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Abstract

Abstract
With the advent of ever-increasing graph datasets in a large number of domains, parallel
graph-processing applications deployed on distributed architectures are more and more
needed to cope with the growing demand for memory and compute resources. Though
large-scale distributed architectures are available, notably in the High-Performance Com-
puting (HPC) domain, the programming and deployment complexity of such graph-
processing algorithms, whose parallelization and complexity are highly data-dependent,
hamper usability. Moreover, the difficult evaluation of performance behaviors of these
applications complexifies the assessment of the relevance of the used architecture.

With this in mind, this thesis work deals with the exploration of graph-processing
algorithms on distributed architectures, notably using GraphLab, a state of the art graph-
processing framework. Two use-cases are considered. For each, a parallel implementation
is proposed and deployed on several distributed architectures of varying scales. This study
highlights operating ranges, which can eventually be leveraged to appropriately select a
relevant operating point with respect to the datasets processed and used cluster nodes.

Further study enables a performance comparison of commodity cluster architectures
and higher-end compute servers using the two use-cases previously developed. This study
highlights the particular relevance of using clustered commodity workstations, which are
considerably cheaper and simpler with respect to node architecture, over higher-end sys-
tems in this applicative context.

Then, this thesis work explores how performance studies are helpful in cluster de-
sign for graph-processing. In particular, studying throughput performances of a graph-
processing system gives fruitful insights for further node architecture improvements. More-
over, this work shows that a more in-depth performance analysis can lead to guidelines for
the appropriate sizing of a cluster for a given workload, paving the way toward resource
allocation for graph-processing.

Finally, hardware improvements for next generations of graph-processing servers are
proposed and evaluated. A flash-based victim-swap mechanism is proposed for the mitiga-
tion of unwanted overloaded operations. Then, the relevance of ARM-based microservers
for graph-processing is investigated with a port of GraphLab on a NVIDIA TX2-based
architecture.
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Abstract

Résumé
Avec l’explosion du volume de données produites chaque année, les applications du do-
maine du traitement de graphes ont de plus en plus besoin d’être parallélisées et déployées
sur des architectures distribuées afin d’adresser le besoin en mémoire et en ressource de
calcul. Si de telles architectures larges échelles existent, issue notamment du domaine
du calcul haute performance (HPC), la complexité de programmation et de déploiement
d’algorithmes de traitement de graphes sur de telles cibles est souvent un frein à leur util-
isation. De plus, la difficile compréhension, a priori, du comportement en performances
de ce type d’applications complexifie également l’évaluation du niveau d’adéquation des
architectures matérielles avec de tels algorithmes.

Dans ce contexte, ces travaux de thèses portent sur l’exploration d’algorithmes de
traitement de graphes sur architectures distribuées en utilisant GraphLab, un framework
de l’état de l’art dédié à la programmation parallèle de tels algorithmes. En particulier,
deux cas d’applications réelles ont été étudiées en détails et déployées sur différentes
architectures à mémoire distribuée, l’un venant de l’analyse de trace d’exécution et l’autre
du domaine du traitement de données génomiques. Ces études ont permis de mettre en
évidence l’existence de régimes de fonctionnement permettant d’identifier des points de
fonctionnements pertinents dans lesquels on souhaitera placer un système pour maximiser
son efficacité.

Dans un deuxième temps, une étude a permis de comparer l’efficacité d’architectures
généralistes (type commodity cluster) et d’architectures plus spécialisées (type serveur
de calcul hautes performances) pour le traitement de graphes distribué. Cette étude a
démontré que les architectures composées de grappes de machines de type workstation,
moins onéreuses et plus simples, permettaient d’obtenir des performances plus élevées.
Cet écart est d’avantage accentué quand les performances sont pondérées par les coûts
d’achats et opérationnels. L’étude du comportement en performance des ces architectures
a également permis de proposer in fine des règles de dimensionnement et de conception
des architectures distribuées, dans ce contexte. En particulier, nous montrons comment
l’étude des performances fait apparaitre les axes d’amélioration du matériel et comment
il est possible de dimensionner un cluster pour traiter efficacement une instance donnée.

Finalement, des propositions matérielles pour la conception de serveurs de calculs plus
performants pour le traitement de graphes sont formulées. Premièrement, un mécanisme
est proposé afin de tempérer la baisse significative de performance observée quand le clus-
ter opère dans un point de fonctionnement où la mémoire vive est saturée. Enfin, les deux
applications dévélopées ont été évaluées sur une architecture à base de processeurs basse-
consommation afin d’étudier la pertinence de telles architectures pour le traitement de
graphes. Les performances mesurés en utilisant de telles plateformes sont encourageantes
et montrent en particulier que la diminution des performances brutes par rapport aux
architectures existantes est compensée par une efficacité énergétique bien supérieure.
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Context of the thesis

In 1964 was released what is considered to be the very first supercomputer ever, the CDC
6600 [1], sold about $8 million each and outperforming every other existing computing
platforms. The handcrafted machine was able to execute an outstanding 500 thousand
Floating Point Operations Per Seconds (FLOPS) and even reach approximately 1 mega-
FLOPS. The core architecture was designed around a 10MHz 60-bit processor with 10
so-called parallel functional units, a very early superscalar-like design. This design also
allowed the use of a reduced instruction set, which can be seen as a precursor to the RISC
processors that followed.

Since the 6600, other supercomputers have been designed, notably to address the
growing demand for computing power. In particular, the Cray 1 [2], released in 1976,
brought numerous improvements which quickly promoted it as one of the most successful
platform in supercomputer history. With the slightly slowing pace of frequency-related
and microarchitectural improvements in processors, new orientations where explored to
face the continuous increase in processing power requirements and eventually lead to the
design of the first massively parallel computers. In particular, Fujitsu released in 1993
its Numerical Wind Tunnel [6] embedding 166 vector processors, later followed by the
2048-core Hitachi SR2201 [5] in early 1996. It was a dramatic contrast with previous
platforms, whose core numbers were kept at a limited four to eight configuration, and a
first step toward massively parallel computers.

ASCI Red [7], the first supercomputer to be built around off-the-shelf processors was
released in 1996. This platform was the first supercomputer to overcome both the 1
TFLOPS and 1 Megawatt marks. This breakthrough set up the commoditization of
supercomputers, with ordinary workstations beginning to be assembled in compute clus-
ters to perform large-scale processing. In the early 2000’s, thousand-core supercomputers
were designed and eventually broke the 1-PFLOPS barrier, notably with the IBM Road-
runner [31]. Great focus was put at the time to improve networking, power consumption
and heat management. Roughly ten years later, supercomputer performances reached
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Figure 1: Peak and achieved performances (logarithmic scale) of TOP500’s most powerful supercomputer
over time.

more than 10 PFLOPS for an estimated consumption of 10MW, as visible in Fig. 1,
showing the exponential growth in peak performances of the TOP500 [4] list leading
supercomputers. Many of the supercomputers previously presented contributed to ma-
jor advances in scientific computing, modeling and simulations. Indeed, a primary task
of such platforms, especially in the 1960-1970 era, was modeling and simulation for the
design of nuclear weapons. The range of applications was quickly extended to weather
forecasting, aerodynamic computations and molecular dynamics modeling. However, pri-
mary customers were also limited in number due to the extensive initial and operating
costs, the limited number of relevant applications at the time and the required program-
ming effort. Indeed, to fully exploit such large installations of cores and memory, parallel
programming techniques are needed. Hence, efficient development of applications over
such platforms is achieved at the cost of a greater complexity.

Meanwhile, new competitors are entering the field of High-Performance Comput-
ing (HPC) with the emergence of large-scale data-mining, often referred to as High-
Performance Data Analytics (HPDA) or Big Data computing. Indeed, though traditional
scientific computing applications have matured along with supercomputers, new applica-
tions are joining in from the data-mining area. Data mining is a not so young scientific
domain which mostly involves the processing of datasets using statistical or machine learn-
ing techniques to discover patterns or knowledge in it — finding a needle (the knowledge)
in a haystack (the data). A particularly concrete example of the spreading of data an-
alytics applications is shown by the fact that a growing number of companies nowadays
leverage intensive data-mining algorithms to exploit customer data. As an example, ex-
ploiting business-related data can help companies to e.g. adapt their business to their
customer base, improve their internal processes or plan a marketing campaign. Finally,
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though data analytics is considered a rather mature domain, the term Big Data has only
been coined in the late nineties with the growing scale of datasets.

More recently, applications processing data modeled under the shape of graphs have
been witnessed. This particular area of data-mining, more formally known as graph-
processing or graph analytics, has gained much interest in recent years, with the massive
emergence of social networks. More broadly, graph algorithms have proven useful in an
increasing number and variety of domains, such as web analysis, security or biomedical
applications.

In particular, the ever-accelerating pace of data production has lately transformed
data-mining applications into strong peers of legacy HPC applications. These new appli-
cations are challenging current architectures, notably due to the required memory amounts
and the changing nature of their execution behaviors, which is contrasting with more tra-
ditional HPC workloads. Data mining applications — and even more strikingly, graph
analytics — have long been known for being data-dependent, irregular and hardly pre-
dictable. This becomes a major issue when it is required to deploy them efficiently on
distributed architectures at a large-scale.

A consequence of this shift in hardware architectures used in data-mining is the in-
creased programming challenge. Indeed, it requires the end-user, presumably a data
practitioner, to endorse multiple responsibilities at the same time, in addition to being a
specialist in its field. In order to address the memory requirement, the user must be able
to appropriately size its hardware platform, that is, choosing the appropriate amount of
compute nodes and per-machine available memory. Then, in order to deploy the algorithm
successfully, he must develop system administrator skills to be able to cope with tasks
related to cluster management (e.g. handling node failure, network congestion, system up-
date or process distribution), and finally, to fully benefit from the cluster, he should also
be a parallel and distributed programming expert. Moreover, data analytic applications
evolve at a fast pace and as a consequence, programmers seldom allocate time for the
development of an "optimal parallelization" as lifecycles of such applications are shorter
in comparison to those of the scientific computing domain. Indeed, data practitioners
require a way to quickly implement their algorithms and deploy them seamlessly on a
distributed architecture, while benefiting from the performance brought by ever-scaling
cluster architectures.

Research focus and problematic

In this thesis work, we focus on large-scale graph analytics workloads deployed over
distributed-memory architectures. With the advent of Big Data, HPC tools and architec-
tures are more and more often necessary to match the processing/memory requirements
of data-mining tasks, hence the term of High-Performance Data Analytics. As graph
analytics algorithms are known for being particularly data-dependent, irregular and un-
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structured, achieving a scalable parallel implementation on distributed architectures is
a particularly challenging task. Though programming frameworks have been proposed
to address this programming issue, their scalability and performance behaviors are non-
trivially assessed. Moreover, the fast pace at which data-mining applications evolve makes
traditional application/dataset benchmarking approaches hardly applicable. In such a
situation, choosing an adequate hardware resource becomes challenging. However, being
able to properly design a cluster architecture is extremely important to enable the efficient
processing of large volume of data. Such ability can help as well, for a given problem, to
optimize a cluster setting for maximum compute performances or energy efficiency. Thus,
it is also crucial to have means to understand how performances evolve with increasing
dataset and cluster sizes, as it gives user hints to appropriately design its cluster for its
application needs. In view of those considerations, we hence address the points of un-
derstanding performance behaviors of distributed graph analytics workloads implemented
using a dedicated library and propose an approach toward scalability/performance eval-
uation of such applications. The aim of this work is eventually to adumbrate guidelines
for the appropriate design of clusters in the context of HPDA applications.

To achieve the aforementioned objectives, we decided to focus on two real-life graph-
related problems rather than numerous synthetic applications usually used for benchmark-
ing purposes. Indeed, in the context of data-dependent performances (i.e. performances
vary with data size and properties) leveraging well-known algorithms on random scale-
free graphs may bring less genuine insights on the real-life performances of a system.
For each problem, we provide an in-depth and practical presentation of the novel algo-
rithm we propose, its distributed implementation and the measured performances using
a dedicated benchmarking approach. We argue the contrasting natures of the considered
problems make them relevant and enable, in fine, the gathering of more global insights
on performances with respect to software aspects.

We also conducted a performance-oriented comparison of three different hardware plat-
forms based on the use-cases we worked on. These studies highlight inefficiencies in current
high-performance architectures, questioning their usage for such purposes notably when
put in perspective with their cost. Finally, we propose some cluster design guidelines and
architectural considerations to conceive the next generation of high-performance graph-
processing platforms. In particular, we evaluate the relevance of emerging low-power
embedded computing platforms in such a context.

To conclude, we argue this work is of much relevance to the following audiences.
Data practitioners, and in particular, programmers in the field of graph analytics may
be interested by practical aspects of deploying GraphLab implementations, as presented
in Chapters 2 and 3. We consider that the benchmarking approaches introduced in
Chapter 2 and leveraged throughout this work in particular in Chapters 3 and 4, can
be useful as well. Indeed, understanding the behavior of graph-processing applications is
of much importance in a field such as graph-mining, where dataset sizes are increasing.
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Additionally, being able to adequately design a cluster for a dedicated workload can bring
numerous improvements in terms of compute resources availability or energy efficiency.
Finally, we argue that the outcomes of the work provided in Chapters 4 and 5 can lead
to visible improvements in the hardware architecture design of more efficient distributed
clusters. On a more domain-specific point of view, both use-cases studied in this work
constitute relevant and novel contributions to their relative fields and thus can be of
interest for their applicative aspects.

Outline of this manuscript

This manuscript is constituted as follows. Chapter 1 starts with a state of the art in
current architectural trends in High-Performance Computing. High-end compute servers,
derived from large supercomputing installations seem a weapon of choice for any kind of
large computations. However, their cost of ownership and operation may be out of reach,
not mentioning the large programming gap required to fully exploit the complex hardware
provided. On the other side, many-cores with hundreds of cores in a chip seem promising
considering their processing power to energy figure, but they usually come with limited
amount of memory and/or a high programming gap. In between, assembling clusters
of inexpensive workstations is an interesting trend exhibiting promising performances
with respect to its price. Mainstream programming models of interests are discussed
and reviewed, as with parallel software tools for data-mining applications. A striking
inadequacy between traditional HPC tools (complex, general-purpose) and data-mining
requirements (shortened development time, domain-specific semantic) led to the emer-
gence of new domain-specific programming paradigms of many forms. In the particular
case of graph analytics, a large variety of approaches has been proposed and, amongst
them, domain-specific libraries seem a fairly interesting compromise between ease of use
and relevant performances.

As we focus on graph-mining tasks, Chapter 2 introduces mandatory notions in paral-
lel graph-processing programming and details the experimental environment leveraged in
this thesis work. In particular, vertex-centric frameworks are introduced and GraphLab,
the library we use, is presented in details along with our experimental hardware platforms.
This chapter addresses as well the critical issue of assessing and measuring performances
of graph-processing systems. More precisely, metrics used in this work and benchmarking
aspects of the experiments are discussed in this context. Indeed, graph-processing bench-
marks are often constructed around a synthetic scale-free graph generator and a graph
algorithm. Though this approach enables a performance comparison between architec-
tures, it hardly gives hints on the behavior of real-life use-cases.

Thus, we decided to build our study on two real-life applications as we argue that the
practical experience of implementing and deploying them is valuable. Then, Chapter 3
details the two real-life use-cases we developed and deployed on our experimental systems
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using GraphLab. The first application presented is a program trace analysis algorithm,
while the second application is a graph-filtering algorithm for genomic data. In particular,
we study operating performances and scalability aspects, leveraging the experimental
context and metrics previously presented.

Having presented the algorithms and compared their individual performance properties
on relevant architectures, gathering software-related insights on performance behaviors,
we conduct a comparison of all available hardware systems in Chapter 4. The goal of this
chapter is to highlight the efficiency of the available platforms in order to provide more
hardware-related insights on the assessed performances. Using performance figures and
traditional metrics, we show how such analysis can help in tailoring cluster architectures
to a particular workload, which is strikingly relevant in a domain where datasets vary in
size and properties, hence affecting the system’s throughput.

Chapter 5 discusses more general aspects and perspectives regarding distributed mem-
ory cluster design in the context of graph-mining. We propose in this chapter a hardware
approach called victim-swap, towards the mitigation of the performance decrease observed
when all the memory available in the node is saturated. Indeed, we observed notably that
often, a particularly interesting operating point is set near the saturation point of the
system memory, increasing the risk of observing swap in/out operations slowing down
computations abruptly. We show that by leveraging such cost-effective approach, this
risk can be mitigated, hence making it an interesting feature for the next-generation of
servers for graph-analytics. Then, having previously studied the performances of well-
established platforms and going further in hardware propositions, we provide a study
of the relevance of emerging embedded computing platforms or microservers. Indeed,
though we expect a performance degradation with respect to high-end processors, it is
of particular relevance to assess if it can be mitigated by an unmatched energy efficiency
in the context of graph analytics — a domain known to be rather memory-bound than
compute-bound.

Finally, research perspectives of this work are detailed and presented after a general
conclusion is provided.
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The race for processing performances ignited the development of parallel machines and
highly efficient parallel implementations. High-Performance Computing (HPC) has been
gathering applications requiring large-scale resources such as clusters of computers since
the sixties. The field of scientific computing has provided historical HPC applications,
as for example physics simulations or partial differential equation solvers. Since, these
optimized implementations have been developed and successfully deployed across large-
scale distributed architectures — a required burden in order to fulfill the compute power
requirements of these applications.

Programming a distributed computer raises substantial programming challenges, such
as communication management or data placement which are parallelization-related is-
sues. In particular, the efficient design of a parallel program requires an in-depth under-
standing of the underlying hardware and software architectures. The HPC community
provided numerous approaches to address these parallelization problems. Amongst them,
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the Message-Passing Interface (MPI) [62] has emerged as the standard for parallel ap-
plications on distributed architectures using explicit message passing. An MPI program
is usually constituted of many processes distributed across compute nodes performing
computations on their private data, only communicating through explicit messages as
needed. Though MPI grants the programmer full control over communications, manually
handling communications within a program is a non-trivial task and requires an extensive
programming effort.

Orthogonal to MPI, another standard has appeared for the parallelization of programs,
namely OpenMP [8]. OpenMP allows a fast, user-friendly parallelization of sequential pro-
grams by leveraging multithreading over a shared memory view. Indeed, a small set of
pragmas are used to automatically parallelize loops in the code, thus hiding the complexity
of thread management and allowing an incremental parallelization of sequential sources.
An OpenMP program is organized around sequential and parallel regions. Within se-
quential regions, only the master thread is active. This thread is then forked in parallel
region, where spawned workers communicate implicitly through shared objects. Despite
being more user-friendly, OpenMP does not scale-out well over non-shared memory archi-
tectures due to the high cost of maintaining data consistency across physically separated
memory spaces.

More recently, data-mining applications started to claim the title of HPC use-cases,
as they require more and more frequently high-performance architectures to manage their
ever-increasing dataset size, hence coining the term of High-Performance Data-Analytics
(HPDA). In particular, with the rise of graph data in many domains including social
networks, security or bioinformatics, graph analytics algorithms gained interests. Though
these applications are considered being particularly difficult to deploy efficiently on paral-
lel architectures — notably due to the irregular nature of graph data — data practitioners
need now to scale-out their graph analytics workloads. Contrary to the scientific comput-
ing, which is now a relatively mature and resourceful domain having deployed fine-tuned
distributed MPI applications at scale, the need for large-scale graph-processing imple-
mentations is more recent. Unfortunately, none of the aforementioned parallelization
approaches (multithreading with OpenMP or message-passing with MPI) is a completely
satisfying answer for HPC newcomers because of the scalability or the complexity issues.
Indeed, data scientists need now to work at multiple levels to develop an efficient imple-
mentation of their algorithm: they need to understand the matching between their algo-
rithm and their data but also, and perhaps more importantly, the underlying hardware.
Moreover, these issues are emphasized by the fast pace at which data-mining applications
evolve, which is in contrast with decade-long lifecycles of most scientific codes.

This chapter is organized as follows. In the first section, current architectural trends
in the field of High-Performance Computing are discussed in order to understand to which
extent they can be seen as a hardware platform of choice in the context of High Perfor-
mance Data Analytics (HPDA) and, in particular, large-scale graph analytics. Then, in
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Section 1.2, mainstream parallel execution models are detailed, followed by a description
of associated relevant memory models. Finally, programming frameworks for data-mining
applications are introduced and discussed, before a conclusion is drawn at the end of the
chapter.

1.1 Landscape of high performance parallel machines

In this section, we review the main hardware trends in distributed parallel architectures.
First, we explore architectures of extreme scale installations seen in HPC centers and
high-end compute servers inspired by such machines. Then, massively parallel many-
cores are presented. Finally, the use of commodity desktop workstations linked in cluster
is discussed with respect to large-scale distributed computations.

We focus particularly on node architecture in terms of processor micro-architecture,
memory amount or hardware accelerators as it has fueled considerable amounts of spe-
cializations that impacted programming. In comparison, networks and interconnects are
quite transparently interoperable from the point of view of the user. Hence, we take the
assumption that the network is a uniform, reliable crossbar communication network.

1.1.1 Supercomputers and high-end architectures

The study of the state of the art in the field of high-performance computer architecture
shows a great deal of variety. Historically, High-Performance Computing started with
the emergence of supercomputers, or large powerful computer infrastructures exhibiting
astonishing performances at the cost of a staggering complexity and specificity of each
architectural solutions. Hence, efficiently exploiting such installations implies a great pro-
gramming challenge. Nowadays, most supercomputers are built with high-end general-
purpose multiprocessors featuring heterogeneous accelerators (such as co-processors [63] or
GPU [86]). Still, such hardware accelerators have already proven useful with existing sci-
entific computing applications, e.g. Monte-Carlo numerical simulations for stratospheric
balloon enveloppe drift descent analysis [Plazolles2017], where the massive available
hardware parallelism could be fruitfully wielded by the application. More rarely, some
supercomputers rely on specific, off-the-track, computer hardware such as the Cray XMT
system [29] with its massively multithreaded processors providing 128 hardware instruc-
tion streams where usual simultaneous multithreaded (SMT) cores usually provide up to
16 hardware threads each [21, 82, 86, 110].

IBM Bluegene’s architectures — a successful example of a high-end architecture —
often top supercomputing ranks on various lists such as Top500 [4], Green500 [28] and
Graph500 [45], which evaluate respectively floating point, power-efficiency and graph-
processing performances. Architecture-wise, a typical BlueGene/L node embeds two
PowerPC440 running at 700MHz [21] and a more recent BlueGene/Q has a 16-core
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System Nodes Cores Node architecture Memory (per-node) Rank

TaihuLight 40,960 10,649,600
Top500: 1

(2016) 1x SW26010 260C 32GB Graph500: 2
Green500: 17

Tianhe-2 16,000 3,120,000
2x 12-core Intel Xeon 64GB Top500: 2

(2013) Ivy Bridge 2.2GHz 24GB (Xeon Phi) Graph500: 8
3x Xeon Phi Green500: 147

Titan (Cray) 18,688 299,008
1x 16-core AMD 32GB Top500: 4

(2012) Opteron 6274 2.2GHz 6GB (K20x) Graph500: N/A
1x Nvidia K20x Green500: 109

Sequoia
98,304 1,572,864 1x 16-core PowerPC Top500: 5

BlueGene/Q A2 1.6GHz 16GB Graph500: 3
(2012) Green500: 100

K Computer 88,128 705,024 1x 8-core SPARC64 Top500: 8

(2011) VIIIfx 2.0GHz 16GB Graph500: 1
Green500: 277

Table 1.1: Evolution of supercomputer architectures. Though recent installations have shown complex
node architectures embedding co-processors and GPUs around a large-many cores, the leading Graph500’s
architecture shows a much simpler architecture, without hardware accelerators. Top500, Graph500 and
Green500 lists as of June 2017.

PowerPC A2 running at 1.6 GHz. In comparison, a typical node from Tianhe-2 [82],
one of China’s largest supercomputers, embeds two Intel Xeon Ivy Bridge processors run-
ning at 2.2GHz and three Xeon Phi co-processors [82], a state of the art co-processor [63,
111] embedding dozens of x86 processors. This results in a grand total of 3, 120, 000 avail-
able cores in the full-scale Tianhe-2 installation. The Titan supercomputer from Cray in
the National Oak Ridge Laboratory, another state of the art supercomputer, features a
16-core AMD Opteron plus a Nvidia Tesla K20 GPU per node [86].

More recently, for the first time, the TaihuLight [101], the June’17 TOP500 lead-
ing supercomputer, embeds chinese-design processor. Indeed, it features a considerably
simpler architecture with a single 1.45GHz, 260-core SW26010 processor and 32GB of
memory per node. Interestingly enough, supercomputer nodes seem to evolve towards
such simpler architectures, a trend anticipated by IBM with its BlueGene machines or
by the K-computer, as visible in Tab. 1.1. Such design choice is particularly relevant in
the context of graph-processing, as highlighted by their Graph500 results, where the top
three machines have straightforward architectures with no hardware accelerators or GPU.

Running and maintaining such heavy infrastructures involve high operational expen-
ditures and may be out of reach for many. However other options are available such as
renting compute time slots on open supercomputing centers or through research frame-
works. PRACE [98], the European program for advanced computing is an example of
such supercomputing center association granting access to high performance platforms.

Such supercomputers have also driven the evolution of high-end server architectures
at a more moderate scale. Typical racks embed 2 to 16 high-end processors with terabytes
of storage memory [103, 105] with, optionally, hardware accelerators or GPUs. Although
more affordable than extreme-scale HPC installations, they usually come at a high cost

12



1.1. Landscape of high performance parallel machines

of ownership, making them unsuitable if expected performances are not guaranteed as
in data-dependent and irregular workloads. However, historical web hosting services also
offer such dedicated HPC architectures for rent [97] at a more affordable cost, enabling
performance benchmarking prior to any longer-term investment.

Even though these architectures can be accessed or built at a more moderate scale
matching a smaller demand, the complexity of such clustered architecture is rather high.
This complexity greatly increases the programming challenge that users are dealing with.
Indeed, extracting the highest performances on such high-end nodes embedding acceler-
ators is not easily reached in the context of data or graph analytics.

1.1.2 Data-crunching many-cores

On the other side of this architectural spectrum, embedded distributed platforms are also
available, featuring dozens of processing elements gathered on a single-chip distributed
computer. Such platforms can be of huge interests for the processing of large datasets
when taking into considerations their low power capabilities. Examples of such architec-
tures include the MPPA many-core, Epiphany-IV and TileGx, detailed in Tab. 1.2.

The MPPA-256 [65] many-core from Kalray is dedicated to massively parallel embed-
ded applications and features up to 256 32-bit cores in a chip, clustered in bulk of 16
cores. The MPPA2-256 (Bostan) [106] was later introduced, with up to 288 64-bit pro-
grammable cores. However, though promising, both architectures are more suitable for
time-critical or networking applications [92] rather than large-scale data applications.

Adapteva’s Epiphany IV [88] can scale from 64 to 4096 cores interconnected by a
2D grid network but processing elements are limited in terms of arithmetic operations
and memory per core. Indeed, systems presented in [88] do not exceed 1GB per board,
which shall be extended for larger scale data analytic workloads. Moreover, in this purely
distributed architecture, the on-chip memory management is leaved entirely to the pro-
grammer, increasing the programming burden.

The TileGx processor family is another example of embedded architecture ranging
from 9 to 72 processing elements. Conversely to the Kalray and Epiphany architectures,
the TileGx provides full cache-coherency across the entire chip [77], at the expense of a
more limited scalability.

System Number of cores Cluster size Core architecture Memory management
Kalray MPPA2 256 16 cores VLIW core, 800MHz Explicit

Tilera 9-72 N/A VLIW core, 1.2GHz Cache coherence
TileGx across the chip

Adapteva up-to 4096 N/A RISC core, 800MHz ExplicitEpiphany-IV

Table 1.2: Architectural trends in embedded high-performance manycores. The TileGx architecture,
contrary to the others, provides cache coherence across the whole chip, but this capability explains its
limited scalability with regards to the MPPA and Epiphany architectures.
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Though all these architectures foster energy efficient parallel computing, they require
dedicated development suites in order for programmers to be able to successfully deploy
their implementations. Moreover, notwithstanding the effort required to master such
specialized toolchains, it is also a tough task to understand how to adequately implement
an application in order to fully exploit the architectural specificities of these platforms.
Finally, not all libraries and software tools are fully supported by other processors than
the traditional architectures encountered in servers or workstations and the porting task
can be demanding and time-consuming.

