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Résumé

Le suivi, le contrôle et la surveillance (MCS) des pêches marin sont des problèmes essentiels pour la gestion durable des ressources halieutiques. Dans cette thèse, nous étudions le suivi spatial des activités des navires de pêche en utilisant les données de trajectoire du système de surveillance des navires (VMS) dans le cadre du projet INDESO (2013INDESO ( -2017)). Notre objectif général est de développer une chaîne de traitement des données VMS afin de: i) effectuer un suivi de l'effort de pêche des flottilles de palangriers indonésiens, ii) détecter les activités de pêche illégales et évaluer leur importance. L'approche proposée repose sur des modèles de mélange gaussien (GMM) et les modèles de Markov cachés (HMM), en vue d'identifier les comportements élémentaires des navires de pêche, tels que les voyages, la recherche et les activités de pêche, dans un cadre non supervisé. Nous considérons différentes paramétrisations de ces modèles avec une étude particulière des palangriers indonésiens, pour lesquels nous pouvons bénéficier de données d'observateurs embarqués afin de procéder à une évaluation quantitative des modèles proposés et testés. Nous exploitons ensuite ces modèles statistiques pour deux objectifs différents: a) la discrimination des différents flottilles de pêche à partir des trajectoires des navires de pêche et l'application à la détection et à l'évaluation des activités de pêche illégale, b) l'évaluation d'un effort de pêche spatialisé à partir des données VMS. Nous obtenons de très bons taux de reconnaissance (environ 97%) pour la première tâche et nos expériences soutiennent le potentiel d'une exploration opérationnelle de l'approche proposée. En raison du nombre limité de données d'observateurs embarqués, seules des analyses préliminaires on pu être effectuées pour l'estimation de l'effort de pêche à partir des données VMS. Au-delà des développements méthodologiques potentiels, cette thèse met l'accent sur l'importance de la qualité de données d'observation en mer représentatives pour développer davantage l'exploitation des données VMS tant pour la recherche que pour les questions opérationnelles.

Mots-clés : Surveillance spatiale des activités des navires de pêche; l'effort de pêche; la pêche illégale; les données de trajectoire; VMS l'extraction de données; l'apprentissage non supervisé et supervisé. The comparison of accuracy rate between vessel speed calculated (VSC) and vessel speed instantaneous (VSI) using vessel specific model (VSM) based HMM and global model (GM) based HMM. VSC showed better results for both the VSM model and the GM one. See Section 3.2.3 for details on the differences between VSM and GM models. 
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Introduction

La pêche maritime est l'un des produits les plus importants pour fournir de la nourriture dans le monde [1]. Les pêcheries mondiales contribuent à 17% des protéines animales ou à 6,7% de toutes les protéines consommées par la population mondiale [1]. Cette tendance va augmenter dans les vingt prochaines années sous l'effet de l'augmentation de la population mondiale croissante prédite par la FAO (plus de 9 milliards de personnes en 2050) [1]. L'augmentation de la demande de produits de la pêche devrait être considérée comme une menace pour la santé de l'écosystème marin avec un fort risque une surexploitation. Cela correspond aux statistiques mondiales sur les pêches qui montrent que le nombre de pêcheries sous-exploitées a tendance à diminuer chaque année alors que le nombre de stocks pêchés et surpêchés a tendance à augmenter chaque année. Par exemple en 2013, environ 60% des pêcheries dans le monde étaient pleinement exploitées et environ 30% étaient surexploitées [1].

La surcapacité, la gestion inefficace et la pêche illégale, non déclarée et non réglementée (INN) sont les principaux facteurs de la surexploitation qui menace la santé des écosystèmes marins. La nécessité de gérer les pêches maritimes de manière durable est la clé pour éviter la surpêche et l'effondrement de la pêche. Alors que l'effort de pêche est l'un des indicateurs importants pour gérer la pêche de manière durable, il reste difficile de le mesurer par manque de données. En ce qui concerne la pêche INN, l'insuffisance du suivi, du contrôle et de la surveillance (SCS) rend difficile la dissuasion, l'élimination et la prévention de la pêche INN.

Selon le rapport de la FAO (2016), l'Indonésie était le deuxième plus grand producteur mondial de ressources halieutiques en 2014 [1]. Ce n'est pas une surprise puisque près de 77% du territoire indonésien est couvert d'eau. Ayant une large aire maritime territoriale, on s'attend à ce que l'Indonésie puisse apporter une grande contribution à la production halieutique. En Indonésie, le poisson est une préférence alimentaire et représente plus de 50% des protéines animales. Ce n'est pas seulement parce que le poisson fournit une haute qualité de protéines, de vitamines et de minéraux, mais aussi parce qu'il est généralement moins cher. La production halieutique en Indonésie est principalement influencée par l'upwelling riche en éléments nutritifs dans certaines zones marines de l'Indonésie qui stimulent la productivité biologique [2]. L'Indonésie est un archipel constitué d'un gand nombre d'îles. La mer indonésienne a une frontière avec dix pays voisins. Sans renforcer la surveillance et le contrôle des activités xiv de pêche auprès des navires nationaux et des navires étrangers, la pêche INN est très susceptible de se produire et de compromettre la durabilité de cet écosystème marin. La gestion des pêcheries indonésiennes doit prendre des mesures sérieuses pour soutenir les systèmes du suivi, du contrôle et de la surveillance (SCS). L'application du système de surveillance des navires (VMS) avait été recommandée par la FAO en tant qu'outil efficace pour soutenir le SCS. Le VMS peut surveiller tous les navires dans des zones plus étendues que d'autres types de SCS, qui peuvent dépendre des navires, de la surveillance aéroportée, des navires basés à terre et des observateurs. Il est donc très approprié pour l'Indonésie et son aire maritime étendue.

A travers le projet INDESO (Développement des Infrastructures de l'Océanographie Spatiale), coordonné par CLS, le gouvernement Indonésien vise à développer des moyens technologiques, notamment en termes d'acquisition et de traitement des données satellitaires et de suivi de la gestion durable des ressources des écosystèmes marins. L'exploitation durable des ressouces de ces écosystèmes, qui sont fortement exposés aux effets du changement climatique mondial et de la pêche illégale, constituent des défis sociétaux et économiques majeurs pour l'Indonésie.

Dans ce contexte, grâce à la collaboration entre IMT Atlantique, CLS et le gouvernement Indonésien, cette thèse aborde le développement d'outils et de méthodes pour le traitement de données satellitaires pour le suivi et la surveillance des pêcheries indonésiennes. Nous avons utilisé les données de trajectoires du système de surveillance des navires de pêche (VMS).Le VMS exploite des technologies telles que ARGOS, Inmarsat et Iridium. Il assure un suivi adéquat des mouvements des navires de pêche avec une résolution temporelle de l'ordre de l'heure. Plusieurs études antérieures ont démontré la possibilité d'exploiter ces données trajectométriques pour suivre et caractériser les activités de pêche (zones d'exclusion, types d'engins et méthodes de pêche, temps de transit estimé, pêcheries de recherche et développement) [3,4,5,6,7,8]. En tant que tel, le VMS devrait contribuer à l'estimation de l'effort de pêche, une donnée fondamentale pour la gestion de l'inventaire, puisque les rapports de capture sont malheureusement mal ou insuffisamment rapportés par les pêcheurs.

L'objectif général de cette thèse est de développer une chaîne de traitement des données VMS afin de: i) suivre l'effort de pêche des palangriers Indonésiens, ii) détecter les activités de pêche illégales et évaluer leur importance. L'approche proposée repose sur trois aspects complémentaires:  la segmentation des activités de pêche dérivées des trajectoires VMS comme un outil fondamental pour évaluer l'effort de pêche basé sur le VMS. Nous cherchons à développer des indicateurs d'effort de pêche pour les palangriers à partir des données VMS. Il s'appuiera sur une identification non supervisée des activités de pêche (trajet, déployer ou de remonter un engin de pêche, temps de trempage, ...) adaptée aux flottes palangrières indonésiennes [9]. A partir du traitement d'un ensemble de données VMS, nous abordons la définition des indices de l'effort de pêche.

 la discrimination des différentes flottes de pêche par rapport aux données de trajectoires mondiales. Les différentes flottes de pêche (par exemple les palangres, les sennes, les chaluts, etc.) impliquent potentiellement différents patterns géométriques des trajectoires des bateaux de pêche. Le problème est formulé comme un problème de xv classification supervisée utilisant une base de données annotées. Cela nécessite d'extraire des caractéristiques discriminantes des trajectoires de données.

 la détection et l'évaluation des activités de pêche illégales à partir des données des trajectoires VMS. L'objectif ici sera d'identifier et d'évaluer les activités de pêche illégales.

Ce document est organisé comme suit. Nous décrivons les pêcheries indonésiennes et le système de surveillance des navires (VMS) au chapitre 2. Nous discutons également des données VMS en Indonésie et des données collectées par des observateurs à des fins de validation. Nous passons également en revue l'état de l'art de l'utilisation des données VMS pour but de gestion et but de la science. Au chapitre 3, nous analysons les trajectoires VMS des navires palangriers de manière exhaustive afin de distinguer les activités. Nous avons comparé quatre méthodes différentes pour examiner le modèle qui correspond le mieux aux données VMS. Nous utilisons les données des observateurs comme données de référence à des fins de validation. Au chapitre 4, nous présentons la méthode proposée pour l'estimation de l'effort de pêche des palangriers à partir des données VMS. Nous analysons et discutons les schémas d'effort de pêche spatio-temporels qui en résultent. Au chapitre 5, nous étudions la possibilité d'identifier les types d'engins des navires de pêche à partir des données VMS. Nous combinons une appro d'apprentissage non supervisée et supervisée pour aborder la reconnaissance automatique des types d'engins de pêche des navires à partir des données VMS. Nous décrivons l'importance de la distribution circulaire pour traiter la circularité des valeurs d'angle de rotation. Nous comparons différentes approches Modèle de Mélange Gaussien (GMM) différentes. Au chapitre 6, nous formulons des conlusions générales sur ces travaux de thèse et des perspectives qui en découlent.

Données Données VMS et données d'observateurs

La technologie VMS a été largement utilisée dans le monde, suite à sa mise en oeuvre pour suivre la diminution du stock de poisson au Portugal à la fin des années 80 [10]. L'objectif principal d'un système VMS est de surveiller les activités des navires de pêche. L'Indonésie a met en oeuvre un système VMS depuis 2003 pour soutenir la pêche durable. Le VMS a été installé à bord de plus de 4000 bateaux de pêche, faisant de l'Indonésie le plus grand utilisateur de VMS dans le monde. Les navires d'une capacité supérieure à 30 GT équipés d'un dispositif VMS transmettent leur position GPS (Système de Positionnement Global) toutes les heures au centre de surveillance des pêches (fourni par le MMAF) par communication par satellite (Inmarsat, Argos, Iridium). Toutes ces données (par exemple, identification du navire, identification de l'émetteur, position GPS, cap, vitesse, date-heure et type d'engin) se trouvent dans la base de données dite VMS [11]. Nous nous concentrons ici sur l'ensemble de données VMS des palangriers, qui comprend 500 navires de pêche et environ 5 575 500 VMS points de 2012 à 2014. 

Les autorités

SEAPODYM Données du modèle

Nous avons collecté des simulations numériques du Modèle de Dynamique des Ecosystèmes Spatiaux et des Populations Modèle (SEAPODYM) développé dans le cadre du projet INDESO et adapté à l'archipel indonésien. SEAPODYM nous a fourni une modélisation opérationnelle de la dynamique des stocks de thons en Indonésie avec une résolution de 1/12°. Le modèle SEAPODYM a simulé la dynamique spatio-temporelle de la population de poissons pélagiques structurés selon l'âge sous la pression combinée de la pêche et de la variabilité océanique. Il prédit des efforts de pêche et des caractéristiques supplémentaires telles que la capturabilité et la sélectivité des engins de pêche pour prédire les zones de pêche [12,13,14,15]. Le forçage SEAPODYM implique des variables physiques et biologiques fournies par le projet INDESO.

Nous utilisons les résultats numériques du SEAPODYM pour la biomasse du thon en tant que modèle potentiel de prédiction pour les zones de pêche au thon. Nous avons comparé ces résultats numériques à l'estimation de l'effort de pêche dérivée du VMS. Cette analyse était principalement qualitative.

Méthodes

Nous avons utilisé des méthodes statistiques dans nos travaux. Un modèle simple basé sur des règles, un modèle de Markov caché (HMM), un modèle SVM (Support Vector Machine) et un modèle de forêt aléatoire (RF) ont été utilisés pour étudier l'effort de pêche à partir de données de trajectographie VMS. L'apprentissage non supervisé, c'est-à-dire des modèles de mélange gaussiens combinant un apprentissage supervisé, c'est-à-dire une machine vectorielle de support et une forêt aléatoire, est utilisé pour identifier le type d'engin de pêche à partir des données de trajectographie VMS.

A. Analyses de trajectoire basées sur le VMS pour l'identification des activités des navires palangriers.

Dans ce travail, nous analysons spécifiquement les navires de pêche à la palangre qui n'ont été que peu étudiés dans l'état de l'art. Notre approche comporte deux étapes principales: un prétraitement des données VMS et l'application d'un modèle statistique pour la segmentation d'une trajectoire en segments d'activité. Le but de l'étape de prétraitement est de supprimer les données VMS non fiables, erronées ou sans signification [16]. Nous procédons comme suit: (a) suppression des enregistrements en double, (b) suppression des positions successives à moins de 5 minutes, (c) valeurs aberrantes de la vitesse de filtrage (d) retrait des positions VMS à proximité du port (≤ 3 miles nautiques du port), (e) suppression des données VMS avec une vitesse nulle (0 noeud) pendant plus de que 24 heures consécutives, ce qui se réfère à des navires non mobiles comme transbordement, moteur de rupture, amarrage, ... Nous considérons quatre modèles statistiques: un modèle basé sur des règles simples, un modèle HMM, un modèle SVM et un modèle RF. Nous évaluons la pertinence de chaque modèle en utilisant les données d'observateur. Étant donné que les données des observateurs xvii n'indiquaient que deux activités, à savoir réglage et halage, nous n'avons pu considérer que trois composantes du modèle développé (réglage, halage et autres) afin de valider avec les données d'observateurs.

Modèle Simple Basé sur des Règles

La vitesse des navires et l'angle de virage sont des éléments importants pour différencier les activités des navires de pêche [17,18]. La vitesse plus élevée concerne généralement l'état de trajet, par exemple depuis et vers les zones de pêche. En revanche, une vitesse plus lente tend à indiquer un état de pêche. Dans l'ensemble, les activités des navires de pêche des palangriers peuvent être distinguées en quatre activités, à savoir le trajet, c'est-àdire les activités de navire d'un port à une zone de pêche ou d'une zone de pêche à une autre zone de pêche; réglage, c'est-à-dire le déploiement de lignes appâtées; le halage, c'est-à-dire tirer des lignes accrochées; et l'attente, c'est-à-dire le temps d'immersion. Tableau 1. Caractéristiques de vitesse des activités des navires de pêche de palangriers différenciés.

l'État

Vitesse (noeud) l'Activité des bateaux de pêche Sur la base de la connaissance des caractéristiques de vitesse des palangriers Indonésiens ainsi que des caractéristiques des activités enregistrées par la pêcherie d'observation, nous pouvons proposer dans le Tableau 1 une règle basée sur le seuils à appliquer à la vitesse horaire pour distinguer trois activités, à savoir le réglage, le halage et d'autres.

Modèle de Markov Caché (HMM)

Le modèle HMM est un modèle stochastique avec un processus stochastique sousjacent qui n'est pas observable (la séquence des états cachés), mais qui peut être observé à travers un autre processus, appelé séquence d'observation [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. Nous utilisons cette méthode pour estimer les activités de pêche. Nous proposons ici un HMM avec 4 états cachés, supposant implicitement que les variabilités de vitesse et d'angle de braquage sont gouvernées par des états cachés: l'état 1 associéau transit, l'état 2 associéà la mise à l'eau des lignes, l'état 3 au relevage et l'état 4 à l'attente. Ici, nous avons utilisé deux variables d'entrée, à savoir la vitesse persistante (Vp) et la vitesse de rotation (Vt). Vp = V • cos (θ) et Vt = V • sin (θ) où V est la vitesse et θ l'angle de rotation. Vp et Vt étaient dérivés de la vitesse et de l'angle de braquage calculés en fonction du temps et de la distance entre les positions successives du PMV. Nous utilisons un modèle deMarkov d'ordre 1 (pas de temps entre les bivélocités successives est t et t+1) pour la séquence d'états cachés. Cela revient à supposer que l'état actuel dépend uniquement de l'état précédent. Pour chaque état caché, nous considérons un modèle de mélange gaussien avec 3 composantes de mélange pour la vraisemblance d'observation pour chaque état caché, alors que les travaux précédents supposent généralement une distribution gaussienne. Ceci enrichit la représentativité du modèle et de mieux prendre en compte les variabilités intra-étatiques.

xviii En ce qui concerne la calibration du modèle, nous avons examiné deux stratégies. Nous avons d'abord étalonné un modèle rassemblant les données de tous les navires pour appliquer l'estimation des paramètres HMM mentionnée ci-dessus au sens du maximum de vraisemblance (MV). Nous nous référons à ce modèle comme le modèle global (GM). La deuxième stratégie repose sur la calibration de modèles adaptés aux navires et est considérée comme une stratégie de type 50 spécifique au navire (VSM). Plus précisément, pour chaque navire, nous utilisons le modèle global comme une initialisation de l'estimation MV pour le jeu de données spécifique à chaque navire. Globalement, dans la suite, nous pouvons nous référer à GHMM-VpVt et GMM-HMM-VpVt correspondant respectivement à un HMM avec un modèle d'observation gaussien et un HMM avec une modèle d'observation basée sur un GMM.

Machine à Vecteurs de Support (SVM)

SVM est une méthode de classification définie comme le classificateur de marge optimal. Ce classificateur est basé sur l'apprentissage d'un hyperplan de séparation en tant que limite de décision linéaire [19]. L'exploitation d'un noyau transforme les données dans un espace de caractéristiques de plus grande dimension, dans lequel une limite de décision linéaire peut être trouvée [20]. Ici, nous utilisons la fonction RBF (Radial Basis Function) comme fonction du noyau. Une procédure de validation croisée est utilisée pour définir les paramètres du noyau et de réglage. Ici, notre espace caractéristique est bidimensionnel puisque nous utilisons les deux caractéristiques dérivées d'une trajectoire VMS à un instant donné Vp et Vt. Nous avons utilisé ces caractéristiques pour classer trois états des activités des palangriers, à savoir réglage, halage et les autres activités comme décrit ci-dessus.

Forêt Aléatoire (RF)

RF est une autre méthode de classification populaire. Il génère un grand nombre d'arbres puis vote pour la classe la plus populaire [21]. A partir des données d'apprentissage, une procédure de boostrapping est appliquée pour générer des décisions. Les données, qui ne sont pas utilisées dans la construction d'un arbre, sont considérées comme des données "outof-bag" (OOB). Ces données sont utilisées pour estimer le taux d'erreur [22]. Lors de la génération d'un arbre, un échantillon aléatoire de m variables est sélectionné comme critères de décision de candidats parmi lesquels le meilleur critère est retenu [19]. Ici, nous appliquons une forêt aléatoire au vecteur de caractéristiques formé par les valeurs Vp et Vt à un pas de temps donné.

