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Introduction

The current developments in transportation industry are impacted by the

desire to reach higher speed for smaller travel times and the need to reduce the

energy consumption for sustainable development. Both scientific and industrial

communities are looking for lower costs of transportation and drastic reduction

of the CO2 emitted every year.

One of the causes of these energy losses relates to aerodynamic issues such as

drag or flow separation over the vehicle. Historically, separation was handled by

passive flow control. Passive control is done by modifying the geometry of the

vehicle by changing its shape or by adding small devices ("passive actuators")

fixed on the surface at appropriate places. Theses devices can be static or retrac-

table. While passive control does not require energy to power the devices, they

can lead to significant increase of the total drag and can not generally adapt to

the natural dynamics of the flow. Amongst the most common passive control

techniques are vortex generators. These devices take the form of inclined or

helical airfoils of small dimensions fixed normal to the surface upstream or in

the region where the separation occurs.

Passive flow control suffers from the issue of not being adaptable to a change

in the experimental conditions and hence lack robustness. Modification of the

actuators in regard to changes in the flow dynamics, known as Active Flow

Control (AFC), requires first some flexibility of these devices. Their action can

be computed independently of the result obtained (open-loop control), but such

a solution also lacks robustness. The only issue for an actual adaptation to

the perturbed environmental conditions is known in control theory as "closed-

loop control". In addition to the flexibility of the active devices, one needs

some feedback from the flow itself which means, experimentally, real-time

1



2 Introduction

measurements. These two conditions (flexibility and real-time measurements)

are necessary in order to apply active control techniques allowing to maintain

the flow in a given state satisfying the desired objective (drag, noise, or again

vibration reduction for example), despite perturbations or change in inflow

conditions.

AFC is divided in two main categories. The first one is model-free control.

Among others, recent developments in model-free techniques led to controllers

based on machine learning techniques and showed promising results. However,

machine learning requires numerous experiments before being efficient and the

reliability and convergence of the algorithms are not well proven. The second

category is model-based control. Model-based robust control of separated flows

remains of particular interest and can be implemented on real systems without

too much complexity if the model is chosen to be sufficiently simple. But it

requires to have a model of the flow, may it be from physical equations or from

identification. The first approach would be to use partial differential equations,

namely the Navier-Stockes Equations (NSE), but this implies complicated (or

even impossible) online calculations and the way to design controllers/observers

remains open.

The alternative proposed in this work is to use ”grey-box” identification

techniques so to derive a simpler model that can be useful for control purpose.

The model suggested is a bilinear, delayed difference equation which is able to

catch non-linear mechanisms. Such a model will be shown to be quite realistic

in an identification perspective. It is much simpler than NSE, however remains

nonlinear and behaves in an infinite dimensional space.

This PhDwork benefited from the platformCONTRAERO (http://contraero.

univ-lille1.fr) developed by the Nord-Pas-de-Calais regional consortium.

The control strategy developed by implemented and tested for the three different

flow configurations conducted respectively in :

— the wind tunnel of LML (high Reynolds number large boundary layer

wind-tunnel). In this setup, the flow develops along a slightly inclined

flat plate to recover a zero pressure streamwise gradient followed by

a inclined flap along which the boundary layer occurs separation and

reattaches further downstream to the floor of the wind-tunnel.

http://contraero.univ-lille1.fr
http://contraero.univ-lille1.fr


Introduction 3

— the L2 wind tunnel of ONERA. The flow develops on a test model placed

in the center of the wind tunnel between two vertical plates. The test

model consists of a flat plate and a plain flap based on a NACA 4412

airfoil shape. The angle of the flap can be adjusted between 2°and 37°.

— the wind tunnel of LAMIH, equipped with an Ahmed body (classically

used as a geometric simplification of a car). The model is mounted over

a raised floor with a sharp leading-edge to control the boundary layer

thickness.

A unique control hardware setup, based on an Arduino Mega microcontrol-

ler (https://store.arduino.cc/arduino-mega-2560-rev3), was designed for

the the overall tests. In addition, the same type of model (bilinear with delays)

was used to model the different plants. The derived model was found suffi-

ciently simple and accurate to model the flow state in the overall configurations

examined.

In all three situations, we used the same kind of simplified model (bilinear

with delays) which was sufficiently well adapted to the measured data. This

makes us consider that such reduced models cas be seen as an original contribu-

tion of this work.

The present manuscript is organized as follows : an overview of the state

of the art and the current problems that flow control tries to solve is given in

Chapter 1. Chapter 2 describes the experimental setups and data used in this

thesis. Chapter 3 presents and justifies the Signe-Input Single-Output (SISO)

bilinear delayed models introduced in this thesis and describes our identification

algorithm. Open-loop and feedback controllers based on the identified models

to answer the problems mentioned in the Chapter 1 are presented in Chapter 4.

Finally, conclusions on the obtained results and the perspectives for futures

works are presented.

https://store.arduino.cc/arduino-mega-2560-rev3
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Chapter1

State of the art

1.1 Generalities on flow control

A large portion of nowadays CO2 emissions from transportation are due

to aerodynamic forces interacting with the vehicle and causing drag, lift or

download, lateral forces, moments in roll or again pitch and yaw impacting ma-

neuverability and fuel consumption. These forces arise from two-sources : form

(or pressure) drag and viscous friction. The form drag comes from a difference in

static pressure around the vehicle induced by the shape itself forcing the flow to

exchange pressure for velocity in order to maintain total pressure. On the other

side, the friction drag is due in part to friction of the fluid on the surface of the

vehicle and in part to the way the friction alters the main flow downstream or

back of the vehicle. Its explanation comes about from understanding the action

of boundary layers over an object as it will be detailed further.

In the case of a modern airplane for example, friction drag amounts to about

60% of the total drag, while the remainder being mostly shape, induced and

trim drag [68]. For high-speed trains such as TGV, the total drag is divided

between 60% of friction drag and 40% of shape drag (mainly roof equipment)

[113]. Again, at 50 km/h, the total drag represents 50% of the energy losses of

a car and these losses can reach 80% at 130km/h [19]. Viscous drag reduction

is therefore of high interest for environmental concerns as well as costs of the

transportation industry. As mentioned in [127], reducing the world consumption

5
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of commercial jet by 1% will result in more than 1 million dollars a day of costs

reduction, without accounting for the environmental benefits that are much

more difficult to estimate. A broad variety of methods has been introduced

in the past in a attempt to reduce friction or form drags thanks to materials

quality improvements (weight, roughness etc...) or shape designs [144]. Most

of them are however not efficient enough mainly because limited by technical

constraints (dimensions required for passengers, security, technical feasibility of

the solution, cost of the manufacturing/implementation).

A well-recognized solution to this problem is flow control. Flow control is a

field of constantly growing interest, both in the academic and industrial com-

munities. This discipline is an interface between Fluid Mechanics and Control

Theory. Flow control aims at altering the natural flow state into a more desired

one by either modifying the geometry of the obstacle (known as passive control 1),

or by adding energy/momemtum into the flow (known as active control). Impact

of flow control in transportation industry is consequently major and can lead

to a significant cut in energy losses and costs, or again in noise disturbances.

A simplified view of the objective of flow control is shown in Figure 1.1. The

image on the left presents a case of uncontrolled turbulent flows, where the

energy losses are high. The image on the right shows the result of an ideal, yet

unattainable, control which perfectly reattaches the flow. The right image is the

goal towards which control for flow reattachment is aiming.

Extensive research in flow control have been conducted since a century and

the pioneering work of Stalker [135, 134]. The task remains particularly dif-

ficult due to the highly dimensional nature of flows which are known to be

governed by the Navier-Stokes (NS) equations. These equations represent a high-

fidelity model of the flow and form a system of non-linear partial differential

equations difficult to handle. In addition, the existence of a global solution

is still an open problem. As a first consequence, most of the most promising

strategies developed at laboratory level were not extended to real-world aero-

nautical applications. One can however cite the example of Andino, Whalen et al

1. Note that while the term "passive control" is regularly used, the term "manipulation"
should be more appropriate since, as discussed further in the document, it does not really offer
any control on the flow.
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[andino_flow_nodate, 146] who tested flow separation control using sweeping

jets on a full-scale Boeing 757 tail. The last example is one among multiple

others illustrating the large potential for applications of flow control. Typical

examples of engineering problems concerned here are illustrated in Figure 1.2.

Due to the complexity of finding a formal mathematical solution for the

Navier-Stokes equations, numerical simulations and experiments are used to

investigate fluids. Solving numerically the NS equations is feasible but time

consuming. While experimental works are unyielding and subject to different

kind of errors (measurements, repeatability etc...) these remain essential for

scientists. Nowadays, the continuously increasing computation capabilities moti-

vate the coupling of numerical and experimental approaches. Data-assimilation

or data-driven techniques have gain large interest in the last years for examples.

There is no doubt that the discipline of flow control will largely benefit from

these in the near future. For industrial needs however, control strategies cou-

pling formal control theory and a reduced-order model of the flow state are

still preferred. Many control algorithm exist that can be applied to flow control

problems depending on the needs of robustness and optimality of the control

with little knowledge of the flow (see Section 1.5.2). Another consequence of the

complexity of the Navier-Stokes equations is the heuristic geometry simplica-

tion. The engineering systems illustrated in Figure 1.2 are tackled by focusing

on canonical configurations such as depicted in Figure 1.3. These simplified

configurations allow the underlying mechanisms and their effect on drag, noise

emission, heat transfer or mixing for example to be examined and understood in

details.

1.2 Special case of separated flows

The main focus of this thesis concerns flow reattachment. This section is

therefore intended to give the main elements of the flow physics behind such

phenomena.



http://howthingsfly.si.edu/aerodynamics
http://howthingsfly.si.edu/aerodynamics
http://mdx2.plm.automation.siemens.com/cfdImage
http://mdx2.plm.automation.siemens.com/cfdImage
http://www.helioscar.fr/fr/cars
http://www.helioscar.fr/fr/cars
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1.2.1 Boundary layers : main elements

Every object in a moving flow (or equivalently a moving object in a statio-

nary flow) is subjected to the development of a thin layer of fluid close to the

surface where viscous forces are predominant over inertial forces. The no-slip

condition on the surface imposes a velocity-gradient between the surface and the

freestream. This region of the flow was initially postulated by Prandtl in 1904

[112] and is referred as "boundary layer". The thickness of this region, δ, defined

as the distance from the surface where the mean streamwise velocity is 99%

of the freestream velocity U1, depends mainly on the local Reynolds number,

Reδ. The later characterizes the ratio between the inertial and viscous forces

and is defined as : Re = ⇢U1L
µ where ⇢ is the density of the fluid in kg/m3, µ the

dynamic viscosity of the fluid in kg/(m.s) and L the streamwise characteristic

length in m.

For a flow developing on a flat plate, due to viscous diffusion, the boundary

layer increases in height. Three regions can be identified : a laminar boundary

layer, a transition region and a turbulent boundary layer. All the three regimes

are illustrated in Figure 1.4 and are, for example, described by White [147].

Near the leading edge of the plate, the boundary layer is laminar. The flow is

mostly two-dimensional and the boundary layer thickness increases slowly with

the stream-wise direction in x
1
2 [62]. When the thickness is high enough, the

boundary layer becomes less stable and more receptive to external perturbations

(acoustic for example). Tollmien-Schlichting (T-S) waves develop and can be

amplified. These T-S waves become rapidly three-dimensional. Turbulent spots

appear and propagate in the flow, until the boundary layer becomes totally

turbulent [147]. The turbulent boundary layer increases more rapidly in height

(in x
4
5 ).

Two main regions can be identified in a turbulent boundary layer and illus-

trated in Figure 1.5 :

1. an inner near wall region. A height of 0.1δ is usually accepted to charac-

terize this region [63, 61]. In this region, the mean streamwise velocity

U+ depends on the fluid characteristics (the viscosity µ and the density ⇢)
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and the wall shear stress ⌧w :

U+ = f (y+) with U+ =
U

u⌧
, y+ =

⇢yu⌧
µ

and u⌧ =
r

⌧w
⇢

∣∣∣∣∣
y=0

(1.1)

The inner region can be divided in subregions. (1) Near to the wall,

the turbulent shear stress ⇢hu0v0i is negligible compared to the viscous

term µdU
dy . This zone is called "viscous sublayer" or "linear sublayer", for

0  y+  3− 5, and the velocity profile is U+ = y+ . (2) Above the linear

sublayer, for 5  y+  30, these two terms are comparable. This zone

is called the "buffer layer". (3) Above the buffer zone, ⇢hu0v0i becomes

predominant. By integration of the Reynolds average equations, a log-law

can be found :

U+ = (1/)ln(y+) +C (1.2)

with  and C constants. For zero-pressure gradient boundary layers, the

most common values used for these constants are  = 0.41 and C = 5.0

[35, 61].

2. an outer region, for y ≥ 0.1δ, corresponding to a description of the velocity

profile using the defect-law :

U −U1
u⌧

= f
✓y
δ

◆
(1.3)

where U1 is the freestream velocity. Coles [29] for example suggested a

"wake law", as a complement of the log-law, mostly accepted now in the

community.

In addition to the boundary layer thickness δ, other quantities are defined

for the characterization of the turbulent boundary layer :

1. the displacement thickness δ⇤ :

δ⇤ =
Z δ

0

 
1− U(y)

U1

!
dy (1.4)
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high momentum. But near to the wall, due to viscosity, the fluid is already slower

and more sensitive to the pressure gradient. Eventually, the velocity goes to

zero and the flow separates. Separated flow can also be generated by a sudden

change of the wall geometry (backward-facing step, bluff body with a sharp

edge, diffuser...). Separation is imposed and the separation point is fixed at this

sharp edge [8, 35]. The existence of separated flows for these configurations is

unavoidable, but its strength and length are dependent of the upstream-flow

characteristics.

Boundary layer separation is an unsteady phenomena. For example, the

beginning (the separation point xS ) and the end (the reattachment point xR) of

the separation bubble fluctuates along the wall.

Taking an airfoil as an example for flow separation, it is known that transverse

instabilities can increase with the airfoil edges or defects on curvature, which

accelerates the separation ([60]). Second, as sketched in Figure 1.7, the separation

point can move due to the shear layer flapping and the nearby Kelvin-Helmholtz

oscillations.

For airfoils, it is suggested that the dynamics of the flows can be split into

three configurations depending on the attack angle ↵ in [97]. When no separation

is present, only shedding of structures downstream of the trailing edge is present

and corresponds to a Strouhal number St = f c sin(↵)/U1 = 0.18 ([38]), with c

the airfoil chord. For low angles of attack, a small separation bubble is present

on the airfoil. Kelvin-Helmholtz instabilities develops at the separation point.

Flapping mode linked to the separation bubble dynamics is also characterized

by a Strouhal number St = f Lsep/U1 ⇡ 0.2. Finally, for high angles of attack,

the boundary layer is massively separated and no separation bubble can be

identified. But Kelvin- Helmholtz instabilities at the separation point and wake

frequencies due to the shedding are still present on and downstream the airfoil.

1.3 Active flow control

Historically, separation was handled by passive flow control [73, 55, 145].

Passive control is done by modifying the geometry of the vehicle by changing

its shape or by adding small devices ("passive actuators") on the surface at
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1.3.1 Actuators

Active flow control, at the opposite of passive control, uses actuators to

apply some actions on the flow. Such actuators require some energy (electrical,

pneumatic and/or other) and must be controlled in some way. The problem of

active flow control is then to find the control algorithm that drives the actuators

such that their action on the flow leads to maintain the later in a desired state

[126].

The actuation is often done using fluid (air or water) jets. These jets can be of

two kinds [130] :

1. Non-zero net mass flow jets : these jets can either be blowing or be turned

off. One simple example is the one of a valve connected to a tank of

compressed air. The valve can be open or closed, allowing the air to flow

or not [131, 132, 130].

2. Zero net mass flow jets : these jets have a zero net mass flow as they

alternatively blow out and suck in air. The periodic suction and ejection

can, for example, be induced by a vibrating diaphragm of a piezoelectric

device [89, 66, 131, 132, 130].

Other types of actuators include electromechanical devices, voice-coil drivers,

powered resonance tubes [117], fluidic oscillating jets [116], or again plasma

actuators [33]. Extensive reviews about actuators can be found in [21] and

[cattafesta_review_nodate]. It is to be noted that plasma actuators seem very

promising currently as they have the advantages of being non-intrusive, having

a highly modular nature and having some way of manipulating the boundary

layer [139, 32].

1.3.2 Sensors

As mentioned previously, active flow control requires real-time information

on the flow state to be available. Experimentally, the amount of information is

sparse and limited to data coming from sensors either integrated into the walls

or directly distributed into the flow. The later can be intrusive or non-intrusive if

optical metrology is used for example. Due to the limited amount of information
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available, which are in addition generally contaminated by noise, flow models

are necessary as described later in Section 1.4.

Extensive reviews of the different kind of sensors used in literature can be

found in [21] and [103]. Wall-pressure sensors [89] and hot-film sensors [128, 52,

114] are generally preferred. The later is used to obtain a measure of the friction

along the wall.

Several types of wall-pressure sensors exist. Amongst others we can mention

piezoresistive pressure transducers [136]. Their small size, linearity from input

pressure to output voltage and flat response over a large band of frequencies

make them easy to implement and a good method for pressure measurement.

An alternative to wall-pressure sensor is hot-film sensor. Such sensors are

sensitive to the wall-shear stress. The measurement of wall shear stress using an

electrically heated element set into the surface is a well established technique

that relies upon the similarity between the velocity profile adjacent to the wall

and the temperature profile of the thermal boundary layer that is generated

by the element. Since flush-mounted, these sensors are almost non-intrusive

(they still add heat to the flow) and offer a simple and cost-effective technique

to provide reliable qualitative information on the state of the boundary layer.

The main issue with hot-films is that their calibration is difficult and needs to be

repeated very often as their rest voltage tends to drift away with temperature

changes and prolonged usage.

A new kind of very promising hybrid sensors using hot-film and hot-wire

technologies are developed in [64, 65]. These sensor are extremely small as they

are developed using the MEMS (Microelectromechanical systems) technology,

have high efficiency and sensitivity, can be easily implemented and integrated

due to their limited size.

1.3.3 Control objectives and performances : robustness vs op-

timality

As mentioned in the introduction, the current work aims at providing a

control methodology to be applied for different experimental configurations

in the context of flow separation control or again drag reduction. In terms of
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performances, we want the control to maintain a given objective for a minimum

of energy expenditure of the actuators. The main performances targeted are thus

twofold :

1. Setpoint tracking : track a setpoint (i.e. prescribed state of the flow system)

defined by the user, which can be either a constant value or a time varying

signal. The tracking should be as fast as possible so to reduce the periods

of time out of the setpoint.

2. Energy minimization : minimize the energy consumption, by considering

the trade-off between the cost of the control and the energy saved by the

controlled flow.

The first index relies with robust control while the second relies with optimal

control.

Robustness is defined as keeping the desired behavior of the system even

in the presence of perturbations [153]. These perturbations may be due, for

example, to :

— model uncertainties

— unknown inputs

— some technical failure (i.e. sensors or actuators malfunction)

— changes of the incoming flow

A schematic of how perturbations impact the system can be found in 1.8a.

The definition of robustness is given in [14] :

Definition 1. Consider the following nonlinear model :

ẋ(t) = f (x(t)) + g(x(t),u(t)) + d(t) (1.7)

x(0) = x0 (1.8)

where x is the state, u is the control, d some perturbation, f and g are appropriate
operators. Note xunperturbed(t) the trajectory of the unperturbed system with a control
uunperturbed . The controller u is said to be robust if the trajectories of the perturbed
system coincide with xunperturbed when both have the same initial condition x0.

In our case, the robustness problem can be explained using the following
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nimization. The controller will be designed in order to minimize some cost

function that can be, amongst many, energy consumption, time to reach the

objective or any other kind of function to minimize. Optimality and robustness

present a trade-off between other, meaning that a control cannot be optimal and

robust at the same time.

Feasibility of the control is also to be taken into account. All physical quanti-

ties are bounded, therefore the value of the control is also bounded and depends

on the considered system. If the control is a voltage then, for example, it may be

bounded between 0 and Umax. Derivative of the control may also be bounded be-

cause of actuators limitations or to ensure a longer life time for the components.

There exist several other performance indexes of control systems like preci-

sion, speed, energetic effectiveness, simplicity of realization, etc.

1.4 Modeling strategies

The flowchart presented in Figure 1.9 (taken from [19]) gives a view of the

hierarchisation of control strategies in terms of plant modeling. Depending on

the knowledge of the flow, models can be chosen from Navier-Stokes equation

(nonlinear PDE) to input-output models identified from data. This section will

present some of the most commonly used modeling techniques in flow control.

Note that the control developed in this thesis, which is a nonlinear control

based on a bilinear model, does not fit in this flowchart, highlighting its novelty

in Flow Control.

1.4.1 High-fidelity models

These models are often called white-box models as everything in the model

is known and represents physical quantities.

1.4.1.1 Navier-Stokes equations

The dynamics of a fluid are ruled by the Navier Stokes equation :
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@⇢ ~U

@t
+r ·

⇣
⇢ ~U ⌦ ~U

⌘
= −rp +r · ¯̄⌧ + ⇢~g (1.10)

where ⇢ is the density of the fluid, p is the pressure, ~U is a vector containing flow

speeds, ¯̄⌧ is the stress tensor and ~g is the vector containing the gravity action.

This equation is a Partial Differential Equation (PDE). It is known for being

extremely complex to prove if solutions always exist and how to find these

solutions. Extensive litterature exist on the study of the Navier Stokes equation,

for example [137] and [31].

This equation is often accompanied by a continuity equation coming from

mass conservation properties :

@⇢

@t
+r ·

⇣
⇢ ~V

⌘
= 0 (1.11)

As this equation is, most of the time, too complex to use it for the design of

a controller that can be implemented in real time without an extremely high

computational cost, it is most of the time approximated in order to reduce the

order and complexity of the system.

1.4.1.2 Partial Differential equations

In order to simplify the study of flows, many other PDEs were developed

for more specific cases. For example, we can cite the Burgers equation (see

Equation (1.12), [20]) used to study the combined effects of nonlinear advection

and diffusion and as a simple yet inaccurate way to approach turbulence and the

Korteweg–de Vries equation (see Equation (1.13), [86]) that is used to describe

the evolution of long one-dimensional waves called solitons.

@v

@t
+ v

@v

@x
= ⌫

@2v

@x2
(1.12)

@v

@t
+
@3v

@x3
+6v

@v

@x
= 0 (1.13)

with v the flow speed.
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1.4.2 Reduced-order models

1.4.2.1 Petrov-Galerkin method

Several methods exist for the approximation of PDEs. One of the most com-

mon ones is the Galerkin method. Galerkin method uses weak formulations of

PDEs. As an example, consider the simple 3D Poisson equation :

−∆u = f in Ω (1.14)

u = 0 on @Ω (1.15)

where Ω ⇢ R
3 and u 2 U with U some function space.

Let us denote by h·, ·i some scalar product in U such that hu,vi =
R
Ω
uvdV .

We take the scalar product of equation (1.14) with some function v 2 U :

h−∆u,vi = hf ,vi (1.16)

Using Green’s identity, we get :

Z

Ω

ru · rvdV =
Z

Ω

f vdV (1.17)

Equation (1.17) is called the weak formulation of the Poisson equation (1.14).

It can be written using a bilinear form a on U ⇥U and a linear form l on U with :

a(u,v) =
Z

Ω

ru · rvdV (1.18)

l(v) =
Z

Ω

f vdV (1.19)

Then, the Lax-Milgram theorem [104] gives the unicity of the solution u to

the equation a(u,v) = l(v).

As the space U is of infinite dimension, it is not useful for calculations.

We then want to find the solution in a finite dimensional space noted Uh and
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contained in U . We then have the following approximation :

find uh 2 Uh such that a(uh, vh) = l(vh),8vh 2 Uh

We note N = dim(Uh) and take a basis (φi)i=1,...,N of Uh. We can therefore

write :

uh(x) =
NX

i=1

Uiφi(x)

Considering that any vh 2 Uh can be expressed in the basis (φ), we take for vh
each φi and rewrite the problem as :

find (U1, . . . ,UN ) such that
NX

i=1

a(φi ,φj )Ui = l(φi) , j = 1, . . . ,N

This is a linear system of equations AU = L with :

U = (U1, . . . ,UN )
T (1.20)

Aij = (a(φi ,φj )) (1.21)

Lj = (l(φj )) (1.22)

As the function φi define a basis, they are orthogonal and their scalar product

are null, so A will be sparse. Anymore, the finite element method gives the best

estimation in the sense of the two following facts :

— Galerkin orthogonality [121, 140] : As we have :

a(u,vh) = l(vh) , 8v 2 Uh

a(uh, vh) = l(vh) , 8v 2 Uh

by substracting we deduce that :

a(u −uh, vh) = 0 , 8v 2 Uh

— Céa’s lemma [22] : The Galerkin solution uh to u is the near-best fit to u in
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the norm k · kH1(Ω) :

ku −uhkH1(Ω) 
c1
c0

min
vh2Vh

ku − vhkH1(Ω) 
c0
c1
C(u)hs

where c0 and c1 are constants, C(u) is a positive constant depending on

the smoothness of u, h is the mesh size and s is a positive real number

depending on the smoothness of u. If we take the energy norm kvkE =

kvka =
p
a(v,v), the Galerkin solution uh is the best fit to u.

