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Ouverture

Most children learn early that things break, whether it is a stick excessively bent or a

favorite toy dropped from su�cient height. Such events teach us that we have to protect

our belongings from mechanical overload if we want to keep them safe. Nevertheless, it is

with our greatest disappointment that from time to time we realize that our e�orts were

not enough: posters pinned to the wall fall down unexpectedly days after we accurately

�xed them, and the cable of our laptop charger gets damaged after being bent several

times. Yet, the poster appeared to be well �xed before, and the cable could safely

withstand a few bending cycles without apparent damage.

Failure is the term conventionally used to indicate that something does not work

anymore as it is supposed to do. Many little annoying examples demonstrate that failure

is very often undesired, uncontrolled and unpredicted. This is all the more true for

large scale catastrophic events, like the collapse of bridges or dams, but also geological

events like snow avalanches, landslides or earthquakes. When such events happen, all of

a sudden, the question that emerges is: Why? Which means: For what reason? but also:

Why then, not earlier nor later? As a matter of fact, both questions are unanswered, and

still challenge the mind of many scientists with widely di�erent backgrounds, from geology

and engineering to physics, chemistry and biology. Surprisingly, or maybe unsurprisingly,

it turns out that what is so common in our daily experience is based on profound science

that is not yet fully understood.

The complexity of failure mainly lies in its multiscale nature: a massive snow avalanche

always arises from tiny cracks between snow�akes, and its origin cannot be fully under-

stood without tracing back to them. Furthermore, accessing these microscopic events

from which failure originates holds the promise of providing a means of predicting the

collapse before its occurrence, which in most cases appears far too di�cult, if not im-

possible, only looking at macroscopic observables. Any measurable feature anticipating

failure, which is thus exploitable for its prediction, is called a precursor. Failure precursors

do exist (for instance, animals behave di�erently before an earthquake, which indicates

that they can feel it approaching), but detecting them and recognizing them in their role

of precursors is extremely challenging, which explains the scarcity of successful works

in this �eld so far. In fact, if it is now recognized that purely macroscopic approaches

are doomed to fail, combining macroscopic and microscopic investigation is still far from

trivial, for several reasons that will be discussed in chapter 1.

In this work we present one of the �rst successful attempts to measure microscopic

failure precursors in model soft solids. Here, microscopic plasticity under shear is observed

using a novel setup, presented in part I, coupling a custom-made stress controlled shear

cell to small angle static and dynamic light scattering. The main results come from the

study of a colloidal gel, and will be discussed in part II, whereas in part III the generality

of those results is examined by comparing them with a colloidal glass.





Chapter 1

Motivation and State of Art

Contents
1.1 Objectives, originality and novelty 3

1.1.1 Material failure in our everyday life 3

1.1.2 Failure in soft materials 5

1.1.3 Key questions 6

1.1.4 Challenges 9

1.2 Historical excursus 11

1.3 State of the art 15

1.3.1 Steady-rate experiments 15

1.3.2 Creep experiments 20

1.3.3 Dynamic fatigue test 32

1.3.4 Conclusion 45

1.4 Outline of the thesis 46

1.1 Objectives, originality and novelty

1.1.1 Material failure in our everyday life

Material failure is ubiquitous on length scales ranging from a few nanometers, as

in fracture of atomic or molecular systems [Weibull 1939, Célarié 2003] up to geologi-

cal scales, as in earthquakes [Myers 2001, Ben-Zion 2008]. While some attempts have

been made to harness failure, e.g. in order to produce new materials with a well con-

trolled patterning [Nam 2012], material failure remains in general an unwanted, uncon-

trolled and unpredictable process. Indeed, a better control of the conditions under which

material failure may or may not occur and the detection of any precursors that may

point to incipient failure are the Holy Grail in many disciplines, from material science

[Amon 2013, Guarino 2002, Pradhan 2005, Vinogradov 2012, Koivisto 2016] and biology

[Bell 1978, Erdmann 2004, Buehler 2009, Gobeaux 2010] to engineering [Bazant 1991] and

geology [Jones 1979, Sommerfeld 1982, Swanson 1983, Sommerfeld 1983, Voight 1988,
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McGuire 2005, Wu 2006, Ancey 2007, Duputel 2009, Van Herwijnen 2011a, Van Herwij-

nen 2011b, Kato 2012, Johnson 2013, Bouchon 2013, Kromer 2015, Agioutantis 2016]

Failure may occur almost instantaneously, as a consequence of an impulsive load

[Field 2004]: in this case the main interest typically consists in evaluating the damage as a

function of impact speed and energy [Richardson 1996, Camacho 1996, Ball 1999]. Often,

however, it manifests itself in more elusive ways, as in the sudden, catastrophic break-

age of a material submitted to a constant or cyclic load, where failure may be preceded

by a long induction time with little if any precursor signs of weakening [Basquin 1910,

Andrade 1910]. In the latter case, sometimes referred to as dynamic fatigue failure

[Kahn 2004], one has the possibility to monitor the stroboscopic evolution of micro

to mesoscopic damage developing before macroscopic failure [Ewart 1986, Patra 2016],

whereas such a detection is much more delicate in the former case.

Delayed failure under a constant load has been reported in a wide spectrum of phe-

nomena, from large scales systems such as earthquakes [Lockner 2002, 	Onaka 2013],

rock sliding [Kromer 2015], snow avalanches, [Reiweger 2010] and structural materials

[Bazant 1991, Maekawa 2016] to small scale ones such as biological materials [Bell 1978,

Erdmann 2004, Gobeaux 2010] relevant to bioengineering [Anwar 2009]. Other exam-

ples include crystalline [Poirier 1985] solids like metals [Troiano 1959, Nakasato 1980,

Golub 2003], ice [Ashby 1985, Sinha 1988] or colloidal polycrystals [Bauer 2006], as well as

composite materials such as wood [Guarino 2002], paper [Koivisto 2016] or synthetic �bers

[Nechad 2005b], and amorphous systems [Preston 1942, Gurney 1947, Aoki 1980], includ-

ing viscoelastic soft materials [Gopalakrishnan 2007, Gibaud 2010, Divoux 2011, Sieben-

bürger 2012, Grenard 2014, Sentjabrskaja 2015], such as adhesives [Sancaktar 1985] and

network-forming materials [Bonn 1998, Poon 1999, Skrzeszewska 2010, Sprakel 2011,

Leocmach 2014].

The widespread occurrence of delayed failure represents a challenge for the durability

of objects and structures, a well known problem in civil engineering [Bazant 1991]. In

order to design durable applications, structural parameters have to be optimized, which

requires control of the material lifetime under realistic conditions. Conversely, knowledge

about the stress required to trigger failure and �ow is relevant in other applications, from

industrial processing to oil extraction and transportation, where engineers face the well

known problem of pipe clogging [Zuriguel 2015, Van de Laar 2016, Koivisto 2016]. Thanks

to the power of modern simulation schemes, nowadays such knowledge can often be

considered satisfactory for applications, but it remains essentially empirical and system-

speci�c: much still has to be done in order to achieve a unitary description of those

phenomena.

At the same time, diagnosis of mechanical faults on existing structures is required in

order to assure proper maintenance [Collacott 1977]. This is extremely important not

only in civil engineering, where the catastrophic collapse of bridges, dams or buildings

still represents a relevant origin of casualties, but also in the transportation industry,

as in railway maintenance or in aircraft industry, where maintenance is delicate and

expensive. As an example, more than 60% of the total ownership costs for US aviation
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are represented by aircraft maintenance, due to ine�cient Condition Based Maintenance

(CBM) system [Bell 2008].

On a still larger scale, the detection of precursors of catastrophic events such as

earthquakes, rockslides, landslides, snow avalanches or volcano eruptions is certainly of

paramount importance for many self-evident social, economical and environmental rea-

sons. It has been argued [Sommerfeld 1982, Voight 1988, Bouchon 2013, Kromer 2015]

that this prediction might be achieved, and indeed in 1975 the Chinese Seismological Bu-

reau successfully predicted a magnitude 7.3 earthquake [Jones 1979]. However, despite

the optimistic wave generated by such successful prediction, to the best of our knowl-

edge this remains the only documented example, although a posteriori analyses could

in some cases identify detectable precursors [McGuire 2005, Duputel 2009, Van Herwij-

nen 2011b, Kato 2012].

1.1.2 Failure in soft materials

Because of the outstanding relevance for many applications and its interest from a

fundamental point of view, material failure represents a very active �eld of research, which

has the interesting feature of being multidisciplinary, arousing the curiosity of researchers

with widely di�erent backgrounds.

In particular, material failure is relevant to soft matter physics, where the typical en-

ergy scale governing interactions between particles is of the order of thermal energy: for

this reason, soft materials are generally characterized by large mechanical susceptibilities,

and they respond to small or moderate stresses with large deformations, often display-

ing yielding and failure under a suitable range of applied stresses. Typical examples

include emulsions [Liu 1996, Mason 1996], foams [Kabla 2007, Cohen-Addad 2013, Dol-

let 2014], polymer gels [Bonn 1998, Baumberger 2006, Skrzeszewska 2010, Karobi 2016],

and suspensions of colloidal particles, quenched out of equilibrium because of crowd-

ing [Siebenbürger 2012, Sentjabrskaja 2015] or of the presence of attractive interactions

[Poon 1999, Gopalakrishnan 2007, Gibaud 2010, Sprakel 2011, Grenard 2014].

Because of its widespread occurrence, failure in soft materials has strong implica-

tions for many everyday life and industrially relevant problems, including the processing

of food [Van Vliet 2013], such as gluten [Ng 2008], starch [Vliet 1995], dough [Mor-

eira 2011], gelatine [McEvoy 1985, Groot 1996], thickeners [Ma 1996, Jaishankar 2014],

yogurt [Leocmach 2014], and cheese [Faber 2017b], or biomaterials, such as living cells

[Desprat 2005, Kollmannsberger 2011], tissues [Bell 1978], biopolymer networks [Wag-

ner 2006, Janmey 2007, Gobeaux 2010] or protein assemblies [Liu 2007, Lieleg 2010, Bren-

ner 2013].

Soft materials are excellent systems to investigate material failure, because their char-

acteristic time and length scales are more readily accessible to experiments as compared

to those of atomic systems: this opens the way to a detailed structural and dynamical

characterization both before and after failure occurs. Moreover, a large variety of soft sys-
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tems with a wide spectrum of interactions and structural and dynamical characteristics

are available, thus allowing one to pinpoint the key parameters controlling the observed

phenomena, possibly unveiling general behaviors. For these reasons, the emerging analo-

gies between soft and hard materials [Schmoller 2013, Keshavarz 2017] make soft materials

an ideal benchmark to investigate how a mechanical stress impacts condensed matter.

Finally, the increasing relevance of soft materials in everyday life, as well as in industrial

processes like for example in food industry [Stokes 2012, Spagnolie 2015, Faber 2017a]

further aliments the interest in a deeper understanding of their behavior under stress.

1.1.3 Key questions

Figure 1.1: (a) Creep response of 8 wt% carbon black gel under a constant stress σ

decreasing from left to right and (b) corresponding shear rate γ̇. (c) Creep curves for a

weak depletion gel of polystyrene particles and (d) for thermoreversible stearylated silica

gels. Extracted from [Sprakel 2011].

Figure 1.1 illustrates an example of the delayed failure events that we address in this

work. The sample is submitted to a constant mechanical shear stress that is applied

at time t = 0, and it undergoes a very fast, solid-like deformation, followed by a so-

called creep regime where the shear strain γ grows sublinearly, either logarithmically or

as a power-law of time [Cottrell 1952]. Remarkably, this regime may last even hours,

depending on the applied stress, until it is suddenly interrupted by a sharp increase in γ

signaling material failure and the onset of �ow.

The e�ects of failure are obvious at the macroscopic scale, and yet the dynamics that

lead to such failure are governed entirely by the material's behavior at the smallest scales.

Thus, to better understand the observed delayed onset of �ow, we start investigating the
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microscopic processes governing creep. Interestingly, although the ultimate fate of the

material (formation of shear bands, ductile vs fragile fracture, permanent vs reversible

damage) may di�er according to the system, the macroscopic behavior before failure is

quite general, as one can see by comparing the three samples investigated in Fig. 1.1.

Power-law creep is widespread in both crystalline and amorphous materials, how-

ever in the former case it is well understood and attributed to defect motion [An-

drade 1910, Cottrell 1952, Poirier 1985, Miguel 2002], whereas in the latter case its

microscopic origin remains controversial. Indeed it has been attributed in turn to the

accumulation of irreversible, plastic rearrangements [Nechad 2005b, Caton 2008, Cous-

sot 2006, Siebenbürger 2012, Sentjabrskaja 2015, Karobi 2016], to linear viscoelastic re-

laxation processes [Balland 2006, Gobeaux 2010, Leocmach 2014], or to a combination of

both [Jagla 2011, Kun 2003], with di�erent authors holding contrasting views on similar

systems [Jagla 2011, Nechad 2005b].

For this reason, the �rst question that we want to answer with our work is the follow-

ing: What is the nature of the microscopic dynamics during the creep regime?

More precisely, we want to understand if the power-law creep of amorphous sys-

tems is governed by the same irreversible microscopic processes evoked for crystalline

solids, or if for those viscoelastic materials other deformation mechanisms are allowed,

not necessarily implying structural damage, as it has been suggested for widely di�erent

systems, from biomaterials such as cells [Fabry 2001, Djordjevic 2003, Desprat 2005, Bal-

land 2006, Kollmannsberger 2011, Hecht 2015], tissues [Kohandel 2005, Davis 2006,

Freed 2006, Sinkus 2007, Klatt 2007, Shen 2013, Bentil 2014], or biopolymer networks

[Amblard 1996, Gobeaux 2010, Patricio 2015] and pastes [Jó¹wiak 2015], to food ma-

terials [Ma 1996, Zhou 1998, Goh 2003, Subramanian 2006, Caggioni 2007, Ng 2008,

Korus 2009, Moreira 2011, Ronda 2013, Xu 2013, Jaishankar 2014, Leocmach 2014,

Faber 2017a, Faber 2017b], colloidal gels [Grenard 2014] and polymer gels [Hung 2015, Li-

don 2017], melts [Plazek 1960, Cheriere 1997, Friedrich 1999, Hernández-Jiménez 2002,

Metzler 2003], elastomers [Curro 1983] and composites [Metzler 1995].

Crucially, a detailed understanding of the creep regime holds the promise of unveiling

the origin of the sudden failure of the material, potentially revealing any precursor signs

of failure, which are di�cult to detect by monitoring macroscopic quantities, such as the

deformation rate [Koivisto 2016]. For this reason, the second question that we plan to

answer with our work is the following: How does the microscopic dynamics change

as failure is approached? Could such evolution provide a means to detect an

incipient failure?

In order to properly address these questions, a di�erent experimental protocol, rep-

resented in Fig. 1.2, can also be usefully employed, where yielding is not observed under

constant stress, but under an oscillating stress (or strain, as in Fig. 1.2) with increasing

amplitude. In such experiments, one typically observes a �rst linear regime, in the limit

of small deformations, where the stress grows linearly with strain amplitude and the so-

called viscoelastic moduli are independent of deformation. In this regime, linear rheology

teaches us about the mechanical properties of the unperturbed sample, which in the case
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of Fig. 1.2 is predominantly solid. However, when the sample is driven far enough from

equilibrium (beyond γc in Fig. 1.2) it develops an amplitude-dependent response, with a

growing loss modulus, which indicates that additional, nonlinear dissipative processes are

triggered by the imposed deformation. Such processes become increasingly relevant at

still higher amplitudes, and concomitantly the elastic modulus decreases, up to a point

where the two moduli cross each other, so that in the large amplitude limit (beyond γf in

Fig. 1.2) the mechanical response will be dominated by the loss modulus, showing that

the initially solid-like material was �uidized by the applied deformation. Interestingly,

this transition can be grasped as well by the stress vs. strain curve, which displays a clear

crossover (around γy in Fig. 1.2) between the initial linear regime and the shear-thinning

regime observed at larger amplitudes.

Figure 1.2: Circles, left axis: viscoelastic moduli G′ (�lled) and G′′ (empty) for di�erent

values of the imposed strain amplitude γ0. Crosses, right axis: amplitude of the stress

response as a function of strain. The vertical arrows indicate the end of the linear regime

(strain γc), the onset of (viscoplastic) yielding (strain γy) and complete �uidization, that

is, liquid-like response (strain γf ). The sample is a star polymer solution. Extracted from

[Christopoulou 2009].

The qualitative features observed in Fig. 1.2 seem to be quite general, being ob-

served in a variety of soft systems like polymer solutions [Tirtaatmadja 1997], com-

posites [Payne 1963], emulsions [Mason 1996, Bower 1999, Knowlton 2014], as well

as colloidal gels [Raghavan 1995, Raghavan 1997, Yziquel 1999, Christopoulou 2009,

Gibaud 2010, Kim 2014, Perge 2014, Moghimi 2017], glasses [Derec 2003, Petekidis 2003,

Craciun 2003, Pham Trong 2008, Carrier 2009, Rogers 2011, Koumakis 2013, Hima Naga-

manasa 2014] and polycrystals [Louhichi 2015], whereas some other systems show a

characteristic two-step yielding process, with a peculiar intermediate regime between
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the onset of the nonlinear regime and the complete �uidization [Altmann 2004, Helge-

son 2007, Pham Trong 2008, Koumakis 2011, Laurati 2014, Agrawal 2015, Brunel 2016].

Oscillatory yielding of soft solids has been rationalized by various models [Sollich 1998,

Derec 2003, Miyazaki 2006, Carrier 2009, Radhakrishnan 2016], based on the idea that

sample relaxation dynamics are essentially unperturbed by small amplitude shear, whereas

the appearance of stress-induced plastic rearrangements determines the onset of the non-

linear regime at amplitudes beyond a given threshold. However, such threshold ap-

pears to be di�cult to de�ne unambiguously [Bonn 2017], as one can appreciate from

the di�erence between γc, γy and γf in Fig. 1.2. In the attempt to investigate more

deeply the nature of such yielding transition, recent experiments have addressed the

microscopic reversibility of the imposed deformation, by detecting the onset of irre-

versible particle displacements either with direct imaging techniques [Pouliquen 2003,

Marty 2005, Slotterback 2012, Keim 2014, Knowlton 2014, Hima Nagamanasa 2014],

with scattering techniques, [Petekidis 2002a, Gibaud 2010, Amon 2013, Rogers 2014,

Laurati 2014, Leheny 2015, Agrawal 2015], or in computer simulations [Regev 2015,

Kawasaki 2015, Priezjev 2016, Priezjev 2017]. A transition from reversible to irreversible

dynamics is indeed retrieved, although at a more detailed analysis the results appear

rather controversial, and no consensus is found about the nature of this crossover, which

has been described either as a smooth change [Keim 2013], a sharp crossover [Knowl-

ton 2014, Kawasaki 2015] or a continuous nonequilibrium phase transition [Hima Naga-

manasa 2014].

The possibility of bridging the gap between the (ir)reversible nature of microscopic

dynamics and the macroscopic deformation makes oscillatory shear the ideal technique

to precise and complete the �rst two questions. Therefore, in line with the recent work

mentioned above, the third question that we plan to answer with our experiments is the

following: Which microscopic processes govern the reversible to irreversible

transition observed upon yielding? How are they related to the change in

rheological properties?

1.1.4 Challenges

In order to address the above questions, several challenges have to be faced, essen-

tially coming from the intrinsically multiscale nature of material failure [Ben-Zion 2008,

Ritchie 2011], involving collective behaviors spanning characteristic energy, time and

length scales from the constitutive elements to the system as a whole. Therefore, the

essential challenge is to bridge over those scales. This is typically challenging in simu-

lations, where computational performance sets severe limitations to the total number of

unitary elements that can be simulated at once [Colombo 2014, Landrum 2016]. Inciden-

tally, most numerical simulation schemes are currently implemented in a strain-controlled

fashion, which is not adapted to capture the creep dynamics. In order to access realis-

tic volumes, coarse grained models are available, like mesoscopic elastoplastic models
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[Bocquet 2009, Martens 2011], the fuse model [De Arcangelis 1985, Sornette 1992], the

�ber bundle model [Daniels 1945, Pradhan 2010] with its many modi�cations [Prad-

han 2002, Pradhan 2003, Kun 2003, Kun 2008, Kovacs 2008, Baxevanis 2007, Jagla 2011],

and �nite element models [Fragiacomo 2004], even though most of them were developed

to describe hard materials [Sornette 1992, Fragiacomo 2004, Kun 2007] and do not con-

tain thermal �uctuations, which might be relevant in softer materials like the ones we

investigate. A di�erent implementation of such elasto-plastic models is presented in ap-

pendix B as a way to describe thermoplastic elastomers [Aime 2017]. Another delicate

point concerning coarse grained numerical simulations is that they rely on speci�c as-

sumptions on the fundamental mechanisms governing the macroscopic deformation. As a

consequence, even once the rheological behavior is correctly reproduced, the link between

the information obtained at the mesoscopic scale and the physical mechanisms govern-

ing the real systems might not be straightforward. An example is again the debate on

power-law creep, which is equally reproduced by numerical models built on fairly di�erent

assumptions [Pradhan 2002, Jagla 2011].

Bridging di�erent length and timescales is also challenging for experiments, as it is

well known by geologists struggling to predict earthquakes [McGuire 2005] and snow

avalanches [Van Herwijnen 2011b], since the precursor of such macroscopic events is very

likely to be represented by tiny, fast events occurring at the microscopic scale after a

potentially long, unpredictable waiting time. In the present work we mainly address the

above questions with experiments, by imposing a well-controlled load to the sample and

by measuring simultaneously both its mechanical response and its microscopic dynamics.

Such simultaneous measurements are quite rare [Chen 2010] and mostly restricted to rheo-

microscopy (the coupling of a rheometer and a microscope) [Van der Linden 2003, Bessel-

ing 2009] or rheo-DWS (the coupling of a rheometer and a dynamic light scattering appa-

ratus working in the multiple scattering regime) [Wagner 1998, Hébraud 1997]. Although

both techniques represent an invaluable extension of standard rheology, they have dif-

ferent limitations that might make them un�t to our purposes. For example, real space

measurements, like microscopy, su�er an intrinsic trade-o� limiting the total volume that

can be probed at a given rate and a given spatial resolution. On the other hand, di�using

wave spectroscopy (DWS) can e�ectively probe extremely small displacements (down to

the nanometer scale) in macroscopic samples (several centimeters), but its main disad-

vantage is the lack of a direct connection between the observed signal and the nature

of the probed displacements. To overcome these limitations, in our experiments we will

mainly use time-resolved dynamic light scattering, a technique described in chapter 2,

which will allow us to detect rearrangements involving motion on a very small scale -

down to a fraction of µm -, while being able to probe a fairly large portion of the sam-

ple, up to some mm in (linear) size. On the other hand, investigating the microscopic

dynamics of a sample under shear with dynamic light scattering is also challenging, since

the physically interesting signal has to be decoupled from the trivial contribution coming

from the so-called a�ne deformation of the sample. This requires a careful, nonstandard

analysis of the light scattering signal (discussed in chapter 4), which proves in addition to
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be very sensitive to the presence of eventual wall slip or shear banding, another positive

side e�ect of dynamic light scattering.

A last nontrivial challenge is represented by imposing a well-controlled stress to the

sample. From established works in literature (cf. e.g. Fig. 1.1) we know that delayed

failure is highly stress dependent, so that we require that stress should be homogeneous

in the sample. Among the deformation geometries commonly employed in mechanical

testing, cone-plate rheology is the only one satisfying this requirement [Macosko 1994].

However, such a deformation geometry is particularly di�cult to couple with light scatter-

ing, because of the optical quality of the conical surface. By contrast, rheo-optical setups

are often based on plate-plate torsional rheometry, in which case the applied stress is

far from being homogeneous. In order to meet both requirements of optical quality and

stress uniformity we decided to work in a di�erent shear geometry, with parallel sliding

planes. To this aim, we realized a stress controlled shear cell, which will be described in

chapter 3.

1.2 Historical excursus

"Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes,

ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia

corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea" (John of Sal-

isbury, Metalogicon). The medieval image, reported by John of Salisbury, is particularly

adapted to introduce a brief survey of the current knowledge around the topics that will

be touched by this work. In English it would read: "Bernard of Chartres used to say that

we [the Moderns] are like dwarves perched on the shoulders of giants [the Ancients], and

thus we are able to see more and farther than the latter. And this is not at all because

of the acuteness of our sight or the stature of our body, but because we are carried aloft

and elevated by the magnitude of the giants" [Troyan 2004].

Although it is easy for us, modern scientists, to identify with this medieval image

(Newton himself used it in a letter to Robert Hooke), we can linger on it, asking our-

selves what exactly gives us our raised viewpoint. There is no doubt that the incredible

amount of easily accessible information, which was unimaginable already 30 years ago,

together with the improved data quality provided by modern scienti�c instruments and

ever-increasing computational schemes and platforms, constitutes an absolutely favorable

working condition for today's soft matter scientists. However, there is also another related

aspect, which I would like to take as a starting point. To introduce it, another quotation

will help, this time from C.S. Lewis, who writes that "The universe rings true whenever

you fairly test it" [Lewis 1955]. This is specially true in science, being clear that to simply

test is not enough: one has to do it fairly in order to obtain a true answer, and history

has shown how long and curvy is the path through which we learn how to fairly test

universe, and to ask relevant scienti�c questions in the proper way. If on the one hand

this is necessarily the path of every young scientist wishing to become an adult scientist,
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on the other hand this path is traced by the example of curious people that across the

centuries have found out better ways to formulate scienti�c questions, and more proper

ways to test them. The beginning of this work is dedicated to a short selection of those

curious people, with particular focus on the research on material failure.

a) b) c)

Figure 1.3: Schemes of the mechanical tests designed by (a) Leonardo da Vinci, (b)

Galileo Galilei and (c) Robert Hooke. Extracted from [Timoshenko 1953].

Without any doubt, the dawn of this research dates back to ancient times: from the

earliest times when people started to build, it was found necessary to have information

regarding the strength of structural materials, so that rules for determining safe dimen-

sions of building elements could be drawn up. Ancient civilizations as Egyptians, Greeks

and Romans certainly had some empirical rules of this kind, since without them it would

have been impossible to erect their great monuments, some of which still exist [Tim-

oshenko 1953]. However, to the best of our knowledge, the �rst documented attempt

to directly address the strength of structural materials with dedicated experiments is

attributed to Leonardo da Vinci, in XV century [Parsons 1976]. In his note "Testing

the Strength of Iron Wires of Various Lengths" he gives the sketch of the �rst tensile

experiment of human history (Fig. 1.3a) and remarks: "The object of this test is to �nd

the load an iron wire can carry. Attach an iron wire [...] to something that will �rmly

support it, then attach a basket [...] to the wire and feed into the basked some �ne sand

through a small hole placed at the end of a hopper. A spring is �xed so that it will close

the hole as soon as the wire breaks. [...] The weight of sand and the location of the frac-

ture of the wire are to be recorded. The test is repeated several times to check the results.

Then a wire of one-half the previous length is tested and the additional weight it carries

is recorded; than a wire of one-fourth length is tested and so forth, noting each time the

ultimate strength and the location of the fracture" [Da Vinci 1972]. Besides the same idea

of conceiving an ad hoc experiment to test the strength of a wire, independently from its

application, which is certainly the most revolutionary aspect of Leonardo's approach, two

interesting points have to be noted in his description of the experiments: �rst, one single
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test is not enough, since its result has to be checked by several repetitions, suggesting that

Leonardo had the intuition that statistics are particularly relevant for those phenomena.

Five centuries afterwards, the work of Waloddi Weibull [Weibull 1939] will rationalize

this concept in mathematical terms. Second, Leonardo understood that the length of the

wire plays a role, longer wires carrying less load, which is indeed the starting point of

Weibull model, namely that real wires are heterogeneous, so that longer wires are more

likely to contain a critical defect [Lund 2001].

With a di�erent accent, the question about the relationship between size and strength

was also addressed by Galileo Galilei at the beginning of XVII century. In his book

"Discorsi e dimostrazioni matematiche intorno a due nuove scienze", he investigates the

strength of materials in simple tension, like in Leonardo's experiments, and he states

that the strength of a bar is proportional to its cross-sectional area and independent of

its length: this de�nes, for Galileo, the "absolute resistance to fracture". With respect

to Leonardo's results, this remark suggests that Galileo worked with thicker and more

homogeneous materials, whose strength did not display marked size dependence. Having

the absolute resistance of a bar, Galileo then turns to a di�erent experiment in which the

resistance of the same bar is tested in bending geometry (Fig. 1.3b). By analyzing the

deformation pro�le, he �nds that geometrically similar bars are not equally strong, as

the bending moment increases as the square of the length, whereas the resisting moment

increases as the cube of the radius: thus, to keep the strength constant, the cross-sectional

dimensions must be increased at a greater rate than the length. For this reason, he argues,

"you can plainly see the impossibility of increasing the size of structures to vast dimensions

either in art or in nature; likewise the impossibility of building ships, palaces, or temples

of enormous size [...]; nor can nature produce trees of extraordinary size because the

branches would break down under their own weight. [...] Indeed, the smaller the body

the greater its relative strength" [Galilei 1638]. We see that the use of mathematics to

rationalize his �ndings and the extrapolation, from the particular experiment, of a general

result applicable to di�erent systems characterizes Galileo's approach to material failure.

For this reason, Galileo's work represents the beginning of the science of solid mechanics

[Timoshenko 1953].

Later in XVII century, this new-born science evolved rapidly thanks to the contri-

bution of Robert Hooke, who is rightfully considered the father of the theory of elastic

bodies. In his manuscript "De potentia Restitutiva", Hooke explains the linear relation-

ship between elastic force and spring deformation, which is also known as Hooke's law:

"Take a wire string [...] and fasten the upper part thereof to a nail, and to the other

end fasten a scale to receive the weights: then with a pair of compasses take the distance

of the bottom of the scale from the ground or �oor underneath, and set down the said

distance, then put in weights into the said scale and measure the several stretchings of

the said string, and you will �nd that they will always bear the same proportions one

to the other that the weights do that made them". By investigating other deformation

geometries like torsion, bending and compression (Fig. 1.3c) he comes to the following

general conclusion: "It is very evident that the Rule or Law of Nature in every springing
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body is, that the force or power thereof to restore itself to its natural position is always

proportionate to the distance or space it is removed therefrom" [Hooke 1678].

a)

b)

e)

c) d)

Figure 1.4: (a) James and Galton's fatigue-testing machine: a rotating eccentric is used

to de�ect and release the bar, with a frequency from 4 to 7 rpm [Timoshenko 1953].

(b) Torsional rheometer used by Taylor [Taylor 1934] to measure the viscosity of "highly

viscous" (presumably viscoelastic) �uids. (c-d) Rheo-optical cells to visualize the defor-

mation of a viscoelastic drop under biaxial deformation (c) and shear deformation (d).

(e) Destabilization of a viscoelastic drop under biaxial deformation [Taylor 1934].

From seventeenth century to the modern era, contributions to this �eld, specially on

the mathematical formulation of the theory of elasticity with the new instruments pro-

vided by in�nitesimal calculus, are numerous. Mentioning most of them would largely go

beyond the purpose of this section. However, it is fascinating to follow the close connec-

tion between the development of this science and the evolution of the practical problems

posed by the increasingly demanding technological applications. As an example, the de-

velopment of railroad transportation, combustion engines, and the introduction of steel

as structural material brought many new problems dealing with strength of structures.

Indeed, it was discovered that subjecting a metallic material to many cycles of stresses

can produce fracture, by much smaller forces than would be required for static failure

[Morin 1853]. This began the investigation of fatigue failure in iron, which initially aimed
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at estimating how frequently locomotives had to be inspected and maintained in order to

prevent fracture. To this aim, experiments applying a cyclic deformation to iron beams

were performed (Fig. 1.4a), and the development of plasticity under �nite strains was

addressed, in connection with the onset of irreversibility of the macroscopic deformation

[Fairbairn 1864]. At the same time, the microscopic origin of fatigue was investigated, but

no consesus could be reached only based on macroscopic experiments. For this reason,

in 1850 came the �rst suggestion of coupling fatigue test and microscopic investigation,

from P.R. Hodge: "To arrive at any true results as to the structure of iron it would

be necessary to call in the aid of the microscope, to examine the �brous and crystalline

structure" [Engineers 1851]. At the time such coupling was technologically out of reach,

so that the change in iron microstructure had to be investigated separately. This limi-

tation, coupled to the low sensitivity of existing imaging apparatuses, was such that no

relevant observation could be made, yielding the conclusion that no real di�erence could

be perceived between the sample before and after the fatigue treatment.

One has to wait almost one century before the �rst pioneering attempt, by G.I. Taylor

[Taylor 1934], of coupling macroscopic deformation to a simultaneous measurement of

microscopic structure and dynamics, with the aim of characterizing the destabilization

and rupture of "highly viscous" drops under large deformations. To achieve this, a

�xed stress was applied by controlling the deformation rate of the surrounding medium

(Fig. 1.4c-d), while an imaging system provided magni�ed picture of the drop under

increasing stress conditions, up to its failure (Fig. 1.4e). Interestingly, the mechanical

properties of the bulk materials were also tested, using a home-made instrument which

can be considered the ancestor of our stress-controlled rheometers (Fig. 1.4b).

1.3 State of the art

1.3.1 Steady-rate experiments

Many di�erent protocols are used in literature to probe yielding and failure in soft ma-

terials. Probably the most straightforward of those protocols is represented by steady-rate

experiments, where the material, initially at rest, is deformed at a constant deformation

rate. Such an experiment can be performed in di�erent deformation geometries, from

well-de�ned ones like shear [Costanzo 2016, Keshavarz 2017], extension [Costanzo 2016]

and compression [Antonaglia 2014], to more complex ones, like indentation or bending.

In the following, we will focus on shear deformation, whereas appendix B will show sim-

ulations and experiments in uniaxial extension.

In steady-shear rate experiments, the stress σ is measured as a function of time, start-

ing from the moment where the deformation rate is applied. An initial linear regime is

observed at small deformations, where the stress growth is dictated by the linear vis-

coelastic properties of the sample. Beyond the linear regime, σ depends on the imposed

shear rate γ̇, in a way that can be rationalized in terms of the ratio between the largest
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(terminal) relaxation time τ of the system and the experimental timescale τexp ∼ γ̇−1.

When the product Wi = γ̇τ (the so-called Weissenberg number)[Dealy 2010]) is small

(Wi � 1), the deformation can be thought as quasistatic: the system relaxes faster

than it is sheared, and can be considered at equilibrium at any time during the defor-

mation. In this case, no deviations from linear rheology are expected. By contrast, in

the opposite limit of Wi & 1, the sample has no time to relax during deformation, and

eventually is driven out of the linear regime. The linear to nonlinear transition can mani-

fest in qualitatively di�erent forms: brittle materials break abruptly, almost without any

plastic deformation, whereas ductile ones exhibit substantial large plastic deformations

after yielding. Because plasticity dissipates elastic energy, ductile yielding is generally

associated to a downturn in the measured stress: eventually, after a �rst strain hard-

ening regime [Groot 1996, Gardel 2004, Storm 2005, Pouzot 2006], the stress passes

through a maximum (de�ning the failure stress and strain) and decreases afterwards

[Mohraz 2005, Kabla 2007, Skrzeszewska 2010, Keshavarz 2017]. The detailed micro-

scopic processes associated to departure from linear viscoelasticity and plastic yielding

can be complex [Koumakis 2011, Costanzo 2016], so that in general their investigation

is challenging and can usefully be supported by numerical works. To highlight the main

open questions in this �eld, hereafter we review a few experimental studies, with partic-

ular focus on network forming systems and physical gels.

Figure 1.5: Protein physical gel. Time-resolved stress response as a function of strain

(γ = γ̇t) after start-up of steady shear. The reduced shear rates (γ̇τ) are indicated near

the lines, with τ equal to 3200 s. Extracted from [Skrzeszewska 2010].

As a �rst example, working with a recombinant protein able to form supramolecular

bonds with a well de�ned characteristic lifetime τ , Skrzeszewska et al. [Skrzeszewska 2010]

show that a ductile to brittle transition is observed with increasing Weissenberg number

beyond 1 (Fig. 1.5). The authors argue that at the lowest shear rates the stress deviates

downwards because of the viscoelastic relaxation of the physical gel (associated to dis-
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sociation and reformation of physical bonds), which leads to simple viscous �ow in the

steady state, whereas at larger shear rates this mechanism cannot happen anymore, and

one observes instead a slight strain hardening, associated to the �nite chain extensibility,

followed by chain pull-out and brittle fracture.

In another work on a protein gel with no measurable terminal relaxation time, Ke-

shavarz et al. observe brittle fracture for all values of γ̇, since the condition Wi � 1 is

always met [Keshavarz 2017]. Interestingly, the authors show that the whole stress-strain

curve, up to the onset of mechanical instability, can be nicely predicted by a nonlinear

viscoelastic model based on time-strain separation (Fig. 1.6). In this case, the departure

from linearity can be accurately described in terms of a strain hardening and a strain

softening term, and the deviation from the model is attributed to fracture. Indeed, thanks

to direct visual inspection of the gel during deformation, the authors can detect the nu-

cleation and growth of cracks, which appear at the yield point and are clearly associated

to the subsequent stress drop. The authors argue that failure occurs as a consequence

of stress-induced damage accumulation, which becomes critical beyond a given thresh-

old. The rate of damage accumulation is assumed to be a function of stress alone, which

provides an excellent prediction of failure stress and strain based on a failure criterion

proposed by Bailey [Freeds 2002]. Therefore, one question that opens concerns the nature

of the plastic rearrangements considered by Bailey's criterion. To elucidate this point,

standard rheology might bene�t from a microscopic investigation of the local structure

and dynamics.

One example of such investigation can be found in the work of Mohraz and Solomon

[Mohraz 2005], who study the structure of weak fractal colloidal gels subject to start-up

of steady shear �ow, by coupling shear rheology to time-resolved small angle light scatter-

ing. With increasing deformation, an anisotropic intensity pattern is detected in the light

scattering signal, which signs a slight orientation in the gel structure [Vermant 2005]. The

structural anisotropy initially increases as the gel is deformed, then reaches a maximum

value at the yield strain (de�ned by the locus of the stress maximum) and afterwards

decays to a plateau, in a qualitatively similar way to the macroscopic stress. Such simi-

larity suggests that structural reorientation determines the nonlinear rheology of the gel.

Moreover, by investigating the microscopic dynamics after �ow cessation, the authors

argue that minor connectivity loss should take place before the stress peak. It is interest-

ing to compare this result to Bailey's criterion evoked by Keshavarz et al., which rather

suggests a more progressive weakening. The comparison is not trivial, and calls for a

deeper understanding of the interplay between local plasticity and macroscopic rheology.

On the other hand, both works agree in interpreting the stress drop as the macroscopic

signature of gel rupture, which occurs abruptly at a large critical strain (around 100%),

where the gel backbone should be fully extended. Accordingly, the rupture is associated

to a maximum in structural anisotropy, and is followed by a partial relaxation of both

stress and anisotropy, in a process read as the densi�cation of fractal clusters.

More detailed insights on the microscopic processes occurring under shear are reported

by Masschaele et al. [Masschaele 2009], who observe in real space the shear deformation
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Figure 1.6: Protein gel. Stress response σ vs time t (lower axis) and vs strain γ = γ̇0t

(upper axis) to a constant shear rate γ̇0 = 10−3s−1 initiated at t = 0. The gray dashed

line corresponds to the linear viscoelastic response (a power law of time). The black

line corresponds to the nonlinear model (K-BKZ) constructed using only the strain-

hardening part of the damping function, whereas the red line corresponds to the full

K-BKZ equation, which includes both the hardening and the softening components of

the damping function. Insets: images of the side view of Couette cell at di�erent strains

recorded simultaneously to the experiment reported in the main graph. Adapted from

[Keshavarz 2017].

and rupture of 2D fractal gels at oil-water interface. Unfortunately, the shear stress could

not be measured in their experiments, so that the linear to nonlinear transition and gel

rupture are only investigated at the microscopic scale. The authors rely on the assump-

tion that the rheology of interfacial gels would show the same qualitative features as the

analogous three dimensional structures. In agreement with Mohraz and Solomon, Mass-

chaele et al. �nd that at small strains the gel network remains intact, and percolation is

only lost at higher strains, where rupture occurs abruptly, as a consequence of a cascade

of break-up events, which are monitored throughout deformation. Interestingly, break-up

events are found to be spatially localized and tend to cluster, which might suggest some

interesting correlations, neglected by the simple additivity of Bailey's criterion. In the

regime of increasingly nonlinear deformation, the authors address various microscopic

structural indicators in order to quantify the increased heterogeneity of the structure

during deformation. Essentially all indicators show minor evolution prior to rupture,

whereas the heterogeneity increases after rupture, in line with the �ndings of Mohraz

and Solomon. Finally, the authors show that the pertinent lengthscale for breaking and

structural reorganization coincides with the lengthscale of structural heterogeneity, i.e.

the cluster size. More precisely, Fig. 1.7 shows an example of the typical plastic rear-
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a b c d

Figure 1.7: 2D colloidal gel: details of yielding of one particle cluster. The snapshots

correspond to the network after a strain of, respectively, 0.25 (a), 0.5 (b), 0.75 (c), and

1.25 (d). Adapted from [Masschaele 2009].

rangement occurring at yielding: the bonds between clusters break, and as a consequence

percolation is lost and groups of particles, which retain their integrity, are free to rotate

collectively relative to the surroundings. This mechanism is in agreement with previous

models for gel rupture, only based on rheological measurements [Shih 1990].

Many of the above results are corroborated and extended by numerical simulations,

for which steady-rate experiments represent a particularly convenient framework. For

example, the work of Park et al. [Park 2013, Park 2017] agrees on the observation of

a structural anisotropy under shear, which reaches its maximum at yielding, whereas

Boromand et al. [Boromand 2017] focus on bond distribution as an e�cient way to

characterize γ̇-dependent structural evolution during shear. In the same vein, Colombo

and Del Gado [Colombo 2014] follow the bond breaking and reformation, emphasizing

the relevance of bond orientation relative to shear. In agreement with Masschaele et

al., they show that bond breaking only starts occurring beyond 30% deformation, and

that the onset of bond breaking is connected to the overstretching of the weakest chains,

where the stress gets localized. Interestingly, the authors also discuss the microscopic

reversibility of the deformation, by inverting the shear direction after reaching a given

strain γinv and bringing back the system to the initial γ = 0 state. A comparison between

the system at the beginning and at the end of this strain cycle shows that irreversible

nona�ne displacements start to occur around γinv ≈ 10%, signi�cantly before the onset

of bond breaking.

In conclusion, we learn from steady-shear rate experiments that the yielding of network

forming systems such as physical gels can occur in a brittle-like fashion under speci�c

conditions. Brittle rupture is associated with a sudden drop of the measured stress, which

is caused by a cascade of break-up events weakening the stress-bearing backbone of the

network and triggering mechanical instability. This occurs at a characteristic lengthscale

equal to the network mesh size, which for a colloidal gel corresponds to the size of the

fractal cluster. During the deformation preluding rupture, such materials exhibit minor

structural rearrangement, and the network connectivity is mostly preserved. At the same

time, strain hardening is observed in the mechanical response, and it is associated to the

orientation of the gel network in the shear direction.

A question that remains to a large extent open concerns the amount of bond breaking
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events occurring during the deformation, and their eventual space and time correlations.

If no bond breaking at all is expected in the linear regime, it is likely that, as it is

observed by Masschaele et al. and in computer simulations, some bonds will break during

nonlinear deformation. The amount of those breaking events, their nature and their

relevance for the observed mechanical properties are usefully disclosed by simulations,

but experiments are still blind to such information, which is presumably sample- and

experimental-protocol dependent. A �rst indication can be obtained thanks to the models

accounting for the macroscopic rheology. For instance, the applicability of durability

criteria to model the onset of mechanical instability discussed by Keshavarz et al. seems

to suggest that in some cases plasticity should occur throughout the deformation, at

a well de�ned and stress-dependent rate (thus precluding avalanche-like dynamics as

observed for some other systems [Antonaglia 2014, Kurokawa 2015]). The impressive

agreement between the nonlinear model and the experimental data encourages deeper

investigation on its microscopic implications: in this perspective, it was shown with

the above examples that novel experiments accessing at the same time the mechanical

response and the microscopic structure and dynamics tremendously increase our insight

in the material behavior.

1.3.2 Creep experiments

Because of the rather robust rheological features observed and the well-de�ned ex-

periment duration, steady-rate experiments are particularly convenient to study yield-

ing. This explains their widespread application since Leonardo's ancient times [Timo-

shenko 1953]. The main disadvantage of this technique is perhaps that the shear history

imposed to the sample is usually quite distant from the one typically experienced by

materials in real life applications. For example, as mentioned above, snow avalanches,

rockslides and sandslides occur under the constant force exerted by gravity, which may

also cause the delayed collapse of civil structures like buildings and bridges as well as soft

materials, whereas earthquakes and volcano eruptions are triggered by a nearly-constant

stress due to the underground activity of earth's inner layers. On a smaller scale, failure

of cables, �bers or adhesives usually occurs as well under a controlled stress. The latter

case is particularly frequent, as it is well known to those who have tried to �x a post-it, a

poster or a picture to a vertical surface with the help of an adhesive tape. Those people

might have noticed with great disappointment that, despite its apparent initial stability,

their creation had a limited lifetime, and it would eventually collapse after a while. The

above examples push to address material failure with a second experimental protocol,

where the sample is subject to a constant load and its deformation is monitored over

time until delayed failure it eventually observed. Because the material is often observed

in these experiments to progressively weaken, the term fatigue is sometimes used. In

particular, when the external load is constant, one speaks about static fatigue (or creep),

as opposed to dynamic fatigue, which is typically probed under cyclic stress or strain
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[Poncelet 1839].

There is also a second, more fundamental reason for considering static fatigue of mate-

rials. Namely, in most of the models introduced in the literature, failure is regarded at the

miscroscopic scale as a stress-controlled phenomenon. Remarkable examples include the

Eyring model [Eyring 1936], the original �ber bundle model [Daniels 1945] and many of

its derivations [Pradhan 2005, Kun 2003, Jagla 2011]. For this reason, a straightforward

comparison between the various models' predictions and experimental results obtained

in steady-rate is sometimes di�cult to obtain, whereas static fatigue represents a much

more natural framework.

1.3.2a Linear and nonlinear creep

The main disadvantage of static fatigue experiments is that sample deformation is not

controlled. As a consequence, the duration of the experiments is often long and di�cult

to predict, sometimes because of experimental reasons like sample to sample variations

and uncertainties on the applied stress, and sometimes for more fundamental reasons,

like the intrinsically stochastic nature of fracture nucleation and growth [Gri�th 1921,

Weibull 1939, Bonn 1998]. During the potentially very long induction times, which on

structural materials can extend to several years [Maekawa 2016], the e�ect of fatigue is

observed at the macroscopic scale as a slow deformation called creep, which is usually

well described either by a logarithm of time [Phillips 1905, Nabarro 2001, Nechad 2005b,

Siebenbürger 2012], by a power law [Andrade 1910, Plazek 1960, Caton 2008, Rosti 2010,

Grenard 2014, Leocmach 2014, Koivisto 2016, Ballesta 2016], or by combinations of the

two [Wyatt 1951, Cheriere 1997, Siebenbürger 2012].

A major fundamental issue related to creep is to understand the underlying micro-

scopic processes responsible for the observed sublinear deformation. If this is rather un-

derstood in crystalline materials [Poirier 1985] like metals [Andrade 1910, Miguel 2002,

Cottrell 1952] or ice [Ashby 1985] in terms of defect motion, for amorphous materials

the problem is complicated by the fact that structural defects are not as well de�ned

[Widmer-Cooper 2009, Schoenholz 2014]. In particular, amorphous materials are often

viscoelastic, thus a time-dependent response may arise as well as a simple consequence

of linear viscoelasticity, in absence of damage or plastic events. Decoupling the two con-

tributions is generally far from trivial, all the more since several models, based on radi-

cally di�erent assumptions, from pure linear viscoelasticity [Mainardi 2010, Hilfer 2000,

Friedrich 1991, Heymans 1994], to pure plasticity [Pradhan 2005, Eyring 1936, Zap-

peri 2000, Bocquet 2009], to a combination of both [Kun 2003, Jagla 2011], can equally

account for the observed macroscopic deformation.

In general, in the limit of small applied stresses, and consequently small deformations,

creep is linear viscoelastic: the measured deformation can be described in terms of a linear

creep compliance, which can be compared with independent measurements in the linear

regime, say in the frequency domain [Evans 2009]. This can be exploited in order to
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probe linear viscoelastic processes occurring on timescales too long to be characterized

by oscillatory rheology (cf. chapter 5). Upon increasing the applied stress, however,

an additional contribution to structural relaxation is introduced by emerging nonlinear

processes, which lead to faster (shear thinning) �ow in the steady state observed in the

long time limit [Erwin 2010].

a) b) c)

Figure 1.8: Typical aspect of deformation vs time curves for di�erent stress levels

σ (increasing from bottom to top) applied to the following soft-jammed systems: (a)

Mustard, (b) Bentonite suspension, (c) Hair gel. The inclined dotted line is the curve of

slope 1. Adapted from [Coussot 2006].

This is discussed in detail by Coussot et al. [Coussot 2006], who introduce the concept

of viscosity bifurcation to explain the experimental observation that for a small increase

in the applied stress σ from below to above a given threshold σy (the so-called yield stress)

the steady-state shear rate increases from zero in the solid regime (σ < σy) to a �nite

value, apparently larger than a critical strain rate γ̇c (Fig. 1.8). This phenomenon appears

to apply quite generally to a class of yield stress �uids which are called thixotropic.

However, from Fig. 1.8 it is clear that the steady state is not reached instantaneously and

that transient regimes, e.g. separating solidlike behavior at rest from liquidlike behavior

beyond yielding, convey tremendous physical information on the yielding process. In

particular, Coussot et al. remark that in some cases, close to the yield stress, the induction

time can exceed the experiment duration, and that in those cases it is di�cult to say

whether the material will ultimately stop or reach a steady �ow over very long times.

The transient creep deformation before �uidization is addressed for example in the

work of Siebenburger et al. on colloidal glasses [Siebenbürger 2012]. Their data (Fig. 1.9)

show distinct regimes: (i) an initial transient, dominated by the coupling between sample

viscoelasticity and inertia of the measurement tool (called creep ringing [Ewoldt 2015]),

is followed by (ii) a �rst linear viscoelastic response, which corresponds to a quasi-plateau

in the measured deformation. Later on, plastic deformation is observed, and takes di�er-

ent forms according to the applied stress σ. At large σ, a steady state characterized by

viscoplastic �ow (iii) is reached after a superlinear deformation regime (iv), whereas at

low σ sublinear creep continues inde�nitely (v): creep appears to be logarithmic in the

long time limit, but before that a power-law transient is also found, whose duration may

extend to nearly one week depending on sample age. Whereas no real explanation is given
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Figure 1.9: Colloidal glass. (a) Deformation γ(t) for increasing applied stress (di�erent

colors from bottom to top), and increasing waiting times after shear-induced rejuvenation

(for each color, increasing from left to right). Time is rescaled using the di�usion time τ0 =

R2/D0 = 4ms (R being the particle radius andD0 being the free di�usion coe�cient). The

di�erent regimes described in text are marked with roman labels (i)-(v). (b) Associated

normalized shear rate γ̇(t)τ0. Dash-dotted line: Andrade creep law, γ̇(t) ∼ t−2/3; dashed:

logarithmic creep, γ̇(t) ∼ 1/t. Extracted from [Siebenbürger 2012].

for the transient power law creep, the authors propose a nonlinear model accounting for

the logarithmic creep, based on the assumption that the nonlinear relaxation modulus is

described by a nonlinear generalized Maxwell model [Voigtmann 2011], whose essential

ingredient is that in the high shear rate limit the material displays shear thinning as a

simple yield stress �uid (η ∝ γ̇−1). Other models can be found in literature, relating

the logarithmic creep to more microscopic quantities like the activation energy for plas-

tic rearrangements. Nabarro reviews two of them, the work-hardening model and the

exhaustion model [Nabarro 2001]. These models were developed to describe the deforma-

tion of granular materials, and are essentially elasto-plastic, with no account for linear

viscoelastic deformation. Without entering into details, we observe that the amount of

di�erent models existent in literature and producing identical predictions for the rheology

should be regarded as an indication that it may be hard to get a true microscopic insight

from macroscopic measurements alone.

In this regard, an instructive example is discussed by Chérière et al., for the torsional

creep of PMMA, a polymer glass [Cheriere 1997]: at low temperatures a simple logarith-

mic creep is observed, but as temperature is increased the �rst logarithmic creep regime
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a)

b)

Figure 1.10: Polymer glass. (a) Experimental creep and recovery at 90◦C. Creep is

partly recoverable. The magnitude of the recoverable creep is JR,max; this allows deter-

mination of the maximal compliance JR(tf ) reached by the recoverable creep at t = tf .

(b) Beyond of the end of the logarithmic creep, tc = 500 s, analysis of the experimental

creep curve obtained by addition of two creep contributions: a recoverable creep deduced

creep recovey and a nonrecoverable creep obtained by di�erence from the total creep.

Extracted from [Cheriere 1997].

is eventually followed by a power-law regime. At still higher temperatures, approaching

the glass transition from below, a third regime follows, described by a di�erent power

law. This is analogous to the behavior of many metals [Wyatt 1951]. The originality of

the work of Chérière et al. consists in a thorough discussion of the recoverability of creep

deformation, which is probed by releasing the applied stress after a given time and by fol-

lowing the relaxation of the strain. If the stress is released during the logarithmic creep,

the authors observe a logarithmic strain recovery, which completely recovers the initial

zero-deformation state after a time equal to the time spent under stress. Complete recov-

ery is also found when the stress is released during the �rst power-law creep, but in this

case the recovery process takes longer than the creep time. Finally, the second power law

creep is only partially recovered. The complete picture is represented in Fig. 1.10. Such

observation about macroscopic reversibility is very interesting, because it is contrary to

the intuitive notion of creep as presented by the previous works. In those works, creep was

regarded as the result of a series of irreversible structural rearrangements, which should

leave behind them no or minor driving force for recovering the unstrained state once the

macroscopic stress is released. Here, by contrast, the authors correctly point out that

plasticity might be reversible, as long as the main stress bearing structure is not damaged:

in that case, upon stress release, the system will maintain the tendency of recovering its

initial rest state. Moreover, this also explains why recovery is also a gradual processes,

since it can attain completion only after a number of plastic rearrangements comparable

with the ones that occurred during creep, which explains the symmetry between the two

processes as observed by rheology. Following this line of thought, the authors speculate
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that entanglements start to be lost only during the third regime, which is only partially

recovered.

The potential recoverability of creep is conceptually intriguing and hides a subtle

distinction between recoverability of macroscopic strain and reversibility of the single

microscopic processes occurring under creep. For example, one may wonder whether the

�nal state after complete strain recovery corresponds to the same microscopic con�gu-

ration as the one before stress application. In this regard, such a distinction is strongly

related with the key questions mentioned above, and deserves deeper investigation. In

particular, Fig. 1.10b reveals a rather well de�ned transition between fully recoverable

and only partially recoverable creep. From that same �gure, it is clear that a clear dis-

tinction between the two regimes can hardly come from an observation of the shape of

the creep curve, and that complementary observations may be usefully coupled to the

macroscopic rheology.

Figure 1.11: Protein gel. (a) Normalized shear-rate responses γ̇(t)/γ̇min for di�erent

values of the applied stress and plotted as a function of the rescaled time t/τf , where τf
is the failure time and γ̇min is the minimum shear rate reached at τmin. Inset: Linear

viscoelastic moduli G′ (top) and G′′ (bottom) as a function of frequency f for a strain

amplitude of 0.1%. Red lines are power laws G′ ∝ G′′ ∝ f 0.15. (b) Same data as in (a),

but with the time axis in linear scale to emphasize the secondary creep. Inset: τmin vs

τf . The red line is τmin = 0.556τf . Extracted from [Leocmach 2014].

Fully recoverable creep was also found by Leocmach et al. on a completely di�erent

system, namely a protein gel [Leocmach 2014]. In this case, the creep deformation is

characterized by three regimes (Fig. 1.11), with a �rst power-law creep (called primary

creep), which, under large enough stresses, is followed by a secondary creep characterized

by an upward deviation from the power law, with a minimum in the deformation rate, and

�nally a tertiary creep, where the deformation accelerates, exhibiting an ideal power-law

divergence at a �nite time tf where macroscopic failure is observed. The authors �nd that

the power law characterizing primary creep corresponds to the linear creep compliance

as it can be inferred by independent measurements (Fig. 1.11a, inset). This rules out
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most of the mechanisms invoked by the above works, where signi�cant creep was only

observed under large enough stresses (cf. Fig. 1.8), and calls for a linear deformation

mechanism, perhaps inspired by the rheology of critical polymer gels, which also display

extended power laws as a consequence of their fractal structure [Adolf 1990]. As a further

con�rmation for linearity, the authors perform a series of creep and recovery tests, each

time �nding a complete recovery, which suggests that no or minor damage is cumulated

by the material during primary creep. Thus, very interestingly, the authors point out that

the onset of secondary creep in the rheological signal corresponds at a more fundamental

level to the onset of irreversible processes, which introduce an additional contribution

to the macroscopic deformation, eventually becoming predominant during the tertiary

creep. Thus, a clear detection of such transition holds the promise of providing a means

of predicting the failure time tf before the material is excessively damaged, which is a

problem of fundamental practical interest. The authors point out that an analysis of the

shape of the γ̇(t) curves might allow such prediction. Indeed, as it is shown in Fig. 1.11b,

in every experiment γ̇ exhibits a minimum at a time tm simply related to tf by a linear

relation (Fig. 1.11b, inset): a measurement of tm would yield a straightforward prediction

of the failure time tf .

An analogous linear relation (�rst determined by Monkman and Grant in 1956 [Monkman 1956])

is also found on composite materials under tensile creep [Nechad 2005b, Rosti 2010,

Koivisto 2016]. In particular, Koivisto et al. explicitly discuss the possibility of achieving

a robust failure prediction based on the detection of tm [Koivisto 2016]. They show that

despite both tm and tf individually su�er huge sample to sample variations, the ratio

tf/tm is very well de�ned (and equal to 0.83 in their case, whereas it is 0.556 for Leoc-

mach et al.), and it thus represents a very robust and reliable indicator. However, the

authors also remark that the experimental measurement of tm is in practice very delicate,

because of both experimental noise and intrinsic �uctuations, and they conclude that such

a method for predicting tf would not be practical. In conclusion, the authors identify two

main challenges associated to creep failure time prediction: the �rst one is to �nd some

physical quantity measurable during the �rst stages of the creep and displaying strong

correlations with the failure time, and the second is to properly measure it, recognizing

precursory features as such. These are the same challenges faced by the attempts to

predict earthquakes: although foreshocks clearly do exist, the main problem is detecting

them on time and recognizing them in their precursural nature [McGuire 2005].

Therefore, it appears that also the e�ort of predicting delayed failure could largely

bene�t from a more microscopic insight, where the smooth transition from sublinear

primary creep to accelerated tertiary creep observed in rheology might be sharper and

easier to detect.

1.3.2b Microscopic dynamics during creep

An insight on microscopic plasticity can be obtained in some cases by recording the

crackling noise emitted by the sample under creep. Indeed, many systems under creep
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emit a characteristic intermittent noise called crackling, which has been linked to sud-

den, collective plastic events occurring at the microscopic scale [Myers 2001]. Known

since long time in the framework of earthquakes [Ben-Zion 2008] and snow avalanches

[Sommerfeld 1983, Van Herwijnen 2011b, Van Herwijnen 2011a], it �rst entered the frame-

work of material science through an investigation on crumpling paper [Houle 1996], and

was thereafter detected on a variety of other systems, from metals [Antonaglia 2014,

Abobaker 2015] and ice [Duval 2010, Gudipati 2012] to rocks [Agioutantis 2016], wood

[Guarino 2002] and composite materials [Nechad 2005a, Nechad 2005b], including ex-

amples relevant to soft matter such as granular materials [Johnson 2013, Amon 2013]

or foams [Tewari 1999, Kabla 2007]. The statistical properties of crackling were shown

to follow characteristic power-law size distributions, and even the detailed shape of the

temporal evolution of one single event was shown to be universal [Antonaglia 2014], and

common to a wide class of completely di�erent phenomena, from solar �ares [Lu 1993] to

�uctuations in the stock market [Bak 1997], with many other examples reviewed by Myers

et al. [Myers 2001]. This result has been read as an indication that creep and yielding

could be described in a sample-independent fashion, and studied in the larger frame-

work of nonequilibrium phase transitions [Hinrichsen 2000], and as such it has whipped

up enthusiasm in the scienti�c community. For this reason, the shape and the statis-

tical properties of crackling noise have been addressed in several analytical [Papaniko-

laou 2011, Dahmen 2011] and numerical works [Durian 1997, Carmen Miguel 2001, Prad-

han 2005, Tsamados 2010, Jaiswal 2016, Bouzid 2017], and concepts borrowed from this

�eld were used to interpret macroscopic stress �uctuations observed in experiments [An-

tonaglia 2014, Kurokawa 2015].

a) b)

Figure 1.12: Ply glass / polyester composites. (a) Creep strain rate measured for 15

samples, plotted as a function of tc − t to emphasize the power-law divergence during

tertiary creep (adapted from [Nechad 2005b]). (b) Rate of AE events for three repre-

sentative samples plotted against tc − t (adapted from [Nechad 2005a]). In both plots,

dashed lines correspond to the law 1/(tc − t).
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For instance, a remarkable experimental observation has been obtained for the delayed

creep failure of composite materials [Nechad 2005a, Nechad 2005b]. Nechad et al. show

that power laws govern the rate of acoustic emissions (AE) during both primary and

tertiary creep, in nice qualitative agreement with the evolution of the macroscopic strain

rate (Fig. 1.12). The authors use this observation to attribute the observed deformation

entirely to microscopic plastic events (associated to crackling), since the very beginning of

the experiment. This idea is supported by a theoretical model based on a modi�cation of

the �ber bundle model (FBM) [Pradhan 2010], complemented with ad-hoc viscoplasticity

attributed to each �ber in order to reproduce correctly the complete creep curves. Despite

the qualitative agreement between the measured γ̇ and the numerical predictions, the

model proposed by Nechad et al. su�ers a few limitations, as pointed out by Jagla

[Jagla 2011], the major defect being the fact that �ber ruptures in their modi�ed FBM

happen independently from each other, without any mechanism able to produce collective

phenomena such as the microscopic avalanches associated to AE signal. Moreover, the

nonlinear rheology attributed to each �ber (or representative element, in the language of

Nechad et al.) is somehow arti�cial: both aspects leave the impression that the model

proposed is too much coarse grained, and it does not grasp the fundamental dynamics

actually occurring at the microscopic scale. Interestingly, it is shown by Jagla that other

modi�cations of the original FBM, based on radically di�erent assumptions, are also able

to reproduce the γ̇(t) measured by Nechad et al., and that some of these alternative

solutions exhibit linear viscoelasticity and collective phenomena, both aspects missing in

the original version. Once again, it appears that various models, profoundly di�erent

in essence, can nearly equally account for the same rheological features. Thus, if on

the one hand AE data are very instructive, indicating the presence of plastic events

with well de�ned statistical features, on the other hand their interpretation in terms

of microscopic dynamics is not straightforward. Among the several questions that may

arise, it is unclear for example if and how it might be possible to quantify the entity

of the microscopic rearrangements producing one AE event, whereas the nature of the

microscopic rearrangement is most probably not accessible with this technique.