1.1.3 Commodity clusters

The previously presented architectural trends show that the high-end HPC world is quite
heterogeneous and programming at a large-scale on these machines is a cumbersome
task [70, 80]. Moreover, previously outlined architectures are either lacking library or
compilation support (embedded-oriented many-cores) or unreachable for many due to
their high cost of ownership (HPC supercomputers). Acknowledging this context, com-
modity cluster architectures are emerging in between these two trends, with in mind to
leverage more processing power and memory at a more affordable cost. Indeed, desktop
workstations nowadays embed 4 or 8 cores and sometimes up to 16 or even 32 Gigabytes
of memory. Yet, some datasets may still not fit in their memory, thus requiring the clus-
tering of workstations around, e.g. an Ethernet network to further expand memory and
processing capabilities. In this context, commodity clusters can be seen as an intermedi-
ate solution of interest notably because their performance/price ratio can be significantly
higher than traditional high-end clusters.

Such approach has been successfully adopted by Google [12] with an architecture com-
bining thousands of desktop workstations linked across Ethernet networks. As explained
by Barroso et al in [12], commodity clusters have many advantages such as e.g. the initial
cost of ownership of compute nodes, which is orders of magnitude lower than high-end
systems. Though reliability in commodity clusters is an issue compared with high-end
architectures, it can be mitigated in software using dedicated monitoring systems. More-
over, at the scale of hundreds or thousands of machines, the burden of maintaining an
architecture is equivalent regardless of the kind of architecture used (high-end or com-
modity). In the particular case illustrated in [12], reliability is actually software-managed
and repair operations are batched in order to keep a low operating cost.

1.1.4 Summary

In this section, we detailed the three main architectural trends observed in large-scale
distributed processing. Historically, large-scale systems based on dense high performance
nodes have proven, despite striking peak performances, to be out of reach for many data-
mining applications with respect to the programming gap or the operating/acquisition
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cost wall. On the opposite side, clusters of embedded manycores can be a path of interest
thanks to their relatively high energy efficiency which can make acceptable their relative
computing performance decrease compared with high-end machines. However, a sufficient
amount of memory as with a fair share of mainstream programming tools and libraries
should be provided in order to make them hardware platforms of choice as large data
analytics platforms.

Finally, distributed systems based on inexpensive desktop workstations have raised
some interests, notably in the context of extreme scale web-related applications. They
seem an interesting path for the efficient deployment of applications with hardly pre-
dictable, data-dependent behaviors as they provide an architecture simple to exploit with
a great amount of available programming toolsets. However, though commodity clus-
ters may be significantly easier to leverage as they rarely features complex hardware
accelerators (e.g. GPU or Co-processor), programmers still face an important challenge
materialized by parallel programming issues such as data placement or communication
management. Indeed, an in-depth understanding of parallel programming models is re-
quired to overcome such programming issues and fully exploit the provided hardware.
Hence, the following section addresses the state of the art of relevant parallel program-
ming models in the context of data analytics.

1.2 Abstractions and design models for parallel pro-
gramming

Usually, parallel programs are organized around multiple threads of execution processing
data stored in memory and possibly communicating. In this context, the way computa-
tions and communications are handled is a concern of high relevance, as with the memory
abstraction offered to the programmer.

The design of a parallel program is made even more difficult by the variety of program-
ming models available in the field. In particular, though some approaches may only differ
by the syntax provided by the implementation, many approaches differ in fundamental
parallelism concepts which have to be well understood for the developer to make sound
implementation choices. These choices of paradigms may as well have direct impacts on
the degree of freedom of parallel execution given to the programmer, impacting scheduling
or memory use.

Additionally, the choice of a particular model is resulting from a trade-off between as-
pects taken care of by the programmer, by the compilation toolchain and by the runtime.
Such trade-off is managed through programming abstractions exposing or hiding mecha-
nisms to/from the programmer (i.e. increasing or decreasing the programming challenge
at a cost) and through implementations sharing tasks between compilers and runtime
systems.
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In the following sections, we explore two crucial aspects of parallel programming ab-
stractions : execution and memory models.

1.2.1 Execution models

Execution models state how the execution of a program takes place. In the context of
parallel programming, we introduce mainstream execution models in the field, in the fol-
lowing section. These models describe how multiple workers or threads are orchestrated
and how the communications are handled in parallel programs. These are aspects of par-
allel programming of much relevance as they impact both programmability (programming
language syntax or constructs) and performances (appropriateness between models and
algorithms).

Fork-join is an execution model notably implemented by OpenMP. In a typical fork-
join program, the execution of an application can be represented by a master thread forked
inside parallel regions where data are processed concurrently by independent workers or
lightweight userspace threads who join at the end of the parallel region, as shown in
Fig. 1.1. Though this model has proven to be efficient and easy to use with OpenMP, a
specific and non-trivial investigation should be held while taking care of shared variables
such as reduction objects in order to extract relevant performances. A typical pathological
example is an OpenMP parallelization of the histogram problem [57].

Single-Program Multiple-Data (SPMD) is another model in which multiple copies of
the same program are independently launched in parallel and communicate through mes-
sages. In particular, MPI programs are often based on a SPMD model, with independent
processes being launched on different machines, as illustrated in Fig. 1.2. In fact, the
flexibility of the SPMD model is a major advantage: as it does not require centralized
control (i.e. a master thread in the sense of the Fork-Join model), it can be implemented
on both shared and distributed memory in an efficient and scalable way. Nonetheless, the
downside of this flexibility lies in the fact that, when complex communication behaviors
are expected, programming an MPI application can become cumbersome and error-prone

BarrierSerialParallel
regionregion

int main() {
foo(); // Sequential function call

#pragma omp parallel for // Parallel region
for(i = 0; i < N; i++) { /* ... */ }

bar(); // Sequential function call

#pragma omp parallel for // Parallel region
for(j = 0; j < N; j++) { /* ... */ }
return 0;

}

Figure 1.1: The Fork-Join multithreaded execution model (l.) and associated OpenMP pseudo-code (r.).
The execution of the program is a separated in sequential and parallel regions, delimited by pragmas in
the code. Communications between threads are performed through the use of shared variables in the global
memory space. A synchronization barrier is used at the end of parallel regions when threads join.
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process
rank 0

process
rank 1

process
rank 2

process
rank 3

MPI_Bcast() MPI_AlltoAll() MPI_Recv()
MPI_Send()

Figure 1.2: MPI, SPMD-like, execution model
(t.) and associated MPI pseudo-code (r.). Dot-
ted threads indicate waiting processes. Communi-
cations are shown in blue and active processes in
plain black. Each MPI worker has a distinct rank
within its communicator, which is used to differen-
tiate a portion of code done by a thread in particu-
lar. Communications are also managed regarding to
the rank of each worker in the program. Collective
operations such as MPI_AlltoAll() can be called
without control instructions.

int main(int argc, char **argv)
{

int rank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// One-to-all communication
if(!rank) MPI_Bcast(buffer);

// Collective communication
MPI_AlltoAll();

switch(rank)
{

case 3: // Process 3 send to 2
MPI_Send();
break;

case 2: // Process 2 receive from 3
MPI_recv();
break;

}
MPI_Finalize();

}

as every transaction should be manually handled. Yet, the fine grain control over com-
munication leaves room for optimizations.

MapReduce is a programming model in which data are processed in two steps using the
following operators: A Map operation which splits the data and maps them to the workers
and a Reduce operation where results are gathered into a more condensed form [83].
More precisely, the Map function takes input points and outputs a set of {key,value}.
The MapReduce runtime then groups values by keys (“Shuffle” part in Fig. 1.3 (l.)) and
forward them to the Reduce function which takes a key and the set constituted of all
associated values. It then applies a kernel function to obtain an usually smaller set of
data.

Map Shuffle Reduce A superstep

CommunicationstepProcessingstep

Figure 1.3: The MapReduce (l.) and BSP (r.) model. The first part of a MapReduce program is a sort
of the items to find an appropriate mapping. Then a shuffling phase starts and data are mapped to their
reducer. Finally, the reduce step condense the data into a compact form. In the iterative BSP model, each
superstep includes distinct processing and communication steps. Workers may be starving while waiting
to be allowed to communicate.
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MapReduce is well-suited for embarrassingly parallel programs (e.g. problems which
can be easily decomposed onto many workers and processing can be done independently).
However, it appears to be inefficient when dependencies between computations arise, as for
example with machine learning algorithms which satisfy the Statistical-Query model [43]
or when multiple iterations over a dataset are required. Famous implementations of
MapReduce include Google’s MapReduce or Apache Hadoop, and were designed to be
fault-tolerant and scalable. Yet, the fault tolerance mechanisms embedded in the afore-
mentioned implementations are costly and safety is here obtained in spite of pure compute
performances.

In 1990, Valiant [3] introduced the Bulk-Synchronous Parallel execution model (BSP).
In this model, concurrent threads process data over so-called supersteps, as shown in
Fig. 1.3 (r.). One superstep is divided into two phases: a processing step where threads
are independently executed in parallel and a communication step where threads are syn-
chronized before being allowed to communicate altogether. A critical issue with this model
is load-balancing. If some threads run faster than others, they will be stalled and waiting
to be allowed to communicate — hence resulting in a waste of compute resources. A
program implemented in the BSP model could benefit from load-balancing policies such
as work-stealing, allowing starving threads to help other threads to complete their tasks
faster. Additionally, some domain-specific models inspired by BSP were created to match
the requirements of the applicative domain, such as for example with the Gather-Apply-
Scatter model [61] which is a specialized BSP model for graph-processing applications.

Finally, the data-parallel model is a perfect match for parallel problem in which every
unit of data can be process in total isolation from the other data (e.g. in some image
processing algorithms). In this model, which can be seen as a communication-less SPMD
model, data partitioning is static and consists only in slicing the input dataset into chunks
mapped onto workers. Then, attention must be paid to work-balancing by providing
equally-sized chunk to workers in a performance-homogeneous environment.

Though understanding the execution behavior of a parallel program is of much im-
portance, the knowledge of how the memory is exposed to the programmer is of equal
interest. Indeed, except in data-parallel programs, most parallel applications have to han-
dle communications of data between threads using direct memory sharing or messages. In
the following subsection, we review mainstream memory models in the context of parallel
programming.

1.2.2 Memory models

In parallel programs, threads or processes communicate mostly by two means: explicit
messages through networks or by using shared spaces of memory, hence requiring explicit
synchronization mechanisms. Moreover, though it has a great impact on programmabil-
ity, the choice of a memory model may also impact performances and requires additional
software layers or runtimes in cases where the selected model does not match the under-
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lying architecture (e.g. a shared memory over a distributed memory architecture). In the
following, the mainstream memory abstractions, summarized in Fig. 1.4, are presented.

In terms of memory models, the landscape is bounded by two opposite views: A
fully distributed view where processes all have independent and private memory spaces,
enforcing message-based communications and a flat view where every thread works in the
same, shared address space.

The shared memory model matches perfectly multithreaded applications executed on
a multi-core flat-memory machine. In such view, every threads of the application have
access to the whole address space, hence relieving the need for explicitly managed commu-
nications, facilitating the programming. Indeed, communications are performed through
shared objects directly available to every thread. However, the programmer must manage
potential conflicts using dedicated semantics to ensure hazard-free variable accesses. Op-
positely, the distributed model prevents the need for such mechanisms as communications
between threads or processes is fully made explicit by the use of a messaging system.

Between these bounds have emerged other models such as the Partitioned Global
Address Space (PGAS) where each thread has a private local space and a partition of
the shared space. The collection of all shared partition constitutes the shared globally-
addressable memory space. This approach tends to balance the best aspects of both shared
and distributed memory. It is for example implemented by high-productivity languages
such as Co-Array Fortran, X10, Titanium and UPC. An extension to the PGAS model,

TTTT

Shared Memory

+ Implicit communication
through shared-memory
− Explicit thread sync
using barriers

T T T T

Partitioned Global
Address Space

+ Provides shared space
over abstract architecture
− Dynamic thread
management not yet mature

T T T T

Hybrid Distributed
Shared Memory

+ Model matchs modern
architectures
− Requires knowledge
about architectures

T T T

Distributed Memory

+ Implicit synchronisation
with communications
− Explicit communication
through message-passing

Figure 1.4: Comparison between main memory models in parallel processing applications. Colored
areas show Uniform Memory Access (UMA) zones. White areas indicate private memory spaces. Arrows
indicate message-passing channels. The leftmost model describes a shared memory model in which every
thread has access to the whole address space. The Partitioned Global Address Space (PGAS) model
illustrates a model in which threads have a local memory divided into a private space and a shared partition
of a global address space. The third model exhibits an hybrid distributed-shared memory where the memory
space is distributed at a coarse grain, but shared between threads at a finer grain. Finally, the rightmost
model shows a purely distributed memory model. In this model, each thread has a private local memory
and share data using explicit messaging.
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namely the Asynchronous PGAS (APGAS), adds the notion of “places“ which is a movable
and coherent collection of data and associated processing routines.

Finally, to address the hierarchical nature of NUMA-based clusters, so-called hy-
brid programming approaches try to mix shared-memory parallelism within a node with
message-passing for inter-node communications [15, 17]. These projects used mostly a
mixed OpenMP+MPI approach, which is a complex programming style as these two
standards were not developed to be intertwined. Another study [67] leveraged new shared-
memory possibilities integrated in MPI-3 in lieu of OpenMP to address this issue. How-
ever, the programming challenge provided to programmers remains important and cannot
be neglected, especially in the context of data-mining applications calling for shortened
development times.

This programming challenge is an issue of particular interest for HPC-newcomers as
data-mining algorithms are often irregular and data-dependent. Moreover, the rapidly
changing nature of data analytics algorithms cannot afford time-consuming implemen-
tations. In the following section, data-mining programming tools aiming at binding
programming models with parallel architectures are discussed with respect to parallel
programming aspects and their scalability properties.

1.3 Towards parallel computing for data-mining

While data- and graph-mining applications can be considered as recent with respect to
today’s increasing dataset sizes, a fair amount of programming options exists in the field
to facilitate the development of such applications. Indeed, lifecycles of applications from
these domains are way shorter than e.g. simulation codes that can sustain long-term pro-
gramming effort and extensive fine-tuning optimizations. In order to shorten the devel-
opment time and improve the productivity for data analytics algorithms, many program-
ming tools have been developed with varying degrees of domain-specificity and various
philosophy.

In this section, we present some existing approaches, such as fully integrated devel-
opment environments enabling visual programming for easy application design. Then,
domain-specific libraries and programming languages are introduced.

1.3.1 Integrated Development Environment for data-mining

A great amount of tools was developed to enable easy and fast development of data-mining
applications. Amongst them, some of these frameworks provide tools for visual program-
ming as with for example RapidMiner [26], KNIME [27], WEKA [37] and more recently
Orange [64]. All previous frameworks come with a wide range of built-in applications,
algorithms or toolboxes from the domains of machine learning algorithms, e.g. rule learn-
ers, decision trees, clustering, k-NN or Naive Bayes. These three frameworks have built-in
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data structures and algorithms that can be extended through an XML or Java API. They
are able to process data located in memory and in databases. They also enable clustered
computing of their algorithms based on Hadoop (mostly using MapReduce1) but often in
a limited way in terms of programming support or library availability.

Orange [64] provides also a large set (100+) of data-mining and machine learning
function implementations. It can be used in a visual programming fashion or through
library calls within Python scripts. Despite a rich set of libraries, Orange was designed for
single-computer use and the amount of data that could be processed within this software
is thus limited by the hardware architecture used [96].

Related work includes Torch7 [99], a LuaJIT computing framework for (but not limited
to) machine learning, and SIPINA/TANAGRA [23], two closely related data-mining edu-
cational frameworks. Other sequential tools include Java-ML [36], a java machine-learning
library, and ELKI [30], a complete data-mining framework turned towards knowledge dis-
covery in database (KDD Applications). Though these frameworks allow the fast devel-
opment or processing of datasets, they often fail to address the scaling issue, critical in
nowadays data analytics. Additionally, many tools in this category have an infrastructure
approach which may be cumbersome to leverage on moderate-size clusters.

1.3.2 Language extension approaches

Many parallel programming approaches have taken the form of language extensions, that
is, extending a language’s set of keywords in order to add e.g. parallel execution features.
Such approaches have the benefit of leveraging tools usually well accepted and known,
such as mainstream programming languages, with improved performances/usability for
a given domain. However, the need for new compilers supporting the added syntactical
constructions is a drawback to such approach.

As previously explained, mainstream parallel programming approaches such as MPI or
OpenMP may not be absolutely suitable as-is for distributed data-mining because of their
complex use or lack of scalability. In between these approaches, XMP is an OpenMP-
like, pragma-based, C/C++/Fortran language-extension which aims at gathering the ease
of use of OpenMP programming schemes for distributed architectures. Although it as
scaled up to thousands of nodes on the K-Computer supercomputer in Japan on regular
applications, its performances are unclear for irregular, data-dependent algorithms such
as data or graph-processing workloads. Moreover, the time-consuming and cumbersome
task of partitioning the data is left to the programmer. Finally, as a general-purpose
programming tools, XMP is deprived of potential domain-specific optimizations.

With the emergence of the Partitioned Global Address Space (PGAS) memory model,
some options were added to the panel of parallel programming frameworks, including new
languages and libraries. Unified Parallel C (UPC) [20], X10 [48], Co-Array Fortran [14]

1see in 1.2 Execution models
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and Titanium [25] are four high-productivity languages which emerged at the beginning
of the 2000’s. They all implement the PGAS model, except X10 which supports also
dynamic threading for Asynchronous PGAS capabilities.

UPC [20] is an extension to the C language which supports declaration and manual
mapping of shared variables. It is based on the SPMD execution model, as most MPI
programs, and communications are managed implicitly through shared objects and con-
structs. UPC, as other PGAS languages, uses fat-pointers for remote references. This
process, managed by the runtime system, can be improved by enabling hardware support
as in [85] or using the Remote Direct Memory Access (RDMA) features [76] available
on some HPC environments but mostly unavailable on commodity desktop workstations
or even higher-end compute installations. A drawback of the UPC approach is that the
language can be as verbose and complex as a plain C-MPI distributed program when
it comes to implement complex algorithms where data should be carefully placed to im-
prove locality. Furthermore, there is no support for online data re-partitioning or dynamic
multithreading, not mentioning reliability management.

Related works include Co-Array Fortran [14], an extension of the Fortran programming
language with support for shared array over shared or distributed architecture. Programs
based on Co-Array Fortran are inherently SPMD and well-suited for regular applications
such as the processing of large arrays of variables. This favourable characteristic make
Co-Array Fortran hardly a candidate of choice for unstructured applications such as those
of the graph analytics domain.

X10 [48] and Titanium [25] are two programming languages for parallel programming.
They differ in X10 enabling dynamic multithreading and compiling to native code whereas
Titanium is purely executed in a Java Virtual Machine. X10 is also pushing further the
PGAS model by providing places which enable dynamic creations of new threads for
concurrent processing of data [60]. This language also provides promising domain-specific
libraries [55].

Green-Marl [58] relates to these general purpose programming languages as it is a
domain-specific language dedicated to graph-mining. It improves the productivity of a
programmer as the algorithm can be expressed in a really natural way by providing graph-
related constructs within the language keywords. A dedicated compiler is in charge of
transforming it into C++ and is able — as it is domain-specific — to apply optimization
specific to the graph domain that general-purpose compilers would not be able to foresee.
At the time of writing, no distributed cluster back-end is available, although plans were
announced to implement it through source-to-source compilation to a domain-specific
C++ library. Advantages of such tools are plenty: expressive and natural abstraction for
graph-processing algorithms, domain-specific implementations. However, as Green-Marl
is a rather recent dedicated language, compiler tool support and end-user acceptance must
be improved.
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1.3.3 Library-based approaches

Some different approaches have also emerged, mostly under the shape of more or less
domain-specific libraries or languages for parallel architectures. The advantages of such
approach lie mostly in the fact that, by leveraging libraries based on mainstream lan-
guages, acceptance is greatly facilitated and compilation toolchains are available. This
section discusses approaches from general data-mining systems to domain-specific libraries
targeting a precise applicative domain within the data-mining field.

FREERIDE [11], and its extension for grid-computing, FREERIDE-G [32], are two
C++ middlewares for parallel execution of data-mining applications. Though the former
targets shared-memory computers, the latter is oriented toward moderate-size grid com-
puters. In terms of execution models, both frameworks implement a BSP model which
closely resembles an iterative MapReduce model. Though FREERIDE-G addresses the
issues related to data-mining programming in a quite domain-agnostic way for distributed
architectures, the programming model enforced is too limiting and can thus be counter-
productive, despite interesting performances [38].

The Galois system [33] can be compared to OpenMP as it implements a fork-join pro-
gramming model. This library provides tools and runtime for parallelization of iterations
over partially ordered or unordered sets using speculative execution, tackling the issue
of data-amorphous parallelism [39]. However, Galois sets are available only on shared-
memory systems, making them hardly a choice for large-scale computations requiring dis-
tributed architectures. Related works to Galois and FREERIDE include the first version
of GraphLab [43], a domain-specific alternative for the parallelization of graph analytics
applications for shared memory computers, with however no support for speculative exe-
cution. The work of Jin et al [22] on an optimizing runtime for locking mechanisms over
shared variables relates to these previous works, tackling shared-memory parallelization.
Though these works propose interesting approaches for the processing of data- and graph-
analytics workloads, the fact they target shared-memory computers makes them hardly
suitable in the context of large-scale processing over distributed architectures.

DyDSM [69] is a distributed shared memory system for speculative parallel execution
of graph-processing programs. The distinctiveness of DyDSM lies in the use of idling cores
in hierarchical distributed clusters for managing communications between workers, using
dedicated communication threads. With this approach, communication procedures are re-
moved from critical execution paths of working threads and are executed apart. DyDSM
also features a prefetch predictor which has to be user-defined and can be cumbersome
for the user to program. A related work which seems to address the issue of programming
productivity is NIMBLE [51]. NIMBLE enables the execution of data-mining algorithms
expressed using a Java API on top of a distributed framework (currently, Hadoop), im-
plementing an APGAS model.

As promising as seem those projects, they still exhibit a rather generic programming
approach with complex underlying mechanisms to handle parallelism, failing to provide an
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applicative domain-specific API which could help in improving programmers’ productivity
on top of commonly used tools. This issue is however somehow addressed by the following
domain-specific libraries. GraphLab PowerGraph [56], Pregel [44] and Giraph [74] are
three libraries for graph-processing on distributed architectures implementing a vertex-
centric programming model. PowerGraph (the distributed branch of GraphLab) differs
slightly by providing released consistency models [94] and providing a slightly derived
vertex-centric model, called the Gather-Apply-Scatter (GAS) model. PowerGraph also
provides semantic constructions acting on the whole graph structure and asynchronous
capabilities, while Pregel and Giraph are purely synchronous vertex-centric frameworks.
GPS [73] (Graph-Processing System) and Mizan [68] are related to these previous graph
libraries but diverge in their slightly more general execution model. Both of them provide
a vertex migration feature for dynamic re-partitioning of the graph, with however limited
gains as suggested in [79].

Such approaches are particularly relevant as they provide an expressive programming
model under the form of a programming library compatible with most standard com-
piler toolchains. Moreover, their ability to hide parallelism details and to be deployed
on distributed architectures make them natural candidates of choice for scalable graph-
processing algorithms.

1.4 Concluding remarks

In the field of data-mining, and more precisely in the context of graph analytics, appli-
cations require more and more memory and processing power. Having reviewed three
aspects of High-Performance Computing with respect to graph analytics, in particular,
hardware trends, programming models and software approaches, we can gather the fol-
lowing remarks.

Though supercomputers exhibit characteristics able to tackle both the issue of mem-
ory and compute power, their operating costs and their programming complexity hardly
make them candidates of choice in such a fast-paced environment that is the data ana-
lytics domain. In contrast, clusters of inexpensive commodity workstations seem a fairly
decent choice in this context, notably by providing amenable price to performance fig-
ures with an accessible architecture, programming-wise. Indeed, commodity clusters may
be more easily exploited compared to data-crunching many-cores exhibiting a specialized
hardware. In order to gain more insights on these statements, we set-up and evaluate in
this thesis work different hardware architectures presented in Chapter 2, matching both
the commodity cluster and the high-end server trends.

To exploit large amount of clustered computers, a scalable implementation must be
deployed. Library-based, domain-specific approaches sparked interests as they are ad-
dressing many issues encountered by data practitioners requiring to process graphs on
distributed architectures. Providing a natural and expressive abstraction is indeed key to
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leverage an increased programmer productivity and a quick prototyping of algorithms, as
required by the data-mining domain. In particular, by hiding parallelization management
details or data partitioning, they allow programmers to seamlessly deploy their algorithms
over distributed clusters. Moreover, the ability to build implementations leveraging such
libraries on top of mainstream tools enables a facilitated acceptation by the community,
hence ensuring a greater support. Such possibility removes as well the requirement for
new compiler toolchains. Hence, we describe in Chapter 2 the advantages and drawbacks
of vertex-centric graph-processing libraries which satisfy the aforementioned character-
istics. Then, we introduce the details of GraphLab PowerGraph, a framework of much
interest in distributed graph-processing.

In order to validate the relevance of such frameworks for graph analytics on dis-
tributed architectures, it is mandatory to be able to assess their performances with
respect to computations and scalability. Though benchmarks have been traditionally
widespread in High-Performance Computing, evaluating performances in the context of
High-Performance Data Analytics — let alone graph analytics — solely relying on FLOPS
may not be sufficient to predict performance behaviors with increasing problem sizes and
cluster scales. The issue of benchmarking in the concerned applicative domain is addressed
in Chapter 2 in which are discussed relevant metrics for the assessment of graph-processing
framework performances.

Then, we demonstrate on two real-life use-cases how such graph-processing libraries
are particularly suitable for a large variety of graph problems. In particular, we study in
details and propose two novel algorithms and their distributed implementations to address
graph analytics problematics from unrelated applicative domains — which are introduced
in details in Chapter 3 — and evaluate their performances.

Having studied software-related aspects, we investigate, in details, the impact of the
architecture on performance behaviors and compare different hardware trends in Chap-
ter 4 using the two use-cases previously presented. Then, we show how such performance
analysis is of particular relevance to adequately size a cluster for a given workload. Finally,
hardware propositions towards more efficient graph-processing platforms are presented in
Chapter 5.
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The graph-mining area is a data-mining domain in which applications process large
graphs to extract higher-level information. In particular, graph-processing is key in a
wide range of fields such as biology, web analysis, security or social networks. With the
advent of Big Data, processing power and memory are more and more needed, requir-
ing larger and resourceful machines. As illustrated in Chapter 1, parallel programming
techniques leveraging large-scale distributed architectures emerged to tackle these chal-
lenges. However, mainstream parallelization approaches are unsuitable as-is for irregular
and unstructured applications such as graph-processing. As a matter of fact, classic High-
Performance Computing (HPC) applications included regular algorithms such as physics
simulations for which pure-MPI implementations are suitable. However, recent irregular
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graph-processing applications (e.g. graph-traversal) would be costly to implement using
explicit communication semantics as proposed in MPI. This is reinforced by the differences
in data-mining application requirements, where programmers need to be able to quickly
implement and deploy their algorithms without having to manage time-consuming low-
level aspects of parallel programming or optimizations.

To bridge the gap between ease of use and scalability for irregular applications, many
dedicated frameworks appeared, aiming at the scalable deployment of graph-related work-
loads. These graph-processing tools are available in many different flavors with specific
programming models, memory views, languages or associated toolsets [95]. Thus, con-
sidering a novel graph application, it is challenging to choose the most appropriate soft-
ware tool as literature exhibits global trends, but no clear winner [78, 79]. Amongst the
landscape of eligible tools for the implementation of graph-processing algorithms, vertex-
centric frameworks have raised interests for associating an expressive abstraction with
sound performances. In order to get a better insight on such tools, we propose a review
of the state of the art on vertex-centric graph-processing tools, detailed in Section 2.1.
In particular, the specific vertex-centric programming model is presented in details be-
fore mainstream implementations are discussed. Finally, we introduce in Section 2.2,
GraphLab, the library used to implement graph algorithms studied in Chapter 3. As this
framework provides an interesting compromise between relevant performances and ease of
use, we then present in details — albeit from a practical point of view — the GraphLab
library used throughout this work.

