a user based on the user neighborhood. Given
a target user, a set of neighborhood users are selected such that selected
users are similar to the target user in their movie preferences and cover-
age is defined over the common movies with respect to the neighborhood
users. The final objective is a monotone non-decreasing submodular func-
tion similar to the one of proposed by Carbonell and Goldstein (1998).

Since majority of the work in recommender system is based on search
diversification in web retrieval. We discuss some of the diversification
work in the web retrieval. Diverse ranking in web search has attracted
significant interest from the research community in the last decade, and
has been studied extensively in the past (Carbonell and Goldstein 1998,
Zhai et al. 2003, Zhang et al. 2005, Zhu et al. 2007, Yue and Joachims 2008,
Radlinski et al. 2008; 2009, Agrawal et al. 2009, Gollapudi and Sharma
2009, Santos et al. 2010, Chapelle et al. 2011, He et al. 2012, Borodin et al.
2012, Raman et al. 2012, He et al. 2012). Zhai et al. (2003) follows an
approach very similar to Carbonell and Goldstein (1998), where they se-
lect a new item conditioned on the relevance and novelty of the items
already selected. Here, relevance and novelty measures are defined over
the language models for information retrieval. Zhang et al. (2005) solves
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the same problem using a random walk based formulation. They starts
by selecting the node with the highest PageRank score and at subse-
quent steps, scores of the unselected nodes are updated with respect to
the previously selected item. Similarly, Zhu et al. (2007) propose a ran-
dom walk based approach, where they select the item with the highest
PageRank score as the first item, and in each subsequent iteration se-
lected node is converted to an absorbing state. The remaining items are
selected based on the expected visit of the transient nodes in the ab-
sorbing Markovian chain based on the intuition that expected visit to
the diverse items are more in an absorbing markovian chain. Supervised
learning of diverse ranking using structured SVM is studied by Yue and
Joachims (2008). The learning algorithm requires the training data to be
associated with a set of topics, which is seldom available in practical
scenarios like web search. Radlinski and Dumais (2006) propose an al-
gorithm by generating set of ‘related queries’ corresponding to the user
specified query. Agrawal et al. (2009) proposed a re-ranking algorithm
by modeling the user intents through the publicly available taxonomies.
Here, the queries and documents are categorized according to the taxon-
omy and the objective is to minimize the query abandonment by explic-
itly trading off the relevance and diversity (covering many taxonomical
categories) aspects. Gollapudi and Sharma (2009) study the theoretical
properties of the dispersion based objective functions for the diversifi-
cation task. Similar to Radlinski and Dumais (2006), Santos et al. (2010)
proposed a method based on sub-queries by query reformulation tech-
niques. Mei et al. (2010) used time-variant random walk process to model
the relevance-diversity trade-off. Dubey et al. (2011) suggest a method for
diversification by finding topical centers of the transition graph similar to
Zhu et al. (2007), but the teleportation probabilities are estimated using
an inference algorithm. Tong et al. (2011), He et al. (2012) use the greedy
algorithm for set cover on top of the PageRank based algorithm to select
diverse items by forming a submodular objective function which also ex-
plicitly trades-off relevance and diversity. All the above work make use
of the editorially judged training data. Radlinski et al. (2008) proposed a
multi-armed bandit based online algorithm to learn diverse ranking from
click-through data.

Another interesting problem is about quantifying the diversity of a
given ranked list, and many diversity metrics are proposed in the past.
Ziegler et al. (2005) propose intra-list similarity (ILS), which measures the
distance between the items in the feature space. This measure does not
take into account the ranking of the items. Clarke et al. (2008) propose
α−DCG as an extension of DCG for the diversification task. Agrawal
et al. (2009) extended the commonly used IR metrics like NDCG, MAP
etc to diversification task. Chapelle et al. (2011) studied the theoretical
properties such metrics and proposed a submodular diversity measure
intent-aware expected reciprocal rank. But calculation of such metric re-
quires taxonomical and topical information.
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Our approach differs from the previous work in the sense that we
propose a single criterion to account for both diversity and relevance
like in Hurley (2013) and Su et al. (2013). The submodular structure of
our criterion gives theoretical basis in terms of the “diminishing return”
property for the diversity unlike in Hurley (2013) and Su et al. (2013).
The trade-off between relevance and diversity is dealt with by the exact
definition of coverage we use.

3.4.2 Experiments

We compare our proposed algorithm against state of the art algorithms
for recommender system diversification on baseline datasets. We carried
out the experiment with saturation function of the form f (t) = tγ with
0 ≤ γ < 1.

Lemma 16 For saturation function of the form f (t) = tγ with 0 ≤ γ < 1, cov defined in
equation 3.6 is submodular.

Proof . For 0 ≤ γ < 1, f (t) is monotonic increasing concave function,
and by Lemma 14, cov is submodular. �.

Baselines

We chose two baselines: Maximal Marginal Relevance (MMR) (Carbonell
and Goldstein 1998) and Max-Sum Diversification (MSD) (Borodin et al.
2012).

Maximal Marginal Relevance MMR selects a set S solving the maxi-
mizing problem

max
S⊆X\R ∑

i∈S

(
λ ∗ sim1(u, i)− (1− λ) max

j∈S−{i}
sim2(i, j)

)
such that |S|≤ k

where sim1 and sim2 are similarities, and u is related to the user profile.

The objective function explicitly trades-off the similarity of a user to
an item (measures the relevance aspect) with the dissimilarity of the item
to the already selected items (measures the diversity aspect).