Studying the tensile creep of paper, another composite displaying the same three

creep regimes as the samples just discussed, Alava and coworkers resort to a more

straightforward mesoscopic investigation, studying the evolution of spatial �uctuations

in the local tensile strain as a way of addressing local plasticity and stress concentra-

tion [Rosti 2010, Koivisto 2016]. By coupling tensile creep and digital image correlation

(DIC), the authors �nd that spatial �uctuations of local strain exhibit power-law scal-

ing in time, indicating that power-law creep (also called Andrade creep regime) can be

understood in terms on a nonequilibrium phase transition between "jammed" immobile

states and "�owing", active states [Rosti 2010]. Moreover, the authors �nd a correlation

between the amplitude of spatial �uctuations and the failure time, which is intriguing in

itself, although again they conclude that this approach has only a limited bene�t for the

prediction of the failure time tf [Koivisto 2016].
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a)

b)

Figure 1.13: Protein gel. (a) Spatiotemporal diagram of the local velocity 〈v(r, z, t)〉r
in the shear direction, averaged over the radial direction r and plotted in linear color

levels as a function of z (coordinate in the vorticity direction) and t/τf (τf being the time

to failure). (b) Standard deviation δzv(t) of 〈v(r, z, t)〉r taken over the vertical direction

z (thick black line) together with corresponding standard deviation δrv(t) computed

over the radial direction r on the z averaged 〈v(r, z, t)〉z (thin red line). Adapted from

[Leocmach 2014].

Hence, the analysis of spatial heterogeneities in the local strain �eld appears to be a

promising tool to achieve a better understanding of delayed creep failure. A very sensi-

tive and practical probe for such heterogeneities has been developed by Manneville and

coworkers, who in a long series of papers starting in 2004 [Salmon 2004, Manneville 2004]

and continuing nowadays [Saint-Michel 2017] study the local velocity pro�les with a

novel ultrasound velocimetry technique. In an already mentioned example, Leocmach

et al. apply this technique to the study of the creep and fracture of a model protein

gel [Leocmach 2014], in order to elucidate in deeper detail the microscopic origin of the

deviation from the linear viscoelastic primary creep. This is particularly intriguing since

the authors show that the macroscopic γ̇(t) curve can be nicely described by the simple

sum of a power law decrease ∼ t−α, accounting for the primary creep, and a power law

acceleration ∼ (tf − t)−1, accounting for the tertiary creep (Fig. 1.11). Mathematically,

this corresponds to a very smooth and gradual transition, implying that in fact plastic

damage should occur throughout the experiment, even though it becomes macroscopically

relevant only starting from the secondary creep. As a consequence of its gradual nature,

this transition appears to be very elusive to macroscopic rheology. For this reason, the

authors complement their study with a direct space investigation of strain heterogeneities,

�nding two interesting features: �rst, they observe the early nucleation, during secondary

creep, of mesoscopic crack patterns, which grow in a subcritical way during tertiary creep,
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a feature routinely observed in mechanical fatigue tests [Tomkins 1981]. They also show

that the crack growth rate is proportional to the macroscopic shear rate, which sets the

basis for a microscopic interpretation of the plastic deformation close to failure. Sec-

ond, in stark contrast with the smooth rheology, the authors �nd that cracks nucleate

in a discontinuous, intermittent way, which can be well characterized by space resolved

ultrasound velocimetry (Fig. 1.13). In particular, the authors observe that the spatial

�uctuations of the local velocities, quanti�ed by their standard deviation δv (Fig. 1.13b),

exhibit sharp peaks during the secondary creep, which are attributed to sudden plas-

tic events like crack nucleation or intermittent growth. This suggests that the smooth

evolution of the deformation observed in rheology is actually the result of an intriguing in-

termittent plastic dynamics occurring at the micro/mesoscopic scale, potentially showing

common features with the crackling paradigm discussed above. This again demonstrates

that a microscopic insight into the microscopic details of the dynamics under shear could

provide a handy means of detecting the growing damage, which is a crucial parameter to

get a better understanding and control on fatigue and delayed failure.

In this perspective, other scattering methods (di�erent from ultrasound) can be cou-

pled to shear rheology, namely light scattering, either in the single [Mohraz 2005] or in the

multiple scattering regime [Ballesta 2016], X-ray scattering, either static [Denisov 2015]

or dynamic [Leheny 2015], and neutron scattering [Kim 2014]. However, the already

mentioned challenge of extracting the signal due to plasticity from the background given

by a�ne deformation makes this technique more easily employed in oscillatory shear, as

we will see in a while, whereas in transient experiments the use of scattering techniques is

infrequent and limited to static scattering, which focuses on simple features like structural

orientation [Mohraz 2005].

The most commonly employed technique to characterize the microscopic structure

and dynamics under shear is microscopy. In particular, confocal microscopy has been

widely used thanks to the possibility of accessing a full 3D information, essential to detect

localized deformations, shear bands and complex microscopic rearrangements involving

out-of-plane particle motion. The challenge faced by microscopy is again related to the al-

ready mentioned problem of averaging measurements on a statistically relevant ensemble,

which typically limits the application of these techniques to the study of steady states,

mostly in steady-rate experiments, where statistics can be improved by averaging over

time. Nevertheless, there are a few fairly recent exceptions trying to investigate transient

creep. For instance, Chan and Mohraz [Chan 2014] compare the microscopic dynamics

under creep of a colloidal glass and a colloidal gel, and they observe that, despite their

similar rheological behavior, the two systems exhibit rather di�erent microscopic dynam-

ics upon yielding. In particular, the dynamics observed in the gel accelerate abruptly

when yielding occurs, whereas in the colloidal glass this transition is more gradual. The

strong limitation of this work is that again, presumably because of poor statistics, the au-

thors perform long time averages, which a priori is not justi�ed in a transient experiment

such as creep.
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Figure 1.14: Binary colloidal glass. Maps of average particle mobilities µlm(t) normal-

ized by the diameter dL of large particles in the binary glass. Two di�erent stresses are

shown, one close to the yield stress (σ ≈ σy, top) and a larger one (σ ≈ 5σy, bottom).

Di�erent images are taken at di�erent times during creep deformation, increasing from

(a) to (f). Extracted from [Sentjabrskaja 2015].

On the other hand, the full space and time dependence of the observed microscopic

dynamics is addressed with confocal microscopy under creep on a colloidal glass by Sen-

tjabrskaja et al. [Sentjabrskaja 2015], in the attempt of characterizing the dynamics

occurring prior to the delayed onset of �ow. The authors measure the particles' mean

square displacement ∆y2 along the vorticity direction (thus removing all contributions

coming from the a�ne deformation), and observe a quantitative relation between ∆y2

and the macroscopic strain, indicating once again that creep deformation is a simple con-

sequence of the plasticity that develops after the initial linear regime, as also suggested

by a comparison with numerical simulations. An intriguing feature emerging from this

work is that the onset of �ow is associated to an increase of spatial heterogeneity in the

plastic activity, with the appearance of regions of high local mobility and super-di�usive

dynamics, whereas below the yield stress such heterogeneities remain almost constant in

time (Fig. 1.14).

These examples show that the investigation of the slow dynamics occurring during

sublinear creep is very challenging, but it is also crucial in order to achieve a better under-

standing, and possibly a prediction, of delayed creep failure. This is specially interesting

since it could provide a means to monitor the health of a structure prior to its collapse.

Some works pointed out that macroscopic indicators might exist [Nechad 2005b, Leoc-

mach 2014], although their detectability is arguable [Rosti 2010, Koivisto 2016], whereas

interesting dynamics are observed at a more local scale [Nechad 2005b, Leocmach 2014,

Rosti 2010, Koivisto 2016, Sentjabrskaja 2015], potentially exploitable for predictions.

Clean experiments accessing at the same time the macroscopic creep deformation and

the microscopic dynamics are very scarce, thus the microscopic origin of creep is far from

being understood. Nevertheless, a few experimental works suggest the existence of a

general framework, potentially able to describe creep and yielding without relying on the
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speci�c details of the sample investigated.

One crucial step forward in this direction is therefore to identify the nature of the

microscopic activity observed in the experiments, with particular focus on distinguish-

ing reversible from irreversible processes. This is particularly challenging in transient

experiments such as the ones discussed so far, and for this reason creep and steady-

rate experiments are usefully complemented with measurements under a periodic stress

or strain, where irreversible processes emerge as the only contributions to microscopic

rearrangements observed across one or several periods.

1.3.3 Dynamic fatigue test

1.3.3a Reversibility and yielding in oscillatory shear

Thanks to the particularly simple mechanical response in the linear regime, oscillatory

shear has been widely used to characterize the viscoelastic response of soft materials.

By contrast, the mechanical response becomes generally very complex in the nonlinear

regime, and sophisticated analysis is required to obtain a consistent picture [Rogers 2011].

Despite its complexity, it turns out that large amplitude oscillatory shear (LAOS) provides

access to amazingly detailed information on the microscopic processes occurring during

deformation, and much can be learned by such experiments [Hyun 2011].

As an example, we consider here the work of Carrier and Petekidis on the nonlinear

rheology of a model soft colloidal glass [Carrier 2009]. The two main results of this work

are summarized in Fig. 1.15: the �rst-harmonic viscoelastic moduli plotted as a function

of the strain amplitude γ exhibit a trend similar to the one of Fig. 1.2, with a linear regime

at small γ, a concentration-dependent yielding transition with a characteristic peak of

G′′ and a terminal regime in the limit of large amplitudes. A Fourier analysis of the

detailed shape of the stress response of the sample reveals the appearance of higher order

harmonics at �nite amplitudes, marking a linear to nonlinear transition which appears

to be sharper and shifted at higher strains for denser samples (Fig. 1.15b).

To account for the observed phenomenology, the authors propose a model based on

a modi�cation of the �uidity model by Derec et al. [Derec 2003]. The main assumption

of this model is that the structural relaxation rate τ−1 can be decomposed in the inde-

pendent (additive) contribution of a spontaneous relaxation rate τ−1
0 and a nonlinear,

shear-induced contribution, which is called �uidity and denoted with the letter D. The

structural relaxation time τ is then employed in a Maxwell-type constitutive equation:

σ̇ = −(D+ τ−1
0 )σ +G(D)γ̇, where the elastic modulus G(D) of the Maxwell �uid is also

dependent on shear. Thus, the mechanical response to an arbitrary shear history can be

computed once the time evolution of the �uidity is described by a kinetic equation. The

expression postulated by Derec and borrowed by Carrier and Petekidis is very general,

and reads:
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Figure 1.15: Soft collidal glass. (a) Dynamic strain sweeps for three di�erent volume

fractions, decreasing from top (φ = 1.29, squares) to bottom (φ = 0.77, triangles). Exper-

imental storage (closed symbol) and loss (open symbols) moduli. The model predictions

are depicted with solid lines. (b) Fourier transform rheology: fraction of third harmonic

versus strain amplitude for the same three volume fractions. Adapted from [Carrier 2009].

Ḋ =

[
r + u

(
σD

γ̇

)λ
γ̇ν−ε

Dν

]
Dα − vDα+β (1.1)

where a set of 5 exponents (α, β, λ, ν, ε) and 3 coe�cients (r, u, v) make the expression

rather involved, so that even though experimental data are nicely described, it remains

di�cult to extract physical meaning from the model parameters. The relevant aspect of

this work is that it links the measured nonlinear viscoelasticity to a conceptually simple

microscopic quantity, which might be directly probed with techniques such as dynamic

light scattering. Not only such measurements would represent a much stronger test of

the �uidity model, but they could also provide a deeper insight on the nature of the

microscopic processes responsible for the postulated strain dependence of the structural

relaxation rate. More generally, a direct measurement of shear-induced structural relax-

ation would shed light on the microscopic origins of nonlinear rheology, which is one of

the major fundamental open questions currently debated in the soft matter community

[Schall 2007, Chan 2014], despite decades of attempts to �nd a general framework for

these phenomena [Liu 1998, Trappe 2001].

To this aim, oscillatory rheology can be usefully coupled to more direct probes of

the microscopic structure and dynamics. This is specially true since, although the lin-

ear and the large amplitude regimes are shared with similar features by all soft solids

[Miyazaki 2006], the details of the yielding transition can be complex and reminiscent

of the microscopic details of the sample, in particular for samples with a multiscale
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structure such as star polymer glasses [Helgeson 2007] or colloidal gels [Koumakis 2011,

Brunel 2016, Moghimi 2017]. Such a complex yielding calls for more direct methods to

probe how the structure evolves under LAOS, and vice versa how yielding depends on

the sample structure.

A �rst attempt at addressing these questions can be found in the work of Kim et al.

[Kim 2014], who employ neutron scattering in order to study the structural modi�cation

of colloidal gels under large amplitude oscillatory shear. Focusing on the very large ampli-

tude limit (γ0 as large as 50 strain units), the authors observe that the large scale structure

of the gel is periodically modi�ed, which re�ects in a periodic, anisotropic modulation

of the scattered intensity at low scattering angles. This anisotropy is thoroughly char-

acterized by the authors in both the velocity-gradient and the velocity-vorticity planes,

and it is quanti�ed by a structural parameter Af employed in complicated 3D (σ, γ, Af )

diagrams inspired to the Lissajous plots (Kim et al. refer to those diagrams as structural

Lissajous plots). We will see similar diagrams in chapter 7, where we argue that the

concept of structural Lissajous plots has the potential to inspire and guide the delicate

analysis of rheological Lissajous plots.

One limitation of neutron scattering, however, is the typically poor contrast, which

limits the analysis to the highest strain amplitudes, preventing the authors from discussing

the evolution of the structural signature across yielding. This problem is overcome by

Schall and coworkers [Denisov 2015, Dang 2016] by employing synchrotron x-ray radiation

on colloidal glasses. In this work, an anisotropy in the structure factor following strain

amplitudes from the linear regime up to the large amplitude terminal regime is detected.

In particular, the authors focus on tiny variations detected at a scattering vector corre-

sponding to the position of the peak of the structure factor, where scattering techniques

probe a lengthscale comparable to the distance between two particles in close contact.

The authors argue that at such lengthscale the structural anisotropy stems from elastic

shear distortion of the "cage" environment felt by each particle, which is also responsible

for the elastic mechanical response observed in the linear regime (cage elasticity). Be-

yond the yield point, the observed response becomes prevalently liquid-like, a transition

that is interpreted as shear-induced out-of-cage particle motion. Coherently, the authors

�nd that the observed anisotropy vanishes beyond yielding. By introducing an ad-hoc

order parameter, they measure the quadrupolar symmetry of the scattered intensity, and

observe that it drops very sharply from 1 to 0 exactly in correspondence to the crossover

between G′ and G′′. They interpret this fact as the sign that cage elasticity is instanta-

neously and abruptly lost in a sharp transition reminiscent of thermodynamic �rst-order

phase transitions. However, the authors admit that their interpretation is rather sur-

prising, given the smooth crossover observed in rheology, and a true explanation of this

apparent discrepancy is not proposed.

With the isolated (to the best of our knowledge) exception of this work, there is large

consensus in the scienti�c community on the fact that the microscopic origin of yielding as

it is observed in LAOS has to be attributed to a transition in the microscopic dynamics,

rather than in the structure [Kawasaki 2015]. A convenient way of addressing irreversible
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a) b)

Figure 1.16: Concentrated emulsion. (a) Shear dependence of the rms displacement per

shear cycle in the y direction (perpendicular to the applied shear). Data are labeled by the

emulsion volume fraction. The dotted line is the threshold used to de�ne the microscopic

yield strain, γy. (b) Solid symbols: fraction fsm of the "supermobile" drops. The abscissa

of the open points correspond to the rheological crossover strain γc, where the sample is

�uidized. The dotted lines are guides to the eye, consistent with the hypothesis that full

�uidization may occur when all drops are supermobile, i.e. for fsm = 100%. Adapted

from [Knowlton 2014].

microscopic dynamics under oscillatory shear is to monitor the evolution of the system

across one full shear cycle, as it is done for example by Knowlton et al. on concentrated

emulsions [Knowlton 2014]. The macroscopic rheology of the emulsions again resembles

qualitively Figs. 1.2 and 1.15, with a rather smooth and broad yielding transition that

can be characterized by di�erent "yield strains" (cf. Fig. 1.2). In order to shed light on

the microscopic origin of yielding, the authors consider as relevant parameter the root

mean square displacement 〈∆y2〉0.5 of droplets observed stroboscopically, i.e. at two times

separated by one full period, in the direction perpendicular to shear.

As expected, no signi�cant irreversible motion is detected at the smallest strain ampli-

tudes, where the emulsion deforms in an elastic, reversible way and all drops appear to be

stroboscopically immobile within the measurement noise. With increasing deformation

amplitude, however, 〈∆y2〉0.5 exhibits a sharp increase (Fig. 1.16a) beyond a microscopic

yield strain γy,micro, which proves to be much smaller than the crossover strain where

G′ = G′′ (γf in Fig. 1.2), and closer to the yield strain (γy in Fig. 1.2) de�ned as the

onset of the shear thinning regime. More in detail, the authors show that the sudden in-

crease in 〈∆y2〉0.5 is linked to the appearance of a population of mobile drops undergoing

large deformations. Mobile drops initially represent a minority of the total drops, and

they are spatially organized in mobile regions of the sample. Moreover, a careful analysis

of the probability density function for irreversible displacements shows that the mobile

drops can be further divided in two classes, with di�erent mobilities. When the strain

amplitude is increased beyond γy,micro, the drops belonging to the population with high-
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est mobility, called "supermobile", grow in number while maintain their mobility �xed,

until their fraction fsm approaches 100% at a �nite strain amplitude (Fig. 1.16b), close

to the crossover between G′ and G′′. This is consistent with the idea that full �uidization

occurs when all (or at least the majority of) the particles are supermobile.

Besides demonstrating the power of real space analysis made possible by microscopy,

the global picture presented by Knowlton et al. appears to be very instructive in light of

the ongoing debate on the nature of the reversible to irreversible transition. In particular,

the abrupt jump of the mean square displacement, associated with the appearance of a

mobile population that counts an increasing fraction of the total drops, approaching unity

at complete �uidization, is strongly suggestive of a �rst-order transition. In the work of

Knowlton et al. a clear consistent picture could not be obtained, thus this remains a

fascinating hypothesis, which stimulates future work in the �eld.

If Knowlton et al. only focus on stroboscopic experiments, much can be learned as

well by following the full shear cycle, as it is done for example by Keim and Arratia

on a crowded amorphous 2D assembly of colloidal particles segregated at the oil-water

interface [Keim 2014]. An interfacial stress rheometer, based on a magnetic needle actu-

ated by an electromagnetic �eld, is used to impose a controlled oscillatory stress to the

suspension, and the macroscopic deformation, together with the local particle rearrange-

ments, are probed by direct imaging of the interface. Although the general concept of the

experiment is similar to the previous one, here the discussion is pushed beyond the stro-

boscopic analysis, and considers the detailed trajectory followed by each particle during

the cyclic deformation. A purely stroboscopic analysis portraits a picture consistent with

the one suggested by Knowlton et al., with a �rst linear regime, where the mechanical

response is elastic and reversible, with no microscopic rearrangements, and a well de�ned

onset of microscopically irreversibility, marking a clear microscopic yielding transition

beyond a critical amplitude γy. However, by analyzing the detailed particle trajectories,

the authors argue that a more complex phenomenology hides behind this simple picture.

Indeed, even in the linear elastic regime, particle motion is not perfectly a�ne, a phe-

nomenon that can be interpreted as a consequence of the disordered structure. Even

more interestingly, between the true linear regime and γy, an interesting intermediate

regime is found, characterized by the presence of reversible plastic events. In this regime,

the material is still stroboscopically static, but time-reversibility is broken by reversible

plastic events that introduce hysteresis in the structural response. As a consequence, this

dynamics, while being reversible upon one full cycle, dissipates energy, and contributes to

the increase of the loss modulus, which indeed is found to deviate smoothly from its lin-

ear value slightly before γy. According to the authors, this observation might explain the

apparent contrast between the sharp onset of microscopic irreversibility and the smoother

transition observed in the viscoelastic properties.

An analogous result is obtained by Höhler et al. on aqueous foams, by using multiple

light scattering in the DWS regime as a microscopic probe [Höhler 1997]. This technique

allows one to probe extremely small rearrangements of the foam bubbles, which are
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a) b)

Figure 1.17: Aqueous foam. (a) Intensity autocorrelation data g2(τ) plotted as a

function of delay time τ . The curve labeled A has been obtained for a quiescent foam,

whereas the other data sets have been measured at increasing strain amplitudes from B to

E. The arrow indicates the period of the externally applied oscillating strain (correlation

echo). (b) g2(τ) represented as a function of the reduced variable A sin(ωτ/2) chosen

to make plastic rearrangements apparent. The full line corresponds to the reversible

plasticity model. To facilitate the comparison with the correlation produced by purely

elastic deformation, one amplitude from the true linear regime has also been included,

using small �lled circles. Adapted from [Höhler 1997].

quanti�ed in terms of an intensity correlation function g2(τ), represented in Fig. 1.17a

as a function of the time delay τ . The oscillatory deformation of the foam re�ects in

the observed oscillations of g2(τ), which displays peaks for time delays equal to integer

multiple of the oscillation period T , and it drops for intermediate τ values of an amount

depending on the strain amplitude γ0. The peak at τ = T is the so-called correlation echo,

and it contains information on microscopic reversibility: the peak value around 1 proves

that at all strain amplitudes investigated the deformation is entirely reversible. On the

other hand, detailed information on particle trajectories is encoded in the full shape of

g2(τ), which reveals that, within each shear cycle, reversible plastic rearrangements start

occurring beyond γy ∼ 0.05%, remarkably below the yield point probed by rheology. The

observation of reversible plasticity with DWS is much less straightforward than it would

be in direct space analysis, and in order to make plastic rearrangements apparent, the

authors replot their correlation data as a function of a rescaled variable (Fig. 1.17b). In

this representation, g2(τ) functions at di�erent values of γ0 are expected to collapse if the

deformation is purely elastic. The fact that large amplitudes (open symbols in Fig. 1.17b)

exhibit an upwards deviation from the trend observed in the linear regime (small �lled

symbols) is the sign that during each cycle the foam is periodically rearranged, such

that each particle on average is displaced less than expected. This result, together with

the previous ones, shows that the interplay between microscopic dynamics and nonlinear
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rheological properties is complex, and it might exceed the intuitive notion of microscopic

reversibility.

A slightly di�erent insight into this interplay comes from a series of papers from

Petekidis et al. [Petekidis 2002a, Petekidis 2002b, Petekidis 2003], who study the shear-

induced microscopic rearrangements in colloidal glasses of hard spheres at di�erent con-

centrations. The microscopic dynamics are probed again by DWS, giving access to in-

tensity correlation functions qualitatively similar to the ones of Fig. 1.17. With respect

to Höhler et al., here the deformations are much larger, so that the authors have to re-

strict their analysis to time delays very close to the correlation echoes, since elsewhere

g2(τ)− 1 ≈ 0. Another relevant di�erence with respect to the previous work is that here

the spontaneous Brownian motion of the particles contributes to a substantial decorre-

lation of higher order echoes even in the linear regime. Thus, in order to emphasize

the role of shear-induced rearrangements, the authors normalize the echo peak height

by its low strain amplitude limit. The result is shown in Fig. 1.18 as a function of γ0

for samples at di�erent volume fractions φ. The complexity of the �gure is rationalized

by identifying, for each strain amplitude, two characteristic strains: a smaller one, γc1
(top arrows), indicating the �rst departure from unity, and a larger one, γc2, indicating

complete disappearance of the echo. A parallel with the work of Knowlton et al. can be

drawn by interpreting γc1 as the onset of microscopic irreversibility, and γc2 as the strain

at which complete �uidization occurs. In particular, the authors discuss the unexpected

large values of γc1, which can be as large as 15% at φ = 0.623 and comes together with

the surprisingly large recoverable elastic strains (again around ∼ 10 − 15%) that those

materials can tolerate before yielding. The authors explain this behavior with the concept

of cage elasticity, which they de�ne as the ability of a particle and its cage of neighbors

to undergo signi�cant distortion while still retaining its identity. A comparison with rhe-

ology shows that for the concentrated samples deviations from linearity can be observed

already at strains signi�cantly smaller than γc1: thus, reversible plastic rearrangements

must take place in colloidal glasses as well.

The result is even more apparent at the lowest concentrations (still beyond the glass

transition), where γc1 is small, implying that complete reversibility is lost rather early,

but the correlation remains signi�cant up to very large deformations, beyond 50%, a

value several times larger than the yield strain of the material. This implies that several

rearrangements have to occur in sequence within one oscillation: therefore the trajectory

of particles must be tortuous, but it must also be largely reversible, which is rather

unexpected. In an attempt to explain this phenomenon, the authors refer to an argument

that would be more completely disclosed by Pine et al. in more recent years, with reference

to microscopic reversibility in diluted suspensions [Pine 2005]. They argue that since the

equations describing hydrodynamic �ow at low Reynolds numbers are symmetric upon

time reversal (t → −t), particles' trajectories should always be reversible in absence of

Brownian motion. Thus, they attribute the onset of irreversibility to Brownian motion,

whose e�ectiveness at introducing irreversibility into the particle trajectories increases

steeply on approaching random close packing, which explains the monotonic decrease of
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γc2 with increasing φ.

Figure 1.18: Hard sphere colloidal glass. Strain dependence of the relative �rst echo

height (P/ limγ0→0 P ) at several volume fractions as indicated. Presenting the data in

this form removes the e�ect of Brownian motion. Thus, when P/ limγ0→0 P = 1 the

sample strains elastically, and any reduction below 1 implies irreversible shear-induced

rearrangements. Adapted from [Petekidis 2002a].

These examples show that, by comparing the system before and after a cyclic shear

of amplitude γ0, a rich and complex phenomenology is found, which is further compli-

cated by the observation of reversible plastic deformations, contributing to nonlinear

rheology but not to stroboscopic dynamics. In an attempt to rationalize the results,

we can identify several regimes: (1) a true linear regime at small γ0, where microscopic

dynamics are thermally-activated, and eventual nona�ne deformations only stem from

the heterogeneity of the structure; (2) a regime where nonlinear rheology might coexist

with microscopic (full-cycle) reversibility, as a consequence of reversible plasticity; (3) the

onset of microscopic irreversibility beyond a microscopic yield strain; (4) a gradual and

generally complex transition where microscopic reversibility is progressively lost and the

mechanical response evolves towards full �uidization; (5) a terminal regime, characterized

by liquid-like, microscopically irreversible response.

This picture is intriguing, and calls for a deeper investigation of the microscopic

processes observed under shear. One natural way to complete the above observations is

to extend the analysis from one to several shear cycles, which can help elucidating the

nature of irreversible rearrangements (e.g. di�usive, ballistic or something still di�erent)

observed in the various regimes. This will be discussed in the next paragraph.
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1.3.3b Dynamic fatigue and damage accumulation

Oscillatory shear has the very appealing property of allowing one to investigate the

sample in a stationary state: provided that such state exists and can be experimentally

reached, it represents a convenient way to investigate the sample mechanical properties,

since successive repetitions of the same measurement yield the same result, regardless

the complex history of the material. However, when working with disordered, out-of-

equilibrium materials, stationarity becomes a delicate concept because of the intrinsic

aging dynamics characterizing most of them. As a consequence of aging, the viscoelastic

moduli measured in the linear regime display a typically slow evolution in time, which

may be safely neglected if the experimental time is short enough. However, one rarely

discussed yet important aspect is that nonlinear rheology calls stationarity into play once

again. Indeed, the slow time evolution of the mechanical properties measured in the

linear regime can be accelerated by additional shear-induced processes, as it is captured

for example by the above mentioned �uidity model [Derec 2003] or in a more complex

way by theories like mode coupling theory [Yamada 1975, Reichman 2005] or soft glassy

rheology [Sollich 1998]. Therefore, under nonlinear solicitations, stationarity may be

more di�cult to guarantee, so that care has to be taken in the interpretation of the

experimental results. This remark might include as well the works mentioned above, since

in the presence of strong shear-induced aging the yielding transition can look di�erent

when probed with di�erent protocols [Perge 2014]. This e�ect is very well known since

XIX century, when engineers discovered that a bridge designed to withstand the weight

of several trains could collapse under the repeated transit of just one train. In a more

controlled experiment, one would observe that oscillatory shear with amplitude slightly

beyond the linear regime progressively weakens the material, until delayed failure may

be observed. This weakening is sometimes called dynamic fatigue, as opposed to the

static fatigue observed during creep. Despite the important similarities shared by the

two phenomena, which have sometimes inspired intriguing, yet arguable direct analogies

[Gibaud 2010], the two delayed failure mechanisms are distinct, and a comparison between

the two may be very instructive. We will see an example in chapters 6 and 7. Moreover,

the possibility of controlling and predicting delayed dynamic fatigue failure would have an

enormous impact in real life applications, which further motivate to address this second

mechanism in detail.

The delicate interplay between aging and yielding is discussed in detail using a soft

colloidal glass as a model system by Rogers et al. [Rogers 2011], who investigate the

complex memory of the sample by subjecting it to di�erent oscillatory shear histories,

both in a strain-controlled and in a stress-controlled fashion. As expected, the authors

observe that aging is only slightly a�ected by small amplitude oscillations, whereas under

large shear amplitudes the sample is fully rejuvenated during each cycle, so that stress

and strain imposed protocols yield similar results in the two opposite regimes. However,

as intermediate shear amplitudes are imposed, the behavior becomes more complex and

dependent on whether the aging protocol was stress- or strain-imposed. A �rst conclusion
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drawn by the authors from this observation is that under moderately nonlinear shear the

material exhibits a faster evolution towards sti�er, more homogeneous con�gurations,

since the imposed deformation helps the system to explore the free energy landscape,

sooner locating deeper minima. Moreover, by further increasing the shear amplitude

closer to the yield point, the authors argue that yielding is a gradual process: when the

applied stress or strain in an amplitude sweep causes an event that would ultimately lead

to yielding under those conditions, su�cient time must be allowed to elapse in order for

that event to fully propagate and for yielding to occur.

a)

c)

b)

Figure 1.19: Carbon black gel. (a) Time-resolved LAOStress experiment illustrating

the yielding and �uidization under an oscillatory stress of constant amplitude σ. Gray

dashed lines indicate two characteristic times: the time τw such that G′(τw) = G′′(τw),

which de�nes apparent yielding, and the time τf at which dγ0/dt reaches a global max-

imum, which corresponds to full �uidization as inferred from ultrasonic imaging. (b)

Spatiotemporal diagrams of the ultrasonic speckle images recorded simultaneously to the

rheological data shown in panel (a). White dashed lines indicate τw and τf . (c) Images of

the displacement �eld ∆(r, z, t) between two successive ultrasonic pulses at various times

during the yielding process. Adapted from [Perge 2014].

If this result is true for a colloidal glass like the one investigated by Rogers et al., it is

all the more true for network forming systems like colloidal or polymer gels, where a small

damage in the stress bearing network re�ects in a signi�cant change in the mechanical
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properties, which may also imply catastrophic delayed failure beyond a given level of

damage. This e�ect is extensively addressed by Manneville and coworkers with stress

imposed LAOS on di�erent gels, namely carbon black gels [Gibaud 2010, Perge 2014]

and protein gels [Saint-Michel 2017]. Their experiments consist in applying an oscillating

stress with amplitude σ0 below the yield stress and to follow the amplitude γ0(t) of the

resulting deformation as a function of time spent under oscillatory stress. The authors

observe that even for stress levels much below the yield stress, γ0(t) is not constant,

but slowly increases over time, in a sublinear growth which is read as a manifestation

of fatigue. This interpretation is con�rmed by the direct observation of delayed fatigue

failure, occurring after a waiting time τw (Fig. 1.19a). At τw, the amplitude γ0(t) displays

a strong, sudden acceleration, and enters in an unstable regime characterized by strong

temporal �uctuations of its time derivative dγ0/dt. This unstable regime lasts until a

second characteristic time τf , after which the strong �uctuations disappear and γ0(t)

approaches a plateau value. While Saint-Michel et al. try to predict such delayed failure

by looking at an intriguing, yet obscure, power-law scaling of higher order harmonics as a

function of the instantaneous amplitude [Saint-Michel 2017], here we are rather interested

in understanding the microscopic processes occurring in the sample during the three

regimes identi�ed by rheology, with particular focus on the change in dynamics detected

close to the two characteristic times τw and τf . To this aim, Perge et al. complement their

rheological measurements with a more local insight obtained by the already introduced

ultrasound scattering technique. In particular, here the authors fully exploit the coherence

of their scattering signal S(z, r, t): following its stroboscopic evolution (Fig. 1.19b), they

�nd that the speckles are mostly static until τw, which means that the scatterers are

essentially stroboscopically immobile during the �rst induction time. This is reminiscent

of a solid-like behavior, corroborated by the fact that here G′ > G′′. In the opposite

regime, after τf , the opposite situation holds, and the scatterers are completely rearranged

after each shear cycle: this is instead suggestive of a liquid-like behavior, consistent with

the dominating loss modulus G′′. The intermediate situation is also intriguing, and it is

better addressed in Fig. 1.19c, where a cross-correlation of the speckle images was used

to extract the displacement maps. The authors argue that for waiting times between τw
and τf , the results can be interpreted as the gradual �uidization of the gel, starting at

time τw with slip at the inner moving wall and attaining completion at time τf .

The gradual �uidization process observed by Perge et al. consolidates the result ob-

tained by Rogers et al., and suggests that the gradual nature corresponds to a progressive

erosion of solid-like domains starting from the boundaries (Fig. 1.19c).

The slow process of damage accumulation can also be usefully investigated by coupling

the macroscopic deformation to a more direct probe of the microscopic dynamics. With

respect to the previous experiments discussed, dynamic fatigue experiments are partic-

ularly challenging for direct space approaches based on particle tracking, which proved

to be very e�ective in detecting displacements across one cycle, because of the impor-

tant and potentially out-of-plane rearrangements. For this reason, scattering techniques

prove to be more convenient, because they measure collective dynamics, with no need
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a)

b)

Figure 1.20: (a) Hard spheres colloidal glass. Decay of high order echoes at various

strain amplitudes is represented by the ratio of the amplitude of the mth echo at a strain

γ0 to the corresponding amplitude at the lowest strain. This ratio takes into account the

decay of the high order echoes due to Brownian motion (adapted from [Petekidis 2002a]).

(b) Colloidal gel. Decay of high order echoes at various strain amplitudes, �tted by

stretched-exponential functions Adapted from [Laurati 2014].

of identifying single particles. For example, Hébraud et al. [Hébraud 1997] study shear-

induced rearrangements in concentrated emulsions with DWS, by following the decay

of higher order correlation echoes. They �nd that, after the �rst correlation drop from

g2(0) − 1 = 1 to the value of the �rst correlation echo, a quasi-plateau is reached, with

the level higher order echoes remaining essentially the same of the �rst one. The authors

conclude that most of the rearrangements occur within one shear cycle, and they only

discuss the decay of the �rst correlation echo. On the other hand, Petekidis et al. perform

a similar experiment on colloidal glasses [Petekidis 2002a], and �nd that actually higher

order correlation echoes slowly decay towards an apparent plateau value, which they call

nonergodicity parameter (Fig. 1.20a). Again di�erent is the result obtained by Laurati

et al. [Laurati 2014] on colloidal gels, where full decorrelation is observed in the long

time limit, which suggests that the apparent plateau value observed by Petekidis et al.

might correspond to a slower relaxation mode. Interestingly, here the authors �nd that

the decay of higher order correlation echoes is well described by a stretched exponential

relaxation with a characteristic time rapidly decreasing with increasing strain amplitude

beyond yielding (Fig. 1.20b).

Such an acceleration of microscopic dynamics observed at large amplitudes is very

interesting if compared with the above mentioned models like the �uidity model, where

a γ̇-dependent structural relaxation time was postulated: although to the best of our

knowledge a comparison has never been attempted, perhaps the correlation echo experi-

ments might represent an interesting way to check the microscopic implications of those

models, which prove to describe rheology very accurately. In order to achieve such a

quantitative comparison, however, one needs to obtain information about the nature of
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the dynamics and their spatial heterogeneities. DWS can easily be performed in a space-

resolved fashion [Nagazi 2016], but it is much more di�cult to distinguish e.g. ballistic

from di�usive motion with such technique. For this reason, single scattering techniques

are also appealing, because such distinction can be done by comparing the relaxation

times at di�erent scattering vectors q (cf. chapter 2).

a)

b)

Figure 1.21: Colloidal gel. (a) Echo-peak amplitudes at one representative scattering

vector q = 0.09nm−1 along the vorticity direction as a function of delay cycle for di�erent

strain amplitudes. Also shown are echo peaks obtained at γ = 12% along the �ow

direction (open green triangles). Solid lines are exponential �ts. (b) Echo-decay rate Γ

(in 1/cycle) at one representative amplitude γ = 8% as a function of scattering vector q

oriented in the �ow direction (red circles) and in the vorticity direction (blue squares).

Solid lines represent power-law �ts. Extracted from [Rogers 2014].

One of the �rst examples is represented by the work of Rogers et al., who probe the

internal dynamics of a colloidal gel under cyclic shear using X-ray photon correlation

spectroscopy (XPCS) [Rogers 2014]. The authors discuss di�erent scattering vectors

oriented both along the �ow direction and perpendicular to it (in the vorticity direction).

An overview of their results is represented in Fig. 1.21a. For the representative scattering

vector shown, the decay of correlation echoes coincides with the spontaneous dynamics

for strain amplitudes lower than 6%, whereas it becomes much faster starting from 8%

deformation. This allows to locate the transition to irreversible deformation to a threshold

γc ∼ 7%, higher than the strain at which the deviation from linear viscoelasticity is

observed (γnl ∼ 2%), which suggests the presence of reversible plasticity. In the probed

range of scattering vectors and strain amplitudes, the authors �nd that the decay of the

correlation echoes is well �tted by single exponential decays, from which a relaxation

rate Γ(q, γ0) can be extracted, shown in Fig. 1.21b. Interestingly, there is evidence that

dynamics is non-isotropic, but it is faster in the vorticity direction, which is unexpected.

Even more interestingly, Γ(q, γ0) exhibits a clear power-law dependence on the scattering

vector, which is exploited by the authors to infer the spatial-size distribution of the single

plastic events occurring under shear. By means of a simple scaling argument, the authors
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conclude that the characteristic length scales rearranged by plastic events during LAOS at

one given strain amplitude follow a power-law distribution, which is read as the sign that

yielding can be described as a non-equilibrium critical transition. Without entering into

the details of this discussion, we observe that an analysis of this kind has the potential

to truly shed new light on the interdependence of microscopic dynamics and macroscopic

nonlinear rheology, which is a key aspect determining the dynamic fatigue of materials.

1.3.4 Conclusion

To conclude, this (far from exhaustive) overview has shown that a huge e�ort has been

put in recent years to characterize the failure mechanisms of soft materials. Although

the phenomenology is generally very rich and complex, showing features that are often

sample- and protocol-related, some knowledge has been acquired on the conditions under

which a sample may �ow viscoelastically or exhibit failure, either in a ductile-like manner

or in a brittle-like manner. Failure process is most easily investigated in steady-rate ex-

periments, where failure is expected to occur at large Weissenberg number Wi = γ̇τ > 1,

where γ̇ is the imposed shear rate and τ the longest relaxation time in the system. In

those experiments, it was shown that deeper insight on the microscopic origin of failure

can be obtained by coupling rheology with a microscopic characterization of the micro-

scopic structure and dynamics, coming either from microscopy or from static scattering.

These works have shown that brittle fracture occurs as a consequence of a cascade of

break-up events weakening the stress-bearing backbone of the structure and triggering

mechanical instability. However, the amount of bond breaking needed to produce such

failure is still unclear, and likewise it is somehow controversial the nature and the amount

of plastic events occurring during sample deformation before failure.

The investigation of delayed failure under a constant load is slightly more complex,

not only because of the long and often unpredictable failure times, but also because of

the complex time-dependence of the deformation rate during the induction time, which

represents an additional challenge for techniques oriented at a microscopic characteriza-

tion of the dynamics during creep. However, it turns out that the nature of those plastic

dynamics and their temporal and spatial distribution might represent an important in-

dicator, potentially opening the way towards a better control of delayed failure. To this

end, a crucial aspect emerging from experiments is to be able to distinguish reversible

from irreversible dynamics. At the macroscopic level, such distinction is addressed with

creep recovery, which shows that, depending on the speci�c sample and experimental

conditions, creep may be completely or partially reversible. Since failure is typically

an irreversible phenomenon, the detection of a transition from reversible to irreversible

deformation can represent a fundamental �rst step towards failure prediction. It turns

out that such detection, although possible in principle, is in practice extremely delicate,

since the yielding transition observed by rheology is typically very smooth and gradual.

However, it has also been shown that such smooth rheological behavior might correspond,
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at the microscale, to a nontrivial, intermittent behavior, and it has been proposed that

indeed the precursors of failure might be identi�ed by an investigation of the microscopic

dynamics. Therefore, such observation during creep appears to be very promising, but it

is also very challenging, and despite some attempts to the best of our knowledge this has

not yet been clearly demonstrated.

On the other hand, similar investigations have been performed under oscillatory shear,

where a comparison between the system before and after a cyclic shear with a given ampli-

tude makes irreversible displacements apparent. As a result of these investigations, a rich

phenomenology has been revealed. Deformations are elastic and reversible in the linear

regime and completely irreversible in the large amplitude limit, but the transition between

the two regimes is far from well understood. Interestingly, recent experiments have shown

that the shear-induced acceleration of structural relaxation can be characterized following

the evolution of the system after many shear oscillations. This is experimentally challeng-

ing, but also very promising, since addressing the amplitude-dependent relaxation time

might provide a quantitative link between microscopic rearrangements and macroscopic

mechanical properties, which is a rather old but still very debated topic.

1.4 Outline of the thesis

In our work we address some of the above challenges by means of a novel experi-

mental setup coupling a stress controlled shear cell, which will be described in chapter

3, with a small angle static and dynamic light scattering apparatus. We cope with the

challenges described above, related to performing dynamic light scattering experiments

under transient shear, by means of an advanced data analysis technique, which is intro-

duced in chapter 4. As a �rst model system we choose to investigate a colloidal gel, which

exhibits a peculiar power-law rheology discussed in chapter 5. The well-controlled fractal

structure and dynamics, as well as the simple phenomenological model accounting for its

linear rheology, make this sample the ideal system to study how structure and dynamics

are a�ected by shear. Creep and delayed failure are addressed in chapter 6. We show

that a�ne and nona�ne dynamics can be e�ectively observed. Although the shear rate

appears to be smooth and featureless, at the microscale we can clearly detect a sharp

transition to irreversible microscopic dynamics, which we can consider a microscopic dy-

namic precursor of the failure that would only happen hours later. Moreover, a detailed

analysis of the precursor shows an intriguing interplay with the microscopic architecture

of the sample, which represents an additional step in the investigation of the microscopic

origin of the rheological behavior. On the other hand, in chapter 7 we investigate the

linear to nonlinear transition as it is observed in oscillatory shear, and we show that such

transition, which is again smooth when probed by rheology, corresponds to a very sharp

acceleration of the structural relaxation, which eventually leads to delayed failure under

oscillatory stress with moderate amplitudes. In chapter 8 we check the generality of our

previous �ndings by investigating another sample, with completely di�erent microscopic
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structure, namely a dense packing of soft microgel particles. Finally, a conclusive chapter

closes the thesis with a general discussion on the results obtained and on the perspectives

that our work opens to future investigations.
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As anticipated in chapter 1, the ability to couple the macroscopic characterization of

the mechanical properties with an insight on the microscopic structure and dynamics is

fundamental to tackle the challenging and fascinating issue of material failure and failure

precursors. In this chapter, we brie�y review the light scattering (section 2.1) and rheology

(section 2.2) methods, which will be used throughout this thesis.

2.1 Light Scattering

A scattering experiment can be understood by drawing an analogy of how vision

works. When we observe an object, what our eye detects is the response of the object to

light illuminating it, and which we interpret as a property of the object itself (color, shape,

...). The general idea underlying a light scattering experiment is similar: an incident light

beam interacts with the sample, and as a result a part of it is scattered in a di�erent

direction and collected by an optical system, which plays the role of our eye. The main

di�erence with respect to sight is that instead of focusing on the image of the object,

therefore distinguishing light coming from di�erent parts of it, a scattering experiment

typically studies the intensity scattered by the entire sample in the far �eld, for example

by placing the detector in the focal plane of a lens, thus losing space-resolved information.

This is a good method to access average (statistical) properties of the sample, related to

its internal microscopic structure.
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Di�erent types of radiation other than visible light (for example X rays or neutrons)

can also be employed in a scattering experiment, providing valuable complementary in-

formation to light scattering thanks to the speci�c interactions with the sample and the

di�erent length scales probed. However, once those di�erences are taken into account,

all scattering experiments can be described to a large extent in a uni�ed way: for this

reason, the present section will only focus on light scattering.

2.1.1 Basic principle

A schematic of the basic scattering geometry is shown in �gure 2.1. Coherent light

from a laser is directed towards the sample, and the intensity scattered at a well de�ned

scattering angle θ is collected by a photosensitive element, e.g. a photodiode. In what will

follow, we will take the so-called �rst Born approximation, in which only a small fraction

of the incoming beam is scattered: this corresponds to the single scattering regime, where

light is scattered no more than once before reaching the detector.
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Figure 2.1: (a) General scheme of a light scattering experiment (top view): laser ra-

diation (characterized by an incoming wavevector ~kI) illuminates the sample, and light

scattered at a given scattering angle θ (with wavevector ~kS) is detected in the far �eld. In

the �rst Born approximation, the transmitted beam is always much more intense than the

scattered beam. (b) Closer look at the scattering volume, highlighting the contribution of

two scatterers, at relative distance ~r. The di�erence in optical path between the two scat-

tered waves is represented by the thick lines, whose total length ∆s is given by Eq. 2.2.

(c) Geometric construction of the scattering vector ~q, whose modulus is calculated using

Eq. 2.3

In order to understand the intensity pattern of scattered light and extract from it

some information on the sample, a theoretical model is needed. Two complementary

approaches are possible:

• A continuous, statistical approach: one can de�ne a response function ε(~q, ω) (well

de�ned in the Fourier space, thus nonlocal), which relates the external perturba-
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tion to the system response, i.e. the variation of an observable quantity coupled

to the perturbing �eld. For light scattering, the probe is the electric �eld, and the

response function is the polarizability, a quantity simply related to the refractive

index n(~x, t). The scattered light can thus be linked to the presence of local �uc-

tuations in n(~x, t), from which one can learn important details about the structure

of the sample. Moreover, the time dependence of n(~x, t), revealed by temporal

�uctuations in the scattered light, can be analyzed to get an insight on the sample

dynamics.

• A discrete approach, starting from one point-like constituent. Its interaction with

the incoming beam results in a scattered spherical wave, with a characteristic inten-

sity distribution. Waves scattered by each particle inside the sample superpose in

the far �eld, creating a complex interference pattern (a speckle pattern), encoding

detailed information about particle shape, size, position and dynamics. This section

will follow this second approach, showing how to extract valuable information from

the static properties of the speckle pattern and from its temporal �uctuations.

From classical electrodynamics [Jackson 2007], it is known that, when a single charge

is accelerated by an electromagnetic wave, it emits a spherical wave, whose intensity

pro�le follows the so-called dipole distribution:

dPed
dΩ

=
ck2

8π
p2 sin2 ϕ (2.1)

where c is light's speed, k = 2πn/λ is the wavevector of the incoming beam, with λ its

wavelength in vacuum and n the refractive index of the medium, p is the induced dipole

and ϕ is the angle between the scattered beam and the polarization axis of the incoming

beam, assumed to be linearly polarized. A speckle pattern can be understood as the

interference of all spherical waves scattered by the sample: their number is huge, but

the basic underlying principle can be grasped by considering the contribution of just two

scattering elements (Fig. 2.1b). What makes the interference nontrivial is the relative

phase factor coming from the di�erent distance ∆s traveled by the waves, which can be

expressed as a function of the relative position ~r of the two scatterers:

∆φ = k∆s = (~kS − ~kI) · ~r = ~q · ~r (2.2)

Here ~kS and ~kI are the scattered and the incident wavevectors respectively, which have

the same modulus k = 2πn
λ

since dipoles scatter light with the same wavelength as the

incident light. Their di�erence ~q = ~kS − ~kI is called the scattering vector, which is the

relevant parameter de�ning the lengthscale being probed by a scattering experiment.

Indeed, one can easily see that the interference changes from constructive (∆φ = 0) to

destructive (∆φ = π) for particle relative displacements δr = π/q along the ~q direction.

The scattering vector is related to the scattering angle θ by the simple relation

(Fig. 2.1c):
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q = 2k sin
θ

2
(2.3)

Thus, the larger the scattering angle, the smaller the lengthscale probed, with a lower

bound set by π/qmax = λ/4n in the backscattering direction.

2.1.2 Small angle light scattering

Equation 2.3 shows that light scattering typically probes matter on lengthscales com-

parable to the visible wavelength, but that larger lengthscales (up to more than 100λ)

can be probed by analyzing light scattered at small scattering angles, which can be very

interesting in some cases, like the ones we will show in the next chapters.

A great advantage of small angle light scattering is that, as it is represented in Fig. 2.2,

a multichannel detector (e.g. a CMOS camera) can be used to acquire the intensity scat-

tered at several scattering vectors at the same time. Such detectors are typically much

slower than photodiodes, and they also have a smaller dynamic range, but smart acqui-

sition schemes like the one we have developed (see appendix A) and multiple exposure

times can be used to improve the detection performance.
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Figure 2.2: (a) General scheme of a small angle light scattering experiment: a �at

scattering cell is chosen to improve the quality of the optical interfaces, and a multichannel

sensor is used to detect several scattering vectors at the same time. In general, an optical

system (not shown) is employed in order to collect the scattered light and send it to

the sensor. More details can be found in [Tamborini 2012]. (b) Example of the speckle

pattern detected in the far �eld. The transmitted beam is hidden by the beam stop in the

top left corner, the scattering angle θ increases radially. (c) Radial intensity distribution

(blue) observed along the blue sector highlighted in panel b, plotted together with the

azimuthal average (red), obtained by averaging each scattering angle θ on the azimuthal

angle (red circle in panel b).

The detection of light scattered at small angles poses a few technical challenges that

have to be addressed with a speci�c experimental geometry, which may change signi�-

cantly according to the desired range of scattering angles, the required sensitivity or other
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technical constraints. The main challenge associated to small angle scattering comes from

imperfections in the optic elements, which typically produce a spurious scattering signal

greatly increasing at the smallest angles. The presence of the intense transmitted beam

in the �eld of view of the detector also requires special care in the design of the setup.

As a last challenge associated with small angle light scattering, aberrations in the opti-

cal system that collects the scattered light usually set a strong upper limitation in the

accessible scattering angles.

In our work, we face these challenges with a custom made setup [Tamborini 2012],

which uses a �at scattering cell and a complex optical system allowing one to remove

the transmitted beam and reducing the e�ect of aberrations. The range of scattering

angles that are typically accessed using this instrument lays in the intermediate range

(0.5◦ < θ < 25◦) between the angles typically probed in wide angle (θ & 20◦) and small

angle (θ . 5◦) light scattering.

Figure 2.2b shows an example of speckle image acquired with our setup. Each pixel

is associated to a scattering vector. The position of the q = 0 transmitted beam is on

the top left corner, where the shadow of a beam stop is clearly visible. Superimposed

to a radial smooth intensity decay, a speckle pattern of characteristic size slightly higher

than one pixel is clearly visible. Di�erent con�gurations of the same system would have

the same overall q dependence of the scattered intensity, but the speckle pattern would

be totally di�erent, as a consequence of scatterers' microscopic rearrangement. This

suggests that two distinct pieces of information can be extracted: the �rst deals with

the slow smooth intensity decay, which is related to the internal structure of the sample,

whereas analyzing the speckle pattern time �uctuations can provide information related

to the scatterers' dynamics. These two di�erent kinds of information are provided by

static and dynamic light scattering, respectively.

2.1.3 Static light scattering (SLS)

2.1.3a Form factor and structure factor

Static light scattering provides averaged information on the internal structure of the

sample, in terms of correlations between the scatterers' positions. For this purpose, the

speckle pattern of Fig. 2.2b must be smoothed, by time or ensemble averages, for example

by averaging over rings of pixels corresponding to nearly the same scattering angle θ in

the case of isotropic samples. Starting from such an averaged pro�le (red line in Fig. 2.2c),

we brie�y sketch how static light scattering works by extending the previous discussion,

from the interference between the electric �eld scattered by two scattering elements to a

sum over all elements belonging to each of the N particles in the scattering volume. Each

particle is indexed by j = 1, . . . , N , and contains a number Mj of scattering elements.

The total scattered �eld is:
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~E(~q) =
N∑

j=1

Mj∑

l=1

~Ejl(~q)e
i~q·

(
~rj+~r

(j)
l

)
=

N∑

j=1

~Ej(~q)e
i~q·~rj (2.4)

where ~Ejl(~q) is the electric �eld scattered by a single element (indexed by l) belonging to

particle j. The position of the element in the sample is ~rj +~r
(j)
l , ~rj being the j-th particle

center of mass position, whereas ~r
(j)
l denotes the position of the charge in the particle

reference frame. In the second equality the sum over all the Mj scattering elements

composing the j-th particle was factorized and called ~Ej(~q) =
∑Mj

l=1
~Ejl(~q)e

i~q·~r(j)l . This

represents the electric �eld scattered by particle j (to within the phase factor ei~q·~rj).

If all particles are identical and are illuminated by a uniform �eld, the scattered �eld
~Ej(~q) = ~EP (~q) is the same for all particles and can be taken outside the sum. The

scattered intensity can then be calculated as:

I(~q) = ~E(~q) · ~E∗(~q) =
∣∣∣ ~EP (~q)

∣∣∣
2

N∑

j,l=1

ei~q·(~rj−~rl) = AP (~q)S(~q) (2.5)

where P (~q) = | ~EP (~q)|2/| ~EP (0)|2 is the so-called particle form factor, accounting for the

single particle shape and size, S(~q) = N−1
∑N

j,l=1 e
i~q·(~rj−~rl) is the sample structure factor,

only dependent on the relative positions between the particles, and A is a proportionality

constant, which will depend on instrumental parameters such as the laser beam size and

intensity, as well on physical parameters such as the particle size, number density and

refractive index contrast.

2.1.3b P (q) and S(q) for colloidal gels

The power of the factorization of the scattered intensity in the product of a form

factor times a structure factor can be sketched in the case of the colloidal gels that will

be presented in part II. Figure 2.3 shows three scattering curves, obtained by matching

the results of several scattering techniques (small and wide angle light scattering, as

well as small angle X ray and neutron scattering), for three di�erent samples: (1) a

diluted (particle volume fraction φ = 0.037%) suspension of colloidal particles, (2) a

more concentrated (φ = 5%) suspension of the same particles interacting via a repulsive

electrostatic potential, (3) a φ = 5% suspension of the same particles with short range

attractive interaction.

1. In the dilute suspension, the average interparticle distance is large and there is no

correlation between the particle positions: as a consequence, the structure factor

reduces to Sdil(~q) = 〈ei~q·~r〉 = 1, and the measured scattered intensity is simply pro-

portional to the particle form factor. The form factor of a sphere can be calculated

by casting the sum over individual scattering elements into an integral over the

particle volume Vj:
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Figure 2.3: Static scattering signal plotted for three di�erent colloidal systems, contain-

ing the same colloidal particles 1) diluted suspension (φ = 0.037%, black), from which the

form factor can be extracted, carrying information about the average radius R̄ = 12.5 nm

and size polydispersity σR = 10%, 2) slightly concentrated suspension (φ = 5%, blue),

with a structure factor peak at qR ∼ 2 and a suppressed I(q) at small scattering vectors,

3) an attractive colloidal gel (φ = 5%, red), displaying a fractal structure with fractal

dimension df = 2 up to a characteristic lengthscale of about 0.5µm.

P (~q) ∝
∫

Vj

∆ρ(~r)ei~q·~rd3r (2.6)

where ∆ρ is the contrast function, essentially proportional to the local density of

scatterers. By assuming a uniform density inside a spherical volume, one obtains

the form factor of a homogeneous spherical particle of radius R:

PR(~q) =

{
3

(qR)3 [sin (qR)− qR cos (qR)]

}2

(2.7)

In Fig. 2.3, the form factor PR(~q) was convoluted with a Gaussian size distribution

peaked around an average particle size R̄, to take into account sample polydispersity.

A �t to the experimental data yields R̄ = 12.5 nm with a polydispersity σR = 10%.

2. As the number density of the particles is increased, the particle positions start

to become correlated as a consequence of the interparticle interactions, and the

structure function starts to play a nontrivial role in the observed intensity pro�le.

A direct link between the pair correlation function g(~r) (i.e. the probability of

�nding a pair of particles whose relative position is ~r) and the structure factor S(~q)
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comes from a decomposition of the double sum de�ning S(~q) in a "self" (j = l)

term, which is exactly 1, and a "cross" (j 6= l) term, which can be cast into an

integral corresponding to the Fourier transform of g(~r):

S(~q) = 1 +

∫
g(~r)ei~q·~rd3r (2.8)

For example, in a diluted suspension, a virial expansion of the equation of state

provides an expression for the pair correlation function: g(~r) = exp[−v(~r)/kBT ],

where v(~r) is the interaction potential [Landau 2013]. A similar starting point leads

with more sophisticated calculations to the Percus Yevick structure factor, which is

used in Fig. 2.3 to �t the experimental intensity, using the factorization of equation

2.5 and the form factor obtained from the diluted sample [Vrij 1979]. Note that

for the φ = 5% suspension, the measured intensity clearly exceeds the value for

the form factor at qR ≈ 2: this is the sign of an emerging peak in S(q), re�ecting

the fact that as particles get closer to each other the density �uctuates strongly on

the length scale of the particle diameter, whereas a suppression of S(q) for small q

values re�ects the fact that at large lengthscales the density is still rather uniform.

3. Finally, as the interparticle potential is turned into attractive, particles aggregate

and form a complex structure spanning a large range of lengthscales. As a result,

the structure function develops several interesting features, like a power-law regime,

which is a consequence of the fractal structure of the particle clusters, terminating

with a shoulder corresponding to the typical cluster size (see part II for more de-

tails about the sample structure). Here P (q)S(q) was �tted by an analytic model

assuming a distribution of fractal aggregates with fractal dimension df = 2 and an

exponential size distribution with a typical size around 100 nm [Sorensen 1999].

2.1.4 Dynamic light scattering (DLS)

2.1.4a Conventional dynamic light scattering

While static light scattering deals with the smooth variation of the intensity with

q, neglecting the detailed appearance of the instantaneous speckle �eld, dynamic light

scattering focuses precisely on the latter, relating intensity �uctuations to the sample

dynamics. Indeed, as already pointed out with Eq. 2.2, the bright (dark) spots that one

calls speckles are regions of constructive (destructive) interference of light emitted by all

scatterers, where the constructive or destructive nature changes if particles are displaced

over a distance of the order of q−1.

Thus, the basic principle of dynamic light scattering is to record the intensity �uc-

tuations measured at one speci�c q vector, and to measure the characteristic time τ

needed for a bright speckle to become dark or vice versa. In the schematic represen-

tation of Eq. 2.2, where only two scatterers contribute to the observed signal, this im-

plies that the relative phase between the two interfering waves has changed of the or-
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der of unity over that characteristic time, which in turn reveals a particle displacement

〈∆~r(τ)〉t = 〈~r(t + τ) − ~r(t)〉t ∼ λ/ sin(θ/2)ûq. Here ûq is a unit vector pointing in the ~q

direction, which emphasizes that the relative displacement that one observes in dynamic

light scattering is projected along the scattering vector. This observation is very relevant

in the case of anisotropic dynamics, like the one induced by shear �ow, and it will be

developed in chapter 4.