Having selected a software tool to implement an algorithm and understood its pro-
gramming model is only halfway towards an efficient execution with relevant performances.
The remaining path to explore leads towards hardware aspects of the system on which
the application is to be deployed. Indeed, adequately sizing a cluster architecture for the
efficient processing of distributed graph analytic workloads is a tough task. Part of the
difficulty of this task lies in the difficulty to assess and understand the performance behav-
ior of the software, the hardware and the dataset. Indeed, in the context of data-analytics
algorithms, the dataset properties often impact compute performances of the implemen-
tation. The Scalable Synthetic Compact Applications [18], and later Graph500 [45], two
graph-processing benchmarking suites, have been designed as an attempt to tackle this
challenge and introduced a performance metric called TEPS (Traversed Edges Per Sec-
onds). Though TEPS inspired other throughput related metrics such as Edge (respectively
Vertex) per seconds, or shortly EPS (respectively VPS) [78], a single throughput measure-
ment is often not enough, and traditional metrics are still widely used (resource usage,
communication volume, timing) [66, 75, 79, 89, 93] along cost or energy metrics [84].
Performance measuring and benchmarking aspects of this thesis work are discussed in
Section 2.3.

Finally, Section 2.4 presents different hardware architectures that were used in this
thesis for the study of our algorithms detailed in Chapter 3. In particular, we present
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three architectures, divided in two categories: commodity clusters and high-end servers.
These architectures are later compared in terms of operating performances and overall
efficiency for graph-processing in Chapter 4.

2.1 Graph-processing: Programming models and state
of the art

As data-mining applications processing large graphs became widespread, the ability of
processing data on large-scale systems have become a necessity to tackle such dataset
growth. Though many kind of generic tools were developed in the field, as reviewed in
Chapter 1, vertex-centric programming has been raising significant interests recently, as it
provides a natural and expressive abstraction for the implementation of graph algorithms.

In this section, we present the vertex-centric programming model and how it relates
to the Bulk Synchronous Programming model (BSP) from which it originates. Then,
mainstream implementations of the model are reviewed and discussed.

2.1.1 Programming models: from BSP to vertex-centric pro-
gramming

The Bulk-Synchronous-Parallel (BSP) model was introduced by L. Valiant as a bridg-
ing model between hardware and software for parallel programming [3]. In the original
work, a BSP computer model is introduced, composed of a certain number of processing
units, a router organizing communications and a set of synchronization primitives. A
BSP program is composed of concurrent threads executing synchronized parallel super-
steps. A superstep can be divided into two stages: a processing step where threads are
independently executed in parallel, and a communication step where threads are allowed
to communicate. Finally, a synchronization barrier ensures that all workers have finished
their iteration (communication and processing) before starting a new one. A critical issue
in BSP programs is load-balancing as the makespan of each superstep is determined by
the longest thread [95].

The BSP model was later extended into the vertex-centric programming model, to
better address the graph-mining domain. In such a programming model, every vertex of
the graph is seen as a concurrent thread of execution, performing an update function, also
known as a vertex program. In an update function, the current vertex reads its received
messages, updates its internal data and either sends messages to other vertices or votes
to halt. If a vertex has voted to halt, it will remain inactive during the next supersteps,
until it receives a message. Convergence is reached when every vertex in the graph has
voted to halt — that is, when there is no more remaining active vertex — or when a
user-defined convergence criterion is met.
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Open source Prog. model Graph part. Language Support
Pregel [44] No BSP/Mes.-Passing Edge-cut C++ N/A
Giraph [74] Yes BSP/Mes.-Passing Edge-cut Java Yes
GPS [73] Yes BSP/Mes.-Passing Edge-cut Java Yes
Mizan [68] Yes BSP/Mes.-Passing Edge-cut C++ Limited

GraphLab v1 [43] Yes BSP/Shared Mem. N/A C++ Yes
GraphLab v2 [56] Yes GAS model Vertex-cut C++ Yes

Table 2.1: Comparison of vertex-centric frameworks. Most frameworks implement a programming model
based on the BSP model with explicit message passing between vertices, except GraphLab which implements
a more specific GAS model in its distributed version. GraphLab v2 also differs in its graph partitioning
policy by implementing an edge-cut policy instead of the more commonly used vertex-cut.

Notably, in most implementations of the so-called vertex-centric programming model,
the programmer is provided a somehow restrictive abstraction, where vertices executes
local-only computations. This local-enforced policy has two impacts on the programming.
The first effect is a narrower application range, as not all graph computations are well
expressed in such a model and the second, a facilitated graph distribution and a reduction
of the amount of required communications.

Having introduced the abstraction behind the vertex-centric paradigm, we present
in the remainder of this section, the main programming frameworks for vertex-centric
graph-processing, as summarized in Tab. 2.1.

2.1.2 Landscape of vertex-centric frameworks

Google’s Pregel [44] and Apache’s Giraph [74] are two similar libraries for distributed
graph-processing which implement the BSP programming model with a vertex-centric
view. While Pregel is an undisclosed C++ library, Giraph is provided as an open-source
Java API built on top of Hadoop. Giraph shows remarkable performances amongst com-
parable frameworks in various studies, however, its memory overhead is high [78, 79]
which may be acceptable at the scale of a thousand or more high-end machines, but may
be prohibitive in the context of a more moderate commodity cluster.

GPS (Graph Processing System) [73] and Mizan [68] are two open-source graph-
processing implementations of the BSP model. As in Giraph/Pregel programs, during
each superstep, nodes synchronously execute an update function in parallel. Contrary to
Pregel, GPS also provides global computation semantics such as a master.compute()
function that can be called at the beginning of every superstep. The master has access
to all global objects and can update them before broadcasting changes to the workers.
Both frameworks feature a built-in graph partitioning engine allowing static and dynamic
partitioning of the graph. However, though they differ in maturity and performances [79],
they are both outperformed by Giraph or GraphLab PowerGraph. Finally, despite its
overall memory efficiency, the fact that GPS uses additional threads to poll for messages
is penalizing for supersteps with light processing loads.
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GraphLab [43, 61], is originally a shared-memory C++ framework for in-memory
parallel graph-processing implemented using pThreads. Contrary to Mizan, GPS and
Giraph, the graph structure cannot be modified once the processing have started. Graph
computations within GraphLab are expressed through the implementation of a so-called
update function. Iterations of such update functions, or supersteps, are orchestrated using
a synchronization mechanism. An asynchronous execution mode is also provided, in which
vertex iterations can be concurrently processed upon scheduling allowance.

GraphLab PowerGraph [56] can be seen as the distributed version of GraphLab. In
this iteration of the GraphLab framework, the vertex-centric model is extended to the
subtly more restrictive Gather-Apply-Scatter (GAS) model in order to provide an effi-
cient distributed implementation matching the programming philosophy of the original
tool. Distributed computing programming aspects such as graph partitioning or process
management are hidden from the programmer in order to increase productivity and pro-
vide a seamless deployment of the implementation. Still, many parameters can be easily
tailored e.g. using command line options and left at the programmer’s discretion. The
backbone of PowerGraph is based on an MPI layer for the management of inter-process
communications and multithreading is leveraged at the compute node level to increase
performances by exploiting every available cores in the processor.

In conclusion, having reviewed the state of the art in vertex-centric programming
frameworks, GraphLab1 appears to be a compromise of choice between expressive ab-
straction and distributed processing performances. Moreover, GraphLab exhibits a high
level of maturity and the fact it is based on a mainstream programming language (C++)
eases its acceptance. Indeed, using a programming library of a widespread language with
a large set of debugging and compiling tools available makes for a reduced programming
burden compared to a new language. Moreover, in terms of pure performances, GraphLab
often compares favourably to other frameworks [79]. For all these reasons, we decided to
make GraphLab our framework of choice for graph-processing over distributed architec-
tures. In the following section, the anatomy of a GraphLab program is detailed in order
to provide a detailed yet practical understanding of the framework’s usage.

2.2 Anatomy of a GraphLab program

A typical data analysis program can be divided in several parts often including: parsing
of the input files, execution of the algorithm and output of the results. GraphLab is
no different and most GraphLab programs can be divided similarly in four consecutive
stages. At first, the initialization of the main GraphLab structures and the MPI layer
is performed, followed by parsing of the input files. Then, the final graph structure is
instantiated and partitioned across the cluster using GraphLab built-in heuristics. Con-

1Note: In the remainder of this manuscript, every reference to GraphLab would refer to PowerGraph,
the distributed version of GraphLab.
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sequently, the execution engine can be instantiated and started, to begin the distributed
processing of the previously committed graph. After convergence of the algorithm, results
are produced and written to output files. In the remainder of this section, we present in
details these four steps.

2.2.1 Initialization and input file parsing

Before calling the GraphLab program, input files must be prepared. Indeed, as the parsing
step is parallel, based on the number of files to parse and performed on every nodes of the
cluster being used, the input dataset has to be split among cluster nodes. To such extent,
the use of a distributed filesystem, such as NFS or HDFS, can be relatively helpful.

At the very beginning of the execution, a mandatory preamble is required to start the
MPI layer, as GraphLab relies on MPI for inter-node communication. This initialization
if performed through a necessary call to MPI_Init() as in regular MPI programs. The
distributed control structure orchestrating communications is instantiated at the same
time. This structure is notably handling both the graph and the execution engines.

Once the initialization preamble is done, the parser is called to analyze the input
files. A call to the load() member function of the graph object is performed, with two
arguments, respectively a pattern matching the input file paths and a pointer to the
parser function. When using datasets following standard conventions (such as SNAP
datasets [81]), the graph parser function can be omitted and a default parser can be
passed as a command line argument, otherwise, a parsing function must be implemented
by the user.

At parsing, each input file is independently parsed in parallel and each call to the
parser function processes a single line of input at a time. When the parsing ends, every
compute node in the cluster has a local edge list, turned into a local subgraph. Possible
conflicts (e.g. creation of two vertices of same identifier) occurring at parsing time are
resolved at a later stage, during the commit step. Indeed, a partitioning heuristic is
executed to balance the graph so that it minimizes the graph vertex replication factor.

2.2.2 Partitioning of the graph structure

The main data structure of a GraphLab application is the distributed graph object being
processed. As both vertices and edges can hold data, their types are user-defined and can
be a standard C++ type/class or more conveniently a class defined by the user. However,
in that latter case, the programmer must follow a template enforcing the strict serialization
requirements of GraphLab. In particular, for custom edge or vertex class, serialization
and deserialization methods have to be explicitly implemented by the programmer.

Once the parsing of the input file is done, the graph structure must be finalized using
the graph.finalize() method. The finalization of the graph structure — also called
the commit of the graph — corresponds to the instantiation and the distribution of the
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graph data-structure. This main graph structure is immutable after the finalization step,
implying that past the finalize() function call, any change in the graph structure (e.g
the addition or deletion of a vertex/edge) will not be visible on the processed graph.
Indeed, for these modifications to be accounted for, the graph must be committed again
after the addition or deletion of any edge or vertex, i.e. a call to the finalize() routine
must be performed.

Traditionally, vertex-centric frameworks have used an edge-cut graph partitioning pol-
icy, that is, they break the graph in smaller subgraphs and place these subgraphs in differ-
ent compute nodes so that the number of edges spanning processes is minimal. GraphLab
however, provides a different approach, leveraging a so-called vertex-cut policy. Using the
vertex-cut partitioning method, graph edges are not allowed to span over two different
machines, whereas a graph vertex can be split across more than one machine. This strat-
egy achieves better load-balancing for the processing of power-law graphs by splitting
high degree vertices into smaller replicas placed on different machines [71].

The user can choose between the following provided ingress methods for graph parti-
tioning, namely pds, grid, random and oblivious. If no ingress method is passed by the
user, an automatic ingress selection routine, auto, is executed to select one of the method,
using the cluster size as a basis for the decision. Though some of these ingress methods
can be used with an arbitrary number of GraphLab processes (e.g. random or oblivious),
the grid and pds ingress methods are more restrictive. Indeed, the grid ingress policy
requires N ×M processes satisfying |N −M | < 2, and the pds method requires a number
of compute nodes equal to P 2 +P+1. As GraphLab states preferring strongly one process
per machines, N , M and P represent here the number of machines used in the cluster
when launching the GraphLab instance. We mostly use the two first ingress methods
(random and oblivious) in our experiments as some of the operated cluster configurations
do not match the previous requirements of pds or grid. In brief, the random method dis-
tributes edges across the cluster using a random hash strategy while the oblivious method
uses a greedy heuristic launched independently by each GraphLab process [71].

2.2.3 Graph-processing using the GAS execution engine

GraphLab PowerGraph introduces a programming model derived from the BSP-inspired,
vertex-centric model, called the Gather-Apply-Scatter (GAS) model. Though the GAS
model may be seen as a more restrictive abstraction with respect to the BSP model
from which it is inspired, it is particularly well suited for iterative vertex-centric graph
computations (i.e. such as PageRank). However, expressing algorithms with multiple
graph traversals such as Betweenness Centrality Score computation [58] may require a
slightly greater programming effort. In the GAS programming model, computations are
implemented as successive update functions constituted of three successive minor steps,
as shown in Fig 2.1.
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(a) Gather step (b) Apply step (c) Scatter step

Figure 2.1: GraphLab’s GAS model is an iterative model in which every vertex in the graph performs
successively three minor steps, namely Gather, Apply and Scatter. Active vertices are shown in bold
red, inter-vertex communications are displayed using red arrows. (a) In the Gather step, active vertices
collect information in their 1-hop neighborhood (edge: mutable, vertex: const). (b) Then, active vertices
can modify internal data, possibly using previously gathered information (edge: const, vertex: mutable).
(c) Finally, in the scatter step, active vertices push changes to neighbours (edge: mutable, vertex: const).

• Gather : This step is a parallel reduction over data held by edges and vertices directly
connected to the current vertex (1-hop neighborhood), as visible in Fig 2.1(a). In
practice, this minor step is performed in two times. Firstly, a set of edges must
be selected, between respectively no e.g. in edges, out edges and all edges to define
over which edges the reduction is performed. Then, the previously selected set of
edges is processed independently and the partial result of the Gather operation is
aggregated in the return value and passed to the Apply function. In order to be
flexible, the Gather step can return an arbitrary type/class tailored to the following
apply function’s need. During this minor step, the vertex cannot be modified,
contrary to data held by edges.

• Apply: The vertex state is now mutable and can be modified according to the previ-
ously gathered data (Fig. 2.1(b)), in isolation from the graph. This local processing
is done over the vertex-local data and the returned Gather value.

• Scatter : As in the Gather step, a subset of bound edges must be selected beforehand,
from no e.g. in edges, out edges and all edges. Once the subset of edges selected,
the vertex can decide to vote to halt, if it has satisfied its convergence criterion,
or reschedule itself otherwise. It also has the possibility to signal (i.e. reschedule)
vertices connected to the selected subset of edges for the next iteration. Starting at
the scatter step, changes made to the vertex state become visible to other vertices
(Fig. 2.1(c)).

The three-step GAS model, though restrictive, allows the programmer to express in a
rather natural way local computations seen from the point of view of the graph vertices.
This model is further restricted in the distributed execution context, as illustrated in
Fig. 2.2. In particular, as vertices can be split across compute nodes, the reduction
operation during the Gather step must be associative and commutative to ensure a correct
result is forwarded to the apply function, regardless of how a vertex is split. This design

34



2.2. Anatomy of a GraphLab program

aν0a

aν ′0a

Gather

+= aν0a

aν ′0a

Apply

aν0a

aν ′0a

Scatter

Pr
oc
es
s
0

Pr
oc
es
s
1

aν0a

Figure 2.2: Illustration of the Gather-Apply-Scatter model in a distributed context using the vertex-cut
graph-partitioning policy. Vertex ν0 is a shared vertex, meaning a replica of ν0—named ν′0—is located
on a remote machine. Thin black edges represent real graph edges, whereas thick blue arrows show data-
path. In the Gather step, each replica (ν0 and ν′0) does a local gather operation on its local set of edges.
Then, partial results are forwarded to the master replica (ν0) which produces the final results using a
commutative and associative operator. The Apply step is performed by the master replica. Finally, the
Scatter operation is, much like the Gather step, executed locally by each replicas, once updated by the
result of the apply step.

choice is necessary to comply with the vertex-cut policy offered by GraphLab and has
consequences on programmability.

From the point of view of the implementation, once the programmer has described its
algorithm using a dedicated execution engine class, the execution engine can be instan-
tiated and launched. The set of initially active vertices can be tailored to the algorithm
requirements (e.g. every vertex, no vertex or any subset of vertices). Once launched,
the execution engine runs until convergence is reached, i.e. when no active vertices are
scheduled for the next iteration or when the user-defined maximum number of executed
iterations has been reached. In addition to these criteria, we implemented another feature
to the GraphLab core in order for the execution engine to be stopped when the number of
active vertices has converged, hence the number of active vertices stopped evolving over
iterations. This convergence criterion can be activated by defining a macro and passing
the relevant option to the execution engine.

Two kinds of execution engines can be used, namely the asynchronous and the syn-
chronous engines. When using the synchronous engine, a superstep ends when every
vertex completes its superstep and the graph is synchronized. Otherwise, supersteps are
executed asynchronously with a large variety of scheduling options available. The frame-
work proposes three different levels of data consistency policy to address the possible
consistency issues, respectively the vertex, e.g. and full consistency models, as depicted in
Fig. 2.3:
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(a) Vertex consistency policy (b) Edge consistency policy (c) Full consistency policy

Figure 2.3: GraphLab’s consistency policies for two active vertices, respectively in blue and red. Colored
edges/vertices are in the same consistency area. (a) Using the vertex consistency policy, vertices are in
isolation and cannot access other vertices data. (b) Using the edge consistency policy, vertices and their
connected edges cannot be modified during their update. (c) Using the full consistency policy, vertices and
their 1-hop neighbourhood cannot be accessed during their update. In the considered example, two vertices
(in purple) span the same consistency area, thus implying the blue and red vertices cannot execute their
update function in parallel.

• The vertex consistency model (Fig. 2.3(a)) ensures that the current vertex is not
read nor modified by other vertices during the execution of its update function.

• The edge consistency model (Fig. 2.3(b)) enforces that the current vertex and its
edges are neither modified nor accessed during its update function.

• Finally, the full consistency model (Fig. 2.3(c)) extends these rules to the full neigh-
borhood of the vertex (i.e. all the vertices connected to it cannot be accessed nor
modified).

Then, it is the responsibility of the user to choose the appropriate consistency model with
respect to the implemented algorithm.

Additionally, GraphLab provides some other processing-related capabilities, such as
the possibility to execute a reduction over the whole graph, outside the scope of the
execution engine e.g. for more complex initialization purposes. Such function can be seen
as a lightweight, unique, Apply minor step.

2.2.4 Result output and execution termination

After processing, GraphLab can output some information related to the execution (i.e. the
number of updates having been issued as with the completion time of the execution en-
gine). However, to save the results of the execution, a writer class must be implemented,
describing how each vertex and edge should behave when saving the graph at the end
of the execution. For instance, in a PageRank algorithm, where the rank of a vertex
is computed iteratively, the desired output of the algorithm is the rank of every vertex.
In that context, the end-user may implement the graph writer class so that vertices
(respectively edges) return their rank only (respectively nothing). This is particularly
useful when vertex/edge classes become complex as the default behavior is to save every
attribute of a vertex.
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The saving operation is performed through a call to graph.save(). This method
takes as arguments the path and prefix for the output files and the graph writer class.
By default, the number of output files written is 4 per process, but it can be adapted
further to take benefits from the parallelism of the underlying system architecture, using
dedicated command line options. Moreover, output files are produced independently by
each cluster node, thus requiring a mechanism to copy the files back on one node if
no distributed filesystem is used. Finally, GraphLab embeds built-in file compression
routines, enabling the direct output of compressed files.

2.2.5 Synthesis

This section has shown that a GraphLab program can be seen, from a high-level point of
view, as a parser, a graph structure and some execution engines.

To summarize, from a user perspective, writing a GraphLab program requires the im-
plementation of at least a parser and an execution engine. If the edges and vertices are
to hold more complex values than basic types, the user must then implement dedicated
classes and their corresponding writers. The parser is typically implemented as a embar-
rassingly parallel step to be executed concurrently within and by cluster nodes. Moreover,
though the programming model of the execution engines is restrictive, it is hence simpler
to leverage. In opposition, the graph structure is committed and dispatched by a built-in
GraphLab heuristic, as selected by the user.

However, as simple to handle as GraphLab can be, the issue of measuring the perfor-
mances is relevant and non-trivial in the context of such complex programs. Thus, we
present in the following section we address the issue of evaluating the performances of
GraphLab applications.

2.3 Performance evaluation of GraphLab programs

Starting with the very first programs, benchmarking and performance evaluation meth-
ods have been provided. Though measuring efficiency of a sequential program has been
widely discussed, evaluating performances of a parallel program can be a cumbersome
process. Indeed, one of the simplest form of benchmarking approach can be to evaluate
the wall-clock execution time of a program and assess its evolution with e.g. another ar-
chitecture or after a careful optimization. However, this simple metric — though being
a merciless element of performance evaluation — does not reflect performances in their
overall complexity. In particular, it hardly gives an appreciation of the degree of efficiency
a system reaches with a particular implementation and dataset.

In the following section, we discuss the issue of assessing operating performances in the
context of graph-processing and present the metrics and methodology used throughout
this thesis work.
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2.3.1 Benchmarking off-the-shelf application against real-life per-
formance tuning

In the high-performance computing domain, hardware platform benchmarking studies
have long been performed. The Top500 bi-annual list [4] of the most powerful super-
computers is such a performance evaluation approach based on the evaluation of float-
ing point instruction throughput. It has inspired Graph500 [18, 45], a similar graph-
related initiative. Similarly to Top500, Graph500 provides a defined code base of a
graph-processing application, tunable to some extent, and ranks hardware platforms by
decreasing peak performance, expressed in Traversed Edges Per Seconds (TEPS).

The TEPS metric is based on a similar idea as the more widespread FLOPS (floating
point operations per second) which is a metric expressing a system’s throughput in terms
of executed instructions. This metric aims at enabling a comparison of (super)computers
on a consistent basis using a graph-processing kernel. The idea behind TEPS and FLOPS
is rather similar — expressing a throughput of respectively processed edges and committed
micro-operations. However, though TEPS is the main ranking metric of the Graph500
list, the scale of the processed random graph and the total power consumption may also
be comparison points to be taken into account — the bigger the scale, the better, with
an as reduced as possible consumption.

Though this benchmarking approach is obviously of much relevance, the sole TEPS
value hardly gives precise hints on the efficiency of an execution. Moreover, as Graph500 is
mostly based on a graph-traversal algorithm, it fails to be representative of other graph-
mining tasks not involving walks in a graph, e.g. vertex-centric operations. Graph500
encourages also end-users to fine-tune and optimize (under guidance) the code for their
architectures, which leads to non-portable, high-performance implementation in striking
contrast with trends such as the use of Hadoop or GraphLab which aims at shortening
development time to achieve an acceptable compromise between productivity and imple-
mentation performances.

Finally, though Graph500 evaluates TEPS on the graph traversal part of the bench-
mark, graph structure commit/distribution, parsing — or for Graph500, random graph
generation — are not taken into account into the single metric based result. This is es-
pecially a caveat in a domain in which processing time is not always dominating largely
non-processing task times (e.g. parsing or preprocessing). Thus, results obtained through
such benchmarking on synthetic datasets can hardly give clues on how adequate the un-
derlying hardware system could be on a novel use-case or dataset. However, being able to
assess such appropriateness is of particular relevance as graph-mining is data-dependent
and has applications in many different fields (biology, security, social mining) having
datasets of different properties.

With this in mind, the next subsection discusses the metrics used for our performance
behavior studies of graph applications and shows in particular for what reasons we argue
they are of particular relevance in this context.
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2.3.2 Throughput metrics for operating performance benchmark-
ing

As GraphLab programs are composed of multiple steps exhibiting different forms of par-
allelism (e.g. parsing, execution engines or result saving), the use of a single metric is
not sufficient to grasp such complexity and help understand the operating performance
behavior. Moreover, being able to understand and even predict how performances evolve
with respect to dataset sizes and cluster scale is important in a domain which shows
ever-increasing dataset sizes.

To tackle these two aforementioned aspects, we used in particular two throughput
metrics aside traditional resource usage measurements to assess and understand the per-
formances behaviors of our implementations. In GraphLab, an update (i.e. a call to an
update function) can be seen as the processing quantum of an algorithm, we therefore
measure:

• The update rate (upr), defined as the total number of updates (Nupdate) performed
per second during the GraphLab execution engine (tproc).

upr = Nupdate

tproc

• The whole-process update rate (uprwp), defined as the total number of updates
(Nupdate) performed during the wall-clock execution time (twall), including parsing,
partitioning and result dumping.

uprwp = Nupdate

twall

The update rate gives insights on the raw processing performances of the system for a
given execution while it only accounts for the processing part of the program (i.e. the time
spent in the execution engine). It is of particular importance as it enables the comparison
of the graph-processing efficiency of different hardware architectures and the assessment
of performance evolution with respect to dataset scale.

Compared to the previous metric, the whole-process update rate weighs raw perfor-
mances by taking into account the time spent in non-processing tasks such as e.g. parsing.
This gives a more global appreciation of the execution, which is especially relevant when
processing/non-processing tasks are of the same order of duration.

We argue that both metrics are equally useful. The update rate gives raw perfor-
mance figures of GraphLab whereas the whole-process update rate gives higher level hints
such as decreased performances due to a low computing/parsing ratio. However, though
throughput metrics cannot be used to compare two different algorithms as their update
function may differ in computational complexity, they are particularly helpful in assessing
scalability-related performance behaviors, a key requirement in the context of evaluating
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ever-increasing processing workloads. These two metrics were particularly helpful in ob-
serving operating performance behaviors as presented in the following Chapters. Addi-
tionally, as many other graph-processing libraries are based on the vertex-centric scheme,
we argue that such metrics can be used more generally to evaluate performances of other
related vertex-centric frameworks.

Finally, though these two metrics relate to TEPS as they are throughput-based graph-
related metrics, they differ in the following. TEPS is a rather algorithm-agnostic metric
as performances is computed using data-based figures (output edges processed per unit
of time). Hence, raw performances of many different (graph-traversal) algorithms can
be compared on a same basis. However, though TEPS is an adequate metric for graph-
traversal algorithms, it is unsuitable for vertex-centric graph-algorithms. In comparison
the update rate can be used for every algorithm implemented with the vertex-centric
model (including, graph-traversal).

The FLOPS metric, though it can be seen as TEPS as an algorithm-agnostic metric,
relates to the update rates as they both use a number of operation performed per second as
a basis for performance measuring — micro-instructions for FLOPS and vertex-functions
for the update rates. Moreover, in our experiments we do not only consider update
rates as isolated measurements which would lack of precious insights on the performance
behaviors. We rather observe how this measurement evolves when accounting for varying
parameters such as problem size and cluster scale. Comparing curves is a strength of the
current work because it not only tells the system performances but also highlights the
flaws and opportunities.

2.4 Available distributed memory architectures

In the experiments performed within this thesis, three different hardware targets were
used, each belonging to a relevant architectural trend in the field of distributed computing
and described in Tab. 2.2. In particular, two commodity clusters and a high-performance
compute server installation were used and evaluated with respect to operating perfor-
mances and scalability. In the following section, we present these platforms and discuss
them with respect to the hardware design considerations addressed in Chapter 1.

