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Abstract

Text is one of the most pervasive and persistent sources of informa-

tion. Content analysis of text in its broad sense refers to methods for

studying and retrieving information from documents. Nowadays, with

the ever increasing amount of text becoming available online in several

languages and writing styles, content analysis of text is of tremendous

importance as it enables a variety of applications. To this end, unsuper-

vised representation learning methods like topic models and word em-

beddings constitute prominent tools. The goal of this thesis is to study

and address challenging problems in this area, focusing on both the de-

sign of novel text mining algorithms and tools, as well as on studying

how these tools can be applied to text collections written in a single or

several languages.

In the first part of the thesis we focus on topic models and more pre-

cisely on how to incorporate prior information of text structure to them.

Topic models are built on the premise of bag-of-words, and therefore

words are exchangeable. While this assumption benefits the calcula-

tions of the conditional probabilities it results in loss of information.

To overcome this limitation we propose two mechanisms that extend

topic models by integrating knowledge of text structure to them. To

this end, we begin by assuming that the documents are partitioned in

thematically coherent text segments. Then, the first mechanism assigns

the same topic to the words of a segment. The second, capitalizes on the

properties of copulas, a tool mainly used in the fields of economics and

risk management that is used to model the joint probability distribu-

tions of random variables while having access only to their marginals.

Through the use of copulas we propose flexible topic models that can

model different degrees of dependence between the topics of a segment.

The second part of the thesis explores bilingual topic models for com-

parable corpora with explicit document alignments. Typically, a docu-

ment collection for such models is in the form of comparable document



pairs. The documents of a pair are written in different languages and

are thematically similar. Unless translations, the documents of a pair

are similar to some extent only. Meanwhile, representative topic mod-

els assume that the documents have identical topic distributions, which

is a strong and limiting assumption. To overcome the limitations of this

assumption we propose novel bilingual topic models that incorporate

the notion of cross-lingual similarity of the documents that constitute

the pairs in their generative and inference processes. Calculating this

cross-lingual document similarity is a task on itself, which we propose

to address using cross-lingual word embeddings.

The last part of the thesis concerns the use of word embeddings and

neural networks for three text mining applications. First, we discuss

polylingual document classification where we argue that translations

of a document can be used to enrich its representation. Using an auto-

encoder to obtain these robust document representations we demon-

strate improvements in the task of multi-class document classification.

Second, we explore multi-task sentiment classification of tweets argu-

ing that jointly training classification systems on correlated tasks can

improve the obtained performance. To this end we show how one can

achieve state-of-the-art performance on a sentiment classification task

using recurrent neural networks. The third application we explore is

cross-lingual information retrieval. Given a document written in one

language, the task consists in retrieving the most similar documents

from a pool of documents written in another language. In this line

of research, we demonstrate how adapting the transportation problem

for estimating document distances one can achieve important improve-

ments.

ii



List of Publications

The following publications are included in parts or in an extended version in this

thesis:

• Georgios Balikas, Ioannis Partalas, Eric Gaussier, Rohit Babbar, and Massih-

Reza Amini. Efficient model selection for regularized classification by ex-

ploiting unlabeled data. In International Symposium on Intelligent Data Anal-
ysis, IDA 2015, pages 25–36. Springer, 2015.

• Georgios Balikas and Massih-Reza Amini. Multi-label, multi-class classifi-

cation using polylingual embeddings. In Advances in Information Retrieval
137- 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March

20-23, 2016. pages 723–728. Springer, 2016.

• Georgios Balikas and Massih-Reza Amini. Twise at semeval-2016 task 4:

Twitter sentiment classification. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval@NAACL-HLT 2016, San Diego, CA,

USA, June 16-17, 2016, pages 85–91, 2016.

• Georgios Balikas, Massih-Reza Amini, and Marianne Clausel. On a topic

model for sentences. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, SIGIR 2016,

Pisa, Italy, July 17-21, 2016, pages 921–924, 2016.

• Georgios Balikas, Hesam Amoualian, Marianne Clausel, Éric Gaussier, and

Massih-Reza Amini. Modeling topic dependencies in semantically coher- ent

text spans with copulas. In Proceedings of the 26th International Conference
on Computational Linguistics, COLING 2016, December 11-16, 2016, Osaka,

Japan, pages 1767–1776, 2016.

• Georgios Balikas, Simon Moura, and Massih-Reza Amini. Multitask learn-

ing for fine-grained twitter sentiment analysis. In Proceedings of the 40th

iii



International ACM SIGIR conference on Research and Development in Informa-
tion Retrieval, SIGIR 2017, Tokyo, Japan, August 7-11, 2017, 2017.

In addition to the topics studied in this manuscript which are mentioned above,

during my thesis I worked on several other problems leading to the following pub-

lications:

• Hesam Amoualian, Wei Lu, Eric Gaussier, Georgios Balikas, Massih R Amini,

Marianne Clausel: Topical Coherence in LDA-based Models through Induced

Segmentation, Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics, Vancouver, Canada, 2017.

• Georgios Balikas: TwiSe at SemEval-2017 Task 4: Five-point Twitter Senti-

ment Classification and Quantification , In Proceedings of the 10th Interna-

tional Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver,

Canada, 2017.

• Georgios Balikas and Massih-Reza Amini: An empirical study on large scale

text classification with skip-gram embeddings, Neu-IR @ SIGIR 2016, Pisa,

Italy, 2016.

• Anil Goyal, Georgios Balikas, Prantapa Goswami, Massih-Reza Amini and

Eric Gaussier: Transfer Learning for IR Model Parameter Tuning, Conférence

Francophone sur l’Apprentissage Automatique (CAp), Lille, 2015.

• Georgios Balikas and Massih-Reza Amini: Learning language-independent

sentence representations for multi-lingual, multi-document summarization,

Conférence Francophone sur l’Apprentissage Automatique (CAp), Lille, 2015.

iv



Acknowledgements

This thesis is the result of efforts of a ten-year university student period.

During this endeavor is was supported by several people, that I would

like to deeply thank.

First, I would like to express my sincere gratitude to my advisor Prof.

Massih-Reza Amini. I am grateful for his support and advice. Our

discussions and brainstorming during all these years have deeply in-

fluenced me. I believe I have become not only a better researcher but

also a better person due to our collaboration. Without his support and

continuous encouragement several of the results presented in this the-

sis would not have been obtained.

I would also like to express my gratitude to the members of my Ph.D.

thesis committee, Prof. Gael Dias (University of Caen), Dr. Cyril Goutte

(National Research Council Canada), Prof. Patrick Gallinari (Univer-

sity of Pierre & Marie Curie/Paris 6), Prof. Laurent Besacier (University

of Grenoble-Alps) and Dr. Guillaume Vernat (Coffreo). I was honored

to have them in my defense committee. In particular, I would like to

thank my thesis reviewers, Prof. Gael Dias and Dr. Cyril Goutte for

the time they invested, their valuable feedback on my work and their

detailed comments in their reports.

For my graduate studies, I had the honor to be funded by Coffreo. First,

I would like to thank the two founders of the company, Emmanuel

Cudry and Dr. Guillaume Vernat, not only for trusting me with the role

but also for the discussions we had and the valuable lessons I learned

for leading a company. I would also like to thank everybody at Coffreo

for making my visits at Clermont Ferrand interesting! I would partic-

ularly like to thank Dr. Pierre-Antoine Papon, Karim Sayabou and Dr.

Guenaelle De Julis, for the long discussions and our collaboration dur-

ing these years.



I am especially grateful to Prof. Eric Gaussier for the various interac-

tions we had over the last three years. I would like to thank him for

being a great research collaborator and for suggesting me interesting

directions for my work.

I have been truly lucky to interact with many brilliant people at Univer-

sity of Grenoble Alps and Grenoble in general. Among them, a special

thanks go to my friend Dr. Ioannis Partalas for his encouragement and

advice during my thesis. I would also like to thank all the members of

the AMA team, current and past, as I learned a lot of things from them

and I shared many beautiful moments.

I would also like to deeply thank Anthie. Living with me, caring for

and supporting my choices for almost eight years now made me a better

person. Thank you for being patient and understanding all these years

tolerating my idiosyncrasies and habits.

Last but not least, I would like to thank from the depths of my heart my

family back in Greece: My parents Andreas and Olga and my brother

Stathis. Your continuous encouragement, patience, care and love are

giving me courage and confidence. Thank you for everything you did

and continue doing for me.

Georgios Balikas

Grenoble, Fall 2017

vi



Contents

1 Introduction 1
1.1 Thesis statement and overview of contributions . . . . . . . . . . . . 3

1.1.1 Extending Probabilistic Topic Models . . . . . . . . . . . . . 5

1.1.2 Word Embeddings and Text Mining Applications . . . . . . . 8

1.1.3 Quantification-based algorithmic tools . . . . . . . . . . . . . 9

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries for Probabilistic Topic Models 11
2.1 The Multinomial and Dirichlet Distributions . . . . . . . . . . . . . 13

2.1.1 The Multinomial Distribution . . . . . . . . . . . . . . . . . . 14

2.1.2 The Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Conjugacy between the Multinomial and Dirichlet distribu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 From the term-document co-occurrence matrix to probabilistic topic

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Probabilistic Latent Semantic Allocation . . . . . . . . . . . . 17

2.2.3 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Distributional Semantics . . . . . . . . . . . . . . . . . . . . . 22

2.3 Multilingual Topic Models . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Parallel and comparable corpora . . . . . . . . . . . . . . . . 23

2.3.2 Bilingual Latent Dirichlet Allocation . . . . . . . . . . . . . . 24

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Preliminaries for Neural Networks 27
3.1 Word Embeddings with shallow Neural Networks . . . . . . . . . . 28

3.1.1 The Skipgram Model . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 The Continuous Bag-of-Words Model . . . . . . . . . . . . . . 32

vii



3.2 Text Representations using deep neural networks . . . . . . . . . . . 33

3.3 Cross-lingual Word Embeddings . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Bilbowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Concept Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Incorporating Prior Knowledge of Text Structure to Topic Models 41
4.1 An overview of the relevant literature . . . . . . . . . . . . . . . . . . 43

4.2 The coherent text segments . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Incorporating text structure to topic models . . . . . . . . . . . . . . 46

4.3.1 segmentLDA: Integrating segment boundaries to LDA . . . . 46

4.3.2 Copulas and random variables (intermezzo) . . . . . . . . . . 49

4.3.3 copulaLDA: Integrating segment boundaries to LDA using

copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 The Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Extrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Extending Bilingual Topic Models 73
5.1 An overview of the relevant literature . . . . . . . . . . . . . . . . . . 76

5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 The bilingual LDA . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Incorporating text structure into bilingual topic models . . . 81

5.2.3 Extracting multilingual topics from comparable corpora . . . 84

5.2.4 Combining the two models . . . . . . . . . . . . . . . . . . . 86

5.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Extrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Applications of word embeddings to text mining 101
6.1 Polylingual text classification . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 The model for learning the polylingual embeddings . . . . . 103

6.1.2 The Experimental Evaluation . . . . . . . . . . . . . . . . . . 105

6.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Multitask Learning with Neural Networks . . . . . . . . . . . . . . . 109

viii



6.2.1 Multitask Learning for Sentiment Classification . . . . . . . . 111

6.2.2 The Experimental Framework . . . . . . . . . . . . . . . . . . 112

6.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Cross-lingual text retrieval . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1 A Wasserstein-alike distance for Cross-lingual Document Re-

trieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 The Experimental Framework . . . . . . . . . . . . . . . . . . 126

6.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Concluding Remarks 133
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137

A Efficient Model Selection for Regularized Classification by Exploiting
Unlabeled Data 157
A.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Accuracy and Macro-F1 Quantification Bounds . . . . . . . . . . . . 159

A.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



x



List of Figures

1.1 An overview of the contributions of the dissertation. . . . . . . . . . 6

2.1 Applying the Vector Space Model to a document collection. . . . . . 12

2.2 The graphical representation of LDA. . . . . . . . . . . . . . . . . . . 20

2.3 The graphical model of bilingual LDA. . . . . . . . . . . . . . . . . . 24

3.1 Word Embeddings as a Neural Network Layer. . . . . . . . . . . . . 29

3.2 The skipgram model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The continuous bag-of-words model. . . . . . . . . . . . . . . . . . . 31

3.4 An unrolled Recurrent Neural Network. . . . . . . . . . . . . . . . . 33

3.5 The Long Short-Term Memory Network. . . . . . . . . . . . . . . . . 34

4.1 The topic identified by LDA on a Wikipedia document. . . . . . . . 42

4.2 Shallow parsing of a sentence with the Stanford Parser. . . . . . . . . 45

4.3 The graphical model of segLDA. . . . . . . . . . . . . . . . . . . . . . 46

4.4 The probabilistic integral transform . . . . . . . . . . . . . . . . . . . 50

4.5 Samples from a Frank copula while varying λ. . . . . . . . . . . . . . 51

4.6 The copulaLDA generative model. . . . . . . . . . . . . . . . . . . . . 53

4.7 The effect of rejection sampling in the performance of copulaLDA . 59

4.8 The perplexity achieved by several topic models on English datasets. 62

5.1 Comparable Wikipedia documents in English and Portuguese. . . . 74

5.2 Graphical models of bilingual topics models. . . . . . . . . . . . . . 75

5.3 The perplexity achieved by several topic models on bilingual datasets. 94

6.1 The generation of polylingual embeddings with an autoencoder. . . 105

6.2 Evaluating the polylingual embeddings on document classification. 108

6.3 A bidirectional LSTM architecture for multitask learning. . . . . . . 113

6.4 F1 scores using the nbow+ representations. . . . . . . . . . . . . . . . 121

A.1 Model selection process for SVM for macro-averaged F-measure. . . 167

xi



xii



Chapter 1

Introduction

We live in an interconnected world where new information technologies

enable a fast flow of data and information. As a result of the ongoing

growth of the World Wide Web, whose omnipresence in our lives per-

sistently changes the way we make decisions and even behave, data are constantly

produced at massive volumes. In this era of big data, the access to large amounts

of data together with the ever-faster computing machines and data storage facili-

ties have created huge research opportunities. It is therefore, nowadays, possible

to study problems and extract valuable information at a scale and granularity that

are truly unprecedented.

Among the different types of the data being made available online, text is ar-

guably one of the most pervasive and persistent sources of information. Content

analysis of text, that in its broad sense may refer to methods for studying and

retrieving information from documents, has been traditionally achieved by close

reading and manually coding the retrieved information. However, the voluminous

amounts of data available today make it impossible for a single person or groups

of people to manually examine text resources of tremendous size. On the other

hand, being able to analyze and understand what is discussed online is a critical

task and successfully accomplishing it has a huge potential for several real-world

applications.

At the same time, the properties of text that is published online in the World

Wide Web continuously change. Recent statistics reported, for instance, that the

non-English Web content represents more than half of the information that is

available on the Internet.1 This entails that (i) in order to discover and exchange

1http://www.internetlivestats.com/internet-users/#byregion
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knowledge at world-wide scale one needs algorithms and models capable of mod-

eling and mining text beyond English, (ii) English may not be anymore the lingua
franca of the Web as the increasing multilingual content pushes users towards con-

suming content written in their native language(s).

But multilinguality is not the only challenge of today’s Web content. The media

that people use to express their opinions or publish content also evolve: other than

formal documents such as news articles, micro-blogging platforms like Twitter2

are extremely popular and have become ubiquitous today. Their omnipresence,

however, poses major algorithmic challenges due to the specificities of the content

published there. For instance, tweets, which are short messages of up to 140 char-

acters published on Twitter, pose several problems due to their style as symbols,

abbreviations, slung and creative language are heavily used. As such media have

largely democratized online content publishing and sharing, analyzing their data

is also of great importance.

The above observations motivate a set of requirements when developing mod-

ern systems in order to be able to cope with the vast amounts of available data.

These requirements, grouped by the particular characteristics of the data, can be

summarized as follows:

Rq. 1) Considering the data type i.e., text, as well as the fact that humans pro-

duce text in an ordered way following particular morpho-syntactic rules,

we need to be able to take advantage of the structure that is inherent in

text data. Such structure may be, for instance, the grouping of words in

thematically coherent text spans such as sentences or noun-phrases. More-

over, given the variability in the style of text, we need to be able to represent

it efficiently.

Rq. 2) Considering the large number of languages online, we need to be able to

represent text written in different languages using language independent

representations so that different tasks like prediction can be accomplished

across languages. Further, these representations should be able to take ad-

vantage of the large amounts of multilingual data, especially those that are

unlabeled and cheap to obtain.

Rq. 3) Considering the large amount of unlabeled data, one needs to be able to

use them in order to develop both more expressive and semantically rich

representations and better performing systems.
2http://www.twitter.com
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Text Mining It follows from the above that text mining, the interdisciplinary area

that the research of this dissertation belongs to, spans and borrows techniques

from the domains of machine learning, natural language processing, information

retrieval as well as data mining. The added requirement, imposed by the unprece-

dented availability of multilingual content, for efficient models that can digest and

even benefit from text written in multiple languages is central for the results of the

dissertation. Notably, any findings in this domain of (multilingual) text mining

have a great potential for improving the performance of applications that affect

our everyday lives significantly. Motivated by the above points, our driving force

is the importance of text mining techniques towards understanding large amounts

of text, possibly written in more that one languages, and providing efficient and

effective solutions to problems that are met when dealing with such data. To this

end, we propose models as well as algorithmic tools that address various chal-

lenges that arise in this fascinating research area.

1.1 Thesis statement and overview of contributions

This dissertation is organized in two parts and contributes models, tools and ob-

servations to problems that arise in the area of text mining with a focus on multi-
lingual text mining. We build upon effective models and algorithms that address

the three main requirements stated above (Rq. 1 - Rq. 3). In particular, the contri-

butions of the dissertation aim at:

i.) Proposing probabilistic topic models that handle one or more input languages.

The models incorporate prior knowledge of text structure in the form of

boundaries of thematically coherent text spans.

ii.) Exploiting the rich semantic properties of word embeddings, that are vector

representations of words that capture their semantic and syntactic proper-

ties. They can be used as another source of prior knowledge for (multilin-

gual) topic models or as compact text representations in order to improve the

performance achieved for various natural language processing tasks.

Distributional Hypothesis The shared idea that links the models of the disserta-

tion stems from an insight which was perhaps first formulated by Harris [77] who

suggested for linguistic items that “If A and B have almost identical environments

. . . we say that they are synonyms.” Another, perhaps more famous, statement

3



of this principle was formulated from Firth [58]: “You shall know a word by the

company it keeps”. These statements describe the distributional hypothesis, that

suggests that linguistic items with similar distributions have similar meanings.

Distributional methods build on the distributional hypothesis and propose ways

to compute the meaning of a linguistic item using the distribution of words around

it. There is a plethora of computational models implementing distributional meth-

ods. Both the topic models used for (i.) and the word embedding models used

for (ii.) belong in this family as they use word co-occurrence statistics to learn

efficient word and document representations. Their difference lies on how they

model co-occurrence as well as on the computational means they use to induce the

representations. Topic models use a probabilistic framework and aim at modeling

an underlying generative story which dictates a set of conditional independences

between random variables which enables Markov Chain Monte Carlo inference al-

gorithms for inference. Meanwhile, popular models for learning embeddings rely

on a supervised prediction task. We will elaborate more on the similarities and

differences of those models and we will evaluate the performance of their exten-

sions at different tasks either when the documents of a collection are written in a

single or more languages.

The dissertation contributions regarding point (i.) constitute the first part of

the thesis. We utilize linguistic tools like shallow parsers and statistical tools like

copulas to extend probabilistic topics models by incorporating parts of text struc-

ture. In particular, for the former point we show how to identify thematically

coherent groups of words using either linguistically motivated tools or statisti-

cally motivated approaches. This results in a hierarchical document represen-

tation where a document is decomposed as a set of coherent segments; further

each segment is a set of words. In both cases, by taking advantage of observations

concerning which words often co-occur, we manage to better model and uncover

the topics discussed in a collection. Such knowledge can be then used within a

plethora of applications including text classification, document retrieval as well

as collection exploration and visualization.

The dissertation contributions regarding point (ii.) constitute the second part

of the thesis. We propose models and algorithms that utilize the expressiveness

of word embeddings for the benefit of information retrieval and natural language

processing applications. We argue that several applications can benefit from the

ability of embeddings to capture the semantics of words and we demonstrate how
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this can be accomplished for the tasks of text classification of short and long doc-

uments, polylingual text classification where one has access to translations of a

document and cross-lingual document retrieval.

A third, shorter part of the work performed during the thesis is put in Ap-

pendix A. It details algorithmic tools for fast model selection for regularized clas-

sification by exploiting unlabeled data. While the main thesis is devoted to models

built on the distributional hypothesis, that concerns the word co-occurrence in the

document level, this last part of work models properties in the collection level. In

particular, we utilize the distribution of document categories within a collection

and unlabeled data that are usually cheap to obtain to accelerate model selection

and hyperparameter tuning for classification models that use regularization like

Support Vector Machines. To this end, we observe that the assumption of identi-

cally and independently distributed documents (i.i.d.) between the training and

the test parts of a collection, which is common in several document classification

settings, may be used to accelerate model selection. Being able to estimate the

distribution of categories in unseen documents, motivates learning theory bounds

that, in turn, accelerate the process of hyperparameter tuning. Therefore, the work

explores how the distribution of categories on unlabeled data can be approximated

and evaluates the proposed bounds for model selection.

Next, we provide an overview of the contributions of the dissertation following

the above points. Meanwhile, Figure 1.1 provides an overview of the thesis.

1.1.1 Extending Probabilistic Topic Models

Incorporating text structure to probabilistic topics models. Given a document
segmentation denoting the partition of a document to coherent text spans, how can
probabilistic topic models be extended to incorporate that knowledge?

The exchangeability assumption in topic models like Latent Dirichlet Allocation

(LDA) often results in inferring inconsistent topics for the words of text spans like

noun-phrases, which are generally expected to be topically coherent. We propose

segmentLDA and copulaLDA, two novel topic models that extend LDA by integrat-

ing part of the text structure and relax the conditional independence assumption

between the word-specific latent topics given the per-document topic distribu-

tions. The novel models assume that the words of text spans like noun-phrases

are topically bound. The former model (segmentLDA) forces all words within a

segment to be assigned to the same topic and the binding between topics within
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Figure 1.1: An overview of the contributions of the dissertation.
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segments is maximal as all word specific topics are equal. The latter (copulaLDA)

uses copulas when assigning topics to the words of sentences and is therefore more

flexible as the strength of the bound between the topics is controlled by the free pa-

rameters of the copulas. To demonstrate the efficiency of the novel topic models we

conduct experiments on several text datasets consisting of documents in English.

We assess the quality of the produced topics using the normalized point-wise mu-

tual information scores, the generalization performance of the models measured

by perplexity and the learned document representations as inputs to a document

classification task. For this purpose we compare for each topic model a variety of

segments that can be considered to be coherent. Our analysis reveals the bene-

fits of integrating prior knowledge of text structure in topic models as well as the

advantages of having flexible models and segments of various sizes to accomplish

that. (Chapter 4).

Bilingual topics models for comparable corpora. Given pairs of documents
that discuss the same themes to some extend, how can we extend bilingual topic models
to better adapt them for such inputs?

Probabilistic topic models like Latent Dirichlet Allocation (LDA) have been previ-

ously extended to the bilingual setting. A fundamental modeling assumption in

several of these extensions requires the input documents to be exact translations

between them. However, this assumption is strong for comparable corpora, which

are, in turn, the most commonly available or easy to obtain. In this chapter we

relax this assumption by proposing a binding mechanism between the distribu-

tions of the paired documents. The strength of the bound depends on each pair’s

semantic similarity, that we propose to estimate using bilingual word embeddings

learned with shallow Neural Networks. We evaluate the proposed method by ex-

tending two topic models: a bilingual adaptation of LDA that assumes bag-of-

words inputs and a model that naturally extends those proposed in Chapter 4 in

order to incorporate part of the text structure in the form of boundaries of seman-

tically coherent segments. To demonstrate the efficiency of the novel, bilingual

topic models we conduct experiments on four bilingual, comparable corpora of

English documents with French, German, Italian and Portuguese documents. The

obtained results demonstrate the efficiency of our approach in terms of topical

coherence measured by the normalized point-wise mutual information, general-

ization performance measured by perplexity and accuracy in a cross-lingual doc-

ument retrieval task for each of the language pairs (Chapter 5).
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1.1.2 Word Embeddings and Text Mining Applications

Polylingual Text Classification How can translations of a document be used to im-
prove the performance in the task of document classification?

We propose a polylingual text embedding strategy, that learns a language indepen-

dent representation of texts using Neural Networks. We study the effects of bilin-

gual representation learning for text classification and we empirically show that

the learned representations achieve better classification performance compared to

traditional bag-of-words and other monolingual distributed representations. Our

results also demonstrate that the performance gains are more significant in the

interesting case where only few labeled examples are available for training the

classifiers (Chapter 6.1).

Multitask Learning for Fine-Grained Twitter Sentiment Analysis How can
we improve the performance of short text sentiment classification using information
from correlated tasks? How deep neural networks perform in the task?

Traditional sentiment analysis approaches tackle problems like ternary (3-category)

and fine-grained (5-category) sentiment classification by learning the tasks sepa-

rately. We argue that such classification tasks are correlated and we propose a

multitask approach based on a recurrent neural network that benefits by jointly

learning them. Our study demonstrates the potential of multitask models on this

type of problems and improves the state-of-the-art results in the fine-grained sen-

timent classification problem (Chapter 6.2).

Cross-lingual Document Retrieval Using Word Embeddings How can we use
the tools developed for the transportation problem to calculate the distance of documents
written in different language and perform cross-lingual document retrieval?

We extend Word Mover’s Distance, a recently proposed distance function between

documents for the task of cross-lingual document retrieval (CLDR). We show that

the metric can naturally incorporate various term weighting schemes and that

it benefits from high quality multilingual word embeddings. Using word em-

beddings that incorporate information from a Knowledge Base we show that our

method outperforms state-of-the-art baselines on six CLDR problems by a large

margin in terms of evaluation measures like Mean Reciprocal Rank and P@1 (Chap-

ter 6.3).
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1.1.3 Quantification-based algorithmic tools

Quantification-Based Bounds for Supervised Model Selection Assuming access
to identically and independently distributed data, how can we accelerate the model se-
lection process of regularized classification systems using quantification?

Hyper-parameter tuning is a resource-intensive task when optimizing classifica-

tion models. The commonly used k-fold cross validation can become intractable

in the large scale settings as a classifier should learn billions of parameters. At the

same time, in real-world, one often encounters multiclass classification scenarios

where only a few labeled examples are available; model selection approaches often

offer little improvement in such cases and the default values of learners are used.

We propose bounds for classification on accuracy and macro measures (precision,

recall, f1 measure) that motivate efficient schemes for model selection and can ben-

efit from the existence of unlabeled data. We demonstrate the advantages of those

schemes by comparing them with k-fold cross validation and hold-out estimation

in the setting of large scale classification (Appendix A).

1.2 Outline of the thesis

The rest of the dissertation is organized as follows: The next two chapters present

the basic concepts and background material that the author believes are essential

for the topics discussed in the thesis. In particular,

• Chapter 2 is a concise introduction to probabilistic topics models, and

• Chapter 3 presents basic concepts used for representation learning with neu-

ral networks.

Then, the next two chapters are devoted to our work and contributions concerning

topic models:

• Chapter 4 presents the contributions when integrating parts of text structure

to monolingual topic models, while

• Chapter 5 presents an adaptation of bilingual topic models for comparable

corpora.

The remaining of the contributions concern the use of word embeddings for text

mining tasks:
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• Chapter 6 presents work concerning the improvements one may achieve us-

ing word embeddings for polylingual classification, multitask classification

and cross-lingual document retrieval.

Having presented the main thesis contributions, in Chapter 7, we offer our con-

cluding remarks about the topics that are discussed in this thesis and we describe

promising future research directions.

Lastly, Appendix A which is self-contained, introduces the task of quantifica-

tion as well as an algorithmic tool where quantification-based classification bounds

are derived whose application accelerates model selection.
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Chapter 2

Preliminaries for Probabilistic Topic
Models

Document collections are on the basis of every text mining application.

A collection C is a set of documents: C = {d1, . . . ,dM} where each docu-

ment is a set of ordered words di = (w1, . . . ,wN ). As the amount of data

available today is unprecedented, a fundamental challenge is its analysis, espe-

cially when those data are in the form of unstructured text like documents. The

challenge therefore decouples in being able to organize large amounts of text data

without requiring manual labor, as the later is expensive and scales poorly for such

problems. To this end, efficient algorithms that can describe the themes discussed

in documents without any type of annotations are important.

Given a document collection, the first problem that naturally arises is how one

can describe it in a vectorized format that would be suitable for further calcula-

tions. The vector space model [156] (VSM), is an algebraic model for representing

text as a set of vectors of identifiers. The identifiers aim at modeling the occurrence

(or absence) of terms in a given document. According to the VSM, these identifiers

are the indexes of the terms of the vocabulary of the collection and their values are

each term’s frequency.

To better describe the application of VSM to documents and collections, Figure

2.1 shows an example. The text excerpt is vectorized such that the non-zero ele-

ments express the amount of information conveyed by the frequency of the vocab-

ulary words within the excerpt. The first element of the vector, for example, mod-

els the word “information” and is populated with 3 as “information” occurs thrice

in the excerpt. Moving from the document level to the collection level (bottom

part of Fig. 2.1) the vectorization process is applied to each of the N documents

of the collection. Therefore, instead of a single vector, the output of the collection
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Information retrieval is the activ-
ity of obtaining information re-
sources relevant to an information
need...
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Figure 2.1: The Vector Space Model for a document (above) and a collection of doc-
uments (below). A document is transformed to a vector with non-zero indexes cor-
responding to the frequency of the words associated to these indexes. Repeating
the process for each document of a collection creates the term-document matrix.

vectorization process is a matrix, namely the term-document co-occurrence matrix
that comprises N vectors.

Notice how the bag-of-words assumption is inherent to the vectorization pro-

cess: the order of the words within documents is ignored. In the example of Figure

2.1, independently of the word order the process would result in vectors whose

non-zero elements would always be the same. Also, the produced vectors and the

term-document co-occurrence matrix are very sparse. The vector dimensionality

equals the size of the vocabulary (V ) of the collection so that the occurrences can be

modeled. The sparsity stems from the fact that only few unique words compared

to V appear is each document.

The vector space model received a lot of attention partially due to the perfor-

mance improvements on a number of applications produced on its basis. Despite
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its success there are several limitations. Two of them, that motivate the contribu-

tions of this manuscript, are:

i. The inability of the model to capture the semantics of the words. As each word

is represented by an index in the resulting vector, the semantic relatedness of

the words is not captured. Furthermore, the properties of synonymous or

polysemous words can not be modeled.

ii. The exchangeability assumption that results in the bag-of-words representa-

tion. As shown above the order of words as well as the way they are grouped in

phrases, sentences etc. is lost during the vectorization step and the resulting

vectors are of big dimensionality.

As shown above, the resulting matrix that models the occurrence of words in the

documents of a collection can be big, noisy and sparse. Given this term-document

matrix, one may feel that there should be some structure or pattern in the way that

words occur in documents or co-occur with other words. The models presented in

this chapter aim at uncovering these patterns. The outputs of the approaches to be

presented can be used to estimate semantic similarities of text spans ranging from

words to larger text passages.

In the rest, we briefly review basic concepts of topic modeling which will serve

as a fundamental theoretical background for the remainder of this thesis. It illus-

trates how topic models can be seen as computational models that implement the

distributional hypothesis. The concepts to be presented are not covered in their

entirety as the purpose of the demonstration is to be used as a concise overview

which is accompanied by references for further reading. Furthermore, the chap-

ter focuses only on introductory material that the author considers necessary for a

deeper understanding of the rest of the text.

2.1 The Multinomial and Dirichlet Distributions

We begin with a short overview of probability distributions that will be used when

developing the topic models. Along with the definitions of these distributions we

introduce the notation that will be used in the rest of the manuscript.
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2.1.1 The Multinomial Distribution

One of the important distributions that is extensively used for topic modeling is

the multinomial distribution [8]. The multinomial distribution models the out-

come of a k-sided dice when rolled n times. It gives the probability of any par-

ticular combination of numbers of successes for the various categories, when n

independent trials are performed. The outcome of a trial is a success for exactly

one of the k categories. If pi is the probability of the outcome i, it is required for

each trial that
k∑
i=1
pi = 1.

The multinomial distribution generalizes other distributions in various ways.

In particular:

• If for the number of trials one has n = 1 and for the number of outcomes has

k = 2, the multinomial distribution is the Bernoulli distribution.

• If n = 1 and k > 2 it is the categorical distribution, which is equivalent to the

result of rolling a k-sided dice once.

• If n > 1 and k = 2 it is equivalent to the binomial distribution.

In terms of notation, assuming k outcomes and n trials, Mult(n,p), where p =

(p1, . . . ,pk) denotes the outcome of the multinomial experiment with probabilities

p. From the above, letting Cat(p) to be the result of a draw from a categorical

distribution, it follows that:

Mult(1,p) = Cat(p).

The probability density function of a multinomial distribution parametrized

by p that estimates the probability of observing the i-th event xi times, when we

have n events in total is:

p(x1,x2, . . . ,xk) =
n!

x1 · x2 · · ·xk
px1

1 · · ·p
xk
k , with

k∑
i=1

xi = n.

2.1.2 The Dirichlet Distribution

The Dirichlet distribution [8], denoted Dir(α) is a family of multivariate contin-

uous probability distributions. It is a probability distribution over the space of

multinomial distributions, i.e., to generate data X from a Dirichlet distribution

with parameters α = α1, . . . ,αk you first draw a p ∼ Dir(α), and then draw the
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data X ∼ Mult(n,p). Therefore, the Dirichlet distribution is a distribution over

distributions controlled by α. Compared to the standard multinomial draws, the

Dirichlet distribution introduces an extra layer with parameters α that controls

the probabilities p according to which the data X are generated. The probability

density function of the Dirichlet distribution is

p(x1, . . . ,xk |α) =
1

B(α)

k∏
i=1

xai−1
i , where x1, . . . ,xk > 1,

k∑
i=1

xi = 1,

where B(α) is the multivariate Beta function that is equivalent to:

B(α) =
n!
k∏
i=1
αi !

, where n =
k∑
i=1

αi .

2.1.3 Conjugacy between the Multinomial and Dirichlet distri-
butions

The Dirichlet distribution is the conjugate prior of the multinomial distribution.

This means that if the prior distribution of the parameters p of a multinomial fol-

low is Dirichlet, then the posterior distribution is also a Dirichlet. This has the ben-

efit of making the posterior distribution easy to calculate, and the Multinomial-

Dirichlet conjugates are commonly used for topic modeling. To highlight this, let

(p1, . . . ,pk) be the multinomial parameters and assume that they are sampled from:

(p1, . . . ,pk) ∼Dir(α1, . . . ,αk),

prior to having access to data observations. After observing dataX = (x1, . . . ,xk), for

these (p1, . . . ,pk) where xi denotes how many times event i occurred, the parameters

p for our beliefs may be updated as:

(p1, . . . ,pk)|X ∼Dir(α1 + x1, . . . ,αk + xk).

This signifies that the data observations update our beliefs and this is modeled

having the data to be pseudo counts added to the Dirichlet parameters α.

Another important comment concerns the role of the α parameters in the sam-

ples of the Dirichlet. The smaller the values of α, the sparser the obtained sam-

ple is. Therefore, in the case of the Multinomial-Dirichlet example demonstrated

above, if most of the elements of α are αi � 1, then the sampled values (p1, . . . ,pk)

will be sparse, which means that only a few events will have high probability pi
and the rest of them very low. This property is important for topic models, as this

is how sparsity is imposed.
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2.2 From the term-document co-occurrence matrix to
probabilistic topic models

As we have previously discussed, the term-document co-occurrence matrix is an

approach to represent the occurrence of words in the documents of a collection.

We have argued that this matrix can be big and noisy and one may expect that some

patterns occur in it. In this section we introduce approaches previously proposed

to reveal parts of the structure of this matrix whose goal is to model the meaning

and the semantics of words as well as the thematical content of the documents that

these words occur to.

One may identify two families of approaches. The models of the first try to

decompose a word-context matrix by relying on matrix decomposition methods.

Popular models of this family include Latent Semantic Analysis (LSA) [101] and

the Hyperspace Analogue to Language [117]. The second family of methods was

mainly motivated by the success of models like LSA. These models alleviate some

of the limitations of LSA and also provide more interpretable outputs. To this end,

they rely more on probabilistic groundings and utilize latent variables to model

the latent themes that are assumed to generate the documents of a corpus. Popular

models of this family are the Probabilistic Latent Semantic Analysis (pLSA) [84]

and the Latent Dirichlet Allocation (LDA) [23]. They take as input the documents

of a collection and return a number of topics that can be used to semantically

describe their content.