An analogous result holds for the more realistic picture of N particles contributing

to the scattered intensity. In this case, time dependence can be easily incorporated into

Eq. 2.5, by assuming a time-independent form factor and a time-dependent structure

factor:

I(~q, t) = AP (~q)S(~q, t) ∝
N∑

j,l=1

ei~q·[~rj(t)−~rl(t)] (2.9)

Thus, �uctuations of I(~q, t) provide information on the average particle displacements

along the scattering vector. Again, a decomposition of the double sum allows to dis-

tinguish between "self" dynamics and "collective" dynamics (typically dominant when

S(~q) � 1), which are linked to collective relaxation of particle density �uctuations

[Pusey 1978]. A quantitative measurement of the temporal �uctuations of I(~q, t) can

be obtained by computing the time autocorrelation function of the scattered intensity:

g2(~q, t, τ) =
〈I(~q, t+ τ)I(~q, t)〉
〈I(~q, t+ τ)〉 〈I(~q, t)〉 (2.10)

where 〈. . .〉 denotes an ensemble average, which for ergodic samples can be measured

experimentally by performing a time average lasting much longer than the characteristic

relaxation time τR of g2 (typically an average over 103 − 104τR is needed). The intensity

autocorrelation function can be related to quantities that can be modeled theoretically,

like the intermediate scattering function f(~q, τ), which essentially coincides with the

ensemble averaged �eld correlation function:

f(~q, τ) = 〈g1(~q, t, τ)〉t =

〈
~E(~q, t+ τ) · ~E∗(~q, t)

〉
t∣∣∣

〈
~E(~q, t)

〉
t

∣∣∣
2 ∝

〈
N∑

j,l=1

ei~q·[~rj(t+τ)−~rl(t)]
〉

t

(2.11)

The Siegert relation, which holds as long as the scattered �eld has Gaussian statistics,

relates the intensity and �eld correlation functions [Berne 2013]:

g2(~q, t, τ) = 1 + |g1(~q, t, τ)|2 (2.12)

The intermediate scattering function, in turn, can be directly related to the internal dy-

namics of the sample: indeed, it represents the (spatial) Fourier tranform of the van

Hove distribution function G(~r, t), which is the dynamic counterpart of the pair correla-

tion function g(~r) [Hopkins 2010]:
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G(~r, τ) =

〈
1

N

∫
ρ(~r′ + ~r, t+ τ)ρ(~r′, t)d3r′

〉

t

=

〈
1

N

∫ N∑

j,l=1

δ [r′ + ~r − ~rj(t+ τ)] δ [r′ − ~rl(t)] d3r′
〉

t

(2.13)

where ρ(~r, t) =
∑N

j=1 δ[~r − ~rj(t)] is the density of a system comprising N particles and

δ(~r) represents Dirac's delta function. G(~r, τ) is the probability of �nding at time τ a

particle at position ~r, given that a particle (not necessarily the same) was in the origin

(~r = 0) at time 0. A substitution of Eq. 2.13 into Eq. 2.11 directly yields

f(~q, τ) =

∫
G(~r, τ)ei~q·~rd3r (2.14)

Thus, the intermediate scattering function can be considered as the dynamic counterpart

of the structure factor (Eq. 2.8).

As an example, we consider Brownian di�usion. In this case, the van Hove function is

a Gaussian with variance 〈∆r2(τ)〉 = 6Dτ , D being the di�usion coe�cient. By Fourier

transforming such distribution one obtains f(~q, τ) = exp(−Dq2τ). One thus predicts an

exponential decay of the �eld correlation, with a characteristic time τR = 1/Dq2. Thus,

from the intensity correlation function measured on a Brownian suspension one extracts

the di�usion coe�cient D. In turn, D can be used to determine the hydrodynamic radius

Rh of the particles if the solvent viscosity is known, using the Stokes-Einstein relation

D = kBT/(6πηRh), as it is routinely done in DLS-based particle sizing [Berne 2013].

Conversely, one can use known particles as probes, and extract from the DLS signal

physical information about the solvent, like the viscosity: this is the essence of DLS-

based microrheology.

2.1.4b Multispeckle and time-resolved correlations

Operationally, conventional DLS is based on the assumption that the ensemble average

in Eq. 2.10 can be replaced by a time average. Ensemble and time averages are equivalent

if, over the averaged time interval, the sample has been able to explore a statistically

relevant subset of the phase space, i.e. for the so-called ergodic systems. Ordinary diluted

suspensions usually fall in this class of systems, since their relaxation time is usually much

smaller than 1 s, so that many independent con�gurations can easily be sampled within

the duration of an experiment. However, there are several instances where the relaxation

time exceeds 1 s by many orders of magnitude, as is the case for very viscous suspensions

studied at small angles or even more importantly for out of equilibrium systems, like

colloidal gels or glasses: these systems are said to be nonergodic, and require special care

for the ensemble average in a DLS experiment to be properly evaluated.

One method is to sample gI(~q, t, τ) for several independent speckles. This can be

done by translating or rotating the sample during the measurement, or more conveniently
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by detecting the �uctuations of several speckles at the same time using a multichannel

detector, like a CMOS camera, and by averaging the contribution of all speckles. The

resulting correlation function is:

g2(~q, t, τ) =
〈Ip(t+ τ)Ip(t)〉p∈ROI(~q)

〈Ip(t+ τ)〉p∈ROI(~q) 〈Ip(t)〉p∈ROI(~q)
(2.15)

where Ip(t) is the intensity detected by pixel p at time t, and 〈. . .〉p∈ROI(~q) corresponds
to an average over all pixels belonging to a region of interest (ROI) associated to a small

region in q space centered around ~q.

Such a technique, called multispeckle, allows one to achieve a good sampling of the

gray levels of the speckle pattern, which corresponds to a good sampling of the microscopic

con�gurations of the sample, provided that the scattering volume is larger than any

structural and dynamical correlation length. Of course, the speckles averaged with this

technique should provide equivalent information, thus they should correspond to nearly

the same scattering vector, which sometimes sets a strong limitation, for example in the

case of large speckles or of a strong q dependence of the dynamics, as it is the case under

shear, as discussed in chapter 4.

More generally, this method provides properly averaged results without time averages,

and thus allows one to characterize time-dependent dynamics, like ageing or transient

processes. For this reason, such a method, called Time Resolved Correlation (TRC)

[Duri 2005], is particularly adapted for probing a sample under shear.

2.2 Rheology

Rheology, as the Greek origin of the name suggests, is the study of the �ow of matter.

One commonly thinks of gases and liquids as mobile substances subject to �ow and of

solids as rigid materials that do not �ow, but before the critical eyes of the rheologist,

nature shows a much more rich and complex variety of behaviors, which one classi�es

as viscoelastic. Indeed, rephrasing the well known statement of Heraclitus from which

the name "rheology" was coined (τα Πάντα ρ̀ει̃), everything �ows, depending on the

timescale and the external conditions [Traxler 1939].

2.2.1 Shear deformation: stress and strain

The above distinction between liquids, solids and viscoelastic materials concerns the

mechanical properties of an object, i.e. the relationship between any force applied to it

and the subsequent change in its shape and size. Both quantities can be generally quan-

ti�ed by tensorial variables: the stress σ, representing the force per unit surface acting

on di�erent faces of a small cubic element from di�erent directions, and the deformation

γ (or its time derivative γ̇), describing the relative changes in dimensions and angles of
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that cubic element. In a generic deformation geometry, both stress and strain depend on

the position ~x, so that the relation between σ and γ̇ (the so-called rheological constitutive

equation) is a very complex tensorial equation. However, there are a few speci�c types of

uniform (homogeneous) deformations where stress and strain are independent of ~x and

assume a relatively simple form. One of them is simple shear, where two opposite faces of

the cubic element are displaced by sliding. In this geometry (Fig. 2.4a), one can measure

the shear couple M = eF , e being the gap separating the two surfaces and F being

the force applied to them, and the relative linear displacement δ of the two surfaces. In

terms of these quantities, the above tensorial relations reduce to scalar ones, connecting

the (scalar) stress σ(t) = F (t)/S, S being the area of the two opposite faces, to the strain

γ(t) = δ(t)/e. In this thesis, with the only exception of appendix B, we will only focus

on the shear geometry.

a) b)𝛿 𝐹

𝑒

𝑆

𝑡

𝛾 =
𝛿

𝑒
𝜎 =

𝐹

𝑆

Figure 2.4: (a) Schematic view of shear rheology: the initial shape of the sample (dashed

line) is a prism with base surface S and height e equal to the gap between the two con�ning

surfaces (top and bottom plates). A sliding force F is applied to one of the two surfaces,

while the other one is kept �xed. This corresponds to a shear couple M = eF , and a

scalar shear stress σ = F/S homogeneously distributed inside the sample volume. The

scalar deformation γ = δ/e is also uniform, and corresponds to the relative displacement

of the two surfaces δ normalized by the gap. (b) Representative experimental protocol

for strain-controlled small amplitude oscillatory shear rheology: as described in text, a

sinusoidal deformation γω(t) (blue, solid line) is imposed, and the stress response σω(t)

(red, dashed line) is measured. The relative amplitude and phase of the two harmonic

signals de�ne the modulus and the phase of the complex modulus G∗(ω). The result

would be the same in stress-controlled rheology, where σω(t) is imposed and γω(t) is

measured.

Experimentally, it is possible to access both σ(t) and γ(t) using sophisticated instru-

ments called rheometers, which can be controlled either in stress or strain. In both cases

the geometry can be chosen according to the properties of the sample: liquid-like samples

are typically tested in a Couette cell, where the sample �lls the gap between two coax-

ial cylinders, one of which rotates with respect to the other. Solid-like samples, on the

other hand, are generally con�ned between a �at, �xed surface and a cone that is rotated

to apply a given deformation (cone-plate geometry). In both cases, strain-controlled
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rheometers measure the torque needed to achieve a given rotation, and conversely stress-

controlled rheometers apply a controlled torque and measure the rotation. The geometric

parameters are then used to convert the torque into a shear stress and the rotation an-

gle into a shear strain. Di�erent shear geometries, like parallel sliding plates are also

employed in custom-made shear cells, typically designed to meet special mechanical re-

quirements (e.g. very small sample thickness or very high frequencies) or to be embedded

into more complex experimental systems, like the one that will be presented in chapter

3.

When an external shear stress σ(t) is applied to a sample, the sample reacts with a

shear deformation γ(t) following Newton's second law. If inertial e�ects can be ignored,

as is often the case (cf. chapter 3), the internal stresses developed as a consequence of the

shear deformation are such that the applied stress is exactly balanced, so that a measure

of γ(t) for a known stress history σ(t) allows one to extract the constitutive equation.

Conversely, a strain history γ(t) can be imposed, and a measure of σ(t) allows the same

constitutive equation to be obtained.

As an example of a simple constitutive equation, Hooke's law describes the behavior

of elastic solids, for which stress is always directly proportional to strain but independent

on the shear rate γ̇ = dγ/dt. On the other hand, the classical theory of hydrodynamics

deals with viscous liquids, for which stress is always directly proportional to the shear

rate, but independent of the strain itself. Both categories are idealizations, and although

many solids approach Hooke's law for small strains and many liquids approach Newton's

law for small shear rates, under other conditions deviations from these simple, linear laws

are observed. Moreover, even if the strain or the shear rate are in�nitesimal, a system

may exhibit behavior which combines liquid-like and solid-like characteristics: to describe

such a viscoelastic system, a more general model must be introduced.

2.2.2 Linear viscoelasticity

2.2.2a Viscoelastic moduli

As a starting point for a theoretical description of linear viscoelasticity, a response

function G∗(ω) (called complex modulus) can be de�ned, in the spirit of Sec. 2.1. In

the small perturbation limit, the so-called linear regime, G∗(ω) is a well de�ned complex

function of frequency: a harmonic strain perturbation γω(t) = γ0e
iωt is associated to a

stress σω(t) oscillating at the same frequency ω, with amplitude and phase set by the

complex modulus: σω(t) = G∗(ω)γω(t) (Fig. 2.4b) [Macosko 1994].

The ideal cases of purely elastic or viscous materials can be described in terms of real

or imaginary complex moduli, respectively: G∗(ω) = G0 de�nes the elastic modulus in

Hooke's law (σ = G0γ), whereas G
∗(ω) = iωη characterizes the viscosity of a Newtonian

liquid (σ = ηγ̇). A complex modulus having both a real and an imaginary part describes a

viscoelastic material, whose solid-like and liquid-like behaviors are ascribed to a storage

modulus G′ = Re(G∗) and a loss modulus G′′ = Im(G∗), respectively. In practice,
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oscillatory rheology consists in imposing a small amplitude harmonic perturbation (either

in stress or in strain), and recording the amplitude and phase of the response, from which

G′ and G′′ can be extracted for a given frequency: a complete spectrum of G′(ω) and

G′′(ω) provides a full description of the linear viscolasticity of a material.

The form of the frequency dependence of the viscoelastic moduli G′ and G′′ can in

general be reproduced by the behavior of a mechanical model with a su�cient number

of elastic elements (springs) and viscous elements (dashpots imagined as pistons moving

in oil). The force applied to the ends of this mechanical model is analogous to σ, and

their relative displacement is analogous to γ. The simplest fully viscoelastic models

contain one spring and one dashpot, connected either in series (Maxwell model) or in

parallel (Kelvin-Voigt model) [Ferry 1980]. Their complex moduli can be calculated by

assigning an elastic modulus G0 to the spring and a viscosity η to the dashpot, and by

developing the mechanical models, obtaining G∗KV (ω) = G0 + iωη for Kelvin-Voigt and

G∗M(ω) = G0(s2 +is)/(1+s2), with s = ωη/G0, for Maxwell. Both results are represented

in Fig. 2.5a, from which a characteristic angular frequency ω̄ = G0/η emerges as the point

where G′ and G′′ cross each other: for ω > ω̄ the Maxwell model will be predominantly

elastic, with G′ > G′′, whereas for Kelvin-Voigt G′′ > G′ indicates a rather liquid-like

response. The opposite holds for ω < ω̄.

The characteristic frequency ω̄ can also be read, in the time domain, as a characteristic

time τ ∼ ω̄−1 separating the elasticity-dominated from the viscosity-dominated regime,

as can be clearly observed in transient experiments.

2.2.2b Transient experiments in the linear regime

Oscillatory shear is of widespread use, and is an extremely practical tool to charac-

terize the linear viscoelasticity of a material, since it probes a stationary state, where the

mechanical response of the system depends on frequency but not (or negligibly) on time.

However, precious physical information is often contained as well in the time evolution

of the system approaching the stationary state, specially when �nite, "nonlinear" de-

formations are attained. To access this information, transient experiments, intrinsically

time-resolved, can be performed. Creep, shear start-up and stress relaxation are the most

common examples of transient rheological experiments.

The result of transient experiments in the linear regime can be rationalized in terms

of two time-dependent quantities related to the viscoelastic moduli: the stress relaxation

modulus G(t) and the creep compliance J(t), which are used to calculate the stress σ(t)

starting from a generic strain history γ(t) or vice versa [Macosko 1994]. Their de�nition

is based on Boltzmann's superposition principle, stating that in the linear regime the

e�ects of sequential changes in strain (or stress) are additive:
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Figure 2.5: (a) Viscoelastic moduli G′ (solid lines) and G′′ (dashed lines) for Maxwell

(red) and Kelvin-Voigt model (blue), normalized by the spring modulus G0 and as a

function of frequency normalized by the relaxation time τ = η/G0. A solid sample would

have the same G′ as the Kelvin-Voigt (G′ = G0), whereas a Newtonian �uid would have

the same G′′ as the Kelvin-Voigt (G′′ = ηω). (b) Normalized creep compliance G0J(t)

as a function of normalized time t/τ for the two viscoelastic models. As a reference, the

creep compliance of ideal elastic solids (black, solid line) and Newtonian liquids (dashed

line) is also shown.

σ(t) =

t∫

−∞

G(t− t′)γ̇(t′)dt′

γ(t) =

t∫

−∞

J(t− t′)σ̇(t′)dt′

(2.16)

From the knowledge of either G(t) or J(t), the stress-strain relation for any kind of

experiment with a prescribed time dependence of stress or strain can be predicted: for

example, the particular choice of an oscillating strain allows one to identify the complex

modulus G∗(ω) as the Fourier transform of G(t). In practice, however, direct calculation

of the Fourier transform is not possible, since any transient experiment accesses a limited

window of timescales, ranging from a generally small enough tmin to a maximum time tmax
limited by the duration of the experiment (typically a few days at most), and numerical

methods are needed to convert linear transient data into viscoelastic moduli covering a

frequency range from ωmin ∼ t−1
max to ωmax ∼ t−1

min [Evans 2009]. This reveals another

side advantage of transient experiments, which can typically probe a much larger window

of timescales, beyond the small frequency regime that can be typically be accessed in
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oscillatory tests. For this reason, creep or stress relaxation experiments in the linear

regime are sometimes used to extend the spectrum of viscoelastic moduli at the smallest

frequencies [Bird 1987].

Among the typical transient experiments, this chapter discusses the case of creep,

where a step stress σ(t) = σ0θ(t) is imposed, θ(t) being the Heaviside's Theta function,

and the strain γ(t) = σ0J(t) is measured as a function of time. Apart from inertial

e�ects, discussed in detail in chapter 3, the deformation is constant (γ(t) = γe = σ0/G0)

for an ideal elastic solid subject to Hooke's law, whereas it grows linearly in time for

a viscous liquid (γ(t) = γ̇t, where γ̇ = σ0/η). The deformation of a Maxwell model

is approximately constant over times shorter than the characteristic time τ , and starts

growing at a constant rate for longer times: γM(t) = γe(1 + t/τ). On the other hand, a

Kelvin-Voigt model �ows at short times and reaches a constant deformation for t � τ :

γKV (t) = γe[1− exp(−t/τ)]. Both creep curves are represented in Fig. 2.5b.

The reversibility of creep deformation can be directly addressed by creep recovery, i.e.

by releasing the external stress after an arbitrary creep time T : for t > T the deformation

γ(t) decreases again, reaching a plateau value γ∞ in the long time limit. γ∞ = 0 would

then imply that the deformation obtained during creep is completely reversible: this is

the case of Kelvin-Voigt model. On the other hand, a partially irreversible deformation

would re�ect into a strictly positive γ∞ (for example, γ∞ = γeT/τ for a Maxwell model).

The two fully viscoelastic models (Maxwell and Kelvin-Voigt) introduced so far are

described by a single characteristic time τ , corresponding to the clear transition between

solid-like and liquid-like behavior, which one can observe in Fig. 2.5b. However, as the

term "creep" itself suggests, the deformations observed in creep experiments are often

characterized by a sublinear growth of γ(t) spanning several decades in time. This is

for example the case of Rouse motion in polymeric materials, where γ(t) increases as

a power law with an exponent α = 0.5 [Schiessel 2000]. To mimic this behavior more

complex mechanical models are required, generally displaying a distribution of relax-

ation times. For example, a generalized Maxwell (or Kelvin-Voigt) model is composed

of N elementary modes, each one with its characteristic time, connected in series (or in

parallel). Other models can be imagined as well, like for example branched or nested

structures, particularly suited to describe self-similar dynamics. More recently, the con-

cept of fractional element (also called a springpot) has also been introduced [Blair 1947],

to provide a compact mathematical description of power law distributions of relaxation

times [Bagley 1983, Bagley 1989, Jaishankar 2013]. A fractional element is de�ned by

two parameters: a so-called quasi-property V and a fractional exponent α, and it bridges

the mechanical behavior of a spring and a dashpot, where (V, α) reduces to (G0, 0) and

(η, 1) respectively. Its constitutive equation involves the concept of a fractional derivative

of order α:

σ(t) = V
dαγ

dtα
= V

t∫

−∞

(t− t′)−αγ̇(t′)dt′ (2.17)
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This de�nition of fractional derivative compared with Eq. 2.16 allows to identify the

relaxation modulus G(t) ∝ t−α, which emphasizes the interpretation of a springpot in

terms of a power law distribution of relaxation times. A physical example of such a

fractional element is represented by the so-called fractional Maxwell model, which will

be introduced in chapter 5.

2.2.3 Nonlinear viscoelasticity

All the results obtained so far are bound to the underlying assumption that the defor-

mations are in�nitesimal. This assumption characterizes the so-called linear viscoelastic

regime, where stress and strain should be regarded as a probing �eld: since the (linear)

response functions do not depend on the magnitude of the probing �eld, linear rheology

teaches us about the mechanical properties of the unperturbed sample. However, from a

practical point of view, it may remain unclear how to identify the range of deformations

where this assumption holds. Moreover, mechanical stimuli beyond the linear regime can

be used on purpose to change the sample structure, and the mechanical properties of

the modi�ed structure can be probed by nonlinear rheology, which can provide valuable

information both from a fundamental point of view and for applications. For this reason,

in this section a few relevant aspects of nonlinear viscoelasticity will be brie�y discussed.

Nonlinear rheology represents an appealing technique thanks to its straightforward

implementation in modern rheometers. However, from a theoretical point of view it is

extremely delicate, for several reasons. First of all, when strains are not in�nitesimal,

the strain tensor itself has to be handled with care, since various alternative ways of

de�ning �nite strains are possible [Macosko 1994]. Moreover, the deformation measured

macroscopically may deviate signi�cantly from the local deformation actually experienced

by the sample, which may become unstable and heterogeneous in a way that may exhibit a

delicate dependence on the experimental geometry and boundary conditions. Finally, as a

consequence of a nontrivial coupling between spatial dimensions, nonlinear deformations

along one direction may produce measurable stresses along orthogonal directions, as is

the case for normal stresses in shear rheology, for example. A thorough discussion of those

aspects would go far beyond the purpose of this chapter: in the following we will take a

phenomenological approach, assuming that a macroscopic shear strain γ is imposed and a

macroscopic shear stress σ is measured under speci�c experimental conditions. Under the

working hypothesis (to be veri�ed experimentally) that γ and σ are still representative

of the local mechanical perturbation and response of the sample, this section will discuss

how the stress-strain relation changes as the strain is increased beyond the linear regime.

2.2.3a Large Amplitude Oscillatory Shear

We start considering the nonlinear transition as it is observed in oscillatory shear

at one �xed frequency ω as the strain amplitude γ0 is increased. For one given γ0, a

convenient way of showing the stress-strain relation is to plot the two variables against
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Figure 2.6: Strain imposed large amplitude oscillatory shear measurements at frequency

ω = 1 Hz on the colloidal gel presented in part II. (a) Sinusoidal strain γω (red, thin line)

normalized by the amplitude γ0, compared to the stress response σ(t) (colored, thick

line), normalized by its fundamental harmonic σ1. Two di�erent strain amplitudes are

compared: γ0 = 3% (blue, top) and γ0 = 15% (green, bottom). (b) Lissajous-Bowditch

plots corresponding to the two strain amplitudes. (c) Relative amplitude of harmonic

content in the stress signal.

each other: in the stationary state the result is a closed curve parametrized by ωt running

from 0 to 2π. In the linear regime, where γ = γ0 cos(ωt) and σ = σ0 cos(ωt+ δ), the curve

belongs to the family investigated by Nathaniel Bowditch and Jules Antoine Lissajous in

the XIX century [Cundy 1954] (which explains why such a plot is often called Lissajous-

Bowditch, or simply Lissajous plot), and it is implicitly de�ned by the equation: σ̃2 + γ̃2−
2σ̃γ̃ cos δ = sin2 δ, where σ̃ = σ/σ0 and γ̃ = γ/γ0. The result corresponds to an ellipse

with axes of length sin δ/
√

1± cos δ along the σ̃ = ±γ̃ directions and an eccentricity

e2 = 2 cos δ/(1 + cos δ), decreasing from 1 to 0 as the phase di�erence δ goes from 0 to

π/2. The two extreme cases are again represented by the elastic solid (δ = 0) and the

Newtonian liquid (δ = π/2), whose Lissajous plots correspond to a straight line across

the origin and a unitary circle respectively.

Eccentricity is in turn connected to energy dissipation: since the incremental quantity

dw = σ · dγ represents a mechanical work per unit volume, an elliptical loop including a

given area S implies that a �nite amount of energy, proportional to S is dissipated by the

material each cycle. A purely viscous sample, with a circular LB plot, has an adimensional

area S = π, indicating that the mechanical work is entirely dissipated. Conversely, elastic

force is conservative and no energy is dissipated for a purely elastic sample. In general,

in the linear regime, S/π = sin2 δ will represent the fraction of mechanical energy per

cycle that is dissipated by viscous e�ects.
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When the strain amplitude γ0 is increased, the shape of the Lissajous-Bowditch plot

eventually deviates from the elliptical shape characterizing the linear regime (Fig. 2.6b):

indeed, at �nite strains, the linear response theory may no longer hold, and a harmonic

strain perturbation at frequency ω may induce a nonlinear stress response containing a

spectrum of frequencies other than ω. Assuming that a stationary state can be reached,

the response is still periodic with period T = 2π/ω, and the spectrum is discrete in units

of ω:

σ(t) =
∞∑

n=1

σn(ω, γ0)einωt (2.18)

In the linear regime one would have σn(ω, γ0) = σ0(ω)δn1, where δij represents the Kro-

necker delta, whereas higher harmonics characterize the nonlinear regime. Interestingly,

one can show that whenever the stress inside the sample is homogeneous and equal to

the one measured experimentally, the spectrum of this last one should only contain odd

harmonics. Indeed, for symmetry reasons, the local stress tensor can be expanded in

odd power series of the local deformation and deformation rate tensors, whereas even

terms are unphysical: a change in the reference frame transforming γ into −γ must also

transform σ into −σ. Such expansion can be developed in an harmonic series only con-

taining odd n terms [Hyun 2011]. For this reason, the presence of even harmonics in the

macroscopic strain signal indicates that the strain measured macroscopically is di�erent

from the local stress experienced by the sample, and this can occur for example because

of wall slip [Graham 1995] or shear banding [Tapadia 2006].

In practice, a Fourier transform of the σ(t) signal measured at one frequency ω and

increasing strain amplitude should reveal the appearance of higher order harmonics (n =

3, 5, 7, . . .) in correspondence to the onset of nonlinear viscoelastic response (Fig. 2.6c).

In an analogous way, it is also possible to impose a harmonic stress perturbation and

to measure the nonlinear strain response: although in the nonlinear regime the two

experiments are no longer equivalent, in this case as well higher order harmonics γn(ω, σ0)

can be observed beyond the linear regime.

In presence of a non-harmonic response to an harmonic perturbation the argument

that brought (section 2.2.2) to the de�nition of the complex modulus does not hold

anymore. Thus, in principle G∗(ω) becomes ill-de�ned. However, it is sometime of

practical use to de�ne the nonlinear viscoelastic moduli, G′(ω, γ0) and G′′(ω, γ0), by an

analysis of the fundamental harmonic σ1(ω, γ0) (Eq. 2.18). In the γ0 → 0 limit, these

de�nitions reduce to the linear viscoelastic moduli, but the dependence on γ0 allows one

to explore the regime of �nite strain, where G′ and G′′ start deviating from their linear

value. The strain γc at which the �rst deviation is observed is another measure of the

limit of the linear regime. For soft viscoelastic solids, the behavior of G′ and G′′ beyond γc
carries information on the yielding transition (cf. Fig. 1.2). Indeed, this class of materials

is characterized by a storage modulus G′ typically larger than G′′ in the linear regime, but

an increase of γ0 eventually causes the two moduli to cross each other in correspondence
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to a critical strain γf , generally weakly dependent on frequency [Miyazaki 2006], and in

the largest strain regime one typically has G′′ > G′, indicating that large strains are able

to "�uidize" the sample, which would be solid-like at rest.

2.2.3b Transient experiments and delayed yielding

The high sensitivity of oscillatory shear experiments to nonlinearity is a consequence

of the very well de�ned functional form of the mechanical response to a harmonic probe in

the linear regime. The same does not hold, in general, for transient measurements, where

the convolution integrals of Eq. 2.16 describe a nonlocal response in the time domain.

This is once again due to the fact that the linear response function is originally de�ned in

the frequency domain. Nevertheless, the detection of nonlinearity in transient experiment

is of great interest both from a fundamental point of view and for applications. Chapter

6 contains a discussion on the particular case of the nonlinear creep of a colloidal gel: we

refer to that chapter for a speci�c example, whereas this paragraph will be limited to a

few general considerations.

From a mechanical point of view, nonlinear contributions to a transient mechanical

signal manifest themselves as deviations from the expected (linear) response. For exam-

ple, in shear start-up experiments a �xed shear rate γ̇ is imposed, and the stress growth

σ(t) is measured as a function of time or strain. For solid-like samples, after a �rst linear

increase of σlve(t) = G0γ(t), a deviation is eventually observed, either upwards (strain

hardening) or downwards (strain softening). If γ̇ is su�ciently large (larger than the

inverse of the maximum relaxation time τ of the system), this deviation depends on γ̇,

and is generally identi�ed as the beginning of the nonlinear regime. An example of this

experimental protocol will be given in appendix B.

Detecting the onset of nonlinearity in creep experiments is even less trivial, mainly

because of the typically slow and time-dependent deformation rates involved, but the

main idea is similar: independent measurements in the linear regime can be used to

model the linear creep compliance Jlve(t), and a comparison between the measured J(t)

and the expected one shows a deviation from linear viscoelasticity starting from a critical

time tnl. Once again the de�nition of tnl is delicate, and the question of whether a precise

time tnl separating linear from nonlinear creep deformation can even be de�ned remains

debated and somehow system-dependent.
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A stress controlled shear cell for

small-angle light scattering and

microscopy
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The detection of microscopic dynamics in samples under shear is experimentally very

challenging, because it requires to combine the highest mechanical sensitivity to strict re-

quirements on the geometry of the whole setup and on the quality of the optical interfaces.

In this work we achieve this aim by using a custom-made, stress-controlled shear cell that

works in the linear parallel plates geometry and can be coupled to an optical microscope or

a small angle light scattering setup, for simultaneous investigation of the rheological re-

sponse and the microscopic structure of soft materials under an imposed shear stress. We

present our shear cell using a paper recently published on Review of Scienti�c Instruments

[Aime 2016].
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A stress-controlled shear cell for small-angle light scattering
and microscopy

S. Aime,a) L. Ramos, J. M. Fromental, G. Prévot, R. Jelinek, and L. Cipellettib)

Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
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We develop and test a stress-controlled, parallel plates shear cell that can be coupled to an optical
microscope or a small angle light scattering setup, for simultaneous investigation of the rheological
response and the microscopic structure of soft materials under an imposed shear stress. In order to
minimize friction, the cell is based on an air bearing linear stage, the stress is applied through a
contactless magnetic actuator, and the strain is measured through optical sensors. We discuss the
contributions of inertia and of the small residual friction to the measured signal and demonstrate the
performance of our device in both oscillating and step stress experiments on a variety of viscoelastic
materials. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972253]

I. INTRODUCTION

Complex fluids such as polymer solutions, surfactant
phases, foams, emulsions, and colloidal suspensions are
ubiquitous in everyday life and industrial applications. Their
rheological properties are often of paramount importance both
during the production process and for the final user.1 They are
also a topic of intense fundamental research in fields as divers
as the physics of polymers,2 the glass transition,3,4 foams
dynamics,5 and biological fluids and tissues.3,6 Conventional
rheology is widely used as a powerful characterization
tool,1 providing valuable information on the macroscopic
mechanical properties of a system. As early as in the 1934
study of shear-induced emulsification by Taylor,7 however, it
was recognized that coupling rheology to measurements of
the sample structure and dynamics at the microscopic scale
tremendously increases our insight into the material behavior.
Most experiments rely on optical and scattering probes of
the microstructure, although other methods have also been
introduced, e.g., acoustic velocimetry8 and nuclear magnetic
resonance.9 Indeed, in the last 40 years, a large number of
apparatuses have been developed, which use microscopy,
static and dynamic light scattering, and neutron and X-ray
scattering to investigate the microstructure of driven samples.
The wide spectrum of topics that have benefited from such
simultaneous measurements demonstrates the importance and
success of this approach: a non-exhaustive list includes the
investigation of the orientation dynamics and deformation
of individual objects such as emulsion drops, polymers,
liquid crystals, and protein clusters,7,10–14 the influence of
shear on demixing and critical phenomena,15,16 shear-induced
structure distortion and non-equilibrium phase transitions,17–36

the dynamics of foams37,38 and that of defects in colloidal
crystals,39–43 shear banding44–50 and non-affine deformation
in polymer gels and glasses,51,52 and creep and yielding in
amorphous, dense emulsions and colloids, and surfactant
phases.3,53–65

a)Electronic mail: stefano.aime@umontpellier.fr
b)Electronic mail: luca.cipelletti@umontpellier.fr

Previous works may be classified according to the probe
method, the deformation geometry, and the rheological quan-
tities that are measured. In a first group of experiments, mostly
performed in the last 30 years of the past century, small angle
static light scattering (SALS) was used to monitor the change
of the sample structure.10–12,15–17,20–22,25 Small angle X-ray
scattering (SAXS13,14,24,27,29,31,33,39,42,56) and neutron scatter-
ing (SANS,23,32,34,35,41,44,46,47,49,66 and references therein) have
also been used,62,67 although they require large scale facilities
and are therefore less accessible than microscopy and light
scattering. Quite generally, these experiments were performed
under strain-imposed conditions, often using custom-designed
shear cells. Stress measurements (or stress-imposed tests)
were available in just a few cases,11,16,21,68 where a commercial
rheometer was coupled to a scattering apparatus.

With the development of advanced microscopy methods,
in particularly laser scanning confocal microscopy, many
groups have developed apparatuses that couple rheology and
microscopy.20,28,30,43,45,48,51,57,58,60,61,64,65,69–75 Apparatuses
based on a commercial rheometer usually give access to both
the shear stress and the strain.65,70 With confocal microscopy,
both a plate-plate and a cone and plate geometry are possible,
since in confocal microscopy the sample is illuminated and
the image is collected from the same side. This allows one
to avoid any complications in the optical layout due to the
wedge-shaped sample volume of the cone and plate geometry.
Note that in a torsional rheometer, the cone and plate geometry
is preferable to the plate-plate one when a uniform stress is
required, e.g., for yield stress fluids or in the non-linear regime.
Custom shear cells have also been used in conjunction to
microscopy. As for scattering-based setups, custom cells are
in general strain-controlled, with no measurement of the stress
(see however Refs. 74 and 75 for notable exceptions). In spite
of this limitation, custom cells may be an interesting option
in terms of cost and because they allow valuable features to
be implemented: a fine control and a great flexibility on the
choice of the surfaces in contact with the sample, the creation
of a stagnation plane through counter-moving surfaces,28,45,73

which greatly simplifies the observation under a large applied
shear, and the implementation of non-conventional shear

0034-6748/2016/87(12)/123907/13/$30.00 87, 123907-1 Published by AIP Publishing.
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geometries, e.g., small channels for investigating confinement
effects48,69,70 or large-amplitude shear with linearly translating
parallel plates.30

Real-space microscopy data are unsurpassed in that they
provide full knowledge of both the structure and the dynamics
of the sample at the particle level. However, microscopy
suffers from several limitations: it is quite sensitive to
multiple scattering, making turbid samples difficult to study; it
requires specifically designed, fluorescently labelled particles
if confocal microscopy is to be used; only quite small sample
volumes can be imaged; a high resolution, a large field of
view, and a fast acquisition rate are mutually exclusive, so
that a compromise has to be found between these conflicting
requirements. Scattering methods, while not accessing the
single particle level, do not suffer from these limitations.
Furthermore, advanced scattering techniques such as the Time
Resolved Correlation76 (TRC) and the Photon Correlation
Imaging77,78 (PCI) methods can fully capture temporally and
spatially varying dynamics, yielding instantaneous coarse-
grained maps of the dynamical activity. Thus, scattering
techniques are a valuable alternative to real-space methods
not only for measuring the sample structure, as in the early
works mentioned above, but also to probe its dynamics.

Dynamic light scattering in the highly multiple scattering
limit (diffusing wave spectroscopy, DWS79) has been used
since the 1990s of the past century to measure the microscopic
dynamics associated with the affine deformation in the shear
flow of a simple fluid80 and the impact of shear on foam
dynamics.37 In a subsequent series of works, the so-called
‘echo-DWS’ method has been introduced: here, DWS is
used to measure the irreversible rearrangements occurring in
amorphous viscoelastic solids such as emulsions,53 foams,38 or
colloidal gels and glasses54,55,59 subject to an oscillating shear
deformation. More recently, space-resolved DWS has been
applied to the investigation of the microscopic rearrangements
in polymeric solids under compression or elongation.52,81 By
contrast, Dynamic light scattering (DLS) in the single scat-
tering regime82 and X-ray Photon Correlation Spectroscopy
(XPCS83), its analogous using coherent X rays, have been
much less used as a probe of the microscopic dynamics
of a driven system,43,84,85 perhaps because single scattering
conditions require greater care than multiple scattering ones
in designing a scattering apparatus, due to the sensitivity of
DLS to the scattering angle at which light is collected and its
vulnerability to stray light scattered by any imperfections in
the optics.86 In spite of its greater complexity, DLS has several
appealing features, such as its ability to probe the dynamics
on a large range of length scales (by varying the scattering
angle), the excellent overlap between the probed length scales
(from a few tens of nm up to several tens of µm) and the
characteristic structural length scales of most complex fluids,
and the possibility to extend it to the X-ray domain by XPCS.

In this paper, we introduce a novel, custom-made shear
cell that can be coupled both to a microscope and to a
static and dynamic small angle light scattering apparatus,
such as that described in Ref. 86. The shear cell consists
of two parallel plates, one of which can undergo trans-
lational motion. In contrast to other custom shear cells
previously reported in the literature, for which a shear

deformation is imposed and no stress measurement is avail-
able,7,10,12,17,22–28,34,37–44,46,47,49,51,53–55,57,58,60,61,64,71–73 our cell
is stress-controlled and the strain is accurately measured.
Unlike the stress-controlled custom cell of Ref. 74 that is
optimized for confocal microscopy in an inverted microscope,
our cell can be used in both an inverted or upright conventional
or confocal microscope and in light scattering experiments in
the transmission or backscattering geometry; furthermore, it
can be placed either in a vertical or horizontal position. This
versatile design opens the way to the full characterization of
the rheological behavior of a sample, simultaneously to its
structural and dynamical evolution at the microscopic level.
In particular, its compact design allows it to be coupled to
state-of-the-art static and dynamic light scattering setups, a
significant improvement over commercially available light
scattering adds-on for rheometers, which are limited to static
light scattering.

The rest of the paper is organized as follows: in Sec. II we
briefly present the shear cell, before discussing in Sec. III its
main features independently of the investigated sample (stress
calibration, strain measurement, plate parallelism, effects of
inertia, and residual friction). [For the sake of simplicity, here
and in the following we shall denote the shear stress and
the shear strain simply by “stress” and “strain,” respectively.]
Section IV demonstrates the cell performances through a series
of tests on model systems, representative of a Newtonian
fluid, a perfectly elastic solid, and a viscoelastic Maxwell
fluid. In Sec. V, we illustrate how the cell can be coupled
to a dynamic light scattering apparatus, by measuring the
microscopic dynamics of a Brownian suspension at rest and
under shear. Finally, an overview of the characteristics of
the shear cell with an emphasis on its strengths and limits
concludes the paper, in Sec. VI.

II. SETUP

A scheme of the setup is shown in Fig. 1. The sample
is confined between two crossed microscope slides, whose
surfaces are separated by a gap e, typically of the order of a
few hundreds of µm. The gap can be adjusted using spacers and
a set of precision screws to ensure the parallelism of the plates,
as described in more detail in Sec. III C. One of the two slides
is fixed to an optical table, while the second one is mounted
on a mobile frame that slides on a linear air bearing. The air
bearing avoids any mechanical contact between the sliding
frame and the optical table, therefore minimizing friction.
In order to avoid spurious contributions due to gravity, the
horizontal alignment of the air bearing rail can be adjusted
to within a few 10−5 rad using a finely threaded differential
screw. To impose the desired shear stress, a controlled force
is applied to the mobile frame using a magnetic actuator (see
Fig. 1), powered by a custom-designed, computer-controlled
current generator. A contactless optical sensor measures the
displacement of the moving frame and thus the sample strain.
The implementation of the strain sensor is discussed in
Sec. III B.

The linear air bearing (model RAB1, from Nelson Air
Corp.) is guided by air films of thickness ∼10 µm, which
confine its motion in the longitudinal x direction. The viscous
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FIG. 1. Scheme of the experimental setup. The moving parts are shown
in blue. (A) Sample; (B) fixed glass plate; (C) mobile glass plate; (D) air
bearing–fixed body; (E) air bearing—sliding rail; (F) air supply; (G) gap set-
ting spacer; (H) plate alignment screws; (I) coil (fixed); (J) magnet (mobile);
(K) cable to PC; (L) frosted glass; (M) tilt adjustment; (N) mechanical stops.

drag of the air films can typically be neglected, whereas a
small residual friction, most likely due to dust particles, is
seen when a force smaller than 1 mN is applied, as it will be
shown in Sec. III D. The maximum linear travel of the system,
set by the length of the moving plate, is 75 mm. However,
we typically restrain the travel distance to 5-10 mm, over
which the imposed force is virtually independent of position
(see Sec. III A). This typically corresponds to a strain γ ≤ 10.
The nominal straightness of the sliding bar (provided by the
manufacturer) is better than 1 µm over the whole travel length,
whereas the nominal thickness of the plates is constant to
within 10 µm throughout their entire surface. Therefore, the
gap e can be considered to be uniform over the typical working
distance. More details on the plates parallelism will be given
in Sec. III C. The sliding part of the setup has a relatively small
mass, M ≃ 335 g, including the mass of the sliding bar itself,
288.0 g. This allows inertial effects to be kept small, as shown
in Sec. IV.

III. SETUP CHARACTERIZATION

In this section, we describe the characterization of the
empty shear cell, discussing in particular the force-current
calibration of the stress actuator, the optical measurement
of the strain, the control and measurement of the plate
parallelism, and the effects of inertia and residual friction.

A. Calibration of the applied force

The shear stress imposed to the sample is controlled using
a magnetic actuator (Linear Voice Coil DC Motor LVCM-013-
032-02, by Moticont), consisting of a permanent magnet and
a coil wound on an empty cylinder. The magnet is fixed to
the sliding part of the apparatus; it moves with no contact

within the empty cylinder, which is mounted on the fixed
part of the apparatus. The device can be easily controlled
via a PC, which allows one to synchronously apply a given
stress and acquire strain and optical data. Due to the small
coil resistance (5.9 Ω) and inductance (1 mH), the magnetic
actuator response is very fast and its characteristic time (less
than 1 ms) will be neglected in the following. The force exerted
by the voice coil is proportional to the current fed to the device.
We use a custom-designed current generator, which outputs a
controlled current I that can be adjusted over a very large range
by selecting the appropriate full scale value, between 10−5 A
and 1 A, in steps of one decade. The current generator noise
is smaller than 10−4 of the full scale. The current generator is
in turn controlled through a voltage input: by feeding different
voltage waveforms to the current generator, it is therefore
possible to impose a stress with an arbitrary time dependence.
In our implementation, the voltage signal is generated by a D/A
card (USB-6002 by National Instruments) controlled by a PC.
We calibrate the voice coil by measuring the force, F, resulting
from the imposed current. The force is measured using a
balance, with a precision of 1 mg. The F vs. I curve is shown
in Fig. 2. F is remarkably proportional to I over 4.5 decades,
with a proportionality constant k = (0.916 ± 0.003) NA−1.

An important issue in designing the shear cell apparatus is
the requirement that the applied stress be constant regardless
of the resulting strain. To check this point, we have measured
several calibration curves similar to that shown in Fig. 2, each
time slightly changing d, the relative axial position between
the magnet and the coil, with d = 0 the position of the magnet
when it is fully inserted in the coil. The d dependence of the
proportionality constant k is shown in the inset of Fig. 2. In
the range 7 mm < d < 15 mm, we find that k changes by less
than 0.5%. In our experiments we typically work in this range,
thus ensuring that the applied force is essentially independent

FIG. 2. Calibration of the magnetic actuator: force (measured by a precision
balance) as a function of the applied current. The symbols are the experimen-
tal data and the line is the best fit of a straight line through the origin, yielding
a proportionality constant k = (0.916±0.003) NA−1. The upper limit of the
imposed current is set by the coil specifications, whereas the smallest current
chosen here is limited by the balance precision. Inset: variation of k with the
relative axial position between the magnet and the coil, d. The main plot has
been measured for d = 7 mm.
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of sample deformation. In order to convert the applied force
to a stress value, we measure the surface A of the sample by
taking a picture of the shear cell after loading it. The surface
is calculated from the image using standard image processing
tools. Typical values of A and its uncertainty are 250 mm2 and
a few mm2, respectively. When taking into account both the
uncertainty of the F − I calibration (0.3%) and that on A, the
stress σ = F/A is known to within about 1%.

B. Strain measurement

In order to measure the displacement of the mobile frame
and hence the sample strain, we use two different optical
methods, based on a commercial sensor and on a scattering
technique, respectively. The former is a commercial laser
position sensor (model IL-S025, by Keyence) that can acquire
and send it to a PC up to 1000 points per second with a nominal
precision of 1 µm. This sensor is very convenient to follow
large, fast deformations. However, its precision sets a lower
bound on the error on the strain measurements of at least 0.5%
for a typical gap e = 200 µm; moreover, we find that the sensor
output tends to artificially drift over time. When more precise,
more stable strain measurements are required, we use a custom
optical setup, inspired by the work in Ref. 78 and schematized
in Fig. 3(a). A frosted glass is fixed to the mobile frame of the
shear cell. A laser beam illuminates the frosted glass, which is
imaged on a CMOS camera (BU406M by Toshiba Teli Corp).
The camera has a 2048 × 2048 pixel2 detector, with a pixel
size of 5.5 µm; its maximum acquisition rate at full frame
is 90 Hz. The image is formed by a plano-convex lens with
a focal length f = 19 mm, placed in order to achieve a high
magnification, m = 20.5, such that the pixel size corresponds
to 268 nm on the frosted glass. Due to the coherence of the
laser light, the image consists of a highly contrasted speckle

pattern (see Fig. 3(a)), which translates as the mobile part of
the cell, and hence the frosted glass, is displaced. Using image
cross-correlation techniques,87 the speckle drift and thus the
sample shear can be measured. In practice, a speckle image
acquired at time t is spatially cross-correlated with an image
taken at a later time t ′. The position of the peak of cross-
correlation as a function of the spatial shift yields the desired
displacement between times t and t ′. An example is shown in
Fig. 3(b), which shows a cut of the cross-correlation function
along the x-direction. The line is a Gaussian fit to the peak:
when taking into account the magnification, the fit yields a
speckle size σsp = 16.5 µm in the plane of the sensor. The
speckle size is controlled by the diameter D of the lens and
the system magnification; it has been optimized in order to
correspond to a few pixels, which minimizes the noise on the
cross-correlation.85,88

To estimate the typical noise on the measurement of the
displacement, we take a series of full-frame images of the
speckle pattern over a period of 60 s, while keeping the frosted
glass immobile. The displacement with respect to the first
image (t = 0), as measured from the position of the cross-
correlation peak, is shown in Fig. 3(c). The displacement
fluctuates around a zero average value; the standard deviation
of the signal over the full acquisition time, σn, may be taken
as an estimate of the typical noise on the measured position.
We find σn = 23 nm, more than 40 times smaller than the
nominal precision of the commercial laser sensor. For a typical
gap e = 200 µm, it is therefore possible to reliably measure
strains as small as 10−4. The main limitations of this technique
are its time resolution and the largest displacement speed
that can be directly measured. The former is limited by the
camera acquisition rate and the image processing time: in
practice, the position can be sampled at a maximum rate of
about 50 Hz. The latter is limited by the acquisition rate

FIG. 3. (a) Optical scheme of the speckle imaging system for measuring the strain: D = 12.7 mm, z = 20 mm, and z′= 410 mm. (b) Cut along the x-direction
of the cross-correlation between two speckle images taken at time t and t ′. The peak position, ∆x = 1.34 µm, corresponds to the translation of the mobile part
of the cell between t and t ′. The line is a Gaussian fit to the peak, yielding a speckle size (in the sensor plane) σsp = 16.5 µm. (c) Time dependence of the
measured displacement while the cell is at rest. The standard deviation σn = 23 nm of the measured position yields an estimate of the measurement error.
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and size of the field of view, lv ≈ 0.5 mm: if the frosted
glass translates by more than lv between two consecutive
images, the speckle pattern is completely changed and no
cross-correlation peak is observed. In practice, displacement
speeds as high as 1mm s−1 can be measured, corresponding to
strain rates up to γ̇ = 2 s−1 or γ̇ = 5 s−1 for gaps of 500 µm
and 200 µm, respectively. Since the commercial sensor and our
custom device have complementary strengths and limitations,
we typically use both of them simultaneously. A final point
concerns the conversion of the displacement to strain units,
for which the gap thickness is required. We determine it after
adjusting the plates parallelism (see Sec. III C), by placing
the empty shear cell under an optical microscope and by
measuring the vertical displacement required to focus the inner
surface of the fixed and moving plates, respectively.

C. Adjusting the parallelism between the moving
and fixed plates

The parallelism between the two plates is tuned using
two differential screws (model DAS110, by ThorLabs), which
control the position of the upper side of the fixed plate
(see the pictures in Fig. 1). The quality of the alignment is
checked by visualizing the interference fringes formed by
an auxiliary laser beam reflected by the two inner surfaces
of the plates. A change in the local separation between the
two plates modifies the relative phase of the two reflected
beams, thus changing the fringe pattern. When the plates
are parallel, no fringes should be visible. The fringes are
imaged on a CMOS camera (DMM 22BUC03-ML, by The
Imaging Source, GmbH) with a 744 × 480 pixel2 detector, the
pixel size being 6 µm, corresponding to 31 µm in the sample
plane (magnification factor m = 0.19). Figure 4(b) shows the
fringe pattern observed when a tilt angle of 8 × 10−4 rad
between the two plates is imposed on purpose, using the two
differential screws. In addition to the finely spaced fringes,
due to the tilt, some larger-scale, irregular fringes are also
observed, due to slight deviations of the plates from perfectly
flat surfaces. When optimizing the alignment (Fig. 4(a)), only
the irregular, large-scale fringes are visible. To gauge the
precision with which the plates can be aligned, we impose
a series of increasingly large tilt angles αimposed, acting on
the two differential screws. αimposed is estimated from the
length of the plate, the nominal thread of the screws, and
the imposed screw rotation. For each αimposed, we measure
the tilt angle αmeasured = Nλ/2L, where N is the number of
fine fringes observed over a distance L and λ = 633 nm is
the laser wavelength. Figure 4(c) shows the measured tilt
angle as a function of the imposed one: the data are very
well fitted by a straight line with unit slope and a small offset,
σα ∼ 0.3 mrad, most likely due to the difficulty of finding the
optimum alignment since the plate surfaces are not perfectly
flat. We conclude that the plates can be tuned to be parallel to
within a tilt angle of about 0.3 mrad, a value comparable to or
even better than for commercial rheometers.89 Once the plates
have been aligned, they can be removed and placed again in
the setup (e.g., for cleaning them) with no need to realign the
setup. In this case, we checked that the parallelism is preserved
to within 1 mrad.

FIG. 4. (a) and (b) Images of the interference fringes observed when the
plates are parallel or tilted by an angle αimposed= 8×10−4 rad, respectively.
The size of the field of view is 15×22 mm2. (c) Measured tilt angle as a
function of the manually imposed tilt angle. The symbols are the data and the
line is a linear fit with slope 1.

D. Effects of inertia and friction

Inertia and friction effects may lead to spurious results if
they are neglected in the modelling of the setup response. Both
effects are best characterized by measuring the cell motion
under an applied force in the absence of any sample. Under
these conditions, the equation of motion for the moving part
of the cell reads

M ẍ(t) = F(ext)(t) + Ff r [x(t), ẋ(t)] , (1)

where M is the mass of the moving part, x its position
(with x(0) = 0 the position before applying any force), F(ext)
the (time-dependent) force applied by the electromagnetic
actuator, and Ff r a friction term that may depend on both
the position (in the case of solid friction) and the velocity
(for viscous-like friction). To characterize the friction term,
we measure x(t) after imposing a step force, F(ext) = F0Θ(t),
with Θ(t) the Heaviside function. Figure 5(a) shows that
x(t) follows remarkably well a quadratic law, suggesting
that the friction contribution is negligible for the step force
F0 = 0.9 mN used in this test. We perform the same experiment
for a variety of applied forces and extract, for each F0, the
acceleration a from a quadratic fit to x(t). The results are
shown in Fig. 5(b): while at large F0 one finds a ∝ F0, as
expected if friction is negligible, for F0 < 1 mN the data
clearly depart from a proportionality relationship, suggesting
that friction reduces the effective force acting on the moving
part of the cell. The line in Fig. 5(b) is a fit to the data of the
affine law a = (F0 − Ff r)/M , with M fixed to 335 g, yielding
Ff r = 0.12 mN. The fit captures very well the behavior of a
over 4 decades, showing that a static friction term accounts
satisfactorily for the experimental data. Slight deviations
are observed for large forces, suggesting that an additional,
viscous-like friction term may set in when the rail slides at
high speed. Some small deviations are also observed at low
forces, possibly because the friction term may slightly deviate
from the simple position- and velocity-independent expression
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FIG. 5. (a) Time-dependent translation x(t) following the application of a
step force F0= 0.9 mN to the empty cell. The line is a quadratic fit. (b)
Acceleration of the empty cell vs. the amplitude of the step force applied.
Symbols are the data point and the line is the best fit of an affine law, a
=

F0−F f r

M , with M = 335 g the mass of the sliding frame, yielding a residual
friction force Ff r = 0.12 mN as the only fitting parameter. (c) Normalized
amplitude (black, left axis) and phase (red, right axis) of the oscillating part
of the response to a cosinusoidal external force. The symbols are the data
points and the lines are the theoretical behavior.

that we have assumed. Since the sample surface is typically
A ∼ 2 cm2, the friction term sets a lower bound of the order of
1 Pa on the stress that may be applied in our apparatus.

To probe the frequency dependence of the setup response,
we apply an oscillatory force to the empty cell, F(t)
= Re

�
F̃ωeiωt

�
, where the tilded variables are complex quan-

tities. Assuming x(0) = ẋ(0) = 0 and neglecting friction, the
expected response is

x̃(t) = x̃ω
�
eiωt − 1 − iωt

�
, (2)

with x̃ω = −F̃ω/(Mω2). Note that, because the physical
equation of motion is given by the real part of Eq. (2), inertial
effects yield either a nonzero offset F̃ω/(Mω2) (for a cosine-
like applied force), or a nonzero drift velocity iF̃ω/(Mω) (for
a sinusoidal force), or both of them if the real and imaginary
parts of F̃ω are nonzero. Thus, in oscillatory shear experiments
inertia effects add a constant or linearly growing strain to the
sample, whose contribution may or may not be negligible
depending on the sample rheological properties and the
excitation frequency. To test Eq. (2), we apply a cosinusoidal
force to the empty cell, varying the driving frequency from
0.75 rad s−1 to 62.8 rad s−1. For each ω, we adjust Fω so
as to keep the amplitude of the oscillations roughly constant
and measure both the modulus and the phase of x̃ω from the
time dependence of the displacement in the stationary regime.
Figure 5(c) shows that the magnitude of the oscillations has
the expected value up to 4 rad s−1, beyond which it drops, due
to the frequency dependence of the response of the current
generator and magnetic actuator and, possibly, to the viscous-
like damping mentioned above. The phase of x̃ω is close to
zero, as expected, except for the lowest frequencies, for which
the applied force is too small for friction effects to be neglected.

IV. TESTS WITH MODEL SAMPLES

Having characterized the response of the empty cell,
we test its performances on standard rheological samples
in oscillatory and step stress experiments. We use a purely
viscous fluid, a purely elastic solid, and a viscoelastic material
well described by a Maxwell model. For each sample, we
briefly discuss the expected behavior in the presence of inertia
and compare it to the outcome of experiments, in order to
assess the sensitivity and limits of our setup. For the sake
of simplicity, we will not introduce the friction term in the
equations, but its effects will be highlighted in discussing the
experiments.

When a sample is loaded in the shear cell, Eq. (1) has to
be modified in order to take into account the force exerted by
the sample on the cell, F(s)(x, ẋ),

M ẍ(t) = F(ext)(t) + Ff r [x(t), ẋ(t)] + F(s) [x(t), ẋ(t)] . (3)

In principle, F(s)(x, ẋ) can be divided into an elastic (x-
dependent) and a viscous (ẋ-dependent) part. To recast
Eq. (3) in a form suitable to describe the sample rheological
properties, we divide both sides by the sample surface A and
express position and velocity as strain γ = x/e and strain rate
γ̇, respectively,

I γ̈(t) + σ [γ(t), γ̇(t)] = σ(ext)(t). (4)

Here, I = eM/A is the inertia term,σ(ext) the applied stress, and
σ = −F(s)/A the sample stress, which has opposite sign with
respect to F(s) since we adopt the usual notation where σ is the
stress exerted by the setup on the sample. This is the general
equation that has to be solved given a constitutive equation
for σ [γ(t), γ̇(t)], an experimental protocol (i.e., the temporal
profile of σ(ext)), and the initial conditions. In the following,
we will systematically assume γ(0) = γ̇(0) = 0 and will only
consider either creep tests, σ(ext)(t) = σ0Θ(t), or oscillatory
stresses, σ(ext)(t) = σ̃ωeiωt.

A. Newtonian fluid

1. Theoretical background

For a Newtonian fluid of viscosity η,σ = ηγ̇. Equation (4)
therefore reads

I γ̈ + ηγ̇ = σ(ext) , (5)

which, for a step stress test with stress amplitude σ0 , has a
solution

γ(t) = γ̇∞

t + τv

(
e−

t
τv − 1

)
, (6)

where τv = I/η is a characteristic time arising from the
interplay between inertial and viscous effects and γ̇∞ = σ0/η.
For t ≪ τv, inertia dominates and γ ≈ σ0t2/(2I). In the
opposite limit t ≫ τv, the usual simple viscous flow γ = γ̇∞t
is recovered. Typical values of the crossover time may be
estimated from τv [s] ≈ (2η[Pa s])−1, where we have assumed
M = 0.3 kg, e = 300 µm, and A = 2 cm2. Thus, the inertial
regime lasts less than 1 s if the viscosity exceeds 0.5 Pa s−1.

For an oscillatory stress, the solution to Eq. (5) is

γ(t) = γ̃ω

eiωt − 1 + iωτv

(
e−

t
τv − 1

)
, (7)
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with

γ̃ω = −
σ̃ω

ηω

i + ωτv
1 + ω2τ2

v

. (8)

The frequency-dependent complex modulus extracted
from the oscillating part of γ(t), G∗ = σ̃ω/γ̃ω has magnitude
and phase given by

|G∗| = ηω


1 + ω2τ2
v ,

arg G∗ = δ = arctan
1

ωτv
.

(9)

At short times t ≪ τv, viscous dissipation is always
negligible and γ(t) ≈ γ̃ω

�
eiωt − 1 − iωt

�
, as in Eq. (2), which

was derived for an empty cell. At larger times, Eq. (7)
simplifies to γ(t) ≈ iσ̃ω/(ηω) �1 − eiωt/ (1 + iωt)�: in the high
frequency regime ωτv ≫ 1 inertial effects are still relevant,
but in the opposite regime ωτv ≪ 1 the usual behavior for
a viscous fluid is recovered: the cell oscillates around a
negligible equilibrium position γ̃ωωτv, with an amplitude
γ̃ω ≈ −iσ̃ω/(ηω), and the strain lags the stress by an angle
δ = π/2.

2. Experimental tests

Measurements for step-stresses have been performed with
3 different silicon oils, with viscosities 1.02, 11.98, and
91.68 Pa s, respectively (nominal values at 25 ◦C). As an
example, we show in Fig. 6 results for the less viscous oil,
for which the applied stress is varied between 0.3 and 100 Pa.
The inset shows the time evolution of the strain following the
application of a step stress with σ0 = 4.5 Pa. At large times,
a pure viscous flow is found, γ(t) = γ̇∞t. Deviations at short
times from this linear behavior are due to inertia. The data are
in excellent agreement with the theoretical expression, Eq. (6)
(line), where τv = eM/(ηA) and γ̇∞ are fitting parameters.
We plot in the main figure the steady-state shear rate γ̇∞
vs σ0, obtained by fitting γ(t) for all applied stresses. At
large stresses, data are in excellent agreement with γ̇ = σ0/η
using the nominal value of the viscosity, whereas friction
causes deviations from this linear dependence for the smallest
stresses. Note that friction becomes relevant for σ0 . 1 Pa,
in agreement with the lower bound on the stress estimated in
Sec. III D. Data over the whole range of applied stresses are
very well accounted for by Eq. (6) (line in Fig. 6), with τv
as the only fitting parameter and using the nominal viscosity.
The fit yields τv = 0.7 s, in good agreement with the expected
value eM/(ηA) = 0.8 s.