One of the most famous methods using the Galerkin projections is called

the Finite Element Method [121, 140] where the finite dimensional space Uh
is chosen to be a space of piecewise polynomial functions and the space Ω is

discretized using a mesh. The mesh is often chosen to be made of triangular or

rectangular elements, even if other polygons are possible, The finer the mesh,

the closer (in some sense) the result of the FEM will be to the solution of the PDE,

meaning that typically the mesh will be designed to be finer around interest

points where the state is supposed to be varying the most.

1.4.2.2 Finite Differences Method

Another commonly used method is Finite Differences [96]. It relies on space

discretisation on a grid and approximating derivatives, often by first or second or-

der approximations. Let us consider again the Poisson equations (1.14) and (1.15)

but this time in 2 dimensions on a square, i.e.Ω = [0,L]⇥[0,L] ⇢ R
2. We discretise

over a uniform grid with h the space discretisation step, such that h divides L,

see Figure 1.10 :

xi = ih (1.23)

yi = jh (1.24)

with i = 0,1, . . . ,N , j = 0,1, . . . ,N and N = L
h . We can then use the indexes i

and j instead of the positions xi and yj . i and j will also be used as indexes for

matrices that contain that contain the values of the various variables at each

discretisation point. We will then write u(i, j, t) and f (i, j, t) instead of u(xi , yj , t)

and f (xi , yj , t).
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A =

2
666666666666666666666666666666664

D −I 0N−1 0N−1 0N−1 · · · 0N−1
−I D −I 0N−1 0N−1 · · · 0N−1

0N−1 −I D −I 0N−1 · · · 0N−1
...

. . . . . . . . .
...

0N−1 · · · −I D −I 0N−1
0N−1 · · · 0N−1 −I D −I
0N−1 · · · 0N−1 0N−1 −I D

3
777777777777777777777777777777775

(1.30)

D =

2
666666666666666666666666666666664

4 −1 0 0 0 · · · 0

−1 4 −1 0 0 · · · 0

0 −1 4 −1 0 · · · 0
...

. . . . . . . . .
...

0 · · · −1 4 −1 0

0 · · · 0 −1 4 −1
0 · · · 0 0 −1 4

3
777777777777777777777777777777775

(1.31)

b = h2

2
66666666666666664

f (1,1, t)

f (1,2, t)
...

f (N − 1,N − 1, t)

3
77777777777777775

+BC (1.32)

where 0N−1 is the N −1 by N −1 square matrix containing only zeros, I is the

identity matrix of size N − 1 by N − 1. D is of size N − 1 by N − 1 and A contains

N −1 times the matrix D on its diagonal. BC is a vector containing the boundary

conditions information.

Once these matrices have been obtained, it is necessary to solve the system

Au = b at each instant of time which is easy as A is invertible.

1.4.2.3 Special case of Proper Orthogonal Decomposition (POD-Galerkin)

The Proper Orthogonal Decomposition, namely POD, was initially popula-

rized in fluid mechanics by Lumley [95] for the detection of spatial coherent

patterns, or "coherent structures" in turbulent flows. The POD takes founda-

tion in the Karhunen-Loeve theory which is also closely related to Principal
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Component Analysis (PCA [149]) or again Singular Value Decomposition [69]).

These theorems offer a representation of stochastic process as an infinite linear

combination of orthogonal functions.

POD has been used extensively in fluid mechanics not only to investigate a

large range of flows, among which cylinder wake flows [15] or again boundary

layer flows [9, 85] to cite just a few examples, but also to build reduced-order

dynamical systems thanks to Galerkin projection of the Navier-Stokes equations

onto the POD basis. For a given flow velocity field ~U(x, t), the POD expansion

may read as,

~U(x, t) =
+1X

k=1

~Φk(x)ak(t) (1.33)

where Φk(x) are the spatial modes and ak(t) the temporal coefficient.

The classical scalar product h·, ·i and norm k·k in L2
Ω
, the space of quadratically

integrable functions on Ω are defined as :

hf (x), g(x)iL2
Ω

=
Z

Ω

f (x)g(x)dx (1.34)

kf (x)kL2
Ω

=

sZ

Ω

f 2(x)dx (1.35)

Note that ~U 2Ω ⇥R+, ~Φk 2Ω and ak 2 R+.

Following the Loeve’s theorem, Lumley defined "coherent structures" as the

spatial patterns which has the largest mean square projection on the velocity

field. Mathematically, this is equivalent to finding Φ such as,

max
Φ2L2

Ω

h ~U(t, ·), ~Φi2

k~Φk2
(1.36)

where ·̄ is a time averaging operator : f (t) = lim
T!+1

1
T

R T

0
f (t)dt. Finding the POD

basis satisfying this condition is known to be equivalent to solve the Fredholm
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integral equation given by,

Z

Ω

U(x, t)U(x0, t)Φk(x
0)dx0 = λkΦk(x)

The spatial modes Φk(x) are consequently defined as the eigenfunctions of the

two-point correlation tensor U(x, t)U(x0, t) while λk are its eigenvalues which

also represent the energy transported by the spatial modes. They can be made

orthogonal such that, Z

Ω

Φi(x)Φj(x)dx = δij

Finally, to satisfy the expansion given in Equation (1.33), the temporal coefficient

may be read as,

ak(t) = (U,Φk) =
Z

Ω

U(x, t)Φk(x)dx

Combining POD to educe a reduce-order representation of the flow field by

retaining a limited number of modes in the expansion of Equation (1.33) with

Garlerkin projection technique has been used by a large number of authors to

derive reduced-order dynamical systems (ROM) in particular for flow control.

An exhaustive review of reduced-order modeling has been given by [105].

The reader can refer to [43] for more details about POD.

1.4.3 Input-output model identification

1.4.3.1 Auto-regressive methods

Based on measured data, many model identification techniques exist. The

first step for model identification is choosing a model. The most commonly used

ones [92] are linear models in discrete time called ARX (3.30) (Auto-Regressive

eXogeneous) and ARMAX (1.38) (Auto-Regressive Moving Average eXogeneous)

and consider SISO (Single Input Single Output) models. These models are more

focused at control design and do not attempt to have an exact reconstruction of

the data but rather to approximate them closely enough so that the control will

work efficiently.
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y(k) + a1y(k − 1) + · · ·+ anay(k −na) = b1u(k −nk) + · · ·+ bnbu(k −nk −nnb +1) + e(k) (1.37)

y(k) + a1y(k − 1) + · · ·+ anay(k −na) = b1u(k −nk) + · · ·+ bnbu(k −nk −nnb +1) (1.38)

+ c1e(k − 1) + · · ·+ cnce(k −nc)

where k is the current time step, nk is a time delay for the output to be

affected by the input, na, nb and nc are the number of coefficients ai , bj and cl to

find.

The difference between the two models is that the ARMAX applies some

kind of moving average to the noise e and therefore takes into account previous

values.

Once the model has been chosen, it is necessary to use experimental data

in order to estimate the coefficients of the model. If the model is linear in the

coefficients, such as ARX and ARMAX, it is possible to use the well known

Least-Square Method [92].

The quality of the identification highly depends on the number of the data.

The more data are available, the closer the model will be to the system to identify.

Numerous other identification methods and model types exist, such as,

amongst other, statistical modeling [3], fuzzy modeling [27], nonlinear ARMAX

(NARMAX) [26].

1.4.3.2 Bilinear models

One the most simple type of nonlinear models are bilinear ones. These models

can be seen as a special case of NARMAXmodels. Bilinear models are extensively

used in the literature as simple approximations of the nonlinear models of

complex systems. In [100] a class of simple bilinear models is presented as a

modeling tool for biological and physical systems and the controllability of such

kind of systems is proven, [48] models a distillation column as a bilinear system

and presents the identification algorithm for the coefficients of the model, [148]

derives a system of bilinear equations to model the microbial cellgrowth and

product formation of various waste treatment and fermentation systems and

uses this system of equations for observer design and online control as biological
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sensors for this type of application are not accurate enough, [151] uses a bilinear

model to design a controller that is applied to a headbox control of a paper

machine.

Due to this interest in bilinear models, several identification techniques

have been developed. In [123] a technique for the identification of multi-input

multi-output bilinear systems with white noise inputs is developed based on

deterministic-stochastic methods and applied to the identification of a heat

exchanger. In [51], a similar identification method is developed and applied to a

distillation column.

It will be shown in Section 3.1 that a bilinear model can be derived from

approximation and discretization of the Burgers equation.

1.5 Control strategies

1.5.1 Model-based control methods

Model-based control, as opposed to model-free control, uses some kind of

model of the system for control design. The model may be obtained in various

ways, for example from some physical considerations and parameter identi-

fication. As common in control theory, there exist open-loop and closed-loop

model-based controls. A review of many model-based control methods can be

found in [18].

Open-loop model-based control is simply finding the best input signal giving

the desired result by analyzing of the model.

Closed-loop model-based control consists in finding a control law that de-

pends on output measurements of the system, giving it the ability to track

desired setpoints efficiently.

1.5.1.1 Open-loop control

Model-based open loop control uses a model of the plant in order to design

an open-loop control that is generally used to obtain some kind of optimality.

In [124], an open loop control is designed in order to minimize an H1 norm.
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In [53], the control is designed to minimize the trade-off between the control

energy cost and the energy savings of drag reduction.

Open loop control has the advantage of being easy to implement and does

not require any sensing on the system. This comes at the disadvantage of not

being robust to perturbations that occur in most physical systems as well as not

having the possibility of doing setpoint tracking.

1.5.1.2 Linear closed-loop control

The other form of model-based control is using a closed loop. This means

that the controller uses measurements on the system to adapt to its evolution

and change the control accordingly. An extensive study of linear closed-loop

control can be found in [70] and [122].

One of the simplest closed loop control method is state feedback [80]. Consi-

der a linear state-space system :

ẋ(t) = Ax(t) +Bu(t) (1.39)

Choosing u = Kx such that the eigenvalues of A−BK are in the left half of the

complex plane ensures asymptotic stability of the system (1.39).

Numerous other closed loop model-based control exist and can be chosen

based on the model properties or on desired control objectives such as robustness

to perturbations, noise rejection, optimality of some criteria, finite/fixed time

convergence.

As closed loop control requires measurements on the plant, it can be more

difficult to implement, mostly if sensors are unreliable or their installation

requires some modification of the plant.

1.5.2 Model-based nonlinear control methods

Many model-based nonlinear control methods exist but they are usually not

generic methods and are developed for a small set of models and applications.

We will first expose the Sliding Mode Control method which is amongst the most

generic methods and then quickly mention a few other existing methods.
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1.5.2.1 Sliding Mode Control

As we will mostly focus on air blower jets actuated as relays, Sliding Mode

Control [143] is well adapted for the considered experimental setup. The basic

idea of Sliding Mode Control is to choose a surface in the state space of the

system on which the system is behaving in a desired way (stability, speed of

convergence, asymptotic/finite-time convergence).

Consider a simple system :

ẋ(t) = f (x(t), t) + g(x(t), t)u(t) (1.40)

where x(t) 2 Rn, u(t) 2 {0,1} and the functions f : Rn⇥R! R
n and g : Rn⇥R! R

n

are assumed to be continuous and sufficiently smooth so that the solution x(t)

exists and is unique.

We chose an hypersurface, called the sliding surface, defined by

{x 2 Rn : σ(x) = 0} (1.41)

We design the control as follows :

u(t) =

8>><>>:
1 if σ(x) < 0,

0 if σ(x) > 0,
(1.42)

Simply put, it means that if we are "over" the surface we set the control at 1 in

order to rise to the surface and if we are "under" the surface, we set the control

to 0.

The surface 1.41 is to be designed in order to get the desired type of conver-

gence and stability.

Once the surface has been chosen, the stability and convergence analysis is a

3-step proof :

1. Check that the system reaches the surface from any initial condition that

is deemed acceptable for the system.

2. Check that, once the system reaches the sliding surface, it stays on it. This
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is done by checking that :

σ̇(x)σ(x) < 0 (1.43)

3. Check that the behavior of the system on the surface, i.e. once σ(x) = 0, is

as desired

Note that usually (see [143]) the step 3 is announced as the first one. However,

in practice the design the sliding surface may be motivated by some control

restrictions. The proof, that sliding motion on this surface will imply some

required behavior of the system, can be made on the last stage (see Chapter 4).

One the major advantages of the Sliding Mode Control technique is its ro-

bustness to perturbations. This is studied and proved in [143, 142]. It is also

designed explicitly for relay control systems, which fits the air jets that we use

for control of the flow.

1.5.2.2 Other techniques

Apart from Sliding Mode Control, many nonlinear control techniques have

been developed. Each method has its own interest and application. We can cite,

amongst others, feedback linearization [82], adaptive control [6], backstepping

control [94, 81], , Small Gain Theorem [78] and homogeneity based control [93,

120]. Others techniques and reviews can be found in [133, 77].

An extensive review about nonlinear control methods can be found in [87].

1.5.3 Model-free control

As indicated by its name, model-free control is a control method that does

not require knowledge of the model. Usually, it is based on experimental tests,

numerous data and trial and error methods. As for model-based control, the

control can be open or closed loop.

One of the most common closed loop model-free control is the PID [7].

Consider a SISO (Single Input Single Output) system, for which the value of

the control is noted u and the vale of the output (measurement) of the system

is noted y. The PID control aims at tracking the value of the setpoint y⇤, thus
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reducing the tracking error e = y⇤ − y as close to 0 as possible. The control is

given by :

u(t) = Kpe(t) +Ki

Z t

0
e(t)dt +Kd

de(t)
dt

(1.44)

In the model-free case, coefficients Kp, Ki , Kd can be found by trial and error

on the system until the desired behavior is reached. This method is easy to apply

but can be very time consuming and doesn’t ensure any result.

Another form of "model-free" control is suggested in [57] where the use

ultra-local models of the form y(ν) = F +αu and estimate F online in order to

obtain the control u to use at each instant of time.

It is also possible to design control based on numerous data without knowing

a priori the equation giving the value of the control. This is achieved, for example,

by using Genetic Programming. In this case, an evolutionnary algorithm creates

the control law by picking and mixing functions from a predetermined list of

admissible functions following the evolutionnary rules of, amongst others, the

Genetic Algorithm. Such model-free flow control algorithm is described in [96,

16, 101, 56, 44] and has been succesfully applied to flow control in [45, 41].

A review of other model-free control methods can be found in [19]. All of

them need long time experimentation for tuning of control. Another challenging

issue is robustness of model-free control. Up to now there is no clear way to prove

that small variations of system parameters will not imply large degradation of

the control quality.
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Chapter2

Experimental configurations

As stated in the introduction of the manuscript, the present work aims to de-

monstrate the potential of sliding mode control for aerodynamic purposes such

as flow reattachment or again drag reduction. Three test cases were considered

during this work : (TC.I) a massively separated turbulent boundary layer over

a two-dimensional ramp, (TC.II) a separated flow over a two-dimensional flap,

and (TC.III) the flow over an Ahmed body. For the two first test cases, the control

objective is to maintain the flow reattached despite upstream perturbations or

changes in a given range of the operating conditions. For the third case, the

control objective is to reduce and maintain the drag at a fixed level despite

perturbations in the operating conditions. From the engineering point of view,

the control hardware is similar for the three test cases as well as the modus

operandi for plant modelling. Only the plant –which includes the flow itself, the

actuation set-up and the sensors– to be controlled is different.

The present chapter describes the experimental set-up used for each of the

test cases. This includes details on the flow geometry, the sensing, the actuation,

the acquisition and control hardwares and finally the modus operandi.

37
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2.1 Test case I :Massively separated turbulent boun-

dary layer

2.1.1 Flow configuration

The first test case considered is that of a massively separated turbulent

boundary layer. The Reynolds number, based on the momentum thickness,

where the flow separates is 20600. This flow was examined in details in [35,

114] in the large boundary layer wind-tunnel at Laboratoire de Mécanique de

Lille (France) for control purposes. As schematically depicted in Figure D.1a

and illustrated in Figure D.1b, the boundary layer flow first develops along a

15 m long flat horizontal plate (corresponding to the floor of the wind-tunnel)

before reaching a smooth convergent where it occurs acceleration. The flow

continues to develop downstream along a slightly inclined flat plate to recover

a zero pressure streamwise gradient. This is followed by a inclined flap along

which the boundary layer occurs separation and reattaches further downstream

to the floor of the wind-tunnel. The height of the ramp at the leading edge of the

flap is Hs = 175 mm, while the boundary layer thickness just before separation

is δ = 190 mm. Velocity streamlines for the time-averaged flow, obtained by

PIV measurements conducted in [114] are reported in Figure 2.3. In the present

configuration, the location where the flow separates from the wall is located

at the edge between the inclined flat plate and the flap. Just downstream of

the edge, a shear layer forms and a recirculation region appears along the flap

due to flow separation. The border between positive and negative streamwise

mean velocity is represented as the blue line in Figure 2.3. Below this blue line,

the flow is, in average, reversed compared to the flow above the line. Complete

characterisation of the baseline flow can be found in [35, 115].

2.1.2 Actuation setup

An ensemble of 22 round co-rotated air jets of 0.03δ in diameter aligned in

the spanwise direction parallel to the flap edge and located ⇠ 1.5δ upstream the

separation is used for actuation. The jets are driven by fast-switching two-stated
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Figure 2.1 – Schematics of the experimental set-up. Enlarged picture : ramp
model. Zoom : region of the flap with locations of the hot-film sensors and active
air blowers (Only the hot-film 1 is used in this thesis for identification)

Figure 2.2 – Photography of the ramp model. The flow is coming from the left
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(a) Streamlines for the natural flow without
control
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(b) Streamlines for the flow under continuous
actuation

Figure 2.3 – The blue line represents the border between the reversed flow (ne-
gative streamwise velocity, region of the flow below the line) and the freestream
(positive streamwise velocity, region of the flow above the line). In the controlled
case Figure 2.3b the recirculation region is shown to be drastically reduced and
the flow almost fully reattached to the wall.

solenoid valve (Festo® MHE2). Complete details of the actuators and their model-

ling can be found in [128, 115] and [17] respectively. The valves are alimented by

pressurised dried air. For a given air pressure level, the actuators can be driven in

both frequency (f ) and duty-cycle (DC), the two control parameters. An example

of the time-averaged response of the flow to continuous blowing of the actuators

is given in Figure 2.3b. Compared to the baseline flow, the region of reversed

flow is drastically reduced and the flow is found to be almost fully attached to

the bottom wall. The reader can refer to [36, 114] for an exhaustive parametric

study of the flow response to various control parameters. In practice, sequences

of pulsed actuation with different duty-cycle and frequencies were examined

and repeated over a sufficient long time such that the flow experiences repetitive

reattachments (actuation ON) and separation (actuation OFF) sequences. The

motivation for this is to obtain a phase-averaged view of the flow response.

2.1.3 Sensors & Flow survey

For real-time survey of the flow state, hot-film sensors (Senflex® SF9902)

located along the flap are used and its voltage output E(t) is offset such as

E(t)−E0 (with E0 the average film voltage for the baseline flow). An increase the

hot-film output is representative of flow reattachment along the wall. Overall
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Operating cond. Control param. Sensor
Case U1 (m/s) Other v⇤ f (Hz) f + DC (%) Cµ (%)
I 10 5 [0-8] [0-0.14] [50-100] [4.1− 8.2] Hot-film

Table 2.1 – Operating conditions and range of control parameters for the test
case I

details of the arrangement can be found in [115]. For the present purpose,

only the most upstream hot-film sensor is used. This sensor is located 0.5Hs

downstream of the ramp’s leading edge and midway of the wind-tunnel in the

spanwise direction. This sensor was found to offer the largest signal-to-noise

ratio and to be the most sensitive to flow changes due to actuation [115].

2.1.4 Open-loop tests

The system response, in terms of hot-film output with offset E(t)−E0 is first

explored thanks to successive open-loop periodic forcing with varying frequency

f and duty-cycle DC as mentioned previously. The range of control parameters

and operating conditions considered are detailed in Table 2.1. In the later, the

excitation frequency f is given also as the normalized frequency f + = f ⇤H/U1
corresponding to a Strouhal number. The momentum coefficient is defined

following [4] as,

Cµ =
ρjSjV

2
j

(1/2)ρ0SU21

where ρj is the air density of the jets, Uj is the mean jet velocity, Sj is the jet

cross section, ρ0 is the reference air density for the main flow, U0 the reference

freestream velocity at the jet position and S0 the reference area. Here, we will

choose S0 = λδ with λ the distance between two jets and δ the boundary layer

thickness.

Average responses of the hot-film output for the different forcing considered

further in the manuscript for the plant modeling are shown in Figure 2.5a

to 2.5e. In the caption of the plots are given the frequency and DC used for

the input signal (4Hz, 50%DC means a frequency of 4Hz and a duty cycle of

50%, constant means that the input is constant and equal to 1). As observed in
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[115, 128], when continuous actuation is used (DC=100%), the hot-film output

exhibits an averaged response which is well described by a first-order law (See

Figure 2.4). When pulsed actuation is used, the response of the hot-film output

is still dominated by a first-order response but oscillations are clearly visible

and whose amplitude depends on the control parameters. These oscillations

have been well described by [115] as the signature of the vortices periodically

generated by the actuators and interacting with the shear-layer while traveling

downstream. When the actuators are activated, contra-rotating vortices are

generated [115]. Due to the distance between the actuators and the hot-film

sensor, a time-delay is necessary before the hot-film can sense changes in the

flow dynamics. This time delay is manifest in Figure 2.5a for all the different

control parameters examined and is similar indicating that it only depends on

the convection velocity of the traveling vortices. Note that time-delays inherent

to the actuator itself have been well characterized by [17, 114, 128] and were

found negligible compared to that intrinsic to the flow response to actuation. The

main effect of the actuators is to force the flow to reattach to the wall, leading

to an increase in the hot-film output. This increase is manifest when examining

the results of Figure 2.5. Above this transient, the flow reaches a stationary

state while the actuation is maintained. Once the control is turned off, a short

time-delay is again necessary before the hot-film sensor can sense flow changes

indicating a return to the natural separated state.

Note that since the hot-film sensor is highly sensitive to perturbations, and

since the flow in the separated regions is highly unsteady and depends on the

boundary layer state just before separation, the instantaneous response of the

hot-film output may significantly differ from the its averaged response. This is

well manifest in Figure 2.4 where instantaneous response of the hot-film output

due to repeated sequence of continuous forcing are reported. This result gives

an indication of how much the hot-film sensor is sensitive and has been used

further to bound the averaged sensor’s response.

This first test case was considered in the present work only to validate the

modeling strategy presented in Chapter 3.
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2.2 Test case II : Separated flow over a plain flap

2.2.1 Flow configuration

The second test case considered is that of a separated flow over a plain flap

with variable angles of attack considered. This configuration was extensively

examined by Chabert and co-authors [25, 24] for the development of closed-

loop linear control strategies. Experiments have been conducted in the L1 wind

tunnel located at ONERA Lille research center. The test model is presented in

Figure D.2a and consists of an 867-mm-long flat plate and a plain flap (chord

length c = 220mm) based on a NACA 4412 airfoil shape with a width of 800mm.

This leads to an aspect ratio of 0.275. The model is installed between two thin flat

plates in the center of the test circular section of 2.40m diameter as illustrated

in Figure D.2b. The deflection angle of the flap can be varied from 2◦ to 37◦. The

wind-tunnel tests were performed at average free-stream velocities ranging from

14 m/s to 50 m/s. In this range, the external turbulence level is about 1.3%.

2.2.2 Actuation setup

Seven blowing slits are integrated into the leading edge of the flap and along

its whole span. Each of them are driven by fast-switching two-stated solenoid

valves (Festo® MHE2), same as that used for test case I. The slits are 0.25-mm-

wide and 90-mm-long and share a common pipe of compressed air alimented

by a constant feeding pressure up to 7 bar. The slits are separated from each

other by 7 mm (0.9% of the span) and cover 80% of the total span. The jets blow

with a fixed angle of 30° with respect to the local flap tangent. Full details of the

actuation arrangement can be found in [25].

2.2.3 Sensors & Flow survey

For flow survey, hot-film sensors (Senflex® SF9902) are installed along the

chord of the flap (see Figure 2.8 for the schematic of the wing with the sen-

sors and 2.2 for a table with their positions) and are equiped with a Dantec®

acquisition system coupled with a Keysight® E1413 A/D converter. The hot-film
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2.3 Test case III : Flow over an Ahmed body

2.3.1 Flow configuration

The third and last test case considered is that of the flow over an Ahmed

body. This configuration is classically used as a geometric simplification for

a typical car. Experiments were conducted in the closed-loop wind tunnel of

LAMIH (Valenciennes). The test section is 2 m wide, 2 m high and 10 m long.

The lateral walls are made in perspex in order to allow optimal measurements.

The maximum free-stream velocity is about 60m/s with a turbulence intensity

of approximately 0.6%. The blunt-edged bluff body is a simplified car model

similar to the square back Ahmed body [2]. It has the following dimensions :

height h = 0.135 m, width w = 170 m and length l = 0.370 m. Its front edges

are rounded with a radius r = 0.05 m. The model is mounted over a raised floor

with a sharp leading-edge to control the boundary layer thickness. The model

is installed with a ground clearance of g = 0.035 m. The support on which the

model is mounted is connected to the drag balance detailed in the following

paragraph. The blockage ratio is 0.57%. A cartesian coordinate system with x,

y and z representing streamwise, transverse (normal to ground) and spanwise

directions, respectively is used, with origin located on the raised floor at the

streamwise position of the rear surface. All the results presented in this thesis

are obtained with a constant free-stream velocity U1= 10m/s. The Reynolds

number based on the height of the model is Reh=9⇥ 104.