The tools used by the models of the first family are inspired by Linear Algebra

or geometry, while the second family of probabilistic models employs Bayesian ap-

proaches. Both families of approaches allow for calculating the similarity between

terms: spatial models compare terms using distance metrics in a high-dimensional

space, while probabilistic models measure similarity between terms according to

the degree to which they share the same topic distributions [37]. In the rest of the

section, we briefly review LSA (Section 2.2.1) and pLSA (Section 2.2.2) and then

describe the Latent Dirichlet Allocation (Section 2.2.3) in more detail.

2.2.1 Latent Semantic Analysis

Latent Semantic Analysis (also known as Latent Semantic Indexing) [101] is an

algebraic method used to analyze the term-document co-occurrence matrix. For

LSA the context of word is the document it appears (the term-document matrix is
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used), while this varies for other methods: for the Hyperspace Analogue to Lan-

guage the context is the surrounding words and instead of the term-document

matrix a term-term matrix is used whose frequencies are calculated using a slid-

ing window.

The goal of LSA is to find a low-rank approximation of the term-document co-

occurrence matrix which results in the combination of some of the dimensions that

may depend on several terms. Given a collection C = {d1, . . . ,dM} whose vocabu-

lary is V = {w1, . . . ,wN }, the term-document matrix is X ∈ RM×N and xi,j denotes

the number of the occurrences of word wj in di . X can also be transformed as a re-

sult of the application of a term-weighting scheme like the term frequency-inverse

document frequency (tf-idf) scheme [164]. As rows of the matrix represent docu-

ments, the dot product between them calculates document similarity i.e., the more

common terms two documents contain the more similar they are. Further, column

product represents word similarity i.e., terms that occur in the same documents

should be similar.

The fundamental part for LSA is the application of the truncated SVD algo-

rithm that approximates X with the product of three other matrices:

X ≈UtΣtV T
t , (2.1)

where t denotes the number of the largest singular values that are kept. For more

details on SVD we refer the interested reader a Linear Algebra textbook (e.g.,

[167]). Due to the decomposition that results in the combination of some dimen-

sions, in the reduced dimensional space a term can be calculated to be similar with

others if they have occurred in similar contexts, regardless of whether those con-

texts are in the same documents. One drawback of LSI is that it lacks in terms of

a solid probabilistic foundation and it may be difficult to interpret the resulting

word representations [23].

2.2.2 Probabilistic Latent Semantic Allocation

Probabilistic Latent Semantic Analysis (pLSA: also known as probabilistic latent

semantic indexing pLSI) [84] is another model that can be used to analyze the

term-document co-occurrence matrix. The model has evolved from LSA and in-

stead of relying on a matrix decomposition approach like SVD it is based on a

mixture decomposition. Latent topics are assumed to have generated the collec-

tion’s documents and the goal is to identify them. PLSA can be considered as a
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generative model, although strictly speaking it is not one [23] due to its inability

to model unseen documents.

The model assumes that topics are distributions over the words of the vocab-

ulary of a collection and are modeled as multinomials. This means that given a

particular topic k, identified by the value of the random variable z, a word w has

conditional probability of occurrence such as:

p(w|z = k) = φk,w and
V∑
w=1

φk,w = 1.

For instance, word like “ball” and “athlete” would have higher probability

given a topic “Sports” than given a topic “Science”.

Further, the model assumes that each document is associated with a distribu-

tion over the topics of a collection. For the conditional probability of a topic k in a

document d one has:

p(z = k|d) = θd,k and
K∑
k=1

θd,k = 1.

The generative process for the documents of the collection is then:

• For each document d:

– For each word position i within d:

* Choose a topic z ∼Mult(1,θd)

* Choose a word w ∼Mult(1,φz)

Then, the probability of each occurrence of a word in a document, that is the

probability of a non-zero element of the term-document matrix, is modeled as a

mixture of conditionally independent multinomial distributions:

p(w,d) =
K∑
z=1

p(z)p(d|z)p(w|z) = p(d)
∑
k

p(z|d)p(w|z), (2.2)

where k ∈ [1,K] is the topic identifier and z the random variable that denotes the

topic. These are two, equivalent formulations of the joint probability p(w,d) of

pLSA. Applying the Bayes rule reveals their equivalence [85]:

p(w,d) = p(d)
K∑
z=1

p(z|d)p(w|z) = p(d)
K∑
z=1

p(d|z)p(z)
p(d)

p(w|z) =
K∑
z=1

p(z)p(d|z)p(w|z).
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During inference one needs to estimate the parameters of the model, that is θd,k
and φk,w, which can be achieved by applying and an expectation-maximization al-

gorithm [84, 85]. One pitfall is the lack of parameters for p(d), so we don’t know

how to assign probability to a new document. Another is that the number of pa-

rameters for p(z|d) grows linearly with the number of documents, which may lead

to overfitting. To overcome this limitations, Latent Dirichlet Allocation that is pre-

sented in the next section extend pLSA by proposing a complete generative story.

2.2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is probably the most popular and representative

topic model today. It was first proposed by Blei et al. [23], and its introduction has

motivated a large part of research work as well as applications in several domains

such as text classification systems [23], image processing [36], computational biol-

ogy analyses [110] and countless others.

LDA offers a robust way for identifying the topics and builds on a principled

set of assumptions that enable efficient inference algorithms compared to pLSA.

Significant research attempts have been devoted to relaxing the assumption that

govern LDA.

The generative story of LDA consists of the following steps:

• for each topic k ∈ [1,K]: sample per-word topic distributions φk ∼Dir(β)

• for the document di , i ∈ [1,M]:

– sample the per-document topic distribution θi ∼Dir(α)

– for the word position n of di , n ∈ [1,Ni]

* Sample the topic z of the word: zi,n ∼Mult(1,θi)

* Sample the term for the word position: wi,n ∼Mult(1,φzi,n)

The generative story of LDA is a process that results in the terms of corpus wi,n
partitioned into documents di . The number of the topics K as well as α,β : α ∈
R
K ,β ∈ RV that are priors of the Dirichlet per-document and per-words distribu-

tions are required for the generative process. First, the per-word topic distributions

φk are sampled for the whole corpus. To achieve that, for each document di a topic

proportion θi is sampled, and from this topic proportion the document terms are

emitted: for each word position a topic zi,n is sampled which denotes the topic that
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Figure 2.2: The graphical representation of LDA.

will generate the word and, finally, the word is drawn from that topics per-word

distribution φzi,n .

Complementary to the generative process described above, Figure 2.2 depicts

the graphical model of LDA. The plate D denotes the documents of a collection.

For each document the topic mixture θ is sampled from Dir(α). Then, for each

word position (plate N ) as topic z is sampled. Given the topic z and the per-word

topic distributions φ the terms of the document w are sampled. In the figure, the

node denoting the terms is gray because the words of the documents are observed.

Due to the fact that in reality we observe the documents and, therefore, we know

their size in words, in the generative story we omitted the step where the size of the

document is sampled. In some resources, one may find an additional step where

the document size Ni is sampled, usually from a Poisson distribution. However,

this choice does not affect the inference steps and can be safely omitted.1

We further elaborate here on our comment above that LDA is a mixture model.

Mixture models use a convex combination of some base distributions in order to

model the observations. A convex combination refers to a weighted sum over some

base observations, whose sum of weighs equals to one. Due to the probabilistic

nature of LDA and its flexibility to assign words of a document to different topics,

for the topic proportions of a document one has:

K∑
k=1

p(z = k) =
K∑
k=1

θk = 1. (2.3)

Further, for the per-word topic distributions that model the probability of a word

given a topic:
K∑
k=1

p(w|z = k) =
K∑
k=1

φzk = 1. (2.4)

As documents are mixture of topics (Eq. (2.3)) and topics themselves are mixtures

of word probabilities (Eq. (2.4)) LDA is also referred to as an admixture model.

Admixture denotes mixtures whose basic components are mixtures themselves.

1In the rest of the dissertation we omit the steps when sizes of documents or other sub-document
text spans are sampled, provided they are observed during inference.
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Inference While the generative story and the graphical representation of LDA

describe an iterative process that is assumed to have generated a document collec-

tion, inference tries to achieve the opposite. Instead of generating the corpus, an

inference strategy aims at discovering LDA’s parameters when observing the words

of a corpus. The parameters of the model are the per-document topic distributions

(θi) and the per-word topic distributions (φ). Estimating those is equivalent to

uncovering the latent themes (topics) of a collection. In particular, given φ one

may identify the words with the highest probability for a topic while θi is a vector

representation of di in the space of the topics. As a result, documents with similar

topic distributions are expected to be semantically similar.

The two, most popular inference strategies are variational inference [23] and

collapsed Gibbs sampling [73]. We review the details of the collapsed Gibbs sam-

pling approach as it will be further used for inference of the LDA-extensions that

will be proposed in the next chapters. Gibbs sampling algorithms obtain posterior

samples by sweeping through each block of variables and sampling from their con-

ditional, while the remaining blocks are fixed. In practice, for LDA the algorithm

initializes randomly the topics of words. Then, during the Gibbs iterations and

until convergence, it samples topics for the words occurring within documents as

Multinomial draws. The probabilities of the Multinomial draw for sampling the

topic of a word position i where word t is observed are given by [78, 73]:

p(zi = k|z¬i ,w) ∝
Ψ

(t)
k,¬i + βt

V∑
t=1

Ψ
(t)
k,¬i + βt

(Ω(k)
m,¬i +αk) (2.5)

where “¬i” in a subscript of a count variable signifies the exclusion of the counts

due to the word position i and, βt,αk are the t-th and k-th coordinate of β ∈ RV

and α ∈ R
K respectively. Ψ and Ω are count variables, whose content is shown

in Table 2.1 that summarizes the notation used for LDA. The Gibbs sampling al-

gorithm is then an iterative process over the words of a collection C, where Eq.

(2.5) is applied and a topic for each word is sampled until convergence. Although

checking convergence for Markov Chain Monte Carlo approaches is a field of re-

search (e.g., [113]), for topic models one may use as criteria how well semantically

similar words of documents are clustered. From the count matrices Ψ and Ω one

may yield the per-word and per-document topic distributions by normalizing their

rows.
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Symbol Description

K number of topics
V The size of the vocabulary
α concentration hyper-parameter of per-document topic distribution prior
β concentration hyper-parameter of per-word topic distribution prior
k topic variable placeholder, k ∈ [1,K]
i document variable placeholder, i ∈ [1,D]
θi topic distribution of the i-th document
φ per word topic distribution
Ψ Counter variable: per topic word assignments, Ψ ∈RV×K
Ω Counter variable: per document word assignments, Ω ∈RD×K

Table 2.1: Notation used for the development of Latent Dirichlet Allocation.

Inference on unseen documents As LDA has a complete generative story, one

may identify the topic distributions of unseen (held-out) documents by perform-

ing the Gibbs sampling inference process on those documents. In this case, for the

Ψ counters the values that were observed during training are used the model is

queried. Typically very few iterations (<10) are needed for the topic distributions

of the unseen documents to be inferred [78].

2.2.4 Distributional Semantics

The models presented in the previous sections are popular approaches used to

represent the meaning of words or text spans. These methods, however, provide

only a quantitative estimate of the semantic similarity (or meaning) between terms

that is estimated by operations that quantify vector similarities. This is to differ-

entiate them from other resources like ontologies or controlled vocabularies that

have been extensively used to represent meaning or specific types of relationships,

which can not be easily achieved by using the outcome of topic models.

Topic models like pLSA or LDA manage to determine the meanings (or seman-

tics) of terms within a collection empirically from the way in which these terms

are distributed across the text. From these distributional statistics, it is possible

to obtain meaningful estimates of the semantic similarity between terms in an

unannotated corpus of text without human intervention. This is why they can be

seen as models that implement the distributional hypothesis. Being unsupervised

and easily applicable to unannotated text as well as computationally efficient, is a

strong advantage of these methods.
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2.3 Multilingual Topic Models

As more and more multilingual content is becoming available online, there is a

pressing need for developing models that can cope with text data written in dif-

ferent languages. Topic models like LDA manage to uncover the latent topics of a

corpus and have been used to numerous applications. Their success has motivated

research that resulted in bilingual and multilingual topic models [127, 178]. These

are models that extend the concept of probabilistic topic models in the case where

documents are written in more than a single language. The goal is not only to

learn consistent topics for each language, but also to learn topics that are aligned

across the input languages. Before providing an overview of these models, we first

describe their inputs and discuss the concept of parallel and comparable corpora.

2.3.1 Parallel and comparable corpora

The section provides some basic definitions about the properties of multilingual

corpora that are important for the rest of the presentation.

Definition 1 A comparable corpus in two or more languages `1, `2, . . . is a set of cor-

responding text collections C`1 ,C`2 , . . .. Each collection consists of documents such

that C`1 = {d`1
1 ,d

`1
2 , . . . ,d

`1
N`1
}, C`2 = {d`2

1 ,d
`2
2 , . . . ,d

`2
N`2
}, . . . that discuss similar topics.

It is not required for the documents of C`1 ,C`2 , . . . to have one-to-one explicit align-

ments, that is the content of d`1
1 to be thematically comparable to the content of

d`2
1 etc.. Therefore, it can also be N`1

,N`2
.

A characteristic example of a comparable corpus is the set of documents com-

prising the English and the French Wikipedia. The number of entries for the two

languages (or any other two or more languages) varies. It is not necessary for an

entry in English to have a counterpart entry in French and vice-versa. However,

concerning the themes (topics) underlying the collection, one can safely assume

though that at least, to some extent, the English and the French documents cover

similar topics like Arts, Science, Geography, . . . due to the nature of Wikipedia.

Definition 2 A comparable corpus with explicit document alignments is a comparable

corpus in two or more languages `1, . . . , `k , where N`1
= · · · = N`k . Further, the

documents have explicit thematic alignments, that the contents of d`1
i , . . . ,d

`k
i are

thematically comparable.

A comparable corpus with explicit document alignments is a special case of a

comparable corpus that requires topical alignments between documents written
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Figure 2.3: The graphical model of bilingual LDA.

in different languages. In the above-mentioned example of Wikipedia articles, one

may obtain a comparable corpus with explicit document alignments by only keep-

ing entries that have a counterpart entries in the rest of the languages. Assuming

an entry about “Dog”, there must be an entry about “Chien” (French for dog) and

so forth.

Definition 3 A parallel corpus is a comparable corpus in two or more languages

`1, `2, . . . . The documents have explicit thematic alignments, and the content of d`1
i

is identical to the content of d`2
i , . . . .

The most natural way to build or obtain a parallel corpus is by translating the

documents of a language `1 to one or more languages `2, . . . Parallel corpora are the

most costly to develop as they require either human translations or high quality

automatic translation systems. Notably, parallel corpora are very important for

different types of applications like machine translation [96], multilingual topic

models [178] and plenty others.

2.3.2 Bilingual Latent Dirichlet Allocation

Following the success of topic models like LDA, whose application on monolin-

gual data has enabled various types of applications, topic models for multilingual

content were proposed. Bilingual LDA2 (BiLDA: Figure 2.3) is a direct extension of

LDA in the bilingual setting. The input collection is assumed to be either a parallel

[196] or a comparable one [137, 127, 44, 149]. Its generative story is as follows:

2Also commonly referred to as multilingual LDA depending on the number of the input lan-
guages
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• for each topic k ∈ [1,K]: φ`1
k ∼Dir(β), φ`2

k ∼Dir(β)

• for each document pair di :

– sample θi ∼Dir(α)

– for each language ` ∈ {`1, `2}

* for each of the N `
i words:

· sample z ∼Mult(1,θi)

· sample w ∼Mult(1,φ`z)

It can be seen from the generative story that BiLDA assumes that the documents

of an aligned pair di = (d`1
i ,d

`2
i ) have identical topic distributions as there is a

single, shared θi topic distribution per pair. Also, as the model is a direct extension

of LDA assumes the documents to be a bag-of-words.

The collapsed Gibbs sampling updates [178] for the topic of word j of document

di is ∀` ∈ {`1, `2}:

p
(
z`1
ij = zk |z

`1
¬ij ,z

`2 ,w`,w`2 ,α,β,
)
∝

Ψ
`1
k,w,¬ij + β

Ψ
`1
k,·,¬ij +V`β

(Ωi,k,¬ij +α).

Notice that there are two counters, Ψ `1 , and Ψ `2 used to model the per-word

topic distributions. Each hold the counts for the respective language. On the other

hand, since the documents are assumed to have a shared topic distribution, there

is a single Ω counter variable to model the per-document topic distribution. Fur-

ther, the model handles the documents written in the different input languages

symmetrically and, therefore, its extension to more than two languages is straight-

forward. For inference using the Gibbs sampling iterative method as well as for

deriving topic distributions for unseen documents, the same process with that of

LDA can be applied.

2.4 Summary

The chapter provided a short overview of basic tools and topic models that will

be extended in the remaining of this manuscript. We have described the distribu-

tional hypothesis which is behind very recent models that will be used later in the

thesis for several text mining applications. We also introduced and discussed the

Multinomial and Dirichlet distributions that are central for several topic models as
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prior and posterior distributions. Following that, we provided a brief introduction

to some of the most representative Bayesian topic models: we begun with LDA and

pLSA before detailing LDA as well as its multilingual extension BiLDA.
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Chapter 3

Preliminaries for Neural Networks

Our presentation of topic models like pLSA and LDA as well as their pre-

decessors from the Hyperspace Analogue to Language (HAL) and LSA in

Chapter 2 showed that contextual information can be used to generate

vectors that successfully model word meaning. We argued that this is achieved be-

cause semantically similar words tend to have similar contextual distributions, an

idea known as the “distributional hypothesis” first stated in the early 60’s [58, 77].

The distributional semantic models of the previous chapter learn word (and docu-

ment) vectors. Those vectors are obtained by counting how words occur in contexts

denoted by documents and applying geometric (LSA) or probabilistic techniques

(pLSA, LDA) to the resulting word-document co-occurrence matrices.

Lately, a new family of distributional semantic models have gained popularity.

Instead of relying on word-document co-occurrence matrices factorization, they

rely on predicting words [124, 126]. The representations learned through those

methods are commonly referred to as word embeddings. Embeddings can be ef-

ficiently learned using (shallow) neural network architectures. This novel way of

training the distributional semantic model and the word representations thereof

is attractive because it replaces the transformation steps of the earlier approaches

with a prediction step, which is a well-defined supervised learning step. In par-

ticular, given a word or a word context, one tries to predict the word context or

the word that maximize the performance of the classification task. While the task

of trying to predict words or word context may be of low value, the learned em-

beddings that are a by-product of the prediction task, have been shown to cap-

ture interesting semantic and syntactic properties of words. Recall, however, that

the idea of learning parameter vectors based on an objective optimum function is

also shared by Latent Dirichlet Allocation (LDA) models [23], where the per-word
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and per-document topic distribution are parameters learned to optimize the joint

probability distribution of words and documents.

There are three main advantages of word embeddings: (i) the dimensions of

the learned representations models can be interpreted as general “latent” seman-

tic properties and therefore simple algebraic operations like the addition encode

word properties like gender or word relationships like Country-Capital. (ii) The

supervised task is defined in such a way that no annotated resources are required:

the contexts can be directly extracted from free text. (iii) Some of the models like

those that we will present in the rest of the chapter, scale well for huge amounts

of data inputs, which is not directly achieved with probabilistic models like LDA.

LDA on the other hand, has the advantage of learning representations with some

cognitive plausibility as the latent topic are shown to capture the themes of a col-

lection, whereas such interpretations are more difficult for word embeddings.

Word embeddings have shown promising results in a plethora of tasks [15, 146,

124] and constitute another family of models that implement the distributional

hypothesis. In the rest of the manuscript we will evaluate the performance of

models on top of word embeddings or as a way to incorporate prior knowledge to

topic models. Therefore, in this chapter we review popular and high-performing

models for training word embeddings also providing a concise introduction to

neural networks.

3.1 Word Embeddings with shallow Neural Networks

We review here two models, the continuous bag-of-words model and the skip-

gram model [124, 126], both released as part of the word2vec1 tool, that have

shown to perform well across several tasks [15, 158, 140] and have, thus, gained a

lot of popularity. The models rely on a shallow neural network with a single hid-

den layer for learning representations of words and short phrases. Naturally, every

feed-forward neural network that takes words from a vocabulary as input learns

word embeddings: it embeds the vocabulary identifiers into a vector space of di-

mension lower than the vocabulary cardinality, and those vectors are then fine-

tuned through back-propagation to improve the performance on the task. This

first layer is commonly referred to as the “Embedding Layer”. Figure 3.1 depicts

the embedding layer of a neural network. A word, vectorized using the one-hot-

encoding scheme, is associated with a dense vector of size D, where D needs to

1https://code.google.com/archive/p/word2vec/
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Figure 3.1: Given an one-hot-encoded text input, a dense layer produces a word
embedding whose output propagates to the neural network. The matrix W that
holds the word embeddings is fine-tuned for the particular task.

be tuned for a particular task. Since the input vector that encodes the word is of

dimension V with a single non-zero element, the word’s identifier i, the output of

the embedding layer is a vector that corresponds to the i-th line of W . Therefore,

W is a matrix that holds the embeddings of the V words.

The main difference between such an arbitrary network that learns word em-

beddings as a by-product of the main task and a method such as word2vec whose

explicit goal is to learn the word embeddings is its computational complexity.

Generating word embeddings with a deep architecture is simply too computa-

tionally expensive for a large vocabulary. On the contrary, the models presented

next use shallow networks and are efficient. As an introductory side-note, embed-

dings learned with tools like word2vec are generally used as initializations of the

embedding layers of networks that solve a task wit text inputs, which is similar

on how pre-trained networks like VGGNet [161] are used for computer vision ar-

chitectures: common weight initializations that generally provide useful features

without the need for expensive training.

3.1.1 The Skipgram Model

Figure 3.2 illustrates the model used to learn the skipgram word embeddings [124,

126]. The input of the network is a word, while the output of the network is a

softmax layer over the words of a corpus. It follows, that the output layer is of

dimensionality V . The task used to train the word embeddings is as follows: given

a word, maximize the probabilities of the words in its context. The context (also

referred to as window) is up to nwords before and after the word-occurrence of the

input word in the text. In the example of Figure 3.2 we assume an input sequence

of words “the cat sat on the mat”. For illustration purposes we do not apply any
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type of text normalization steps (e.g., stemming). Then, given the word “sits” the

network needs to maximize the probabilities of the words of the context (the, cat,

on, mat). Notice, that the input layer, which in detail was shown at Figure 3.1, is

linear and the only non-linear function is the softmax layer applied in the network

output.

In terms of implementation, there are some important details that have been

shown to improve the performance of the network if tuned carefully. The window

size n is not fixed but dynamic, and it is sampled uniformly from 1 to n, where n

is a parameter of the model. The main bottleneck of the model as shown in Figure

3.2, is the softmax layer. Due to the high dimensionality of the output, which is

equivalent to V , calculating it analytically is expensive. As an alternative, negative

sampling estimates the probability of an output word by learning to distinguish it

from draws from a noise distribution. The number of these draws (number of neg-

ative samples) is given by a parameter k, usually set to 10 ∼ 15. Negative sampling

is very appealing computationally because computing the loss function scales with

the number of noise words that we select (k), and not all words in the vocabulary

(V ), which accelerates training. Furthermore, to limit the effect of very frequent

words like stopwords (e.g., and, the, in . . .), one can discard them during training

with a probability that is proportional to their frequency. Since such words are

uninformative, subsampling them results at limiting their effect on the learned

embeddings and accelerates training as the prediction step is not performed for

every occurrence of them. The subsampling is performed creating the windows to

be considered during prediction, which entails that the actual windows used may

by larger than n.

The cost function J of the skipgram model as illustrated at Figure 3.2 is:

J(θ) =
1
T

T∑
t=1

∑
−m≤j≤m,j,0

logp(wt+j |wt) =
1
T

T∑
t=1

∑
−m≤j≤m,j,0

log
exp(wTt+jvt)

V∑
w=1

exp(wTwvt)
, (3.1)

where wt is the embedding of the word t in hidden layer and vt the output em-

bedding of the term. Notice that the calculation of softmax output of Eq. (3.1) the

summation in the denominator over all the words of the vocabulary is a computa-

tional bottleneck.

To overcome this problem, [124] suggest another formulation of the problem

based on the negative samples. At the same work, another approach based on a

hierarchical version is proposed which yields lower results. Negative sampling,
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Figure 3.3: The continuous bag-of-
words model.

that is an approximation of the Noise Contrastive Estimation (NCE) [75, 130], is

a sampling-based approach that tries to approximate the normalization in the de-

nominator of the softmax with some other loss which is cheaper to compute.

Considering a word-context pair, where the context is defined using the win-

dow as discussed above, the objective of the skipgram model with negative sam-

pling is as follows. The probability p(D = 1|w,c) stands for the probability the pair

comes from the data, while the probability p(D = 0|w,c) = 1 − p(D = 1|w,c) is the

probability that the pair does not come from the data but it is rather a negative

sample. Further, one has:

p(D = 1|w,c) = σ (w · c) =
1

1 + e−w·c
,

where the model parameters w,c are to be learned. Negative sampling is a spe-

cial case of NCE that approximates the probability that a word w comes from the

empirical training distribution of the training data given a context c with [69]:

p(y = 1|w,c) =
ewi ,c

1 + ewi ,c
= σ (wi ,c).

The objective is to maximize p(D = 1|w,c) for the observed pairs and also max-

imize p(D = 0|w,c) for the negative samples:

p(D = 0|w,c) = 1− 1
1 + e−w·c

=
(1− 1 + e−w·c)ew·c

(1 + e−w·c)ew·c
=

1
1 + ew·c

= σ (−w · c),
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which results in the objective function of the skipgram model with negative sam-

pling:

Jθ = −
∑
w∈V

(
logσ (w · c) +

k∑
j=1

logσ (−wj · c)
)
.

While the basis of the skipgram model with negative sampling is the prediction

step, it has been shown that in fact this is equivalent to factorization the matrix of

the pointwise mutual information (PMI) values of the word-context co-occurrence

[108, 109, 146] matrix. This implies that depending on how the context of the

co-occurrence matrices is defined (context as document/window..) and how the

matrix elements are populated (frequencies, PMI values,..) those models are rather

different computational means to arrive at the same type of semantic model. The

common factor between them is the underlying distributional hypothesis.

3.1.2 The Continuous Bag-of-Words Model

Another popular model for learning word embeddings is the continuous bag-of-

words (cbow) [124, 126]. It is very similar to the skipgram model, and it is illus-

trated in Figure 3.3. The cbow model learns to predict the word in the middle of

a symmetric window based on the sum of the vector representations of the words

in the window. The words of the window are summed and, as a result their order

is not taken into account explicitly. Therefore, the model assumes a bag-of-words

representation, that is highlighted in its name.

The example of Figure 3.3 is analogous to that of Figure 3.2. The input se-

quence of words is assumed to be “the cat sits on the mat”. Given the words that

surround “sits”, the model’s goal is then to maximize the probability of that word

given as input the sum of the representations of the words “the, cat, on, the, mat”.

The fact that the cbow model performs an averaging operation statistically sig-

nifies that it smoothes over a lot of the distributional information because it treats

an entire context as one observation. This becomes more intense as the window

size increases. In the original paper [124] the authors note that this turns out to

be a useful thing for smaller datasets. On the other hand, skipgram treats each

context-target pair as a new observation, and this tends to do better when we have

larger datasets.
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Figure 3.4: An unrolled Recurrent Neural Network. N maybe an arbitrarily deep
neural network, that given an input x1, which can be a word embeddings for in-
stance, propagates a hidden state to its successor. The RNN can be very long [157].

3.2 Text Representations using deep neural networks

The skipgram and cbow models of the previous section learn word embeddings

using a prediction task that relies on how words co-occur with their contexts in

free text. When more information about a task is available like labeled examples,

such general purpose embeddings could be used to initialize the weights of neural

networks. Then, allowing the backpropagation gradients to modify the embed-

dings would result in fine-tuning them for the given task. A shortcoming of the

traditional feed-forward neural networks is that they do not model sequences ef-

fectively. On the other hand, as text is a sequence of words, being able to capture

the dependencies that this suggests may be advantageous for several tasks.

Recurrent neural networks (RNNs) are a family of networks that address this

shortcoming. They are deep neural networks: once unfolded they resemble to

traditional neural networks with several hidden layers. RNNs contain loops that

allow information from step t to be passed to step t + 1. They can be seen as

copies of the same network, each passing a message to its successor. We illustrate

at Figure 3.4 an unrolled RNN whose inputs are the embeddings of T words. In

the figure N is a neural network, typically consisting of a sigmoid hidden layer,

although deeper architectures can be considered.

RNNs are appealing as they are supposed to model information until input t

and pass it to its successor t + 1. In practice, while RNNs may be able to achieve

that when the sequence of inputs is small, when the sequence becomes larger than

a few elements they fail [19, 81, 80] due to the problem of vanishing gradients,

which make it difficult to train the network efficiently as the length of the input

sequence increases.
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Figure 3.5: Illustration of the architecture of a long short-term memory unit. The
inputs of the LSTM unit are the cell state (Ct−1), the output of the previous unit
(ht−1) and the input of the sequence that is currently modeled xt. Rectangles de-
note hidden layers while the algebraic operators and the tanh function in the el-
lipse are applied element-wise to the vectors that are inputs to the blocks.

The long short-term memory network [81] (LSTM) is a popular and state-of-

the-art network that alleviates the limitations of the vanilla RNN networks de-

scribed above. To manage to encode information from long periods of time, the

layers N of LSTM are more complex than those of RNNs. Instead of a single hid-

den neural network they have four that interact in a particular way in order to

encode information from previous states efficiently. Figure 3.5 shows the internals

of an LSTM unit.

We provide a brief description of the LSTM unit describing the purpose of

the four hidden layers shown at Figure 3.5. A central idea for LSTMs is the cell

state, illustrated in the Figure as the top continuous line [Ct−1,Ct]. The cell is an

information flow whose content is updated via one element-wise multiplication

and one element-wise addition operation. The rest of the hidden layers, known as

gates, control how the information of the cell is updated.

The left-most bottom sigmoid layer is the “forget gate”. Given the concatena-

tion of ht−1 and the current input xt, it outputs a vector of values within [0,1] that

are weights quantifying how much of the Ct−1 will be kept. Given the notation of

the figure we have:

ft = σ (Wf · [ht−1,xt] + bf ), (3.2)
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where the square brackets “[]” applied to two or more vectors e.g., [ht−1,xt] denote

the concatenation of their values.

While the forget gate decides which information will be removed from the cell

state, the input gate decides in a two-step process which information will be added

in the cell state. First, a sigmoid layer, whose output is denoted by it, decides which

values will be updated. Subsequently, a tanh layer (whose output is Ĉt) suggests

and candidate values for the state. The candidate values Ĉt are combined with

element-wise multiplication with it and are added to the cell state. Therefore, the

calculation of the information to be added in the cell state and the updates of its

values are given by:

it = σ (Wi · [ht−1,xt] + bi),

Ĉt = tanh(Wc · [ht−1,xt] + bc),

Ct = ft ×Ct−1 + it × Ĉt.

(3.3)

The last gate calculates the output of the current LSTM unit, which is a filtered

version of the updated cell state Ct. A sigmoid function is therefore applied to the

concatenation of ht−1 and xt and the output is multiplied (element-wise) with the

squashed values of Ct that are obtained by applying tanh on its elements. There-

fore:

ot = σ (Wo · [ht−1,xt] + bo),

ht = ot × tanh(ct).
(3.4)

The equations (3.2),(3.3), (3.4) describe the updates performed in each of the gates

of the LSTM. The values of the matrices Wf , Wi , Wc and Wo as well as the corre-

sponding biases are updated gradient descent and the back-propagation through

time algorithm [81].

3.3 Cross-lingual Word Embeddings

In the previous sections of the chapter we restricted the presentation of models for

learning word embeddings of modeling text sequences in a single language. As we

discussed in Chapters 1 and 2 however, the amount of multilingual content online

steadily increases. In conjunction with the fact that resources, training data, and

benchmarks are mostly for English language, which may result in a disproportion-

ate focus or even a bias (complementary to the gender/racer bias observed by [26])

for this language.

35



To overcome such issues, cross-lingual embeddings aim at learning embed-

dings for the words of two or more languages that share the same space. The hope

is, then, that by projecting examples from a language in this space and training

a model, the model will have the ability of predictions for the rest of the lan-

guages also. This of course assumes remedies to several problems, like having

effective compositional models to that capture the semantics of text spans larger

than words.

Recently, several models have been proposed for learning cross-lingual word

embeddings. Among them, several approaches build on the successful models

proposed for monolingual collections and extend models like the skipgram model

with negative sampling in the bilingual or multilingual space [125, 118, 71, 40].

The models for learning cross-lingual embeddings can be grouped with regard to

the type of approach used to align the multilingual embeddings [154]:

• Monolingual mapping: this family of methods begin by learning monolingual

word embeddings and try to learn a linear transformation from one space

to another. It was first proposed by [125] and followed by more works [190,

106] trying to relax some of the underlying assumptions.

• Pseudo-cross-lingual: The methods of this family aim at generating pseudo-

cross-lingual datasets where dictionaries are used to replace words with their

translations in order to obtain artificial contexts and then train models like

skipgram [72, 50] or generate multilingual documents are concatenated and

their content is shuffled [179].

• Cross-lingual training: the approaches of this family optimize a cross-lingual

training loss using parallel, sentence aligned corpora. For instance, use au-

toencoders to encode sentences or documents in a source language and re-

construct it in another language [104, 9].

• Joint optimization of monolingual and cross-lingual losses: the approaches of

this family optimize both a cross-lingual and monolingual losses. For in-

stance, [118, 71] extend the skipgram model to the bilingual case: the former

uses the words in the source language to additionally predict their aligned

words in the target language while the later introduces an L2 sampled loss

for cross-lingual regularization.
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3.3.1 Bilbowa

As discussed above, the goal of models used to learn cross-lingual embeddings is

to learn feature that generalize across languages. The goal is to learn word embed-

dings such that similar words in each language are close in the induced space and

furthermore similar words across languages are also close. For example, the words

“cat”, “dog” and “chien” (French for dog) are expected to be close in the shared

space. Assigning similar embeddings stands for assigning vectors that are close

in terms of a distance metric like Euclidean distance or cosine similarity in the in-

duced space. To accomplish this, they optimize a monolingual loss that encourages

similar words to have similar embeddings in each languages and a cross-lingual

loss that encourages similar words written in different languages to be close.

To achieve that Bilbowa [71] that stands for “Bilingual Bag-of-Words without

Alignments” optimizes a monolingual objective function L(·) and the cross-lingual

objective is enforced as regularization by a term Ω. Therefore the overall loss

function to be optimized is:

L = min
∑
`∈{s,t}

∑
wt ,h∈D`

L`(wt,h;θ) +λΩ(θs,θt). (3.5)

The first term of Eq. (3.5) captures the monolingual objective over the source s and

target t languages while the second term encourages the embeddings of similar

words across languages to be close. One of the advantages of this formulation is

that one may use unlimited corpora for learning the monolingual embeddings and

a smaller collection of parallel sentences to enforce the regularization.

For the monolingual objective Bilbowa uses the objective of the skipgram model

that we presented in Section 3.1.1. For the cross-lingual objective the model uti-

lizes sentence aligned data and approximates with a sampling method the loss:

Ω =
∑
i

∑
j

ai,j ‖ rsi − r
t
j ‖

2, (3.6)

where ai,j encodes a translation score for the words i and j approximated using

the sentence aligned parallel data and rsi , r
t
j are the embeddings of the words i, j in

the source and target languages respectively. Intuitively, Eq. (3.6) is weighted sum

that is minimized when pairs of words with high translation scores ai,j have small

Euclidean distances in the embedding space. Instead of relying on an alignment

tool like Giza++ [139] which is computationally expensive for finding the ai,j from

the aligned sentences, the model uses a sampling mechanism that accelerates the

process.
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3.3.2 Concept Net

Word embeddings have been shown to capture the semantics of words as well as

some of their syntactic properties [124]. The models we presented so far how-

ever, from the topic models approaches like LDA to the word emebedding models

like skipgram implement distributional semantics models using strictly free text.

Their cross-lingual extensions also rely on free text for each language and may

also require some aligned comparable or parallel corpora. One would expect how-

ever, that combining those successful models with external information sources

like knowledge graphs would yield even better representations. The work of [166]

proposed to extend the models for learning word representations to incorporate

knowledge from ConceptNet, that is linked open data resource.

ConceptNet, first released by [112], is a knowledge graph that connects words

and phrases with labeled, weighted edges. The edges encode relations of “is_a”

type (e.g. The word cold in English is studený in Czech). Its graph-structured

knowledge is particularly useful for models like those used to train word embed-

dings as such relations can be utilized to learn semantic spaces that are more ef-

fective than using distributional semantics alone, as in the case of the previously

presented models.

