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Abstract

The increasing use of social and sensor networks generates a large quantity of data that
can be represented as complex graphs. There are many tasks from information analysis, to
prediction and retrieval one can imagine on those data where relation between graph nodes
should be informative.

In this thesis, we proposed different models for three different tasks:

• Graph node classification

• Relational time series forecasting

• Collaborative filtering

All the proposed models use the representation learning framework in its deterministic or
Gaussian variant.

First, we proposed two algorithms for the heterogeneous graph labeling task, one us-
ing deterministic representations and the other one Gaussian representations. Contrary to
other state of the art models, our solution is able to learn edge weights when learning si-
multaneously the representations and the classifiers.

Second, we proposed an algorithm for relational time series forecasting where the ob-
servations are not only correlated inside each series, but also across the different series. We
use Gaussian representations in this contribution. This was an opportunity to see in which
way using Gaussian representations instead of deterministic ones was profitable.

At last, we apply the Gaussian representation learning approach to the collaborative
filtering task. This is a preliminary work to see if the properties of Gaussian representations
found on the two previous tasks were also verified for the ranking one. The goal of this
work was to then generalize the approach to more relational data and not only bipartite
graphs between users and items.
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1.1 Context

Since the early 2000s there has been a great development and use of on-line services, such as
On-line Social Networks (Facebook, LinkedIn, ...), E-Commerce (Amazon, eBay, ...), Video
or Music On Demand (Netflix, YouTube, LastFM, ...), and Open Data websites (city traffic,
meteorology, parking use, ...). The use of those services by a large number of users generates
an impressive amount of data such as ratings, likes and traffic data. This data informs us
about many aspects of human behaviors, such as users habits, tastes and friendships.

A lot of user-related collected data can be represented as graphs with various types of
entities (such as users, photos, items, streets) interacting with each other. Since these inter-
actions may be used as a complementary source of information, these entities should not
be considered alone. They are often linked together through various kinds of relations such
as friendship, ratings, geographical proximity. In the following, we will talk of a graph or
relational data to refer to this type of linked data.

Such graphs are an important source of knowledge and can be relevant to help infer-
ring missing information. This kind of data is generally very large, from some thousand
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connected nodes to billions. That is why it is crucial to use machine learning techniques to
solve the various possible tasks relevant for this data.

1.1.1 Tasks

Below are some concrete examples of generic tasks relevant for graph and relational data:

• Node graph classification: given a new track on LastFM1, infer the category (e.g.
music style) of a track based on who has uploaded it and who has listened to it;

• Graph classification: given a graph representing a protein, predict its category, and
thus its properties, based on how molecules are arranged;

• Link prediction: given a partial graph, infer its missing edges;

• Information diffusion: in a social network like Twitter, predict how information
spreads through the nodes of the graph;

• Clustering: in a social network, detect user communities based on their interests
(sport, science, politics, ...);

• Regression: knowing the traffic in some streets of the city, estimate the traffic in a
specific non-observed street (or in the future);

• Learning to rank: rank movies for a Netflix user, based on past ratings and meta
information;

• Anomaly detection: given a network of different sensors in an industrial process pro-
duction, predict when the risk of a product being damaged is high;

1.1.2 Types of Graphs

In this thesis, we focus on node specific tasks, and distinguish two kinds of graphs on which
inference and learning can be conducted:

• Attributed graphs are graphs where each node is associated with attributes such as
raw images, product indicators or any other features.

• Non attributed graphs are graphs where no features are associated to nodes. Only
edges between nodes are given.

In a graph, nodes can have different types, this corresponds to different classes of enti-
ties in the real world (e.g. user, song, etc.). There exists different types of graphs based on
the different types of nodes and relations between them: homogeneous or heterogeneous,
mono or multi-relational.

• Homogeneous graphs correspond to graphs where there is only one type of node and
one type of relation between them.

• Heterogeneous graphs correspond to graphs where there exists different types of
nodes and different types of relations between different types of nodes.

1LastFM is a social network for music.
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FIGURE 1.1: Example of a heterogeneous multi-label graph with authors,
comments, photos, videos, etc. link together by different types of relations

such as friendship, colleagues, video similarity, etc.

• Mono-relational graphs correspond to graphs where there is at most one relation be-
tween two given nodes.

• Multi-relational graphs correspond to graphs where two nodes can be linked by more
than one relation.

We did not specifically focus on the latter type of graphs in our works, even if our
models are able to handle multi-relational graphs, none of our datasets is multi-relational.

Figure 1.1 gives an example of a heterogeneous graph with multiple labels associated to
the nodes.

In this thesis we focus on non attributed graphs, and on how to learn latent representa-
tions based only on the graph structure.

Machine learning techniques have mainly been developed under the assumption that
entities are independent identically distributed (i.i.d.), which is clearly not our case since en-
tities depend on each others. Those techniques cannot take into account inter-dependences
and there is a real need to develop specific techniques for graph data. That is the main
purpose of this thesis.

1.1.3 Outline

The remaining of this chapter is organized as follows: in Section 1.2 we describe the three
different tasks studied during the thesis; in Section 1.3 we give an informal introduction
to representation learning which is the framework used in all of the models we developed
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during the thesis; in Section 1.4 we outline our four contributions. Lastly, Section 1.5 gives
the dependencies between the chapters of the thesis.

1.2 Tasks Studied during the thesis

Among the different possible tasks, we focused on three of them, namely classification, fore-
casting and ranking. In this section, we define them succinctly. Those tasks are detailed in
the corresponding chapters. A large part of the thesis work has focused on the classification
task (see Section 1.2.1), firstly using deterministic representations, and then Gaussian ones
(see Section 1.3). Given the positive results with Gaussian representations, we then have
applied Gaussian representations learning on other tasks, namely forecasting (see Section
1.2.2) and ranking (see Section 1.2.3).

1.2.1 The Classification Task

The task of classification consists in identifying the category to which a new instance be-
longs, based on a training set of observed instances. Spam filtering is a typical example
of classification, where we want to distinguish junk emails (advertisers, hackers, ...) from
others.

In this thesis, we tackle more particularly the graph node multi-label classification task.
The difference with classical classification is that the instances are structured through a
relational graph, and that we thus use a transductive semi-supervised framework.

For example, in the case of LastFM (one of the datasets used in our contributions) differ-
ent types of nodes (users, tracks, albums and artists) interact through seven different type of
relations such as friendship, most listened tracks, authorship, etc. For example, a track can have
the three labels pop, rock and live music, but labels can be missing for some nodes (users,
tracks, albums or artists). The task consists in inferring the labels of those nodes using the
known labels and the relations that exist between the different types of nodes.

In the context of the thesis, our aim is to leverage representation learning techniques
to tackle the graph node multi-label classification task for heterogeneous data, i.e. where
both nodes and edges can be of different types. This task is known as heterogeneous graph
nodes classification. Note that different sets of labels can be associated to each type of node.

1.2.2 The Forecasting Task

The forecasting task consists in predicting future or missing values, based on the past, of
multi-variate time series. A practical example is inventory optimization: knowing how
much a company has sold items for the last weeks, we want to predict how much items the
company will sell for the coming weeks to produce the right amount.

In this thesis, we view time series as a special type of graph with temporal relations,
allowing us to extend the methodology developed for classification. Besides the temporal
structure, the proposed approach exploits relationships between the different time series.
For instance, a product might be a consumable (e.g. ink) of another (e.g. printer); the
relationship can thus have an influence on the predictions. Another example is the traffic
conditions of the 50 busiest roads of the city of Lyon (France). Data is aggregated on 20 min-
utes windows spanning 15 days. The relations between series are based on the geographical
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proximity of roads since having traffic at time T in a location might have an impact at time
T + 1 on neighboring roads. The task here consists in, knowing the traffic from time T0 to
time T , forecasting the traffic at time T + n.

In this thesis, to model the joint relational and temporal dynamics of such series we learn
Gaussian distributions in a latent space. A decoder then maps the latent representations to
the observations. This allows us to model the uncertainty inherent to observations and to
predict unobserved values together with a confidence in the prediction.

1.2.3 The Ranking Task

Finally, the ranking task, also known as learning to rank, consists in ordering a set of in-
stances according to a specific request. There is a wide variety of applications and thus a
variety of possible studied data such as words, documents, items, etc. Document retrieval
or recommendation are well known examples of the ranking task. It consists in ordering a
collection of documents or items given a query.

In this thesis, we address the ranking task employed for recommendation (collaborative
filtering). Here, we want to order a list of items for a specific user based on previous rated
items from all users.

Collaborative filtering can be cast into a problem involving relational data. For example,
in a music recommendation task, one can imagine having user ratings for the tracks of the
LastFM dataset. Leveraging the graph structure so as to learn representations for ranking
items in the context of recommendations is a challenging task.

In this thesis, we made a first step in this direction. We learn Gaussian representa-
tions in the context of collaborative filtering. The model is based on an approach where,
instead of modeling the probability distribution of the likelihood, we directly model the
users and items as Gaussian representations. This allows us to compute and maximize the
likelihood distribution based on our Gaussian modeling of users and items representations.
This Gaussian representation allows us to care for the inherent uncertainty due to lack of
information, or conflicting information.

1.3 Learning Representations

This thesis explores representation learning techniques for solving the different tasks pre-
sented in Section 1.2. It consists in learning for each entity or node of the graph (for example
an image, a word, or a user) a representation in a vector space Rd.

Learning such representations allows us to work with more compact representations
than the initial one, to discover new relations or similarities, to simplify the inference, to
compare different kind of data in a common latent space or, more importantly, to work with
an homogeneous representation space where entities of different types can be represented.

For example, for classical (non graph) classification tasks such as image classification,
instead of working with vectors of pixels that exhibit a lot of noise and irrelevant infor-
mation, representation learning techniques aim at transforming this vector of pixel into a
smaller vector where only semantic information is encoded. The same for natural language
processing where working with vectors instead of words is far more easier. For example,
to find some synonyms one can imagine learning representations such as words with the
same meaning are close together in the representation space.
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The representation learning framework has recently been applied to different kind of
domains, with some strong impacts and breakthrough results during the 2010’s in different
areas (Bengio et al., 2013):

• Speech recognition (Dahl et al., 2010; Deng et al., 2010; Dahl et al., 2012; Hinton et al.,
2012; Mohamed et al., 2012; Seide et al., 2011);

• Signal processing (Boulanger-Lewandowski et al., 2011; Hamel et al., 2011);

• Object recognition (Ciregan et al., 2012; Rifai et al., 2011);

• Natural language processing (Collobert et al., 2011; Weston et al., 2010; Srivastava
et al., 2012; Socher et al., 2011; Glorot et al., 2011; Bordes et al., 2012; Mikolov et al.,
2013);

• Transfer learning (Bengio, 2012; Chen et al., 2012a; Krizhevsky et al., 2012; Dauphin
et al., 2012).

In the case of relational data, we suppose that each relationship corresponds to a geo-
metric constraint between the learned representation of the two linked nodes. While many
geometric constraints could be used, we exploited solely the most common one in this the-
sis, which is based on the hypothesis that similar entities should be close together in the repre-
sentation space.

Representing the nodes simply as points, however, has a crucial limitation: we do not
obtain information about the uncertainty of that representation. Uncertainty modeling can
be useful when dealing with missing or conflicting information.

Uncertainty is inherent when describing a node in a complex graph: imagine a user for
which the different sources of information are conflicting, e.g. pointing to different com-
munities. We would like to encode this uncertainty into its embedding. A solution to this
problem is to represent nodes as Gaussian distributions: each node becomes a full distribu-
tion (and not a single point only) to capture uncertainty about their representations. Thus,
instead of learning deterministic representations we can learn densities with the same kind
of constraints but adapted to random variables. Here we want similar entities to have similar
distributions.

We now detail the main contributions of this thesis.

1.4 Contributions

In this thesis we apply the representation learning framework to three different tasks. For
the graph node classification task, we learn a deterministic representation for each node
of the graph as well as a classifier (Chapter 4). We extended this model to use Gaussian
representations in order to deal with uncertainty and conflicting information (Chapter 5).

Since we got promising results using the new Gaussian representations learning frame-
work, we explored its use for other tasks to see what kind of representations the models
could learn and what kind of qualitative properties such representations could have. In
particular, we applied the Gaussian representation framework for forecasting (Chapter 6)
and ranking (Chapter 7).



1.4. Contributions 11

1.4.1 Learning Deterministic Representations for Heterogeneous Graph Node
Classification (Chapter 4)

In this contribution, we use the representation learning framework for the tasks of node
classification in heterogeneous networks. Nodes may be of different types, each type with
its own set of labels, and relations between nodes may also be of different types. A typi-
cal example is provided by social networks where the node types are e.g. users, content,
groups, etc. and relations may be friendship, like, authorship, etc. Learning and performing
inference on such heterogeneous networks is a recent task requiring new models and algo-
rithms. Note that at the time of this work, this task was largely unexplored. We propose a
transductive approach to classification that learns to project the different types of nodes into
a common latent space. This embedding is learned so as to reflect different characteristics
of the problem such as the correlation between labels of nodes with different types and the
graph topology.

These interdependencies between nodes of different types play an important role in
several classification problems, and none of the current methods was able to handle them
properly. In this contribution, the proposed model also learns, jointly with the node repre-
sentations and classifiers, relation specific weights to handle these interdependencies. The
application focus is on social graphs but the algorithm is general, and could be used for
other domains as well. The model is evaluated on five representative datasets of different
instances of social data, and works well compared to competing methods. Experimental
results show that the proposed model was able to learn correlations between labels of dif-
ferent types of nodes, notably improving the class label inference.

1.4.2 Learning Gaussian Representations

Learning Gaussian Representations for Heterogeneous Graph Node Classification (Chap-
ter 5)

In this contribution, we have explored the use of uncertainty for learning to represent nodes
in the task of heterogeneous graph node classification. This extends the previous contribu-
tion, by using Gaussian representations rather than deterministic ones (Chapter 4). The
proposed model associates with each node a Gaussian distribution over the representation
space, parameterized by its mean and covariance matrix. We have examined four variants
of this model, by using either spherical and diagonal covariance matrices, and by using two
different loss functions for classification. The proposed model is evaluated on three repre-
sentative datasets and improves the class label inference compared with the deterministic
model proposed in our first contribution.

Based on the experimental results obtained on datasets representative of different situ-
ations, our main findings are that (i) integrating uncertainty in representations improved
classification (ii) according to our initial intuition, the effect of using uncertainty has gen-
erally more impact when the amount of training data is lower and (iii) according to our
expectation, highly central nodes have less variance associated to their representation than
non central nodes.
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Learning Gaussian Representations for Relational Time Series Forecasting (Chapter 6)

The good results obtained with the Gaussian representations learning framework on the
heterogeneous graph node classification motivated us to explore its use for another task,
namely relational forecasting, predicting the future of relational time series.