2.3.2 Actuation set-up

For control purposes, the model is equipped with an actuator slit at the

trailing edge, as illustrated in Figure 2.12. The slit width is hslit=0.1mm and

the actuation length is wa=150mm. The pressurized air, which is supplied by a

compressed air reservoir, can be blown tangentially to the free-stream velocity

through the slit. The pulsed blowing is driven by a Festo® MHE2 solenoid

valve similar to that used in the previous test cases. In addition, a rounded

surface adjacent to the slit exit is installed with an additional plate in order

to blow the jet in a predefined direction. Figure 2.12 shows a close-up view of
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Figure 2.11 – Frequency response of the actuation device. Vj is the mean velocity
of the jet, Vj0 is the mean velocity of the jet in steady blowing and DC is the duty
cycle.

the Coanda surface at the exit zone. The frequency response of the actuation

device, reported in Figure 2.11, indicates that the jet exit velocity is constant (for

a given air pressure) for forcing frequencies below 100 Hz, which corresponds

to a Strouhal number, based on the body height StA = fa.h/U1, equal to 1.35).

Above this critical value, the jet exit velocity first shows a slight increase before

decreasing drastically as the actuation frequency is increased. The maximum

forcing frequency actuation considered for the present work is therefore 100 Hz.

As discussed further, this frequency is beyond the range of forcing frequencies

of interest for drag reduction.

2.3.3 Sensors & Flow survey

In contrast to the previous test cases, the objective of the control is here to

reduce the drag of the body and to maintain a given drag reduction despite

changes in the inflow conditions over a given range. Drag force real-time measu-

rements were thus performed thanks to a 6-components Delta Ati aerodynamic

balance model built in the raised floor. The balance has a sensing range of 0 to

165 N with a resolution of 0.03 N and a high signal-to-noise ratio. The maximum

error associated with repeatability and hysteresis was found to be approximately
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0.5 %. The drag measured by the balanced is consequently considered as the

only information available to model the overall plant.

In addition, in order to investigate the topology of the uncontrolled and

controlled flows, a standard two-component Tsi particle image velocimetry (Piv)

system is used. The flow is seeded with oil particles by using a jet atomizer

upstream of the stagnation chamber allowing homogenous dispersion of the

particles throughout the test section. The system consists of a double-pulse

laser system generating the light sheet and two cameras (2000 ⇥ 2000 pixels

charge-coupled-device Powerview with a 50 mm optical lens) recording the

light scattered by the tracer particles. The frequency-doubled laser (Q-switched

Nd :Yag operating at 532 nm; dual-head BigSky) emits laser pulses with a

maximum energy of 200 mJ. A multipass algorithm with a final interrogation

window size of 16⇥16 pixels2 and 50 % overlapping is applied. The resulting

Piv domain is about 3.7h⇥1.8h on the x-y plane passing through the middle plan

of the Ahmed body as it shown in Figure 2.12. For every test cases (reported in

Table 2.4), 2000 double-frame pictures are recorded to assure the velocity fields

statistics convergence. The Piv time-uncorrelated snapshots are recorded with a

repetition rate of a 7Hz. In order to maintain the causality between the dyna-

mical aspect (instantaneous flow fields) and the global behavior (drag, lift and

surface-pressures time-histories) of the bluff body, unsteady pressure need to be

recorded simultaneously with the Piv measurements. To achieve the synchro-

nization, the Q-switch signal of the laser cavity B was recorded simultaneously

with the pressure transducer and the forces signals using a 32-channel A/D

converter Dewesoft data acquisition system, at a sampling frequency of 20kHz,

and a cutoff filtered at 6kHz is used for the Q-switch and another of 1kHz with

a cutoff filtered at300Hz.

The mean cross-stream velocity field in the symmetry plane of the Ahmed

body (z/h=0) for the natural flow is reported in Figure 2.13a as colormap with

streamlines superimposed. This figure provides a view of the average fluid mo-

tion over the Ahmed body. Just behind the back of the body, a recirculation area

is manifest. Its core is located at about x/h = 0.25 and y/h = 0.4. This region

entrains the flow from the ground clearance to surround it and towards the
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Figure 2.13 – Natural flow characteristics in the symmetry plane (z = 0), (a)
Time-averaged cross-stream velocity (v̄+) with the associate streamlines and the
iso-line of the forward flow probability of 50%. The recirculating flow length
Lr is also displayed by the vertical dashed line. (b) Instantaneous flow field
#265 captured by the Piv. The velocity field is indicated by dimensionless norm
colored arrows. The Γ2 criterion is displayed by black iso-lines revealing the
unforced shear-layer vortex street formation and the position of the classical
main wake structures.

following [4] as,

Cµ =
SjV

2
j

(1/2)SU21
=DC ⇥Cµ0

where S and Sj are respectively the slit and the Ahmed cross-sectional area

and Vj the mean jet exit velocity. Cµ0 refers to the steady blowing momentum

coefficient. The normalized frequency f + = f ⇤ h/U1.
The same Arduino system than that described for TC.II is implemented with

the instantaneous drag from the balance as the main input. The pressure sensors

and the other aerodynamical forces are not considered in this thesis.

Overall, 13 datasets were considered for identification of the plant’s model

(detailed in Chapter 3). As justified further in Chapter 4, the model that will be

identified is supposed to have positive solutions, therefore as the output of the

drag balance is negative, the opposite value is considered. The drag responses

to different forcing are presented in Figure 2.16a to 2.16e. In the caption of the

plots are given the frequency and DC used for the input signal. As it can be seen

in the figures, when the actuators are activated, the drag decreases (represented

by an increase on the plots, remember that the plots of the drag responses show
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Figure 2.14 – Time-histories response of the pressures and forces measurements
due to a steady blowing step actuation (Reh = 9⇥ 104, Cµ = 1.355%).

the opposite value of what is measured on the drag balance). Similarly to test

cases I and II, the drag response is dominated by a first-order response with

visible oscillations when a pulsed actuation is used. Also noticeable is the noise

in the signals which is much more important in this test case than in the previous

ones. In addition, the voltage output of the drag balance does not reach the same

steady value each time the actuators are deactivated after an actuation sequence.

This is particularly manifest in Figure 2.16a.

The main effect of the actuators is to increase the pressure at the back of the

Ahmed body, inducing a reduction in the drag. Contrary to the previous test

cases, as the drag balance measures the drag on the whole Ahmed body, there

is close to no time-delay between a change in the actuation and a change in the

output of the balance. This is showed in Figure 2.14 for a constant actuation

where FL is the lift, FD is the drag, u is the control signal, p1 and p2 are unsteady

pressures measured at the back of the Ahmed body.

This third test case will be considered for robust closed-loop tracking control.
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Figure 2.15 – Example of simultaneous measurement of the Q-switch signal of
the laser cavity B and the unsteady pressures (p1 and p2) and forces (FD and FL)
during a Piv acquisition. + subscript denotes the h/U1 normalisation.

Cases Cµ(%) fa(Hz) StA Lr /h

Natural flow (ref) - - 1.15

Steady blowing 1.355 0 0 0.87

5 0.0675 0.83
Forcing frequency 0.678 10 0.1350 0.85

30 0.4050 0.84

Table 2.4 – PIV cases and associated parameters.

Operating cond. Control param. Sensor
Case U1 (m/s) Other v⇤ f (Hz) f + DC (%) Cµ (%)
III 10 [0-100] [0-1.35] [50-100] [0.678-1.355] Force balance

Table 2.5 – Range of control parameters & operating conditions for model identi-
fication : test case III
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Chapter3

Identification algorithm

Following the classical hierarchisation of modeling strategies detailed in

Chapter 1, black-box model is considered in the present work. This chapter

presents the identification method developed and applied to the different flow

control systems as detailed further. A single-input single-output (SISO) model

is used in order to describe the flow state behavior. The input data consists of

the control command signals driving the actuators while the output is the signal

from the sensor used to survey the flow state.

In the first section, SISO bilinear delayed models are derived from approxi-

mations of the Burgers equation. In the second section, the method for the

identification of the delays is detailed and the models are extended to state-

dependent input delays. The third section presents the method for identification

of the coefficients of the models and averaged models are introduced. The fourth

section presents the technique and the criteria for the optimization of the delays.

In the fifth section, results of identification for the test case I are shown. Finally,

a conclusion is presented in the last and sixth section.

In the following, the term "plant" will be used to describe the physical system

while "model" will be used for its mathematical description needed to be found.

61
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3.1 Derivation of SISO models from PDE models

We will here show that the models considered in Subsection 3.3.1 that we

will use for identification and control design can be derived from simple ap-

proximations of physical equations and more specifically the Burgers equation,

named after Johannes Martinus Burgers who studied this equation in [20].

Let us consider the Burgers equation (3.1), which is a simplified 1D version

of the Navier-Stokes equation :

∂v

∂t
(x, t) + v(x, t)

∂u

∂x
(x, t)− ν ∂

2v

∂x2
(x, t) = 0 (3.1)

with ν > 0 the viscosity and t > 0 and 0 < x < 1.

It is known that Burgers equation (3.1) admits travelling waves solutions of

the form [42] :

v(x, t) = F(x − ct) (3.2)

where c is the velocity of the wave and is given by c = v(0,0).

Therefore, the value of v at any point of the interval [0,1] and at any time can

be computed from the value of v at x = 0 with a delay.

Now, we discretize Equation (3.1) with a 3 points scheme using central finite

differences for first and second order space derivatives with a step ∆x = 1
2 :

v̇
⇣
1
2 , t

⌘
+2v

⇣
1
2 , t

⌘
(v(1, t)− v(0, t))− 4ν

⇣
v(1, t)− 2v(12 , t) + v(0, t)

⌘
= 0 (3.3)

We note

y(t) = v(1, t) (3.4)

as the output (or measure) of the system and

u(t) = v(0, t) (3.5)

as the input to the system.

Rewriting Equation (3.3), we get :

v̇
⇣
1
2 , t

⌘
+2v

⇣
1
2 , t

⌘
(y(t)−u(t))− 4ν

⇣
y(t)− 2v(12 , t) +u(t)

⌘
= 0 (3.6)
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Using Equation (3.2), we can write :

v
⇣
1
2 , t

⌘
= F

⇣
1
2 − ct

⌘
= v

⇣
1,

⇣
t + 1

2c

⌘⌘
= v (1, (t + h)) = y(t + h) (3.7)

v
⇣
1
2 , t

⌘
= F

⇣
1
2 − ct

⌘
= v

⇣
0,

⇣
t − 1

2c

⌘⌘
= v (0, (t − h)) = u(t − h) (3.8)

with h = 1
2c .

We finally get :

ẏ(t + h) = −2u(t − h)y(t) + 2y(t + h)u(t) + 4ν
⇣
y(t)− 2y(t + h) +u(t)

⌘
(3.9)

Changing the time scale leads to :

ẏ(t) = −2u(t − 2h)y(t − h) + 2y(t)u(t − h) + 4ν
⇣
y(t − h)− 2y(t) +u(t − h)

⌘
(3.10)

Note that in Equation (3.10), we can interchange y(t + h) and u(t − h).
This method can be generalized to more discretization points in order to get

more accurate but more complicated models.

3.2 Input delays identification

The Equation (3.10) obtained in Section 3.1 is a bilinear delayed SISO system.

A simple explanation of why the model contains input delays is as follows : if

the actuator is placed before the sensors in the physical system, the flow will

take some time to travel the distance between them, thus implying a delay which

depends on the speed of the flow. Considering that the sensors are quick enough

to react to a change in the flow, the input delay can be directly estimated from

the output of the hot-film.

Figure 3.1 shows the output signal of the sensor as well as the input signal to

the actuator from a set of data gathered in the test case I presented in Section 2.1.

The delays considered are that describing the time intervals between the different

rising/falling edges of the input command and the rising/falling edges of the

sensor’s response such as highlighted by the red/green dots in Figure 3.1. While

not reported here, the values of these delays are found to depend on the choice
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with

Cor(eh,u) = Cov(eh,u)
σh̃σu

(3.13)

Cor(eh,y) =
Cov(eh,y)
σh̃σy

(3.14)

where Cov(X,Y ) is the covariance between X and Y , σX is the standard

deviation of X. The value ofeh is computed at each instant k using the formula

given in Equation (3.12).

3.3 Bilinear delay-difference model

3.3.1 Identification of parameters

Being motivated by the results of the Section 3.1 and mostly Equation (3.10),

bilinear models of the plant are considered. A discrete form is also preferred

as the model to be identified is based on experimental data which are discrete

by definition. The first model uses constant input delay based on the PDE

approximation presented in Section 3.1 and generalizing the number of terms

using summations. The second one uses state dependent input delays based on

the delay analysis from Section 3.2. These two models are given by :

yk+1 =
N1X

i=1

⇣
aiyk−τi

⌘
+

N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjlyk−τ̄j

⌘
1
CCCCCCAuk−hl , 0  k N − 1 (3.15)

yk+1 =
N1X

i=1

⇣
aiyk−τi

⌘
+

N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjlyk−τ̄j

⌘
1
CCCCCCAuk−ehl (eyk) , 0  k N − 1 (3.16)

ym = 0,m < 0 (3.17)

where k is the time step, N the number of measures taken (or total number

of time steps), considering that yj = 0 for j < 0 ; τi , τ̄j and hl are delays ; N1, N2

and N3 are respectively the number of delays τ, τ̄ and input delays (h or eh) ;
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ehl(eyk) = round(fleh(eyk)) are the state dependent input delays of the second model

with fl some multiplicative factors used to derive several state-dependent input

delays from the delay identification (such as Equation (3.12)) ; ai , bl and cjl are

the coefficients to identify.

The bilinear models are simple enough for easy control design while still

capturing nonlinear dynamics of the Navier-Stokes (or Burgers) equation, namely

terms of the form u(x, t)∂u(x,t)
∂x . In addition, the model is chosen to include time

delays in order to have an infinite dimension similarly to a partial differential

equation. Linear first order models derived for the flow control system of LML

can be found in [115], where it is demonstrated that this type of model capture

the mean tendency but not the oscillations around it. Definitely, we do not intend

to represent exactly the plant, as we focus more on simple control design that is

sufficiently robust to overcome the inaccuracies of our identified model.

The variables N1, N2 and N3 are to be chosen by the user in a compromise

between complexity of the model and precision. It will also impact the time

required for the optimization used in the identification process. Furthermore,

augmenting the size of the model makes control design more complicated.

The identification has been done using a least-square method [92] if the

delays are selected.

Rewriting the discrete-time models in order to use a least-square method

leads to (3.18).

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

M(τ, τ̄,h) =

2
66666666666664

y0−τ1 ... y0−τN1
u0−h1 ... u0−hN3

y0−τ̄1u0−h1 y0−τ̄2u0−h1 ... y0−τ̄N2
u0−hN3

...
...

...
...

...
...

...
...

...
...

y(N−1)−τ1 ... y(N−1)−τN1
u(N−1)−h1 ... u(N−1)−hN3

y(N−1)−τ̄1u(N−1)−h1 y(N−1)−τ̄2u(N−1)−h1 ... y(N−1)−τ̄N2
u(N−1)−hN3

3
77777777777775

A =
h
a1 . . . aN1

b1 . . . bN3
c11 c21 . . . cN2N3

iT

x =
h
y1 . . . yN

iT

kMA− xk !min
A

size(x) = [N,1] ; size(A) = [N1 +N3 +N2 ⇤N3,1] ; size(M) = [N,N1 +N3 +N2 ⇤N3]
(3.18)

To obtain the values of the coefficients contained in the matrix A, we use the

Moore-Penrose pseudo-inverse on the matrix M . Noting M+ the Moore-Penrose



68 CHAPTER 3. Identification algorithm

pseudo-inverse of M , we obtain (3.19).

A (τ, τ̄,h) =M+x (3.19)

where τ = (τ1, . . . ,τN1
), τ̄ = (τ̄1, . . . , τ̄N2

) and h = (h1, . . . ,hN3
)

While the identification will be done using discrete time models as the data

are gathered in a discrete time manner, the control will be designed using

continuous time models. In the continuous time domain, these systems are

described by (3.20) and (3.21), where T is the sampling period and the function

ey(t) is defined by (3.22).

ẏ (t) =
1
T

0
BBBBBB@−y (t) +

N1X

i=1

(aiy (t − τiT )) +
N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjly

⇣
t −eτjT

⌘⌘
1
CCCCCCAu (t − hlT )

1
CCCCCCA (3.20)

ẏ (t) =
1
T

0
BBBBBB@−y (t) +

N1X

i=1

(aiy (t − τiT )) +
N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjly

⇣
t −eτjT

⌘⌘
1
CCCCCCAu

⇣
t −ehl (ey (t))T

⌘
1
CCCCCCA (3.21)

ey(t) = 1
WT

Z WT

0
y(t − s)ds (3.22)

where W is the moving average window size. As before, using a moving

average allows to take into account the prehistory of the signal y as well as

smoothing the state-dependent input delay function

3.3.2 Averaged model

Based on the idea used to develop ey for the state dependent delay identi-

fication, we can develop an averaged model using equations (3.23) and (3.24).

This model will ease the development of control on the system by separating the

part with slow dynamics (averaged part, low frequency components of the flow,

exhibits the tendency of the signal) from the one with fast dynamics (difference

between non-averaged and averaged part, high frequency components of the

flow, exhibits the oscillations around the tendency of the signal).
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y
avg
k =

1
W

W−1X

i=0

yk−i (3.23)

u
avg
k =

1
W

W−1X

i=0

uk−i (3.24)

The averaged models are given by (3.25) and (3.26).

y
avg
k+1 =

N1X

i=1

✓
a
avg
i y

avg

k−τavgi

◆
+

N3X

l=1

0
BBBBBB@b

avg
l +

N2X

j=1

 
c
avg
jl y

avg

k−τ̄avgj

!1CCCCCCAu
avg

k−havgl

(3.25)

y
avg
k+1 =

N1X

i=1

✓
a
avg
i y

avg

k−τavgi

◆
+

N3X

l=1

0
BBBBBB@b

avg
l +

N2X

j=1

 
c
avg
jl y

avg

k−τ̄avgj

!1CCCCCCAu
avg

k−ehavgl (yavgk )
(3.26)

3.4 Identification of state delays

The quality of the identification will be estimated using the three following

indicators : the L2 error norm ε (τ, τ̄,h,A) given by (3.27), the fit coefficient

as defined in [37] FIT(τ, τ̄,h,A) given by (3.28) for the first system and the

correlation coefficient between the data and the identified model ρ (τ, τ̄,h,A)

given by (3.29) for the first system.

ε (τ, τ̄,h,A) = kx − xsimu (τ, τ̄,h,A)k (3.27)

FIT(τ, τ̄,h,A) = 1−

sPN
k=1(yk − ysimu

k )2
PN

k=1(yk − ȳk)2
(3.28)

ρ (τ, τ̄,h,A) =
cov(x,xsimu)
σxσxsimu

(3.29)

where x = [y0, y1, . . . , yN ]T is the vector of data and xsim (τ, τ̄,h,A) is the vector

obtained by simulating the system using the identified coefficients, yk is the

measured system output (data) at sample k, ysimu
k is the simulated system output
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at sample k using the coefficients A = A(τ, τ̄,h) identified by formula (3.19) and

ȳk is the average of the measured system output (therefore constant signal).

cov(X,Y) is the covariance matrix between the vectors X and Y and σX is the

standard deviation of the vector X.

Note that, for the system with fixed input delays, we will denote these indi-

cators ε1, FIT1 and ρ1 and for the system with state-dependent input delays we

will denote them ε2, FIT2 and ρ2.

As the fixed delays τ, τ̄ and h and the multiplicative factor f , are still to be

determined, we can run an optimization algorithm that minimizes ε in order to

find these delays, i.e.

ε!min
τ,τ̄,h

The chosen algorithms for optimization are Genetic Algorithm (GA, see [40])

and NOMAD (Nonlinear Optimization with the MADS Algorithm, see Chap-

ter B of the Appendix for more details), which is based on the Mesh Adaptative

Direct Search (MADS) algorithm. It is capable of blackbox optimization for

nonlinear objective functions, with linear and nonlinear equalities and inequa-

lities constraints on continuous, integer or binary variables. NOMAD and the

MADS algorithm are very well documented in [12, 88, 11, 10]. NOMAD is

implementend in the Opti Toolbox for Matlab, see [34].

NOMAD has the advantage of being faster than GA to complete the optimiza-

tion, usually finishing in 20% less function evaluations but parallel computing

is not yet supported in Matlab. Therefore, for quick optimization (depending on

the number of parameters and data) we use NOMAD and for long optimization

we will use GA in parallel computing on a cluster (14 to 16 workers in parallel).

The overall algorithm that is used is described as follows :

1. Start

2. Use NOMAD to find the optimal set of delays by minimizing one of the

three criteria : ε, FIT or ρ.

3. Calculate the coefficients of the matrix Awith the set of delays determined

by NOMAD

4. Test the coefficients by simulating the model

5. End
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3.5 Results of identification and comparison

This section will present the results of the identification on the test case

(TC) I. The results for test cases II and III are presented in the Chapter C of the

Appendix.

3.5.1 Non-averaged model identification results for the TC I

To obtain identified coefficients that best fit the data of the TC I, and by

extension the sets generated for different pulsed inputs, we will apply the identi-

fication process to the concatenation of all of the data sets.

The identification is done using only 4 data sets, the fifth one being used for

testing purposes. The fifth data set that is excluded from the identification is

chosen to be the one with an input signal of frequency 8Hz and DC 80%.

For the 4 concatenated data sets, the least-square errors are ε1 = 10.1529

for the model with constant input delay and ε2 = 9.7349 for the model with

state-dependent input delay.

The values of the delays values and the identified coefficients can be found in

the Table 3.1 for N1 = 5, N2 = 10 and N3 = 1. Is is noticeable that the L2 norm of

the state-dependent input delay model is smaller that the one with fixed delay

as it can be seen in the Table 3.2, where the f stands for the frequency of the

pulses and DC for the duty cycle in case of pulsed input signals.

In Table 3.2 it is noticeable that the correlation coefficient between data and

model output is very high, typically around 99.7%, meaning that our model

capture well enough the dynamics of the data.

The simulation of the identified model with state-dependent input delay

leads to Figure 3.3 for the data set N°3. As it can be seen in Table 3.2, the models

with constant input delay is very close to the model with state-dependent input

delay so the model with constant input delay is not plotted here, as the plots of

both models would be extremely similar. The plot in Figure 3.3 exhibits some

non-physical behavior that are due to the small number of coefficients of the

model and the fact that we are not trying to exactly reproduce the data.
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Fixed delay State-dependent delay

τi
h
1 48 352 371 496

i h
1 44 123 479 496

i

τ̄i

"
1 66 242 249 260 . . .
. . . 276 300 409 475 491

# "
1 73 242 264 299 . . .
. . . 335 414 477 494 500

#

hl 49 f = 1

ai

"
0.9744 0.0171 −0.0028

. . . 0.0040 0.0009

# "
0.9759 0.0141 0.0025

. . . −0.0042 0.0055

#

bl 0.0063 0.0080

cjl

2
66666664

−0.0116 0.0070 0.0483 0.0253
. . . −0.0455 −0.0243 −0.0038
. . . −0.0014 −0.0074 0.0138

3
77777775

2
66666664

−0.0228 0.0138 0.0621 −0.0286
. . . −0.0186 −0.0121 −0.0035
. . . −0.0056 0.0189 −0.0049

3
77777775

Table 3.1 – Values of the delays and identified coefficients (all values have No
Unit) for the complete model

Set of data Fixed delay State-dependent delay

ε FIT ρ ε FIT ρ

Data set N°1
(constant)

4.78 90.43% 0.9981 4.69 90.61% 0.9984

Data set N°2
(f = 4Hz,
DC = 50%)

6.24 87.62% 0.9964 5.70 88.70% 0.9958

Data set N°3
(f = 4Hz,
DC = 80%)

3.00 94.03% 0.9984 3.07 93.90% 0.9985

Data set N°4
(f = 8Hz,
DC = 50%)

5.63 88.76% 0.9961 5.10 89.82% 0.9965

Concatenated data
sets

10.13 89.91% 0.9950 9.48 90.55% 0.9955

Data set not used
in identification
(set N°5, f = 8Hz,

DC = 80%)

3.77 92.53% 0.9972 4.01 92.04% 0.9969

Table 3.2 – Comparison of L2 norm values, FIT coefficients and correlation for
state-dependent and fixed input delay models for the complete model
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Set of data Fixed delay State-dependent delay

ε FIT ρ ε FIT ρ

Data set N°1
(constant)

2.57 94.84% 0.9991 2.32 95.34% 0.9992

Data set N°2
(f = 4Hz,
DC = 50%)

6.82 86.21% 0.9979 2.72 94.49% 0.9987

Data set N°3
(f = 4Hz,
DC = 80%)

3.19 93.63% 0.9994 1.62 96.77% 0.9995

Data set N°4
(f = 8Hz,
DC = 50%)

5.76 88.38% 0.9976 2.90 94.14% 0.9987

Data set not used
in identification
N°1 (constant)

4.05 92.07% 0.9978 2.83 94.45% 0.9985

Data set not used
in identification
N°2 (f = 8Hz,
DC = 80%)

3.40 93.25% 0.9990 2.45 95.12% 0.9991

Concatenated data
sets

10.23 89.72% 0.9969 4.87 95.10% 0.9988

Table 3.4 – Comparison of L2 norm values, FIT coefficients and correlation for
state-dependent and fixed input delay models for the averaged model
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3.5.3 Comparison with an ARX model

Let us compare this method to an ARX model (3.30).

yk+1 =
NARX
1 −1X

i=0

(aiyk−i) +
NARX
3 −1X

l=0

bluk−h−l , 0  k N − 1 (3.30)

where h is the time needed for the input to affect the output.