2.4.1 Presentation of the compute clusters

Low-end commodity cluster (LECC)

Early in the thesis work, a distributed memory platform was required. To address this
issue, a first experimental architecture was set-up, composed of 7 desktop workstations
embedding an Intel Core 2 processor, 4GB of physical memory and 4GB of swap space
each. The workstations run Ubuntu 14.10 LTS and are linked through a 1GB/second
Ethernet network.
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HC LSCC LECC

System High-performance Larger-scale Low-end
cluster commodity cluster commodity cluster

Base configuration Dell PowerEdge R730xd Lenovo ThinkCentre Dell Precision 340
Per-node base price EUR6000 EUR700-800 EUR290-390

Total Nodes 9 16 7
Total Physical Cores 144 64 14

Total Threads 288 64 14
Total Memory 1152GB 128GB 28GB

Processor Intel Xeon E5-2640 Intel i5-4430 Intel Core 2-X6800
Processor number 2 1 1

Launch date Q3’14 Q2’13 Q3’06
RCP USD939-944 USD182-187 N/A

Core number 8 4 2
Thread number 16 4 2

Cache 20Mb SmartCache 6Mb SmartCache 4Mb L2
Base frequency 2.4GHz 3.0GHz 2.93GHz
Turbo frequency 3.4GHz 3.2GHz N/A

TDP 90W 84W 75W
Single thread rating 1950 1825 1110

CPU Mark 14005 6279 1885
SPEC int* rate base 2006 714 (2-socket) 152 (1-socket) 31.1 (1-socket)
SPEC fp* rate base 2006 589 (2-socket) 127 (1-socket) 26.8 (1-socket)

Node memory 128GB 8GB 4GB
Node swap 4GB 8GB 4GB

Memory type DDR4 RDIMM DDR3 DIMM DDR2 DIMM
Memory speed 2133MHz N/A 667MHz

Network 1GBps/Ethernet 1GBps/Ethernet 1GBps/Ethernet
OS CentOS Linux 7.2.1511 Debian 3.2.88-1 Ubuntu 14.04

GraphLab version v2.2 PowerGraph v2.2 PowerGraph v2.2 PowerGraph
MPI layer OpenRTE 1.10.0 OpenRTE 1.4.5 OpenRTE 1.6.5

Table 2.2: Detailed description of the three distributed architectures involved in the thesis work. The
High-performance cluster (HC) shows an up-to-date, performance-oriented configuration with a consid-
erable amount of RAM available to the two-socket Intel manycore. The two remaining architectures, the
larger-scale commodity cluster (LSCC) and the low-end commodity cluster (LECC), are two commodity
cluster built from desktop workstations. Benchmarking figures: Single thread rating/CPU Mark are pro-
vided by CPUbenchmark [112], SPEC rate are provided by Intel [108–110]. Listed Processor Recommended
Customer Prices (RCP) are provided by Intel [108–110]. Per-node base price of the Lenovo ThinkCentre
and the Dell Precision workstations were not available at the time of writing, hence the price given is for
a similar workstation configuration of the updated product range from these manufacturers.

This architecture enabled the deployment and initial testing of a first experimental
setup with benchmarking support on a true distributed memory testbed. The system can
be seen as a somewhat representative platform from the commodity computing area, a
trend seemingly rising in recent years.

Larger scale commodity cluster (LSCC)

The larger scale commodity cluster (LSCC) is a commodity cluster architecture. Each
LSCC node embeds a more up to date hardware compared to the previously presented
LECC platform. Access to the cluster was provided by the Ecole Nationale Supérieure
des Techniques Avancées, located on the Polytechnique campus in Saclay (FR).
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In this cluster, each node is composed of an Intel i5 processor, 8GB of RAM and 8GB
of swap space, and is connected through an Ethernet network to other nodes. Contrary
to the LECC system, the LSCC uses a distributed filesystem (NFS) between every node.

Initially, up to 336 machines were available, grouped in different rooms and associated
subnets. Eventually, only 128 compute nodes could be gathered in a consistent cluster
(mostly for OpenRTE [19] version compatibility). However, as machines were dispatched
on various subnetworks with varying latency, we decided to focus on a up to 16-node
configuration for our studies, ensuring the 16 machines are on a single subnetwork with
identical hardware and software configurations. Indeed, we observed that having such
layered networks had a significant negative impact on performances.

High-end server cluster (HC)

The High-performance cluster (HC) used is 9-node distributed architecture located at
CEA Saclay. Each node is composed of a dual socket Intel Xeon processor embedding a
total of 16 cores (32 threads) for an available memory of 128GB plus 4GB of swap space.
The cluster is composed of nodes running CentOS Linux, release 7.2.1511 (Core) and
has a distributed filesystem available on each node. Additionally, the Hadoop distributed
filseystem (HDFS) was set-up and available on the nodes.

This cluster can be seen as a hardware of choice for large-scale computations as it
represents compute clusters from the high-end part of the hardware spectrum, contrary
to the two previous platforms. In the following subsection, the specifications of the three
architectures are compared.

2.4.2 Comparing hardware approaches

Compared to the other introduced platforms, the high-performance cluster (HC) can be
seen as a high-end architecture, with each node embedding a high-performance settings
and costing an approximate 6000€ per node, as visible in Tab. 2.2. In contrast, the
commodity cluster node architectures presented each cost less than a thousand euros,
exhibit only general-purpose hardware and provide more moderate amount of memory.
However, it is to be noted that the commodity systems differ in their production date,
respectively 2006 and 2013, resulting in the LECC exhibiting a much lower-end hardware
compared to the LSCC.

Available benchmarking figures of the CPUs in each machines show significant per-
formance gaps between the three architectures. Indeed, sequential performances of the
modern Intel processor architectures seen on the nodes of the HC and LSCC systems
significantly outperform those of the LECC platform as exhibited in the benchmarking
section of Tab. 2.2. Moreover, the HC, the LSCC and the LECC node architectures differs
in the inner parallelism degree offered by each node: the HC proposes a large Xeon-based
architecture with up to 32 threads available whereas both commodity clusters provide
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much more frugal architectures, with respectively 2 and 4 threads. This translate notably
into the LSCC’s i5 processor matching single-thread performances of the HC’s Xeon de-
spite being largely overtaken in a parallel context, as shown by the SPEC2006 rate metrics
which show parallel throughput performances of the CPUs.

These differences can be explained by their relative age (for the LECC cluster) and
their product category (for the LSCC platform). Moreover, the high-end configuration’s
theoretical superiority must be put in perspectives with its higher price tag. Indeed, in
comparison, the other clusters are composed of inexpensive desktop machines assembled
across a cheap Ethernet network.

In particular, although it can be expected that the massive amount of memory pro-
vided by the HC architecture will outperform both other systems in terms of maximum
manageable problem size, it cannot be stated prior to an in-depth study whether it would
exhibit higher performances (throughput-wise) for smaller cases. Moreover, it is still un-
clear how these three architectures will behave with respect to scalability aspects. Such
a study can be helpful in addressing e.g. the question of whether it is preferable to have
a few high-performance compute servers rather than dozens of commodity desktop work-
stations.

Concerning software aspects, all systems execute the same version of GraphLab v2.2
and use OpenRTE for the MPI Layer on top of various Linux distributions. In order
to extract some more in-depth insights on the processing, various instrumentations were
implemented within GraphLab, such as fine-grain minor-step timers.

2.5 Synthesis

With the recent interest in deploying larger-scale graph-mining algorithms, new program-
ming paradigms and their associated toolset have emerged. In particular, vertex-centric
programming libraries raised interests, as such tools provide a more natural, yet restric-
tive, programming framework relieving the programmer from the burden of handling some
parallelism issues such as communication management. Amongst such tools, GraphLab
stands as a state of the art, mature and well-accepted compromise between ease of use
and operating performances.

In this chapter, we detailed the Gather-Apply-Scatter programming model provided by
the GraphLab framework. Though relatively restrictive, it enables a natural and expres-
sive frame for the implementation of vertex-centric computations, addressing by design a
large category of graph analytics algorithms. The very local nature of the computations
expressed in the GraphLab GAS model makes their behavior clearly understandable and
tractable with the use of domain-specific semantic constructs. Finally, by hiding paral-
lelism management details and allowing the programmer to think like a vertex [74], the
effort spent in the implementation concentrates mostly on carefully designing a graph
structure, an adequate parser function and an efficient algorithm.
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In order to gain an in-depth view and practical experience of GraphLab, we study and
evaluate two use-cases, introduced in details in Chapter 3. Interestingly enough, these
applications come from unrelated domains, relatively far from the social mining area
from which GraphLab has already gained much popularity. The first use-case addresses
the analysis of execution traces using a graph modelization to identify certain low-level
properties of the execution of a program on a processor architecture. The second use-case
comes from the domain of genomic data processing and addresses the issue of filtering
De Bruijn graphs constructed from sequencer reads in order to facilitate the assembly of
whole genomes. Indeed, most genome analysis methods are based on graph-processing
methods and require large-scale machines due to the massive amount of data produced
by next-generation sequencers.

However, though the programming model is well defined and easily understood, pre-
dicting performances of a GraphLab program and their evolution with respect to increas-
ing problem instance sizes and cluster scale is hardly at hand. Moreover the impact of
the cluster type used to perform such graph-mining tasks with GraphLab is unclear and
careful benchmarking and profiling is thus required in order to assess operating perfor-
mance behaviors. Hence, as we have three architectures at hand, of different kinds, it is
interesting to compare which hardware trends is the most appropriate in the context of
graph analytics at scale. In particular, investigating if commodity clusters, which seems a
promising approach, are able to keep up in performances with considerably more expensive
high-end systems is relevant. To this extent, a cross-architecture comparison is performed
in Chapter 4 and performance behaviors of the systems are discussed with respect to the
two previously introduced use-cases. We also show in this chapter how throughput anal-
ysis can be helpful for the adequate sizing of a cluster in the context of graph-processing.
Then, we formulate in Chapter 5 hardware-related propositions towards more efficient
graph-processing servers.
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Chapter 1 has notably illustrated that, despite the variety of tools for distributed
programming in the field of High-Performance Computing (HPC), it is a tough task
to implement and efficiently deploy graph-processing applications. Recent years have
seen some parallel programming frameworks appear in an attempt to find a compromise
between expressive abstractions and relevant performances on distributed architectures.
Amongst them, vertex-centric programming libraries have been proposed to tackle the
challenge of deploying graph analytic algorithms on large-scale architectures, as seen in
Chapter 2. GraphLab [43] is such a framework, facilitating — using PowerGraph [61],
its distributed version — graph algorithms deployment over distributed systems using a
restrictive yet natural programming abstraction.

Having selected GraphLab as a framework of choice for graph-processing, it is nec-
essary to evaluate its benefits for applications outside of the social mining domain for
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which it was designed. To this extent, two real-world applications leveraging GraphLab
are studied in details in this Chapter. In particular, the motivations and context be-
hind the development of a distributed implementation for each of them are addressed
and detailed. Indeed, it was decided to investigate the whole process of implementing,
deploying and evaluating a real-life algorithm rather than off-the-shelf, synthetic random
benchmarks. These use-cases are extracted from two fairly unrelated fields, reaffirming
(if needed) graph-processing as a cross-domain discipline.

The first application comes from the program analysis domain and considers an al-
gorithm for the analysis of processor-level execution traces of a program. In particular,
we developed an algorithm that processes a graph constructed from a program trace to
extract read/write relationships between instructions. This first application has been
particularly helpful in identifying relevant GraphLab performance metrics and operating
performance behaviors.

Then, the second presented use-case comes from the genome assembly domain. In this
context, we conducted an in-depth study of the software aspects of genome assembly, with
a particular attention to data production and their characteristics. We then developed an
algorithm to address the particular problem of mitigating the error rate of next generation
sequencer (NGS) data, that hinders the assembly procedure, thus decreasing the benefits
of using such technology. In practice, the algorithm processes de Bruijn graphs constructed
from sequencer reads in order to remove erroneous edges and nodes, facilitating the later
genome assembly step which then manipulates much smaller graphs.

The chapter is thus composed as follows. The two first sections detail the program
trace-analysis and the de Bruijn graph filtering algorithms. Then, building on the out-
comes of the two studies, a conclusion is drawn.

3.1 Program trace analysis

This section provides a detailed study on the use of GraphLab for the implementation
of a trace analysis algorithm which is, to the best of our knowledge, a novel use-case
for vertex-centric graph-processing libraries. Indeed, graphs are often used as models
in the context of program analysis (e.g. Data Flow Graphs), making distributed graph-
processing tools relevant for the implementation of large program trace analysis based on
graph modelization.

In this study, the scalability of our GraphLab implementation is investigated on the
moderate scale commodity cluster LECC described in Chapter 2. To this extent, several
metrics were used, including execution times and throughput measurements such as up-
date rate and whole-process update rate. This investigation led us to highlight different
operating ranges, leveraging better understanding of our testbed’s behavior for further
performance predictions and platform tuning.

46



3.1. Program trace analysis

3.1.1 Algorithms and graph models of computation

Context

Program trace analysis gives fruitful code tuning opportunities. The analysis of read/write
relationships between program instructions can help to highlight data transfers in order to
identify possibly relevant parallel code transformations. As an example, if an instruction
has a low read count per data production (or unique write) of another instruction, they
are intertwined and thus cannot be parallelized. Conversely, a high read count for a
few unique writes between two instructions might indicate that these instructions can be
separated on different cores or processors. To this extent, we developed an algorithm that
extracts these relationships from program traces issued by an instruction-set simulator.
In practice, this information is hidden in the billion-instructions input trace and the
algorithm turns it in a more exploitable form.

As program trace analysis is adequately modeled using graph semantics, the use of a
graph programming model seems particularly relevant. From a user point of view, the
development time of a graph algorithm is significantly reduced by leveraging such an
expressive programming model. Moreover, the burden of communication management
and parallelization is removed from the user and held by GraphLab, thus facilitating the
implementation task.

Graph formulation of the algorithm

As described in Section 2.2, the main components of a GraphLab program are the data
structures and vertex program. Vertices and edges are described using C++ classes and
used as template parameters of the graph structure. The vertex program is also described
using a template class which methods match the Gather-Apply-Scatter model (GAS). This
section presents the implementation of the algorithm, starting with an overall presentation
of the program and the underlying data structures. Then, an overview of the execution
engine is proposed, followed by a description of the update function and a discussion of
the implementation.

Considering the support example in Fig. 3.1, a GCD assembly kernel (Fig. 3.1(a)) is
executed, producing an execution trace (Fig. 3.1(b)) used as the input of the algorithm.
Formally, the input program trace is composed of successive instruction instances com-
posed of a (unique) timestamp t, a program address (or instruction) IX and the list of
input data creation timestamps. Each instance is a node of the input graph (Fig. 3.1(c)).
For example, the node 3 of type I2 is built from the instance with timestamp 3 (i.e. the
time it was executed) and connected to nodes of timestamps 1 and 0 (i.e. these instances
produced the data consumed by I2 at 3).

The input graph data structure (e.g. Fig. 3.1(c)) can be constructed by a user-defined
or a built-in parallel parser (described in Algorithm 1), fed with input files. To match
the need of the use-case, we implemented a parser which constructs the acyclic directed
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(a) Kernel GCD(a,b)

gcd:
(Ii) init a,b

jmp st
lb:

(I0) add b,a
(I1) neg a

st:
(I2) sub a,b
(I3) jmp a<0,st
(I4) jmp a>0,lb

end:

(b) Input trace
ID Inst. pred.
0 Ii
1 I2 0
2 I3 1
3 I2 1 0
4 I3 3
5 I4 3
6 I0 3 0
7 I1 3
8 I2 7 6
9 I3 8

10 I4 8

(c) Input graph

10 Ii

11 I2

12 I3

13 I2

14 I3

15 I4

16 I0

17 I1

18 I2

19 I3
10 I4

(d) Result

Ii
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I1I2

I3I4

1

1 1
1
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1

1

1
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Figure 3.1: (a) Example kernel: GCD(a,b). (b) Execution trace of GCD(12,8). Each line is composed
of a timestamp (used as a vertex identifier), an instruction and its predecessors identifiers. (c) Input
trace modeled as a graph. (d) Output graph. Edge labels are readcount (up) writecount (down).

graph (Fig. 3.1(c)) from the execution trace. As each instance (i.e. node) is unique, the
input trace can be parsed in parallel.

In the generated GraphLab input graph (Fig. 3.1(c)), an edge represents a data trans-
fer, thus the origin (respectively the end) of an edge is connected to the producer (re-
spectively the consumer) of a data. Each vertex of the graph represents an instruction
instance and holds its program address as a public value. The algorithm is applied to this
graph and produces the graph shown on Fig. 3.1(d) under the form of an adjacency list.
Vertices of the output graph represent instructions of the kernel source code and edges
express data transfers between them. In particular, each edge holds the number of unique
reads and writes between two instructions.

Once the graph is parsed, the graph structure is committed: the chosen ingress method
partitions and distributes the graph over the cluster. Finally, the execution engine can
be allocated and initiated.

The execution engine executes supersteps (i.e. updates) implementing the algorithm
described in Algorithm 2. During each update, the partial weight of a specific edge of the
output graph is computed by a vertex: Considering the node 8, which is of type I2 (in the
example on Fig. 3.1(a), it is the sub a,b instruction) connected to nodes of type I3 and
I4. Vertex 8 produces in two supersteps the partial weights W8(I2, I3) and W8(I2, I4),
of output graph edges I2 → I3 and I2 → I4. Formally, the overall weight of an output
graph edge, W (Isrc, Idst), is defined as:

W (Isrc, Idst) =
∑

∀v(Isrc)∈V

Wv(Isrc, Idst)

That is, the sum of the partial edges weight Wv(Isrc, Idst) as mined by the algorithm
on nodes v (of program address Isrc) connected to nodes of program address Idst.
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Data: Graph data structure G
foreach input line inL parallel do

vId ← inL.getToken();
cId ← inL.getToken();
if (vId = −1) or (cId = −1) then

return false;
end
while inL.notEmpty() do

dId ← inL.getToken();
G.add_edge(dId,vId,1);

end
G.add_vertex(vId,cId);
return true;

end
Algorithm 1: Parallel input file parser. Each line can be parsed in parallel, with conflicting vertex
add resolved at commit time, with every machine in the cluster processing a subset of the input files.
vId, cId and dId stands respectively for vertex, instruction class and destination identifiers.

Once the algorithm has converged (i.e. every node have no more edges to process),
results are written out to disjoint files containing the adjacency list of the output graph.

3.1.2 Vertex-centric implementation

The vertex update function

In an update, a vertex evaluates one destination instruction per superstep. This means
that if a vertex has neighbors with identical instruction types (respectively of N types),
it will executes only one superstep (respectively N supersteps).

• Gather : The gather step counts the number of outgoing edges that connect the
current vertex to vertices which instruction is currently being evaluated (as these
edges represents a read from this target instruction). These edges are then masked
while the other edges are kept for further evaluation in later iterations.

• Apply: The apply function receives the result of the gather step, which is the number
of reads from the current target instruction. In the implementation, the apply
function stores the partial weight of the output graph edge (i.e. the write/read
count between the current node program address and the targeted one). The next
target destination instruction is chosen before exiting the Apply function.

• Scatter : In the scatter step, the node will either reschedule itself, if there are re-
maining destination iteration to process, or vote to halt.

Formally, the complexity of an update function is mostly impacted by dv, the out degree
of v. The number of iterations is however more complicated to predict as it depends of
the variety of instructions connected to the node.
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foreach active vertex ν parallel do
Gather:
foreach output edge e of ν parallel do

read_count ← 0;
next_class ← −1;
if e is unmasked then

if ν.current_class 6= −1 then
if e.target_vertex.cId = ν.current_class then

e.mask();
read_count ← read_count +1;

else
next_class ← e.target_vertex.class;

end
end

end
end
total.read_count ← ∑ read_count;
total.next_class ← Min(next_class);
Apply:
if total.read_count > 0 then

output ← ν.cId ν.current_class 1 total.read_count;
ν.current_class ← total.next_class;

end
Scatter:
if ν.current_class 6= −1 then

Scheduler ← ν;
end

end
Algorithm 2: Vertex function implemented for the program-trace analysis use-case. During the
gather step, each node will count how many edges are connected to a node of the considered instruction
class (read_count). Accounted edges are removed (i.e. masked). The partial output edge corresponding
to the edge between the node instruction class and the considered instruction class is output with the
computed write and read counts (respectively 1 and read_count), during the Apply step. The next
considered instruction class (next_class) is then decided and, during the Scatter step, the node votes
to halt or reschedule itself if there are remaining unprocessed edges.

Implementation, parallelism and synchronization

Parallelism of the algorithm is expressed naturally from the point of view of a node.
As each node only writes a private value never read by any other node, every node can
execute its program independently from the others. There is no dependency requiring syn-
chronizations to maintain consistency. By allowing better load-balancing, asynchronous
execution should be efficient for this use-case. For these reasons, the asynchronous engine
was compared against the synchronous engine.
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(a) Datasets

Kernel Vertices Edges Density
10−6

deriche min 2.5M 2.9M 0.459
max 39.9M 46.9M 0.030

summed min 132.5k 161.5k 9.205
max 42.2M 51.9M 0.029

matmult min 530.2k 650.0k 2.312
max 39.6M 49.3M 0.031

(b) Average degree
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(c) Degree distributions

Figure 3.2: Input graph datasets characteristics. Table (a) presents the three kernels with respect to
size and density. Each kernel min and max graph characteristics are presented. Figure (b) shows the
evolution of the out average degree with growing graph sizes. Figure (c) shows the out degree distributions
of the three considered kernels. Empty out degree classes are not displayed.
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3.1.3 Experimental protocol, materials and methods

Different storage methods have been evaluated for the input files: a distributed filesystem
spreading across the cluster or using the local filesystems of the cluster with manual file
management. The distributed filesystem used is Hadoop Distributed FileSystem (HDFS)
version 2.7.1. Notwithstanding its convenience, HDFS clients use a substantial share of
the relatively limited cluster memory. Moreover, the time spent in read/write operations
(parsing, result dumping) decreased the overall performances by around 30% when com-
pared to a native filesystem. Though this cost can be mitigated for larger scale high-end
systems, larger instances and more complex algorithms, it remains a prohibitive overhead
with respect to our testbed. Hence, for these experiments, each input file was split in 32
parts and distributed across workstations. Then, each machine parses and loads randomly
chosen splits of the input file.

The program traces used as an input of the framework comes from three compute
kernels as shown in Fig. 3.2(a): a 3D matrix multiplication, a Deriche filter and a summed
area table kernels (referred to as matmult, deriche and summed respectively). These
applications were executed with different parameters to produce traces of various sizes.
An interesting property of the execution traces is that their average degree — i.e. the
average number of edges connected to each node in the graph, defined by the division of
the number of edges by the number of nodes in the graph — tends to be constant with
growing graph sizes (see Fig. 3.2(b)). This behavior can be explained by the fact that the
kernel loop code weight grows with increasing input parameters. Additionally, the degree
distributions of the kernels (Fig. 3.2(c)) are sparse, showing a few high degree nodes and
a large set of low degree nodes.

3.1.4 Experimental results

Unless otherwise stated, all results were produced using the synchronous engine and the
oblivious ingress method. We discuss in this section the throughput of the system and
analyze the impact of the underlying memory system. Then, the executions are further
analyzed through resource usages and timing aspects. Finally, additional insights on
asynchronous execution and ingress methods are presented.

Throughput analysis

In Fig. 3.3 are shown the update rates from three kernels of varying sizes, for different
cluster scales. This metric illustrates raw performances, independently from the rest of
the program (i.e. the number of updates performed during the duration of the execution
engine only).

For each cluster setting, three operating ranges can be observed. To begin with, a
suboptimal performance area is visible on the left side of each plot in Fig. 3.3. We refer to
this area as the underloaded operating range as the addition of compute nodes decreases

52



3.1. Program trace analysis

(a) matmult kernel
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(b) deriche kernel
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(c) summed kernel
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Figure 3.3: Update rate figures for (a) the matmult, (b) the deriche and (c) the summed input kernels.
The update rate is the number of updates performed per second during the processing part of the program.

(a) matmult kernel
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(b) deriche kernel
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(c) summed kernel
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Figure 3.4: Whole-process update rate figures for (a) the matmult, (b) the deriche and (c) the summed
input kernels. The whole-process update rate is the number of updates performed per second during the
program execution time.

the per-node workload and deteriorates performances. A second operating range can
be observed: the nominal operating range, in the middle area of the plots. In this area,
performances reach a slightly increasing plateau, including a peak operating point. This is
the operating range in which compute nodes are the most efficiently used, and GraphLab
exhibits the most scalability. Adding machines to the cluster in this setting will increase
significantly performances and will reduce the overall processing time. However, adding
a large number of compute nodes with the same problem size eventually set the cluster in
a suboptimal operating point, resulting in an inefficient use of resources. Finally, in the
rightmost operating area, the update rate starts to abruptly decrease when the problem
expands to the swap memory space: the system enters the overloaded operating range.

Figure 3.4 shows the whole-process update rate for the three input kernels. Even
though the absolute values are around 60% lower compared to the update rate, the three
aforementioned operating ranges can be similarly observed. However the whole-process
peak operating range is reached for slightly smaller problem sizes in comparison with the
update rate peak operating points.

In comparison with other kernels, performances of the deriche kernel are lower and the
nominal operating range is reduced significantly. The whole-process update rate exhibits
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(a) matmult kernel
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(b) deriche kernel
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(c) summed kernel
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Figure 3.5: Performance and pagefaults figures for (a) the matmult, (b) the deriche and (c) the summed
input kernels. PageFaults impact on throughput (right y-axis in log scale) on a 6-node cluster setting.
Pagefaults are gathered using GNU time.

also a similar behavior, confirming that the deriche’s graph properties have an impact on
performances. Further investigations showed that the deriche graph requires 126 iterations
before convergence (respectively 21 and 15 for matmult and summed). This imbalance in
terms of iterations might be explained by the fact that the deriche kernel is a larger and
strongly connected kernel (about 4600 instructions in the kernel assembly code, around
30% more than matmult and summed). When comparing the execution of these three
kernels in terms of active nodes, 99.7% of deriche’s nodes are inactive after 9 iterations.
For matmult and summed, this happens after only 3 iterations.

Overloaded range

Figure 3.5 shows, for a given cluster scale, the update rate, the whole-process update rate
and the major PageFaults with respect to the problem size. Three regimes can be seen:
until the whole-process update rate peaks, no pagefaults occur. Then, a small increase is
seen as the whole-process update rate starts to decrease slightly. The amount of pagefaults
in this area is kept quite low (a few hundreds) but is still non null. Finally, above a
sufficiently large instance size, a steep rise in pagefaults is caused by numerous swap
operations during the execution, thus significantly lowering performances. Taking this
into account, increasing the memory per node available in the cluster should extend the
nominal operating range by pushing the abrupt decrease towards larger graph instances.

Interestingly, the slight increase in major pagefaults visible before entering the over-
loaded range has no impact on the update rate, implying that these pagefaults occur
outside the processing step. However, these pagefaults still have a cost, visible as the
whole-process update rate starts to decrease slowly before processing-related swaps occur.
When GraphLab allocates the execution engine after the commit of the graph structure
and prior to the processing step, the OS is forced to swap out old data from the initializa-
tion part of the program. In other words, the physical memory limit is reached just before
the execution step: the cluster is at the border of the nominal and overloaded operating
ranges.
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(a) Parallelization cost
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(b) Detailed timing analysis

	0
	10
	20
	30
	40
	50
	60
	70
	80
	90
	100

	0 	5 	10 	15 	20 	25 	30

Ti
m
e	
(s
)

Problem	size	(106	nodes)

Save	output
Engine	alloc
Graph	commit
Input	parsing
Compute	time
Mpi	termination
Memory	clean-up
Total

(c) Resource usages

	0

	20

	40

	60

	80

	100

	0 	10 	20 	30 	0

	0.5

	1

	1.5

	2

	2.5

Av
er
ag
e	
re
so
ur
ce
	u
sa
ge
	(%

)

Th
ro
ug
hp
ut
	(1

06
	U
pd
at
es
/s
ec
)

Problem	size	(106	nodes)

Uprateexe
Upratetot
MEM
CPU

Figure 3.6: Timing analysis for matmult kernel. (a) The parallelization overhead is the share of engine
execution time not spent in processing. GraphLab was instrumented to extract the time overhead (be
it synchronization or communication) in the execution engine. (b) Execution times of the program in
a 4-node cluster setting. (c) Memory and CPU usages of the whole program (as given by GNU time),
compared to throughput, for a 6-node cluster.

Underloaded range

The mitigated performance gain when adding computing nodes to the cluster in the
underloaded operating range, is explained by the share of time spent in communications
during the execution engine, as shown in Fig. 3.6(a). Indeed, with smaller input instances,
a high ratio (close to 1) is observed, implying a high parallelization cost for the given
input datasets. Conversely, with larger problem sizes, the parallelization cost decreases
and tends to a constant 30 to 40% rate depending on the cluster size. Interestingly, this
ratio limit slightly increases with the number of compute nodes. Extending this study to
larger scale clusters might reveal scalability limits.