The fundamental idea behind the model used to incorporate the knowledge

graph in the process of learning word embeddings is to fine-tune embeddings

learned with a model like skipgram using the knowledge graph relationships. As-

suming, for instance, the objective function:

L(Q) =
n∑
i=1

[
ai ‖ qi − q̂i ‖2 +

∑
(i,j)∈E

βi,j ‖ qi − q̂i ‖2
]
. (3.7)

The loss of Eq. (3.7) describes the fine-tuning process used to derive the em-

bedding of word i to be q̂i from an initially learned embedding qi . This process is

referred to expended retrofitting [166, 165]. The first term encourages the updated

embeddings to be close to the original ones by minimizing their Euclidean distance

‖ qi − q̂i ‖2. The second term, which is a weighted summation over the edges of the

knowledge graph encourages the embeddings of words that have some relation-

ships to be close. The weights βi,j of the sum are also taken from the knowledge

graph. This makes it possible to learn embeddings for words that were out-of-

vocabulary of the initially learned embeddings qi , by effectively setting αi = 0 for

a word i and relying only on the knowledge graph connections. Another signifi-

cant advantage of the expanded retrofitting as described above is that it can benefit
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from the multilingual connections in ConceptNet (e.g. The word cold in English is

studený in Czech). The model learns more about each language via the translations

of words in other languages, and also aligns the embeddings of similar semanti-

cally similar terms written in different languages.

3.4 Summary

The chapter presented an overview of word embeddings. Their interesting proper-

ties of capturing semantic and syntactic properties of the words were highlighted

as they will be later used as external sources of information for probabilistic mod-

els or as text representations for different tasks. We also presented popular models

that are based on shallow neural networks for learning embeddings for text written

in one (cbow or skipgram) or more languages (BilBowa, ConceptNet). Apart from

shallow neural networks, we also presented recurrent neural networks, which al-

though computationally expensive are well suited for modeling text sequences.

For a deeper analysis of deep learning models and their properties, one may refer

to the introduction of [138] or the excellent reviews of [157, 70].
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Chapter 4

Incorporating Prior Knowledge of
Text Structure to Topic Models

Probabilistic topic models aim at uncovering the latent topics of a collec-

tion of documents. To identify the topics, one typically represents the

documents of the collection as a bag-of-words and applies an inference

approach like Gibbs Sampling [73]. We discussed in Chapter 2 that popular topic

models (e.g., LDA [23]) represent documents as bag-of-words. We argue in this

chapter that this can be limiting and propose to overcome it.

The exchangeability assumption, that follows from the bag-of-words, dictates

that given the topic distribution of a document, the words of the document are

conditionally independent. While this assumption greatly benefits the involved

computations and, in particular, the calculations of the conditional probabilities, it

is rather naive and unrealistic [78]. A shortcoming concerns the loss of information

from not accounting for the grouping of words in topically coherent spans. These

can be contiguous words that form text spans like sentences that are important in

the use of language.

Text structure contains useful information that could be leveraged during in-

ference. Sentences or phrases, for instance, are by definition text spans complete in

themselves that convey a concise statement. To better illustrate how text structure

could help in topic identification, consider the example of Figure 4.1. It shows the

topics inferred by LDA for the words (excluding stop-words) of a sentence drawn

from a Wikipedia page. At the sentence level, one could argue that the sentence

is generated by the topic “Cinema” since it discusses a film and its authors. LDA,

however, fails and assigns several topics to the words of the sentence. Importantly,

several of those topics like “Elections” and “Inventions” are unrelated. In finer

textual granularity, LDA also fails to assign consistent topics in noun-phrases like
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The film is a remake of the 1947 film noir classic that starred Vic-
tor Mature, Brian Donlevy and Richard Widmark.

Cinema Science Elections Inventions

Figure 4.1: Applying LDA on Wikipedia documents. Notice how LDA assigns
several, unrelated topics to the excerpt.

“film noir classic” and entities like “Brian Donlevy”. A binding mechanism among

the topics of the words of a sentence, or a phrase, could have prevented those in-

consistencies in the topic assignment process. Hence, the hypothesis we investi-

gate in this chapter is whether taking simple text structure into account benefits

topic models.

To evaluate our hypothesis, we aim at extending LDA with prior knowledge of

text structure. We suggest that such knowledge can be in the form of boundaries

of topically coherent text spans, like the noun-phrases of Figure 4.1. We propose

two approaches to achieve that:

(i.) The first assumes that the words within a coherent segment are generated by

the same topic and proposes a collapsed Gibbs sampling inference process

that uncovers the topic while taking into account the per-word topic distri-

butions of the words that compose the segment [11].

(ii.) The second shares the motivation that segments should be topically coherent

but proposes a more flexible approach that utilizes copulas in the sampling

process and, therefore, allows a few (instead of one), related topics to occur

within the segment [12].

Both models assume some level of dependence between the topics of the words of

segments. This dependence is maximal for the first model. The second, through

the use of copulas has bigger modeling capacity and is more flexible. It is to be

noted, that for both types of models, the documents are assumed to be segmented

a priori. Different segmentation mechanisms can be used, from linguistically mo-

tivated (e.g., parsing) to statistically motivated (e.g., n-grams). We expect different

approaches to text segmentation to have different advantages; we intend to evalu-

ate the impact of this choice also.

The remainder of the chapter discusses those points in detail. It is organized as

follows:
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• Section 4.1 presents an overview of the related work.

• Section 4.2 defines what segments are, as the concept is fundamental for the

topic models to be proposed.

• Section 4.3 describes the two novel topic models: segmentLDA and copulaLDA
and details their inference processes.

• Section 4.4 presents the experiments performed to assess the quality of the

proposed topic models, and

• Section 4.5 concludes with a summary of the chapter.

4.1 An overview of the relevant literature

Despite the success that vector-space models [156] have enjoyed, they come with

a number of limitations. We mention, for instance, their inability to model syn-

onymy and polysemy and the sparse, high-dimensional induced representations.

Many research studies have pointed out these problems, and Probabilistic Latent

Semantic Analysis [84] was among the first attempts to model textual corpora us-

ing latent topics. In this chapter, we build on LDA [23], which is often used as a

building block for topic models. In its context, the corpus is associated with a set

of latent topics, and each document is associated with a random mixture of those

topics. The words are assumed exchangeable, that is their joint probability is in-

variant to their permutation. Previous work proposed a variety of extensions to

LDA in order to incorporate additional information such as class labels [24] and

temporal dependencies between stream documents [184]. Here, our goal is to ex-

tend LDA by incorporating simple text structure in its generative and inference

processes using copulas.

One may identify two lines of research to address the limitations due to the ex-

changeability assumption in LDA: extensions to account for the boundaries of text

spans like sentences and extensions to account for the word order. With respect

to the first line, [181] combines a unigram language model with topic models over

sentences so that the latent topics are represented by sentences instead of terms. In

[74], the authors investigate a combination of a topic model with a Hidden Markov

Model (HMM). They assume that the HMM generates the words that handle the

long-range dependencies (semantic dependencies) and the topic model the words
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that handle the short range dependencies (syntactic dependencies). Also, [29] pro-

posed the Syntactic Topic Model whose goal is to integrate the text semantics and

the syntax in a non-parametric topic model. Having the tree, the semantic con-

sistency of each document is given by a distribution over latent topics, as in topic

models, and the syntactic consistency by the fact that each element in the tree has

also a distribution over the topics of its children. In another effort, [197] propose

TagLDA, where they replace the unigram word distributions by a factored repre-

sentation that is conditioned on the topic and the part-of-speech tag of a term.

The second line of research investigates how topic models can be extended to

incorporate word order. In [159], the authors propose a four-level hierarchical

structure where the latent topics of paragraphs are decided after performing a

nested word-based LDA operation. A particularly interest body of work concerns

collocations. They can be defined as a sequence of consecutive words that have

the characteristic of a syntactic and semantic unit, such as stock market, Los An-
geles Premier League [35]. Previous work has mainly explored the idea of bigram

collocations. For instance, [182] studied when bigrams should be assigned as a

whole to particular topics or as two disjoint unigrams in other topics. Later, [89]

proposed a model that combines the LDA and adaptor grammars to incorporate

word collocations in the process of topic modeling. Despite their theoretical ele-

gance these models come with higher computational overhead. To this end, [103]

explored how various strategies of selecting bigrams to be used as artificial tokens

can impact the quality of topic models. Their models although interesting and

inspiring for our development, have the shortcoming of increasing the vocabulary

size and therefore the sparsity of the model.

Another interesting line of research studied the task of discovering and parti-

tioning text in topically coherent spans. In [47, 48] the authors rely on hierarchical

Bayesian models to accomplish it. In our work here, contrary to identifying such

spans, we assume documents to be topically coherent a priori, and we investigate

how to leverage and incorporate this information to LDA.

4.2 The coherent text segments

In this section we discuss the idea of coherent text spans, or segments hereafter, as

they are central for the subsequent development of the topic models. Given a doc-

ument, there are several types of text spans that can be regarded as the document’s
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The film is a remake of the 1947 film noir classic that starred
Victor Mature, Brian Donlevy and Richard Widmark.

Figure 4.2: Shallow parsing of a sentence with the Stanford Parser. Contiguous
words in italics like “Richard Widmark” denote a noun-phrase.

building blocks. These spans usually constitute semantic units pertaining to a sin-

gle or few related topics and are topically coherent in this sense [12]. From a lin-

guistic point-of-view, a document consists of sentences, which are meaningful text

spans that convey a concise statement. In a finer level, syntactic analysis of sen-

tences like shallow parsing reveals coherent segments like noun-phrases. Figure

4.2 illustrates the output of a shallow parsing step that identifies the noun-phrases

of the example sentence of Figure 4.1, generated using the Stanford Parser.1

Both sentences and noun-phrases are text spans composed by contiguous words

and can be considered semantically coherent. Further, from a computational as-

pect, sentence segmentation can be performed efficiently in several languages.

Also, there are several pre-trained models for shallow parsing in a variety of lan-

guages. For the above reasons, in the rest of our development we will evaluate how

assuming sentences and noun-phrases to be topically coherent affects the topic

modeling performance.

N -grams are consecutive words of length N . Compared to sentences or noun-

phrases no syntactic information is used to obtain them as they only rely on count

statistics. Despite their simplicity, their positive effects on topic modeling have

been shown in previous work (e.g., [103, 182]). Therefore, n-grams are another

type of segments we may consider coherent.

The segmentation of the documents in coherent segments creates a hierarchi-

cal document representation. From the higher to the lower levels this structure

is described as follows: (i) documents consist of segments, which are indepen-

dent between them, and (ii) segments consist of words, which are their basic units.

Therefore, each document is a bag-of-segments and each segment is a bag-of-words.
These independence assumptions are important while performing inference for

the topic models that will presented in the next sections.

1http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 4.3: The graphical model of segLDA.

4.3 Incorporating text structure to topic models

The previous sections provided an overview of the relevant literature with a fo-

cus on work that incorporates parts of text structure to topic models and defined

coherent text segments. We continue by presenting the two contributions of this

chapter. In particular, we first describe segmentLDA in Section 4.3.1 and then in-

troduce in Section 4.3.3 copulaLDA. These are two novel topic models that relax

the bag-of-words assumption that is a fundamental premise of LDA. They propose

different mechanisms for incorporating text structure in their generative process.

4.3.1 segmentLDA: Integrating segment boundaries to LDA

Recall that a probabilistic topic model represents the words in a collection of D

documents as mixtures of K “topics”, which are multinomials over a vocabulary

of size V . In the case of LDA, for each document di a multinomial over topics is

sampled from a Dirichlet prior with parameters α.

We extend LDA by adding an extra plate denoting the coherent text segments of

a document. The graphical representation of this novel mode, called segmentLDA
(segLDA) model is shown in Figure 4.3. The generative process of a document

collection according to segLDA is as follows:

• For each topic k ∈ [1,K], choose a per-word distribution: φk ∼ Dir(β), with

φk ,β ∈RV

• For each document di , i ∈ {1, . . . ,D}:

– Choose a per-document topic distribution: θi ∼Dir(α), with θi ,α ∈RK

– For each segment si,j , j ∈ {1, . . . ,Si} of di :

* Sample the topic underlying the segment’s words: zi,j ∼Mult(1,θi)
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* Sample the words of the segment: (w1, . . . ,wNi,j ) ∼Mult(Ni,j ,φzi,j )

As it is evident from the generative story, a single topic is assigned to the words

of a segment as each word of the segment is sampled from Mult(Ni,j ,φzi,j ). How-

ever, a topic is assigned to each and every word of the document, as in LDA. There-

fore, words (and not segments) remain the basic units of the documents. This sig-

nifies that comparing topics models such as LDA and segLDA on tasks that use the

topics of each word (like perplexity that we discuss in Section 4.4) is fair.

The generative process we presented above describe the generation of the col-

lection of documents. Meanwhile, given a corpus words are observed and the goal

is to infer the latent topics. For inference, we propose to use a collapsed Gibbs

sampling method [73]. We now derive the Gibbs sampler equations by estimating

the hidden topic variables. In segLDA the joint distribution of words w and topics

z can be decomposed as:

p(w,z|α,β) = p(w|z,β)p(z|α), (4.1)

because the first term is independent of α2 and the second from β (cf. Fig. 4.3).

After standard manipulations as in the paradigm of [78] one arrives at:

p(z,w|α,β) =
K∏
z=1

∆(Ψz + β)
∆(β)

D∏
i=1

∆(Ωi +α)
∆(α)

, (4.2)

where ∆(~x) = Beta(x1, . . . ,xm) =
∏dim~x
k=1 Γ (xk)

Γ (
∑dim~x
k=1 xk)

is a multidimensional extension of the

beta function used for notation convenience, and Ωi , Ψz refer to the occurrences

of topics with documents and topics with terms respectively. To calculate the full

conditional probability we take into account the structure of the document i and

the fact that wi = {wi¬si,j ,w¬si,j }, z = {zi¬si,j ,z¬si,j }. The subscript si,j in wsi,j ,zsi,j de-

notes the words and the topics respectively of segment si,j , that is the j-th segment

of the i-th document. For the full conditional of topic k we have:

p(zsi,j = k|z¬si,j ,w) =
p(w,z)

p(w,z¬si,j )
=

p(w|z)
p(w¬si,j |z¬si,j )p(wsi,j )

p(z)
p(z¬si,j )

=

=
p(w,z)

p(w¬si,j ,z¬si,j )
∝

∆(Ψz + β)
∆(Ψz,¬si,j + β)

∆(Ωi +α)
∆(Ωi,¬si,j +α)

.
(4.3)

2Hereafter, we consider α,β to be symmetric, that is α1 = . . . = αK ,β1 = . . . = βV , and we denote
by the scalars α,β the values of each dimension of the vector.
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For the first term of equation Eq. (4.3) we have:

∆(Ψz + β)
∆(Ψz,¬si,j + β)

=

∏
w∈si,j Γ (Ψz+β)

Γ (
∑
w∈si,j (Ψz+β))∏

w∈si,j Γ (Ψz,¬si,j+β)

Γ (
∑
w∈si,j (Ψz,¬si,j+β))

=
∏
w∈si,j

 Γ (Ψz + β)
Γ (Ψz,¬si,j + β)

 Γ (
∑
w∈si,j (Ψz,¬si,j + β))

Γ (
∑
w∈si,j (Ψz + β))

=

=

A︷                                                        ︸︸                                                        ︷∏
w∈si,j

(Ψw,k,¬si,j + β) · · · (Ψw,k,¬si,j + β + (Ni,j,w − 1))

(
∑
w∈V (Ψw,k,¬si,j + β)) · · · (

∑
w∈V Ψw,k,¬si,j + β + (Ni,j − 1))︸                                                                   ︷︷                                                                   ︸
B

.

(4.4)

Here, for the generation of A and B we used the recursive property of the Γ

function: Γ (x +m) = (x +m− 1)(x +m− 2) · · · (x + 1)xΓ (x); w is a term that can occur

many times in a sentence and Ni,j,w denotes the frequency of w in segment si,j ; Ni,j
denotes the number of words in sentence s.

The development of the second factor in the final step of Eq. (4.3) is similar to

the LDA calculations. The difference is that the counts of topics per document are

estimated given the allocation of every word of a segment to the sampled topic.

On the other hand, compared to segLDA, LDA does not incorporate any part of

the local structure when sampling topics for the words. From Eq. (4.3) one yields:

p(zsi,j = k|~z¬si,j , ~w) = (Ωi,k,¬si,j +α)×

∏
w∈si,j (Ψw,k,¬si,j + β) · · · (Ψw,k,¬si,j + β + (Ni,j,w − 1))

(Ψ·,k,¬si,j +V · β) · · · (Ψ·,k,¬si,j +V · β + (Ni,j − 1))
(4.5)

where Ωi,k,¬s denotes the number of words from document i assigned to topic k

excluding the words of the segment currently sampled. Further, the product in

the numerator of the second term results from the bag-of-words assumption for

the words within the segments of di . The possibly multiple occurrences of w in si,j ,

generated by the topic k, are taken into account by the factor (Ψw,k,¬sij +β), which is

incremented by one for every other occurrence of the word after the first. This re-

flects the fact that every occurrence of w comes from the same topic. For instance,

if w appears twice in si,j , thenNi,j,w = 2, and the factor (Ψk,w,¬sij +β)(Ψk,w,¬sij +β+1)

denotes the contribution of the occurrences of w to the probability that si,j is gen-

erated by the topic k. The product in the denominator acts as a normalization

term. The progressive increase of its values can be explained by the bag-of-words

assumption within a segment: the product normalizes the probability of assigning
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Algorithm 1: A Gibbs Sampling iteration for segLDA

Input: documents’ words grouped in segments, α, β, K
//Initialize counters Ψ ,Ω
for document di , i ∈ [1,D] do

for segment si,j : j ∈ {1, . . . ,Si} do
Decrease counter variables Ψ ,Ω according to the previous topic

assignments of the words of si,j
Calculate the probabilities of the new topic of the words of si,j (Eq. 4.5)
Sample the topics of the words of si,j using the calculated probabilities
Increase counters Ψ ,Ω

end
end

the topic k to a word of the segment, given that the previous words have also been

assigned to this topic. Algorithm 1 presents the steps one needs to follows during

the Gibbs sampling updates of segLDA.

Note that segLDA is an extension of LDA. If the coherent text spans are reduced

to words that is ∀i, j : Ni,j = Ni,j,w = 1 then segLDA reduces to LDA and Eq. (4.5)

reduces to the standard LDA collapsed Gibbs sampling inference equations of Eq.

(2.5).

4.3.2 Copulas and random variables (intermezzo)

In the previous section we proposed segLDA, a novel topic model that assigns the

same topics to the words of a segment. This entails that the dependency between

the topics of the words of a segment is maximal. The question that arises in this

case is whether one can come up with a more flexible binding mechanism. If such

a mechanism exists, one could then incorporate to a topic model that would ac-

count for text structure but would also allow more flexibility within topics. In

this section, we introduce copulas, a statistical tool that can be used to solve this

problem.

Copulas allow one to explicitly relate joint and marginal distributions, through

Sklar’s theorem [162]:

Theorem 4.3.1. Let F be a p-dimensional distribution function with univariate mar-
gins F1, . . . ,Fp. Let Aj denote the range of Fj . Then there exists a copula C such that for
all (x1, . . . ,xp) ∈Rp

F(x1, . . . ,xp) = C(F1(x1), . . . ,Fd(xp)) (4.6)

Furthermore, when F1, . . . ,Fp are all continuous, then C is unique.
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Figure 4.4: The transformation of a random variate to multinomial (or arbitrary)
marginals. The arrows illustrate the generalized inverse; the histograms in y (resp.
x) axis depict the distributions of the initial (resp. transformed) samples.

Formally [134, 173], a p-dimensional copula C is a p-variate distribution func-

tion with C : Ip = [0,1]p → [0,1] whose univariate marginals are uniformly dis-

tributed on I and C(u1, . . . ,up) = P (U1 ≤ u1, . . . ,Up ≤ up).

As a result any multivariate distribution F can be decomposed into its marginals

Fi , i ∈ {1, . . . ,p} and a copula, allowing to study the multivariate distribution in-

dependently of the marginals. Sklar’s theorem also provides a way of sampling

multivariate distributions with a large number of random variables using copu-

las: F(x1, . . . ,xp) = F
(
F−1

1 (u1), . . . ,F−1
p (up)

)
= P [U1 ≤ u1, . . . ,Up ≤ up] = C(u1, . . . ,up).

Hence, to sample F it suffices to sample the dependence structure modeled by cop-

ulas and then transform the obtained sample in the marginals of interest using the

probabilistic integral transform. We illustrate this transformation for one variable

in Figure 4.4. Sampling the copula returns, for each variate, a sample as the one

indicated in the histogram of the y axis. One can then transform the sample using

the quantile (F−1) of an arbitrary marginal.

Before proceeding further, we visit some extreme conditions of dependence

illustrating the respective copulas that model them: (1) Independence, which is

a frequently assumed simplification in topic models and is obtained with
p∏
i=1
ui ,

and (2) Co-monotonicity, which is the complete, positive correlation between the

random variables up, obtained with min(u1, . . . ,up).

In the rest of our development we will be using a particular family of copulas,
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Figure 4.5: The positive correlation imposed to two random variates when sam-
pling from a Frank copula with increasing values of λ. λ ranges in [5,10,15,25]
from top-left to bottom right respectively.

the Archimedean copulas. Archimedean copulas are widely used copulas and are

defined with respect to a generator function ψ. They take the form: C(u1, · · · ,ud) =

ψ−1(ψ(u1) + · · · + ψ(ud)). A special case of Archimedean copulas corresponds to

Frank copulas, which are obtained by setting: ψλ(u) = −1
λ log(1−(1−e−λ)e−u). When

λ → 0, the Frank copula approaches the independency copula; when λ → ∞ it

approaches the co-monotonicity copula. Hence, the Frank copula allows one to

model all dependencies between complete independence to perfect dependence

while varying λ from 0 to ∞. Therefore, λ can be seen as an additional hyper-

parameter to be tuned from the data. Figure 4.5 illustrates the positive dependence

between two random variables sampled from a Frank copula. To highlight the

effect of λ in the correlation imposed at the sample we visualize samples while

increasing its value. Following the increase of the λ values the correlation between

the values of the variates increases. To sample from the Archimedean copulas, we

rely on the algorithm proposed by [119], which was further improved in [123, 82]
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and implemented in the R language [83].

Lately, there is an increasing interest over the integration of copulas in ma-

chine learning applications [53] such as classification [52] or structure learning

[111]. Interestingly, [186] have shown how to incorporate copulas in Gaussian

processes in order to model the dependency between random variables with ar-

bitrary marginals with a practical application on predicting the standard devia-

tion of variables in the financial sector (volatility estimation). In another generic

framework, [172] have shown the benefits of using copulas to model complex de-

pendencies between latent variables in the general variational inference setting.

The idea of using copulas with topic models was recently investigated in the

interesting work of [3]. In the context of document streams they proposed a topic

model where the dependencies between the topic distributions of two consecutive

documents are captured by copulas. Here, instead of modeling the dependence

between topic distributions of consecutive documents, we model the dependence

between the topics assigned to the words of segments we consider coherent.

4.3.3 copulaLDA: Integrating segment boundaries to LDA using
copulas

In the previous section (Section 4.3.2) we introduced copulas, a powerful frame-

work for modeling the joint distribution of random variables. The capacity of

copulas to model joint distributions by decoupling the underlying dependence of

the variables from their marginals can be a useful property for topic modeling.

Our motivation lies in the way that we sample topics for segments: we want a

mechanism to model the joint distribution using information from the marginals.

For topic modeling, the marginals describe how topics occur with each word of a

segment while the joint distributions concern the topics assigned to the words of

the segments. As discussed previously in the framework of segLDA, one expects a

dependence mechanism to apply between the topics of segments.

In this section we develop copulaLDA (hereafter copLDA), that extends LDA

by integrating simple text structure in the model using copulas. We assume that

the topics that generate the terms of coherent text spans are bound. A strong

binding signifies high probability for the terms to have been generated by the same

topic. Therefore, as we show, the conditional independence of topics given the per-

document topic distributions does not hold.
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Figure 4.6: The copLDA generative model. We model the dependency between the
topics underlying a segment with copulas. Notice in the graphical model how the
topics of (z1, . . . , zN ) of a segment depend both on θ and the copulas, illustrated
with its λ parameter.

Copulas provide an intuitive way to bind random variables. We are making

use of them here to bind word-specific topics (the z variables in LDA) within co-

herent text spans, the rationale being that coherent text spans can not be generated

by many different, uncorrelated topics. This leads us to the following generative

model:

• For each topic k ∈ [1,K], choose a per-word distribution: φk ∼ Dir(β), with

φk ,β ∈R|V |

• For each document di , i ∈ {1, . . . ,D}:

– Choose a per-document topic distribution: θi ∼Dir(α), with θi ,α ∈R|K |

– Sample number of segments in di : Si ∼ P oisson(ξ);

– For each segment si,j , j ∈ {1, . . . ,Si}:

* Sample number of words: Ni,j ∼ P oisson(ξd);

* Sample topics Zi,j = (zi,j,1, . . . , zi,j,Ni,j ) from a distribution admitting

Mult(1,θi) as margins and C as copula;

* Sample words Wi,j = (wi,j,1, . . . ,wi,j,Ni,j ): wi,j,n ∼ Mult(1,φzi,j,n), 1 ≤
n ≤Ni,j .

There are two main differences between copLDA and LDA. Firstly, the former

assumes a hierarchical structure in the documents: the topics that generate the
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words in the coherent segments exhibit topical correlation, hence the conditional

independence assumption between the terms of a segment given the document

per-topic distribution (θi) no longer holds. Secondly, this topical correlation is

modeled using copulas. Figure 4.6 provides the graphical model for copLDA. For

clarity, we draw each word in a coherent segment S, (w1, . . . ,wN ) to make the de-

pendencies explicit. Notice how the topics of those words depend on both the

copula parameter λ and the per-document topic distribution θ.

There is also an important difference between copLDA and segLDA. While the

latter assumes that the words (w1, . . . ,wN ) of a segment are generated by a single

topic, the former allows more flexibility. As a result, more topics may be observed

within a segment. The copula hyperparameter λ as well as the family of the cop-

ulas chosen control this flexibility. Notice that in the limit of total dependence

(when λ→∞) copLDA becomes equivalent with segLDA.

The hyper-parameters α and β correspond to priors of the model. Their values

can be set according to values that previous work has proposed (e.g., [23]) or can

be tuned using the data. Similarly, the hyper-parameter λ can be chosen after

exploration of a grid of possible values.

Inference with Gibbs sampling The parameters of the above model, that are

φ,θ and the topics of each segment Zi,j = (zi,j,1, · · · , zi,j,Ni,j ), can be directly esti-

mated through Gibbs sampling. Denoting Ω and Ψ the count matrices such that

Ω = (Ωi,k) (resp. Ψ = (Ψk,v)) represents the count of word belonging to topic k

assigned to document di (resp. the count of word v being assigned to topic k), the

Gibbs updates for θ and φ are the same as the ones for the standard LDA model

[23]:

θi ∼Dir(α +Ωi) and φk ∼Dir(β +Ψk) (4.7)

The update for the variables z is obtained as follows:
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p(Zi,j |Z¬i,j ,W ,Θ,Φ ,α,β,λ) =
p(Zi,j ,Z¬i,j ,W |Θ,Φ ,α,β,λ)

p(Z¬i,j ,W |Θ,φ,α,β,λ)
=

p(Zi,j ,Wi,j |Θ,Φ ,λ)p(Z¬i,j ,W¬i,j |Θ,Φ ,λ)

p(Wi,j |Θ,φ)p(Z¬i,j ,W¬i,j |Θ,Φ ,λ)
=

p(Zi,j ,Wi,j |Θ,Φ ,λ)∑
Zi,j p(Zi,j ,Wi,j |Θ,Φ ,λ)

=

p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ,λ)∑
Zi,j p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ,λ)

∼ p(Wi,j |Zi,j ,Φ)p(Zi,j |Θ,λ) =

p(Zi,j |Θ,λ)
Ni,j∏
n=1

φwi,j,n,zi,j,n (4.8)

where W , Θ and Φ stand for the whole parameter set of w, θ and φ and the prob-

ability outside the product in the last step admits a copula Cλ and Mult(1,θi) as

margins. The notation −i, j means excluding the information for i, j. Note that in

case where λ→ 0, the words of a segment become conditionally independent given

the per-document distribution and one recovers the non collapsed Gibbs sampling

updates of LDA.

From the expression of Eq. (4.8), a simple acceptance/rejection algorithm can

be formulated: (1) Sample a random variable of pdf p(Zi,j |Θ,λ) using copula, and,

(2) Accept the sample with probability p(Wi,j |Zi,j ,Φ) =
∏Ni,j
n=1φwi,j,n,zi,j,n . Algorithm

2 summarizes the inference process.

Computational Considerations As the values of φwi,j,1,zi,j,1×· · ·×φwi,j,n,zi,j,n tend to

be very low, the acceptance/rejection sampling step described above is very slow in

practice (see below). We propose here to speed it up by considering, for each word

wi,j,n in a given segment, not the exact probability of zi,j,n, but its mean (noted M)

over all the other words in the segment:

M(zi,j,n|Z−i,j ,W ,Θ,Φ ,α,β,λ) =
∑

wij,l ,l,n

∑
zij,l ,l,n

P (Zi,j |Z−i,j ,W ,Θ,Φ ,α,β,λ) ∝ φwi,j,nθd,zi,j,n

as
∑
wij,l

φwi,j,l = 1. In the experimental part we will empirically illustrate the effect

of the mean approximation as described above.

4.4 The Experimental Evaluation

In this section we evaluate the copLDA and segLDA models presented above. To

this end, we propose both intrinsic and extrinsic evaluation tasks. The assessment
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Algorithm 2: A Gibbs Sampling iteration for copLDA
Input: documents’ words grouped in segments, α, β, K , Copula family and its

parameter λ
//Initialize counters Ψ ,Ω
for document di , i ∈ [1,D] do

for segment si,j : j ∈ {1, . . . ,Si} do
Draw a random vector U = (U1, . . . ,UNi,j ) that admits a copula Cλ
do /* If the mean approximation is used, the loop is done once,

ignoring the acceptance condition */

for words wi,j,k , k ∈ [1,WNi,j ] in si,j do
Decrease counter variables Ψ ,Ω
Get zi,j,k by transforming Uk to Mult. marginals with the generalized

inverse
Assign topic zi,j,k to wi,j,k
Increase counters Ψ ,Ω

end
while Accept the new segment topic assignments with probability
φwi,j,1,zi,j,1 × · · · ×φwi,j,n,zi,j,n

end
end

of the performance of topic models in an intrinsic way signifies that no applica-

tion is used. Common ways to intrinsically evaluate topic models is by measuring

the coherence of the produced topic or by estimating their generalization perfor-

mance. On the other hand, extrinsic evaluation of topic models requires an appli-

cation like text classification or document retrieval.

Models In the experiments of this section we compare the following topic mod-

els:

(i.) LDA3 as proposed in [23] using the collapsed Gibbs sampling inference [73],

(ii.) segLDAbi as described in Section 4.3.1 with the 1,000 most frequent bigrams

to be considered as coherent segments,

(iii.) segLDAtri as described in Section 4.3.1 with the 1,000 most frequent trigrams

to be considered as coherent segments,

(iv.) segLDAnp as described in Section 4.3.1 with noun-phrases as coherent seg-

ments,
3We dub with typewriter font the implementations of the models we use from the experiments

we performed.
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(v.) segLDAsent as described in Section 4.3.1 with sentences as coherent segments,

(vi.) copLDAbi, copLDAtri, copLDAnp, copLDAsent that use copulas to extend the pre-

vious models following the development of Section 4.3.3.

In total, we considered nine models in our experiments that extend LDA using

different types of segments and different binding mechanisms between the topics

of the words that constitute the segments. For copLDAx models, we use the Frank

copula which was reported to obtain the best performance in similar tasks [3] and

was also found to achieve the best performance in our local validation settings

compared to Gumbel and Clayton copulas. We have implemented the models us-

ing Python. For sampling the Frank copulas we used the R copula package [83]

and rPY.4 Also, λ is set to values which we found to perform well in every dataset

we tried, that is to 2 for copLDAsent and to 5 for copLDAnp,bi,tri. Furthermore,

the hyper-parameters α and β where set to 1/K and 0.01 respectively following

[73], where K is the number of topics. For the shallow parsing step, required for

copLDAnp, we used the Stanford Parser [94]. The text pre-processing steps per-

formed are: lower-casing, stemming using the Snowball Stemmer and removal of

numeric strings.

Datasets We use the following publicly available data collections to test the per-

formance of the topic models:

• 20NG (20 news groups), which is a standard text dataset for such tasks as

provided by [20],

• Reuters (Reuters-21578, the “ModApte” version), also discussed in [20],

• TED, that are transcriptions of TED talks released in the framework of the

International Workshop on Spoken Language Translation 2013 evaluation

campaign5 (we have merged the train, development and test parts and we

selected the transcriptions with at least one associated label among the 15

most common in the data6),

• Wikix, with x ∈ {15,37,46} and PubMed, both excerpts7 from the Wikipedia

dataset of [141] and the PubMed dataset of [174] used in [11]
4https://pypi.python.org/pypi/rpy2
5http://workshop2013.iwslt.org/59.php
6Technology, Culture, Science, Global Issues, Design, Business, Entertainment, Arts, Politics,

Education, Art, Creativity, Health, Biology and Music.
7https://github.com/balikasg/topicModelling/tree/master/data
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Basic Statistics of the datasets used

Docs. |N | |V | Categories Categories/Instance

TED 1,096 1.16M 30.4K 15 2.42
PubMed 5498 1.09M 28.7K 50 1.32
Reuters 10,788 875K 21.4K 90 1.23
20NG 19,056 1.7M 75.4K 20 1.0
Wiki15 1,198 162K 13.4K 15 1.0
Wiki37 2,459 317K 19.7K 37 1.0
Wiki46 3,657 478K 23.4K 46 1.0
Austen 5,262 170K 6.3K - -

Table 4.1: The basic statistics of the datasets used for evaluating the topic models.
|N | denotes the total words in the corpus, |V | the vocabulary size, while “Cate-
gories” and “Categories/Instance” the size of the category set of the corpus and
the average number of categories per document respectively.

• “Austen”, where we concatenated three books8 written by Jane Austen, avail-

able from the Gutenberg project (each paragraph is considered as a docu-

ment).

Table 4.1 presents some basic statistics for these datasets. The goal when se-

lecting them was to evaluate the models on data of different types, ranging from

forum messages (20NG) to news stories (Reuters) or literature (“Austen”). In that

way we exclude any possible bias due to the type or source of the text.

The effect of the mean approximation during inference Figure 4.7 compares

the perplexity scores achieved in 200 documents from the “Wiki46” Wikipedia

dataset of Table 4.1 by the copLDA model, when considering noun-phrases as co-

herent spans, with and without rejection sampling. We repeat the experiment

10 times and also plot the standard deviation. We first note that approximating

Algorithm 1 by ignoring the rejection sampling step results in slightly worse per-

formance. On the other hand, without the rejection sampling, copLDA converges

faster in terms of iterations. Furthermore, the cost in terms of running time of a

single iteration is significantly smaller: for instance, for 30 iterations with rejec-

tion sampling, the algorithm needs almost 6 hours, that is 100 times more than

the 3.5 minutes needed without the rejection sampling. Hence, in the rest of the

study, for scaling purposes, we adopt the above mean approximation.

8We used the books: Emma, Persuasion, Sense. We considered each paragraph as a document.

58



0 100 200

Training iterations

1300

2050

2800

P
e
rp

le
x
it

y
2 × 102 sec.

2 × 104 sec. 22 min.

2280 min.

No Rejection Sampling

Rejection Sampling

Figure 4.7: The effect of rejection sampling in efficiency and perplexity perfor-
mance for copLDA.

4.4.1 Intrinsic Evaluation

Intrinsic evaluation of topic models is a way of evaluating the topic models without

using a real application. Such types of evaluation usually assess the coherence of

the produced topics, either by manual inspection or by calculating some scores

that are indicative of how often words occur in similar contexts. The most-used

intrinsic measure to evaluate topic models is probably perplexity. As, however, it

was shown that perplexity does not always correlate well with human judgments

of the quality of the produced topics [31], various measures have been proposed

as alternatives [135, 128, 102]. In this section, we evaluate the proposed topic

models with respect to several of these measures. We begin by visualizing the

learned topics, we continue by reporting the perplexity scores and then, we discuss

the topic coherence performance with regard to the normalized point-wise mutual

information scores.

Manual inspection of the topics We begin by comparing the topics learned by

LDA and copLDAnp. We choose to visualize the results for those two models as LDA

is our main baseline while copLDAnp integrates noun-phrase boundaries which are

short and easy to visualize. For presentation purposes, we train the two topic

models using the Wiki47 dataset with 10 topics and we illustrate the top-10 words

learned for each topic by the two models in Table 4.2. As one can note, since the

two models have been trained on the same data with the same training parame-

ters, the identified topics are very similar. This said, copLDAnp manages to produce

arguably better topics. This is for example the case for the topic “Birth”; although

both models assign high probability to words like “born” and “american” due to
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the content of the dataset, copLDAnp manages to identify several words correspond-

ing to months which makes the topic more thematically consistent and easier to

interpret compared to its LDA counterpart.