In this contribution, we proposed a new dynamical state space model for modeling
the evolution of such series. The joint relational and temporal dynamics of the series are
modeled as Gaussian distributions. A decoder maps the latent representations to the ob-
servations. The two components (dynamic model and decoder) are jointly trained. Using
Gaussian representations allows us to model the uncertainty inherent to observations and
to predict unobserved values together with a confidence in the prediction.

The proposed model has shown competitive performance on four different datasets
compared to state-of-the-art models. Moreover, it allows to model the uncertainty of pre-
dictions, providing for example confidence intervals for each prediction.

Learning Gaussian Representations for Ranking (Chapter 7)

In this last contribution, we leveraged Gaussian representations for collaborative filtering in
a learning to rank framework. As for relational forecasting and classification, we use Gaus-
sian representations to allow the modeling of uncertainty of the learned representations.
This can be useful when a user has a small number of rated items (cold start), or when
there are conflicting informations about the behavior of a user or the ratings of an item.
We have shown that our model performs well on three representative collections (Yahoo,
Yelp and MovieLens). We analyze the learned representations and show that the variance
distribution is correlated with the space dimension and the training set size.

1.5 Thesis Organization

The thesis addresses three different tasks (classification, forecasting and ranking) on differ-
ent kind of data (social networks, relational time series and ratings). To allow for a reading
of the different chapter independently, we chose to introduce the field of representation
learning in Chapter 2. We then introduce the related works for each task in the chapter
where we present the corresponding contribution:

• Chapter 4 for node classification using deterministic representations,

• Chapter 5 for node classification using Gaussian representations,

• Chapter 6 for relational forecasting,

• Chapter 7 for ranking.

Figure 1.2 represents the dependencies between the different chapters of the thesis and
summarizes the outline of the thesis.
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FIGURE 1.2: A tree-like structure that shows the dependencies between the
different chapters of the thesis manuscript.
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Chapter 2

Learning Representations for
Relational Data

Abstract
In this chapter, we present the field of representation learning in the context of relational
data. We first give a definition of representation learning. We then present different types
of approaches studied during the thesis: inductive, transductive, unsupervised, supervised
and semi-supervised. We then give a state of the art of the representation learning frame-
work for learning deterministic and stochastic representations.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Learning Representations in Graphs . . . . . . . . . . . . . . . . . . . . . 17
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2.1 Introduction

In machine learning, the question of how to represent data is central since the behavior of
the model depends on it. Good data representations should emphasize explanatory factors.
This is the reason why a lot of works have focused on learning robust representations. We
can distinguish two kind of techniques to obtain data representations. The first one is hu-
man defined features (or handmade features), which consists in using expert knowledge to
define them explicitly. The second one is representation learning which consists in learning
the representation of each instance or node in the graph in a vector space from raw data.

One early success of representation learning is image processing. Before representation
learning (deep learning approaches) was developed, image processing was mostly based
on visual features that were intended to be informative and non-redundant. For example,
during several years, image processing models used low level handmade features based on
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color, texture, shape, ... Feature descriptors such as SIFT (Lowe, 1999), HOG (Freeman et
al., 1995) or SURF (Bay et al., 2008) were introduced. These models and algorithms take an
image as input and they output locations of significant points of the image. These descrip-
tors were mainly based on local characteristics computed directly from the image pixels.
Models using these descriptors as input for the image classification task (or other image
processing tasks) were state of the art references in terms of results.

Deep learning, and more generally representation learning models (Bengio et al., 2013),
aim at associating with any object described by raw features (e.g. pixel RGB values or sim-
ply one-hot encoding like for text) a latent representation in a (vectorial) space such as Rd
(for d ∈ N). Geometric relationships between entities encode existing relations or simi-
larities of raw data. Learning representations is a way to discover underlying (unknown)
explanatory factors from input data, and allows us to:

• Define compact representations without loss of information;

• Smooth raw data by having similar entities close in the latent space;

• Find new relations or similarities in between data using the latent representations
through a natural clustering;

• Simplify the inference since the factors of latent representations are related through
simple dependencies;

• Compare different kind of data in a common latent space (such as images and text or
nodes of different types).

This last point is key for us, since in this thesis we deal with heterogeneous relational
data. Our goal is to learn a representation of an object that encompasses the information
from the whole graph. Furthermore, representing heterogeneous data in the same latent
space gives us the possibility to learn correlations between different kinds of nodes. That
is why, during the last years, representation learning has been largely developed for rela-
tional data and has reached extremely promising results on various tasks by automatically
building relevant representations.

Representation learning methods aim at projecting instances in a representation space
(e.g. Rd). These projections are learned so that distances or similarities between instances
in the representation space are consistent with existing relations within the graph.

An illustration of representation learning for relational graphs is given in Figure 2.1.
Each of the nodes of the graph is projected onto Rd, and is thus associated with a learned
vector representation. In this example, we consider two type of nodes and distinguish
them in the figure representing the latent space: the first type is represented as circles and
the second as stars. This can be used in classification, as shown in the figure where two
classifiers are learned, one for the stars and the other one for the circles. In this example,
circles and stars correspond to two different types of nodes. Each type has to be classified
among two classes, green/yellow for circles and red/blue for stars, the two types of nodes
are linked so that their representations influence each other.

The outline of this chapter is as follows: firstly we discuss the differences between in-
ductive and transductive algorithms (Section 2.2.1), and between supervised, unsupervised
and semi-supervised learning (Section 2.2.2). Then we introduce different models by dis-
tinguishing on whether they learn deterministic (Section 2.3) or Gaussian (Section 2.4) rep-
resentations for relational data.
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FIGURE 2.1: Drawing of representation learning for relational data where
nodes are projected from the initial graph (left) to the common latent space

(right) where classifiers are learned.

2.2 Learning Representations in Graphs

In our contributions, the proposed models use transductive (semi-)supervised approaches.
Those notions can be source of confusion, so let us firstly clarify some definitions. Since this
thesis focuses on relational data, we give an explanation of what it means to work under
such frameworks when dealing with graphs.

2.2.1 Inductive and Transductive Algorithms

In this section, we compare two different philosophical concepts related to inference in ma-
chine learning: induction and transduction. The works presented in this thesis use the
transductive approach, but it is important to differentiate the two approaches since, based
on the data, both of them or only one of them could be employed.

We take a simple example for the classification task where we have instances (xi)i∈[1..n]

divided in training set, and testing set, as well as their respective labels. Without loss of
generality we assume the task of binary classification.

Induction

Inductive algorithms aim at learning a general rule f from observed examples, which is
then applied to unseen examples. It learns a predictive model that only depends upon the
features of a sample to classify.

More precisely, for classification an inductive approach aims at learning a classifier f
that maps the instance space to the label space, based only on the training instances. In
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practice, we need input features for all xi. Generally input features are represented as vec-
tors in Rd′ . Thus, in our example, the classifier f maps xi ∈ Rd′ into {−1; 1}. During the
inductive training phase only the labeled training set is used. Inference is then performed
by applying the learned classifier f directly on the test set or to any new datum.

The fact that input features are mandatory is important since not all datasets provide
readily available input features. As we will see in this thesis, sometimes only the graph is
given as input, with no additional feature (e.g. only a weight matrix indicating a relation
or a similarity between graph nodes is provided). So, in the case where no input feature is
available, the inductive approach is not applicable.

Transduction

Transductive approaches are introduced in (Gammerman et al., 1998). The main difference
between inductive and transductive approaches is that the transductive one does not aim at
learning a general predictive model but directly classifies test data based on training data: it
is an inference from particular to particular. Said otherwise, the output of the transductive
algorithm is a vector of labels instead of a classifier f . The goal is to transfer the information
from labeled examples to unlabeled ones. The strength of transduction lies in that it is
solving a simpler task than induction. Thus during the training phase both the training set
(with its respective labels) and the test set (without its respective labels) are used. Since
test data is used during the training phase, if we want to label a new test point xn+1 the
transductive algorithm needs in principle to be run again whereas its inductive counterpart
can label it by applying directly the learned classifier f .

Transductive learning assumes that we can however provide a relation between exam-
ples (e.g. a way to compare them). This is the case in graphs where relations between nodes
give us a prior knowledge on which nodes should be close to each other even if there is no
input feature. For example, concerning the classification task, it is very common to assume
that neighbors in the graph are more likely to have similar labels.

Moreover, speaking about relational data, since most often the main goal is not to return
a classifier, the lack of node input features is not crippling because the input graph can be
used as the only source of information.

2.2.2 Supervised, Unsupervised and Semi-Supervised Learning

In this section we compare three different technical ideas in machine learning: unsupervised,
supervised and semi-supervised learning. The works presented in this thesis use semi-
supervised techniques.

Unsupervised Learning

Unsupervised learning techniques consist in learning hidden structures (e.g. data densities)
from unlabeled data only, i.e. there are no labels yi provided. All these techniques rely on
some pre-defined relation between the samples. A very common example in unsupervised
learning is the task of clustering, and more specifically the k-means algorithm (MacQueen,
1967). It aims at finding k points (the center of the cluster) in the vectorial space that mini-
mize the sum of the distances of all instances to the nearest cluster center.
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In unsupervised learning, there is no direct evaluation of the algorithm, although the
output of the algorithm (clusters, representations, ...) can be used for other tasks.

Supervised Learning

Supervised learning techniques aim at learning a predictor for a task dealing with labels,
ratings, values, etc. In our case, it corresponds to learning a classifier f . During the training
phase, the goal of the model is, given (xi)i∈[1..m] and (yi)i∈[1..m], to try to match (xi, f(xi))
with (xi, yi) as well as possible. This learned classifier can then be used for mapping new
examples. All the difficulty is to have a classifier that generalizes well from labeled to
unlabeled data.

Semi-Supervised Learning

Semi-supervised learning is a class of supervised learning methods that makes use of both
labeled and unlabeled data. The main assumption of semi-supervised learning is that even
non labeled data should add relevant information to the model. Actually, unlabeled data
give interesting information about the prior distribution of the data P(x).

In our case it aims at learning a classifier f , when not all the instances of the training
set are labeled. Unlabeled training instance are used together with labeled one to represent
local relational constraints on the problem by forcing linked nodes to have close represen-
tations.

Transductive methods are always semi-supervised since they use information contained
within the test points. The difference is more on the reason why they have been proposed.
The main difference is that semi-supervised learning does not need specific test instances,
whereas transductive algorithms need the test set that will be used in the end to evaluate
its performance (Chapelle et al., 2009).

Our Contributions

Concerning our contributions for the classification task (Chapters 4 and 5), using both la-
beled and unlabeled nodes make our proposed models semi-supervised ones.

Concerning our contributions, for the forecasting task (Chapter 6), target are directly
provided since we forecast at time T+n learning from the past known data. For the ranking
task (Chapter 7), we also learn to rank from triplets (user, item, ratings). Thus those two
contributions belong to the supervised learning framework1.

2.3 Learning Deterministic Representations

In recent years, there has been a surge of interest in learning deterministic (vector) repre-
sentations for different machine learning tasks, such as collaborative filtering (Koren et al.,
2009), image retrieval (Weston et al., 2011), relation extraction (Riedel et al., 2013), word
semantics and language modeling (Bengio et al., 2003; Mnih et al., 2009; Mikolov et al.,
2013).

1Note that prediction could be considered as unsupervised learning since there is no need for human anno-
tation. However technically the data are also used as targets and this framework include supervised training
methods.
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In this section we present a state of the art concerning the models learning deterministic
representations, focusing on relational data which is the main topic of this thesis.

In the following, we distinguish unsupervised models and supervised/semi-supervised
ones since they rely on different sets of techniques. In our experiments, unsupervised mod-
els performed worse than supervised one, yet, a lot of (semi-)supervised models are in-
spired from unsupervised ones.

Recent years have seen an increasing enthusiasm for using neural networks to learn
supervised representations. For example, (Zhou et al., 2015; Zhang et al., 2014; Che et al.,
2015; Wu et al., 2015; Niepert et al., 2016) propose neural network based models to learn
deep representations from raw input data. But neural networks models need rich infor-
mative raw input features to learn good representations. In our case, no node specific rich
input data are available. Note that, we do not cover the models that learn a representation
of the whole graph since we focused on the nodes of the graph.

2.3.1 Unsupervised Models

We first study unsupervised representation learning methods. In the context of graphs, this
corresponds to a graph, where nodes may (or not) be associated with raw data like e.g.
images or text. These learned representations can then be used for different supervised
tasks such as link prediction or classification.

Learning from Context

Learning representations from context often comes to learning entity representations in the
context of surrounding words in a text or surrounding objects in an image. Firstly intro-
duced to learn word embeddings (Mikolov et al., 2013), this methodology was extended to
other types of high-dimensional data like images. (Mikolov et al., 2013) learn two latent
vectors for each word (entity): a representation and a context vector. These two vectors
are used to compute the conditional probability of observing a word given its context (an-
other word for instance). The representations are learned by maximizing this conditional
likelihood over a corpus.

Most learning from context models can be framed within the class of methods called the
exponential family embeddings (Rudolph et al., 2016). Such a family defines a context function,
a conditional probability function (generally modeled from the exponential family) and an
embedding structure to form the objective function:

• The context function defines, given an entity instance (e.g. an occurrence of a word in
a text), which are the related entities (e.g. surrounding words).

• The conditional probability function is a function of both the representation of the
entity and the corresponding context vectors. It is in charge of modeling how repre-
sentations (mathematically) interact with their corresponding context.

• The embedding structure determines how the model shares the vector representations
across the data, i.e. the possible relations between the context vector for a given entity
and the representation of the same entity (e.g. same vector for the context and the
target representation).
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The models proposed in (Mikolov et al., 2013), namely skip-gram and C-BOW, could be
set within this framework. We introduce the skip-gram model since it has been adapted to
learn representations for relational data.

(Mikolov et al., 2013) proposed an unsupervised model to learn word representations
in a vector space, with the goal of using them in natural language processing tasks, by
grouping semantically similar words in the same region of the vector space. This is now the
basic representation for many neural network models manipulating text.

The goal of the skip-gram model is to learn word representations from which we can
infer the context, i.e. surrounding words. Thus words that appear in similar contexts have
similar representations. More formally, given a phrase composed of the series of words x1,
x2, x3, ..., xT , the training objective of the model consists in maximizing the log-probability:∑

(i,j)

log p(xj |xi) (2.1)

where xt is a specific word and xc is a word that appears in the context of xt. The choice of
xc depends on the choice of the context function. For example, we can take a window of a
given size centered on xt and consider that all the nodes xi in this window are part of the
context.