B. Cartographie de l'effort de pêche des palangriers indonésiens à partir des données VMS

La cartographie de l'effort de pêche des palangriers Indonésiens pour une région et une période spatiales données est établie en fonction du temps total consacré aux différentes activités des navires de pêche. Étant donné que les données d'observateurs considérées impliquent uniquement l'identification des opérations de fixation et de relevage mais ne permettent pas de discriminer d'autres activités potentiellement pertinentes pour les opérations de pêche (par exemple, temps d'attente entre les opérations de réglage et de halage), le temps total consacré à la mise en place et au transport des navires par les palangriers. En utilisant les données des observateurs, cette définition recourt à l'évaluation de la transition des états HMM aux états de réglage et halage: Ici, nous considérons une grille de 1/12 ° pour l'estimation de l'effort de pêche pour une période donnée, d'une semaine à untrimestre. Compte tenu du modèle d'échantillonnage spatio-temporel présenté par les trajectoires VMS, l'estimation ci-dessus de l'effort de pêche peut avoir recours à une cartographie peu résolue et bruitée avec éventuellement d'importantes zones de données manquantes. En post-traitement, nous appliquons une diffusion laplacienne itérative pour lisser les cartes d'effort de pêche [23]. Cette diffusion laplacienne est équivalente à un lissage gaussien avec une longueur de corrélation spatiale de ~1/12 °.
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Afin d'évaluer la pertinence de la cartographie estimée de l'effort de pêche, nous comparons les cartographies de l'effort de pêche obtenues aux prédictions numériques SEAPODYM pour la densité thonière des espèces de gros yeux de thon (BET) et de thons jaunes (YFT). En plus d'une analyse visuelle, nous évaluons également les coefficients de corrélation.

C. Identification des engins de pêche à partir des trajectoires des navires de pêche basés sur le VMS

Nous avons proposé des méthodes de reconnaissance des engins de pêche à partir des données VMS. Elles comportent quatre étapes principales:  Le pré-traitement des données VMS comme décrit dans la section précédente;  Une analyse non supervisée de l'angle de braquage dérivé du VMS et des séries temporelles de vitesse. Nous considérons des modèles de mélange spécifiques à chaque type d'engin pour modéliser la distribution conjointe de la vitesse et de l'angle de xx rotation. De tels modèles de mélange définissent cette distribution conjointe comme une somme pondérée de modes élémentaires. Ci-après, le mode d'un modèle de mélange est appelé régime comme on l'appelle habituellement pour l'analyse de l'activité de pêche [24]. Il peut être interprété comme un régime d'activité de pêche. Un intérêt majeur de tels modèles de mélanges est que l'on peut adapter de façon non supervisée tous les paramètres du modèle à partir de n'importe quel jeu de données d'observation, c'est-à-dire sans connaître l'activité de pêche associée à chaque observation de vitesse et d'angle. En tant que tels, les modèles de mélange fournissent une représentation compacte et interprétable des modèles de mouvement. Dans cette étude, nous étudions deux modèles de mélange différents. Nous avons considéré la distribution de von Mises, à savoir le modèle de mélange Gaussian-von Mises (GvMMM) [25] Sur la base de ce cadre d'apprentissage supervisé, nous considérons la stratégie suivante pour détecter d'éventuels comportements anormaux dans un ensemble de données VMS. En utilisant plusieurs tests de validation croisée, nous évaluons le taux de mauvaise classification de chaque navire lorsqu'il appartient à l'ensemble de données de test. Les navires, qui impliquent des taux de classification erronés au-dessus d'un seuil donné (généralement 50%), sont considérés comme des navires représentant potentiellement un comportement anormal par rapport aux navires appartenant à la même catégorie d'engin de pêche. Cette stratégie nous permet de traiter des données d'entraînement éventuellement erronées, ce qui peut affecter l'étape d'apprentissage du modèle de reconnaissance.

Résultats Analyses de Trajectoires pour L'identification des Activités des Palangriers

Nous comparons les quatre méthodes différentes décrites ci-dessus pour identifier l'activité des palangriers à partir de données de trajectographie VMS, par exemple modèle simple, HMM, RF et SVM. La méthode HMM avec des modèles de mélange à quatre états cachés et à trois classes est supérieure aux autres modèles avec 68,5% de précision moyenne. Les deux modèles de classification supervisés utilisant le SVM et le RF fonctionnent moins bien que les règles de classification basées sur le seuillage utilisées par le modèle SSF (filtre de vitesse simple). Nous avons identifié que notre ensemble de données peut impliquer une certaine variabilité. En considérant seulement 3 des navires, nous avons recouru à une précision de classification moyenne beaucoup plus grande de 79,38% pour la méthode HMM.

xxii Nos résultats illustrent clairement la relation entre la durée des segments HMM déduits et la précision moyenne de la classification: plus la durée est grande, plus la précision moyenne est élevée. Cette tendance attendue est susceptible de se rapporter à la fois aux échelles de temps typiques de réglage et halage (quelques heures), de sorte qu'une plus faible confusion est attendue pour un segment de temps plus long.

Cartographie de L'effort de Pêche des Palangriers Indonésiens à partir des Données VMS

Nous combinons le modèle HMM aux outils d'interpolation spatio-temporelle pour évaluer les cartes de l'effort de pêche. Dans le cadre du projet INDESO, nous analysons les cartes de l'effort de pêche qui en résultent par rapport aux sorties numériques du SEAPODYM, un modèle dynamique de l'écosystème. En cartographiant l'effort de pêche au bimestriel (2012-2014), le modèle global HMM a conduit à plus d'enregistrements VMS étiquetés comme associé à l'activité de pêche: en moyenne, 6% de plus qu'avec les paramétrisations spécifiques au navire. Dans la cartographie de l'effort de pêche en saison (2012-2014), la répartition de l'effort de pêche la plus élevée se situe généralement au sudouest de Java pendant presque toute la saison. Pendant la saison sèche (SEM) et la saison de transition (TS-I et TS-II), des efforts de pêche plus importants semblent se produire dans l'ouest du Kalimantan. Dans l'ensemble, il y a trois régions de zones de pêche à la palangre, à savoir Sumatera Ouest, Java Sud et Bali et Papouasie du Nord, qui apparaissent très régulièrement pendant toute la saison. La zone principale de pêche explorée annuellement (2012-2014) se situe au sud-est de Sumatra. Ce hotspot semble être remarquablement stable entre les saisons et les années, avec une étendue spatiale claire. Globalement, on peut noter une augmentation de l'effort de pêche de 2012 à 2014, notamment dans des zones spécifiques, par exemple sud-ouest de l'île de Timor et au nord de l'ouest de la Papouasie, qui représentent des valeurs d'effort de pêche beaucoup plus grandes en 2014 qu'en 2012 et 2013 .

Identification des Engins de Pêche à partir des Trajectoires des Navires de Pêche basés sur le VMS

Nous rapportons les taux de reconnaissance moyens corrects des modèles de reconnaissance SVM et RF formés pour les caractéristiques VMS issues des différents modèles de mélanges: GvMMM = 97,5% contre 95,2% et GMM-VpVt = 97,6% vs 96,8% utilisant respectivement Classificateurs SVM et RF. Il montre que la méthode GMM-VpVt (SVM) recourt au taux de précision le plus élevé, c'est-à-dire 97,6%.

Nous avons ensuite analysé ces navires de pêche mal classés et distingué trois catégories de mauvaise classification:

 Une première catégorie fait référence à des informations erronées sur les engins dans la base de données VMS originale. Nous avons constaté que 4 des 47 navires détectés étaient enregistrés pour un type d'engin différent de celui indiqué dans la base de données VMS considérée.

 Une deuxième catégorie de navires détectés comprend une variété de modèles anormaux par rapport aux types d'engins enregistrés, qui sont visuellement peu susceptibles d'impliquer des engins de pêche illégaux. Nous rapportons un exemple typique qui représente la trace VMS d'un palangrier. Cette trajectoire n'est pas conforme aux patrons VMS typiques des palangriers et pourrait révéler un transit entre xxiii les ports, qui peut être lié à des problèmes de maintenance ou de remise en état du navire.

 Une dernière catégorie est interprétée comme étant liée à des utilisations illégales potentielles d'engins de pêche, qui ne correspondent pas au permis de pêche officiel.

Cette hypothèse est fortement soutenue pour deux navires enregistrés comme navires de pêche à la canne dans les bases de données VMS indonésiennes, mais soupçonnés d'impliquer un comportement semblable à la palangre d'après notre analyse. Cette analyse est en accord avec leur enregistrement en tant que palangriers dans la liste des navires de pêche au thon autorisés par l'organisation régionale de gestion des pêches. Cela peut être motivé par le fait que les droits de pêche Indonésiens sont moins élevés pour les bateaux de pêche à la ligne que pour les palangriers. Il illustre les besoins d'une coordination supplémentaire entre les organismes nationaux et régionaux de gestion des pêches, à laquelle l'analyse automatisée VMS proposée pourrait contribuer.

Discussion

Analyses de Trajectoires pour L'dentification des Activités des Palangriers

Nous avons effectué une évaluation quantitative de la performance de trois types de modèles considérés dans notre étude en termes de précision de classification, à savoir la cohérence de la segmentation étatique de ces modèles par rapport à la segmentation des observateurs en termes d'activités des navires de pêche. Globalement, en accord avec (Joo, 2013), les HMM étaient clairement les meilleurs modèles (précision moyenne de la classification de 82%). Étonnamment, SVM et RF ont conduit à une mauvaise performance de classification. Cela pourrait être lié à une certaine incohérence révélée par notre analyse dans l'ensemble de données de nos observateurs pour 3 des 6 navires. Pour ces navires, les distributions de vitesse pour chaque activité n'impliquaient aucun schéma clair contrairement aux trois autres palangriers. Cela peut mettre l'accent sur les problèmes de qualité des données dans notre ensemble de données d'observateurs. En considérant seulement 3 navires, la précision de classification moyenne pour le système HMM a augmenté de 13,9%. À notre avis, ces expériences mettent l'accent sur la plus grande robustesse des systèmes à base de HMM par rapport aux modèles discriminants supervisés. Le modèle HMM exploite une stratégie de classification non supervisée. Il est donc moins sensible à la qualité des données annotées contrairement aux modèles discriminants.

Ces résultats soulignent le besoin de données d'observateurs de meilleure qualité. Même si l'on a montré que HMM était plus robuste, à partir de l'ensemble de données des observateurs originaux avec 20 palangriers, seulement 3 semblaient cohérents pour procéder à une évaluation quantitative. Cela affecte grandement l'impact potentiel de notre étude pour un usage opérationnel. Avec une précision de classification moyenne de 82% (basée sur: 3 vaisseaux avec un modèle de consistance, des modèles spécifiques au vaisseau, trois modèles spécifiques à chaque saison et 6 segments d'état), nous considérons nos résultats comme une évaluation prometteuse du potentiel du système HMM pour la discrimination et l'identification des activités des palangriers à partir des données VMS. Des analyses complémentaires ont même démontré que la précision de la classification pouvait être augmentée de 4,9% en considérant des modèles spécifiques à chaque saison, à savoir juinseptembre (saison sèche), décembre-mars (saison humide) et avril-mai et octobre-novembre (saison de transition). Nous avons également montré que la précision de la classification xxiv augmentait avec la durée des segments d'état inférés. Ce dernier peut être particulièrement important lors de la calibration des modèles d'effort de pêche et pourrait suggérer d'envisager des étalonnages spécifiques à la durée.

Cartographie de L'effort de Pêche des Palangriers Indonésiens à partir des Données VMS

Nos résultats expérimentaux ont mis en évidence un faible accord global entre la prédiction de la biomasse thonière issue du modèle SEAPODYM et l'effort de pêche spatialisé dérivé du VMS. Des travaux antérieurs (par exemple, Joo 2013) ont également souligné les différences entre la cartographie de l'effort de pêche et l'estimation de la biomasse dérivée des VMS [33]. Par exemple, dans [33], une cohérence spatiale limitée a été trouvée entre les cartes de l'effort de pêche dérivé du VMS et l'estimation de la distribution spatiale de l'anchois de la côte péruvienne. Lier l'effort de pêche VMS à la prédiction du modèle basé sur l'écosystème pour les biomasses de poissons apparaît comme un objectif particulièrement complexe. D'une part, nous devons mieux comprendre le schéma d'échantillonnage associé aux navires de pêche. Les navires de pêche pourraient ne cibler que les grandes écoles, ce qui pourrait expliquer la répartition plus inégale représentée par les cartes d'effort de pêche. Les palangriers indonésiens pourraient également rester principalement attachés à des zones de pêche spécifiques avec une faible exploration de la distribution globale de la biomasse thonière. D'autre part, les analyses rapportées pourraient également indiquer certaines limites du modèle SEAPODYM et des hypothèses sous-jacentes. Un focus sur les variabilités spatiotemporelles des hotspots les plus significatifs dérivés de VMS pourrait fournir des moyens supplémentaires pour explorer la relation entre les biomasses de thons et les conditions océanographiques et améliorer les prédictions basées sur des modèles pour la perspective à moyen terme.

Identification des Engins de Pêche à Partir des Trajectoires des Navires de Pêche basés sur le VMS

D'un point de vue méthodologique, nous avons combiné des modèles de mélange non supervisés et des modèles de classification supervisés. Les modèles de Markov cachés (HMM) [5,7] peuvent être considérés comme une généralisation des modèles de mélange considérés. Les différences mineures observées en termes de performance de reconnaissance des engins entre les modèles GvMMM et GMM-VpVt (97,5% contre 97,6%) peuvent toutefois suggérer que des améliorations supplémentaires de l'analyse basée sur le régime pourraient ne pas améliorer significativement la reconnaissance des engins. Les travaux futurs pourraient plutôt explorer d'autres types de fonctionnalités dérivées de VMS. À cet égard, le lien entre les caractéristiques proposées et le sac de mots [34], qui figurent parmi les caractéristiques les plus avancées en matière de classification des textes et des images, appuie l'étude des vecteurs de Fisher [35]. Le succès des cadres d'apprentissage en profondeur [36] pour la reconnaissance d'objets et l'analyse de la parole rend également séduisants les travaux futurs explorant l'utilisation de modèles d'apprentissage en profondeur afin d'identifier conjointement les caractéristiques spécifiques aux engins et les modèles de classification associés.

Nous avons présenté une application originale de l'approche proposée à la détection de modèles de VMS anormaux par rapport aux types d'engins enregistrés. Nous avons détecté des profils de VMS anormaux comme des vaisseaux mal classés à plusieurs reprises dans un cadre de validation croisée. Parmi l'ensemble de données sur 1 227 navires de pêche, 47 xxv présentaient un taux de classification erroné supérieur à 50%. Par définition, aucune vérité de terrain n'est disponible. Pour vérifier la cohérence de ces détections, nous avons effectué une analyse croisée basée sur les noms des navires avec d'autres bases de données d'enregistrement des navires de pêche indonésiens et régionaux. Nous avons identifié 6 navires pour lesquels cette information complémentaire était cohérente avec le type d'engin prédit par notre modèle: quatre de ces navires semblent être associés à des informations d'engins erronées dans la base de données VMS Indonésienne, et deux navires sont susceptibles de fausse déclaration du type d'engin aux autorités indonésiennes en ce qui concerne les droits de permis de pêche. Ces résultats confirment la pertinence du cadre proposé dans le nouveau système INDESO [37,38] mis en oeuvre par le Ministère Indonésien de la Marine et des Pêches pour surveiller les pêcheries Indonésiennes et lutter contre la pêche INN. Alors que notre système peut générer des alertes basées sur l'utilisation exclusive de données VMS, la gestion de ces alertes pour déclencher des contrôles doit impliquer des outils automatiques complémentaires pour l'analyse croisée des bases de données d'enregistrement des navires de pêche. La combinaison de l'analyse VMS proposée et des outils d'exploration de texte automatisés [39] permettrait une mise à jour automatique des informations sur les engins dans la base de données d'enregistrement VMS ainsi qu'une identification des comportements potentiellement illégaux. De même, les travaux futurs devraient compléter l'analyse liée aux engins proposée par la détection d'autres profils VMS autres que la pêche (par exemple, le transit) afin que les opérateurs de surveillance puissent se concentrer sur la documentation des comportements illicites. Au-delà des pêcheries Indonésiennes, la généricité de l'approche proposée ouvre de nouvelles voies pour la surveillance par VMS des engins de pêche non autorisés et non déclarés pour d'autres pêcheries, généralement pour des échelles de temps allant de quelques semaines à un an.

Conclusion et Perspectives

Le VMS a été appliqué dans le monde pour surveiller le mouvement des navires de pêche et pour l'application des règlements de pêche. Données VMS pour les questions de gestion des pêches, y compris par exemple l'identification des engins de pêche, la segmentation de l'activité des navires ainsi que l'évaluation de indices de l'effort de pêche. Dans le cadre du projet INDESO, les pêcheries, menacées par la surpêche et les activités de pêche illégales, non déclarées et non réglementées (INN).

Nous avons étudié deux modèles génératifs, à savoir les modèles de mélange Gaussien (GMM) et les modèles de Markov cachés (HMM), ainsi que les modèles discriminants, à savoir la machine à vecteurs de support (SVM) et les forêts aléatoires (RF). En accord avec (Joo, 2013) [5], nos expériences soutiennent la plus grande pertinence de HMM pour l'analyse des activités des navires de pêche. Ceci est considéré comme une conséquence directe de HMM pour tenir compte des dépendances temporelles. L'application à la reconnaissance des engins de pêche fournit un exemple d'une combinaison significative de modèles génératifs et discriminants. Nous avons également étudié des HMM plus complexes avec un paramétrage GMM des modèles d'observation, alors que la plupart des travaux précédents ont considéré des paramétrisations unimodales plus simples. Nous croyons que cette contribution suggère des orientations de recherche futures avec des modèles plus complexes. L'émergence de l'apprentissage profond [36,[START_REF] Chung | A Recurrent Latent Variable Model for Sequential Data[END_REF] semble particulièrement attrayant en tant que moyen de combiner des modèles génératifs et discriminants pour des processus dépendant du temps. Une autre orientation de recherche importante suggérée par notre travail est l'exploration de l'adaptation «locale» des paramétrisations de modèles (modèles localement adaptés vs modèles globaux). Ici, le terme local peut désigner des périodes spécifiques (par exemple xxvi hebdomadaires, mensuelles et annuelles), des régions (par exemple FMA) ainsi que des sousensembles de navires (par exemple taille de navire, comportement de pêche et conditions météorologiques ...). De telles adaptations sont également appelées réglage fin ("fine tuning") dans le domaine de l'apprentissage automatique. Ces stratégies examinées ici pour la segmentation des activités des navires de pêche et la cartographie de l'effort de pêche nous ont permis de tenir compte des variabilités inter-navires et temporelles dans les caractéristiques de mouvement des navires, tout en maintenant une interprétation commune des variables latentes identifiées. Nous pensons que de telles stratégies d'optimisation pourraient grandement contribuer à étendre les capacités de généralisation des modèles réglés à partir de jeux de données fondés à petite échelle, ce qui est principalement le cas des jeux de données d'observateurs en mer.

Les résultats rapportés appuient la pertinence des modèles proposés pour une utilisation opérationnelle future. L'analyse des données des observateurs et l'application à la reconnaissance des types d'engins soulignent à la fois la grande pertinence des données collectées par les autorités indonésiennes et les besoins de nouveaux outils pour améliorer la qualité des données. Certains comportements anormaux étaient susceptibles d'être liés à des informations d'engins erronées dans la base de données de référence, la plupart des données des observateurs ne pouvaient pas être utilisées car elles pouvaient correspondre à l'ensemble de données VMS (14 navires ne pouvaient pas être utilisés sur un total de 20). Parmi les six navires liés aux données des observateurs, trois présentaient des caractéristiques d'activités de pêche peu cohérentes. Ces résultats soulignent l'importance des procédures de vérification de la qualité dans l'acquisition des jeux de données. Cela devrait certainement être considéré comme une priorité pour l'application opérationnelle de la méthodologie proposée.