Profession Science Books Art Cinema Places Music Birth Elections Inventions

profession univers book art film state record born elect california
world research new new televis unit music american canadian plant

footbal scienc work work role us band known parti use
wrestl professor american paint appear township album best member invent
play work publish york also school song actress liber flower
born institut time american actor univers also decemb minist compani

american award author artist born serv produc june hous north
championship prize also museum play war releas april canada patent

team born year painter seri nation new juli serv inventor
first receiv york studi star build singer januari conserv found

known univers book art film township record play elect work
wrestl research new new born state music footbal canadian first
born scienc american york televis counti band born serv year

world professor author paint role us album american parti photograph
profession work publish american actor california song tour member design
american institut novel work appear michigan also golf liber state

name born time artist also plant singer year hous new
wrestler prize also painter seri civil releas profession minist use

best studi writer museum actress popul produc first state also
championship award magazin born american flower american season born build

Table 4.2: The topics learned by copLDA (upper half) and LDA (lower half) in the
Wiki46 dataset.

Kiss of Death is a 1995 crime thriller film starring David
Caruso Samuel L. Jackson and Nicolas Cage. The film is a
very loosely based remake of the 1947 film noir classic of
the same name that starred Victor Mature, Brian Donlevy
and Richard Widmark.

Kiss of Death is a 1995 crime thriller film starring David
Caruso Samuel L. Jackson and Nicolas Cage. The film is a
very loosely based remake of the 1947 film noir classic of
the same name that starred Victor Mature, Brian Donlevy
and Richard Widmark.

Bertram Stern (born 3 October 1929) is an American
fashion and celebrity portrait photographer.

Bertram Stern (born 3 October 1929) is an American
fashion and celebrity portrait photographer.

Dana Hill (born Dana Lynne Goetz in Los Angeles,
California; May 6, 1964 - July 15, 1996) was an American
actress and voice actor with a raspy voice and childlike
appearance, which allowed her to play adolescent roles well
into her 20s.

Dana Hill (born Dana Lynne Goetz in Los Angeles,
California; May 6, 1964 - July 15, 1996) was an American
actress and voice actor with a raspy voice and childlike
appearance, which allowed her to play adolescent roles well
into her 20s.

Table 4.3: The discovered topics underlying the words of example documents for
LDA (left) and copLDA (right). The parts of the documents in italics indicate the
noun-phrases obtained by the Stanford Parser. The text colors refer to the topics
described in Table 4.2.

In the same line, Table 4.3 visualizes the inferred topics for parts of the Wiki47

dataset. Recall, the first sentence of the table is the example out in the beginning

of the chapter (Fig. 4.1) that motivated the work presented in the chapter. Notice

here that given the topic interpretations of Table 4.2, both models manage to iden-

tify intuitive topics. Note, however, how in most of the cases the text structure
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information used by copLDAnp helps to obtain consistent topics for noun-phrases

like “crime thriller film” and “raspy voice”, a consistency that LDA is lacking. Of

course, this is not the case for every noun-phrase of the corpus: there are cases

like “Dana Lynne Goetz” where two (or more) topics are assigned to the words of

the phrases. This was expected as, by definition, the strength of the bound that

copLDAnp applies for sampling the topics of words of a segment is not maximal

but is controlled by the λ hyperparameter of the copula.

Intrinsic Evaluation: Perplexity We continue our evaluation by presenting per-

plexity scores of held-out documents, calculated for each of the topic model datasets

of Table 4.1. Achieving lower perplexity score means that a topic model can ex-

plain unseen data more efficiently, thus it generalizes better and it is, in turn, a

better model.

As a result, a good model with low perplexity should be able to infer better

representations for the unseen documents. As perplexity does not use any real

application to evaluate the topic models it is also an intrinsic metric. For a set of

test documents C consisting of N words {w1, . . . ,wN } the perplexity is calculated

using:

perpl(C) = exp

−
N∑
i=1

logp(wi)

N

 (4.9)

Hence, the best the model fits the data, the higher will be the p(wi) and conse-

quently the lowest the perplexity score achieved.

In order to estimate perplexity, the topic distributions of the unseen documents

are required. They can be obtained by repeating the Gibbs sampling inference

process for the unseen (held-out) documents. During this process, however, the

per-word topic distributions learned during training are kept constant.

In our experiments here, we split the documents of a dataset randomly in two

parts with 80%/20% of the documents: we use the former for learning the model

and the second for calculating the perplexity scores. We use exactly the same

splits for training and evaluating each of the topic models. Table 4.4 illustrates

the achieved perplexity scores for the datasets of Table 4.1 and for the number of

topics K ∈ {25,50,75,100,150}. The best (lowest) perplexity score per dataset and

number of topics is shown in bold. There are several observation to be made from

the table.
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Figure 4.8: The perplexity curves of the investigated models for 200 Gibbs sam-
pling iterations and different datasets.

First, notice that the lowest perplexity is consistently achieved by segLDAbi and

copLDAbi. This suggests that assuming short segments to be coherent benefits per-

plexity scores. Such a finding is intuitive in that frequent bigrams usually refer to

entities like destinations (e.g., New York, United Kingdom) and assuming them to

be coherent benefits the model’s generalization performance. On the other hand,

models that assume larger segments, like sentences (segLDAsent and copLDAsent) to

be coherent are not competitive.

Another interesting observation concerns the effect of copulas when various

segments are considered. One can identify two families of models: those whose

perplexity scores greatly improve due to the use of copulas: copLDAsent and copLDAnp

and those that do not benefit much: copLDAbi and copLDAtri. These results suggest

that the size of segment and the frequency of co-occurrence is important for decid-

ing whether to consider copulas or not. Short and frequent segments like bigrams

are by definition coherent and having a flexible binding scheme like copulas does

not improve the perplexity scores. On the other hand, sentences and noun-phrases

that are less thematically consistent benefit from the flexibility that copulas offer.

Figure 4.8 illustrates the perplexity curves of the hold-out documents for seven

of the models on two of the datasets of Table 4.1 for 250 Gibbs sampling iterations.

Note that segLDAsent is the model with the fastest convergence rate with respect to

the number of Gibbs iterations. On the other hand, LDA, copLDAsen and copLDAnp

require the same number of iterations, which depends on the dataset. copLDAbi

manages to achieve the lowest perplexity scores. Notice its steep curves in the first

iterations.

62



Dataset K LDA segLDAnp copLDAnp segLDAsent copLDAsent segLDAbi copLDAbi segLDAtri copLDAtri

20NG

25 1,626 1,654 1,616 1,747 1,642 1,618 1,618 1,613 1,610
50 1,508 1,501 1,485 1,625 1,520 1,469 1,482 1,487 1,483
75 1,464 1,460 1,435 1,600 1,464 1,426 1,435 1,437 1,432
100 1,431 1,435 1,415 1,547 1,451 1,385 1,414 1,412 1,408
150 1,434 1,401 1,422 1,550 1,422 1,381 1,406 1,406 1,405

Austen

25 761 764 773 948 831 748 770 773 775
50 748 744 748 939 815 709 754 751 751
75 748 730 746 945 826 708 745 745 760
100 757 729 755 953 825 696 751 746 756
150 762 728 761 966 845 699 763 761 766

PubMed

25 1,093 1,122 1,098 1,249 1,093 1,092 1,098 1,118 1,117
50 961 987 972 1,160 990 957 968 992 999
75 928 951 932 1,130 954 904 926 955 954
100 930 922 914 1,110 946 884 927 930 957
150 938 891 939 1,095 957 867 937 940 962

Reuters

25 548 568 551 594 590 555 549 620 615
50 487 502 489 545 530 479 486 543 554
75 468 470 469 528 511 448 464 518 527
100 464 452 459 508 499 436 455 505 518
150 454 437 455 491 495 426 456 495 511

Ted

25 1,645 1,645 1,640 1,681 1,636 1,652 1,640 1,651 1,661
50 1,579 1,587 1,568 1,647 1,579 1,571 1,574 1,585 1,590
75 1,543 1,546 1,544 1,641 1,551 1,551 1,545 1,560 1,563
100 1,518 1,531 1,522 1,637 1,533 1,512 1,527 1,531 1,537
150 1,501 1,503 1,505 1,634 1,505 1,492 1,508 1,518 1,519

Wiki15

25 1,161 1,213 1,156 1,410 1,195 1,150 1,148 1,237 1,239
50 1,095 1,133 1,096 1,418 1,143 1,077 1,104 1,181 1,184
75 1,101 1,120 1,092 1,426 1,144 1,037 1,092 1,167 1,188
100 1,090 1,097 1,113 1,405 1,159 1,029 1,107 1,168 1,205
150 1,119 1,098 1,149 1,393 1,201 1,023 1,146 1,184 1,238

Wiki37

25 1,357 1,422 1,343 1,636 1,386 1,358 1,356 1,446 1,451
50 1,270 1,311 1,272 1,558 1,315 1,254 1,271 1,348 1,356
75 1,260 1,292 1,271 1,584 1,305 1,207 1,269 1,325 1,355
100 1,271 1,273 1,281 1,562 1,312 1,209 1,274 1,335 1,358
150 1,290 1,273 1,306 1,556 1,363 1,208 1,301 1,346 1,405

Wiki46

25 1,366 1,427 1,366 1,561 1,417 1,358 1,360 1,441 1,442
50 1,259 1,278 1,261 1,455 1,302 1,211 1,254 1,312 1,336
75 1,227 1,224 1,233 1,396 1,278 1,151 1,214 1,274 1,288
100 1,216 1,181 1,226 1,355 1,276 1,153 1,228 1,266 1,303
150 1,236 1,125 1,243 1,301 1,298 1,123 1,240 1,269 1,319

Table 4.4: The perplexity scores (Eq. 4.9) achieved on each of the datasets used.
The best scores for each dataset are shown in bold font.
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Intrinsic Evaluation: Normalized Pointwise Mutual Information Automati-

cally evaluating the coherence of the topics produced by topic models is a task

that has received a lot of attention. The goal is to measure how coherent or inter-

pretable the produced topics are [128]. It has been recently found that scoring the

topics using co-occurrence measures, such as the pointwise mutual information

(PMI) between the top words of a topic, correlates well with human judgments

[135]. To achieve that, an external corpus like Wikipedia is treated like a meta-

document, which is used as the basis to calculate the PMI scores of words using a

sliding window and applying the equation:

PMI(wi ,wj) = log
P (wi ,wj)

P (wi)P (wj)
. (4.10)

Evaluating the topic coherence requires selecting the top-N words of a topic

and performing the manual or automatic evaluation. Here,N is a hyper-parameter

to be chosen and its value can impact the results. Very recently, Lau and Baldwin

[102] showed that N actually impacts the quality of the obtained results and in

particular the correlation with human judgments. In their study they conclude

that aggregating the topic coherence scores over several topic cardinalities, leads

to a substantially more stable and robust evaluation.

Following these findings, we present in Table 4.5 the topic coherence scores

as measured by the normalized pointwise mutual information (nPMI). The scores

of nPMI range in [-1,1], where in the limit of -1 two words w1 and w2 never oc-

cur together, while in the limit of +1 they always occur together (complete co-

occurrence). As in [102], for each topic, we aggregate the topic coherence scores

over three different topic cardinalities: N ∈ {5,10,15}. The table presents the re-

sults when training the topic models for various numbers of topics K , in particular

for K ∈ {25,50,75,100,150}. The numbers reported are the averages of the nPMI

scores and are calculated as follows: we train the topic models for 250 Gibbs sam-

pling iterations. After the 150-th iteration (including the 150-th) we sample the

top-N words of the topics every 25 iterations. As a result, we have 5 samples in

total, and for those we calculate the average nPMI scores and standard deviations

and report them in Table 4.5.

One may observe from the table that, in general, increasing the number of top-

ics decreases the coherence of the learned topics. This applies for every topic

model and dataset we tried. In most of the cases, the most coherent topics in

terms of nPMI are obtained with 25 topics. In terms of the types of the segments
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K LDA segLDAnp copLDAnp segLDAsent copLDAsent segLDAbi copLDAbi segLDAtri copLDAtri

20NG

25 .118±.07 .127±.07 .113±.06 .108±.07 .117±.07 .112±.06 .115±.07 .084±.05 .117±.06
50 .111±.07 .114±.06 .113±.06 .113±.07 .111±.07 .110±.06 .113±.06 .081±.06 .107±.06
75 .105±.06 .109±.07 .103±.06 .107±.06 .109±.07 .103±.05 .104±.06 .068±.06 .109±.06
100 .103±.06 .112±.06 .105±.06 .102±.06 .101±.06 .096±.05 .097±.06 .071±.06 .100±.06
150 .098±.06 .102±.06 .098±.06 .097±.06 .095±.06 .093±.06 .096±.05 .058±.05 .095±.05

Austen

25 .076±.04 .077±.04 .082±.04 .088±.04 .084±.04 .082±.03 .077±.04 .060±.03 .076±.04
50 .069±.04 .072±.03 .066±.03 .070±.04 .066±.03 .080±.04 .068±.03 .057±.03 .068±.03
75 .065±.03 .062±.03 .066±.03 .064±.03 .064±.03 .068±.03 .064±.03 .052±.02 .065±.03
100 .062±.03 .064±.03 .060±.03 .064±.03 .062±.03 .066±.03 .062±.03 .046±.02 .063±.03
150 .057±.03 .059±.03 .059±.03 .059±.03 .059±.03 .063±.03 .058±.03 .045±.03 .058±.03

PubMed

25 .154±.07 .165±.08 .167±.07 .154±.06 .153±.06 .153±.07 .153±.07 .153±.06 .156±.06
50 .156±.07 .154±.08 .159±.07 .163±.08 .158±.07 .149±.08 .160±.07 .136±.07 .165±.07
75 .159±.08 .153±.08 .161±.08 .143±.08 .156±.08 .155±.08 .158±.08 .135±.08 .159±.08
100 .150±.07 .153±.08 .150±.08 .149±.07 .153±.08 .156±.07 .148±.08 .134±.07 .150±.08
150 .143±.07 .144±.08 .143±.08 .137±.07 .139±.07 .147±.07 .146±.07 .116±.07 .142±.08

Reuters

25 .055±.03 .061±.04 .054±.03 .062±.03 .061±.03 .067±.03 .052±.03 .047±.03 .054±.03
50 .056±.03 .073±.04 .060±.03 .062±.03 .057±.03 .064±.03 .055±.03 .050±.03 .048±.03
75 .057±.03 .066±.04 .057±.03 .062±.03 .056±.03 .064±.03 .053±.03 .047±.03 .051±.03
100 .056±.03 .070±.04 .055±.03 .057±.03 .058±.03 .061±.03 .056±.03 .048±.03 .049±.03
150 .057±.03 .068±.04 .054±.03 .060±.04 .055±.03 .057±.03 .053±.04 .046±.03 .051±.03

Ted

25 .070±.04 .090±.04 .072±.04 .087±.04 .074±.05 .073±.04 .069±.04 .063±.03 .064±.04
50 .074±.05 .099±.04 .081±.05 .087±.05 .080±.05 .074±.04 .079±.06 .064±.04 .078±.05
75 .080±.05 .100±.05 .074±.05 .089±.05 .079±.05 .076±.05 .075±.05 .054±.03 .077±.05
100 .073±.04 .094±.05 .072±.05 .075±.05 .076±.05 .071±.04 .073±.05 .056±.04 .074±.05
150 .067±.04 .086±.06 .070±.05 .077±.05 .071±.05 .067±.04 .071±.05 .051±.03 .069±.05

Wiki15

25 .107±.06 .103±.06 .102±.06 .112±.06 .099±.06 .109±.06 .098±.06 .132±.05 .105±.06
50 .088±.06 .086±.05 .084±.05 .084±.06 .081±.06 .086±.06 .086±.06 .106±.06 .085±.06
75 .077±.06 .082±.06 .072±.06 .073±.06 .073±.05 .078±.05 .076±.06 .096±.06 .074±.06
100 .071±.05 .076±.05 .068±.05 .071±.05 .066±.05 .070±.05 .066±.06 .085±.05 .069±.05
150 .063±.05 .064±.05 .058±.05 .060±.05 .054±.05 .067±.05 .062±.05 .077±.05 .059±.05

Wiki37

25 .115±.05 .124±.06 .126±.05 .110±.05 .105±.06 .110±.04 .120±.05 .127±.05 .120±.05
50 .103±.06 .107±.06 .102±.06 .101±.06 .098±.06 .104±.05 .097±.06 .112±.05 .102±.05
75 .093±.06 .093±.06 .089±.06 .089±.06 .088±.06 .096±.06 .088±.06 .100±.06 .095±.06
100 .081±.06 .086±.06 .083±.06 .083±.06 .079±.06 .088±.06 .089±.06 .093±.06 .083±.06
150 .078±.06 .083±.06 .070±.06 .071±.05 .071±.05 .079±.05 .075±.06 .084±.06 .072±.06

Wiki46

25 .119±.05 .123±.06 .120±.05 .114±.06 .105±.05 .119±.05 .106±.06 .120±.05 .117±.05
50 .105±.06 .109±.06 .109±.06 .107±.06 .100±.06 .108±.06 .104±.06 .094±.06 .115±.06
75 .092±.06 .105±.06 .099±.06 .094±.06 .090±.06 .099±.06 .101±.06 .084±.06 .095±.06
100 .089±.06 .090±.06 .088±.06 .083±.06 .079±.06 .086±.06 .089±.06 .079±.06 .092±.06
150 .081±.06 .084±.06 .082±.06 .074±.06 .077±.06 .082±.06 .075±.06 .072±.05 .076±.06

Table 4.5: nPMI scores (Eq. 4.10) for the topic models for different values of topics.
The best scores for each dataset are shown in bold font.
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we consider, once more, short segments likes noun-phrases, bigrams and trigrams

perform the best. This, however, also depends on the dataset and, less frequently

on the number of topics considered. Further, compared to the perplexity results

where copulas improved the performance of topic models with linguistically moti-

vated segments, in the nPMI experiments they do not. In most of the experiments,

the models with copulas perform worse than their counterparts that do not use

copulas for sampling the segment topics.

Our last observation concerns the nPMI scores: depending on the dataset, one

observes higher or lower scores. The highest scores are consistently obtained on

the PubMed dataset, while the lowerst on the Reuters. This, of course, greatly de-

pends on the corpus used as a meta-document to estimate the PMI scores (Wikipedia

in our case). The results however, suggest, that the topics learned using PubMed

documents are more coherent, and we believe that this is due to the consistent

use of language in scientific articles, like PubMed documents. To highlight this in

Table 4.6 we show the nPMI scores for each topic of the best performing system

(copLDAnp) for 25 topics for PubMed. From the table, Topic 3 that concern cancer

is the most consistent with nPMI=0.27. Interestingly, including more words of the

topic in the nPMI calculation improves the scores from .21 to .29 and .31 when

considering the top-5, top-10 and top-15 words respectively. On the other hand,

Topic 4 that is mainly about genetics, achieves the highest top-5 nPMI scores as

the words “gene”, “chromosom”, “mutat”, “tumor”, and “genet” have nPMI=.40.

Adding more words in the nPMI calculation however, worsens the score and re-

sults in an average nPMI of .24. We conclude the nPMI evaluation by commenting

on a limitation of the approach: Topic 14 with achieves the lowest nPMI score of

.03, is still consistent. Its top-5 words (“patient”, “group”, “p”, “signific”, “age”,

“studi”) that probably describe group studies, although coherent for scientists, are

scored with nPMI=0.0 probably due to meta-document we used for calculating

the PMI probabilities. As Wikipedia is out-of-domain, one typically expects few

entries to discuss similar topics and this impacts the scores of the topic.

4.4.2 Extrinsic Evaluation

Compared to the previous evaluation subtasks where we presented results of in-

trinsic evaluation, we now present a task for extrinsic evaluation of the topic mod-

els. Extrinsic evaluation of topic models uses a real task such as clustering [147] or

classification to assess the performance of the representations learned with topic

models.
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Topic nPMI nPMI5/nPMI10/nPMI15 Top-15 words per topic

1 .17 .20/.18/.13 case patient tumor diagnosi present clinic report diseas lesion find his-
tolog examin year one rare

2 .10 .10/.10/.09 use care health rate cost hospit system provid data payment state medic
medicar new physician

3 .27 .21/.29/.31 cancer mutat polyposi patient famili apc colon adenomat adenoma tumor
fap polyp colorect intestin carcinoma

4 .24 .40/.18/.13 gene chromosom mutat tumor genet region delet patient identifi loss
analysi famili studi allel use

5 .15 .14/.17/.15 pressur renal rat sodium increas furosemid blood effect hypertens signific
plasma decreas diet p intak

6 .17 .26/.13/.12 bind protein domain interact structur repeat activ residu region site two
function peptid complex contain

7 .13 .13/.14/.12 rat activ increas mice level vascular express protein effect endotheli diabet
aorta product control mrna

8 .05 .03/.05/.07 muscl chang dure observ studi activ mitochondri complex respons differ
occur motor increas fiber membran

9 .18 .22/.18/.15 protein gene sequenc human express dna acid isol region encod virus tran-
script contain two strain

10 .10 .14/.10/.07 patient injuri trauma sever result day fractur score care hospit injur con-
clus admiss hour multipl

11 .12 .13/.12/.12 patient result use procedur anastomosi urinari sunscreen pouch bladder
protect skin ileal function complic contin

12 .11 .14/.10/.10 effect inhibit rat activ relax ca k contract induc increas respons concentr
phosphoryl cl aorta

13 .16 .20/.15/.14 acid increas effect fatti concentr group level diet enzym decreas signific
activ product lipid dietari

14 .03 .00/.04/.05 patient group p signific age studi year differ risk associ factor result com-
par conclus n

15 .26 .38/.24/.16 hiv infect virus viral drug therapi patient treatment studi resist load test
combin effect activ

16 .24 .36/.20/.14 patient seizur tempor epilepsi lobe tle later surgeri eeg result hippocamp
ictal method onset left

17 .13 .14/.12/.12 neuron brain rat control loss chang increas signific epilepsi patient hip-
pocamp activ function cell anim

18 .08 .12/.07/.07 liver hepat seal fetal male femal infant group found anim bodi speci fetus
per signific

19 .10 .10/.10/.10 use test method latex studi sensit patient imag result detect specif evalu
posit b assay

20 .08 .11/.07/.06 use method motion measur model result system dose time determin differ
direct mean degre studi

21 .15 .15/.17/.15 express cell signal gene develop activ protein factor regul differenti
growth transcript suggest role neural

22 .20 .26/.19/.15 heart cardiac patient ventricular left p cardiomyopathi myocardi function
normal group signific failur lv dysfunct

23 .20 .24/.18/.17 cell express human receptor macrophag activ level studi tissu antibodi
respons increas cultur apoptosi antigen

24 .23 .34/.19/.15 aortic patient arteri aorta arch thorac graft oper repair left descend valv
use aneurysm replac

25 .19 .20/.21/.16 uterin leiomyoma women patient pregnanc treatment hysterectomi fi-
broid result myoma embol conclus month endometri studi

Table 4.6: The topics and nPMI scores per topic identified by copLDAnp on the
PubMed dataset when trained with K = 25. We words of the topics are ordered
from left to right by their per-word topic probabilities. We report the nPMI scores
of each topic for the top-N words (nPMIN ), with N ∈ {5,10,15}, as well as the
average nPMI as suggested by [102].
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Extrinsic evaluation: text classification Document classification is a supervised

learning task where a document is associated with one or more categories from

a pool of M categories Y = {y1, . . . , yM}. The document is represented as a vector

X . To perform the classification task, a learner such as a Logistic Regression [121]

or Support Vector Machines [39] is trained to uncover a function f : X → Y . In

the framework of topic modeling, each document can be represented as by its

topic distribution. Then, given the document topic distributions a learner can be

trained in order to perform the classification task and assign the categories to the

documents.

To this end, we obtain the per-document topic distributions following a pro-

tocol similar to the calculations of nPMI: we train the topic models for 250 Gibbs

sampling iterations. After the 150-th iteration (including the 150-th) we sample

the per-document topic distributions every 25 iterations. The per-document topic

distributions used as inputs to the SVMs is then the average of the 5 samples. This

approach of subsampling the chain is called thinning and is common with Gibbs

sampling. Gibbs samplers generate a Markov chain of samples where nearby sam-

ples are correlated and subsampling the chain of samples results in obtaining sam-

ples (here document distributions) that are less correlated and therefore more ef-

fective. Thinning allows to have independent samples. In addition, discarding the

samples from the beginning of the chain is called burn-in, and we applied it to the

first 149 samples, as they may not accurately represent the desired distribution.

We evaluate the presented topic models using the task of document classifica-

tion. We use Support Vectors Machines (SVMs) as our learners, and in particu-

lar the implementation of Scikit-learn [143]. We set the regularization parameter

C = 10, after cross-validating it in the training parts of the datasets from the range

C ∈ {10−4,10−3, . . . ,104, }. For the multi-label datasets (TED, Reuters and PubMed)

we employed one-versus-rest: the SVMs return every category with a positive dis-

tance from the separating hyper-planes. Table 4.7 reports the classification scores

for the micro-averaged F1 measure for the datasets used. The F1 measure is the

harmonic mean of precision and recall:

F1 =
2 ·precision · recall
precision + recall

,

where precision is the fraction between true positives and the sum of true pos-

itives and false positives, while recall is the fraction between true positives and

true positives and false negatives. Micro-averaging refers to summing up the indi-

vidual true positives, false positives, and false negatives of the system for different
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categories and aggregating them in order to get the total precision and recall. The

reported scores in Table 4.7 are the averages of 10-fold cross-validation and the

corresponding standard deviations are shown as subscripts.

As one can note, the highest classification scores are obtained using topic distri-

butions obtained with copulas. Importantly, the addition of copulas consistently

improves the scores of the MiF1 evaluation measure. Notice the benefits of copulas

in the table: the systems that use copulas when sampling the topics of the words of

the coherent segments consistently achieve higher scores than their counterparts

that do not use copulas. Importantly, those systems perform better that LDA, which

builds on the bag-of-words representation. The latter highlights that incorporating

parts of text structure is advantageous for applications that use document repre-

sentations learned with topic models. Overall, the results suggest that assuming

short segments like noun-phrases, bigrams and trigrams to be coherent is the op-

timal option with respect to the performance.

Our last observation concerns the low performance of the SVMs on the TED

dataset. We believe that this is due to the fact that TED is a multilabel dataset

with 2.42 categories/instance (Table 4.1), which is much higher that the rest of

the multilabel dataset. The results suggest that an approach like one-versus-rest

we used, can not model this successfully and one should employ a better suited

multi-label strategy. Although interesting, multi-label classification was not the

main topic of this chapter and therefore we do not explore more this direction.

4.5 Summary

In this chapter we presented segmentLDA and copulaLDA, two novel topic mod-

els that incorporate prior knowledge of text structure in the form of boundaries

of coherent segments. copulaLDA uses copulas when sampling the topics of the

words of segments and thus allows few, related topics to appear in a segment. On

the other hand, segmentLDA applies a maximal binding between the topics of the

words in a segment and, as a result, a single topic is assumed to generate its words.

To evaluate different versions of the proposed model, where we considered var-

ious types of segments to be thematically coherent, we performed a systematic

comparison of the performance of the models: we compared their performance

with respect to the generalization performance measured by perplexity, topical co-

herence measured by normalized pointwise mutual information (nPMI) and text
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K LDA segLDAnp copLDAnp segLDAsent copLDAsent segLDAbi copLDAbi segLDAtri copLDAtri

20NG

25 55.34±1.12 54.90±0.65 57.30±0.81 48.95±1.05 56.80±1.09 54.25±0.78 56.69±0.67 55.19±0.95 56.56±0.47
50 59.83±0.81 59.37±0.97 62.36±0.92 55.27±1.31 61.66±0.97 64.09±1.00 63.71±0.65 63.76±0.96 63.79±0.77
75 64.05±1.07 62.98±1.26 63.42±1.06 56.18±1.00 63.48±1.29 63.08±1.20 63.65±1.17 64.12±1.36 64.25±0.87
100 65.12±1.24 61.42±0.84 63.86±1.01 59.71±1.14 64.02±1.01 63.82±0.91 65.20±1.08 64.78±1.01 64.88±0.98
150 64.62±1.15 62.29±0.95 65.11±0.86 56.89±1.02 63.74±0.71 64.87±0.82 64.18±1.17 64.74±1.14 64.23±1.01

Wiki15

25 72.99±2.34 68.44±4.16 73.66±2.39 64.66±2.90 69.78±3.89 69.31±2.54 72.84±2.48 68.45±1.60 72.53±3.20
50 76.61±3.43 69.64±2.70 77.04±3.50 63.73±3.57 73.49±2.21 74.14±4.30 74.23±2.72 73.92±4.29 74.23±2.42
75 76.01±2.13 72.27±3.39 74.42±3.25 65.45±3.78 73.47±2.55 74.45±2.62 76.36±2.73 73.61±2.75 75.85±2.63
100 76.01±2.47 71.68±3.88 73.81±3.03 67.37±5.28 72.30±3.85 75.86±2.67 76.25±2.50 76.13±3.81 73.04±4.12
150 73.96±2.81 71.56±3.75 72.60±2.66 66.11±2.48 72.82±1.62 74.90±1.38 75.75±2.43 75.22±2.44 75.66±3.08

Wiki37

25 59.65±2.86 55.83±3.32 59.98±1.87 55.21±2.07 59.41±1.93 56.34±2.18 58.51±1.51 57.72±3.25 57.78±1.68
50 60.47±3.02 59.18±1.70 63.95±2.11 55.69±1.54 63.54±1.98 62.56±1.84 63.34±2.48 62.31±1.92 63.35±2.29
75 63.27±2.22 60.37±2.13 63.74±2.19 56.44±3.06 63.84±1.78 62.88±1.87 62.34±2.59 64.34±2.06 63.57±2.65
100 63.94±2.64 60.76±3.01 62.52±1.38 56.05±2.49 63.51±1.58 61.97±1.76 64.50±2.18 63.32±2.22 64.22±2.15
150 63.75±2.39 61.68±1.62 62.18±2.93 56.93±2.70 62.04±2.07 64.31±2.23 64.45±2.30 64.38±2.58 64.02±2.96

Wiki46

25 54.77±1.75 49.75±0.86 54.59±2.31 47.52±1.87 52.52±1.44 53.01±2.34 53.77±1.82 55.11±1.41 56.14±1.69
50 60.78±1.90 54.96±1.33 61.32±1.86 50.51±2.06 58.64±1.58 58.69±1.98 60.50±1.12 60.16±1.70 61.68±1.64
75 62.35±1.61 60.25±1.58 62.89±1.25 52.19±1.46 62.71±1.30 62.95±2.43 63.69±1.90 63.05±2.11 63.26±1.99
100 64.81±1.29 60.49±1.63 65.22±1.50 53.98±2.22 62.03±1.91 64.18±1.67 62.77±1.54 63.97±1.50 62.98±1.79
150 65.36±1.43 63.68±2.17 65.82±1.11 55.03±1.43 61.38±1.39 67.30±1.67 65.41±1.91 64.89±0.93 67.97±1.68

PubMed

25 43.18±1.15 42.80±1.66 44.74±1.17 41.00±2.12 49.47±1.84 46.13±1.69 49.62±1.41 49.55±0.99 51.62±1.24
50 57.59±1.97 53.80±1.57 55.26±1.96 53.86±2.36 57.37±1.60 54.91±1.95 56.95±1.40 57.58±1.80 58.15±1.45
75 64.39±1.35 61.26±2.13 63.53±1.62 52.64±2.02 63.55±2.00 64.42±1.33 61.20±2.00 64.53±1.77 62.28±2.18
100 65.50±0.88 62.81±1.99 65.75±2.14 59.30±1.96 66.02±1.94 65.50±1.34 64.15±2.12 66.39±1.55 65.22±1.69
150 68.22±2.36 65.37±1.75 68.30±1.48 56.58±2.28 67.95±2.16 67.81±1.23 68.32±1.63 68.94±1.59 67.97±1.92

Reuters

25 62.92±3.77 62.15±4.06 62.38±4.20 61.19±4.17 62.30±3.88 61.49±4.27 63.34±4.60 62.93±3.97 65.04±4.01
50 66.34±4.21 65.09±4.19 65.42±4.23 65.33±4.30 65.04±4.29 66.92±3.71 66.98±3.39 67.76±3.73 67.23±3.65
75 68.56±3.81 66.25±3.88 67.85±3.30 66.78±3.96 66.39±3.44 67.88±3.84 68.67±3.72 69.23±3.69 68.47±3.79
100 70.77±3.47 68.46±3.53 69.97±3.54 66.19±4.17 67.52±4.11 69.47±3.33 70.25±3.82 70.15±3.25 70.89±3.74
150 70.95±3.17 70.72±3.23 71.34±3.52 69.00±3.67 69.66±3.32 71.38±3.34 70.41±3.44 72.60±3.07 71.71±3.57

Ted

25 11.74±3.12 10.83±2.98 12.02±2.30 10.09±2.50 12.48±3.39 10.73±2.72 12.84±2.32 11.10±3.22 12.11±2.59
50 13.58±1.35 12.20±3.62 15.14±3.41 11.93±2.72 13.12±2.84 12.48±2.18 12.84±2.13 13.12±2.69 12.20±2.01
75 13.58±1.52 11.47±3.26 13.21±2.43 12.57±2.96 14.59±3.03 13.39±4.21 13.39±2.91 12.75±3.44 13.67±3.27
100 12.66±2.65 12.94±2.77 12.20±2.43 10.64±3.51 13.67±2.77 13.67±2.61 12.66±2.12 12.39±2.60 12.48±2.06
150 12.48±2.60 12.57±2.36 12.20±3.21 10.55±2.10 13.21±2.60 12.57±1.79 13.21±2.82 13.03±2.75 13.49±3.02

Table 4.7: MiF scores for the classification task. The best scores are shown in bold
font.
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classification performance measured by the MiF1 scores. Our results strongly sug-

gest that prior knowledge of text structure benefits the coherence of the produced

topics as well as the quality of the learned per-document topic distributions. Our

analysis further suggests that, in practice, assuming short text spans like bigrams

and trigrams is optimal: apart from the fact that such segments achieved the best

performance in most of the evaluation tasks, to obtain them one does not need re-

sort to linguistic tools like parsers but can rely only on counting operations. Lastly,

the use of copulas is advised mostly for cases where the output of the topic mod-

els will be used for a real task, like text classification, which is though the most

interesting ones.

While incorporating segments with or without the use of copulas has been

shown to be beneficial, one should take into account that such methods require

an overhead for segmenting the documents. While the segmentation methods we

presented can benefit from parallelization in a straight-forward way, this needs

to be considered. Further, sampling from copulas imposes a further overhead:

not only one needs sample from complex distributions [83, 82], but also needs to

transform the sample using the probabilistic integral transform as discussed in

the previous sections. In conjunction with the extra free parameters (copulas fam-

ily, λ, segmentation methods) that these models introduce, one may experience a

significant overhead tuning the models for production purposes.

Our findings open various avenues for future research. The computational

overhead discussed in the previous paragraph motivates future work on accel-

erating inference such as combining copulas with variational inference, which to

the best of our knowledge has yet to be achieved. A second question that is raised

is whether one can use these findings to improve multilingual topic models. This

question in fact motivates part of the contributions concerning text structure and

bilingual topic models presented in the next chapter. Another question concerns

the segmentation approach used. While here we relied on frequency-based ap-

proaches like n-grams and syntactic information like noun-phrases, one may ask

if similar results can be obtained using an unsupervised segmentation approaches

or approaches that learn the segment boundaries and the topics jointly.
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Chapter 5

Extending Bilingual Topic Models

Due to the ever increasing amount of multilingual content online, peo-

ple are more and more confronted with documents available in more

than one language. An important challenge when developing systems

for such multilingual document corpora is to automatically discover and extract

meaningful topics that help to better organize them and comprehend their con-

tent. Following the success of topic models in the monolingual setting, there have

been recent efforts that extended them to the bilingual (or multilingual) setting.

Those extensions of topic models that account for text written in two or more lan-

guages enable a variety of interesting multilingual and cross-lingual applications.

In the previous chapter we discussed that probabilistic topic models like Latent

Dirichlet Allocation (LDA) [23] are a family of unsupervised models that when

applied to monolingual collections uncover the latent themes underlying it. De-

spite their success and wide adoption, we identified some of their limitations and

suggested extensions to overcome them. In particular, we argued that while the

bag-of-words assumption may be important during inference as it simplifies the

calculation of the conditional probabilities, a more complex document model may

be advantageous. Our contributions were motivated by the outcomes of linguis-

tic or statistic pre-processing steps for text segmentation. We proposed two novel

topic models that incorporate parts of the text structure in the form of boundaries

of text spans and we demonstrated in a plethora of evaluation tasks the improve-

ments that those models yield.