A fixed delay τy could be added to every instance of y in the right hand side

of 3.30 : yk−i becoming yk−i−τy but the best value would be τy = 0 as the current

value of y has a high impact on the computation of the next value. The same

remark can be done for u.

We identify both models on the 4 data sets used in Section 3.5.1. The bilinear

model is the one presented in Tables 3.1 and 3.2 with N1 = 5, N2 = 10, and

N3 = 1 . In order to have the some number of delays in both models, we will

chose NARX
1 = 15 and NARX

3 = 1. As the optimization for the bilinear model gives

h = 49, we will take the same value in the ARX model. The ARX model has

FIT = 81.71% and ε = 17.21. We recall that the bilinear model has FIT = 89.91%

and ε = 10.13. Therefore, the bilinear model gives better identification results

than the ARXmodel for the same number of coefficients. The better identification

will result in a control requiring less energy to ensure robustness is the case of

robust control or to an optimization of the cost function closer to the physical

optimum in the case of optimal control.

This comparison, as well as the considerations from Section 3.1, justify the

use of our model instead of linear or ARX models for the identification of a SISO

model and the control of flows.

3.6 Conclusions

A new bilinear SISO model of flow control system is introduced. Its structure

is motivated by discretization of physical models (Burgers equation). The model

contains state and input delays. Two models have been developed : the first one

has constant input delays while the second has state-dependent input delays.

The scheme for parameter identification is developed. High precision and
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low complexity of the bilinear model is demonstrated for different experimental

setups. In particular, the bilinear SISO model for the test case II (see, Section C.1

of the Appendix) having only 43 parameters shows the precision FIT= 80%, while

models in the literature of flow identificaiton often have more one hundread

coefficients [75] or even several thousands [37] to reach identical FIT values.

The comparison between the two bilinear models has been conducted, sho-

wing that the model with state-dependent input delays is more accurate but that

the difference in accuracy of both models is small. The models have also been

compared to a simple ARMAX model, which is commonly used in the literature

for flow identification, showing that the bilinear models developed here have

significantly better accuracy for the same number of coefficients.

Simulation the models show some inaccuracies mainly around peaks but

these are caused partly by noise in the data signal, the fact that we wish to fit

several type of input-output and the simplicity of our model as we do need seek

exact fitting but good tendency estimation, which is what we get here.

As the constant and state-dependent input delays models are extremely close,

we will only consider constant input delays for modeling of the test cases II

and III. This will ease the design of controllers while having a very neglectable

impact on the precision of the identification.
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Chapter4

Model-based control

This chapter presents the control algorithms that were designed on the mo-

dels obtained in Chapter 3. The first section describes the control objectives

and constraints related to flow control problem and the available experimental

setups. In the second section, an open-loop optimal control algorithm is desi-

gned and simple equations for its derivation are provided. In the third part, a

robust feedback control algorithm is presented using the Sliding Mode Control

methodology. Sufficient conditions are obtained to allow the simple design and

the robustness of the algorithm to be proven. Finally, experimental applications

of the obtained results are discussed in the fourth section.

4.1 Control aims

The main definitions for optimal and tracking controls are first recalled here

in the next paragraphs.

4.1.1 Optimal Control

Let’s suppose that the optimal case for the flow control problem considered

is to maximize the value of the output of the plant y for a minimum amount of

79
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actuation energy cost. The cost functional for such problem may be written as,

J(y,u) = lim
T!+1

1
T

Z T

0

⇣
αy(s)− (1−α)u2(s)

⌘
ds (4.1)

with 0  α  1, where α can be understood as a percentage of how much weight

we put on the maximization of y, the remaining percentage 1−α quantifying

the weight of the energy cost of the control. Maximizing J leads to maximizing

the average of y while taking into account the energy cost of the control =

limT!+1
1
T

R T

0
u2(s)ds. The optimization problem is therefore :

Design a control law u such that J(y,u)!max . (4.2)

The trade-off between the turbulence reduction and the energy consumed

by the actuation is provided by the choice of the parameter α. In addition, note

that in the case of a switching input u, as it is the case in the present work since

on-off relay actuators are used, the control command u can take only values 0 or

1. Therefore, one can write u2(t) = u(t) and the cost functional can be rewritten

as,

J(y,u) = lim
T!+1

1
T

Z T

0
(αy(s)− (1−α)u(s))ds (4.3)

4.1.2 Setpoint Tracking Control

The second control problem to be studied here is stabilization of the output y

at the desired setpoint y⇤. The relay nature of actuators motivates us to apply sli-

ding mode principles in order to design a robust feedback law, which guarantees

y(t)! y⇤ as t!1.
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4.2 Open-loop optimal control

4.2.1 Model Description and Basic Assumptions

Let us consider the functional differential equation

ẏ(t) = A(yτ(t))+
N3X

i=1

(bi +Bi(yτ(t − hi)))u(t − hi), (4.4)

where yτ(t) 2 C1
[−τ,0] is the state of the system, (yτ(t))(s) = y(t + s) for s 2 [−τ,0],

A : C1
[−τ,0] ⇢ L2

[−τ,0]!R and Bi : C
1
[−τ,0] ⇢ L2

[−τ,0]!R are linear continuous func-

tionals, bi 2 R+ are positive constants, u(t) 2 {0,1} is the relay control input,

hi 2 R+ are input delays. For any u 2 L1
R+

the considered system has a unique

Caratheodory solution [74].

We assume that the system (4.4) with y(s) = 0 for all s  0 has bounded positive
solution for any input signal u 2 L1

R+
:u(t) 2 {0,1}. We also assume that the class of

admissible control inputs is restricted to ω-periodic functions u(t) = u(t +ω), 8t > 0.

4.2.2 Elements of Averaging Analysis

Let us introduce some additional notations.

— L2
Ω
is the Hilbert space of quadratically integrable functions Ω ✓ R! R

with the norm k · kL2 induced by the inner product ξ · η =
R
Ω
ξ(s)η(s)ds.

— If τ > 0, ξ 2 L1
R
and t 2 R then

ξτ(t) 2 L1[−τ,0] : (ξτ(t))(σ) = ξ(t +σ) for σ 2 [−τ,0],

ξ̄τ(t) 2 L1[−τ,0] : (ξ̄τ(t))(σ) = ξ(t −σ) for σ 2 [−τ,0],

— For ξ ,ν 2 L1
Ω
with R+ ⇢Ω let us define the operation

hξ ,νi := lim
T!+1

1
T

TZ

0

ξ(τ)ν(τ)dτ,

which, in particular, defines the scalar product in the space L1
R+
.
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— For ξ ,ν 2 L1
R
let us define hξτ ,νi 2 L1[−τ,0] as

hξτ ,νi(σ) := lim
T!+1

1
T

TR

0
ξ(s +σ)ν(s)ds for σ 2 [−τ,0].

Lemma 1. If ξ ,ν 2L1
R
and τ2R+ then hξτ ,νi = hξ , ν̄τi.

Proof. The change of integration variable θ = s +σ gives

hξτ ,νi(σ)= lim
T!+1

TZ

0

ξ(s +σ)ν(s)
T

ds= lim
T!+1

T+σZ

0

ξ(θ)ν(θ −σ)
T

dθ = hξ , ν̄τi(σ)

for σ 2 [−τ,0].
This proposition immediately implies the following

Corollary 1. If ξ 2 L1
R

and τ 2 R+ then hξτ ,1i 2 C[−τ,0] is the constant function :
hξτ ,1i(σ) = hξ ,1i for all σ 2 [−τ,0], where 1 2 CR is the unit constant function (i.e.
1(s) = 1 for all s 2 R).

Lemma 2. If Φ : L2
[−τ,0] ! R+ is a linear continuous functional then hΦ(ξτ),νi =

Φ(hξτ ,νi) for any ξ ,ν 2 L1R .

Proof. Since Φ is the linear continuous functional L2
[−τ,0] ! R+ then by Riesz

Theorem [39] it can be presented as

Φ(η) = µ · η =
Z 0

−τ
µ(s)η(s)ds, η 2 L2

[−τ,0]

with some µ 2 L2
[−τ,0]. Hence,

1
T

TZ

0

Φ(ξτ(s))ν(s)ds =
1
T

TZ

0

0Z

−τ

µ(σ)ξ(s+σ)dσν(s)ds =

0Z

−τ

µ(σ)
1
T

Z T

0
ξ(s+σ)ν(s)dsdσ .

Taking the limit for both sides we complete the proof.

Corollary 2. If Φ : L2
[−τ,0]! R+ is a linear continuous functional then

lim
T!+1

1
T

Z T

0
Φ(ξτ(s))ds = hξ ,1iΦ(1),
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for any ξ 2 L1
R
, where 1 2 CR+

is the unit constant function.

Lemma 3. If A : C1
[−τ,0] ⇢ L2

[−τ,0] ! R and B : C1
[−τ,0] ⇢ L2

[−τ,0] ! R are linear
continuous functionals and the system (4.4) has bounded solution for any u 2 L1

R

then
N2X

i=1

bihu,1i+
⌦
y,Bi(ūτ)

↵
+ hy,1iA(1) = 0,

where 1 is the unit constant function, y is a solution to (4.4) with u 2 L1
R

and
ūτ(t) 2 L1[−τ,0] : (ūτ(t))(σ) = u(t −σ) for σ 2 [−τ,0].

Proof. From the equation (4.4) we have

TZ

0

ẏ(s)
T

ds =

TZ

0

A(yτ(s))
T

+
N2X

i=1

bi +Bi(yτ(s − hi))u(s − hi)
T

ds

= A

0
BBBBBBB@

TZ

0

yτ(s)
T

ds

1
CCCCCCCA
+

N2X

i=1

1
T

T−hiZ

−hi

biu(s)+Bi (yτ(s))u(s)ds.

Since the function y is bounded then limT!+1
1
T

R T

0
ẏ(s)ds = limT!+1

1
T (y(T )−

y(0)) = 0 and using Corollary 1 and Lemma 2we derive limT!+1
1
T

R T

0
A (yτ(s))ds =

hy,1iA(1). Since

lim
T!+1

1
T

Z T−hi

−hi
Bi (yτ(s))u(s)ds = hBi(yτ),ui

then

0 = hy,1iA(1) + hu,1i
N2X

i=1

bi + hBi(yτ),ui.

Finally, Lemmas 1 and 2 imply hBi(yτ),ui = Bi(hyτ ,ui)=Bi(hy, ūτi)=hy,Bi(ūτ)i.

4.2.3 Periodic Forcing

In the periodic case, the optimization problem J(y,u)!max subject to (4.4)

considered over infinite interval of time can be reduced to the optimal control
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over finite time interval. Indeed, if for any ω-periodic input u 2 L1
R+

the system

(4.4) has a unique stable ω-periodic solution yω then

J(yω,u) =
1
ω

Z ω

0
αyω(s)− (1−α)u(s)ds. (4.5)

To solve this optimization problem we need a proper algorithm of finding of

periodic solutions to the system (4.4) with a given periodic control input u.

Existence of periodic solution to a particular system (4.4) as well as algorithm

for its finding is provided by the next theorem.

Theorem 1 ([110]). If 0 = h0 < h1 < ... < hm and

— a function f : R+ ⇥ Rn(m+1) ! R is measurable and ω-periodic : f (t,x) =
f (t +ω,x), t 2 R+, x 2 Rn(m+1), and satisfies Lipschitz condition :

|f (t,x)−f (t,y)|
n−1P
i=0

mP
j=0

lij |xij−yij |, x,y2Rn(m+1),

where lij ≥ 0 are constants, x = (x00,x01, ...,xij , ...) 2 Rn(m+1) and
y = (y00, y01, ..., yij , ...) 2 Rn(m+1),

— a liner functional A : Cn
[−hm,0]! R is defined as

Axhm(t) =
mP
i=0

nP
j=0

aijx
(j)(t − hi), aij 2 R,

xhm(t) = x(t + s) for s 2 [−hm,0],
— the frequency θ = 2π

ω satisfies the non-resonance conditions : L (ikθ) , 0 for k =

0,±1,±2, ... where p = 0,1, ...,n− 1 and L(λ) =
mP
i=0

nP
j=0

aijλ
je−hiλ is the charac-

teristic quasi-polynomial of the operator A,
— the inequality q =

Pn−1
p=0 lpσp < 1 holds for lp = lp0 + lp1 + ... + lpm and σp =

max
r2R

∣∣∣∣
(irθ)p

L(irθ)

∣∣∣∣ , where i is the imaginary unit,

then the equationAxhm(t)= f (t,x(t),x(t−h1), ..., x(n−1)(t−hm)) has a uniqueω-periodic
solution xω 2C[0,ω],

which satisfies the estimate kx(i)ω kL2[0,ω]
 σi

1−qkf (t,0)kL2[0,ω]
, i = 0,1, ...,n− 1 and can be

found by means of iterations

Ax[k+1]hm
(t) = f (t,x[k](t)), k = 0,1,2, ..., (4.6)
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where x[0] is an arbitraryω-periodic function and x[k](t)= (x[k](t),x[k](t−h1), ...,x[k](t−
hm), ...) 2 Rn(m+1) and the following estimate

∥∥∥∥∥∥
d ix[k]

dti
−d

ixω
dti

∥∥∥∥∥∥
L2[0,ω]

 qk

1− qσi
n−1X

p=0

lp

∥∥∥∥∥∥
dpx[0]

dtp
−d

pxω
dtp

∥∥∥∥∥∥
L2[0,ω]

(4.7)

holds for i = 0,1,2, ...,n− 1.

To the best of our knowledge, the proof of Theorem 1 for L2 spaces has

never been presented in English literature. Its proof given originally in [110] is

sketched in Appendix A.

The formula (4.6) provides simple recursive procedure for numerical finding

of periodic solution with precision controlled by the formula (4.7). Combination

of this algorithm with some infinite dimensional optimization procedure [79]

allows us to find numerically an optimal input signal u for a fixed period ω. The

corresponding algorithms are usually computationally hard. That is why, for

practice, it is also important to provide a simple suboptimal algorithm. One has

the following proposition :

Proposition 1. If for any ω-periodic input signal u 2 L1
R

the poitive system (4.4)

has a unique globally asymptotically stable periodic solution and

A(1) +ω−1
R ω

0

N2P
i=1

Bi(ūτ(s))ds < 0, then,

J(y,u) ≥ J̃(u) =
1
ω

0
BBBBBBBBBBBBB@
α − 1−

α
N2P
i=1

bi

A(1) +ω−1
R ω

0

N2P
i=1

Bi(ūτ(s))ds

1
CCCCCCCCCCCCCA

Z ω

0
u(s)ds

Proof of Proposition 1. In the periodic case, we derive hu,1i= 1
ω

ωR

0
u(s)ds, hy,1i=

1
ω

ωR

0
yω(s)ds and hy,Bi(ūτ)i= 1

ω

ωR

0
Bi(ūτ(s))yω(s)ds, where yω is ω-periodic solution

that corresponds to ω-periodic control input u. On the one hand, the functional

Bi is linear and continuous, so it is bounded and there exists a constant M such

that M −Bi(ūτ(s)) ≥ 0 for all s 2 [0,ω]. On the other hand, for any ξ ,η 2 L1[0,ω] we



86 CHAPTER 4. Model-based control

have ξ · η  kξkL2
[0,ω]
kηkL2

[0,ω]
and kξkL2

[0,ω]
 1p

ω
kξkL1

[0,ω]
. Hence, taking into account

positivity of the system (4.4) we derive

1
ω

ωZ

0

−Bi(ūτ(s))y
ω(s)ds = −M

ω

ωZ

0

yω(s)ds +
1
ω

ωZ

0

(M −Bi(ūτ(s)))y
ω(s)ds

−M
ω

ωZ

0

yω(s)ds +

0
BBBBBBB@
1
ω

ωZ

0

M−Bi(ūτ(s))ds

1
CCCCCCCA

0
BBBBBBB@
1
ω

ωZ

0

yω(s)ds

1
CCCCCCCA

=

0
BBBBBBB@
− 1
ω

ωZ

0

Bi(ūτ(s))ds

1
CCCCCCCA

0
BBBBBBB@
1
ω

ωZ

0

yω(s)ds

1
CCCCCCCA

Taking into account Lemma 3 we derive

hu,1i
N2X

i=1

bi = −A(1)hy,1i −
N2X

i=1

⌦
y,Bi(ūτ)

↵  −

0
BBBBBBB@
A(1) +

1
ω

ωZ

0

N2X

i=1

Bi(ūτ(s))ds

1
CCCCCCCA
hy,1i.

which completes the proof.

Therefore, if conditions of Proposition 1 holds then the sub-optimal control

can be found by means of maximization of the functional J̃(u).

If periodic control inputs are restricted to

uω,t0 (t) =

8>><>>:
1 for t 2 [kω, kω + t0),

0 for t 2 [kω + t0, (k +1)ω),
(4.8)

then, in the view of Proposition 1, a quasi optimal solution to (D.5) can be found

from the finite dimensional optimization problem : J̃(uω,t0 )!max . Such class of

input signals is motivated by natural practical demands to minimize the number

of switchings.

Using the fact that ū isω-periodic such that 1
ω

ωR

0
ū(s)ds = t0

ω and Riesz Theorem
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[39], we can write for some µi 2 L2
[−τ,0] :

1
ω

ωZ

0

N2X

i=1

Bi(ūτ(s))ds =
1
ω

ωZ

0

N2X

i=1

0Z

−τ

µi(σ)ūτ(s +σ)dσds

=
N2X

i=1

0Z

−τ

µi(σ)

0
BBBBBBB@
1
ω

ωZ

0

ūτ(s +σ)ds

1
CCCCCCCA
dσ

=
N2X

i=1

0Z

−τ

µi(σ)

 
t0

ω

!
dσ =

t0

ω

N2X

i=1

Bi(1)

In this case, the condition A(1) +ω−1
R ω

0

N2P
i=1

Bi(ūτ(s))ds < 0 of Proposition 1

simplifies to A(1) + t0
ω

N2P
i=1

Bi(1) < 0, and J̃(u) to :

J̃(u) =

0
BBBBBBBBBBBBB@
α − 1−

α
N2P
i=1

bi

A(1) + t0
ω

N2P
i=1

Bi(1)

1
CCCCCCCCCCCCCA

t0

ω
(4.9)

This optimization problem can be solved analytically for J̃ . For any fixed

value ω0 of ω, the value of t0 noted by t00 is given by :

t00 =

8>>>>>>>>>><>>>>>>>>>>:

0 if α = 0

ω if α = 1

ω sat[0,1]

0
BBBBBBBBBBB@

−A(1)
N2P
i=1

Bi (1)

−

s
α

(α−1)A(1)

0
BBBB@
N2P
i=1

bi

1
CCCCA

N2P
i=1

Bi (1)

1
CCCCCCCCCCCA

if 0 < α < 1

(4.10)

where sat[0,1] is the saturation function on the interval [0,1] such that sat[0,1](x) =

x for 0  x  1, sat[0,1](x) = 1 for x > 1 and sat[0,1](x) = 0 for x < 0
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4.3 Setpoint tracking control

4.3.1 Plant Model and Basic Assumptions

For the design of a tracking control we use the simplest model obtained

during the identification procedure (4 parameters and 3 delays), namely

ẏ(t)=a1y(t − h)− a2y(t − τ) + (b − cy(t − h) + cy(t − τ̄))u(t − h), (4.11)

y(s) = 0, u(s) = 0 for s  0, (4.12)

where a1 > 0, a2 > 0, b > 0, c > 0, τ̄ > 0,h > 0,τ > 0 are constant parameters,

y(t) 2 R - output and u 2 L1
R
: u(t) 2 {0,1}, t ≥ 0 is the input. Note that for any

u 2 L1
R+

the considered system has a unique Caratheodory solution [74] at least

locally.

We deal with a model of physical system. To exclude non-feasible dynamics

we assume that the system (D.8), (D.9) has bounded positive solution for any input si-
gnal u 2 L1

R+
:u(t) 2 {0,1}. The sufficient condition of positivity and boundedness

of solutions to the system (D.8) is given by the next proposition.

Proposition 2. If c < a1,(a1 + c)τ < a2τ < 1
e and τ  h  τ̄ then the system (D.8),

(D.9) is positive and its solution is globally bounded for any input signal u 2 L1 :

u(t) 2 {0,1} as follows

0  y(t) < ymax :=
b

a2 − a1
for all t ≥ 0.

In order to prove Proposition 2, we first need Lemmas 4 and 5.

Lemma 4. If a > 0,τ > 0 and aτ < 1
e then the system ż(t) = −az(t − τ) + f (t), z(s) =

0 for s  0 is positive for any non-negative f 2 L1
R
, i.e. z(t) ≥ 0 if f (t) ≥ 0 for all

t ≥ 0.

Proof of Lemma 4. See Lemma 4 of [47] or Corollary 15.9 from [1].

Lemma 5. Let the system ż(t) = −az(t − τ) + b with z(s) = 0 for s  0 be positive and
a > 0, b > 0, 0  aτ < ln(2). Then it has a unique solution defined on R+ such that
0 < z(t) < b

a and ż(t) > 0 for all t > 0.
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Proof of Lemma 5. For existence and uniqueness of solution of time-delay sys-

tems see [58]. Let us suppose a contrary, i.e. there exists t⇤ > 0 such that z(t⇤) = b
a ,

but z(t) < b
a for all t > t⇤. This immediately implies that ż(t) > 0 and z(t) > 0 for

all t 2 (0, t⇤].
Let us denote p(t) = z(t)− a

R t

t−τ z(s)ds. Hence, we have

ṗ(t) = −az(t) + b = −ap(t) + b − a2
tZ

t−τ

z(s)ds

and

z(t) =
b(1− e−at)

a
+ a

tZ

t−τ

z(s)ds − a2
tZ

0

e−a(t−σ)
σZ

σ−τ

z(s)dsdσ

=
b(1− e−at)

a
+ a

tZ

t−τ

z(s)ds − a
tZ

0

e−a(t−σ)
tZ

t−τ

z(σ − t + s)dsdσ

=
b(1− e−at)

a
+ a

tZ

t−τ

0
BBBBBBB@
z(s)− a

tZ

0

e−a(t−σ)z(σ − t + s)dσ

1
CCCCCCCA
ds

=
b(1− e−at)

a
+ a

tZ

t−τ

0
BBBBBBB@
z(s)− a

0Z

−t

eaσz(s +σ)dσ

1
CCCCCCCA
ds

=
b(1− e−at)

a
+ a

tZ

t−τ

0
BBBBBBB@
z(s)− ae−as

sZ

s−t

eaσz(σ)dσ

1
CCCCCCCA
ds

=
b

a
(1− e−at) + a

Z t

t−τ
e−asf (s, t)ds,

where f (s, t) = easz(s)− a
R s

s−t e
aσz(σ)dσ . Since for s 2 [t − τ, t] and 0 < t  t⇤ we

have
∂f

∂s
=easż(s)+aeasz(s)− aeasz(s)+aea(s−t)z(s − t)≥0

then z(t)  b(1−e−at)
a + af (t, t)

tR

t−τ

ds
eas =

b(1−e−at)
a + f (t, t) e

aτ−1
eat or, equivalently, z(t) 



90 CHAPTER 4. Model-based control

b(1−e−at)
a(2−eaτ) −

a(eaτ−1)
2−eaτ

R t

0
e−a(t−σ)z(σ)dσ . Hence, z(t)  w(t), where w(t) satisfies the inte-

gral equation w(t) = b(1−e−at)
a(2−eaτ) −

a(eaτ−1)
2−eaτ

R t

0
e−a(t−σ)w(σ)dσ ,w(0) = 0 or, equivalently,

ẇ(t) = −a
 
1+

eaτ − 1
2− eaτ

!
w(t) +

b

2− eaτ =
−aw(t) + b

2− eaτ .

Therefore, we derive that z(t)  b
a

⇣
1− e− a

2−eaτ t
⌘
< b

a for all t > 0. This contradicts

our supposition.

Using Lemmas 4 and 5, we can now prove 2 :

Proof of Proposition 2. I. Let us consider the system ẏ(t) = −a2y(t−τ)+f (t), y(s) =
0, s  0, where f is a locally integrable function. If f (t) ≥ 0 and a2τ  e−1 then

the delay-dependent positivity conditions hold (see, Lemma 1) and y(t) ≥ 0,

for all t ≥ 0. On the one hand, if a1 ≥ c and y(s) ≥ 0 for s  t then f (t) =

a1y(t−h)+(b−cy(t−h)+cy(t− τ̄))u(t−h) ≥ 0. Therefore, using the method of steps

(i.e. considering sequentially the intervals [0,h], [h,2h]...) we prove positivity of

the system (D.8), (D.9).

II. Now let us prove boundedness of solutions. Suppose the contrary : there

exists an input signal u(t) and an instant of time t⇤ > 0 : y(t⇤) = ymax and y(s) <

ymax for s < t⇤.