Given the set of already selected items S (initialized to the empty set),
the MMR algorithm greedily selects an item i∗ such that

i∗ ∈ argmax
i∈X\(R∪S)

λ sim1(u, i)− (1− λ)max
j∈S

sim2(i, j) ,

In our settings, this reads:

i∗ ∈ argmax
i∈X\(R∪S)

λ ∑
(κ,υ)∈P

υWκi − (1− λ)max
j∈S

Wij .
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As the trade-off parameter λ ∈ [0, 1] is decreased, more emphasis is
put on the diversity of the resulting set. MMR can be interpreted as a
greedy scheme for maximizing a non-monotone submodular objective
function, for which the approximation guarantees of Theorem 15 do not
apply (Lin and Bilmes 2011).

Max-Sum Diversification The Max-Sum diversification (MSD) algo-
rithm is based on the facility dispersion problem, where one aims to find
a subset of optimal locations such that the distance between the selected
locations is maximized. Like in MMR, the objective function comprises
two terms, a modular relevance term and a supermodular sum of dis-
tance diversity term. Formally, MSD returns the set S of cardinality k,
that solves: 1

max
S⊆X\R

λ g(S) + (1− λ) ∑
i∈S

∑
j∈S−{i}

dist(i, j) s.t |S|≤ k

where λ is the trade-off parameter, g(S) is the utility function and
dist(i, j) is the distance function between item i and j. The problem is
NP-Hard, but efficient greedy algorithm with provable approximation
guarantees exist (Borodin et al. 2012). Starting from the empty set, at
each step the greedy algorithm selects the optimal item i∗ such that

i∗ ∈ argmax
i∈X\(R∪S)

λ ∑
(κ,υ)∈P

υWκi − (1− λ) ∑
j∈S

(1−Wij) .

Performance Metrics

Our experiments aim to assess the diversity of the recommended set.
Even though there has been some work on defining the performance
metrics for diversity, there is no clear consensus, especially in recom-
mendation tasks. So we measure several features of the different solu-
tions in the movie recommender settings, involving relevance, coverage,
and popularity bias (Pradel et al. 2012). We describe the different metrics
used in our experiment setup.

Genre Coverage A diversifying algorithm should produce results that
cover different relevant interest groups. One way to measure the cover-
age of the user interests is to count the number of relevant genres recom-
mended to the user. We define the Genre Coverage for the set U of users

1The original formulation of Borodin et al. (2012) is slightly different but equivalent.
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as the average ratio of relevant genres recommended to each user.

1
|U | ∑

u∈U

∣∣∣ ⋃
i∈Su

genres(i)
⋂ ⋃

i∈R+
u

genres(i)
∣∣∣∣∣∣ ⋃

i∈R+
u

genres(i)
∣∣∣ ,

where, for user u, R+
u is the set of relevant rated movies, Su is the set

of recommended items, and genres(i) returns the genres associated with
item i.

Catalog Coverage Catalog Coverage is defined as the fraction of the rel-
evant items that are recommended at least once, across all users. Higher
values of catalog coverage indicate that the algorithm counterbalances
the popularity bias by covering a large portion of the overall set of items.

Formally, it is defined as: ∣∣∣∣ ⋃
u∈U
S+u
∣∣∣∣

|X | .

where S+u is the set of recommended items that are known to be
relevant for user u (among the top-krecommended items).

Popularity Stratified Recall@k This metric is suggested by Steck (2011)
to measure the ability of a recommender system to compensate for the
popularity bias. As argued earlier, a diversity inducing recommendation
system should cover diverse interests and may in turn cover items from
the tail of the item-popularity distribution. Popularity Stratified Recall@k
is defined as:

∑
u∈U

∑
i∈S+u

(
1

N+
i

)β

∑
u∈U

∑
i∈Tu

(
1

N+
i

)β
,

where S+u is the set of recommended items that are known to be relevant
for user u (among the k recommended items), Tu is the set of items in the
test set that are known to be truly relevant for user u, N+

i is the number
of relevant ratings for item i in the test set and β is a hyperparameter
which adjusts for the popularity bias. Higher values of Popularity Strati-
fied Recall@k indicate that more relevant movies from the tail distribution
are recommended. In our experiments, we used β = 0.5 and kwas set to
5, 10, 20 or 50.
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Intra-List Distance (ILD) Proposed by (Zhang and Hurley 2008), it
measures the diversity of the set of recommended items by the mean
distance between all pairs of items in this set. In our experiments, we
used the Hamming distance:

1
|U | ∑

u∈U

1
k(k− 1) ∑

(i,j)∈Su

|genres(i)− genres(j)| .

Discounted Cumulative Gain (DCG) It is a commonly used metric in
ranking problems. It measures the relevance of a ranked list by the sum
of the graded relevance discounted by the rank of the item. In our exper-
iments, we used:

1
|U | ∑

u∈U
∑

i∈Su

2ri − 1
log(i + 1)

,

where ri is the graded relevance score of the ith item. In our experiments,
the ith item is either the ith item entering Su for the greedy algorithm, or
the one with ith largest αi in the convex relaxation formulation (3.9).

Precision@k It is the fraction of relevant items in the recommended list
of kitems.

1
|U | ∑

u∈U

1
k
∣∣S+u ∩ Tu

∣∣ .

Genre Coverage and ILD measure diversity, Catalog Coverage and Strati-
fied Recall@k mix diversity and relevance, and DCG and Precision@k mea-
sure the relevance. Higher values of the aforementioned metrics indicate
a better recommendation list.

Experimental Protocol

We used two benchmark datasets (i) MovieLens and (ii) Yahoo! Movies
to evaluate the proposed algorithm. Following Cremonesi et al. (2010),
we carried out holdout validation by splitting the data randomly into
training and test set such that 3% of the original data goes into testing and
remaining goes into training. To reduce the variability in the result, split
is carried out five times and the reported results are the average values
over the five splits. The rating values and the corresponding movies in
the training set are used to create the profile P and the unrated movies
in the training set are used as S . For the purpose of evaluation, whenever
necessary, we discretized rating scores to binary values such that rating
scores of 4 and 5 are deemed as relevant and otherwise irrelevant.