Our focus in this chapter is bilingual topic models. The most representative

bilingual topic model is illustrated in Figure 5.2(i) and is commonly called bilin-

gual1 LDA (BiLDA) [127, 45, 178]. BiLDA, which as also presented in Section 2.3.2,

1Depending on the number of input languages the model may be referred to as either bilingual
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Sankuru District is

a district located in

the Kasai-Oriental

province, in the

Democratic Repub-

lic of the Congo

+422 words

A provcia de

Sankuru uma das

26 provcias de Rep-

blica Democrtica do

Congo. Foi criada

pela Constituio de

+45 words

English Version Portuguese Version

Comparable

Documents

Figure 5.1: Motivating Example: excerpts from comparable Wikipedia documents.
The English version is several times bigger than the Portuguese and one may rea-
sonably assume it covers more topics.

extends LDA and does not require any prior, language dependent linguistic knowl-

edge but the input collection to be in the form of pairs of thematically aligned doc-

uments. Given the pairs, a fundamental hypothesis of BiLDA is that the documents

of a pair share a single per-document topic distribution θ, an observation we also

highlighted in Section 2.3.2. This entails that the documents in a pair discuss ex-

actly the same themes. Although reasonable for parallel corpora, whose pairs con-

sist of documents that are translations, this assumption is strong for collections

composed by pairs of comparable documents (e.g. [122]), that is documents similar

to some extent only. Figure 5.1 illustrates an example of comparable documents

written in English and Portuguese.2 As the English document is larger one would

expect it to cover more topics. Hence, having a shared topic distribution between

those two documents is a strong assumption.

In this chapter we propose to extend bilingual topic models. On one hand, our

goal is to relax the assumption of comparable documents sharing a single topic

distribution and better adapt bilingual topic models for corpora consisting of doc-

uments like those of Figure 5.1. For this purpose, instead of a shared distribution

we allow the documents of a pair to have two, separate, yet bound distributions. We

suggest that the strength of the bound should depend on the semantic similarity

of the documents of the pair. The estimation of this similarity for documents writ-

ten in different languages is a task on itself. Instead of using dictionaries, which

are one-to-one or one-to-N discrete word associations and do not capture differ-

ent levels of similarity, or machine translation systems, which are computationally

expensive to develop, we propose to use cross-lingual word embeddings.

On the other hand, motivated by our discussion in Chapter 4, where we found

or multilingual LDA.
2This is a real example from the WikiEn-Pt collection used in our experiments.
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Figure 5.2: The topic models used in this work. From left to right: (i) BiLDA

(ii) segBiLDA (iii) λ-BiLDA (iv) λ-segBiLDA. The difference of BiLDA and segBiLDA

from their λ− counterparts lies on the fact that the second have separate but bound
topic distributions and the strength of binding is controlled by λ.

text structure to benefit topic models, we aim at validating our findings in the

multilingual setting. The arguments that support incorporating text structure in

topic models hold independently of the language: words that frequently co-occur

(e.g., frequent n-grams) or words that are grouped together due to the syntax (e.g.,
noun-phrases) should be topically coherent in every language.

The questions we attempt to answer here are twofold: (Q1) How to better adapt

bilingual topic models to comparable collections? (Q2) Does this adaptation gen-

eralize well across different types of topic models? To address these questions, the

chapter proposes three contributions:

(i.) a novel approach that combines topic models with (shallow) neural networks

for learning word embeddings allowing the former to extract latent distribu-

tions from comparable corpora,

(ii.) the extension of BiLDA and of a monolingual topic model that incorporates

text structure in the form of boundaries of coherent text spans,

(iii.) a systematic evaluation of the novel topic models on four comparable cor-

pora where English are paired with French, German, Italian, Spanish and

Portuguese documents.

The remainder of the chapter is organized as follows: Section 5.1 presents an

overview of the related work. The main contribution of this chapter is presented
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in Section 5.2, where we propose to incorporate information of text structure into

bilingual topic models and also extend them for comparable corpora. Then, in

Section 5.3 we evaluate the presented topic models and we conclude in Section

5.4.

5.1 An overview of the relevant literature

Our work lies in the intersection of the fields of multilingual topic modeling and

cross-lingual word embeddings. We review the relevant literature starting with

the work on multilingual topic models.

Multilingual Topic Models There are two different lines of research in the multi-

lingual topic modeling approaches with respect to the nature of the available train-

ing inputs. The first line assumes access or attempts to create linguistic resources

such as dictionaries, in order to identify the topical links and alignments between

the multilingual documents of a text corpus [27, 88, 192, 28]. The topic align-

ments between documents are not implicit in the input, and the models identify

the topically relevant multilingual documents and the topic distributions while

leveraging the available linguistic resources. For instance, [27] propose the mul-

tilingual topic model for unaligned text (MuTo) that discovers a parallelism in

the documents of the corpus at the vocabulary level, while it assumes that similar

themes are expressed in both languages. To perform the joint task of producing

consistent topics in each of two languages and then aligning them, the model uses

dictionaries. JointLDA is a model with similar motivations, proposed in [88]. To

cope with the multilingual setting, jointLDA also uses dictionaries but learns top-

ics shared among the input languages. Those topics are distributions over the

vocabulary terms of the multilingual corpus, and as a result, terms of different

languages occur in a topic. Despite the advantages of such models, their require-

ments for several language-specific resources can be seen as a limitation. Also, [28]

uses multilingual topic models and incorporates a regression task like sentiment

prediction to better predict sentiment.

The second, more flexible line of research, investigates topic modeling solely on

the basis of the textual inputs. Those inputs, usually consist of text corpora with

documents that are either parallel translations [196] or comparable translations of

each other [137, 127, 44, 149]. Such topic models by not relying on any external re-

source are a better fit for unsupervised methods. The most representative model of
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this family is BiLDA, which extends LDA in the bilingual [137, 127, 44] or the mul-

tilingual setting [98, 127]. The difference between the bi- or multilingual setting

lies on the number of the input languages, which ranges from two to several. The

model we propose in this work belongs to this family of models as it assumes ac-

cess to a corpus whose input documents form theme-aligned pairs. However, our

model is more flexible as instead of assuming a single topic distribution per pair of

documents uses two topic distributions that are linked with a binding mechanism

that uses cross-lingual word embeddings to account for the level of similarity be-

tween the documents. Similarly, Latent Semantic Allocation has been extended in

the bilingual setting [169] with applications to translation or [?] proposed to use a

PLSA model per-language and concatenate the learned representations; we focus

however on BiLDA as in the monolingual setting LDA was shown to outperform LSA

[23] and one should expect similar findings in the bilingual setting.

Cross-lingual Word Embeddings According to the distributional hypothesis, first

stated in the early 60’s [58, 77], linguistic items such as words with similar dis-

tributions should have similar meanings. In other words, semantically similar

words should have similar contextual distributions. The contextual information is

usually induced assuming the context to be documents or sliding windows and is

represented by populating word-context co-occurrence matrices. For words, dif-

ferent models that learn distributed representations have been recently proposed

and those models are used as implementation models of the distributional hy-

pothesis [175]. To this end, the distributed representations (also known as word

embeddings) associate words with dense vectors, of dimension of a few hundreds

to some thousands. A distributed representation of a symbol is a vector of fea-

tures that characterize the meaning of the symbol and in our case a symbol is a

word. The representation is a continuous D-dimensional vector and, therefore,

compact in the sense that an exponential number of symbols (words) in the num-

ber of dimensions can be efficiently represented [175], compared, for instance, to

the one-hot-encoding scheme that can only represent D symbols when using D

dimensions.

Among different models, the skipgram model with negative sampling [124],

has been shown to be efficient and effective in several applications. Such a model

is a function f that projects a word w in a D-dimensional space: f (w) ∈RD , where

D is predefined. Although the model relies on a well-defined prediction task [15],

it has been shown that it is implicitly factorizing a word-context matrix, whose
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cells are the pointwise mutual information (PMI) (Chap. 4, Eq. 4.10) of the respec-

tive word and context pairs, shifted by a global constant [108, 109]. Despite the

theoretical equivalence however, an advantage of the skipgram model compared

to other models that factorize such matrices like Latent Semantic Indexing [84] is

its ability to practically scale to huge amounts of data.

The skipgram model was initially proposed for the single language setting.

However, motivated by the idea of having a single representation space shared by

more languages, cross-lingual word embeddings models extended the idea in the

bilingual and multilingual settings. The models can be grouped with regard to the

approach used to align the cross-lingual embeddings. Models like [125] followed

by [190, 106] for instance, begin by learning monolingual word embeddings and

try to learn a linear transformation from one space to the other. Another way to

learn cross-lingual embeddings [72, 50, 179] is by artificially generating multilin-

gual documents by concatenating the documents of parallel or comparable corpora

and then training existing monolingual models. Lastly, models like [118, 71] per-

form joint optimization of monolingual and cross-lingual losses. They can benefit

from very big monolingual corpora for optimizing their monolingual objectives

while relying on smaller corpora for optimizing their cross-lingual objective.

In this work we use Bilbowa [71]. It belongs to the family of models that jointly

optimize monolingual and cross-lingual objectives. It extends the skipgram model

for cross-lingual embeddings and trains directly on monolingual data. It uses a

bilingual signal from a smaller set of raw-text sentence-aligned data to align the

cross-lingual embeddings.

Combining Topic Models and Word Embeddings While topic models are trained

to infer the per-word and per-document topic distributions, the skipgram model

is trained by trying to predict the context of a word. Different efforts have at-

tempted to extend the models by combining them. For instance, embeddings as-

sociate words with a single vector, which may be limiting for encoding the differ-

ent meanings of polysemous words. This limitation motivated works that extend

word embeddings with topic models. The purpose is for the topic models to un-

cover the different senses of a word, so that different embeddings can be derived

for each sense [116, 33]. Such efforts attempt to produce better performing word

embeddings.

In a relevant line of work, the purpose is to produce better topic models while

taking advantage of the fact that text embeddings model semantic similarity. To
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`1, `2 Input languages e.g., `1=English, `2=German

di ,d
`1
i ,d

`2
i doc. pair di , whose aligned docs. are d`1i , d`2i

λi The semantic similarity between d`1i and d`2i
V` The size of the vocabulary in language `
Ωk,i The number of words in di assigned to topic k
θi Topic distribution of di
Ψk,w The number of assignments of word w to topic k
φk Word distribution for topic k
si,j The jth segment of document di
wi,j,k The kth word of segment si,j
Ni The number of words of document di
Ni,j The number of words in segment si,j
Ni,j,w The number of occurrences of word w in si,j

Table 5.1: The notation used for the development of the topic models. Adding
exponents `1, `2 to the symbols of the lower part of the table (below the dashed
line) stands for counts specific to d`1

i ,d
`2
i .

this end, [136, 43, 193] extend topic models in order to encourage the models to

group words that are a priori known to be semantically related into topics, where

the a priori knowledge comes from training embeddings in large external corpora.

Our work belongs to this second line of research because we use word embeddings

to improve the results of topic models. Differently from previous research though,

word embeddings are used only to estimate the similarity of documents written in

different languages. Also, our models are multilingual, while previous work inves-

tigated the intersection of topic models and word embeddings in the monolingual

setting using English.

5.2 Framework

Our primary goal in this work is to adapt the bilingual topic models for compa-

rable corpora. To accomplish that we relax the assumption of paired documents

having identical topic distributions. In the rest of this section, after presenting the

notation, we briefly discuss BiLDA in Section 5.2.1. To illustrate how several classes

of topic models can benefit by the adaptation to comparable corpora, we introduce

a novel bilingual topic model that incorporates parts of the document’s structure

(Section 5.2.2). We, then, extend BiLDA and the novel bilingual topic model for

comparable corpora in Section 5.2.3 and Section 5.2.4.

The notation is summarized in Table 5.1. For consistency, we keep the sym-

bols of previous work [183] to the extent of possible. We denote by `1 and `2 the
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different languages of a comparable corpus. As languages are handled symmet-

rically, for convenience we designate by \̀, the language different from language

` ∈ {`1, `2}. The inputs of the topic models are document pairs di = (d`1
i ,d

`2
i ), that

consist of thematically aligned documents d`1
i and d`2

i , written in `1 and `2. De-

pending on the model, documents are either represented as a bag-of-words, or as

a bag-of-segments. Segments are text spans smaller than documents, for instance

sentences, and are represented as a bag-of-words. Considering ` ∈ {`1, `2}, s`i,j is the

jth segment of document d`i . Segmented documents have a hierarchical structure:

they are composed by segments that are composed by words in turn. Depending

on the model, there may exist either a single θi topic distribution that captures

the topics present in both documents of the pair di , or two, separate yet bound
topic distributions θ`i , θ

\̀
i that capture the topics of d`i and d \̀i respectively. The

rest of the notation in Table 5.1 stands for count matrices or vectors used during

inference.

5.2.1 The bilingual LDA

BiLDA (Figure 5.2(i)) is a direct adaptation of LDA in the bilingual setting where a

parallel collection is assumed to be the model’s input. Due to its effectiveness we

use it as a reference in this work. BiLDA assumes that the documents of an aligned

pair di have identical topic distributions (a single and shared θi) and therefore

discuss the same topics. Also, it expects the documents as a bag-of-words. Its

generative story is as follows:

• for each topic k ∈ [1,K]: φ`1
k ∼Dir(β), φ`2

k ∼Dir(β)

• for each document pair di :

– sample θi ∼Dir(α)

– for each language ` ∈ {`1, `2}

* for each of the N `
i words:

· sample z ∼Mult(1,θi)
· sample w ∼Mult(1,φ`z)

The collapsed Gibbs sampling updates [178] for the topic of word j of docu-

ment di is ∀` ∈ {`1, `2}:

P
(
z`ij = zk |z`¬ij ,z

\̀,w`,w \̀,α,β,
)
∝

Ψ `
k,w,¬ij + β

Ψ `
k,·,¬ij +V`β

(
Ωi,k,¬ij +α

)
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A dot “·” occurring in the subscript of a count variable, stands for the summa-

tion over the possible values of the element it replaces, i.e.,Ψ `
k,·,¬ij =

V∑
w=1

Ψ `
k,w,¬ij .

Also, ¬ excludes the counts for the particular variable (¬ij excludes the counts

of the j-th word of d`i ). Further, Dir(α) stands for a sample from a Dirichlet dis-

tribution with prior α and Mult(M,θ) stands for M samples from a Multinomial

distribution parametrized by θ.

For BiLDA, as well as for the models we present next, we consider the Dirichlet

hyperparameters α ∈ R
K and β ∈ R

V to have fixed values, implying symmetric

priors. Extending the models to asymmetric priors or even learning their values

could be done as in [6] for example. Also, as commonly done we omit from the

generative stories the steps where the sizes of segments or documents are sampled

as their sizes are observed during inference. As noted, BiLDA uses a bag-of-words

representation; next we present an extension that uses a more complex document

representation.

5.2.2 Incorporating text structure into bilingual topic models

In this section, we propose segment-BiLDA (segBiLDA) that incorporates prior

knowledge of text structure using a more complex document representation than

bag-of-words. Although important for inference, the bag-of-words assumption is

limiting. In fact, previous research in the single language domain showed the

benefits of similar extensions: Wang et al. [182] proposed a model that handles

bigrams as a single token or as two unigrams depending on the topic, Lau et al.

[103] modeled frequent bigrams as separate tokens, Balikas et al. [11] proposed

to incorporate sentence boundaries to LDA, while Boyd et al. [29] incorporated

parse trees . These important contributions focused on the monolingual setting

and used English texts for empirical evaluation. Here, we extend topic models to

account for text structure in the bilingual case.

For our subsequent analysis, we define coherent text segments to be contiguous

words of a document that are topically coherent. A topically coherent text segment

refers to a segment whose constituent words discuss a single or very few related

themes. For instance, one would expect frequent bigrams like “information re-

trieval” or even short sentences to be topically coherent as they generally convey

a simple message. We model this property with (segBiLDA), which is illustrated

in Figure 5.2(ii). segBiLDA assumes that the input text is segmented a priori and

incorporates the boundaries of segments in its generative story:
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• for each topic k ∈ [1,K]: φ`1
k ∼Dir(β), φ`2

k ∼Dir(β)

• for each document pair di :

– sample θi ∼Dir(α)

– for each language ` ∈ {`1, `2}

* for the j segment (1 ≤ j ≤ S` ):

· sample z ∼Mult(1,θi)

· sample segment words: (w1 . . .wN `
i,j

) ∼Mult(N `
i,j ,φ

`
z)

The important difference of BiLDA from segBiLDA (Figures 5.2(i) and 5.2(ii))

lies in the addition of the segment’s plate. A topic is sampled per segment, and ev-

ery word of a segment is associated with it. The segment boundaries limit the

number of topics that appear in the segment to be equal to one. As in BiLDA

though, words remain the document units and this single topic is associated with

each word of the segment. Therefore, comparing the models on measures like per-

plexity that are calculated at the word level is fair. To infer these topics we propose

a collapsed Gibbs sampling approach, that ∀` ∈ {`1, `2}, samples topics from:

When sampling the topic z`1
i,j of the words of the segment s`1

i,j one has:

sample z`1
i,j ∼ p

(
z`1
i,j = zk |z

`1
¬si,j ,z

`2 , . . . ,z`M ,w`1 , . . . ,w`M ,α,β
)

∝
∫
θ

∫
φ

p(z`1
i,j = zk |z

`1
¬si,j ,z

`2 , . . . ,z`M ,θ,α)×

p(w`1
si,j |z

`1
i,j = zk ,z

`1
¬si,j ,w

`1
¬si,j ,φ,β)dφdθ

∝
∫
θ

p(z`1
i,j = zk |θ)p(θ|z`1

¬si,j ,z
`2 , . . . ,z`M ,α)dθ×

∫
φ

∏
w∈s`1i,j

p(w|z`1
si,j = zk ,φ)p(φ|z`1

¬si,j ,w
`1
¬si,j ,β)dφ

=
∫
θi

p(z`1
i,j = zk |θ)p(θ|z`1

¬si,j ,z
`2 , . . . ,z`M ,α)dθi×

∏
w∈s`1i,j

∫
φk

p(w|z`1
si,j = zk ,φ)p(φk |z

`1
¬si,j ,w

`1
¬si,j ,β)dφk , (5.1)
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where z`1
¬si,j denotes the topic assignments of d`1

i excluding those referring to s`1
i,j .

For the integrals of Eq. (5.1) using the Multinomial-Dirichlet conjugacy for φ and

θ, one may perform the updates using their expectations, hence :

E
Dir(Ω

`1
k,i,¬si,j

+Ω
`2
k,i+α)

[θi,k]×
∏
w∈s`1i,j

E
Dir(Ψ

`1
k,w,¬si,j

+β)
[φ(w)
k ],

where the first term is influenced by the the topic assignments within the docu-

ments of the pair, and the second by the words of the segment. The result for the

conditional probability then becomes:

p(z`si,j = zk |z`¬sij ,z
\̀,w`,w \̀,α,β) ∝

(
Ωi,k,¬si,j +α

)
×

∏
w∈s`ij

(Ψ `
k,w,¬sij + β) · · · (Ψ `

k,w,¬sij + β + (N `
i,j,w − 1))

(Ψ `
k,·,¬sij + βV`) · · · (Ψ `

k,·,¬sij + βV` + (N `
i,j − 1))

.

(5.2)

In Eq. (5.2), the product appearing in the numerator of the second term re-

sults from the bag-of-words assumption for the words of segments. The (possibly

multiple) occurrences of a word w in a segment s`i,j , generated by the topic k, are

taken into account by the factor (Ψ `
k,w,¬sij + β), which is incremented by one for

every other occurrence of the word after the first. For example, if word w appears

twice in s`i,j , then N `
i,j,w = 2, and the factor (Ψ `

k,w,¬sij +β)(Ψ `
k,w,¬sij +β+1) denotes the

contribution of the occurrences of the word to the probability that s`i,j is generated

by the topic k. This way, every word of the segment contributes to the probability

of sampling a particular topic. Similarly, the denominator acts as a normalization

term. The progressive increase of its values can also be explained intuitively: given

the bag-of-words assumption of words within a segment, the product normalizes

the probability of assigning the topic k to a word of the segment, given that the

previous words have also been assigned to this topic. Notice, that if the size of the

segment is 1, the model as well as the sampling equations reduce to BiLDA.

The bag-of-words assumption in BiLDA results in a joint distribution of ran-

dom variables (here topics) being invariant to any permutation of the variables

(exchangeability). This holds for segBiLDA only locally, within segments. Glob-

ally, within a document, words are not exchangeable as the segment boundaries

are utilized. While in BiLDA the topics of words are conditionally independent
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given the document’s topic distribution, for segBiLDA they are not, as they also

depend on the rest of the segment’s words.

Previous work in the monolingual case suggested to incorporate various types

of text structure to topic models ranging from n-grams to parse trees. segBiLDA

can be considered an extension of our model [11] in the bilingual setting. Rather

than extending more complex models like Boyd’s [29] that may require parsing

the documents, we opt for segBiLDA due to the variety of segments it can handle.

For instance, one can use linguistically motivated segmentation approaches like

sentence tokenization or statistically motivated segmentation approaches like fre-

quent n-grams with the same model. Furthermore, these segmentation approaches

can be accomplished efficiently and accurately across a wide range of languages

without resorting to complex linguistic analysis tools like parsers.

5.2.3 Extracting multilingual topics from comparable corpora

BiLDA and segBiLDA assume a single topic distribution for the documents of a

pair, which as illustrated in Figure 4.1 is a string assumption for comparable doc-

uments. Apart from that, the motivations for adapting the bilingual topic models

to comparable corpora lie on two facts: on one hand, comparable corpora are more

common and easy to obtain or to construct than parallel ones, which require ad-

ditional linguistic knowledge and tools. On the other hand, recent advances on

cross-lingual word embeddings resulted in methods that can be directly used to

estimate the semantic similarity of documents written in different languages. The

latter facilitates the application of our method to various pairs of languages with-

out expensive resources.

For comparable corpora, we first propose the λ-BiLDA model, whose graphical

model is shown in Figure 5.2(iii). In this case, instead of having a single, shared

topic distribution we have a topic distribution per language shown as θ`1 and θ`2

in the figure. However, these distributions are bound between them. To model

naturally the possible levels of dependence between θ`1 and θ`2 we need a bind-

ing mechanism flexible enough to model the two extreme conditions: total inde-

pendence between the topic distributions of the aligned documents that should

result in two distinct LDA models (one per language), and a complete dependence

between them (identical topic distributions) which should result in BiLDA. Similar

dependence mechanisms were previously explored under the setting of streaming

documents [3], where topic distributions of earlier documents affect the distribu-

tions of later documents.

84



The generative process for λ-BiLDA is as follows:

• for each topic k ∈ [1,K]: φ`1
k ∼Dir(β), φ`2

k ∼Dir(β)

• for each document pair di = (d`1
i ,d

`2
i ):

– estimate λi with respect to the documents that form the pair di = (d`1
i ,d

`2
i )

– sample θ`1
i |θ

`2
i ∼Dir(α +λiθ

`2
i ), θ`2

i |θ
`1
i ∼Dir(α +λiθ

`1
i )

– for language ` ∈ {`1, `2}

* for each of the words N `:

· sample z ∼Mult(1,θ`i )

· sample w ∼Mult(1,φ`z)

The central idea is that the topic distributions of documents in one language

depend on the topic distributions of documents in the other language via a binding

mechanism that generates θ` with a Dirichlet distribution depending on θ \̀;θ` |θ \̀ ∼
Dir(α + λiθ

\̀
i ) and vice-versa. Note that from the Hammersley-Clifford theorem

[76], fixing the two conditional distributions θ`1 |θ`2 and θ`2 |θ`1 defines in an unique

way the distribution of (θ`1 ,θ`2) which implies that our generative process is well-

defined.

For inferring the topics of the observed words we propose a Gibbs sampling

approach, whose derivation is given in the Appendix at the end of this chapter.

The update equations for the topics of the words are then ∀` ∈ {`1, `2}:

p
(
z`i,j = zk |z`¬i,j ,w

`,α,β,λi ,θ
\̀
)
∝

Ψ `
k,w,¬i,j + β

Ψ `
k,·,¬i,j +V`β

·
(
Ω`
i,k,¬i,j +α +λiθ

\̀
d,k

)
. (5.3)

Gibbs sampling algorithms obtain posterior samples by sweeping though each

block of variables and sampling from their conditional, while the remaining blocks

are fixed. In practice, the algorithm initializes randomly the topics of words. Then,

during the Gibbs iterations and until convergence, sampling topics for words of `

assumes the distribution of θ \̀ fixed, and hence can be accessed as assumed by the

generative story.

In Eq. (5.3), λi captures the dependency between the topic distributions of

the documents of di . We use cross-lingual word embeddings for its estimation.

We use the average (avg) compositional function of meaning, which was shown to
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be robust and effective [129, 21]. Having the vectors of the document pair di =

(d`1
i ,d

`2
i ) in the embedded space, we then estimate λi using the cosine similarity.

Calculated in this way, λi ∈ [−1,1] and since θd,k ∈ [0,1] it follows for the second

term of Eq. 5.3 that Ω`
i,k,¬i,j >> λiθd,k, which results in negligible impact for λiθd,k.

To circumvent that we use:

λ′i = λi × |N
\̀
i | = Ω

\̀
d,k . (5.4)

Notice that incorporating Eq. (5.4) to Eq. (5.3) has as an additional advantage as

the model generalizes previous models. In particular, it follows that BiLDA be-

comes a special case of λ-MuLDA with λ = 1 (complete dependency where θ` and

θ \̀ are the same topic distributions). Also, when λ = 0 (case of independence) we

have two distinct LDAs, one per language.3

5.2.4 Combining the two models

To this point, we proposed segBiLDA that incorporates the boundaries of coherent

segments like sentences, and λ-BiLDA, that assumes bound topic distributions for

the paired documents in the two languages. The two models can be combined: λ-

segBiLDA assigns consistent topics in the words of the segments of the documents

and also assumes different topic distributions for each language.

We illustrate λ-segBiLDA in Figure 5.2(iv). We omit the generative story, since

it is a direct combination of the generative stories of segBiLDA and λ-BiLDA. The

inference process is given by the following equation, whose derivation is given in

the Appendix at the end of the chapter. To sample the topics of segments from the

conditional distribution for ∀` ∈ {`1, `2}:

p
(
z`i,j = zk |z`¬i,j ,w

`,α,β,λi ,θ
\̀
)
∝ [Ω`

i,k,¬si,j +α +λiΩ
\̀
d,k]×∏

w∈s`ij

(Ψ `
k,w,¬sij + β) · · · (Ψ `

k,w,¬sij + β + (N `
i,j,w − 1))

(Ψ `
k,·,¬sij + βV`) · · · (Ψ `

k,·,¬sij + βV` + (N `
i,j − 1))

. (5.5)

Notice how both assumptions are relaxed is this model: the first term of the re-

sult (discussed in the Appendix of the chapter) shown in Eq. (5.5) accounts for

the topic dependence between the paired documents, while the second incorpo-

rates the segment boundaries. The Gibbs sampling updates for λ-segBiLDA are

3Although by definition λi ∈ [−1,1] in all our experiments we found λi>0.
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Algorithm 3: A Gibbs Sampling iteration for λ-segBiLDA

Input: the words of the document pairs, cross-lingual embeddings, α, β, K

for document pair di = (d`1
i ,d

`2
i ), i ∈ [1,D] do

Calculate λi using the cross-lingual embeddings
end
Segment the documents of each language
//Initialize counters Ψ `,Ω`

for language ` ∈ [`1, `2] do
for document d`i , i ∈ [1,D] do

for segment s`i,j : j ∈ {1, . . . ,Si} do
Decrease counter variables Ψ `,Ω` according to the previous topic

assignments of the words of s`i,j
Calculate the probabilities of the new topic of the words of s`i,j (Eq. 5.5)

Sample the topics of the words of s`i,j using the calculated probabilities

Increase counters Ψ `,Ω`

end
end

end

also presented in Algorithm 3. One may obtain similar algorithms for each of the

bilingual topic models presented in this section or adapt Algorithm 3 by selecting

the appropriate equation while calculating the probabilities of the topics.

5.3 Experimental Framework

The comparable corpora In order to evaluate the proposed models, we perform

a series of evaluation tasks using Wikipedia documents in four language pairs as

our comparable corpora. The language pairs are English-French (En-Fr), English-

German (En-Ge), English-Italian (En-It) and English-Portuguese (En-Pt). Table

5.2 shows the basic statistics of these datasets. For topic modeling purposes we

have sampled subsets from the full datasets (right part of the table) consisting of

10,000 documents for each pair. Since the sampling was random, it is not the same

10,000 English documents used for every language pair. Notice in the table that

for each pair English is the language with the most words (N ), which was expected

since often Wikipedia lemmas are first written in English and then translated to

other languages. This is also why Wikipedia is a suitable comparable corpus; the

English version usually includes more information on a topic compared to other

languages. To extract comparable Wikipedia documents one can use the inter-
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Full Dataset Topic Modeling Subsets

Dataset D N V D N V

WikiEn
En-Fr 937,991 259M 619,056 10,000 2.55M 33,925

WikiFr
En-Fr 937,991 159M 466,423 10,000 1.64M 26,604

WikiEn
En-Ge 849,955 391M 599,233 10,000 2.54M 33,198

WikiGe
En-Ge 849,955 391M 894,798 10,000 1.81M 44,898

WikiEn
En-It 732,416 200M 519,897 10,000 2.55M 33,934

WikiItEn-It 732,416 125M 360,760 10,000 1.56M 25,436

WikiEn
En-Pt 540,467 160M 428,293 10,000 2.86M 34,687

WikiPt
En-Pt 540,467 61M 222,547 10,000 1.9M 19,347

Table 5.2: Data used for evaluating topic coherence (left) and topic modeling
(right) purposes. The names signify the language pair and the language that the
statistics correspond to. For instance, WikiEn

En-Fr are the English documents of the
En-Fr corpus.

language links. For the sake of reproducibility, we have used the bilingual corpora

as made available by linguatools.4 We have cleaned the documents to remove html
tags and tables using Python v2.7 and Beautiful Soup v4.5.1.5 The statistics of

Table 5.2 are after the pre-processing steps, that include lower-casing, filtering

the numerical terms out, stemming using the WordNet stemmer as implemented

in [20], stop-word removal using the stopword lists of [20] and finally filtering

vocabulary terms with less than 4 occurrences in the corpus.

The models We evaluate the following six models for each language pair: (i)

BiLDA that has been proposed in [127] (ii) segBiLDAs that was presented above

and uses sentences as coherent segments, (iii) segBiLDAb that is segBiLDA with

the 1,0006 most frequent bigrams considered as coherent segments, as well as λ-

BiLDA, λ-segBiLDAs and λ-segBiLDAb that extend the first three models for compa-

rable corpora. We have implemented each of these models using Python, Numpy

and Scipy. As commonly done, we follow previous work e.g., [23], and we set for

each model the Dirichlet hyper-parameters α = 1/K and β = 0.01, where K is the

4urlhttp://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
5https://www.crummy.com/software/BeautifulSoup/bs4/doc/
6We use 1K bigrams following the work of [103] who found this number to be the optimal choice

for similar corpora.
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BiLDA segBiLDAs segBiLDAb

Topic 3 [City] Topic 5 [Sports] Topic 8 [Art] Topic 3 [City] Topic 5 [Sports] Topic 8 [Art] Topic 3 [City] Topic 5 [Sports] Topic 8 [Art]
En Fr En Fr En Fr En Fr En Fr En Fr En Fr En Fr En Fr

city commun team championnat music group citi vill team championnat film the citi commun team championnat film film
popul situ play club album album popul situ play club releas of also vill play club releas dan
town vill first premi releas titre area commun first premi also film popul situ first premi album and
area référent game coup song the town part world match album and town région world coup song sort
locat région player match record and locat grand leagu coup first sort area villag player saison music group

λ-BiLDA λ-segBiLDAs λ-segBiLDAb

Topic 3 [City] Topic 5 [Sports] Topic 8 [Art] Topic 3 [City] Topic 5 [Sports] Topic 8 [Art] Topic 3 [City] Topic 5 [Sports] Topic 8 [Art]
En Fr En Fr En Fr En Fr En Fr En Fr En Fr En Fr En Fr

citi commun team championnat music group popul situ team championnat film the citi commun team championnat film film
popul vill play club album premi city espec play premi releas of also vill play club releas dan
town situ first premi release sort also vill first club album film town situ first premi music the
refer villag player coup song the area part world coup also and area villag player coup album group
area référent game saison record album town grand leagu saison song sort locat région world saison song sort

Table 5.3: For each of the topic models we present three topics: City, Sports, Art
for the “En-Fr” Wikipedia corpus. Notice the strong intra-semantic (words within
a topic) and inter-semantic (topics across languages) coherence.

`1 − `2 D N `1 V `1 N `2 V `2

En-Fr 1.92M 56M 88,774 64M 130,146
En-Ge 1,92M 53M 86,691 50M 332,285
En-It 1,90M 55M 88,172 55M 155,715
En-Pt 1.96M 54M 88,241 56M 145,112

Table 5.4: Statistics for the Europarl corpus. We used the Europarl data to train
the BilBowa word representations.

number of topics.

Training Bilbowa. To estimate the word representations of the En-Fr, En-Ge, En-

It and En-Pt pairs we used Bilbowa [71] to generate a dictionary of word embed-

dings, where words from two different languages are projected to the same space.

We have used the open implementation of Bilbowa7 with its default parameters

and the training epochs set to 10.8 The model requires parallel text, and for this

purpose we used the Europarl corpus [96]. The statistics of the pairs of languages

for the Europarl data are shown in Table 5.4.

Visualizing the topics. As an initial qualitative evaluation of the learned top-

ics, Figure 5.3 presents for 3 topics (City, Sports, Art) the five words with the

highest probability for each of the six topic models. The topics were identified af-

ter training each model for 200 Gibbs sampling iterations on the WikiEn-Fr corpus

7https://github.com/gouwsmeister/bilbowa
8-size 100 -window 5 -sample 1e-4 -negative 5 -binary 0 -adagrad 1 -xling-lambda 1 -threads 12

-epochs 10

89



with K = 10 topics. Visual inspection of the topics reveals that the models pro-

duce topics that are intra-semantically coherent, that is the words that constitute

the topics are semantically relevant. Further, the topics are inter-semantically co-

herent, that is the topics and aligned across languages and closely related words

represent them. For instance, the “Sports” topic in English contains mostly word

like “team”, “play”, “season” while in French one can find their (stemmed) transla-

tions: “équipe”, “jouer”, “saison”. Although reassuring the visual inspection of the

topics in not sufficient to compare the models. In the rest, we evaluate the models

intrinsically, that is independently of an application as well as extrinsically in the

framework of a cross-lingual document retrieval application.

5.3.1 Intrinsic Evaluation

Normalized PMI As we discussed in the previous chapter (Chapter 4), recent re-

search has showed that calculating the nPMI scores for the topics learned by the

models correlates well with human judgments of their quality. Following these re-

sults, we present in Table 5.5 the topic coherence scores as measured by the nPMI.

Recall, the scores of nPMI range in [-1,1], where in the limit of -1 two wordsw1 and

w2 never occur together, while in the limit of +1 they always occur together (com-

plete co-occurrence). As in [102], for each topic, we aggregate the topic coherence

scores over three different topic cardinalities: N ∈ {5,10,15}. The reference corpora

for calculating the topic coherence for each language are the “Full Datasets” of Ta-

ble 5.2 excluding the “Topic Modeling Subsets”. For English we opt for WikiEn
En-Fr,

which is the biggest, whereas for the rest of the languages we use their respective

Wikipedia datasets.

In Table 5.5, note that in most cases λ-segBiLDAb outperforms the rest of the

models, while segBiLDAb and segBiLDAs follow. Notice, how BiLDA although com-

petitive for low values of K does not perform as well. This is probably due to

the fact that the concept of context is encapsulated in the calculation of the nPMI

scores, and the segBiLDA topic models explicitly account for this. In general, in-

creasing the number of topics from 10 to 25 or 50 seems to improve the perfor-

mance measured by nPMI. For instance, in the lower part of the Table with the

averages across languages, increasing the topics increases the best performance

from .135 to .151. From the table, it is evident that adapting the topic models for

comparable corpora improves the scores, apart from the case of segBiLDAs. For

the rest of the models (BiLDA and segBiLDAb) the λ- counterparts perform better
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`2 K BiLDA λ-BiLDA segBiLDAs λ-segBiLDAs segBiLDAb λ-segBiLDAb

En 10 .105±.07 .102±.07 .090±.06 .080±.07 .113±.05 .124±.06
En 25 .124±.10 .125±.04 .129±.11 .111±.07 .140±.08 .150±.07
En 50 .132±.05 .129±.10 .125±.06 .125±.10 .157±.08 .155±.05

Fr 10 .114±.05 .114±.06 .105±.06 .053±.05 .088±.06 .125±.07
Fr 25 .122±.06 .121±.06 .124±.08 .068±.03 .120±.07 .114±.05
Fr 50 .124±.06 .120±.07 .136±.07 .080±.06 .123±.07 .133±.06

Ge 10 .198±.09 .198±.11 .234±.10 .250±.08 .203±.10 .215±.10
Ge 25 .174±.02 .173±.11 .235±.08 .235±.11 .187±.08 .176±.04
Ge 50 .183±.03 .180±.02 .230±.09 .255±.10 .181±.05 .183±.04

It 10 .096±.06 .101±.05 .102±.07 .084±.06 .119±.06 .113±.05
It 25 .109±.04 .118±.05 .104±.09 .099±.02 .143±.07 .127±.06
It 50 .119±.08 .125±.05 .122±.09 .131±.07 .137±.04 .142±.08

Pt 10 .099±.05 .115±.07 .108±.13 .093±.09 .098±.04 .123±.06
Pt 25 .129±.12 .120±.11 .164±.18 .145±.11 .131±.06 .124±.09
Pt 50 .120±.10 .137±.07 .143±.15 .125±.06 .141±.08 .145±.10

avg 10 .117±.07 .118±.08 .129±.10 .110±.08 .122±.06 .135±.07
avg 25 .127±.07 .129±.07 .141±.11 .127±.08 .143±.07 .141±.06
avg 50 .131±.06 .137±.07 .145±.09 .137±.08 .149±.06 .151±.06

Table 5.5: Topic coherence measured by the nPMI for each of the models. The aver-
ages are calculated for each model and K across languages. Overall, λ-segBiLDAb
performs the best.

according to the columnwise comparison of the averaged results in the lowest rows

of the table.