In this case, since b−cy(t−h)+cy(t−τ̄) ≥ b−cy(t−h) = (a2−a1)ymax−cy(t−h) > 0

for all t 2 [0, t⇤] then y(s)  y1(s) for all s  t⇤, where y1 is the solution to the

positive system ẏ1(t) = (a1 − c)y1(t − h)− a2y1(t − τ) + cy1(t − τ̄) + b. Let us prove

boundedness of solutions of the latter system for this purpose let us study the

auxiliary system

ż(t) = −(a2 − a1)z(t − τ) + b, z(s) = 0 for s  0.

For ∆(t) = z(t)− y1(t) we derive ∆̇(t) = −a2∆(t − τ) + a1z(t − τ)− (a1 − c)y1(t − h)−
cy1(t − τ̄). According to Lemma 5 the function z satisfies the inequalities 0 <

z(t) < b/(a2−a1) = ymax and ż(t) > 0 for all t > 0. Hence, z(t−τ) ≥ z(t−h) ≥ z(t− τ̄)
and

∆̇(t)=−a2∆(t − τ)+(a1 − c)∆(t − h)+c∆(t − τ̄) + η(t),
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where η(t) = a1z(t − τ)− (a1 − c)z(t − h)− cz(t − τ̄) ≥ 0 and ∆(s) = 0 for s  0. Since

the latter system is positive (see, the first part of this proof) then ∆(t) ≥ 0 and

y1(t)  z(t) < ymax for all t ≥ 0. This contradicts our supposition.

4.3.2 Sliding Mode Control for Time Delay Bilinear System

The conventional sliding mode control methodology [143], [46], [129] is

developed for delay-free systems. We emphasize again that, in our case, the

choice of Sliding Mode control was motivated by the fact that the actuator

is working as a relay. In order to design the sliding mode control we need to

compensate input delay using, for example, the prediction technique (see, e.g.

[106], [5], [59], [107]). Developed originally for linear plants this idea can also

be applied for bilinear systems under consideration.

A simple example of a predictor is given here :

Suppose that we study the positive system ẋ(t) = ax(t) + bu(t − h) with a < 0,
b > 0 and u(t) 2 {0,1}. The maximum value of x(t) is xmax = −ba , with 0 < x(t) < xmax.
Consider the following prediction variable : σ(t) = ax(t) + b

R t

t−hu(s)ds. Its derivative
is : σ̇(t) = ax(t)+bu(t). Note that the control input u is not delayed with respect to the
sliding variable σ , so the conventional sliding mode design scheme can be utilized (see,

[143]). Take u(t) = sign(σ(t)−σ⇤) =
8>><>>:

1 if σ(t)−σ⇤ < 0

0 if σ(t)−σ⇤ > 0
, where σ⇤ = ax⇤+b and

x⇤ 2 (0,xmax) is the desired value to track. If σ(t) > σ⇤ then σ̇(t) = ax(t) < 0 and, if
σ(t) < σ⇤ then σ̇(t) = ax(t)+b > axmax+b > 0. Therefore, d

dt (σ(t)−σ⇤)(σ(t)−σ⇤) < 0

and, according to [143], sliding mode arises on the surface σ(t)− σ⇤ = 0 in a finite
time, i.e. σ(t) = σ⇤ for t > t⇤.

Assuming τ̄ > h we introduce the following sliding variable for our model :

σ(t) = y(t)−a2
tZ

t−τ

y(s)ds+c

tZ

t−τ̄+h

y(s)ds+

tZ

t−h

a1y(s)+(b−cy(s)+cy(s−τ̄+h))u(s)ds. (4.13)

Obviously, the variable σ satisfies the equation

σ̇(t) = (a1 − a2 + c(1−u(t)))y(t) + c(u(t)− 1)y(t − τ̄ + h) + bu(t)
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Proposition 3. If conditions of Proposition 2 hold and

Q(jω) , 0 for ω , 0, (4.14)

where Q(s)=s+a2e−sτ−(a2−c)e−sh−ce−sτ̄ , s2C and j =
p
−1, then the control law

u(t) =

8>><>>:
1 if σ(t) < σ⇤,

0 if σ(t) > σ⇤,
(4.15)

with σ⇤ = y⇤(1 + a2(h − τ) + c(τ̄ − h)) and y⇤ 2
⇣
0, b

a2−a1

⌘
guarantees y(t) ! y⇤ as

t! +1.

The proof of this proposition is given below, where it is shown that the control

(D.11) guarantees finite-time convergence of the sliding variable σ(t) to σ⇤, so

σ(t) = σ⇤ for all t ≥ T . It is worth stressing that when sliding mode arises the

system motion is governed by the infinite dimensional dynamic system

σ⇤ = y(t) + a2

t−τZ

t−h

y(s)ds + c

t−hZ

t−τ̄

y(s)ds.

This means that our sliding surface σ = σ⇤ is "inifine dimensional". Using condi-

tion (4.14) it is proven that the output y(t) tends to y⇤ asymptotically as t!1.

Remark 1. Since

Re(Q(jω)) = a2 cos(τω)− (a2 − c)cos(hω)− c cos(τ̄ω)

Im(Q(jω)) = ω − a2 sin(τω) + (a2 − c) sin(hω) + c sin(τ̄ω)

then to check the condition (4.14) it is sufficient to consider ω 2 (0,2(a2 + c)].

Proof of Proposition 3. First of all, let us note that 0 < y(t) < b
a2−a1 for all t > 0 due

to Proposition 2.

I. Since the system (D.8) is positive, then y(t) ≥ 0 for all t ≥ 0. Moreover, if

u(t) = 0 and y(t) > 0 then σ̇(t) < 0, but if u(t) = 1 and y(t) < b
a2−a1 then σ̇(t) > 0.

Therefore, while 0 < y(t) < b
a2−a1 we have (σ(t)− σ⇤) ddt (σ(t)− σ⇤) < 0. Obviously,

σ(0) = 0. To guarantee existence of sliding mode we just need to show that the
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state σ(t) = σ⇤ > 0 is reachable in a finite time t = t⇤ > 0. Let us suppose contrary :

σ(t) < σ⇤ for all t > 0. This means that u(t) = 1 for all t > 0 and

ẏ(t) = (a1 − c)y(t − h)− a2y(t − τ) + cy(t − τ̄) + b.

Using the last identity let us rewrite the formula (4.13) as

σ(t) = y(t)− a2
Z t

t−τ
y(s)ds + c

tZ

t−τ̄+h

y(s)ds +

tZ

t−h

ẏ(s + h) + a2y(s + h− τ)ds

σ(t) = y(t + h) + a2

Z t+h−τ

t
y(s)ds + c

tZ

t−τ̄+h

y(s)ds.

Let us show that there exists t⇤ > 0 such that y(t) > y⇤ for all t > t⇤. Since

ẏ(t) > −a2y(t − τ) + b for all t > 0 then, obviously, there exists t1 > 0 such that

y(t) > b
a2

for all t > t1. In this case, we derive ẏ(t) > −a2y(t − τ) + b
⇣
1+ a1

a2

⌘
for all

t > t1 + τ̄ and there exists t2 > t1 + τ̄ such that y(t) > b
a2

⇣
1+ a1

a2

⌘
for all t > t2, and

so on. Therefore, for t > ti we derive

y(t) >
b

a2

0
BBBB@1+

a1
a2

+ ...+

 
a1
a2

!i−11CCCCA =
b
✓
1−

⇣
a1
a2

⌘i◆

a2 − a1

and for some i⇤ we have y(ti⇤) > y⇤ 2
⇣
0, b

a2−a1

⌘
.

Therefore, for t > t⇤ + τ̄, σ(t) > y⇤(1 + a2(h− τ̄) + c(τ̄ − h)) = σ⇤ and the sliding

mode existence condition [143] holds and σ(t) = σ⇤, 8t > t⇤.

II. Using the equivalent control method [143] we derive ueq(t) =
(a2−a1−c)y(t)+cy(t−τ̄+h)

b−cy(t)+cy(t−τ̄+h)
and

σ⇤ = y(t)− a2
tZ

t−τ

y(s)ds + c

tZ

t−τ̄+h

y(s)ds +

tZ

t−h

a2y(s)− cy(s) + cy(s − τ̄ + h)ds =

y(t) + a2

t−τZ

t−h

y(s)ds + c

t−hZ

t−τ̄

y(s)ds
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for all t > t⇤. Introducing the variable ∆(t) = y(t)− y⇤ we obtain the equation

∆(t) + a2

t−τZ

t−h

∆(s)ds + c

t−hZ

t−τ̄

∆(s)ds = 0. (4.16)

It has the characteristic equation 1
sQ(s) = 0, s2C. We have already proven that

all solutions of the closed-loop system are bounded (see, Proposition 2) and the

sliding mode exists for all t > t⇤, so the equation (4.16) does not have unbounded

dynamics. The condition Q(jω) , 0 for all ω , 0 implies that this equation does

not have non-constant periodic solutions. So, the only stable solution is ∆(t) ⌘ C,

where C 2 R is some constant. Since 1 + a2(h − τ) + c(τ̄ − h) > 0 then from the

equation for ∆(t) we immediately derive C = 0 and y(t)! y⇤ as t!1.

Corollary 3 (Robustness). Let the model D.8 contain an additive perturbation :

ẏ(t) = a1y(t)− a2y(t − τ) + (b − cy(t − h) + cu(t − τ̄))u(t − h) + d(t) (4.17)

where d(t) is a bounded signal kd(t)k < d̄ such that 4.17 remains a positive system.
Then under conditions of Proposition 3 for sufficiently small d̄ < b

1+
a2−a1

a2−a1−c
and for

y⇤ 2
⇣

d̄
a2−a1−c ,

b−d̄
a2−a1

⌘
one has y(t)! y⇤ +O(hd̄) as t!1.

Sketch of the proof of Corollary 3. The derivative of the sliding variable (4.13) for

the system (4.17) is :

σ̇(t) = (a1 − a2 + c(1−u(t)))y(t) + c(u(t)− 1)y(t − τ̄ + h) + bu(t) + d(t) (4.18)

We study two cases :

• If σ(t) > σ⇤ then u(t) = 0 and

σ̇(t) = (a1−a2+ c)y(t)−cy(t− τ̄+h)+d(t) < (a1−a2+ c)y(t)−cy(t− τ̄+h)+ d̄
(4.19)

As c > 0 and y(t) > 0,8t > 0, −cy(t − τ̄ + h) < 0 and :

(a1 − a2 + c)y(t)− cy(t − τ̄ + h) + d̄ < (a1 − a2 + c)y(t) + d̄ (4.20)
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Therefore, to have σ̇(t) < 0 it is sufficient that :

(a1 − a2 + c)y(t) + d̄ < 0, y(t) >
d̄

a2 − a1 − c
(4.21)

• If σ(t) < σ⇤ then u(t) = 1 and

σ̇(t) = (a1 − a2)y(t) + b + d(t) > (a1 − a2)y(t) + b − d̄ (4.22)

Therefore, to have σ̇(t) > 0, it is sufficient that :

(a1 − a2)y(t) + b − d̄ > 0, y(t) <
b − d̄
a2 − a1

(4.23)

Therefore, to guarantee σ̇(t) (σ(t)−σ⇤) < 0, it is sufficient to have :

d̄

a2 − a1 − c
< y(t) <

b − d̄
a2 − a1

(4.24)

The set
h

d̄
a2−a1−c ,

b−d̄
a2−a1

i
is non-empty, if :

d̄

a2 − a1 − c
<

b − d̄
a2 − a1

, d̄ <
b

a2−a1
a2−a1−c +1

(4.25)

Finally, if d̄ is bounded as d̄ < b
a2−a1

a2−a1−c+1
, the sliding mode appears on the

surface σ = 0. This implies that y! y⇤ +O(hd̄) as t!1 (see e.g. [107] for more

details).

4.4 Experimental results

4.4.1 Open-loop optimal control

The open-loop optimal control has been applied to the test case II. The

identification has been done on the data presented in Section 2.2 using a bilinear

model with constant input delays. The results of the identification are given
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two cases are described in the Sections C.1.2 and C.2.1 of the Appendix.

4.4.2.1 Tests conducted on TC II

Results of of closed-loop control using SMC in TC II are presented here.

In the caption of each figure are mentioned the setpoint y⇤ as well as the flow

conditions (U , q and AoA). Note that ymax = 0.42 for this model.

Figure 4.3 and 4.4 present the results for y⇤ = 0.25 and y⇤ = 0.4 in the "nomi-

nal" conditions. The next figures are used to prove the experimental robustness

of the control. Figure 4.5 shows the results of the control with a flow speed taken

down from 34.5m/s to 14.5m/s which corresponds to a reduction of almost 60%

of the flow speed while the other conditions do not change. Figure 4.6 corres-

ponds to an angle of attack (AoA) of the flap of 10° instead of 24°. Numerous

other tests were conducted in the case of static flow conditions but the plots are

not presented here for clarity and to avoid redundancy. In these plots both y and

u are in volts and AoA is in degrees. In Figure 4.4 it can be seen the the control is

almost always at 1, which can be explained by the fact that the setpoint is at 0.4

and the maximum reachable value by the system is 0.42 with a constant control

equal to 1.

These plots show that the SMC is able to maintain the output y at the pres-

cribed setpoint while being robust to perturbations in the flow conditions. The

controller’s robustness is shown by changing by 60% the freestream velocity or

the angle of attack and observing that the output y is still maintained at the

setpoint.

The robustness to unsteady perturbation was also tested by having a time

varying angle of attack. This is presented in Figure 4.7 with an angle varying

between 19° and 29°. It can be seen that, while the angle of attack is varying

in time, the output y is almost not deviating from the fixed setpoint of 0.25 or

oscillating around it. In Figure 4.8, the angle of attack is varying between 0° and

37°. It can be seen that the output y may deviate from the setpoint but, looking

at the control u at the same times, we can see that the control is constant and

equal to 1, therefore the actuators do not have enough power to counter this kind

of perturbation (very low angle and vortex generators). It can also be seen that,
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4.4.2.2 Tests conducted on TC III

Results of closed-loop control using SMC on TC III are presented in Figure

4.12. In this figure, DC⇤ = 1
Tf

R t

t−Tf
b(t)dt is the blowing fraction of the time on

the window Tf and corresponds to an extension of the notion of duty cycle to a

non-periodic signal. Here, we chose Ts = 0.3s. Figure 4.12 presents the results of

the application of the Sliding Mode control on the Ahmed body. The reaching

and sliding phases are indicated on the figure and separated by vertical dotted

lines. The red curve shows the average tendency of the drag FD. It can be seen

that the value of the drag converges to the setpoint s⇤.

Figures 4.13 and 4.14 show the result of the control with strong and quasi

sinusoidal perturbations in the flow. The perturbation in the p0 plots represents

changes in the upstream pressure and therefore the upstream flow speed. The

control u and the blowing fraction DC⇤ are both found constant and equal to 1

for some period of time, which shows that the actuators are not powerful enough

to counter these kinds of perturbation. However, as soon as the perturbation goes

below an acceptable threshold, the Sliding Mode occurs again. This proves that,

while the control is robust, in the case where the amplitude of the perturbations

is too high, the controller will try to compensate the perturbation by keeping

the value of the control to 1.
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Figure 4.12 – Time evolution of (top) drag, (middle) DC⇤ and (bottom) control
command u obtained using slide mode control. Test Case III.
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Figure 4.13 – Command law found by the SMC algorithm during a given test
sequence for which the pressure measured upstream show significant variations.
Test case III.
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Figure 4.14 – Command law found by the SMC algorithm during a given test
sequence for which the pressure measured upstream show quasi sinusoidal
variations. Test case III.
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Conclusion

This thesis has developed models and active control algorithms for sepa-

rated flows. The modeling is based on considerations from Fluid Mechanics

and Control Theory. The obtained model is used for the design of an optimal

open-loop control and a robust feedback control. Of course, in our minds, the

most interesting contribution is through the second one, i.e. closed-loop control,

which exhibits robustness properties that, to our best knowledge, where not ob-

tained until now, despite the need for it which was depicted in our bibliographic

review (Chapter 1).

The models used in this thesis are single-input, single-output (SISO). Their

structure is motivated by discretization of the well-known Burgers equation,

which is a simplified Navier-Stokes equation. They are bilinear and contain state

and input delays, which represents in a simple way the nonlinearities as well as

the travel time of information in the flow.

During this research, we had access to three experimental setups belonging

to the global platform CONTRAERO (http://contraero.univ-lille1.fr),

developped by a regional consortium :

— the wind tunnel of LML (high Reynolds number large boundary layer

wind-tunnel). In this setup, the flow develops along a slightly inclined

flat plate to recover a zero pressure streamwise gradient followed by

a inclined flap along which the boundary layer occurs separation and

reattaches further downstream to the floor of the wind-tunnel.

— the L2 wind tunnel of ONERA. The flow develops on a test model placed

in the center of the wind tunnel between two vertical plates. The test

model consists of a flat plate and a plain flap based on a NACA 4412

airfoil shape. The angle of the flap can be adjusted between 2°and 37°.

107
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— the wind tunnel of LAMIH, equipped with an Ahmed body (classically

used as a geometric simplification of a car). The model is mounted over

a raised floor with a sharp leading-edge to control the boundary layer

thickness.

We collected the corresponding data sets either on data acquisition systems

(such as PXIe-8102 RT http://sine.ni.com/nips/cds/view/p/lang/fr/nid/

207521 and PXIe-6358 http://www.ni.com/fr-fr/support/model.pxie-6358.

html from National Instruments) or on an Arduino (https://www.arduino.cc/)

board which was also used for the control implementation.

Based on analysis of experimental data, two types of such models have been

presented. The first one (corresponding to the approximation of Burgers equa-

tion) contains constant input delays while the second one has state-dependent

input delays. The second is a modification of the first one based on the observa-

tion that the experimental data contain such kind of delays.

In our identification process, the delay estimation comes first, and the delay

values are then used in the parameter estimation. The delays are obtained

through an optimization algorithm. This optimization problem being a mixed

integer nonlinear nonconvex problem, specific algorithms have to be employed.

The chosen algorithms are NOMAD and Genetic Algorithm as they fulfill the

constraints for this optimization and are easily accessible, using Matlab® for

example.

The two models are identified and compared using experimental data obtai-

ned from the work of [114] on a massively separated turbulent boundary layer.

The comparison shows that the model with state-dependent input delays has

a better fit to the data but the difference between the two models is generally

too small to justify the choice of this model over the one with constant input

delay for the design of controllers. The models are also compared to classical

ARMAX models and are shown to fit the data more accurately while using the

same number of coefficients, or equivalently to use less coefficients for a similar

fitting to the data.

Based on the identified models, two controllers are developed. As the actua-

tors considered in this thesis are working as relays (which was the case in the 3

setups), the controls are binary (0 or 1). The first one is an optimal open-loop

http://sine.ni.com/nips/cds/view/p/lang/fr/nid/207521
http://sine.ni.com/nips/cds/view/p/lang/fr/nid/207521
http://www.ni.com/fr-fr/support/model.pxie-6358.html
http://www.ni.com/fr-fr/support/model.pxie-6358.html
https://www.arduino.cc/
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control that takes into account the tradeoff between the energy cost of the control

and the reattachment of the flow and gives the DC of a square wave depending

on the parameters of the model and the frequency of the square wave. It was

shown that despite the perturbations in experimental flows and the errors in

the modeling, this control does not find the optimal open-loop control signal.

The second control is a robust tracking control. This control is based on the

Sliding Mode methodology, which involves relay controls and is well-known for

its robustness. The conditions for the convergence of the output of the system to

the setpoint using this control are obtained and a short proof of perturbation

rejection is given. This control has been applied to the two other experimental

setups, in the ONERA on a wing-like profile and in the LAMIH on an Ahmed

body. It has shown to correctly steer the output to the setpoint, to be computa-

tionally cheap (Arduino), to have fast response to a change in the flow and great

robustness over a wide range of various experimental conditions (speed, shape

of the obstacle, mass flow of the actuators).

Perspectives for future works first include the extension of the feedback

control to the case of multiple inputs multiple outputs (MIMO) models. This

would, for example, be applicable to the Ahmed body in order to control both the

drag, drift and lift using multiple actuators placed in several non-parallel axis.

The control could also consider other types of input such as the actuator supply

pressure. Another perspective is the use of partial differential equations (PDE)

and some newly developed observers and controllers (see [84] for an observer

applied to parabolic PDEs, or [109, 108] for finite-time control of evolution

equations such as Burgers equation) for PDE in order to get information about the

flow and control it without having to use models that are too simplified and fail

to reproduce some characteristics of the flow (i.e. turbulence, vortices, solitons).

Other robustness formulations than additive perturbation can be considered to

cover a wider range of possible perturbation signals. A frequency analysis of

the control signals should be done in order to identify if the controller focuses

on natural frequencies of the flow (such as Kelvin-Helmholtz, vortex shedding).

Finally, an extensive study of both SMC and MLC would allow to compare their

efficiency and adaptability as well as the time required for the controller design

and their computational cost.
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AppendixA
Sketch of the proof of Theorem 1

The proof is based on Fixed-Point Theorem for a generalized Banach spaces
B = L2

[0,ω] ⇥ ...⇥L
2
[0,ω], which have vector-valued norms :

[]x[] = (kx0kL2
[0,ω]

, ...,kxn−1kL2
[0,ω]

)> 2 Rn
+ for any x 2 B

The space R
n
+ is semi-ordered using the conventional component-wise order

relation, i.e. x  y if xi  yi , i = 1, ...,n, where x,y 2 Rn
+. In this case the contraction

condition of the operator F : B! B is

[]F x−F y[] Q[]x− y[], for all x,y 2 B,

where Q 2 Rn⇥n
+ is a Schur stable matrix. Under this condition the operator F has

the unique fixed point x⇤ on B, i.e. F (x⇤) = x⇤. To complete the proof of Theorem
1 let us consider the operator F = (F0, ...,Fn−1)> 2 B with

Fj(x)=
ωZ

0

G(j)(t, s)f (s,x0(s), ...,x0(s − hm),x1(s), ...)ds,

where G is the Green function of the system Axhm(t) = 0. Finally, it can be
shown [110] that F satisfies the contraction condition with the matrix Q =
(l0, ..., ln−1)>(σ0, ...,σn−1) that is Schur stable due to the condition :

(l0, ..., ln−1)(σ0, ...,σn−1)
> < 1
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AppendixB
NOMAD

We will present here a short explanation of how NOMAD works. For more
details, see the paper of S. Le Digabel [88].

NOMAD [88] is a software package implementing the Mesh Adaptive Di-
rect Search (MADS) algorithm. NOMAD aims at solving constrained blackbox
optimization problems of the forms :

min
x2Ω

f (x) (B.1)

or

min
x2Ω

(f1(x), f2(x)) (B.2)

where Ω = {x 2 X : cj(x)  0, j 2 J} ⇢ R
n with f , f1, f2, cj : X ! R[ {1} for all

j 2 J = {1,2, . . . ,m} and X ⇢ R.
This algorithm is capable of handling several types of constraints such as

nonlinear inequalities or yes/no constraints. The variables x can be, amongst
other, reals, integers or binaries.

NOMAD implements the MADS algorithm in C++ and has a Matlab version,
developed by Mark Abramson.

Direct search methods use only function evaluations for optimization and do
not need derivatives (see [30] for a overview about derivative-free optimization
methods).

MADS is in iterative method that evaluates the blackbox functions on a mesh
which is updated at each iteration. At an iteration k, the mesh is defined by :

Mk =
[

x2Vk

{x +∆
m
k Dz : z 2 NnD } (B.3)
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where ∆m
k is the mesh size parameter, D a n⇥nD matrix representing a finite set

of directions in R
n and Vk is the set of points at which the objective functions

were evaluated at iteration k (V0 contains the starting points).
Each iteration has 3 steps :

1. The search : Choose trial points on the mesh

2. The poll : Explore the mesh around the current iterate xk using the set
of poll trial points Pk = {xk + ∆

m
k d : d inDk} ⇢ Mk . Dk is the set of poll

directions and its column are taken as an integer combination of the
columns of the matrix D such that they form a positive spanning set.
∆
m
k is chosen such that ∆m

k < ∆
p
k where ∆

p
k is the poll size parameter that

bounds the distance of the poll points from the poll center xk and ∆
m
k is

reduced faster than ∆
p
k . This is decribed in Figure B.1.

3. The update : After choosing the poll trial points, the blackbox function is
evaluated at these points and the most promising point is chosen to be
xk+1. It is possible that xk+1 = xk . The mesh size parameter is updated by

∆
m
k+1 = τwk∆

m
k (B.4)

where τ > 1 is a fixed rational number and wk is a finite integer. wk is po-
sitive or null if iteration k is a success, and negative otherwise. Therefore,
the mesh size parameter is increased in case of success and decreased in
case of failure. As an example, the LT-MADS method uses ∆m

k < ∆
p
k < 1

and ∆
p
k =

p
∆
m
k .

A flowchart of the NOMAD algorithm is presented in Figure B.2.
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AppendixC
Identification results

This chapter presents the identification results for the test case II and III.

C.1 Models for the test case II

Here we show 2 models (Equations D.1 and D.2) that were identified for
control of the test case II.

C.1.1 N1 = 10, N2 = 10, N3 = 3

This model is the one used for the feedfoward optimal control. It is the most
accurate of the models and has therefore the most coefficients. Its delays and
coefficients in discrete time are given in Table C.1 for N1 = 10, N2 = 10 and
N3 = 3. The three criteria from Section 3.4 are given in Table C.2. Other more
accurate can be derived using more coefficients but this one was deemed accurate
enough for the feedfoward control. The comparison between the identifiedmodel
and the data is pictured in Figures C.1 for data set N°2 and C.2 for data set N°9.