We estimated the unobserved rating values for MMR and MSD in the
training set using item-based collaborative filtering (Sarwar et al. 2001)
(matrix-factorization based collaborative filtering methods gave inferior
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Table 3.1 – Experimental Results on MovieLens (top 10 recommendations)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 67.12 66.34 66.26 66.84 65.35 65.50

ILD 19.73 19.75 19.75 19.22 19.44 19.55

Catalog Coverage 6.55 6.20 6.19 7.92 6.37 6.51

Stratified Recall@k 7.78 7.57 7.56 8.00 7.36 7.60

DCG 31.83 31.38 31.35 25.09 25.33 29.93

Precision@k 4.06 3.98 3.98 4.02 3.86 3.97

Table 3.2 – Experimental Results on MovieLens (top 10 recommendations)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 66.23 66.31 66.56 70.04 63.64 66.27

ILD 19.75 19.78 19.88 19.77 18.78 19.70

Catalog Coverage 6.18 6.26 6.57 10.49 5.37 6.76

Stratified Recall@k 7.56 7.63 7.90 10.27 6.23 7.89

DCG 31.33 31.51 32.10 34.86 24.42 31.95

Precision@k 3.98 4.01 4.10 4.60 3.19 4.08

results). We used the observed movie ratings to create the user profiles
P and the similarity matrix W, which is computed by a cosine simi-
larity. For evaluation purposes, we used the original observed rating
values or whenever applicable, their binarized version, in the test set.
We used f (t) = tγ with γ = {0.1, 0.5, 0.8} and the limiting case where
γ → 0, which corresponds to the `∞-norm, for the saturation function in
the submodular (SUB) setting. It should be noted that in the limiting case
(γ→ 0), the greedy algorithm selects the item with maximum profile cov-
erage score at each iteration, and the max function is a non-decreasing
submodular function for both positive and negative values Bach (2013).
For the modular setting (MOD), we used saturation function f (t) = t.

Results

MovieLens MovieLens21M dataset contains ratings from 6040 users on
3706 movies (excluding movies with no rating values). Each movie is
associated with a set of genres, among 18 distinct categories. The perfor-
mances of the different algorithms on the MovieLens dataset for k=10 are
given in Table 3.1 and 3.2, and for k=20 in Table 3.3 and 3.4 (all values
are multiplied by 100). The relevance-diversity values as the function of
recommendation size (k) are given in Figure 3.2.

2http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/
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Table 3.3 – Experimental Results on MovieLens (top 20 recommendations)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 79.96 79.53 79.48 79.41 79.25 79.22

ILD 20.06 20.26 20.27 20.18 20.01 19.93

Catalog Coverage 8.66 8.23 8.19 8.49 8.73 8.76

Stratified Recall@k 11.79 11.53 11.50 11.60 11.64 11.60

DCG 38.39 37.87 37.82 37.84 34.54 32.89

Precision@k 5.86 5.77 5.76 5.78 5.78 5.77

Table 3.4 – Experimental Results on MovieLens (top 20 recommendations)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 79.46 79.48 79.50 82.28 78.02 79.58

ILD 20.28 20.28 20.28 19.20 19.48 20.13

Catalog Coverage 8.17 8.36 8.86 14.75 7.65 8.99

Stratified Recall@k 11.49 11.63 12.06 16.35 10.07 11.97

DCG 37.80 38.03 38.83 43.18 30.57 38.56

Precision@k 5.76 5.80 5.96 6.89 4.89 5.90
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Figure 3.2 – Relevance-Diversity values for the MovieLens data as the function of
recommendation size k

Yahoo! Movies Yahoo! Movies3 dataset contains separate training and
test set, but we used only the training set due to the unavailability of

3https://webscope.sandbox.yahoo.com/

https://webscope.sandbox.yahoo.com/
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Table 3.5 – Experimental Results on Yahoo! Movies (top 10 recommendations)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 72.61 70.42 69.96 72.80 71.67 70.78

ILD 16.03 15.75 15.67 14.99 15.93 15.84

Catalog Coverage 2.96 2.61 2.55 3.15 2.78 2.63

Stratified Recall@k 16.44 15.08 14.83 15.36 15.51 14.85

DCG 13.59 13.37 13.27 9.64 10.30 10.61

Precision@k 1.62 1.55 1.53 1.40 1.55 1.51

Table 3.6 – Experimental Results on Yahoo! Movies (top 10 recommendations)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 69.77 70.44 71.75 73.61 66.59 69.58

ILD 15.63 15.72 15.82 15.52 14.87 14.84

Catalog Coverage 2.54 2.64 2.87 3.03 1.91 1.71

Stratified Recall@k 14.75 15.33 16.48 16.00 11.36 14.45

DCG 13.24 13.47 13.88 12.92 9.75 13.02

Precision@k 1.53 1.56 1.63 1.50 1.21 1.53

genre information on the test set. The training data contain 211,231 rating
values for 7,642 users and 11,915 movies. We removed the movies with
missing genres, being left with 187,435 ratings spanning 7,636 users and
8,647 movies. Yahoo! Movies span a total of 25 distinct genres. Table 3.5
and 3.6 contains the result for Yahoo! Movies for recommendation size
k=10 and Table 3.7 and 3.8 (all values multiplied by 100) and Figure 3.3
contains the relevance-diversity values as the function of recommenda-
tion size k.