Fine-grain timing analysis

The scalability of the distinct program steps was investigated with respect to the datasets
size. Figure 3.6(b) shows execution times of the execution engine, the parsing step, the
graph-commit, the engine allocation and the result saving, for various graph sizes, in a
4-node setting. Below the overloaded operating range, the program exhibits near linear
scalability for every of its independent parts. In average, the pure compute time represents
between 36.79% and 43.91% of the execution while the parsing/loading time represents
between 21.08% and 24.41%, for the matmult kernel. When entering the overloaded
operating range, the processing and saving times are rising steeply. This figure illustrates
that when working after the nominal operating range, the bottleneck is reached during
the processing time.

Throughput metrics and resource usage figures in a 6-compute node setting are shown
in Fig. 3.6(c). The memory consumption is roughly linear with respect to the number of
vertices, the number of edges impacting the slope of this curve. This figure also confirms
that the decrease in performance happens when reaching physical memory saturation.
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Figure 3.7: Performance scalability. The purple curve shows update rates for varying setup, at a given
graph size in nominal and underloaded ranges. The blue curve shows the update rate in the peak operating
point of each setup.

Scalability

Performance scalability is shown Fig. 3.7. The whole-process update rate for a fixed graph
size of around 8M nodes is plotted in purple. For this graph, a maximum performance
gain of around ×2.7 is achieved with 7 compute nodes over the single machine GraphLab
execution. However, this gain is starting to stall on the largest cluster configuration.
Indeed, with 7 machines, the cluster leaves the nominal operating range for the underloaded
one. These findings draw a scalability limitation in terms of performances: for a given
problem size, the performance gain seems bounded and the addition of compute nodes
does not improve performances significantly.

The blue curve in Fig. 3.7 shows the scalability at the peak operating point for a
hardware setup. The whole-process update rates used are the peak values measured for
each cluster sizes and correspond to a memory usage of approximately 70%. A gain up
to ×3.12 can be observed over the single workstation configuration, indicating that per-
formance scalability can be achieved by keeping the cluster around an optimal operating
point, for increasing problem and cluster sizes.

Asynchronous execution

Figure 3.8(a) and 3.8(b) show the update rate for the asynchronous engine (with the vertex
consistency model), using traces from the matmult kernel as inputs. If a 3-area behavior
can be observed as in synchronous execution, the asynchronous engine is outperformed in
the underloaded and nominal operating ranges. On average, in the nominal (respectively
underload) operating range, the performance overhead is of ×1.51 (respectively ×1.21).
With growing input data, the asynchronous update rate rapidly tends to a constant value
before decreasing abruptly when the cluster runs out of physical memory. The nominal
operating range is wider than with the synchronous execution, despite being globally less
efficient. This might indicate a better scalability with respect to the cluster size.
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(a) Update rate
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(b) Whole-process update rate
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(c) Communication volume

	0

	1

	2

	3

	4

	5

	6

	7

	8

	2 	3 	4 	5 	6 	7

Ne
tw
or
k	
tra

ffi
c	
(G
by
te
s)

Cluster	scale

Async
Sync

Figure 3.8: Asynchronous execution performances. (a) The asynchronous update rate is the ratio
between the number of update functions completed and the execution engine time. This metrics illustrates
raw distributed processing power. (b) The whole-process update rate is computed using the total number
of update functions completed and the wall clock time of the program. (c) Evolution of communication
volume sent over the network (14M nodes).

Figure 3.8(c) shows the communication volume when using the asynchronous and
synchronous engine. The performance issue observed in Fig. 3.8(a) might be explained
by a communication overhead generated when using the asynchronous engine, which is
1.93 times greater, on average. However, other studies usually exhibit a much higher
communication overhead with state of the art algorithms and datasets [79].

Finally, tuning perspectives of the asynchronous engine remain unclear despite its
appealing possibilities. For instance, parameters such as the number of lightweight threads
and their stacksize can be tailored to suit the execution. However, they require a dedicated
study in order to find to which extent tuning these specific parameters can improve
performances. Further research should be made to identify optimization opportunities
considering the suitability of asynchronous execution for this use-case. Moreover, mixed
synchronous/asynchronous techniques as used in emerging frameworks [95] could be of
interest.

Ingress method and self-tuning

Though most of the experiments were conducted using the oblivious ingress method,
different ingress strategies were evaluated: random, oblivious and the built-in automatic
ingress method selection. The replication factor is the average number of compute nodes
spanned by a vertice, it is thus a good metric to measure an ingress method quality.

In practice, oblivious always outperforms the random method, as shown in Fig. 3.9
with an average replication factor of 1.77 due to the low average degree of the graphs.
A similarly low value can be observed in [91], on a graph of similar properties (RoadUS
dataset, low average degree, comparable density). However the replication factor is lower
in the use-case considered, possibly due to the smaller cluster used and the slightly lower
average degree. In comparison, for a graph of much higher average degree (Twitter Graph,
average degree of 35), the replication factor achieved is around 5 for an 8-node cluster [91].
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The automatic strategy is at best optimal, for the 3-node and 5-node cluster configura-
tions, and suboptimal in every other case. As described in the source code of GraphLab:
when no ingress method is given, GraphLab — through its automatic strategy — succes-
sively checks if the number of processes spawned allows the selection of the pds and the
grid methods. It then selects the oblivious method if both previous methods failed to be
chosen. In the context of the considered use-case, this feature is not recommended and
the use of the oblivious method should be preferred as it always experimentally achieves
a better replication factor.

3.1.5 Synthesis

We evaluated the execution of GraphLab in the context of a trace-mining problem on a
moderate scale commodity cluster for three types of input traces. We conducted exper-
iments with varying cluster scales and input instance sizes to evaluate scalability under
various conditions and observed the emergence of an optimal operating range which we
have characterized. Despite its overhead, the provided GAS abstraction matches our al-
gorithms and helps reducing the development time of the corresponding distributed graph
application, leveraging improved productivity. Finally, though the experiments exhibit
a bounded performance scalability for a fixed graph size, with increasing input problem
and cluster sizes, performance scales linearly at a given optimal operating point.

Though our throughput and memory-related metrics facilitate a posteriori analysis,
they can also serve as basis for the elaboration of performance prediction methods. How-
ever, without a thorough characterization of the graph input evolution, elaborating a
performance model appears to be out of reach.

From the hardware point of view, these experiments confirmed that the limiting factor
is not the processing power but the amount of memory and the network capacity. In this
context, a similar study on more frugal architectures with comparable amount of memory
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Figure 3.9: Performance comparison of ingress methods on a matmult kernel graph (14M edges, 10M
nodes) processed on a 2- to 7-node cluster. A similar behavior is observed with the deriche and summed
kernels.
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is relevant to evaluate performances with respect to energy efficiency. With the growing
need for processing power in the considered domain, the ability to design energy efficient
infrastructures is relevant.

3.2 De Bruijn graph filtering for de novo assembly

The following section describes in details another use-case used in the thesis work. The
algorithm presented belongs to the bioinformatics domain, and especially to the field of
genome assembly. Thus, we introduce the context of the study, the problem modelization,
the GraphLab implementation and some experimental results.

Traditional Sanger-based genome sequencing technology usually produce long, low
error-rate data as basis for the assembly of whole genomes. However, only a limited
number of genomes were fully assembled with this costly and lengthy technique. With
recent advances in parallel sequencing technology, next-generation sequencers (NGS)
have emerged, inexpensively producing vast amounts of shorter reads. This dramatic
cut in sequencing costs has enabled many applications, including Resequencing of whole
genome [24], de novo assembly [16] or metagenomic analysis [54].

Though generating large data samples from experimental runs was made easier, new
challenges have emerged on the software side. Indeed, a major drawback of these new
sequencers is their relatively high error rate [50] compared to previous slower technologies,
requiring a greater algorithmic effort for the assembly step. With respect to computing
aspects, the great increase in data volume is a key challenge in whole genome assembly.
The non-negligible error rate combined with the short read length calls for preprocessing
in the genome assembly software pipeline. In particular, to overcome read errors, greater
coverages — i.e. increasing the average number of times a nucleotide is sequenced — are
needed, thus increasing further the dataset sizes. Consequently, removing erroneous reads
is key as it helps reducing memory consumption while improving result accuracy during
further processing steps.

In this work, we focus on preprocessing aspects of genome assembly, and address in
particular the following:

• We propose an extended study of de Bruijn graph properties in the context of
genome assembly and introduce a definition of operating coverage.

• Based on a thorough analysis of the de Bruijn graph edge weight distribution, we
propose a new filtering algorithm that relies on certainty propagation from reliable
portions of the dataset.

• Finally, we propose an implementation of the algorithm leveraging GraphLab and
demonstrating its scalability properties.
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3.2.1 De novo assembly of short reads using de Bruijn graphs

Genome assembly

The assembly of a genome without a reference dataset to align sequencer reads with, is
known as de novo assembly. Short reads are assembled in contigs – or long contiguous
sequences – originally found in the genome being studied.

With the advent of NGS, researchers began considering DNA assembly from short
reads, accounting for the low per-nucleotide cost and shortened experiment time. How-
ever, as reads get shorter and of poorer quality, greater software complexity is required
to perform the assembly step, along with larger scale hardware infrastructures.

Although sequencing techniques have been improved, reads from NGS often come with
a non-negligible, technology-dependent error rate [41]. This rate is usually of the order of
1% and often significantly less [52] before read filtering. To mitigate this effect, a deeper
sequencing (or higher per-base coverage) is required. In the context of high-throughput
sequencers, errors usually fall in the following categories:

• Insertion: A base is erroneously inserted between two others (Fig. 3.10(b)).

• Deletion: A base is skipped from the read (Fig. 3.10(c)).

• Substitution: A base is substituted for another or encoded with a ’N’ when ambigu-
ous (Fig. 3.10(d)).

Insertions and deletions — or indels — are however relatively rare compared to substi-
tutions. A detailed review of errors in NGS technology was presented by Minoche et
al [52].

Mainstream assembly paradigms include three different kinds of techniques, being
greedy methods, Overlap-Layout-Consensus (OLC ) and de Bruijn graph (DBG) based
approaches. However, OLC and de Bruijn-based strategies are more common nowadays,
as greedy methods are not designed to handle additional information (e.g. mate pairs)
with ease [72]. Moreover, greedy implementations usually have a high memory foot-
print [53].

OLC methods rely on finding overlapping reads through a computationally intensive
all vs. all comparison. Then, this step is followed by the search of Hamiltonian paths in
the graph made from overlapping sequencing reads – a problem known to be NP-complete
in its classic formulation. Both PCAP [13] and Celera [9] use this method.

Recently, a greater interest have been raised in de Bruijn-based methods [10] as OLC
and greedy approaches have proven not to be a great match for short read assembly of
large genomes. In the following, we introduce de Bruijn graph approaches, along with
state of the art tools for parallel de novo assembly. Finally, read error mitigation and
other challenging aspects are introduced.
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(a) Original sequence extract

...ATGCCGTAGTCGCTAGC...
(b) Insertion

...ATGCCGTAAGTCGCTAGC...
(c) Deletion

...ATGCCGTGTCGCTAGC...
(d) Substitution

...ATGCCGTNGTAGCTAGC...

Figure 3.10: Read errors in sequencer data. (a) Extract from the genome being sequenced, before
alteration. (b) insertion: a base (in red) has been erroneously inserted in the read. (c) deletion: a base
has been deleted in the read between the two red characters. (d) substitution: two substitutions are visible
(in red), an uncalled base, encoded ’N’, and a miscalled base, reading an ’A’ instead of the expected ’C’.

(a) De Bruijn graph toy example

ATT

TTG

TGC

GCG

CGA

ATTG

TTGC
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GCGA

(b) 3-mer decomposition

AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA

(c) Overlapping edges

AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA
AAATTGCGAAA

Figure 3.11: k-mer decomposition and associated de Bruijn graph of a sequence. 3.11(a) De Bruijn
graph modeling the sequence ATTGCGA, for k = 3. 3.11(b) 3-mer decomposition of the sequence. 3.11(c)
Associated 4-mer (edges) linking nodes in the graph.

De Bruijn graphs

De Bruijn graphs (DBG) have been used to address the problem of short read assembly of
large genomes. They have several advantages that makes them candidates of choice over
OLC methods. In particular, they handle with a lower memory usage the high information
redundancy caused by the high coverage of datasets generated by NGS. Moreover, the
assembly is achieved by determining an Eulerian path in a de Bruijn graph which is
intrinsically more tractable compared to finding Hamiltonian paths.

Let’s consider a DNA sequencing model featuring a n-base (or nucleotide) long target
genome. Each read of varying length contain l bases (A, T, G or C) of the genome and
may be decomposed in (l − k + 1) overlapping k-mers. Formally, a k-mer refers to every
k-base long substrings contained in a read. A graph is then constructed where nodes are
k-mers and edges are (k + 1)-mers linking overlapping k-mers. As an example, the read
ATTGCGA can be decomposed in 5 3-mers, as shown in Fig. 3.11(b), that constitutes nodes
in the associated de Bruijn graph shown in Fig. 3.11(a). In NGS, reads are considered
short (l < 250) but this is compensated by producing enough reads to cover the whole
sequence or targeted region.

However, read errors alter the graph by adding unnecessary edges and vertices, as
shown in Fig. 3.12. Mid-read errors create bubbles – an additional k-long path between
two nodes — in the graph. If the error appears closer to the end of the read, dead-end
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(a) Error-free sequencing

TGCCCGTA
AAAATGCC
ATGCCCGT
· · ·

AATGCCCG
GCCCGTAT
CCCGTATT

ATGCCCGT
ATGCCCGT
ATGCCCGT
ATGCCCGT
ATGCCCGT
ATGCCCGT
ATGCCCGT

AAA AAT ATG

TGC

GCCCCCCCG

CGT

GTA TAT ATT

1 2

11

3

4
45

4

3
2 1..

.A
TG

CC
CG

T.
..

Original
sequence

Raw reads
from NGS

k-mer read
decomposition

De Bruijn graph

(b) Real-life sequencing
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Figure 3.12: Typical sequencing experiment set-up. On the left side, the original targeted sequence
is sequenced, producing raw reads. Each read is decomposed into k-mers. A De Bruijn graph is then
constructed where each node is a k-mer and each edge, an overlapping (k+ 1)-mer holding its occurrence
count. (a) shows the idealized, error-free set up. (b) illustrates the impact of three substitutions in the
input datasets. Erroneous edges and nodes in red. Changed edge weights are in bold.

branches or tips, can be observed in the DBG. Assemblers must be able to mitigate these
alterations in order to reconstruct the targeted genome.

Parallel softwares for de novo assembly

A wide range of DBG-based tools have been developed for de novo assembly, targeting
different sequencers. Recently, parallel assemblers have been used to tackle the growth in
datasets, in order to achieve the assembly of genome as large as the human one. All of
these approaches are de Bruijn based, however they differ in their parallel programming
models or their preprocessing routines for read error mitigation. While some rely on
traditional shared-memory multithreading [35, 42] or distributed multiprocessing [40, 54,
113], some works try to get the best from emerging cloud infrastructures [49, 90].
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The Ray [41] parallel assembler processes data from a mix of sequencing systems and
is therefore not linked to a particular technology. However, though this assembler is
DBG-based, its assembly method does not rely on Eulerian walks.

Another parallel assembler is ABySS [40], which exhibits a low memory overhead
albeit being relatively slow [46]. Moreover, ABySS may be used for additional purposes,
such as transcriptome assembly [72].

MERmaid [113] is an assembler based on Meraculous, a state-of-the-art whole genome
assembler for NGS data. This assembler is able to generate contigs from short reads in
parallel, but does not provide a parallel scaffolding step. An interesting feature of this
framework is that it uses a Bloom filter to probabilistically filter out irrelevant k-mers.

While previous assemblers rely on traditional message-passing backends for paral-
lelization, Contrail [49] is a MapReduce-based framework implemented on top of Hadoop.
However, little public information is available on the framework at the time of writ-
ing. Spaler [90] relies as well on cloud infrastructures and leverages the Hadoop-based
Spark/GraphX framework for the de novo assembly of short reads through sub-paths
merging.

Finally, Velvet [35] and SOAPdenovo [42] are two legacy, DBG-based, multi-threaded
assemblers. Velvet shows that high-quality assemblies could be produced with very short
reads (30 base-pair per read) leveraging high coverage datasets, although it requires large
amounts of RAM [72]. SOAPdenovo comes as a memory efficient assembler with robust
error-correction and scaffolding possibilities. It is recommended for very short read as-
sembly of large genomes, according to Zhang et al [53], and is also used for transcriptome
and metagenome assembly [72].

A particularly challenging task faced by genome assemblers is the mitigation of se-
quencing errors. Errors hamper assembly performances in multiple ways, e.g. increase
in memory overhead or decrease in result quality. Amongst regular assembly toolchains,
a vast majority include error-correcting routines. For example, a widespread trend is to
discard reads containing any uncalled bases (encoded with ’N’ or a dot) and/or to remove
weak k-mers (i.e. k-mers with low counts) using a user-defined threshold.

Standalone software tools were developed to address error-correction. EDAR [50] and
Hybrid-SHREC [47] are examples of such tools developed aside mainstream toolchains.
EDAR comes as a complex preprocessing algorithm suite. While using this suite gives
more accurate assemblies, no clues on execution performances or scalability are given
in [50]. Hybrid-SHREC provides a method for error-correction implemented in Java using
parallel threads and supporting mixed read sets. Finally, some work also targets post-
assembly [34] or long-read DBG [102] error-correction.

Numerous works have demonstrated that the assembly of large genome using short
reads is computationally challenging. In particular, in the context of de Bruijn graph-
based frameworks, large amounts of memory are required, hence calling for larger scale,
distributed systems. While many parallel assemblers/preprocessors are based on estab-
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lished parallel and distributed programming frameworks, few of them leverage emerging
parallel libraries for graph-processing such as GraphLab, to the best of our knowledge.

3.2.2 Problem modelization

De Bruijn-based DNA assembly requires to compute Eulerian paths in a graph. However,
the DBG is polluted by read errors which shall be removed prior to any attempt at building
an Eulerian walk, as they increase the processing workload and hamper the quality of the
results. However, being able to differentiate a correct k-mer from its erroneous counter
part is a difficult task. This section discusses the nature of the DBG and the impact of
k-mer sizes and read errors on its distribution to identify appropriate filtering strategies.

Coverage and k-mer spectrum

The coverage, or sequencing depth, represents how many times a base of the original
genome has been read. A coverage of 40 means that, in average, every nucleotide in the
genome is read 40 times and, in practice, the nucleotide coverage distribution is a Poisson
law [87].

Due to the k-mer decomposition of sequencing reads, DBG edges follow a similar
distribution. In the context of our experiments, we define the average theoretical coverage
(noted ct) of a k-mer as follows, with c being the sequencing depth and rl, the average
read length.

ct = c
rl − k
rl

As one can observe, for a given sequencing configuration (c,rl), ct decreases linearly with
increasing values of k.

The k-mer spectrum – or k-mer frequency distribution – of input data can be useful
to infer information from the dataset. On real data, the expected distribution can be
analyzed along three zones:

• A decreasing exponential at very low frequencies composed of numerous unique
sequences obtained by alterations during sequence reads. Usually these weak k-
mers have no biological significance and are akin to noise in the dataset. Most
assemblers overcome this noise by discarding k-mers with a frequency lower than a
user-defined threshold

• A Poisson-law distribution around the operating coverage value, following the base
coverage distribution, although altered by the k-mer decomposition [10, 41].

• Harmonics of the coverage peak may indicate repeats in the sequence that were
greater than a k-mer. The smaller k is, the higher the probability of having har-
monics.

64



3.2. De Bruijn graph filtering for de novo assembly

	0

	50000

	100000

	150000

	200000

	250000

	10 	20 	30 	40 	50 	60 	70 	80 	90 	100	110 	120	130

Co
un

t

Edge	weight

11-mers
13-mers
16-mers
21-mers
26-mers
31-mers

Figure 3.13: De Bruijn graph edge weight distribution of the 3M-base synthetic dataset (rl = 100), for
varying k decompositions. With smaller k, an harmonic peak is rising around twice ct. As the dataset is
error-free, no weak, low-frequency errors are visible in the spectrum.

The analysis of the k-mer spectrum can help in determining experimental parameters.
As an example, k can be adjusted to remove or reduce the amount of peak harmonics
in the spectrum. Similarly, the threshold value filtering out weak k-mers caused by read
errors can be set by analyzing the k-mer distribution.

The edge weight distribution of a dataset is shown in Fig. 3.13, for various k values. As
this dataset is error-free, no low-frequency peak is visible. With k ranging from 16 to 31,
no harmonics can be seen, contrary to lower k value, where a peak is observed around twice
the peak operating coverage. Harmonics appear for smaller k-mers not selective enough,
thus seen twice or more in the genome, where longer k-mers would have discriminated
the two sequences in two different k-mers. Such repeats create several candidate Eulerian
paths that have to be discriminated after the assembly to select the solution representing
the target genome.

Impact of the sequencing depth on the k-mer spectrum

The increase in error-rate has a visible impact on the k-mer spectrum, as visible in
Fig. 3.14. At the fixed sequencing depth of 40 used in the experiment, it becomes al-
most impossible to process datasets with noise levels of above 3.75%. Indeed, in noisier
dataset distributions (such as 7.50 and 15.00%), the peak of true edges are merged in the
low frequency error-induced peak.

This effect can however be mitigated by increasing the coverage, as shown in Fig. 3.15,
where the edge distribution can be improved by leveraging deeper sequencing. However,
this higher coverage is performed at the expense of an increased memory consumption,
calling for larger scale machines.
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Figure 3.14: k-mer spectrum of the (a) ID0_40X dataset (30k-nucleotide, 31-mers, 40X coverage)
and (b) IDN_40X dataset (3M-nucleotide, 31-mers, 40X coverage) with increasing error rates. The
distribution peak is pushed toward lower edge weights until noise and true edges become indistinguishable.

	0

	1000

	2000

	3000

	4000

	5000

	0 	10 	20 	30 	40 	50 	60

Co
un

t

Edge	weight

	40X
	60X
	80X
120X

Figure 3.15: k-mer spectrum of the ID0_40X dataset (30k-nucleotide, 31-mers, 3.75% error per read)
with increasing sequencing depths. Increasing the coverage help in mitigating the effect of the noise,
despite an increase in memory consumption due to redundancy.
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Corrected operating coverage

As our preprocessing strategy targets the identification of correct k-mers in the graph
based on their weight, having a good estimate of the average weight for a valid k-mer is key.

Interestingly enough, we observe that the operational coverage decreases with increas-
ing error rates on k-mer spectrums visible in Fig. 3.14. As the synthetic dataset generator
used performs random base substitutions, each base has an alteration probability of e.
Thus, the probability that each base in a k-mer is correct is (1 − e)k. Consequently,
the operating coverage is altered in a similar fashion, hence we calculate the operational
coverage cop using ct and the error rate e, with the following formulation:

cop = ct × (1− e)k

Conversely, the above formula helps assessing the minimum required sequencing depth
to achieve a defined cop for a given configuration (k, rl, e).

3.2.3 DBG preprocessing algorithm

Having analyzed the nature of the DBG and its k-mer weight distribution, this section
presents a novel DBG preprocessing algorithm for de novo assembly. This section details
the rationale behind this algorithm, introduces the GraphLab graph-processing framework
and how it was leveraged to implement this preprocessing.

Edge capacity propagation algorithm

The target of our DBG preprocessing algorithm is to remove invalid k-mers and to identify
for each k-mer the number of times it appears in the source genome. We call this k-mer
occurrence count a capacity as it will be used for DBG Eulerian-walks during assembly
stages. Edge capacities can only be derived from their DBG weight counterpart. However,
as previously stated, DBG weights follow a Poisson distribution which means that there
is no straightforward link from a given weight to a given capacity.

The rationale behind the proposed method is to rely on edges whose capacities can be
determined at initialization and propagate their capacities to yet-unvaluated neighboring
edges, as pictured in Fig. 3.16. Such edges are the ones which exhibit a weight close
to the determined operation coverage cop. Hence, we define a tolerance range tol as the
interval around cop for which a k-mer weight is close enough to cop to be considered as
valid. Consequently, an edge is assigned a capacity of 1 if its weight is within cop ± tol.
Such edges are called seeds as they serve as source to the capacity propagation. The
tolerance can be tuned to generate more or less seeds at the beginning of the algorithm.
If the tolerance is too high, false positives may rise in the resulting graph, i.e. erroneous
k-mer may be considered valid. On the other hand, a too selective tolerance may slow
down the execution or block capacity propagation.
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(a) Edge capacity propagation

a ν0 a a ν1 a a ν2 a a ν3 a1 ? ?
30 26 25

(b) Capacity determination
Step Edge v0v1 Edge v1v2 Edge v2v3
init 1 ? ?
1 1 1 ?
2 1 1 1

Figure 3.16: Edge determination using capacity propagation. Figure (a) shows a graph part over which
is executed capacity propagation. Edges have capacities (up, ’?’ is undetermined) and weight (down).
Table (b) details the execution of the algorithm. Edges e12 and e23 are valued using the initially determined
capacity of the edge e01.
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29

29 29
29
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Figure 3.17: Error-induced bubble in a 3-mer de Bruijn graph. The expected sequence ATTCGAT is
sequenced using a 30x sequencing depth. Considering an error in a read, where the C is substituted for a
A (e.g. ATTAGAT is read instead, in one read), a k-long bubble in the graph can be observed. This bubble
can be mitigated using an adequate threshold value (low weight edges would be removed) or by allowing a
greater tolerance around the coverage (edges of weight 29 would be considered determinable).

As previously mentioned, the DBG contains weak k-mers, whose weight is insignificant
compared to the expected cop weight. To quickly remove such nodes/edges in the DBG
we use a threshold th under which edges are assumed to be invalid. A too high threshold
value may filter out valid k-mers that were not well covered by the sequencing. Conversely,
a too low threshold value will keep many invalid k-mers that will hamper execution speed
and increase memory requirements. Figure 3.17 illustrates how bubbles can be mitigated
by adequately setting such a threshold.

The proposed algorithm is structured in four steps. During the parsing step, we create
the DBG from source NGS sequence reads. Then, the pre-filtering step removes all edges
which weight is lower than th. In the capacity initialization step, we assign a capacity of 1
to edges which weight are within cop± tol. All other edge capacities are left uninitialized.
Then an iterative propagation step starts, during which every node checks its input and
output edge capacities to determine its own capacity. If it succeeds and only one of its
edges is undetermined, the node can update this edge to balance its input/output edge
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(a) Alternating edge propagation and dead-end branch elimination

aν0a aν1a

aν2a aν3a

aν4a aν5a
1 ?

?

?

? ? ?
30 24

2

1

26 27 28

(b) Alternating edge capacity determination
Step Dir. e−0 e01 e12 e23 e14 e45 e5+
init 1 ? ? ? ? ? ?
1 out 1 1 ? ? ? ? ?
2 in 1 1 ? 0 ? ? ?
3 out 1 1 ? 0 ? ? ?
4 in 1 1 0 0 ? ? ?
5 out 1 1 0 0 1 ? ?
6 in 1 1 0 0 1 1 ?
7 out 1 1 0 0 1 1 1

Figure 3.18: Determination of edge capacities over a graph containing a dead-end branch eliminated by
zero-propagation. Figure (a) shows the graph processed, with only a single determined edge (e−0) and a
dead-end branch (nodes v2 and v3). Tab. (b) details the edge determination in the graph along iterations.
The alternating mechanism enables the processing of out- (respectively in-) edges during odd (respectively
even) iterations as shown by the Dir. column. At the end of the execution, the erroneous tip (e12 and
e23) is removed (i.e. capacities are set to 0).

capacities. Indeed, valid k-mers shall be connected to their predecessor/successor in the
genome as soon as an error free (k + 2)-mer read sequence covers it. The propagation
step ends when no edges are left undetermined or if the number of undetermined edges is
constant between two successive iterations.

Source (respectively sink) nodes of the DBG have no input (respectively output) edges,
therefore they always get assigned a capacity of 0. Such nodes are mostly generated by
read errors at the beginning/end of a read. As a result, propagation of 0 capacities helps
removing dead-end branches in the graph1. An example of dead-end branches removal
from a graph using zero-capacity propagation is shown in Fig. 3.18.