Various conditional probability functions may be used. The basic formulation consists
in using a softmax function and learning two representations, zi and z′i respectively the
"target" and "context" vector representation for xi:

p(xj |xi) =
exp(z′j · zi)∑W
k=1 exp(z′k · zi)

(2.2)

where W is the total number of words in the vocabulary.
An interesting property of the learned representations for this model is that some basic

algebraic operations on word representation were found to be meaningful and understand-
able from a natural language point of view (Mikolov et al., 2013). For example, a simple
operation such as z("France") + z("capital") is close to z("Paris"). Even complex operations
can be done, for example, the closest word representation z("Lisbon") − z("Portugal") +
z("France") is z("Paris"). However up to now, there is no real exploitation of these proper-
ties.

These ideas have been extended to graphs. (Tang et al., 2015; Perozzi et al., 2014; Cao
et al., 2015) learn deterministic representations for relational data with graph nodes instead
of words and a list of neighboring nodes instead of window.

The difference between these contributions lies in the way each model constructs the
list of neighboring nodes, i.e. the context function. There are various ways to define a
sequence of nodes based on a graph structure. (Perozzi et al., 2014; Cao et al., 2015) both
use a random walk based approach to generate sequences of nodes. Concerning (Tang
et al., 2015), the main difference with (Mikolov et al., 2013) is that the size of the context
window is variable depending on the considered node. To define a sequence of nodes, they
randomly sort the neighbors of the considered node. Furthermore, in the case of weighted
graphs, they assume that the joint probability of two nodes depends on the corresponding
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weight. Thus, they weight the conditional probability loss of two nodes accordingly to the
edge weight. The objective function maximized by their model is then:∑

(i,j)∈E

wij log p(xj |xi) (2.3)

where E is the set of edges of the graph and wij the weight of the (directed) edge (i, j). The
conditional probability of neighboring nodes is, as in (Mikolov et al., 2013), modeled as a
function of the inner product of their representations.

Similarly, (Grover et al., 2016) proposed an unsupervised learning model that maxi-
mizes the likelihood of the network neighborhood (context) knowing a node (target). In
practice, this neighborhood is defined through a random walk which can, for example, take
into account homophily.

(Tang et al., 2015) have shown on various tasks and datasets that their model was the
best competitor over different unsupervised models, including (Perozzi et al., 2014). It is
thus used as our unsupervised baseline for the classification tasks.

2.3.2 Supervised and Semi-Supervised Models

Learning Nodes and Relationship Representations in Knowledge Bases

In the context of relational data some graphs distinguish different types of nodes and re-
lations (Chapter 1). For example, in knowledge bases (KB), different types of entities are
linked together with different types of relationships. A concrete example of such knowl-
edge base is the Google Knowledge Graph that had, in 2016, more than 70 billions facts and
relations about people, places, things.

When multiple types of relations are present, we need more complex models than the
simple unsupervised models presented above.

Here we describe a class of supervised models that learn directly the representations
without input features. This class of models uses geometric constraints, between two node
representations, that depend on the relation type.

Most of these works are concerned with modeling knowledge bases. Information is then
provided under the form of triplets (subject (s), relation (r), object(o)). The goal is to learn
representations for items (s and o) and relations (r) so as to maximize some loss function
(e.g. triplet likelihood). This topic has motivated a series of works (Bordes et al., 2013;
Nickel et al., 2011; Bordes et al., 2011; Jenatton et al., 2012; Socher et al., 2013; Socher et al.,
2013; Bordes et al., 2014). The main difference between all these approaches lies in how they
model the relations between the (s, r, o) elements, and how they calculate the score associ-
ated to a triplet (s, r, o). In these models, representations interact with each other through
different types of transformations. In the following we describe some representative models
of this class. We differentiate them based on which transformation (of the representations)
they use: translation, linear or bilinear.

Translation We first present the model introduced in (Bordes et al., 2013), namely TransE,
which is a simple but representative example of how these models work.

For each node xs and for each type of relation r, the model learns latent representations,
respectively zs and zr, both inRd. They model relations as a translation in the latent space.



2.3. Learning Deterministic Representations 23

Thus, if there is a directed relation of type r between xs and xo (denoted xs
r→ xo) the vector

zs + zr should be close to zo in the latent space.
The constraint on the latent space could be written as: if xs and xo are linked through

the relation r, zs + zr ≈ zo, and zs + zr should be far away from zo otherwise. The idea
of this model was somehow inspired by the interesting property of representations (coinci-
dentally) found in (Mikolov et al., 2013), where, in the example we give in Section 2.3.1, the
relation "capital of" was represented by the model as a translation in the embedding space.

To learn such representations, (Bordes et al., 2013) minimize a margin-based ranking
loss over the training set:

LTransE =
∑

(s,o,r)∈Er

∑
(k,l,r)∈Erneg

max(0, 1 + ||zs + zr − zo||2 − ||zk + zr − zl||2) (2.4)

where Er represents the set of edges for the relation type r and Erneg corresponds to the set
of edges inEr where the origin node or the destination node of the relation was changed by
a random node of the graph. Here, the score of an edge xs

r→ xo is modeled as S(s, r, o) =
||zs + zr − zo||2, but other models have been proposed using different constraints.

Linear Transformation (Nickel et al., 2011) represent the graph as a 3D tensor where each
slice represents a given relationship. They then use tensor (as a matter of fact, matrix) fac-
torization to predict new relations. With X being a tensor such as Xsro = 1 if the relation
(s, r, o) exists and zero otherwise. They factorize each slice Xr as Xr ≈ ARrA

>, where A is
an n×m matrix and Rr is an m×m matrix modeling the interactions between the elements
according to the relation r.

(Bordes et al., 2011) represent each relationship r with two matrices one for outgoing
edges Rr1 and the other for incoming ones Rr2 . The score of the triplet used in this model
is:

S(s, r, o) = ||Rr1zs −Rr2zo|| (2.5)

(Jenatton et al., 2012) proposed to represent nodes as vectors (z) and relations as matrices
(R). They learn the representations of nodes and relations using probabilistic models. They
then compute the probability of a triplet through a dot product.

S(s, r, o) = σ(< zs, Rrzo >) (2.6)

At last, (Bordes et al., 2014) introduced two models where nodes and relations are rep-
resented in the same latent space but where relations are modeled as tensors instead of
translations. In both models, nodes (zs, zo) and relations (zr) are represented in Rd. The
first variant they propose for calculating the score of a triplet uses a linear transformation.
Giving the representations (zs, zo and zr), the score of the triplet is:

Slinear(s, r, o) = −(W1zr +W2zs + bs)
>(W3zr +W4zo + bo) (2.7)
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where W• are matrices.

Bilinear Transformation In the second model introduced in (Bordes et al., 2014) nodes
(zs, zo) and relations (zr) are also represented in Rd, but they use for calculating the score
of a triplet a bilinear transformation. Giving the representations (zs, zo and zr), the score of
the triplet is:

Sbilinear(s, r, o) = −((W1 × zr)zs + bs)
>((W2 × zr)Eo + bo) (2.8)

whereW• are tensors of dimension 3 and× denotes the n-mode vector-tensor product along
the 3rd mode (see (Kolda et al., 2009) for more details).

In (Socher et al., 2013), they also use a bilinear model where they compute the score of a
triplet (s, r, o) by:

S(s, r, o) = u>r f

(
z>s Wrzo + Vr

[
zs
zo

]
+ br

)
(2.9)

where Wr is a tensor of dimension k, br and ur are in Rd all representing the relation r.

In practice there is no best model among the ones presented here, since the performances
of these models depends on the KB and the task we evaluate the models on.

In this thesis, we proposed models that learn nodes and differentiate relationships based
on their type.

All the previous presented learned representations can be used as inputs to learn, for
example, a classifier. As seen previously, another way to learn classifier or predictors is to
use directly the labels when learning the representations. This is what we discuss in the
next section focusing on transductive approaches.

From Unlabeled to Labeled Data in Classification

For graphs, supervised learning models learn representations and classifiers at the same
time. Compared with the unsupervised works presented in Section 2.3.1 or the supervised
ones on KB presented in Section 2.3.2, the classification task has some specificities. For
example, even if labels can be seen as a new type of node (with each nodes linked to its
corresponding labels), the node-label relation is very particular and handling them sepa-
rately in the model performs better. That is why the node-label relation needs to be treated
differently in the loss function.

Furthermore, learning a classifier at the same time as the node representation brings in-
formation to the learned representation, and makes a huge difference on the learned vector
latent space. In this section, we review such graph transductive models.

(Jacob et al., 2014) introduced a supervised model for classification in the context of
heterogeneous graphs. The idea developed in this work is to learn, along with classifiers, a
latent representation for each node, whatever their type is, into the same latent space.
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To do so, they minimize the following objective function2:∑
i

max(0, 1− yizc · zi) +
∑

(i,j)∈E

||zi − zj ||2 (2.10)

where yi ∈ −1,+1 is the label of node xi, zi and zj are respectively the representations of
xi and xj , and zc is the vector representing the linear classifier. Concerning unsupervised
models or models with no labeled data, as said previously, one way to consider labels dur-
ing the training phase is to see them as nodes and introduce a new relationship "is labeled"
denoted r`.

Let us take the example of the TransE model (Bordes et al., 2013), introduced in the
previous section (Equation 2.4), where they test their model on the link prediction task.
Transforming it into a supervised model for classification with "labeled" relation rl and
a representation for the classifier zc, without negative sampling and supposing only null
translations, its loss function becomes3:

LTransE =
∑

(i,yi,r`)∈Er`
max(0, 1 + yi||zi − zc||2) +

∑
(i,j,r)∈Er,r 6=r`

||zi − zj ||2

=
∑

(i,yi,r`)∈Er`
max(0, α− yizi · zc) +

∑
(i,j,r)∈Er,r 6=r`

||zi − zj ||2
(2.11)

where α is a constant. This loss is quite close to the supervised model introduced in (Jacob
et al., 2014).

In the supervised version of (Bordes et al., 2013) for classification, the modeling omits
the major terms and parameters needed to perform well on the classification task such as a
parametrized classifier f . As seen in (Jacob et al., 2014), processing differently the "labeled"
relationship improves a lot the performances.

Our first contribution (Chapter 4) is based on (Jacob et al., 2014).

2.3.3 Other Applications of Representation Learning

There exists several supervised applications of representation learning for relational data
in domains such as information diffusion (Bourigault et al., 2014), recommendation (Chen
et al., 2012b), social network analysis (Vu et al., 2015; Zheng et al., 2015).

For example, (Bourigault et al., 2014) propose a model to predict how information
spreads into a network. It learns latent representations of users, and models the information
diffusion process in the latent space inspired by the heat equation. These representations
are then used to predict, given a source of information, which users will be infected by some
content and in which order.

In (Chen et al., 2012b), they learn a latent representation of each song. They model
the probability of a play-list as the product of the conditional probabilities of the succes-
sive songs. They learn their representations by maximizing the likelihood of these Markov
chains. The conditional probabilities are calculated with a soft-max function depending on
the distance between the two representations.

2Without loss of generality we consider here the case of binary classification.
3We have normalized vectors to simplify the equation.
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2.4 Capturing uncertainties in representations

The objective of the approaches exposed in Section 2.3 is to map input instances (such as im-
ages, relations, words or nodes in a graph) to vectors representations in a low-dimensional
space. The goal is that the geometry of this low-dimensional latent space be smooth with
respect to some measure of similarity in the target domain. That is, objects with similar
properties (e.g. class) should be mapped to nearby points in the embedded space.

While this approach is highly successful, representing instances as vectors in the latent
space carries some important limitations:

• Vector representations do not naturally express uncertainty about the learned repre-
sentations;

• We cannot model inclusion, or entailment by comparing vector representations (usu-
ally done by inner products or Euclidean distance which are symmetric).

In this section we describe different approaches and models able to modeling repre-
sentations uncertainty through the learning of (latent) densities. There is a long line of
previous work in mapping entities to probability distributions, but few represent entities
directly as density distributions in a latent function space. Density representations allow
to map entities not only to vectors but to regions in space, modeling uncertainty, inclusion,
and entailment, as well as providing a rich geometry of the latent space. Using this new
framework might solve the previous issues listed above.

In the following, we give a state of the art of models using densities to represent entities.
We firstly give a short view of Bayesian approaches (variational Bayes inference) which can
be seen as learning density representations. We then focus on Gaussian embeddings, in
which both means and variances are directly learned from specific loss function over the
densities.

Bayesian Approaches

Concerning the Bayesian framework, a way to learn latent distributions is to find the poste-
rior marginal distributions over all individual latent variables. We suppose that each entity
i is modeled by a random variable Zi in Rd. The goal is to infer P ({Zi}i|X), where X are
the observations.

In the context of relational data, this type of approach has been used in task such as
classification (Airoldi et al., 2005; Xiang et al., 2013), data collaborative completion (Kim
et al., 2014) or collaborative filtering (Stern et al., 2009). (Airoldi et al., 2005) and (Xiang et
al., 2013) address collective classification by inferring the posterior distribution of the class
degrees of membership for each node. (Kim et al., 2014) propose a graphical model for
binomial mixture for collaborative completion than handle non-random missing data. For
collaborative filtering (task studied in Chapter 7), (Stern et al., 2009) proposed an inference
model and approximate the posterior distribution by a product of Gaussian distributions.
Given a set of rating tuples (user, item, rating), they learn the approximate posterior distri-
butions. The optimization is accomplished using variational message passing (Winn et al.,
2005). Thus, they achieve to learn posteriors mean and covariance of each latent represen-
tations, which they use to approximate the distribution as a normal. They then use these
learned representations to predict the value of an item for a user.
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In the most interesting models, algorithms performing exact inference are computation-
ally intractable for all but the simplest models. Variational Bayesian methods (in the context
of Bayesian networks) used in variational inference (Jordan et al., 1999) is one way to bypass
this limitation.

A first approach is using Monte Carlo Markov Chain (MCMC) sampling from the poste-
rior distribution and then train a (simpler and tractable) model on those samples. However,
MCMC methods are often low to converge and in many cases variational methods are pre-
ferred since they do not require any sampling, and so are usually faster.

Variational inference aims at approximating the (intractable) posterior distribution, de-
noted P , by a (simpler and tractable, e.g. making independence assumptions between vari-
ables) variational one, denoted Q, i.e. P (Z|X) ≈ Q(Z|X), where Z is the set of latent
variables and X the observations. We omit the notational dependence of Q on X for clarity.