Table 3.7 – Experimental Results on Yahoo! Movies (top 20 recommendations)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 84.00 82.14 81.75 82.14 82.82 83.06

ILD 16.24 16.24 16.19 16.21 16.19 16.14

Catalog Coverage 3.61 3.15 3.12 3.19 3.43 3.58

Stratified Recall@k 22.09 20.38 20.18 20.53 21.41 22.05

DCG 15.23 15.00 14.92 13.58 12.14 12.25

Precision@k 2.07 1.99 1.98 2.00 2.04 2.08
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Table 3.8 – Experimental Results on Yahoo! Movies (top 20 recommendations)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 81.62 82.06 83.09 84.99 79.44 82.26

ILD 16.16 16.18 16.13 15.62 15.50 16.01

Catalog Coverage 3.10 3.25 3.54 3.84 2.52 3.40

Stratified Recall@k 20.08 20.83 22.14 22.06 15.78 21.34

DCG 14.88 15.14 15.58 14.69 11.22 14.73

Precision@k 1.98 2.02 2.09 1.98 1.62 2.09
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Figure 3.3 – Relevance-Diversity values for the Yahoo! Movies data as the function of
recommendation size k

Discussion

It should be noted that the modular version of our algorithm is equiva-
lent to MMR and MSD with λ = 1. Surprisingly, MMR does not exhibit
any trade-off between relevance and diversity metrics as λ is varied. As
the λ value is increased from 0.1 to 1, values corresponding to DCG,
Precision@k, Catalog Coverage and Genre Coverage remain the same or
decrease only marginally. In effect, MMR does not recommend very rel-
evant and less diverse movies by weighting the relevance term highly.
The same trend can be noted for Yahoo! Movies as well. On the other
hand, MMR compensates for popularity bias by recommending less pop-
ular movies covering a larger spectrum of the set as the diversity term
is weighted high, thus increasing Stratified Recall@k and Catalog Cover-
age. But for MSD, on MovieLens, as the λ value is increased, the recom-
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mendation list becomes more relevant but nothing can be inferred about
diversity. But on Yahoo! Movies, trade-off between relevance (DCG) and
diversity (Genre Coverage) is clearer. As the λ value is increased, rec-
ommended list becomes more relevant and less diverse. However, there
is no clear indication that MSD compensates for popularity bias, even
though it recommends movies spanning large spectrum of movies from
the set. The modular (equivalent to item-based collaborative filtering)
version perform as good as the MMR and MSD versions.

For our algorithm, as the γ value is decreased, both the relevance and
the diversity values increase and the increase is more significant. The best
in-class relevance-diversity values are obtained for γ = 0.1. For Movie-
Lens, we see a 3% increase for both DCG and Genre Coverage metrics
compared to the second best algorithm. For Yahoo! Movies, γ = 0.1, gives
the best diversity value (Genre Coverage) for a marginally smaller value
of relevance (DCG). On MovieLens, the submodular algorithm returns
greater number of movies from the tail distribution which are collec-
tively distinct, i.e. covering large spectrum of movies, as indicated by the
larger values of Stratified Recall@k and Catalog Coverage. But this effect
is not very evident on Yahoo! Movies. As the γ value approaches zero the
quality of the recommendation list deteriorates. Convex relaxation based
algorithm performance is on par with other algorithms, but we found it
computationally more expensive. The performance of relevance-diversity
metrics for varying recommendation size is given in Figure 3.2 and 3.3.
On MovieLens, submodular (solid blue line) algorithm returns greater
number of relevant movies (square markers) which are diverse (red solid
line with triangle markers on the left plot), whereas MMR and MSD re-
turns diverse movies which are less relevant (red non-solid lines with
triangle markers on the left plot). It can also be noted that as the kvalue
increases, submodular algorithm recommends the most diverse and rel-
evant movies (higher DCG & Genre Coverage) whereas MMR and MSD
recommend the most diverse, but irrelevant movies (higher ILD & lower
DCG; see right plot in Figure 3.2). But in Yahoo! Movies, even though the
diversity metrics are superior for submodular algorithm, the relevance
values are close to other algorithms.

Effect on Eclectic Users

The problem of diverse recommendation is more critical for users with
eclectic interests. Here, we study the effect of diversification on eclectic
users by sampling an arbitrary number of eclectic users from the Movie-
Lens and Yahoo! Movies. We define eclectic users based on their affin-
ity towards many diverse items, as measured by their number of posi-
tive ratings and a mean similarity between rated items Wij below some
threshold. We selected 209 users from MovieLens by setting the mini-
mum number of relevant ratings to 100 and the mean similarity between
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Table 3.9 – Experimental Results on MovieLens (top 10 recommendations for eclectic
users)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 59.54 59.41 59.39 58.02 59.03 59.40

ILD 20.69 20.69 20.69 20.23 20.45 20.69

Catalog Coverage 3.12 3.12 3.12 2.97 3.19 3.12

Stratified Recall 4.62 4.62 4.62 4.32 4.67 4.62

DCG 87.41 87.45 87.45 67.43 86.91 89.23

Precision@k 11.74 11.76 11.76 11.01 11.77 11.76

Table 3.10 – Experimental Results on MovieLens (top 10 recommendations for eclectic
users)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 59.39 59.46 59.51 64.54 59.87 59.01

ILD 20.69 20.72 20.82 21.03 20.55 20.34

Catalog Coverage 3.12 3.16 3.29 4.13 2.61 3.36

Stratified Recall 4.62 4.67 4.87 6.33 4.06 4.89

DCG 87.44 87.97 90.02 95.32 71.05 90.22

Precision@k 11.76 11.86 12.21 13.21 9.64 12.13

movies below 0.2, and 109 users from Yahoo! Movies by setting the min-
imum number of relevant ratings to 50 and the mean similarity between
movies below 0.1. The experimental results for recommendation size
k=10 is given in Tables 3.9 and 3.10 for MovieLens data and Tables 3.13

and 3.14 for Yahoo! Movies, and for recommendation size k=20 is given
in Tables 3.11 and 3.12 for MovieLens and in Tabel 3.15 and 3.16 for
Yahoo! Movies respectively. The submodular algorithm significantly im-
proves the DCG and Genre Coverage values compared to the second best
diversification algorithm. The relevance and diversity metric values for
different recommendation size for eclectic users is given in Figures 3.4
and 3.5. As we can see from the figures, the blue solid line with square
markers and red solid line with triangle markers dominate the DCG-
Genre Coverage graph for varying sizes of k. On eclectic user set, as the
recommendation size grows, MSD and MMR return movies which are
diverse with respect to each other (higher ILD values) but less relevant to
the users (smaller DCG and Genre Coverage) compared to submodular
algorithm.
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Table 3.11 – Experimental Results on MovieLens (top 20 recommendations for eclectic
users)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 72.72 72.63 72.62 72.04 72.63 72.63