Although well-correlated with human judgments, for nPMI we only used a

small part of the output of topic models, that is for each topic the top-N words.

Furthermore, the evaluation of nPMI suffers in that is does not account for the

topical overlap between the learned topics as well as recall gaps within a topic,

i.e. lack of terms which should have been ideally included. Therefore, we also re-

port the perplexity scores of held-out documents, whose calculation requires more

information from the topic models.

Perplexity Another measure presented in Chapter 4 as an intrinsic measure for

comparing topic models is perplexity. In line with our analysis in the previous

chapter, we also compare the topic models based on the achieved perplexity scores

for each language.

Here, for the perplexity calculations we assume that the held-out documents
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English `2
`2 K BiLDA λ-BiLDA segBiLDAb λ-segBiLDAb segBiLDAs λ-segBiLDAs BiLDA λ-BiLDA segBiLDAb λ-segBiLDAb segBiLDAs λ-segBiLDAs

Fr 25 3423±123 3391±113 3445±115 3383±98 3780±234 3727±327 2709±70 2633±68 2724±55 2617±89 3111±158 2929±135
Fr 50 3009±109 2957±114 3002±86 2944±112 3460±263 3420±341 2424±56 2320±64 2417±58 2312±72 2891±145 2715±100
Fr 100 2725±120 2634±110 2685±98 2636±87 3288±339 3236±357 2245±43 2092±65 2194±49 2085±80 2720±147 2598±113
Fr 150 2642±121 2526±109 2569±103 2527±102 3225±309 3176±353 2197±44 2035±53 2135±51 2028±70 2696±126 2558±112

Ge 25 3338±114 3317±83 3350±86 3292±90 3711±171 3639±256 4532±434 4419±426 4508±437 4386±430 5248±505 4929±620
Ge 50 2920±106 2873±102 2934±67 2859±84 3379±221 3303±277 3952±367 3791±376 3951±374 3772±361 4727±505 4463±542
Ge 100 2666±115 2589±91 2625±112 2570±116 3200±308 3152±286 3617±341 3408±312 3577±339 3412±310 4424±561 4227±555
Ge 150 2581±108 2481±105 2528±117 2471±107 3126±290 3109±287 3554±330 3284±303 3484±308 3314±298 4322±558 4163±534

It 25 3393±136 3364±117 3411±139 3360±108 3780±180 3659±195 2688±137 2606±110 2696±152 2589±116 3140±258 2886±233
It 50 2994±101 2938±100 2983±98 2933±101 3463±167 3346±190 2405±112 2304±85 2404±103 2292±88 2912±215 2678±247
It 100 2714±94 2639±88 2691±81 2637±87 3261±207 3147±203 2225±108 2099±78 2210±96 2092±72 2787±277 2561±246
It 150 2628±86 2535±84 2579±88 2531±77 3208±225 3090±203 2188±113 2036±80 2143±102 2030±71 2730±273 2527±259

Pt 25 3219±173 3187±177 3218±161 3185±152 3472±332 3459±419 2139±120 2042±101 2139±108 2040±81 2497±180 2241±129
Pt 50 2837±175 2812±170 2832±157 2811±165 3201±364 3152±419 1917±110 1809±87 1914±99 1797±87 2337±174 2045±121
Pt 100 2591±180 2529±167 2555±161 2524±166 2998±403 2980±416 1775±104 1638±81 1752±98 1636±78 2200±150 1945±136
Pt 150 2506±183 2424±170 2448±165 2422±166 2948±383 2921±419 1739±101 1587±75 1699±93 1593±72 2132±149 1918±120

Table 5.6: The perplexity scores achieved by the proposed topic models for four
bilingual datasets when K ∈ {25,50,100,150}. The best (lowest) score achieved per
language and k is shown in bold. λ-segBiLDAb achieves the best perplexity scores
in most of the experiments.

form thematically-aligned pairs (as during training) and, depending on the topic

model, shared or language-dependent per-document distributions are inferred that

are used at Eq. (4.9). In the next section, where we will compare the performance

of the models in an extrinsic task, we will ignore the links within the pairs to

demonstrate than our models perform well under both settings.

Table 5.6 presents the perplexity scores achieved by the topic models. The re-

ported scores are the averages of 10-fold cross-validation as follows: (i) we split

the datasets in 10 disjoint sets, (ii) we repeat the training and perplexity calcu-

lation steps 10 times, each time considering the i-th set to be the held-out docu-

ments and the remaining 9 sets for training. The goal is to exclude any bias due

to the split. We present the scores for K ∈ {25,50,100,150}. In terms of perplex-

ity, λ-segBiLDAb and λ-BiLDA clearly outperform the rest of the systems consis-

tently for each language and language pair. The third best performing system is

segBiLDAb and BiLDA follows. λ-segBiLDAs and segBiLDAs achieve the worst per-

plexity scores for every experiment. segBiLDAs, while competitive when evaluated

using the nPMI scores, performs poorly in this task.

Shown from a different angle, it seems that the systems who build on the bag-

of-words assumption (BiLDA and λ-BiLDA) consistently outperform those that in-

corporate the boundaries of large spans like sentences (segBiLDAs and λ-segBiLDAs).

That was expected as it is in line with previous work [11], where incorporating text

structure in the form of sentence boundaries was found to lead to higher (worse)

perplexity. One the other hand, incorporating the boundaries of smaller spans
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like bigrams, helps perplexity performance as λ-segBiLDAb seems to be the best

performing model overall, especially when the number of topics increases. This

is also in line with previous work: [103] showed how bigram boundaries improve

the topic model results. In fact, λ-segBiLDAb further improves segBiLDAb which

is inspired by [103] since it consistently achieves better perplexity scores.

Another interesting remark concerns the effect of λ, whose goal is to adapt the

topic models for comparable corpora. Notice that λ-BiLDA, λ-segBiLDAs and λ-

segBiLDAb outperform BiLDA, segBiLDAs and segBiLDAb respectively for each of

the experiments and topic values. This highlights the positive effect of the pro-

posed binding mechanism on the achieved perplexity scores. What is more, that

was achieved by using a simple yet powerful mechanism (aggregation of word em-

beddings) for calculating the value of λ for each document pair and these results

can be potentially refined when applying more complex strategies. Effectively,

this is the answer to the question (Q2) that the chapter investigates. Adapting

topic models for comparable corpora improves their generalization performance

and, importantly, these improvements are consistent across different topic models

(here BiLDA, segBiLDAs and segBiLDAb) and different pairs of languages.

Lastly, Figure 5.3 shows the perplexity curves for each language for 200 Gibbs

iterations for every language pair and system we evaluated. There are two main

observations from the Figure. First, as in Table 5.6, for each experiment λ-BiLDA

achieves the lowest perplexity values among the systems that are shown. Second,

segBiLDA and λ-segBiLDA are the fastest to converge. They need ∼ 50 iterations to

converge, while BiLDA and λ-BiLDA need ∼ 200, that is 4x times more. In terms of

computation time, the benefit is similar as the cost of Gibbs iterations are roughly

the same.9

5.3.2 Extrinsic Evaluation

Cross-lingual Document Retrieval We conclude the evaluation of the presented

topic models by reporting their performance in the framework of a cross-lingual

document retrieval application. As discussed during perplexity evaluation, the

model can infer the per-document topic distribution for previously unseen data.

Recall, that as Figure 5.3 depicts, the learned topics are aligned. Therefore, one

9Measured on an Intel Xeon CPU E5-2643 v3 @ 3.40GHz segBiLDA iterations are ∼20% faster.
Since, this may vary across datasets depending on the number of sentences/document and their
length (Eq. (5.2)), we opt for only reporting the 4x speedup due to less sampling iterations without
taking the faster iterations into account.
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Figure 5.3: The perplexity curves of the four models for the designated datasets
for 200 Gibbs sampling iterations when K = 150 topics. In the left column of the
figures we visualize the perplexity calculated for the English documents of the
comparable pairs while in the right column the documents of the second language
of the pair. The proposed model λ-BiLDA consistently outperforms the rest of the
systems.
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may perform inference with a trained model in each language separately, without

requiring the explicit links between the documents of a pair. To achieve that, the

per-words topic distributions of each language are used. Then, documents with

similar topic distributions written in different languages are actually similar due to

the inter-semantic coherence of the topics alignments between the learned topics.

This is a central observation that enables various cross-lingual applications [178]

as well as cross-lingual document retrieval.

The task we propose is a cross-lingual document discovery task (CLDD), The

goal is to identify counterpart Wikipedia documents due to cross-language links.

In particular, given a document d`1
i as a query, one needs to identify the corre-

sponding document d`2
i . For instance, given an English document for “Dog” the

task is to retrieve the German article for “Hund” and, vice versa given the article

for “Hund” one must retrieve the article for “Dog”.

Following [61, 177] who found bilingual topic models efficient for the task we

address it using the following pipeline. For each of the four language pairs, we

train topic models on 9,000 document pairs (18,000 documents). For the remain-

ing 2,000 documents (that is 1,000 pairs of documents) we infer their topic distri-

butions using one language at a time. We consider the cross-language links to be

our golden standard. Then, given a document d`1
i whose inferred topic distribu-

tion is θ`1
i , we rank every document written at `2 according to the KL-divergence

(Kullback-Leibler divergence: [99]) between θ`1
i and θ`2

j and using the golden links

evaluate the performance. The KL-divergence measures the distance of probability

distributions and is a suitable distance measure for our case as the topic distribu-

tions are probability distributions. We repeat the retrieval experiment 10 times

by randomly selecting 500 documents (and their counterparts) out of the 1,000

held-out document pairs. As evaluation measure, we report the scores of Mean

Reciprocal Rank (MRR) [176] that accounts for the rank of the true positive doc-

uments in the returned ranked list.10 The scores of the MRR evaluation measure

are given by:

MRR =
1
|D |

|D |∑
i=1

1
ranki

where |D | is the number of documents (queries) at each experiment and ranki de-

notes the rank of the true document to be retrieved. Further, one has MRR ∈ [0,1]

10For cases where there is a single golden documents for each query, MRR is equivalent to Mean
Average Precision.
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and the higher the score, the higher the rank of the true positive document in the

returned list is.

Table 5.7 reports the achieved scores for the document representations inferred

for each topic model. The scores are the average performance of the 10 experi-

ments accompanied by the standard deviations. In terms of notation, `1→ `2 (e.g.,

En→Fr) stands for the experiment where the documents of `1 (e.g., English) are

used as queries and the documents of `2 (e.g., French) are to be retrieved. The

results of the table clearly establish the improvements on the task due the adap-

tation of the bilingual topic models for comparable corpora. Notice how λ-BiLDA,

λ-segBiLDAb outperform the rest of the models and especially their counterparts

BiLDA and segBiLDAb in most of the experiments. The observed improvements are

consistent across the language pairs and number of topics K ∈ {25,50,100,150}.
This suggests that quantifying the semantic similarity between the documents of

the pairs during training led to discovering better topics, whose performance we

evaluated in the CLDD task by trying to identify the links of held-out document

pairs.

It is to be noted that λ-segBiLDAs and segBiLDAs both perform poorly on the

task. We believe that this is due to the fact that assuming large spans like sentences

in Wikipedia documents to be thematically coherent results in per-document topic

distributions unable to capture fine-grained differences between documents. In

turn, such fine-grained differences are necessary for achieving high performance

on the CLDD task.

Overall, our results suggest that incorporating text structure in the form of

short text spans (bigrams) and adapting the bilingual topic models for comparable

corpora benefits the performance on CLDD.

5.4 Summary

In this chapter we presented two extensions of bilingual topic models. First, mo-

tivated by the findings of Chapter 4 concerning prior knowledge of text struc-

ture, we proposed to incorporate such knowledge in bilingual topic models. Then,

we also identified that a popular version of bilingual topic models can be better

adapted to comparable corpora if a robust mechanism for calculating document

similarities written in different languages is available. To achieve that we pro-

posed to use cross-lingual embeddings that are known to capture the semantics of

words. We evaluated different versions of the novel topic models with regards to
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MRR

K `1→ `2 BiLDA λ-BiLDA segBiLDAb λ-segBiLDAb segBiLDAs λ-segBiLDAs

25 En→Fr 37.0±1.1 39.7±1.2 36.0±1.0 37.1±0.9 14.6±0.6 7.6±0.4
50 En→Fr 43.8±1.3 44.6±1.1 41.9±1.3 41.8±1.5 13.7±0.6 14.1±0.7
100 En→Fr 43.6±1.4 45.3±1.9 42.6±1.9 47.2±1.1 13.4±0.4 11.4±0.5
150 En→Fr 38.5±2.1 39.2±1.5 39.3±1.0 42.7±1.5 18.0±1.1 13.7±0.9

25 Fr→En 37.8±0.9 39.3±0.9 36.7±0.6 37.6±1.0 14.3±0.6 7.5±0.4
50 Fr→En 44.0±1.1 47.1±1.3 43.0±1.2 44.2±1.1 13.6±0.8 14.3±0.7
100 Fr→En 45.7±1.2 45.7±0.9 44.0±1.2 47.7±1.1 13.6±0.6 10.4±0.7
150 Fr→En 39.5±1.6 42.7±1.3 41.4±1.3 45.2±1.2 19.3±0.9 13.6±0.6

25 En→Ge 44.1±1.4 42.4±1.1 43.2±1.2 45.0±0.8 12.6±0.7 18.5±0.6
50 En→Ge 51.7±1.4 55.7±1.0 49.4±1.0 52.0±1.1 19.6±0.8 15.8±1.1
100 En→Ge 51.8±1.2 54.2±0.8 51.4±0.9 51.7±1.0 21.1±0.6 16.0±0.9
150 En→Ge 48.1±1.1 49.9±1.2 47.3±0.9 51.5±1.3 21.8±0.8 21.1±0.5

25 Ge→En 43.8±1.5 42.9±1.5 42.6±1.3 43.8±1.3 13.1±0.6 18.5±0.8
50 Ge→En 49.9±1.2 53.6±1.3 48.2±1.0 50.9±1.3 17.9±1.0 16.8±1.2
100 Ge→En 51.5±1.1 53.7±1.1 50.9±0.8 52.8±1.2 20.7±0.9 16.7±0.9
150 Ge→En 46.8±1.3 46.8±1.0 46.2±1.3 50.4±1.5 20.6±0.5 20.3±1.0

25 En→It 36.4±1.2 34.9±0.8 33.8±0.5 34.2±1.3 9.2±0.6 6.6±0.6
50 En→It 38.9±1.7 38.3±1.2 37.4±1.4 39.8±1.0 13.8±0.7 10.5±0.4
100 En→It 39.0±1.2 38.9±1.1 39.0±1.5 41.1±1.4 14.6±0.5 12.0±0.6
150 En→It 35.9±1.1 37.1±0.6 38.8±1.4 37.8±1.0 13.0±0.5 10.8±0.6

25 It→En 35.5±0.9 35.3±1.1 33.7±0.8 35.2±1.2 8.8±0.5 6.4±0.5
50 It→En 39.7±1.5 39.4±1.0 37.2±1.5 40.2±1.4 13.2±0.5 10.8±0.6
100 It→En 40.6±1.5 40.0±1.1 39.1±1.0 40.8±1.2 14.8±0.7 12.6±0.4
150 It→En 37.4±1.2 39.8±1.2 37.4±1.7 39.3±1.6 13.4±0.9 11.2±0.6

25 En→Pt 33.8±1.1 34.9±1.1 33.6±1.3 34.3±1.3 8.8±0.4 10.2±0.8
50 En→Pt 38.2±1.2 38.3±1.5 37.7±1.1 39.0±1.3 14.4±0.8 11.2±0.4
100 En→Pt 38.9±1.3 38.3±1.1 38.1±1.0 40.2±1.0 16.5±0.9 10.0±0.4
150 En→Pt 35.0±1.6 35.9±1.8 34.5±1.6 36.3±1.6 14.8±0.5 11.2±0.5

25 Pt→En 35.8±1.3 36.2±1.4 34.4±1.2 36.0±0.8 9.7±0.6 11.2±0.8
50 Pt→En 39.5±1.6 40.0±1.6 38.2±1.1 40.3±1.3 15.4±0.8 12.7±0.5
100 Pt→En 41.0±0.9 40.1±1.4 40.5±0.9 43.4±0.9 18.9±0.6 10.0±0.6
150 Pt→En 36.4±1.2 40.0±1.3 37.3±1.2 41.0±1.4 14.6±1.0 12.6±0.6

Table 5.7: The scores for the CLDD task achieved by the proposed topic models
for four bilingual datasets when K ∈ {25,50,100,150}. The best (highest) score
achieved per language and k is shown in bold. The topic distributions induced by
λ-segBiLDAb achieved the highest MRR scores in most of the experiments.
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the topic coherence, generalization performance and cross-lingual document re-

trieval. Our assessment of the performance of the bilingual models suggested that

both prior information of short text spans and adapting the models for comparable

corpora improved the performance.

In the chapter we showed that by combining topic models with cross-lingual

word embeddings one may improve the quality of the learned topics. Our future

work in this setting targets to adapt the proposed models to the general setting

of comparable corpora. Provided a reliable way such as high quality cross-lingual

embeddings to identify links between documents, one may be able to adapt the

model to the setting where no documents are not aligned in the input. On the

contrary, the alignments are discovered using a document retrieval step like the

one presented in the framework of CLDD.

A. Gibbs Sampling Equations forλ-BiLDA andλ-segBiLDA

We derive the Gibbs sampling equations for λ-segBiLDA:

sample z`i,j ∼ P
(
z`i,j = k|z`¬si,j ,z

\̀,w`,w \̀,α,β,λi ,θ
`,θ \̀

)
∝
∫
θ`i

∫
φ

P
(
z`si,j = k|z`¬si,j ,w

`,α,β,λi ,θ
`,θ \̀

)
dφdθ`i

∝
∫
θ`i

∫
φ

P (z`si,j = k|z`¬si,j ,θ
`,θ \̀,λi ,α)× P (w`i,j |z

`
i,j = k,z`¬i,j ,w

`
¬i,j ,φ,β)dφdθ`i

∝P (z`si,j = k|z`¬si,j ,θ
\̀,λi ,α)×


∫
θ`i

∫
φ

P (w`si,j |z
`
si,j = k,z`¬si,j ,w

`
¬si,j ,φ,β)dφdθ`i


For the first term, observe that sampling P (z`si,j = k|z`¬si,j ,θ

\̀,λi ,α) is exactly the

same with sampling P (z`si,j = k|z`¬i,j) in the case of standard LDA, replacing the

Dirichlet parameter α with α + λiθ \̀. The derivation of the second term where

segments have several words, follows the steps shown on [11]. Hence, we deduce

that:
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P
(
z`i,j = zk |z`¬si,j ,w

`,α,β,λi ,θ
\̀
)
∝

Ω`
d,k,¬si,j +α +λiθ

\̀
d

Ω`
d,·,¬si,j +Kα +Kλi

×

×

∏
w∈s`1ij

(Ψ `
k,w,¬sij + β) · · · (Ψ `

k,w,¬sij + β + (N `
i,j,w − 1))

(Ψ `
k,·,¬sij + βV`) · · · (Ψ `

k,·,¬sij + βV` + (N `
i,j − 1))

. (5.6)

In the last result, for Gibbs sampling the fraction of the first term can be simplified

by omitting the denominator as in [78, 11]:

Ω`
d,k,¬si,j +α +λiθ

\̀
d

Ω`
d,·,¬si,j +Kα +Kλi

∼
(
Ω`
d,k,¬si,j +α +λiθ

\̀
d

)
. (5.7)

Integrating Eq. (5.7) to Eq. (5.6) leads to the desired result.

The equations for λ-BiLDA are simpler as ones does not have segments and the

product in Eq. (5.5) and in the subsequent calculations is simplified to a simple

term.
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Chapter 6

Applications of word embeddings to
text mining

Word embeddings, whose interesting properties of capturing the seman-

tics of words we investigated in the previous chapter, gained a lot of

attention recently. In Chapter 5 we proposed and evaluated a novel

bilingual topic model that uses cross-lingual embeddings. Cross-lingual embed-

dings are a variant of the monolingual embeddings adapted for the case where

text is written in several languages. Motivated by the performance benefits we ob-

served, in this chapter we explore their potential in the monolingual setting in the

framework of different applications.

Our main hypothesis throughout the contributions of the chapter is that incor-

porating expressive representations like embeddings on text mining applications

should improve the performance of various text mining tasks. In other words,

our goal is to develop models tailored for challenging text mining tasks that ben-

efit from rich text representations as well as from the flexibility that neural net-

works offer in modeling different scenarios. While shallow architectures of neural

networks can be used to learn general purpose word embeddings, such learned

embeddings can be used as initializations of the first layers of deeper networks

instead of using random initializations.

In the rest of the chapter we propose different models and we contribute several

observations regarding three interesting tasks. In particular:

1. Learning document representations utilizing translations of a document. Our

results in Chapter 5 demonstrated that access to multilingual versions of a

document supported by cross-lingual embeddings improved the represen-

tations learned with topic models for a retrieval task. Motivated by this, we
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propose to evaluate the use of embeddings for arbitrary long text spans in the

document classification task. In particular, we investigate whether one can

use translations of a document to obtain better-performing representations

(Section 6.1).

2. Multitask learning using neural networks. While the question we investigate

in Section 6.1 concerns the effect of multiple representations of a document

for a single task, we are also interested on the effect of learning jointly corre-

lated tasks. Having different representations such as translations of a docu-

ment may result in better document representations, while having different

tasks may result in a form of induced bias towards selecting hypotheses that

perform well across tasks. To this end we propose a neural network architec-

ture for jointly learning the hypotheses for two different yet correlated text

classification problems (Section 6.2).

3. Cross-lingual document retrieval as an application of the problem of optimal
transport. An important issue of text mining applications with word embed-

dings is to compose the representations of large text spans from the word

representations provided that there exists an alternative way to calculate

document distances. We argue that such a step can be omitted for several

text mining applications. We propose to use a document distance metric that

relies on the solution of the optimal transport problem and we demonstrate

the effectiveness of this formulation on an interesting cross-lingual retrieval

application (Section 6.3).

The rest of the chapter is organized as follows: Sections 6.1-6.3 contribute the

models, the observations and the results for the settings described above. Then,

Section 6.4 summarizes the findings of the chapter.

6.1 Polylingual text classification

Neural Networks have recently shown promising results in several machine learn-

ing and information extraction tasks [170, 195, 62]. For text classification, the

use of embeddings as inputs or initializations to more complex architectures has

been investigated and, for example, [90, 91] study the benefits of embeddings of

sentence-length spans (sentences and/or questions). In the multilingual setting,

[71] proposed an approach to learn bilingual embeddings exploiting parallel and

non-parallel text in the languages, [57] proposed to use correlated components
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analysis, together with small bilingual lexicons, to learn how to project embed-

dings in two separate languages into a common representation space and [105]

proposed an approach similar to ours that uses an auto-encoder to learn bilingual

representations.

In this section we propose a mechanism for combining distributed represen-

tations of documents in different languages. In this line, each document in a

given language is first translated using an existing Machine Translation (MT) tool.

The rationale behind is that translation offers the possibility to enrich and disam-

biguate the text, especially for short documents. Documents are then represented

by aggregating the embeddings of their associated text spans in each language

[107, 126] using a non-linear auto-encoder (AE). The AE is trained on their con-

catenated representations and a classifier is finally trained in the polylingual space

generated by the auto-encoder. The hope is that the AE can learn language inde-

pendent representations of large text spans like documents by compressing its

inputs in a hidden layer and thus combining information from every language in

the input. Our classification results in a subset of the publicly available Wikipedia

documents show that our approach yields improved classification performance

compared to the case where a classical bag-of-words space is used for document

representation, especially in the case where the size of the training set is small.

The following subsections present our strategy for learning polylingual embed-

dings. Then, in the experimental part we empirically show that the learned repre-

sentations constitute better classification features compared to several baselines.

Importantly, our findings suggest that polylingual representations can strongly

benefit classification settings with few labeled examples.

6.1.1 The model for learning the polylingual embeddings

Monolingual distributed representations (DRs) project text spans into a language-

dependent semantic space where spans with similar semantics are closer in that

space. Here, we aim to combine two distributed representations of documents

corresponding to the original document and its translation using an auto-encoder.

We will refer to those combined representations as Polylingual Embeddings (PE).

We call them polylingual as two or more languages are used to derive them and

they model at the same time the text written in either of them. We suppose that

the auto-encoder will disentangle the language-dependent factors and will learn

robust representations on its hidden layer encoding as illustrated in Figure 6.1.
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Given a document di in English, we first translate it into French using a com-

mercial translator,1. Then, we generate the distributed representations of the

document and its translation using a function G that we will describe shortly as

{G`(di)}2`=1 and aggregate those DRs using an auto-encoder as follows:

• {G`(di)}2`=1, a trained AE

• For each document di :

– Concatenate G1(di) and G2(di)

– Get PE representation of di as the hidden encoding of the AE fed with

the concatenation

Auto-encoders (Figure 6.1) are neural network architectures whose aim is to

learn an encoding of the data by typically projecting them in a lower dimension

using a single or a cascade of hidden layers ??. To this end, we try to minimize the

distance between the input and the output representations, which is commonly

calculated using the Euclidean distance. Instead of learning a linear projection of

the data, the activation functions of the hidden layer are non-linear (such us the

sigmoid function or the hyperbolic tangent function) thus adding to the modeling

capacity of the architecture.

The auto-encoder is learned over all concatenated distributed representations

of documents using a stochastic back-propagation algorithm. In this work we con-

sider two strategies to create the DR of each document. The first one is based on

average pooling, where word representations are first obtained using the word2vec

tool [124]. This is also the approached using in Chapter 5 for obtaining the rep-

resentations of documents using the cross-lingual embeddings. DR of documents,

i.e. functions (G`)`∈{1,2}, are then obtained by averaging the vectors of words con-

tained in them. In this study we consider the continuous bag of words (cbow)

and the skip-gram models that generate word representations. The second strat-

egy is based on the distributed Memory Model of paragraph vectors (DMMpv) and

distributed bag-of-words of paragraph vectors (DBOWpv) models [107], that extend

cbow and skip-gram respectively. DMMpv and DBOWpv, instead of learning rep-

resentations for words learn representations for larger spans that is whole doc-

uments for our case here. Therefore, (G`)`∈{1,2} are defined by the output of the

models without further processing.

1translate.google.com
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Figure 6.1: An AE that generates the PE in its hidden layer. The dashed boxes
denote the document DRs in the corresponding language.

6.1.2 The Experimental Evaluation

The data Training neural network models to generate distributed representa-

tions benefits by large amounts of free text. To train the models that generate DRs

we used such free texts in English and French:2 the left part of Table 6.1 (under

“Distributed Representations”) presents some basic statistics for those data. We

used the same number of documents for the two languages to avoid any training

bias. The raw text was pre-processed by applying lower-casing and space-padding

punctuation. Similarly to previous studies [124, 107], we kept the punctuation.

Publicly available implementations of the models were used with their default pa-

rameters: the word2vec tool3 for the cbow and skip-gram and the doc2vec for the

DBOWpv and DMMpv from Gensim [150].

For the classification task we used the raw version of the Wikipedia dataset

of the Large Scale Hierarchical Text Classification challenge [141]. The original

dataset contains 60,252 categories; we restrict our study here in a fraction of the

dataset with 12,670 documents belonging to the 100 most common categories. The

right part of Table 6.1 presents basic statistics for this subset.

Baselines We use as a first baseline Support Vectors Machines (SVM) fed with

the tf-idf representation of the documents, which is commonly used in text classi-

fication problems (denoted by SVMBoW). As a second baseline, we use k-Nearest

Neighbors (k-NN) and SVMs learned on the monolingual space of the DRs of En-

glish documents (denoted respectively by SVMDR and k-NNDR). These baselines

2http://statmt.org/
3https://code.google.com/p/word2vec/
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Distributed Representations Classification

Docs V # Words Docs V Avg. Doc. Len # Labels

En 6,358,467 490,122 198M 12,670 56,886 115.32 1,17
Fr 6,358,467 713,171 177M 12,670 58,678 132.29 1,17

Table 6.1: Statistics after pre-processing the datasets. The distributed representa-
tions dataset refers to the data used to train G. The classification data refer to the
supervised dataset used for classification purposes.

aim at evaluating the value of the fusion mechanism (PE) that we propose. k-NN

and SVMs were adapted to the multi-label setting (denoted respectively by SVMPE

and k-NNPE). For the former, given the labels of the k nearest training instances

of a test document, the algorithm returns the labels that belong to at least p% of

its nearest neighbors. For each run k ∈ {13,14,15} and p ∈ {0.1,0.2,0.3} are de-

cided using 5-fold cross-validation on the training data. The SVMs were used in

an one-vs-rest fashion; they return every label that has a positive distance from the

separating hyperplane. The value of the hyper-parameter C ∈ {10−1, . . . ,104} that

controls the importance of the regularization term in the optimization problem, is

selected using 5-fold cross-validation over the training data.

Our approach Using the above-presented DR model, we first generate the doc-

ument embeddings in English and French. These are vectors in a d-dimensional

space with d ∈ {50,100,200,300}. Then, for the AE we considered as activation

functions the hyperbolic tangent and the sigmoid function. The sigmoid per-

formed consistently better and thus we use it in the reported results. The AE

was trained with tied weights using a stochastic back-propagation algorithm with

mini-batches of size 10 and the euclidean distance of the input/output as loss

function. The number of neurons in the hidden layer was set to be 70% of the size

of the input.4

Experimental Results Table 6.2 presents the scores of the F1 measure when 10%

of the 12.670 documents were used for training purposes and the rest 90% for test-

ing. We report the classification performance with the four different DR models

(cbow, skip-gram, DBOWpv and DMMpv) and 2 learning algorithms (k-NN and

SVMs) for different input sizes. The columns labeled k-NNDR and SVMDR present

the (baseline) performance of SVM and k-NN trained on the monolingual DRs.

4The code is available at http://ama.liglab.fr/~balikas/ecir2015.zip.

106



cbow skip-gram

dim. k-NNDR SVMDR k-NNPE SVMPE k-NNDR SVMDR k-NNPE SVMPE

50 39.19 37.20 39.58 32.84 38.25 34.74 37.51 32.09
100 40.20 40.01 43.53 37.54 39.34 38.61 41.15 34.54
200 40.48 43.41 45.86 42.50 39.73 40.96 42.79 41.08
300 40.42 44.25 46.33 43.38 39.62 42.67 42.62 42.74

DBOWpv DMMpv

50 24.45 25.06 30.26 24.08 24.47 25.56 29.55 24.94
100 31.20 28.53 34.63 26.88 24.74 29.31 31.21 27.22
200 27.73 29.80 36.02 30.80 18.22 30.04 29.01 32.10
300 27.79 29.92 38.71 30.82 15.98 30.49 25.20 32.01

SVMBoW 36.03

Table 6.2: F1 measures of difference algorithms. The performance of 5-fold cross-
validated SVM using the bag-of-words representation is 36.03

Also the last line of the table indicates the F1 score of SVM with tf-idf representa-

tion (SVMBoW). The best obtained result is shown in bold.

We first notice that the average pooling strategy (cbow and skip-gram) per-

forms better compared to when the document vectors are directly learned (DBOWpv

and DMMpv). In particular, cbow seems to be the best performing representation,

both as a baseline model and when used as base model to generate the PE represen-

tations. On the other hand, DBOWpv and DMMpv perform significantly worse: in

the baseline setting the best cbow performance achieved is 44.25 whereas the best

DMMpv configuration achieves 30.49, 14 F1 points less.

The PE representations learned on top of the four base models improve sig-

nificantly over the performance of the monolingual DRs, especially for k-NN. For

instance, for cbow with base-model vector dimension 200, the baseline represen-

tation achieves 40.42 F1 and its corresponding PE representation obtains 46.33,

improving almost 6 points. In general, we notice such improvements between the

base DR and its respective PE, especially when the dimension of the DR repre-

sentation increases. Note that the PE improvements are independent of the meth-

ods used to generate the DRs: for instance k-NNPE over the 200-dimensional PE

DMMpv representations gains more than 11 F1 points compared to k-NNDR. It is

also to be noted that the baseline SVMBoW is outperformed by SVMPE especially

when cbow and skip-gram DRs are used.

Comparing the two learning methods (k-NNPE and SVMPE), we notice that k-

NNPE performs best. This is motivated by the fact that distributed representations
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Figure 6.2: Comparison of the performance of the learning algorithms learned on
different representations with respect to the available labeled data. The dimension
of the PE representations is 300.

are supposed to capture the semantics in the low dimensional space. At the same

time, the neighbors algorithm compares exactly this semantic distance between

data instances, whereas SVMs tries to draw separating hyperplanes among them.

Finally, it is known that SVMs benefit from high-dimensional vectors such as bag-

of-words representations. Notably, in our experiments increasing the dimension

of the representations consistently benefits SVMs.

We now examine the performance of the PE representations taking into account

the amount of labeled training data. Figure 6.2 illustrates the performance of the

SVMBoW and SVMPE and k-NNPE with PE representations when the fraction of the

available training data varies from 10% of the intial training set to 90% and in the

case where, cbow and skip-gram are used as distributed representations with an

input size of 300. Note that if only a few training documents are available, the

learning approach is strongly benefited by the rich PE representations, that out-

performs the traditional SVMBoW setting consistently. For instance, in the experi-

ments with 300 dimensional PE representations with cbow DRs, when only 20% of

the data are labeled, the SVMBoW needs 20% more data to achieve similar perfor-

mance, a pattern that is observed in most of the runs in the figure. When, however,

more training data are available the tf-idf copes with the complexity of the prob-

lem and leverages this wealth of information more efficiently than PE does.
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6.1.3 Summary

We proposed a novel approach for learning embeddings of large text spans. The

novel embeddings are learned using with neural networks and in particular with a

denoising autoencoder. The AE embeds translations of an input document in a lan-

guage independent space the hope being that by combining information from two

or more languages can benefit the performance. We empirically showed the effec-

tiveness of the novel embeddings in the bilingual setting, in the task of document

classification. Our embeddings achieved better performance compared to tradi-

tional classification approaches in the interesting case where few labeled training

data are available for learning.

The main limitation of this approach is the fact it relies on a translation system

for obtaining the translations of the input document which are consecutively used

for obtaining the PE. An interesting extension of this work would be to quantify

the effect of the quality of the translations to the performance. One could, for ex-

ample, start by using dictionaries to translate between languages and then proceed

with more advanced and state-of-the-art methods like the translation system we

used in this work.

Another interesting extension concerns the compositional mechanism used to

derive the representations of spans that are composed of several words. In our

experiments we used the average pooling function that is efficient and robust but

may result in loss of information when a text span has several words. To overcome

this, one could use a special type of neural network architectures called recurrent

neural networks that can be model sequences of elements like text. It is indeed

this observation that motivates part of the contributions presented in the follow-

ing section, where we will use recurrent neural networks for generating text span

representations.

6.2 Multitask Learning with Neural Networks

In the previous section we showed that learning representations using transla-

tions of a text span in different languages improves the performance achieved.

On the other hand, this approach required a readily available translation system,

which imposes a significant development and computational overhead. Our anal-

ysis illustrated, however, that combining information in the form of translations

improved the results.
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Semantically, translations of a document are correlated because they discuss

the same ideas in different languages. Meanwhile, one may imagine scenarios

comprising different tasks, strongly or weakly correlated between them instead

of correlated representations. In such a case, instead of dealing with different rep-

resentations of an instance, we deal with different tasks, that may be able to benefit

from each other. This can be natural language processing tasks like named entity

recognition and part-of-speech tagging or multimedia classification tasks such as

image classification and segmentation. For each of the previous examples, while

the tasks may seem at first different, information from one task may help the per-

formance on the other task. Motivated by our previous findings, we explore such a

setting by taking advantage of the modeling flexibility that neural networks offer.

Typical scenarios of machine learning involve optimizing the performance on

a task using an evaluation metric. To this end, a learning model or an ensemble

of such models, are trained to perform the task while their free parameters are

tuned to maximize the achieved performance. However, instead of only relying on

the training signal of the given task, one may be able to do better by incorporat-

ing signals from related tasks. Multitask learning refers to the scenario where a

learner is trained jointly on several interdependent tasks [30]. The hope is that the

multiplicity of the tasks will result in more robust representations or a decision

function that will, in turn, improve the performance on the given task. As a re-

sult, incorporating dependent tasks to the learning process of the main tasks helps

selecting a better hypothesis.