As one can see this algorithm can be extensively tuned by setting the threshold th,
and the tolerance tol, as illustrated in Fig. 3.19. It is also impacted by the cop which
depends on the NGS technology (through the read length and the read error rate) but
also on the k-mer size which is user defined. In the following, we present the GraphLab
implementation of our algorithm.

1 However, this also inserts 0 capacities at the real source/sink of the genome which can trim the
genome boundaries. This has a very limited impact on genome assembly, as relevant materials are
usually not located on boundaries.
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Figure 3.19: 31-mer spectrum of the 3M-base dataset illustrating the impact of parameters. A threshold
value of 6 is appropriate to remove weak k-mers. An example of tolerance interval is depicted as well as
the operating coverage.

3.2.4 Vertex-centric implementation of the algorithm

GraphLab programs are usually constituted by a parser, a graph structure and several
execution engines driving the execution of update functions. Prior to parsing, the input
file containing the reads is split across cluster nodes. This step is not mandatory but
allows to execute the parsing step in parallel. At parsing, each read is decomposed in
overlapping k-mers in order to create graph nodes and edges.

Concretely, a graph node is a class describing a k-mer and embedding information
such as an ID, and the k-mer meta-information such as inbound/outbound capacities.
Graph edges hold a pair of values, being the edge weight and its capacity. Once the
parsing step is done, the data structure holding the graph is committed. Then, a folding
operation is executed over edges to merge duplicates into single edges thus assigning their
(k + 1)-mer count to their weight. At the end of this folding step, both the pre-filtering
and the capacity initialization steps are performed, resulting in a cleaned-up graph with
assigned seed capacities.

The main execution engine is then allocated and update function can start their iter-
ations. To comply with GraphLab’s programming model, the update function is divided
into three minor steps described hereafter.

• Gather step: every vertex independently gathers its input and output edge capaci-
ties.

• Apply step: every node determines its own capacity and attempts to determine its
edges’ ones. This function is executed following an alternating scheme. On odd
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(respectively even) iterations, every node attempts to compute its own capacity
using their output (respectively input) edge capacities, and to determine their input
(respectively output) edges’ ones whenever applicable. This alternating behavior
ensures that no write conflicts occur on edges, as no concurrent nodes attempt to
write on a same edge.

• Scatter step : Any edge determination is committed (if applicable). Then, every
node is either rescheduled or halted if it has converged (i.e. when every neighbour
edge capacities are set).

The algorithm is executed using the synchronous execution engine, that is, supersteps
are synchronized to ensure data consistency. This implies that no vertice can start an
iteration until every active vertices have terminated the previous one. The engine then
considers to have converged when there is no more active node, implying that no undeter-
mined edge remains. Convergence is also reached when it is impossible to determine any
more edges, i.e. when the number of determined edges is constant, the execution engine
is then stopped.

3.2.5 Materials and methods

Accuracy metrics

In order to assess the accuracy of the introduced filtering algorithm, we have defined a
set of metrics, defined in the following. The misvaluation rate µm is the share of edges
which capacities have been erroneously set. As synthetic datasets were used, the reference
genome is available to measure the three following errors for each run:

• False negative: We define false negatives as edge capacities erroneously determined
to a lower value than expected. A particular case is when 1-valued edge capacities
are set to 0. The amount of false negatives is evaluated by counting the share of
edges with a null capacity that do belong to the original genomes.

• False positive: Conversely, we define any edge which capacity has been over-defined
as a false positive, and specifically, erroneous edge capacities set to 1.

The misvaluation rate µm is formally defined as follows, where EDBG, Efp and Efn are
respectively the edge count of the graph, of the false-positives and the false-negatives.

µm = Efp + Efn

EDBG

Another useful metric is the undetermination rate µu, which is the ratio of the remain-
ing undetermined (k + 1)-mers over the total number of (k + 1)-mers:

µu = E−1

EDBG
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Similarly the correct determination rate µ can be defined using the previous metrics:

µ = 1− (µu + µm)

This metric is of interest as it assesses the rate of good decisions, e.g. erroneous k-mer
capacities cleared and correct k-mer capacities set to the appropriate value.

Finally, the reconstruction rate τr is defined as the ratio of genome edges correctly
determined over the total genome edge number, with Eco being the set of edges correctly
determined belonging to the genome and N , the genome length in base:

τr = Eco

N − k + 1

Though this last metric is, as µ, an accuracy metric, it differs in that it represents the
proportion of genome that can be reconstructed — it does not account for error-removal
efficiency. These metrics enable a standalone validation of the method on synthetic bench-
marks and were used to evaluate the impact of noise over synthetic benchmarks and infer
the robustness of the method.

Synthetic dataset generator

In order to validate the implemented algorithm and for development purposes, a two-
stage parallel dataset generator was implemented and used. In a first step, a synthetic
genome sequence is generated using a random number generator. In a second step, reads
are performed in parallel over this sequence, aiming to achieve a given sequencing depth.
Specifically, every time a read is performed, a random number is used as a start position
for the read.

In order to measure up to which error rate the proposed algorithm performs correctly,
we implemented a tunable error function in the generator. Hence, each read is individ-
ually altered according to a given error rate. When a dataset is referred to as having
a 1% error rate, it implies that on average, 1% of the bases have been altered in every
read. In the error model used in these experiments, only substitutions are performed, at
random positions within the reads. Despite its apparent simplicity, this model remains
practically relevant, as base substitution is by far the most common kind of detected
errors in reads [52].

The main benefit of using synthetic datasets lies in the possibility to check and validate
the output of the algorithm without requiring a proper assembly stage. It also helps to
understand how the algorithm would perform for various NGS.

3.2.6 Experimental results

Experimental results are presented in this section. Unless stated otherwise, results are
obtained on the HC platform with a 4-node cluster configuration, datasets have a se-
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(b) 3M-base genome
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Figure 3.20: Algorithm accuracy with varying error rates for (a) 30K-base and (b) 30M-base genomes
(tolerance set to 1, threshold set to 6, coverage is 40). Required iterations to convergence is reported on
the τr plot for each dataset.

quencing depth of 40 and a value of 31 is used for k. First, a review of the efficiency
of the algorithm with increasing error rates is presented. Then, the impact of the toler-
ance parameter is investigated. Finally, the operating performance and scalability of the
algorithm is discussed with respect to increasing cluster sizes.

Increasing NGS error rate: impact on accuracy and algorithmic limits

In order to assess the algorithm accuracy, experiments were performed using datasets
with increasing error rates at a modest sequencing depth of 40. As shown in Fig. 3.20,
the algorithm is able to process datasets up to an error level of 3.75% with a correct
determination rate of more than 90% with both datasets. This rate reaches more than
99% up to a 1.5% error rate, with a τr similarly high in both datasets. This is compatible
with real-world datasets, as NGS usually produces sequencing data with an error rate
around 0.5–1.5% [52]. As a comparison, for a target genome of 3M base, the unfiltered,
raw DBG with a 3.75% error-rate has around 40M edges, hence 92% of the edges are
erroneous.

When increasing tolerance, an improvement in terms of convergence and accuracy is
observed in Fig. 3.21(a). The convergence improvement can be explained by the fact
that more seeds are initially determined, thus propagating edge capacities faster. The
accuracy improvement lies in both an appropriate thresholding reducing the possibility of
misdetermination by removing weak k-mers, and a better capacity propagation hampering
misdetermination due to zero-propagation at boundaries. However, when tolerance is
too high, a rising false positive rate is observed, lowering accuracy. This fact is further
increased with low operating coverage (e.g. high error rate and low sequencing depth).

Finally, in Fig. 3.21(b) is depicted accuracy for the 30k-base genome for an error-rate
of 3.75% with varying sequencing depths. The increase in sequencing depth improves cop,
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(b) 30k-base genome
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Figure 3.21: (a) Impact of the tolerance parameter on accuracy of the processing of the 30k-base genome
(threshold set to 4, error-rate: 3.75%). (b) Impact of the sequencing depth on accuracy for the 30k-base
genome (threshold set 5, error-rate: 3.75%).

as visible in Fig. 3.15, and improves as well the accuracy. In particular, a τr of 82.57% is
observed with c = 40 while τr of at least 95% are observed for c > 60. However, though
result improvements are interesting, it should be noted that the coverage increase required
for such purpose causes an important growth in input data volume.

Algorithm behavior and scalability performances

The execution is guaranteed to converge as the number of active nodes can only decrease or
remain constant over time, hence triggering the convergence condition in both cases. The
number of active vertices over iterations of various relevant algorithm runs is depicted in
Fig. 3.22. It is visible that the number of active vertices follows a decreasing exponential,
impacted by the error-rate.

Notably, it was observed that higher error rates require fewer iterations to converge
in comparable settings. This can be explained by the k-mer distribution: with increasing
error-rates, the average operating coverage decreases, but the associated edge count rises
(see Fig. 3.14), implying a rise in the number of initialized seeds. Indeed, with a greater
number of edges initialized at the beginning, more edges can be determined in an iteration
hence accelerating convergence.

Finally, a GraphLab implementation is evaluated in terms of execution performances
and scalability. The scalability of the method is of particular importance as real-world
datasets can be relatively large. As an example, though the genome of the Escherichia
coli bacteria is a few million nucleotides long, the human genome is more than 3G-base
long, making scalability key for e.g. personalized healthcare applications.

To assess the scalability properties of the implementation, the algorithm was bench-
marked with constant parameters over error-free datasets of increased lengths with in-
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Figure 3.22: The figure shows the number of active vertices in the graph during the execution, for four
different runs of varying of error-rates of the 3M-base dataset. Active vertice count axis in log scale.
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Figure 3.23: Evolution of wall execution time with increasing input genome sizes for two cluster con-
figurations.

creasing cluster sizes. At first we compared the evolution of the wall-clock execution time
with increasing genome sizes, depicted in Fig. 3.23, for two cluster configurations. The
wall execution time scales linearly with respect to the input genome sizes, with a slope of
0.9 and 0.65 for respectively the 4-node and 8-node cluster configurations.

When analyzing in details the behavior in Fig. 3.24, it can be observed that, with
respect to fixed size datasets, parsing and graph commit show a nearly linear speedup
on even the 18M-base genome. However, the execution engine speedup is linear only
up to the 7-node configuration as the dataset becomes too small to benefit from such
architectures.

Figure 3.25 shows that increasing the amount of compute resources improves the
total execution time. When distributing smaller datasets on increasing scale clusters, the
compute part becomes less efficient. However, the speedup provided to parsing and other
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Figure 3.24: Speedups observed on parsing, graph commit and execution, for a 18M-base genome on
varying cluster sizes. Though parsing and graph commit speedups are linear, execution speedup is linear up
to the 7-node setting only, indicating an inefficient execution for larger scale settings due to underloading.

parts is able to compensate for this inefficiency, hence resulting in a globally accelerated
execution.

The performances of the implementation in terms of update rate are presented in
Fig. 3.26. In particular, higher execution performances are achieved when nodes are
loaded with large enough graphs. This effect is particularly visible for larger clusters
and relatively smaller instances (e.g. 9-node configuration and 3M-base datasets). In
such disadvantageous case, the cost of managing the distributed architecture is high with
respect to the problem being solved and becomes only bearable with growing instances. In
other words, the performance benefits of adding machines are more significant for larger
datasets (i.e. 13-15M-base), hence, scalability in performance is achieved with increasing
datasets and cluster sizes.

3.2.7 Synthesis

De novo assembly of short reads shows promising perspectives for personalized healthcare
applications, even though it faces great challenges in terms of data volume and complexity.
Read error mitigation is still an important challenge and an active field of research and
emerging parallel and distributed software libraries can help in tackling this challenge.

We presented in this section an exploratory study of a novel preprocessing algorithm
for de Bruijn graph filtering in the context of de novo assembly of short reads. The
experiments on synthetic datasets showed good determination rates even for high read
error rate compared to the precision standards of real-world next generation sequencers.
This unveils encouraging opportunities for this method as we plan to integrate this pre-
processing module into a greater whole-genome assembly framework. With this complete
assembly toolchain, a more thorough comparison with state-of-art solutions, in terms of
both reconstruction quality and speed, will be conducted.
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Figure 3.25: Execution time with varying cluster configurations, for different datasets. Larger datasets
notably benefits from higher speed-up when scaling out on larger cluster configurations, indicating a possible
under-load on smaller datasets.
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Further validations are expected using more elaborated dataset generators [59] and
optimizations such as the use of read Quality Value to filter low accuracy reads could
be implemented to further improve results. Future work will also target the automated
identification of the most adapted filtering parameters values (coverage, threshold and
tolerance) for a given sequencing technology. We also plan to identify, for any given
NGS technology, the optimal coverage required to produce high quality sequences with
our filtering algorithm. In this work, we demonstrated the relevance of GraphLab as
a parallel middleware for graph-processing in the context of DBG-based computations.
The presented algorithm showed interesting operational performance properties. In par-
ticular, the method exhibits performance scalability with increasing dataset and cluster
sizes. However, a number of tunable GraphLab parameters could be explored to further
understand execution behaviors and achieve the best performances.

In a future work, we plan to measure the accuracy of our method on real datasets.
In particular, it would be of interest to validate the algorithm accuracy when dealing
with genome regions known to exhibit many repetitions such as the Human Leukocyte
Antigen (HLA) region. Indeed, such repeats will result in DBG edges with capacities ex-
ceeding 1. We expect our capacity propagation method to help attribute correct capacities
to highly repeated edges, where ambiguity is the highest.

3.3 Concluding remarks

In this chapter, we introduced two real-life use-cases from different applicative domains,
relatively distant from the social mining area from which GraphLab originates. In both
cases, the use of GraphLab enabled the seamless deployment of both algorithms on various
machine scales and for different problem sizes. During the implementation process, we
were able to appreciate the appropriateness of the vertex-centric programming model for
such graph analytic tasks. This expressive model enabled a relatively fast development
time and concise source code base.

Even though GraphLab greatly facilitates the development of graph applications, many
tuning knobs are at hands. In particular, we notice that the choice of the ingress method,
responsible for the partitioning of the graph, is of particular importance with respect to
operating performances. Indeed, while GraphLab features many different methods for
partitioning graphs, we found that the oblivious ingress method is superior to the other
in every case, for the graphs we processed. However, as GraphLab displays replication
factor after having committed the graph, quickly evaluating the best ingress method is
possible.

The scalability of a GraphLab program must be seen along mainly three different
axis, namely input parsing, graph commit and execution. Parsing and graph commit
seem fairly linear for each application, with respect to both problem size and machine
scale. About scalability of the execution engine, we observed that for insufficiently loaded
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configurations, poor operating performances are extracted as the parallelism manage-
ment cost is rising with respect to the problem size. Notably, we observed that the use
of throughput metrics, such as the update rate and the whole process update rate, is
of particular relevance to assess the execution behavior with respect to scalability. In
particular, we observed operating points of interests, gathered in thee operating ranges,
for both use-cases in which we would like to set the system in.

Finally, even though the de Bruijn graph filtering algorithm is not suitable for an
asynchronous execution as is, we noticed that this execution mode exhibits lower perfor-
mances when compared to synchronous execution on the program trace analysis use-case.
This observed decreased performances seemed to be due to a steep increase in network
traffic, however many tuning knobs specific to the asynchronous execution remain to be
explored through further research.

Having reviewed the software-related aspects of vertex-centric programming, we focus,
in Chapter 4, on understanding how the hardware architecture impacts performances.
We will aim at generalizing the observations made in the course of this chapter for both
use-cases, using the variety of hardware systems at hand, described in Chapter 2. The
proposed performance comparison highlights advantages and drawbacks of current dis-
tributed architectures for graph-processing. Eventually, we present in this chapter a
method based on throughput analysis can for the adequate sizing of compute clusters.

Finally, in Chapter 5, we formulate hardware propositions for the design of cluster
in the context of graph analytics algorithms. In particular, we evaluate the relevance
of an emerging HPC platform based on embedded computer technology using the two
aforementioned use-cases.
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Distributed architecture exploration
for efficient graph-processing
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As highlighted in Chapter 1, graph-processing libraries based on the vertex-centric pro-
gramming model have raised interests in the context of High-Performance Data Analytics
(HPDA). In particular, such libraries claim to provide a fairly good compromise between
programming productivity (i.e. shortened development time) and operating performances
(i.e. efficient and scalable execution behavior) by leveraging large-scale distributed archi-
tecture while reducing the burden of handling parallel aspects of the programming.

Amongst such tools, we have chosen to focus on GraphLab as it exhibits a great
level of maturity and compares favourably to other related frameworks for vertex-centric
graph-processing, as discussed in Chapter 2. However, going more into the details of the
implementation of GraphLab programs shows that they are composed of different parts
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whose parallelism degree and execution time vary. In fact, the algorithm itself may exhibit
a varying degree of parallelism during the course of its execution — not mentioning the
impact of the graph data, as seen on the trace analysis use-case in Chapter 3. This makes
more complex the assessment of the performances of such workloads solely relying on
traditional benchmarking metrics such as floating point operations per second (FLOPS)
or wall-clock execution time.

In Chapter 3, we showed that GraphLab is a tool of much relevance in order to solve
realistic graph-related problems on two real-life use-cases. These experiments enabled
to gain practical knowhow about operating and evaluating GraphLab on distributed ar-
chitectures. In particular, using the dedicated metrics introduced in Chapter 2 and the
throughput charts we proposed in Chapter 3, we observed that while executed and de-
ployed on different hardware architectures, both use-cases exhibited a similar threefold
performance behavior.

However, though we identified some software-related insights about performances
(e.g. asynchronous execution or dataset properties), the impact of the underlying hard-
ware architecture on performances was not addressed in the previous chapters. Hence, this
chapter aims at investigating this issue by comparing performances of both algorithms
on the architectures available in this work. In particular, we investigate in details the
question of whether high-end architectures, such as the high-performance cluster (HC),
or desktop workstation installations, such as the low-end commodity-cluster (LECC) and
the larger-scale commodity cluster (LSCC), are the most adequate choices for graph ana-
lytics using vertex-centric libraries. Finally, having identified adapted hardware for HPDA
applications, the course of this chapter leads towards an approach for appropriate cluster
dimensioning with respect to a given instance size of a problem.

4.1 Assessing performance and operating ranges

In the following section, we gather previously observed operating ranges. Then, we details
relevant cluster configurations and operating points. Finally, we introduces the experi-
mental parameters of the performance study with respect to each of the two use-cases
and general GraphLab parameters.

4.1.1 Operating ranges

Underloaded range

In this operating range, adding compute nodes to the cluster results in decreased through-
put performances. In particular, although it may slightly improves global performance
by accelerating e.g. the parsing step outstandingly, it does not improve the update rate
at all. Indeed, when the cluster size increases, the per-node workload decreases, implying
a rise in the relative cost of parallelism management (communication and scheduling).
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Nominal range

In the nominal range, throughput is increased significantly when compute nodes are added,
hence a certain form of scalability is observed. In such operating regime, compute nodes
are loaded enough to benefit from the added compute nodes. To stay in this operating
range, the input dataset size must increase along with cluster scale.

Overloaded range

When the size of the graph being processed becomes larger than the available memory, the
execution begins to require the use of swap space — that is, virtually extending memory
using permanent storage, e.g. a hard-disk drive. In this operating area, performances are
significantly decreased due to the costly swap-in/swap-out operations.

Due to the configuration of the HC system, it is hardly possible to observe this range
of operation, hence the following HC figures are plotted until the last operating point
observed. Indeed, each HC node is configured so that it provides 128GB of RAM and
only a moderate 4GB of swap partition — a memory space instantly consumed once the
vast available memory is already filled.

4.1.2 Targeting an efficient operating point

We argue that using operating performance charts (update rate and whole-process through-
put) with respect to cluster scale and problem size, it is possible to select appropriate
resource configurations for efficient processing of a dataset. In particular, we define the
following two cluster configurations of interest with respect to the aforementioned oper-
ating ranges, for a given problem size:

• The minimum cluster scale is the minimum number of required machines to process
a graph in the nominal operating range. In this operating point, the system is closer
to the limit with the overloading range as the per-node workload is the highest.

• The maximum throughput cluster scale is the cluster configuration at which the
highest throughput is measured in the nominal operating range for a given prob-
lem size. Operating under such conditions implies that the system may reach the
interface between the nominal and underloaded ranges, as the per-node workload
decreases with increasing cluster scale.

The throughput performance chart is essential to identify these operating points and
allocate resources accordingly. Furthermore, we define also:

• The peak performance point, which is the operating point where the cluster config-
uration gives its highest throughput for a given cluster scale.

• The system peak performance point, which is the peak performance point of the
largest available cluster configuration.
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4.1.3 Experimental parameters

Unless stated otherwise, all the following performance figures were obtained using the
parameters described hereafter. The oblivious ingress method was used for each exper-
iment as it was previously proven to be the best partitioning policy in terms of usage
flexibility and graph replication factor1. The synchronous engine was used consistently
throughout these experiments and GraphLab was configured so that one thread per avail-
able core and one process per machine were used. The results were written to four output
files per nodes, a default value provided by the framework.

The study was conducted on the two algorithms presented in Chapter 3. For the trace
analysis use-case, the matrix-multiply kernel was scaled up to graphs larger than 1.4 109

vertices. Input files were split in 32 parts located on a distributed filesystem for the LSCC
and HC platforms.

Concerning the De Bruijn graph (DBG) filtering algorithm, synthetic datasets were
processed. The synthetic datasets all exhibited the same sequencer properties (read
length: 100, sequencing depth: 40, error-rate: 0.75%) with increasing genome scales
(from a 30k-base to 40M-base genome). Input files were split in 144 parts2 and issued
using the synthetic dataset generator previously introduced in Chapter 3. Unless stated
otherwise, a k-value of 31, a tolerance interval of ±2 and a threshold set to 0 were used.

4.2 Comparison of distributed architectures for graph-
processing

In this section, we compare the operating performances of two competing systems, the
LSCC and the HC platforms. However, the LECC performances are shown as a reference
baseline in some cases. First, a profiling is performed with each system in order to gain
insights on how the wall-clock time is spread among parsing, processing, graph commit and
save. Then, throughput-based figures are compared, and aspects of the execution related
to scalability and asynchronous performances are investigated. Finally, a synthesis is
presented in order to eventually conclude on the relevance of these platforms for vertex-
centric graph-processing.

4.2.1 Analysis of GraphLab program profiles

In order to gain a first understanding of how each architecture behaves with the provided
implementations, we performed a coarse-grain profiling of the use-cases. In particular,
we investigated the share of wall-clock time spent respectively in parsing, graph commit,
processing and saving, as shown in Fig 4.1 for a 6-node configuration of each system.

1See Sec. 3.1.4
2Indeed, the parallel machine used to generate datasets featured 144 cores, fully exploited by the

parallel dataset generator to reduce the generation time.
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(a) Profiling figures for the low-end commodity cluster
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(b) Profiling figures for the larger-scale commodity cluster
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(c) Profiling figures for the high-performance cluster
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Figure 4.1: Comparison of profiling figures of the program trace analysis use-case on various archi-
tectures, expressed as share of time spent in different part of the program. Each system is profiled in a
6-node configuration and timings are obtained using embedded timers in the code.
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Firstly, the two commodity clusters exhibit a similar behavior where the processing
time dominates fairly (Fig. 4.1(a)-4.1(b)). Both architectures show a low graph saving
time share, while parsing and commit represent about a half of the total execution time. In
comparison, the HC exhibits a wall-clock time almost equally shared between processing,
parsing and commit (Fig. 4.1(c)).

Since most of the commit step is spent in memory allocation and graph partitioning,
no particular optimization can be leveraged from an end-user perspective. On the con-
trary, attention must be paid to parsing (at least 20% of the wall-clock time), as it is an
embarrassingly parallel step. In such case, adequately splitting files — on a per-machine
basis — to match the number of cores available in a cluster node can be advantageous.

It is to be noted that the aforementioned operating ranges can be glimpsed on the
profiling figures. By way of example, the overloaded range can be seen clearly on the
rightmost part of the two commodity cluster plots. In this area, the execution engine
share of time is greatly increasing as the swap operations slow down the computations.
By going further into the overloaded range, the commit share of wall clock time is as well
increasing as the operating system begins to swap as early as the commit step, as visible
in Fig. 4.1(b). Similarly, the underloaded range can be guessed as the wall-clock time
share of the execution engine starts at a higher value, before lowering to a more moderate
value in the nominal range.

The profiling figures (Fig. 4.2) differ slightly when considering the DBG algorithm.
First, the processing dominates more clearly the wall-clock time in both cases. Moreover,
the LSCC profile exhibits an interesting behavior: past a certain graph size, the processing
time of the DBG filtering algorithm is decreasing in time-share with increasing graph
sizes. This results from a two-stage commit and a folding step which are performed on
the graph requiring more memory than the following processing step. Hence, the system
actually swaps during the commit step (resulting in a way longer commit time). Then,
as the processed graph is smaller, the execution can be performed with no swap-induced
slowdown. However, when clearly entering the overloaded range 4.2(a) (around 22M
vertices), the commit time share starts to abruptly increase, similarly as in Fig. 4.1(b).

(a) Profiling figures for the LSCC platform
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(b) Profiling figures for the HC platform
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Figure 4.2: Comparison of profiling figures of the DBG filtering use-case on the (a) LSCC and (b) HC
architectures (6-node configuration), expressed as share of time spent in different part of the program.
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4.2.2 Throughput-based analysis

The update rate — that is, the total number of completed update functions divided by
the time spent in the execution engine — is a throughput performance metric defined
in Chapter 2. In the following, we investigate and compare the raw graph-processing
performances of the surveyed distributed architectures.

Figure 4.3 shows the performance charts of the platforms for the program trace anal-
ysis use-case. Though they greatly vary in span due to the different amount of available
memory, the same operating behaviors can be observed, regardless of the target machine.
A common observation is that the 2-node configurations are consistently unable to pro-
vide a significant performance gain when compared to single-node baselines. Yet, they
enable the processing of larger graphs. However, this can be seen as a somehow unfair
comparison, as the performance penalty between single- and multiple-node executions is
the highest for the 2-node setup — Indeed, it is then compensated with larger cluster
configurations.

The largest processed graphs by each of the LSCC configurations in the nominal
operating range is, on average, 2.27 times larger than those of the LECC platform, despite
having only twice as much available memory. In contrast, the HC platform can sustain
much larger graphs, as it provides 16 times more per-node memory than the LSCC.

We then compare the commodity clusters at the same operating points, i.e. the peak
performance points. The performance improvement shown by the LSCC over the LECC
is, in average, of 1.68, ranging from a 2× factor for a 1-node setup, to a 1.63× factor for
a 7-node configuration. This throughput increase must be put in perspective with the
greater processor performances and core number provided by the LSCC system compared
to the LECC platform. However, when comparing how the LSCC is performing at the
peak performance points of the LECC system3 using comparable cluster configurations,
the average performance improvement is slightly lower, yielding a gain of only 1.48. In
similar conditions, the HC system exhibits an average throughput improvement of 2.08
over the LECC platform, ranging from a 2.5× factor for a single-node setup, to a 1.76×
factor for a 7-node configuration.

For a given cluster configuration and dataset kernel, we observe that performances
seem bounded with respect to throughput. That is, performances increase with problem
instance (for a given cluster scale), then reach a plateau of peak configuration throughput,
and decrease in the overloaded operating range. This performance plateau is particularly
visible for the HC (Fig. 4.3(c)) system. In comparison, the performances of the LSCC
system (Fig. 4.3(b)) — and of the LECC system (Fig. 4.3(a)), to a lesser extent — seem
to never durably reach such a plateau. This is due to the fact that the memory amount
per compute node, hence the amount of data to process, is too limited to achieve the
peak performance of the cluster configuration. Thus, it could be interesting to increase

3i.e. problem sizes of 9, 14, 20, 24, 28, 32 and 38 million vertices, respectively for configurations
ranging from 1 to 7 nodes.
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(a) Update rate figures for the low-end commodity cluster
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(b) Update rate figures for the larger-scale commodity cluster
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(c) Update rate figures for the high-performance cluster
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Figure 4.3: Performance figures in terms of throughput of the available distributed memory systems for
the program trace analysis use-case. The clusters exhibit a similar threefold operating behaviors comprising
the underloaded, nominal and overloaded ranges.
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the memory amount on LSCC nodes to increase the maximum manageable problem sizes
and also to reach higher performances at a moderate per-node cost. In contrast, the HC
performances converge long before reaching memory saturation, hence indicating that
the per-node memory amount could have been more efficiently used if shared with an
additional node. This would have implied reaching higher system performances, although
at a non-negligible cost.