The principle is then to minimize a measure of similarity between Q and P . One princi-
pled way to do so is by considering the KL-divergence4:

DKL(Q||P ) =
∑
Z

Q(Z|X) log
Q(Z|X)

P (Z|X)
dx

But the expression of the KL-divergence still involves the intractable posterior distribution
P (Z|X), however we can remark that:

log(P (X)) = DKL(Q||P )−
∑
Z

Q(Z|X) log

(
Q(Z|X)

P (Z,X)

)
︸ ︷︷ ︸

L(Q)

(2.12)

using the fact that P (Z|X) = P (Z,X)
P (X) .

Since P (X) is constant w.r.t. Q, minimizing the KL-divergence is equivalent to maximiz-
ing L(Q). Different variational families have been studied to complete this optimization.
We focus here on the mean-field variational family (Blei et al., 2017) that makes the sim-
plifying assumption of mutual independence between random variables Zi conditioned
on X . We factorize Q(Z|X) as Q(Z|X) =

∏
iQi(Zi|X), allowing the computation to be-

come tractable. As in Expectation Maximization (EM) algorithms, variational inference al-
gorithms find locally optimal parameters through an alternating scheme, based on mutually
dependent equations that cannot be solved analytically.

Direct Approaches

Recently, instead of using Bayesian approaches, several works have proposed to learn these
densities directly. The main idea is to derive a cost function which is directly based on the
densities, and to train discriminatively instead of estimating posteriors.

All the approaches use Gaussian embeddings since they are well known and simple
distributions. They can represent uncertainty, and KL-divergence between Gaussian dis-
tributions is straightforward to calculate. The KL-divergence is naturally asymmetric, and
has a simple geometric interpretation as an inclusion between families of ellipses.

4The KL divergence is an information-theoretic measure of proximity between two densities.
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FIGURE 2.2: Example of a low DKL(Zj ||Zi).

We begin by describing this new framework, used in three of our contributions, namely
Gaussian representation learning. Introduced in (Vilnis et al., 2015), it consists in learning
representations in the space of Gaussian distributions. We denote Z ∼ N (µ,Σ) a Gaussian
representation characterized by its mean µ and its covariance matrix Σ.

The work presented in (Vilnis et al., 2015) has the same goal as (Mikolov et al., 2013),
i.e. learning unsupervised representations of words using their context. To learn Gaussian
representations (Vilnis et al., 2015) proposed a ranking-based loss, following (Bordes et al.,
2013). They chose a max-margin ranking objective , which pushes the energy of positive
pairs bellow negative ones by a margin:

L(i, p, n) = max(0, 1− E(Zi, Zp) + E(Zi, Zn)) (2.13)

where E(Zi, Zj) is the energy associated to the Gaussian representations of words i and j,
Zp is a Gaussian representation of a positive context for word i and Zn a Gaussian repre-
sentation of a negative one.

They proposed two functional forms for the energy function E, one symmetric and one
asymmetric. The symmetric form did not perform as well, and is less interesting since it
does not express the fact that the context of a word should contain the word representa-
tion. To circumvent this limitation, they proposed to use the Kullback-Leibler divergence,
denoted KL-divergence or DKL, which is naturally asymmetric:

−E(Zi, Zj)
def
= DKL(Zj ||Zi) =

∫
x∈R
N (x;µj ,Σj) log

N (x;µj ,Σj)

N (x;µi,Σi)
dx

=
1

2

(
tr(Σ−1

i Σj) + (µi − µj)TΣ−1
i (µi − µj)− d− log

det(Σj)

det(Σi)

) (2.14)

KL-divergence is a natural energy function for modeling entailment between concepts.
A low KL-divergence DKL(Zj ||Zi) indicates that we can encode Zj easily as Zi, implying
that Zj entails Zi. This can be more intuitively visualized and interpreted as a soft form of
inclusion between the Gaussian distributions of the two Gaussian representations – if there
is a low KL-divergence, then most of the mass of Zj lies inside Zi as shown in Figure 2.2.
Figure 2.3 shows what kind of Gaussian representations are learned by the model proposed
by (Vilnis et al., 2015).
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FIGURE 2.3: Learned Gaussian representations with diagonal variances, from
(Vilnis et al., 2015). The first letter of each word indicating the position of its

mean.

Besides its interesting properties, gradients with respect to the means and covariance
matrices for this energy function can be computed in closed form:

∂E(Zi, Zj)

∂µi
= −∂E(Zi, Zj)

∂µj
= −∆′ij

∂E(Zi, Zj)

∂Σi
=

1

2
(Σ−1

i ΣjΣ
−1
i + ∆′ij∆

′>
ij − Σ−1

i )

∂E(Zi, Zj)

∂Σj
=

1

2
(Σ−1

j − Σ−1
i )

(2.15)

where ∆′ij = Σ−1
i (µi−µj). This allows (Vilnis et al., 2015) to learn the Gaussian representa-

tions by gradient descent.
(Vilnis et al., 2015) has inspired several recent work using the same framework on differ-

ent tasks and datasets such as (He et al., 2015) for knowledge graphs datasets, (Mukherjee
et al., 2016) for image classification and (Bojchevski et al., 2017) for attributed graphs with
an inductive unsupervised framework. This work has also inspired three of our contribu-
tions on graph node classification (Chapter 5), forecasting relational time series (Chapter 6)
and collaborative filtering (Chapter 7).

Figure 2.4 shows a visualization of Gaussian representations learned by the unsuper-
vised model presented in (Bojchevski et al., 2017) for the Cora dataset5. Colors indicates the
class label (not used during training).

2.5 Conclusion

In this chapter we have presented a state of the art concerning representation learning in
the context of relational data.

5The Cora dataset consists of scientific publications classified into one of seven classes together with a cita-
tion network.
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FIGURE 2.4: Learned two dimensional Gaussian representations of nodes on
the Cora dataset from (Bojchevski et al., 2017). Color indicates the class label.
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We have first presented general notions and concepts pertaining to supervision and
transductive learning in order to position the different works presented in this chapter.

We have then described approaches that learn a deterministic representation for rela-
tional data, by differentiating unsupervised and (semi-)supervised models. We empha-
sized the proximity between some supervised and unsupervised models for different tasks.
In this thesis, we apply this approach for the classification task (Chapter 4).

We then focused on works that learn distributions over latent variables, instead of de-
terministic representations, to capture uncertainty in representations. We have presented
two ways to learn uncertain representations. The first is Bayesian methods that approxi-
mate the posterior distribution using variational techniques. The second is a more direct
approach since it directly deals with Gaussian representations in the latent space, and use a
discriminative approach to learn Gaussian representations. With this second approach we
loose the probabilistic modeling, but gain in computation complexity and performances.
We followed this path in this thesis, on three different tasks, namely classification (Chapter
5), forecasting (Chapter 6) and ranking (Chapter 7).
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Part I

Learning Deterministic
Representations and Application to

Classification
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In this first part, we tackle classification of nodes in a graph using deterministic vector
representations learning.

We first present a state of the art concerning graph node classification for homogeneous
and heterogeneous graphs (Chapter 3). In particular, we start by presenting the basis of
transductive classification in graph models in the case of homogeneous graphs.

We then present our first contribution (Chapter 4) tackling the heterogeneous graph
node classification task, using a deterministic representation learning framework.

The goal of this contribution is to propose one of the very first general algorithm for
node classification in heterogeneous graphs. While homogeneous graph classification has
been well explored, heterogeneous graph classification was, and still is, a topic largely un-
explored.
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Chapter 3

State of the Art: Graph Node
Classification

Abstract
In this chapter we present a state of the art concerning graph node classification. We give an
overview of the different techniques used in homogeneous and heterogeneous graph node
classification to show the evolution of such techniques. We present the baseline model of
transductive homogeneous graph node classification which inspired representation learn-
ing ones. We then describe state of the art models, including the ones used as baselines in
our contributions. A lot of those works are specific to homogeneous graphs, whereas our
contributions deal with heterogeneous ones.
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3.1 Introduction

Social networks (Facebook, Google+, ...) and social media (Twitter, LastFM, ...) are col-
lecting a large amount of data. There exists several types of graphs from different social
networks or knowledge bases. Some of them are homogeneous, i.e. composed of nodes of
the same type (e.g. CoRA, ...), others are heterogeneous, i.e. composed of different types of
nodes (e.g. LibraryThing, ...). Moreover those graphs can be either mono-labeled (one label
per node) or multi-labeled (more than one label per node). At last, graphs can have only
one type of relation/edge or different types of relations (see Section 1.1.2).

The problem of graph node classification emerged from several application domains like
web data mining or biology. Initially, work has mainly focused on homogeneous graphs
where nodes and relations are homogeneous – only one type of node and relation. The
analysis of more complex data like those coming from social sources or knowledge bases
has motivated a growing interest in more complex graphs where nodes may be of different
types, share different and sometimes multiple relations. Heterogeneous graph classification
is a recent trend and is still an open problem.
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FIGURE 3.1: Representation of the LastFM network with users, tracks, al-
bums and artists. The different relations are represented with different types

of lines.

In this part, we focus more particularly on graph node classification for heterogeneous
graphs where different types of nodes (users, authors, films, ...) interact through different
types of relations (friendship, like, authorship, ...). For example, the LastFM social network
used in our experiments (Figure 3.1) links users, tracks, artists and albums via seven differ-
ent types of relations such as friendship, most listened tracks, authorship, etc.

We review below the main directions for graph nodes classification on both homoge-
neous or heterogeneous graphs.

3.2 Graph Node Classification

The growing importance of relational data has motivated several works on homogeneous
graph nodes classification and ranking (Pimplikar et al., 2014; Namata et al., 2016; Denoyer
et al., 2010; Duan et al., 2012; Getoor et al., 2005; Wang et al., 2013; Monner et al., 2013;
Gu et al., 2013; Sacca et al., 2013; Belmouhcine et al., 2015). For example, web page classi-
fication may be formulated as a homogeneous graph node classification task where nodes
are web pages, edges between web pages are hyperlinks and node labels are the web page
topics. The problem has been formulated using different frameworks leading to three main
families of methods (Bengio et al., 2006; Bhagat et al., 2011; Sen et al., 2008) (i) iterative clas-
sification algorithms (ICA) (ii) random walk based methods and (iii) semi-supervised and
transductive graph regularized models.

We first present a simple baseline model of transductive homogeneous graph node clas-
sification that serves as a basis to other models before presenting the state of the art.
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3.2.1 Simple Transductive Model for Graph Node Classification

We describe in this section a transductive model (and its inductive counterpart) for graph
node classification outside the representation learning framework. This model, even if it
does not learns representation, has a similar approach as our first two contributions. Trans-
ductive learning in graph models often uses a loss function with the following form (Zhou
et al., 2003; Zhou et al., 2005):

(ŷ1, ŷ2, ..., ŷm) = argmin
ỹ1,ỹ2,...,ỹm

m∑
i=1

∆(ỹi, yi) + λ
∑

(i,j)∈E

wij ||ỹi − ỹj ||2 (3.1)

where ∆ corresponds to the cost of predicting scores ỹi ∈ Rm instead of true categories yi
for labeled nodes (m possible labels) and ||ỹi − ỹj ||2 is a regularization term that encour-
ages connected nodes to have the same score. λ is an hyper-parameter that corresponds
to the smoothness of the solution, i.e. how close the distribution over labels should be for
two connected nodes, one wants to obtain. Many variations of this formulation have been
proposed with different prediction and regularization losses.

As described in Chapters 4 and 5, we use a similar loss function in our contributions but
instead of learning scores we learn latent representations.

When input features are available, we can use an inductive version of the previous
model by learning a parametric function φθ. The loss function become:

θ̂ = argmin
θ

m∑
i=1

∆(φθ(xi), yi) + λ
∑

(i,j)∈E

wij ||φθ(xi)− φθ(xj)||2 (3.2)

where θ are the learned parameters of the function φθ.
As explained in Section 2.2.1, the inductive form of the model learns a classification

function over the entire space of input features, whereas the transductive form focuses on
unlabeled nodes only. Thus, if we want to label an unseen node we need to run the algo-
rithm again considering the transductive model, whereas we can use the learn parametric
function in the case of the inductive one.

3.2.2 Other Graph Node Classification Works

Iterative Classification Algorithms Iterative classification algorithms (ICA) extend the
classical inductive classification schemes to relational data. They consist in iteratively build-
ing a local classifier at each node using as inputs both node characteristics and statistics on
the node neighbors current labels. For example (Neville et al., 2000) and (Lu et al., 2003) re-
spectively use Bayesian classifiers and logistic regression in such a scheme where statistics
on the neighbors are iteratively updated. During inference, local node classification is then
repeatedly performed until convergence. Several variations and extensions of these ideas
have been proposed. (Peters et al., 2010) develop an extension of (Jensen et al., 2004) for
multi-labeled classification problems on multi-graphs. When iteratively learning the classi-
fier, using only existing edges can be somehow restrictive, i.e. in some cases (e.g. sparsely
labeled networks), adding more information than edges and labels can improve the results.
To do so, Gallagher et al. proposed an iterative model (Gallagher et al., 2008) that adds
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new links to the existing graph using random walks. Another important information that
can be used in addition to existing edges is the label distribution: iterative models were
introduced for (sparsely) labeled networks, which forces the distribution of the predicted
labels to match the distribution of the observed data with a maximum entropy constraint
(Pfeiffer III et al., 2015) or a regularization (Mann et al., 2010) based on the KL-divergence
between the expected and the empirical label distribution (McDowell et al., 2012). At last,
one common way to improve the input graph in iterative classification is to weight the ex-
isting links. For example, in (Wang et al., 2013), Wang et al. proposed a weighting scheme
based on social context features by capturing the node’s intrinsic likelihood of belonging to
each class. The weights then serve as a prior for each class when aggregating the neighbors’
class labels in the collective inference procedure.

Random Walks Random walks have been used for graph nodes classification: labels are
propagated from labeled to unlabeled nodes using the graph structure – this is thus one
instance of the transductive setting. For homogeneous graphs, Zhu et al. proposed Homo-
geneous Label Propagation (HLP) (Zhu et al., 2002) which iterates until convergence the walk
Y ← T · Y where Y is the matrix of predicted labels and T characterizes the transition ma-
trix of the graph. This branch of research has motivated a large number of contributions.
Recent contributions (Devooght et al., 2014; Zhou et al., 2014; Nandanwar et al., 2016) have
focused on how the random walk could take into consideration more specific information,
such as graph communities (Devooght et al., 2014), label distribution, etc. For instance,
(Zhou et al., 2014) recently proposed a model for heterogeneous graphs which relies on
manually defined activity graphs designed by an expert for the classification task at hand.
The transition matrix used in a random walk then incorporates this knowledge. An inter-
esting model for heterogeneous classification is Graffiti (Angelova et al., 2012). It is based
on two intertwined random walks. The first one operates between nodes of the same type
which are directly connected in the graph while the other one is defined between nodes of
the same type which are connected through a node from another type. Although the model
only considers 2 hop jumps in the graphs for incorporating heterogeneous information, it
is very competitive and according to our experiments with different models represents the
state of the art in the domain. It is one of the baselines used in our experiments.