Measurements for oscillating stresses have been per-
formed with the same 3 samples and two different values
of the gap: e = 300 µm and e = 600 µm (solid and open
symbols of Fig. 7, respectively). The stress amplitude was
chosen in order to keep the strain amplitude |γ̃ω | fixed at 20%
for all ω. In Fig. 7 the magnitude of the complex modulus |G∗|
(main plot) and its phase δ (inset) are plotted as a function of
angular frequency, together with the theoretical expectations
given by Eq. (9). The data are in very good agreement with
the theory for applied stresses with |σ̃ω | > 1 Pa. By contrast,
when lower stresses are applied to obtain the same strain

FIG. 6. Main plot: steady shear rate γ̇∞ as a function of the applied stress in
a step stress test, for a silicon oil with nominal viscosity η = 1.02 Pa s. Empty
and filled symbols refer to two independent measurements. The line is a fit of
γ̇∞= (σ−σ f r)/η, where the offset σ f r ∼ 0.25 Pa is due to friction. Inset:
time evolution of the strain following a step stress of amplitude σ0= 1.58 Pa.
The symbols are the data and the line is a fit of Eq. (6), with τv = 0.7 s and
γ̇∞= 1.18 s−1, in good agreement with (σ0−σ f r)/η = 1.27 s−1 as obtained
from the nominal viscosity.

amplitude (20% γ)—i.e., for the less viscous samples and
the lowest frequencies—deviations are observed due to the
residual friction discussed above. Some deviations are also
observed at the highest ω, due to the response of the current
generator and voice coil , and the viscous-like dissipation,
as mentioned in Sec. III D. For the more viscous sample
(η = 100 Pa s), no inertial regime is observed: |G∗| scales
as ω, as expected for a Newtonian fluid. This is consistent
with the fact that for this sample inertial effects should
become significant only for ω & 1/τv = 100 rad s−1, which

FIG. 7. Main graph: magnitude of the complex modulus of Newtonian
viscous fluids measured by oscillatory rheology, as a function of angular
frequency. Solid (open) symbols are experiments performed with a gap
e = 300 µm (e = 600 µm). The data are labelled by the nominal viscosity.
The dashed lines are the theoretical predictions, Eq. (9), using the nominal
viscosity and the inertia term issued from measurements on the empty cell.
Inset: phase δ, as a function of angular frequency normalized by the visco-
inertial time τv. The line is the theoretical prediction, Eq. (9).
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is beyond the range of probed frequencies. For the sample
with intermediate viscosity (η = 10 Pa s), a crossover between
|G∗| ∼ ω (viscous regime) and |G∗| ∼ ω2 (inertia-dominated
regime) is observed at ω ≈ 10–15 rad s−1, consistent with
1/τv = 10–20 s−1 (depending on e). Finally, for the less viscous
sample we estimate 1/τv = 2 s−1: for this sample, all data for
which friction is negligible lay in the high frequency regime
ωτv > 1 where inertia dominates, leading to the observed
|G∗| ∼ ω2 scaling. The inset of Fig. 7 shows the argument
of the complex modulus as a function of the normalized
frequency ωτv. The data nicely exhibit the transition between
the low and high frequency regimes predicted by Eq. (9),
characterized by δ = π/2 (viscous regime) and δ = 0 (inertial
regime), respectively. The discrepancy seen for the fluid with
η = 1 Pa s is again due to residual friction.

B. Purely elastic solid

1. Theoretical background

The constitutive law for a purely elastic sample isσ = Gγ,
with G the elastic shear modulus. Equation (4) then becomes

I γ̈ + Gγ = σ(ext) , (10)

whose solution involves the characteristic frequency Ω
=
√

G/I, related to an inertial time scale. Inertia is expected to
dominate on time scales smaller thanΩ−1, whose typical value
for our setup, using M = 0.3 kg, e = 300 µm, and A = 2 cm2,
is given by Ω−1 [s] ≈ 0.7/


G [Pa].

In a step stress experiment with σ(ext) = σ0Θ(t), the
solution to Eq. (10) is

γ(t) = γ∞ [1 − cos (Ωt)] , (11)

with γ∞ = σ0/G. In the inertial regime Ωt ≪ 1, one finds
the characteristic quadratic time dependence of the strain,
γ(t) ≈ 1

2
σ0
I

t2, while at later times the cos (Ωt) term leads
to a distinctive “ringing” behavior. Note however that when
friction is included, the strain oscillations eventually are
damped.

For an oscillatory imposed stress, the solution to Eq. (10)
reads

γ(t) = γ̃ω


eiωt − cos (Ωt) − i

ω

Ω
sin (Ωt)


, (12)

with γ̃ω =
σ̃ω
G


1 −

�
ω
Ω

�2−1
. This corresponds to a complex

modulus whose magnitude and phase are

|G∗| = G

1 −

(
ω

Ω

)2

,

δ = 0 .
(13)

At small times t ≪ Ω−1 we have again γ(t) ≈ γ̃ω(eiωt − 1
− iωt), whereas at large t the strain exhibits oscillations at
the frequency Ω associated to inertia, superimposed to the
elastic response at the forcing frequency ω: their amplitude
is |σ̃ω |/G and they are in phase with the driving force, a
distinctive feature of elasticity.

2. Experimental tests

We use polydimethylsiloxane (PDMS; Sylgard 184 by
Dow Corning), a popular elastomer whose elastic modulus
can be conveniently tuned by varying the crosslink density,90

as a model elastic solid. Using a commercial rheometer, we
check that the linear regime extends up to at least γ = 40%,
larger than the largest strain probed in our tests. A sample
with a crosslinker/base volume ratio of 1:60 is used for the
step stress measurements. In order to maximize the adhesion
to the glass plates, the sample is prepared in situ: after
adding the crosslinker, the fluid solution is placed between
the two plates and cured in an oven at 90 ◦C for 90 min.
The two plates with the cured sample are then mounted
on the shear cell. During this operation, care is taken not
to stress nor damage the sample. Control measurements are
run in a commercial rheometer, with the sample cured in situ
under similar conditions. We perform a series of step stress
experiments, with a gap e = 570 µm (as measured before the
experiment) and a sample surface A = 3.3 cm2. Stresses of
various amplitude σ0 are applied, the resulting strain being
recorded over time. Figure 8(a) shows a typical time series
of strain data acquired simultaneously with the commercial
laser sensor (symbols) and with our custom made optical
setup (line), for σ0 = 275 Pa: note the excellent agreement
between the two devices. After an initial transient, lasting
a few seconds, γ reaches a constant value γ∞ dictated by
the elastic modulus. Note that the oscillations due to inertia
predicted by Eq. (11) are not seen here, indicating that the
(small) dissipation of PDMS is sufficient to overdamp them.
In Fig. 8(b), γ∞ estimated by averaging γ(t) over 5 min is
plotted as a function of the imposed stress. Each data point is

FIG. 8. (a) Time evolution of the strain following a step stress applied at t = 0
to a crosslinked PDMS sample, measured with both the commercial laser
meter (black dots) and the home-made optical setup (red line). (b) Response
to a step stress. The asymptotic strain γ∞ is plotted against the amplitude
of the applied step stress. Data are averaged over 8 experiments, the error
bars are the standard deviation over the experiment repetitions. The solid
line is an affine fit, yielding an elastic modulus G = 1620 Pa. (c) Frequency
dependence of the elastic and loss moduli in an oscillatory test, as measured
in the custom shear cell (|σ̃ω | = 180 Pa, large symbols) and in a commercial
rheometer (γ0= 1%, line and small symbols).
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an average over 8 experiments, the error bars representing data
dispersion. The experimental data are very well fitted by an
affine law (red line): γ∞ = (σ0 − σoff )/G, with G = 1620 Pa
the elastic modulus of the sample and σoff = 13 mPa an offset
stress due to friction. We note that σoff is smaller than the
typical friction stress estimated from the experiments with an
empty cell, which is of the order of 1 Pa. This discrepancy
suggests that the exact value of the friction term depends
sensitively on several factors (cleanness of the air bearing,
alignment with respect to the vertical direction, etc.) and that
1 Pa should be regarded as a higher bound on its magnitude.

A second series of experiments is performed by imposing
oscillating stresses. The sample is prepared at a higher
crosslinker density (1:40 v/v), with e = 590 µm and A
= 2.5 cm2. After curing the PDMS as described above,
an oscillating stress is applied and the amplitude of the
strain oscillations is extracted from a sinusoidal fit to γ(t).
Figure 8(c) shows the frequency dependent elastic and loss
moduli. The elastic modulus measured in the custom shear
cell is in excellent agreement with data taken in a commercial
rheometer (to within 15% or better). By contrast, some
discrepancies are seen between G′′ as measured in the shear
cell and by conventional rheometry. At low frequency (ω
≤ 0.3 rad s−1), such a difference is likely to stem from the
very small value of G′′ as compared to G′, which makes the
determination of the loss modulus particularly challenging, as
well as to the small friction term discussed in Sec. III D. At
high frequency (ω ≥ 7 rad s−1), the loss modulus is somehow
overestimated by the shear cell. This is probably due to the
additional viscous dissipation term not accounted for in our
modeling of the shear cell.

C. Maxwell fluid

1. Theoretical background

As an example of a viscoelastic fluid, we consider
a Maxwell fluid, for which γ̇ = σ̇/G + σ/η. Here G is
the plateau modulus and η = GτM the viscosity, with τM
the Maxwell relaxation time. Using this constitutive law, the
equation of motion, Eq. (4), yields

I
d2γ̇

dt2 +
I
τM

dγ̇
dt
+ Gγ̇ = σ̇(ext) +

σ(ext)

τM
, (14)

whose solutions again involve the characteristic frequency
Ω =
√

G/I.
The general solution for a step stress is

γ(t) = σ0

G

(
c0 +

t
τM
+ c+e−λ+t + c−e−λ−t

)
, (15)

where c0 = 1 − 1
τ2
M
Ω2 , c± = − 1

2
*
,
c0 ∓ c0+2

1−4τ2
M
Ω2
+
-
, and λ±

= 1
2τM

(
1 ±


1 − 4Ω2τ2

M

)
. The regime of slowly relaxing

Maxwell fluids (as compared to the inertial time) corresponds
to ΩτM ≪ 1. In this limit, one recovers γ ≈ σt2/(2I), as for
a purely viscous fluid (see Eq. (6)). In the opposite limit

ΩτM ≫ 1, the solution is

γ(t) = σ0

G


1 +

t
τM
− exp

(
− t

2τM

)
cos(Ωt)


, (16)

for which three regimes may be distinguished. For t ≪ Ω−1,
inertia dominates and γ = σ0t2/(2I). For, Ω−1 ≪ t ≪ τM, the
typical oscillations due to the elastic part of the sample
response are observed: γ(t) ≈ σ

G
[1 − cos(Ωt)]. Finally, at long

times t ≫ τM the sample flows as a purely viscous fluid:
γ(t) ≈ σ0t/η.

For an applied oscillating stress, focussing on the complex
modulus calculated from the oscillating part of the cell
response, one finds

|G∗| = G

(
1 − ω2

Ω2

)2
+ ω2

Ω4τ2
M(

1 − ω2

Ω2 − 1
τ2
M
Ω2

)2
+ 1

ω2τ2
M

,

tan δ =
1

ωτM

Ω2

Ω2 − ω2 − 1
τ2
M

.

(17)

In the Ω ≫ τ−1
M and Ω ≫ ω limit where inertia is negligible,

Eq. (17) simplifies to yield the usual expressions for a Maxwell
fluid,

|G∗| = G*
,
1 +

1
ω2τ2

M

+
-

− 1
2

,

tan δ =
1

ωτM
.

(18)

2. Experimental tests

We test our apparatus on a model Maxwell fluid by
performing both oscillatory rheology in the linear regime and
creep tests for a wide range of applied stresses, from 1.5
to 150 Pa. The Maxwell fluid is a self-assembled transient
network, comprising surfactant-stabilized microemulsions
reversibly linked by triblock copolymers, described in detail
in Ref. 91. After loading the sample in the shear cell, we
wait 5 min before applying a step stress, in order to let the
sample fully relax. Similarly, after each creep experiment a
waiting time of 2 min is applied before starting the next one.
Figure 9(a) shows the comparison between the shear cell data
(full symbols) and those collected by conventional rheometry
(crosses). An excellent agreement is seen for G′, except at the
highest frequencies (ω ≥ 7 rad s−1), where inertia becomes
important. In this regime, the shear cell data are reasonably
well captured by the theoretical expression, Eq. (17) (dashed
line). For G′′, we find a very good agreement between the
two sets of data up to ω ≈ 2 rad s−1. At higher frequency, the
shear cell data overestimate G′′, a trend similar to that seen in
Fig. 8(b) for the crosslinked PDMS. This lends further support
to the hypothesis that an additional viscous dissipation term
becomes important at relatively high shear rates.

The time evolution of the strain amplitude in creep tests is
shown in Fig. 9(b) for several applied stresses σ0. The data are
very well fitted by the theoretical expression (Eq. (16)) using
the viscoelastic parameters of the Maxwell fluid, τM and G,
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FIG. 9. (a) Frequency dependence of the elastic and loss moduli, for a
Maxwell sample. Solid symbols: shear cell, with imposed stress such that
γ0≈ 10% for all ω; crosses: commercial rheometer, γ0= 10%; lines: fit of G′

and G′′ as calculated from Eq. (17), with the characteristic relaxation time,
τM , and the plateau modulus, G as fitting parameters. (b) Strain vs. time
following a step stress with amplitude σ0 as given by the labels. Open and
filled symbols represent two consecutive measurements on the same sample;
lines are best fits to the data using Eq. (16), where the fitting parameters are
τM and G.

as fitting parameters. For applied stresses within the linear
regime, we find a very good agreement between G and τm as
measured with the shear cell and by conventional rheometry
(to within 11% and 3% for G and τm, respectively). Note that
Eq. (16) captures very well also the ringing effect due to the
inertia of the shear cell.

V. DYNAMIC LIGHT SCATTERING UNDER SHEAR

We couple the shear cell to a custom-made small angle
light scattering setup86 and measure the microscopic dynamics
of a colloidal suspension of Brownian particles, both at rest and
under shear. The setup uses a CMOS camera as a detector; the
microscopic dynamics is quantified by the intensity correlation
function g2 − 1,82,92

g2(q, τ) − 1 = ⟨ ⟨Ip(t + τ)Ip(t)⟩q

⟨Ip(t)⟩q⟨Ip(t + τ)⟩q
⟩t − 1 . (19)

Here, Ip is the time-dependent intensity measured by the p-th
pixel, ⟨· · ·⟩t denotes an average over the experiment duration,
and ⟨· · ·⟩q is an average over a set of pixels corresponding to a
small solid angle centered around the direction associated to a
scattering vector q, whose magnitude is q = 4πnλ−1 sin(θ/2),
with n the solvent refractive index, λ = 532 nm the laser
wavelength and θ the scattering angle.

The intensity correlation function is directly related to
the microscopic dynamics: for particles undergoing Brownian
motion, g2(q, τ) − 1 = exp(−2Dq2τ), where D is the particle
diffusion coefficient.82 Under shear, the relative motion due
to the affine displacement also contributes to the decay of
g2 − 1. Neglecting hydrodynamic interactions and assuming
an homogeneous shear flow in the xz plane (ûx and ûz being
the velocity and the velocity gradient direction, respectively),
the particle dynamics are described by the displacement field
∆r(r, γ̇, τ) = ∆r(diff)(τ) + ∆r(aff)(r, γ̇, τ), where ∆r(aff)(r, γ̇, τ)
= γ̇τ(r · ûz)ûx is the affine shear field, whereas ∆r(diff)(τ)
describes Brownian diffusion. Assuming that the two contri-
butions are uncorrelated, the intensity correlation function can
be expressed as93

g2(q, γ̇, τ) − 1 = sinc2
( e

2
qxγ̇τ

)
exp

�
−2Dq2τ

�
, (20)

where qx = q · ûx is the projection of the scattering vector
along the velocity direction. Note that no contribution of the
applied shear on the dynamics is expected when selecting a
scattering vector q = qyûy parallel to the vorticity direction.

We measure the dynamics of a suspension of polystyrene
particles with diameter 2a = 1.2 µm (Invitrogen Molecular
Probes), suspended at a weight fraction of 0.01% in a
1:1 v/v mixture of H2O and D2O that matches the density
of polystyrene, to avoid sedimentation. A time series of
images of the scattered light is acquired using the scheme
described in Ref. 94, both at rest and while imposing a
constant shear rate γ̇ = 0.03 s−1. The intensity correlation
function is calculated using Eq. (19), for several q vectors
both along the velocity and the vorticity direction (qx and
qy, respectively). Figure 10 shows representative correlation
functions; for a given magnitude of the scattering vector, the
decay time is shorter when q is oriented parallel to the shear
velocity (open symbols), reflecting faster dynamics due to
the contribution of the affine shear field. The lines are fits
to the data using Eq. (20): for both q orientations, excellent
agreement is seen between the data and the model. We extract
from the fits the characteristic relaxation time τ∗, defined by
g2(q, τ∗) − 1 = exp(−2), and plot τ∗ vs q in the inset of Fig. 10.
For q = qyûx, τ∗ is in excellent agreement with the theoretical
prediction, dashed line; its q dependence is very close to
a q−1 scaling, indicative of ballistic motion and suggesting
that over the range of probed q vectors and time scales the
displacement due to the affine deformation is significantly
larger than that due to Brownian motion. This is confirmed
by inspecting τ∗(q) for a quiescent suspension (solid squares
and solid line): for all q, the relaxation time due to Brownian
motion is larger than that under shear. The solid circles are the
relaxation time of the dynamics in the vorticity direction while
shearing the sample. Overall, τ∗(qy) closely follows the data
for the quiescent suspension, demonstrating that the affine and
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FIG. 10. Main plot: representative intensity correlation functions for a
sheared suspension of Brownian particles, for scattering vectors parallel (qx,
open symbols) and perpendicular (qy, solid symbols) to the shear direction.
Data are fitted with Eq. (20) (dashed and solid lines for qx and qy, respec-
tively) with D and γ̇ as fitting parameters. Inset: characteristic time τ∗ as
defined in the text for the two orientations of q and for a quiescent sample, as
a function of the scattering vector. The lines are the predictions of Eq. (20),
using the nominal values of the diffusion coefficient, D = 0.36 µm2s−1, and
the shear rate, γ̇ = 0.03 s−1.

non-affine components of the particle dynamics can be
resolved by dynamic light scattering. Only at the smallest
q vector do the data exhibit some deviations with respect
to purely Brownian dynamics: most likely, this discrepancy
stems from slight deviations of the velocity field from the
ideal one, due to the finite size of the sample.

VI. CONCLUSION

We have presented a custom-made stress-controlled shear
cell in the linear translation plate-plate geometry, which can
be coupled to both a microscope and a static and dynamic light
scattering apparatus. The setup has been successfully tested
on a variety of samples representative of simple fluids, ideal
solids, and viscoelastic fluids; its coupling to dynamic light
scattering measurements has been illustrated by measuring
the dynamics of Brownian particles in a suspension at rest
or under shear. The main features of the cell include a gap
that can be adjusted down to 100 µm keeping the parallelism
to within 0.3 mrad, the acquisition of strain data at up to
1000 Hz with very good precision (typically better than
0.01%) and for strains as large as 104%, and the possibility
of imposing a user-defined, time-varying stress, ranging from
0.1 Pa (limited by residual friction) to 10 kPa, with a frequency
bandpass 0 ≤ ω ≤ 4 rad s−1. Most of these specifications meet
or even exceed those of a commercial rheometer. Among
the limitations intrinsic to the setup, the most stringent is
probably inertia, due to the non-negligible mass of the sliding
frame M = 335 g, which restricts viscosity measurements to
η & 1 Pa s. Other limitations in the current implementation
could be improved: for example, the upper stress limit could be
pushed to 100 kPa by changing the magnetic actuator. Finally,
we remind that care must be taken in aligning both the plate

parallelism and the horizontality of the setup, which makes its
use less straightforward than that of a commercial rheometer.
These drawbacks are more than offset by the advantages
afforded by our shear cell: The possibility of easily changing
the plates, e.g., to optimize them against slippage or to replace
them when the surface quality does not meet anymore the
stringent requirements for microscopy or light scattering; the
open design that leaves full access on both sides, thus making
it suitable for both inverted and upright microscopes and for
small angle light scattering; the linear translation geometry
that insures uniform stress in the (optically optimal) parallel
plate configuration; the flexibility provided by the choice of
the orientation in the vertical or horizontal plane; and, last but
not least, a much reduced cost as compared to a commercial
rheometer.
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Dynamic light scattering (DLS) is a very powerful technique, but its application to

materials under shear is not trivial. In a �rst step we show a theoretical, numerical and

experimental investigation of how DLS may be used as a tool to measure the microscopic

dynamics in soft systems under shear. This study, presented in this chapter in the form

of a paper that will be submitted shortly, allows to identify the crucial parameters that

have to be tuned in order to enhance the sensitivity to nona�ne deformations. As a �rst

example, the data analysis protocol developed in this study was applied to the deforma-

tion of a weakly crosslinked elastomer, and revealed the presence of reversible nona�ne

deformations in the linear regime, stemming from the spatial heterogeneity of the elastic

network.



Probing shear-induced rearrangements in Fourier Space. I. Dynamic
Light Scattering

S. Aime,∗a and L. Cipellettia

Understanding the microscopic origin of the rheological behavior of soft matter is a long-lasting endeavour. While early efforts
concentrated mainly on the relationship between rheology and structure, current research focuses on the role of microscopic
dynamics. We present in two companion papers a thorough discussion of how Fourier space-based methods may be coupled to
rheology to shed light on the relationship between the microscopic dynamics and the mechanical response of soft systems. In
this first companion paper, we report a theoretical, numerical and experimental investigation of dynamic light scattering coupled
to rheology. While in ideal solids and simple viscous fluids the displacement field under a shear deformation is purely affine,
additional non-affine displacements arise in many situations of great interest, for example in elastically heterogeneous materials
or due to plastic rearrangements. We show how affine and non-affine displacements can be separately resolved by dynamic light
scattering, and discuss in detail the effect of several non-idealities in typical experiments.

1 Introduction

Soft matter systems are significantly deformed or even flown
by applying modest forces, corresponding to stresses compa-
rable to those due to thermal fluctuations. Consequently, the
rheological behavior of soft systems is of great fundamental
interest and of paramount importance in technological appli-
cations. This makes soft matter rheology the object of a sus-
tained research effort, both in academia and in industry1. One
of the key questions actively investigated concerns the inter-
play between the rheological properties of soft systems and
their microscopic structure and dynamics. Indeed, structure
and dynamics determine the microscopic relaxation processes
responsible for the macroscopic mechanical properties of a
system and are in turn profoundly modified by externally im-
posed stresses, e.g. in shear alignment or in shear thinning and
thickening.

The interplay between rheology and the microscopic struc-
ture and dynamics is currently studied intensively by numer-
ical simulations, as well as experimentally. Separate exper-
iments probing rheological properties on one hand and the
microscopic structure and dynamics on the other hand are
certainly informative and do provide valuable insight, espe-
cially in the linear regime and for stationary, non-thixotropic
samples. However, simultaneous mechanical and microscopic
measurements are highly desirable, in particular when prob-
ing the non-linear regime, where both the rheological response
and the microscopic behavior are typically non-stationary and
often exhibit sample-to-sample or even run-to-run strong fluc-
tuations, e.g. in the onset of shear bands2 or in plastic rear-
rangements with complex spatio-temporal patterns3,4. Opti-

a L2C, University of Montpellier, CNRS, Montpellier, France. E-mail: ste-
fano.aime@umontpellier.fr

cal and confocal microscopy are now used by several groups
to investigate the sample evolution at the single particle scale,
in conjunction with rheology, either by coupling a (confocal)
microscope to a commercial rheometer5,6 or by using a dedi-
cated shear cell7–10. Microscopy methods allow the tracking
of individual particles, thus providing one with the most com-
plete microscopic information. However, microscopy comes
with some limitations: typically, particle-based samples are
required, and the particle size has to be larger than about
0.5 µm; particles must be fluorescently labelled for confo-
cal microscopy and tracking their position to better than about
0.1 µm requires special care and intensive image process-
ing11. Even more importantly, a high spatial resolution, a
large field of view, and a high acquisition rate are conflicting
requirements, so that one cannot resolve minute displacements
with good time resolution while imaging a large portion of the
sample. Fourier space techniques, and in particular scattering
methods, are an attractive alternative to real-space measure-
ments: although no information can be obtained on individual
particles, scattering techniques allow a large sample volume to
be probed, with no particular constraint on the temporal res-
olution. Moreover, particles in a wide range of sizes, from a
few nm up to several microns, can be easily studied, as well
as polymer- or surfactant-based systems. In this paper, we
shall focus on scattering methods. In a companion paper12

we will discuss Differential Dynamic Microscopy13,14 (DDM)
coupled to rheology. While DDM is based on microscopy, the
data analysis is performed in Fourier space, using a formalism
close to that of scattering techniques.

Historically, scattering methods coupled to rheology have
been first used to investigate the sample structure15–17, but
since the Nineties of the last century, dynamic scattering meth-
ods have become increasingly popular as a powerful tool to
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probe the microscopic dynamics of mechanically driven soft
systems18–20. Most experiments have been performed in the
highly multiple scattering limit for visible light (Diffusing
Wave Spectroscopy, DWS21), thanks to the simplicity of the
required optical layout and the high sensitivity of the method,
which can detect motion on length scales as small as a frac-
tion of a nm. A few experiments have been performed in the
single scattering limit, typically (but not exclusively22) in a
small-angle configuration where several scattering angles can
be probed at the same time, using both visible light23 (Dy-
namic Light Scattering, DLS24) and coherent X-ray radia-
tion25 (X-photon correlation spectroscopy, XPCS26).

Most scattering experiments have been performed simul-
taneously to oscillatory rheology, using the so-called echo
method20,25,27,28, where the evolution of the sample micro-
scopic configuration is measured stroboscopically, by com-
paring the pattern of the scattered intensity at each cycle, e.g.
when the deformation is zero. This protocol allows the irre-
versible rearrangements to be highlighted and avoids the com-
plications arising when affine and non-affine displacements
are to be separately quantified. To address this key point, let
us consider the geometry that we shall discuss in this paper,
e.g. a plane-plane cell imposing a linear shear deformation,
with the unit vectors (ûx, ûy, ûz) pointing in the shear velocity,
shear vorticity and shear gradient directions, respectively. For
both an ideal solid and a purely viscous fluid, the displacement
field is affine:

∆r(r,γ) = ∆r(aff)(r,γ) = (r · ûz)γ ûx , (1)

where e is the cell gap and γ = δ/e the shear deformation im-
posed by displacing the z = e plane by an amount δ in the
ûx direction. Non-affine displacements may arise as a conse-
quence of heterogeneous elastic response29,30, or as a result
of non-linearities31, or due to plastic rearrangements27. They
represent additional motion, typically not restricted to the di-
rection of the imposed deformation, on top of the affine de-
formation field. Clearly, being able to discriminate between
affine and non-affine dynamics is mandatory in order to fully
characterize the complex interplay between rheology and mi-
croscopic dynamics, beyond the idealized case of Eq. 1.

In DWS, the microscopic dynamics is quantified by mea-
suring the change of phase of photons undergoing many scat-
tering events in the sample. Since photons propagate follow-
ing an isotropic, random walk-like path21, they probe micro-
scopic displacements along all directions. Hence, DWS is sen-
sitive both to affine and non-affine displacements. For a given
macroscopic deformation, it is possible to calculate theoreti-
cally the contribution of affine motion to the DWS signal32,33.
Any deviations from this behavior can then be ascribed to non-
affine displacements. In practice, however, this approach is
difficult to implement, because the approximations required to
perform the calculation are not fully met in experiments33,34,

and because non-affine motion is typically small in compari-
son to the affine component. Diffusing Wave Spectroscopy is
thus generally restricted to the case where the affine displace-
ments vanish, as in the echo protocol or in stress relaxation
tests35, where a sample under load is kept at a fixed deforma-
tion.

Single scattering, by contrast, probes the dynamics along a
well-defined direction, controlled by the experimental geom-
etry. It is therefore possible to selectively probe motion along
any of the (ûx, ûy, ûz) directions, thereby allowing affine and
non-affine dynamics to be discriminated. This paves the way
to measurements of the microscopic dynamics in a wide va-
riety of rheological tests, including steady shear rate or creep
tests, currently extensively used to understand the yield tran-
sition of amorphous soft solids36,37, or oscillatory tests be-
yond the echo protocol, where surprising effects such as ‘re-
versible plasticity’ may be unveiled by inspecting the dynam-
ics throughout the whole oscillation cycle38,39. As we shall
show it in the following, the ability of single scattering to re-
solve motion along one single direction (e.g. along the vor-
ticity direction ûy) relies on several assumptions: the sam-
ple must be illuminated by an infinitely extended plane wave,
the collection optics must be aberration-free, and the size of
the detector along the direction orthogonal to the one selected
(e.g. along the shear direction ûx) must be vanishingly small.
Clearly, these conditions cannot be strictly met in experiments.

In this paper, we derive analytical expressions that quantify
the decay of correlation functions measured in DLS as a re-
sult of both affine and non-affine displacements, taking into
account the effect of non-ideal experimental conditions. We
provide guidelines for mitigating or correcting for the con-
tributions to the correlation functions arising from non-ideal
conditions and successfully test our predictions against exper-
iments and numerical simulations. Although we will focus on
simple shear coupled to a small-angle DLS setup, the results
presented here are general and can be easily adapted to differ-
ent experimental layouts, e.g. to a backscattering geometry.
The rest of the paper is organized as follows: in Sec. 2 we
briefly introduce the samples used for the tests, the DLS appa-
ratus, the shear cell, and the simulation methods. In Sec. 3 we
develop a theoretical model of DLS under shear, starting from
a discussion of the effect of a simple translation of the sample,
and then presenting results for a purely affine deformation and
the general case with both affine and non-affine microscopic
dynamics. At each step, we show experimental and numer-
ical data that validate our theoretical approach. We recapit-
ulate our main findings and make some concluding remarks
in Sec. 4. For the reader’s convenience, Appendix 1 lists all
the symbols used in the paper, whereas Appendix 2 contains a
more detailed derivation of the analytical results presented in
the text.
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2 Materials and methods

2.1 Samples

For studying the effect of a pure sample translation, quasi-2D
random scatterers were prepared by sandblasting microscope
glass slides (sandblaster Otelo OTMT with aluminium oxide
particles of diameter 30 µm). A commercial linear stage (Lin-
ear Stage UMR8.25A, by Newport) coupled to a stepper mo-
tor (Newport Precision Motorized Actuator LTA-HS) with a
nominal precision of 1 µm was used to impose a controlled
displacement in the ûx direction. The actual displacement
was measured to within an accuracy of about 60 nm using the
speckle imaging technique described in40,41.

As a model sample for investigating 3D shear, we pre-
pared polyacrylamide (PA) gels by polymerizing acrylamide
monomers and (bis)acrylamide cross-linkers, using a free-
radical polymerization reaction as described in42. TiO2
nanoparticles were added to the monomer solution at a con-
centration of around 0.01%. The particle diameter is 0.3 µm
(resp., 0.5 µm) for the scattering experiments (resp., for mi-
croscopy observations, see below). In order to thoroughly
disperse the TiO2 particles, the solution was sonicated for
roughly 2h and then filtered before adding the initiators.

2.2 Shear cell

For measurements under shear, the home-made plane-plane
shear cell described in23 was used. The cell consists of
two glass plates confining the sample in a gap ranging from
e = 300 µm to e = 1500 µm. To reduce slip, the inner sur-
faces of the glass plates are frosted, leaving a small transpar-
ent window (of surface a few mm2) in order to optically probe
the sample during deformation. The deformation was imposed
and measured as for the 2D samples. The typical accuracy on
the strain measurement is of the order of 0.01%.

2.3 Small-angle DLS apparatus

Dynamic light scattering experiments are performed using the
custom-made apparatus described in43, allowing simultane-
ous measurements at scattering angles in the range 0.4 deg ≤
θ ≤ 25 deg, corresponding to scattering vectors q = 2k sinθ/2
in the range 0.1 µm−1 ≤ q ≤ 5 µm−1, where k = 2πnλ−1 is
the wave vector of the incoming beam, with n the refractive in-
dex of the solvent and λ = 0.633 µm the in-vacuo wave length
of the laser source. A simplified scheme of the DLS apparatus
is shown in Fig. 1a). The setup uses the typical far-field con-
figuration, where the detector (the 2D sensor of a CMOS cam-
era) is placed in the focal plane of a lens collecting the light
scattered by the sample, often termed the Fourier lens. In this
configuration, light scattered at the same θ and the same az-
imuthal angle (with respect to the direction ûz of the incoming

beam) is conveyed to a single point on the detector, irrespec-
tive of the location of the scatterers in the sample. The incident
beam has a Gaussian shape, with a 1/e2 radius w = 0.45 mm
at the sample position, and radius w0 = 0.444 mm in the beam
waist, where the radius is minimal44. The focal length of the
Fourier lens is f = 17.3 mm.

f
sample

lens

detector

A

A’ f e
R

A
a)

b)

ො𝑢𝑥

ො𝑢𝑧

ො𝑢𝑦
q

Fig. 1 a): simplified scheme of the light scattering setup. The
detector is placed in the focal plane of the Fourier lens. b): scheme
used in the discussion of the effect of aberrations. A and A′ are
conjugated points, separated by a distance R along the direction of
the optical axis. The distance ε has been exaggerated for the sake of
clarity, usually ε � f .

The images collected by the detector have a distinctive
grainy appearance, with dark and bright spots termed speck-
les, arising from the interference of the photons scattered by
the sample45. In order to extract information on the dynam-
ics, we quantify the temporal fluctuations of the speckles by
calculating the degree of correlation between a pair of images
taken at time t and t + τ 24,46:

g2(q, t,τ)−1 =

〈
Ip(t)Ip(t + τ)

〉
p∈ROI(q)〈

Ip(t)
〉

p∈ROI(q)

〈
Ip(t + τ)

〉
p∈ROI(q)

−1 . (2)

Here, Ip(t) is the intensity at time t of the p−th pixel and the
average is over a set of pixels or region of interest (ROI) cor-
responding to a well-defined q vector. For the optical lay-
out sketched in Fig. 1 and q = qxûx (respectively, q = qyûy),
the ROI is centered around the position ( f tanθ ûx,0) (respec-
tively, around the position (0, f tanθ ûy), see Ref.43 for more
details.

Throughout this paper, the loss of correlation will be due
exclusively to the imposed shear deformation or sample trans-
lation: the temporal variable τ in Eq. 2 will be then replaced
by γ or δ , respectively. The intensity correlation function is re-
lated to the field correlation function by the Siegert relation24,
which for the case, e.g., of a sheared 3D sample reads:

g2(q,γ)−1 = |g1(q,γ)|2 ∝ |〈ES(q,0) ·E∗S(q,γ)〉|2 , (3)
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where the (complex) scattered electric field is given by

ES(q,γ) ∝
N

∑
j=1
Ein(r j(γ))e−iq·r j(γ) , (4)

with r j the (γ- or δ -dependent) coordinates of the j−th parti-
cle and where the sum runs over N scatterers. In writing Eq. 4,
we have assumed with no loss of generality that all particles
are identical and we have neglected any q dependence of the
scattering from an individual particle, i.e. we have set to unity
the form factor24. Note that in contrast to the usual expression
of ES we have included the possibility that the incoming elec-
tric fieldEin varies spatially (both in phase and amplitude), to
account for deviations with respect to illumination by a per-
fect, infinitely extended plane wave.

2.4 Numerical simulations

Numerical simulations of the scattering signal associated to a
given sample deformation were performed by generating a 3D
random set of scatterers with the same size as the experimental
sample and by propagating the scattered field from the sample
to the detector plane, where ES is obtained from Eq. 4. For
each pixel location, the scattered intensity is then calculated
as |ES|2; the simulated speckle patterns are then analyzed as
the experimental ones, i.e. using Eq 2. For the experimental
data to be easily compared to theory and simulations, all cor-
relation functions were normalized such that g2(q,0)−1 = 1.

2.5 Measurements of non-affine displacements by optical
microscopy

For checking purposes, non-affine displacements of the TiO2
tracer particles in the PA gels were also measured in real space
by coupling the shear cell to a bright field microscope, whose
condenser diaphragm was fully open in order to reduce the
depth of focus. The in-plane non-affine displacements were
measured for different depths z and averaged over all particles.
We use a custom python code built from the Trackpy Python
package 47 to track the colloidal particles. The non-affine dis-
placements measured by microscopy are compared to those
obtained by DLS. Additionally, they are used to obtain a ref-
erence value for numerical simulations, where non-affinity is
introduced by adding to the affine displacement field a ran-
dom, isotropic and Gaussian-distributed extra-contribution, in
such a way that the resulting rms displacement matches the
one measured by microscopy.

3 Dynamic Light Scattering for a sheared sam-
ple

Equation 4 shows that all scatterers contribute to the signal
detected in a DLS experiment via phase terms: this is what

makes DLS such a powerful and sensitive technique to probe
the sample dynamics. Indeed, every change in the r j coordi-
nates has an impact on the scattered field, and thus on the cor-
relation function, Eq. 2. Under a shear deformation, the affine
displacement field produces a loss of correlation that can be
calculated from Eq. 3 and the Siegert relation. In the presence
of non-affine displacements, the particles’ displacement con-
tains and additional term: ∆r j = ∆r(aff)

j +R′
j. The non-affine

contributionR′ results in a different, generally faster decay of
g2−1, as compared to the case of a purely affine deformation.
In this section we will show how to decouple the two contribu-
tions, by quantifying the average non-affine displacement and
‘filtering out’ the decorrelation due to the affine deformation.

To this end, it is useful to proceed by steps. Equation 1 indi-
cates that a 3D sample deformed affinely may be modeled by a
set of Σz planes perpendicular to the optical axis, rigidly trans-
lating by a z-dependent amount δz = γzûx. The decay of g2−1
will then contain a first contribution due to the rigid translation
of each plane, plus a second contribution arising from the rel-
ative motion of different Σz slices. We will thus start by con-
sidering the simple case of a 2D sample that rigidly translates
along the x axis, discussing all the factors that contribute to the
loss of correlation (Sec.3.1). We will then address the more
complicated situation of a 3D sample composed of a stack of
Σz slices (Sec. 3.2). Finally, in Sec. 3.3 we will discuss the
general case of both affine and non-affine displacements.

3.1 Rigid translation of a 2D sample

We model a 2D sample by a set of scatterers with positions r j
such that r j · ûz = z = const and refer to it as to a Σz plane. We
consider the case of a rigid translation δ = γzûx of such plane.
If the incident beam was an ideal plane wave, infinitely ex-
tended in the ûx, ûy directions perpendicular to the propagation
direction, the term Ein in Eq. 4 would be space-independent
and could be factored out of the sum. It is then easy to show
that the intensity correlation function g2− 1 would be invari-
ant under a sample translation, since the total electric field
would change only by a phase factor exp(−iq ·δ) as the sam-
ple drifts. This is why DLS is commonly regarded as a tech-
nique sensitive to the relative motion of the scatterers, not to
their global drift. However, ideal plane wave conditions can-
not be fully met in experiments: the incoming beam has a fi-
nite cross section, often with a radial intensity modulation, e.g.
a Gaussian profile. In this section we thus discuss the decor-
relation expected for rigid translations under a non-uniform
incident electric field.

Intuitively, it is clear that translations larger than the beam
size lead to the full decay of g2, since they completely change
the set of illuminated scatterers. Even when the sample is
translated by an amount smaller than the scattering volume
diameter, some loss of correlation is expected if the sample
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illumination is not uniform: as the sample is translated, each
scatterer receives a varying illuminating field, which will mod-
ify the relative weight of the terms in the sum of Eq. 4 and thus
the scattered intensity. To quantify this effect, we consider the
realistic case of a Gaussian laser beam propagating along the
z axis in the paraxial approximation48:

Ein(r,z) =E0
w0

w(z)
eikze

− r2

w2(z) eik r2
2ρ(z) (5)

where (r,z) are radial and axial cylindrical coordinates along
the optical axis, w(z) = w0

√
1+(z/a)2 is the beam 1/e2 ra-

dius and ρ(z) = z[1+(a/z)2] is the radius of curvature of the
wavefront, as a function of the position z along the optical
axis. Here a = 1

2 kw2
0 is the depth of the Rayleigh region, i.e.

the region centered around z = 0 where the laser beam can be
considered approximatively plane and collimated.

Using this expression in Eqs. 4 and 3, the intensity correla-
tion function is found to be:

g2(q,δ)−1 = e
− |δ|

2

w2

[
1+
(

kw2
2ρ

)2
]

= e
− |δ|

2

w2
0 (6)

with δ the translation vector, along the x axis. As anticipated,
the intensity pattern decorrelates significantly when the 2D ob-
ject translation is comparable to the beam size. Interestingly,
Eq. 6 shows that the relevant length scale is w0, the beam size
at the beam waist (z = 0), regardless of the actual z position of
the sample. This is because the increase of the beam size w(z)
and the decrease of the radius of curvature ρ(z) as the sample
departs from the beam waist exactly compensate each other,
leading to the simple expression in the far r.h.s. of Eq. 6.

According to Eq. 6, the decay of g2− 1 should not depend
on the scattering vector. However, Fig. 2 shows that the ex-
perimental correlation functions decay increasingly rapidly at
large q. We now show that this q-dependence is due to the
optical aberrations and deviations from the paraxial approxi-
mation, which become increasingly important at large q. As
far as speckle decorrelation is concerned, the most relevant ef-
fect is the fact that the focal surface is curved and not planar,
as in the paraxial, aberrations-free approximation. Thus, it is
impossible that all points of a flat detector lay in the focal sur-
face. The situation is schematized in Fig. 1b), where ε is the
offset along the ûz direction of the detector point A, with re-
spect to the focal surface. Figure 1b) shows that under these
conditions the point A collects light issued by the whole illu-
minated sample, but with a scattering angle that slightly de-
pends on the scatterer position. The scattered light collected
in A appears to originate from a point A’ located before the
sample and conjugated to A by the Fourier lens. The z com-
ponent of the distance AA’, denoted by R, plays a key role
in the following. Asakura and Takai49 have studied mixed
spatio-temporal intensity correlation functions describing the
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Fig. 2 Main plot: decay of the intensity correlation function due to
the rigid translation of a quasi-2D object, measured at different
scattering vectors q, as indicated by the label (units: µm−1). Filled
symbols: usual g2−1, calculated pixel-by-pixel following Eq. 2.
Open symbols: correlation function as obtained from the height of
the peak in the spatio-temporal crosscorrelation, see text for details.
Black line: Eq. 7 evaluated forX =Xpeak = σδ. Inset: cut of the
intensity spatio-temporal crosscorrelation, Eq. 7, along the
translation direction ûx, plotted for different values of δ , as indicated
by the legend (in mm), and for q = 3.79 µm−1. Symbols:
experimental data; lines: fits via Eq. 7.

evolution of the speckle pattern generated by a translating ob-
ject placed at an arbitrary distance from the detector. Their
key result was that a sample translation results in general in
a combination of a translation of the speckle pattern and ran-
dom fluctuations of the speckle intensity (‘boiling’). We thus
expect both contributes to exist in our experiment, unlike the
ideal case of a detector placed exactly in the focal surface and
a sample in the beam waist, for which the speckle pattern is
reconfigured with no overall drift.

We adapt the results of Ref.49 to the geometry described
here, and define a spatio-temporal intensity crosscorrelation
g2 (X,δ)− 1 ∝

∣∣〈ES (r,0) ·E∗S (r+X,δ)
〉∣∣2, where r and

X are vectors in the sensor plane. For a translating sample
illuminated by a Gaussian beam (Eq. 5), one finds:

g2(X,δ)−1 = e−
|δ|2
w2 e−

|X−σδ|2
∆2 (7)

where ∆ = R/(kw) is the speckle size, σ = 1+R/ρ , and X
the relative position of two points on the sensor whose in-
tensity is crosscorrelated. For X = 0, Eq. 7 reduces to the
standard pixel-by-pixel intensity correlation function, Eq. 3.
In this case, one retrieves g2−1 = exp(−δ 2/l2), similarly to
Eq. 6, but with a faster decay, since w0 is replaced by a shorter
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characteristic length l given by

1
l2 =

1
w2 +

σ2

∆2 =
1

w2
0

{
1+
( a

R

)2
[

1+
( z

a

)2
](

1+
2R
ρ

)}

(8)
The ideal case of far field scattering (achieved when the

detector images the focal surface of the Fourier lens) corre-
sponds to the R→ ∞ limit, where we retrieve as a character-
istic length l = w0, as in Eq. 6. On the other hand, a non-
vanishing deviation ε of the detector position with respect to
the focal surface can be described in terms of a finite value
R(ε) ≈ f 2/ε , which results in a faster decorrelation. Both
optical aberrations (embedded in σ , via R) and wavefront cur-
vature (embedded again in σ , via ρ) tend to enhance the sys-
tem sensitivity to rigid translations, which is not desired if one
aims to detect non-affine rearrangements. Moreover, equation
7 suggests that both effects have the same physical nature: as
a consequence of either one, a collective drift motion super-
imposes to the normal, ‘boiling’ decorrelation of the speckle
pattern. Indeed, when ρ or R assume finite values, it is easy to
see from Eq. 7 that the maximum correlation is achieved for a
non-nullX value, which reflects the presence of a global drift
that adds up to the ‘boiling’ decorrelation (see inset of Fig. 2).
To correct the data for this effect, one can follow the collec-
tive speckle translation by tracking the positionXpeak =σδ of
the crosscorrelation peak. The drift-corrected value of g2− 1
is then taken as the height of the peak, i.e. the value of the
spatio-temporal crosscorrelation for X =Xpeak. Following
this strategy, one finds that the corrected g2− 1 decays with
the sample drift as

g2(Xpeak,δ )−1 = exp(−δ 2/w2) . (9)

The open symbols in the main graph of Fig. 2 show the drift-
corrected intensity correlation function: in contrast to the
usual pixel-by-pixel correlation function (solid symbols), the
decay of g2−1 with sample displacement δ is q-independent
and very well accounted for by Eq. 7 (line).

To summarize, in this section we have shown that the finite
size of the beam, the curvature of the wavefront impinging on
the sample, and optical aberrations all contribute to the de-
cay of the intensity correlation function upon translating a 2D
sample. When correcting for the speckle drift, there is no q
dependence in these effects. Finally, the decay of the correla-
tion function is negligible for δ << w, i.e. when the sample
translation is (much) smaller than the beam size.

3.2 Affine deformation of a 3D sample

The case of a 3D object undergoing an affine deformation can
be treated by decomposing the sample in slices, each of which
translates by a z-dependent amount. The decay of g2−1 con-
tains a first contribution due to the rigid translation of each

slice, as well as a second contribution arising from the rela-
tive motion of scatterers belonging to distinct slices. In the
ideal case where an infinite plane wave illuminates the sam-
ple and the detector is in the focal plane, the first contribution
does not lead to a loss of correlation, while the second one is
readily computed (see Appendix 2 for details). One finds

g2(q,γ)−1 = sinc2
(

qxγ
e
2

)
(10)

where qx = q · ûx is the component of the scattering vector
parallel to the shear direction and sinc(x) = x−1 sin(x). Equa-
tion 10 illustrates the ability of DLS to selectively measure
affine or non-affine displacements, as mentioned in Sec. 1. In-
deed, if the azimuthal orientation of the scattering vector is
chosen such that qx = 0, g2 − 1 is insensitive to affine dis-
placements. Any decay of the correlation function that may
be observed is then to be ascribed to non-affine dynamics. The
scheme of Fig. 1a) illustrates a geometry where the scattering
vector is orthogonal to the shear direction: the scattered rays
belong to the (y,z) plane and hence qx = 0 (we remind that
q = ksc−kin, with kin and ksc the wave vector of the incident
and scattered light, respectively). Note that the loss of correla-
tion depends on the variable γe, i.e. the relative displacement
of the two plates confining the sample. Thus, for a given γ ,
thinner samples exhibit a smaller loss of correlation.

When the finite beam size and wavefront curvature are taken
into account, the expression for g2 − 1 or, equivalently, for
g1 =

√
g2−1, become more complicated, but remains inde-

pendent of qy. In Appendix 2 we provide an expression for
g1 for a sample in the waist of a Gaussian beam (see Eq. 15 in
Appendix 2). The thin sample (e�w) and high-qx (qx� e

γw2 )
limits of this expression reduce to the simpler Eq. 10. We test
these expressions for a scattering vector parallel to the shear
direction in Fig. 3. The inset shows g2−1 as a function of the
imposed shear deformation γ , for simulations (large symbols)
and for one experimental run on a PA gel (small black dots).
The lines are the result of the numerical integration of Eq. 15
in Appendix 2: an excellent agreement is observed between
theory and simulations. The main plot shows the same data,
plotted vs the scaled variable qxγe/2. The experimental data
and the simulations for e ≤ 200 µm fall onto a single master
curve, well reproduced by the simple form of Eq. 10 (line).
Additional experimental data for several scattering vectors in
the range 0.1 µm−1 < qx < 4 µm−1 also fall onto the same
master curve (data not shown to avoid overcrowding the plot).
Since here w = 450 µm, this indicates that the thin sample ex-
pression mathematically derived for e� w actually remains
valid up to the somehow more relaxed regime e . w. For
e > w, by contrast, g2− 1 significantly departs from Eq. 10
and the numerical integration of the full expression, Eq. 15, is
required to account for the simulations.

A key point that has to be taken into account in realistic
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Fig. 3 Inset: g2−1 for a 3D sample, as a function of the imposed
shear deformation, in the qx� e

γw2 limit, for qx = 1.04 µm−1.
Large colored symbols: numerical simulations for sample thickness
from 0.04 mm to 1.5 mm, as shown by the label of the main plot.
Lines: numerical integration of Eq. 15. Black dots: experimental
data for e = 0.3 mm. Main plot: same data plotted as a function of
the scaled variable qxγ e

2 . Black line: theoretical curve in the e� w
limit, Eq. 10. The beam size used in simulations is w = 450 µm, the
same as in experiments. For e < w both experimental data and
simulations follow Eq. 10, whereas deviations are observed for
thicker samples, in good agreement with theoretical expectations.

simulations and in experiments is the finite size of the ROIs
over which the intensity correlation function is averaged (see
Eq. 2). Since the ROIs must contain a sizeable number of
speckles in order to achieve a good statistics, it is impossi-
ble to measure g2− 1 for a q vector exclusively oriented in
the ûy direction: any viable ROI will correspond to a range
of q vectors with a finite x component. This potentially lim-
its the feasibility of the strategy outlined above for measuring
non-affine displacements, which in principle requires to ac-
quire g2−1 for a q vector with no component along the shear
direction ûx.

To explore this issue, we show in Fig. 4 correlation func-
tions obtained from simulations, where the data have been an-
alyzed using a ROI corresponding to qy in the range 0.1−
10 µm−1 and various qx, expressed here in terms of the ROI
size along ûx, in pixels (1 pixel corresponds indicatively to
5× 10−3 µm−1). The results are independent of qy: we thus
show data averaged over all qy. The curve for the thinnest
ROI (5 pixel along ûx) is almost flat up to γ ≈ 1. This demon-
strates that under realistic conditions one can indeed measure
a correlation function that is sensitive essentially only to non-
affine displacements, up to a shear deformation of order one.
This comes however at the expenses of statistics: since the
ROI is relatively small, large fluctuations are seen in the data,
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Fig. 4 Inset: effect of the finite qx component of the scattering
vectors associated to the ROI chosen for calculating g2−1.
Symbols: simulations for a purely affine deformation of a 3D
sample. Lines: numerical integration of Eq. 15 over the relevant qx
range, indicated in the legend, in units of pixels. In all cases, the gap
is e = 200 µm. Main plot: Effect of the finite size of the ROI, for
several sample thicknesses, as specified in the legend. Different
symbols refer to various ROI sizes: 5 px (squares), 10 px (circles),
20 px (triangles), 50 px (down triangles), 100 px (diamonds). See
the text for the definition of qw, the ROI half width in Fourier space.

as shown by the error bars, which quantify the standard devi-
ation of g2− 1 over 20 independent runs. As the size of the
ROI along ûx is increased, the statistics improves significantly,
but g2−1 start decaying at smaller strains. The lines are theo-
retical expectations obtained by numerically averaging Eq. 15
over the range of qx associated to the ROI. They are in excel-
lent agreement with the simulations, indicating that the simple
theory developed here can be used to quantitatively predict the
impact of the ROI width, thereby providing valuable guidance
for the optimization of the analysis parameters.

Based on Eq. 15, one expects that the impact of the ROI
width on g2− 1 varies also with the sample thickness e. The
main plot of Fig. 4 rationalizes the dependence on e, show-
ing that data for different widths and a given cell gap fall onto
the same master curve, provided that g2−1 is plotted against
a scaled shear deformation, qwγe/4. Here, qw quantifies the
width of the ROIs, which extend from −qw to qw in the ûx
direction. The shape of these master curves depend on e; re-
markably, they collapse on top of each other in the thin sample
limit. Again, a very good agreement is found between the cor-
relation functions obtained by simulations and their theoretical
expression (lines in the main plot of Fig. 4).

To recapitulate the main findings for DLS under a purely
affine displacement field, we have shown that the intensity
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correlation function decays faster (i.e. at smaller strains) for
thicker samples. In the limit e . w the effects of the finite
beam size are negligible. Under these conditions, correlation
functions for q parallel to the shear direction depend only on
the scaled variable eγ . In experiments and realistic simula-
tions, the finite x component of the scattering vectors associ-
ated to a ROI has to be taken into account, even when the ROI
corresponds essentially to the direction orthogonal to the ap-
plied shear. This (albeit small) x component is responsible for
the decay of g2−1, which can be rationalized using the scaled
variable qweγ . Finally, we emphasize that for the purely affine
deformation discussed so far, the dynamics are always inde-
pendent of qy.

3.3 Probing non-affine displacements

In Fig. 3 we have shown that experimental correlation func-
tions for a PA gel, measured at q vectors oriented parallel to
the shear direction, agree well with numerical and theoretical
predictions for a purely affine deformation. We now inspect
data from the same experiment, but analyzed for a scattering
vector oriented in the perpendicular direction ûy. The results
are shown in Fig. 5 (small solid points), together with the cor-
responding correlation functions obtained by theory and simu-
lations using ROIs of the same size as in the experiment (width
along ûx = 10 pixels) and assuming a purely affine deforma-
tion (thick black line and small symbols connected by lines for
theory and simulations, respectively). The experimental data
deviate strongly from theory and simulations, both quantita-
tively and qualitatively: the decay of the experimental g2− 1
occurs at much smaller strains γ and depends strongly on qy.

We attribute this discrepancy to non-affine displacements
in the PA gel that were not taken into account in the simula-
tions nor in the theory. In Sec. 1 we mentioned several mecha-
nisms that may lead to a non-affine component of the displace-
ment field. In the experiments, the applied strain is relatively
modest, γ ≤ 0.3. Rheology measurements indicate that in this
regime the sample response is essentially γ-independent (see
Fig. 6a)), suggesting negligible non-linear effects and plastic-
ity. We thus propose that non-affinity stems from spatial fluc-
tuations of the elastic shear modulus G, as reported in Ref.30

for similar PA gels. Indeed, in real samples inhomogeneities
are always present at a microscopic scale; from a mechani-
cal point of view they can be described by local fluctuations
of the shear modulus: G(x) = G+ δG(x), with G = G(x)
the spatially-averaged shear modulus and δG(x) = 0. Due
to these fluctuations, the sample deformation locally devi-
ates from affinity, originating a non-affine displacement field
R′(x) that adds up to the affine one. Note that we expect the
non-affine component to be small in comparison to the affine
one, since correlation functions measured in the shear direc-
tion are well reproduced by the affine component alone (see
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Fig. 5 Strain dependence of the intensity correlation function for a
sheared PA gel. Small filled symbols: experimental data for several
qy values, as indicated by the labels (units: µm−1). Thick black
line: theoretical prediction for a purely affine deformation, obtained
by the numerical integration of Eq. 15. Small solid symbols
connected by lines: g2−1 obtained from simulations, for a purely
affine deformation. Theory and simulations deviate strongly from
the experimental data, indicating that non-affine displacements must
be included in the modelling. Dashed lines and large open symbols:
correlation functions obtained from theory (Eq. 11) and simulations,
respectively, assuming Gaussian-distributed non-affine particle
displacements, with a rms value given by Eq. 11. In simulations,
data are averaged over N = 50 independent runs and error bars
represent the run-to-run standard deviation. In both theory and
simulations, a generalized diffusion coefficient c = 30 µm2 was
used.

the small black dots in Fig. 3).
The non-affine displacement field may be quantified by its

γ-dependent mean squared value, referred to as the non-affine
parameter A in Ref.30, and related to the local shear modu-
lus fluctuations. Under reasonable assumptions29,30, the non-
affine parameter grows quadratically with the macroscopic de-
formation:

A =
1
N

N

∑
j=1

∣∣R′
j
∣∣2 = cγ2 , (11)

where the rms displacement per unit squared shear defor-
mation, c, is a generalized diffusion coefficient, by analogy
to Brownian diffusion originating from thermal fluctuations,
with γ2 playing the role of time in ordinary diffusion.

In order to test whether the decay of g2−1 observed in the
experiments for q in the ûy direction can indeed by ascribed to
non-affine displacements, we measure A in independent mi-
croscopy experiments, where the motion of the tracer particles
is tracked while applying a shear deformation to the sample.
Figure 6b) shows that up to γ = 0.18 the deformation profile
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Fig. 6 Microscopy and rheology experiments measuring
non-affinity in a PA hydrogel. a): rheological response of the gel in
a strain sweep oscillatory test, at a frequency of 1 Hz. b):
deformation profile d(z), normalized by the displacement δ imposed
to the upper plate of the shear cell. The distance z to the stationary
plate is normalized by the gap e. c): Non-affine parameter A as a
function of the imposed strain, as obtained by tracking the
displacement of tracer particles. A quadratic fit of A (γ) (line)
yields a generalized diffusion coefficient c = 75±15 µm2.

obtained by averaging the displacements of all particles at a
distance z from the immobile plate follows is linear, thus rul-
ing out slip and shear banding. For larger strains, slip starts
occurring close to the immobile plate (data not shown). Data
with slip are disregarded in the calculation of A ; moreover,
we assume that the non-affine displacements are isotropic and
multiply the non-affine parameter obtained by 2D microscopy
by a factor of 3/2, in order to obtain the 3D A . Figure 6c)
shows A vs the imposed shear deformation in a double loga-
rithmic plot. The quadratic law, Eq. 11, fits very well the data
(line), yielding c = 75±15 µm2.

To model the effect of non-affine displacements on the
intensity correlation function, we assume that R′(r,γ) is
isotropically distributed and spatially uncorrelated on the
length scales of interest, as indicated by the microscopy ex-
periments. Under these conditions, Eq. 10 can be modified to
take into account non-affinity by introducing a new Gaussian
term:

g2(q,γ)−1 = sinc2
(

qxγ
e
2

)
exp
(
−1

3
q2cγ2

)
. (12)

The argument of the exponential is motivated by the analogy
between cγ2, the non-affine msd under shear and 6Dt, the msd
in Brownian diffusion, for which24 g2 − 1 = e−2q2Dt . The
dashed lines in Fig. 5 show the correlation functions obtained

for various q via Eq. 12, with c = 30 µm2. An excellent agree-
ment is seen with both simulations (performed using the same
c value) and experiments, thus validating the modelling. The
generalized diffusion coefficient c found in DLS experiments
is about one half of that measured by optical microscopy:
since the two experiments are performed on distinct samples,
this discrepancy most like stems from sample-to-sample vari-
ations in the spatial fluctuations of the elastic modulus.

Equation 12 shows that the dominating contribution to the
decay of g2− 1 depends on how fast each term on the r.h.s.
decreases with increasing γ . Non-affinities are best measured
when the Gaussian term decays faster than the sinc2 term, i.e.
for qx < q

√
c/e. In other words, DLS can detect non-affine

rearrangements provided that the ROI used for the data anal-
ysis is ‘thin’ enough, i.e. has a small enough size along the
shear direction ûx. Correlation functions obtained from ‘thick’
ROIs, by contrast, will be dominated by the affine contribu-
tion.

In practice, determining whether or not the thin ROI con-
dition is met may not be trivial, since the upper bound for
qx depends on c, which is not known a priori. One way to
address this issue is to quantify the characteristic shear de-
formation γR at which g2− 1 decays and investigate how this
quantity depends on the thickness of the ROI: the thin ROI
limit will correspond to the regime where γR is independent of
the ROI thickness and the decay of g2− 1 is fully dominated
by the second factor in the r.h.s. of Eq. 12. We demonstrate
this approach in Fig. 7, where we analyze the experimental
and numerical correlation functions of Fig. 5. We quantify the
thickness of the ROI by qw, the maximum of the qx compo-
nent associated to a ROI, as in the discussion of Fig. 4. We
obtain γR from a compressed exponential fit of the correlation
function: g2(q,qw,γ)− 1 = exp [−(γ/γR(q,qw))

p], where we
have explicitly indicated that γR and thus g2 − 1 depend on
both the modulus of the scattering vector and the ROI thick-
ness qw. Figure 7 shows γR normalized by its qw → 0 limit,
as a function of the the ROI width qw normalized by q. Two
regimes are clearly seen for both simulations and experiments:
at low qw/q (thin ROI regime), γR is independent of qw, while
for thicker ROIs γR decreases as q−1

w , as expected when the
sinc2 term in Eq. 12 controls the decay of g2−1.

By comparing the open and crossed small symbols obtained
by simulating samples with two different gaps, one can see
that the crossover between the two regimes depends on the
sample thickness e, as expected from Eq. 12. We find that an
empirical expression that describes well the full behavior of
γR across the two regimes is given by

γ−1
R (q,qw) = γ−1

0 (q)

√
1+
(

qwe
5q
√

c

)2

, (13)

where γ−1
0 = q

√
c/3 is the characteristic strain expected for
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an infinitely thin ROI when finite beam size effects can be
neglected (see Eq. 12), and the factor of 5 is introduced to
obtain the best collapse with simulation data. As shown by
the solid and dashed lines in Fig. 7, this expression reproduces
numerical and experimental data very well.
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Fig. 7 Characteristic strain for the decay of g2−1 vs ROI width
along the shear direction, for various qy, as shown by the label (in
µm−1). For a given gap e, data collected at various q collapse on a
single curve when using scaled variables, as detailed in the text. The
plateau region at low qw corresponds to the desired thin ROI regime
where the relaxation of g2−1 is controlled by non-affine
displacements. Small symbols: numerical simulations, with
c = 30 µm2, w = 450 µm, and e = 580 µm (open symbols) or
e = 58 µm (open symbols with cross). Large symbols: experimental
data obtained by analyzing the correlation functions shown in Fig. 5
(e = 580 µm, c≈ 20 µm2). Lines: theoretical curve, Eq. 13, with
c = 30 µm2 and e = 580 µm (solid line) or e = 58 µm (dashed line).