Dans cette thèse, nous nous sommes concentrés sur les données VMS. Dans le cadre du projet INDESO, le gouvernement Indonésien a mis en place un système de détection des navires (VDS) à Perancak-Bali ainsi que la collecte de données AIS (Automatic Identification System) dans le cadre d'un MCS global (surveillance, contrôle et Surveillance) pour les pêcheries Indonésiennes, y compris la détection de la pêche INN. Les synergies entre ces différentes sources de données apparaissent particulièrement attrayantes et prometteuses pour de futures études.

Chapter 1 Introduction

Marine fisheries are among the most important commodities to supply food in the world [1]. Worldwide fisheries contribute to 17% of animal protein or 6.7% of all protein consumed by the global population [1]. The trend of this number will increase in the next twenty years as the effect of the increasing global population as predicted by FAO that to become more than 9 billion people in 2050 [1]. The increase of marine fisheries demand should be considered as a threat for marine ecosystem health leading to overexploitation. This is in line with world fisheries statistics that showed the number of underexploited fisheries tend to decrease yearly whereas the number of fully fished and overfished stocks tend to increase yearly (see Fig. 1). For example in 2013, about 60% of the fisheries worldwide were fully exploited and about 30% were overexploited [1]. Overcapacity, inefficient management and IUU fishing are the major contributors to overexploitation which threatens marine ecosystem health. The need to manage marine fisheries in a sustainable manner is the key to avoid overfishing and fishing collapse. Whereas fishing effort is one of the important indicator to manage fisheries sustainably, it is still a challenge to measure it with the limitation of the data availability. Regarding IUU fishing, insufficient of monitoring, control and surveillance (MCS) make it difficult to deter, to eliminate and to prevent IUU fishing.

According to the report of the FAO (2016), Indonesia was the second major producers of the world's production in capture fisheries in 2014 [1]. This is not a surprise as nearly 77% of Indonesian territorial is covered by water. Having a broad territorial sea, it is expected that Indonesia could give big contribution to the capture fishery production. In Indonesia, fish is a food preference and accounts for more than 50% of animal protein. It is not only because fish provides high quality of protein, vitamin and mineral but also because it is generally cheaper.

The high production of Indonesia's marine capture fisheries are mostly influenced by the nutrient-rich upwelling in certain marine areas of Indonesia that stimulate the biological productivity [2].

Indonesia is an archipelagic country. Its maritime borders are widely spread by little islands, which are located in hinterland. Indonesian sea has a boundary with ten neighboring countries. Without strengthening the monitoring and the control of fishing activities to national vessels and foreign vessels, IUU fishing is highly susceptible to happen and endanger the sustainability of this marine ecosystem.

The management of the Indonesian fisheries has to take serious actions to support monitoring, control and surveillance (MCS) systems. The application of Vessel Monitoring System (VMS) had been recommended by FAO as an effective tool for supporting MCS.

VMS can monitor all vessels in larger areas than other types of MCS, which may rely on vessels, airborne surveillance, shore-based and observers on vessels. It is very suitable for Indonesia with a broad territorial sea. The general objective of this thesis is to develop a processing chain of VMS data in order to: i) perform a follow-up of the fishing effort of the Indonesian longline fleets, ii) detect illegal fishing activities and assess their importance. The proposed approach is based on three complementary aspects:

 the segmentation of fishing activities derived from VMS trajectories as a fundamental tool to assess the VMS-based fishing effort. We seek to develop indicators of fishing effort for longliners from VMS data. It will rely on an unsupervised identification of fishing activities (cruising, setting, hauling, soaking-time, ...) adapted to the Indonesian longliner fleets [9]. From the processing of a VMS dataset we address the definition of fishing effort indices.

 the discrimination of different fishing fleets from global patterns of trajectories data.

The various fishing fleets (e.g. longlines, seines, trawls, etc.) potentially involve different geometric patterns of the trajectories of the fishing boats. The problem is stated as a supervised classification issue using a database of collected data. It requires extracting discriminative features from the data trajectories.

 the detection and assessment of illegal fishing activities from VMS trajectories data.

The goal here will be to identify and evaluate illegal fishing activities.

Following Chapter 1, this document is organized as follows. We describe Indonesian fisheries and the implemented Vessel Monitoring System (VMS) in Chapter 2. We also discuss VMS data in Indonesia along with observers' data for validation purpose and we review the state-of-the-art of the utilization of VMS data for management purpose and science purpose. In Chapter 3, we analyze VMS trajectory comprehensively in order to distinguish longliner vessel activities. We compared four different methods to examine the model that best fit with VMS data. We use observers' data as groundtruthed data for validation purposes.

In Chapter 4, we present the proposed method for the estimation of longliners' fishing effort derived from VMS data. We analyze and discuss the resulting spatio-temporal fishing effort patterns. In Chapter 5, we study to identify fishing vessel gear types from VMS data. We combine unsupervised and supervised learning approach to address the automatic recognition of fishing vessel gear types from VMS data. We describe the importance of circular distribution to addressing the circularity of turning angle values. We compare two different GMM approach to find the best model in recognizing fishing vessel gear types. In Chapter 6, we conclude in general the topic of the thesis and ending with our perspective for the next work. M. P., "An autoregressive model to describe fishing vessel movement and activity", Environmetrics, 26, 17-28, doi: 10.1002/env.2319, 2014.

[9] Chang, S. K., Tzu-Lun Yuan, "Deriving high-resolution spatiotemporal fishing effort of large-scale longline fishery from vessel monitoring system (VMS) data and validated by observer data", Canadian Journal of Fisheries and Aquatic Sciences, 71 (9), 1363-1370, 2014.

Chapter 2 Indonesian fisheries, IUU Fishing and VMS data 2.1 Indonesian Fisheries

Indonesia is the second major production of marine capture fisheries in the world after China [1]. As the biggest archipelago country with more than 17 508 islands, with the second longest coastline after Canada (about 95 181 km) and a marine fishing area of about 5.8 million km 2 [2], Indonesia produced about 7% of the worlds production in capture fisheries (see Fig. 1) [1]. Fig. 1. Indonesian production in capture fisheries comparing with worldwide capture fisheries [1].

Tuna, skipjack tuna and eastern little tuna are included as the major commodities of marine capture fisheries [3] as shown in Fig. 2. The products of these fishes contribute to about 16% of the world's production and 20% of national's production [4]. As shown in Fig. 2, the largest part of the Indonesian marine capture fisheries production (other fishes) involves a variety of species as detailed for 2014 in Table 1. These fishes are mainly consumed by local market. Here, the production of small pelagic fish dominated among other 

Capture Fisheries Production

Indonesia World fish production i.e. big pelagic fish, demersal fish and coral fish with percentage 46%, 9%, 39% and 6% respectively. This is in line with the distribution of fishing vessels, dominated by purse-seine small pelagic vessels (see Table . 5).

Fig. 2. Comparison among major commodities in Indonesian marine capture fisheries

The capture fisheries production is dominated by marine fisheries compared to inland water (93% vs. 7%). From 2010 to 2014, marine capture production increased yearly by 4,64% on average. Meanwhile, the number of fishers and fishing vessels increased by 0,61% and 2,47% respectively (Table 2,3,4). The unbalanced growth of fishers and vessels could be figured out by the negative growth of non-powered vessels. The number of outboard and inboard motor vessels has been higher than non-powered vessels since year 2011 (Table 4). It indicates the modernization of fishing vessels in Indonesia. The highest growth rate was for inboard motor vessels. For inboard motors, the highest growth rate was for vessels < 5 GT Tunas with 8,74% on average and vessels > 200 GT depicted a negative growth rate with -14,13% on average. Table 1. The production of other fishes in 2014 (see violet color in Fig. 2)

The vessels with size > 30 GT have to get licenses from Ministry of Marine Affairs and Fisheries (MMAF). In 2014, the number of these vessels decreased by 9.9% compared to 2013 ( Tuna is one of the major marine commodities [3] and skipjack tuna is reported to be the most commonly consumed species in Indonesia [5]. The main fishing gears for tuna fishery are longliners and purse-seiners with contribution to tuna's production of approximately 22% and 30% respectively (Table 7).

Illegal, Unreported and Unregulated (IUU) Fishing

FAO defines Illegal fishing as fishing activities conducted by national or foreign vessels in waters under the jurisdiction of a State, without the permission of that State, or in contravention to laws and regulations in some other manner. Unreported fishing is defined as fishing activities, which have not been declared, or have been misdeclared, to the relevant national authority, in contravention to national laws and regulations. Unregulated fishing are defined as fishing activities in the area of application of a relevant regional fisheries management organization that are conducted by vessels without nationality, or in areas or for fish stocks in relation to which there are no applicable conservation or management measures [9].

IUU fishing may relate to different causes. It is highly attractive for no taxes on the catches, it is interested in trading limited species with high price, it occurs widely in the high seas [11]. It often employs harmful fishing gear that produces detrimental effects on the environment [5]. IUU fishing threatens overexploitation of fish stocks and could be an obstacle to the recovery of fish population and ecosystems [10]. Agnew 

IUU Fishing in Indonesia

As a big archipelago country, the maritime borders are widely spread by little islands which are located in hinterland and most outside. Indonesian sea has boundary with ten neighboring countries. The illegal fishing is highly susceptible to happen in Indonesia due to different factors i.e. a large number of fish stocks, the lack of monitoring, control, surveillance at the boundary area, weak governance. Since October 2014, Indonesia has taken harsh action by blowing up the vessel which is doing the illegal fishing in Indonesian territorial waters.

During the period October 2014 -December 2015, the total amount of 121 vessels had been sunk for Indonesian and foreign flags [12].

Illegal fishing in Indonesia has been particularly conducted by foreign vessels and not only in EEZ but also in archipelagic waters. The non-compliance to Indonesian laws include:

the absence of fishing licenses, the manipulation of vessel's information, the use of different fishing's gear from license prohibited, and turning off the VMS transmitter [14]. Illegal fishing by foreign vessels mainly occur in Indonesian EEZ of the South China Sea, the Sulawesi Sea and Arafura sea [14].

In general, unreported fishing in Indonesia relates to the catch production. The others caused include sea transshipment, to directly convey the fish catch to abroad [13]. Many licensed foreign vessels do not report to the fishing port or land the fish catch by sea transshipment, especially in Indonesian EEZ of the South China Sea and in Sulawesi Sea [11].

Unreported fishing in Indonesia often refers to sport fishing [13]. It involves no speciesspecific regulation, particularly ornamental fish, and modified fishing gear [11].

In Indonesia, IUU fishing is having impact on social, economic and environmental aspects and also conflict with traditional fishers [13].

social aspects include threats on the traditional fishers having the small size of vessels and traditional fishing gears compare to the illegal fishing vessel, reduction of catch production caused by the damage of environment [14].

economic aspects involve the loss of catch fishes production as well as nationwide loss due to the non-collected tax revenue [13].

environmental aspects include threats to the sustainability of fish resources [13],

overfishing and overcapacity [14].

It is difficult to evaluate the value of IUU fishing since it is by nature unreported and hidden operations, IUU losses for Indonesia were estimated to USD 3 125 million per year [15]. The estimation depends on the methods and the area [14]. D.A. The fisheries management has to apply internationally-recognized instruments to combat IUU fishing since it has been an increasingly global concern. Combating IUU Fishing in Indonesia has been set as follows [14]. The national laws were revised. It resulted in the implementation of four-year action, at the end of 2014, MMAF had approved two regulation plans to prevent IUU fishing, consolidate and develop a marine and fisheries resources surveillance unit, consolidate fisheries surveillance and fisheries civil servant investigators, and develop regional collaborations. Regarding the later, Indonesia is a member of Indian Ocean Tuna Commission (IOTC), Western and Central Pacific Fisheries Commission (WCPFC), Commission for the Conservation of Southern Bluefin Tuna (CCSBT). With some regional countries, Indonesia also established a Regional Plan of Action to Promote

Responsible Fishing Practices Including Combating IUU Fishing in the region (RPOA-IUU) ;

having bilateral cooperation with Australia in combating IUU fishing. In addition, Indonesia also implemented "hard" actions: the implementation of monitoring, control and surveillance (MSC) including the application of VMS, the examination of fishing vessels (before fishing, after fishing, during landing and post landing), the development of facilities and infrastructures for fishing surveillance, including coordinated patrols with other countries.

Vessel Monitoring System

Vessel Monitoring System (VMS) is a satellite-based surveillance technology to monitor the displacement of licensed fishing vessels. Each vessel is equipped with a VMS electronic device (VMS transmitter), which sends GPS positions periodically to the Fisheries Monitoring Center (FMC) using satellite communication (Argos, Inmarsat, Iridium). The basic purpose of satellite based VMS is the enforcement, control and monitoring of fishing vessel activities based on area (spatial) and period of time (temporal) of fishing. In other words, the authorities knows where and when the operating of fishing vessel in near-real time.

Information recorded from VMS not only position but also include vessel identification, timedate, speed, and heading.

Portugal is the country that first introduced VMS as a technology for fisheries monitoring in 1988 [28]. The significant degradation of fish stock in Portugal and Europe, brought the Portuguese administration to apply catch quotas and fishing effort limitations (through a regulation of the number of days at sea). To control the compliance with the management regime, they applied vessel tracking system remotely for their national fishing vessels.

Nowadays, many countries are implementing Vessel Monitoring Systems (VMS) to track fishing vessel movements at sea in order to manage marine and fisheries resources in a responsible and sustainable manner. In Indonesia, VMSs have been implemented since 2003 in order to monitor the movement of fishing vessels for all fishing vessels with capacity more than 100 GT. It has been extended in 2013 to vessels with capacity greater than 30 GT.

Nowadays, Indonesia is one of the country with the biggest amount of registered VMS transmitters with more than 4 201 number of fishing vessels in 2011 [13].

In summary, the implementation of the VMS system in Indonesia aims to:

 track fishing vessels location and movement to control the compliance with official fishing permit, including the access to fishing areas.

 guarantee fish traceability as a requirement to worldwide fish exports particularly to European union.

 protect marine resources from IUU fishing activities.

 support law enforcement for Indonesian fisheries  improve distress and safety purposes using emergency button provided by VMS terminal  provide high resolution spatio-temporal data of fishing activities for research purpose.

 provide vessel owners a service for the monitoring of the movement of their fleet for management purposes.

VMS Data

In this work we used VMS data provided by the service in charge of the general surveillance of marine and fisheries resources (PSDKP-MMAF) in Indonesia. The VMS transmitter records Global Position System (GPS) positions regularly every hour. However the received VMS data may depict some irregularity between two successive positions due to the satellite-based transmission offered by Argos system that might not always connect as a consequence of polar satellite orbits [36]. These irregularities might not affect the distribution patterns since they are random. Date and time of VMS data were recorded in Universal Time Coordinated (UTC).

Overall, we considered > 400 longline fishing vessels, > 800 purse-seine fishing vessels, > 40 pole-and-line fishing vessels, and > 80 shrimp trawl fishing vessels from VMS data (see Fig. 4). Fig. 5 showed the number of VMS data (ping records) for four fishing vessels i.e.

longline fishing vessels (a), purse-seine fishing vessels (b), pole-and-line fishing vessels (c), and shrimp trawl fishing vessels, (d) in 2012-2014. There is no clear pattern neither seasonally nor between years (see Fig. 5). This might be explained by the variety of fish productivity seasons in Indonesian seas. 

Observer Data

We were provided with observer data for two types of fishing gear i. 

Spatial-temporal Matching of VMS Data and Observer Data

In this work we assess the quality of observer data that could be used for validation and training purposes in the proposed framework. We proceed as follows:

-Matching vessel names between the observer data and the VMS database. The result of this step is shown in Fig. 5. Only 20 longliners and 27 purse-seiners from observer data could be retrieved based on their exact name in the VMS dataset. Hence 22 vessels could not be matched to a vessel in the VMS dataset. This might refers to vessels ≤ 30 GT with no requirement for the use of a VMS transmitter.

-Matching space/time positions recorded by the observers to VMS data. For a given vessel, we considered that when 70% or more of the observer data showed a good match to VMS data in terms space-time positions, the observer data was a relevant for validation and training purposes. As reported in Table 8, only 13 % of observer data collected by SDI and LPPT were tagged as good quality data based on this criterion, that is to say only 6 longliners and 4 purse-seiners. We illustrate in Fig. 9 an example of position mismatch between the observer and the VMS dataset. Table 8. The number of vessels that could be used for validation historically.

We can summarize the different reasons why 87 % of observer data could not be used further in our analysis:

-Vessel capacities under 30 GT since VMS database provide the data only for the vessels above 30 GT.

-The possibility of human errors, for example typo, etc.

-The possibility of recording the data after fishing activities.

-The possibility of incomplete and hence useless record, for example the observer just recording the starting time of the setting and not the whole of fishing activities. This analysis emphasizes two recomendations: the need for improved data acquisition procedures for at-sea observers and the priority to focus on fishing vessels > 30 GT equipped with VMS. Verification procedure after recording observer data by the supervisor is strongly important to validated data entry. fishery. The key elements of fishing day were: the time (morning or afternoon) and the speed (fast or slow) were analyzed by three approaches i.e. the optimal-speed-time-ranges, the between-days distance, the within-day distance. The sensitivity rate was measured for prediction fishing days and the specificity rate for prediction non-fishing days. As performance criterion, this study used the maximization of the sum of the sensitivity and specificity (SSS) rates. In case of similar SSS values, the class with the lowest value of the absolute difference of the sensitivity and specificity rates was selected. The speed at 2-5 kn in time range 14:00-23:00 for at least one appearance in VMS data was recommended as a fishing day. The simple classification method may be crude but efficient. Eventhough there is potential different strategies for longliners vessel i.e. differences in operation times and speed in every country, this approach can be used as a basis of development other approach [20]. Vessel speed with range FS-2 ≤ S ≤ FS+2 was fishing position; S > FS+2 as steaming position; and S > FS+2 as floating position. During a four year period, in eight most fishing rectangles of the North Sea, it was estimated that 5% of the area was trawled less than once in 5 years and 29% less than once in a year. It is showed that 30% of the surface area of the sea bed was trawled between 1 and 2 times in a year and around 9% was trawled more than five times in a year [21]. VMS data within grid cells 5×5 km was used as a proxy for fishing intensity (FI) in the trawl marks (TM) analysis and within a 2-km radius around the transects for the megabenthos records. They used video transects to study the density of trawl marks (TMs) and megabenthos. The relation of FI to the density of TMs and megabenthos was explored using linear regression and correspondence analysis. The density of TMs was not directly related to FI but to bottom type, whereas megabenthos density and diversity had a negative correlation [34].

New Avenue to

A few recent studies explored a method to identify the metier of fishing vessels from VMS data. For example, Russo et al. ( 2011) identified the métier of fishing vessels by examining VMS data with artificial neural networks method. The considered multilayer perceptron network (MPN) involved an input layer with 33 variables and an output layer with 15 métiers. Using as groundtruthed dataset on-board observations, the trained neural network yielded a correct classification rate greater than 94% [35].

Chapter 3

VMS-based Trajectory Analyses for the Identification of

Longline Vessel Activities

Introduction

Trajectory data are key data to understand the behavior of fishing vessels and retrieve fishing vessels activities [1]. Since Vessel Monitoring System (VMS) technology has been used, many studies have attempted to discriminate fishing vessel activities from VMS data in order to manage sustainable fisheries [2] for example to estimate fishing effort [3,4,5,6],

to detect illegal vessel gear types [7], mapping fishing area distribution [8], etc. However, deriving fishing vessel activities from VMS data is still a challenge, especially due to the differences in VMS data acquisition but also métier-specific variabilities [9].