Transductive semi-supervised models The transductive semi-supervised models learn
an embedding for each node (either in the training or testing set) to predict the class labels
using learned classifiers. Our model is part of this framework. (Yang et al., 2016) have re-
cently proposed a model that learns two different representations for a node, one from some
features associated to the node, and another one from the graph alone, in an unsupervised
transductive way, based on (Perozzi et al., 2014). The latter learns node representations us-
ing only the context, like the SkipGram (Mikolov et al., 2013) model, but instead of words
the context is here composed of the neighboring nodes. This can be applied to label predic-
tion and the former uses the label when learning the representations.
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The most active research direction for graph nodes classification in the machine learning
community is probably semi-supervised learning based on transductive regularized mod-
els (Zhou et al., 2005; Belkin et al., 2006; Zhou et al., 2003; Pimplikar et al., 2014). These mod-
els optimize an objective function that encourages connected nodes to have the same labels.
The loss usually incorporates a classification term that exploits available label information
and a propagation term that allows labels to be propagated from labeled to unlabeled nodes
in the graph under the hypothesis that neighbors should have similar labels. Contrary to
iterative classification algorithms, a latent representation is learned for each node and no
input vector is mandatory. As for the random walk models, these methods are intrinsically
designed for homogeneous graphs and do not naturally extend to heterogeneous ones. (Ye
et al., 2015) tackled the homogeneous graph node classification task when multi-relational
graphs are available (i.e. when there exists different types of relations). They assume that
relations may have varying levels of informativeness and they propose a weighting scheme
to filter out irrelevant types of relations. To do so, they minimize their objective function
with the different graphs associated with their level of informativeness (evolving through
the learning process) to predict the labels of unlabeled nodes. Models for heterogeneous
graphs have been proposed in the case where the label set is the same for all node types
(Ji et al., 2010; Hwang et al., 2010). In that case, simply ignoring the node type allows to
use frameworks developed for the homogeneous case (Hwang et al., 2010). (Ji et al., 2010)
have nevertheless made a step towards heterogeneous networks by introducing weights on
relations between node types and thus differentiating in a way the different types of nodes.

3.3 Conclusion

In this chapter, we presented a state of the art concerning the classification task in the con-
text of relational data. We introduced a variety of models tackling the graph node classifica-
tion task. We have described models for both homogeneous and heterogeneous graphs, and
we have shown how important it was to have specific models for heterogeneous graphs. We
have presented a simple generic model in its transductive and inductive form, which could
serve as a basis for many transductive classification algorithms. We highlighted how few
models were developed specifically for heterogeneous graphs. Chapters 4 and 5 will em-
phasize the necessity of taking into account the heterogeneity of the graph and will show
its impact in term of results.
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Chapter 4

Learning Deterministic
Representations for Classification

Abstract
In this chapter we present our first contribution. We apply the representation learning
framework to the task of node classification in heterogeneous networks. Here the nodes
may be of different types, each type with its own set of labels, and relations between nodes
may also be of different types. A typical example is provided by social networks where the
node types are e.g. users, content, groups, etc. and relations may be friendship, like, author-
ship, etc. Learning and performing inference on such heterogeneous networks is a recent
task requiring new models and algorithms. We propose a model, Labeling Heterogeneous
Network (LaHNet), a transductive approach to classification that learns to project the dif-
ferent types of nodes into a common latent space. This embedding is learned so as to reflect
different characteristics of the problem such as the correlation between labels of nodes with
different types and the graph topology. The application focus is on social graphs but the
algorithm is general and could be used for other domains as well. The model is evaluated
on five datasets representative of different instances of social data.
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4.1 Introduction

We consider here the generic task of multilabel node classification in the general case of
heterogeneous graphs with multiple node and relation types. Graph node classification
has been investigated in machine learning since the early 2000. Most work until now has
focused on homogeneous graphs where nodes are of the same type, share the same label
set, and relations reflect a unique type of dependency.
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The main assumption in most homogeneous graph classification approaches is that two
connected nodes tend to have the same labels, so that graph labeling can be performed using
some form of label propagation from labeled nodes to their unlabeled neighbors (Bhagat et
al., 2011; Abernethy et al., 2008; Zhou et al., 2003). Work in this domain can be grouped in
two main families : transduction/diffusion models and induction (feature-based) models.
Transduction models use all the nodes (labeled and unlabeled) to predict the labels of the
entire graph, in contrast to induction models, where classifiers are trained only on labeled
nodes.

Extending the ideas used for homogeneous graphs to heterogeneous ones is not trivial.
For example in transductive approaches, the label propagation paradigm becomes irrele-
vant when neighbors are of different types and hence have different sets of labels. Different
attempts have tried to reformulate the problem so as to use already known homogeneous
methods. The simplest idea developed by several authors is to project the heterogeneous
graph onto a family of homogeneous ones (one node type, one relation type) and then
perform classification independently for each projection. This basic approach suffers from
several drawbacks i) defining semantically meaningful projections is problem specific, ii)
the number of projections could rapidly become extremely large, iii) as shown in our ex-
periments, correlations between different types of nodes may play an important role in the
labeling task, and are lost after the projection. Another simple alternative consists in using
restrictive assumptions so that homogeneous label propagation can be used. (Ji et al., 2010;
Hwang et al., 2010) for example consider heterogeneous graphs where the label set is the
same for all node types. Only some works have tackled the general heterogeneous node
labeling problem with new algorithms, such as (Angelova et al., 2012) who defined new
forms of random walks on heterogeneous graphs specifically adapted to this problem.

While all the above methods have been designed for operating directly on the discrete
graph structure, we follow here a different path by using a representation learning approach
(Bengio et al., 2013). We propose to map the classification problem onto a continuous space
of latent node representations. This representation space is common to all node types thus
allowing to handle heterogeneity. Node embedding in this space reflects both the classifi-
cation objective for each type of node and its associated label set, and the heterogeneous
relational structure of the graph. Classification is then performed directly on the latent
space. This idea has been introduced in a preliminary work (Jacob et al., 2014). The current
contribution extends this work in several ways: we introduce prior parameters based on
the graph characteristics, we enrich the model with hyperparameters trained to weight the
relative importance of the different relation types and propose an alternate optimization
scheme for learning the weights, and we perform extensive experimental evaluations on
social datasets representative of different situations .

Summarizing, our contributions are the following:

• We address the heterogeneous graph multi-label classification problem as a repre-
sentation learning problem in a continuous latent space. We consider a transductive
approach to graph node classification.

• We propose new algorithms for learning this representation space able to handle het-
erogeneity for both nodes and relations.

• We develop an experimental analysis of the algorithm behavior.
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• We perform an extensive experimentation with five datasets, representative of differ-
ent experimental situations and a comparison with baselines, including state of the
art models.

• We study how much our hypotheses hold on the different datasets.

4.2 Learning Representation for Graph Node Classification

4.2.1 Model

Our model, Labeling Heterogeneous Network (LaHNet), has been designed for transduc-
tive node classification in heterogeneous graphs. The objective is to learn node represen-
tations so that each type of node can be correctly classified while exploiting the correla-
tions between the labels of different node types. These interdependencies between nodes
of different types play an important role in several classification problems and none of the
current methods is able to handle them. The variables to be learned are: a latent represen-
tation zi ∈ Rd for each node xi, relation weights wr for each relation type r and classifiers
parameters θt, where t indicates the node type.

Notation Meaning
Z Dimension of the latent space
zi Latent representation (in RZ) of node xi
wr Weight of the relation type r
ψi Prior parameter reflecting the relative importance of node xi
φij Prior parameter reflecting the relative importance of relation

between i and j
Lc Set of labeled nodes used for learning the classifiers fθt and

the labeled node representations z
Lw Set of labeled nodes used to learn the relation weights wr

TABLE 4.1: Model notations

Loss Function

The loss function takes the general form of a transductive regularized loss (Ji et al., 2010;
Zhou et al., 2003), with a classification term LC and a regularization term LG :

L(z, θ) =
∑
i∈Lc

ψi∆C(fθti (zi), yi) + λ
∑
i∈N

∑
j∈Ni

wrijφij∆G(zi, zj) = LC + λLG (4.1)

where ∆C is a classification loss and ∆G is a graph regularization loss; fθt(.) is a parametric
classifier for nodes of type t – there is one such classifier for each node type; φij , ψi and
wrij > 0 are real parameters that will be discussed later (Section 4.2.2); λ ∈ R is a regular-
ization weight. Other notations for the model description and parameters are summarized
in Table 4.1.

In a classical transductive homogeneous graph formulation (Ji et al., 2010; Zhou et al.,
2003; Abernethy et al., 2008; Zhou et al., 2003; Zhou et al., 2005), the zi are labels and the
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regularization term operates as a diffusion equation for propagating labels from labeled
nodes to their unlabeled neighbors. Here, the zis have a different role. They are latent
node representations in Rd. The second term in equation 4.1 thus forces neighbors to have
close latent representations z whatever their type is. This allows one to exploit correlations
between labels of nodes with different types and to handle the classification problem in
heterogeneous graphs.

The terms LC and LG are optimized simultaneously w.r.t. parameters zi for each node
xi and w.r.t. θt for each node type t.

Let us now detail the components of the loss in equation 4.1.

Classifier

The mapping onto the latent space is learned so that the labels for each type of node can be
predicted from the latent representations. For that, we use a type specific classifier denoted
by fθt for node type t. This classification function takes as input a node representation zi
and outputs a vector of classification scores fθti (zi) for the classes associated with the node
type.

The parameters θt of the classifier are learned by minimizing the first term in equation
(4.1) over the labeled dataset Lc. In this first term, fθti (zi) and yi are respectively the clas-
sification score and target vector associated to xi. ∆C(fθti (zi), yi) is the loss of predicting
labels fθti (zi) for the target yi, and ψi represents a prior node relative importance (see Sec-
tion 4.2.2).

In the experiments, we used a hinge-loss function for ∆C :

∆C(fθt(z), y) =

#Yt∑
k=1

max(0; 1− ykfkθt(z)) (4.2)

where yk is equal to 1 if x belongs to category k and−1 otherwise, and fkθt(z) is the predicted
score of category k, i.e. the k-th component of the vector fθt(z).

Transductive graph model

The second term in equation 4.1 exploits the proximity of the nodes in the graph. We sup-
pose that nodes linked in the graph will tend to have similar representations. Nodes of the
same type which are close one to the other in the graph, but separated by nodes from other
types, will also have similar representations and will tend to have similar labels.

We used a L2 term ∆G(zi, zj) = ||zi − zj ||2 for this loss:

LG =
∑
i∈N

∑
j∈Ni

wrijφij ||zi − zj ||2 (4.3)

where Ni denotes the graph neighbors of node i, wrij ∈ R+ is a learned weight for the
relation of type rij (Section 4.2.2), and φij ∈ R represents a prior on the relative importance
of the relation between xi and xj (Section 4.2.2).
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4.2.2 Prior Parameters and Learning Algorithms

The loss function (Equation 4.1) makes use of three graph related parameters: φij , ψi and
wr. Introducing these three families of parameters allowed us to significantly improve the
model performance. φij and ψi are priors taking into account local graph characteristics and
wrs are learned relation weights reflecting the relative importance of the different relation
types for the classification task. The three families of parameters are described below.

Prior Parameters

Let us suppose the φij , the ψi and the wr parameters be set to 1 in loss function (Equation
4.1). When optimizing this loss, all nodes will have an equal importance (term LC) and
similarly, all the edges will have the same importance (termLG). This is not desirable for the
classification task. Central nodes, with a large number of neighbors, have more influence
than others on their neighbors. Wrong decision at these nodes should be over penalized.
This is the role of the coefficient ψi which is associated with node i. Besides node priors,
some relation types between nodes might be important for the classification objective, but
if they are under-represented in the graph, they will be ignored. It is then important to
weight them up. This is the role of the prior coefficient φij . Both weights exploit local
graph information and could be considered as priors based on local graph characteristics,
and we experimented with different values for the two parameters. For ψi, we found that
the following formula behaved well: ψi = 1

R

∑R
r=1

Nr
i

Er , with N r
i the number of neighbors

for relation r and Er the total number of relations of type r in the graph. It is a measure of
centrality of node i. More specifically, it measures the proportion of outgoing edges macro-
averaged over the type of relation. This aims at favoring type specific central nodes. For φij ,
we found that the formulation proposed in (Angelova et al., 2012) was the most efficient,
i.e. φij = 1

RN
rij
j Erij

, with N
rij
j the number of neighbors of j considering only the relation

type rij . It gives a similar importance to all relation types (the Erij coefficient), weighted
locally according to the destination node j (the N rij

j coefficient).

Learned Relation Specific Parameters

The graph regularization coefficients wr are relationship-specific. They reflect the impor-
tance of relation r for the inference task. For example, if inference consists in classifying
an author research domain, then the authorship relation between the author and his pub-
lished papers is probably more important than his affiliation relation. For the model, this
means that authors representations should be close to their papers representations, whereas
no such constraint operates on the affiliation representation. The wr are hyperparameters
which could be learned by grid search and cross-validation. Since there might be several
relation types for heterogeneous graph this is not a relevant option here. We used instead
the framework of continuous optimization of hyperparameters (Bengio, 2000; Luketina et
al., 2016).

This framework has been developed in (Bengio, 2000) for learning regularization hy-
perparameters. Given a regularized loss such as Equation 4.1, hyperparameters are learned
simultaneously to the model parameters by optimizing the unregularized loss on a distinct
training set Lw. Contrarily to grid search which also selects regularization hyperparameters
using an unregularized loss on a validation set, by testing different preset hyperparameters
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values, here parameters and hyperparameters are learned simultaneously and their dynam-
ics are intertwined. There is no formal proof that such procedures converge to an optimal
choice of the hyperparameters, but they offer an approximate solution which performs well
in many cases, see (Luketina et al., 2016) for a discussion. There has been several instances
of this general framework, and we derive below our own version for the specific problem
handled here. Our inference problem is classification, so that we use as a loss function for
hyperparameter training the classification objective denoted LW , defined on Lw, a set of
labeled nodes distinct from the labeled set Lc used in Equation 4.1 (Lw ∩ Lc = ∅).