C.1.2 N1 = 2, N2 = 2, N3 = 1

This model is the one used for the feedback robust setpoint tracking control.
Its delays and coefficients in discrete time is given in Table C.3 for N1 = 2, N2 = 2
and N3 = 1. The three criteria from Section 3.4 are given in Table C.4. As it
can be seen, it contains much less coefficients that the previous models but still
provides good fit to the data.
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τi
h
0.01 0.02 0.04 0.06 0.08 0.12 0.19 1.27 2.30 4.95

i

hj
h
0.01 0.02 0.17

i

τ̄l
h
0.01 0.03 0.04 0.05 0.09 1.08 3.97 4.13 4.67 493

i

ai

"
13.93 −16.11 1.59 1.23 −16.63 . . .
. . . 12.71 −2.48 0.86 −0.01 0.51

#

bl
h
2.18 0.50 1.52

i

cjl

2
6666666666666664

0.70 6.40 0.11 −11.11 1.64 0.13 0.07 . . .
. . . −0.08 0.26 −0.13 −11.08 16.20 0.03 . . .
. . . −2.36 −2.84 0.13 0.03 −0.89 0.43 . . .
. . . −0.30 0.95 −1.58 8.40 −3.58 −7.58 . . .
. . . −0.42 0.41 −0.27 1.34 −1.02

3
7777777777777775

Table C.1 – Delays and coefficients of the model of the test case II with N1 = 10,
N2 = 10 and N3 = 3

FIT ε ρ

81.33 6.58 0.9936

Table C.2 – Values of the criteria of the model of the test case II with N1 = 10,
N2 = 10 and N3 = 3

τi
h
0.01 0.05

i

hj
h
0.05

i

τ̄l
h
0.05 0.06

i

ai
h
3.33 −6.37

i

bl
h
1.31

i

cjl
h
−8.91 8.91

i

Table C.3 – Delays and coefficients of the model of the test case II with N1 = 2,
N2 = 2 and N3 = 1
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FIT ε ρ

70.52 67.95 0.9603

Table C.4 – Values of the criteria of the model of the test case II with N1 = 2,
N2 = 2 and N3 = 1

τi
h
0.015 0.025

i

hj
h
0.025

i

τ̄l
h
0.025 0.975

i

ai
h
−11.00 6.9367

i

bl
h
1.4633

i

cjl
h
0.0067 −0.0067

i

Table C.5 – Delays and coefficients of the model of the test case III with N1 = 2,
N2 = 2 and N3 = 1

C.2 Models for the test case III

C.2.1 N1 = 2, N2 = 2, N3 = 1

Only the model for the feedback robust setpoint tracking control was identi-
fied on the data from the test case III. Is delays and coefficients in discrete time
are given in Table C.5 for N1 = 2, N2 = 2 and N3 = 1. The three criteria from
Section 3.4 are given in Table C.6.

FIT ε ρ

33.77 46.25 0.8795

Table C.6 – Values of the criteria of the model of the test case III with N1 = 2,
N2 = 2 and N3 = 1
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A bilinear input-output model with state-dependent delay for separated flow

control

Maxime FEINGESICHT1,2,4, Cédric RAIBAUDO1,3, Andrey POLYAKOV2,4, Franck KERHERVE1,3

and Jean-Pierre RICHARD1,2,4

Abstract— It is proposed a first step to the model-based closed-
loop control of a separated flow. In such situations, fluid mechanics

phenomena are highly nonlinear and can be represented by means of

the Navier-Stokes equations. However, such a model still rises difficult
issues for control practice. This paper proposes an alternative, bilinear

and delayed model, the accuracy of which is studied. The identification

technique combines least-square technique with a Mesh Adaptive Direct

Search (MADS) algorithm. The main feature of the model is state

dependent structure of input delay.

I. INTRODUCTION

In transportation systems, aerodynamic loss are the most im-

portant source of energy wastage at speeds higher than 50km/h.

The need of improvement cannot be met solely through the use

of the vehicle shape, as it requires numerous tries for very few

improvement, thus being very time consuming. In such a context,

active control strategies are now expected.

Among the various strategies developed, those using pneumatic

actuators, such as air blowers, are the most encountered. In the

meantime, the preferred examined system concerns flow separating

over a two-dimensional flap (see [1], [2], [3], [4] and [5]). These

works generally study the system from the Fluid Mechanics point

of view but the application of control theory should be fruitfull to

control the opening and closing of the air blowers in an optimal

and robust way. This is only possible once the model representing

the system has been identified. Examples of separated flow control

can be found in [6], [7] and [8], however these examples suffer

from the lack of an adequate model. Modeling using Navier-Stokes

equations can be found in [9], [10] and [11].

The main issue is that the physical system studied in this paper

is known to be highly nonlinear, which is always the case in

aerodynamic studies, and also contains time delays both on state

and input due to the natural phenomenons that rule turbulent

flow and the limited speed of the flow. The first approach would

be to use partial differential equations, namely the equations of

Navier-Stockes, but this implies complicated calculations and con-

troller/observer design. The alternative we propose is to use ”grey-

box” identification techniques so to derive a simpler model that

can be usefull for control purpose. The model we suggest is a

bilinear, delayed difference equation which is able to catch both

the nonlinear effects and diffusion delays. Such a model will be

shown to be quite realistic in an identification perspective. From

1Ecole Centrale de Lille, Cité Scientifique, 59651 Villeneuve-d’Ascq,
France
maxime.feingesicht@ec-lille.fr ; cedric.raibaudo@ec-lille.fr
franck.kerherve@ec-lille.fr ; jean-pierre.richard@ec-lille.fr

2INRIA Team Non-A, Parc scientifique de la Haute-Borne, 40 Avenue
Halley, Bt A - Park Plaza, Villeneuve-d’Ascq, France
andrey.polyakov@inria.fr
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Paul Langevin, 59655 Villeneuve d’Ascq Cédex, France

4CRIStAL, CNRS UMR 9189, Btiment M3, Université Lille 1, 59655
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the control point of view, predictor-based ([12]), model predictive

control (MPC, [13], [14]) and optimal control techniques ([15]) are

possible future solutions.

This paper focuses on the identification of the model based

on several experimental data sets. It presents the time delayed

input/output model. The simplest scheme for input delay estimation

is developed. The state delays identification is provided using the

well-known derivative-free minimization algorithm MADS [16].

Some results on the identification of the delays for a related system

can also be found in [17].

II. THE PHYSICAL SYSTEM

The physical system considered is a turbulent boundary layer

developing along a ramp and subjected to separation due to the

presence of a inclined flap with a sharp edge whose photography

is shown in Fig. 2 with schematics in Fig. 1. The experiments

were conducted in the LML boundary layer wind tunnel. The wind

tunnel includes a 20 m long section with constant area of 2m x

1m along which the boundary layer can develop. The maximum

free stream mean velocity and turbulence level are 10 m/s and

0.03% respectively. Under operation, the temperature is regulated

to 0.2C . Full details of the wind tunnel and its characterisation

can be found in [18]. The main flow direction is from left to right,

except in a region close to the flap where the flow is reversed

indicating the presence of a recirculation region due to a separation

of the flow away from the wall. The mean streamwise velocity

component is measured using Particle Image Velocimetry (PIV).

This is illustrated in Fig. 4. This recirculation region is mainly

responsible for aerodynamic loss. Control applications are hence

designed with the objective to reduce (or annihilate) this reversed

flow. In the present case, air blowing actuators were used. These

are located upstream of the sharp edge and consist of 22 round jets

regularly spaced in the spanwise z-direction as illustrated in Fig. 1.

Details of the set-up can be found in [1] and [18]

Real-time survey of the flow is effected thanks to wall-sensors

measuring the friction gain mounted along the inclined flap. These

are known as hot-film sensors. Again, full details of the arrange-

ments can be found in [1]. The actuators are controlled using

a pulsed voltage as command law such as illustrated in Fig.

6. In practice, such sequences are repeated continuously over a

long time: the flow is therefore repeatidly submitted to control

during which it experiences successive reattachments (actuation

on) and separation (actuation off) sequences. The friction gain is

continuously recorded during all these sequences and an averaged

response can be obtained. The latter is reported in Fig. 3. Since the

flow dynamics in the separation region is strongly dependent on

several inflow conditions, the instantaneous response of the wall-

sensor may significantly vary from this averaged response. A first

indication of how much the wall-sensor response varies may be

obtained by repeating the operation described previously. Different

sets of long measurements were effected. For each, an averaged

2016 European Control Conference (ECC)
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will also impact the time required for the optimization used in

the identification process. Furthermore, augmenting the size of the

model makes control design more complicated. The coefficients

used in this paper were found to give good results for our purposes

with short enough for efficient computations.

In the continuous time domain, these systems are described by

(5) and (6), where T is the sampling period, fixed at 1ms for our

systems and the function ey(t) is defined by (7).

ẏ(t) =
1

T

 
−y(t)+

N1

∑
i=1

(aiy(t − τiT ))+
N3

∑
l=1

(blu(t −hlT ))

+
N3

∑
l=1

N2

∑
j=1

(
c jlu(t −hlT )y(t − eτ jT )

)
! (5)

ẏ(t) =
1

T

 
−y(t)+

N1

∑
i=1

(aiy(t − τiT ))+
N3

∑
l=1

blu
⇣

t −ehl (ey(t))T
⌘

+
N3

∑
l=1

N2

∑
j=1

⇣
c jlu

⇣
t −ehl (ey(t))T

⌘
y(t − eτ jT )

⌘! (6)

ey(t) = 1

WT

Z WT

0
y(t − s)ds (7)

The identification has been done using a least-square method.

We refer the reader to [19] for more details.

To obtain the values of the coefficients contained in the matrix A1,

we use the Moore-Penrose pseudo-inverse on the matrix W . Noting

W+ the Moore-Penrose pseudo-inverse of W , we obtain (8).

A(τ, τ̄,h,x) =W+x (8)

The quality of the identification will be estimated using the three

following indicators : the L2 error norm ε (τ , τ̄,h,A) given by (9),

the fit coefficient as defined in [20] FIT(τ, τ̄,h,A) given by (10) for

the first system and the correlation coefficient between the data and

the identified model ρ (τ, τ̄,h,A) given by (11) for the first system.

ε (τ, τ̄,h,A) = kx− xsimu (τ , τ̄,h,A)k (9)

FIT(τ, τ̄,h,A) = 1−

s
∑

N
k=1(yk − ysimu

k
)2

∑
N
k=1(yk − ȳk)2

(10)

ρ (τ, τ̄,h,A) =
cov(x,xsimu)

σxσxsimu

(11)

where x = [y0,y1, . . . ,yN ]
T is the vector of data and

xsim
1 (τ, τ̄,h,A1) is the vector obtained by simulating the system

using the identified coefficients, yk is the measured system output

(data) at sample k, ysimu
k is the simulated system output at sample

k using the identified coefficients and ȳk is the average of the

measured system output (therefore constant signal). cov(X,Y) is

the covariance matrix between the vectors X and Y and σX is the

standard deviation of the vector X .

Please note that, for the system with fixed input delays, we will

note these indicators ε1, FIT1 and ρ1 and for the system with state-

dependent input delays we will note them ε2, FIT2 and ρ2.

As the fixed delays τ , τ̄ and h and the multiplicative factor f , are

still to be determined, we can run an optimization algorithm that

minimizes ε in order to find these delays. The chosen algorithm

is NOMAD (Nonlinear Optimization with the MADS Algorithm),

which is based on the Mesh Adaptative Direct Search (MADS)

algorithm. It is capable of blackbox optimization for nonlinear

objective functions, with linear and nonlinear equalities and inequal-

ities constraints on continuous, integer or binary variables. NOMAD

and the MADS algorithm are very well documented as it can be

seen in [21], [16], [22], [23]. NOMAD is implementend in the

Opti Toolbox for Matlab, see [24]. For comparison, using Matlab’s

Genetic Algorithm (ga function) and NOMAD for a maximum of

4000 iterations on a delay optimization problem on the 4 concatened

sets gives the following cost functions values : between 1.26 and

1.267 for GA (over 10 tests, it may vary at each test) and 1.2576 for

NOMAD. With default settings, NOMAD stops after 4545 functions

counts with an objective function value of 1.2571 whereas GA stops

after 5200 to 5500 functions counts (over 10 tests) with objective

function value of 1.2593 to 1.2643. Therefore, NOMAD has better

performance (lower objective function value), is faster (1000 less

function evaluations in the previous test) and is more reliable

(every test gives the same results).

The overall algorithm that is used is described as follows:

1) Start

2) Use NOMAD to find the optimal set of delays

3) Calculate the coefficients with the determined set of delays

4) Test the coefficients by simulating the model

5) end

To obtain identified coefficient that best fit the 4 sets of data,

and by extension the sets generated for different pulsed inputs, we

will apply the identification process to the concatenation of the

4 sets. Notice that each set is ended by a series of 0 for both

input and output and for a duration of 1.5s over a total of 10s, the

concatenation is possible and the system will have enough time to

go back to 0 between each set.

The identification process can finally be applied, leading to

Fig. 9 for the simulation results of data set N◦3 using identified

coefficients. For the 4 concatenated data sets, the least-square errors

are ε1 = 10.1529 for the model with constant input delay and

ε2 = 9.7349 for the model with state-dependent input delay.

The values of the delays values and the identified coefficients

can be found in the TABLE II for N1 = 5, N2 = 10 and N3 = 1. Is

is noticeable that the L2 norm of the state-dependent input delay

model is smaller that the one with fixed delay as it can be seen in

the TABLE I, where the f stands for the frequency of the pulses

and DC for the duty cycle in case of pulsed input signals.

Comparing to [20], we can see that our fit coefficients are close

to the higher coefficients found in the paper. It is noticeable, even

if the data are different from the ones used here, that they obtain

the best fit coefficients for quasi constant data and for other type

of data it rapidly falls under 70% while here the fit coefficients

remain around 90% for constant of varying inputs with various

frequencies and duty cycles. To the author knowledge, there is no

other paper presenting model identification with data similar to the

ones presented here.

In TABLE I it is noticeable that the correlation coefficient

between data and model output is very high, typically around

99.7%, meaning that our model capture well enough the dynamics

of the data.

C. Averaged model

Based on the idea used to develop ey for the state dependent delay

identification, we can develop an averaged model using equations

(12) and (13). This model will ease the development of control on

the system by separating the part with slow dynamics (averaged

part) from the one with fast dynamics (difference between non-

averaged and averaged part).

y
avg
k

=
1

W

W−1

∑
i=0

yk−i (12)

u
avg
k

=
1

W

W−1

∑
i=0

uk−i (13)

The averaged models are given by (14) and (15).
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SUMMARY

The challenging problem of active control of separated flows is tackled in the present paper using model-
based design principles and applied to data issued from a two-dimensional separated flow experiment. First,
a bilinear state and input delay model of the system has been obtained from experimental data by means of
a modified identification procedure. Adequacy and precision of the obtained model are demonstrated and
compared with existing results. Next, two control problems (setpoint tracking and optimal control) have been
formulated and studied using sliding mode control methodology and averaging analysis. The theoretical
control results are supported with numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Control problems for separated turbulent flow are of great interest in the view of many modern chal-
lenges [1]. For example, aerodynamic losses are believed to be one of the main source of energy
wastage for a vehicle at speeds higher than 50 km/h. According to the existing ecological estimates,
the reduction of these losses at 25% will decrease pollution for more than 107 tonnes of CO2 per
year. Optimization of the vehicles’ shapes remains the preferred solution for reducing aerodynamic
losses (or drag) because of turbulence-related mechanisms such as flow separation. Such optimiza-
tion constitutes a passive control approach that cannot lead to an optimal solution, in particular when
the incoming flow faces dramatic changes because of large unsteady events. Other passive control
solutions include fixed objects such as small delta wings or so-called vortex generators located on
the vehicle surface in order to manipulate the boundary layer (see [2] and [3] for extensive reviews).
Such strategy requires generally extensive parametric studies to find the geometrical parameters
(dimensions and locations) of the actuators leading to a solution that can only be optimal for a lim-
ited range of flow conditions. In such a context, active control strategies [1, 4–8] implying actuators
interacting with the flow and whose control parameters can be varied online to maintain an optimal
solution leading to minimization of the aerodynamic losses constitute an attractive solution.

Fluidic actuators are the most encountered solutions in turbulent flow control applications, at
least at the academic level (e.g. [9–11]). Flow separation occurring because of a large adverse pres-
sure gradient such as observed for two-dimensional flap ([12–16]) constitutes one of the standard

*Correspondence to: Maxime Feingesicht, Inria Lille Nord Europe, Parc Scientifique de la Haute Borne, 40 Avenue du
Halley Bat. A, Park Plaza, 59650 Villeneuve-d’Ascq, France.

†E-mail: maxime.feingesicht@inria.fr
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benchmark for development of new actuators or advanced control strategies [4, 5, 17, 18] and [19].
This configuration will be considered in the present paper as a test case to apply recently developed
methods of the Control Theory.

The main difficulty of turbulence control is that the behavior of the physics underlying the plant
(here designing the flow system) is highly nonlinear. The flow dynamics are effectively driven by the
Navier–Stokes equation which is a distributed parameter model. Implementation of controllers or
observers for such infinite dimensional systems needs huge computational resources, which cannot
be provided in real-time [20–22].

Various strategies for separated flow control can be found in the literature. The most of them
use very local (linear) models [6–8] (i.e., basically skip nonlinear turbulent dynamics) and deal
mainly with feedforward control [4, 5, 17, 18] and [19]. In this context, the recent control design
approach based on machine learning (model-free) techniques [23] looks rather promising among
others. However, long series of repeated experiments are required for its proper tuning. In addition,
the machine learning approach leaves open a question of robustness of the designed control, and
the convergence is not totally proven. A recent survey about various approaches to flow control
design is given by Brunton and Noack [1]. Model-based robust control of separated flows remains
of particular interest and can be implemented in real system without too much complexity. One of
the objectives of the present paper is to study new perspectives in this topic.

To design a practically realizable control law, a sufficiently simple model of the plant should
be constructed. For this purpose, the paper uses a modified gray-box identification technique and
constructs a model that adequately describes an input/output behavior of the flow control system.
The obtained model is bilinear and presented by difference-differential equation with state/input
delays. One more feature of the control system under consideration is relay (’ON’/’OFF’) actuation
provided by pulsed jets (air blowers). The preliminary results on modeling of the control system of
separated flows can be found in [24].

The present paper is focused on development of control strategies by means of applying appro-
priate mathematical methods to the obtained bilinear time-delay model, so its main contribution is
theoretical. In particular, an optimal control problem is formulated, and a scheme for a sub-optimal
feedforward periodic control design is developed based on averaging analysis. Next, a setpoint
tracking algorithm is designed using a sliding mode control methodology [25–29] jointly with a pre-
diction technique (e.g., [30, 31]). The choice of sliding mode control technique is motivated by the
nature of the actuators used in the experiments, which can only be turned on or off, such as relays.
It is well known [25] that the sliding mode is the usual operation mode of relay control systems.
Relay control and/or sliding mode control systems with delays are studied, for example, in [32, 33].
Despite of the fact that bilinear systems were considered in literature (e.g., [34]), to the best of our
knowledge, the considered control problems for bilinear models with state and input delays have
never been studied before.

Notation:

! R is the set of real numbers, RC D ¹x 2 R j x > 0º;
! C� is the space of continuous functions;
! 1 2 C� is the unit constant function: 1.s/ D 1, 8s 2 �;

! L2
� is the space of quadratically integrable functions, k´kL2

�
D
q

R

�
´2.s/ds;

! L1
� is the space of locally measurable essentially bounded functions, k´kL1 D ess sup

s2�

j´.s/j;
! if " > 0, y 2 L1

R
, and t 2 R, then #" .t/ 2 L1

Œ!";0�
W .y" .t//.$/ D y.t C $/ for $ 2 Œ#"; 0�:

The notation y" .t/ and y!" .t/ is commonly used for time-delay models [35].

2. FLOW CONTROL SYSTEM

2.1. Flow control problem

The problem of flow control is basically the meeting point of three research areas [1]:

1. Fluid mechanics (for analysis of flow dynamics and formulation of control goals),

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
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Figure 1. Diagram and photo of the experimental setup courtesy of Laboratoire de Mécanique de Lille.
[Colour figure can be viewed at wileyonlinelibrary.com]

2. Electronics (for sensing and actuation developments),
3. Control theory and optimization (for designing of control laws).

Flow control experimental setup is generally designed and assembled based on current techno-
logical achievements in the field of fluid dynamics and electrical engineering. In such a context, the
operator cannot have any impact on the setup, except on the control parameters that drive the actu-
ators. The problem resulting is therefore to optimize efficiency and robustness of the controller by
designing appropriate control algorithms.

To the best of our knowledge, the paper presents the first attempt in the context of nonlinear
(in particular, bilinear) single input single output (SISO) model-based control design for sepa-
rated flows. It deals with two classical control paradigms: open-loop (feedforward) and closed-loop
(feedback). While an optimal control problem is studied in the open-loop context, sliding mode
methodology is applied in order to design robust feedback that tracks a given setpoint.

2.2. Experimental test case

The experimental test case considered is that of a turbulent boundary layer flow occurring sepa-
ration along a two-dimensional ramp whose geometry and dimensions are illustrated in Figure 1.
Full details of the experiments, which were conducted in the large boundary layer wind tunnel at
Laboratoire de Mécanique de Lille (France) can be found in [36, 37]. The boundary layer flow first
develops along a flat horizontal plate (floor of the wind tunnel) before reaching a smooth conver-
gent where it occurs acceleration. The flow continues to develop along a slightly inclined flat plate
to recover a zero pressure streamwise gradient. This is followed by a flap along which the bound-
ary layer occurs separation and reattaches further downstream to the floor of the wind tunnel. This
is illustrated in Figure 2(b) where streamlines for the averaged natural flow are reported. Note that
the flow comes from the left of the figure. The ramp geometry is shown as the thick black line. In
the present configuration, the location where the flow separates from the wall is fixed and located
at the edge between the inclined flat plate and the flap (chosen as origin of the coordinate system
in Figure 2). Just downstream of the edge, a shear layer forms, and a recirculation region (reversed
flow) appears along the flap because of flow separation. The border between positive and negative
streamwise mean velocity is represented as the blue line. Below this blue line, the flow is, in aver-
age, reversed compared with the flow above the line. The flow in this separation region constitutes
the physical system of interest and to control, the main objective of the control being to reduce the
recirculation region.

An array of 22 co-rotating round jets acting as air blowers, aligned parallel to the flap edge is used
as actuators. The control input u(t ) is a relay (‘on’/‘off’) signal sent to the actuators with a given
frequency and duty cycle. An example of the averaged flow obtained when using continuous actu-
ation (relay remains ‘ON’) is illustrated in Figure 2(a). Compared with the natural flow discussed

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
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Figure 2. Streamlines for (a) the natural flow without control and (b) the flow under continuous actuation.
The blue line represents the border between the reversed flow (negative streamwise velocity, region of the
flow below the line) and the freestream (positive streamwise velocity, region of the flow above the line). In
the controlled case (b), the recirculation region is shown to be drastically reduced and the flow almost fully

reattached to the wall. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. Feedback scheme.

previously and shown in Figure 2(b), the region of reversed flow is drastically reduced, and the flow
is found to be almost fully attached to the bottom wall.

For real-time survey, hot-film sensors located along the flap are used to measure the gain in
skin friction: an increase in friction gain being representative of flow reattachment. In the present
configuration, output voltages of hot-film sensors are the only signals that can be measured in on-line
and utilized for control proposes. The output voltages of the sensors are constants in the steady state.
From the point of view of Control Theory, the control problem examined here admits conventional
interpretation given in Figure 3.

2.3. Control aims

2.3.1. Setpoint tracking control. Based on flow velocity surveys (not detailed in the present paper),
the capability of the actuators to reattach the flow to the wall has been shown by Raibaudo [36, 37]
to be well characterized by skin friction gain measured by the hot-film sensors. Therefore, the first
control problem to be studied here is stabilization of the output y at the desired setpoint y". The
relay nature of actuators motivates us to apply sliding mode principles in order to design a robust
feedback law, which guarantees y.t/ ! y" as t ! 1:

2.3.2. Optimal control. Let us consider the cost functional

J.y; u/ D lim
T !C1

1

T

Z T

0

˛y.s/ # .1 # ˛/u.s/ds (1)

with 0 6 ˛ 6 1, which characterizes the averaged value of y in the steady state and the averaged
control value required to obtain it. Because increasing of the output y implies better reduction of
turbulence [12] and our objective is to reattach the flow as much as possible, we also study the
problem: to design a control law u such that

J.y; u/ ! max : (2)

The trade-off between the turbulence reduction and the energy consumed by the actuation is
provided by the choice of the parameter ˛.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
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3. INPUT-OUTPUT MODELING OF FLOW SEPARATION

3.1. Experimental data and pre-processing

The only data we can use for modeling are the input signals to the actuators and the output voltages
of the hot-film sensors measured with a frequency of 1 kHz. Therefore, we cannot design a model
separately for actuator, sensor, and plant, but our model will implicitly include them all.