To investigate further the performance of the HC system, we studied the throughput
obtained on the trace analysis use-case using only 8 instead of the 32 threads recommended
by GraphLab for the featured 32-core bi-processor. Interestingly enough, the throughput
performances do not decrease significantly on such a configuration, reinforcing the idea
that processing such datasets prevents the fruitful leveraging of the massively parallel
architecture of the HC nodes.

When considering the sole update rate metrics for both commodity clusters, it appears
that an interesting point to operate the system in is when the memory is close to satura-
tion. In such an operating point, the cluster configuration delivers its peak performance.
Interestingly enough, when comparing the LSCC and the HC systems, we observed that,
though the HC can address a considerably broader range of problem sizes due to its avail-
able memory, it is outperformed by the LSCC installation in terms of raw performances.
Indeed, the LSCC exhibits a peak performance of 6.61 MUPS (million updates per sec-
ond) whereas the HC only reaches 5.57 MUPS on the trace analysis use-case. This is
even more interesting when considering these system-wide peak performance results with
respect to additional metrics such as the price (UPS/€, or update per second per euro)
or the processor power (UPS/W, or update per second per Watt). Using such metrics,
the LSCC would even more favourably compare, with a 550.8 UPS/€ while the HC only
exhibits a moderate 103.2 UPS/€ at peak performance. The power-related metric con-
firms this statement, with a 4.92 kUPS/W for the LSCC, compared to the 3.44 kUPS/W
of the HC.

(a) LSCC platform
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(b) HC platform
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Figure 4.4: Throughput performance figures of the De Bruijn graphs filtering algorithm on the (a) LSCC
and (b) HC platforms.
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However, these derived metrics provide only a coarse-grain yet relevant appreciation
of the performance of these systems. Indeed, the prices used to compute the throughput-
to-cost ratio is only accounting for the cost of acquisition, hence excluding operating
expenditures. Similarly, the throughput-to-power metric is computed solely relies on the
peak processor power, which only partially reflects the power requirements of the system.

Similar observations can be made with respect to the De Bruijn graph filtering al-
gorithm, despite having less plotted points on the throughput figures shown in Fig. 4.4.
In particular, the HC platform shows a quickly reached performance plateau that the
LSCC system never achieves durably, hence advocating again for an increase in per-node
memory. The HC platform is able to process a much wider range of problem sizes in com-
parison to the commodity cluster, as previously observed. In terms of pure performances,
the LSCC system exhibits a peak system throughput of 5.74 MUPS, outperforming the
peak throughput of 4.49 MUPS reached by the HC system. Hence, with respect to price or
energy aspects, the LSCC system yet again favourably compares to the high-end compute
cluster. Finally, it is to be noted that the performances exhibited on the DBG use-case
are subject to change with respect to the algorithm parameters used (e.g. threshold or
tolerance), which is in contrast with the trace analysis use-case; but also with dataset
properties such as sequencing error-rates.

4.2.3 Whole-process update rates

In addition to the update rate, the whole-process update rate provides global insights on
performance behaviors of our applications on the available clusters. As a larger execution
time is considered, global throughput figures are expected to be lower than the previous
raw performance figures. Figure 4.5 shows the whole-process update rates of the three
architectures on the trace analysis use-case.

In details, the peak throughput of the LSCC system is divided by a factor of 2.28×
when computed globally. This decrease is however of 2.57× and 2.7× for the HC and
LECC respectively. This indicates that these platforms are globally behaving similarly
with respect to non-processing tasks — i.e. the impact of such tasks is similar on both
systems. When the share of time spent in the execution engine of the GraphLab program is
decreasing, the global throughput is decreased similarly. This is particularly visible for the
HC and LECC systems (Fig. 4.5(c) and 4.5(a)) which spend less time in pure processing,
at peak throughput points, compared to the LSCC system. Indeed, when observing the
profile shown in Fig. 4.1(c) at peak configuration points, the shares of processing time are
30%, 39% and 35%, for respectively the LECC, LSCC and HC systems.

Previously, we highlighted the fact that usually, the 2-node cluster configurations
hardly outperform single-node baselines in terms of raw throughput performances. How-
ever, when considering things from a more global point of view, i.e. using the whole-process
update rate, we observe that performances are actually improved, despite not being vis-
ible on the throughput-only figures. This is explained by the fact that the parsing and
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(a) Whole-process update rate figures for the low-end commodity cluster
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(b) Whole-process update rate figures for the larger-scale commodity cluster

	0

	0.4

	0.8

	1.2

	1.6

	2

	2.4

	2.8

	3.2

	0 	20 	40 	60 	80 	100 	120 	140 	160 	180

Th
ro
ug

hp
ut
	(1

0
6 	U

pd
at
es

/s
ec

)

Problem	size	(106	vertices)

Cluster
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(c) Whole-process update rate figures for the high-performance cluster
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Figure 4.5: Global performance figures of available distributed memory systems for the program trace
analysis use-case. The whole-process update rate is plotted for various cluster configurations with growing
graph instances.
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(a) LSCC platform
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(b) HC platform
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Figure 4.6: Global performance figures of the (a) LSCC and (b) HC systems for the De Bruijn graphs
filtering algorithm.

graph commit steps are able to further benefit from the additional compute resources,
hence compensating the distributed penalty observed during the processing.

As seen for the throughput analysis, the global performance charts of the DBG al-
gorithm are similar to those of the trace analysis use-case. The most notable difference
with the DBG use-case lies in the reduced performance decrease between throughput and
global throughput exhibited by both systems, as shown in Fig. 4.6. This is mostly ex-
plained by the profiling figures seen in Fig. 4.2, which shows that the processing accounts
for about 90% of the wall-clock time for both systems. Moreover, with this use-case, the
peak global performance of both systems are rather close, with the HC slightly outper-
forming the LSCC platform, although only without accounting for power or cost metrics.
However, we foresee that with an increased per-node memory, the LSCC would eventually
exceeds the HC performances. Further experimentations shall be conducted to validate
this point.

4.2.4 Asynchronous execution performances

During the study of the trace analysis algorithm in Chapter 3, the performance analysis
of the algorithm on the LECC system shown that the asynchronous execution raised
lower performances with respect to the synchronous execution4. We performed a similar
analysis on the two other clusters in order to understand if larger processors with more
cores would be able to benefit from the asynchronous execution. However, as previously
explained in Chapter 3, the way the DBG filtering algorithm is implemented prevents the
use of the asynchronous execution, hence it is not considered in the following.

Figure 4.7 shows that the asynchronous execution of the trace analysis algorithm still
exhibits poorer performances than when using the synchronous engine, even on larger
machines and configurations. In details, the LSCC system only reaches 39% of its peak
synchronous throughput (comparable to the 38% shown by the LECC system in Chap-

4See Sec. 3.1.4
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(a) LSCC platform
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(b) HC platform
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Figure 4.7: Throughput performances of the asynchronous engine on the trace analysis use-case for
the (a) LSCC and (b) HC platforms.

ter 3). We observe also that the degradation when transitioning from the nominal to the
overloaded operating range is slightly less abrupt with respect to the synchronous results.
In comparison, the HC cluster is able to reach 58% of its peak synchronous performance.
The fact that the HC system behaves slightly better than the LSCC platforms is explained
by its larger number of per-node cores, more beneficially used in this context.

Finally, though observed performances are lower, further work should be conducted
in fine tuning the scheduling options of GraphLab execution engines. Indeed, considering
this algorithm, datasets exhibiting vertices with updates of variable length should benefit
from asynchronous execution as every vertices can further execute iterations without
waiting for global synchronization.

4.2.5 Performance scalability

We define vertical scalability as the ability for a system to continuously improve its pro-
cessing performances on a fixed-size graph, when adding compute resources. In contrast,
we define operating scalability as the ability for a system to continuously improve perfor-
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(a) LSCC platform
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(b) HC platform
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Figure 4.8: Performance scalability of the trace analysis use-case for the (a) LSCC and (b) HC plat-
forms. In purple are shown performances at a fixed operating point (peak configuration performance) and
in green are shown throughput points for a fixed dataset of respectively 25 and 52 million vertices.

mances with increasing cluster scale and problem size, hence at a fixed operating point
(e.g. the previously defined peak operating point).

Figure 4.8 compares the more traditionally assessed vertical scalability to the operating
scalability of the HC and LSCC systems, similarly to the study conducted in Chapter 3,
for the LECC system5. In particular, these figures respectively show performances with
respect to cluster scale, at a fixed problem size and at an efficient operating point. As
seen with the LECC cluster, both systems exhibit a linear operating scalability compared
with the bounded fixed-instance scalability on a fixed-size dataset.

In particular, when considering the comparison between fixed-instance and operating
scalability curves in Fig. 4.7(a), it can be observed that, for the 25M-node graph, perfor-
mances are linearly improved with increasing cluster scale. However, starting with the
8-node configuration, throughput saturates at about 3.3 MUPS, regardless of the cluster

5See e.g. Fig. 3.7
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scale. In opposition, the throughput at a fixed operating point is improved linearly on
the full cluster scale. Though not as clearly, the HC behaves similarly as the LSCC and
LECC clusters and exhibits a limited fixed-instance scalability compared to the operating
scalability.

Concerning the fixed-instance scalability plots shown, we decided to use problem sizes
processable by the largest number of cluster configurations in both cases. However, the
above statements remain correct with different fixed-instance scalability curves. Indeed,
for a larger graph, the leftmost part of the curve cannot be plotted due to the graph being
too large for the smallest cluster scales. Then, there should appear a somehow linear part
of the curve, until the graph becomes too small for the cluster scale, resulting in stalling
throughput performances.

More broadly speaking, we argue these curves are of particular relevance as they under-
line how scalability should be considered for HPDA applications. Indeed, in the context
of graph-processing — or more generally, HPDA — the problem sizes are continuously
scaling out, hence, operating scalability shall gain more interest than the more classic,
vertical scalability.

4.2.6 Synthesis

In this section, we compared the performances of two commodity clusters and a high-end
compute servers, using two graph-processing algorithms implemented with GraphLab,
which leverages the emerging vertex-centric programming model.

We observed that all systems exhibited a similar three-fold performance behavior com-
prising an underloaded, a nominal and an overloaded area. In terms of largest processed
graph by the platforms, the HC platform is leading as expected, due to its larger amount of
memory. However, when comparing peak performances (execution and global), the LSCC
system outperforms it with respect to both algorithms. Moreover, this performance gap
is further increased when weighing performances with other metrics such as cost of owner-
ship or power, as the LSCC is composed of much cheaper/frugal nodes. This confirms yet
again that commodity clusters constitute a hardware of choice for such memory-bound
computations.

Both clusters have shown that the use of the asynchronous engine — without further
tuning — decreased the performances with respect to the synchronous execution. How-
ever, in this context the HC has shown reduce decrease in comparison with the LSCC.

With respect to scalability, both platforms have exhibited a bounded scalability. How-
ever, when considering increasing problem and cluster scale, they show a linear operating
scalability.

More interestingly, the study of the throughput allowed to highlight additional issues.
Although convenient, the width of the nominal operating range of the HC system and
its performance stall, indicate that the memory per processor ratio is too high. Hence,
reducing the amount of per-node memory and adding supplementary nodes should be
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beneficial to the system in terms of peak performances. However, it is to be noted that
sharing the same total amount of memory on more compute nodes results in a slightly re-
duced maximum manageable graph size due to the higher vertice replication requirements.
In contrast, the LSCC (and to some extent, the LECC) system exhibit a performance be-
havior where the nominal operating plateau is reduced, i.e. there is no clear stabilization
of the performances in the nominal operating range, as seen for the HC platform. This
indicates that the memory per processor ratio should be increased in order to further
extend the nominal range but also to fully exploit processing performance to some extent.

More generally, we have seen that the study of system throughput figures provides
guidance for node architecture upgrades. By way of example, a system too frequently
underloaded may be in fact limited by the cost of parallelism, or by a not parallel enough
problem. In contrast, often operating in the overloaded range may call for additional
memory or compute nodes. Finally, the span of the nominal operating range provides
useful hints on the memory-to-processor ratio. With this in mind, we investigate in the
following section how the use of such performance analysis can further help in designing
clusters for graph-processing applications.

4.3 Throughput-oriented dimensioning of a cluster

Having compared in details the LSCC and HC systems, we demonstrate in this section
how such benchmarking analysis can be used not only to assess individual node efficiency,
but also to adequately size a cluster for a given workload. To this extent, we focus on
translating operating ranges into machine capacity in terms of graph vertices. We then
study the impact of the graph’s replication factor in order to evaluate practically the per-
node capacity of a platform and its ability to scale. Finally, we investigate methods for the
automatic cluster dimensioning before drawing a conclusion and present the perspectives
of this work.

4.3.1 From operating ranges to machine capacity

Dividing throughput figures by the number of cluster nodes provides performances for a
given per-node problem size. More interestingly, it shows the operating ranges observed
with respect to the workload processed by each node, for different configurations. Hence,
it gives the user an estimate of the maximum per-node graph size a configuration can
sustain — or the unit capacity. Indeed, as the vertice type is user-defined and can thus
vary widely depending on the application, it can be particularly difficult to assess how
many vertices can fit on a cluster node prior such a study. However, knowing the unit
capacity of a platform, the estimation of the number of required machines is at hand.

GraphLab defines vertices (or true vertices) as the amount of vertices in the processed
graph, from the point of view of the user. In contrast, it defines replicas as the total
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(a) Low-end commodity Cluster
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(b) Larger-scale Cluster
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(c) High-performance Cluster
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Figure 4.9: Update rate performance characteristics for the (a) LECC, the (b) LSCC and the (c) HC
systems, on the program trace analysis use-case, with respect to the per-node number of graph vertices
(up) and true vertices (down).
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amount of instantiated vertices — in a distributed context, the effective vertex number
in the graph structure. Hence, the number of replica is equal to the number of vertices
multiplied by the replication factor as GraphLab uses a vertex-split policy. The replication
factor is hence defined as: replicas

true vertices, which at best equals true vertices in a single-node
configuration and varies with the ingress policy used. Consequently, we define two terms:

• The true vertex unit capacity of a system, which is the maximum number of graph
vertices a single machine can hold in memory while keeping the system in the nom-
inal operating range.

• The replica unit capacity of a system, which is the maximum number of replicas
a single machine can hold in memory while keeping the system in the nominal
operating range.

In Fig. 4.9 are shown unit capacities of the systems in terms of true vertices and
replicas. These figures are obtained by plotting throughput divided by the number of
cluster nodes per cluster configuration, with respect to true vertices and replicas. The
replica unit capacity is constant regardless of the cluster scale — with scaling throughput.
In contrast, the true vertex unit capacity is decreasing with larger cluster configuration
as GraphLab needs replica vertices for data consistency requirements, hence artificially
increasing the graph size — i.e. the amount of per-node true vertices decreases.

In fact, the true vertex unit capacity figure shows that, at a certain limit, the addition
of machines may not allow the processing of larger graphs in the nominal operating
range. Should this happen, an increase in per-node memory would be required in order
to further extend the nominal operating range and improve performances. This decrease
in true vertice capacity is directly related to the replication factor given by GraphLab,
hence depends on the ingress method used. By way of example, we observed in Chapter 3
that the oblivious ingress method seems to converge around a replication factor of 2 for
the trace analysis use-case. To investigate this issue, we performed an analysis of the
replication factor later in this section.

It is important to note that, though performances may vary with respect to the dataset
used, the unit capacity solely relies on the graph modelization we have implemented
(i.e. the edge and vertex classes used), hence, is independent of the dataset properties.
This is notably because no dynamically allocated members are held by the vertice classes.
However, performances can vary if the graph properties have a negative impact on compu-
tations, such as observed for the deriche kernel on the trace analysis algorithm or with
certain datasets on the DBG filtering algorithm, in Chapter 3. Indeed, these datasets
hampered notably performances by reducing the degree of parallelism.

To summarize, we show in Tab. 4.1 unit replica capacities of our systems. Indeed, the
HC provides the largest unit capacity, with an outstanding 340M replicas for the trace
analysis use-case. In comparison, the LSCC only tolerate 22M replicas per node — a value
about 16 times lower, which is comparable to the difference in available memory of the
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Systems LECC LSCC HC
replica unit capacity (trace analysis) 8.7M 22M 340M
replica unit capacity (DBG filtering) N/A 7M 51M+

Table 4.1: Replica unit capacities of the three platforms with respect to both algorithms.

two systems. With respect to DBG use-case, the observed unit capacity of the LSCC is
of about 7M vertices. However, it was more difficult to precisely assess the unit capacity
of the HC, hence, though we observe a capacity of about 51M vertices, we expect it to be
much larger and further experimentations shall be conducted to address this issue.

4.3.2 Replication factor

As the replication factor is the link between unit capacity in terms of true vertices and
replicas, we focus now on the variations in replication factor with varying cluster scale
and graph size. These variations are shown in Fig. 4.10, for the LSCC and HC systems
on both the trace analysis and the DBG filtering algorithms.

Taken separately, it can be observed that for both algorithms, the replication factor for
a given cluster scale seems to converge asymptotically — a consistent result with respect
to the findings of Sec. 3.1.4. The replication factor is mostly influenced by the number
of machines in the distributed cluster used. However, even with the LSCC system which
shows a larger number of nodes, the convergence of the replication factor is visible. These
figures shows as well that, though the DBG use-case has an almost fixed replication factor
for a given cluster configuration, this factor evolves for the trace analysis use-case. Yet,
even for the largest graphs processed by the 9-node HC configuration, the replication
factor converges. This observed convergence is particularly important as it leads towards
the possibility of rapidly approximating the replication factor expected for a larger cluster
configurations. Hence, one can approximate the size of the processed graph in terms of
replicas for a given configuration and compute the required number of compute nodes.
Finally, at comparable node configurations (e.g. up to 9-node) and graph sizes (e.g. the
range 0-120M nodes), coinciding replication factors are shown by both systems.

This study of the replication factor evolution shows that the ingress method used when
launching a GraphLab instance is crucial. Indeed, all the experiments were performed
using the oblivious ingress methods, as this method is the most flexible and yields the
best partitioning results, as shown in Sec. 3.1.4. Moreover, this also shows that further
optimizations in graph partitioning can lead to capacity improvements as well.

4.3.3 Throughput-based methods for cluster dimensioning

We argue that performing a throughput analysis — even at a moderate scale — is not only
helpful in order to assess scalability and performance properties of a platform and/or an
implementation; but also to perform shrewd resource allocation. First, a moderate-scale
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(a) Replication factor on the HC system for the genomic (l.) and trace-analysis (r.) use-cases
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(b) Replication factor on the LSCC system for the genomic (l.) and trace-analysis (r.) use-cases
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Figure 4.10: Evolution of the replication factor of the (a) HC and (b) LSCC systems with varying
problem size and cluster scale. For each machines, results for the genome (respectively, the trace analysis)
use-case are displayed on the leftmost (respectively, the rightmost) figure.

throughput analysis has to be performed in order to evaluate unit capacities of the system.
Then, an evaluation of the replication factor must be performed. With this in mind, one
can compute the approximate total number of replicas of a graph, once deployed. Finally,
by dividing the replica number by the unit capacity and rounding the result to the upper
unit, a cluster configuration (in node number) is obtained.

The obtained cluster configuration can be seen as a somehow lower bound in terms
of cluster configuration, as it is the smallest number of machines able to process the
given problem size in the nominal range. Yet, though this lower bound can be relatively
easily computed, the upper bound is more difficult to reach. Indeed, the upper bound in
terms of configuration can be seen as the maximum number of compute nodes that set
the system in the nominal range — in such configuration, adding a compute node would
place the cluster in the underloaded range. Thus, as throughput figures can vary with
dataset properties, precisely assess such bound is a tough task, especially with a narrow
nominal operating range such as the one exhibited by the LSCC system.
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In the context of our experiments, we observed, as a rule of thumb, that doubling the
number of machines given by the minimal configuration kept the system in the nominal
range, allowing the achievement of higher global performances. However, these perfor-
mances are obtained at the cost of a higher amount of resources leveraged, resulting in
an increase in cost and power requirements.

To summarize, we foresee two bounds limiting the space in which dimensioning a
cluster. Firstly, a performance-oriented policy, in which the largest number of machines
will be used to process as fast as possible the graph, in the nominal operating range. In
such operating point, the system exhibits its system peak throughput for the considered
problem. Though this may result in the system operating near the underloaded regime,
non-processing parts of the execution (e.g. parsing or commit) may benefit from additional
compute resources yielding an improved global throughput as well. However, due to the
changing performance behaviors with respect to the dataset, it may not be difficult to
set-up such configuration without underloading the compute nodes.

Secondly, an efficiency-oriented policy, in which the smallest number of machines will
be used to operate in the nominal range, near the configuration peak throughput point.
In such case, as a fewer number of machines are used, it leaves room for concurrent
executions of other instances of the algorithm on remaining compute nodes, if allowed by
the network capabilities. Otherwise, they can be left idling in order to reduce the global
power consumption. In contrast with the previous policy, this configuration is more easily
computed, given that vertices have a fixed memory footprint.

4.4 Conclusion and perspectives

We compared in the course of this chapter the performances of two hardware trends —
namely commodity clusters and high-end servers — for vertex-centric graph-processing
using the two use-cases we developed. Figure 4.11 summarizes some of the findings of the
first section of this Chapter. In particular, Fig. 4.11(a) shows the minimum wall-clock time
obtained for each system, whatever the cluster scale, while Fig. 4.11(b) shows the maxi-
mum throughput obtained in similar conditions. Though both systems exhibited similar
behaviors for all use-cases, the LSCC system consistently outperformed the HC platform,
despite a smaller amount of per-node compute resources. This gap in performance is
further enlarged when taking into account pricing or power consumption aspects. Yet,
the HC system was able, thanks to its larger memory, to process larger scale problems.

In terms of architectures, the aspect of throughput curves of both systems calls for a
decrease in per-node memory for the HC platform while the LSCC system would require
the opposite. Hence, a perspective of interest is to investigate different RAM configura-
tions on these systems in order to find an adequate memory-to-processor ratio.

In the second section, we proposed a practical method for cluster dimensioning by
performing a throughput study. We saw that, accounting for the scalability properties of
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Figure 4.11: System for the program trace analysis of the LSCC and the HC systems in terms of (a)
wall-clock time (lower is better, logarithmic scales) and (b) throughput (higher is better). For each metric,
the best value achieved amongst every available cluster configuration is plotted.

GraphLab, the knowledge of the replication factor and the performance behaviors can lead
to compute several valid cluster configurations for a given problem size. Such configuration
prediction routines eventually lead to allocate resource appropriately, whether the aim is
the most efficient or the fastest execution. We argue that such routines could be integrated
into a runtime which would monitor executions and automatically allocate (after a learning
process) resources.

Another perspective of interest could be to take benefits from the changing parallelism
degree between the execution, parsing or commit steps. By way of example, the possibility
to allocate the largest possible configurations at parsing, in order to fully exploit the
inherent parallelism, and then reduce the number of used-machines to process the graph
efficiently in the nominal operating range, shall be further investigated. Finally, as we
glimpsed that the trace analysis algorithm was not able to leverage the large number of
cores of the HC system, it might be interesting to adapt the number of GraphLab threads
to reduce the overall consumption.

Since we compared performances of mainstream distributed architectures and investi-
gated a cluster sizing mechanism, we propose in Chapter 5, architectural improvements for
graph-processing servers. First, as we observed throughout this Chapter, a particularly
interesting point of operation (in terms of throughput) is located towards the interface
between the nominal and overloaded ranges. However, ensuring that the system will not
transition to the overloaded range, resulting in drastically reduced performances, is a
difficult task when the target system provides only a narrow nominal range. Hence, we
describe the benefits a victim-swap mechanism to mitigate this problem and turn the
abrupt throughput decrease into a more graceful degradation.

The performance experiments performed in this chapter have confirmed that graph-
processing applications are memory-bound problems, if needed be. We have seen that
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simpler architectures were able to outperforms higher-end massively parallel servers. Con-
sequently, we investigate the relevance of emerging ARM-based low-power computers for
graph-processing in the next chapter. Indeed, though such platforms shall exhibit lower
performances due to the more frugal processor, it shall be interesting to investigate its
performances with respect to its promising power efficiency. To this extent, we ported
GraphLab to such architectures and performed a throughput analysis of a moderate-scale
ARM-based cluster.
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Chapter 5

More efficient graph-oriented cluster
design
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In Chapter 4, we compared the graph-processing performances of two relevant hard-
ware trends, namely commodity clusters and high-end compute servers leveraging the
two use-cases introduced in Chapter 3. We observed so far that, though being of different
architectures, the three systems exhibit a similar threefold performance behavior. Firstly,
an underloaded range of operation can be witnessed, where the considered problem size
is too small for the cluster configuration, hence the system is not able to fruitfully exploit
the compute resources. Then, with increasing problem size, the system enters the nominal
operating range, where adding compute nodes help in scaling out performances in a rele-
vant and assessable way. Finally, once the processed graph exceeds the memory available,
the swap operations decrease the throughput dramatically as the system operates in the
overloaded area.

We have seen also that the evaluation of performance behaviors is not only helpful in
understanding if the platform is efficient. Indeed, by estimating key characteristics from
the performance charts, we have shown that it is possible to adequately size a cluster,
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with respect to the design objective — maximum performance of minimum resource usage.
Moreover, the study of these performances helped foreseeing hardware improvements to
foster in order to increase performances of the benchmarked clusters.

The studies conducted in Chapters 3 and 4 have shown that, in general, the peak
throughput point is located towards the border between the nominal and overloaded op-
erating ranges. However, even having evaluated properly the unit capacity of a system,
it can be difficult to target precisely this operating point as experimental variations may
push the system in the overloaded area, outstandingly hampering performances. More-
over, it may be as well difficult to precisely assess the border between the operating and
overloaded regime, hence increasing the risk of overwhelming the system inadvertently.
To address this issue, we propose and evaluate in Section 5.1 a victim-swap mechanism
aimed at turning the abrupt transition between the nominal and overloaded ranges in a
more graceful degradation.

In Section 5.2, we then investigate further architectural aspects of graph-processing
platforms and focus on emerging low-power systems. Indeed, the comparison of the two
most relevant systems, namely LSCC and HC, has shown that, despite its more moder-
ate price and compute resource amount, the LSCC system exhibited better performances
than the higher-end HC platform. Hence, it becomes relatively natural to foster the use of
lower consumption processor, with adequate memory amount and assess their relevance
in such a memory-bound context. In order to investigate this issue, we benchmarked an
emerging ARM-based, low-power processing module in order to evaluate its performance
for graph-processing tasks. Though we expect a performance decrease due to inner mi-
croarchitectural details of the processor, we expect this decrease to be only moderate
while being orders of magnitude more power efficient.

5.1 Flash-based victim swap towards graceful perfor-
mance degradation

First, the motivations behind the exploration of the usage of a victim-swap mechanism
are presented. Then, we evaluate the relevance of this approach in the context of a graph-
processing system by investigating the performance gains brought by the victim-swap.
Finally, some perspectives on its applicability are presented.

5.1.1 Motivations

As highlighted in previous chapters, the range of relevant performances is limited to a
certain given problem size, determined by the amount of available memory and the data-
structure implemented. This performance degradation, as observed, is mainly caused by
the memory shortage, forcing the operating system to swap in and out large parts of the
memory allocated to programs. As swap spaces are usually files or dedicated partitions
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5.1. Flash-based victim swap towards graceful performance degradation

allocated on the hard disk drive, a severe bandwidth penalty is induced, hence slowing
down the computation of the victim program and/or the whole system. Eventually, in
extreme cases when programs saturate the memory and make use of the swap space for
data being processed, the slowdown can render the machine unavailable, thus requiring a
reboot.

Once a proper performance behavior analysis has been performed, hence the applica-
tion has been characterized, the abrupt throughput decrease can be predicted and thus
avoided by a careful cluster dimensioning — e.g. by allowing a sufficient number of ma-
chines. However, when operating a cluster around the maximum problem size — an
operating point of interest to extract the maximum throughput of a system — it may
happen that the system runs out of memory hence hampering drastically the observed
throughput, possibly to the point where the cluster is rendered unusable.