ILD 20.14 20.17 20.17 19.76 20.06 20.17

Catalog Coverage 4.69 4.66 4.66 4.84 4.76 4.66

Stratified Recall 7.74 7.69 7.69 7.96 7.81 7.69

DCG 111.09 110.68 110.67 94.64 110.64 112.46

Precision@k 18.29 18.18 18.18 18.52 18.33 18.18

Table 3.12 – Experimental Results on MovieLens (top 20 recommendations for eclectic
users)

MOD SUB SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 72.61 72.57 72.81 77.70 74.05 72.69

ILD 20.17 20.20 20.30 19.63 20.38 19.88

Catalog Coverage 4.66 4.69 4.85 6.39 4.15 4.99

Stratified Recall 7.68 7.75 8.05 10.83 6.85 8.13

DCG 110.64 111.23 113.72 123.39 90.41 114.31

Precision@k 18.17 18.28 18.75 20.98 15.00 18.75

Table 3.13 – Experimental Results on Yahoo! Movies (top 10 recommendations for
eclectic users)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 55.88 54.12 54.03 56.66 56.46 55.74

ILD 14.57 14.03 13.98 14.58 14.43 14.32

Catalog Coverage 0.28 0.25 0.25 0.31 0.26 0.25

Stratified Recall@k 4.46 3.97 3.88 5.75 4.30 4.00

DCG 19.92 18.40 18.15 18.13 15.87 18.89

Precision@k 2.59 2.39 2.35 2.99 2.42 2.44

Significance Testing

Our experimental results shows that we get significant improvement for
many of the relevance-diversity metrics. In particular, we get the best in-
class results for MovieLens with complete set of users and Yahoo! Movies
with eclectic users using SDR algorithm. Here, we do a statistical study
regarding the consistency of the results we obtained.
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Figure 3.4 – Relevance-Diversity values for the MovieLens (eclectic users) as the func-
tion of recommendation size k
Table 3.14 – Experimental Results on Yahoo! Movies (top 10 recommendations for
eclectic users)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 53.91 55.47 57.22 60.03 45.93 56.32

ILD 13.96 14.26 14.68 14.00 11.78 14.49

Catalog Coverage 0.24 0.27 0.29 0.27 0.19 0.28

Stratified Recall@k 4.46 3.97 3.88 5.75 4.30 4.00

DCG 19.92 18.40 18.15 18.13 15.87 18.89

Precision@k 2.59 2.39 2.35 2.99 2.42 2.44

Demšar (2006) proposes the use of Friedman test (Hollander and
Wolfe 1973) for statistical significance testing of multiple algorithms on
multiple datasets. It is a non-parametric test where the algorithms are
ranked for each dataset separately and average rank of for each algo-
rithms are computed. The Friedman statistic value is computed over the
average rank. The null hypothesis states that all the algorithms are equiv-
alent and average ranks for each of the algorithms over different datasets
should be same indicating that the difference in the values of the perfor-
mance measure is random.

If the null hypothesis is rejected, we carry out Friedman post-hoc
test to compare the pairwise comparison of different algorithms. In our
settings, If the null hypothesis is rejected i.e. if there is a significant dif-
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Table 3.15 – Experimental Results on Yahoo! Movies (top 20 recommendations for
eclectic users)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 65.43 63.55 63.36 70.48 66.44 64.66

ILD 14.32 14.00 13.96 14.34 14.21 14.10

Catalog Coverage 0.38 0.36 0.35 0.53 0.38 0.36

Stratified Recall@k 7.00 6.49 6.40 10.59 7.13 6.60

DCG 24.06 22.66 22.42 26.00 20.79 23.31

Precision@k 3.72 3.56 3.52 5.17 3.76 3.65

Table 3.16 – Experimental Results on Yahoo! Movies (top 20 recommendations for
eclectic users)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 63.37 64.39 67.24 74.42 61.74 65.43

ILD 13.97 13.99 13.95 13.22 12.44 14.16

Catalog Coverage 0.35 0.38 0.44 0.42 0.25 0.39

Stratified Recall@k 6.26 7.09 8.38 9.42 4.79 7.50

DCG 22.16 24.17 26.88 24.73 14.91 24.86

Precision@k 3.49 3.87 4.44 4.02 2.29 3.96

ference between the algorithms (we set the critical value to p = 0.05 for
Friedman test), we do a pairwise comparison using Nemenyi post-hoc
test (Demšar 2006).

We excluded Yahoo! Movies results from the significance testing as
the difference between different performance metric values for differ-
ent algorithms on different datasets are very marginal. We carried out
Friedman test on MovieLens with full users and MovieLens and Yahoo!
Movies with eclectic users for the case of top 10 recommendations, on
four metrics, DCG, Genre Coverage, Catalog Coverage and Stratified Re-
call over the five random split values. For MMR and MSD algorithms,
we selected the results for the best performing trade-off parameter (λ)
in terms of DCG and Genre Coverage for significance testing. For SDR,
we used the results for γ = 0.1. The Friedman test p-values for different
algorithms on the four above mentioned performance metrics are given
in Table 3.17.