We can motivate multitask learning approaches in different ways. First, as be-

ing inspired by human learning, where for learning new tasks we apply parts of

the knowledge previously acquired from different yet related tasks. For instance,

children or adults begin by understanding parts of language such as simple words

and use this while improving and understanding larger spans like phrases and

sentences. Second, from a pedagogical or a didactic point of view: we often learn

a task using knowledge from previous, simpler tasks. For instance, in sports one

first learns simple moves that are the basics and then elaborates on them. Third,

multitask learning can be motivated from a machine learning perspective: multi-

task learning can be seen as a form of inductive bias or regularization. Inductive

bias is anything that causes an inductive learner to prefer some hypotheses over

others. An example of inductive bias is l1, which causes a learner to select sparse

solutions. In multitask learning, where a learner trains for the main task uses the

signals of the other asks it is easy to see why these signals can serve as inductive
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bias. It causes the learner to select solutions that perform well across tasks and

therefore generalize better.

For neural networks, one may imagine two straightforward architectures for

implementing multitask learning. The first, could be described as hard parameter

sharing. The first layers of a network are shared across the two or more related

tasks, and the last layers specialize on each of those tasks. Such an approach re-

duces the risk of overfitting for the parameters of the shared layers [16]. Apart

from hard parameter sharing architectures, one can also imagine soft parameter

sharing schemes. In the latter, given N tasks, there are N networks. Each tasks

has a dedicated network and parameters. The parameters of these two networks

are regularized however in order to be close. For example, [49] regularize such ar-

chitectures with the l2 norm, while [191] use the trace norm. The work presented

in this section belongs in the first category. We propose a model that implements

a hard parameter sharing architecture for modeling and categorizing short text

spans with respect to the intensity of the sentiment the convey.

In the rest of the sections we elaborate on the task, the model and the evaluation

framework used.

6.2.1 Multitask Learning for Sentiment Classification

Automatic classification of sentiment has mainly focused on categorizing tweets

in either two (binary sentiment analysis) or three (ternary sentiment analysis)

categories [65]. In this work we focus on the problem of fine-grained sentiment

classification where tweets are classified according to a five-point scale ranging

from VeryNegative to VeryPositive. To illustrate this, Table 6.3 presents examples

of tweets associated with each of these categories. Five-point scales are widely

adopted in review sites like Amazon and TripAdvisor, where a user’s sentiment is

ordered with respect to its intensity. From a sentiment analysis perspective, this

defines a classification problem with five categories. In particular, Sebastiani et al.

[120] defined such classification problems whose categories are explicitly ordered

to be ordinal classification problems. To account for the ordering of the categories,

learners are penalized according to how far from the true class their predictions

are.

Although considering different scales, the various settings of sentiment classi-

fication are related. First, one may use the same feature extraction and engineer-

ing approaches to represent the text spans such as word membership in lexicons,

morpho-syntactic statistics like punctuation or elongated word counts [10, 93].

111



Second, one would expect that knowledge from one task can be transfered to the

others and this would benefit the performance. Knowing that a tweet is “Positive”

in the ternary setting narrows the classification decision between the VeryPositive
and Positive categories in the fine-grained setting. From a research perspective

this raises the question of whether and how one may benefit when tackling such

related tasks and how one can transfer knowledge from one task to another during

the training phase.

Our focus in this work is to exploit the relation between the sentiment classifi-

cation settings and demonstrate the benefits stemming from combining them. To

this end, we propose to formulate the different classification problems as a multi-

task learning problem and jointly learn them. Multitask learning [30] has shown

great potential in various domains and its benefits have been empirically validated

[38, 148, 115, 114] using different types of data and learning approaches. An im-

portant benefit of multitask learning is that it provides an elegant way to access

resources developed for similar tasks. By jointly learning correlated tasks, the

amount of usable data increases. For instance, while for ternary classification one

can label data using distant supervision with emoticons [68], there is no straight-

forward way to do so for the fine-grained problem. However, the latter can benefit

indirectly, if the ternary and fine-grained tasks are learned jointly.

The research question that this section attempts to answer is the following:

Can twitter sentiment classification problems, and fine-grained sentiment classifi-

cation in particular, benefit from multitask learning? To answer the question, the

work done brings the following two main contributions: (i) we show how jointly

learning the ternary and fine-grained sentiment classification problems in a mul-

titask setting improves the state-of-the-art performance,5 and (ii) we demonstrate

that recurrent neural networks outperform models previously proposed without

access to huge corpora while being flexible to incorporate different sources of data.

6.2.2 The Experimental Framework

In his work, Caruana [30] proposed a multitask approach in which a learner takes

advantage of the multiplicity of interdependent tasks while jointly learning them.

The intuition is that if the tasks are correlated, the learner can learn a model jointly

for them while taking into account the shared information which is expected to

improve its generalization ability. People express their opinions online on various

5An open implementation of the system for research purposes is available at https://github.
com/balikasg/sigir2017.
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Figure 6.3: The neural network architecture for multitask learning. The biLSTM
output is transformed by the hidden layers H1, HM and is led to N output layers,
one for each of the tasks. The lower part of the network can be used to incorporate
additional information.

VeryNegative

Beyond frustrated with my #Xbox360 right now, and that as of
June, @Microsoft doesn’t support it. Gotta find someone else to
fix the drive.

Negative

@Microsoft Heard you are a software company. Why then is
most of your software so bad that it has to be replaced by 3rd
party apps?

Neutral

@ProfessorF @gilwuvsyou @Microsoft @LivioDeLaCruz We
already knew the media march in ideological lockstep but it is
nice of him to show it.

Positive
PAX Prime Thursday is overloaded for me with @Microsoft and
Nintendo indie events going down. Also, cider!!! :p

VeryPositive

I traveled to Redmond today. I’m visiting with @Microsoft
@SQLServer engineers tomorrow - at their invitation. Feeling
excited.

Table 6.3: The example demonstrates the different levels of sentiment a tweet may
convey. Also, note the Twitter-specific use of language and symbols.
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subjects (events, products..), on several languages and in several styles (tweets,

paragraph-sized reviews..), and it is exactly this variety that motivates the mul-

titask approaches. Specifically for Twitter for instance, the different settings of

classification like binary, ternary and fine-grained are correlated since their differ-

ence lies in the sentiment granularity of the classes which increases while moving

from binary to fine-grained problems.

There are two main decisions to be made in our approach: the learning algo-

rithm, which learns a decision function, and the data representation. With respect

to the former, neural networks are particularly suitable as one can design architec-

tures with different properties and arbitrary complexity. Also, as training a neural

network usually relies on back-propagation of errors [155], one can have shared

parts of the network trained by estimating errors on the joint tasks and others spe-

cialized for particular tasks. Concerning the data representation, it strongly de-

pends on the data type available. For the task of sentiment classification of tweets

with neural networks, distributed embeddings of words have shown great poten-

tial. Embeddings are defined as low-dimensional, dense representations of words

that can be obtained in an unsupervised fashion by training on large quantities of

text [146].

Concerning the neural network architecture, we focus on Recurrent Neural

Networks (RNNs) that are capable of modeling short-range and long-range depen-

dencies like those exhibited in sequence data of arbitrary length like text. While

in the traditional information retrieval paradigm such dependencies are captured

using n-grams and skip-grams, RNNs learn to capture them automatically [51]. To

circumvent the problems with capturing long-range dependencies and preventing

gradients from vanishing, the long short-term memory network (LSTM) was pro-

posed [81]. In this work, we use an extended version of LSTM called bidirectional

LSTM (biLSTM). While standard LSTMs access information only from the past

(previous words), biLSTMs capture both past and future information effectively

[87, 51]. They consist of two LSTM networks, for propagating text forward and

backward with the goal being to capture the dependencies better. Indeed, previ-

ous work on multitask learning showed the effectiveness of biLSTMs in a variety

of problems: [2] tackled sequence prediction, while [148] and [92] used biLSTMs

for Named Entity Recognition and dependency parsing respectively.

Figure 6.3 presents the architecture we use for multitask learning. In the top-

left of the figure a biLSTM network (enclosed by the dashed line) is fed with em-

beddings {X1, . . . ,XT } that correspond to the T words of a tokenized tweet. Notice,
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as discussed above, the biLSTM consists of two LSTMs that are fed with the word

sequence forward and backwards. On top of the biLSTM network one (or more)

hidden layers H1 transform its output. The output of H1 is led to the softmax lay-

ers for the prediction step. There are N softmax layers and each is used for one

of the N tasks of the multitask setting. In tasks such as sentiment classification,

additional features like membership of words in sentiment lexicons or counts of

elongated/capitalized words can be used to enrich the representation of tweets be-

fore the classification step [93]. The lower part of the network illustrates how such

sources of information can be incorporated to the process. A vector “Additional

Features” for each tweet is transformed from the hidden layer(s) HA and then is

combined by concatenation with the transformed biLSTM output in the HM layer.

Our goal is to demonstrate how multitask learning can be successfully applied

on the task of sentiment classification of tweets. The particularities of tweets are

to be short and informal text spans. The common use of abbreviations, creative

language etc., makes the sentiment classification problem challenging. To validate

our hypothesis, that learning the tasks jointly can benefit the performance, we

propose an experimental setting where there are data from two different twitter

sentiment classification problems: a fine-grained and a ternary. We consider the

fine-grained task to be our primary task as it is more challenging and obtaining

bigger datasets, e.g. by distant supervision, is not straightforward and, hence we

report the performance achieved for this task. As a result, unless otherwise stated,

we optimize for the performance on the fine-grained classification tasks. For com-

pleteness, however, we also report the performance we obtain for the ternary clas-

sification task.

The data Ternary and fine-grained sentiment classification were part of the Se-

mEval 20166 “Sentiment Analysis in Twitter” task [133]. We use the high-quality

datasets the challenge organizers released.7 The dataset for fine-grained classifi-

cation is split in training, development, development_test and test parts. In the

rest, we refer to these splits as train, development and test, where train is

composed by the training and the development instances. Table 6.4 presents an

overview of the data. As discussed in [133] and illustrated in the Table, the fine-

grained dataset is highly unbalanced and skewed towards the positive sentiment:

only 13.6% of the training examples are labeled with one of the negative classes.

6http://alt.qcri.org/semeval2016/task4/
7The datasets are those of Subtasks A and C, available at http://alt.qcri.org/semeval2016/

task4/.
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|D | VeryNeg. Neg. Neutr. Pos. VeryPos.

Ternary
Train 5,500 - 785 1,887 2,828 -
Test 20,632 - 3,231 10,342 7059 -

Fine-Grained
Train 7,292 111 884 2,019 3,726 432
Dev. 1,778 29 204 533 887 125
Test 20,632 138 2,201 10,081 7,830 382

Table 6.4: Cardinality and class distributions of the datasets.

Feature representation We report results using various feature sets. The first

one, dubbed bow is the commonly used bow of words representation of the tweets.

The representation is motivated by our previous work [10], where we showed that

using n-grams with n ∈ {1,2,3} as well as character-grams of size 4 and 5 bene-

fits sentiment classification. Here, we use all the possible n-grams and character-

grams hashed in vectors of dimension 20K and 25K respectively. The second,

dubbed nbow, is a neural bag-of-words that uses text embeddings to generate low-

dimensional, dense representations of the tweets. To construct the nbow repre-

sentation, given the word embeddings dictionary where each word is associated

with a vector, we apply the average compositional function that averages the em-

beddings of the words that compose a tweet. Simple compositional functions like

average were shown to be robust and efficient in previous work [129]. Instead

of training embeddings from scratch, we use the pre-trained on tweets GloVe em-

beddings of [146].8 In terms of resources required, using only nbow is efficient as it

does not require any domain knowledge. However, previous research on sentiment

analysis showed that using extra resources, like sentiment lexicons, can benefit sig-

nificantly the performance [93, 10]. To validate this and examine at which extent

neural networks and multitask learning benefit from such features we evaluate the

models using an augmented version of nbow, dubbed nbow+. The feature space of

the latter, is augmented using 1,368 extra features consisting mostly of counts of

punctuation symbols (’!?#@’), emoticons, elongated words and word membership

features in several sentiment lexicons. The next paragraph details those extra fea-

tures. Also, bow+ refers to the concatenation of these extra features with the bow

representations introduced above.

Feature Engineering Similar to [93] we extracted features based on the lexical

content of each tweet and we also used sentiment-specific lexicons. The features

8urlhttp://nlp.stanford.edu/data/glove.twitter.27B.zip
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extracted for each tweet include:

• number of exclamation marks, number of question marks, number of both

exclamation and question marks,

• number of words written in capitals and number of elongated words, that

is words with more than three occurrences of a letter such as “cooool” and

“bliiiiah”,

• number of negative words in a tweet,

• number of positive emoticons, number of negative emoticons and a binary

feature indicating if emoticons exist in a given tweet, and

• distribution of Part-of-speech (POS) tags [66] and distribution of POS tags in

a positive and negative contexts. We consider words to occur in a negative

context if a negative word proceeds then. A negative context stops when

another negative words, punctuation or the end of the tweet is met.

With regard to the sentiment lexicons, we used:

• manual sentiment lexicons: the Bing liu’s lexicon [86], the NRC emotion lex-

icon [131], and the MPQA lexicon [187],

• # of words in positive and negative context belonging to the word clusters

provided by the CMU Twitter NLP tool9

• positional sentiment lexicons: sentiment 140 lexicon10 [68] and the Hash-

tag Sentiment Lexicon [93]

We make, here, more explicit the way we used the sentiment lexicons, using the

Bing Liu’s lexicon as an example. We treated the rest of the lexicons similarly. For

each tweet, using the Bing Liu’s lexicon we obtain a 104-dimensional vector. After

tokenizing the tweet, we count how many words (i) in positive/negative contexts

belong to the positive/negative lexicons (4 features) and we repeat the process for

the hashtags (4 features). To this point we have 8 features. We generate those 8

features for the lowercase words and the uppercase words. Finally, for each of

the 24 POS tags the [66] tagger generates, we count how many words in posi-

tive/negative contexts belong to the positive/negative lexicon. As a results, this

generates 2× 8 + 24× 4 = 104 features in total for each tweet.
9http://www.cs.cmu.edu/~ark/TweetNLP/

10For a collection of sentiment lexicons the interested reader can refer to http://saifmohammad.

com/WebPages/lexicons.html.
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Evaluation measure To reproduce the setting of the SemEval challenges [133],

we optimize our systems using as primary measure the macro-averaged Mean Ab-

solute Error (MAEM) given by:

MAEM =
1
|C|

|C|∑
j=1

1
|Tej |

∑
xi∈Tej

|h(xi)− yi |

where |C| is the number of categories, Tej is the set of instances whose true class is

cj , yi is the true label of the instance xi and h(xi) the predicted label. The measure

penalizes decisions far from the true ones and is macro-averaged to account for

the fact that the data are unbalanced. Complementary to MAEM , we report the

performance achieved on the micro-averaged F1 measure, which is a commonly

used measure for classification.

The models To evaluate the multitask learning approach, we compared it with

several other models. Support Vector Machines (SVMs) are maximum margin clas-

sification algorithms that have been shown to achieve competitive performance in

several text classification problems [133]. SVMovr stands for an SVM with linear

kernel and an one-vs-rest approach for the multi-class problem. Also, SVMcs is

an SVM with linear kernel that employs the crammer-singer strategy [41] for the

multi-class problem. Logistic regression (LR) is another type of linear classifica-

tion method, with probabilistic motivation. Again, we use two types of Logistic

Regression depending on the multi-class strategy: LRovr that uses an one-vs-rest

approach and multinomial Logistic Regression also known as the MaxEnt classifier

that uses a multinomial criterion.

Both SVMs and LRs as discussed above treat the problem as a multi-class one,

without considering the ordering of the classes. For these four models, we tuned

the hyper-parameterC that controls the importance of the L2 regularization part in

the optimization problem with grid-search over {10−4, . . . ,104} using 10-fold cross-

validation in the union of the training and development data and then retrained

the models with the selected values. Also, to account for the unbalanced classifi-

cation problem we used class weights to penalize more the errors made on the rare

classes. These weights were inversely proportional to the frequency of each class.

For the four models we used the implementations of Scikit-learn [143].

For multitask learning we use the architecture shown in Figure 6.3, which

we implemented with Keras [34]. The embeddings are initialized with the 50-

dimensional GloVe embeddings while the output of the biLSTM network is set to
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dimension 50. The activation function of the hidden layers is the hyperbolic tan-

gent. The weights of the layers were initialized from a uniform distribution, scaled

as described in [67]. We used the Root Mean Square Propagation optimization

method. We used dropout for regularizing the network. We trained the network

using batches of 128 examples as follows: before selecting the batch, we perform

a Bernoulli trial with probability pM to select the task to train for. With proba-

bility pM we pick a batch for the fine-grained sentiment classification problem,

while with probability 1− pM we pick a batch for the ternary problem. As shown

in Figure 6.3, the error is backpropagated until the embeddings, that we fine-tune

during the learning process. Notice also that the weights of the network until the

layer HM are shared and therefore affected by both tasks.

To tune the neural network hyper-parameters we used 5-fold cross validation.

We tuned the probability p of dropout after the hidden layers HM ,H1,HA (cf. Fig.

6.3) and for the biLSTM for p ∈ {0.2,0.3,0.4,0.5}, the size of the hidden layer HM ∈
{20,30,40,50} and the probability pM of the Bernoulli trials from {0.5,0.6,0.7,0.8}.11

During training, we monitor the network’s performance on the development set

and apply early stopping if the performance on the validation set does not im-

prove for 5 consecutive epochs.

6.2.3 Experimental results

Fine-grained problem Table 6.8 illustrates the performance of the models for

the different data representations. The upper part of the Table summarizes the

performance of the baselines. The entry “Balikas et al.” stands for the winning

system of the 2016 edition of the challenge [10], which to the best of our knowl-

edge holds the state-of-the-art. Due to the stochasticity of training the biLSTM

models, we repeat the experiment 10 times and report the average and the stan-

dard deviation of the performance achieved.

Several observations can be made from the table. First notice that, overall, the

best performance is achieved by the neural network architecture that uses mul-

titask learning. This entails that the system makes use of the available resources

efficiently and improves the state-of-the-art performance. In conjunction with the

fact that we found the optimal probability pM = 0.5, this highlights the benefits of

multitask learning over single task learning. Furthermore, as described above, the

11Overall, we cross-validated 512 combinations of parameters. The best parameters were: 0.2 for
all dropout rates, 20 neurons for HM and pM = 0.5.
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neural network-based models have only access to the training data as the develop-

ment are hold for early stopping. On the other hand, the baseline systems were

retrained on the union of the train and development sets. Hence, even with fewer

resources available for training on the fine-grained problem, the neural networks

outperform the baselines. We also highlight the positive effect of the additional

features that previous research proposed. Adding the features both in the base-

lines and in the biLSTM-based architectures improves theMAEM scores by several

points.

Lastly, we compare the performance of the baseline systems with the perfor-

mance of the state-of-the-art system of [10]. While [10] uses n-grams (and character-

grams) with n > 1, the baseline systems (SVMs, LRs) used in this work use the

nbow+ representation, that relies on unigrams. Although they perform on par,

the competitive performance of nbow highlights the potential of distributed rep-

resentations for short-text classification. Further, incorporating structure and dis-

tributed representations leads to the gains of the biLSTM network, in the multitask

and single task setting.

Similar observations can be drawn from Figure 6.4 that presents the F1 scores.

Again, the biLSTM network with multitask learning achieves the best performance.

It is also to be noted that although the two evaluation measures are correlated in

the sense that the ranking of the models is the same, small differences in theMAEM
have large effect on the scores of the F1 measure.

Ternary problem Complementary to the performance on the fine-grained sen-

timent classification problem discussed above, we report the performance on the

ternary task. Again, in order to replicate the setting of the SemEval 2016 chal-

lenges, we use the evaluation measure proposed by the challenge organizers that

is the F1 measure, calculated only for the positive and the negative categories. Ta-

ble 6.6 summarizes the results for the baselines and the multitask architecture. An

important detail before commenting on the performance achieved is that the val-

ues of the hyperparameters are those we found optimal for the fine-grained task,

as that was our main task for the study. There are several observations from the

table.

First, adding the additional features (bow and nbow compared to bow+ and

nbow+) benefits every system we tested. In general, the representations that are

based on the word embeddings perform better than those based on the bag-of-

words representations. Second, the neural network architectures perform better
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bow nbow bow+ nbow+

SVMovr 0.993 0.840 0.786 0.714
SVMcs 0.941 0.946 0.746 0.723
LRovr 0.965 0.836 0.731 0.712
MaxEnt 0.946 0.842 0.701 0.715
Balikas and Amini [10] - - - 0.719

biLSTM (single task) 0.827±0.017 0.694±0.04
biLSTM+Multitask 0.786±0.025 0.685±0.024

Table 6.5: The scores on MAEM for the systems. The best (lowest) score is shown
in bold and is achieved in the multitask setting with the biLSTM architecture of
Figure 6.3.

SVMcs MaxEnt SVMovr LRovr biLSTM biLSTM+
Multitask

0.15

0.30

0.45

0.251

0.359

0.445 0.459 0.469 0.481
F1

Figure 6.4: F1 scores using the nbow+ representations. The best performance is
achieved with the multitask setting.

than the traditional classification systems like SVMs and Logistic Regression. No-

tice that the entry “Deriu et al.” [46] is the winner of the task who also used

neural networks, and in particular, an ensemble of convolutional neural networks.

Lastly, and perhaps most importantly, the improvements due to multitask learn-

ing are very small and therefore we can not claim any important gain. We claim

however that the models perform on par and we highlight that the performance on

the ternary task did not decrease while the performance in the fine-grained task

increased.

6.2.4 Summary

In this section, we showed that by jointly learning the tasks of ternary and fine-

grained classification with a multitask learning model, one can greatly improve the

performance on the second. This opens several avenues for future research. The
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bow nbow bow+ nbow+

SVMovr 0.506 0.572 0.584 0.600
SVMcs 0.499 0.546 0.576 0.590
LRovr 0.520 0.572 0.601 0.600
MaxEnt 0.510 0.547 0.596 0.593
Deriu et al. [46] - - - 0.633

biLSTM (single task) 0.580±0.02 0.613±0.04
biLSTM+Multitask 0.582±0.03 0.617±0.05

Table 6.6: The scores of F1 measure for the systems for the ternary classification
task. The hyperparameter tuning was performed for the fine-grained task.

first and perhaps the most straightforward would be to verify whether our findings

generalize or further improve using data of different type and language. Since

sentiment is expressed in different textual types like tweets and paragraph-sized

reviews, in different languages (English, German, ..) and in different granularity

levels (binary, ternary,..) one can imagine multitask approaches that could benefit

from combining such resources.

We showed that by using a multitask learning architecture we managed to gain

in terms of performance when tuning for the fine-grained problem. For the ternary

problem however we did not observe similar benefits when enabling multitask

learning: there are some marginal performance improvements that do not allow

for claiming significant improvements. A direct extension would be to compare

this outcome with the case where the fine-tuning is performed for the ternary

problem. Although this is an interesting task from an experimental point of view,

one can directly improve on the ternary task using distant supervision in the form

of pseudo-labeling tweets based on emoticons, following for instance the work of

[46].

Another research line would be to examine a hierarchical decision function in

the output of the network, perhaps motivated by common hierarchical text clas-

sification systems [168]. That way, one could apply a two-level prediction mech-

anism for the fine-grained task: first predict the ternary task (positive, negative,

neutral) and then, in the second level, the intensity of the sentiment: between

VeryPositive and Positive for the positive sentiment or between VeryNegative and

Negative for the negative sentiment. Increasing the data size for the decisions of

the first level by combining the ternary and fine-grained datasets should result in

performance gains provided that the distribution over the classes does not change.
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Exploring and comparing such as approach with multitask learning is part of our

future work.

Lastly, while we opted for biLSTM networks here, one could use convolutional

neural networks or even try to combine different types of networks and tasks to

investigate the performance effect of multitask learning. Convolutions neural net-

works have been shown to be effective for text classification and comparing their

performance with LSTMs as well as the effect of multitask learning is an interest-

ing extension.

6.3 Cross-lingual text retrieval

As we have previously discussed and demonstrated in this dissertation, word em-

beddings have shown great potential in several natural language processing tasks

[124, 126, 146, 108, 109]. Their ability to capture syntactic properties as well as

their property to project semantically similar words close in the induced vector

space have been particularly celebrated as they alleviate limitations of the discrete

representations of words based on the vector space model [156]. The success of

monolingual word embeddings, helped to develop new approaches for multilin-

gual word embeddings. Additionally to projecting similar words (or short multi-

word expressions) of a single language close in the inferred vector space, mul-

tilingual embeddings project similar words across languages close in the shared

vector space. Depending on the available resources and the approaches employed

to learn the embeddings, there are different methods [95, 188, 71, 79, 160, 125,

189, 64, 163, 179, 166].

In the previous sections, we have also discussed that methods of composition

for obtaining representations of large text spans on top of word embeddings are

particularly important. To this end, in Section 6.1 we demonstrated how averaging

word embeddings performs while in Section 6.2 we relied on recurrent neural net-

works and LSTMs in particular. In this section we are revisiting this problem by

proposing a completely different approach: we argue that in several tasks having

explicit representations of large spans is not necessary as long as an efficient way

for obtaining distances between spans exists.

In this section, we adapt to the cross-lingual setting the work of [100], who pro-

posed a clever re-parametrization of the transportation problem without hyperpa-

rameters for calculating document distances from cross-lingual word embeddings.

Meanwhile, we will show that a simple modification of the optimization problem
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allows the framework to incorporate term-weighting schemes. To validate the pro-

posed approach, we conducted extensive experiments for cross-lingual document

discovery (CLDD) in six cross-lingual settings where given a query document (e.g.,

English Wikipedia entry for “Dog”) one needs to retrieve its corresponding doc-

ument in another language (e.g., French entry for “Chien”). The novel method

outperforms strong baselines previously proposed for the task by a large margin.

Notably, we demonstrate the impact of the quality of the embeddings used, as well

as the impact of three term weighting schemes in terms of Mean Reciprocal Rank

and Precision at 1.

6.3.1 A Wasserstein-alike distance for Cross-lingual Document
Retrieval

In this section, we demonstrate how calculating document distances can be seen

as an instance of the Earth Mover’s Distance problem [100].

Notation We assume access to the collections C`1 = {d`1
1 , . . . ,d

`1
N } and C`2 = {d`2

1 , . . . ,d
`2
M}

where d`1
i (resp. d`2

i ) is the i-th document written in language `1 (resp. `2). Let the

vocabulary size of the two languages be denoted as V `1 and V `2 . For the rest of

the development we assume to have access to dictionaries of embeddings E`1 ,E`2

where words from `1 and `2 are projected into a shared vector space of dimension

D, hence E`1 ∈ RV `1×D ,E`2 ∈ RV `2×D and E`1
k , E`2

j denote the embeddings of words

k, j. As learning the bilingual embeddings is not the focus of this paper, any of the

previously proposed methods can be used. A document consists of words and is

represented using the Vector Space Model with frequencies. Hence, ∀i : d`1
i ∈R

V `1 ,

d`2
i ∈R

V `2 and d`1
ij is the frequency of the j-th word of document d`1

i . Importantly,

the vector representations of the documents need to be l1-normalized. Calculating

the distance of words in the embeddings space is naturally achieved using the Eu-

clidean distance with lower values meaning that words are similar between them.

For the rest, we denote by c(k, j) = ||E`1
k −E

`2
j ||2 the Euclidean distance between the

words k and j in the embedding’s space. Our goal is the following: given two doc-

uments d`1
n ,d

`2
m in two languages, estimate the distance between them by utilizing

the expressiveness of their word embeddings.

The distance between two documents depends on the distances between the

words they consist of. In the Earth Mover’s Distance setting, the words of d`1
n can

be considered as piles and the words of d`2
m as holes of earth in the D-dimensional

space of the embeddings. The amount of earth in the piles and holes is described

by each word’s frequency. Any word of d`1
n can be transformed to any of the words
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of d`2
m either in total or in parts. A matrix T ∈ RV `1×V `2 composed by non-negative

Tjk elements describes how much earth from the pile of the word d`1
nj is moved to

the hole of the word d`1
mk. To transform d`1

n to d`2
m for the outgoing and ingoing earth

flows should be
∑
k Tjk = d`1

nj and
∑
j Tjk = d`2

mk, which intuitively means that every

word must be transformed. Therefore, the linear optimization problem writes:

min
V `1∑
j=1

V `2∑
k=1

Tjkc(j,k)

subject to:
V `2∑
k=1

Tjk = d`1
nj , ∀j ∈ {1, . . . ,V

`1}

V `1∑
j=1

Tjk = d`2
mk , ∀k ∈ {1, . . . ,V

`2}

(6.1)

As transforming the words of d`1
n to d`2

m comes with the cost c(k, j), the optimization

problem of Eq. (6.1) translates to the minimization of the associated cumulative

cost of transforming all the words. The value of the minimal cost is the distance

between the documents. Intuitively, the more similar the words between the docu-

ments are, the lower will be the costs associated to the solution of the optimization

problem, which, in turn, signifies smaller document distances. For example, given

“the cat sits on the mat” and its French translation “le chat est assis sur le tapis”,

the weights (earth piles and holes) after stopwords filtering of “cat”, “sits”, “mat”,

and “chat”, “assis”, “tapis” will be 1/3. Given high-quality embeddings, solving

Eq. (6.1) will converge to the one-to-one transformations “cat↔chat”, “sits↔assis”

and “mat↔tapis”, with very low cumulative cost as the paired words are similar.

The problem of Eq. (6.1) is a special case of the earth mover’s distance [153].

Following [100] , we refer to it as word mover’s distance (WMD) for bilingual

collections. Since c(k, j) is a metric, WMD for bilingual collections is a metric

[153].

The optimization problem of Eq. (6.1) requires that the vector representations

of the documents d`1
n , d`2

m are l1-normalized. Therefore, without loss of generality

one may apply any term weighting scheme (that guarantees non-negative vector

elements) prior to the l1-normalization. In this work we investigate three schemes:

Term frequency (tf ), that represents a document using the frequency of its word

occurrences.
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The term frequency-inverse document frequency weighting scheme (idf ), where the

term frequencies are multiplied by the words inverse document frequencies:

tf -idf (t,d) = tf (t,d)× log
N + 1

df (t) + 1
.

In a collection of N documents, the document frequency df (t) is the number of

documents in the collection containing the word t. The inverse document’s fre-

quency idf penalizes words that occur in many documents and is smoothed in

order to prevent uninformative terms that occur in all of the documents of a collec-

tion (smoothing of the numerator); and hence to avoid zero-divisions (smoothing

of the denominator).

The graph of words (gow) document representation [151, 152]. Following the pro-

cess of Sec. 4 of [152] we represent documents by unweighted directed graphs

constructed using a sliding window. Then, the word weights are: tw-idf (t,d) =

tw(t,d) × log N+1
df (t)+1 where tw(t,d) is the in-degree (number of incoming edges) of

the term t in the graph of d. Gow captures long term dependences (depending on

the sliding window size) and the order of the terms (the graph is directed). The

terms weight tw increases with the number of contexts the term occurs with, which

was shown to be a robust signal for the term’s importance. Following [22], we set

the window size to 6 hereafter.

6.3.2 The Experimental Framework

The goal of CLDD is to identify corresponding documents written in different lan-

guages. Assuming, for instance, English and French Wikipedia documents, the

goal is to identify the cross-language links between the articles. The challenge is

to quantify the cross-lingual document distances. Traditional retrieval approaches

employing bag-of-words representations perform poorly in CLDD as the vocabu-

laries vary across language, and words from different languages rarely co-occur.

CLDD decomposes as follows: for each article from C`1 , one needs to retrieve

the corresponding article from another collection C`2 . We derive three bilingual

datasets using the inter-language links of Wikipedia: (i) English-French, (ii) English-

German, and, (iii) French-German, which define six CLDD problems. We consider

the inter-language links to be our golden standard that will be used for calculating

the evaluation measures. In the pre-processing steps we lowercase the documents,

we remove stopwords, punctuation and words that occur less than three times and

apply the Stanford Part-of-Speech tagger [171] to keep only the nouns, which was
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CLDD BiLDA Training

WikiEn-Fr WikiEn-Ge WikiFr-Ge WikiEn-Fr WikiEn-Ge WikiFr-Ge

instances 500 500 500 20,000 20,000 20,000
V`1 26,406 26,406 12,533 434,807 434,807 204,301
V`2 12,533 32,353 32,353 204,301 576,294 576,294
W`1 135,509 135,509 49,690 8.43M 8.43M 3.27M
W`2 49,690 98,053 98,053 3.27M 5.56M 5.56M

Table 6.7: Statistics for the data used. W` denotes the size of the corpora measured
in words.

recommended at [27] and we also found to improve the results in our preliminary

experiments. Table 6.7 (under “CLDD”) summarizes these datasets.

To evaluate WMD we use both in-house and publicly available pre-trained em-

beddings. First, we use the open implementation of BilBOWA12 [71] with its de-

fault parameters.13 BilBOWA benefits from large monolingual datasets and re-

quires a smaller set of sentence-aligned parallel data to learn the bilingual em-

beddings. We construct the parallel data using the English-French and English-

German parts of the Europarl v7 data [96]: using English as the pivot language we

first construct a French-German parallel corpus and then for the English-French

and English-German parallel corpora we only keep the sentences that occur in the

French-German corpus. This results in ∼ 1.7M aligned sentences. Lastly, we com-

piled monolingual corpora with 900K articles with the same protocol using the

English-French and English-German Wikipedia dumps.14

As far as pre-trained embeddings are concerned, we used the state-of-the-art

embeddings15 of [166], dubbed cn from ConceptNet Numberbatch hereafter. [166]

proposed to learn word embeddings by combining distributional semantics and

ConceptNet v5.5 [112] using a generalization of the retrofitting method of [56].

We expect those embeddings to perform substantially better than those we trained

with BilBOWA as much more resources were used to learn them.

The systems Previous work found the bilingual Latent Dirichlet Allocation (BiLDA)

[44, 137, 127, 178] which is an extension of the Latent Dirichlet Allocation [23] in

the bilingual setting to yield state-of-the-art results [61, 194, 177, 185]. BiLDA is

trained on either parallel or comparable corpora and learns aligned per-word topic

12https://github.com/gouwsmeister/bilbowa
13-window 5 -sample 1e-4 -negative 5 -binary 0 -adagrad 1 -xling-lambda 1
14http://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
15https://github.com/commonsense/conceptnet-numberbatch
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En→Fr Fr→En En→Ge Ge→En Fr→Ge Ge→Fr

MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

nBOW
cn
tf .370 .244 .330 .210 .495 .388 .408 .274 .448 .362 .340 .262

nBOWcngow .366 .266 .305 .180 .486 .376 .423 .286 .476 .400 .348 .270
nBOW

cn
idf

.381 .278 .354 .240 .494 .380 .423 .288 .479 .394 .371 .284
BiLDA .552 .446 .370 .288 .640 .546 .603 .502 .354 .258 .513 .398

Trsltf .530 .430 .532 .424 .575 .472 .495 .380 .451 .348 .376 .256
Trslgow .629 .548 .629 .544 .703 .622 .639 .538 .507 .408 .462 .360
Trslidf .612 .504 .617 .506 .664 .572 .598 .482 .534 .418 .459 .322

WMD
bw
tf .417 .336 .647 .600 .753 .714 .782 .736 .615 .564 .396 .332

WMDbwgow .402 .326 .588 .542 .723 .688 .755 .720 .532 .480 .375 .308
WMD

bw
idf

.510 .436 .699 .656 .815 .786 .859 .838 .655 .608 .499 .432

WMD
cn
tf .782 .724 .739 .684 .871 .838 .873 .834 .671 .610 .691 .630

WMDcngow .769 .718 .713 .662 .875 .841 .875 .838 .655 .606 .713 .662
WMD

cn
idf

.809 .760 .782 .734 .899 .870 .906 .878 .710 .660 .719 .658

Table 6.8: The scores achieved by the systems. WMD with ConceptNet Number-
batch embeddings and the idf term weighting scheme outperforms the rest by an
important gap. `1 → `2 (e.g. En→Fr ) defines a CLDD problem where the query
documents are written in `1 (e.g. En) and the retrieved in `2 (e.g. Fr).
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distributions between two or more languages that best explain the latent themes

of a collection. During inference it projects unseen documents in the shared topic

space. In the rest, we compare:

-nBOW that represents documents by a weighted average of their words’ embed-

dings [129, 21].

-BiLDA with 300 topics and collapsed Gibbs sampling for inference imple-

mented using Numpy [180], with α = 50/K and β = 0.01. We let 200 Gibbs sam-

pling iterations for burn-in and then sample the document distributions each 25

iterations until the 500th Gibbs iteration. For learning the topics we used 30K

comparable Wikipedia documents (Table 6.7 under “BiLDA training”) which is an

order of magnitude bigger than what previous work used [177].