So far, we have neglected the contribution due to the finite
beam size, which was not included in Eq. 12. Indeed, even
in the absence of non-affine rearrangements, a qw-independent
plateau would eventually be reached at low qw (thin ROI limit)
when the translation δ of the moving plate becomes compa-
rable to the beam size w, as discussed in Sec. 3.1. This cor-
responds to a critical strain γth ≈ w

e : for γ ≥ γth, finite beam
effects dominate and detecting any extra contribution due to
non-affine displacements becomes increasingly difficult. Non-
affine dynamics are therefore best seen when the characteris-
tic strain γ0 introduced in Eq. 13 is smaller than γth. Recalling
that γ0 = q−1

√
c/3 and that q ≈ qy in experiments designed

to detect non-affine displacements, the condition γ0 ≤ γth is
re-casted in the form qy & e/(w

√
c) (where we have dropped

a factor of
√

3 for simplicity), which may be fulfilled by de-
creasing the gap and increasing the beam size.

The effect of the finite beam size can be seen in the simula-
tion data of Fig. 7 for the smallest q vectors (see e.g. data for
qy ≤ 0.43 µm−1 for the gap e = 580 µm). As shown by the
horizontal dashed lines of Fig. 7, for these scattering vectors,
γR deviates from the master curve described by Eq. 13 and sat-
urates at values much lower than γ0(q), the expected qw → 0
limit. Note that for the thinner cell with e = 58 µm, the effect
of the finite beam size becomes relevant only at much lower
q vectors (see the crossed data points for qy ≤ 0.05 µm−1), in
agreement with the scaling with the gap of the qy & e/(w

√
c)

condition.
To recapitulate the main findings of this section, we have

shown that non-affine displacements may be resolved by mea-
suring correlation functions for q vectors oriented perpendic-
ular to the shear direction. Non-affine dynamics can be un-
ambiguously quantified by DLS provided that i) the width of
the ROI in the shear direction is small enough (qw < q

√
c/e);

ii) the y component of the probed scattering vector is large
enough or the sample thin enough (qy & e/(w

√
c)). These

bounds depend on the generalized diffusion coefficient c,
which is not known a priori. However, the scaling plot of
Fig. 7 and Eq. 13 provide consistency checks allowing one
to verify a posteriori whether or not the measured dynamics is
due only to non-affine displacements.

4 Conclusions

In this work we have shown how DLS may be coupled to a
shear cell in order to probe affine displacements and non-affine
rearrangements. Correlation functions measured for a q vec-
tor oriented parallel to the direction of the applied shear are in
principle sensitive to both affine and non-affine displacements.
In practice, however, affine displacements typically dominate
over non-affine ones (at least in the interesting regime corre-
sponding to the onset of non-linear behavior), such that data
for q ≈ qx essentially probe affine displacements. Measuring
the affine component is a powerful tool to check for the oc-
currence of wall slip or shear banding: any deviation from
an ideal affine deformation profile would result in correlation
functions that depart from the expected theoretical form dis-
cussed in the previous sections.

Non-affine dynamics are accessible by measuring correla-
tion functions for a q vector oriented perpendicularly to the
shear direction. Under realistic conditions, these correlation
functions may contain additional contributions not due to non-
affine displacements. These unwanted contributions can be
neglected under appropriate experimental conditions. The
most important role is played by the finite qx component of
the ROIs over which g2−1 is averaged. This component has
to be minimized in order to suppress the spurious decay due
to the affine deformation. In practice, choosing ROIs with a
width along ûx smaller than about 5 pixels is sufficient. We
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emphasize that the relevant parameter is the absolute value of
the ROI width, not the ratio qx/qy. Thus, the same (small)
width should be used for all ROIs, irrespective of the magni-
tude of the scattering vector.

Another source of spurious decorrelation stems from the
rigid translation of scatterers. A cell with counter-moving
plates and a stagnation plane in z = e/2 would reduce this
effect. Furthermore, this contribution may be reduced by in-
creasing the lateral size of the beam and by decreasing the
sample thickness. Thinner samples also help in mitigating
the effect of the finite ROI width; additionally, in the e� w
regime the decay of g2−1 is easier to describe with analytical
models. Finally, optical aberrations and the curvature of the
wavefront impinging on the sample spuriously accelerate the
decay of the correlation function. This artifact can be reduced
by placing the sample in the beam waist, where the wave-
front is plane, and can be fully corrected for using the spatio-
temporal crosscorrelation method described in Sec. 3.1. Simi-
larly to the term arising from the sample translation, this con-
tribution becomes negligible in the thin sample limit, e� w.

As a final remark, we note that although some care must be
taken in order to optimize the experimental parameters, none
of the required conditions discussed above is impractical to
meet. Indeed, typical small-angle light scattering apparatuses
use a beam with w in the range 0.5 - 10 mm. When coupled
to a shear cell with a gap e in the range 0.3-1 mm, which can
be easily achieved, such an apparatus will operate in the thin
sample limit, where all the above conditions are easily met for
the typical range of accessible q vectors. We thus hope that
DLS coupled to rheology will become an increasigly popular
method to probe the microscopic dynamics of soft systems
under shear.
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Appendix 1: list of symbols

ûx, ûy, ûz unit vectors in the shear, vorticity and shear
gradient directions, respectively

r coordinates in the scattering volume
∆r(r) particle displacement field
R′(r) non-affine displacement field
γ macroscopic shear deformation
e sample thickness
k laser wave vector
q scattering vector
qx,qy,qz scattering vector components along ûx, ûy, ûz
Ein (complex) incident field
ES (complex) scattered field
a Rayleigh range
w0 1/e2 beam radius in the beam waist
w(z) 1/e2 beam radius at distance z from the waist
w beam radius on the sample plane
ρ(z) radius of curvature of the wavefront at position z
δ translation of a 2D sample along the ûx direction
X relative position of two points on the sensor for

spatio-temporal correlation function (Eq. 7)
Xpeak position of the spatio-temporal crosscorrelation peak
∆ speckle size
l modified spatial correlation length (Eq. 8)
ε distance between the detector and the focal plane,

see Fig. 1b)
R distance between the detector and the sample

image, see Fig. 1b)
σ = 1+R/ρ
Ḡ spatially averaged shear modulus
G(x) local shear modulus
δG(x) local shear modulus fluctuations
A non-affine parameter (non-affine MSD)
c generalized diffusion coefficient (non-affine

MSD per unit squared strain, Eq. 11)
D Brownian diffusion coefficient
qw detector size (in q space) along ûx
γR(q,qw) deformation needed to decorrelate the signal

in presence of nonaffinities (Eq. 13)
γ0(q) thin ROI limit of γR when finite beam size effects

can be neglected
γth deformation needed to decorrelate the signal in

the thin ROI limit, for a pure affine deformation

Appendix 2: g2−1 for an affine deformation

Equation 10 of the main text can be easily computed starting
from the field correlation function (Eq. 3) evaluated by using
the scattered field of Eq. 4 and the affine particle displace-
ment of Eq. 1. We start by assuming an ideal plane wave as
the incident electric field, Ein(r) = E0. The crucial step in
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the derivation is to realize that the double sum ∑ j,l over the
scatterers resulting from injecting Eq. 4 into Eq. 3 actually re-
duces to a single sum over the self terms (i = l), whereas the
cross terms (i 6= l) vanish for uncorrelated scatterer positions.
This simple sum can be evaluated by casting it into an inte-
gral weighted by the density functional: n(r) = ∑ j δ3(r−r j),
where δ3(r) is the three-dimensional Dirac’s delta. If the scat-
terers are distributed homogeneously in the scattering volume,
the integral reduces to:

g1(q,γ) =
1
e

e/2∫

−e/2

eiqxγz′dz′ = sinc
(

γqx
e
2

)
, (14)

which is Eq. 10 of the main text.
A correction for the finite beam size may be obtained by re-

placing the plane wave with a more realistic Gaussian profile
(Eq. 5), which unfortunately results in a rather involved ex-
pression. Progress can be made by assuming that the sample
lays in the beam waist (z = 0, ρ = ∞). In this case, Eq. 14
becomes

g1(q,γ) ∝
e/2∫

−e/2

dz′eiqxγz′ exp

{
−2
[

1+
(γ

2

)2
](

z′

w0

)2
}

.

(15)
Here, the proportional sign indicates that the expression has to
be properly normalized, such that g1(q,0) = 1. Equation 10
corresponds to the limits qx� e

γw2
0

and e� w0. The opposite

limit, qx → 0, is the desired condition for probing non-affine
displacements. In this limit one has

g1(q,γ) =
Erf
[

e
w0
√

2

√
1+
( γ

2

)2
]

√
1+
( γ

2

)2Erf
(

e
w0
√

2

) (16)

For thin samples (e . w0) this expression decays when γ e
2 &

w0, which corresponds to the requirement that the absolute
displacements are comparable to the beam size. However, one
should be aware that this limit cannot be fully reached in prac-
tice, since qx is bounded from below by the speckle size, and
thus cannot be smaller than qmin ∼ w−1

0 . By taking this limit-
ing value, the validity of Eq. 16 is restricted to γ� e

w0
. While

these approximated forms are useful to rapidly grasp the gen-
eral behavior of g2−1, the general form, Eq. 15, can be easily
be integrated numerically to obtain precise theoretical predic-
tions, as shown in the main text.
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As a model system, this work mainly focuses on a colloidal gel characterized by a

fractal structure and a power-law rheology. In this chapter we thoroughly characterize the

linear viscoelasticity of the gel, showing that it is very accurately described by a Fractional

Maxwell (FM) model. In search of the physical bases of such phenomenological model, we

discuss the possible relationship between the FM model and the microscopic structure of

the gel.

5.1 Introduction

Power-law rheology is of widespread occurrence in complex materials that do not ex-

hibit one unique relaxation time, from biomaterials, such as cells [Fabry 2001, Djord-

jevic 2003, Desprat 2005, Balland 2006, Kollmannsberger 2011, Hecht 2015], tissues
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[Kohandel 2005, Davis 2006, Shen 2013], or biopolymer networks [Gobeaux 2010, Cur-

tis 2015] and pastes [Jó¹wiak 2015], to food science [Ma 1996, Zhou 1998, Subrama-

nian 2006, Ng 2008, Caggioni 2007, Korus 2009, Moreira 2011, Ronda 2013, Xu 2013, Jais-

hankar 2014, Leocmach 2014, Jó¹wiak 2015, Faber 2017a, Faber 2017b], colloidal gels

[Rich 2011], microgels [Lidon 2017], hydrogels [Hung 2015], polymer gels [Chambon 1986,

Durand 1987, Martin 1988, Adolf 1990, Tirtaatmadja 1997, Larsen 2008, Leibler 1991],

melts [Plazek 1960, Hernández-Jiménez 2002, Friedrich 1999], elastomers [Curro 1983,

Winter 1999, Ferry 1980], and composites [Metzler 1995]. Although the generality of

power-law rheology is captured by phenomenological models such as Soft Glassy Rheol-

ogy [Sollich 1998], in general a well established connection with the microscopic origin

of this mechanical behavior is still missing. Few exceptions include the parallel drawn

between power-law rheology and microscopic structure and dynamics in the framework

of polymer physics. This is for example the case of Rouse motion, where the self-similar

relaxation dynamics naturally come into play as a consequence of the fractal nature of

the polymer coil [Colby 2003]. In this case, the fractal dimension df = 2 describing the

microscopic structure is directly linked to the fractional order of the rheological model,

i.e. the exponent α = 0.5 describing the power-law rheology. Similarly, in the attempt

of modeling polymer gels at the critical point, Adolf and Martin [Adolf 1990] explicitly

derive a power-law distribution of relaxation times from a postulated scale-independence,

which is assumed to hold at the critical gel point according to percolation theory. Indeed,

direct measurement of the microscopic structure with static light scattering shows clear

evidence of a fractal mass distribution [Martin 1991], with the fractal dimension predicted

by their model. More generally, a quantitative link between power law rheology and the

microscopic structures of critical gels with arbitrary fractal dimension is established by

Muthukumar [Muthukumar 1989] in two limit cases of screened and unscreened excluded

volume and hydrodynamic interactions, which prove to properly describe a wide class of

experimental results [Hung 2015]. This model essentially extends Rouse dynamics from

a single chain to a branched, fractal object. Although in this case the mathematical for-

mulation is much more involved, again the power-law rheology reveals the self-similarity

of microscopic dynamics, stemming from the fractal structure.

Although fractal structures are very well represented in soft materials, from human

tissues [Helmberger 2014, Mauroy 2004, Ahmadi 2013] to colloidal gels [Carpineti 1993,

Bremer 1990], the wide spectrum of systems mentioned above suggests that power-law

rheology does not necessarily stem from fractal structure, and that other microscopic

mechanisms might produce power-law distributions of relaxation times as well. In absence

of a full understanding of such mechanisms, however, fractional rheological models remain

largely phenomenological, and the amount of relevant physical information that can be

extracted from them remains arguable.

In this regard, one crucial aspect is the scarcity of systems for which a thorough dis-

cussion of linear rheology is available. Indeed, the majority of the works �nding a power-

law rheology only focus on oscillatory shear [Ma 1996, Metzler 1995, Tirtaatmadja 1997,

Fabry 2001, Djordjevic 2003, Shen 2013, Caggioni 2007, Rich 2011, Hung 2015, Friedrich 1999],



5.1. Introduction 103

whereas others only focus on transient experiments, either stress relaxation [Hernández-

Jiménez 2002, Curro 1983], creep [Desprat 2005, Xu 2013] or both [Davis 2006]. Tran-

sient experiments alone are delicate, and have to be carefully performed in order to

ensure that only the linear regime is being probed, since sometimes power-law creep

clearly emerges as a nonlinear phenomenon [Duval 2010, Paredes 2013]. Indeed, plas-

tic power-law creep is observed on many systems, from crystalline materials like metals

[Andrade 1910, Miguel 2002, Poirier 1985, Cottrell 1952], or ice [Ashby 1985] to col-

loidal [Siebenbürger 2012, Sentjabrskaja 2015, Coussot 2006, Caton 2008] or polymeric

[Nechad 2005b, Karobi 2016] systems, which would have a very di�erent rheology in the

linear regime. On the other hand, the challenge of oscillatory shear is that it typically

gives access to a limited range of frequencies, which sometimes makes it di�cult to dis-

tinguish the predictions of di�erent models. In some systems a larger spectrum can be

accessed exploiting time temperature superposition (TTS), although its applicability is

far from being trivial in the above systems. One instructive example is represented by

the work of Subramanian et al. on cheese [Subramanian 2006]: here TTS is applied to ac-

cess data on a broad spectrum of frequency, nicely �tted by a Fractional Maxwell model.

However, the authors also show creep and recovery data, clearly displaying a substantial

non-recoverable creep strain, which is incompatible with the Fractional Maxwell model.

Because the authors do not discuss this inconsistency, it is unclear whether it has to

be attributed to nonlinear creep or to the failure of TTS. Similarly, it is interesting to

remark that in various independent works on di�erent �our doughs [Korus 2009, Mor-

eira 2011, Ronda 2013] oscillatory rheology reveals clear power laws, whereas creep and

recovery on the same samples are nicely �tted by the Burger model, which does not con-

tain any power law. In other cases, a power-law creep was also interpreted as the short

time limit of a stretched exponential [Cheriere 1997]. Moreover, a power-law rheology

may also be found in both oscillatory shear and creep, but described by incompatible

power-law exponents [Lidon 2017], which also questions the applicability of a fractional

model.

All these examples show that a comparison between di�erent rheological measure-

ments is essential to truly validate a phenomenological model. This is done for example

on individual cells [Balland 2006], where the authors had to cope with the huge sample-

to-sample variations (typical of biological systems) by increasing the statistics, but also

on collagen networks [Gobeaux 2010], biopolymer gels [Ng 2008, Leocmach 2014], natural

gums [Jaishankar 2014] and cheese [Faber 2017b]. For these systems, fractional rheolog-

ical models provide a consistent description of the observed rheology. However, most of

these systems are rather complex, and structural analysis is delicate.

In this chapter we focus on a simpler model system, namely a colloidal gel, for which

both microscopic structure and spontaneous dynamics are well known and can be easily

measured with scattering methods [Carpineti 1995, Cipelletti 2000]. Thanks to a careful

analysis of both oscillatory and transient shear we show that linear rheology is consistently

described by a Fractional Maxwell model, whose parameters are discussed in detail, with
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reference to the sample structure and to its aging properties.

This chapter is organized as follows: after reviewing the theoretical background

(Sec. 5.2), we describe the sample preparation and the experimental setup (Sec. 5.3). In

Sec. 5.4 the experimental results are shown and fully described with the linear viscoelas-

tic model. A conclusive section (Sec. 5.5) closes the chapter, with a detailed discussion

about the link between the rheological properties and the microscopic structure.

5.2 Theoretical background

5.2.1 Fractional derivatives in rheology

For systems characterized by a power-law rheology, the relaxation modulus measured,

e.g., in a step strain experiment, decays as G(t) ∝ t−α with 0 < α < 1. For such systems,

fractional expressions come naturally into play as a result of the superposition principle.

Indeed, the stress response to an arbitrary shear history γ(t) is given by the convolution

integral [Hilfer 2000]:

σ(t) =
K

Γ(1− α)
τα

t∫

−∞

(t− t′)−αγ̇(t′)dt′ (5.1)

In this expression one recognizes the fractional derivative of order α, dα/dtα, which is

de�ned by Γ(1− α)dαγ/dtα =
t∫
−∞

(t− t′)−αγ̇(t′)dt′. Hence,

σ(t) = Kτα
dαγ

dtα
(5.2)

By inverting the above equation, one easily �nds for example that the creep deformation

of the material in response to a step stress applied at time t = 0, σ(t) = σ0Θ(t) (Θ(t)

being Heaviside step function), is a power law:

γ(t) = K−1τ−α
d−α

dt−α
σ(t) =

σ0

K

Θ(t)

Γ(1 + α)

(
t

τ

)α
(5.3)

For α = 1 one recovers the linear �ow of a dashpot element, γ(t) = σ0t/Kτ (for t ≥ 0). On

the other hand, for α = 0, one recovers the step strain of an elastic spring, γ(t) = σ0/K.

In the general case (0 < α < 1), Eq. 5.3 corresponds to a fractional rheological element

called Scott-Blair element or springpot [Blair 1947, Bagley 1983, Bagley 1986]. We show

in Fig. 5.1 (top) the creep pro�les expected for springpot elements with di�erent values

of the fractional exponent α.
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Figure 5.1: (a) Normalized strain as a function of the normalized time upon application

of a constant stress of amplitude σ0 applied at time 0 for a springpot with di�erent

exponents α as indicated in the legend. (b) Time evolution of the strain normalized

by the initial elastic jump during the creep and recovery of an elastic solid (α = 0), a

Maxwell �uid (α = 1) and a fractional Maxwell �uid with an exponent α = 0.5.

5.2.2 Fractional Maxwell Model

The Fractional Maxwell (FM) model is based on two springpots in series, and is thus

characterized by four independent parameters, which can be interpreted as an elastic

modulus G0, a characteristic time τFM , and two exponents α and β. In this chapter we

will consider the special case where one of the two springpots is reduced to an elastic

spring (β = 0). In this case the rheological constitutive equation reads:

dαγ

dtα
=

1

G0

[
σ(t)

ταFM
+
dασ

dtα

]
(5.4)

Note that, for α = 1, Eq. 5.3 corresponds to a standard Maxwell �uid.

Solutions of the FM model for standard rheological experiments have been previously

computed [Bagley 1989, Jaishankar 2013, Jaishankar 2014, Jó¹wiak 2015]. For a sinusoidal

deformation of frequency ω, the storage, G′, and loss, G”, moduli read:
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G′(ω) = G0ξ
cos
(
π
2
α
)

+ ξ

1 + ξ2 + 2ξ cos
(
π
2
α
) (5.5)

G′′(ω) = G0ξ
sin
(
π
2
α
)

1 + ξ2 + 2ξ cos
(
π
2
α
) (5.6)

where ξ = ταFMω
α.

On the other hand, the creep deformation following the application at time t = 0 of

a step stress of amplitude σ0 reads:

γ(t) =
σ0

G0

[
1 +

1

Γ(α + 1)

(
t

τFM

)α]
(5.7)

This equation can be decomposed as follows:

γ(t) = γ+
e + γcreep(t) (5.8)

Here γ+
e = σ0/G0 is the instantaneous elastic part of the mechanical response and

γcreep(t) = γe
Γ(α+1)

(
t

τFM

)α
is analogous to Eq. 5.3 and corresponds to the cumulated creep

deformation since the application of the step stress at time t = 0.

It is also interesting to investigate the creep recovery, that is the time evolution of the

deformation following the release of the stress σ0 at time T . We here de�ne t′ = t− T as

the time evolved since the release of the stress, which has been applied from time t = 0

to time T . Similarly to the creep, the creep recovery is composed of an instantaneous

elastic relaxation of amplitude γ−e = σ0/G0 and a slow decay function γrec(t
′) that reads:

γrec(t
′) = γcreep(T )

[(
1 +

t′

T

)α
−
(
t′

T

)α]
(5.9)

We observe that the linear viscoelastic creep of a FM model is completely reversible,

since γrec(t
′ →∞) = 0. Interestingly, Eq. 5.9 predicts that the initial un-deformed con�g-

uration is recovered with a characteristic time that uniquely depends on the duration T

of the creep, whereas it is independent of the natural timescale τFM. We show in Fig. 5.1

(bottom) the creep and recovery for a Fractional Maxwell model with α = 0.5 together

with the asymptotic behaviors, a Maxwell �uid (α = 1) and an elastic solid (α = 0).

5.3 Material and methods

5.3.1 Sample

The gel is formed by aggregating a water suspension of charged silica particles (Ludox

TM50, from Sigma Aldrich) at a volume fraction φ = 5%. Particle aggregation is triggered

by increasing in situ the ionic strength of the solvent, by using a chemical reaction (the

hydrolysis of urea into carbon dioxide and ammonia: CO(NH2)2 + 2H2O → NH+
4 +
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NH3+HCO−3 ) catalyzed by an enzyme (Urease U1500-20KU, from Sigma Aldrich), which

increases the ionic strength of the solvent and thus screens the electrostatic repulsion

between particles, eventually triggering particle aggregation [Wyss 2004]. To do so, we

add to the suspension urea (concentration 1 Mol/l) and urease (35 U/ml). This induces,

at room temperature, a sol-to-gel transition of the suspension roughly 3 hours after

addition of urea and urease. Structural information on the gel and on the particles are

obtained by neutron and light scattering techniques, comparing the intensity scattered by

the gel with the one scattered by a dilute suspension (φ = 0.037%) of the same particles

in pure water. In order to increase the contrast between the particles and the solvent in

neutron scattering, water (H2O) is replaced by heavy water (D2O). One does not have

any indication of any structural and rheological alteration of the sample following the

replacement of H2O by D2O.

5.3.2 Scattering techniques and rheology

The structure of the sample is probed combining di�erent scattering techniques, al-

lowing one to access a wide range of scattering vectors q, from 0.1 to 2000 µm−1. We use

small-angle neutron scattering (SANS) (PA20 beamline at Laboratoire Léon Brillouin,

France), and custom made wide-angle (WALS) and small-angle light scattering setups

(SALS) [Tamborini 2012]. For SANS, the sample is held in a 2 mm thick rectangular

cell, whereas for light scattering experiments the cell thickness was decreased to 1 mm in

order to avoid multiple scattering.

Rheological measurements are performed in the Couette cell of a stress-controlled

rheometer (Anton Paar MCR502), with a low viscosity silicon oil �lm on top of the sam-

ple to prevent evaporation over very long timescales (several weeks). Frequency sweep,

respectively creep, measurements are performed at su�ciently small strain amplitude

(typically γ = 0.1 %), resp. at su�ciently small applied stress, to ensure data are ac-

quired in the linear regime. Strain sweep are also measured at 1 Hz to probe the extension

of the linear regime.

In addition, the sample structure and rheological properties are also probed simulta-

neously using a custom made SALS apparatus [Tamborini 2012], which is coupled to a

linear, parallel plate stress-controlled shear cell [Aime 2016]. Such a setup allows one to

access scattering vectors q ranging from about 0.4 µm−1 to 4 µm−1, essentially oriented

in the (vorticity,velocity) plane, and with a minor q-dependent component along the shear

gradient direction.

All experiments are performed at room temperature. For both scattering measure-

ments and rheological measurements, the sample is loaded in the scattering or shear cell

while still in a liquid state and is then allowed to gel in-situ. By monitoring the sample

at rest over long time, we observe that the gel is stable, and we can neglect the in�uence

of gravity on the microscopic structure.
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5.4 Results

5.4.1 Sample structure
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Figure 5.2: Scattered intensity of the colloidal gel at φ = 5% volume fraction (�lled

symbols) and of the stable colloidal suspension, at φ = 0.037% (empty symbols), probed

with small angle neutron scattering and static light scattering, as indicated in the legend.

Red line: theoretical form factor of a polydisperse set of spheres of average diameter 25

nm and polydispersity 10% (consistent with nominal values).

We show in Fig. 5.2 the scattering pro�les, i.e. the scattered intensity, I, normalized

by particle volume fraction, φ, of a dilute stable suspension (φ = 0.037 %) and of a

colloidal gel (φ = 5 %) as a function of the scattering vector q, over several orders of

magnitude, thanks to the combination of three experimental techniques (SANS, WALS

and SALS). Over the whole range of scattering vectors investigated, the scattering pro�le

of the dilute and stable suspension can be quantitatively accounted for by the form

factor of polydisperse spherical particles [Bresler 2015]: I(q) =
∫
ρ(R)P (q, R)dR, where

P (q, R) =
[
3 (sin(qR)− qR cos(qR)) (qR)−3]2 is the form factor of a uniform sphere of

radius R, and the weighting function ρ(R) is derived from a Gaussian distribution of

particle sizes. The best �t of the experimental data yields an average diameter a = 25

nm and a 10 % polydispersity (de�ned as the full width at half maximum of the particle

size distribution). For the colloidal gel, one observes (Fig. 5.2) that the data at large

q, which probe the structure of the individual particles, perfectly superimpose with the

measurement for the dilute suspension, as expected. By contrast, data for q < 200 µm−1

largely di�er.
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The scattered intensity is the one expected for crowded fractal clusters of parti-

cles [Carpineti 1993, Manley 2005]. For q in the range (10 − 200) µm−1, the scattered

intensity decays as q−2, indicating a fractal dimension df = 2. At very low q (q < q∗, with
q∗ ≈ 10 µm−1), the scattered intensity becomes almost q-independent, indicating that on

length scales larger than 2π/q∗ ≈ 0.6 µm, the sample structure is rather homogeneous.

This value is in good numerical agreement with the theoretical expectation for the cluster

size ξ ∼ aφ1/(df−3) ∼ 1 µm [Carpineti 1992].

5.4.2 Dynamics and viscoelasticity during gelation and aging
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Figure 5.3: (a) Intensity correlation functions plotted as a function of time delay τ for

di�erent scattering vectors q (in the legend, units in µm−1) and di�erent stages during

gelation: (A) right after sample preparation; (B) some minutes after onset of aggregation;

(C) after cluster percolation; (D) after aging for 2 days at rest. (b) Relaxation times τR
extracted from correlation functions at stages (B) and (C), and plotted as a function of

the scattering vector.

At early stages, right after preparation, the sample is a liquid with a viscosity com-

parable to that of water. As a consequence of enzymatic activity, the ionic strength of

the solvent grows in time, and after an induction time ti, which depends on the amount

of enzyme added (typically 8000 s in our experiments), it becomes large enough to trig-

ger particle aggregation. This event can be clearly seen with dynamic light scattering,

since the formation of larger particle clusters slows down the microscopic dynamics. A

few minutes after the onset of aggregation, the relaxation time τR becomes measurable

for most accessed scattering vectors. The scaling τR ∼ q−2 con�rms that we probe the

di�usive motion the aggregates, and the increasing trend of τR in time shows that those

aggregates are growing in size. Eventually, clusters become large enough to get in touch
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with each other, and at that moment a system-spanning network is formed. When this

happens, the dynamics slows down tremendously and changes qualitatively, with corre-

lation functions changing from simple exponentials to compressed exponentials and the

τR scaling changing from q−2 (di�usive-like) to q−1 (Fig. 5.3b). Concomitantly, a �nite

storage modulus G′ is measured by rheometry. Starting from that moment, the rheolog-

ical response of the material rapidly evolves with time towards the elasticity-dominated

pattern shown in Fig. 5.4. One de�nes the sample age tw as the time elapsed since the

gelation time, chosen at the time of crossover between G′ and G′′, as measured at an

angular frequency ω = 0.628 rad/s.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 11 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 

 

G',
 G'

'  [P
a]

�   [ H z ]

   G '     G ' '   t w [ k s ] :
  0 . 3
  0 . 6
  1 . 5
  1 3
  5 2
 3 3 0
 6 4 0
 7 8 0

Figure 5.4: Viscoelastic moduli measured during sample aging at a strain amplitude

γ0 = 0.1%, and plotted as a function of frequency for di�erent waiting times tw as

indicated in the legend. Solid lines represent �ts using Eqs. 5.5 and 5.6. Fit parameters

are displayed in Fig. 5.5.

We probe the evolution with sample age of the frequency dependence of the complex

modulus. Data are measured for tw spanning more than 3 orders of magnitude (from 0.3

ks to 800 ks). Over this timescale, the storage modulus increases by almost 3 orders of

magnitude, and the loss modulus by more than 2 orders of magnitude. Interestingly, all

along the aging process, the sample viscoelasticity is always very well described by the

Fractional Maxwell model [Jaishankar 2013], as shown in Fig. 5.4 where the best �ts of

the experimental data using Eqs. 5.5 and 5.6 are displayed.

The evolution of the �t parameters α, τFM and G0 upon sample aging are given in

Fig. 5.5. Although the data are somehow noisy, the exponent α is measured to slightly

decrease with sample age, from ∼ 0.42 to ∼ 0.32, in agreement with what found in

literature on biopolymer gels [Curtis 2015]. On the other hand, the elastic modulus, G0,

and the characteristic time, τFM, display a smooth and continuous increase with tw. Both

parameters are measured to increase rather rapidly at short time (tw . 104 s), and less

steeply at longer times. In the late time regime, we �nd G0 ∼ t
1/3
w and τFM ∼ tw, τFM
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Figure 5.5: Fractional Maxwell parameters extracted from both frequency sweeps (stars)

and creep data (squares) �tted by Eqs. 5.5, 5.6 and 5.7 respectively. (a) Elastic modulus

G0 (blue, left axis) and characteristic time τFM (black, right axis). (b) Exponent α

being more than one order of magnitude smaller than the waiting time.

To check for consistency as well as to probe smaller frequencies, we perform creep

experiments in the linear regime. Typical creep pro�les are shown in Fig. 5.6 for di�erent

waiting times tw, in the range (1.2−5.4)·105 s. Here the sample is rather old, ensuring that

during each creep measurement, which lasts 10000 s at most, sample aging is negligible.

The shear stress is �xed at σ0 = 30 Pa and is su�ciently small (about 2 orders of

magnitude smaller than the elastic modulus), ensuring that measurements are performed

in the linear regime. Indeed, a strain sweep on an old sample (tw = 106 s) shows that

linearity extends beyond 1% deformation (Fig. 5.7).

As the sample ages and its shear modulus increases, the initial elastic jump for a �xed

applied stress becomes smaller, and the time evolution of the strain becomes smaller as

well, as expected. For all sample ages investigated (between 105 and 106 s), the whole

time evolution of the strain is very well �tted by the theoretical prediction of the FM

model (Eq. 5.7).

A direct comparison of creep and frequency sweep measurements can be achieved using

methods available in literature [Evans 2009]. As an illustration, we show in Fig. 5.8 the

direct measurement of the frequency-dependence of the storage and loss moduli, together

with the frequency dependence of G′ and G” computed from a creep experiment, and the
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Figure 5.6: Creep deformation under a shear stress σ0 = 30Pa for 4 di�erent sample

ages as indicated in the legend (symbols). Lines are �ts of the experimental data using

Eq. 5.7. Fit parameters are shown in Fig. 5.5 (�lled squares)

�t using the FM model. We �nd a nice overlap of the two sets of data. Importantly, creep

measurements allow the measurements to be extended at lower frequency as compared to

oscillatory rheology, about one decade for the data shown in Fig. 5.8). These data allow

one to probe the sample behavior almost up to the FM characteristic time τFM . At low

frequencies (ω � τ−1
FM), both G′ and G′′ increase as ωα, whereas in the high frequency

regime (ω � τ−1
FM), one has G

′ ∼ G0 and G′′ ∝ ω−α.

Overall, we �nd that the evolution of the three parameters of the FM model as

extracted from oscillatory shear and creep experiments nicely overlap over the whole

range of sample ages, demonstrating the relevance of the Fractional Maxwell model to

describe the linear visco-elasticity of our fractal colloidal gel.

5.4.3 Creep-recovery experiments

To further test the FM model, we perform creep-recovery experiments. Here, after a

creep of duration T , the stress is released, and the sample is left at rest until the creep

strain is fully relaxed, before applying another step stress. T is chosen such that the

sample age (tw > 105 s) is much larger than the duration of the experiment, in order to

have negligible aging during creep.

The strain evolution during a representative creep and recovery experiment is shown

in Fig. 5.9, together with the �t with the FM model (Eq. 5.8 for the creep and Eq. 5.9

for the recovery). We �nd that the FM reproduces extremely well the experimental

data. Interestingly, we measure that, for initial elastic jumps γ+
e up to 3.5% (obtained

by imposing variable stress amplitudes), the instantaneous recovery γ−e is exactly equal

to γ+
e (inset Fig. 5.9). Such equality provides another indication that experimental data
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Figure 5.7: Large amplitude oscillatory shear probed at frequency ω = 1 Hz. (a) First-

harmonic nonlinear viscoelastic moduli G′ and G′′ as a function of strain amplitude γ0

(b) Lissajous-Bowditch (stress vs. strain) plots for di�erent strain amplitudes γ0 = 2.8%

(black), 9% (blue), 12.5% (green), 14% (yellow), 15.8% (red).

correspond to the linear viscoelastic regime, in agreement with what previously shown.

Typical strain relaxations during creep recovery are shown in Fig. 5.10 for an old

sample (tw ≈ 5 · 105s) that has been submitted to three consecutive creep (with T =

100, 1000 and 10000 s) and creep recovery tests. We �nd that as the duration of the

creep is longer, the initial values of γ in the creep recovery are higher, as expected.

Equation 5.9 predicts that after the sudden release of the external stress the macroscopic

deformation should decay to 0 with a characteristic shape depending on α and scaling as

t′/T . Figure 5.10 shows that the t′/T scaling does indeed hold, since data measured for

di�erent creep durations collapse on a single curve once the strain is normalized by the

strain cumulated at the end of the previous creep step (γcreep(T ), cf. Eq. 5.8), and time

t′ is normalized by the creep duration T .

5.4.4 Reversible structural anisotropy

During creep recovery experiments we �nd that the cumulated strain γ almost fully

relaxes to 0. This suggests that the rearrangements occurring during creep are reversible,

despite the sample is not purely elastic. We check for the reversibility at a microscopic

level by direct structural measurements during a sinusoidal shear deformation, using the

home-made set-up that couples small-angle light scattering to a stress-controlled shear

cell described in chapter 3. The microscopic structure of the sample is monitored as a
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Figure 5.8: Comparison between viscoelastic moduli probed in small amplitude oscilla-

tory strain at γ0 = 0.1% amplitude (large empty data points) and creep under a constant

shear stress σ0/G0 = 1.8% small �lled data points) for a sample age tw = 5 ·105 s. Dashed

lines represent best �ts using the Fractional Maxwell model.

function of time during sample deformation for rheological tests similar to those performed

in a classical rheometer and presented above. Over the range of wave-vectors q accessible

(between 0.4 and 4 µm−1), the scattered intensity does not evolve, suggesting that the

structure of the colloidal gel is fundamentally preserved under deformation in the linear

regime.

However, as the sample is sheared, a small anisotropy (a few percent) in the static

structure factor is detected. We measure that the intensity of the light scattered in

the direction perpendicular to the shear direction, I(~q⊥), is constant, whereas the one

scattered in the parallel direction, I(~q‖), changes roughly linearly with the macroscopic

deformation. To quantify this e�ect, we de�ne a static anisotropy parameter as χ(q) =[
I(~q‖)− I(~q⊥)

]
/
[
I(~q‖) + I(~q⊥)

]
. Figure 5.11a shows that the anisotropy parameter χ(q)

plotted for q = 2.6 µm−1 nicely follows the evolution of the strain when the sample is

submitted to an oscillatory stress with σ0/G0 = 5.5%. Similarly, χ follows the time evo-

lution of the measured macroscopic strain during a creep and creep recovery experiment

(Fig. 5.11b). More quantitatively, we plot χ as a function of the strain amplitude γe in

Fig. 5.11b. We can empirically model the observed asymmetry with the linear relation

χ(q, γ) = k(q)γ, with the factor k(q) being a phenomenological proportionality constant.

In the range of accessible scattering vector, from 0.3 to 3 µm−1, we �nd that k(q) de-

creases, roughly linearly, with decreasing q, from around 0.26 at q = 3 µm−1 to a value

too small to be measurable below q = 0.4 µm−1.
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Figure 5.9: (a) Viscoelastic creep under a constant shear stress σ0 = 30Pa, lasting a

time T = 10000s (black) and followed by creep recovery, for a sample with age tw ≈
5 ·105s. Symbols are experimental data and line is a �t with the FM model. (b) Recovery

downwards jump γ−e plotted as a function of the instantaneous upward elastic jump

γ+
e = σ0/G0. Red line represents the expected γ+

e = γ−e behavior.

5.5 Discussion

Overall the rheological data show that the sample viscoelasticity can be perfectly

accounted for by the FM model showing that measurements have been taken in the linear

regime. As mentioned in the introduction, an expression linking fractal dimension and

power-law rheology can be borrowed from the work of Muthukumar [Muthukumar 1989]

on critical gels. In the limit of screened hydrodynamic and excluded volume interactions,

α is related to the fractal dimension df through the expression: α = [3(5−2df )]/[2(5−df )].
Using this expression we �nd that the slight decrease of the exponent of the FM model,

α, with sample age, from 0.45 to 0.35 (Fig. 5.5) would correspond to a fractal dimension

slightly increasing from df =2.05 to 2.15. Within the experimental error, this prediction

is in excellent agreement with the value of df extracted from our scattering data (Fig. 5.2).

Moreover, while a true argument justifying the screening e�ect is missing, we remark that

a slow increase in df is a well known e�ect of aging in colloidal gels [Cipelletti 2000] and

can thus provide a straightforward explanation of the trend observed in rheology.

This result further strengthens the connection between the fractal structure and the

power law rheology, extending it beyond the framework of critical gels. This is actually

intriguing, since the original derivation [Muthukumar 1989] was based on the assumption

that the structure was scale-free, whereas in our case the fractal cluster size ξ clearly
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Figure 5.10: (a) Creep recovery curves following creep under a stress σ0 = 30Pa lasting

T seconds, as speci�ed in the legend. (b) Same data plotted in rescaled units, γrec/γcreep
as a function of the rescaled time t′/T , as in Eq. 5.9. The sample age is tw ≈ 5 · 105s.

emerges from Fig. 5.2 as a characteristic lengthscale of the system.

The presence of a cluster network of well de�ned connectivity challenges the validity

of the FM model at the smallest frequencies. The power-law distribution of relaxation

times assumed by the model implies for instance that the creep deformation reaches

arbitrarily large values at times long enough, whereas one should expect a saturation to a

terminal plateau deformation at long times somewhere beyond τFM . Unfortunately, such

timescales are experimentally inaccessible, since the characteristic time grows linearly

with sample age: as a consequence, any experiment probing a timescale beyond τFM would

automatically be a�ected by aging. For this reason, the only way to test the consistency

of FM at very small frequencies would be to repeat this analysis on di�erent samples,

for example changing the volume fraction. Based on a rough analysis with the time-

cure superposition for polymer gels as suggested by Adolf and Martin [Adolf 1990] and

discussed in the introduction, one might expect that, with increasing volume fraction, the

sample would be increasingly far away from the critical gel point: the range of lengthscales

displaying self-similarity would be thus reduced and consequently one might expect an

eventual terminal plateau to be shifted at higher frequencies.

On the other hand, we also observe that the impossibility of addressing the puta-

tive loss peak around τFM in any clean experiment whatsoever somehow questions its

physical relevance. The usual interpretation of a fractional rheological model is based

on the existence of a power-law distribution of relaxation times, of which τFM should

represent some average value. However, one could argue about what physical interpreta-
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Figure 5.11: (a) Black curve: oscillating strain under an oscillating stress of amplitude

σ0/G0 = 5.5%. Red curve: static asymmetry χ(q) measured at q = 2.6µm−1 divided by

the proportionality constant k(q) discussed in the text. (b) Symbols: static asymmetry

χ(q) observed under a step strain deformation of amplitude γe. Positive and negative

γe values represent step strains in opposite directions. Red line: linear �t of the small

deformation regime, used to extract the proportionality constant k(q). (c) Black curve:

creep deformation and recovery after a creep time T = 200s. Red curve: static asymmetry

χ(q) divided by k(q).

tion should be attributed to relaxation times beyond the characteristic time for physical

aging. Indeed, physical aging represents a true challenge for the fractional calculus-based

framework presented in this paper, an ingredient that must be manually and somehow

arti�cially introduced in the model in order to account for the experimental data, and

which complicates its physical interpretation. Therefore, one might wonder whether a

more natural framework could exist to account for both the power law rheology and its

time dependence. One potential candidate in this regard is represented by Soft Glassy

Rheology (SGR) [Sollich 1997], which considers that the sample mechanics is controlled

by disorder, metastability and local structural rearrangements. The advantage of SGR is

that aging emerges as a natural consequence of these features, and SGR predicts a virtual

structural relaxation time linearly increasing with sample age [Fielding 2000], compatible

with our �ndings. Within this framework, our gel would be represented by an e�ective

"noise temperature" x = 1− α ∼ 0.6, well below the glass transition (in SGR occurring

at x = 1). In this region, the frequency spectrum of the sample would be characterized



118 Chapter 5. Structure, dynamics and viscoelastic properties

by a nearly constant elastic modulus G′ and a loss modulus G′′ ∼ ωx−1 [Sollich 1998],

which is in good agreement with the data in the experimentally accessible frequency range

(Fig. 5.8). However, one feature that appears to be in stark contrast with the picture

o�ered by SGR is the complete reversibility of the deformation, as it is demonstrated

by the creep recovery experiments (see e.g. Fig. 5.10), whereas in SGR creep is never

completely recoverable, and the non-recoverable amount depends on the creep duration.

Moreover, SGR predicts a logarithmic creep in the glassy regime (x < 1) [Fielding 2000],

which is clearly incompatible with our experimental data (Fig. 5.6). On the one hand,

these considerations explicitly demonstrate that a thorough comparison between di�erent

rheological experiments allows one to discriminate between models that would be indis-

tinguishable only looking at one experiment, say oscillatory rheology. On the other hand,

they raise the question of whether some concepts of SGR could be borrowed to provide

a more natural framework to introduce aging in fractional models. This could represent

an intriguing perspective for future theoretical works, towards a deeper understanding of

the microscopic origin of power-law rheology.



Chapter 6

Microscopic dynamics and failure

precursors of a gel under mechanical

load

Under a constant shear stress (creep experiment), the colloidal gel exhibits a fast, elastic

deformation followed by a slow sublinear power-law creep, which is eventually interrupted

after several hours by an upturn in the shear rate, leading to the delayed failure of the

material. Our experiments show that the �rst power-law regime, nicely described by lin-

ear viscoelasticity, corresponds at the microscopic scale to partially nona�ne, yet fully

reversible dynamics. Upon deviation from the linear viscoelasticity, a sharp acceleration,

localized in time of the nona�ne dynamics is observed. These faster rearrangements pre-

cede the macroscopic failure of the gel by thousands of seconds: they thus are dynamic

precursors of failure that allow one to predict the fate of the gel well before any rheolog-

ical measurement. We discuss all these features in a paper published in the Proceedings

of the National Academy of Sciences of the United States of America (PNAS) journal

[Aime 2018].
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Material failure is ubiquitous, with implications from geology
to everyday life and material science. It often involves sudden,
unpredictable events, with little or no macroscopically detectable
precursors. A deeper understanding of the microscopic mecha-
nisms eventually leading to failure is clearly required, but experi-
ments remain scarce. Here, we show that the microscopic dynam-
ics of a colloidal gel, a model network-forming system, exhibit
dramatic changes that precede its macroscopic failure by thou-
sands of seconds. Using an original setup coupling light scattering
and rheology, we simultaneously measure the macroscopic defor-
mation and the microscopic dynamics of the gel, while applying
a constant shear stress. We show that the network failure is pre-
ceded by qualitative and quantitative changes of the dynamics,
from reversible particle displacements to a burst of irreversible
plastic rearrangements.

failure | colloidal gels | rheology | light scattering | plasticity

Material failure is ubiquitous on length scales ranging from
a few nanometers, as in fracture of atomic or molecular

systems (1, 2), up to geological scales, as in earthquakes (3, 4).
While some attempts have been made to harness failure—for
example, to produce new materials with a well-controlled pat-
terning (5)—material failure remains in general an unwanted,
uncontrolled, and unpredictable process, widely studied since the
pioneering experiments on metallic wires by Leonardo da Vinci
in the 15th century (6). Indeed, a better control of the condi-
tions under which material failure may or may not occur and the
detection of any precursors that may point to incipient failure
are the Holy Grail in many disciplines, from material science (7–
10) to biology (11, 12), engineering, and geology (13–16). Fail-
ure may occur almost instantaneously, as a consequence of an
impulsive load. Often, however, it manifests itself in more elu-
sive ways, as in the sudden, catastrophic breakage of a material
submitted to a constant load, where failure may be preceded by
a long induction time with little if any precursor signs of weak-
ening. Such delayed failure has been reported in a wide spec-
trum of phenomena, from earthquakes (17), snow avalanches
(18), and failure in biomaterials (11, 12) to the sudden yield-
ing of crystalline (1) solids, composite materials (10, 19), and
amorphous systems (20), including viscoelastic soft materials
(21, 22), such as adhesives (23) and network-forming materials
(24–28).

Delayed failure typically involves creep during the induction
time, the sublinear (e.g., power law) increase of sample defor-
mation under a constant load. The microscopic origin of creep
is well understood for crystalline solids, where it is attributed to
defect motion (29, 30). Power-law creep is also widespread in
amorphous materials, but its microscopic origin remains contro-
versial: It has been attributed to the accumulation of irreversible,
plastic rearrangements (19, 21, 22, 31, 32), to linear viscoelastic-
ity (12, 28, 33), or to a combination of both (34), with different
authors holding contrasting views on similar systems (19, 34).
Crucially, a detailed understanding of the creep regime holds the
promise of unveiling the origin of the sudden failure of the mate-
rial, potentially revealing any precursor signs of failure, which are
difficult to detect by monitoring macroscopic quantities, such as

the deformation rate (10), or mesoscopic, coarse-grained shear
velocity maps (28). Clearly, investigations of the evolution of the
microscopic structure and dynamics under creep are required,
which are however very scarce to date and essentially restricted
to numerical works (35).

Here, we address these questions by studying the microscopic
dynamics of a soft solid submitted to a constant shear stress,
using a unique custom-made apparatus (36, 37) that couples
stress-controlled rheology to small-angle static and dynamic light
scattering (see Supporting Information for details on the sam-
ple and setup geometry). We focus on a gel made of attrac-
tive colloidal particles, a model system for network-forming soft
solids, which are ubiquitous in soft matter (38) and in biologi-
cal materials (39). Initially, particles in the gel network undergo
both affine (as in ideal elastic solids) and nonaffine displace-
ments, but all displacements are fully reversible. Thus, the initial
regime of creep is not due to plasticity but rather to the com-
plex viscoelastic response of the gel network. At larger strains,
by contrast, the dynamics are due to irreversible plastic rear-
rangements that progressively weaken the network, eventually
leading to the gel failure. Strikingly, this plastic activity does
not increase steadily until failure but rather has a nonmonotonic
behavior, peaking thousands of seconds before the macroscopic
rupture. Our work thus establishes the notion of dynamic precur-
sor as a powerful tool to understand and predict sudden material
failure.

The gel is formed in situ by triggering the aggregation of an ini-
tially stable suspension of silica nanoparticles via an enzymatic
reaction (see Materials and Methods). The nanoparticles have
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radius a = 26 nm and occupy a volume fraction ϕ= 5%. Gela-
tion occurs within 3 h, resulting in a network formed by fractal
clusters with typical size ξ∼ aϕ1/(df−3)∼ 0.5 µm (40, 41) and
fractal dimension df = 2. All experiments are performed at least
48 h after gelation, when the gel viscoelastic properties do not
evolve significantly with sample age. Under a constant load, the
gel exhibits delayed failure, a feature reported for many network-
forming systems (24–28). Fig. 1 demonstrates delayed failure for
our gel, by showing the time evolution of the shear strain γ and
of the strain rate γ̇ upon imposing a constant stress σ0 = 240 Pa
at time t = 0. On time scales shorter than those shown in Fig. 1
(t < 1 s), the gel responds elastically: γ jumps to an elastic shear
deformation γe ∼ 4.8%, corresponding to a shear modulus G =
σ0/γe = 5000 Pa, consistent with the low-frequency elastic mod-
ulus G ′ measured in oscillatory rheology tests (see Materials and
Methods). Following the elastic jump, γ grows sublinearly: Both
the deformation in excess of the elastic response, γ− γe , and the
shear rate follow power laws, well accounted for by a general-
ized, or fractional, Maxwell viscoelastic model (42), γ(t)− γe =
γeΓ−1(α)(t/τFM )α, with α= 0.43± 0.01, τFM & 105 s, and Γ(x )
the Gamma function. Remarkably, this creep regime extends
over more than four decades in time, until the gel abruptly
fails at t ≈ 2.8× 104 s, as signaled by the sharp upturn of both
γ and γ̇.

To investigate the relationship between the sudden macro-
scopic failure of the gel and its microscopic evolution, we inspect
static and dynamic light-scattering data collected simultaneously
to the rheology measurements (see Fig. 1) (36). Light scat-
tering probes density fluctuations as a function of wavevector
q: I (q)∝

∑
j ,k exp[−iq · (rj − rk )], with I the scattered inten-

sity, rj the position of the j -th particle, and q the scattering
vector (see Materials and Methods). We use a custom-designed
small angle setup (37) based on a complementary metal-oxide-
semiconductor (CMOS) detector, allowing measurements on
length scales ∼π/q in the range 0.8 µm− 10 µm, compara-
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Fig. 1. Mechanical response and structure evolution of a colloidal gel dur-
ing creep. Main plot: deformation in excess of the elastic jump γe = 4.8%

(blue squares, left axis) and shear rate (red circles, right axis) following
a step shear stress of amplitude σ0 = 240 Pa, applied at time t = 0. Lines:
power law fits to the data in the initial creep regime (1 s≤ t≤ 104 s), yield-
ing an exponent α= 0.43± 0.01 in the generalized Maxwell viscoelastic
model. (Inset) Anisotropy χ of the scattered intensity as a function of t, for
q⊥ = q‖ = 2.6 µm−1. Triangles: data for the creep test. Line: anisotropy as
obtained fromχ= kγ(t), with the proportionality coefficient k = 0.26 deter-
mined in independent oscillatory experiments in the linear regime. Solid and
dashed lines correspond to the linear regime and to an extrapolation in the
nonlinear regime, respectively.

ble to or larger than the cluster size ξ. At rest, the scattering
pattern depends only on the magnitude of q, since the gel is
isotropic. During creep, the q dependence of the scattered inten-
sity hardly changes, indicating that the gel structure is fundamen-
tally preserved until sample failure. However, a small anisotropy
develops in the static structure factor, similar to that observed
for other sheared soft solids (43). We quantify this asymme-
try by χ(q) =

[
I (q‖)− I (q⊥)

]
/
[
I (q‖) + I (q⊥)

]
, with |q‖|= |q⊥|

and where ‖ and ⊥ refer to orientations of the scattering vector
parallel and perpendicular to the shear direction, respectively.
The Inset of Fig. 1 shows the time dependence of χ. We find
that the asymmetry follows the same trend as γ(t)—that is, that
χ is proportional to γ throughout the whole experiment, up to
failure. Moreover, the proportionality coefficient is the same as
that measured in independent oscillatory experiments in the lin-
ear, reversible regime. Thus, structural quantities simply reflect
the macroscopic shear deformation, without providing additional
information on the fate of the gel.

We now show that the microscopic dynamics are a much more
sensitive probe of the gel evolution, unveiling dramatic plastic
events that weaken the network thousands of seconds before its
macroscopic failure. We measure the two-time intensity corre-
lation function g2(q, t1, t2)− 1∝ |g1(q, t1, t2)|2, with g1 the field
correlation, or intermediate scattering, function (44) (see Materi-
als and Methods). The correlation function is measured simulta-
neously for several q vectors; Fig. 2A shows representative g2− 1
measured at various times t1 during the creep, for q = 3.1 µm−1.
As for the static intensity, we analyze data separately for scat-
tering vectors parallel and perpendicular to the shear direc-
tion. The curves for q‖ (green symbols in Fig. 2A) exhibit a full
decay on timescales that grow during creep, eventually reach-
ing ≈ 103 s. The behavior for q⊥ is more complex: Initially,
g2− 1 decays to a quasi-plateau, while a two-step relaxation lead-
ing to an almost complete decorrelation is seen at later times.
Throughout the experiment, the dynamics along q‖ are faster
than for q⊥. This can be understood by decomposing the parti-
cle displacement in its affine and nonaffine components: r(t2)−
r(t1) = u0(t1, t2) + una(t1, t2). For a particle with coordinate z
in the direction of the shear gradient, the affine component is
u0 = (γ2− γ1)z ê‖, with γi = γ(ti) and ê‖ the unit vector parallel
to the shear direction. Because ê‖ · q⊥= 0, correlation functions
measured for q⊥ are only sensitive to una , the nonaffine com-
ponent of the displacement, while the decay of g2(q‖, t1, t2)− 1
reflects both affine and nonaffine motions, resulting in a faster
relaxation. In principle, additional contributions to g2− 1 may
also stem from the spontaneous, thermally activated dynam-
ics of the gel (45). However, here this contribution is negligi-
ble (see dashed line in Fig. 2A). Thus, the microscopic dynam-
ics is only related to the shear deformation: This suggests
analyzing the dynamics as a function of strain increment rather
than time delay.

Fig. 2B shows the same data as in Fig. 2A, replotted ver-
sus the strain increment ∆γ= γ2− γ1. A remarkable collapse
is seen for the q‖ data, independent of γ1. This indicates that
motion in the ê‖ direction is dominated by affine displacements,
for which u0 is proportional to ∆γ, regardless of the cumulated
strain. We confirm this interpretation by calculating g2(q‖)− 1
for a purely affine shear deformation (see Materials and Meth-
ods): The result (line in Fig. 2B) is indeed very close to the
data, ruling out sample slip or shear banding, which would result
in significant deviations of g2− 1 with respect to its theoretical
form. Note, however, that the data lay slightly below the the-
oretical curve, showing that a small nonaffine component must
also be present. Nonaffine motion is better resolved by inspecting
the q⊥ correlation functions, which are insensitive to the affine
component.

In the following, we thus focus on the microscopic dynam-
ics in the direction perpendicular to shear, which probes only
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Fig. 2. Microscopic dynamics of the gel during creep. (A) Time correlation functions, g2− 1, measured in the q‖ (green) and q⊥ (blue to red shades)
directions, as a function of time lag τ , for q = 3.1 µm−1 and for representative times t after applying a stress step. Black dashed line: spontaneous isotropic
dynamics measured on the same sample but at rest. (B) Solid symbols: same data as in A, plotted as a function of the strain increment ∆γ. Additional
datasets for intermediate t are shown as small symbols. Line: g2− 1 calculated assuming a purely affine deformation. +, ×: data collected in independent
oscillatory experiments following the protocol shown in C. ×: maximum decorrelation during a shear cycle of amplitude γ0; +: correlation echo after a full
cycle. (C) Shear deformation and correlation function during a shear cycle of amplitude γ0 = 0.4%. × and + indicate the correlation values reported in B.
(D) Nonaffine mean square displacement vs. strain increment during creep (solid symbols) and vs. γ0 in oscillatory experiments. The dashed line corresponds

to the squared cluster size. The solid line is a fit to the data using < u2
na >=u2

∞
γ2

0
γ2

0+γ2
c

, with u2
∞ = 0.12 µm2 and γc = 0.12%.

nonaffine displacements. We shall first discuss the linear vis-
coelastic regime, where we will show that microscopic displace-
ments are fully reversible, and then the nonlinear regime, where
irreversible, plastic rearrangements come into play, ultimately
causing the gel failure. In the initial regime, γ− γe ≤ 4% (t ≤
2000 s, blue shades in Fig. 2B), all data collapse onto a mas-
ter curve, exhibiting a decay to a quasi-plateau. This collapse
is remarkable and sheds light on the nature of the nonaffine
deformation observed in the initial regime of the creep. For
an ideal solid, the displacement under a shear deformation
is purely affine. Nonaffine displacements indicate a departure
from this ideal behavior, which may stem from two different
physical mechanisms: elastic, reversible response, but with spa-
tial fluctuations of the elastic modulus (46–49), or plastic, irre-
versible rearrangements (50). The fact that g2(q⊥, γ1, γ2)− 1
is independent of the cumulated strain suggests that no plastic
events occur in the initial creep regime. We test this hypoth-
esis by measuring reversibility at the microscopic level in sep-
arate oscillatory shear experiments, following the “echo” pro-
tocol of refs. 51–53. As shown in Fig. 2C, the sample is
submitted to a sinusoidal deformation, γ(t) = γ0 sin(ωt). The
overlap between the initial microscopic configuration and a
sheared one is quantified by g2(q⊥, t = 0, t2)− 1. We focus on
the maximum of g2− 1 at the correlation echo, after one full
cycle (+ in Fig. 2C), and on its first minimum (t2 = 10 s,× in Fig.
2C). By repeating the measurements for several γ0, we obtain
the plus and cross symbols displayed in Fig. 2B, for the max-
imum and the minimum level of correlation, respectively. Up
to γ= 4%, we find no loss of correlation upon setting back to
zero the macroscopic deformation; furthermore, the crosses fol-
low the same master curve as the creep data. This confirms that
for t ≤ 2000 s, the creep is not due to plastic rearrangements but
rather to the slow, fully recoverable deformation of the elasti-
cally heterogeneous network, at fixed connectivity. To charac-
terize the strain dependence of nonaffinity, we extract the non-
affine mean-squared displacement< u2

na > via g2(q⊥, ∆γ)− 1 =
exp(−q2

⊥
〈
u2
na(∆γ)

〉
/3), the analogous in the strain domain of

the usual relationship between correlation functions and mean
squared displacement in the low q limit (44). As seen in Fig.

2D, data collected at various q collapse on the same curve,
confirming the q2 scaling. Initially, < u2

na > grows as ∆γ2, even-
tually saturating to a plateau ≈ 0.1 µm2. The quadratic depen-
dence of < u2

na > on strain is the analogous of ballistic dynam-
ics in the time domain; it is the signature of elastic response in
an heterogeneous medium (47) and was recently reported for a
polymer network (46). The nonaffine displacement saturates at
a value close to the cluster size (dotted line in Fig. 2D), consis-
tent with the physical picture that the gel structure cannot be
remodeled on length scales larger than the network mesh size
without changing its connectivity—that is, without any plastic
rearrangements.

We now turn to the γ− γe > 4% regime (t > 2000 s, red shades
in Fig. 2B), where g2− 1 exhibits a two-step relaxation. The ini-
tial decay overlaps with that observed at early times, due to
reversible nonaffine deformation. The final decay of g2(q⊥)− 1
indicates additional dynamics, which lead to the relaxation of
density fluctuations on length scales comparable to or larger than
ξ. In this regime, the macroscopic deformation is not recovered
upon releasing the applied stress: We thus attribute the addi-
tional dynamics to irreversible plastic rearrangements. To inves-
tigate the evolution of plastic dynamics during creep, we show
in Fig. 3 the intensity correlation function for several scatter-
ing vectors and a fixed strain increment ∆γ= 5%, versus cumu-
lated strain. This quantity is directly related to the amount of
plastic rearrangements occurring over ∆γ. Strikingly, all curves
exhibit a negative peak, indicating that the gel undergoes a burst
of plastic activity for 13%. γ. 22%. Remarkably, the minimum
of g2− 1 occurs at γ≈ 17% (t = 1.9× 104 s), as much as 9,000 s
before the gel fails, for γ≈ 30%. Fig. 3 reveals that the minimum
is more pronounced for the largest q⊥ vectors. Thus, the burst
of plastic activity is better seen when probing the dynamics on
small length scales, which suggests that macroscopic quantities
should be less sensitive to such burst. This is indeed the case for
the macroscopic strain: As seen in Fig. 1, only a slight deviation
from the sublinear creep is seen around t = 1.9× 104 s, at the
burst maximum. The strain rate is a more sensitive quantity: Fig.
3 shows that the onset of plasticity coincides with the departure
of γ̇ from its power law behavior in the linear regime (dotted
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Fig. 3. Microscopic dynamics signals the onset of plasticity. g2(q⊥, γ−
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affine dynamics over a fixed strain increment ∆γ= 5%, for various q⊥ as
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line), thus establishing a direct connection between microscopic
dynamics and macroscopic creep (see Supporting Information for
a detailed comparison between mechanical and dynamical signa-
tures of plasticity).