The p-values in Table 3.17 indicates that in case of MovieLens data,
both on complete and eclectic users, the algorithm significantly differs
from each other i.e. the average rank of the algorithms for respective
performance metrics is not the same. But in case of Yahoo! Movies, except
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Figure 3.5 – Relevance-Diversity values for the Yahoo! Movies (eclectic users) as the
function of recommendation size k
Table 3.17 – Friedman test p-values

DCG Genre Coverage Catalog Coverage Stratified Recall
MovieLens 0.00182 0.0018 0.0043 0.0029

MovieLens
(ecl. users)

0.0029 0.0099 0.0018 0.0030

Yahoo! Movies
(ecl. users)

0.0624 0.0036 0.1503 0.1777

for the Genre Coverage, the algorithm performance is indistinguishable
which indicates that the average rank of the algorithms over the five
random splits is same.

As mentioned earlier, for further analysis, we carry pairwise com-
parisons between the algorithms using Friedman post-hoc nemenyi test
(Hollander and Wolfe 1973).

Nemenyi test p-values for MovieLens complete users, eclectic users
and Yahoo! Movies eclectic users, for the four performance metrics are
given in Table 3.18, 3.19 and 3.20 respectively. Our proposed algorithm
SDR performs significantly better than the non-diversification baseline
modular algorithm, whereas other diversification algorithms, MMR and
MSD performance is statistically inconsistent to the modular algorithm
(higher p-values). Between SDR, MMR and MSD, SDR results are statisti-
cally significant to MSD but insignificant to MMR. But in case of eclectic
users, SDR results is statistically significant compared to MMR but in-
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Table 3.18 – Nemenyi test p-values for MovieLens on top 10 recommendations

MSD MMR MOD
MMR 0.068 - -
MOD 0.611 0.611 -
SDR 0.001 0.611 0.068

MSD MMR MOD
MMR 0.068 - -
MOD 0.611 0.611 -
SDR 0.001 0.611 0.068

(DCG) (Genre Coverage)
MSD MMR MOD

MMR 0.999 - -
MOD 0.383 0.316 -
SDR 0.204 0.256 0.002

MSD MMR MOD
MMR 0.122 - -
MOD 0.883 0.456 -
SDR 0.003 0.611 0.036

(Catalog Coverage) (Stratified Recall)

Table 3.19 – Nemenyi test p-values for MovieLens on top 10 recommendations for
eclectic users

MSD MMR MOD
MMR 0.16 - -
MOD 0.16 1.0 -
SDR 0.88 0.02 0.02

MSD MMR MOD
MMR 0.83 - -
MOD 0.93 0.99 -
SDR 0.20 0.02 0.05

(DCG) (Genre Coverage)
MSD MMR MOD

MMR 0.99 - -
MOD 0.38 0.32 -
SDR 0.20 0.25 0.002

MSD MMR MOD
MMR 0.98 - -
MOD 0.98 1.00 -
SDR 0.12 0.05 0.05

(Catalog Coverage) (Stratified Recall)

Table 3.20 – Nemenyi test p-values for Yahoo Movies on top 10 recommendations for
eclectic users

MSD MMR MOD
MMR 0.883 - -
MOD 0.316 0.068 -
SDR 0.961 0.995 0.122

MSD MMR MOD
MMR 0.9948 - -
MOD 0.2035 0.3159 -
SDR 0.3159 0.2035 0.0014

(DCG) (Genre Coverage)
MSD MMR MOD

MMR 0.53 - -
MOD 0.83 0.12 -
SDR 0.96 0.83 0.53

MSD MMR MOD
MMR 0.76 - -
MOD 0.99 0.61 -
SDR 0.32 0.88 0.20

(Catalog Coverage) (Stratified Recall)

significant to MSD. As expected, in case of Yahoo! Movies, SDR gives
significant results for Genre Coverage compared to the modular version
of our algorithm.
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Latent Factor Based Models

In addition to the above experimental setup, we also experimented by
generating latent user and movie factors using matrix factorization based
methods. But the results we obtained are inferior to the one detailed
above. For the sake of completeness of the work and further investigation
we present the result here.

In the latent factor based models, we learn a user factor matrix (one
vector per user) and an item factor matrix (one vector per movie) from
the observed rating data. Formally,

R ∼ PQ

where R is the k× n rating matrix; k is the total number of users and
n is the total number of items, and P is the k× z user factor matrix (each
row vector corresponds to a user) and Q is the z× n item factor matrix
(each column corresponds to a movie). We set the rank z of the factor
matrices P and Q to be such that z� k, n.

We follow (Hu et al. 2008, Steck 2010; 2013), and use alternative least
square based method to estimate the factor matrices P and Q. To reduce
the problem with overfitting, we use `2 regularization. Our final objective
function is as given below

min
P,Q

J = C
(
||R− PQ||2+λ(||P||2+||Q||2)

)
(3.10)

We use the training weight matrix C following (Steck 2013). The train-
ing weight matrix is defined as follows,

Cij =

{
1, if Rij is observed
0, otherwise

The equation 3.10 is non-convex, but convex if one of the variable is
fixed. Morever, in typical settings the the number of users and movies can
be very large, and hence direct optimization of k× n variables might not
be feasible. Here, we use alternating least squares(ALS) based approach.
At each iteration, we fix one of the variables P and Q, and use stochastic
gradient descent to solve the resulting convex optimization problem.