To mitigate this issue, we argue that using dedicated Flash-based swap memory can
help. Indeed, Flash-based memory is orders of magnitude faster than hard disk drives,
hence, dedicating an amount of flash memory for swap operations could help recovering
the system when the cluster is accidentally operating in the overloaded range. As of
today, Solid State Drives (SSD) of small to moderate capacities (e.g. 8-16Go) can be
purchased for less than 50 euros, making them an inexpensive addition helping mitigating
swap-related system hanging.

5.1.2 Evaluation of flash-based swap memory

In order to measure to which extent this approach can be useful, we installed a SSD in a
LECC node. The SSD was partitioned so that the swap space spanned the whole available
disk space and other swap files were deactivated.
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Figure 5.1: Update rates (a) and Whole-process update rates (b) comparisons of the victim-swap ap-
proach (purple curve) with the baseline (green curve), using the program trace analysis algorithm. Each
performance curve is plotted for a single-node configuration.
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Figure 5.2: Wall-clock execution time comparison of the victim-swap approach (purple curve) with the
baseline (green curve), using the program trace analysis algorithm (semilog axis).

Figure 5.1(a) shows the performance behaviors of two single-node configurations — the
standard LECC node and a victim-swap-enabled node — on the trace analysis algorithm
with the matrix_multiply kernel. The single-node operating performance behavior ex-
hibits no underloaded range in both settings, as no communication penalty occurs. Both
configurations exhibit a similar nominal operating range in terms of width and through-
put. Finally, in the overloaded range, a more graceful performance degradation can be
observed on the victim-swap configuration.

Figure 5.1(b) shows the global performances, in terms of whole-process update rates
of the victim-swap enabled compute node and a standard LECC node. Analyzing global
performances shows even more strikingly the benefits of using a flash-based victim swap, as
global performances in the overloaded range are improved significantly. Such performance
improvements are also shown by Fig. 5.2, in terms of wall-clock execution time.

In details, three zones are observed in the improved overloaded operating range. First,
an important decrease in performance is observed between graph sizes of 11 and 14 million
vertices. Although lowered, throughput remains around three times higher than the
throughput observed using traditional disk-based swap space. Then, a second zone can
be observed where the linear degradation is slightly less abrupt than previously, and where
problems may still be processed reasonably. However, for graphs larger than 18M vertices,
once the system gets further away in the overloaded range, the benefits of using a victim-
swap are negligible and performances down to match standard HDD swap throughput
performances. In this particular case, a victim-swap of at least the size of the available
RAM, i.e. a partition of4GB to 8GB, seems adequate.
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5.2. Microserver-based architectures for efficient graph-processing

5.1.3 Perspectives in graph-processing cluster design

We observed in previous chapters that, for a given problem size, a cluster configuration
using the minimum number of machines is a particularly relevant setup. In such a case,
the peak throughput point of a configuration is often met and the system operates in a
setting where it can be close to the overloaded range. Due to unwanted experimental
events or to the difficulty to precisely assess the limit between overloaded and nominal
ranges, a system can easily get overwhelmed.

This section has shown that adding a dedicated flash-based swap partitions is helpful
as a safety net mitigating the abrupt, swap-induced, performance degradation occurring
in the overloaded range. When considering that such addition to a system is inexpen-
sive and can be transparently installed into most mainstream machines, we argue that
flash-based swap must be added to graph-processing servers. Indeed, the idea behind
this extension would not be to operate the system in the overloaded range and benefits
from the lesser decreased performances but to add flexibility to the machines. Moreover,
this approach could be more easily generalized on microserver architectures where flash
memory is mainstream to cope with somewhat limited RAM size.

5.2 Microserver-based architectures for efficient graph-
processing

A traditional limitation in large server installations is the power consumption and heat
generation, hence requiring complex cooling facilities and power sources. To address
this issue, emerging so-called microservers can be leveraged. Microserver architectures
are possibly-heterogeneous servers with low-power processors historically seen on embed-
ded systems, such as ARM-based units. Usually, raw performances of such systems are
lower than those of comparable high-end compute servers. However, such a performance
decrease is often compensated by a drastically lowered energy consumption, cost of ac-
quisition and operational expenditures.

As observed in Chapter 4, large high-end installations can be outperformed by com-
modity clusters with much simpler architectures. With this in mind, it could be of interest
to measure performances of such platforms in order to evaluate their relevance in the con-
text of graph-analytics. The remainder of this section addresses this question. First, a
detailed introduction to the motivation of this study is provided, as with the presentation
of the Nvidia’s Jetson TX2. Then, we present the experimental context of this study and
in particular the GraphLab modifications performed to extend its architectural support
to the ARMv8 instruction set architecture (ISA). Finally, performance of the platform
with GraphLab are discussed before perspectives of this work are detailed.
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5.2.1 Motivations

Graph-processing is a domain known to be memory- rather than compute-bound. In
Chapter 4, we confirmed this assumption as we observed that, performance-wise, sim-
pler commodity clusters outperformed considerably more expensive higher-end compute
servers. Building on this idea, we argue that emerging compute platform composed of
a frugal processing element with an adequate memory amount can be of interest in the
field of High-Performance Data-Analytics. In particular, such emerging platform are now
composed of 64-bit processors with a fraction of the energy consumption seen on more tra-
ditional architectures, which can ultimately help in mitigating heating and consumption
issues in data-centers. Moreover, lowering the energy needs for such compute clusters also
has a positive impact on the operational expenditures, hence improving its performance
to consumption and performance to cost figures.

Amongst the panel of available boards to conduct this experiment, the choice of using
the TX2 board was motivated in particular by the following characteristics. First, the
module total power consumption is under 7.5 Watts [107] which is an order of magnitude
lower than the clusters previously used in this thesis work. Then, the available per-node
memory amount (see Tab. 5.1) is one of the largest available for such platform and is
comparable in that respect with the LSCC system. Moreover, the TX2 comes with an
installed mainstream Linux distribution and a considerable support, thus facilitating its
handling. Finally, the module retail price is relatively moderate, making the assembly of
a compute cluster made out of linked TX2 modules a reachable goal, and rising its update
rates per euro performances.

5.2.2 Hardware architecture

As a relevant example of an embedded computing node architecture, we chose to use a
Nvidia Jetson TX2 module [107]. The module is build around a quad-core ARM A57
(64-bit), a dual-core Nvidia Denver2 and a NVIDIA Pascal GPU, with 8GB of memory
(LPDDR4, 128-bit interface with a theoretical peak bandwidth of 59.7GB/s) and 8GB of
swap space mounted on an SD card.

The main memory of the module is held by a 32GB eMMC 5.1 storage unit and numer-
ous networking interfaces are provided, e.g. Gigabit Ethernet, Bluetooth4.1 or WLAN.
The two TX2 boards are linked across a 1GB/s Ethernet network and each module is
running Ubuntu 16.04.

5.2.3 Using GraphLab on ARMv8 architectures

We conducted a performance analysis of the board, using the two use-cases presented
in Chapter 3, namely the trace analysis and the graph filtering algorithms. The perfor-
mance comparison was firstly performed on a single-node configuration and was extended
to a two-board configuration upon availability of the second TX2. As the TX2 comes
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(a) Detailed description
TX2

Base configuration Jetson TX2
Per-node base price EUR660

Total Nodes 2
Total Cores 8

Total Threads 8
Total Memory 16GB

Node architecture 64-bit ARM A57
Core number 4

Cache 32kB D1, 2MB L2
Max frequency 2.0GHz
Board Power 7.5W
Node memory 8GB
Node swap 8GB

Memory type LPDDR4
(128-bit interface)

Memory speed 1866MHz
Network 1GBps/Ethernet

OS Ubuntu 16.04

GraphLab version v2.2 PowerGraph
(for ARMv8)

MPI layer OpenRTE 1.6.5

(b) TX2 module

Table 5.1: (a) Detailed description of the Nvidia Jetson TX2 module used for the study [107]. (b) The
core/threads numbers given correspond to the number of resources actually used in the experiment, hence
excluding GPUs and accelerators. CZK50 coin for scale.

with an already configured Ubuntu Linux distribution, satisfying most of GraphLab’s
dependencies was considerably facilitated.

However, a major hurdle for the execution of GraphLab implementations on the TX2
module was the lack of support of the ARMv8 ISA by the framework. Indeed, GraphLab
is a large framework with a vast code-base designed to be compiled and executed on
x86_64 architectures, hence requiring a dedicated port for the 64-bit ARM A57 processor
embedded in the TX2. The GraphLab port we performed in order to conduct our study
constitutes itself a valuable contribution which will be helpful for the future evaluation of
ARM-based platform for GraphLab applications. In further details, we upgraded some of
the core dependencies of GraphLab and modified core assembler routines to make them
ARMv8-compatible.

Architecture-wise, the Pascal GPU and the dual-core Denver units were not used as
no support for such accelerator is provided by GraphLab at the time of writing. Input
and output files were written to the embedded 32GB flash memory. Finally, due to a
lack of mature support of the 64-bit ARM architecture, GraphLab was compiled with the
standard malloc library instead of the more thread-friendly libtcmalloc recommended,
contrary to other GraphLab implementations previously deployed.
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5.2.4 Single-node operating performances

Single-node performances of the TX2 module are investigated in the following. In par-
ticular, Fig. 5.3 shows the performances of the module for the trace analysis use-case on
three input kernel.

Firstly, we observe a comparable performance behavior with respect to the single node
behavior of other systems on comparable conditions. As used in a shared-memory setting,
no underloaded range can be seen resulting in only two operating ranges exhibited by the
TX2 module, namely the nominal and overloaded ranges. The transition between these
two regimes is delimited by the occurrence of swap operations, as indicated by the rise in
pagefaults number in Fig. 5.3(c), 5.3(f) and 5.3(i).

In average, the performances exhibited by the system are lower than those of our
previously-introduced Intel-based systems (Fig. 3.3 and 4.3), as expected for a much
simpler and frugal processor architecture. However, the decrease in throughput is only
moderate when compared to its closest competitors, the LSCC node, for a much lower
energy consumption. Indeed, the whole TX2 board claims a power consumption of 7.5W
(including memory systems, GPU and accelerators), whereas the sole TDP of the Intel i5
equipping the nodes of the LSCC systems is of 84W.

In further details, the TX2 single-node throughput on the nominal range is set at
1.3 MUPS for the trace analysis use-case, processing the matmult kernel1. Though it
outperforms the moderate LECC system (1 MUPS) in a comparable setting, it only
reaches 65% and 52% of the single node performance of the LSCC and HC platforms,
respectively. However, when considering performances to consumption or performances
to cost figures, the TX2 exhibits relevant performances. Indeed, it shows a remarkable
173.3 kUPS/W which is one order of magnitude higher than the LECC, LSCC and HC
systems (respectively, 13.33, 23.81 and 13.88 kUPS/W). Accounting for its price, the TX2
single-node performance reaches 1.97 kUPS/€, a significantly higher value than the HC
platform (0.41 kUPS/€). However, it is outperformed by both commodity clusters, which
exhibit about 2.5kUPS/€ each.

It is to be noted that, in our experiments, we only performed computations using
the ARM64 multicore, hence leaving the GPU at rest and thus decreasing the power
consumption of the board. Unfortunately, due to the TX2 design limitations we were not
able to precisely monitor the consumption of the system during the experiment, which is
now a perspective of much interest to characterize such system under a graph-processing
workload. Finally, though we do not expect GPUs to bring significant improvements in
raw throughput due to the high level of indirection and the data-dependent nature of graph
applications, they may bring performance gains for additional pre-/post-processing tasks.
However, although maybe improving slightly performances, the programming challenge
associated with the leveraging of such hardware accelerators remains significant.

1See Sec. 3.1.2
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Figure 5.3: Operating performance of the TX2 board on the trace analysis use-case (matrix_multiply
kernel). Figure (a)(d)(g) shows the update rate of the system, or the number of updates performed per
second during the processing part of the program. Figure (b)(e)(h) shows the whole-process update rate
of the system, which is the number of updates performed per second during the program execution time.
Figure (c)(f)(i) shows the amount of PageFaults impacting the system throughput.

5.2.5 Distributed operating performances

Having evaluated the performances on a single TX2 node, we now investigate the dis-
tributed performances of the TX2 platform. To this extent, we linked a second identical
TX2 module using a Gigabit Ethernet switch. Both TX2 modules exhibited then 8GB
of physical memory and an additional 8GB of swap space dispatched on an embedded
SDCard due to the lack of space in the main flash memory of the modules.

Figure 5.4 shows the throughput of the system for both single- and dual-node config-
urations. As observed on other platform, a two-node configuration barely matches the
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Figure 5.4: Distributed performances of the TX2-based platform on the trace analysis use-case (matmult
kernel). Figure (a) shows the update rate while Fig. (b) shows the whole process throughput achieved by
the system.

update rate of the single-node setting with respect to update rate. Moreover, with the
two-node configuration, we were not able to process instances much larger than those
of single-node capacity as we experienced network failures preventing the completion of
larger runs. We found out that the problem might be related to the controller managing
the Gigabit Ethernet module. However, though exhibiting lower raw throughput figures
(as e.g. the LSCC system), the dual-node setting globally outperforms the single-node
configuration with respect to the whole-process throughput figure.

In details, the peak dual-node throughput observed for the program trace analysis
use-case is of 1.175 MUPS, which is above the LECC system dual-node performances.
Yet, the TX2-based systems is outperformed by the LSCC and HC systems, which show
a peak 2-node throughput of 1.9 and 2.5 MUPS, respectively. Similarly as observed for
single-node performances, the TX2 dominates in terms of performance to consumption
ratio, with 78.3 kUPS/W — a value to compare with those of the LECC, LSCC and HC
platforms, respectively 7.33, 11.31 and 6.58 kUPS/W. With respect to price, the TX2-
based system shows a notable 0.89 kUPS/€ outstandingly overcoming the HC platform
(0.21 kUPS/€), yet remaining behind the commodity clusters (1.41 and 1.19 kUPS/€,
respectively).

Similar observations can be made when investigating performances on the De Bruijn
graph filtering algorithms. Performances visible in Fig. 5.5, shows that the dual-node
configuration is outperformed by the single-node one, at the benefit of a (theoretically)
larger capacity. Though we were not able to obtain results for graphs much larger than
6 million nodes due to the aforementioned networking problem, one can foresee that
the dual-node setting should eventually outperforms the single-node setting on larger
problems. Indeed, on the very last point we were able to gather, this tendency is initiated.
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Figure 5.5: Distributed performances of the TX2-based platform on the De Bruijn graph filtering use-
case (Error rate: 0.75%, Tolerance: 2, Threshold: 0, k: 31, Operating coverage: 28, Sequencing depth:
40, Readlen: 100). Figure (a) shows the update rate while Fig. (b) shows the whole process throughput
achieved by the system.

Moreover, the decrease in throughput between the update and the whole-process update
rates is really little on the dual-node setting, whereas it is more important with only one
TX2 module.

Even though operating at a moderate scale, we foresee a unit capacity in terms of
replica of about 22M and 7M vertices for the trace analysis and DBG filtering use-cases,
respectively. These capacities are comparable to those of the LSCC platforms, which
shares the same amount of physical memory. The exhibited 2-node replication factor
converges toward 1.51 for the trace analysis algorithm and 1.57 for the DBG use-case.
These values are comparable to the replication factors exhibited by the LSCC or HC
systems in Fig. 4.10, hence we expect a similar behaviors on larger scales.

Using these values, we can estimate the maximum processable graph of the 2-node
setting for the trace analysis use-case, even though some points are missing. By way
of example, the 2-node configuration shall tolerate a 44M replica graph, or a 29M true
vertice graph with respect to the 1.51 replication factor. Similarly, the system should be
able to process graphs up to 11M true vertices with the DBG filtering algorithm. Finally,
we expect the TX2 system to behave like the LSCC platform, due to their similar number
of cores and memory amount, although exhibiting lower throughput and consumption at
a comparable price.

5.2.6 Relevance of ARM-based platform for graph-processing

This section has presented early experimentations using emerging low-power nodes in the
context of distributed graph-processing. A system composed of two TX2 nodes was setup
and benchmarked using the two use-cases presented previously. Despite the networking
problems, the presented system exhibits a similar performance behavior when compared
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with the previously evaluated platforms. Having been in further details, we observed
as well that the TX2 platform shows remarkable performances and often compares very
favourably to other comparable systems, despite a much simpler processor. Indeed, when
accounting for its price or lowered energy consumption, the TX2-based system outper-
forms clearly the HC system and, at least, matches performance figures of the commodity
clusters.

For all these reasons, we argue that ARM-based microservers are a hardware path
of interest toward more efficient graph-processing systems. To confirm these statement,
a larger scale experiments should be conducted using more TX2 nodes to validate their
behaviors on a more representative setting. Moreover, the GraphLab port for ARMv8
architectures we performed, will also be helpful for the performance evaluation of other
similar hardware.

5.3 Conclusion and perspectives

In this chapter, we explored two hardware paths towards arguably more efficient graph-
processing platforms.

The first explored proposition addresses the issue of unwanted operation of a system in
the overloaded regime. The precise assessment of the unit capacity is a tough task and, as
operating near the border between these two regimes is arguably an interesting operating
point as shown by previous chapters, undesirable operations in the overloaded range can
occur. In such cases, a dramatic performance decrease is observed, due to numerous
swap-in/-out operations performed consequently to the memory exhaustion. The victim-
swap mechanism proposed allows the system to compensate turn this abrupt decrease
into a more graceful performance degradation by using flash-memory — a technology
orders of magnitude faster than hard disk drive. Indeed, we observed on the performed
experiments a significant improvement in global performances, hence upgrading a machine
with a flash-based victim swap can be seen as an inexpensive safety net. However, the
experiments have shown as well that this improvement is bounded: when leveraging this
approach with large amount of swap, performances are lowered towards regular, hard-disk
drive swap space. Finally, though we observed promising results on single-node cluster
configurations, larger scale distributed experiments must be performed in order to assess
potential gains brought by dedicated victim-swap partitions on distributed architectures.

The second part of this work explored a more profound hardware change. Previous
chapters have shown that commodity clusters composed of simpler processors are able to
compete and outperform much higher-end systems. With this in mind, we investigated
the relevance of emerging computing platforms embedding low-power cores with relevant
amount of memory. The experiments performed with a 2-node system showed promising
results, even though further investigations on larger scales are required. Indeed, although
with a tenfold decrease in power consumption, the TX2-based platform exhibited relevant
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throughput performances. Thus, considering these statements and the relative lower price
of such processors, clusters of ARM-based microservers seem a trend to investigate in
the context of graph-processing applications. They shall further help in mitigating heat
generation in data-centers as with reduce drastically the operating costs.
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With the striking increase in the volume of processed datasets every year, larger and
larger installations of computing resources are required by application from the rising
High-Performance Data Analytics domain. However, graph-processing workloads are
well-known for being strongly irregular, less structured and more data-dependent than
traditional scientific computing applications. In such context, deploying a scalable and
parallel implementation of an algorithm on distributed architectures is a challenging task.
Though dedicated frameworks have emerged to facilitate the programming of graph al-
gorithms, it is a tough task to understand and assess their scalability and performance
behaviors — let alone appropriately size a cluster for a problem instance — using classic
benchmarking approaches, an however utterly necessity.

In this thesis, we explored the parallel and scalable processing of large graphs on
distributed architectures, with in mind to eventually propose cluster design guidelines
towards more efficient executions. To this extent, we developed two graph-processing
algorithms and set-up different hardware architectures. The performed experiments led
us to propose practical methods for the appropriate sizing of clusters as with architectural
directions for next-generation of graph-processing compute servers.

Synthesis

As graph analytics algorithms are entering the field of High-Performance Computing
(HPC) and the size of the processed datasets is increasing, the issue of understanding
performance behaviors of such High-Performance Data-Analytics (HPDA) applications
with respect to the underlying hardware or the scale of the problem is critical. To address
this issue, we focused first on a threefold review of the HPC/HPDA landscape, in terms
of hardware architecture, abstraction models and programming tools.

Firstly, having reviewed the landscape of high-performance distributed architectures
enabled us to understand the hardware trends in the field. We particularly observed that
although high-end compute servers are natural candidates for large-scale high-performance
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computing, clusters of commodity workstations is a trend currently being exploited at
comparably large-scales as a competitive alternative — this is notably due to its more
affordable nature. In accordance with this trend, we decided to select three hardware
architectures: two commodity clusters and a high-end installation.

Then, the state of the art of parallel programming models has been reviewed, in order
to understand the ties between software and hardware. In particular — and especially
in the context of parallel programming — it is extremely relevant to understand how
threads of execution and communications are orchestrated. Moreover, it allows to better
understand the freedom left to the programmer to exploit the hardware.

This review also helped in conceptualizing how software frameworks are built and
facilitate the efficient implementation of algorithms though them. While the landscape of
software tools for the implementation of parallel graph algorithms is wide, vertex-centric
programming libraries have raised interests as they provide an acceptable compromise
between increased productivity, performance and community acceptance. In particular,
we identified and further investigated the GraphLab framework, a popular Pregel-like,
vertex-centric C++ library for distributed architectures.

We consequently studied in details vertex-centric frameworks in terms of programming
models and practical details. As such programs are composed of different parts exhibiting
different degrees of parallelism, the use of traditional metrics may not be sufficient to grasp
the behavior of the program with precision. This difficulty hence made more complex the
task of identifying inadequacies between the hardware and the implementation.

In order to gain more real-life insights on the implementation of graph analytics work-
loads in such a context, we decided to focus on two real-life graph-related problems: a
trace analysis algorithm and a De Bruijn graph filter. Moreover, the relatively distant ap-
plication domains of these use-cases advocates graph analytics as a cross-domain discipline
of much relevance nowadays.

A first experimental work enabled us to gain a practical experience with GraphLab
by implementing a trace analysis algorithm using this framework and deployed on a
distributed architecture. This novel algorithm was studied with respect to scalability and
throughput for varying datasets and cluster scales, enabling us to highlight three operating
ranges. Being able to identify operating ranges of interest and — more importantly — to
set a system in such conditions for a given dataset is key for an efficient execution. This
work was notably presented during the HPCS’2016 conference [100].

Then, a second use-case in the context of genomic data processing was developed.
In this experimental work, a filtering algorithm for De Bruijn graphs constructed from
Next Generation Sequencers (NGS) was proposed, after a thorough study of the whole-
genome sequencing data processing field. The algorithm showed promising results with
respect to both applicative results and performance aspects. In particular, we observed
similar operating ranges with this different algorithm deployed on a different hardware
platform, with respect to performance behavior of the algorithm, than findings of the first
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algorithm. This work was presented at PDCO, an IPDPS’2017 workshop [104] and an
extended version of this paper is under publication at the time of writing.

Having studied independently, sotfware-related aspects of the operating performances
of our use-cases on different hardware platforms, we then focused on understanding how
the underlying architectures impacted the performance behaviors of our use-cases and
in particular its scalability. To achieve this, we performed a benchmarking of our three
available hardware platforms using the provided implementations. This study highlighted
that despite its high-end architecture, the HC system could be outperformed in terms of
throughput by a cluster of inexpensive commodity workstations. Moreover, this study
of operating points of the clusters has also allowed us to propose cluster sizing methods
based on throughput analysis. Indeed, analyzing operating ranges of a system leads to
the evaluation of unit capacities that, with knowledge of the graph replication factor
evolution, can be wielded to determine the number of cluster nodes required to process a
given problem instance efficiently.

As highlighted throughout this thesis work, operating in the overloaded range hampers
dramatically performances as memory is saturated. We proposed and evaluated a flash-
based victim-swap approach to inexpensively mitigate the abrupt decrease in throughput
when approaching the system memory capacity limits. Indeed, this operating point is
often near the peak throughput point of a given configuration, that is, the highest operat-
ing performances for a given configuration. In other words, it is also the smallest cluster
configuration operating in nominal conditions for the associated problem size, hence the
most efficient nominal configuration. As it is thus a sound operating point, it is sensi-
ble to have a reasonable amount of flash memory holding a victim-swap partition as an
inexpensive safety net in case of an unwanted transition toward the overloaded range.
We observed that overloaded performances using the victim-swap approach significantly
overtake those of a standard node and helped improve significantly global performances
before the overloaded ranges.

Finally, we investigated hardware-related hints for the design of next generation com-
pute cluster towards efficient graph-processing. In particular, embedded computing plat-
forms built around low-power processors and a relevant amount of memory bring interest-
ing performances in a context of applications bounded by the memory amount (and not
the compute power amount). The NVIDIA Jetson TX2 module, with its frugal ARMv8
processor and its relevant amount of memory is a particularly representative example of
such emerging platforms.

To investigate its relevance in this context, we ported the GraphLab library to the
64-bit ARM processor and set-up a cluster composed of two TX2 boards. Then, we
conducted a performance behavior analysis in order to compare its performances to our
previously evaluated systems. Eventually, we found out that the ARM-based module
only exhibits a moderate decrease in throughput while being considerably more energy
efficient at a moderate price, highlighting its relevance in such a context. Building on
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unit capacity and performance projections, we foresee that a comparable scale, such an
ARM-powered cluster shall be able to match and even outperform commodity clusters in
terms of performance to price or performance to power figures.

Today these results and activities are now part of and contribute to the CEA LIST
roadmap and the laboratory activities. This thesis work has in particular opened several
perspectives to be explored, as summarized in the following section.

Perspectives

Short-term

In the near future, it could be of interest to further develop strategies for the automatic
resource allocation in distributed clusters. Indeed, as stated in Chapter 4, GraphLab
programs are composed of different parts exhibiting varying degree of parallelism. Hence,
it could be particularly interesting to augment GraphLab with capabilities to use an
adequate amount of compute resources at each step of the program. By way of example,
exploiting a large amount of cores during the embarrassingly parallel parsing step and a
more moderate amount at compute time seems an interesting path to explore.

Concerning design aspects, it could be of interest to set-up experiments which could
lead to the assessment of the memory to CPU ratio exhibiting the best throughput perfor-
mances. We observed that the HC platform is likely to have a too large per-node memory
amount whereas the LSCC cluster may benefit from larger amounts of per-node mem-
ory. Hence, having means to determine this ratio should be within reach by performing a
throughput analysis and would eventually lead to tailoring the hardware to the expected
performance behavior.

Moreover, at the scale of our experiments, even up to 16-node configurations, we did
not observe striking network contentions. However, scaling out to a larger scale, such as
fifty-some or hundreds of machines, may lead to potential network-related performance
slowdowns. Hence, much larger scale experiments have to be performed in order to ob-
serve such potential network issues. Additionally, much larger scale experiments would
be required to further validate the evolution of operating ranges. Furthermore, such
experiments will allow the assessment of the nominal range behavior at larger scales.

We explored the relevance of power-efficient, ARM-based platform in the context of
graph-processing using a system composed of NVIDIA TX2 nodes linked across an Eth-
ernet network. The promising results obtained with a moderate number of nodes fore-
shadow interesting performances to energy figures. However, in order to further validate
the relevance of such a hardware trend, larger-scale experiments are required and must
be performed. Moreover, though as of today, measuring the consumption of the board is
out of reach, it could be interesting to investigate means of characterizing on a finer-grain
basis the energy required during runs.
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Longer-term

On a more longer-term basis, we foresee improvements on an architectural level, but also
with respect to automatic job scheduling and resource allocations.

Designing from scratch microserver architectures based on low-power ARM cores with
dedicated network interfaces and adequate amount of memory is to be explored. Indeed,
operating costs of nowadays data-centers are mainly driven by cooling infrastructures and
power requirements. Considering the fact that large-scale graph-mining applications are
further expanding their already applicative field, the compute resource requirements will
not stop to increase in the coming years. However, to make this a reality, compute clusters
must become more energy efficiency. To this extent, designing dedicated graph-processing
clusters leveraging low-power cores, with relevant memory amounts is a necessity.

With respect to software aspects, performance-wise job schedulers for graph-processing
applications can help in adequately allocate resources. Indeed, by automatically learn-
ing performances of repeated runs of an application, such a scheduler could construct its
representation of the application’s performance behavior. Hence, building on the given
hardware allocation policy — maximum performance of minimum configuration — the
scheduler could use the learned information to appropriately dimension resources upon
availability. Going further in such a direction, and having evaluated potential network
contentions, one can imagine a multi-instance, multi-application scheduler able to op-
timize a server farm’s usage. Coupled with the ability to make coarse-grain variations
in allocated resources to match coarse parts of a graph-processing program, it can lead
to flexible and optimized execution, towards a more energy-efficient processing of large
instances.
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