LW =
1

#Lw

∑
i∈Lw

∆C(fθti (w)(zi(w)), yi) (4.4)

The proposed learning scheme makes use of an alternating optimization algorithm for
learning the parameters {zi}, {θti}, on one side, and the {wrij}, on the other side.

The training algorithm iteratively alternates between (step 1) the optimization of Equa-
tion 4.1 w.r.t. parameters θ and z, the ws being fixed, and (step 2) optimization of Equation
4.4 w.r.t. parameters w. At each iteration of this process, the value of θ and z after step 1,
are dependent of the current ws. This dependency is emphasized in Equation 4.4 by the
notations z(w) and θt(w). Note that the optimization for loss Equation 4.1 is performed on
all the nodes (set Lc for the supervised term and all the labeled and unlabeled nodes for the
regularization term) while the optimization for Equation 4.4 is performed on the labeled
set Lw only. In order to optimize loss Equation 4.4, let us derive a closed form dependency
relation on w for ∂LW

∂w .
Using the chain rule, the derivative of LW (z(w), θ(w),Lw) w.r.t. w is:

∂LW
∂w

=
∂LW
∂θ

∂θ

∂w
+
∂LW
∂z

∂z

∂w
(4.5)

In order to make this computation tractable, we will make two assumptions.

• Step 1 has reached a minimum of L in Equation 4.1. Based on this hypothesis, by
zeroing∇zL on Lw, we can express z ∈ Lw as an explicit function of w:

z?i =

∑R
r=1wr

∑
j:i

r→j
zjφij∑R

r=1wr
∑
j:i

r→j
φij

(4.6)

where j : i
r→ j corresponds to the set of r-neighbors of i.

• The second assumption is technical. We suppose that ∂θ
∂w is negligible compared to ∂z

∂w ,
i.e.

∣∣ ∂θ
∂w

∣∣ � ∣∣ ∂z
∂w

∣∣, and that ∂LW
∂θ and ∂LW

∂z have roughly the same order of magnitude.
This is a reasonable assumption since θ is only indirectly impacted by w, when z
directly depends on the values w (this was confirmed experimentally).

Under this assumption, one can approximate the partial derivative (4.5) as:

∂LW
∂w

≈ ∂LW
∂z

∂z

∂w
(4.7)
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Under these hypothesis, by plugging Equation 4.6 into Equation 4.4 and for r ∈ R the
derivative of the unregularized loss over wr can then be written as:

∂LW
∂wr

≈
∑
i∈Lw

#Yti∑
k=1

ψiyik

∑
r′ 6=r

wr′A
r′,r
i

(
θti,k · Sr′i − θti,k · Sri

)
(∑R

r′=1wr′A
r′,r
i

)2

︸ ︷︷ ︸
Dki,r

(4.8)

with

Sri =

∑
j:i

r→j
zjφij∑

j:i
r→j
φij

Ar
′,r
i =

∑
j:i

r′→j

φij∑
j:i

r→j
φij

∂LW
∂wr

measures the variation of the empirical risk (Equation 4.4) w.r.t wr changes. In
order to develop some intuition on Equation 4.8, let us suppose that all the φ and ψ co-
efficients are equal to 1 (they are all positive anyway). We will consider the inner term
in Equation (4.8), i.e. term Dk

i,r, and more precisely its sign. Without loss of general-
ity, let us consider the case of a target class yki = 1. The sign of Dk

i,r is then determined

by
∑
r′ 6=r

wr′A
r′,r
i

(
θti,k · Sr′i − θti,k · Sri

)
. Since

(
wr′A

r′,r
i

)
is positive the sign depends on

θti,k · (Sr′i − Sri ). In this expression, Sri is the average of the zj vectors for all j r-neighbors
(neighbors according to relation r) of node i and

(
θti,k · Sri

)
is the mean score for class k of

the r-neighbors of node i. Similarly, θti,k ·Sr′i is the mean score for class k of the r′-neighbors
of node xi. The difference θti,k · (Sr′i − Sri ) will be negative, leading to an increase of wr,
if the mean score of the r-neighbors is higher than the mean score of the r′-neighbors. The
same reasoning holds for yki = −1. Said otherwise, the weight of relation r will be increased
if the center of mass of the r-neighbors is better located (w.r.t. the classification task) than
the center of mass of the other neighbors, i.e. if it reinforces the correct classification, and
will be decreased otherwise.

z?i in Equation (4.6) is invariant to a global scaling of wr for r ∈ R leading to an infinity
of possible solutions. In order to avoid numerical problems, we normalize the wr to force a
unique solution. We used the following normalization:

for any node type t,
∑
r:t→•

wr = 1 (4.9)

where r : t → • indicates all the relation types r from a node of type t to any other type of
node •.
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4.2.3 Algorithm

Algorithm 1 describes the alternating optimization scheme for learning the θs, zs and ws.
Step 1: learning θ and z corresponds to lines 1 to 18. One samples a pair of connected

nodes i and j and then makes a gradient update of the parameters for loss Equation 4.1.
A node in Lc appears in the two terms of Equation 4.1. The update w.r.t the first term is
indicated lines 8-9 for node i and 13-14 for node j and consists in successively modifying
the parameters of the classification function θ and of the latent representations zi and zj
so as to minimize the classification loss. For all nodes, be they in Lc or not, the model
updates the parameters w.r.t the graph loss (second term of Equation 4.1) – lines 16-17.
These different steps are repeated up to a fixed number of iterations.

Step 2: Using as training set Lw, one then learns the ws by Gradient Descent on LW . We
compute the derivatives w.r.t. the relations by summing over all the nodes in Lw – line 26 –
according to Equation 4.8. Then we update wr – line 32. Finally, we normalize wr – line 34
– (Equation 4.9). This alternating scheme is iterated for a fixed number of iterations.

For Step 1, we have been using a stochastic gradient. For Step 2, because of normaliza-
tion (Equation 4.9), using a batch gradient, as described in Algorithm 1, was more conve-
nient.

Note that in Algorithm 1 φi and ψij do not appear explicitly. They are implicitly com-
puted through the sampling procedure: we firstly sample uniformly the type of edge (line
4), and then choose uniformly an edge given that type (line 5). This sampling corresponds
to optimizing Equation 4.3 with hyperparameters φi = 1

R

∑R
r=1

Nr
i

Er for the classification
term and ψij = 1

RN
rij
j Er

for the graph regularization one.

In Algorithm 1, ε is the gradient step, and λ is the trade-off between the classification
and smoothness terms. Both parameters were set by grid search.

4.2.4 Experiments

Datasets

Experiments have been performed on five different datasets respectively extracted from
DBLP, FlickR, LastFM and IMDB. For all but the first dataset (DBLP), each node can have
multiple labels. The datasets are described below. Statistics for the datasets are provided in
Table 4.2.

The DBLP dataset 1 (Sun et al., 2009) is a bibliographic network composed of authors
and papers. We consider here two different sets of labels: authors are labeled with their
research domain (4 domains) while papers are labeled with the conference name they were
published in (20 labels). Authors and papers are connected through an authorship relation.
The network is then composed of two types of nodes and is bipartite, with one relation
type. Classification is monolabel on papers and authors.

The FlickR corpus is composed of photos and users. The photo labels correspond to
different possible tags while the user labels correspond to their subscribed groups. The
classification problem is multi-label: images and users may belong to more than one cate-
gory. Photos are related to users through an authorship relation, while users are related to
other users through a following relation. We have kept the image tags that appear in at least

1The dataset is available at http://web.cs.ucla.edu/ yzsun/data
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Algorithm 1: Alternating Optimization Algorithm

Input: z node representations, w weights, ε gradient step, λ trade-off, Lc,Lw;
Output: Learned z and w;

1 while not converged do
2 for A fixed number of iterations do
3 . Learn the representation zi and the classifier parameters θ;
4 Choose r inR at random;
5 Pick randomly an edge i r→ j;
6 if i ∈ Lc;
7 then
8 θ ← θ − ε∇θ∆(f tiθ (zi), yi);
9 zi ← zi − ε∇zi∆(f tiθ (zi), yi) ;

10 end
11 if j ∈ Lc;
12 then
13 θ ← θ − ε∇θ∆(f

tj
θ (zj), yj);

14 zj ← zj − ε∇zj∆(f
tj
θ (zj), yj);

15 end
16 zi ← zi − ε wij

N
rij
j

λ∇zi ||zi − zj ||2;

17 zj ← zj − ε wji
N
rji
i

λ∇zj ||zi − zj ||2 ;

18 end
19 . Learn the wr;
20 Let grad_w = [0, ..., 0];
21 for i ∈ Lw do
22 for k in Yti do
23 if 1− yki (θti,k|z?i ) > 0;
24 then
25 for r inR do
26 grad_w[r] +=Dk

i,r;
27 end
28 end
29 end
30 end
31 for r inR do
32 wr ← wr − εgrad_w[r];
33 end
34 Normalize w w.r.t. relations;
35 end

500 images, and user categories that appear also at least 500 times in the dataset resulting
in 21 possible labels for photos and 42 for authors.
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Nodes
Type Nb. Nodes Nb. Labeled Nodes Nb. Labels
Paper 14,376 14,376 20

DBLP Author 14,475 4,057 4

Edges Type Nb. Edges
Author↔Paper 41,794

FlickR
Nodes Photo 46,926 8,766 21

User 4,760 3,476 42

Edges User↔User 175,779
User↔Photo 46,926

LastFM1

Nodes

User 1,013 321 59
Track 35,181 24,562 28

Album 32,118 15,966 47
Artist 17,138 11,564 47

Edges

User↔User 1,109
User↔Album 47,541
User↔Artist 47,812
User↔Track 47,807

Track↔Album 29,647
Track↔Artist 35,181

Album↔Artist 32,118

LastFM2

Nodes

User 20,004 5,000 48
Track 340,356 177,297 32

Album 247,681 59,226 52
Artist 103,951 60,388 59

Edges

User↔User 23,573
User↔Album 951,274
User↔Artist 960,227
User↔Track 970,381

Track↔Album 162,364
Track↔Artist 340,356

Album↔Artist 247,681

IMdB

Nodes
Film 2,724,246 1,050,323 28
Actor 3,146,496 0 0

Director 362,470 0 0

Edges Film↔Actor 14,308,748
Film↔Actress 8,526,214
Film↔Director 2,055,234

TABLE 4.2: Statistics for the datasets
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We used two different LastFM datasets denoted LastFM1 and LastFM2, collected in-
dependently using the LastFM API2. Both datasets are social networks composed of users,
tracks, albums and artists. The task is multi-label classification and all the node types have
their own set of labels. Users are labeled with the type of music they like (59/48 labels re-
spectively for LastFM1 and LastFM2 ), tracks with the kind of music they belong to (28/32
labels), albums with their type (47/52 labels) and artists with the kind of music they play
the most (47/59 labels). Users are linked to users (friendship), tracks (favorite tracks), albums
(favorite albums) and artists (favorite artists). Tracks are linked to albums (belong to) and artists
(singer). Finally, albums are linked to artists (sing in). Note that both a track and an album
may be linked to several artists. This dataset contains tracks labeled by their genres (rock,
indie, ...), users labeled by the type of music they like (female vocalists, ambient, ...), albums
labeled by type (various artists, live, ...) and artists labeled by the role they hold (singer, song-
writer, ...). The LastFM graph is schematically represented in Figure 3.1. Some labels may
overlap between different types of nodes but we suppose that in this case, they are distinct,
e.g. pop is not the same for an artist or a track.

Finally, the IMDB dataset3 is a movie description dataset composed of actors, actresses,
films and directors. Only films are labeled with 28 possible labels corresponding to their
type (Documentary, Drama, Comedy, ...). Films are related to actors and actresses using a
casting relationship and to directors using a film maker relationship.

Construction of the LastFM Datasets

The LastFM datasets were extracted for this work, so we describe succinctly the procedure
using the methods of the LastFM API. We selected randomly a set of 10 users, and col-
lected user friends using the User.getFriends method. We stopped when reaching a
given limit (1,000 users for LastFM1 and 20,000 users for LastFM2). Then, for each user of
our graph we fetched his top tracks, albums and artists (methods User.getTopAlbums
User.getTopArtists and User.getTopTracks). At last, we labeled tracks, albums
and artists according to the top tags LastFM users have given to them using the methods
Track.getTopTags, Artist.getTopTags and Album.getTopTags. For the users we
chose the top tags they added with the method User.getTopTags.

Evidence For Heterogeneous Node Reciprocal Influence

Throughout this work, we make the assumption that correlations exist between the labels
of different types of nodes, and that modeling this influence is useful for the heterogeneous
classification task. We exhibit below some statistics and characteristics of the datasets to
support this hypothesis. Let us consider the conditional probability P (Yt1 |Xt2) of label Yt1
for a node of type t1 given the label Xt2 of a neighbor of type t2, for all the possible values
of Yt1 and Xt2 .

If there is a dependency between the two variables, this means that the conditional prob-
ability P (Yt1 |Xt2) will be high for some values of the couple (Xt2 , Yt1) and low for the other
values, otherwise if the distribution is flat, this means that Xt2 does not bring any informa-
tion on Yt1 . In Figure 4.1 we have plotted some typical conditional distributions between

2To access the API go to http://www.lastfm.fr/api. The detailed procedure on how we collected these
datasets is provided in Section 4.2.4.

3The dataset is available at http://www.imdb.com/interfaces
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HH
HHHHY

X
user track album artist

user 3.2 · 10−3 8.7 · 10−5 2.4 · 10−4 1.8 · 10−4

track 1.1 · 10−3 3.0 · 10−4 2.1 · 10−4

album 1.2 · 10−3 1.0 · 10−4 2.4 · 10−4

artist 1.2 · 10−3 4.4 · 10−5 1.4 · 10−4

TABLE 4.3: Conditional entropies H(Y |X) for the lastFM2 corpus, X and
Y being neighbors in the LastFM graph. Lower values mean higher depen-

dency between the two variables

couples of variables. In order to make the graphics more readable, we have ordered labels
Xt2 by increasing conditional entropy 4 H(Y |X = k) along the x axis, for all the possible
valuesX . The conditional entropy quantifies the amount of information needed to describe
the outcome of Y given the value of X , so that the most informative X values are near the
x axis origin (the most informative value Xt2 = k will be situated at the origin x = 0).
For each value k of X , i.e. for each x coordinate, we further order the Y values according
to decreasing values of P (Y |X) for all the possible values of Y , i.e. for each X value, the
stronger dependencies are near the origin of the y axis (the red part of the plots).