-Trsl that is a system that is based on off-the-shelf translation. Since in the

pre-processing steps we keep only nouns, we use dictionaries between the lan-

guage pairs in order to translate the documents to be retrieved in the the language

of the query document. Given the translations, one may apply the different weight-

ing schemes during vectorization. Having the vectors of the query and translated

documents, we rank them according to the Euclidean distance. To generate the

dictionaries we rely on Wiktionary and in particular on the methods of [1, 198].16

Since the translation process is based on dictionaries it is possible for a given word

to have several translations: in this case we sort the words given their unigram

probabilities calculated on the comparable Wikipedia datasets of Table 6.7 under

“BiLDA training” and select the most frequent translation.

-WMD that is the proposed metric implemented with Scikit-learn [143] and PyEMD

[144, 145]. For nBOW and WMD we compare three weighting schemes (tf, idf, gow) and

two types of embeddings (bw, cn). Hence, WMDcn
idf applies idf term weights and uses

cn embeddings.

Results As evaluation measures we report the Mean Reciprocal Rank (MRR) [176]

and the Precision at 1 (P@1) scores. MRR accounts for the rank of the correct

answer in the returned documents. When only a single document is relevant P@1

counts how many times the correct document is returned at rank 1.

Table 6.8 presents the scores achieved. First, notice that the results clearly es-

tablish the important performance improvements of WMD over the rest of the meth-

ods. In particular, WMD with the BilBOWA embeddings outperforms BiLDA in every

CLDD setting except for the “En→Fr” and “Ge→Fr”. Further switching from Bil-

BOWA to ConceptNet Numberbatch embeddings boosts the performance of WMD

16We use the open implementation of https://github.com/juditacs/wikt2dict.
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significantly, achieving the best performances by very large margins for each of

the six CLDD settings. This highlights the importance of high-quality embed-

dings. BiLDA that was found effective by previous work, outperforms nBOW, al-

though the latter uses the ConceptNet Numberbatch embeddings that showed a

great potential with WMD. While this is probably due to the weighted averaging op-

erations which result in information loss for long documents, it further highlights

the suitability of WMD for calculating document distances.

The best performing baseline system is probably Trsl that relies on an off-the-

shelf translation approach. Notably, Trsl performs better than WMDbw for several

language pairs. Moreover, the best performing weighting scheme for this system is

graph-of-words. It outperforms idf , that was found to be the most robust weight-

ing scheme for the rest of the systems, by several points in both measures for most

of the language pairs. The main limitation of Trsl concerns the out-of-vocabulary

words (OOV). As with WMD we ignored OOV words. We believe however that us-

ing a more robust technique for treating OOV can result in obtaining even higher

scores. To this direction, an interesting approach would be to use either subword

information and select for instance the translation of the word that is most similar

to the OOV or use a system that would make queries to a search tool like Google

to find the translation.

Another observation concerns the impact of the term weighting schemes on

the performance achieved by the WMD approach. The gow scheme performs better

than tf counts in most of the cases, especially when the ConceptNet Numberbatch

embeddings are used. Overall, idf is the best performing weighting scheme. As

an interesting direction of future work, one may improve the results of the gow

by tuning parameters like the sliding window size used to construct the graph in

order to generate graphs that capture the syntactic rules of the languages.

6.3.3 Summary

In this work we adapted the Word Movers Distance metric for CLDD. Our results

demonstrate the effectiveness of the proposed approach which we attribute to the

ability of the model to quantify document similarity using word level information

and high quality word embeddings. Our study open avenues for future research.

First, one could further improve the obtained results by tuning the parame-

ters of the weighting schemes or adapt the proposed approach to other multilin-

gual and cross-lingual tasks like multilingual document clustering. Second, the
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promising results achieved suggest that tasks like CLDD or document classifica-

tion (used in [100]) are a good fit for comparing methods for learning embeddings.

A last promising research avenue would be to incorporate the distance esti-

mation between documents that WMD provides into topic models. Our findings in

Chapter 5 suggest that the quality of the learned topics when incorporating cross-

lingual word embeddings improves and we showcases this potential by comput-

ing a similarity metric between documents based on the cosine between document

representations. The latter were generated by averaging the representations of

words of a document. Our results here suggest that WMD offers a more efficient

way for calculating documents distances that considers every words separately in-

stead of the their averaged representations. We believe that integrating this to the

presented topic models has the potential to further improve them.

6.4 Chapter Summary

In this chapter we investigated how three text mining tasks can benefit from the

use of word embeddings. Our goal for each case was to obtain robust represen-

tations that integrate parts of external knowledge. The knowledge source was

different for each task:

• In the case of polylingual classification, we assumed access to translations of

a documents and used this information to enrich the learned representation

using a denoising autoencoder.

• In the case of multitask learning we assumed that there exist two (or more)

correlated tasks and we argued that in such a scenario jointly learning the

tasks can be beneficial.

• Lastly, for the third task that was cross-lingual information retrieval we sug-

gested that one may not need aggregate word embeddings (which was ex-

plicitly done by averaging on via the LSTM network in the first two tasks) to

learn a decision function but use a formulation of the transportation problem

to derive the distances of documents written in different languages.

Overall, our findings suggest that using word representations learned with mod-

els that implement the distributional hypothesis can achieve competitive perfor-

mance. Furthermore, such models are flexible enough to incorporate different

types of knowledge that can further improve performance.
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Chapter 7

Concluding Remarks

Text data are ubiquitous, posing a variety of interesting challenges based on

a wealth of possible tasks. The goal of this dissertation was to propose,

develop and implement models for text mining applications for text data

written in a single or in multiple languages. In particular, our contributions target

at answering two main questions:

i.) How text structure can improve the performance of unsupervised models for

uncovering the latent topics of a documents collections?

ii.) How one can take advantage of polylingual content and rich text representa-

tion for improving the performance of various tasks?

Both points constitute important questions for the field of text mining and

natural language processing in general. In the following sections we provide an

overview of the main contributions of this thesis and discuss possible future re-

search directions.

7.1 Summary of Contributions

The main contributions of the thesis can be summarized as follows.

Text Structure and Topic Models In Chapter 4 we proposed two novel topic

models whose goal was to extend LDA by integrating prior knowledge of text

structure. We defined the concept of topically coherent segments and we argued

that different text spans like frequent n-grams or noun-phrases can be considered

coherent. To incorporate this type of knowledge to LDA we proposed two different

sampling strategies, one that assigns the same topic to the words of a segments and
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a second that uses copulas which allow for more flexibility. Through extensive ex-

perimentation on various datasets and tasks we demonstrated that knowledge of

text structure is indeed beneficial for topic models. As unsupervised exploration

of text collections is an important task with the ever growing amount of data be-

ing generated the proposed models can help us to better understand the topics

discussed in them and also extract features efficiently from them.

Bilingual Topics Models for Comparable Corpora In Chapter 5 we pro-

posed to better adapt bilingual topic models for comparable corpora with explicit

alignments. Motivated by the fact that such corpora are easier to obtain than par-

allel, we proposed to extend the bilingual Latent Dirichlet Allocation and allow for

different topics distributions for the documents of each language. After system-

atic evaluation of the proposed models, we showed that extending bilingual topic

models and adapting them for bilingual collections improves the topical coherence

of the learned topics, the generalization performance of the models as well as the

performance of the documents representations learned in the task of cross-lingual

document retrieval.

Word Embeddings for Text Mining Applications In Chapter 6 we investi-

gated how text mining applications can benefit from word embeddings. Motivated

by previous research suggesting that such word representations capture semantic

and syntactic word properties we proposed models and algorithms for polylingual

classification, multi-task classification and cross-lingual document retrieval. Our

results confirmed that the tasks at hand can strongly benefit from rich text repre-

sentations and efficient models. Our observations complemented seminal results

on the fields of representation learning and deep learning for natural language

processing tasks about the potential of word embeddings and neural network ar-

chitectures.

7.2 Future Directions

In this section, we discuss future research directions for the topics covered in the

manuscript as well as more broad topics of interest in the areas of text mining and

natural language processing in general.

Incorporating Rich Text Structure to Topic Models For the models of

Chapter 4 we considered segments to be contiguous words that are observed in
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the text. However, one can discover far more structure in documents: from doc-

uments to paragraphs, from paragraphs to sentences and then from sentences to

parse trees, one may imagine various ways to represent documents as complex

structures like trees [29] of graphs [152]. Extending topic models to account for

this complex structure is an interesting problem. For instance, copulas can be ex-

tended by nesting; nested copulas in turn can model tree-like dependencies which

can provide the means for further extending topic models. Another issue, which

is rarely touched, is the scalability of such complex models. Addressing the ques-

tions “How complexity impacts the obtained results ?” as well as “How scalable

are these algorithms for truly big data ?” would provide further useful insights.

Beyond Comparable Corpora with Explicit Alignments The setting we con-

sidered in Chapter 5 required input corpora to be in the form of pairs of documents

that should be topically aligned. Our motivation was that such corpora are more

common that parallel. However, in the most general case one has only access to

comparable corpora without any type of alignments. Can we apply the findings

of this thesis as well as those of related work to address the challenges of this ex-

citing setting? We believe that by combining the models of Chapter 5 with the

cross-lingual document retrieval process outlined in Chapter 6 is a promising re-

search direction.

Word Embeddings for Text Mining Applications In Chapter 6 we explored

three different text mining applications. For the case of polylingual classifica-

tion we validated the hypothesis that translations of a document result in doc-

ument representations that improve the performance in the task of text classifi-

cation. The approach used here motivated experiments with more and different

languages. Is the hypothesis valid for languages that are very dissimilar like En-

glish and Japanese for instance? Are there any benefits when the number of more

languages used to learn the representation increases?

We also discussed multi-task learning with neural networks. We showed that

by jointly learning two sentiment classification tasks for tweets improved the per-

formance of the fine-grained text classification task. Multi-task learning is a very

promising area of research as it allows for knowledge transfer between different

fields. For the case of sentiment analysis, it would be interesting to see if similar

results can be obtained by varying the type of text.For instance, instead of using

only tweets one could also use reviews of hotels or products. The hope is that by

incorporating more data in the process of training one can arrive at selecting a
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better hypothesis that would improve the final performance. The direction of in-

vestigating different types of tasks is also interesting: instead of focusing only on

sentiment classification tasks, one may want to include other NLP tasks like Part-

of-Speech tagging of Named-Entity-Recognition that would add a different type of

inductive bias in the process.

The last application we investigated concerned cross-lingual documents re-

trieval. We used the solvers for the problem of optimal transport with ground

distances estimated by the cross-lingual embeddings. An important aspect of this

approach is the computational cost. Although the distance estimation between

documents is straightforward to parallelize, it is still computationally expensive.

Therefore, aceclerating the solution by aggressive sampling techniques so that less

problems can be solved is another promising area. Also, in the community of com-

pute vision area, earth movers distance has been shown to perform well when used

as a kernel [63, 42] for classification tasks. We believe that building on these find-

ings may lead to similar findings for the Word Movers Distance presented in this

chapter.
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Appendix A

Efficient Model Selection for
Regularized Classification by
Exploiting Unlabeled Data

In the main part of the manuscript we proposed extensions of topics models

and we explored applications of word embeddings for various challenging

tasks. In this appendix we present a contribution that concerns model selec-

tion.1 Differently from the presented models, that learn word representations by

modeling how words co-occur within documents, we move to a higher level and

explore how categories occur in a collection of documents. By observing the dis-

tribution output by a classifier such as Logistic Regression, we propose algorithms

for efficient model selection.

Model selection is an essential step in the pipeline of data analysis tasks. Hav-

ing decided on the algorithm to be used, one should proceed to parameter selection

that is the process of selecting a value for the model’s hyper-parameter(s) expected

to obtain the optimal performance on unseen examples. For instance, when using

Support Vector Machines (SVM) or Logistic Regression (LR) in a classification task,

one has to tune the regularization parameter λ which controls the complexity of

the model.

The fundamental idea of parameter estimation methods is to validate the model’s

performance in fractions of the training data. In several learning scenarios how-

ever, except few labeled data, a larger set of unlabeled data may be available (for

example in text classification) as the cost of assigning labels is high. This is the

case for example of the transductive learning framework [32], where the data to

1Chronologically, this was the first contribution in the framework of the author’s thesis.
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be classified are available beforehand and can be leveraged during the training or

inference procedures.

The situation we are investigating in this paper is when unlabeled data are

available during the step of parameter selection in a classification problem. The

challenge is to come up with a method that is able to leverage the information in

the unlabeled data, instead of ignoring them as traditional model selection strate-

gies such as k-fold cross validation (k-CV) do. To tackle this problem, we incorpo-

rate quantification techniques in order to infer the distribution of the examples on

unlabeled data, which in turn is used to calculate upper bounds (Section 3) on the

performance of a model that motivate an efficient model selection scheme (Section

4).

We place ourselves in the supervised learning paradigm where the i.i.d. as-

sumption holds. Note that unlike semi-supervised and transductive learning that

make use of the unlabeled data in the training process to improve the performance,

we use the unlabeled data for hyper-parameter selection and, hence, the obtained

performance in the test set depends on the amount of the available labeled data.

Our method, which is an alternative to k-CV, motivates the selection of the opti-

mal value for the model’s hyper-parameter(s) from a finite set that in turn results

in the optimal performance (again from a finite set of possible performances). In

this work, we propose a hyper-parameter selection method that (i) benefits from

unlabeled data, (ii) performs on par with k-CV but it is k times faster and (iii) has

the same complexity as hold-out estimation but performs better due to the use of

unlabeled data. We demonstrate the efficiency and the effectiveness of the pro-

posed method in Section 5 where we present multi-class text classification results

on several datasets with a large number of classes.

A.1 Related Work

Several approaches have been proposed for selecting the hyper-parameters of learn-

ing algorithms. The goal is always to select the hypothesis that minimizes the gen-

eralization error, which is approximated by the estimated error [132]. A popular

method to calculate the estimated error is the hold-out procedure that splits the

data in a training and a validation set; the estimated error is calculated on the

latter.

The k-CV technique repeats k times the hold-out procedure: in each round the

available training data are partitioned into two complementary subsets, one for
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training and one for validation. To reduce variability, multiple rounds of cross-

validation are performed using different partitions and the validation results are

averaged over the rounds. At the end, an hypothesis is selected e.g. by retraining

the classifier on all data using the best values found for the hyper-parameters, or

by averaging the hypotheses [18]. A variant of this method is proposed by Blum

et al. [25] with a progressive cross-validation procedure that begins by splitting

the data in training and test. At each step, it tests an example which in the next

round is used for training, resulting in as many hypotheses as the available test

examples. To label an example, a hypothesis is randomly selected. This method

has the advantage of using more examples for training than the hold-out and was

shown to select a better hypothesis. In addition, the study in [97] reviews accuracy

estimation and model selection methods based on cross-validation and bootstrap.

The former is shown to be better than the latter in different datasets, especially in

terms of accuracy estimation (for which a stratified approach may be preferred).

The hold-out estimation and the k-CV when k is small are known to have large

variance, a problem that can be partially compensated in k-CV by selecting high

values for k (like 5 or 10) [5, 4]. However, k-CV and its variants are computation-

ally expensive and may be intractable in practice if one wants to search for the

appropriate values in large-scale scenarios.

We propose here a different method that can select an appropriate model on

unlabeled datasets. The advantages compared to the above-mentioned methods

concern its efficiency and its ability to be applied when few labeled examples are

available. It dispenses with the use of validation sets which can be cumbersome

to produce in unbalanced or small datasets. It is, however, intended for model

selection only, whereas cross-validation and hold-out estimation can be used for

performance evaluation as well.

A.2 Accuracy and Macro-F1 Quantification Bounds

In this section, we propose an upper bound on several performance measures (ac-

curacy and macro-F1) of a given classifier C on a dataset S which doesn’t need

to be labeled. We then use this bound, which is based on the class distribution

induced by C on S, to perform model selection.

We considered mono-label multi-class classification problems, where observa-

tions x lie in an input space X ⊆ R
d . Each observation x is associated with a label

y ∈ Y , where |Y | > 2. We suppose that examples consist of pairs of (x, y) identically
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and independently distributed (i.i.d) according to a fixed, but unknown probabil-

ity distribution D over X ×Y (DX will denote the marginal probability for x in X ).

In the context of text classification, x(i) ∈ X denotes the vector representation of

document i and its label y(i) ∈ Y represents the category associated with x(i). We

further assume to have access to a training set Strain = {(x(i), y(i))}Ni=1 also generated

i.i.d with respect to D.

Quantification. As explained below, our analysis makes use of MC(S)
y , the number

of documents in the unlabeled set S assigned by classifier C to class y. Many clas-

sifiers do not directly assign a category to documents, but rather produce scores

(probabilistic or not) for each category, from which a categorization decision can

be made. The task of determining the number of instances of each target category

in a set S is called quantification and was first proposed by Forman et al. [59, 60].

Contrary to classification that identifies in which target categories an observation

belongs, quantification is solely concerned with the estimation of the number of

observations belonging to a target category (the positive examples). Note that a

good quantifier is not necessarily a good classifier, and vice versa. For example,

in a binary problem with 40 observations, a learner that outputs 20 False Positives

and 20 False Negatives is a perfect quantifier but a really bad classifier.

Given a set of instances in S, quantifiers output, for each target category y of

S, a number denoting the prediction of the relative frequency of category y in S.

Quantification methods using general purpose learners are usually split ([54]) in

aggregative and non aggregative methods based on whether the quantification step

requires the classification of the individual instances as a basic step or not. Quan-

tification has been mainly used to estimate distribution drifts. We make a different

use of it here, in the context of model selection, and rely on two popular quantifi-

cation methods, namely: a) Classify and Count (CC) and b) Probabilistic Classify
and Count (PCC) [54]. In CC, given a classifier C trained on a set Strain, the rela-

tive frequency of a class y in a set S, denoted by pC(S)
y , is obtained by counting the

instances of S that classifier C assigns the target category y, that is pC(S)
y =

M
C(S)
y

|S | ,

where |S | denotes the size of S. PCC extends CC using the posterior probabilities of

an instance belonging to a category, leading to pC(S)
y = 1

|S |
∑

x∈S p(y|x), where p(y|x)

is the posterior probability that an instance x of S belongs to y. We do not con-

sider the adjusted version of those two approaches proposed in [17] because they

require the expensive k-fold cross-validation in the training set which is undesir-

able in large scale settings. Lastly, having a trained classifier, the computational

complexity of quantification reduces to the prediction cost of a trained classifier.
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Quantification-based Bounds. We now present our main result which consists

of quantification-based upper bounds on the accuracy (denoted AC(S)), the macro-

precision (denoted MaP C(S)), the macro-recall (denoted MaRC(S)) and the macro-

F1 (denoted MaFC(S)) of a classifier C on a dataset S which does not need to be

labeled.

Theorem A.2.1. Let S = {(x(j))}Mj=1 be a set generated i.i.d. with respect to DX , py the

true prior probability for category y ∈ Y and
Ny
N , p̂y its empirical estimate obtained

on Strain. We consider here a classifier C trained on Strain and we assume that the
quantification method used is accurate in the sense that:

∃ε,ε�min{py , p̂y ,p
C(S)
y },∀y ∈ Y : |pC(S)

y −
M
C(S)
y

|S |
| ≤ ε

Let BC(S)
A , BC(S)

MaP (ε) and BC(S)
MaR(ε) be defined as:∑

y∈Y
min{p̂y × |S |,p

C(S)
y × |S |}

|S |
, B

C(S)
A

1
|Y |

∑
y∈Y

min{p̂y × |S |,p
C(S)
y × |S |}+ |S |ε

p
C(S)
y × |S |+ |S |ε

, B
C(S)
MaP (ε)

1
|Y |

∑
y∈Y

min{p̂y × |S |,p
C(S)
y × |S |}+ |S |ε

p̂
C(S)
y × |S |+ |S |ε

, B
C(S)
MaR(ε)

Then for any δ ∈]0,1], with probability at least (1− δ):

AC(S) ≤ BC(S)
A + |Y |(

√
log |Y |+ log 1

δ

2N
+ ε) (A.1)

MaP C(S) ≤ BC(S)
MaP (ε) +

√
log |Y |+ log 1

δ

2N
, MaRC(S) ≤ BC(S)

MaR(ε) +

√
log |Y |+ log 1

δ

2N
(A.2)

MaFC(S) ≤
2BC(S)

MaP (ε)BC(S)
MaR(ε)

B
C(S)
MaP (ε) +BC(S)

MaR(ε)
+

√
log |Y |+ log 1

δ

2N
(A.3)

Proof. (sketch) We first consider the case where S , Strain. Using Hoeffding’s in-

equality for random variables bounded in the interval [0,1], we have the standard

result that, for any δ ∈]0,1], with probability at least (1− δ):

∀y ∈ Y ,py ≤ p̂y +

√
log |Y |+ log 1

δ

2N
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The log |Y | factor is a result of the fact that the bound should hold simultaneously

for all categories. This implies, using the quantification assumption, that, for any

δ ∈]0,1], with probability at least (1− δ), ∀y ∈ Y :

|min{py × |S |,M
C(S)
y } −min{p̂y × |S |,p

C(S)
y × |S |}|

< |S |(

√
log |Y |+ log 1

δ

2N
+ ε) (A.4)

min{py × |S |,M
C(S)
y } corresponds to an upper bound on the number of documents

of S correctly classified by C in class y. Hence, the accuracy of C on S is upper

bounded by: ∑
y∈Y

min{py × |S |,M
C(S)
y }

|S |
which leads, using Inequality A.4, to Inequality A.1. The other bounds can be

derived in the same way. �

The above theorem is inspired by a previous result we have developed in the

context of multi-class classification [7]. We have generalized and extended it here

through the consideration of macro measures and quantification. Even though this

extension renders the developments more complex, it is crucial for model selection

using unlabeled datasets.

When the Classify and Count (CC) quantification method is used, then, by def-

inition, pC(S)
y =

M
C(S)
y

|S | , and ε can be set to 0. This leads to stricter bounds for all

the measures. Furthermore, the condition ε � min{py , p̂y ,p
C(S)
y } in the quantifi-

cation assumption implies that the term |S |ε is negligible compared to |S | × p̂y or

|S | × pC(S)
y , so that BC(S)

MaP (ε) and BC(S)
MaR(ε) are close to BC(S)

MaP (0) and BC(S)
MaR(0). Lastly, it

can be noted that the quality of the bound is better for the macro measures than

for the accuracy as the multiplying |Y | factor is dropped.

Theorem A.2.1 states that the accuracy, macro-precision, macro-recall and macro-

F1 of a classifier can be upper-bounded by quantities that are related to the behav-

ior of the classifier on an unlabeled dataset, and that the quality of the bound

depends on the number of classes, the size of the training set, the quality of the

quantification method and the precision desired. These bounds represent neces-

sary conditions for a classifier C to have high accuracy/macro-F12. They can nev-

2They do not provide a sufficient condition since it is possible, in an adversarial setup, to achieve
an upper bound of 1 on the accuracy by simply assigning instances to categories in the same pro-
portion as in the training set.
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Algorithm 4: Model selection using the proposed bounds

Require: Training data Strain = {(x(i), y(i))}Ni=1, S = {(x(j))}Mj=1, and learning algorithm

(SVM, Logistic Regression, . . .)
for each value of λ (typically λ ∈ {10−4,10−3, . . . ,102,103}) do

Train a classifier Cλ using Strain
Perform quantification of Cλ on S using method Mq (typically CC or PCC)
If Mq = CC, set ε = 0

If Mq , CC, set ε = maxy∈Ymin{p̂y ,p
C(S)
y } − |pC(S)

y − M
C(S)
y

|S | |
If ε < 0, go back to step 4 with Mq = CC
Compute the accuracy bound using Inequality A.1

Compute the macro-F1 bound ( 2B
Cλ(S)
MaP (ε)B

Cλ(S)
MaR (ε)

B
Cλ(S)
MaP (ε)+B

Cλ(S)
MaR (ε)

) using Inequality A.3

end
Select Cλ with the highest accuracy/macro-F1 bound

ertheless be exploited, within a given family of classifiers obtained through e.g.
different regularization parameters, to select good classifiers.

Model Selection Using Quantification Bounds. We consider here a standard reg-

ularization setting in which one aims at minimizing a combination of the empiri-

cal error and the model complexity using the following template of the objective

function:

ŵ = argminRemp(w) +λReg(w)

where Reg(w) is the regularization term to avoid overfitting and Remp(.) represents

the empirical error.

The parameter λ controls the trade-off between the empirical error and the reg-

ularization term. As mentioned before, λ is typically estimated through hold-out

estimation or k-fold cross-validation. We propose here to estimate it on the basis

of the upper bounds presented in Theorem A.2.1, as described in Algorithm 4.

As one can note, for each value of λ, a classifier is trained and quantified on the

unlabeled set S. If the quantification assumption of Theorem A.2.1 is not valid,

then one falls back on the Classification and Count method for quantification. The

bounds, as computed by Inequalities A.1 and A.3 are used to select the "best" clas-

sifier. Tuning the hyper-parameter is, therefore, reduced to the problem of finding

a classifier which yields the highest value of the bounds on a given set. In contrast

with other selection methods, the set used to select the classifier can be an unla-

beled set from the same distribution (unlabeled data is usually readily available,

contrary to labeled data) or the test set in a transductive-like scenario.
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In terms of complexity, the quantification cost is reduced to the prediction for

the already trained classifier, which is linear in the cardinality of the set S on which

quantification is performed. The computational cost for Algorithm 4 is thus the

same as 1-fold cross-validation. Additionally, as only one hypothesis is generated

for each parameter value by training to the whole set of labeled data one has just

to select the hypothesis with the highest bound without the need of retraining the

model in contrast to hold-out or k-fold cross-validation. More precisely, the com-

plexity of our approach for m values of λ is O([Tr(N) + Pr(M)]×m), which is k times

lower than the complexity of k-CV with re-training the learner for the selected λ

value, given by O([Tr((k−1
k )×N)+Pr(1

k×N)]×k×m+T(N)), where Tr(N), Pr(N) are the

training and predicting costs for N examples.

A.3 Experimental Framework

To empirically evaluate the model selection method presented above we use the

publicly available datasets of the LSHTC 2011 (Large Scale Hierarchical Text Clas-
sification) challenge [141]. Specifically, we make use of the Dmoz and Wikipedia

datasets containing 27,875 and 36,504 categories respectively. The datasets are

provided in a pre-processed format using stop-word removal and stemming while

we transformed the term-frequency vectors to the tf*idf representation. For each

of the datasets we randomly draw several datasets with increasing number of

classes.

Table A.1 presents the important statistics of the different datasets. As one

can note, the number of categories in our datasets ranges from 250 to 2,500, and

the number of features from 26,000 to 212,000. An interesting property of the

instances of those datasets is the fit to the power law distribution. As a result,

there are several under-represented classes having a few labelled examples. Thus,

model selection approaches using only a fraction of the labeled instances, such as

hold out, may lead to sub-optimal decisions.

The classification problems defined from our datasets are multi-class, and we

adopt a standard one-vs-rest approach to address them (the large datasets consid-

ered prevents one from using more complex multi-class approaches). The Dmoz

dataset is single-labeled, i.e. each training/test instance is associated to a single

target category. On the other hand, the Wikipedia dataset is multi-labeled with

the average labels per instance in the training set being 1.85. We transformed the
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multi-label problem to single label, both in the training and the test phase, by

replicating the multi-labeled instances according to the number of their labels.

In order to empirically measure the effectiveness of model selection, we com-

pare the following three methods: (i) k-CV, using k = 5 folds, (ii) hold-out estima-

tion with a split of 70% and 30% for the training and the validation sets, and (iii)

our method using as quantification set i) an unlabeled set denoted “quantification

set” in Table A.1, and ii) the test set which may be available during training in a

transductive alike scenario. The corresponding methods are called BoundUN and

BoundTest respectively.

Dataset #Training inst. #Quantification inst. #Test inst. #Features # Parameters

dmoz250 1,542 2,401 1,023 55,610 13,902,500
dmoz500 2,137 3,042 1,356 77,274 38,637,000
dmoz1000 6,806 10,785 4,510 138,879 138,879,000
dmoz1500 9,039 14,002 5,958 170,828 256,242,000
dmoz2500 12,832 19,188 8,342 212,073 530,182,500
wiki250 1,917 3,095 1,003 26,699 6,674,750
wiki500 4,912 8,190 2,391 46,556 23,278,000
wiki1000 7,887 12,790 4,067 60,788 60,788,000
wiki1500 12,156 19,776 6,160 79,973 110,959,500
wiki2500 22,642 37,398 11,171 109,694 274,235,000

Table A.1: The properties of the datasets we used. The dataset name denotes the
collection we sampled it from; its subscript denotes the number of categories.

Evaluation of the quantification methods. We first discuss the performance of

the quantification methods presented above (CC and PCC), prior to comparing the

results obtained by the different model selection methods (k-fold cross-validation,

hold-out estimation, BoundUN and BoundTest). Recall that Theorem A.2.1 is based

on the assumption that the quantity Maxε = maxy∈Y |p
C(S)
y − M

C(S)
y

|S | | is small. As

mentioned above, this quantity is null for the quantification method CC, which

thus agrees with our theoretical developments. The other quantification method

considered, PCC, is based on the probabilities that an instance belongs to a class.

When using LR, those probabilities are directly produced by the model. For SVMs,

however, one needs to transform the confidence scores into probabilities, which

can be done in several ways, as using a logistic function, a multivariate logistic

regression function or neural networks based on logistic activation functions and

without hidden layers (the latter two settings can be seen as generalizations of

Platt’s scaling for the multi-class problem). We obtained the best results with a
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simple logistic function defined as 1
1+e−σt , varying σ from 1 to 10. Table A.2 dis-

plays the values of Maxε obtained for PCC for each of the dataset and for each

classifier (the default hyper-parameter values of the classifiers are used), using the

value of σ leading to the lowest value of Maxε. As one can note, although the val-

ues obtained are small in most cases (except for Dmoz1000 and Dmoz1500), there

are not negligible compared to the class prior probabilities, which are in the range

of 1 divided by the number of classes. Thus, the quantification method PCC does

not fully agree with our theoretical development. It turns out that it also performs

worse than CC in practice. We thus rely on this latter method for the rest of our

experiments.

dmz250 dmz500 dmz1000 dmz1500 dmz2500 wiki250 wiki500 wiki1000 wiki1500 wiki2500

SVM .0728 .0967 .1067 .1125 .0345 .0287 .0754 .0310 .0425 .0365
LR .0942 .0674 .0889 .1111 .0530 .0219 .0517 .0481 .0310 .0294

Table A.2: Evaluation of the assumption of Theorem A.2.1 concerning the quantifi-
cation step. For each dataset, we present Maxε for the PCC quantification method.

Model Selection Evaluation. We evaluate model selection methods for two fam-

ilies of classifiers: (i) SVMs, and (ii) LR which are among the best performing

models in text classification. We explore for both classifiers the value for the reg-

ularization parameter λ ∈ {10−3,10−2, . . . ,104}. We used the implementations in

Python’s scikit-learn [142] that are wrappers of the LibLinear package [55].

We report the scores obtained in Accuracy and Macro-F (MaF) measure when

a classifier is applied on the test set. In particular, for each dataset of Table A.1

the model selection methods are used only for selecting the regularization param-

eter λ when optimizing for the repsective measure. After the selection of λ, the

classifier is retrained on the entire training set, and we report its performance in

the test set. This last step of retraining is not required for our method since the

classifier is trained in the overall labeled set from the beginning. Also, as hold-out

estimation may be sensitive to the initial split, we perform 10 different random

splits training/validation and report the mean and the standard deviation of the

scores obtained for both evaluation measures.

Figure A.1 illustrates the model selection decisions for the different methods

using an SVM on the Wikipedia dataset with 1,500 classes for the MaF measure.

The curve MaF corresponds to the actual MaF on the test set. Although each pa-

rameter estimation method selects the value for λ that seems to maximize the per-

formance, the goal in this example, ultimately, is to select the value that maxi-

mizes the performance of MaF. For instance, hold-out, by selecting λ = 10−1, fails
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Figure A.1: Model selection process for SVM on the wiki1500 for MaF. The squares
denote the best performance for each method.

to select the optimal λ value, while all other the methods succeed. Here, the 5-

CV approach requires 1310 sec., whereas the bound approach only requires 302

sec. (the computations are performed on a standard desktop machine, using paral-

lelized implementations on 4-cores). The bound approach is thus 4.33 times faster,

a result consistent over all experiments and in agreement with the complexity of

each approach (Section 3). Lastly, we notice that the curve for BoundUN with the

quantification method CC follows the MaF curve more strictly than the curve with

the quantification method PCC.

Table A.3 presents the evaluation of the three model selection methods using

as classifiers SVM and LR respectively. As one can note, the performance of the

method proposed here is equivalent to the one of cross-validation, for all datasets,

and for both classifiers and performance measures (accuracy and MaF). The per-

formance of SVM is furthermore higher than the one of LR on all datasets, and for

both evaluation measures, the difference being more important for the MaF. The

performance of cross-validation however comes with the cost of extra processing

time, as our method achieves a k speed-up compared to cross-validation. If both

methods can easily be parallelized (at least on the basis of the number of values

of the hyper-parameter to be tested), k-fold cross validation requires k times more

computing resources than our method.

Unlike cross-validation, hold-out estimation fails to provide a good model in

many instances. This is particularly true for SVMs and the MaF measure, for which

the model provided by hold-out estimation lies way behind the ones provided by

BoundUN and BoundTest on several collections as Dmoz1500 and Dmoz2500. The

difference is less important for LR, but the final results in that case are not as good

as in the SVM case.
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BoundUn BoundTest Hold-out 5-CV

Dataset Acc MaF Acc MaF Acc MaF Acc MaF

SV
M

wiki250 .7747 .5889 .7747 .5927 .7663±.0158 .5746±.0183 .7747 .5927
wiki500 .7445 .5257 .7449 .5254 .7440±.0006 .5228±.0031 .7445 .5254
wiki1000 .7000 .4737 .6993 .4732 .6996±.0009 .4584±.0274 .7000 .4737
wiki1500 .6360 .4278 .6354 .4283 .6343±.0049 .4230±.0126 .6360 .4278
wiki2500 .5808 .3763 .5811 .3762 .5822±.0023 .3759±.0004 .5832 .3763
dmoz250 .8260 .6242 .8270 .6243 .8260±.0000 .6242 ±.0000 .8260 .6242
dmoz500 .7227 .5584 .7227 .5584 .7221±.0005 .5558±.0022 .7220 .5562
dmoz1000 .7302 .4883 .7302 .4892 .7301±.0001 .4835±.0155 .7299 .4883
dmoz1500 .7132 .4715 .7132 .4715 .6958±.0457 .4065±.0998 .7132 .4715
dmoz2500 .6352 .4301 .6350 .4306 .6350±.0001 .3949±.0686 .6352 .4301

L
og

is
ti

c
R

eg
re

ss
io

n

wiki250 .7527 .5423 .7527 .5423 .7464±.0078 .5335±.0134 .7527 .5423
wiki500 .7302 .4709 .7302 .4709 .7266±.0056 .4633±.0116 .7302 .4709
wiki1000 .6836 .4354 .6836 .4354 .6836±.0000 .4354±.0000 .6836 .4354
wiki1500 .6166 .3801 .6166 .3801 .6166±.0000 .3801±.0000 .6166 .3801
wiki2500 .5802 .3506 .5802 .3506 .5802±.0000 .3506±.0000 .5802 .3506
dmoz250 .7742 .4724 .7742 .4724 .7718±.0047 .4692±.0096 .7742 .4724
dmoz500 .6608 .4513 .6608 .4513 .6586±.0064 .4488±.0076 .6608 .4513
dmoz1000 .6845 .3681 .6845 .3681 .6845 ±.0000 .3681±.0000 .6845 .3681
dmoz1500 .6678 .3616 .6678 .3616 .6678±.0000 .3616±.0000 .6678 .3616
dmoz2500 .5959 .3351 .5959 .3351 .5959 ±.0000 .3351±.0000 .5959 .3351

Table A.3: The performance of the model selection methods for SVM and Logistic
Regression on the test set. For held out, we report the mean and in parenthesis the
standard deviation of 10 rounds of the method.

A.4 Summary

We presented in this work a new method for model selection that is able to exploit

unlabeled data (this is in contrast with current model selection methods). To do

so, we have introduced quantification-based bounds for accuracy and macro per-

formance measures. We have then shown how to apply this bound in practice, in

the case where unlabeled data is available in conjunction with labeled data, and

in a transductive-like setting where the instances to be classified are known in ad-

vance. The experimental results, obtained on 10 datasets with different number of

classes ranging from 250 to 2,500, show that the method proposed here is equiva-

lent, in terms of the quality of the model selected, to k-fold cross-validation, while

being k times faster. It furthermore consistently outperforms hold-out estimation

for SVM classification, for both accuracy and macro-F1, the difference being more

important for macro-F1. Furthermore, and contrary to hold-out estimation, our
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method needs neither a validation/train splitting procedure nor a retraining pro-

cedure.

In our future work we plan to investigate the application of a generalized ver-

sion of the proposed model selection approach in cases where more than one

hyper-parameters have to be tuned. In this framework, we also plan to research

the extension of the theoretical and experimental findings to multi-label classifi-

cation problems i.e., multi-class classification problems where each instance can

be given more than one categories at once.
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