To quantify the microscopic plastic activity during creep, we
develop a simple model for dynamic light scattering under time-
varying conditions. Using strain as the relevant variable and
focusing on the dynamics along q⊥, we assume that reversible
and plastic displacements are uncorrelated processes, leading to
the factorization g1(q⊥, γ1, γ2) =R(q⊥, ∆γ)P(q⊥, γ1, γ2), with
R and P the contributions due to reversible and plastic displace-
ments, respectively, and where R only depends on the strain
increment, as indicated by the experiments. For a stationary
process, a general form that captures well different kinds of
dynamics is g1 = exp[−f (q)(A∆γ)p ]. The initial decay of the
correlation function in the linear, reversible regime discussed
in reference to Fig. 2 is an example of this functional form,
with f ∼ q2, p = 2, and A the constant, nonaffine root-mean-
square particle displacement per unit strain increment. We gen-
eralize this form by expressing P(q⊥, γ1, γ2) as a function of
a strain-dependent plastic activity per unit strain increment,
A(γ):

g1(q⊥, γ1, γ2) =R(q⊥, ∆γ) exp

[
−f (q⊥)

(∫ γ2

γ1

A(γ)dγ

)p]
. [1]

We extract f (q⊥)1/pA(γ) from the experimental data using
Eq. 1 and assuming that R(q⊥, ∆γ) is the same as in the
reversible regime of creep (see Materials and Methods for
details). The results are shown in Fig. 4A, for several q⊥ vec-
tors. Consistent with the findings for the correlation function at
a specific strain increment, Fig. 3, the plastic activity per unit
strain exhibits a nonmonotonic behavior, with a peak centered
around γ= 17.1%. The height of the peak strongly increases with
q . According to our model, this is due to the q dependence of
the prefactor f , since the plastic activity A is a quantity intrin-
sic to the gel and is thus independent of the probed length scale.
We test this assumption by plotting in Fig. 4B the plastic activ-
ity scaled by its peak value, A0. An excellent collapse is seen for
data spanning a factor of 5 in q vectors, thereby confirming the
soundness of the model.

To gain insight into the nature of the plastic dynamics, we
inspect the q dependence of the prefactor f (q⊥)Ap

0 and of
the exponent p. For q⊥≤ 1.5 µm, the prefactor scales as q2

(see Fig. 4C, where the q2 dependence has been factored out)
and p≈ 1. Under these conditions, the contribution of plas-
ticity to the decay of the correlation function over a small
strain increment reads P(q⊥, γ, γ+ ∆γ) = exp[−q2

⊥D(γ)∆γ],
with D(γ)∼A(γ) a strain-dependent, but q-independent, diffu-
sion coefficient. Thus, in the low q regime, the plastic dynam-
ics are diffusive, since P is the analogous in the strain domain
of the usual diffusive dynamics in the time domain, for which
g1 = exp[−q2Dτ ] (44). A change of the plastic dynamics occurs
beyond q∗⊥≈ 2 µm−1, corresponding to a length scale π/q∗⊥≈
1.6 µm, slightly larger than the cluster size. For q⊥≥ q∗⊥, fAp

0

grows sharply, increasingly departing from the q2 scaling. Con-
comitantly, the p exponent grows up to p≈ 1.75 at the largest
probed q vectors (Fig. 4C), approaching p = 2, the exponent
characterizing ballistic dynamics. The emerging picture is that
of plasticity consisting of irreversible rearrangements, most likely
due to bond rupture. On small length scales (large q), the dynam-
ics are strongly q dependent and are dominated by local motion
associated with such rearrangements. On larger length scales
(smaller q), the contribution of many events adds up, leading to
a diffusive decay of density fluctuations. These events progres-
sively weaken the network, eventually leading to its catastrophic
failure.

The experiments reported here unveil the complex evolution
of the microscopic dynamics during the creep of a colloidal gel,
from reversible nonaffine motion due to the heterogeneous gel
structure to a burst of plastic rearrangements that irreversibly
weaken the network, providing a microscopic signature of the
onset of plasticity. Remarkably, this dynamic precursor occurs
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midway through the creep. While further theoretical work will
be needed to fully understand the origin of the precursor and
its temporal location, we emphasize that its occurrence allows
one to predict the ultimate fate of the network thousands of
seconds before its catastrophic rupture. Ongoing experiments
in our group reveal that similar dramatic changes of the micro-
scopic dynamics largely precede failure in a variety of mechan-
ically driven materials, from polymer gels to elastomers and
semicrystalline polymers. The notion of dynamic precursor
therefore emerges as a powerful concept to understand and pre-
dict material failure.

Materials and Methods
Enzyme-Induced Aggregation and Gel Formation. The gel results from the
aggregation of a suspension of silica particles (Ludox TM50, from Sigma
Aldrich, diameter a = 26 nm as determined by small angle neutron scatter-
ing, SANS), dispersed at a volume fraction ϕ= 5% in an aqueous solvent
containing urea at 1 M. Particle aggregation is triggered by increasing in
situ the ionic strength of the solvent, thanks to the hydrolysis of urea into
carbon dioxide and ammonia, a reaction catalyzed by an enzyme (Urease
U1500-20KU, from Sigma Aldrich, 35 U/mL) (54), whose activity depends on
temperature T . The suspension is prepared at T ≈ 4◦C and brought at room
temperature after loading the cell, thereby activating the enzyme and ini-
tiating aggregation. The sol–gel transition occurs ≈ 3 h after loading the
sample in the shear cell. The fractal dimension of the gel network, df = 2,
has been determined from independent SANS measurements on a gel pre-
pared following the same protocol.

Oscillatory Rheology in the Linear Regime. We characterize the mechanical
properties of the gel by measuring the frequency-dependent elastic and
loss moduli [G′(ω) and G′′(ω), respectively] in the linear regime (γ0 = 0.1%)
using a commercial rheometer (MCR502 by Anton Paar). Over the range
10−3 rad s−1≤ω≤ 10 rad s−1, G′ is essentially flat and G′′∼ω−0.4, a
behavior consistent with the fractional Maxwell model that accounts for
the gel creep. The gel slowly ages: G′ increases as t1/3, and the charac-
teristic relaxation time τFM obtained from the fractional Maxwell model
increases linearly with t. We let the gel age for 48 h before running a
creep experiment, such that during the duration of one experiment (typ-
ically a few hours) the viscoelastic properties of the gel do not evolve
significantly, with G′∼ 5 kPa and τFM & 105 s. The elastic modulus dom-
inates over the loss modulus at all measured frequencies; for ω= 1 Hz,
G′/G′′≈ 125.

Light Scattering. The small-angle light-scattering apparatus is described in
detail in ref. 37. In brief, the scattered light is collected by a lens system
and forwarded to the detector of a CMOS camera, such that each pixel cor-
responds to a well-defined scattering vector q, with q = 4πnλ−1 sin(θ/2),
where n = 1.338 is the solvent refractive index, λ= 632.8 nm the laser in
vacuo wavelength, and θ the scattering angle. The q-dependent intensity is
obtained as I(q) = 〈Ip〉q, where Ip is the CMOS signal of the p-th pixel, cor-
rected for the dark background as in ref. 55, and 〈· · ·〉q is an average over a
small region in q space centered around q. For the silica particles used here,
the form factor ≈ 1 in the range of q covered by the setup, such that I(q) is
proportional to the static structure factor S(q).

The two-time intensity correlation function is calculated as

g2(q, t1, t2)− 1 = β
〈Ip(t1)Ip(t2)〉q
〈Ip(t1)〉q〈Ip(t2)〉q

− 1,

where β& 1 is a setup-dependent prefactor chosen such that g2(q, t1, t2 =

t1)− 1 = 1. The intensity correlation function is related to the field correla-
tion function g1 by g2− 1 = |g1|2 (44), with g1 = F(q, t1, t2)/F(q, t1, t2 = t1)
and F(q, t1, t2) = N−1∑N

j,k=1 eiq·[rj (t1)−rk (t2)], where the sum runs over the N
particles in the scattering volume.

Intermediate Scattering Function for a Purely Affine Deformation. Following
ref. 44 with strain, rather than time, as the independent variable, the inter-
mediate scattering function is expressed as

g1(q, ∆γ) =

∫
Q(∆r) exp(−iq ·∆r)d∆r, [MM1]

where Q(∆r) is the probability distribution function of the particle displace-
ment following a strain increment ∆γ. For a purely affine deformation in
the direction of ê‖, Q(∆r) = 1/(∆γb) and ∆r = z∆γê‖, with b and z the cell
gap and the coordinate in the direction of the shear gradient, respectively.
By inserting these expressions in Eq. MM1, one finds g1(q⊥, ∆γ) = 1 and
g1(q‖, ∆γ) = sinc

(
q‖∆γb/2

)
. The corresponding g2− 1 function is shown

as a line in Fig. 2B.

Extracting the Plastic Activity A(γ) from the Light-Scattering Data. To calcu-
late the plastic activity per unit strain, A(γ), we invert Eq. 1:

∫ γ2

γ1

A(γ)dγ=

[
− 1

f(q⊥)
ln

g1(q⊥, γ1, γ2)

R(q⊥, γ2− γ1)

]1
p
. [MM2]

Taking the derivative with respect to γ2 at fixed γ1 yields

Aγ1 (γ) = f(q⊥)
− 1

p
∂

∂γ2

[
− ln

g1(q⊥, γ1, γ2)

R(q⊥, γ2− γ1)

]1
p
∣∣∣∣∣
γ2=γ

, [MM3]

where the γ1 index in the l.h.s. of Eq. MM3 indicates that here A is evaluated
using data for a specific value of the initial strain γ1. Operationally, we cal-
culate Aγ1 (γ) for several values of γ1, using g1 =

√
g2− 1 and R(q⊥, ∆γ) =

exp(−q2
⊥
〈

u2
na

〉
/3), with < u2

na>= u2
∞

∆γ2

∆γ2+γ2
c

and u2
∞ = 0.12 µm2, γc =

0.12% (line in Fig. 2D). The derivative in the r.h.s. of Eq. MM3 was performed
either numerically on the raw data or analytically on a second order poly-
nomial fit of ln(g1/R). We find similar results and use the latter method,
which is less sensitive to data noise. Finally, A(γ) is obtained by averaging
Aγ1 (γ) over different choices of γ1, in the range 1%≤ γ≤ 6%. The expo-
nent p is chosen by repeating the calculation of A(γ) for several test val-
ues, finally retaining the p value that minimizes the rms residuals between
the experimental g2− 1 and the correlation functions calculated from A(γ)
using Eq. 1.
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Setup and Sample Geometry
The sample is confined between two glass plates, as shown in
Figs. S1 and S2. The sample volume is 100 µL, and the gap
between the plates is 390 µm. The gel cross-section is approxi-
mately circular, with a surface A = 2.6 cm2, corresponding to an
effective radius

√
A/π=0.91 cm. A thin rim of silicon oil is used

to seal the lateral surface of the gel, to avoid evaporation.
One glass plate is fixed; the other one can slide along the ê‖

direction. The shear stress is applied by means of an electromag-
netic actuator; strain is measured by an optical, contactless sen-
sor, as described in ref. 1. A laser beam with a 1/e2 diameter of
2 mm and propagating along the êz direction illuminates the
sample. The scattered light is collected by a series of lenses (omit-
ted in Fig. S1 for clarity; a full scheme of the scattering apparatus
is given in ref. 2), such that a CMOS camera records the speckle
pattern formed by the scattered light in the far field. The trans-
mitted beam is removed by a beam block. More details on the
scattering apparatus are given in ref. 2.

Fig. S1 shows schematically the setup and the scattering geom-
etry. The intensity correlation functions are obtained from

g2 (q, t1, t2)− 1 = β
〈Ip (t1) Ip (t2)〉q
〈Ip (t1)〉q 〈Ip (t2)〉q

− 1,

with β & 1 a normalization constant (see Materials and Methods),
Ip(t) the scattered intensity at time t for the p-th pixel, and 〈. . .〉q
the average over a set of pixels corresponding to a small region
in q space, centered around the scattering vector q. Fig. S1 shows
two such sets of pixels, associated with the same scattering angle
θ, and thus the same magnitude of the scattering vector, but with
different azimuthal orientation. The region highlighted in green
corresponds to the scattering vector q‖ shown in Fig. S2, paral-
lel to the shear direction. The region highlighted in blue corre-
sponds to the scattering vector q⊥ shown in Fig. S2, parallel to
ê⊥ and perpendicular to the shear direction. Intensity correlation
functions measured for q = q⊥ are sensitive only to nonaffine
motion, while correlation functions for q = q‖ are dominated by
affine deformation.

Reproducibility
We have performed eight creep experiments coupling rheology
and light scattering and five complementary rheology tests on
samples with the same composition as that described in the main
text. The rheological properties are very well reproducible—for
example, the elastic modulus of all samples follows the same age
dependence to within 25%. All samples exhibited delayed failure

under creep. The failure time varies strongly (from 1 h to 50 h)
for a modest variation of the applied stress, 3.5% 6 σ0/G 6
5.5%. The general trend is for the failure time to decrease with
σ0, although large run-to run variations, up to a factor of ≈ 5,
are seen for comparable σ0/G values. Both the strong run-to-
run variation of the failure time and its marked dependence on
σ0 have been reported for other soft solids (see, e.g., refs. 24 and
27 of the main text). In the five experiments (out of eight) where
the failure time exceeded 6 h, a dynamic precursor was clearly
seen, with the same features as described in the main text: The
plastic activity goes through a maximum that corresponds to the
minimum of the macroscopic shear rate. One test was performed
in a different optical layout, allowing a spatial map of the plastic
activity over the full sample to be measured. This test suggests
that plasticity is to some extent spatially localized, which may
explain why the dynamic precursor was occasionally not seen. (In
the layout of Fig. S1, the laser beam illuminates only about 1%
of the sample.)

Comparison Between Mechanical and Dynamical Precursors
of Failure
Fig. 3 suggests that the onset of plastic activity detected by mea-
suring the microscopic dynamics is approximately concomitant
with a deviation of γ̇ with respect to its initial power law trend.
To further investigate the relationship between microscopic and
macroscopic quantities, we plot in Fig. S2 the strain dependence
of the cumulated plastic activity and the relative deviation of γ̇
from a power law. The former is defined as

∫γ0 A(γ′)dγ′

∫γmax
0 A(γ′)dγ′

,

with γmax = 28.4% the strain at which macroscopic failure starts.
The relative deviation of γ̇ is defined as γ̇−γ̇FM

γ̇
, with γ̇FM the

power law fit to the strain rate shown as a dashed line in Fig. 3.
Both quantities are defined such that they tend to one at large
strain. Fig. S2 shows that both quantities fluctuate around zero
(due to noise) at the beginning of the experiment; they start
growing significantly when the strain attains about 15%.

Fig. S3 shows the cumulated plastic activity plotted against the
relative deviation of γ̇. At the onset of plasticity, the data fol-
low approximately a power law with exponent 3. This demon-
strates that the growth of the plastic activity and the deviation
of γ̇ occur indeed concomitantly. Moreover, it demonstrates that
the growth of the microscopic plasticity is sharper than that of the
deviation of γ̇, as suggested by the comparison of the two panels
of Fig. S2. This indicates that A is more sensitive than the strain
rate as a signal of plasticity.

1. Aime S, et al. (2016) A stress-controlled shear cell for small-angle light scattering and
microscopy. Rev Sci Instrum 87:123907.

2. Tamborini E, Cipelletti L (2012) Multiangle static and dynamic light scattering in the
intermediate scattering angle range. Rev Sci Instrum 83:093106.
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Fig. S1. Schematic view of the shear cell coupled to the small-angle light-scattering apparatus. For the sake of clarity, the lenses used to image the far-field
scattering intensity on the detector plane are not represented. See Setup and Sample Geometry for more details.

Fig. S2. Geometry of the light-scattering experiment. A shear stress is applied by displacing the mobile plate in the ê‖ direction, as shown by the double
arrow. ki is the wave vector of the incident light, ks,‖ and ks,⊥ are the wave vectors of the light scattered at the same angle θ, but corresponding to scattering
vectors q‖ and q⊥ oriented along the shear direction ê‖ and perpendicular to it, respectively. See Setup and Sample Geometry for more details.
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Fig. S3. (Top) Strain dependence of the cumulated plastic activity. (Bottom) Strain dependence of the deviation of the strain rate with respect to a power
law fit to γ̇ in the first regime of the gel creep (dashed curve in Fig. 3).

Fig. S4. Double logarithmic plot of the cumulated plastic activity versus the deviations of the strain rate from a power law. See Comparison Between
Mechanical and Dynamical Precursors of Failure for more details.
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In chapter 6 we showed the rheological signature of delayed failure in a colloidal gel.

We observed that primary creep is characterized by linear viscoelasticity, and that a plastic

burst of activity characterizes the linear to nonlinear transition. Another relevant exper-

imental protocol commonly used to investigate the onset of irreversibility is the so-called

fatigue test, where a cyclic perturbation is repeated many times, and the evolution of the

system is followed as a function of the cumulated deformation. In this chapter we show

results obtained in similar experiments, namely large amplitude oscillatory shear exper-

iments. Analogies and di�erences with respect to chapter 6 are discussed, with special

focus on the reversibility of the observed deformation.

7.1 Yielding transition in large amplitude oscillatory

shear

Large amplitude oscillatory shear (LAOS) experiments are commonly performed in a

strain-controlled fashion: a strain perturbation γ(t) = γ0e
iωt with a �nite amplitude γ0 is

imposed, and the stress response is monitored over time, as sketched in chapter 2. In the

nonlinear regime, no guarantee is given a priori that the response is still periodic: for this

reason one usually focuses on the stationary state (provided that such state exists and

can be reached within experimentally accessible timescales), where nonlinear viscoelastic

moduli can still be de�ned, e.g. through a �rst-harmonic approximation of the stress

signal (cf. chapter 2).
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This condition is easily met for a variety of soft samples, the so-called simple yield

stress �uids, whose nonlinear mechanical properties are independent on the strain history,

whereas it doesn't hold for our colloidal gel, since the macroscopic deformation strongly

a�ects the structure: such a property is usually referred to as thixotropy. As a conse-

quence of thixotropy, the mechanical response of the sample to an oscillatory perturbation

with amplitude γ0 may not be periodic, and a transient regime is often observed, during

which any de�nition of the nonlinear viscoelastic moduli would produce time-dependent

G′ and G′′. Therefore, when thixotropic materials are studied in the nonlinear regime,

special care must be taken in the experimental protocol, in order to obtain reproducible

results.

In the speci�c case of our colloidal gels, we have decided to adopt the following

protocol: for each experiment, a new sample is prepared in situ, in the Couette cell of the

rheometer, as discussed in chapter 5, and it is let age after gelation for 24h. After this

waiting time, strain oscillations at frequency ω = 1 Hz are applied, with an increasing

amplitude γ0 starting from the linear regime. We observe that in the nonlinear regime the

�rst oscillations are characterized by a strong evolution of the viscoelastic moduli, which

signi�cantly slows down after a few periods. For this reason, we decided to perform 10

strain oscillations for each amplitude γ0, and to extract mechanical properties from the

last one. Results are shown in Fig. 7.1.

The inset shows a few examples of Lissajous-Bowditch (LB) plots: for small ampli-

tudes (up to γy1 ∼ 10%) the plots are elliptical, which indicates negligible contributions

from higher order harmonics in stress, and eccentricity is large (e2 ≈ 1), which means

an essentially solid-like response. Beyond γy1, however, the shape changes abruptly, and

the increasing area enclosed by the LB plots (already starting from the blue curve in

Fig. 7.1a) tells us that nonlinear energy dissipation mechanisms are occurring during de-

formation. Such abrupt change is unusual in colloidal gels, where yielding is usually a

more gradual process [Koumakis 2011, Laurati 2014, Brunel 2016, Moghimi 2017], and

may re�ect catastrophic material failure, for example linked to the internal fracture of

the attractive gel, in analogy to what it is observed in brittle solids. Close to failure,

the LB plots display a tilted shape, commonly found in literature [Colombo 2014], that

highlights the presence of strain hardening in the high-strain end of the curve, which

means that the structure is not yet totally disrupted.

The main plot of Fig. 7.1 shows the viscoelastic moduli extracted from a �rst har-

monic approximation of the measured stress curves. The linear regime, up to a few

percent deformation, is characterized by strain-independent moduli. The higher value of

G′ (two decades above G′′) re�ects the solid-like nature of the gel. The value of linear G′

corresponds to the one expected from the rubber elasticity [Colby 2003] of a network with

mesh size ξ ∼ 1 µm equal to the gel cluster size (cf. chapter 5), and it is much higher than

what typically found in attractive colloidal gels at similar volume fractions, also taking

particle size dependence into account [Koumakis 2011, Laurati 2014, Moghimi 2017]. This

re�ects the strong cohesion of the sample, probably linked to the experimental protocol:

in-situ sample preparation leads to a very homogeneous material, where a large number
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Figure 7.1: (a) Lissajous-Bowditch plots of shear stress vs. strain obtained as described

in the text, for ω = 1 Hz and di�erent strain amplitudes: γ0 = 2.8% (black), 8.9%

(blue), 12.5% (green), 14% (yellow), 15.8% (red). (b) Nonlinear viscoelastic moduli G′

and G′′ extracted from a �rst harmonic approximation of the measured stress curves.

Data corresponding to the Lissajous plots in the inset are highlighted in corresponding

colors.

of the interparticle bonds are actively contributing to the stress-bearing structure. This

interpretation is in agreement with the work of Moghimi et al [Moghimi 2017], where

a colloidal gel is �uidi�ed by large amplitude oscillatory shear, and the strength of the

resulting material after �ow cessation is related to the homogeneity of its structure.

As γ0 is increased, a weak strain overshoot [Hyun 2011] is observed, with G′ almost

constant and G′′ increasing by about one decade. This re�ects the observation that in LB

plots the enclosed area initially increases without signi�cant changes in the major axis

orientation. After that, the afore mentioned brittle-like nature of the yielding transition

is observed as a sharp drop of G′. Again, as noticed by looking at the tilted shape of the

LB plots, the viscoelastic moduli clearly show that even beyond the abrupt yielding the

material is not completely �uidi�ed: G′ is still larger than G′′, and they both decrease in a

nontrivial way with increasing γ0 until a crossover is observed, around 1 strain unit, which

marks a second and last yielding step. Beyond this crossover, log G′ and log G′′ vs. log

γ0 display slopes of -2 and -1 respectively, which are expected for similar systems in the

strongly nonlinear regime, where the structural relaxation time τ is expected to decay with
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the imposed shear rate [Miyazaki 2006]. One can qualitatively understand this regime by

taking τ ∝ γ̇−1 [Sollich 1998] and ω � τ−1, where this second inequality derives from the

assumption that ω ∼ τ−1(γ̇) at the loss peak [Miyazaki 2006]. Since in a �rst harmonic

approximation γ0 = γ̇0/ω ∝ (ωτ)−1, this allows to relate the large strain regime in the

amplitude sweep to the terminal low frequency regime in a typical frequency sweep, where

the viscoelastic moduli exhibit the typical slopes of a Maxwell model at low Deborah

numbers De = ωτ � 1: G′ ∝ ω2 ∝ γ−2
0 and G′′ ∝ ω ∝ γ−1

0 . This suggests that �ow is

�nally achieved at the largest amplitudes. Using the analogy with the Maxwell model,

one can extract from the terminal regime a viscosity ηL(γ0) ∼ G′′2/(ωG′γ0) ∝ 1/γ0, which

corresponds to ηL ∼ 0.1 Pa·s, i.e. ∼ 100 times the viscosity of water, at the largest strain

amplitude.

In agreement with established works in the literature [Koumakis 2011, Laurati 2014,

Brunel 2016], we attribute the observed two-step yielding transition to the disruption of

two distinct structures in the gel: the �rst yielding, around γy1 ∼ 10%, is expected to

be associated to the breakage of the main backbone of the percolating structure, which

abruptly weakens the material, whereas the second step around γy2 ∼ 100% is expected

to correspond to the breakage of particle aggregates into smaller clusters. The large

value of ηL, together with clear evidence coming from the visual analysis of the sample

after yielding (the material is turbid and macroscopically heterogeneous), shows that in

our experiment we do not achieve the complete breakage of the gel down to the particle

level: the �nal state of our sample at the highest amplitudes should rather correspond

to a suspension of particle aggregates. One can imagine that, as a consequence of the

strong attraction between the particles, a much higher shear stress, not reached in our

experiments, would be needed to fully redisperse the sample to its initial state [Tang 2001].

As anticipated in chapter 2, the area S included inside the normalized LB plots σ̃(γ̃)

(where σ̃ = σ/σ0 and γ̃ = γ/γ0 are instantaneous stress and strain normalized by their

�rst harmonic amplitudes σ0 and γ0) represents the fraction of energy dissipated during

one cycle. The value of S is shown in Fig. 7.2a as a function of the shear amplitude. In

the linear regime, we found in chapter 2 that S/π = sin2 δ increases from 0 to 1 as the loss

tangent tan δ increases (δ being the phase di�erence between stress and strain signals).

Even though in presence of higher harmonics a S/π ratio larger than 1 is in principle

allowed, in our case S/π continuously increases with increasing γ0, approaching 1 from

below in the large deformation limit. The detailed pro�le of such an increase contains

the vestiges of the two-step yielding process, since a plateau is reached at intermediate

amplitudes, in between the failure of the network and the complete �uidization. The

same trend can be observed in the detailed harmonic content shown in Fig. 7.2b: again,

the signature of the two-step yielding is marked by the double peak of the third harmonic

σ3, where the low value of the even harmonics suggests that no wall slip nor shear banding

occur (cf. chapter 2). Moreover, one can observe that, at the highest amplitudes, the

low level of higher harmonics suggests again that the structure of the system under

large amplitude shear evolves towards that of a simple shear-thinning suspension, as it is

observed in the literature for similar samples [Laurati 2014].
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Figure 7.2: (a) First harmonic stress amplitude σ1 (red, left axis) and area enclosed by

LB plots (black, right axis) as a function of strain amplitude γ0. (b) Higher harmonics σn
of the stress signal normalized by the �rst harmonic σ1. Even harmonics (crosses) keep

their constant low value throughout the experiment, which suggests that wall slip and

shear banding are negligible.

To summarize, our data show that yielding of the colloidal gel in LAOS experiments is

a complex phenomenon, spanning widely di�erent strain amplitudes. Macroscopic rheol-

ogy represents a very practical technique to characterize it, thanks to its straightforward

application, and the analysis of the detailed stress signal allows one to distinguish two

di�erent processes. Following established works in literature, the �rst process has been

interpreted as the breakage of the main stress-bearing backbone, and the second one as

the disruption and densi�cation of individual clusters.

At the same time, our colloidal gel showed a few features, namely the large elastic

modulus in the linear regime and its abrupt decay during the �rst yielding step, which

were rather uncommon for that class of soft samples. They are instead reminiscent of

hard, brittle solids. Another relevant di�erence with respect to other colloidal gels is

represented by the negligible structure reformation that follows the �rst yielding. Such

structure reformation is usually monitored by performing, after completely breaking the

sample, either time-resolved measurements in the linear regime or by a reversed strain

amplitude ramp, until reaching again the linear regime [Koumakis 2011, Koumakis 2015,

Moghimi 2017]. Although di�erences with respect to the initial state are not uncommon,

and the strong time-dependence has to be taken into account, after yielding the material

generally recovers a solid-like response, with an elastic modulus that may be even larger

that the one measured before yielding [Moghimi 2017]. To test structure reformation,

we use a di�erent protocol: starting from low deformations, we progressively increase

the strain amplitude up to a maximum value γmax, after which we start again from the

low-deformation regime and we increase again the amplitude up to a larger γmax, until

complete yielding is achieved. The results of such a protocol are represented in Fig. 7.3a,

which shows that in our case yielding is fully irreversible: once the �rst yield point is
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Figure 7.3: ((a) Viscoelastic moduli, G′ and G′′, measured by repeating several mea-

surements, each one attaining a maximum strain deformation γmax (speci�ed in the leg-

end). Within each measurement, 1 oscillation was performed for each strain amplitude,

and no waiting time was interposed between two consecutive measurements. (b) Stor-

age (squares) and loss (circles) moduli normalized by their value in the linear regime.

The arrow marks the departure from unity (red dashed line), de�ning the critical strain

γnl ∼ 2%.

reached, the percolating network is irreversibly damaged, and the viscoelastic properties

dramatically change. A subsequent measurement would reveal a totally di�erent picture

of the system, with minor structure reformation even over long times.

We speculate that the origin of such irreversibility might be attributed once again

to the peculiar sample preparation: since our gel slowly forms in situ, with no preshear

prior to the measurement, one might expect a more homogeneous and sti�er sample as

compared to standard procedures. Such material would thus contain a smaller amount of

structural defects, which might re�ect in the enhanced sti�ness and brittleness observed

experimentally, as it is well known in crystalline solids [Poirier 1985, Shan 2004]. This

hypothesis is consolidated by similar observations found in literature on a casein gel pre-

pared with a similar protocol [Leocmach 2014]. Such an interplay between the microscopic

structure of the sample and its mechanical properties is intriguing, and raises interest-

ing questions regarding the microscopic mechanisms underlying the observed rheological

response.

In the following we will focus on the onset of the yielding process, where the �rst

plastic events start to occur. Our data allow one to identify a critical strain γnl ∼ 2%

beyond which the mechanical response becomes nonlinear. Using the stress-controlled

experimental setup described in chapter 3, we address the reversibility of small to medium

amplitude deformations, our main goal being to detect and characterize the onset of

plasticity at the microscopic level and compare this onset with the nonlinear threshold
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γnl set by rheology.

7.2 Delayed yielding in LAOStress

LAOS experiment can also be performed in a stress controlled fashion, although this

choice is less common: despite a few intrinsic limitations that will be discussed in the

following, the so-called LAOStress experiments may represent a very instructive way to

get insight into the reversible or irreversible nature of the observed deformation. Indeed,

as pointed out by the work of Manneville and coworkers [Gibaud 2010, Perge 2014, Saint-

Michel 2017], LAOStress puts the emphasis on the transient regime before the steady

state is reached, often revealing the transient nature of states that one would be tempted

to consider as stationary.

In this spirit, in our experiments we focus on the amplitude γ0(n) that one can detect

during di�erent oscillation cycles n = 1, . . . N at a �xed stress, N = 100 being the total

number of oscillations imposed in the experiment. In our experiments we probe a range

of deformations small enough (below 10%), such that the deformation during each cycle

n can be �tted by a sinusoidal signal, with minor presence of higher harmonics except at

the very highest amplitudes (cf. Fig. 7.2). Nevertheless, Fig. 7.3b clearly shows that the

onset of nonlinear dissipation processes causing the increase of the loss modulus occurs

before such a threshold, around γnl = 2%. As a consequence of such nonlinear dissipation,

we observe that the strain amplitude γ0(n) is truly constant only at the smallest stress

amplitudes, whereas it generally increases with time at �nite σ0 (Fig. 7.4).

As long as σ0 is kept below a threshold σd (which might be considered as a dynamic

stress threshold, a concept derived from creep experiments [Brenner 2013]), the observed

growth rate dγ0/dt slows down roughly as the inverse of the number of applied cycles,

whereas above σd it shows three regimes, qualitatively similar to the primary, secondary

and tertiary creep discussed in chapter 6: after the �rst power-law decrease, an accel-

eration is observed, and at later times the amplitude diverges after a �nite number of

cycles Nmax. Experimentally we estimate σd/G0 ≈ (4.7 ± 0.1)%, G0 ∼ 5 kPa being the

plateau elastic modulus de�ned in chapter 5. Because of this delayed failure, LAOStress

experiments are limited to a maximum stress amplitude σs (which is a second, static

stress threshold), beyond which the sample yields within the �rst oscillatory cycle. The

largest stress amplitude achieved in our experiments is σ0/G0 = 6.6%, which sets a lower

bound for σs. For this reason LAOStress experiments on thixotropic materials are best

suited to investigate the very beginning of the yielding transition, where the e�ect of any

small plastic contribution to the deformation is cumulated cycle after cycle.

From a comparison between Fig. 7.4 and the creep pro�les shown in chapter 6, a

straightforward parallel with the results shown in chapter 6 would be tempting. However,

a few fundamental di�erences suggest that such a parallel might be misleading and must
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Figure 7.4: (a) Strain amplitude γ0 measured by a sinusoidal �t of one full strain

oscillation, following a stress perturbation σ = σ0e
iωt with constant frequency ω = 1/T =

0.025 Hz and di�erent amplitudes σ0 speci�ed in the legend, in units of the plateau

elastic modulus G0 de�ned in chapter 5. γ0 is plotted as a function of t/T , where t

indicates the waiting time from the onset of oscillations. (b) Rate of change of the strain

amplitude, again as a function of t/T . Such quantity is essentially 0 for the smallest

amplitudes (below γnl), which are not represented. Dashed line is drawn as a reference,

and represents a power law with slope -1.

be drawn with care. In fact, we have shown in chapters 5 and 6 that in our colloidal gels

the power-law creep corresponds to a linear deformation mechanism, well described by a

linear viscoelastic model. Accordingly, we observe that it is fully reversible upon stress

release. On the other hand, the power law observed in Fig. 7.4b is only observed for

large enough σ0 (namely for σ0/G0 & 4%), and it represents a nonlinear e�ect. Moreover,

we observe that the exponent of the power-law decrease of dγ0/dn in the �rst regime is

higher than the one predicted by linear rheology, and actually close to -1, which would

correspond to a logarithmic increase of the strain amplitude. Such di�erence is actually

not surprising, since the stress histories imposed in the two protocols are profoundly

di�erent, and involve characteristic timescales separated by several decades: for creep

deformation, γ̇−1 can approach values as large as 106 s, whereas in oscillatory shear one

typically has ω−1 ∼ 10 s.

For these reasons, one might expect that, despite the common features found in both

protocols, the fatigue observed in LAOStress experiments is governed by di�erent mi-

croscopic mechanisms with respect to the ones investigated in the previous chapters. In

this regard, the dynamic fatigue represented in Fig. 7.4 might be better suited to an

"Andrade-like" description of the power law deformation, involving the concept of dam-

age accumulation. To investigate more in detail this phenomenon, as well as the nature

of the delayed yielding observed, we analyze how the sample structure and dynamics are
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modi�ed as a function of the stress amplitude σ0.

7.3 Structural evolution under an oscillatory stress

In order to obtain a microscopic information related to the processes observed at the

macroscopic scale, we couple the shear cell to the small angle light scattering apparatus

described in Ref. [Tamborini 2012], with which static and dynamic light scattering ex-

periments can be simultaneously performed. In this section we will start by discussing

the results of static light scattering experiments.

Under oscillatory shear, the structure is mostly preserved, so that the scattered in-

tensity pro�le I(q) hardly changes. However, in agreement with a few works in the

literature [Vermant 2005, Mohraz 2005, Kim 2014], we detect the development of a re-

versible asymmetry in the static scattering signal during each cycle. Numerical simu-

lations [Park 2017] show that under shear the structure factor S(q) of a colloidal gel

develops slightly quadrupolar pro�les, which are generally referred to as "butter�y" pat-

terns, and are tilted by 45◦ in the velocity-gradient plane. In our experimental setup

the 2D sensor plane maps a nontrivial section of the 3D space, with ~q mainly laying in

the velocity-vorticity plane, and with a minor qz component along the gradient direction,

increasing at large scattering angles (cfr. chapter 6). We observe that the scattered in-

tensity under shear is unchanged in the "neutral" direction ~q⊥ (where we use this term to

indicate scattering vector having their main component along the vorticity direction and

no component along the velocity direction), whereas it changes in a way proportional to

the strain in the velocity direction ~q‖. As already described in chapter 5, we characterize

such asymmetry by de�ning an asymmetry factor:

χ(q, γ) =
I(~q‖, γ)− I(~q⊥, γ)

I(~q‖, γ) + I(~q⊥, γ)
(7.1)

This quantity can be employed in the so-called structural Lissajous plot [Kim 2014], that

is represented in Fig. 7.5. Instead of a fully 3D plot like the one shown by Kim and

coworkers, we prefer for clarity to show only the projections onto the (σ, χ) and the (σ, γ)

planes.

Figure 7.5 can be read with the same criteria used to analyze the rheological LB plots

of Fig. 7.1: on approaching σs from below, the mechanical response becomes slightly

nonlinear and, as a result, a small area appears inside the elliptical loop, indicating energy

dissipation. At the same time, the χ(σ) plot includes an area, whose precise physical

meaning is still unclear, that increases with the applied deformation. Moreover, in this

representation, a time evolution of the strain amplitude corresponds to an open loop in

the Lissajous curves: this is hardly present at small amplitudes, but it is clearly evident

at the highest one, where the curves abruptly end in correspondence to the sample failure.

Once again, the same holds for the χ(σ) curve, where the signal ampli�cation between two
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Figure 7.5: (a) Strain (dashed line, left axis) and asymmetry factor (line and symbols,

right axis) for the largest stress amplitude σ0/G0 = 6.6%, leading to delayed yielding.

(b) Strain (dashed lines, left axis) and asymmetry factor (lines and symbols, right axis)

for di�erent stress amplitudes: σ0/G0 = 1.4% (blue), 5.5% (red) and 6.6% (black).

successive periods is now highly enhanced, and even more interestingly a clear asymmetry

appears with respect to ±χ. We attribute such a signature to the creation of irreversible

density �uctuations that are ampli�ed until the whole network collapses: in this sense, one

could consider it as a structural precursor of the delayed failure, although the practical

interest of detecting such a precursor is probably limited, since strong indications of

structural damage come as well from the evolution of mechanical properties.

Nevertheless, from a more fundamental point of view such a signal may contain pre-

cious information about the stress-induced plasticity that changes the sample structure,

modi�es the mechanical properties of the sample and in the long run leads to its fail-

ure. Such piece of information could not be accessed by the work of Kim and coworkers

[Kim 2014], which is limited to the very large deformation limit probably because of the

lower sensitivity of neutron scattering, and surely deserves deeper investigation in the
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future.

In the following we will try to detect and characterize the very onset of those structural

modi�cations, by using dynamic light scattering.

7.4 Correlation echoes track plasticity across cycles

As sketched in chapter 6, the amount of microscopically irreversible (plastic) defor-

mation can be evaluated with dynamic light scattering, by comparing the system at time

t with the system at time t + nT , where T is the oscillation period and n is an inte-

ger number. Similar experiments have been performed in the past on dense emulsions

[Hébraud 1997], foams [Höhler 1997], colloidal suspensions [Petekidis 2002a] and gels

[Smith 2007] in the multiple scattering regime, and more recently using x-ray photon cor-

relation spectroscopy [Rogers 2014]. In this kind of test, a given macroscopic deformation

would be fully reversible at the microscopic level if the system is static when observed

in a stroboscopic way, i.e. after an integer number of full cycles: this corresponds to

complete correlation (g1(τ) = 1) retrieved for time delays τ = nT .

Figure 7.6a shows that the deformation of the macroscopic structure does determine a

loss of correlation, mainly in the velocity direction (as expected for an a�ne deformation)

and with a nontrivial component along the neutral direction (which is the signature of the

nona�ne deformation discussed in chapter 6). However, the observed correlation decay

is reversed when the macroscopic deformation comes back to γ = 0. Accordingly, one

observes regular peaks in the correlation function, named correlation echoes: their value

close to 1 shows that when the macroscopic deformation is recovered the microscopic

structure of the sample goes back to its initial con�guration. Such a deformation is

de�ned as microscopically reversible.

In chapter 6 we have discussed microscopic reversibility by looking at one full cycle

(τ = T ): the conclusion was that the observed correlation was essentially reversible up

to σ0/G0 ∼ 5%. The same analysis can be extended to higher order correlation echoes

(τ = nT with n > 1) and to stress amplitudes approaching σs from below. In the

following we will only show the signal detected in directions perpendicular to the applied

shear, for one representative scattering vector q⊥ = 3.1 µm−1.

Figure 7.6b shows the time dependence of the height of the correlation echoes at two

�xed time delays (τ = T and τ = 50T ), for a small stess amplitude, σ0/G0 = 0.4%. The

lack of any appreciable trend indicates that those correlation echoes probe a stationary

state, which is expected when σ0 is very small. However, no guarantee is given a priori

that a stationary state can be found under larger strain amplitudes as well. To check

this, in Fig. 7.7 we plot the correlation functions against the time delay τ/T = n, where

only integer values of n were chosen to track the decay of echo peaks. For each stress

amplitude, the correlation functions are calculated at di�erent waiting times tw calculated

from the beginning of the oscillation: a collapse of di�erent curves would then indicate

that a stationary state is obtained. This is the case of Fig. 7.7a, where two amplitudes
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Figure 7.6: (a) Black line, left axis: macroscopic strain response to an oscillating stress

σ = σ0e
iωt applied starting from time t = 0. The strain amplitude is γ0 = 0.4%, the

oscillation period is T = 2π/ω = 40 s. Red data points, right axis: degree of correlation

between the system at rest (measured at t = 0) and the system after a time delay t = τ , for

two scattering vectors with the same magnitude, oriented in the neutral (q⊥, full symbols)

and velocity (q‖, open symbols) directions. The �rst correlation echo is represented by

the point at τ = T = 40 s. (b) Black line, left axis: macroscopic strain, same data as

in panel (a). Data points, right axis: degree of correlation at a �xed time delay τ = nT

for two values of n = 1 (red) and n = 50 (blue), plotted as a function of waiting time t

during the oscillations, for the same two scattering directions as panel (a).

were chosen for the sake of simplicity, all amplitudes below σ0/G0 = 3.7% showing a

similar result. Above 3.7%, the situation is di�erent, and signi�cative aging is found

under oscillatory shear. Figure 7.7b shows that there is a range of amplitudes where

the observed decorrelation is faster at the beginning, and slows down as time passes,

until a quasi-stationary state might arguably be reached in the long time limit. On

the other hand. Fig. 7.7c shows that at still higher amplitudes a sharp acceleration is

observed, which accompanies the onset of the accelerated growth of the strain amplitude

(cf. Fig. 7.4). The global picture is schematized in Fig. 7.7d, where a sharp dynamic

transition accompanies the departure from the logarithmic grow of γ0(t).

By focusing on smaller amplitudes, up to σ0/G0 = 4.6%, and by comparing the corre-

lation decay obtained at di�erent amplitudes, one obtains the result shown in Fig. 7.8a,

which displays a nontrivial decay over a large number of cycles even for stress amplitudes

quite far away from σs (more than a factor of 3).

This decay is the signature of the nonlinear processes responsible for the enhanced

dissipation observed in Fig. 7.2: cycle after cycle the structure is slowly and irreversibly

modi�ed, presumably because of stress-induced plastic events. At the largest stress ampli-

tudes, those modi�cations may eventually signi�cantly a�ect the mechanical properties of

the gel, so that the measured strain amplitude starts to increase (Fig. 7.4). However, the
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Figure 7.7: (a-c) Decay of higher order correlation echoes for some representative stress

amplitudes σ0, each one calculated at di�erent waiting times tw. Di�erent panels show

di�erent stress amplitudes, as speci�ed in the labels: σ0/G0=0.4% (a, lines), 3.7% (a,

symbols), 4.6% (b), 4.8% (c). (d) Evolution of 20th correlation echo as a function of the

waiting time tw for di�erent stress amplitudes (in the legend).

decay of correlation echoes shows that tiny plastic modi�cations start to occur at smaller

stresses, already around 2% deformation, which corresponds to the onset of rheological

nonlinear regime (cf. Fig. 7.3b).

To obtain a more explicit link between microscopic plasticity and nonlinear proper-

ties we tried to evaluate the relaxation time associated with each stress amplitude. This

is of course very delicate because of the very small loss of correlation observed at the

smallest amplitudes. To estimate the relaxation time, we assume that all correlation

functions, if sampled for a su�ciently long time, would follow the same functional form

(e.g. a stretched or compressed exponential with the relaxation time as the only vary-

ing parameter). Under this assumption, one can shift horizontally (in logarithmic scale)

the correlation curves until they collapse on a mastercurve: the shift factor needed to

do so represents the relative decay rate Γ, allowing one to compare the acceleration of

microscopic dynamics with increasing stress amplitude. This procedure is more easily per-

formed on − ln(g2 − 1) rather than on the correlation functions themselves. Incidentally,
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Figure 7.8: (a) Height of higher order correlation echoes for di�erent stress amplitudes

σ0. (b) Logarithm of the correlation functions shown in panel (a), taken to emphasize

departure from unity. (c) Mastercurve obtained for σ0/G0 ≤ 4.6% by rescaling the time

delay by a factor Γ, shown in Fig. 7.9

we remind that − ln(g2 − 1) is directly related to particle displacements.

The individual − ln(g2 − 1) vs τ/T curves are shown in Fig. 7.8b, whereas the mas-

tercurve resulting from the shift is represented in Fig. 7.8c. The straight line, with slope

1, represents an exponential decay, that would imply a di�usive nature of the observed

dynamics. This is not completely the case, however, since some upwards deviation is

observed at intermediate rescaled times.

Figure 7.9a shows the relaxation rate measured at di�erent amplitudes. As one can

see, in the linear regime, below γnl ∼ 2%, Γ is constant (Γ = Γ0). Γ0 is related to the

spontaneous dynamics that characterize the gel at rest. Beyond γnl, instead, Γ increases

sharply. We can understand this trend by assuming that the observed relaxation rate Γ

can be decomposed in a contribution Γ0 coming from spontaneous dynamics that adds to

a plastic contribution Γ′ in the nonlinear regime. The additivity of the two contribution

comes from the assumption that spontaneous and plastic processes should be statistically

independent, as already invoked in chapter 6. Under this assumption, the nonlinear

relaxation rate Γ′ can be evaluated by subtracting from the overall decay rate the one

observed at the smallest stress amplitude: Γ′ = Γ− Γ0. The result is shown in Fig. 7.9b,

together with the loss tangent extracted from the rheological data. In this representation,

a sharp transition is observed around σ0/G0 ∼ γnl, where the observed decay rate starts to

grow almost exponentially with stress. A comparison with a rheological analogous such as

tan(δ) shows how sensitive the relaxation time is compared to rheological measurements:

the onset of nonlinear regime is revealed by an increase in Γ of more than one decade,

while the loss tangent does show an increment, but only of about 50% of its value in

the linear regime. A plot of the two quantities against each other (Fig. 7.9c) relates
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macroscopic and microscopic observations, clearly linking the departure from rheological

nonlinear regime to the onset of microscopic irreversibility.
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Figure 7.9: (a) Correlation decay rate Γ normalized by the decay rate Γ0 measured in

the linear regime. Error bars are mainly due to low signal to noise ration at small σ0

and to slight time dependence at large σ0. (b) Blue, left axis: decay rate Γ′ = Γ − Γ0

normalized by Γ0. Subtraction makes apparent the sharp transition observed at γnl. Red,

right axis: loss tangent as a function of the stress amplitude σ0. The linear to nonlinear

transition appears to be smoother at the macroscopic scale. (c) Γ′ as a function of tan(δ).

7.5 Discussion

In conclusion, by coupling oscillatory shear rheology with dynamic light scattering

we could follow the decay of higher order correlation echoes, for di�erent values of the

stress amplitude σ0. When σ0 is in the linear regime, the microscopic dynamics exhibit a

very slow and stress-independent correlation decay. We attribute this decay to the slow

spontaneous dynamics observed also on the gel at rest, which we quantify by means of a

spontaneous correlation decay Γ0.

As the amplitude increases beyond σ0/G0 = γnl, however, a second, strongly stress-

dependent contribution adds to the thermal relaxation, and we detect it as a rapidly

increasing decay rate Γ(σ0). This allows us to rule out (in our case) the concept of

"reversible plastic" or "reversible nonlinear" regimes that are sometimes observed in

other soft systems such as foams [Höhler 1997], colloidal glasses [Keim 2014] or other

colloidal gels [Rogers 2014], where the rheological nonlinear regime seems to anticipate

the onset of microscopic irreversibility.
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In the nonlinear regime, the existence of a steady state characterized by time-independent

microscopic dynamics is not guaranteed. We �nd that for σ0/G0 between 2% and 4% the

dynamics are indeed stationary, despite the fact that the strain amplitude is not constant,

but increases logarithmically in time. Beyond 4% the picture is more complicated: in a

�rst regime, up to σ0/G0 ∼ 4.6%, the dynamics are initially fast and then they slow down

in time, somehow following the macroscopic deformation rate. Such slowing down might

be understood by considering that, due to their fragility, many weak bonds presumably

break within the �rst cycles, after which the rate of plastic events decreases together with

the decorrelation rate and the rate of increase of the strain amplitude. Until 4.6%, despite

the dynamic and rheological signature of microscopic damage, the stress-bearing back-

bone doesn't appear to be critically corrupted, and the weakening proceed sublinearly

both at the macroscopic and the microscopic scale. Remarkably, no structural change is

detected in this regime by static light scattering.

At still higher amplitudes, the microscopic dynamics strongly accelerate with time,

and eventually the rate of increase of γ0 also passes through a minimum and starts in-

creasing, which is the sign that �nally the structure has been severely damaged. Indeed,

delayed failure is eventually observed, in a way that has strong reminiscence of the de-

layed failure observed under creep, the main di�erence being that here the �rst sublinear

increase in γ0 is logarithmic and also governed by plasticity, as opposed to the power law,

linear viscoelastic creep observed in chapter 6. A comparison between the two failure

mechanisms interestingly shows that under di�erent mechanical solicitations the same

system can yield in two ways which may look similar at the macroscopic level, but are

actually di�erent at the microscale.

Finally, it is interesting to emphasize that, in agreement with the intuitive notion of

yielding, in our case we observe that the onset of rheological nonlinear regime is accom-

panied by a measurable acceleration in the macroscopic dynamics, which is quanti�ed by

a plastic relaxation rate Γ′. We show that, unlike the rheological nonlinear transition,

which is very smooth and gradual, Γ′ grows of almost 2 decades as σ0/G0 increases from

2.1% to 4.6%, after which delayed failure is observed. In the near future we plan to more

quantitatively address this transition by measuring the microscopic dynamics close to γnl.

We hope that the behavior of Γ′ (e.g. continuously or discontinuously vanishing at γnl)

might disclose fundamental information on the nature of yielding in such soft samples.

In the same vein, we are currently extending this analysis to other systems with di�erent

structure, dynamics and rheology, with the aim of testing the generality of our results

and progressing towards a more comprehensive undestanding of the microscopic origin of

nonlinear rheology. One example of such systems will be presented hereafter in part III.
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The study on the colloidal gel in part II revealed intriguing information about the in-

terplay between macroscopic mechanical properties and microscopic dynamics. Namely,

reversible nona�ne deformations were detected in the linear regime, with a nontrivial

strain dependence well related to the microscopic structure. At larger deformations, an

additional nonlinear contribution to the correlation decay was observed, revealing emer-

gent plastic rearrangements and clearly marking the onset of the nonlinear regime. In

this chapter we investigate the same features on another type of sample, with completely

di�erent microscopic structure, in order to check the generality of our previous observa-

tions, and to extend them to a regime of large strain amplitudes that could not be achieved

with the colloidal gel.

8.1 Introduction

The sample investigated here is a soft colloidal glass prepared from a dense water sus-

pension of Poly(N-isopropylacrylamide) (PNIPAM) microgels. Microgels are intramolec-

ularly crosslinked soluble macromolecules of colloidal dimensions. Their interparticle

interaction potential depends on the crosslink density, and thus microgels exhibit a be-

havior ranging from that of polymer solution to that of hard spheres. For such systems,

volume fraction represents a crucial parameter controlling the phase behavior, which upon

concentration can pass from the amorphous liquid state to a solid state, either a crystal

or a glass.
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Colloidal glasses are out-of-equilibrium materials where particles are kinetically trapped

into a metastable, disordered con�guration. It is well established that for hard sphere

suspensions this happens when their volume fraction exceeds a value of about 0.58

[Sciortino 2005]. While hard-sphere glasses cannot exceed close-packing at an approx-

imate volume fraction of 0.64, soft particles can be arranged at much higher volume

fractions due to their softness and deformability, so that the glass transition is shifted by

an amount that depends on particle softness. Concentrated suspensions made from soft

and deformable particles such as microgels are named soft particle glasses in reference to

weaker interaction potentials than observed in hard-sphere glasses.

The rheology of hard sphere glasses, both in the linear and nonlinear regimes, has been

widely studied in past years, and it is described to a large extent by theoretical models

such as the soft glassy rheology [Sollich 1997] or by various declinations of the mode

coupling theory [Miyazaki 2006]. Soft glasses share many of their relevant features with

hard-sphere-like glasses, like the divergence of the zero shear viscosity as a critical concen-

tration is approached from below and the emergence of a �nite yield stress beyond that

concentration, but the additional parameters involved in their response (particle elastic-

ity and softness of interactions), together with their practical importance in widespread

applications, makes them a rich and very active �eld of research [Vlassopoulos 2014].

Important questions that still attract the attention of a large scienti�c community

concern for example the slow time evolution (aging), the coupling between microscopic

structure and �ow (thixotropy), and the solid-like to liquid-like transition under shear

(yielding). As shown in chapter 1, a crucial limitation to reaching a more comprehensive

microscopic description of yielding is represented by the scarcity of clean experiments

observing at the same time the macroscopic rheology and the dynamics at the microscale.

In this chapter we investigate the yielding of a soft glass, using dynamic light scattering

coupled to stress-controlled large amplitude oscillatory shear.

To this aim, after a brief description of the sample (section 8.2), we will �rst charac-

terize the structure and the dynamics of the system at rest (section 8.3). Then, after a

qualitative description of yielding as it is observed by pure rheological measurements (sec-

tion 8.4), we will investigate how the microscopic dynamics change in correspondence of

this transition (section 8.5), which will give us indications of the the microscopic processes

at play.

8.2 Sample preparation

Microgel samples were synthesized in our lab by Adrian Marie Philippe using free-

surfactant emulsion-polymerization as described in [Sen� 1999]. The particle radii can

be estimated using static light scattering (SLS) and dynamic light scattering (DLS).

SLS measures the gyration radius Rg (extracted from the form factor via the Guinier

approximation: I(q) = I0 exp
[
−(qRg)

2/3
]
), whereas DLS measures the di�usion coe�-

cient that can be related to the hydrodynamic radius Rh via the Stokes-Einstein relation.
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Figure 8.1: (a) Hydrodynamic radius Rh (red dots) and gyration radius Rg (black

squares) as a function of temperature. Below Tc ∼ 33◦C data were �tted by a critical-

like function as described in text. Adapted from D. Truzzolillo et al. (in preparation).

(b) TEM images of PNIPAM microgels at T = 20◦C. Scale bar corresponds to 0.2 µm.

Adapted from Truzzolillo et al. (in preparation, courtesy of Dr. S. Sennato - Physics

Dept., Sapienza - University of Rome)

The interaction between water and PNIPAM is a highly temperature-sensitive balance of

hydrophilic and hydrophobic interactions, which results in a characteristic temperature

dependence of the microgel size. As a consequence, both Rh and Rg at low tempera-

tures can be �tted by a critical-like function [Bischofberger 2015] Rh,g = R
(0)
h,g(1− T/Tc)α

(Fig. 8.1). The �t yields Tc ∼ 33◦C and α ∼ 0.1, with R
(0)
h higher than R

(0)
g as expected

[Sen� 1999, Reufer 2009]. In particular, the ratio Rg/Rh is lower than the value (0.77) ex-

pected for homogeneous hard spheres, which points out that monomer density is slightly

peaked at the center of the microgel [Bischofberger 2015, Arleth 2005].

Concentrated samples are prepared starting from a diluted suspension, whose volume

fraction can be inferred by measuring the zero shear viscosity [Truzzolillo 2015]. The

suspension is then highly concentrated by centrifugation, and afterwards it is redispersed

to the target volume fraction Φ = 4
3
πR3

hρ, where ρ is the number density of colloidal

particles. In this chapter we compare samples at two di�erent volume fractions ΦA = 1.5

and ΦB = 1.0. One should not be surprised to �nd a volume fraction greater than 1,

since here Φ is calculated by using the number density and the hydrodynamic radius

measured in the dilute limit. The softness of the particles allows each microgel to shrink

and partially interpenetrate (depending on the crosslink density and radial distribution),

so that Φ can easily reach values that would be unphysical for hard spheres. Indeed, at

room temperature the sample at Φ = ΦB behaves as a viscoelastic liquid close to the
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glass transition: spontaneous dynamics are much faster, and the yield stress, if any, is

too small to be measured with our shear cell (i.e. below 0.1 Pa). On the other hand, the

sample at Φ = ΦA is a viscoelastic solid, characterized by high elastic moduli, only weakly

dependent on frequency, and very slow dynamics. In particular thanks to its ultraslow

dynamics, the latter sample is particularly convenient for our experiments, and after a

�rst comparison between the two systems, in the following we will mainly focus on the

sample at Φ = ΦA.

Throughout the sample preparation, care was taken to keep the temperature well be-

low 40◦C, in order to avoid polymer damage and strong attractive interactions that could

hinder the homogeneous re-dispersion of the microgels [Bischofberger 2015]. Moreover,

since the volume fraction depends on temperature, temperature control is required in

order to avoid spurious contribution on sample dynamics coming from temperature �uc-

tuations. For this reason, the temperature of the room is kept constant at T = 23◦C, and

the temperature is measured in air close to the sample during the experiments, showing

�uctuations of less than 0.3◦C over 24 hours. Incidentally, we also argue that at such high

volume fractions the mechanical properties exhibit only weak dependence on Φ, therefore

we don't expect temperature �uctuations to play a major role in structural relaxation.

8.3 Structure and dynamics at rest

Figure 8.2 shows the structure of the two samples as it is probed with small angle

light scattering. The less concentrated one displays a scattered intensity I(q) close to

the one typical of densely packed materials in the qRh � 1 regime, where both P (q) and

S(q) are q-independent and close to 1. On the other hand, the intensity scattered by

the more concentrated sample reveals a microscopic structure profoundly di�erent from

the expected one: in the whole range of scattering vectors probed (0.11 µm−1 ≤ q ≤
3.9 µm−1), I(q) decays as a power law with an exponent -1.5. The power-law decay

reminds of the intensity pro�le typically observed in fractal objects. Two measurements

of the same sample separated by 10 days con�rm that the structure does not evolve

signi�cantly in time, so that the observed power law cannot be easily explained in terms

of transient states anticipating phase separation as it is sometimes observed elsewhere

[Beyer 2015]. This phenomenon is certainly interesting, and deserves deeper investigation

in the future, aimed at verifying for example whether microphase separation is present.

Microscopic dynamics at rest are characterized by dynamic light scattering in the

same range of scattering vectors as the static structure, and the intensity correlation

functions extracted are shown in Fig. 8.3a. Very slow dynamics characterize the sample

at Φ = ΦA, whereas for the one at Φ = ΦB the observed correlation decays after a few

minutes at most.

For the latter sample and the smallest scattering vectors shown in Fig. 8.3a, the

correlation does not decay to zero because of the static contribution of residual light

scattered by the imperfections in the optical interfaces (lenses, cell walls, etc.): it is the
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Figure 8.2: Static scattered intensity measured for the low density sample (blue) and

for the high density one (green). For the latter, structure measured right after �lling

the cell (open symbols) and 10 days after (�lled symbols) show no indications of time

dependence.

so-called stray light Istray. The presence of stray light adds a so called heterodyne term

to the Siegert relation linking the measured intensity correlation function to the �eld

correlation function, whereas the simple expression of Eq. 2.12 was derived under the

implicit assumption of purely homodyne scattering, where the detected intensity Idyn is

entirely dynamic, and varies over time as a consequence of the internal dynamics of the

sample. As a consequence of stray light, interpreting dynamic light scattering data taken

in a partially heterodyne condition is generally not trivial [Cipelletti 1999]. Usually

the ratio X = Istray/Idyn between stray light and dynamically scattered light can be

evaluated looking at the terminal plateau of the intensity correlation function: as long

as X is reasonably small, such a plateau can quite safely be considered a simple additive

term that can be subtracted from the measured intensity correlation functions. However,

higher X values typically require a more sophisticated treatment, beyond the purpose

of this chapter. In practice, Istray is typically much stronger at the smallest scattering

vectors (in our setup we have Istray ∝ q−2). Therefore, the impact of stray light is

negligible in the whole accessible q range for the concentrated sample, where Idyn is also

strongly increasing at small q, whereas it becomes very large at small q for the diluted
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sample, for which Idyn is almost constant: for this reason, only large scattering vectors

(q > 1 µm−1) are considered for that sample.
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Figure 8.3: (a) Symbols: Intensity time correlation function plotted for di�erent scat-

tering vectors (speci�ed in the legend, values in µm−1) as a function of time delay for

the two systems at volume fraction ΦA = 1.5 (green) and ΦB = 1.0 (blue). Lines: best

�ts to experimental data obtained with stretched exponential functions (shared stretch-

ing parameter β = 0.85) for ΦB and compressed exponentials (β = 1.41) for ΦA. (b)

Symbols: relaxation times computed as the integral average of the correlation decays for

the two systems, as a function of the scattering vector. Lines represent best power law

�ts with slope q−1.