Many previous studies have been developed to analyze movement patterns of fishing

vessels based on speed and turning angle of VMS trajectories. In general, we could distinguish three categories of methods to analyze fishing vessel behaviors from their trajectories, i.e. (i) Simple descriptive statistics, using simple analysis of speed and or turning angle directly to differentiate fishing vessel activities. (ii) Generative models, using generative approach for clustering fishing vessels activities. For example, one may cite GMM, HMM, naive Bayes, (iii) Discriminative models, for example: SVM, RF, neural networks. These models are considered within a supervised classification framework and require large groundtruthed dataset. Most of these models have been applied to the analysis of the VMS trajectories for two fishing gear types i.e. purse-seine [19, 24, 25,], trawl [20,21], and dredge [22,23]. In this chapter, we analyze specifically longline fishing vessels, which have not been investigated before using advanced statistical approaches. Simple classification criterion has been developed to differentiate longline vessel activities based on speed range and time range [18]. However simple classification feature tend to overestimate the number of fishing sets [19]. Here, we explored 4 different methods i.e.

simple speed range method as well as HMM, SVM and RF models to infer longline vessel activities such as steaming, setting and hauling. We aim at determining which method leads to the best performance for this fishery.

In this study we use VMS data from the Indonesian authorities. Indonesia has been implementing VMS technology since 2003 in order to monitor the movement of fishing vessels and also to combat IUU fishing activities for sustainable fishery. VMS device has been installed onboard more than 4000 fishing vessels including 463 longline fishing vessels in 2014 (see Fig. 1). The VMS device acquires the Global Position Satellite (GPS) positions of the fishing vessels and transmitting VMS data almost every hour regularly to Fisheries Monitoring Centre (FMC) Jakarta by satellite (Argos, inmarsat, iridium, and Garuda-1).

The purpose of this study is to explore and evaluate different statistical approaches for the discrimination of the activities of longline vessels derived from VMS data. We compare the above-mentioned models and consider different inference strategies with a view to identifying the model that best fits to longliners' VMS data.

Material and Methods

Dataset

In this work, we used two types of data i.e. VMS data and observer data. VMS data provided by the service in charge of the general surveillance of marine and fisheries resources (PSDKP-MMAF) Indonesia. Here, we used VMS data specifically for longline fishing gear type from 2012 to 2014 (see Fig. 2). Here we used observer data for validation purposes by matching VMS data and observer data. The validation was not trivial due to possibly ambiguous vessel names and time-position data entry errors. Here we generated an interpolation approach to compare the shortest distance among vessels in case of mismatch in vessel names. Overall, we only considered the observer data with a good space-time correlation with VMS data. Overall, we were left with six observer longline vessels in our study.

Instantaneous vs. Calculated Speed and Turning Angle

VMS data sets contain instantaneous speed and heading information provided by VMS device. Here we compared this instantaneous speed and turning angle information to the one calculated from the VMS position time series (using haversine formula). The later was proven more reliable as illustrated in Fig. 3. This might be due to a lesser variability in terms of rounding (only integer values were recorded e.g., 0, 2, 4, 7 and 17 knots) and also to missing data in the VMS records of speed and turning angle. This analysis led us to use speed and turning angle information calculated from consecutive VMS positions. VSC showed better results for both the VSM model and the GM one. See Section 3.2.3 for details on the differences between VSM and GM models.

Proposed Approach and Models

Our approach involves two main steps: a preprocessing of the VMS data and the application of statistical model for the segmentation of a trajectory into activity segments. The purpose of the preprocessing step is to remove unreliable, erroneous, or meaningless VMS data [11]. We proceed as follows: (a) removal of duplicate records, (b) removal of successive positions less than 5 minutes away, (c) filtering speed outliers, that is to say VMS positions with a speed whose distance to the mean speed is greater than twice the standard deviation of the speed over the considered trajectory, (d) removal of VMS positions close to the port (≤ 3 nautical miles to port), (e) removal of VMS data with a null speed (0 knot) during more than 24 consecutive hours, what refers to non moving vessels as transshipment, break engine, docking, ... As detailed in the following paragraph, we consider four statistical models: a simple rule-based model, a HMM, a SVM model and a RF model. We evaluate the relevance of this model using the groundtruthed observer data. Since observer data only recorded two activities i.e. setting and hauling, we might only consider three component from the model developed (setting, hauling and others) in order to validate with observer data. We also explore a segmental approach to improve the accuracy of the segmentation of fishing vessel activities.

A. Simple rule-based Model

Vessel speed and turning angle are known to be relevant features to differentiate fishing vessel activities [3,9]. Higher speed generally relate to steaming state for instance from and to fishing grounds. By contrast, a slower speed tends to indicate a fishing state.

Overall, longliners' fishing vessel activities can be distinguished into 4 activities i.e. steaming, i.e. vessel activities from a port to a fishing ground or from a fishing ground to another fishing ground; setting, i.e. the deployment of baited lines; hauling, i.e. pulling out hooked lines; waiting, i.e. bait-soaking. 

B. Hidden Markov Model (HMM)

VMS Trajectory analysis with HMM approach has been used widely in fisheries management (fishing effort mapping, metier identification, etc) due to its performance to analyze times series data within a well-founded and non-supervised framework [1,9,29].

To our knowledge however, the analysis of longliners' trajectory using HMM approach has not investigated. Here, we proposed a HMM with 4 hidden states, implicitly assuming that speed and turning angle variabilities are governed by hidden states i.e. state 1 correlated to steaming, state 2 correlated to setting, state 3 correlated to hauling and state 4 correlated to soaking time. HMM is a stochastic model with an underlying stochastic process that is not observable (the sequence of hidden states), but can only be observed through another process, referred to as the observation sequence. We use a first order (time step between successive bivelocity is t and t+1) Markov process for the hidden state sequence which is assumed that the current state only depends on the previous state. Here we used two input variables i.e. persistent speed (Vp) and turning speed (Vt). Vp and Vt were derived from speed and turning angle calculated based on time and distance between successive VMS position (see Fig. 4). We calculate correlation coefficients (r) between successive speed persistent (Vp) and also speed turning (Vt) as shown in Table 2. The decay of the mean correlation coefficient of the speed features as function of the time distance supports the assumption of a short-time hidden Markov model. We select a first-order process in our experiments as a trade-off between model representativity and model complexity for calibration issues.

For the observation sequence, the observation in time t is independent on previous and future observations and hidden states conditionally to the hidden state at time t (see Fig. 5) -A= {a ij }, the state transition probability distribution which describes the probability of a state switches from state S i to S j between two consecutive time steps. -B= {b j (O t )}, the observation probability distribution which describes the probability of an observation given a state S j .

( ) = = ; 1 ≤ ≤ , 1 ≤ ≤ , M is the number of distinct
observation symbols per state.

-, the initial state distribution where = ( = ) 1 ≤ ≤

In our study, we consider four hidden states (such as steaming, setting, hauling and soaking time) and two observed variables, namely Vp (persistent speed) and Vt (turning speed). For each hidden state, we consider a Gaussian Mixture Model with 3 mixture components for the observation likelihood for each hidden state, whereas previous works generally assume a Gaussian distribution. This is regarded as a mean to enrich model representativity and to better account for intra-state variabilities. The observation likelihood at time t for state j then resorts to

( ) = = = ∑ ( ; , Σ )
where are the mixture weights, which define the relative occurrence of the different modes and satisfy the constraint that ∑ = 1 . ; , Σ is Gaussian densities with mean μ i and covariance ∑ i. The number of Gaussian components per state is here the same for each state in the system.

As in [17], for retrieving the state sequence Q = q 1 q 2 ...q T given observation O=o 1 o 2 ...o T and the model λ, we consider the Maximum Posterior Mode (MPM) sequence and evaluate posterior likelihoods using a classical Forward-Backward scheme. Variables ( ) = ( = | , ), the probability of being in state S i at time t, given the entire observation sequence O and the model λ is calculated as follows:

( ) = ( = | , ) = ( ) ( ) ( | ) = ( ) ( ) ∑ ( ) ( ) ; ∑ ( ) = 1
where ( ) is forward variable and ( ) is backward variables. Their expressions are given below. These two variables can be derived analytically from forward and backward recursions as follows:

model (VSM) strategy. More precisely, for each vessel, we use the global model as an initialization of the ML procedure for each vessel-specific dataset. As such, we derive vessel-specific HMM, that is to say that model parameters, including for instance the mean and covariance of the GMM for each hidden state, which are vessel-adapted. Meanwhile, based on the common initialization from the global model, we can map the characteristics of any hidden state for one vessel to the corresponding characteristics for another vessel.

Overall, in the subsequent, we may refer to GHMM-VpVt and GMM-HMM-VpVt as respectively Gaussian HMM and HMM with a GMM-based observation likelihood, the terms global vs. vessel-adapted further characterization the considered model calibration strategy as described in the previous paragraph.

C. Support Vector Machine (SVM)

SVM is a classification method stated as the optimal margin classifier. This classifier is based on the learning of a separating hyperplane as a linear decision boundary [13]. In case the separating hyperplane does not exist, it could be solved by using the kernel trick.

It transforms the data into a higher-dimensional feature space, in which a linear decision boundary can be found [14]. Here, we use radial basis function (RBF) as the kernel function.

Let us consider a set of training data {( , )} where ∈ ℝ belong to a class ∈ {-1,1}. By SVM, these vectors is mapped into a feature space using kernel function ( , ). The classification function of an SVM is given by:

( ) = ( , ) +
where ∈ ℝ and = ( , , … … . , ) is a vector which maximize the function :

( ) ℝ = - 1 2 ( , ) 
, subject to

= 0 0 ≤ ≤ = 1, … … . . ,
Parameter C sets a bound on the total number of misclassifications. Increasing the value of C increases the cost of misclassifying points and decreases generalization power of the model [1]. The radial basis function (RBF) is defined as follows:

, = - - 2 
A cross-validation procedure is used to set the kernel and tuning parameters. Here our feature space is two-dimensional using the two features derived from a VMS trajectory at a given time step i.e. Vp and Vt. We employed these features to classify three states of longliners' vessel activities i.e. setting, hauling and others as described above.

D. Random Forest

Random Forest (RF) is another popular classification method. It generates a large number of trees and then votes for the most popular class [15]. From training data, a boostrapping procedure is applied to generate decision tress. The data, which are not used in building a tree, is considered as the "out-of-bag" (OOB) data. These data are used for estimating the error rate [2]. When generating a tree, a random sample of m variables is selected as split candidates from the full set of p variables. Take the best variable of m variables in the top split [16]. Here we apply random forest to the feature vector formed by

Vp and Vt values at a given time step.

Performance evaluation

We proceed to the evaluation of the considered models using observers' data as groundtruthed data. We first evaluate classification accuracy. It may be noted that the considered, SVM and RF models are trained in a supervised framework whereas HMM is trained in a non-supervised framework. To evaluate the classification accuracy to the hidden states of the HMM, we associated each hidden state to one observers' state as follows. For the considered VMS dataset, we first compute the conditional likelihood of each observers' state given the inferred HMM state. We then assign to each HMM state the observers' state with the greatest conditional likelihood.

In addition to classification accuracy at the hourly time resolution of the VMS trajectory, we also evaluate whether classification accuracy may according to the duration of the segments assigned to the same state by the classification methods. As illustrated in Fig. 6. for a given classification model, we first extract all state segments. For a given time scale Δ, we can proceed to the computation of mean and state-specific classification accuracies considering only state segments lasting more than Δ, i.e. withdrawing all segments with a duration smaller than Δ. We expect this segmental analysis to relate to the typical duration of each fishing vessel activity.

Results

Model Performance

We compare the four different methods described above to identify longliners' vessel activity from VMS trajectory data. To measure the performance of these models, we used a Fig. 6. Schematic of segment model to consider the characterization behavior of movement ecology hence might improve the performance of model developed.

State S1 S1 S1 S1 S1 S1 S2 S2 S2 S2 S2 S2 S3 S1 S1 S3 S3 S3 S3 S3 S1 S1
cross-validation procedure approach. We may recall that our groundtruthed observer dataset involved 6 longliners' vessels. We report the mean classification accuracy of the different models in Table . 3. The HMM method with a four-hidden-state and 3-class mixture models is shown to outperform the other models (68.5% of mean accuracy vs.

65% for the second best model, see Table 3). Surprisingly, the two supervised classification models using SVM and RF perform poorly and worse than the simple thresholding-based classification rules used by SSF model. We identified that our dataset may involve some variability. When considering only 3 of the vessels, we resorted to a much greater mean classification accuracy of 79,38% for the HMM method. The same pattern was observed for the three models. As illustrated in Fig. 7, 8 and 9, these results suggest a greater consistency of these 3 vessels and a rather low consistency of observers' data for the 3 other vessels. That may relate to the consistency of observers' data acquisition protocols and data quality issues as well as to a large variability of longliners' movement patterns.

We further evaluated the relevance of the HMM method for each observers' state along with the influence of the duration of the HMM state segment on the relationship between HMM and observers states. Overall, we retrieved the setting state involved the greatest confusion (up to 50% of misclassification for the entire dataset). Hauling activities were retrieved more accurately (classification accuracy of 67% for the entire dataset).

Overall, the thirds observer state depicted the greatest accuracy (80% for the entire dataset). Again, much greater accuracy rates were reported using only the partial subset formed by the three vessels depicting a good across-vessel consistency (mean accuracy of 60%, 80% and 90% for setting, hauling and "other" activities). Besides, our results clearly illustrated the relationship between the duration of inferred HMM segments and the mean classification accuracy: the greater the duration, the higher the mean accuracy. This expected pattern is likely to relate to both the typical time scales of setting and hauling acitivities (a few hours), such that a lower confusion is expected for longer time segment.

Discussion and Conclusion

This paper addresses the characterization and discrimination of distinguished longliners' vessel activities from VMS data. We explore how to distinguish longliners' fishing vessel activities, such as steaming, setting, hauling, waiting activities, with different methods, namely a simple rule-based method, a generative method and two discriminative methods. These methods are representative of the approaches investigated in previous different studies [1,9]. We also considered two state-of-the-art discriminative methods, namely SVM and RF as in [1]. The later were trained within a supervised classification framework, whereas the HMM framework was trained within an unsupervised framework.

From a methodological point of view, the proposed HMM method involves two main contributions. On the one hand, we consider GMM distributions for the state-dependent observation likelihood. Previous works investigated a variety of single-mode parametric distributions, among others beta and Wrapped Cauchy distributions [12]; generalized analysis in our observers 'dataset for 3 of 6 vessels. For these vessels, the speed and heading distributions for each activity did not involve any clear pattern in contrast to the other 3 longliners. This may stress data quality issues in our observer dataset. When considering only 3 vessels, the mean classification accuracy for the HMM scheme increased to 13,9%. In our opinion, these experiments emphasize the greatest robustness of HMM-based schemes compared to supervised discriminative models. As HMM exploits an unsupervised training strategy, there are less prone to low-quality groundtruthed data. By contrast, discriminative models are by essence greatly affected by such low-quality groundtruthed dataset.

These results emphasize the need for higher-quality observer data. Even if HMM were shown to be more robust, from the original observers' dataset with 20 longliners, only 3 actually appeared consistent to proceed to a quantitative evaluation. This greatly affects the potential impact of our study for an operational use. With a mean classification accuracy of 82% (based on: 3 vessels with consistence pattern, vessel-specific models, three seasonspecific models, and 6 hours state segments) we consider our results as a promising evaluation of the potential of HMM-based scheme for the discrimination and identification of longliners' activities from VMS data. Complementary analyses even demonstrated that the classification accuracy could be increased to 4.9 % when considering three seasonspecific models, namely June-September (dry season), December-March (wet season) and April-May & October-November (transition season). We also showed that classification accuracy increased with the duration of the inferred state segments. The later might be of particular importance when calibrating fishing effort models and might suggest considering duration-specific calibrations. `

This study emphasized the critical role of groundtruthed observer data. Overall, our main recommendation for the implementation of the proposed VMS-based monitoring of the activities of Indonesian longliners is certainly the deployment of a larger-scale at-sea observer program with well-defined and controlled data acquisition protocols. This appears to us as a prerequisite to the operational implementation of the investigated HMM-based strategies and as the only manner to support the well-foundedness of the generalization to an entire fishery of the patterns extracted from observers' datasets.

ground prediction generated by SEAPODYM model. Finally this chapter closed in section 4 with discussion and summary of the major conclusion.

Materials and methods

VMS data and observer data

VMS technology has been used widely in the world after the issue of the decrease of fish stock in Portugal in the late 80's [17]. The main purpose of a VMS system is to monitor the activities of fishing vessels. Indonesia as one of the country with the highest fishing production has been applied VMS system since 2003 to support sustainable fisheries. VMS have been installed onboard more than 4000 fishing vessels, making Indonesia the largest user of VMS worldwide. Vessels with capacity > 30 GT equipped with VMS device transmit their Global Position System (GPS) position about hourly to the Fisheries Monitoring Center (provided by MMAF) via satellite communication (Inmarsat, Argos, Iridium). All these data (e.g., vessel ID, transmitter ID, GPS position, heading, speed, date-time, and gear type) are in the so-called VMS database [18]. Here, we focus on longliners' VMS dataset, which comprises 500 fishing vessels and about 5 575 500 VMS positions from 2012 to 2014.

As described in Chapter 3, Indonesian authorities have been implementing since 2005 an at-sea observer program to monitor onboard the utilization of fishery resources and to prevent irresponsible and illegal fishing activities. Following the preprocessing described in Chapter 3, we were provided with a groundtruthed observer dataset for 6 vessels associated with VMS data. Among these 6 vessels, only 3 shown a good consistency between speed and heading distributions of the labeled activities, namely setting and hauling operations. A third class of activities, corresponding to the remaining unlabelled time periods, was considered to form a three-class activity dataset. This dataset was used for calibration purposes.

SEAPODYM model

We We use SEAPODYM numerical outputs for tuna biomass as a potential model prediction for tuna fishing grounds. We compared these numerical outputs to the VMSderived estimation of the fishing effort. This analysis was mainly qualitative.

Modeling and inference of longliners' activities from VMS data

Vessel Monitoring System (VMS) records and transmits approximately hourly information such as vessel identification, geographical positions, their acquisition time as well as the instantaneous speed. Motivated by studies on animal movement ecology for the identification of behavioral activities [20], several methods have been applied to developed for the inference of fishing vessel activities from VMS trajectory data [1,5,7 ].

As briefly reviewed and evaluated in Chapter 3, Hidden Markov Model (HMM) is certainly the most popular framework. Here, we applied a HMM for the identification of longliners' activities, more precisely two classes accounting for setting and hauling operations and a third class for other activities such as soaking time and traveling from and to fishing grounds.

VMS data for each point of the trajectory are considered as the observed variables and the sequence of activities is regarded as a sequence of hidden states which will be inferred by HMM. Let us denote by the hidden state or activity at time t. We consider a firstorder Markov process such that given the entire state sequence from time 0 to time t-1, the current state at time t, only depends on the predecessor state . This Markovian prior leads to the parameterization of the transition matrix which states the likelihood of a given state at time t given the previous state at time t-1. The HMM also involves an observation likelihood, which evaluates the likelihood of an observation conditionally to the associated hidden state . In the considered HMM setting, observation is conditionally independent on previous and future states and observations given that is known. Here, observation is a two-dimensional vector using the persistent V p and turning V t speed derived from the VMS positions [13].