Several experiments have been performed in order to collect an experimental database appropri-
ate for model design. Each experiment consists of two phases: actuation and relaxation. Actuation
is performed by means of a periodic on/off input signal u with a fixed frequency and duty cycle
(DC). Actuation time is 5 s. Seven different input signals have been tested: (1) constant input; (2)
Freq = 4 Hz with DC = 50%; (3) Freq = 4 Hz with DC = 80%; (4) Freq = 8 Hz with DC = 50%; (5)
Freq = 8 Hz with DC = 80%; (6) Freq = 80 Hz with DC = 50%; (6) Freq = 80 Hz with DC = 80%.

During the relaxation phase, the control is switched off for 5 s in order to let the flow to return
to a natural steady separated state. Each experiment is repeated for more than 50 times, and the
results are phase averaged in order to obtain an output signal less effected by measurement noises
and exogenous perturbations. This phase-averaged data (Figure 4) is utilized for modeling.

3.2. Bilinear model

The dynamics of the flow considered here are highly nonlinear and governed by partial differen-
tial equations (e.g., Navier–Stokes equations). The only SISO model can be designed using the
experimental dataset. However, this model should take into account nonlinearity and an infinite
dimensional nature of the control system. That is why we identify an appropriate model from
the class of bilinear control systems governed by differential equations with time delays (i.e.,
differential-difference equations):

Py.t/ D
N1
X

iD1

aiy.t # "i / C
N2
X

kD1

0

@bk C
N3
X

j D1

cjky.t # Q"j /

1

Aui .t # hk/; (3)

where N1; N2, and N3 are nonnegative integers, ai ; bi ; cij 2 R are constant parameters, and both
state "i ; Q"j and input delays hi are considered in order to capture as much as possible the infinite
dimensional dynamics of the system. However, this model is sufficiently simple and of small order
to design some practically implementable control laws.

The identification has been performed using a least-square method supported with global opti-
mization algorithm NOMAD (nonlinear optimization by mesh adaptive direct search) [38–41]
required for optimal assignment of delays. The reader can refer to [24] for more details about
identification of the considered bilinear model.

Figure 4. Phase-averaged data for Freq = 4 Hz, DC = 80%. [Colour figure can be viewed at wileyonlineli-
brary.com]
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Table I. Precision of the identified models.

" FIT.%/ &

N3 D 1 0.0495 87:56 0.9926
N3 D 2 0.0341 91:44 0.9965

Table II. Identified parameters of the models.

N3 D 1 N3 D 2

"i Œ0:054I 0:006� Œ0I 0:116�
N"j Œ0:054I 0:360� Œ0:036I 0:001�
hk 0.054 Œ0:045I 0:315�
ai Œ9:6468I #12:6195� Œ#11:7146I 7:9658�
bk 3.5632 Œ4:4759I 0:3652�
cjk Œ#2:6470I 2:6470� Œ29:1680I #28:7925I #24:1864I 23:4018�

3.3. Results of identification

The bilinear models have been identified for N1 D N2 D 2 and N3 D 1 or 2. The precision
of the models has been analyzed using the three indicators: ' is L2-norm of the error, FIT index‡

introduced in [42], and & the correlation between the experimental data and the identified model.

' D kyexp # ysimkL2 ; & D
cov.yexp; ysim/

$yexp$ysim

; FIT D
!

1 #
kyexp # ysimkL2

kyexp # NyexpkL2

"

$ 100%;

where yexp is the output of the system obtained from the experiment, ysim is the output generated by
the identified bilinear model (3), Nyexp is the mean value of yexp, cov

#

yexp; ysim
$

is the covariance of
yexp and ysim, but $yexp and $ysim are standard deviations of yexp and ysim, respectively. The results
are summarized in Tables I and II.

It is worth stressing that the obtained models have very high precision comparing with the existing
results [42]. The FIT index is improved for almost 30% using the model with only eight parameters
(Table I). The NARX (Nonlinear Autoregressive Exogenous Model) model obtained in [42] has
hundreds of coefficients and FIT D 59%.

4. SETPOINT TRACKING CONTROL PROBLEM

4.1. Plant model and basic assumptions

For the design of a tracking control, we use the simplest model obtained during the identification
procedure, namely,

Py.t/Da1y.t # h/ # a2y.t # "/ C .b # cy.t # h/ C cy.t # N"//u.t # h/; (4)

y.s/ D 0; u.s/ D 0 for s 6 0; (5)

where a1 > 0; a2 > 0; b > 0; c > 0; N" > 0; h > 0, and " > 0 are constant parameters, y.t/ 2 R

is the output and u 2 L1
R

W u.t/ 2 ¹0; 1º; t > 0 is the input. Note that for any u 2 L1
RC

, the
considered system has a unique Caratheodory solution [43] at least locally.

We deal with a model of physical system. To exclude non-feasible dynamics, we assume that the
system (4), (5) has bounded positive solution for any input signal u 2 L1

RC
W u.t/ 2 ¹0; 1º. The

sufficient condition of positivity and boundedness of solutions to the system (4) is given by the next
proposition proven in Appendix.

‡FIT is the word ‘fit’ in capital letters

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
DOI: 10.1002/rnc



ON SISO MODEL-BASED CONTROL OF SEPARATED FLOWS

Proposition 1

If c < a1; .a1 C c/" < a2" < 1
e

and " 6 h 6 N" , then the system (4), (5) is positive, and its solution
is globally bounded for any input signal u 2 L1 W u.t/ 2 ¹0; 1º as follows:

0 6 y.t/ < ymax WD
b

a2 # a1

for all t > 0:

4.2. Sliding mode control for time-delay bilinear system

The conventional sliding mode control methodology [25–27] is developed for delay-free systems.
We emphasize again that, in our case, the choice of sliding mode control was motivated by the fact
that the actuator is relayed. In order to design the sliding mode control, we need to compensate input
delay using, for example, the prediction technique (e.g., [30, 31, 44, 45]). Developed originally for
linear plants, this idea can also be applied for bilinear systems under consideration.

A simple example of a predictor is given here:
Suppose that we study the positive system Px.t/ D ax.t/ C bu.t # h/ with a < 0, b > 0, and

u.t/ 2 ¹0; 1º. The maximum value of x.t/ is xmax D # b
a

, with 0 < x.t/ < xmax.

Consider the following prediction variable: $.t/ D ax.t/ C b
R t

t!h u.s/ds. Its derivative is

P$.t/ D ax.t/Cbu.t/. Note that the control input u is not delayed with respect to the sliding variable

$ , so the conventional sliding mode design scheme can be utilized [25]. Take u.t/ D sign .$.t/ #

$"/ D
²

1 if $.t/ # $" < 0

0 if $.t/ # $" > 0
, where $" D ax" Cb and x" 2 .0; xmax/ is the desired value to track.

If $.t/ > $", then P$.t/ D ax.t/ < 0, and if $.t/ < $", then P$.t/ D ax.t/ C b > axmax C b > 0.

Therefore, d
dt

.$.t/ # $"/.$.t/ # $"/ < 0, and according to [25], sliding mode arises on the

surface $.t/ # $" D 0 in a finite time, that is, $.t/ D $" for t > t".

Assuming N" > h, we introduce the following sliding variable for our model, according to [31]

$.t/ D y.t/#a2

t
Z

t!"

y.s/dsCc

t
Z

t! N"Ch

y.s/dsC
t
Z

t!h

a1y.s/C.b#cy.s/Ccy.s# N"Ch//u.s/ds: (6)

Obviously, the variable $ satisfies the equation

P$.t/ D .a1 # a2 C c.1 # u.t///y.t/ C c.u.t/ # 1/y.t # N" C h/ C bu.t/:

Proposition 2

If conditions of Proposition 1 hold and

Q.j!/ ¤ 0 for ! ¤ 0; (7)

where Q.s/ DsCa2e!s" #.a2#c/e!sh#ce!s N" ; s 2C and j D
p

#1, then the control law

u.t/ D
²

1 if $.t/ < $";

0 if $.t/ > $";
(8)

with $" D y".1 C a2.h # "/ C c. N" # h// and y" 2
&

0; b
a2!a1

'

guarantees y.t/ ! y" as t ! C1.

The proof of this proposition is given in Appendix, where it is shown that the control (8) guar-
antees finite-time convergence of the sliding variable $.t/ to $", so $.t/ D $" for all t > T .
It is worth stressing that when sliding mode arises, the system motion is governed by the infinite
dimensional dynamic system

$" D y.t/ C a2

t!"
Z

t!h

y.s/ds C c

t!h
Z

t! N"

y.s/ds:

This means that our sliding surface $ D $" is ‘infinite dimensional’. Using condition (7), it is
proven that the output y.t/ tends to y" asymptotically as t ! 1.
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Figure 5. Parametric plot for Q.j!/ for #2.a2 C c/ < ! < C2.a2 C c/. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 6. Application of the setpoint tracking control: output of the system. [Colour figure can be viewed at
wileyonlinelibrary.com]

Remark 1

Because

Re.Q.j!// D a2 cos."!/ # .a2 # c/ cos.h!/ # c cos. N"!/

Im.Q.j!// D ! # a2 sin."!/ C .a2 # c/ sin.h!/ C c sin. N"!/;

then to check the condition (7), it is sufficient to consider ! 2 .0; 2.a2 C c/�.

4.3. Numerical simulation of setpoint tracking control

Obviously, the plant model obtained by the identification (Table I, N3 D 1) satisfies the proposition
1 with a1 D 9:6468, a2 D 12:6195, c D 2:6470, b D 3:5632, " D 0:006, h D 0:054, N" D
0:360, and with the admissible setpoint value y" 2 .0; ymax/; ymax D b

a2!a1
D 1:20. According to

Remark 1, the condition (7) has been validated graphically using the parametric plot of the function
Q in the complex plane (Figure 5).

Results from a numerical simulation are depicted in Figures 6 and 7 for y" D 0:65 ($" D
1:5702, respectively). The simulation has been performed using explicit Euler method and a rather
large step size 10!2 (corresponding to the technological limitations of most of the actuators). Such
discretization step is selected in order to evaluate on simulations a possible amplitude of chattering
[25], which always accompanies the sliding mode control. In addition, such step size corresponds
to physical restrictions on the maximum frequency of many pneumatic actuators.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
DOI: 10.1002/rnc



ON SISO MODEL-BASED CONTROL OF SEPARATED FLOWS

Figure 7. Application of the setpoint tracking control: control signal. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 8. Application of the setpoint tracking control: sliding variable. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 7 shows that after approximately 0.65 s, the sliding mode appears making the input oscil-
late between 0 and 1 at high frequency. Next, the output y.t/ converges to the desired setpoint y"

with an error of the order 10!2. The numerical simulations have been also made for the smaller
step size 10!4. They confirmed convergence of y.t/ to y" with an error of the order 10!4, which
corresponds to numerical precision of the Euler method.

Figure 8 plots the value of the sliding variable with respect to time and, except for the chattering
phenomenon, it shows finite-time convergence to the sliding surface $.t/ D $". For small time
steps, $ reaches $" in finite-time, and the reaching time is approximately Treach D 0:65 s.

Please note that all simulations are performed using a zero initial condition for y.

5. OPTIMAL CONTROL PROBLEM

5.1. Model description and basic assumptions

Let us consider the functional differential equation

Py.t/ D A.y" .t//C
N3
X

iD1

.bi C Bi .y" .t # hi ///u.t # hi /; (9)

where y" .t/ 2 C1
Œ!";0�

is the state of the system, .y" .t//.s/ D y.t Cs/ for s 2 Œ#"; 0�, A W C1
Œ!";0�

%

L2
Œ!";0�

!R and Bi W C1
Œ!";0�

% L2
Œ!";0�

!R are linear continuous functionals, bi 2 RC are positive
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constants, u.t/ 2 ¹0; 1º is the relay control input, and hi 2 RC are input delays. For any u 2 L1
RC

,
the considered system has a unique Caratheodory solution [43]. Similarly to the previous section,
we assume that the system (9) with y.s/ D 0 for all s 6 0 has bounded positive solution for any
input signal u 2 L1

RC
W u.t/ 2 ¹0; 1º. We also assume that the class of admissible control inputs is

restricted to !-periodic functions u.t/ D u.t C !/, 8t > 0.

5.2. Periodic feedforward control

In the periodic case, the optimization problem J.y; u/ ! max subject to (9) considered over infinite
interval of time can be reduced to the optimal control over finite time interval. Indeed, if for any
!-periodic input u 2 L1

RC
, the system (9) has a unique stable !-periodic solution y! , then

J.y! ; u/ D
1

!

Z !

0

˛y!.s/ # .1 # ˛/u.s/ds: (10)

To solve this optimization problem, we need a proper algorithm of finding of periodic solutions to
the system (9) with a given periodic control input u. Existence of periodic solution to a particular
system (9) as well as algorithm for its finding is provided by the next theorem.

Theorem 1 ([46])
If 0 D h0 < h1 < : : : < hm and

! a function f W RC $ R
n.mC1/ ! R is measurable and !-periodic: f .t; x/ D f .t C !; x/; t 2

RC; x 2 R
n.mC1/, and satisfies Lipschitz condition:

jf .t; x/ # f .t; y/j 6

n!1
X

iD0

m
X

j D0

lij jxij # yij j; x; y 2 R
n.mC1/;

where lij > 0 are constants, x D .x00; x01; : : : ; xij ; : : :/ 2 R
n.mC1/ and y D

.y00; y01; : : : ; yij ; : : :/ 2 R
n.mC1/;

! a liner functional A W Cn
Œ!hm;0�

! R is defined as

Axhm
.t/ D

m
X

iD0

n
X

j D0

aij x.j /.t # hi /; aij 2 R;

xhm
.t/ D x.t C s/ for s 2 Œ#hm; 0�I

! the frequency ( D 2$
!

satisfies the non-resonance conditions: L .ik(/ ¤ 0 for k D

0; ˙1; ˙2; : : : where p D 0; 1; : : : ; n # 1 and L.)/ D
m
P

iD0

n
P

j D0

aij )j e!hi % is the characteristic

quasi-polynomial of the operator A;
! the inequality q D

Pn!1
pD0 lp$p < 1 holds for lp D lp0 C lp1 C : : : C lpm and $p D

max
r2R

ˇ

ˇ

ˇ

.ir&/p

L.ir&/

ˇ

ˇ

ˇ
,

then the equation Axhm
.t/ D f .t; x.t/; x.t # h1/; : : :, x.n!1/.t # hm// has a unique !-periodic

solution x! 2 CŒ0;!�,
which satisfies the estimate kx

.i/
! kL2

Œ0;!�
6

'i

1!q
kf .t; 0/kL2

Œ0;!�
, i D 0; 1; : : : ; n # 1 and can be

found by means of iterations

Ax
ŒkC1�

hm
.t/ D f .t; xŒk�.t//; k D 0; 1; 2; : : : ; (11)

where xŒ0� is an arbitrary !-periodic function and xŒk�.t/ D .xŒk�.t/; xŒk�.t # h1/; : : : ; xŒk�.t #
hm/; : : :/ 2 R

n.mC1/ and the following estimate:
(

(

(

(

(

d ixŒk�

dt i
#

d ix!

dt i

(

(

(

(

(

L2
Œ0;!�

6
qk

1 # q
$i

n!1
X

pD0

lp

(

(

(

(

(

d pxŒ0�

dtp
#

d px!

dtp

(

(

(

(

(

L2
Œ0;!�

(12)

holds for i D 0; 1; 2; : : : ; n # 1.
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To the best of our knowledge, the proof of Theorem 1 for L2 spaces has never been presented in
English literature. Its proof given originally in [46] is sketched in the Appendix.

The formula (11) provides simple recursive procedure for numerical finding of periodic solution
with precision controlled by the formula (12). Combination of this algorithm with some infinite
dimensional optimization procedure [47] allows us to find numerically an optimal input signal u

for a fixed period !. The corresponding algorithms are usually computationally hard. That is why,
for practice, it is also important to provide a simple sub-optimal algorithm. One has the following
proposition, which is proved in the Appendix.

Proposition 3

If for any !-periodic input signal u 2 L1
R

, the positive system (9) has a unique globally

asymptotically stable periodic solution and A.1/ C !!1
R !

0

N2
P

iD1

Bi . Nu" .s//ds < 0; then

J.y; u/ > QJ .u/ D
1

!

0

B

B

B

@

˛ # 1 #

˛
N2
P

iD1

bi

A.1/ C !!1
R !

0

N2
P

iD1

Bi . Nu" .s//ds

1

C

C

C

A

Z !

0

u.s/ds:

Therefore, if conditions of Proposition 3 holds, then the sub-optimal control can be found by
means of maximization of the functional QJ .u/.

If periodic control inputs are restricted to

u!;t 0.t/ D
²

1 for t 2 Œk!; k! C t 0/;
0 for t 2 Œk! C t 0; .k C 1/!/;

(13)

then, in the view of Proposition 3, a quasi optimal solution to (2) can be found from the finite
dimensional optimization problem: QJ .u!;t 0/ ! max : Such class of input signals is motivated by
natural practical demands to minimize the number of switchings.

In this case, the condition A.1/ C !!1
R !

0

N2
P

iD1

Bi . Nu" .s//ds < 0 of 3 simplifies to A.1/ C

t 0

!

N2
P

iD1

Bi .1/ < 0; and QJ .u/ to

QJ .u/ D

0

B

B

B

@

˛ # 1 #

˛
N2
P

iD1

bi

A.1/ C t 0

!

N2
P

iD1

Bi .1/

1

C

C

C

A

t 0

!
: (14)

This optimization problem can be solved analytically for QJ . For any fixed value !0 of !, the value
of t 0 noted by t 0

0 is given by

t 0
0 D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if ˛ D 0

! if ˛ D 1

! satŒ0;1�

0

B

B

@

!A.1/
N2
P

iD1

Bi .1/

#

v

u

u

t ˛
.˛!1/

A.1/

 

N2
P

iD1

bi

!

N2
P

iD1

Bi .1/

1

C

C

A

if 0 < ˛ < 1;

(15)

where satŒ0;1� is the saturation function on the interval Œ0; 1� such that satŒ0;1�.x/ D x for 0 6 x 6 1,
satŒ0;1�.x/ D 1 for x > 1, and satŒ0;1�.x/ D 0 for x < 0.

It is worth stressing that the identified model of the flow control system (Table I) satisfies
Proposition 3.
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Figure 9. Application of the feedforward control with ˛ D 0:46. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 10. Application of the feedforward control with ˛ D 0:48. [Colour figure can be viewed at
wileyonlinelibrary.com]

5.3. Numerical simulation results

Let us find the sub-optimal feedforward control of the form (13) for our system with two input delays
as presented in Section 5.2. It is easy to compute that A.1/ D #3:7488 < 0 and A.1/ C B.1/ D
#4:1578 < 0, then the conditions of Proposition 3 are fulfilled for every couple .!; t 0/.

A numerical simulation of the model (9) with the coefficients chosen in the column N3 D 2 of
Table I can be found in Figure 9. This simulation was performed for ˛ D 0:46 and ! D 0:25,
leading to t 0 D 0:1119 and the duty cycle t 0

!
$ 100% D 44:76%. The value of the cost function

for this simulation is J D #0:0339. For comparison, and for identical values of ˛ and !, taking
a constant control equal to one give J D #0:0711 and a control with a duty cycle of 50% gives
J D #0:0389. Another simulation with ˛ D 0:48 can be found in Figure 10. It is to be noted that, in
the case of our model, the choice of alpha requires great precision as the saturation of tsw occurs for
˛ < 0:436 and ˛ > 0:488. Therefore, the choice of the parameter ˛ greatly depends on the system
studied, and its range and effect may vary from one experiment to another.

Please note that all simulations are performed using a zero initial condition for y.

6. DISCUSSION AND CONCLUSIONS

In the paper, the problem of model-based control of separated flows is studied.
The bilinear time-delay model of turbulent flow introduced in [24] is considered and identified.

It is shown that both sub-optimal (feedforward) and robust (feedback) control laws can be designed
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based on the identified model. Classical control approaches like sliding mode design can be utilized
for this purpose. The proposed control was tested in the ONERA Lille wind tunnel. A video if the
open-loop optimal control can be found at : https://youtu.be/BLG5e9obQK0. The robustness of the
closed-loop control has been experimentally validated through repeated testing with several changes
in the setup (flow speed, actuators mass flow and flap angle of attack). A video of the experiment
can be found at : youtu.be/b5NnAV2qeno. Their extensions to more exact models of separated flows
are planned for the future work.

Chattering reduction of sliding mode control was not studied in this paper. Today, the way for
chattering reduction is to use higher order sliding mode. However, till now, there is no efficient
scheme for its application to time-delay bilinear systems. We consider this problem as important
direction for future research. Another possible direction is related to disturbance reduction and noise
sensitivity analysis using, for example, the results of the papers [31, 33, 48]. This would also allow
us to cover a wider range of flow types and experiments.

APPENDIX

A.1 Positive systems with time-delay

Lemma 1

If a > 0; " > 0, and a" < 1
e

, then the system Ṕ.t/ D #a´.t # "/ C f .t/; ´.s/ D 0 for s 6 0 is
positive for any nonnegative f 2 L1

R
, i.e. ´.t/ > 0 if f .t/ > 0 for all t > 0.

Proof

See Lemma 4 of [49] or Corollary 15.9 from [50]. !

Lemma 2

Let the system Ṕ.t/ D #a´.t # "/ C b with ´.s/ D 0 for s 6 0 be positive and a > 0; b > 0,
0 6 a" < ln.2/. Then, it has a unique solution defined on RC such that
0 < ´.t/ < b

a
and Ṕ.t/ > 0 for all t > 0:

Proof

For existence and uniqueness of solution of time-delay systems, see [35]. Let us suppose a contrary,
that is, there exists t" > 0 such that ´.t"/ D b

a
, but ´.t/ < b

a
for all t > t". This immediately

implies that Ṕ.t/ > 0 and ´.t/ > 0 for all t 2 .0; t"�.
Let us denote p.t/ D ´.t/ # a

R t

t!"
´.s/ds. Hence, we have

Pp.t/ D #a´.t/ C b D #ap.t/ C b # a2

t
Z

t!"

´.s/ds

and

´.t/ D
b.1 # e!at /

a
C a

t
Z

t!"

´.s/ds # a2

t
Z

0

e!a.t!'/

'
Z

'!"

´.s/dsd$

D
b.1 # e!at /

a
C a

t
Z

t!"

´.s/ds # a

t
Z

0

e!a.t!'/

t
Z

t!"

´.$ # t C s/dsd$

D
b.1 # e!at /

a
C a

t
Z

t!"

0

@´.s/ # a

t
Z

0

e!a.t!'/´.$ # t C s/d$

1

Ads

D
b.1 # e!at /

a
C a

t
Z

t!"

0

@´.s/ # a

0
Z

!t

ea' ´.s C $/d$

1

A ds

D
b.1 # e!at /

a
C a

t
Z

t!"

0

@´.s/ # ae!as

s
Z

s!t

ea'´.$/d$

1

A ds

D
b

a
.1 # e!at / C a

Z t

t!"

e!asf .s; t/ds;

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
DOI: 10.1002/rnc



M. FEINGESICHT ET AL.

where f .s; t/ D eas´.s/ # a
R s

s!t
ea' ´.$/d$: Because for s 2 Œt # "; t � and 0 < t 6 t", we have

@f

@s
Deas Ṕ.s/Caeas´.s/ # aeas´.s/Caea.s!t/´.s # t />0;

then ´.t/ 6
b.1!e!at /

a
C af .t; t/

t
R

t!"

ds
eas D b.1!e!at /

a
C f .t; t/ ea#

!1
eat or, equivalently,

´.t/ 6
b.1!e!at /
a.2!ea# /

# a.ea#
!1/

2!ea#

R t

0 e!a.t!'/´.$/d$: Hence, ´.t/ 6 w.t/, where w.t/ satisfies the

integral equation w.t/ D b.1!e!at /
a.2!ea# /

# a.ea#
!1/

2!ea#

R t

0 e!a.t!'/w.$/d$; w.0/ D 0 or, equivalently,

Pw.t/ D #a

!

1 C
ea" # 1

2 # ea"

"

w.t/ C
b

2 # ea"
D

#aw.t/ C b

2 # ea"
:

Therefore, we derive that ´.t/ 6
b
a

&

1 # e!
a

2!ea# t
'

< b
a

for all t > 0: This contradicts our

supposition. !

A.2 Proof of Proposition 1

I. Let us consider the system Py.t/ D #a2y.t # "/ C f .t/; y.s/ D 0; s 6 0; where f is a locally

integrable function. If f .t/ > 0 and a2" 6 e!1, then the delay-dependent positivity conditions

hold (Lemma 1) and y.t/ > 0, for all t > 0. On the one hand, if a1 > c and y.s/ > 0 for s 6 t ,

then f .t/ D a1y.t # h/ C .b # cy.t # h/ C cy.t # N"//u.t # h/ > 0: Therefore, using the method

of steps (i.e., considering sequentially the intervals Œ0; h�; Œh; 2h� : : :), we prove positivity of the

system (4), (5).
II. Now let us prove boundedness of solutions. Suppose the contrary: there exists an input signal

u.t/ and an instant of time t" > 0: y.t"/ D ymax and y.s/ < ymax for s < t".