For both samples all intensity correlation functions can be nicely �tted with stretched

exponentials where the stretching exponent β is shared by all q vectors, and it is β = 0.85

for the less concentrated sample and β = 1.41 for the more concentrated one. In the

former case, β < 1 again suggests that volume fraction ΦB = 1.0 is very close to the

glass transition, possibly slightly below it: in this case, β < 1 would be an indication

of the heterogeneous local environments that can be found close to dynamic arrest. On

the other hand, the compressed exponential observed in the latter case is less common

in glassy systems, and might be reminiscent of residual stresses giving rise to ballistic

dynamics similar to the ones observed for example in colloidal gels (cf. chapter 5),

multilamellar vescicles in a close packed con�guration [Ramos 2001], and concentrated

emulsions [Cipelletti 2003]. Indeed, the relaxation times τR exhibit a q−1 dependence for

both samples, which is the signature of ballistic dynamics (Fig. 8.3b).
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8.4 Rheology

Thanks to its slow dynamics at rest, the more concentrated sample appears to be

a good candidate to investigate the microstructural origin of nonlinear rheology, with

special focus on the yielding transition. When probed in the linear regime, such system

exhibits a solid-like response, with a predominant elastic modulus, only very weakly de-

pendent on frequency, which suggests that all relevant relaxation processes occur outside

the probed timescales, as it is also captured by dynamic light scattering (Fig. 8.3). As it

is the case of many out of equilibrium systems, this sample slowly ages over time, as can

be appreciated by the very slow increase of the elastic modulus.

Solid-like rheology in soft colloidal glasses is typically attributed to the concept of cage

elasticity [Erwin 2010], although it is not clear whether this picture could apply to our

case, given that the concentration is large enough to squeeze particles to a relevant extent.

Within this framework, yielding is imagined as the rupture of cage-like microstructures

[Petekidis 2004], but it has also been pointed out that for soft hairy colloids the picture

could be more complex [Helgeson 2007], which con�rms the interest of a more detailed

study.

A practical way of addressing yielding in rheology is once again nonlinear oscillatory

shear: an oscillating stress with �nite amplitude σ0 is imposed, and the deformation is

measured for di�erent stress amplitudes. As discussed in chapter 2, a careful analysis of

the strain signal can reveal many relevant features that help elucidating the underlying

processes. In this section we will limit ourselves to a qualitative description of the main

rheological features observed, many of which have been thoroughly discussed in the litera-

ture [Petekidis 2003, Miyazaki 2006, Carrier 2009, Rogers 2011], whereas in the following

section we will address some of the questions that remain open regarding the complex

microscopic origin of yielding by coupling the rheological investigation to a direct probe

of microscopic structure and dynamics.

In our experiments we apply the following protocol: the sample is loaded into the

shear cell taking care to avoid bubble formation, and it is let age for a waiting time

tw = 12h, during which we monitor the evolution of structure, dynamics and linear

rheology. As shown in Fig. 8.2, no measurable structural evolution is detected, whereas

the dynamics and the rheology (not shown) exhibit slow aging. After the aging time

tw, we apply an oscillating stress at frequency ω = 0.01 Hz and amplitude σ0, starting

from a small amplitude and then increasing it gradually until the large amplitudes limit,

where the sample �ows, is reached. After that, a reverse stress ramp, starting from large

σ0 and decreasing it until the linear regime, can be subsequently applied to check for

eventual hysteresis. For each amplitude, the rheological response is averaged on N = 10

full oscillations.

Viscoelastic moduli obtained with this protocol are represented in Fig. 8.4. A single

yielding step is observed around a critical strain, which can be mesured with di�erent

methods: among these, the crossover between G′ and G′′ (whose position we will call γx),

the position of the loss peak in G′′ (γm), and the change in slope of the σ0(γ0) curve (γσ).
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These methods yield quite di�erent results, with a poorly de�ned γy ranging between

γσ = 6% and γx = 25%. As an equivalent method to characterize the yielding transition,

the full harmonic content of the measured strain signal was analyzed (Fig. 8.6). The

results locate the onset of yielding around γnl = 10%. Beyond γx, the terminal regime

begins, where G′ and G′′ develop well de�ned slopes in a log-log plot (-0.6 and -1.2 for

G′ and G′′, respectively), close to the ones measured in the literature for similar samples,

and nicely matching theoretical predictions from mode coupling theory [Miyazaki 2006,

Christopoulou 2009, Carrier 2009].

After the sample is fully �uidi�ed, the stress amplitude is decreased again, across the

yielding transition, towards the linear regime. This backward amplitude sweep reproduces

the qualitative features observed in the forward one, but the value of the viscoelastic

moduli in the linear regime is now lower: this is the e�ect of shear rejuvenation.
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Figure 8.4: Symbols, left axis: viscoelastic moduli plotted as a function of the amplitude

γ0 of the �rst harmonic component of the strain. Sample is at volume fraction ΦA = 1.5,

and applied frequency is ω = 0.01 Hz. Filled and empty data points represent increasing

and decreasing amplitude sweeps, respectively. Lines, right axis: stress amplitude σ0

8.5 Reversible and irreversible nona�ne dynamics

The picture provided by rheology is that of a rather broad and gradual transition from

a solid-like response to small perturbations to liquid-like response at large amplitudes.

This is is sharp contrast with the picture provided in part II for the colloidal gel, where

yielding was much more abrupt. We now turn to microscopic dynamics in order to better
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understand the onset of the solid-like to liquid-like transition, and how this transition

develops until complete �uidization.

As shown in part II, reversible and irreversible dynamics can be characterized un-

der oscillatory shear using dynamic light scattering, and by correlating the undeformed

system to the system at maximum strain (in which case both reversible and irreversible

nona�ne dynamics will contribute to the signal) or with the system at zero macroscopic

strain, after one full cycle (in which case only irreversible processes will be observed).

Hereafter we will refer to those correlation values as the in-quadrature correlation and

the full-cycle correlation, respectively. Note that in this chapter we will only discuss the

signal detected in the direction perpendicular to the shear, in order to only detect the

nona�ne deformations. This corresponds to the q⊥ signal discussed in chapter 6, where

the subscript will be hereafter omitted for simplicity.

Both full-cycle and in-quadrature correlations are shown in Fig. 8.5a as a function

of strain amplitude, for a frequency ω = 0.025 Hz. One can identify a "linear" range

of strain amplitudes, for which the observed correlation goes back to 1 after one full

cycle, indicating the microscopic reversibility of the deformation. In this regime, re-

versible nona�nities are observed, as one can see from in-quadrature correlation data,

and can be studied using the same approach described previously. To this aim, we as-

sume that our experimental data are well described by the phenomenological expression:

g2 − 1 = exp{−[quna]
α}, where una(γ0) represents a nona�ne root mean square (rms)

displacement after one cycle or at the maximum strain. To �nd the value of α we look at

the logarithm of the in-quadrature correlations for di�erent scattering vectors q, and we

introduce a manual scaling parameter f(q) in order to collapse data for di�erent q values

on a mastercurve (Fig. 8.5b). f(q) is then represented in Fig. 8.5c, from which we �nd

a value for α = 0.6. Consistently, in the linear regime we �nd that − ln(g2 − 1) ∝ γ0.6
0 ,

implying that una ∝ γ0 (Fig. 8.5b). This suggests that, like in colloidal gels, here the

observed reversible nona�nities can be ascribed to the elastic response of the spatially

heterogeneous sample. Indeed, by looking at full-cycle correlations, we check that the

deformation is microscopically reversible for γ0 . 10%. Beyond 10% deformation the

picture changes: in-quadrature una deviates from the linear relation, and a residual una is

measured after one full cycle (Fig. 8.5d). The reversible to irreversible transition is better

represented in Fig. 8.6, where the una extracted from full-cycle correlations is compared

with the third harmonic content of the strain signal. The comparison between macro-

scopic rheological properties and the microscopic probe suggests that, as it was the case

for the colloidal gels, the nonlinear transition corresponds to the onset of microscopic

irreversibility.
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Figure 8.5: (a) Correlation functions obtained by correlating the system at rest with

the system after one full cycle (full-cycle correlation, open symbols) and at maximum

deformation (in-quadrature correlation, �lled symbols), plotted against the deformation

amplitude γ0 for one representative scattering vector q = 4.3 µm−1. (b) Logarithm of

the in-quadrature correlations plotted against strain amplitude for di�erent scattering

vectors, ranging from 0.2 µm−1 to 4.3 µm−1. Data were vertically rescaled using an

arbitrary function f(q) to collapse them on a mastercurve. (c) Rescaling parameter f(q)

as a function of the scattering vector. (d) Nona�ne rms displacement extracted from the

data shown in panel (a) as described in text and plotted as a function of γ0. Open symbols:

residual (irreversible) rms displacement after one full cycle. The dashed line represents

the average error of the measurements. Filled symbols: total nona�ne displacements at

maximum deformation. The solid line represents a linear �t in the linear regime.
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Figure 8.6: Brown, left axis: third harmonic content of strain signal, normalized by the

�rst harmonic. Blue, right axis: logarithm of the intensity correlation function after one

full cycle, highlighting irreversible deformations. In both series, �lled and open symbols

refer to increasing and decreasing stress ramps, respectively.

The transition from linear to nonlinear regimes can be better characterized by looking

at higher order correlation echoes, since plastic rearrangements are accumulated upon

successive cycles. To this aim we repeat the same experiment by increasing the number

of oscillations per stress amplitude to N = 500: the decay of higher order echoes is

shown in Fig. 8.7. Amplitudes below 6% are not shown for clarity, but substantial

collapse with the decay obtained at 6% is found: we attribute the decay observed at γ0 ≤
6% entirely to spontaneous dynamics. On top of this thermal relaxation, an additional

contribution, strongly stress-dependent, is observed for amplitudes beyond 6%, which

allows one to locate the onset of microscopic irreversibility somewhere between 6% and

6.6%, remarkably earlier than the threshold previously identi�ed based only on the �rst

correlation echo, but consistent with γσ (Fig. 8.4). We will comment on this later on in

this section.

Beyond 6% deformation the correlation functions evolve in an intriguing way: in a �rst

stage, from 6.6% to around 10%, they decorrelate increasingly faster while preserving the

characteristic shape of thermal dynamics, i.e. a compressed exponential with exponent

βs = 1.55. By contrast, in the large deformation limit the correlation functions are

rather described by stretched exponentials, with a di�erent, and q dependent stretching

exponent βf (q). In between the two regimes, a hybrid regime is found, where a sum of

the two exponentials seems to provide a reasonable description of the experimental data.

Thus, we �nd that the whole set of experimental data can be described by the following

empirical equation:
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Figure 8.7: Decay of higher order correlation echoes as a function of time delay normal-

ized by the oscillation period T , for one representative scattering vector (q = 4.3 µm−1)

and di�erent strain amplitudes during the increasing (a) and the decreasing (b) stress

ramp. Symbols: experimental data. Lines: best �ts obtained using Eq. 8.1.

g2(q, γ0, τ)−1 =

{
A(q, γ0) exp

[
−
(

τ

τf (q, γ0)

)βf (q)
]

+ [1− A(q, γ0)] exp

[
−
(

τ

τs(q, γ0)

)βs]}2

(8.1)

This function represents the superposition of two relaxation modes: a �rst slower one

with characteristic time τs and exponent βs, which is q-independent and equal to the

one measured at rest, and a second faster one, with characteristic time τf < τs and a

q-dependent (but γ0-independent) exponent βf . The parameter A represents the relative

weight of the two modes. Figure 8.7a shows experimental data for a representative scat-

tering vector q = 4.3 µm−1 and di�erent amplitudes γ0, together with best �ts obtained

using Eq. 8.1. A global �t of the experimental data yields a stretching exponent βf = 0.67

for the second, faster mode. Figure 8.8 shows the �tting parameters extracted at di�erent

amplitude.

From Fig. 8.7 and 8.8, several regimes can be identi�ed:

I) in the linear regime (γ0 < 6.6%) one has A = 0, which selects the spontaneous

mode alone. In this regime, τs is independent of γ0, and decreases as q−1 (Fig. 8.3),

which is typical of many soft systems where relaxation is ballistic and believed to

be driven by internal stress relaxation [Ramos 2001].

II) In a second regime, from 6.6% to around 10%, A is still 0, but τs becomes strongly

dependent on γ0: this suggests that the underlying microscopic processes are the
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Figure 8.8: Blue, right axis: Relative weight of the two relaxation modes at di�erent

strain amplitudes γ0. Black, left axis: relaxation times of the two modes (crosses) and

total relaxation time de�ned in Eq. 8.2 (red circles) as a function of strain amplitude, for

one representative scattering vector q = 4.3 µm−1. Vertical lines are drawn to highlight

the four regimes discussed in the text, and identi�ed by the bold labels.

same as the ones observed in the linear regime, but their rate accelerates steeply as

soon as the applied stress becomes large enough to help overcoming some activation

energy barrier. This marks what we called the onset of microscopic irreversibility.

It is worth to mention that this acceleration is only observed at large enough scat-

tering vectors (beyond 1 µm−1), most probably because of the limited time window

accessed in the experiment: indeed, at the smallest scattering vectors the experi-

mental time is too short to observe the thermal relaxation, and only the fast mode

is properly observed.

III) As stress is further increased (10% . γ0 . 45%), the second, faster mode appears.

This is the point where irreversibility starts to be observed also by looking only

at the �rst correlation echo (Fig. 8.6). In this range both modes are needed in

order to properly describe the correlation functions, but the fast mode becomes

increasingly relevant, and A varies continuously from 0 to 1. Unlike the �rst, slow

mode, the fast mode is only observed in the nonlinear regime (note that it appears

together with the higher order harmonics in the strain signal): we speculate that

it might be associated to the nucleation of "softened" regions inside the sample,

which are more prone to plastic deformation. The coexistence of these two modes
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in the intermediate deformation range separating the linear regime from the large

amplitudes limit might suggest that outside the softened regions the system still

relaxes following the same slow mode that characterizes thermal processes at rest.

Under this assumption, A would represent the relative abundance of those "softer"

zones.

IV) Beyond 45% deformation, A approaches 1, and only the second, fast mode is visible.

In our model this corresponds to complete yielding, and interestingly it occurs in

rough correspondence to the development of the terminal slopes in the nonlinear

viscoelastic moduli. Beyond this threshold, we �nd that the characteristic relax-

ation time scales as q−1, again indicating ballistic dynamics, and decreases as γ−2
0

(Fig. 8.9).

As mentioned previously, eventual hysteresis is addressed by increasing the stress am-

plitude starting from the linear regime until large strains, and then reversing the stress

ramp, decreasing the amplitude until the linear regime is again recovered. Results ob-

tained during this second stress ramp are shown in Fig. 8.7b, whereas Fig. 8.10a compares

a few representative strain amplitudes chosen during the two ramps. As one can see, good

agreement is found at large strains, whereas at lower strains an anomalously slow relax-

ation time is found, which has to be attributed to the �rst, slower relaxation mode. A

possible explanation of such hysteresis of the slow relaxation time is linked to the inter-

play between aging and shear rejuvenation, since complete yielding might partially erase

the internal stress gradients that represent the driving force for the slow relaxation mode.

This hypothesis is corroborated by the observation that eventually the slow relaxation

time speeds up as the amplitude is continuously decreased, which causes the correlation

curves to cross each other (Fig. 8.7b), an unusual feature that can be interpreted as an

e�ect of aging.

All the regimes discussed so far can be e�ciently grasped by looking at the total

relaxation time τR, which can be extracted from an integral of the correlation functions,

and that corresponds to an analytical expression involving all model parameters:

τR = AτfΓ

(
1

βf
− 1

)
+ (1− A)τsΓ

(
1

βs
− 1

)
(8.2)

where Γ(x) represents Euler's Gamma function. The τR de�ned in Eq. 8.2 is a robust

indicator, less sensitive to the �t quality than τs and τf separately, and it is represented

in Fig. 8.10b for two representative q vectors. By looking at the large q, one can again

distinguish the �rst drop, connected to the stress activation of the slow relaxation mode,

a quasi-plateau region, where the coexistence of the two relaxation modes is observed,

and the �nal large strain regime, where τR decreases roughly as γ−2
0 . Once again, an

intriguing qualitative reminiscence can be found with respect to the state diagram of a

system undergoing a �rst order phase transition.

In this representation, hysteresis is observed as an open loop enclosed between the

increasing and the decreasing stress ramps, and it is only observed at large scattering
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Figure 8.9: (a) Relaxation time τR (de�ned as in Eq. 8.2), rescaled by using a q-

dependent scaling parameter Γ(q) to obtain best collapse in the large amplitudes regime

and plotted as a function of the shear amplitude γ0 for di�erent values of the scattering

vector q (in the legend, increasing from yellow to blue). (b) Scaling parameter Γ(q) as a

function of q.

vectors, once again possibly because the experimental time is too short to detect variations

in the slow relaxation time.

8.6 Conclusion

In this chapter we have studied a soft glass composed of densely packed PNIPAM

microgels, at an e�ective volume fraction Φ = 1.5. The microscopic structure of the

sample, probed by static light scattering, showed a power law decrease of the scattering

intensity covering the whole range of accessed scattering vectors. This feature was rather

unexpected for such a system, and deserves deeper investigation.

On the other hand, the spontaneous dynamics measured at rest are ballistic with

compressed exponential relaxations, which is in line with what commonly found on similar

systems. The linear and nonlinear rheology was also characterized, mainly in oscillatory

shear, and showed a characteristic single step yielding process covering a deformation

range around 6% . γ0 . 25%, as indicated by di�erent nonlinear features.

To better understand the microscopic origin of yielding, we have coupled dynamic light

scattering to shear rheology and have tracked both the reversible nona�ne dynamics and

the decay of higher order correlation echoes, up to N = 500 cycles. Di�erent regimes

are found by increasing the amplitude: unperturbed thermal relaxation is found in the

linear regime, and it accelerates sharply as the amplitude is increased in the nonlinear

regime. Increasing further γ0, a second faster relaxation mode appears, qualitatively
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Figure 8.10: (a) Comparison between correlation functions observed during the increas-

ing and the decreasing stress ramp, for some representative strain amplitudes (values in

the legend) and q = 4.3 µm−1. (b) Relaxation times τR for both increasing (�lled symbols)

and decreasing (open symbols) stress ramp, plotted as a function of the strain amplitude

γ0 for two representative scattering vectors (values in the legend).

di�erent from the �rst one. Initially both modes can be distinguished, with the second

one growing in amplitude, until the �rst slower mode disappears beyond 25% deformation,

which coincides with the development of the terminal regime in the nonlinear viscoelastic

moduli G′ and G′′.

Upon reversing the stress ramp, a slight hysteresis is observed in the rheological mea-

surements, arising from the interplay between aging and shear rejuvenation. The same

hysteresis is retrieved in the microscopic dynamics, in particular in the slow relaxation

mode.

The emerging picture has features remarkably similar to the ones observed in �rst

order phase transitions, with the two phases being the solid-like phase found in the linear

regime and the �uidized phase in the large strain limit. The two are separated in an

intermediate range of deformations by a region of phase coexistence around the loss peak

observed in rheology. In order to check the generality of this picture, we investigated in a

similar way another soft glassy material, namely a concentrated emulsion. A preliminary

comparison between the two is very intriguing and will be sketched in the conclusive

discussion.
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Conclusions

In this work I have developed a novel experimental setup coupling a custom-made

stress-controlled shear cell in the linear translation parallel plate geometry to a small angle

static and dynamic light scattering apparatus. Dynamic light scattering is a very powerful

technique, but its application to the investigation of transient shear is far from trivial.

For this reason, I have studied how to decouple a�ne and nona�ne shear deformations,

which as a side e�ect has led to an optimization of the small angle light scattering setup

in order to enhance the sensitivity to nona�ne deformations. As a �rst example, the

data analysis protocol developed in this study has been applied to the deformation of a

weakly crosslinked elastomer. My experiments have revealed the presence of reversible

nona�ne deformations in the linear regime, stemming from the spatial heterogeneity of

the elastic network.

As a model system, this work mainly focuses on a colloidal gel characterized by a frac-

tal structure and a power-law rheology. We �nd that a Fractional Maxwell model provides

an accurate phenomenological description of the linear rheology, and we discuss the pos-

sible relationship between this model and the structure of the gel. Under a constant shear

stress, the colloidal gel exhibits a power-law creep eventually followed by delayed failure

when the stress is large enough. The thorough investigation of the microscopic structure

and dynamics during the transient creep preceding delayed failure represents the central

part of this work. We identify three regimes, which correspond to the primary, secondary

and tertiary creep regimes common to a wide spectrum of materials. After the �rst elastic

deformation, the primary creep is characterized by a power-law sublinear deformation,

which is very well described by linear viscoelasticity and which is macroscopically recov-

erable upon release of the applied stress. This suggests that minor damage is cumulated

during primary creep, and indeed we �nd that the microscopic dynamics are partially

nona�ne, again as a consequence of spatial heterogeneity, but completely reversible. The

secondary creep coincides with an upturn of the deformation rate, which deviates from

the power law dictated by linear viscoelasticity and passes through a minimum. We

�nd that such rather smooth deviation from linearity is accompanied at the microscale

by a very sharp and clear transition to a regime where particle displacements are no

longer reversible, which is the signature of emergent plasticity. In the tertiary regime the

network, weakened by plasticity, accelerates its deformation until delayed failure occurs,

with a divergence of the shear rate. Interestingly, we �nd that most of the microscopic

plasticity detected during the experiment is con�ned to two well de�ned bursts: the �rst

occurs in correspondence to the deviation from linearity, during the secondary creep, and

the second occurs at the very end, in correspondence to the failure. The two bursts are
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qualitatively di�erent, and separated by several hours, which makes the �rst of them ex-

tremely appealing in order to predict the delayed failure. Remarkably, this change in the

microscopic dynamics appears to have no counterpart in the structure, as it is probed by

static light scattering: the structure is essentially preserved until failure. For this reason,

we like to call the observed plastic burst a microscopic dynamic precursor of the delayed

failure.

The onset of microscopic irreversible dynamics is addressed also in a second series

of experiments, under oscillatory shear. We use our novel setup to tackle some of the

questions that are still open or debated, namely the nature of the yielding transition

observed with increasing shear amplitude and the mechanical e�ect of progressive damage

created at intermediate shear amplitudes. We investigate the sample dynamics under

shear in a stroboscopic way by looking at the correlation of the microscopic con�guration

of the sample following an integer number of oscillations (correlation echoes). We �nd

that the onset of the rheological nonlinear regime coincides with the onset of microscopic

irreversibility of the colloidal gel. This shows that the initial growth of the loss modulus

originates from the energy dissipated by irreversible microscopic plasticity. This can

be quanti�ed by a plastic decay rate, which is shown to increase very steeply in the

nonlinear regime. The strong correlation between such increase and the much smoother

increase of the loss tangent suggests that a link between the macroscopic mechanical

properties and the microscopic dynamics, suggested by several theoretical models, can

be quantitatively drawn. This is specially interesting since in the nonlinear regime the

progressive weakening of the gel network, caused by repeated oscillations at a given

stress amplitude, measurably a�ect the mechanical properties of the sample, causing a

sublinear increase in amplitude and even delayed failure in the long run under su�ciently

large amplitudes. Our experiments allow one to measure a qualitative change in the

microscopic dynamics preceding delayed failure under oscillatory as well, which might be

important for many applications.

Finally, the generality of the above conclusions is tested by repeating the oscillatory

shear experiments on a di�erent sample, namely a colloidal glass composed of soft mi-

crogel particles. This sample does not exhibit catastrophic failure. Hence, a wider range

of shear amplitudes can be applied in a controlled way, from the linear regime to the

large amplitude regime well beyond the yield stress. The yielding transition which we

characterize by following the decay of the correlation echoes appears to be rich of physical

information. After a �rst acceleration of the microscopic dynamics (also measured on col-

loidal gels), a complex phenomenology is observed, with the correlation decay changing

shape in a way that can be described as the coexistence of two relaxation modes. Our

results appear to be consistent with the increasingly popular analogy between yielding

and �rst-order phase transitions, where the shear �uidization of a soft solid is described

as a gradual process passing through the coexistence of solid-like and liquid-like regions.

Reading our results in light of this hypothesis further con�rms the potential of our ap-

proach, and calls for new, more conclusive experiments, which will be performed in the

near future.



165

Perspectives

As it has been documented in the introduction, the possibility of directly addressing

the microscopic plastic rearrangements during shear paves the way for a better under-

standing of a wide range of phenomena like fatigue, yielding and delayed failure. Not only

this is crucial for obtaining a comprehensive view of soft materials [Liu 1998], but it may

also represent a key element in many applications, from the development of new materials

with enhanced mechanical performance to the monitoring of the health of structures and

the prediction of delayed catastrophic events related to geology or engineering. This work

shows that this possibility has become a reality, at least for a class of systems for which

shear rheology and light scattering are relevant. Moreover, the experiments shown in this

work demonstrate that expectations have not been betrayed: microscopic plasticity does

display dynamic precursors of delayed failure, which can now be detected and charac-

terized. Given the large amount of potentially relevant applications of our approach, it

would be hard and most probably irrealistic to list all the possible perspectives that this

work opens to future research on the long run. For this reason, here we limit ourselves to

sketch the main axis that we �nd most promising, and in which direction we are currently

progressing.

Power law rheology and fractional models

A �rst speci�c point raised by our experiments concern the microscopic origin of power

law linear rheology. If this is well established for critical gels, whose structure is fractal

up to the largest lengthscales, the role played by the �nite cluster size is not trivial.

In chapter 5 we have evoked the possibility that a deviation from the pure Fractional

Mawell model might be observed at small frequencies for non-critical gels. However, we

have also argued that from an experimental point of view, accessing frequencies lower

than the characteristic Fractional Maxwell time is impractical because of physical aging.

Therefore, we speculate that such deviation might eventually be probed for gels at higher

volume fraction, for which the cluster size would be smaller. At the same time, it would be

interesting to better characterize the nonlinear rheology as well, for example by checking

the validity of strain-time separability.

The linear and nonlinear rheology can also be studied by numerical simulations: in-

spired by the work of Jagla [Jagla 2011], we plan to modify the numerical simulations

described in appendix B by introducing disorder in the distribution of spring sti�ness

and a viscous dissipative mechanism in order to mimic the linear viscoelastic spectrum.

To us, this model appears to be a good candidate to explore the interplay of plasticity

and linear viscoelasticity in the various regimes of deformation.
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Delayed failure and plastic activity

Despite the results already obtained on the plastic dynamics during creep and delayed

failure, our experimental data are still rich of features that deserve deeper investigation.

For instance, we have performed several series of creep and recovery measurements, by

varying the applied stress σ0 and the creep time tcreep before stress release. Macroscopic

rheology shows that after creep deformation in the linear regime the strain recovery γ(t)

follows a well de�ned power-law decay that in the long run brings γ back to the initial

γ = 0 con�guration, whereas deviations from the power law are observed when the creep

deformation grows beyond the linear regime, resulting in a �nite residual strain γ∞ at

the end of the creep recovery. Measuring γ∞ under di�erent applied stresses and creep

times would thus provide a quantitative, macroscopic estimation of the creep reversibility.

However, it turns out that γ∞ is typically very small (which is in line with the already

discussed brittleness of our gel): in our preliminary experiments it is always less than 10%

of the strain γcreep cumulated during creep, and grows linearly with γcreep, i.e. sub-linearly

with tcreep. A clean measurement of γ∞ would thus require very long experiments, which

are impractical also because of the spontaneous aging of the gel (cf. chapter 5). On the

other hand, the microscopic reversibility probed by dynamic light scattering proves to

be once again much easier to access. In such experiments, the sample during recovery

is correlated with the sample at rest before creep. We observe that, as the macroscopic

strain is recovered, the correlation function grows, indicating that the system is evolving

towards a microscopic con�guration closer to the one before applying a stress step (Fig.

C.1). At the smallest stress amplitudes, the correlation clearly tends towards unity, which

would imply complete microscopic reversibility, whereas when the nonlinear regime is

approached the correlation growth becomes much slower, and it seems to tend towards a

plateau value lower than 1. A measure of such plateau value would provide a quantitative

estimation of microscopic irreversibility. We �nd that such measurement is much easier to

obtain than rheological measurements. In the future it could be interesting to investigate

the onset of irreversibility using this experimental protocol as well.

Another intriguing feature deserving deeper analysis is certainly the structural asym-

metry χ(q, γ). If it is true that no spectacular features are observed at �rst sight in that

signal, it is also worth to remark that under creep large �uctuations are observed, which

are not present in the signal at rest (Fig. C.2, also cf. chapter 6), and thus they cannot

be simply attributed to experimental noise. Moreover, the anisotropy exhibits a sharp

peak at failure, which might contain precious information on the failure mechanism in

the very last stages, where dynamics are di�cult to probe in a consistent way because of

the strong time dependence (Fig. C.2). Moreover, it is not clear whether relevant infor-

mation can be extracted by the time �uctuations of the correlation signal. One intriguing

indication in this sense is that although an overall nice agreement between the local and

the macroscopic strain is found, the local strain as it is inferred by the a�ne component

of particle displacements su�er relevant �uctuations at rather high frequency (Fig. C.3),

whose statistics might reveal interesting features.
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Figure C.1: (a) Dashed lines, right axis: macroscopic strain γ(t) during a creep and

recovery step under a stress σ0 speci�ed in the legend (G0 is the plateau elastic modulus,

cf. chapter 5). Stress is applied at ton = 10s and released at to� = 30s. Symbols, left axis:

intensity correlation g2(q⊥, t = 0, τ)− 1 between the system at time t = 0 and the system

at time t = τ , plotted as a function of time delay τ for one representative scattering

vector q⊥ = 1 µm−1 (oriented perpendicular to shear). (b) Symbols: intensity correlation

g2(q⊥, τ) − 1 between the system at the moment of stress release (time t = to�) and the

system at time to� + τ , plotted as a function of the time delay τ for one representative

scattering vector q⊥ = 2.6 µm−1. Straight lines are a guide to the eye.

Perhaps even more interesting would be to repeat these experiments by changing the

sample details. For example, the role of sample structure and in particular of the cluster

size as characteristic lengthscale for microscopic plasticity can be demonstrated by chang-

ing sample concentration. Taking into account the optical and mechanical requirement,

set by turbidity and sti�ness respectively, we estimate that concentrations in a range

1% ≤ φ ≤ 30% should be easily accessible, which would allow us to span more than

one decade in cluster size, up to a maximum value ξmax ∼ 2.5 µm, which would be par-

ticularly interesting because that lengthscale would be associated to a scattering vector

q∗ ∼ π/ξmax ∼ 1.2 µm−1 well into the range probed by our light scattering apparatus.

Detecting reversible and irreversible dynamics on samples with di�erent characteristic

lengthscales could provide strong indications on the relevance of sample structure for the

failure mechanism. Another sample parameter that could be interesting to change in a

second instance is the strength and range of the attractive interactions, to check that by

weakening the interparticle interaction one can tune the fragility of the system, hence

controlling the impact of plastic events on the mechanical properties. In our system, this

can be easily tuned by changing the amount of urea in the initial solution, which deter-

mines the terminal ionic strength of the solvent, I. From DLVO theory, it turns out that

I not only sets the interaction energy, but also the equilibrium interparticle distance: the

higher the ionic strength, the stronger the bonds and the smaller the equilibrium distance.
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Figure C.2: (a) Creep deformation (red, left axis) and structural anisotropy χ(q) during

creep (blue, right axis). Di�erent shades of blue represent di�erent q vectors (increasing

from light to dark, values speci�ed in the legend). (b) Same data as panel (a), zoom

on the sharp peak observed at rupture. (c-g) Snapshots of the 2D scattered intensity at

rupture. Images are taken at times t =27950 s (c), 27951 s (d), 27952 s (e), 27953 s (f),

and 27955 s (g).

This is particularly interesting since during gelation I increases in time as a consequence

of enzymatic activity before saturating when the reaction is completed. Therefore, one

can expect that at the end of this process the gel will be frustrated, with slightly stretched

particle chains, and frustration increases with I. Increasing frustration and strength of

attraction should both contribute to producing a more fragile material, whereas in the

opposite limit the material should be less sti� but also more ductile. We already have

an indication that this guess is correct. Indeed, when the �nal ionic strength is increased

beyond 2 mol/l the material is so much frustrated that we observe that it self-fractures

at rest. Therefore, this appears to be a relevant parameter to be changed in the future.

Finally, extending the analysis to other network-forming systems might be clearly very

interesting.

Furthermore, adding spatial resolution to our analysis can obviously add a funda-

mental piece of information, allowing to detect eventual dynamic heterogeneities and

correlate them with the positions where the crack would be nucleated after yielding,

which would be of major interest for applications. Dynamic light scattering experiments

can be performed in a spatially-resolved fashion [Duri 2009], although this implies an

obvious trade-o� between space and wave-vector resolution. Given the overall complex-

ity of our experiments, we chose to perform spatially resolved dynamic light scattering

at one �xed scattering vector q. A few preliminary experiments have been performed in
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Figure C.3: Black line, left axis: creep deformation γ(t). Dots, right axis: correlation

functions measured along the shear direction, for q‖ = 2.6 µm−1 and various time delays:

τ =100s (red), 200s (blue), 500s (purple), 1000s (green). Colored lines: prediction based

on purely a�ne deformation: g2 − 1 = sinc2[q‖(γ(t + τ) − γ(t))e/2] (cf. chapters 4 and

6), calculated based on the measured macroscopic strain γ(t).

transmission geometry, with q ∼ 1 µm−1. The results promisingly suggest that plastic

activity is spatially heterogeneous, as it is also suggested by other experiments carried

on in our group by Angelo Pommella, but they also show that larger scattering vectors

are required in these experiments. Hence, we are currently working to �nalize a second,

spatially resolved light scattering apparatus working in backscattering geometry, which

will be able to acquire data simultaneously with the small angle apparatus. This would

be crucial in order to correlate the observed plastic dynamics with the distance from

places where future cracks would appear after failure.

Given the catastrophic nature of delayed failure, investigating the very last stages be-

fore fracture is complicated by the fact that all relevant processes happen in a very short

time window and after a very long induction time, which makes their proper detection

rather challenging. For this reason, it would be interesting to complement those observa-

tions with steady-rate experiments, where failure time can be predicted with much higher

precision, and therefore detected with higher accuracy, also thanks to the constant rate.

However, this requires a strain-controlled shear cell. We are currently working to equip

our shear cell with a piezoelectric actuator and a force sensor, and preliminary experi-

ments are giving promising results. Moreover, a strain-controlled apparatus would allow

to couple dynamic light scattering to stress relaxation experiments, which is absolutely

straightforward thanks to the absence of macroscopic deformation. Independent exper-

iments performed in our group on semicrystalline polymers under tensile deformation

by Yassine Nagazi and Veronica Iadarola suggest that much can be learned from these

experiments as well.
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Onset of irreversibility and oscillatory yielding

The investigation of the onset of microscopic irreversibility deserves as well further

investigation, starting from a re�ned analysis of experiments already performed. For

example, for the colloidal gel it would certainly be interesting to investigate how the

microscopic picture presented in chapter 7 depends on the scattering vector. Structural

Lissajous curves shown in Fig. 7.5 deserve as well deeper investigation. In particular, it

is interesting to remark that, as it might be appreciated from Fig. 7.5b, the structural

Lissajous plots seem to develop a more elliptical shape (less eccentric) than the rheolog-

ical Lissajous plots. In other words, the phase angle between the applied stress and the

structural anisotropy χ appears to be larger than expected. Surprisingly, there appears

to be a range of amplitudes (like the red curve in Fig. 7.5b) where stress and strain

are in phase with each other, but the asymmetry is not. Investigating the origin of this

e�ect might be a way to address complex and partially reversible intra-cycle rearrange-

ments which cannot be detected in a stroboscopic analysis only focused on the decay of

correlation echoes. Another e�ect, even clearer from Fig. 7.5, is that the symmetry of

structural Lissajous plots is not necessarily the same as the one of mechanical Lissajous

plots. Indeed, at the highest strain amplitudes, χ(σ) is clearly asymmetric with respect

to ±σ, which indicates the presence of even harmonics in its Fourier spectrum, whereas a

Fourier transform analysis of γ(σ) would still detect minor contribution of even harmon-

ics. The physical origin of this intriguing behavior is still unclear. Since this e�ect is only

observed at the highest amplitudes, where the sample is clearly damaged, it is possible

to attribute it to some structural instability, di�erent from wall slip or shear banding

(which would produce a strong signal in the rheology as well), but deeper investigation

is certainly needed to clarify this interpretation.

Delayed failure of the colloidal gel makes stress-imposed oscillatory shear impossible

beyond the yield stress. Nevertheless, strain controlled rheology presented in chapter 7

shows that larger amplitudes might convey valuable information on the complex yielding

mechanism. For this reason, it will be interesting to perform light scattering echo experi-

ments in a strain-controlled fashion, and to compare the results obtained in this way with

the results shown in chapter 7. For example, it is unclear if and how delayed yielding will

manifest under controlled strain. We think that a comparison between the two experimen-

tal protocols would be crucial to obtain a comprehensive view of the yielding mechanism.

Preliminary experiments are been currently performed, and we plan to address this more

carefully in the future. A thorough comparison with transient experiments, including,

but possibly not limited to, creep experiments, would also be interesting. Indeed, we have

argued in chapter 7 that despite the analogies found in the two protocols (for example,

the presence in both experiments of a regime of sublinear deformation grow followed by

an acceleration), the two delayed failure mechanisms are profoundly di�erent. Without

recalling the previous discussion, it is interesting to mention that whereas primary creep

is described by a power law dictated by linear viscoelasticity, the �rst sublinear increase

in the strain amplitude under stress controlled oscillatory shear is logarithmic, and is
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entirely attributed to nonlinear e�ects. It might be interesting to read this observation

in view of the old debate on the di�erence between power-law and logarithmic creep,

recalled in the introduction. This suggests that the di�erence between the two might

not be exclusively sample-related, and that a detailed investigation of the conditions un-

der which power-law and logarithmic creep could occur might be of general interest. In

particular, in the speci�c case of a polymer glass [Cheriere 1997] it has been proposed

that the di�erence between the two mechanisms is related to the characteristic size of

plastic events: logarithmic creep is produced by local plasticity, whereas in power law

creep plastic rearrangements explore a larger sample volume. Without claiming that this

picture could be general, we observe that our experimental setup is particularly conve-

nient for similar investigations, and that adding spatial resolution to our analysis would

be extremely interesting for this reason as well.

This adds value to the comparison between di�erent systems, like the fractal colloidal

gel and soft glass. A key information which would help clarifying the picture sketched

in chapter 8 would be once again the spatial distribution of the plastic rearrangements.

For example, it would be interesting to check whether the (arguable) double mode decay

observed in an intermediate range of amplitudes corresponds to a spatially heterogeneous

dynamics, and whether single modes can be isolated by restricting the analysis to smaller

regions inside the sample. This is more or less the picture suggested by the work of

Knowlton et al. on concentrated emulsions [Knowlton 2014] (cf. Fig. 1.16).

In order to verify if the light scattering framework would be applicable to the picture

proposed by Knowlton et al. I had the opportunity to analyze their original data, in an

attempt of extending the analysis from one to several shear cycles. As discussed in the

introduction, however, their tracking algorithm, which was very very e�cient in following

the displacements of drops across one cycle, proved to be very un�t for comparing the

system before and after many shear cycles. For this reason, I have processed those data

using a technique called di�erential dynamic microscopy (DDM) [Cerbino 2008], and

brie�y sketched in appendix A. This technique allows one to extract from microscopy

experiments correlation functions analogous to the ones that would be accessed by light

scattering. The correlation functions are represented in Fig. C.4a, and are �tted by

single stretched exponential functions with variable stretching exponent β. From the

�t we extract the value of β together with a relaxation time, calculated with the single-

mode analogous of Eq. 8.2. Both parameters are represented in Fig. C.4b. Clear features

emerge from this plot: �rst, the sharp transition from a γ0-independent linear regime to

a strongly γ0-dependent nonlinear regime, which was already observed in the original

paper, is observed, and, second, this transition is associated with a sharp, qualitative

transition in the nature of the microscopic dynamics, with the correlation function passing

from slightly compressed in the linear regime to highly stretched beyond the yield strain

γy, with β assuming two rather well de�ned and almost q-independent values. This

is consistent with the speculations o�ered in chapter 8, with the only di�erence that

no coexistence of the two modes is found in this case. Nevertheless, we remind from the

introduction (cf. Fig. 1.16) that the authors do observe the coexistence of two populations
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of particles in a range of strain amplitudes going from γy to complete �uidization. Thanks

to a spatially resolved analysis the authors showed that regions with faster dynamics

coexist with regions where essentially no dynamics is observed. Therefore, it would we

interesting to repeat the DDM analysis, to probe the dynamics of individual mobile or

immobile regions. Presumably, even in the case of the soft glass investigated in chapter 8

can bene�t from a spatially-resolved investigation, which would add valuable information

on the progressive yielding. Moreover, the above analysis also suggests that microscopy

techniques, specially combined with a Fourier analysis as it is done in DDM, may in

some cases be useful to complete the observations obtained with light scattering. The

versatility of our shear cell allows one to easily integrate it onto a microscope stage, which

represents a side advantage with respect to standard rheo-optical apparatuses that are

typically much less �exible.

More importantly, the preliminary analysis of sheared emulsions suggests that an

intriguing common picture might be disclosed by comparing how yielding manifests in

di�erent samples. For this reason, it would be interesting to change further the sample

details, for example exploring di�erent volume fractions, as a way to change the sharpness

of the yielding transition, in order to check whether the microscopic behavior changes

accordingly.
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Figure C.4: Concentrated emulsions under oscillatory shear. (a) Symbols: correlation

functions provided by DDM analysis as a function of the time delay, in units of the period

of the oscillations, for a representative value of the scattering vector q = 3.9 µm−1 and

di�erent values of the strain amplitude (speci�ed in the legend, increasing from blue to

red). Black lines are stretched exponential �ts. (b) Relaxation time normalized by the

relaxation time in the linear regime (blue, left axis) and stretching exponent (green, right

axis) as a function of shear amplitude. Di�erent symbols refer to di�erent wave-vectors

q (speci�ed in the legend). Dashed orizontal lines represent τ(q, γ) = τ(q, 0) and β = 1.

Vertical solid line represents the microscopic yield strain γy. Original data from ref.

[Knowlton 2014].





Appendix A

An e�cient scheme for sampling fast

dynamics at a low average data

acquisition rate

One of the major experimental challenges mentioned in chapter 1 concerns the multiscale

nature of material failure. In particular, this translates in a very broad spectrum of

relaxation timescales, which has to be properly sampled in experiments. Traditionally, this

is done by acquiring data at a su�cient, �xed rate. However, this protocol becomes very

ine�cient when fast and slow dynamics have to be probed simultaneously. The following

paper, published on Journal of Physics: Condensed Matter [Philippe 2016], introduces an

alternative acquisition scheme, designed so as to reduce the average acquisition rate while

retaining the information on fast dynamics.
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1.  Introduction

Since the birth of modern science in the sixteenth century, 
measuring, quantifying and modelling how a system evolves 
in time has been one of the key challenges for physicists. For 
condensed matter systems comprising many particles, the time 
evolution is quantified by comparing system configurations at 
different times, or by studying the temporal fluctuations of a 
physical quantity directly related to the particle configuration. 
An example of the first approach is the particle mean squared 
displacement, which quantifies the average change of particle 
positions, as determined, e.g. in optical or confocal micros-
copy experiments with colloidal particles [1–3]. The second 
method is exemplified by dynamic light scattering (DLS) [4], 
which relates the temporal fluctuations of laser light scattered 
by the sample to its microscopic dynamics.

Both approaches require to sample repeatedly the system 
over time, which implies the acquisition of a stream of data. 
Modern scientific apparatuses often produce large amounts 
of data: this results in high-rate data flow, making data han-
dling challenging. Two-dimensional (2D) detectors such as 
CMOS cameras illustrate nicely this challenge. Fast cameras 
that acquire images of several Mbytes at rates often exceeding 
1 kHz are now affordable and increasingly popular in many 

setups, raising the issue of dealing with data flows of the order 
of Gbytes per second. Two-dimensional detectors are widely 
used in optical or confocal microscopy, e.g. in biology [5], 
in soft matter [2, 3] or in microfluidics applications [6], but 
also in experiments based on conventional low-magnification 
imaging, e.g. for granular systems [7] or in fluid dynamics 
[8]. Moreover, two-dimensional detectors are increasingly 
replacing point-like detectors in techniques such as fluores-
cence imaging [9] or in the multispeckle approach [10] to 
DLS and X-photon correlation spectroscopy [11]. They are 
also at the heart of recently introduced techniques that com-
bine features of scattering and imaging, such as photon cor-
relation imaging [12, 13] or differential dynamic microscopy 
[14] and other digital Fourier microscopy techniques [15].

In this paper, we describe a scheme for acquiring data at 
a low average rate, while still preserving the information on 
the fast dynamics of the system. For the sake of concreteness, 
we will assume that the data are 2D images and illustrate the 
scheme with examples from scattering and microscopy exper-
iments; however, we emphasize that the scheme is quite gen-
eral and may be applied to the acquisition of any kind of data, 
possibly as a function of variables different from time (e.g. 
when sampling some sample property over space). Existing 
acquisition schemes typically consist in sampling the system 
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at a constant rate or, in a more refined version, at a rate that 
slowly changes in time to adapt to a possible evolution of the 
system dynamics [16]. The drawback of this approach is two-
fold: firstly, if the dynamics of interest span several order of 
magnitudes or the system evolution has to be followed over a 
long time, a very large amount of data has to be acquired and 
processed. Secondly, the rate at which a detector can acquire 
data often exceeds the rate at which data can be processed 
or stored for later processing. This is typically the case of 
modern cameras, whose acquisition rate may exceed that at 
which images can be written to a hard disk (HD), sometimes 
even if state-of-the-art solid state devices or arrays of inde-
pendent disks (RAID) are used. Under these conditions, one 
has to reduce the acquisition rate to match the processing or 
storage rate, thereby not fully exploiting the capabilities of 
the detector.

The multitau scheme, first proposed in traditional DLS 
[17] and later extended to multispeckle DLS [18] and 
microscopy-based microrheology measurements [19, 20], 
addresses these issues by coarse-graining the data over 
time. Several coarse-graining levels are implemented in 
parallel, allowing one to characterize the system evol
ution via temporal correlation functions (one per coars-
ening level) that span a large range of time delays with 
a limited number of channels. This method is particularly 
well-suited for processing the data on-the-fly, yielding low-
noise correlation functions thanks to the massive averaging 
associated with coarse-graining. However, the rate at which 
data are acquired and processed decreases with increasing 
coarse-graining level. This makes it impossible to capture 
rapid fluctuations of the dynamics at large time delays, as 
observed, e.g. in the temporally heterogeneous dynamics 
of many glassy systems [21]. Additionally, the multitau 
scheme is based on fast, constant-rate data acquisition, 
which typically makes it impossible to write the data to the 
HD for later additional processing or for checking purposes. 
An alternative method could consist in alternating short 
bursts of fast acquisitions, where the images are transferred 
to a fast memory storage (e.g. the computer RAM or the 
on-board memory of the camera or the frame grabber), with 
long stretches of time where data are acquired at a lower 
rate and written to the HD. During these long stretches of 
time, the RAM data acquired in the previous burst should 
be copied to the HD. The main drawback of such a scheme 
is the uneven distribution of the fast and slow acquisition 
phases over time: if the system dynamics are not stationary 
(e.g. due to aging or dynamical heterogeneity [22]), one 
misses all changes of the fast dynamics in between two 
burst phases.

The method introduced in this work addresses these chal-
lenges by using a variable-delay acquisition scheme. As it will 
be shown, the method deliberately under-samples the data 
with respect to the maximum rate allowed by the detector, so 
as to limit the data flow rate. However, the scheme is designed 
so as to interlace the fast and slow acquisition phases, so that 
the system dynamics is sampled as uniformly as possible 
in time. The paper is organized as follows: in section  2 we 
introduce the new acquisition scheme and briefly discuss its 

practical implementation. Section 3 reviews the essential fea-
tures of the DLS, DDM, and particle tracking methods and 
provides details on the experimental samples. The results of 
the light scattering and microscopy experiments are presented 
and discussed in section 4, which is followed by some brief 
conclusions (section 5).

2.  Acquisition time scheme

The acquisition scheme consists of a sequence of 2N images 
that is repeated cyclically. Each cycle is formed by two inter-
laced sub-sequences. The even images of the cycle are regu-
larly spaced in time, every tpp seconds (see figure  1 for an 
example with tpp  =  1 s). The index pp stands for the time ‘per 
pairs’ of images. The odd images are taken at a variable time 
delay τk with respect to the preceding even image. The time 
delay τk increases with k as a power law, such that the τk’s are 
regularly spaced in a logarithmic scale and cover the range 
between a minimum delay τmin and tpp:

τ τ= 10 ,k
k J/

min� (1)

with k  =  0, 1, ..., N  −  1 and J the desired number of time 
delays per decade. The total number of images per cycle is dic-
tated by the ratio between the time per pair and the minimum 
delay, and by the number of sub- tpp time delays per decade. 
From equation (1) and the constraint τ < tk pp, one finds

⎛
⎝
⎜

⎞
⎠
⎟

τ
=N J

t
ceil log ,

pp
10

min
� (2)

where ( )xceil  indicates the smallest integer ⩾ x. Each cycle 
comprises 2N images and lasts N tpp; the acquisition times for 
the images belonging to the M  −  th cycle are

( )= − + = −t M Nt
m

t m N1
2

0, 2, 4, ..., 2 2m pp pp� (3)

Figure 1.  Acquisition scheme for tpp  =  1 s, J  =  3, τ = 0.015min  s.  
For the sake of clarity, only the first cycle is shown. Bottom: 
acquisition times. The open circles correspond to the even images, 
spaced by tpp, the red crosses to the odd images. The cycle contains 
a total of 2N  =  12 images. Top: time delay between an odd image 
and the preceding even image, as a function of the acquisition time 
of the even image.
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( ) τ= − +
−

+ = −
−

t M Nt
m

t m N1
1

2
10 1, 3, 5, ..., 2 1 .m pp pp

m
J

1
2 min

� (4)

One may introduce a ‘compression factor’ ξ defined as the 
number of images that would have been acquired in a cycle with 
a traditional constant-delay scheme, divided by the number of 
images acquired over the same period with the variable-delay 
scheme, assuming the same minimum delay τmin in both cases. 

The compression factor is ( ) ( )ξ τ τ= =−Nt N t/ 2 /2pp ppmin
1

min, 
which can be of order 100 or larger.

As an illustration of the scheme, the bottom panel of 
figure 1 shows the acquisition times for a cycle of 2N  =  12 
images. The even images (open circles) are spaced by tpp  =  1 s;  
the red crosses indicate the acquisition times for the odd 
images, each of which is delayed by τ with respect to the pre-
ceding image, with   ⩽τ τ= < t0.015 s ppmin , and where J  =  3 
logarithmically spaced sub- tpp delays per decade have been 
used (see top panel).

Usually, τmin is chosen to be the smallest delay compatible 
with the camera specifications, i.e. τ1/ min corresponds to the 
maximum frame rate. The average acquisition rate, however, 
is 2/ tpp, which can be set to be much lower than the maximum 
frame rate by choosing τ�tpp min. This allows for enough time 
for the images to be, e.g. written to a hard disk or processed. 
In the following, we shall refer to any operation performed on 
the images after their acquisition as to ‘processing’. In order 
to decouple the acquisition process (which occurs at a time-
varying rate, up to the maximum rate τ1/ min) from the image 
processing (which needs to be performed at a rate as uniform 
as possible, in order to cope with the hardware limitations), a 
buffering scheme must be used. As soon as they are acquired, 
the images are transferred to a buffer, whose memory space 
is physically located either in the PC RAM or on the frame 
grabber board, if available. This transfer is typically very fast 
and can be easily performed at an instantaneous rate equal 
to or even faster than the maximum camera frame rate. The 
buffer is read and emptied progressively by an image pro-
cessing routine, at an instantaneous rate close to 2/ tpp, the 
average data acquisition rate. In order to implement this buff-
ering scheme, one should write a software with two sepa-
rate yet synchronized threads, one for acquiring the images 
and one for processing them. In the experiments described 
below, we implement the buffering scheme in two different 
ways. For the light scattering experiments, the acquisition 
software is written in Labview FPGA, which has built-in rou-
tines for implementing the buffering scheme via a genuine 
multi-thread mechanism. For the microscopy experiments, we 
use a simple, single-thread software, where both the image 
acquisition and the image processing routines are called from 
the same loop, but the image processing routine is skipped 
when images have to be acquired rapidly (e.g. when the delay 
between consecutive images is equal to or slightly larger than 
τmin), while it is called repeatedly to empty the buffer when 
enough time is available before the next image acquisition. A 
code snippet in Python illustrating this procedure is provided 
as Supplementary Data.

3.  Materials and methods

3.1.  Multispeckle dynamic light scattering

Dynamic light scattering [4] experiments are performed using 
a setup similar to that described in [23]. The sample is placed 
in a temperature-controlled copper holder and is illuminated 
by a laser beam with in-vacuo wavelength λ = 532.5 nm.  
The scattered light is detected simultaneously by up to four 
CCD cameras (Pulnix TM-6740GE-w, images cropped to 
×640 160 pixels), placed at scattering angles in the range 

  ⩽ ⩽  θ15 deg 75 deg. For each CCD, the intensity correlation 
function ( )τ −g 12  is calculated from a time series of images 
of the scattered light using the multispeckle [10] scheme:

( ) ( )τ τ− =g c t1 , ,I t2� (5)

where the time average is performed on the two-time degree 
of correlation [24]

( )
( ) ( )

( ) ( )
τ

τ

τ
=

+

+
−c t

I t I t

I t I t
, 1 .I

p p p

p p p p

� (6)

Here, Ip(t) is the intensity of the p-th pixel at time t and ⋅ ⋅ ⋅ p 
indicates an average over all CCD pixels, which are associ-
ated to a small solid angle centered around θ. The purpose of 
the time average of equation (5) is to reduce the experimental 
noise; it is performed over the full duration of the experiment 
for stationary samples, or over a short time window of dura-
tion texp for samples whose dynamics evolve in time. When 
averaging over time, care has to be taken in order to extract 
from the variable-delay image sequence the appropriate pairs 
of images separated by a given time lag. The software pro-
vided as Supplemental Data illustrates how this can be accom-
plished. The images are acquired and saved to hard disks using 
the scheme of section 2; they are then processed off-line to 
calculate g2  −  1 according to equations (5) and (6), correcting 
for the CCD electronic noise and the uneven sample illumina-
tion as detailed in [24]. The CCD cameras are triggered by a 
TTL signal, issued from a PICDEM 2 Plus card (by Microchip 
Technology Inc.) programmed using in-house C code, or by a 
National Instrument CompactRIO-9076 card with two TTL 
output C Ni-9402 modules, controlled via a custom Labview 
FPGA code.

Dynamic light scattering data are analyzed using the usual 
DLS formalism for Brownian particles. For a suspension of 
identical, non-interacting spherical particles, g2  −  1 decays at 
a rate dictated by the particle diffusion coefficient D and the 
scattering vector q [4]:

( ) ( )τ τ− = −g q D1 exp 2 ,2
2� (7)

with π λ θ= −q n4 sin /21  and n the solvent refractive index. 
In section 4 we will present data for melamine particles with 
diameter 2a  =  1.14 μm (Microparticles GmbH), suspended at 
a volume fraction ϕ = × −6 10 5 in a 2/98 w/w water/glycerol  
mixture, with viscosity  η = 290 mPa s−1 at temperature 
T  =  20 °C, and for a suspension of PNiPAM microgels, syn-
thesized following [25], for which the volume fraction, as 
calculated according to the definition of [26], is ϕ = 0.97 at 
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T  =  20 °C. The microgel radius (and thus ϕ) changes with 
temperature [25], a property that we will exploit to illustrate 
the data acquisition scheme for a system with non-stationary 
dynamics.

3.2.  Microscopy

Two series of images of colloidal suspensions were taken 
under an optical microscope (Leica DM IRB), using the vari-
able delay scheme of section 2 implemented via the single-
thread version of the image acquisition software. The images 
are taken with a CMOS camera (Basler acA2000-340 km, 
image format ×2048 1088 pixels) using a 10x objective, 
such that one pixel corresponds to 0.55 μm in the sample. In 
the first series, we study a suspension of small particles (SP 
in the following), comprising polystyrene spheres of radius 
a  =  105 nm (Microparticles GmbH), diluted to × −2.5 10 3 w/w  
in a 1 : 1 v/v mixture of H O2  and D O2  that matches the density 
of polystyrene. The second suspension (large particles, LP) 
contains polystyrene particles with 2a  =  1.2 μm (Invitrogen 
Molecular Probes), suspended at a weight fraction 0.005% in 
the same solvent as the SP. Data for the SP have been analyzed 
by DDM, while the dynamics of the LP have been quantified 
by both DDM and particle tracking.

3.2.1.  Differential dynamic microscopy.  Differential Dynamic 
Microscopy is a recently introduced technique that combines 
features of both microscopy and scattering [14, 15]. The 
dynamics are quantified by a correlation function similar to 

( )τ −g 12  introduced above for DLS (see equation (5)), rather 
by tracking the motion of individual particles. The analysis 
is performed on ˜( )S tq, , the Fourier transform of the 2D sig-
nal ( )S tx,  recorded by the camera, where x is the coordinate 
of an image point, and where the q vector has components 

( )π=q n N l2 /x y x y x y p, , , , with ⩽ ⩽n N0 x y x y, ,  and lp and Nx,y the 
pixel size in the sample and the number of pixels of the field of 
view along the x and y directions, respectively. For the sake of 
simplicity and efficiency, the images are cropped to a square 
format = =N N 1024x y  pixels. The quantity of interest is

( )
˜( ) ˜( )

˜( ) ˜( )
τ

τ

τ
= −

− +

+ +
c q t

S t S t

S t S t

q q

q q
, , 1

, ,

, ,
,

q

q q

DDM

2

2 2
� (8)

with ⋅ ⋅ ⋅  an azimuthal average over q vectors with the same 
magnitude. Equation (8) is the degree of correlation corresp
onding to the structure function normally used in DDM 
[15], except for the normalization factor. Note that while 
the contribution of static optical noise (due e.g. to dust on 
the microscope optics or the CMOS sensor) cancels out in 
the numerator of the last term of the rhs of (8), it does not 
vanish in the denominator. As a consequence, the degree of 
correlation does not fully decay to 0 at large τ, when the scat-
terers’ configuration is completely renewed, but rather to a 
finite baseline. The optical noise varies with q; accordingly, 
the baseline amplitude is q dependent. It is smallest (≈10−2) 
at intermediate q vectors and increases both at larger q (up to 

a level of ≈0.3) and at small q, reaching 0.9999 at the smallest 
probed scattering vectors. In the following, when presenting 
DDM data we subtract off the baseline and renormalize the 
correlation function such that ( → )τ =c 0 1DDM . As for the 
DLS data, the DDM two-times degree of correlation, equa-
tion (8), is averaged over an appropriate time interval to obtain 
the DDM intensity correlation function

( ) ( )τ τ− =g c q t1 , , ,t2,DDM DDM
2� (9)

where the rhs is squared since cDDM corresponds to a field cor-
relation function [15], rather than to an intensity correlation 
function.

3.2.2.  Far-field differential dynamic microscopy.  The tradi-
tional DDM correlation function, equation (8), is sensitive to 
any global drift of the sample. A collective drift often arises as 
a consequence of an artifact; for example, for our Brownian 
samples a spurious drift motion is sometimes observed, most 
likely due to convection induced by the sample illumination. 
It is therefore interesting to use a DDM correlation function 
that is insensitive to drift. A simple choice inspired by light 
scattering and proposed by Buzzaccaro et al [27] is

( )
˜( ) ˜( )

˜( ) ˜( )
τ

τ

τ
=

+

+
−−c q t

S t S t

S t S t

q q

q q
, ,

, ,

, ,
1

q

q q

FF DDM

2

2 2
� (10)

and the associated time-averaged function

( ) ( )τ τ− =− −g c q t1 , , .t2,FF DDM FF DDM� (11)

The subscript FF-DDM stands for far-field DDM, since in 
equation  (10) the correlation function is calculated on the 
square of the Fourier transform of S, which corresponds to 
the far-field intensity distribution that would be observed in 
a light scattering experiment. The expression above is inde-
pendent of the phase of S̃: this makes it insensitive to any 
global drift, except for the decorrelation arising from the fact 
that, due to drift, some particles may leave the field of view 
and be replaced by incoming particles, whose position will 
in general be totally uncorrelated with respect to that of the 
scatterers leaving the field of view. This loss of correlation is 
of course negligible if the drift is much smaller with respect 
to the field of view, which is the case in our experiments. 
Finally, we note that optical noise affects the FF-DDM degree 
of correlation, similarly to the case of the quantity introduced 
in equation (8). We therefore subtract off the data the large-τ 
baseline, whose amplitude is comparable to that discussed 
above for DDM .

3.2.3.  Particle tracking.  The series of microscope images 
acquired for the large colloids was also analyzed by tracking 
the motion of the particles, in order to extract the mean square 
displacement from real-space measurements. The Python 
trackpy package [28] was used; by applying filters on the par-
ticle shape and size, particles out of focus were rejected. All 
particle trajectories lasting less than 50 s (because the par-
ticles left the field of view or the focal plane) were discarded. 
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For each τ, the 2D mean squared displacement is obtained by 
averaging over at least ∼N 1000t  trajectories:

( ) [ ( ) ( )]∑τ τ τ∆ = ∆ +∆−

=

r N x t y t, , ,t
i

N

i i
t

2 1

1

2 2
t

� (12)

with ( )τ∆x t,i , ( )τ∆y t,i  the x and y components of the particle 
displacement between times t and τ+t  for the i  −  th trajec-
tory. When calculating r2<∆ >, we reject the contribution of 
drift motion: for each pairs of frames, the average particle dis-
placement is subtracted off, so that ∑ ∆ = ∑ ∆ == =x y 0i

N
i i

N
i1 1

t t .