Vp = V•cos (θ) Vt = V•sin (θ)
where V is speed and θ is turning angle. We let the reader refer to Chapter 3 for a more detailed description of the considered HMM framework. Importantly, the observation likelihood Pr ( | ) involves a Gaussian Mixture Model (GMM) to account for multimodal state-dependent distributions.

In our context, the key properties of the HMM is two-fold: (i) given a trained HMM model, for any VMS trajectory, we can evaluate the posterior likelihoods Pr ( | : ) at any time t, that is to say the likelihood of being in a given hidden state at time t given the entire observation sequence : , (ii) all HMM parameters, i.e. transition matrix

[Pr( = | = )] and state-dependent GMM parameters, can be calibrated in a nonsupervised way from the analysis of a given VMS dataset using an EM procedure. Here, we benefit from the later property to account for inter-vessel variabilities of the hidden states as follows. We first train a global model combining all VMS data from all longliners. This global model provides a first and coarse characterization of the hidden state through the associated state-dependent GMM parameters. Using this model as an initialization for the EM-based calibration of HMM parameters for a vessel-specific dataset, we resort to a vessel-specific HMM parameterization, whose hidden states can still be mapped to the hidden states of the global model. Applying this strategy to all vessels, we are provided with vessel-specific HMM parameterizations with a joint global interpretation of the inferred hidden states. As described in the next section, this is of key interest for the VMS-derived estimation of longliners' fishing effort using observers' data to map HMM states to fishing vessel activities.

Estimating longliners' fishing effort from VMS data

The main objective of this paper is to map the fishing effort of longline fishing vessels in Indonesia. Following [7,8,9], the fishing effort for a given spatial region and time period is stated as function of the total time spent in different fishing vessel activities.

Given that the considered observer data only involve the identification of setting and hauling operations but do not provide any means to discriminate other potentially relevant activities in relation to fishing operations (e.g., waiting time between setting and hauling the vessel-specific HMM parameterizations seem to enhance some local hotspots, for instance south-east of Sumatera, south of West Papua (see Fig. 1), west Sumatra and south of Java (see Fig. 2).

We also compared the longline fishing effort of VSM model and SSF model (see Fig. 3). They both involve visually similar spatial patterns. However some differences could be observed in South of Sumatera, and North of Papua as shown in Fig. 3.

In Fig. 4, we compared the distribution of longliner activities between 2 activities (setting and hauling) and all activities (setting, hauling and others) with grid 1/12° from Hereafter, we select fishing effort prediction from the vessel-specific HMM (VSM) for two main reasons:

-Vessel-specific HMM parameterizations are expected to better account for the variabilities of vessel characteristics such as fishing behavior, vessel size, weather conditions,... For example, it may be expected that the characteristics of large and modern vessels may differ from the fishing characteristics of smaller traditional vessels. Fishing activities for good weather conditions and bad ones may also differ.

-We report a slight improvement of the accuracy rate of VSM model compared with GM model i.e. 68.5% and 67,89% respectively (see Table . 3 in chapter 3 ). 

The main hotspot area explored yearly (2012-2014)

Fishing effort maps may be considered to assess the areas that are intensely explored. This is of key interest for a sustainable management of the fishery. We can easily extract the zone corresponding to the maximum fishing effort south-east of Sumatra. This hotspot seems to be remarkably stable among seasons and years, with a clear spatial extent (see Fig. 7).

Overall, one can notice an increase of the predicted global fishing effort from 2012 to 2014, especially in specific areas, for instance south west of Timor island and North of West Papua, which depict much larger fishing effort values in 2014 than in 2012 and 2013.

Comparisons of longliners' fishing effort distributions with SEAPODYM biomass predictions

We compare in Fig. 8. and Fig. 9. the estimated longliners' fishing effort to SEAPODYM prediction for big eye tuna biomass. We consider weekly analyses. Overall, correlation statistics do not reveal any significant global correlation (see Table 1). Regarding fisheries management, a key interest of the reported VMS-derived mapping is the picture provided for the space-time variabilities of the fishing effort. As illustrated in Fig. 5 and Fig. 6, we might consider a wide range of time scales from a week to a year. As such, this mapping might be considered to track in "real-time" the fishing effort for specific areas of interest over short time periods, and it might support the implementation of fishing restrictions when the fishing effort exceeds some predefined level. At a yearly scale, as illustrated in Fig. 6, the VMS-derived mapping provides a synoptic view of the spatialization of the fishing effort and of its temporal evolution. In this respect, the characterization of the space-time variabilities of the fishing effort in the main fishing grounds extracted as local high-density regions appear as a relevant direction for future work with a potential added value for fisheries management issues.

Similarly to Chapter 3 the exploitation of observers' data is a critical step in the proposed framework. In the reported preliminary results, we exploited observers' data from six different fishing vessels. The representativity of this dataset can obviously be Chapter 5

Fishing Gear Identification from VMS-based

Fishing Vessel Trajectories

Introduction

Overfishing truly threats the sustainability of ecosystem fisheries [1]. Illegal, unreported, and unregulated (IUU) fishing is regarded as one of the major contribution to overexploitation of fish stocks and threats to marine ecosystem health [1,3,4]. Worldwide, IUU fishing is estimated to result in losses between $10 billion and $23.5 billion annually and equal to amount to 11-to-26 million tons [5]. Indonesia is one of the countries with the highest rate of illegal fishing activities in the world [1].

The utilization of illegal and/or undeclared fishing gear type is among the critical issues that concern Indonesian authorities. Such IUU activities may relate to the limitation of the fishing quota for certain gear types (e.g., longliner) as well as the higher profit expected from certain gear type and gear permit fee issues (e.g., purse seiner). Overall, we may define two broad categories of gear-related IUU activities: the use of a prohibited fishing gear (e.g., trawling with two boats, pair seines) and the use of an undeclared fishing gear (i.e., not matching the official fishing permit It may be noted that this was only mandatory for fishing vessels with a capacity above 100 gross tonnages before 2013, but supported through different governmental programs for 60 GT-to-100 GT vessels. transmitted typically hourly to the Fisheries Monitoring Centre (FMC) by satellite communication (Argos, Inmarsat, Iridium, and Garuda-1).

VMS data provide invaluable information on the spatial and temporal patterns depicted by fishing activities at multiple scales [6], which are of operational interest for fisheries management and fisheries ecology [7]. VMS-related studies mostly focus on the analysis of fishing vessel activities (e.g., fishing, searching, travelling activities) and on fishing effort spatialization [8,9,10,11,12]. Fishing métiers identification has been developed in [25] to identify the vessel gear types for fisheries where one vessel may be equipped with more than one fishing gear type. Following [25], we address the recognition of fishing gears from VMS data with the purpose of designing an operational system for the identification of unauthorized fishing gear type. We hypothesize that VMS patterns involve gear-specific features (Fig. 1). We state the recognition of fishing gears as a classification issue and exploit machine learning techniques [13]. Given a dataset of VMS trajectories associated with known fishing gears, we investigate different types of features extracted from VMS trajectories and different classification models. Especially, compared with [25] we introduce new VMS-derived features based on a non-supervised analysis of gear-specific VMS datasets. Overall, our system involves three key steps: 1) the definition of VMS-based discriminative features, 2) the learning of a recognition model from a supervised training dataset, i.e. a dataset for which we are provided with both the VMS data and fishing gear information, 3) the application of the recognition model to new VMS data to check the consistency between the recognized and registered fishing gear. This paper extends the methods and models introduced in our previous work reported in [14].

The subsequent is organized as follows. We describe in Section 5.2 the VMS data used in this study. The proposed learning-based approach for fishing gear recognition is described in Section 5.3. We report an experimental evaluation in Section 5.4, and we further discuss our main contributions in Section 5.5.

VMS data

In this study, we used VMS data collected in 2012 by the service in charge of the general surveillance of marine and fisheries resources in Indonesia. Overall, the Indonesian VMS system collects about 1 200 000 GPS positions monthly from over 3 000 fishing vessels with tonnage from 60 GT up to over 3 500 GT. These vessels use more than 20 different gear types. Here, we focus on the four main registered gear type categories: trawlers, longliners, pole-and-liners, and purse-seiners (Fig. 1). In Indonesia, trawls are mostly used to catch shrimps while the 3 other fishing gears are dominantly used for tuna fishing.

VMS data used here are first preprocessed to eliminate erroneous and meaningless data [26]. Preprocessing includes: (i) the removal of duplicate data, (ii) the removal of positions less than 5 minutes apart from the previous one, (iii) the removal of VMS data close to ports (up to three nautical miles from ports), (iv) the removal of outliers, as VMS positions associated with a speed five times greater than the median trajectory speed, and (v) the removal of long static segments (which generally correspond to vessels in harbor and, rarely, to vessels stopped at sea). In our dataset, all fishing vessels were registered for only one gear in the Indonesian central permit database. Gear information was provided by the Directorate General of Capture Fisheries (DGCF) -MMAF (Ministry of Marine Affairs and Fisheries of Indonesia).

Overall, our dataset involves 1 227 fishing vessels for 5 263 158 VMS positions. From these positions, we compute the associated speed (V) and turning angle (θ) time series using first-order finite differences [8]. Hence, each fishing vessel is associated with a bivariate time series over one year with an approximately hourly resolution. It may be noticed that the time sampling of VMS positions may not be perfectly regular due possible transmission issues. In our dataset, more than 70% of our preprocessed VMS dataset involve time intervals between successive VMS positions of one hour +/-15 minutes.

Theoretically, this variability in the time sampling may affect the consistency of the computed speed and turning angle features. Time steps with VMS positions removed from the analysis in the pre-processing step are flagged as missing data in the processing described in the subsequent.

Proposed approach

The proposed approach for fishing gear recognition from VMS data involves four main steps:

-The preprocessing of VMS data as described in the previous section; 

Gaussian-von Mises Mixture Model (GvMMM)

Formally, a Gaussian Mixture Model (GMM) amounts to the following formulation to model the joint distribution of speed and turning angle [15]:

( | ) = ( | , ∑ )
where is a 2-dimensional continuous-valued data vector (here speed and turning angle). (

| , ∑ ) = 1 (2 ) / |∑ | / - 1 2 ( -) ′ ∑ ( -)
The mixture weights satisfy the constraint that ∑ = 1 . Overall, the parameters of a GMM are stored in: = { , , ∑ }, i= 1,...,M. Here, each component of the mixture, which is characterized by mean characteristics and associated covariance, may be interpreted as a specific fishing vessel activity. It may be noted that this GMM assumes that all the components of vector are real-valued with no specific constraint. As such, it does not actually deal with the 2π-circularity of turning angle values.

To this end, we investigate two approaches. We first explore the use of circular statistics, namely von Mises distribution as described in the next paragraph. The second approach we consider an orthogonal decomposition of velocity [16] as described in the next section.

With a view to addressing the circularity of turning angle values, one may consider circular distributions, among which von Mises distribution is one of the most popular [17].

It can be viewed as an extension of the Gaussian distribution of angular-valued variables.

Formally, the von Mises distribution for circular variable θ has the following probability density function: This second approach comes to transform the two-dimensional vector formed by the speed (V) and the turning angle (θ) to a two-dimensional vector accounting for:

( | , ) = ( ) 2 
the persistent velocity, denoted by Vp and defined as the component of the velocity in the current movement direction, computed as V•cos (θ) [16] the turning velocity, denoted by Vt defined as the component of the velocity orthogonal to the current movement direction, computed as V•sin (θ) [16].

It may be noted that we do not lose any information with this transformation. The resulting two-dimensional vector (Vp, Vt) is a real-valued two-dimensional vector, with no circularity constraint. We can then apply the classical GMM to model the joint distribution of vector (Vp, Vt). This model is denoted by GMM-VpVt.

ML estimation of mixture model parameters

Given a set of VMS trajectories, we can fit any of the considered mixture models to the joint distribution of the speed and the turning angle according to Maximum Likelihood (ML) criterion. To perform this ML inference of the parameters of the mixture model, we consider an iterative expectation-maximization (EM) algorithm [18]. For the sake of simplicity, we detail below the implemented EM procedure for the GMM. Let us denote by { } the considered dataset of speed and turning angle feature vectors, and Z k the latent variable, which states the component the k th data is associated with. The EM algorithm iterates two steps:

-The E (Expectation) step which evaluates the posterior likelihood of the latent variable, that is to say the likelihood that feature vector is associated to model :

, = ( = | , ) = ( | , ∑ ) ∑ ( | , ∑ )
cross-validation experiments were used to evaluate the sensitivity of the gear recognition performance with respect to the number of components. Empirically, considering 4component mixture models led to the best performance.

B. VMS-based feature extraction for fishing gear classification

We exploit different types of VMS-derived features for the considered application fishing gear recognition. For a given fishing vessel, we first extract five classical features [37] from the associated time series of VMS positions for 2012, respectively the mean latitudinal and longitudinal position of the VMS trajectory, the associated standard deviations and a global sinuosity index [36], along with features derived from the fitted gear-specific mixture models. Besides, from the proposed GMM-based analysis of VMS datasets, for any calibrated GMM model, we derive the following features:

- Based on this supervised learning framework, we consider the following strategy to detect possible abnormal VMS patterns within a given VMS dataset. Using multiple crossvalidation runs, we evaluate the misclassification rate of each vessel of the dataset when it belongs to the test dataset. Vessels, which involve misclassification rates above a given threshold (typically 50%), are considered as vessels possibly depicting an abnormal VMSrelated behavior with respect to the vessels within the same fishing gear category. This strategy allows us to deal with possibly erroneous training data, which may affect the learning stage of the recognition model.

Results

A. Gear recognition performance

The confusion matrices of the trained classification models are reported in Tables II & III for respectively SVM and RF classifiers. Overall, we report mean correct recognition rates of SVM and RF recognitions models trained for VMS-based features issued from the different mixture models as follows: GvMMM = 97.5% vs. 95.2% and GMM-VpVt = 97.6% vs. 96.8% using respectively SVM and RF classifiers. It shows that the GMM-VpVt (SVM) method resorts to the highest accuracy rate i.e. 97.6%. The trawl category involves the highest correct recognition rate (100%) and the longline one the lowest one (92.8%) for the SVM model. The same holds for the RF model. The greatest confusion is observed between longline and purse-seine categories. Overall, these results stress the relevance of our approach for the automated recognition of fishing gear type from VMS trajectories.

Here we further explored SVM method since the SVM showed the highest rate of accuracy. The two types of mixture models, namely GvMMM and GMM-VpVt, lead to very similar mean recognition performance (97.5% vs. 97.6%). For these two mixtures models, we illustrate in Fig. 4 the regime-based segmentation for a VMS trajectory of a three months longliner, that is to say that for each position along the track we assign the regime (i.e., the mode of the mixture model) with the highest posterior likelihood (see Section 3 for details). Though the global segmentation pattern is similar, differences can be noticed visually, especially for the initial and final segments from and to the port as shown in Fig. 4. These differences may relate to the ability of the two mixture models to account for correlation between turning angle and speed. As a matter of fact, intra-regime variabilities may be expected to exhibit significant correlations between turning angle and speed. This is for instance typically expected for longliners, which depict clear geometrical patterns during setting activities, which should resort in correlated features. Whereas GMM-VpVt model can handle such correlations, GvMMM parameterization clearly assumes a statistical independence between speed and turning angle. The rather marginal differences in terms of mean correct classification rate between GvMMM and GMM-VpVt model show ever suggest that these correlation characteristics are not of primary importance to discriminate fishing gear from the proposed VMS-derived features, derived as mean statistics over a one-year period.

We further evaluate the relevance of each type of features described in Table 1.

Among the different categories of behavioral features (feature types I, II and III), the most relevant behavior-related features are clearly the times spent in each regime of the gearspecific mixture models with a recognition rate above 90%, whereas other feature types report significantly lower recognition performance (below 86%). Especially, the classical VMS-derived features (feature type III in Table 1) do not prove for the considered case-study (correct recognition rate below 50%). The combination of all behavioral features results in a mean recognition rate of 93.3%, whereas the additional use of the mean GPS position improves the mean recognition rate up to 97.6%. We also evaluate the recognition performance when considering a global regime-based analysis (that is to say, considering only one mixture model common to all gear types). It results in a loss of about 30% with respect to the proposed gear-specific analysis (Table 4). In Table 1, we also compare the proposed analysis to other VMS-derived features considered in [25], namely the joint distribution of speed and turning angle (two-dimensional histogram) illustrated in registration databases 2 , namely National Database Sharing System for Fisheries Management provided by Indonesian Ministry of Marine Affairs and Fisheries (MMAF). We identified that 4 vessels among the 47 detected ones were registered for a different gear type than the one reported in the considered VMS database. For instance, the vessel, whose track is reported in Fig. 5.a, is assigned to the longline gear type in the VMS database, and registered as a purse-seine in vessel registration databases. It may be noted that for these four examples our model predicts the gear type retrieved from the complementary vessel registration databases;

 A second category of detected vessels comprises a variety of abnormal patterns with respect to the registered gear types, which are visually unlikely to involve illegal fishing gear type. We report a typical example in Fig. 5.c, which depicts the VMS track of a longliner. This track does not conform to typical longline VMS patterns and might reveal a transit between ports, which may relate to vessel maintenance or reconditioning issues.

 A last category is interpreted as being related to potential illegal uses of fishing gears, which do not match the official fishing permit. This hypothesis is strongly supported for two vessels registered as pole-and-line fishing vessels in the Indonesian VMS databases, but suspected to involve longline-like behavior from our analysis. This analysis is in agreement with their registration as longliners in the list of the authorized tuna fishing vessels maintained by the regional fisheries management organization. This may be motivated by the fact that the Indonesian fishing permit fee is lower for pool-and-line vessels compared to longliners. It illustrates the needs for additional coordination between national and regional 2 Given possible slight differences in the names or in the orthography of these names, this cross-checking was performed manually and could not be straightforwardly automated. Table 4. Classification performance using a gear-independent GMM-based analysis: we report mean correct classification rates over the four fishing gears using a SVM classifier and a single GMM-VpVt model trained from all VMS data rather than gear-specific GMM-VpVt models as in Tables, 1, 2 and 3. 

Discussion and conclusion

This paper explored learning-based and regime-based methods for fishing gear recognition from VMS data and their application to detecting abnormal VMS patterns of fishing vessels in Indonesian fisheries. To the best of our knowledge, this is the first application of the regime-based analysis of VMS trajectories [8,9,10,11] to fishing gear recognition. We derived different types of VMS-based features from this unsupervised analysis and combined these features with state-of-the-art supervised classification models, namely random forests and SVMs. We performed a comparative evaluation with other VMSderived features considered such as speed and turning angle distribution [25], trip duration [25,37], and sinuosity index [8,36]. In our numerical experiments, SVMs, which involve a lower computational complexity, outperformed random forests. The features derived from gear-specific mixture models, especially the relative time spent into the identified gearspecific regimes, were shown to greatly contribute to the quality of the recognition performance compared to classical VMS-derived features [25] as well as the joint histogram of speed and turning angle and also a unique global mixture model. Our experiments also suggest that the proposed VMS-derived features may only be weakly affected by the irregularity of the time sampling of VMS positions, which is of key interest for operational applications with possibly different VMS data sources and acquisition characteristics. These results also stress the relevance of latent class models, such as mixture models and hidden Markov models, to analyze VMS trajectories [e.g., 10,11]. Whereas previous works mostly focused on the characterization and discrimination of fishing vessel activities [10,11], our work shows that such models also provide a relevant representation of gear-specific VMS patterns for gear recognition issues. As such, gear-specific VMS patterns may be distinguished from the existence of gear-specific regimes as well as from differences in the relative occurrences of the gear-specific regimes over the considered time period. The latter is regarded as the main source of discrimination for the reported gear recognition performance.