The gradient with respect to the user and item factor vectors becomes,

∇JPi = −2QTCiRi + 2QTCiQPi + 2λPi

∇JQj = −2PTCjRj + 2PTCjPQj + 2λQj

The final update formula becomes,

Pi =
(
QTCiQ + λI

)−1QTCiRi

Qi =
(
PTCjP + λI

)−1PTCjRj



82 Chapter 3. Relevance-Diversity Trade-off in Information Retrieval Problems

Table 3.21 – Experimental Results on MovieLens using ALS (top 10 recommendations)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 53.33 51.65 51.40 51.48 52.09 52.46

ILD 14.60 14.12 14.10 14.01 14.17 14.30

Catalog Coverage 2.42 4.79 4.99 4.47 3.83 3.38

Stratified Recall 0.71 1.26 1.31 1.15 1.04 0.94

DCG 1.19 2.76 2.97 2.25 1.85 1.64

Precision@k 0.19 0.41 0.45 0.39 0.31 0.27

Table 3.22 – Experimental Results on MovieLens using ALS (top 10 recommendations)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 50.60 51.03 51.11 53.74 61.45 50.58

ILD 14.47 14.52 14.52 14.91 17.92 14.31

Catalog Coverage 1.64 1.61 1.63 2.54 4.64 1.57

Stratified Recall 2.07 2.05 2.07 2.72 4.93 1.96

DCG 8.99 8.37 8.43 10.03 19.13 7.98

Precision@k 1.15 1.08 1.09 1.39 2.39 1.03

where I is the identity matrix, and Ci is the diagonal matrix correspond-
ing to the entry for Ci i.e. Ci = diag(Ci).

Ideally, regularization parameter λ is tuned using hold-out or cross-
validation. But in our experiments, we set it to the value 0.01. We used
cosine function as the similarity measure but the similarity is defined
over the item factors obtained using the ALS algorithm unlike the afore-
mentioned setup. In all other aspects, we followed the same settings as
in the earlier case. The results of our experiments are given in Table 3.21

and 3.22 for MovieLens and Table 3.23 and 3.24 for Yahoo! Movies.

As it can be noted, the results are inferior to the previous experimen-
tal setup. In case of MovieLens, as in the previous case SDR algorithm
gives better result compared to MMR and MSD, but the relative magni-
tude is less compared to the previous setup. In case of Yahoo! Movies,
SDR performance degrades drastically compared to MMR and MSD al-
gorithms on all performance metrics. We did not further explore the ALS
based approach on eclectic users. We reserve to carry out further analysis
on latent factor based approach for diversification in the future.
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Table 3.23 – Experimental Results on Yahoo! Movies using ALS (top 10 recommenda-
tions)

MMR MMR MMR MSD MSD MSD
λ=0.1 λ=0.5 λ=0.8 λ=0.1 λ=0.5 λ=0.8

Genre Coverage 73.28 75.74 75.25 75.11 75.75 75.85

ILD 16.37 17.08 16.95 16.74 16.93 16.96

Catalog Coverage 0.67 0.87 0.85 0.80 0.80 0.77

Stratified Recall 1.75 2.05 1.86 1.80 2.13 2.14

DCG 1.18 1.56 1.43 1.18 1.42 1.43

Precision@k 0.20 0.24 0.21 0.21 0.25 0.25

Table 3.24 – Experimental Results on Yahoo! Movies using ALS (top 10 recommenda-
tions)

MOD SDR SDR SDR SDR SDR
γ=0.8 γ=0.5 γ=0.1 γ→0 conv γ=0.5

Genre Coverage 53.97 53.98 54.11 55.81 62.30 54.08

ILD 10.72 10.72 10.73 10.96 12.68 10.73

Catalog Coverage 0.34 0.34 0.34 0.44 0.64 0.33

Stratified Recall 1.33 1.34 1.36 1.91 3.05 1.31

DCG 0.44 0.45 0.46 0.69 2.22 0.43

Precision@k 0.05 0.06 0.06 0.10 0.21 0.06

3.5 Conclusion

We presented a new criterion that captures both relevance and diversity
for ranking applications. The criterion can be approximately optimized
with an efficient greedy algorithm; the algorithm can be applied in any
ranking scenario where we have access to similarities between items and
a subset of items which are known to be of interest to the user or relevant
to the query. Experiments on benchmark datasets for recommender sys-
tems showed that the algorithm performs well, both in terms of relevance
and diversity compared to a strong baseline. But in case of web search,
experiments on the benchmark datasets showed that the algorithm has
clear performance advantage over the state of the art ‘Learning to Rank’
algorithm but inferior to the state of the art re-ranking algorithms. But
considering the fact that our algorithm works in a transductive setting
and thus bypassing the relevance score estimation step, it generates re-
sults cheaply and reasonably fast.





4Conclusion

In this dissertation, we studied algorithms for two practically impor-
tant problems which comes under the general class of machine learn-

ing problems called multi-objective learning problems. In Chapter 1, we
gave some examples of multi-objective learning problems. In fact, many
of the well studied problems in machine learning can be classified under
multi-objective learning problems, which includes the problem of finding
classifiers for optimal multi-variate performance measures, subset selec-
tion problems, ranking items in recommender systems and information
retrieval problems in general etc.

The scalarization method is one of the most popular and efficient
method for finding solutions for multi-objective learning problems. We
introduced the concept of scalarization in chapter 1. Many of the state of
the art algorithms for the aforementioned problems are in fact instantia-
tions of the scalarization method.

We studied the problem of finding the optimal classifier for multi-
variate performance measures like Fβ-measure and Jaccard Index in
chapter 2. Our analysis established that the optimal classifier for Fβ-
measure and Jaccard Index can be obtained using cost-sensitive classi-
fication with the proper cost vectors in binary, multiclass and multilabel
classification schemes. Moreover, we have established the fact that cost-
sensitive classification is an instantiation of the scalarization method.

When considering algorithms for multi-objective learning problems,
scalarization need not be the “to go” approach. It is very important
to consider the domain specific information and objective functions. In
chapter 3, we have demonstrated that optimizing the application specific
objective function will give superior results compared to scalarization
based methods. We proposed a new objective function which captures
both relevance and diversity in a single criterion and experimentally vali-

85



86 Chapter 4. Conclusion

dated that the proposed method outperforms state of the art scalarization
based approaches for the task of diverse ranking.