Figure 4.1 shows 4 pairwise dependencies as measured by P (Yt1 |Xt2) on the LastFM2
dataset. All of them show clear peaks along the 0-y ordinate, and the peak values decrease
when x increases. For all these examples, there is a clear dependency between the two
variables. If we take a closer look, we can see (first row of the Figure) that P (Yuser|Xtrack)
is more peaked than P (Yuser|Xuser), meaning that the music a user listens to is more cor-
related to the user labels than to his friends labels. The second row of the figure shows a
similar phenomenon: P (Yartist|Xuser) < P (Yartist|Xtrack), meaning that the labels for an
artist are more correlated to his musical production than to the labels of his followers. Ad-
ditional figures exhibiting similar behaviors for other relations and corpora are available
for DBLP (Figure 4.2), FlickR (Figure 4.3), and LastFM2 (Figure 4.4).

We also show under each figure the conditional entropyH(Y |X) for each couple of vari-
ables. The most peaky distributions have an entropy which is two order of magnitude lower
than the flatter distributions. Table 4.3 summarizes the conditional entropies computed for
the different relations on the LastFM2 dataset, i.e.:

H(nt1 |nt2) =
∑

x∈Label set(nt1 ),y∈Label set(nt2 )

p(x, y) log
p(x)

p(x, y)
(4.10)

where nti denotes the set of nodes of type ti.
From those values, we could conclude that we should learn more from the tracks a user

listen to than from the music his friends listen to. This matches the intuition of the semantics
of such relations. We show in section 4.2.4 that this property is properly captured when
learning the relation specific parameters wr. Additional tables exhibiting similar behaviors
for other relations and corpora are available for DBLP (Table 4.4) and FlickR (Table 4.5).

4H(Y |X) =
∑
X∈X ,Y ∈Y p(X,Y ) log p(X)

p(X,Y )
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(A) P (Yuser|Xuser) Condi-
tional Entropy 3.2e-3

(B) P (Yuser|Xtrack) Condi-
tional Entropy 8.7e-5

(C) P (Yartist|Xuser) Condi-
tional Entropy 1.2e-3

(D) P (Yartist|Xtrack) Condi-
tional Entropy 4.4e-5

FIGURE 4.1: Plots illustrating the inter-dependencies between labels of two
node types for the LastFM2 dataset. Each plot shows P (Yt1 |Xt2) for a specific
variable couple (Yt1 , Xt2). The values Xt2 and Yt1 have been reordered for
clarity (see text). The x axis corresponding to variable Xt2 is on the bottom
left of each plot, and the y axis corresponding to the Yt1 is on the bottom right.

HH
HHHHY

X
author paper

author 7.1 · 10−4

paper 2.5 · 10−3

TABLE 4.4: Conditional entropies H(Y |X) for the DBLP corpus
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(A) P (Ypaper|Xauthor) (B) P (Yauthor|Xpaper)

FIGURE 4.2: Plots illustrating the inter-dependencies between labels on the
DBLP corpus. A gray square means that there is no relation between the

corresponding node types

(A) P (Yuser|Xphoto) (B) P (Yphoto|Xuser) (C) P (Yuser|Xuser)

FIGURE 4.3: Plots illustrating the inter-dependencies between labels on the
FlickR corpus

Further insights into this dependency are provided by Figure 4.5. It shows the cumula-
tive values of P (Yt1 |Xt2) for different relations (Yt1 , Xt2) w.r.t. the percentage of the number
of couples considered on the LastFM2 dataset. We start with the highest P (Yt1 |Xt2) for any
relation, the value of which is plotted at x = 0% and we accumulate the successive values
P (Yt1 |Xt2) taken in decreasing order.

Figure 4.5 shows first that all the relations between the pairs of variables exhibit some
dependency: at x = 20%, one already has a cumulated value of the P (Yt1 |Xt2) between 58%
and 87% regardless of the relation type. Second, some relations are clearly more informa-
tive than others, e.g. for x = 10% the relation user→ user has cumulated 38% of conditional

HHH
HHHY
X

user photo

user 4.7 · 10−4 8.9 · 10−4

photo 8.1 · 10−4

TABLE 4.5: Conditional entropies H(Y |X) for the FlickR corpus.
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(A) P (Yalbum|Xartist) (B) P (Yartist|Xalbum) (C) P (Ytrack|Xalbum)

(D) P (Yalbum|Xtrack) (E) P (Ytrack|Xartist) (F) P (Yartist|Xtrack)

(G) P (Yuser|Xalbum) (H) P (Yalbum|Xuser) (I) P (Yuser|Xartist)

(J) P (Yartist|Xuser) (K) P (Yuser|Xtrack) (L) P (Ytrack|Xuser)

(M) P (Yuser|Xuser)

FIGURE 4.4: Plots illustrating the inter-dependencies between labels on the
LastFM2 corpus
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FIGURE 4.5: Plot of the average of the cumulative sum of conditional
probabilities P (Yt1 |Xt2) for all relation types on the LastFM2 dataset. The
P (Yt1 |Xt2)s are in decreasing order on the x axis. x = 40% means that 40% of
the conditional probability values have been considered and the correspond-

ing cumulative value is plotted on the y axis.

probability whereas the relation artist→ track has cumulated 72%. Figures exhibiting simi-
lar behaviors for DBLP and FlickR are shown in Figure 4.6.

These statistics clearly show that there exists strong interdependencies between labels of
different node types, which could be exploited by an appropriate model, and this confirms
our base hypothesis.

Comparison With Other Models

We compare our approach with three baselines described below. The first one, LINE (Tang
et al., 2015) is representative of unsupervised learning methods for graph embeddings.
Based on (Mikolov et al., 2013), LINE learns distributed representations by maximizing the
probability of a node knowing its neighbors. We then performed a logistic regression with
the learned representations as inputs. The second one, Homogeneous Label Propagation
(HLP) (Zhu et al., 2002), provides a comparison with a representative model of label prop-
agation, typical of semi-supervised transductive learning on homogeneous graphs. There
are two main ways to construct an homogeneous graph from an heterogeneous one, each
considers a separate classification problem for any node type:

• For each node type, use the whole graph for propagating the labels of this given type:
only the nodes from this type will be considered for classification, and all the nodes
are considered in the propagation loss. Then repeat the propagation for all types of
nodes.

• Construct a projection of the heterogeneous graph for each type of nodes, thus build-
ing an homogeneous graph, and then propagate the labels on each homogeneous
graphs.
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(A) DBLP dataset (B) FlickR dataset

FIGURE 4.6: Plots of the average of the cumulative sum of conditional proba-
bilities P (Yt1 |Xt2) (with cumulative percentages on the x-axis) for all relation

types on all datasets.

The second option (projection) requires defining projections of the heterogeneous graph
onto homogeneous ones. There are many possible choices for that and the results heavily
depend on this choice. We hence rather considered the first option. The third baseline,
Graffiti, is a state of the art model for the task of classification in heterogeneous graphs (An-
gelova et al., 2012). It is a modified random walk that captures the influence among nodes
of the same type by considering their common neighbors. For example, given a node, it can
jump to another node of the same type by either following a direct link or using a 2-hops
jump via a common neighbor of another type. Graffiti has been shown to be superior to the
following four models on different datasets (FlickR and LibraryThing): a naive Bayesian
classifier, TopicalPR (Nie et al., 2006), an hybrid classifier (Myaeng et al., 2000), and an it-
erative relaxation labeling classifier (Angelova et al., 2006). Although it allows to develop
random walks on heterogeneous graphs, it does not take advantage of the correlations be-
tween labels as our model does.

Evaluation Measures And Protocol

Evaluation measures We have considered two different evaluation measures: Precision
at 1 (P@1) measures the percentage of nodes for which the category with the highest pre-
dicted score is among the observed labels for this node. For monolabel classification, this
should be the target label, while for multilabel classification, this could be any of the target
labels. Precision at k (P@k) is the proportion of correct labels in the set of k labels with
the highest predicted scores. For the mono-label dataset DBLP, we only make use of Preci-
sion at 1 (P@1). For the multi-labels dataset, P@k will denote an average over all the node
types, with k set to the number of categories a node belongs to. We optimized the different
models with regard to micro-average, but we report both micro-average and macro-average
precision P@•.
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Hyperparameter Meaning
N Dimension of the latent vector space: [50; 200]
GSz Step size of the gradient descent when updating the vector

representations: [10−4; 10−3]
ITERz Number of iterations of the algorithm: [100; 1000]
V Variance for the initialization of z

representations: [10−4; 10−3]
λ Trade-off between classification and smoothness: [10; 100]

GSw Step size of the gradient descent when updating the wr: [10−1; 1]
ITERw Number of iterations when to stop learning of wr: [10; 100]

TABLE 4.6: Hyperparameters of the model

Hyperparameters LINE has four hyperparameters: the mini-batch size, the learning rate,
the dimensionality of the unsupervised learned representation and the number of negative
samples. HLP has one hyperparameter: the number of times the model is iterated. Graf-
fiti has four hyperparameters: three characterize the random walk and one the number of
iterations. Finally, our model has six hyperparameters described in Table 4.6. The hyperpa-
rameters for all the models were optimized by grid search on a validation set.

Protocol Since we are in a transductive setting, all the nodes are used for training – but not
all the labels. We partition the labeled nodes into three datasets: train, validation and test.
Model parameters are trained as described in Algorithm 15. Model selection is performed
on the validation set using a Micro P@k measure, which corresponds to the mean of P@k
over all nodes. Performance is then evaluated on the test set.

Experiments were performed with different training + validation set sizes: 10%, 30%,
50% of the total size of the labeled dataset. For a training + validation size of 10% of the
labeled nodes we used a 50-50 partition (training-validation) of the labeled nodes and a 80-
20 partition for the 30% and 50% training + validation sizes. The training nodes are selected
at random.

Experiments are performed with 5 random splits. The hyper-parameters are selected
for each split using the validation set. We then average 10 runs over each split to account
for the random initialization of parameters.

For example, in the LastFM2 dataset, for the user node type, a training + validation
set of 10% means that 500 users out of 5,000 labeled users have been considered, 250 of
which are used during the parameters training phase and the remaining 250 are used for
the validation. Specific to our model, we split the training set of 250 users into two separated
training set. The first one (denotedLc) is used to learn the representations and the classifiers
and corresponds to 90% of this training set. The second one (denoted Lw) is used to learn
the hyperparameters wr and corresponds to 10% of this training set.

Note that for this dataset (LastFM2), only 5,000 users out of 20,004 are labeled. Unla-
beled nodes only appear in the graph regularization term of equation (4.1).

5We split the training set into two distinct training sets for optimizing respectively Lc and Lw
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Results

In this section we compare our model to the baselines on the five datasets described in Table
4.2.4. For each dataset, we report the averaged P@k measures (micro and macro averages
on the node types) and the P@k for each node type. The best performance on the test set is
in bold. Results are presented for the different datasets in Tables 4.7, 4.8, 4.9, 4.10 and 4.11.

The main conclusions are :

• Supervised models have better performance than the representative unsupervised
LINE, which proceeds in two steps: unsupervised representation learning followed
by classifier learning.

• On all datasets HLP is below Graffiti and LaHNet for most settings. This clearly
shows that modeling the heterogeneity of the graph is essential.

• LaHNet outperforms the baselines on four out of five datasets.

Let us first analyze the performance of the different models. Based on the micro-average
P@k measure, our model outperforms all the other models on all the data sets except IMDB.
LaHNet outperforms (or is close to for IMDB) Graffiti and HLP with on average over all
the settings, +2.4 points for DBLP (see Table 4.7), +3.0 for FlickR (see Table 4.8), +3.6 for
LastFM1 (see Table 4.9), +1.9 for LastFM2 (see Table 4.10) and -0.8 for IMDB (see Table 4.11)
compared to the best competitor. The behavior of the models is slightly different according
to the datasets. On DBLP, LaHNet is superior to all the other models for all the settings
(10%, 30%, 50% of labeled data used for training). For FlickR LaHNet is better at (10%, 30%)
and all the supervised models are similar for 50%. On the LastFM datasets, LaHNet is better
at 30% and 50% while all the supervised models are similar at 10%. On IMDB, Graffiti and
LaHNet have similar performance with a slight advantage to Graffiti. The IMDB data set is
specific since only movies have labels, hence LaHNet has no advantage over homogeneous
models. Graffiti shows a slight advantage over HLP since it explicitly models the 2 hop
relations occurring in this dataset.

Table 4.12 shows the performance evolution at different training and validation set sizes
(TVS).

We can distinguish two groups: the three datasets DBLP, LastFM1 and LastFM2 and the
two datasets FlickR and IMDB. For the first group, the performance increase for LaHNet
is higher than for Graffiti even if LaHNet already outperforms Graffiti. This shows that in
this case, for low training set size, LaHNet takes greater benefits of additional training data
compared to Graffiti. The reverse holds for the second group: for IMDB the increases are
comparable and LaHNet remains slightly below Graffiti, for FlickR, LaHNet outperforms
HLP for all training set sizes, but the gap between HLP and our model decreases when the
training data increases.