Overall, with the sole use of behavioral features we reached a mean recognition performance of 93%. The additional use of the mean GPS position of the VMS trajectories led to about 97% of correct gear type recognition. The latter information relates to the mean position of the fishing zones for the considered gear-type fisheries. Such information is expected to be discriminative for region-specific fisheries, as most of the Indonesian fisheries. It may however be less relevant for fisheries with large space-time variability.

We demonstrated here the application of the proposed procedure to VMS trajectories over a one-year period. We ran additional experiments for one-month and 6-month time series. We obtained similar recognition performance (about 96.1%), which supports the genericity of our approach and its applicability to finer time scales. This would for instance allow monitoring possible changes of the fishing gears for a given vessel from a monthly to a semesterly scale. It may be noticed that the analysis of different time scales could rely on a single training of the gear-specific mixture models. Only the SVM or RF classification models would need to be trained specifically for a given time scale. By contrast, classical global VMS-based features such as mean sinuosity indices [8,36] have to be considered with much care to be computed at a relevant time scale since it showed the lowest accuracy rate (see Table 1). Our experiments suggest that sinuosity features computed at other time scales, typically in accordance with the proposed regime-based analysis, might be more relevant. In
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  Indonésiennes mettent en oeuvre depuis 2005 un programme d'observation en mer pour suivre à bord l'utilisation des ressources halieutiques et prévenir les activités de pêche irresponsables et illégales. Les observateurs ont collecté les données sur l'heure et la position des activités de pêche. Les données de date et d'heure ont été enregistrées en heure locale (Indonésie) par les observateurs. Dans l'ensemble, nous avons examiné plus xvi de 450 palangriers de données VMS et 20 palangriers de données des observateurs pour les navires entre 2012 et 2014. Dans ce travail, nous évaluons la qualité des données d'observateurs qui pourraient être utilisées à des fins de validation et de formation dans le cadre proposé.
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  Through the INDESO (Infrastructure Development of Space Oceanography) project, coordinated by CLS (Collection Location Services), the Indonesian government aims at developing technological means, particularly in terms of acquisition and processing of satellite data and monitoring sustainable resources management of marine ecosystems in the Indonesian seas. The sustainable uses of these ecosystems, which are heavily exposed to the effects of the global climate change and of illegal fishing, are major societal and economic challenges for Indonesia. In this context, through collaboration between IMT Atlantique, CLS and the Indonesian government, this thesis addresses the development of tools and methods for the processing of satellite data for the monitoring and surveillance of Indonesian fisheries. We used trajectory data from fishing Vessel Monitoring System (VMS). VMS exploits technologies such as ARGOS, Inmarsat, and Iridium. It provides a proper monitoring of the movements of fishing vessels with a temporal resolution of the order of the hour. Several previous studies have demonstrated the possibility of exploiting these trajectory data to monitor and characterize fishing activities (exclusion zones, gear types and fishing methods, estimated transit time, research and development fisheries) [3, 4, 5, 6, 7, 8]. As such, VMS is expected to contribute to the estimation of the fishing effort, a fundamental data for inventory management, since catch report are unfortunately poorly or inadequately reported by fishermen.
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 789 Fig. 7. Track of fishing vessels that show fishing activities from VMS data (dark blue: non-fishing; green: fishing) correlated with observer data (red: setting; yellow: hauling), a, b, c, d, e: for longliners.

  [START_REF] Dinmore | Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic production[END_REF] took a study area over 3° latitude and 5° longitude in central north sea of UK which was fished by beam trawlers to assess the removal of fishing activity due to the closure of fishing area. VMS data was available for each 2 hours and eliminate the speed over 8 knots. The temporary closure led to a small increase in the homogeneity of effort distribution over year[22].[START_REF] Murawski | Effort distribution and catch patterns adjacent to temperate MPAs[END_REF] analyses the changes of otter trawlers fishing effort and as a consequence the seasonal fishery closures in the northeast USA. VMS data was taken for the vessels with speed 3.5 kn. The impact of seasonal closures attracted more fishing effort after opening than prior to closure although with the same or lower average catch per effort unit[23].Mills et al. (2007) estimated trawling effort based on an analysis of 2-hourly VMS data for UK beam trawlers in the North Sea. Two behavioral modes (trawling and steaming) were identified by speed and turning angle. The vessels were trawling at speed 2-8 kn, and steaming for speed > 8 kn. Turning angle of trawling was highly variable and steaming relatively involved straight lines[25].[START_REF] Witt | A step towards seascale conservation: using vessel monitoring systems (VMS) to map fishing activity[END_REF] investigated the patterns of fisheries activity on annual and seasonal scales by using VMS data from UKregistered large fishing vessels. Fishing activity was assigned to all fishing trips at speeds ≥3.0 and ≤10.0 km h -1 (~1.5 to 5.5 kn). Fisheries activity was gridded at a spatial resolution of 9 km 2 (3 km by 3 km pixel) by summing the number of VMS derived data points coincident to each pixel over monthly and annual scales. The regions of the UK European continental shelf (i.e. Western Channel and Celtic Sea, Northern North Sea and the Goban Spur) had received greater fisheries pressure than the rest of the UK continental shelf fishing zone[26].[START_REF] Fock | Fisheries in the context of marine spatial planning: defining principal areas for fisheries in the German EEZ[END_REF] defined principal areas for fisheries at high spatial resolution in German EEZ.Fishing activity was considered for vessels' speed smaller than mean fishing speed + 2 kn, where mean fishing speed < 8 kn (otter and beam trawlers and unspecified trawlers) and < 5 kn (GN, seiners and potters). Principal areas of German EEZ were defined as areas which 75% of the fishing effort was carried out[27].Harrington et al. (2007) explored fisher catchreturn data and high resolution VMS data to determine the distribution of fishing effort. The distribution of VMS showed that fishing effort was patchy at 5 x 5 km to 250 x 250 m grid cell sizes[30].Lee et al. (2010) developed and tested methods for estimating fishing effort of UK vessels. VMS data was taken for all type of gear in area from 24°W to 58°E and 47°N to 64°N with estimation of fishing activity at a 3' grid resolution. The proposed method was a process by removing duplicate VMS records and records close to ports, calculating the time interval between successive records to identify periods of activity, linking each record to a vessel and gear type, differentiating fishing and non-fishing activity, and summing fishing records in time and space to estimate fishing effort[32].Gloaguen et al. (2014) described the fishing activity by analyzing the trajectories of individual demersal vessels using hidden Markov hodel with an autoregressive process to the vessel velocity[37]. As a result, the velocity process parameters were truly affected by the fishing activity. They used data from the RECOPESCA project which were recorded for shorter time incerements (every 15 minutes) to comply with the autoregressive process. Some other studies investigated the impact of fishing activities onto the environment such as seabed damage. For example,Rijnsdorp et al. (1998) analyzed the spatial distribution of fishing effort by an automated recording system with accuracy about 0.1 nautical mile. The sample was 25 Dutch beam trawl vessels in 1993-1996. Data were taken from two sources VIRIS database and APR database (every 6 minutes). Three regimes (fishing, steaming, floating) were differentiated based on speed of fishing (FS = ± 6 kn as fishing speed centre).

  Piet et al. (2007) developed indicators of fishing pressure. The sample was taken from Dutch beam trawl fleet in the southeastern north sea targeting plaice and sole. Two databases were used (VIRIS) and APR (6 min) / VMS (2 H). Fishing speed for large fleets 3-6 kn, and for small fleets 5-8 kn. Pressure indicators were described by four levels : fleet capacity, fishing effort, frequency trawled, annual fishing mortality [28]. Eastwood et al. (2007) described an assessment of the spatial extent of human activities on the seabed. For the assessment of fishing pressure, VMS data of beam trawlers, otter trawlers, and dredgers vessels were used. Fishing speed 1-6 kn for otter trawlers and dredgers, 2-8 kn for beam trawlers. Demersal trawling affected a minimum of 5.4% to a maximum of 21.4% of the total seabed [29]. Stelzenmüller et al. (2008) studied the spatio-temporal distribution of fishing pressure on marine landscape in offshore UK (England and Wales) using VMS data for UK and foreign fleets of beam and otter trawls, and scallop dredges. Fishing speed was used by Eastwood et al. (2007) to classify fishing and steaming and the analysis of straight lines as considered to convert the remaining fishing locations into trawl tracks. Marine landscapes with coarse or mixed sediments and weak or moderate tide stress were heavily fished [31]. Buhl-Mortensen et al. (2015) explored the impact of otter trawl on substratum and megabenthos on the shelf (50-400 m) and slope (400-2000 m) in the southern Barents Sea.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Number of longline vessels installed VMS device in 2012-2014

Fig. 3 .

 3 Fig. 3. The comparison of accuracy rate between vessel speed calculated (VSC) and vessel speed instantaneous (VSI) using vessel specific model (VSM) based HMM and global model (GM) based HMM.

Fig. 4 .

 4 Fig. 4. Variables input Vp and Vt

Figure 5 .

 5 Figure 5. Graphical state HMM Formally, the hidden Markov model is defined by the parameter set λ = {A, B, } as follows:

  is the number of states of the model 0 ≤ a ≤ 1 , ∀ , and ∑ a = 1 , ∀ .

Fig. 8 .

 8 Fig. 8. Activity-dependent daily distributions of each activity for 3 of the considered vessels showing a good consistency across vessels:(a).vessel A, (b). vessel B, (c) vessel C.

Fig. 9 .

 9 Fig. 9. Activity-dependent distributions of the speed and the time of each vessel activity for 3 of the considered vessels showing a poor consistency across vessels: (a). vessel D, (b). vessel E, (c) vessel F.
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 12345 Fig. 1. Comparison of longliners' fishing effort distribution using global and vessel-specific HMM parameterizations in February-March 2012. (a) raw mapping issued from the global parameterization (Eq. 1); (b) smoothed version of the distribution shown in (a) using a Laplacian diffusion; (c) raw mapping issued from vessel-specific parameterizations (Eq 1); (d) smoothed version of the distribution shown in (c) using a Laplacian diffusion. See Section II for details on the different models.(c)

4. 3 . 2

 32 Mapping of fishing effort in seasonally (2012-2014)Indonesia weather involves two main seasons i.e. northwest monsoon (NWM) in December-March (rainy season), southeast monsoon (SEM) in June-September (dry season). Between these two seasons occur a transitional season i.e. the transition from the rainy season to the dry one (TS-I) in April-May, and the transition from the dry season to the rainy one (TS-II) in October-November. Fig.6. shows the prediction of the average fishing effort distribution derived from VMS data for these different seasons in 2012-2014.In Fig.6. we might see the highest fishing effort distribution generally occur southwest Java for almost all season. During the dry season (SEM) and transition season (TS-I and TS-II) seem larger fishing effort occur in west Kalimantan. Overall there are three regions of longline fishing grounds i.e. West Sumatera, South Java-and-Bali and North Papua that seem very regularly occur for all season.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Average seasonally VMS-based prediction of longliner fishing effort distribution for years 2012-2014. (a) rainy season (NWM, Dec-Mar); (b) transition season (TS-I, Apr-May and TS-II, Oct-Nov); (c) dry season (SEM, Jun-Sep)

  with fishing vessels. Fishing vessels might only target large schools, what might explain the patchier distribution depicted by fishing effort maps.Indonesian longliners might also remain mainly attached to specific fishing grounds with a weak exploration of the overall distribution of tuna biomass. On the other hand, the reported analyses might also point out some limits of SEAPODYM model and of the underlying hypotheses. A focus to the space-time variabilities of the most significant VMS-derived hotspots might provide additional means to explore the relation between tuna biomasses and oceanographic conditions and improve model-based predictions for mid-term perspective.

--

  An unsupervised analysis of VMS-derived turning angle and speed time series; -The definition of a vector of VMS-based features computed for each fishing vessel; The supervised learning of fishing gear recognition models from the considered VMS-based feature space.We detail below the last three steps and the application of the trained fishing gear recognition models to the detection of abnormal VMS patterns. different mixture models including the classical Gaussian Mixture Models with a view to accounting for angular features.

Fig. 1 .

 1 Fig.1. Examples of VMS trajectories of Indonesian fisheries for the four fishing gears considered in this study.

Fig. 2 .

 2 Fig. 2. Joint distribution of VMS-derived turning angles and speeds for the considered gear-specific Indonesian fisheries: namely,(a) shrimp trawler, (b) longliner, (c) pole-and-liner, (d) purse-seiner.

  the univariate von Mises function, β represents the mean direction, k denotes a scale parameter to measure the concentration of angle, with limit case k=0 corresponding to a uniform distribution and k=∞ a Dirac delta distribution, and ( ) is the normalization factor of the distribution given by the modified Bessel function of the first kind of order 0:Gaussian Mixture Model VpVt (GMM-VpVt)

-

  The time spent in each regime, computed as the sum over the entire VMS trajectory of the posterior likelihoods for each vessel. As detailed, for a given vessel, a VMS trajectory is a time series of hourly VMS positions over one year.VMS positions filtered during the preprocessing step are considered as missing data (not-a-number values). The computation of the time spent in a given GMM component simply comes to counting the number of time steps with a valid (after preprocessing data) VMS data assigned to the considered GMM component. For the considered four-gear dataset and given four-component mixture models, this amounts to 16 features; The mean duration of regime segments along the entire VMS trajectory and the associated standard deviation. A regime segment is defined as a segment of consecutive time steps which are assigned to a given regime according the posterior likelihoods. For more details, for a given VMS trajectory, we extract all SVMs are margin-based classifier. Linear SVMs retrieve hyperplanes that best separate the training data according to a maximal margin criterion[23]. Non-linear SVMs exploit an implicit non-linear mapping defined through a kernel function and proceed similarly to the linear SVMs to best separate the training data in the mapped space. In this work, the considered kernel is a radial basis function kernel (Gaussian kernel). SVM parameters are given by the scale parameter of the kernel and a regularization parameter C. These parameters are empirically selected according to a cross-validation strategy.For both SVM and RF, we use a repeated 5-fold cross-validation for the evaluation of the performance of the classification model. This comes to repeatedly use 80 % of the data for training and 20% for testing. The resulting recognition performance can be regarded as a representative evaluation of the performance of a VMS-based recognition of the gear type from new VMS trajectories.

Fig. 2 Fig. 3 .

 23 Fig. 2 and classical global features (mean speed and turning angle, trip duration and sinuosity index).The proposed VMS-based features clearly outperform these two feature sets. Interestingly, we gain about 8% compared with the joint distribution of speed and

Fig. 5 .

 5 Fig. 5. Examples of VMS trajectories associated with a high misclassification rate (above 50 %): (a) longliner misclassified as a purse-seiner, (b) purse-seiner misclassified as a longliner, (c) shrimp-trawler misclassified as a longliner, and (d) pole-and-line misclassified as a purse seiner.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  est l'état de HMM (dans ce cas il y a 3 états, réglage, halage et autres), obs est une donnée d'observateur correspondant à l'enregistrement du temps et de la position lors du réglage et du halage, k désigne le composant de HMM et t est le temps séries.

	Pour une région 90 E-142 E; 6 N-20 S et une période [t0, t1] étant donné la caractérisation HMM des données VMS, nous évaluons l'effort de pêche comme une somme sur tous les navires et exploitons la marginalisation ci-dessus par rapport aux états cachés du HMM:
	= ∑ ∆ ( ) ∑	(	( )|	( ) = ) * (	( ) = ) |	) ... (1)
	où FE représente l'effort de pêche dérivé des données VMS, obs est une donnée d'observateur correspondant à l'enregistrement du temps et de la position lors du réglage et du transport, t est une série temporelle, ΔT est une période entre deux temps successifs (dans ce cas une heure en moyenne), Z indique l'état de HMM et k indique le composant de HMM.
	Étant donné le HMM spécifique à chaque navire, nous pouvons évaluer directement toutes les probabilités a posteriori ( | : ). Par conséquent, l'évaluation de l'effort de pêche nécessite l'étalonnage des probabilités conditionnelles Pr( | ) où fait référence à l'activité des navires de pêche à l'instant t. En utilisant les données des observateurs et les états cachés inférés, nous pouvons calibrer ces vraisemblances conditionnelles pour le sous-ensemble de navires associés aux données d'observation et les appliquer ensuite à l'ensemble des données VMS.

Table 5 )

 5 . It was the impact of new regulations. The government concerned by IUU fishing implemented a moratorium on ex-foreign vessels. The proportion of vessels with size > 30 GT in year 2014 was dominated by purse-seine small pelagic, stick held drift net (boukeami) and tuna longline with percentage 26.12%, 12.39% and 12.37% respectively.

	No 1 1.1 Short-bodied mackerel Fishes Small pelagic fish 1.2 Scad	Production (Tonnes) 1,826,505 269,411 376,276
	1.3 Trevallies	199,674
	1.4 Fringescale/ Deepbody/ Goldstrip sardinell 1.5 Anchovies 1.6 Other small pelagic fish 2 Big pelagic fish 2.2 Thresher sharks 2.3 Common dolphin fish 2.4 Swordfish 2.5 Requiem sharks 2.6 Indo-pacific king mackerel 2.7 Narrow-barred spanish mackerel 2.8 other big pelagic fish 3 Demersal fish 3.1 Threadfins 3.2 Hairtails 3.3 Black pomfret 3.4 Ornate thread of in bream 3.5 Croackers 3.6 Slipmouths/Pony fishes 3.7 Barramundi/Giant sea perch 3.8 Red snappers 3.9 Jack trevallies 3.10 Giant catfish 3.11 Other Demersal fish 4 Coral fish 4.1 Redbelly yellowtail fusilier 4.2 Blue lined seabass 4.3 Other coral fish TOTAL -OTHER FISHES	166,670 199,226 615,248 372,526 11,051 11,917 13,790 31,113 36,417 165,808 102,430 1,557,578 52,130 57,372 61,173 70,659 77,928 87,905 98,054 130,301 109,441 102,111 710,504 231,955 81,563 50,516 99,876 3,988,564

Table 2 .

 2 Capture fisheries production in Indonesia[3] 

	Unit : tons Marine Inland openwater Total	2010 5 039 446 5 345 729 5 435 633 5 707 013 6 037 654 2011 2012 2013 2014 344 972 368 542 393 561 408 364 446 692 5 384 418 5 714 271 5 829 194 6 115 377 6 484 346

Table 3 .

 3 Number of fishers in Indonesia[3] 

	Unit :person Marine	2010 2 162 442 2 265 213 2 278 388 2 164 965 2 210 195 2011 2012 2013 2014

Table 4 .

 4 Number of fishing vessels in Indonesia[6] WPP-RI 711 (Karimata Strait, Natuna Sea and South China Sea), WPP-RI 712 (Java Sea), WPP-RI 713 (Makassar Sea, Bone Bay, Flores Sea and Bali Sea), WPP-RI 714 (Tolo Bay and Banda Sea), WPP-RI 715 (Tomini Bay, Maluku Sea, Halmahera Sea,Seram Sea and Berau Bay), WPP-RI 716 (Sulawesi Sea and Northern of Halmahera Island), WPP-RI 717 (Cendrawasih Bay and Pacific Ocean), WPP-RI 718 (Aru Bay, Arafuru Sea and Eastern of Timor Sea) as shown in Fig.3.