In this case, because b # cy.t # h/ C cy.t # N"/ > b # cy.t # h/ D .a2 # a1/ymax # cy.t # h/ > 0

for all t 2 Œ0; t"�, then y.s/ 6 y1.s/ for all s 6 t"; where y1 is the solution to the positive system

Py1.t/ D .a1 # c/y1.t # h/ # a2y1.t # "/ C cy1.t # N"/ C b: Let us prove boundedness of solutions

of the latter system; for this purpose, let us study the auxiliary system:

Ṕ.t/ D #.a2 # a1/´.t # "/ C b; ´.s/ D 0 for s 6 0:

For �.t/ D ´.t/ # y1.t/, we derive
P�.t/ D #a2�.t # "/ C a1´.t # "/ # .a1 # c/y1.t # h/ # cy1.t # N"/: According to Lemma 2, the

function ´ satisfies the inequalities 0 < ´.t/ < b=.a2 # a1/ D ymax and Ṕ.t/ > 0 for all t > 0.

Hence, ´.t # "/ > ´.t # h/ > ´.t # N"/ and

P�.t/D#a2�.t # "/C.a1 # c/�.t # h/Cc�.t # N"/ C +.t/;

where +.t/ D a1´.t # "/ # .a1 # c/´.t # h/ # c´.t # N"/ > 0 and �.s/ D 0 for s 6 0. Because the

latter system is positive (see the first part of this proof), then �.t/ > 0 and y1.t/ 6 ´.t/ < ymax for

all t > 0. This contradicts our supposition.

A.3 Proof of Proposition 2

Firs of all, let us note that 0 < y.t/ < b
a2!a1

for all t > 0 due to Proposition 1.

I. Because the system (4) is positive, then y.t/ > 0 for all t > 0. Moreover, if u.t/ D 0 and

y.t/ > 0, then P$.t/ < 0, but if u.t/ D 1 and y.t/ < b
a2!a1

, then P$.t/ > 0. Therefore, while

0 < y.t/ < b
a2!a2

, we have .$.t/ # $"/ d
dt

.$.t/ # $"/ < 0: Obviously, $.0/ D 0. To guarantee
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existence of sliding mode, we just need to show that the state $.t/ D $" > 0 is reachable in a finite

time t D t" > 0. Let us suppose contrary: $.t/ < $" for all t > 0. This means that u.t/ D 1 for

all t > 0 and

Py.t/ D .a1 # c/y.t # h/ # a2y.t # "/ C cy.t # N"/ C b:

Using the last identity, let us rewrite the formula (6) as

$.t/ D y.t/ # a2

Z t

t!"

y.s/ds C c

t
Z

t! N"Ch

y.s/ds C
t
Z

t!h

Py.s C h/ C a2y.s C h # "/ds

D 2y.t/ # y.t # h/ C a2

Z tCh!"

t

y.s/ds C c

t
Z

t! N"Ch

y.s/ds:

Hence, $.t/ > $" if y.t/ > y". Let us show that there exists t" > 0 such that

y.t/ > y" for all t > t": Because Py.t/ > #a2y.t # "/ C b for all t > 0, then, obviously, there

exists t1 > 0 such that y.t/ > b
a2

for all t > t1. In this case, we derive

Py.t/ > #a2y.t # "/ C b
&

1 C a1

a2

'

for all t > t1 C N" , and there exists t2 > t1 C N" such that

y.t/ > b
a2

&

1 C a1

a2

'

for all t > t2 and so on. Therefore, for t > ti , we derive

y.t/ >
b

a2

 

1 C
a1

a2

C : : : C
!

a1

a2

"i!1
!

D
b

!

1 #
&

a1

a2

'i
"

a2 # a1

and for some i" we have y.ti"/ > y" 2
&

0; b
a2!a1

'

. Therefore, the sliding mode existence

condition [25] holds and $.t/ D $", 8t > t".

II. Using the equivalent control method [25], we derive ueq.t/ D .a2!a1!c/y.t/Ccy.t! N"Ch/
b!cy.t/Ccy.t! N"Ch/

and

$" D y.t/ # a2

t
Z

t!"

y.s/ds C c

t
Z

t! N"Ch

y.s/ds C
t
Z

t!h

a2y.s/ # cy.s/ C cy.s # N" C h/ds

D y.t/ C a2

t!"
Z

t!h

y.s/ds C c

t!h
Z

t! N"

y.s/ds

for all t > t". Introducing the variable �.t/ D y.t/ # y", we obtain the equation

�.t/ C a2

t!"
Z

t!h

�.s/ds C c

t!h
Z

t! N"

�.s/ds D 0: (16)

It has the characteristic equation 1
s
Q.s/ D 0, s 2C. We have already proven that all solutions of

the closed-loop system are bounded (Proposition 1), and the sliding mode exists for all t > t", so

the equation (16) does not have unbounded dynamics. The condition Q.j!/ ¤ 0 for all ! ¤ 0

implies that this equation does not have non-constant periodic solutions. So the only stable

solution is �.t/ & C , where C 2 R is some constant. Because 1 C a2.h # "/ C c. N" # h/ > 0, then

from the equation for �.t/, we immediately derive C D 0 and y.t/ ! y" as t ! 1.

A.4 Elements of averaging analysis

Let us introduce some additional notations.

! L2
� is the Hilbert space of quadratically integrable functions � ' R ! R with the norm k ( kL2

induced by the inner product # ( + D
R

� #.s/+.s/ds.
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! If " > 0, # 2 L1
R

and t 2 R, then

N#" .t/ 2 L1
Œ!";0� W . N#" .t//.$/ D #.t # $/ for $ 2 Œ#"; 0�:

! For #; , 2 L1
� with RC % �, let us define the operation

h#; ,i WD lim
T !C1

1

T

T
Z

0

#."/,."/d";

which, in particular, defines the scalar product in the space L1
RC

.

! For #; , 2 L1
R

, let us define h#" ; ,i 2 L1
Œ!";0�

as

h#" ; ,i.$/ WD lim
T !C1

1

T

T
Z

0

#.s C $/,.s/ds for $ 2 Œ#"; 0�:

Lemma 3

If #; , 2L1
R

and " 2RC, then h#" ; ,i D h#; N," i.

Proof

The change of integration variable ( D s C $ gives

h#" ; ,i.$/D lim
T !C1

T
Z

0

#.s C $/,.s/

T
ds D lim

T !C1

T C'
Z

0

#.(/,.( # $/

T
d( D h#; N," i.$/

for $ 2 Œ#"; 0�. !

This proposition immediately implies the following.

Corollary 1

If # 2 L1
R

and " 2 RC, then h#" ;1i 2 CŒ!";0� is the constant function: h#" ;1i.$/ D h#;1i for all
$ 2 Œ#"; 0�, where 1 2 CR is the unit constant function (i.e., 1.s/ D 1 for all s 2 R).

Lemma 4

If ˆ W L2
Œ!";0�

! RC is a linear continuous functional, then hˆ.#" /; ,i D ˆ.h#" ; ,i/ for any
#; , 2 L1

R
.

Proof

Because ˆ is the linear continuous functional L2
Œ!";0�

! RC, then by Riesz Theorem [51], it can be

presented as

ˆ.+/ D - ( + D
Z 0

!"

-.s/+.s/ds; + 2 L2
Œ!";0�

with some - 2 L2
Œ!";0�

. Hence,

1

T

T
Z

0

ˆ.#" .s//,.s/ds D
1

T

T
Z

0

0
Z

!"

-.$/#.s C $/d$,.s/ds D
0
Z

!"

-.$/
1

T

Z T

0

#.s C $/,.s/dsd$:

Taking the limit for both sides, we complete the proof. !

Corollary 2

If ˆ W L2
Œ!";0�

! RC is a linear continuous functional, then

limT !C1
1
T

R T

0 ˆ.#" .s//ds D h#;1iˆ.1/; for any # 2 L1
R

, where 1 2 CRC
is the unit constant

function.
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Lemma 5

If A W C1
Œ!";0�

% L2
Œ!";0�

! R and B W C1
Œ!";0�

% L2
Œ!";0�

! R are linear continuous functionals and
the system (9) has bounded solution for any u 2 L1

R
, then

N2
X

iD1

bi hu;1i C hy; Bi . Nu" /i C hy;1iA.1/ D 0;

where 1 is the unit constant function, y is a solution to (9) with u 2 L1
R

and
Nu" .t/ 2 L1

Œ!";0�
W . Nu" .t//.$/ D u.t # $/ for $ 2 Œ#"; 0�.

Proof

From the equation (9), we have

T
Z

0

Py.s/

T
ds D

T
Z

0

A.y" .s//

T
C

N2
X

iD1

bi C Bi .y" .s # hi //u.s # hi /

T
ds

D A

0

@

T
Z

0

y" .s/

T
ds

1

AC
N2
X

iD1

1

T

T !hi
Z

!hi

biu.s/CBi .y" .s// u.s/ds:

Because the function y is bounded, then

limT !C1
1
T

R T

0 Py.s/ds D limT !C1
1
T

.y.T / # y.0// D 0, and using Corollary 1 and Lemma 4,

we derive limT !C1
1
T

R T

0 A .y" .s// ds D hy;1iA.1/. Because

lim
T !C1

1

T

Z T !hi

!hi

Bi .y" .s// u.s/ds D hBi .y" /; ui;

then

0 D hy;1iA.1/ C hu;1i
N2
X

iD1

bi C hBi .y" /; ui:

Finally, Lemmas 3 and 4 imply hBi .y" /; ui D Bi .hy" ; ui/DBi .hy; Nu" i/Dhy; Bi . Nu" /i. !

A.5 Proof of Proposition 3

In the periodic case, we derive hu;1iD 1
!

!
R

0

u.s/ds, hy;1iD 1
!

!
R

0

y!.s/ds, and

hy; Bi . Nu"/iD 1
!

!
R

0

Bi . Nu" .s//y!.s/ds, where y! is !-periodic solution that corresponds to

!-periodic control input u. On the one hand, the functional Bi is linear and continuous, so it is

bounded, and there exists a constant M such that M # Bi . Nu" .s// > 0 for all s 2 Œ0; !�. On the

other hand, for any #; + 2 L1
Œ0;!�

we have # ( + 6 k#kL2
Œ0;!�

k+kL2
Œ0;!�

and k#kL2
Œ0;!�

6
1p
!

k#kL1
Œ0;!�

.

Hence, taking into account positivity of the system (9), we derive

1

!

!
Z

0

#Bi . Nu" .s//y!.s/ds D #
M

!

!
Z

0

y!.s/ds C
1

!

!
Z

0

.M # Bi . Nu" .s///y!.s/ds

6#
M

!

!
Z

0

y!.s/ds C

0

@

1

!

!
Z

0

M #Bi . Nu" .s//ds

1

A

0

@

1

!

!
Z

0

y!.s/ds

1

A

D

0

@#
1

!

!
Z

0

Bi . Nu" .s//ds

1

A

0

@

1

!

!
Z

0

y!.s/ds

1

A :
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Taking into account Lemma 5, we derive

hu;1i
N2
X

iD1

bi D #A.1/hy;1i #

N2
X

iD1

hy; Bi . Nu" /i 6 #

0

@A.1/ C
1

!

!
Z

0

N2
X

iD1

Bi . Nu" .s//ds

1

A hy;1i:

Using the fact that Nu is !-periodic such that 1
!

!
R

0

Nu.s/ds D t 0

!
and Riesz Theorem [51], we can

write for some -i 2 L2
Œ!";0�

:

1

!

!
Z

0

N2
X

iD1

Bi . Nu" .s//ds D
1

!

!
Z

0

N2
X

iD1

0
Z

!"

-i .$/ Nu" .sC$/d$ds D
N2
X

iD1

0
Z

!"

-i .$/

0

@

1

!

!
Z

0

Nu" .sC$/ds

1

A d$

D
N2
X

iD1

0
Z

!"

-i .$/

!

t 0

!

"

d$ D
t 0

!

N2
X

iD1

Bi .1/;

which completes the proof.

A.6 Sketch of the proof of Theorem 1

The proof is based on Fixed-Point Theorem for a generalized Banach spaces

B D L2
Œ0;!�

$ : : : $ L2
Œ0;!�

, which have vector-valued norms:

Œ�xŒ� D .kx0kL2
Œ0;!�

; : : : ; kxn!1kL2
Œ0;!�

/> 2 R
n
C for any x 2 B. The space R

n
C is semi-ordered using

the conventional component-wise order relation, that is, x 6 y if xi 6 yi , i D 1; : : : ; n, where

x; y 2 R
n
C. In this case, the contraction condition of the operator F W B ! B is

Œ�Fx # FyŒ� 6 QŒ�x # yŒ�; for all x; y 2 B;

where Q 2 R
n#n
C is a Schur stable matrix. Under this condition, the operator F has the unique

fixed point x
" on B, that is, F.x"/ D x

". To complete the proof of Theorem 1, let us consider the

operator F D .F0; : : : ;Fn!1/> 2 B with

Fj .x/D
!
Z

0

G.j /.t; s/f .s; x0.s/; : : : ; x0.s # hm/; x1.s/; : : :/ds;

where G is the Green function of the system Axhm
.t/ D 0. Finally, it can be shown [46] that F

satisfies the contraction condition with the matrix Q D .l0; : : : ; ln!1/>.$0; : : : ; $n!1/ that is Schur

stable due to condition .l0; : : : ; ln!1/.$0; : : : ; $n!1/> < 1.
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Résumé étendu

La croissance actuelle de l’industrie du transport est impactée par le désir
d’atteindre de plus grandes vitesses pour des temps de trajet plus courts ainsi que
par le besoin de réduire les coûts énergétiques dans une optique de développe-
ment durable. Les communautés scientifique et industrielle cherchent à obtenir
de plus faibles coûts de transport et une réduction drastique des émissions
annuelles de CO2.

Une des causes de ces pertes d’énergie est liée à des effets aérodynamiques
tels que la trainée ou le décollement de l’écoulement sur le véhicule. Histori-
quement, le décollement était contré par du contrôle passif. Le contrôle passif
consiste en une modification de la géométrie du véhicule en changeant sa forme
ou en ajoutant de petits éléments ("actionneurs passifs") fixés sur la surface à des
positions appropriées. Ces éléments peuvent être statiques ou rétractables. Bien
qu’ils n’ont pas de coût énergétique, ils peuvent amener à une augmentation
significative de la trainée totale et souffrent d’un manque d’adaptabilité à un
changement dans l’écoulement et manquent donc de robustesse. Une modifi-
cation des actionneurs en réponse à un changement dans l’écoulement, connu
sous le nom de contrôle actif d’écoulement, requiert de la flexibilité de ces
actionneurs ainsi que des mesures en temps-réel sur l’écoulement. Ces deux
conditions (flexibilité et mesures en temps-réel) sont nécessaires pour maintenir
l’écoulement dans un état satisfaisant les objectifs désirés (par exemple trainée,
bruit, réduction de vibration) malgré des perturbations dans l’écoulement.

Ce travail s’appuie sur des tests expérimentaux réalisées dans les souffleries
du Laboratoire de Mécanique de Lille (LML), de l’Office National d’Études et
de Recherches Aérospatiales (ONERA) de Lille et du Laboratoire d’Automa-
tique, de Mécanique et d’Informatique industrielles et Humaines (LAMIH) à
Valenciennes :

• LML : soufflerie de couche limite dans laquelle est placé une maquette
constituée d’une plaque plaque terminée par un volet. Un schéma est
présenté Figure D.1a et une photo Figure D.1b. Le volet est équipé de
capteurs films chauds et d’actionneurs jets d’air.

165



166 Résumé étendu

(a) Schéma de l’expérience du LML avec un
zoom sur le volet et le positionnement des
films chauds et des jets d’air

(b) Photo de l’expérience du LML. L’écoule-
ment vient de la gauche.

Figure D.1 – Présentation de l’expérience du LML

• ONERA : soufflerie L1 de l’ONERA Lille dans laquelle est placée entre
deux plaques verticales, à mi-hauteur de la veine, une plaque plane termi-
née par un volet basé sur le profil NACA4412. Un schéma du placement
de l’aile dans la soufflerie est présenté Figure D.2a et un schéma de l’aile
Figure D.2b. Le volet est équipé de capteurs films chauds et d’actionneurs
jets d’air.

• LAMIH : soufflerie dans laquelle est placé un corps d’Ahmed, représentant
une simplification géométrique d’une voiture, surélevé 3.5cm au dessus
du sol. Un schéma du corps d’Ahmed est présenté Figure D.3. La face
arrière du corps est équipée de 3 jets d’air (sur le côté supérieur et les
deux côtés latéraux) et le corps est placé sur une balance aérodynamique
afin de mesurer la trainée, la portance et la dérive.

Dans un premier temps, des modèles de ces expériences sont identifiés. Les
formes de modèles choisies sont décrites dans les Equations (D.1) et (D.2). Ces
équations sont dérivées (par approximation et simplification) de l’équation de
Burgers qui est une simplification de l’équation de Navier-Stokes. Dans ces mo-
dèles, nous noterons y la mesure effectuée sur le système et nous l’appellerons
la sortie du système ou du modèle et nous noterons u le signal de commande
envoyé aux actionneurs et nous l’appellerons l’entrée du système ou du modèle.
Le premier modèle contient des retards constants sur l’entrée et est directe-
ment dérivé de l’équation de Burgers. Le second modèle contient des retards
dépendant de l’état sur l’entrée et est une modification du modèle précédent
basé sur une analyse des données expérimentales. Le premier modèle est utilisé
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pour l’élaboration de contrôleurs alors que le second sert uniquement pour
l’identification.

yk+1 =
N1X

i=1

⇣
aiyk−τi

⌘
+

N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjlyk−τ̄j

⌘
1
CCCCCCAuk−hl , 0  k N − 1 (D.1)

yk+1 =
N1X

i=1

⇣
aiyk−τi

⌘
+

N3X

l=1

0
BBBBBB@bl +

N2X

j=1

⇣
cjlyk−τ̄j

⌘
1
CCCCCCAuk−ehl (eyk) , 0  k N − 1 (D.2)

ym = 0,m < 0 (D.3)

Les retards et bilinéarités dans ces équations permettent d’approximer les
non-linéarités de l’équation de Burgers ou de Navier-Stokes ainsi que les temps
de transport de l’information à travers l’écoulement. L’identification des coeffi-
cients des modèles est réalisée à l’aide de la méthode des Moindres Carrés. Afin
d’obtenir les valeurs de retards un algorithme d’optimisation est utilisé. Étant
donné que le modèle et les données sont en temps discret, les retards sont des
entiers à déterminer. Le problème d’optimisation est non-convexe de par le fait
que plusieurs jeux de coefficients peuvent donner une correspondance identique
ou presque entre le modèle et les données et non-linéaire de par les bilinéarités
du modèle. Il est donc nécessaire d’employer un algorithme capable de résoudre
des problèmes dits Non-Convex Mixed-Integer Nonlinear. Le choix a été fait
d’utiliser deux algorithmes : NOMAD et l’Algorithme Génétique (GA). Ces deux
algorithmes sont testés et comparés, montrant que NOMAD est plus rapide et
précis (temps de calcul plus faible, meilleure valeur de la fonction coût) mais
que GA est plus simple à mettre en oeuvre pour les problèmes de grandes di-
mensions de par son implémentation en calcul parallèle dans le logiciel Matlab®.
Les modèles sont également comparés au modèle ARMAX (Auto-Regressive
Moving Averaged with eXogeneous inputs) qui est classique dans la littérature
d’identification des écoulements. Cette comparaison montre que les modèles
bilinéaires développés ici ont une meilleure correspondance aux données en
utilisant le même nombre de coefficients.

A l’aide des modèles obtenus, deux contrôleurs sont développés. Le premier
est un contrôle optimal en boucle ouverte qui permet, à partir des coefficients
du modèle, d’obtenir le signal créneau permettant de maximiser une fonction
coût qui représente le compromis entre le recollement de l’écoulement et le coût
énergétique du contrôle. La fonction coût est donnée par l’Equation (D.4).

J(y,u) = lim
T!+1

1
T

Z T

0
αy(s)− (1−α)u2(s)ds (D.4)
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Le problème d’optimisation est alors le suivant :

Élaborer une loi de contrôle u telle que J(y,u)!max . (D.5)

Maximiser la valeur de y revient à maximiser le recollement de l’écoulement,
alors que minimiser u (ou maximiser −u) permet de réduire le coût énergé-
tique du contrôle. Le paramètre α permet de faire le compromis entre ces deux
objectifs.

Le signal créneau est donné par l’Équation D.6 :

uω,t0 (t) =

(
1 pour t 2 [kω, kω + t0),
0 pour t 2 [kω + t0, (k +1)ω),

(D.6)

pour tout k > 0.

Le problème d’optimisation (D.5) peut être résolu de façon suboptimale
menant à, pour une valeur fixée de ω, le calcul de t0 selon l’Équation (D.6) :

t0 =

8>>>>>>>>><>>>>>>>>>:

0 if α = 0
ω if α = 1

ω sat[0,1]

0
BBBBBBBBBBB@

−A(1)
N2P
i=1

Bi (1)

−

s
α

(α−1)A(1)

0
BBBB@
N2P
i=1

bi

1
CCCCA

N2P
i=1

Bi (1)

1
CCCCCCCCCCCA

if 0 < α < 1
(D.7)

où sat[0,1] est la fonction saturation sur l’intervalle [0,1] telle que sat[0,1](x) = x
for 0  x  1, sat[0,1](x) = 1 pour x > 1 et sat[0,1](x) = 0 for x < 0.

Le second contrôleur est un contrôle robuste en boucle fermée permettant la
poursuite d’une consigne. Le modèle utilisé pour ce contrôleur est le modèle le
plus simple obtenu lors des tests d’identification en temps continu, donné par
les Équations (D.8) et (D.9)

ẏ(t)=a1y(t − h)− a2y(t − τ) + (b − cy(t − h) + cy(t − τ̄))u(t − h), (D.8)

y(s) = 0, u(s) = 0 pour s  0. (D.9)

A l’aide de la méthode des Modes Glissants (Sliding Modes), nous définissons la
surface de glissement σ(t) dans l’Équation (D.10) :

σ(t) = y(t)−a2
tZ

t−τ

y(s)ds+c

tZ

t−τ̄+h

y(s)ds+

tZ

t−h

a1y(s)+(b−cy(s)+cy(s−τ̄+h))u(s)ds (D.10)
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La loi contrôle est alors donnée par l’Équation (D.11) :

u(t) =

(
1 if σ(t) < σ⇤,
0 if σ(t) > σ⇤,

(D.11)

où σ⇤ = y⇤(1+ a2(h− τ) + c(τ̄ −h)) et y⇤ 2
⇣
0, b

a2−a1

⌘
. Sous les bonnes conditions sur

les paramètres du modèle, cette loi garantit y(t)! y⇤ lorsque t! +1. De plus,
cette loi de contrôle permet de rejeter les perturbations bornées si la borne n’est
pas trop grande par rapport à la force du contrôle (donnée dans le modèle par le
coefficient b).

Cette loi de contrôle a été testée sur les expériences de l’ONERA et du
LAMIH offrant des résultats convaincants. En effet, à l’ONERA, le contrôleur
n’a pu être mis en défaut que lorsque la puissance des actionneurs n’était plus
suffisante pour atteindre la consigne souhaitée. De plus, l’algorithme de contrôle
a été implémenté sur un Arduino®, montrant sa simplicité, son faible coût
algorithmiques et sa rapidité de calcul.
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Contrôle non linéaire actif d’écoulements turbulents décollés : Théorie et expé-

rimentations.

Résumé

Le contrôle des écoulements est un domaine en forte croissance visant à modifier un
écoulement à l’aide d’actionneurs et d’algorithmes de contrôle. Un axe important du
contrôle des écoulements est le contrôle des décollements car le décollement de la couche
limite provoque des augmentations de traînée et donc des pertes énergétiques et des
coûts en carburant. Cette thèse vise à développer des algorithmes de contrôle pour le
recollement des écoulements à l’aide de jets pulsés. La première partie de cette thèse
expose une technique d’identification de modèle basée sur des données expérimentales.
Les modèles sont déduits de considérations physiques et de l’Automatique. Ils offrent
une bonne correspondance aux données tout en restant simples et en contenant peu
de coefficients. La seconde partie de cette thèse utilise ces modèles pour élaborer deux
algorithmes de contrôle : le premier est un contrôle optimal en boucle ouverte et le
second un contrôle robuste en boucle fermée. Ces algorithmes ont été implémentés sur
diverses plateformes expérimentales (LML, ONERA, LAMIH) et leurs propriétés ont
été testées avec succès. Les tests ont été réalisés en utilisant un Arduino Uno pour les
mesures et le calcul du contrôle, ce qui montre que la méthode développée est simple à
appliquer et requiert peu de puissance de calcul.

Mots clés : contrôle des écoulements, contrôle par modes glissants, contrôle non
linéaire, systèmes bilinéaires, systèmes à retard

Nonlinear active control of turbulent separated flows: Theory and experiments.

Abstract

Flow control is a strongly growing field aiming at modifying fluid flows using actua-
tors and control algorithms. An important part of flow control is the control of flow
separation as boundary layer separation increases drag and therefore energy losses
and fuel consumption. This thesis focuses on developing control algorithms for flow
reattachment using pulsed jets actuators. The first part of this work develops a model
identification technique based on experimental data. The models are derived from
physical and control theory considerations. They provide a good fit to the data while
remaining simple and using few coefficients. The second part of this work uses this
models in order to design two different control algorithms : the first one is an optimal
open-loop control while the second one is a robust feedback control. The control algo-
rithms have been applied on several experimental setups (LML, ONERA, LAMIH) and
their properties have been successfully tested. The tests were conducted using a simple
Arduino Uno for the measurements and computation of the control, showing that the
developed method is easy to apply and requires very few computational resources.

Keywords: flow control, sliding mode control, nonlinear control, bilinear systems,
time-delay systems
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