4.1 Future Work

We now discuss some avenues for future work in the area of multi-
objective learning. Some of these works are an extension of the work
we presented in the earlier chapters.

4.1.1 Group Recommendation

Group recommendation is a personalized recommendation task where
one has to deal with many competing objectives. Given a group of users
and a set of items whose preferences to the users in the group is not
known, the group recommendation task can be defined as selecting a
subset of items with fixed cardinality such that the selected set is uni-
versally acceptable by the members of the group. One has to consider
the agreements and the disagreements for the items to be recommended
between different users of the group. In the state of the art methods, the
problem is solved using the weighted sum approach, where the algo-
rithm explicitly trades-off the agreement and disagreement aspects (Bo-
ratto and Carta 2010). Based on the approach we proposed in chapter 3,
the problem of Group Recommendation can be done very efficiently by
optimizing a domain specific objective function based on the user inter-
est coverage. Here, we propose an algorithm for Group Recommendation
based on submodular maximization.

A typical scenario arises in online deal marketplaces like Groupon1

and LivingSocial2. In such settings, one has to choose a fixed set of deal
coupons for product discounts to recommend such that it maximizes the
user participation. The deal aggregation and recommendation algorithm
has to select a fixed number of deals on a daily, weekly or monthly ba-
sis for the given city demography. Here, the algorithm has to take into
account many competing individual user preferences within the demog-
raphy for different set of deals, and the customers within the city can
be considered as a group. In addition to the individual user preferences,
the algorithm has to deal with customers participation behaviour. Some
users might be be more loyal than others. Based on the above obser-
vation, we propose a new group recommendation algorithm which is a
generalization of our algorithm proposed in chapter 3.

Here, we consider a more general setup. We are given a set of n items
X and set of m users U . The subset of users form the set of groups G.
The group demographics can evolve over time , and a user may or may

1https://www.groupon.com/
2https://www.livingsocial.com/

https://www.groupon.com/
https://www.livingsocial.com/
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not be a member of a group, and a user can be part of multiple groups.
We also assume the existence of an affinity function over the item space
h : X × X → R+. We does not require the affinity function to be sym-
metric or transitive. The user preference for the items are indicated using
an ordinal number where we assume higher values indicates stronger
preference.

Given X and the corresponding matrix of affinity values represented
as W, we could view the pair (X , W) as a complete graph where the
edges are weighted according to the values in W. Given the group G of
user set U and their corresponding past preferences for item set I ⊂ X ,
the item set I defines a subgraph of (X , W).

We define the group consensus score with respect to the set S = X \I
as given below

GScore(G, I ,S) = ∑
u∈G

Cu ∑
i∈I

f
(

∑
j∈S

f−1(Wij
))

(4.1)

where Cu is a user specific value which can be used to adjust the varying
user dynamics.

For any concave function f , the objective function GScore in 4.1 be-
comes a submodular function, and the group recommendation prob-
lem reduces to submodular function maximization with cardinality con-
straint.

4.1.2 Online F-measure Optimization

Recently Busa-Fekete et al. (2015) proposed an algorithm to select op-
timal threshold in case of threshold based algorithms for optimizing
Fβ-measure. Online learning is becoming increasing popular in machine
learning, where the aim is to develop learning algorithms which learns
from stream data (online data) to minimize the cumulative regret over
the number of examples whereas in the traditional learning algorithms
learn from batch data Cesa-Bianchi and Lugosi (2006). There is a grow-
ing interest in developing algorithms in online settings. An interesting
future work is to develop algorithms for optimizing multivariate perfor-
mance metrics discussed in chapter 2 in online settings. Majority of the
online algorithms for binary, multiclass and multilabel consider only the
cumulative error rate and so far there is no work related to developing
algorithms for complex performance metrics. In Busa-Fekete et al. (2015),
the authors argued that thresholding the class probability scores result
in optimal Fβ-measure in online settings. But the problem of estimating
class probability scores in online fashion is not well studied.
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4.1.3 Online Submodular Maximization

In many real world applications, particularly in online world, data comes
in the form streams and with the current size of internet, it is almost
impossible to store the entire data in a disk. Typical examples of applica-
tions where one has to deal with such data includes mining access logs of
internet servers like web, mail etc, summarization for news-wire services,
classifying video streams etc. In applications like summarization and ex-
emplar clustering, the objective is to maximize a submodular function
over this data stream. The greedy algorithm and the accelerated greedy
algorithm for submodular maximization given in chapter 3 requires full
access to the data. So in practice one has to devise an “online greedy
algorithm“ for submodular function maximization over data streams.

Krause and Gomes (2010) proposed an online version of the greedy
algorithm discussed in chapter 3 for the task of cardinality constrained
submodular maximization. The algorithm is based on keeping the most
prominent k elements seen so far in the memory. When a new data point
comes, the algorithm checks whether swapping it with any of the k
currently stored data points results in the value of the utility function,
and swaps accordingly. A recent algorithm by Badanidiyuru et al. (2014)
makes use of heuristic approach. They use the minimum and maximum
bound on the optimal value based on the current element wise maxi-
mum and greedily select the data points based on thresholding over a
discretized interval. The algorithm is in fact multi-pass (have to go over
the data streams multiple times), but they propose to run each pass par-
allely.

An interesting line of future work is to propose a true single-pass
online greedy algorithm for submodular maximization. We are working
on an algorithm based on the idea proposed by Krause and Gomes (2010).
In addition to the above proposed work, there is a plethora of work in the
area of multi-objective learning which is currently under investigation,
related to bi-objective matching, online matrix completion etc.
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