	Unit : number Total Non Powered Boat Outboard Motor Inboard Motor : <5 GT 5-10 GT 10-20 GT 20-30 GT 30-50 GT 50-100 GT 100-200 GT >200 GT	2010 568 390 172 907 231 333 164 150 110 163 31 460 10 988 7 264 857 1 747 1 290 381	2011 581 845 616 690 2012 170 938 172 333 225 786 245 819 185 121 198 538 123 748 137 587 35 877 37 694 13 201 11 583 8 022 7 611 914 917 1 801 1 641 1 204 1 167 354 338	2013 639 708 175 510 237 625 226 573 151 939 46 358 15 208 8 782 1 074 1 727 1 127 358	2014 625 633 165 066 238 010 222 557 153 493 41 374 14 301 9 578 1 029 1 766 840 176
	With the purpose of fisheries management and based on the characteristics of fish resources
	and their environment, Indonesian waters are usually divided into eleven Fisheries
	Management Areas (FMAs) as follows: WPP-RI 571 (Malacca Strait and Andaman Sea),

WPP-RI 572 (Indian Ocean of Western Sumatera and Sunda Strait), WPP-RI 573 (Indian Ocean of Southern Java, Southern Nusa Tenggara, Sawu Sea, and Western of Timor Sea),

Table 5 .

 5 Number of fishing vessel with variance of fishing vessel gear type > GT[7] 

	Unit:number Stick held drift net (bouke ami) Portable trap (bubu) Handline (pancing ulur) Pole and line (huhate) Gillnet(jaring insang hanyut dasar) Gillnet oceanic (jaring insang hanyut oseanik) Gillnet (jaring insang hanyut pantai) Squid jigging (pancing cumi) Bottom longline (rawai dasar) Pelagic danish seine (payang) Fish net (pukat ikan) Shrimp trawl (pukat udang) Purse-seine big pelagic Purse-seine small pelagic Purse-seine group small pelagic Purse-seine group big pelagic Purse-seine group (carrier) Purse-seine (light boat) Purse-seine (catcher) Purse-seine (carrier) Tuna Long line Carrier fishing vessel Total	2012 429 1 34 83 129 162 26 108 135 3 720 109 46 1 253 36 21 42 75 29 67 802 427 4 737	2013 502 1 44 93 145 240 0 101 131 0 699 94 152 1 327 33 19 41 66 25 55 737 450 4 955	2014 1 4

Fig. 3. Fisheries Management Area (

The contribution of each is reported in Table

6

. In 2014, the production was dominated by WPP 711, and 713 with percentage 11.03%, 17.91% and 12,43%. From 2010 to 2014, only WPP 718 showed a decreasing trend with a growth rate of

Table 6 .

 6 Marine capture fisheries based on FMA (Fisheries Management Area)

	FMA FMA 571 FMA 572 FMA 573 FMA 711 FMA 712 FMA 713 FMA 714 FMA 715 FMA 716 FMA 717 FMA 718	2010 316 833 541 476 436 613 572 209 806 420 624 736 427 580 418 508 214 272 142 835 537 964
		12

Table 6 .

 6 Marine capture fisheries based on FMA (Fisheries Management Area)

	2011 461 848 558 592 506 882 588 711 823 681 614 341 536 992 443 260 213 294 148 942 449 186	2012 471 106 576 639 458 752 598 605 909 818 627 209 456 303 498 336 255 430 138 185 445 250	2013 496 239 632 575 464 016 623 937 918 530 687 992 519 152 504 723 301 039 143 445 415 365	2014 920 148 749 754 1 081 178 377 515 035 364 496 118

to the production of marine capture fisheries (Table

2

) able 6. In 2014, the production was dominated by WPP 711, and 713 with entage 11.03%, 17.91% and 12,43%. From 2010 to 2014, only WPP 718 showed a

Table 6 .

 6 Marine capture fisheries based on FMA (Fisheries Management Area)

	2014 920 148 749 754 1 081 178 377 515 035 364 496 118

Table 7 .

 7 et al. estimated the total value losses between $10 bn and $23.5 bn per year globally, in tonnes between 11 and 26 million. They noted that developing countries are more vulnerable to illegal fishing. Annual tuna catch by species and gear type[7] 

	Gear Type	Species	2010	2011	Year 2012	2013		2014
		Yellowfin	14 571	9 315	11 222	16		14 811
		Bigeye	14 202	8 207	11 150	15		16 414
	Longline	Skipjack Albacore	1 463 5 505	4 167 8 775	8 943 7 631	9 6		6 337 5 538
		SBT	474	700	910			1 063
		Total	36 215	31 164	39 856	48		44 163
		Yellowfin	4 334	8 737	11 776	20		22 842
	Purse-seine	Bigeye Skipjack	8 226 22 652	7 309 34 838	9 537 31 190	12 33		10 556 29 381
		Albacore	341	1027	98			49
		Total	35 553	51 911	52 601	66		62 828
		Yellowfin	457	1535	394			4 359
	Pole-and-line	Bigeye Skipjack	-2 255	-2 545	-8 328	12	-	-10 631
		Albacore	-	-	-		-	-
		Total	2 712	4 080	8 722	16		14 990
		Yellowfin	3 117	1 997	3 634	9		10 754
	Handline	Bigeye Skipjack	200 3 373	237 2 653	218 5 002	8		655 7 084
		Albacore	39	39	423			2
		Total	6 729	4 926	9 277	18		18 495
		Yellowfin	25 446	16 087	11 506	11		12 920
	Others	Bigeye Skipjack	2 142 38 723	10 267 40 398	11 635 33 870	7 30		6 776 26 566
		Albacore	7 145	1 642	2 875			1
		Total	73 456	68 394	59 886	49		46 263

  Varkey et al. estimated the illegal and unreported catch in Raja Ampat in year 2006 for six fisheries: reef fish, tuna, anchovy, shark, sea cucumber and lobster. It was resulted that illegal and unreported catch exceeded the reported catch by more than 40 thousand tonnes with value around 40 million USD [16]. G. A. Wagey et al. evaluated the average losses due to IUU fishing in the Arafura sea for fishing gears shrimp trawls, fish trawls and bottom long lines in year 1991-2005 to be between IDR 11 trillion to IDR 17 trillion [17].

Use VMS Data: State of the Art

  beta and wrapped Cauchy distributions respectively. The movement states (still, tracking, cruising) followed a Markovian process and were inferred in a Bayesian framework. The observers' data were used to tune the model parameter, validate the model

	and also separation "still" state into fishing activity and stopping. The misdetection rate was
	of 10% for fishing and non fishing activities, and the under-detection rate on the fishing sets
	was of 3% [19]. Shui-Kai Chang et al. (2014) classified fishing and non fishing activities VMS data provided invaluable information more than just for fisheries monitoring and enforcement purposes. Many potential applications use VMS data to support sustainable using the VMS data at six-hour intervals of Taiwanese large-scale tuna longliners (LTLL)
	fisheries management and scientific purpose. Many studies have focused to use VMS data to
	apply in terms of targeted application such as fishing activities estimation and fishing effort
	turning angle, changes of speed and turning angle. The quantitative evaluation of these
	models was performed using a cross-validation procedure according to the groundtruthed data
	recorded by at-sea observers. Hidden semi Markov were shown to be the best model for VMS
	trajectory analysis with accuracy rate 80.3% [18]. Walker et al. (2010) applied VMS data of
	French purse-seine fleet operating in the Indian Ocean and targeting tropical tuna species:

mapping. For example, Joo et al.

[18] 

used VMS data to infer the behavioral modes of fishing trips of purse-seine Peruvian fishermen targeting anchovy which were recorded by VMS for almost 1 record per hour. Fishing, searching and cruising behavioral modes were inferred using hidden Markov model, hidden semi-Markov, random forests, artificial neural networks and support vector machines. Hidden semi Markov models were proposed considering that the fishing activity may be more relevantly characterized through temporal segments and not on a time-step basis as in hidden Markov model. The discriminative models i.e. RF, ANN and SVM were choosen as alternative models to be compared because the Markovian models has a restriction in dealing with several observed variables. The observed variables were speed, yellowfin tuna (Thunnus albacares), skipjack (Katsuwonus pelamis), and bigeye tuna (Thunnus obesus) to estimate fishing activity. The observed variables were speeds and turning angles modeled with

Table 1 .

 1 Speed characteristic to differentiated longliners' fishing vessel activities Based on the knowledge of speed characteristics of Indonesian longliners as well as the characteristics of the only two different activities (setting and hauling) recorded by observer fishery , we may proposed in Table.1 prior tresholding-based rule to be applied to the hourly speed to help distinguishing three activities i.e. setting, hauling and others.

	State Speed (knot) 1 > 4 -6 2 > 2 -4 3 ≤ 2 ; > 6	Fishing Vessel activity Setting Hauling Others (e.g.,steaming, soak-time)

Table 2 .

 2 

	Time step between successive speed ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )	Coefficient correlation (%) 79,24 70,96 60,48 55,42 51,23 29,41 9,9 5,42 4,43 3,54

Mean correlation coefficient at different time steps between successive speed values (Vp and Vt).

Table 3 .

 3 Classification accuracy of the considered models for the prediction of longliners' activities from VMS trajectories

	No. 1 2 3 4	Model Simple Speed Filter (SSF) HMM Global Model (GM) Vessel Specific Model (VSM) SVM RF	Mean classification accuracy (%) 64,9 67,9 68,5 57,4 57,7

Table 4 .

 4 Classification accuracy of the HMM method for the considered segmental analysis at different time-scale for the entire dataset(6 vessels) 

	Time duration >= 1 >= 2 >= 3 >= 4 >= 5 >= 6	Accuracy rate (%) 70,8 72,4 73,3 74,1 74,7 75,2	Data loss (%) 13,3 4,9 9,1 19,7 25,9 33,9

Table 5 .

 5 Classification accuracy of the HMM method for the considered segmental analysis at different time-scale for the partial dataset (3 vessels with a good across-vessel consistency)

	Time duration >= 1 >= 2 >= 3 >= 4 >= 5 >= 6 >= 7	Accuracy rate (%) 81,8 83 83,5 84,1 84,3 84,5 85,0	Data loss (%) 10,9 4,0 7,5 16,1 21,5 29,6 36,1

Table 6 .

 6 Relationships between observers' states and HMM states for the entire dataset(6 vessels) 

	P(Obs|Z hmm =k) Setting Hauling Others	S1	0,5 0,1 0,4	S2	0,1 0,6 0,3	S3	0,1 0,1 0,8

Table 7 .

 7 Relationships between observers' states and HMM states for the entire dataset (3 vessels with a good across-vessel consistency)

	P(Obs|Z hmm =k) Setting Hauling Others	S1	0,6 0.1 0.3	S2	0 0,8 0,2	S3	0.05 0,05 0,9

Table 8 .

 8 Relationships between observers' states and HMM states for the entire dataset (6 vessels) considering only HMM state segment lasting more than 6 hours.

	P(Obs|Z hmm =k) Setting Hauling Others	S1	0,5 0.1 0.4	S2	0,0 0,7 0,3	S3	0,1 0,1 0,8

  collected numerical simulations of Spatial Ecosystem And Populations Dynamics Model (SEAPODYM) model developed in the framework of INDESO project and adapted to the Indonesian archipelago. SEAPODYM provided us an operational modeling of tuna stock dynamics in Indonesia with a 1/12° resolution. SEAPODYM model simulated spatio-temporal dynamics of age-structured pelagic fish population under the combined pressure of fisheries and oceanic variability. It predicts fishing efforts and additional characteristics such as catchability and selectivity of the fishing gear to predict the fishing grounds [24, 25, 26, 27]. SEAPODYM forcing involves physical and biological variables provided by the INDESO project.

  ). With a view to addressing IUU fishing,

	Indonesian authorities have implemented since 2003 a Vessel Monitoring System (VMS)
	technology. Initially limited to fishing vessels, which were operating in the Indonesian
	regulatory area with a capacity above 60 gross tonnages (GT) 1 , the VMS monitoring has
	been extended to fishing vessels with a capacity above 30 GT since 2013. The VMS
	collects Global Positioning System (GPS) positions of the fishing vessels that are
	1

Table 1 .

 1 Comparison of different vms-based features: we report mean correct classification rates over the four fishing gears using a SVM classifier. we consider four feature types, feature types I and II being derived for a GMM-VpVt model

	Feature type I II III IV V VI VII	Number of features 16 32 3 51 4 441 53	Description Relative time spent in each regime Mean and standard deviation of regime segments Sinuosity index + standard deviation of longitude and latitude (GPS position) I+II+III Vessel mean speed, turning angle, trip duration, and sinuosity index two-dimensional histogram of speed and turning angle IV + mean of longitude and latitude (GPS position)	Mean correct classification rate (%) 90.5 85.6 41.6 93.3 83.6 84.8 97.6

VSM Model (1-7 Sep 2014) SEAPODYM Model (1-7 sep 2014) VSM Model (8-15 Sep 2014) SEAPODYM Model (8-15 sep 2014) VSM Model (16-23 Sep 2014) SEAPODYM Model (16-23 sep 2014) VSM Model (24-30 Sep 2014) SEAPODYM Model (24-30 sep 2014) Fig. 8. Comparison of the VMS-derived longliners' fishing effort index (left side) and SEAPODYM fishing ground prediction for big eye tuna (BET) (right side) for different weekly periods.

VSM Model (1-7 Sep 2014) SEAPODYM Model (1-7 sep 2014) VSM Model (8-15 Sep 2014) SEAPODYM Model (8-15 sep 2014) VSM Model (16-23 Sep 2014) SEAPODYM Model (16-23 sep 2014) VSM Model (24-30 Sep 2014) SEAPODYM Model (24-30 sep 2014) Fig. 9. Comparison of the VMS-derived longliners' fishing effort index (left side) and SEAPODYM fishing ground prediction for yellow fin tuna (YFT) (right side) for different weekly periods.
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We consider the reported experiments as a preliminary analysis of the potential addedvalue of a spatialized VMS-derived fishing effort estimation. In this respect, the illustration of the potential approach for the identification of fishing hotspots (Fig. 6 and Fig. 7) as well as the difference between the HMM-based analysis of the VMS data and the raw VMS dataset are regarded as relevant preliminary results to recommend further investigation for a future operational use. A key element will be the deployment of a significant at-sea observer program according to standardized protocols, such that future VMS-based analyses can rely on representative and high-quality observers' datasets.

I gratefully acknowledge the financial support from the Ministry of Marine Affairs and Fisheries through the project INDESO that make this PhD possible. My sincere thanks goes to all my colleagues in Agency for Marine and Fisheries Research & HRD to support my PhD pursuit.

Backward procedure:

1. Initialization : ( ) = 1 , 1 ≤ ≤ 2. Backward recursion:

Overall the MPM inference of the hidden state at time t is given by

= [ ( )], 1 ≤ ≤

A key feature of the HMM framework is the calibration of all model parameters λ={A, B, } with respect to a Maximum Likelihood criterion using Baum-Welch method [17]. We briefly review the main steps of this calibration procedure. Let us define the probability of being in state S i at time t, and state S j at time t+1, given the observation sequence O and the model λ,

It may be noted that variable ( ) defined above verifies ( ) = ∑ ( , ) . This leads to the following iterative estimation of the parameters given an evaluation of variables 

∑ ( )

This iterative procedure is a special case of the general EM procedure applied to HMM. As initialization, one typically consider uniform priors A and and a randomized initialization for GMM parameters.

A key challenge in the use of HMM methods the determination of the number of hidden states. One may consider Bayesian criteria such as AIC and BIC [28]. These criteria are however prone to overestimation. Here we prefer investigating cross-validation experiments to evaluate the sensitivity of state identification performance for a groundtruthed dataset with respect to the number of hidden states in the HMM. Overall, we considered two different HMM parameterizations:

 A HMM model with a Gaussian observation likelihood, that is to say M=1 in [26].

We considered HMM with a number of hidden states from 3 to 20;

 A HMM model with a GMM observation likelihood, that is to say M > 1 in [27].

We tested models with M equal to 2 and 3 the number of hidden states varied from 3 to 10.

State identification performance was evaluated in terms of consistence of the hidden states with respect to the 3 states documented by at-sea observers for longliners, namely setting, hauling and others.

Regarding model calibration issues, we considered two strategies. We first calibrated a model gathering the data from all vessels to apply the above-mentioned ML estimation of HMM parameters. We refer to this model as the global model (GM). The second strategy relies on the calibration of vessel-adapted models and is referrred to as vessel-specific-work [18] used a rule-based to discriminate fishing vessel activity based solely on VMSderived speed. HMM are certainly the most popular models and were investigated in many GMM-based observation likelihoods, which offer a great modeling flexibility. On the other hand, we also proposed an original vessel-specific calibration of the HMM. We trained vessel-specific HMM using as initialization a HMM model trained from the entire VMS dataset. This training strategy guarantees that (i) the hidden states of the vessel-specific models can still be matched to reference vessel-independent hidden states, (ii) the trained models better adapt to vessel-specific patterns. The first property is key to apply the proposed HMM-based framework calibrated from observers' datasets to any new VMS dataset with no observer data, while accounting for inter-vessel variabilities due to vessel characteristics.

We performed a quantitative evaluation of the performance of three types of models considered in our study in terms of classification accuracy, i.e. the consistence of the statebased segmentation of these models with respect to observers' segmentation in terms of fishing vessel activities. Overall, in agreement with [1], HMM were clearly the best models (mean classification accuracy of 82%). Surprisingly, SVM and RF led to poor classification performance. This might relate to some inconsistency revealed by our

Chapter 4

Mapping the Fishing Effort of Indonesian Tuna Longliners from VMS data

Introduction

The knowledge of the spatial and temporal distribution of the fishing effort is an important information for the fisheries management. Previously, logbook data had been used for estimating fishing effort. These data recorded by the fishers provide information regarding the vessel data, gear type, fishing locations as well as catch profile [1]. As the form is filled by the fishers, it may be poorly accurate due to the habit of the fishers [3],

incomplete, for instance fishing location may not be detailed [4]. VMS data appears as a relevant alternative to the fishing effort since it is an automated recording system. It generates high quality information and independent of fishers' declaration [5].

A number of previous studies have investigated such VMS-derived fishing effort estimations for different fisheries [1,4,11,12]. The general framework relies on the discrimination of fishing vessel activities from the VMS data. The estimation of the fishing effort comes to convert the time spent by the fishing vessels into some specific activities into a fishing effort index. As briefly reviewed in Chapter 3, the discrimination of fishing vessel activities may rely on simple rule-based schemes using VMS speed data as well as more advanced statistical analyses, especially generative models such as hidden Markov model (HMM) [7,8,9], and discriminative models such as artificial neural networks (ANN) [6,8], random forest (RF) and support vector machine (SVM) [8].

The VMS-derived analysis of fishing effort has been investigated for different fisheries and gear types, including beam trawl [10,11], purse-seine [6,7,8] as well as dredges, hooks-and-lines, nets, seines, traps, trawls in [4]. Here, we analyze VMS data collected by the Ministry of Marine Affairs and Fishery (MMAF) and focus on the Indonesian tuna fishery and more specifically longliners. The estimation of longliners' fishing effort is a critical issue for the MMAF as Indonesian tuna stocks show a decreasing trend [16,19]. Few previous works explored longliners' fishery. For instance, Chang et al.

proposed simple rule-based methods applied to VMS speed to estimate Taiwanese longliners' fishing effort in Pacific Ocean [15]. Such methods are however prone to overestimation and more advanced statistical analyses [6] might significantly reduce the uncertainty in fishing effort estimation.