4.  Results and discussion

Figure 2 illustrates an application of the variable-delay acqui-
sition scheme to a DLS experiment. The intensity correlation 
functions have been obtained from data collected simultane-
ously at scattering angles θ = 15, 30, 48, and 75 deg, for a 
diluted suspension of melamine particles. At each angle, 960 
images have been acquired using the following parameters: 
tpp  =  1 s, τ = −10min

2 s and J  =  3 points per decade. The 
resulting average data acquisition rate is ×8 105 bytes s−1, a 
factor ξ = 50 less than what it would have been by acquiring 
the images at a constant rate τ =− 100min

1  Hz. The solid sym-
bols correspond to sub- tpp delays that are obtained from pairs 
of consecutive even and odd images. The semi-filled symbols 
correspond to integer multiples of tpp: they are obtained from 
pairs of even images. (Only some selected time delays mul-
tiple of tpp are shown in figure 2). The inset of figure 2 shows 
the same data as in the main figure, re-plotted versus the scaled 
time τDq2 . The open circles are additional data for a diluted 
suspension of melamine particles with 2a  =  1.6 μm, also 
acquired using the variable-delay scheme. All data collapse 

on a master curve that follows the correlation function mea-
sured for the 1.6 μm melamine beads with a commercial DLS 
apparatus (Brookhaven AT2000, red line). Since any deviation 
from the prescribed temporal acquisition scheme would result 
in an artifactual change of g2  −  1, the collapse shown in the 
inset of figure 2 demonstrates that the variable-delay acquisi-
tion and buffering scheme works correctly.

One advantage of the scheme proposed in this work is to 
cover a wide range of delay times without alternating between 
series of images taken at a fast and slow rate, which makes it 
suitable for system whose dynamics evolve in time. An example 
is given in figure 3, where we show data obtained by multi-
speckle DLS for a suspension of thermosensitive PNiPAM 
microgels. The acquisition parameters used in this experiment 
are the same as for those in figure 2. Figure 3(a) shows the time 
evolution of the degree of correlation ( )τc t,I  for three time 
delays τ, as shown by the label. As a general trend, cI increases 
with time, a behavior typical of systems whose dynamics slow 
down [24]. Here, the slowing down of the dynamics is due 
to a change of the volume fraction: throughout the experi-
ment, T decreases at a constant rate ≈ × −Ṫ 3.7 10 4 °C s−1,  

Figure 2.  Main plot: intensity correlation functions measured 
simultaneously at four scattering angles θ by multispekle DLS, for a  
diluted suspension of melamine particles with diameter 2a  =  1.14 μm.  
The solid symbols are the sub- tpp delays, the semi-filled symbols 
are integer multiples of tpp. For the latter, g2  −  1 is plotted only 
for selected delays, to avoid overcrowding the plot. Inset: g2  −  1 
versus time rescaled by Dq2 for the same data as in the main 
figure (same symbols), and for a diluted suspension of melamine 
particles with 2a  =  1.6 μm (open circles). The line is g2  −  1 for 
the 1.6 μm particles as measured by conventional DLS, under the 
same conditions as for the multispeckle experiment. See the text 
for the details on the acquisition scheme used in the multispeckle 
measurements.

Figure 3.  a): time evolution of the degree of correlation cI, 
equation (6), for 3 selected delays, as indicated by the label. Data 
are obtained from multispeckle DLS measurements at θ = 46 deg 
for a suspension of PNiPAM microgels whose volume fraction 
slowly increases during the measurements (see text for details). 
Inset: zoom of the data showing that the dynamics are stationary 
over a short t interval. b): g2  −  1 obtained by averaging ( )τc t,I  
over a time window of 100 s, for various starting times after the 
beginning of the experiment, as indicated by the label. Filled and 
semi-solid symbols correspond to sub- tpp and integer multiples of 
tpp, respectively. For the latter, g2  −  1 is plotted only for selected 
delays.
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which results in a growth of the microgel size and thus  
of their volume fraction, from ϕ≈ 0.65 at t  =  0 to ϕ≈ 0.97 at 
=t 21 000 s. Thanks to the variable delay scheme, it is possible 

to follow the evolution of the dynamics with a good temporal 
resolution: for the two sub- tpp delays shown in figure 3(a), 

( )τc t,I  can be calculated once per cycle (every 6 s), while 
for τ = 1 s data are available every tpp  =  1 s. Such detailed 
information is useful since any local deviation with respect 
to the general trend may reveal an experimental problem, or 
simply because the rate of change of the dynamics may not 
be known beforehand, thus making it impossible to optimize  
the acquisition parameters a priori. Detailed knowledge of the  
time evolution of cI provides also guidance for choosing  
the time window texp over which the data may be averaged in 
order to calculate g2  −  1. Figure 3(a) shows that the growth of 
cI is steepest around t  =  7000 s. Accordingly, texp should be 
small enough for cI not to change significantly in the worst-
case scenario, i.e. for τ = 1 s and around t  =  7000 s. The inset 
of figure 3(a) shows that =t 100exp  s satisfies this criterion: 
we therefore average cI over such a time window in order to 
reduce the experimental noise without loosing information 
on the evolution of the dynamics. Figure 3(b) shows g2  −  1 
thus obtained for selected values of t. As t grows, the volume 
fraction of the suspension increases due to the swelling of the 
microgels and the decay of g2  −  1 shifts to longer times, while 
the shape of the correlation function changes from a single 
mode relaxation to a two-step decay, a behavior typical of 
dense colloidal suspensions [29]. These changes are very well 
captured by using the variable-delay scheme, which allows to 
measure efficiently g2  −  1 over 6 orders of magnitude in τ.

As an example of the variable-delay scheme applied to 
microscopy experiment, figure  4 shows representative cor-
relation functions obtained by conventional DDM for the 
SP sample. The experimental parameters are tpp  =  0.5 s, 
τ = × −4 10min

3 s and J  =  5 points per decade, corresponding 
to a compression factor ξ = 62.5. The data are very well fitted 
by an exponential decay, ( ) ( )τ τ τ− = −g 1 exp / r2  (lines). The 
inset shows the relaxation time τr extracted from the fit as 

a function of q vector. The line is a power law fit to ( )τ qr , 
yielding an exponent − ±2.01 0.01, fully consistent with the 
q−2 scaling expected for a diffusive process [4]. Both the 
shape of g2  −  1 and the q dependence of the relaxation time 
are in excellent agreement with those expected for Brownian 
particles: this demonstrates that the variable-delay scheme 
works correctly and that the simple single-thread implementa-
tion used here is a viable alternative to a more complex multi-
thread acquisition software.

For the SP sample, the particles are too small to be directly 
visualized by microscopy: accordingly, direct space tech-
niques cannot be applied to them. By contrast, the data for 
the LP sample can be analyzed both by tracking the particle 
trajectories and by DDM. The main plot of figure  5 shows  
<∆ >r2  obtained by tracking the particles in a series of 
images taken with the variable-delay method, with parameters 
tpp  =  0.5 s, τ = × −5 10min

3 s and J  =  5 points per decade. 
At large τ, r2<∆ > scales with τ, as expected for Brownian 
motion, whereas at low τ the mean square displacement tends 
to a constant value. This behavior is due to the uncertainty in 
the particle position as determined by the tracking algorithm 
[1]. To account for the tracking errors, we fit the data with the 
affine law r Dt4 42 2ε<∆ >= + , where ε is the rms tracking 
error on each coordinate and the first term on the rhs accounts 
for 2D diffusive motion. As shown by the red line, the data are 
very well fitted by this expression, with D  =  0.122 μm2s−1 
and and error ε = 0.12 μm (corresponding to 0.2 pixel) 
comparable to that typically achievable by low-magnifica-
tion optical microscopy [2]. The inset of figure 5 shows the 
results of a DDM analysis of the same series of images. At 
large q, the relaxation time obtained from an exponential fit 
of the conventional DDM correlation function, (equations (8) 
and (9), open red circles), follows the expected q−2 scaling. 
However, at small q τr strongly deviates from this behavior, 
since the relaxation time is increasingly lower than expected 
as q decreases. A plausible explanation of these observations 
is that the particles undergo collective drift motion, in addition 
to Brownian diffusion. A possible source of drift is convective 

Figure 4.  Representative correlation functions obtained by 
differential dynamic microscopy for the SP sample. The data 
(symbols) are labelled by the corresponding scattering vector, the 
lines are exponential fits to the decay of g2  −  1. The amplitude 
of the baseline that has been subtracted (from the smallest to the 
largest q) is 0.848, 0.037, 0.015, 0.071. Inset: relaxation time 
extracted from the fits, as a function of q. The line is a power law fit 
to the data, yielding an exponent − ±2.01 0.01.

Figure 5.  Mean squared displacement for the LP sample, calculated 
from the particle trajectories obtained by video microscopy. The 
deviation from a linear behavior at small τ is due to the noise of the 
tracking algorithm. Inset: Relaxation time versus q issued from a 
conventional DDM (open symbols) or far field-DDM analysis of the 
same series of images as in the main panel. The line is the expected 
behavior for Brownian particles with the same D as in the main 
panel.
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motion triggered by heating due to sample illumination. Note 
that collective drift is corrected for by the particle tracking 
algorithm (see section 3.2.3). This explains why no deviations 
from diffusive motion are observed in the main plot at large 
values of r2<∆ >, which correspond to the small q regime 
of the inset. We apply the FF-DDM algorithm, equations (10) 
and (11), to the same series of images: the relaxation time thus 
obtained (solid black circles in the inset of figure 5 follows 
the expected diffusive behavior, with no roll-off at small q. 
Moreover, the data are in good agreement with the red line, 
which shows the behavior expected for diffusive motion with 
the same diffusion coefficient as that obtained from the fit of 

r2<∆ >. We thus conclude that the variable-delay scheme 
once again works correctly and that the far-field DDM method 
is effective in suppressing spurious contributions due to a 
global drift of the particles.

5.  Conclusions

We have introduced a variable-delay temporal scheme that 
allows data to be acquired at a low average rate, while still 
sampling the dynamics over a wide range of characteristic 
times, including times much shorter than the inverse average 
acquisition rate. This scheme has been demonstrated in light 
scattering and microscopy experiments on colloidal suspen-
sions, where the setups comprise one or more CCD or CMOS 
cameras that generate large data flows. In analyzing the 
microscopy data, we have validated far-field DDM, a variant 
[27] of the recently introduced DDM method, which allows 
one to reject the contribution of a global drift to the measured 
dynamics, e.g. as due to convective motion, slight sample 
evaporation, or setup vibrations.

Since the acquisition scheme proposed in this paper under-
samples the system, it leads in principle to poorer average 
than that theoretically achievable if data were acquired at the 
maximum rate. However, this loss of information is more than 
offset by the ease of coping with a reduced average data flow 
rate. This is a valuable feature when large amounts of data are 
generated, as for the 2D detectors in our DLS and microscopy 
experiments. Another potential application is the processing 
of relatively small data streams, but with low-cost, low-perfor-
mance hardware, e.g. based on an Arduino card and a single-
board computer such as the Rasberry Pi, or a mobile app run 
on a smartphone. Setups based on similar hardware are now 
seen as a valuable alternative to more costly, traditional instru-
ments, e.g. for educational purposes or for developing coun-
tries [30].
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A model for failure in thermoplastic

elastomers based on Eyring kinetics

and network connectivity
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Abstract

A simple model is introduced to describe the failure mechanisms in soft thermoplastic elastomers. In particular, we address the strong

embrittlement with increasing temperature observed in strain rate imposed tensile experiments. This behavior is in sharp contrast to classic

thermoplastics and seems to be general for these types of systems, irrespective of their exact chemical nature. We show that a kinetic model

describing the supramolecular association of hard blocks in terms of an Eyring rate equation captures the correct stress and temperature

dependence of failure strain. We model the material as a transient network, whose failure is associated with the loss of connectivity. The

network percolation threshold, a key parameter of the model, is studied with numerical simulations, in order to investigate the interplay

between structure, connectivity, and mechanical properties. VC 2017 The Society of Rheology. [http://dx.doi.org/10.1122/1.5000808]

I. INTRODUCTION

Thermoplastic elastomers (TPEs) are an interesting subset

of the engineering plastics family. Their thermoplastic pro-

cessability in combination with elastomer-like mechanical

characteristics [1,2] makes them a valuable addition to the

wide range of available polymers. In contrast to the classical

thermoset-based elastomers, their thermoplastic nature

allows them to be processed just like any other thermoplastic

polymer and enables rework and recycle of scrap materials

[3,4]. While classical thermoset elastomers can be consid-

ered as chemically crosslinked polymers operating above

their glass transition temperature (Tg), TPEs should be

regarded as physically connected, phase-separated polymers

where one phase is in the solid state below its melting tem-

perature (Tm) and the other phase in its rubbery state above

Tg [5–13]. They behave mechanically as elastomers with typ-

ically low moduli, high elongations before breaking and an

overall rubber-like touch-and-feel. It should be noted though

that they typically compete at the higher moduli values with

classic elastomers. Most TPEs are block or graft copolymers,

which makes it possible to tune the desired properties by

altering their chemical composition [2]. In this paper, we

will focus on polycondensation-based TPEs composed of

poly(butylene terephthalate) (PBT) blocks to make up the

solid phase [or hard blocks (HBs)] and polyether-based

blocks to make up the soft phase [or soft blocks (SBs)].

The deformation of these systems has been quite exten-

sively studied in literature, especially in connection to their

morphology [9,13–20]. Most of these studies, however,

focused on the behavior at room temperature, and did not

describe the effect of temperature on the mechanical proper-

ties of the materials, which we address. Quite generally

stated, we observe that soft TPEs, characterized by a low

content of HBs, below 50%, show an unexpected, and often

undesired, drop of extensibility as temperature is increased.

This happens in the absence of any thermodynamic or struc-

tural transition, and it is in sharp contrast with standard ther-

moplastic materials, which are rather fragile at low

temperatures and increase their ductility when heated as a

consequence of the enhanced chain mobility [21,22]. Despite

its relevance for applications, to the best of our knowledge

this observation has not been studied explicitly in the litera-

ture, although some papers do show similar observations

[20,23–25]. We find this behavior to be general for this type

of systems, irrespective of their exact chemical nature (poly-

ester, polyurethane, and polyamide based systems all show

the same phenomenology), and from a fundamental point of

view this represents an important challenge for theoretical

models describing failure in TPEs.

The rich morphology displayed by these systems is dis-

cussed in detail in a paper by Gabri€else et al. [26] where a

PBT-poly(tetramethylene oxide) (PTMO) system is investi-

gated. The block-copolymer nature suggests the material to

consist of two phases, but it is shown that depending on the

chemical affinity of the two components the phase behavior

can be more complex. In the case discussed in that paper, up

to five distinct phases are identified: (1) a pure PBT crystalline

phase, (2) a glassy PBT phase, (3) a mixed PBT-PTMO glassy

phase, (4) a rubbery PTMO phase, and (5) a crystalline PTMO
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phase. Here we will not go into that level of detail and for the

sake of simplicity we will treat these systems as simple binary

systems, made by crystalline PBT and rubbery SB material.

In this paper we present a kinetic model, qualitatively

accounting for the embrittlement of TPEs at high tempera-

tures. The paper is structured as follows: after a first over-

view of available experimental observations (Sec. III), the

kinetic model is presented and qualitatively validated (Sec.

IV). For a more detailed comparison with experimental data,

in Sec. V, we present an implementation of this kinetic

model on a cubic lattice. A conclusive section closes the

paper, with a general discussion of the main results.

II. MATERIALS AND METHODS

We use as model systems two different, specifically syn-

thesized poly(ether-ester) block-copolymers based on PBT

as HB, and PTMO or poly(ethylene glycol) (PEG) as SBs.

The details of the two systems are reported in Table I. The

PEG-based system is used to study the effect of molecular

weight, and to that aim the synthesis is stopped at a relatively

low molecular weight and subsequently grown in discrete

steps of molecular weight by solid state postcondensation at

high temperature under dry nitrogen conditions [27].

Molecular weights are determined using size-exclusion chro-

matography in hexafluoroisopropanol (HFIP).

Materials are compression molded into 200 lm thick sheets

at a temperature of 225 �C. Materials are allowed to equili-

brate shortly in the order of minutes at this temperature before

being cooled down to room temperature by cooling the press

by an internal water circulation system. Tensile bars of ISO

527/1BA standard shape are then punched from those sheets

and tested on a standard Zwick Z010 Universal tensile testing

machine. In all tests, the samples are equilibrated at target

temperature for 10 min. For a tensile test, they are subse-

quently stretched at a constant engineering strain rate till fail-

ure. In the case of a creep experiment, the load is applied

within 10 s after which it is held constant until final failure.

Strain rates and temperatures are indicated where appropriate

in the respective figures and/or captions. Stresses and strains

are reported as engineering values unless stated otherwise.

The differential scanning calorimetry (DSC) experiments

are performed on a Mettler-Toledo DSC823e equipped with

a FRS5 sensor. Calibration was performed by melting peaks

of tin and zinc. Scans were performed at heating rates of

20 K/min. Standard 40 ll aluminum crucibles are used and

samples weighed approximately 5–10 mg. Nitrogen is used

as a purge gas.

III. EXPERIMENTAL OBSERVATIONS

Figure 1 shows representative engineering stress-strain

curves obtained for the PTMO-based system at different

temperatures. After a first linear regime, lasting only a few

percent deformation (hardly distinguishable in the figure),

we observe a broad yield range, around 10% deformation,

where plastic deformation causes the slope of stress-strain

curves to decrease. This is followed by an ongoing deforma-

tion at mildly increasing stress levels until strain hardening

is eventually observed at higher deformations, more pro-

nounced at lower temperatures. In this case, strain hardening

is enhanced by strain-induced crystallization of SBs [18]

(indeed, the melting point for strained PTMO chains is

around 30 �C). Finally, engineering stress drops as fracture is

abruptly encountered. The fracture event occurs earlier at

higher temperatures: for example, a sample can withstand a

strain higher than 1000% at 50 �C, whereas failure is

observed at only 300% deformation at 125 �C. Remarkably,

as one can see from DSC [Fig. 1(b)], the melting temperature

of the system is 170 �C, and no additional thermodynamic

transitions are observed in the temperature range where ten-

sile experiments are performed. The possibility of strain-

induced crystallization being connected to the observed

reduction in ductility with increasing temperature was ruled

out using observations not reported in this paper. Indeed,

repeating the same experiments on other TPEs based on soft-

blocks that do not exhibit strain-induced crystallization, we

could observe a very similar behavior. Therefore, this

embrittlement at high temperature, in the absence of any

thermodynamic signature, appears to be general for soft

TPEs, and it represents the first observation that we want to

model.

The influence of strain rate on the stress-strain curves was

also tested. Figure 2 shows representative curves obtained by

TABLE I. Specifications of the two model systems studied in this paper.

PTMO-based PEG-based

30/70 50/50 HB/SB mass ratio

MHB 880 g/mol 1000 g/mol HB molecular weight

MSB 2000 g/mol 1000 g/mol SB molecular weight

Mw 60 kg/mol Various Total molecular weight (weight average)

Tg �80 �C �50 �C Glass transition temperature

Tm 170 �C 194 �C Melting temperature

FIG. 1. (a) Engineering stress-strain curves of the PTMO-based system at dif-

ferent temperatures, as indicated in the labels (T¼ 23, 35, 50, 75, 100, 125,

and 150 �C from blue to red), for a fixed strain rate _e¼ 0.17 s�1. Experiments

at 35 and 50 �C never reached failure, because of the limited strain range of

the tensile machine used. (b) DSC traces measured on heating at 20 K/min.

An arbitrary baseline was subtracted from the experimental data.
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repeating the experiment at one temperature for different val-

ues of the imposed strain rate. The experimentally applied

strain rates ranged from a maximum of 10 min�1 to a mini-

mum of about 0.001 min�1 (i.e., from 0.17 to 1.7� 10�5

s�1). Experimental data show that at temperatures above

50 �C, the stress is roughly independent of strain rate, sug-

gesting that the characteristic timescales relevant for stress

relaxation should fall outside the range of accessible time-

scales (_e�1). Nevertheless, one can see from Fig. 2(b) that

the elongation at break shows a weak but clear dependence

on _e, which is the second observation we would like to

capture.

Finally, we address the impact of chain length on mechani-

cal properties. For this reason, PEG-based systems of different

molar masses are tested, and the tensile curves obtained are

shown in Fig. 3. While the linear regime seems to be roughly

the same for all samples, strong differences are observed with

respect to extensibility and stress levels: as Mw is increased,

the failure strain ef sharply increases until a plateau is reached.

At room temperature, samples with higher molar mass also

show a strong strain hardening profile, so that toughness is an

increasing function of Mw.

To summarize, the experimental observations that we

would like to understand and capture with a phenomenologi-

cal model are the following:

(1) Elongation at break drops dramatically with increasing

temperature (Fig. 1).

(2) Elongation at break also decreases with decreasing strain

rate, and the dependence is weaker at lower temperatures

(Fig. 2).

(3) Elongation at break increases with increasing chain

length and then it saturates to a Mw-independent value

(Fig. 3).

IV. KINETIC MODEL

A. Sample structure

As briefly discussed in the Introduction, at room tempera-

ture and in the absence of mechanical constraints, TPEs have

a complex morphology: SBs form an amorphous matrix sur-

rounding crystalline domains composed of HBs, which are

usually entangled or connected, and form the main stress-

bearing structure in the linear regime [11,19]. This picture in

both PTMO and PEG systems holds between Tg��60 �C
and Tm� 170�200 �C (cf. Table I), which is the working

temperature range of these materials.

Under stress the morphology changes differently for soft

grades (mainly composed of SBs) and hard grades (mainly

composed of HBs). Direct experimental observations

[9,15,17–20,28–31] show that soft TPE materials break their

network of HB crystals and develop a characteristic fibrillar

structure when stretched beyond 100%–200% strain. In such

a structure, to a lesser extent found in harder TPEs, crystal-

line domains formed by HBs tend to align in planes perpen-

dicular to the strain direction, whereas SBs, bridging

different crystalline domains, are progressively stretched.

The fact that the observed drop of ef is only observed on

soft TPE grades suggests that the failure mechanism might

be linked to this fibrillar structure, that we take as a starting

point for the description of failure mechanisms.

B. Failure mechanism

In analogy to recent studies on transient networks

[32–34], our model describes failure in terms of connectivity

loss: the sample will break as soon as two parts get discon-

nected. Connectivity is thus a key element in our model, and

it will be evaluated within the framework of percolation the-

ory. For the sake of simplicity, we assume that the main fea-

tures of material failure do not rely on the effect of eventual

entanglements between SBs, which are neglected here.

FIG. 2. (a) Representative engineering stress-strain curves obtained experi-

mentally for PTMO-based system at various temperatures (blue: 60 �C,

green: 125 �C) and strain rates (decreasing from dark to light). (b) Symbols:

maximum elongation at break as a function of the strain rate for the same

temperatures (red data: T¼ 100 �C, not shown in the main graph). Crosses

and dashed lines: elongation at break obtained by simulations using the

experimental stress-strain curves as input. Chain length is N¼ 9 SBs, and

kinetic parameters are DH¼ 105 kJ/mol and v*¼ 2.2� 10�4 m3/mol.

FIG. 3. (a) Engineering stress-strain curves obtained with the PEG-based

system, with increasing molar mass (weight average molecular weights

Mw¼ 26, 41, 62, 80, 113, and 125 kDa) from dark to light, at two representa-

tive temperatures 23 �C (blue) and 150 �C (green). Strain rate is _e ¼ 0.17 s�1.

(b) Elongation at break as a function of Mw. Error bars are included to indi-

cate the variability on the data.
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Therefore, we attribute the sample’s initial connectivity to

physical bonds that can be formed between HBs: as long as

this network of bonds persists, the structure will be able to

withstand the applied load. However, physical bonds are

dynamic: they can break and reform as a consequence of

temperature and stress. At rest, a dynamic equilibrium is

reached, with breaking events balancing the bond formation,

but an external stress biases this equilibrium, favoring break-

ing processes over the reformation: this causes HB crystal

fragmentation and weakens the network by reducing the

amount of elastically active, stress-bearing chains [32]. In

analogy with established work in literature, mainly focusing

on yielding [35–42] or creep failure [42–49], we assume that

the kinetics for inter-HB bond breaking and reformation can

be modeled using Eyring’s rate equation [50]:

k r; Tð Þ ¼ k0 exp � DG

kBT

� �
sinh

rv�

kBT

� �
; (1)

where k0 represents a reference rate, kB is Boltzmann con-

stant, DG is the activation energy of bond breaking, and v* is

the activation volume.

The Eyring rate equation was originally developed to

describe chemical reaction rates, but it was soon extended to

describe physical processes like viscous flow [51–53]. Since

then, it has been widely applied to polymer yielding and

plastic flow, and most of the time the rate constants involved

in the model were used to describe the rate of flow

[42,54–56]. Instead, here we use Eyring rate constants to

model the breakdown of those bonds capable of supporting

an applied load. In this regard, our application of Eyring the-

ory is less conventional, and closer to the one proposed by

Matz et al. [49] or Zhurkov [57,58], who present a mathe-

matical framework close to that of Eyring, although it should

be noted that in the latter case the author focuses on chain

scission as the dominant cause for failure. On the other hand,

in the present study the absolute rate k(r, T) describes the

evolution of the amount of associated physical bonds (rather

than chemical bond breaking). Its value at rest kT¼ k(r¼ 0,
T) and below Tm is typically such that almost all HBs are

associated at equilibrium [11]. However, the bias introduced

by stress shifts the fraction A of associated HBs toward lower

values, until the system eventually becomes disconnected: as

strain increases, we can describe plasticity in terms of a func-

tion A(e) decreasing from 1 to a critical value Ath, which we

will treat as a percolation threshold. Therefore, within this

framework, elongation at break can be computed as the

strain ef at which A(ef )¼Ath.

The evolution of A(e) can be computed using Eq. (1), by

assuming a first order process for bond breaking and inte-

grating the differential equation

dA e tð Þ½ �
dt

¼ �k r tð Þ½ �A e tð Þ½ �: (2)

In order to obtain an analytical solution, an expression

for the stress history r(t) is required. This can be easily done

in creep [21,43], whereas the calculation is less straightfor-

ward when a constant strain rate is imposed. The simplest

assumption, which we will use here, is to require that a simple

affine relation between true stress rTrue and strain holds beyond

the yield point of the material: rTrueðtÞ ¼ r0 þ r1eðtÞ, where

eðtÞ ¼ _et, and r0 and r1 are phenomenological parameters

extracted from fits to the individual tensile curves [Fig. 4(a)]. It

is clear from this graph that the chosen relation for stress as a

function of strain is less than optimal, and, e.g., a fit using a neo-

Hookean scaling will result a strongly improved fit [Fig. 4(b)].

However, to allow for an analytical solution to exist we have to

compromise on this accuracy and suffice with a simple, less

accurate description. Note that toward higher temperatures this

assumption is more accurate compared to lower temperatures.

Moreover, we also assume that because of internal

stresses two HBs that detach from each other are pulled

apart, and will not recombine: under this assumption the

hyperbolic sine in Eq. (1) is simplified to a single exponen-

tial. This second assumption is not necessary in itself, but

makes the calculations easier.

By solving the differential equation with initial condition

A(0)¼ 1, we obtain

A e; _eð Þ ¼ exp � k0

_e
kBT

v�r1

e� DG�v�r0Þ=ðkBTð Þ e v�r1=kBTð Þe � 1ð Þ
� �

:

(3)

Thus, once an assumption on Ath is made, the elongation

at break ef can be easily calculated by inverting this

expression

ef ¼
kBT

r1v�
ln 1� _e

k0

v�r1

kBT
e DG�v�r0Þ=ðkBTð ÞlnAth

� �
: (4)

C. Model validation

Figure 5 shows a set of ef values obtained for one choice

of model parameters and plotted as a function of temperature

for different strain rates. A qualitative comparison with

experimental data shows that

FIG. 4. (a) Experimental data of Fig. 1 (solid lines) along with linear fits

(dashed lines) of true stress versus strain. (b) Alternative scaling according

to neo-Hookean relation.
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(1) By fixing Ath and varying T, it is possible to reproduce

the drop in ef with increasing temperature. For the high-

est temperatures, we get ef / T�1, whereas at lower tem-

peratures, the T dependence is weaker.

(2) The trend with decreasing _e also resembles the one

observed experimentally: Eq. (4) predicts ef / _e for high

temperatures, whereas ef / lnð_eÞ at low temperatures. In

any case, the effect of increasing temperature on reduc-

tion in elongation at break is stronger than the effect of

increasing strain rate.

(3) Since longer chains (with higher number of HBs per

chain) form a better connected structure, the effect of

increasing molecular weight may be schematized as a

decrease in Ath, which in turn increases ef (data not

shown), as qualitatively observed in Fig. 3.

These observations suggest that our model is able to cap-

ture the main features of the observed failure. A next, natural

step would be to quantitatively compare our experimental

data with predictions based on Eq. (4): this requires an esti-

mation of our model parameters. While r0 and r1 can be

extracted from a linear fit of the tensile curves, the determi-

nation of the remaining three parameters (DG, v* and Ath) is

more delicate. In particular, the physical interpretation of Ath

may be questionable: in fact, as the deformation is localized

around sample defects (in particular during the latest stages

before failure), the macroscopic stress measured experimen-

tally deviates from the local stress actually experienced by

polymer chains, so that in principle a direct link between the

macroscopic stress and the local amount of broken bonds

does not exist, and Ath appears to be rather ill-defined. For

this reason, in a first instance we assume that the sample

deformation is homogeneous, and that bond breaking events

occur randomly and homogeneously inside the sample.

Numerical simulations shown in Sec. V will help us quanti-

fying to what extent this assumption is acceptable.

Under this approximation, DG, v* and Ath can be

extracted by a using the fits of tensile curves at different

strain rates and temperatures as input. In its simplest version,

the fitting procedure works as follows: once a set

frðe; Ti; _eiÞg of tensile curves is provided, we extract from it

the mechanical parameters r0ðTi; _eiÞ; r1ðTi; _eiÞ; eðobsÞ
f ðTi; _eiÞ.

Then, a reasonable set of kinetic parameters (DG(0), v*(0),
A(0)

th ) is taken as a starting input, and used to compute, for

each ðTi; _eiÞ, an expected strain at break eð0Þf ðTi; _eiÞ. A Monte

Carlo algorithm is then used to find the ðDG; v�;AthÞ set that

provide the best set feðf itÞ
f ðTi; _eiÞg of predicted elongations at

break, i.e., the choice that minimizes the v2 parameter defined

as v2 ¼
P

if½e
ðobsÞ
f ðTi; _eiÞ � eðf itÞ

f ðTi; _eiÞ�2=eðf itÞ
f ðTi; _eiÞg.

As an example, the fitting parameters extracted for the

PTMO-based systems are DG¼ 105 kJ/mol, v*¼ 2.2� 10�4

m3/mol, and Ath¼ 0.2. We included the experimental strains-

to-failure versus temperature of Fig. 1 in Fig. 5 to enable a

direct comparison to experimental data. We show that, as

stated before, with the chosen parameters, we can describe

the trend of decreasing strain-at-break with temperature well

and that the absolute values are captured to a reasonable

approximation. Toward the lower temperatures, we see the

results to differ more; this might be related to the poorer fit

to experimental stress-strain curves as shown in Fig. 4(a).

We find that DG is temperature independent, which is an

indication that the entropy variation should be negligible

with respect to enthalpy. Although it is difficult to quantita-

tively relate those parameters to some a priori knowledge

about the system [59] (we will limit ourselves to treat them

as fitting parameters), it is worth mentioning that the activa-

tion energy DG and the activation volume v* are comparable

in magnitude to what is found in literature for other deforma-

tion mechanisms [39,43,47,49,56,60], while the percolation

threshold Ath is close to the one extracted by numerical simu-

lations (see Sec. V).

D. Numerical integration

Once DG and v* are known, we can refine our analysis by

dropping the (strong) assumption about the stress-strain

affine relationship: starting from the experimental r(t), Eq.

(2) can be numerically integrated, and the full A(e) profile

can be extracted from each tensile curve. Such a result, for

the experimental stress-strain curves of Fig. 1, is represented

in Fig. 6(a).

Looking at that figure, one can notice that, for tempera-

tures high enough, sample failure occurs as soon as the frac-

tion of broken bonds approaches a threshold value 1�Ath

close to 100%, and only weakly dependent on strain rate and

temperature. We interpret the fact that low temperatures rep-

resent an exception, and that failure apparently occurs later

than expected, as a direct consequence of strain hardening:

in this case, strain-induced crystallization of SBs may repre-

sent an additional contribution to connectivity, not consid-

ered in our model.

FIG. 5. (a) Predicted evolution of associated fraction A(e) as a function of

the engineering strain. Model parameters used are DG¼ 105 kJ/mol,

v*¼ 2.2 10� 4m3/mol, r0 ¼ r1 ¼ 3 MPa, _e ¼ 1 s�1 T is increasing from

blue to red. (b) Predicted strain at break ef obtained for a choice of Ath¼ 0.2,

plotted as a function of temperature and for different strain rates, compared

to experimental values extracted from Fig. 1. Error bars represent data dis-

persion evaluated on 2–6 independent measurements (data not shown).
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A more detailed analysis of Fig. 6(a) reveals the existence

of two different regimes: for high temperatures (T� 100 �C)

the fraction of broken bonds grows linearly with time (or

strain) throughout the whole experiment. In this temperature

range, rv* is always smaller than DG, and the bond breaking

events are essentially thermally activated. This corresponds to

the region where ef / _eT�1 in Eq. (4). On the other hand, at

lower temperatures, this regime is eventually interrupted by a

second regime, where bond breaking becomes mainly stress-

activated and accelerated with respect to thermal activity.

This typically happens at a few strain units deformation, when

v* eventually becomes larger than DG: as a consequence, in

this regime ef increases only weakly with decreasing T or

increasing _e. Thus, the numerical approach not only allows to

take into account the detailed shape of the stress-strain curve,

but it also provides a valuable insight into plastic activity

occurring during deformation.

Furthermore, the numerical approach has a third major

advantage: it does not require any assumption on the exact

Ath value. Indeed, Ath is no longer a model parameter, but

can be extracted by looking at the minimum value reached

by A(e) before failure. Figures 6(b) and 6(c) show Ath as a

function of temperature and strain rate. As one can see, for

temperatures higher than 60 �C Ath is roughly strain rate

independent but displays a clear decreasing trend with

increasing temperature. This trend cannot be described by

Eq. (4), that assumes a unique Ath value for all temperatures

and strain rates. That is why Sec. V will be dedicated to

numerical simulations, which will help to attribute such a

temperature dependence of Ath to the heterogeneity of sam-

ple deformation.

V. SIMULATIONS

Until now, homogeneity of sample deformation and plas-

tic activity has been assumed. In this section, we want to dis-

cuss the limits of these assumptions, with the help of

numerical simulations.

A. General concept

Our numerical simulations are inspired by, and loosely

based on, the work of Mora [33], and might show some

resemblance to the work of Termonia [61], although the

underlying physics are different. The kinetic model is imple-

mented on a 3D cubic lattice, as shown in Fig. 7(a): each site

(i, j, k) represents a HB that can be bound either chemically

(via a SB) or physically (via weaker supramolecular interac-

tions) to neighbor HBs, with periodic boundary conditions

(PBC) along ı̂ and ĵ (strain is applied in the k̂ direction).

Physical bonding is only allowed within (i, j) planes, that

represent HB crystals in the stretched fibrillar structure,

whereas chemical bonds can develop both in the strain direc-

tion (in this case they will be elastically active, bridging two

different crystals) and in the (i, j) plane (in this case they will

behave as loops, not contributing to the sample modulus).

Thus, within this model, a block copolymer containing N
SBs and N þ 1 HBs is a N-step self-avoiding walk on the lat-

tice. Chemical bonds are permanent, whereas physical bonds

can randomly break and reform following the rate given by

Eq. (1). Sample connectivity is evaluated in two steps [Figs.

7(b) and 7(c)]: in a first step single crystals are identified in

each (i, j) plane. In this model, a crystal is a set of sites con-

nected with each other but disconnected from all the others

belonging to the same (i, j) plane. Along the transversal (i, j)
directions, PBC are taken. In the second step, the connectiv-

ity of crystals belonging to consecutive (i, j) planes is

checked: two crystals will be connected if and only if there

is at least one chemical bond (i.e., a SB) binding one site of

the first crystal with another site of the second. If a percolat-

ing set of crystals exists bridging the two opposite surfaces

of the sample, then the system will be considered as

connected.

The boundary conditions for the model are prescribed by

applying a stress that is either constant in the case of creep

simulations (Sec. V B), or increasing with time, following

the experimental tensile curves (as described in Sec. V D), in

the case of tensile tests. In both cases, starting from a fully

connected system and breaking supramolecular bonds, con-

nectivity is progressively lost: disconnected or dangling

regions are created [Fig. 7(c)] at the expense of the stress-

bearing backbone. As a consequence of local mechanical

equilibrium, stress is concentrated in the regions with the

highest density of disconnected sites, which in turn increases

the bond breaking rate in that same region: the fluctuations in

FIG. 6. (a) Fraction of broken bonds as a function of engineering strain,

obtained by numerically integrating the differential equation Eq. (2) with

r_(t) from the tensile curves of Fig. 1. (b) and (c) Percolation threshold Ath

(extracted by measuring A at break) plotted as a function of temperature and

strain rate.
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the local number of elastically active chains bring information

about stress localization and deformation heterogeneity.

B. Tensile creep

Since our kinetic model is governed by Eyring’s rate

equation [Eq. (1)], which contains stress but no (explicit)

strain dependence, creep appears to be the most natural pro-

tocol to test the validity of the model. To support that creep

failure of TPEs is also governed by an activated process, a

limited set of creep experiments were performed on the

PTMO system at elevated temperatures, that yield a creep

failure time decreasing exponentially with the applied stress,

as one would expect from Eq. (1), and decreasing as well

with increasing temperature (data not shown), which is also

in line with expectations [21,43,44,46,48,49,55,62]. A repre-

sentative set of creep curves is shown in Fig. 8.

Although numerical simulations cannot grasp the qualita-

tive shape of the full creep curve (they do not contain details

about linear viscoelasticity and morphology evolution), they

can describe how the failure time varies with stress and tem-

perature (Fig. 9).

For a given applied stress at a fixed temperature, repeated

simulations on equivalent samples produce a Weibull distri-

bution of failure times P(tf) [Fig. 9(a)] [63–66], characterized

by an average value sf and a shape parameter b,

Pðtf Þ ¼ 1� e�ðtf =sf Þb : (5)

The average failure time sf exhibits a sharp dependence on

both temperature and applied stress, reflecting the activated

nature of failure process [67,68]: both effects can be taken

into account by considering an adimensional stress ~r ¼ r=rT ,

where rT¼ kBT¼ v* is a temperature dependent reference

stress for stress-activated dynamics. Indeed, once the

Arrhenius temperature dependence is taken into account by

rescaling time with the thermal rate kT ¼ k0 exp ð�DG=kBTÞ,

~r allows a collapse of all ~sf ¼ kTsf ðr; TÞ data onto a master-

curve, close to the theoretical expectation ~sf ¼ ~s0=sincð~rÞ
[Fig. 9(d)] [43]. The difference between the master curve

obtained by simulations and the theoretical function calcu-

lated from Eq. (1) is presumably related to the heterogeneity

of the deformation observed in simulations. As a conse-

quence of stress concentration, in fact, bond breaking events

tend to be localized around the weakest regions, and this

causes sample failure to occur earlier than predicted. This

effect, more pronounced for large stresses and low tempera-

tures (since in the opposite regime thermal processes push in

the direction of a more homogeneous deformation), can be

FIG. 7. (a) Sketch of the simulation box filled with two copolymer chains. The stress is applied along the vertical direction. HB segments occupy lattice sites.

Segments belonging to different chains are shown in different colors for the sake of clarity. SB segments are represented as blue segments, and can assume all

orientations, whereas physical bonds (black segments) only develop in horizontal planes, perpendicular to the stretching direction, in order to mimic the fibril-

lar structure with oriented HB crystals bridged by SBs. In simulations all lattice sites are occupied by HB segments. (b) Evaluation of transversal connectivity:

each horizontal plane is divided in disconnected domains, representing single crystalline fragments. Some of those are highlighted with different colors. PBC

are taken in the (i, j) plane. (c) Longitudinal projection of the sample. Horizontal planes are divided in multiple domains that can eventually be connected to

adjacent domains along the vertical direction by SB segments. Disconnected domains (highlighted in red) and dangling (orange) ones do not contribute to the

stress bearing structure, and are neglected.

FIG. 8. (a) Representative creep deformations for the PTMO-based sys-

tem as a function of time since step stress application for different stress

values, as indicated in the legend, at a temperature T¼ 60 �C. (b)

Symbols: failure times average on three repetitions of the same experi-

ment, as a function of the applied stress. Error bars represent data disper-

sion. Red line: exponential fit.
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described in terms of an effective reference stress reff ,

slightly lower than rT .

By looking at creep failure time distributions, we can

thus identify two main parameters characterizing sample

connectivity. The first is a static property, just related to

structural parameters, which can be evaluated in the homo-

geneous deformation (i.e., small ~r) limit: in this regime, a

sample which is better connected in this sense will with-

stand a larger number of bond breaking events, thus it will

last longer under creep. We can quantify this property by

looking at the intercept ~s0 ¼ kTs0 of an exponential fit of

the ~sf ð~rÞ plot [39]. However, there is also a second parame-

ter, related to how efficiently the local stress is redistrib-

uted, which is a dynamic property. Following what was

mentioned previously, we quantify this efficiency using the

reff=rT ratio: ~reff ¼ reff=rT ¼ 1 corresponds to the ideal

case of homogeneous deformation, whereas a sample with

~reff < 1 will tend to localize the deformation, specially

under large stresses.

Both ~s0 and ~reff depend on sample morphology: as an

example, in Fig. 10, we report those parameters for samples

where the only varying parameter is the chain length N. In

agreement with expectations, longer chains produce better

connected samples: ~s0 grows logarithmically with N,

whereas ~reff increases only by a few percent in the small N
regime and then seems to saturate on a N-independent pla-

teau value, possibly linked to the one observed experimen-

tally (Fig. 3).

C. Percolation threshold

The interplay between morphology and connectivity can

also be addressed in numerical simulations by studying the

microscopic distribution of plastic events. For example, a

direct link with the analytical model can be provided by the

local fraction of associated physical bonds: this quantity suf-

fers larger fluctuations for increasingly heterogeneous defor-

mations, whereas its average value at failure represents the

percolation threshold Ath introduced in Sec. IV.

As already discussed, Ath will depend both on sample

morphology (samples that are initially better connected will

be harder to disconnect) and on the localization of micro-

scopic plasticity (if bond breaking activity is localized in one

specific region it will be much more effective [32]): thus, as

before, we expect that Ath shows both a morphology and a

stress/temperature dependence. This is indeed the case, as it

is represented in Fig. 11(a): lower values of ~r are associated

to more homogeneous deformations, and thus to a lower

threshold, and in an analogous way for a given ~r better con-

nected samples (larger N) redistribute more efficiently the

stress; thus, they also have lower Ath values.

Such a rich phenomenology is represented in a simpler

way in Fig. 11(b), where a manual rescaling parameter rD

was introduced to collapse the percolation thresholds on a

master-curve. The fact, far from obvious, that such a collapse

can be obtained confirms that the important parameter

FIG. 9. (a) Symbols: cumulative failure time probability obtained by run-

ning 1000 simulations on equivalent samples under equal conditions

(T¼ 100 �C, r¼ 20 MPa). Solid line: fit with Weibull distribution [Eq. (5)].

(b) Probability distribution of failure times. (c) Average failure time sf as a

function of the applied stress. Different series represent different tempera-

tures, from top to bottom: 0, 23, 50, 100, and 150 �C. (d) Symbols: rescaled

average failure time as a function of adimensional stress. Blue line: eyring

model for homogeneous deformation. Red solid line: eyring model with

stress concentration. Red dotted line: exponential fit.

FIG. 10. (a) Symbols: a dimensional average failure time versus adimen-

sional stress for various chain lengths, from dark to light: N¼ 1, 2, 3, 4, 5, 7,

9, 12, 15, 20, 25, 30, 40, and 50 SB segments. Lines: exponential fits, yield-

ing an intercept (~s0) and a slope ~reff . (b) Fit parameters as a function of

chain length. Black, left axis: intercept (~s0); red, right axis: slope (~reff ).
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controlling the connectivity of a material is indeed how effi-

ciently the local stress is concentrated around defects (here

represented, for example, by chain ends that have lower

coordination): the effect of macroscopic stress, temperature,

and chain morphology can be interpreted in terms of their

impact on stress concentration. This is quantified by the

stress parameter rD, which is represented in Fig. 11(c) as a

function of the chain length N. rD increasing with N tells us

that, at a fixed temperature, a larger external stress is needed

to produce the same stress heterogeneities in samples made

of longer chains, or that, conversely, such samples deform

more homogeneously (thus with a lower Ath threshold) under

a given applied stress. Furthermore, Fig. 11(c) shows that the

impact of chain length on stress concentration becomes neg-

ligible for the larger N values, and this offers a practical tool

to tackle the Mw dependence of the failure strain observed in

Fig. 3. In analogy with simulation results, we can interpret

the first growth of ef ðMxÞ as the sign that longer chains

produce better connected samples, which have higher resis-

tance under tension. In turn, the plateau of ef observed in the

large Mw limit reminds the fact that connectivity is no longer

improved significantly when chain length is increased

beyond a given limit.

D. Tensile test simulations

We now turn in this final section to simulating strain rate

imposed experiments, which represent a less natural frame-

work for our model, but which can be more directly com-

pared with the experimental data shown in Sec. III. Since our

kinetic model does not contain any information about strain,

we use stress as a function of time fitted to the experimental

tensile curves as an input for numerical simulations.

Starting again from Fig. 2(a), we use the observation that

stress seems to be roughly independent on strain rate to

extract from experimental data a _e-independent set of stress-

strain curves rðe; TÞ. These will represent the starting point

for our strain rate imposed simulations: for a given strain

rate _e, a time dependent stress rðtÞ ¼ rðe ¼ _et; TÞ is applied

to the sample, in order to reproduce the one macroscopically

experienced in the experiment. Whenever it was needed, a

polynomial fit of the measured rðe; TÞ curves allowed one to

extrapolate the mechanical stresses beyond the experimental

limit imposed by ef . In Fig. 2(b), the maximum elongations

measured experimentally are compared to the one extracted

by numerical simulations performed on similar conditions.

The fair agreement obtained at different temperatures and

strain rates can be considered as another indication that

despite its intrinsic limitations the model is able to grasp the

fundamental features of the sample failure mechanism.

Figure 12 shows, more in detail, the failure strain pre-

dicted by numerical simulations using as a starting point the

experimental rðe; TÞ curves of Fig. 1 (with the only excep-

tion of room temperature, because of strain hardening). In
FIG. 11. (a) Fraction of residual physical bonds at failure, as a function of

reduced stress for various chain lengths, increasing from dark to light (see

Fig. 10 for the values). (b) Same data as panel (a), plotted against a rescaled

stress variable. Red line: stretched exponential with stretching exponent

a¼ 0.63 (c) Rescaling parameter rD plotted as a function of chain length.

FIG. 12. (a) Elongation at break extracted from numerical simulations for

different values of the activation energy DG, from 80 to 120 kJ/mol, for a

strain rate _e ¼ 10 s�1, plotted as a function of the inverse temperature. (b)

Elongation at break obtained for different values of DG and _e (specified in

the labels) plotted as a function of the rescaled variable DG/kBT.
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agreement with the analytical prediction of Eq. (4), we can

again identify two distinct regimes: in the thermal regime, ef

grows linearly with _e and exponentially with T�1, whereas in

the stress-dominated regime, ef reaches a plateau value that

depends only weakly on T and _e.

Strain rate imposed simulations also represent a conve-

nient framework to study the impact of model parameters

(DG, v*) on the observed failure strain. For example, we can

take the same experimental tensile curves of Fig. 1 and use

them as an input for a series of numerical simulations where

only the activation energy DG is changed, spanning a narrow

interval around the value extracted from the fitting procedure

discussed in Sec. IV C. Figure 12(a) shows the resulting fail-

ure strain as a function of inverse temperature, for DG rang-

ing from 80 to 120 kJ/mol: we observe that ef depends

strongly on DG, and this dependence is stronger at high tem-

peratures. Figure 12(b) quantitatively addresses such depen-

dence: the observed failure strains collapse on _e-dependent

mastercurves if plotted against the rescaled variable DG/kBT.

This fact, confirmed by preliminary experimental results (not

shown), also suggests that the activation energy DG is the

most relevant parameter controlling the drop in extensibility

at high temperatures. Besides its interest from a fundamental

point of view, this may indicate the path toward the develop-

ment of better performing TPEs, with a larger extensibility:

indeed, for a fixed strain rate, it may be possible to tune DG
(for example by modifying the chemistry of the HBs or by

improving the HB crystal quality), until the drop in ef falls

outside the working temperature range.

VI. CONCLUSION

In this paper we have introduced a kinetic model based on

Erying rate equation to describe the breaking apart of physi-

cal bonds in a TPE. The sample is regarded as a transient

network, whose failure is associated to the loss of connectiv-

ity. We apply the model in an analytical and numerically

integrated form as well as in numerical simulations, to inves-

tigate how it captures the experimental results and to under-

stand its implications for stress localization, with a particular

focus on the role of sample morphology. This model captures

the experimentally observed (1) drop in elongation at break

with increasing temperature, (2) drop in elongation at break

with decreasing strain rate (and relatively weaker depen-

dence on strain rate relative to temperature), (3) and the

increase in elongation at break with increasing molecular

weight.

At the same time, the model neglects some aspects,

namely all morphological modifications before fibrillar struc-

ture is formed, and the effect of interactions between SBs,

either due to entanglements or to crystallization. This

restricts the model validity to nonentangled systems in the

large strain regime (e> 100%) and for temperatures well

above the glass transition temperature Tg and below the melt-

ing temperature Tm. Another aspect that has been only mar-

ginally taken into account in the model is the relevance of

the TPE softness. A more detailed investigation on samples

with different HB/SB ratios can offer a more complete per-

spective on the model validity and on its limitations.

From an experimental point of view, a direct observation

of plasticity developed during deformation, for example, with

infrared spectroscopy [17], infrared dichroism [5,69–71], light

scattering [72], x-ray scattering [15,17,18,39,73–76], NMR

[77–80], or other optical techniques [81–84], would provide

valuable information about the percolation threshold parame-

ter that our model points out as a practical way to characterize

sample connectivity. In particular, space resolved techniques

[72,81–83,85] might represent powerful tools to investigate

the spatial localization of bond-breaking events, which

strongly influences the mechanical properties [86], as it is

shown in our simulations. Experimentally accessing this quan-

tity for samples with different microscopic architectures could

open new perspectives to the development of more advanced

materials.

Finally, our work shows that elongation at break is

strongly dependent on the kinetics of physical bonds, which

determine the onset of the thermal regime, where extensibil-

ity is strongly reduced with increasing temperature.

Therefore, future development should consider kinetics as

the key parameter to tune in order to obtain well-performing

TPEs in the whole working temperature range.
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APPENDIX A: BOX SIZE EFFECTS IN NUMERICAL
SIMULATIONS

Numerical simulations shown in the text are performed

on cubic samples of volume V¼ 1003 sites. This size is cho-

sen in order to minimize finite size effects while keeping a

reasonable simulation time. Finite simulation volume effects

were addressed by changing both sample volume and aspect

ratio (i.e., by changing, at fixed volume, the sample size

along the strain direction).

As a first parameter potentially affected by finite box size

we studied the single chain conformation, by looking at the

average chain end-to-end distance hReei. Figure 13 shows

this quantity for different chain lengths and different (cubic)

box sizes. The observed value follows the one expected for a

polymer in theta solvent [87], until a deviation is observed as

soon as hReei exceeds half the lateral box size. In our simula-

tions, we chose to work with chains short enough to be well

below this regime.

More importantly than chain conformation, we addressed

the sample volume dependence of creep failure time. This is

a well-known problem, experimentally investigated by
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looking at the tensile strength of wires since XV century,

when Leonardo da Vinci first observed that longer wires

were weaker that shorter ones [88,89]. Indeed, in Weibull

theory [63], the failure probability is assumed to grow expo-

nentially with the sample volume (the general argument

being that larger samples contain a larger amount of critical

defects [66]). This is in good agreement with numerical sim-

ulations, as it is shown in Fig. 14: under the same experimen-

tal conditions, larger samples fail earlier. More precisely, for

a fixed transversal section (different colors in Fig. 14), elon-

gated samples are more fragile, and the failure time

decreases as V�1=b [63]. This happens because thinner sam-

ples are more heterogeneous (lower b), thus more prone to

stress concentration [90], which reflects in a sharper depen-

dence of failure time on sample volume. By contrast, for sam-

ple thicknesses large enough, like the one used in this paper,

the probability of finding a critical defect just because of ran-

dom chain disposition is significantly suppressed, and the fail-

ure dynamics will be roughly independent on sample size.

APPENDIX B: CREEP COMPLIANCE

Numerical simulations presented in Sec. V do not contain

any information on macroscopic strain: the only relevant varia-

bles are stress and time. That is why creep compliance cannot

be accessed, and we must limit ourselves to analyze the failure

time distribution. In order to overcome this limitation, a stress-

strain relation is needed, at least for one single SB chain. For

example, one can start assuming that each SB acts as an entro-

pic spring, with a given Young modulus E, and use this

assumption to link the local stress rloc(k, t) experienced by

plane k to a local strain eloc(k, t). All SBs being identical, the

local stress and strains will be different from the macroscopic

ones just because the number nSB(k, t) of SBs bridging any k
plane with the nearest ones is not constant. Indeed, nSB(k, t) is

initially fluctuating, and it evolves toward even more heteroge-

neous configurations because of stress concentration.

Because of linearity the total strain will be the arithmetic

average of local strains, whereas the macroscopic true stress

will be by definition related to local stresses via a harmonic

average:

rTrue tð Þ¼
�

1

rloc k;tð Þ

�
k

" #�1

	hrloc k;tð Þik¼Eheloc k;tð Þik¼Ee:

(B1)

The inequality is a well-known theorem in mathematics

[91]: in particular, since the ratio between arithmetic and

harmonic average increases if the local stress profile gets

increasingly heterogeneous [92], creep compliance under a

constant external stress increases when connectivity is pro-

gressively lost, until failure occurs. For the same reason,

according to this model we should expect creep compliance

at break to show only weak dependence on stress and tem-

perature, which is in good agreement with experimental data

[cf. Fig. 8(a) for the stress dependence] [64].

Also in this case, maximum extensibility depends on sample

morphology (for example, chain molar mass). However, it is

worth to mention that, once plotted against the rescaled stress

variable r=rD, again simulation results for ef in creep tend to

collapse on a master-curve: this is again because creep exten-

sion is strictly linked to the heterogeneity of the deformation.
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Résumé:  La fracture des matériaux, omniprésente aussi bien en science des matériaux qu’en géologie, implique souvent des événements 

soudains et imprévisibles, sans précurseurs détectables macroscopiquement. Une compréhension approfondie des mécanismes 

microscopiques conduisant in fine à la rupture est requise, mais les expériences restent rares. La détection de la dynamique microscopique 

dans les échantillons cisaillés est expérimentalement très difficile, car elle nécessite de combiner sensibilité mécanique, qualité optique et 

exigences strictes sur l’encombrement. Dans ce travail, nous présentons l'une des premières tentatives réussies de mesure des précurseurs 

microscopiques de fracture dans des matériaux mous modèles, grâce à des mesures de la plasticité microscopique à l'aide d'un nouvel 

instrument, couplant une cellule de cisaillement à contrainte contrôlée à un appareil de diffusion de lumière statique et dynamique (DLS) à 

petits angles. 

Dans un premier temps, nous montrons théoriquement, numériquement et expérimentalement comment la DLS, une technique très puissante 

mais difficile à utiliser pour un échantillon sous cisaillement,  peut être utilisée comme outil de mesure de la dynamique microscopique dans 

les systèmes mous sous cisaillement. Pour un solide parfait et un fluide visqueux simple, le champ de déplacement résultant d'une 

déformation de cisaillement est purement affine. Nous montrons comment les déplacements affines et non affines, qui sont présents dans de 

nombreuses situations d’intérêt (matériaux élastiquement hétérogènes ou en raison de réarrangements plastiques) peuvent être évalués 

séparément par DLS et discutons de l'effet des non-idéalités dans des expériences typiques. 

Ce travail est centré sur un gel colloïdal fractal modèle, dont nous caractérisons la rhéologie linéaire en loi de puissance. Nous montrons que 

celle-ci est décrite par un modèle phénoménologique Fractional Maxwell (FM), et discutons la relation possible entre FM et la structure 

microscopique du gel. 

Sous une contrainte de cisaillement constante (expérience de fluage), le gel colloïdal présente une déformation rapide élastique suivie d'un 

fluage lent en loi de puissance, puis, après plusieurs heures, par une accélération du taux de cisaillement, entraînant la rupture retardée du gel. 

Nos expériences montrent que le premier régime en loi de puissance, bien décrit par la viscoélasticité linéaire, correspond à l'échelle 

microscopique à une dynamique partiellement nonaffine, mais entièrement réversible. Lorsque la viscoélasticité dévie de la linéarité, une 

accélération nette, localisée dans le temps, de la dynamique non-affine, est observée. Ces réarrangements rapides précèdent la fracture 

macroscopique du gel de plusieurs heures: ce sont des précurseurs dynamiques de la fracture qui permettent de prédire l’évolution du gel 

bien avant toute mesure rhéologique. 

Pour obtenir une image plus complète de la fracture, nous étudions l'apparition de l'irréversibilité lors d’une perturbation cyclique répétée 

plusieurs fois (expérience de fatigue). En suivant l'évolution stroboscopique du système en fonction de la déformation cumulée, on constate 

que, au-delà du régime linéaire, le taux de relaxation augmente brusquement, signature de plasticité. Si la contrainte appliquée est 

suffisamment grande, le gel à long terme montre une rupture retardée, en analogie avec celle observée en fluage. Les différences et 

similitudes entre les deux mécanismes de fracture sont discutées. 

Enfin, la généralité des résultats obtenus sur les gels colloïdaux est vérifiée en étudiant comme second système modèle un verre colloïdal, 

dont la mise en écoulement sous contrainte oscillante est un processus progressif, pour lequel deux modes de relaxation contribuent à la 

dynamique observée. Les analogies qualitatives trouvées avec des systèmes similaires (par ex. des émulsions concentrées) suggèrent qu'une 

image unifiée pourrait être obtenue, motivant des recherches futures. 
 

 

Abstract: Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, 

unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms 

eventually leading to failure is clearly required, but experiments remain scarce. The detection of microscopic dynamics in samples under 

shear is experimentally very challenging, because it requires to combine the highest mechanical sensitivity to strict requirements on the 

geometry of the whole setup and on the quality of the optical interfaces. In this work we present one of the first successful attempts to 

measure microscopic failure precursors in model soft solids. Here, microscopic plasticity under shear is observed using a novel setup, 

coupling a custom-made stress controlled shear cell to small angle static and dynamic light scattering (DLS). 

DLS is a very powerful technique, but its application to materials under shear is not trivial. In a first step we show a theoretical, numerical 

and experimental investigation of how DLS may be used as a tool to measure the microscopic dynamics in soft systems under shear. In ideal 

solids and simple viscous fluids, the displacement field resulting from an applied shear deformation is purely affine. Additional non-affine 

displacements arise in many situations of great interest, for example in elastically heterogeneous materials or due to plastic rearrangements. 

We show how affine and non-affine displacements can be separately resolved by DLS, and discuss the effect of several non-idealities in 

typical experiments. 

As a model system, this work mainly focuses on a fractal colloidal gel. We thoroughly characterize the linear power-law rheology of the gel, 

we show that it is very accurately described by the phenomenological Fractional Maxwell (FM) model, and we discuss the possible 

relationship between the FM model and the microscopic structure of the gel. 

Under a constant shear stress (creep experiment), the colloidal gel exhibits a fast, elastic deformation followed by a slow sublinear power-

law creep, which is eventually interrupted after several hours by an upturn in the shear rate, leading to the delayed failure of the material. Our 

experiments show that the first power-law regime, nicely described by linear viscoelasticity, corresponds at the microscopic scale to partially 

nonaffine, yet fully reversible dynamics. Upon deviation from the linear viscoelasticity, a sharp acceleration, localized in time of the 

nonaffine dynamics is observed. These faster rearrangements precede the macroscopic failure of the gel by thousands of seconds: they thus 

are dynamic precursors of failure that allow one to predict the fate of the gel well before any rheological measurement.  

To obtain a more comprehensive picture of material failure, we next address the onset of irreversibility under a cyclic perturbation repeated 

many times (fatigue experiment). By following the stroboscopic evolution of the system as a function of the cumulated deformation, we 

observe that as soon as the shear amplitude is increased beyond the linear regime the relaxation rate increases abruptly, indicating that 

irreversible plasticity is at play. If a large enough stress amplitude is applied, the system on the long run displays delayed fatigue failure, with 

reminiscences of the one observed in creep. Differences and similarities between the two failure mechanisms are discussed. 

Finally, the generality of the results obtained on colloidal gels is checked by investigating as second model system a soft colloidal glass. In 

this case, our experiments indicate that oscillatory yielding is a gradual process, where two relaxation modes contribute to the observed 

dynamics. Qualitative analogies found with similar systems (e.g. concentrated emulsions) suggest that a general picture might be obtained 

with our study, which motivates ongoing and future investigations.  
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