Based on our work dedicated to the characterization and discrimination of longliners' activities from VMS data (Chapter 3), this study further explores the exploitation of the proposed statistical methods for the spatio-temporal mapping of longliners' fishing effort for the Indonesian tuna fishery. We combine the models introduced in Chapter 3 to spatiotemporal interpolation tools to evaluate fishing effort maps. In the framework of INDESO project, we analyze the resulting fishing effort maps with respect to the numerical outputs of SEAPODYM, an ecosystem dynamical model. This chapter is organized as follows. The first section briefly describes the importance of the monitoring of the fishing effort to manage sustainable fisheries. It also discusses several methods that have been explored to estimate fishing effort using VMS data. The second section explains the model to estimate fishing vessels activities using VMS data and validated with observer data. In section 3 we report the mapping of fishing effort distribution as well as a comparison with fishing operations), we define the fishing effort as the total time spent in setting and hauling activities by the longline vessel fleets. Using observers' data, this definition resorts to the evaluation of the transition from HMM states to setting and hauling states:

where Z is the state of HMM (in this case there are 3 state i.e. setting, hauling and others), obs is observer data corresponding to the record of time and position when setting and hauling, k denotes the component of HMM and t is time series.

For a region 90 E-142 E; 6 N-20 S and a time period [t 0 , t 1 ] given the HMM-based characterization of VMS data, we evaluate the fishing effort as a sum over all vessels and exploit the above marginalization with respect to the hidden states of the HMM:

where FE represents the fishing effort derived from VMS data, Obs is observer data corresponding to the record of time and position when setting and hauling, t is time series, ∆ is a period between successive time (in this case one hour in average), Z denotes the state of HMM, and k indicates the component of HMM.

Given the calibrated vessel-specific HMM, we can directly evaluate all posterior likelihoods ( | : ). Hence, the evaluation of the fishing effort requires the calibration of the conditional likelihoods Pr( | ) where A t refers to the fishing vessel activity at time t. Using observers' data and inferred hidden states, we can calibrate these conditional likelihoods for the subset of vessels associated with observer data and apply then to the entire dataset.

Here, we consider a 1/12° grid for the estimation of the fishing effort at each grid point for a given time period, from one week to a quarter. Given the space-time sampling pattern exhibited by VMS trajectories, the above estimation of the fishing effort may resort to a scarcely-resolved and noisy mapping with possibly large missing data areas. As a post processing, we apply an iterative Laplacian diffusion to smooth out fishing effort maps [22]. This Laplacian diffusion is equivalent to Gaussian smoothing with a ~1/12° spatial correlation length. The iterated Laplacian diffusion permits to account for the land pixels in the considered case-study region.

With a view to evaluating the relevance of the estimated fishing effort mapping, we compare the resulting fishing effort mappings to SEAPODYM numerical predictions for tuna density for both big eye tuna (BET) and yellow fin tuna (YFT) species. Besides a visual analysis, we also evaluate correlation coefficients.

Results

Mapping fishing effort in bimonthly (2012-2014)

We first report the estimated longliners' fishing effort maps for two-month periods using a global HMM model (GM) vs. vessel-specific HMM models (VSM). We depict both the raw fishing effort maps as well as the interpolated maps associated with a spatial smoothing based on an iterated Laplacian diffusion. The latter can be regarded as a filtered version for the raw maps. We focus on two examples, respectively February-March 2012 and June-July 2014 (see Fig. 1, and Fig. 2). The two parameterizations resort to similar spatial patterns. However It may be noted that the global HMM model lead to more VMS records labelled as setting and hauling: on average, 6% more than with the vessel-specific parameterizations (see Fig. 5). Significant differences can also be observed. For instance, Importantly, the south-west-to-north-east gradient exhibited by SEAPODYM prediction, with a greater biomass predicted in the south-west of the case-study area, is not revealed by VMS-derived fishing effort maps. Similarly, the later appear patchier than SEAPODYM predictions. Though a number of local hotspots appear in SEAPODYM predictions but not in fishing effort estimation and vice-versa, the main hotspot revealed in Fig. 5 also exhibits high-biomass values in SEAPODYM predictions. It may also be noted that some hotspots of the VMS-derived fishing effort prediction, though not being associated with large SEAPODYM biomass predictions, are close to local maxima of the SEAPODYM fields.

This relatively low agreement between the VMS-derived and SEAPODYM predictions may relate both to ecosystem-based modeling hypotheses and the sampling pattern of VMS data, as discussed in previous works [23]. 

Discussion and Conclusion

This study aimed at mapping the space-time distribution of the fishing effort associated with Indonesian longliners and analyzing the relationships between VMSderived fishing grounds and ecosystem-based model predictions for tuna biomasses.

Following previous works [8,9,21], we followed a classical framework based on the HMM-based segmentation of VMS trajectories into fishing vessel activities and the mapping of these activities into a spatialized fishing effort index. The later relies on the exploitation of observers' data to infer a transition matrix from fishing vessel activities to fishing effort.

From a methodological point of view, we considered vessel-specific HMM parameterizations to account for inter-vessel variabilities (e.g., vessel characteristics) as well as possible space-time variabilities (e.g., weather conditions, season). The adaption of HMM parameterizations to specific VMS subsets was shown to slightly increase the agreement between the HMM-based inference and observers' data. This adaption also enhanced some local hotspots.

Our experimental results pointed out a low global agreement between tuna biomass prediction from SEAPODYM model and the spatialized VMS-derived fishing effort.

Previous works (e.g., Joo 2013) also stressed differences between the VMS-derived mapping of the fishing effort and biomass estimation [23]. For instance, in [23], a limited spatial consistency was found between VMS-derived fishing effort maps and the estimation of the spatial distribution of the anchovy of the Peruvian coast. Linking VMSderived fishing effort to ecosystem-based model prediction for fish biomasses appear as a particularly complex objective. On the one hand, we need to better understand the

A. Unsupervised characterization of gear-specific fishing vessel activity from VMS Trajectories

It is well known that the activities of fishing vessels, e.g. cruising, searching, stopping, and fishing, can be analyzed from VMS trajectories data [8,10,11]. Each activity is typically characterized by specific patterns in terms of speed and turning angle features.

For instance, whereas cruising involves large speed values and rather low turning angles, fishing typically relates to low speed but greater turning angle variability. Besides this general trend, we also expect gear-specific patterns. As an illustration, we depict in Fig. 2 the joint distribution of VMS-derived turning angles and speeds for the four fishing gear categories considered in this work. It may be noticed that, whereas purse-seine and poleand-line categories share common patterns. Longliners clearly depict a different distribution in relation to the deployment of longlines, which involve different speed and turning angle characteristics compared to purse-seiners for instance. One can also point out that these distributions clearly involve mixtures of different modes, which may relate to different activities, such as cruising, searching, fishing...

Given the above-mentioned observations, we consider gear-specific mixture models to model the joint distribution of the speed and the turning angle. Such mixture models state this joint distribution as a weighted sum of elementary modes. Hereafter, a mode of a mixture model is referred to as a regime as usually termed for fishing activity analysis [10] and may be interpreted as a fishing activity regime. A key interest of such mixture models is that one can fit all model parameters from any observation dataset in a non-supervised way, that is to say without knowing the fishing activity attached to each speed and turning angle observation. As such, mixture models provide a compact and interpretable representation of gear-specific movement patterns. In this study, we investigate two

This von Mises distribution can represent, using different values for scale parameter k, both low directional variabilities as observed for steaming activities as well as higher variabilities expected for fishing activities. It can also represent specific geometric patterns, which may involve non-null mean directional shift. For instance, trawl-based fishing patterns depict significant occurrences of ±π turning angle values, which relate to trawling events (Fig. 2).

We exploit such unimodal von Mises distribution in a mixture model setting. Under the assumption that speed and turning angle are statistically independent variables, we consider the following Gaussian-von Mises mixture model (GvMMM) for the joint distribution of speed ( ) and turning angle (θ):

For the GvMMM, mixture model parameters λ comprise for each model i the mean speed and the associated standard deviation σ , g represents the univariate Gaussian function, the mean direction β and the associated scale parameter as well as the prior . Given the assumption for statistical independence between speed and turning angle, this mixture model cannot account for the possible correlation between these two variables for a particular mode. Copula-based models [31] could account for such intra-mode correlation, however at the expense of a greater computational cost within a mixture model framework.

-The M (Maximization) step which updates model parameter λ given the posterior likelihoods computed during the E-step. It comes to the following weighted ML estimates:

priors:

means:

where index i refer to mode i of the GMM, k to the k th feature vector of the considered dataset, and index j and l to the components of feature vector . The EM procedure can be regarded as a gradient-based maximization. In our experiments, we use as a stopping criterion a threshold on the difference of parameter updates between two consecutive iterations. Given estimated model parameters, the posterior (as computed during the E-step of the EM procedure) provides the classification likelihood of any feature vector to be assigned to a regime or mode of the mixture model.

In the reported experiments, we fit a mixture model for each gear-specific VMS dataset with the same number of components (typically, 4) and each of the two mixture models, namely GvMMM and GMM-VpVt. The selection of the number of components may classically rely on information criterion such as BIC and AIC (27). However these criteria are sometimes prone to the overestimation of the number of modes in a mixture model particularly in the ecological framework [38,39]. In our numerical experiments, segments and compute mean segment duration for each component of the GMM.

It may be noted that a regime segment is by construction to time steps with valid VMS positions as defined by the preprocessing step (cf. Section 2). For the considered four-gear dataset and given four-component mixture models, this amounts to 32 features.

Overall, we synthesize in Table . I the considered 53-dimensional feature vector and distinguish seven types of features, whose relevance for gear recognition is evaluated hereafter.

C. Supervised Gear Recognition from VMS Trajectories

In this study we consider a supervised classification framework for fishing gear recognition from the VMS-derived features defined in the previous section. We evaluate random forest (RF) and support vector machine (SVM) classifiers, which are among the most popular and efficient machine learning techniques [19,20,21]. RF and SVM classifiers are preferred to neural nets due to a simpler calibration of their hyperparameters [21].

RF is an ensemble classifier, which builds randomized decision trees [24]. Regarding the classification step, for a new object and the associated input feature vector, the input feature vector goes down to a leaf of each tree in the forest. Each tree then votes for a class and overall, the majority vote over the forest provides the final classification. Here, a RF is trained by randomly selecting four-fifth of the training data to train each tree of the forest.

The remaining training data are used to estimate error and variable importance. The later evaluates the classification gain associated with each individual feature. It then provides a mean to rank the relative importance of the different features in the classification process.

109 Fig. 4. Distribution of the misclassification rates of the fishing vessels over the entire dataset for repeated 5-fold cross-validation experiments: from multiple cross-validation experiments, we compute for each fishing vessel the misclassification rate as the percentage of misclassification of a fishing vessel when it belongs to the test dataset. We compute the distribution of these misclassification rates over the entire dataset of 1 227 fishing vessels. We only depict the distribution of the non-null misclassification rates, which comprise 47 fishing vessels (misclassification rate=0 (i.e., never misclassified), misclassification rate=100 (i.e., always misclassified)). turning angle (84.8% using feature types VI vs. 93.3% using feature types IV, vs. 97.6% using feature types VII cf. Table 1). This further illustrates the relevance of the proposed features based on a gear-specific regime-based analysis, which also results in a significantly lower-dimensional feature space.

B. Detection of abnormal VMS patterns

We report in Fig. 4 the distribution of the misclassification rates for the considered fishing vessel dataset. Interestingly, the distribution of the misclassification rates involves a multimodal distribution: 93% of the vessels depict a null misclassification rate, 3% a misclassification rate between 0 and 50% and about 4% (47 vessels among 1 227) a misclassification rate greater than 50%. We report in Fig. 5 some VMS trajectories, which relate to the 4% of strongly misclassified fishing vessels.

We further analyzed these misclassified fishing vessels and distinguished three categories of misclassification sources:

 A first category refers to erroneous gear information in the original VMS database.

We performed a cross-checking based on the vessel names with other vessel this respect, the regime-based analysis provides an implicit mean to adapt to the relevant time scales for the considered fisheries, what might be of key interest for its application to other fisheries.

From a methodological point of view, we combined unsupervised mixture models and supervised classification models. Hidden Markov Models (HMMs) [10,11] may be regarded as a generalization of the considered mixture models and could account for an additional time prior. The minor differences observed in terms of gear recognition performance between GvMMM and GMM-VpVt models (97.5% vs. 97.6%) may however suggest that additional refinements of the regime-based analysis may not lead to significant improvement in terms of gear recognition. Future work might rather explore other kinds of VMS-derived features. In this respect, the link between the proposed features and bag-of-words [28], which are among the state-of-the-art features for text and image classification issues, supports investigating

Fisher vectors [29]. The success of deep learning frameworks [32] for object recognition and speech analysis makes also appealing future work exploring the use of deep learning models with a view to jointly identifying gear-specific features and the associated classification models.

We presented an original application of the proposed approach to the detection of abnormal VMS patterns with respect to the registered gear types. We detected abnormal VMS patterns as repeatedly misclassified vessels within a cross-validation framework. Among the considered dataset of 1 227 fishing vessels, 47 involved a large misclassification rate above 50%. By definition, no ground truth is available. To check the consistency of these detections, we performed a cross-analysis based on vessels' names with other Indonesian and regional fishing vessel registration databases. We retrieved 6 vessels for which this complementary gear information was consistent with the gear type predicted by our model: four of these vessels appear to be associated with erroneous gear information in the main Indonesian VMS registration database, and two vessels are likely to involve false declaration of the gear type to the Indonesian authorities in relation to fishing permit fees. These results support the relevance of the proposed framework within the newly operational INDESO system [34,35] implemented by the Indonesian Ministry of Marine Affairs and Fisheries to monitor Indonesian fisheries and combat IUU fishing. While our system can generate alerts based on the sole use of VMS data, the management of these alerts to trigger gear checks should involve complementary automatic tools for the cross-analysis of fishing vessel registration databases. In this respect, the combination of the proposed VMS-based analysis and of automated text mining tools [30] would permit an automatic update of the gear information in the VMS registration database as well as an identification of likely illegal behaviors.

Similarly, future work should complement the proposed gear-related analysis with the detection of other non-fishing VMS patterns (e.g., transit) so that surveillance operators could focus on the documentation of illicit behaviors. Beyond the Indonesian fisheries, the genericity of the proposed approach opens new avenues for the VMS-based monitoring of unauthorized and undeclared fishing gears for other fisheries, typically for time scales from a few weeks to a year.

Chapter 6

Conclusions and Perspectives

VMS has been applied widely in the world to monitor the movement of fishing vessels and for the enforcement of fishery regulations. After more than a decade, the huge amount of VMS data collected have strongly supports the exploration of data mining and statistical frameworks to analyze these VMS data for fisheries management issues, including for instance fishing gear identification, vessel activity segmentation as well as the evaluation of fishing effort indices. In the context of INDESO project, the aim of this study is to explore such methods to support the sustainable managements of Indonesian fisheries, which are threatened by overfishing and illegal, unreported and unregulated (IUU) fishing activities.

We first reviewed the main characteristics of Indonesian fisheries and stressed the socio-economic contribution of the fisheries sector in Indonesia (see Chapter 2). Besides, we described IUU fishing, which threatens the sustainability of the fisheries. We also presented the at-sea observer program implemented by the Indonesian authorities. At-sea observers' data are critical groundtruthed data for calibration and validation purposes. Chapters 3 to 5 are the core of this thesis and investigated statistical analyses of VMS datasets for three objectives: the discrimination of fishing vessel activities (Chapter 3), the computation of spatialized fishing effort indices (Chapter 4), and the recognition of fishing gears (Chapter 5).

We reported good correct classification rates (about 70% for longline fishing vessel activity segmentation and greater than 97% for gear type recognition) and the preliminary analysis of the VMS-derived fishing effort maps pointed out the added value of the use advanced statistical analyses compared with the direct use of raw VMS data.
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From a methodological point of view, we investigated both generative models, namely Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM), as well as discriminative models, namely Support Vector Machine (SVM) and Random Forests (RF). In agreement with (Joo, 2013) [1], our experiments support the greater relevance of HMM for the analysis of fishing vessel activities. This is regarded as a direct consequence of HMM to account for time dependencies. The application to gear type recognition provides an example of a significant combination of generative and discriminative models. We also investigated more complex HMM with a GMM parameterization of observation models, whereas most previous works considered simpler unimodal parameterizations. We believe this contribution suggests future research directions with more complex models. In this respect, the emergence of deep learning models [2,3] seems particularly appealing as a means to combine generative and discriminative models for time-dependent processes. Another important research direction suggested by our work is the exploration of the "local" adaption of model parameterizations (locally-adapted vs. global models). Here, the term local may refer to a specific time periods (e.g. weekly, monthly and yearly), regions (e.g. FMA) as well as vessel subsets (e.g. vessel size, fishing behavior and weather condition…). Such adaptions are also referred to as fine-tuning in the machine learning field. Such fine-tuning strategies investigated here for the segmentation of fishing vessel activities and the mapping of the fishing effort allowed us to account for inter-vessel as well as time variabilities in vessel movement characteristics, while maintaining a common interpretation of the identified latent variables. We believe such fine tuning strategies might greatly contribute to extend the generalization capabilities of models tuned from relatively small-scale groundtruthed datasets, which is mostly the case of at-sea observers' datasets.

The reported results support the relevance of the proposed models for a future operational use. The analysis of observers' data (Chapter 3) and the application to gear type recognition (Chapter 5) stress both the high relevance of the datasets collected by Indonesian authorities and the needs for new tools for an improved data quality. Whereas in Chapter 5 some abnormal behaviors were likely to relate to erroneous gear information in the reference database, most of the observers' data could not be used in Chapter 3 as they could be matched to the VMS dataset (14 vessels could not be used among a total of 20 vessels) and, among the six vessels linked to observers' data, three depicted poorly consistent fishing activity features.

These results emphasize the importance of quality check procedures in the acquisition of fisheries datasets. This should certainly be considered as a priority for the operational application of the proposed methodology.

Interestingly, as illustrated in Chapter 5, the proposed statistical analyses of VMS data might also be regarded as new means for the automated evaluation of the quality of the collected dataset. For instance, the proposed gear type recognition model might be used for the automated detection of possibly erroneous gear type data in the reference database, for which further analysis and cross-checking with other data sources might be performed. A similar procedure could be developed for the automated analysis of at-sea observer data and could contribute to the regular synchronization of different fisheries-related databases, such as the VMS and fishing permit databases.

In this thesis, we focused on VMS data. 

Abstract

Monitoring, control and surveillance (MCS) of marine fisheries are critical issues for the sustainable management of marine fisheries. In this thesis we investigate the space-based monitoring of fishing vessel activities using Vessel Monitoring System (VMS) trajectory data in the context of INDESO project (2013INDESO project ( -2017)). Our general objective is to develop a processing chain of VMS data in order to: i) perform a followup of the fishing effort of the Indonesian longline fleets, ii) detect illegal fishing activities and assess their importance. The proposed approach relies on classical latent class models, namely Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM), with a view to identifying elementary fishing vessel behaviors, such as travelling, searching and fishing activities, in a unsupervised framework. Following state-of-the-art approaches, we consider different parameterizations of these models with a specific focus on Indonesian longliners, for which we can benefit from at-sea observers' data to proceed to a quantitative evaluation.

We then exploit these statistical models for two different objectives: a) the discrimination of different fishing fleets from fishing vessel trajectories and the application to the detection and assessment of illegal fishing activities, b) the assessment of a spatialized fishing effort from VMS data. We report good recognition rate (about 97%) for the former task and our experiments support the potential for an operational exploration of the proposed approach. Due to limited at-sea observers' data, only preliminary analyses could be carried out for the proposed VMS-derived fishing effort. Beyond potential methodological developments, this thesis emphasizes the importance of high-quality and representative at-sea observer data for further developing the exploitation of VMS data both for research and operational issues.