While the models are optimized for micro-average P@k, macro-average P@k gives a
complementary indication (see Tables 4.7, 4.8, 4.9, 4.10 and 4.11). Macro precision is below
micro precision for all the models, but globally the models rank similarly for both measures.
Macro precision shows that under-represented types, e.g. users on the LastFM datasets,
have low performance. Note that LaHNet is below Graffiti and HLP for these node types,
probably because the number of parameters per class is higher for LaHNet.
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Train + Model Train Val Test
Val. size Micro Micro Macro Author Paper

10%
LINE 25.1 18.9 19.5 23.0 29.1 16.8
HLP 100 24.7 24.1 27.2 32.6 21.8

Graffiti 100 32.4 30.9 38.1 50.8 25.3
LaHNet 99.8 33.8 32.1 40.0 53.9 26.0

30%
LINE 24.0 21.5 21.9 24.8 30.1 19.5
HLP 100 35.8 36.0 41.9 52.4 31.4

Graffiti 100 39.6 38.5 46.6 61.1 32.1
LaHNet 99.7 43.0 41.2 52.9 73.8 31.9

50%
LINE 24.2 21.1 22.3 25.0 29.8 20.2
HLP 100 39.7 39.4 46.5 59.3 33.7

Graffiti 100 41.5 41.2 49.4 64.1 34.8
LaHNet 99.9 45.5 44.4 56.8 79.2 34.5

TABLE 4.7: P@1 results of the model LaHNet and baselines on DBLP

Train + Model Train Val Test
Val. size Micro Micro Macro User Photo

10%
LINE 24.4 19.4 20.7 23.2 29.1 17.3
HLP 100 26.0 26.3 27.8 31.3 24.3

Graffiti 100 24.3 24.5 27.0 32.7 21.2
LaHNet 99.3 31.8 31.9 31.9 31.8 32.0

30%
LINE 23.0 21.6 21.5 24.2 30.6 17.9
HLP 100 47.6 47.7 43.7 34.5 53.0

Graffiti 100 47.5 47.0 43.7 36.1 51.3
LaHNet 100 50.1 49.0 44.3 33.3 55.3

50%
LINE 23.2 21.8 21.8 24.6 31.0 18.2
HLP 100 54.2 54.1 48.6 35.8 61.4

Graffiti 100 54.4 54.0 48.8 36.9 60.8
LaHNet 99.9 55.8 54.3 48.2 33.9 62.4

TABLE 4.8: P@k results of the model LaHNet and baselines on FlickR
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Train + Model Train Val Test
Val. size Micro Micro Macro User Track Album Artist

10%
LINE 20.8 20.6 20.4 15.9 5.6 26.0 14.5 17.4
HLP 98.7 38.1 38.4 30.0 9.9 47.8 27.2 35.1

Graffiti 100 40.1 40.0 31.4 10.6 49.0 28.1 38.1
LaHNet 100 39.5 39.0 29.2 9.5 50.7 30.8 25.9

30%
LINE 20.5 20.9 20.5 17.0 10.1 25.9 14.4 17.5
HLP 98.9 50.2 49.7 40.0 17.2 60.5 37.7 44.8

Graffiti 100 50.8 50.3 40.4 17.2 61.7 36.2 46.5
LaHNet 100 56.6 55.6 43.6 15.3 67.1 44.7 47.3

50%
LINE 20.5 20.5 20.5 17.0 10.3 26.0 14.4 17.5
HLP 98.8 51.9 52.1 42.3 19.4 63.1 40.2 46.4

Graffiti 100 53.2 53.5 43.2 19.1 65.4 39.5 48.7
LaHNet 100 59.2 59.3 46.9 16.8 70.4 47.8 52.7

TABLE 4.9: P@k results of the model LaHNet and baselines on LastFM1

Train + Model Train Val Test
Val. size Micro Micro Macro User Track Album Artist

10%
LINE 17.5 17.4 17.5 15.3 13.8 20.1 12.2 15.1
HLP 98.2 43.5 43.4 35.6 26.6 51.7 29.7 34.6

Graffiti 100 44.4 44.3 35.8 25.9 53.1 29.3 35.0
LaHNet 100 44.5 44.5 30.9 11.6 56.7 30.9 24.5

30%
LINE 17.5 17.5 17.5 15.5 14.3 20.2 12.2 15.1
HLP 98.2 50.0 50.0 41.8 31.5 58.4 37.9 39.3

Graffiti 100 53.9 54.0 43.7 31.9 64.5 38.2 40.2
LaHNet 99.8 57.3 56.9 45.4 27.6 66.8 45.0 42.1

50%
LINE 17.5 17.6 17.5 15.4 14.2 20.2 12.2 15.1
HLP 98.2 51.7 51.9 43.6 33.2 60.4 39.9 41.0

Graffiti 100 56.8 57.0 46.5 34.4 67.7 41.8 42.4
LaHNet 100 59.6 59.5 47.8 29.0 69.3 47.7 45.1

TABLE 4.10: P@k results of the model LaHNet and baselines on LastFM2
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Train + Val. size Model Train Val Test

10%
LINE 38.7 38.6 38.6
HLP 100 39.6 39.7

Graffiti 100 44.9 44.9
LaHNet 94.1 44.9 44.7

30%
LINE 38.6 38.5 38.6
HLP 100 47.7 47.7

Graffiti 100 49.6 49.6
LaHNet 99.4 49.0 48.8

50%
LINE 38.6 38.6 38.6
HLP 100 50.4 50.4

Graffiti 100 51.3 51.3
LaHNet 99.5 50.3 50.1

TABLE 4.11: P@k results of the model LaHNet and baselines on IMDB

Dataset Model TVS 10% TVS 10 to 30% TVS 30 to 50%

DBLP LaHNet 32.1 +9.1 +3.2
Graf. 30.9 +7.6 +2.7

LastFM1 LaHNet 39.0 +16.6 +3.7
Graf. 40.0 +10.3 +3.2

LastFM2 LaHNet 55.6 +12.4 +2.5
Graf. 50.3 +9.7 +3.0

FlickR LaHNet 31.9 +17.1 +5.3
HLP 26.3 +22.5 +7.0

IMDB LaHNet 44.7 +4.1 +1.3
Graf. 44.9 +4.7 +1.7

TABLE 4.12: Comparison of the evolution of P@k performance between LaH-
Net and the best baseline when increasing the training + validation size

(TVS).
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Train size Model Train Val Test
Micro Micro Macro User Photo

10% Without 99.6 29.6 29.3 29.1 28.6 29.5
With 99.3 31.8 31.9 31.9 31.8 32.0

30% Without 99.9 49.2 48.4 43.6 32.5 54.7
With 100 50.1 49.0 44.3 33.3 55.3

50% Without 99.4 55.1 54.0 47.9 33.7 62.0
With 99.9 55.8 54.3 48.2 33.9 62.3

TABLE 4.13: Effect of learning the relation-specific weights wr for FlickR.
Performance is expressed as micro and macro precisions as indicated, per-
formance for individual relations is micro precision - see text for further ex-

planation.

Importance Of The Relations’ Weights

Let us now analyze the role of the relation-specific weights wr in the model. When there is
only one type of relation like DBLP, there is nothing to learn. For the other datasets, learning
wr significantly improves the performance. We discuss below each dataset in turn and we
denote wA→B the weight of the relation from node type A to node type B.

FlickR After convergence the weights are almost equals on average: wuser→photo = 0.53
and wuser→user = 0.47 for the two relation types involving users. Actually, one can expect
close weights as users follow users who publish photos they like, which might be on aver-
age the same type as their own photos. The results of the two models are reported in Table
4.13. Even with such a small average difference between the two types of weights, learning
wr improves the results. It has a significant impact at small training set size (10%) with an
increase of +2.6 compared to a model with no weights and the difference tends to vanish
when the training set is increased.

LastFM The LastFM datasets are the more interesting: there are 4 types of nodes with
several relations, the number of labels is larger than for the other datasets. Let us focus on
the relations involving users since this is the richer and most diverse group of relations with
4 relation types.

Learning the wr has an important impact on the user-nodes performance. For LastFM1
(see Table 4.14), there is an improvement of +0.5 (train + validation size 10%), +5.6 (train
+ validation size 30%) and +5.8 (train + validation size 50%) when learning the wr. The
same holds for LastFM2 (see Table 4.15), where an improvement of +2.2 (train + validation
size 10%), +6.3 (train + validation size 30%) and +6.2 (train + validation size 50%) can be
observed. Concerning user scores, the more training data, the bigger the improvement.

The role of wr for the other relations is less important, however, it still makes a differ-
ence. On the LastFM1 data set there is a global improvement of +2.5 on average for all the
train + validation sizes. The same holds for the LastFM2 dataset, with an improvement of
+3.5/+3.6 for train + validation sizes 30% and 50%, and a greater improvement for a train
size of 10% (+6.5).
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Train size Model Train Val Test
Micro Micro Macro User Track Album Artist

10% Without 99.9 36.4 36.3 27.2 9.0 48.4 26.2 25.3
With 100 39.5 39.0 29.2 9.5 50.7 30.8 25.9

30% Without 99.8 54.2 53.3 40.3 9.7 65.8 42.7 42.9
With 100 56.6 55.6 43.6 15.3 67.1 44.7 47.3

50% Without 99.7 56.6 56.7 43.2 11.0 68.8 45.6 47.6
With 100 59.2 59.3 46.9 16.8 70.4 47.8 52.7

TABLE 4.14: Effect of learning the relation-specific weights wr for LastFM1.
Performance is expressed as micro and macro precisions as indicated, perfor-
mance for individual relations is micro precision - see text for further expla-

nation.

Train size Model Train Val Test
Micro Micro Macro User Track Album Artist

10% Without 99.8 38.1 38.0 26.1 9.4 48.9 22.1 24.1
With 100 44.5 44.5 30.9 11.6 56.7 30.9 24.5

30% Without 99.9 53.7 53.4 40.4 21.3 64.9 40.1 35.3
With 99.8 57.3 56.9 45.4 27.6 66.8 45.0 42.1

50% Without 99.8 55.9 55.9 42.8 22.8 67.1 42.9 38.5
With 100 59.6 59.5 47.8 29.0 69.3 47.7 45.1

TABLE 4.15: Effect of learning the relation-specific weights wr for LastFM2.
Performance is expressed as micro and macro precisions as indicated, perfor-
mance for individual relations is micro precision - see text for further expla-

nation.
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FIGURE 4.7: Evolution of wr values over training steps for all relations r in-
volving users for LastFM2. At convergence wuser→user = 0.22, wuser→track =

0.28, wuser→album = 0.25, wuser→artist = 0.25.

If we make the parallel between the learned wr and the conditional entropy (see Figure
4.1 and Table 4.3) one observes that, for relations of type user → •, the lower the entropy
of a user label Yuser conditioned on the label of its neighbor X• is, the higher the coefficient
of the corresponding relation type is. The proposed model then captures this dependency.
For example, since the value (0.22) of the wr coefficient for user → user is rather low, one
can conclude that this relation is less relevant than, for example, the relation user → track
(0.28). One can explain this result by the fact that the user → user relationship is more
related to friendship and less to tastes compared to user → track/album/artist. Looking at
the music a user listens to will be more informative to infer what kind of music a user likes
than looking at what his friends listen to.

The evolution of wuser→• during the learning phase is reported on Figure 4.7. It clearly
shows that the proposed procedure is able to differentiate the weights according to their
importance for the classification task.

As a conclusion, learning the relation specific weights clearly improves the classification
results. Comparing the performances on FlickR and LastFM, one can see that, learning the
relation weights wr allows capturing the most important relation types for the inference
task.

Label correlation on the LastFM2 Dataset

As mentioned in Section 4.2.4, labels for different types of nodes are supposed to be distinct
even when they have the same name (e.g. the label pop is not considered to be the same
label for a track and an artist). It is interesting to get some hints on the relations between
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FIGURE 4.8: LastFM2 corpus: Graph of the cosine between the 30 classifiers
having the same string-wise label (e.g. “pop”) for artists and tracks. For
example, line 15 corresponds to pop_artist and column 15 to pop_track. The

lighter the square, the higher the scalar product.

the representations of nodes from different types with the same labels. Since these labels are
strongly correlated, intuitively the corresponding nodes should be in the same subspaces
of the representation space. Since in our experiments the classifier for each label is linear,
measuring the similarity of the two separating hyperplanes gives some indication on this
correlation. We have plotted in Figure 4.8 the dot product of the linear classifier weights
learned for labels with the same name for two different node types of the LastFM2 corpus.
On Figure 4.8, the track label on the i−th column corresponds to its artist counterpart on the
i− th row. We first notice that the inner product is non zero in most cases, showing existing
correlations between the different classifiers, and further emphasizing the importance of
learning a common latent representation space for nodes of different types.

Second, the diagonal values are all close to 1 for this example, so that the model has
learned these correlations and the latent representations of tracks labeled pop are in the
same region of the latent space as artists labeled pop, the same goes for the other labels.
Other examples for the LastFM2 dataset are provided in Figure 4.9 for different pairs of
node types.

4.3 Conclusion

We have introduced a representation-based model for the challenging task of heteroge-
neous graph node classification. This model, Labeling Heterogeneous Networks (LaH-
Net), learns, for each node and label, a deterministic latent representation in a vector space.
It also learns relation specific weights that determine how informative the relations be-
tween different types of nodes are for the classification task. We introduced a continuous
optimization hyperparameter scheme for simultaneously learning the different parameters
of the model.

Experimental results show that LaHNet was able to learn correlations between labels of
different types of nodes, thus notably improving the class label inference. We performed
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(A) Artists/Tracks labels. (B) Albums/Tracks labels.

(C) Artists/Albums labels. (D) Albums/Users labels.

(E) Artists/Users labels. (F) Users/Tracks labels.

FIGURE 4.9: LastFM2 corpus: Graph of the cosine between the classifiers
having the same string-wise label (e.g. “pop”) for two different node types.
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extensive experiments and showed that LaHNet works well compared to competing meth-
ods (Angelova et al., 2006; Zhu et al., 2002; Tang et al., 2015) on five different real word
datasets (DBLP, FlickR, LastFM, and IMDB).
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Part II

Learning Gaussian Representations
and Applications
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In the previous part we have used the deterministic representation learning framework
to tackle the node classification task. We have extended this work to probabilistic represen-
tations and present this contribution in Chapter 5.

Since using probabilistic representations produce good results on node classification, we
developed this framework to tackle other tasks. Thus, we present our third and fourth con-
tributions on two different tasks both using the Gaussian representations learning frame-
work. Our third contribution focuses on relational time series forecasting (Chapter 6). Our
fourth contribution focuses on the ranking task (Chapter 7). Since the goal of the last two
contributions was to explore the interesting properties of this new framework, we do not
give a complete state of the art for those tasks, but rather we give an overview of related
works in both corresponding chapters.

Like for Chapter 4, these three chapters are reproduction of published or submitted
articles. As a consequence, there are some redundancies in the introductions and states of
the art.
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Chapter 5

Learning Gaussian Representations
for Classification

Abstract
In this chapter (as in Chapter 4), we consider the problem of node classification in het-
erogeneous graphs. The approach is similar to the one used in Chapter 4: we propose a
transductive approach to tackle this task based on learning graph embeddings. However,
the proposed model, namely Heterogeneous Classification with Gaussian Embeddings
(HCGE), instead of learning deterministic representations, learns Gaussian representations
to model the uncertainty associated to the node representations. A comparison with repre-
sentative baselines is provided on three heterogeneous datasets defined in Chapter 4.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Graph Node Classification with Gaussian Embeddings . . . . . . . . . . 76

5.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Introduction

Classification of nodes in graphs is a relational classification problem where the labels of
each node depend on its neighbors. Many problems in domains like image, biology, text
or social data labeling can be formulated as graph node classification and this problem has
been tackled with different approaches like collective classification (Sen et al., 2008), ran-
dom walks (Angelova et al., 2012), and transductive regularized models (Jacob et al., 2014).
Most approaches consider homogeneous graphs, where all the nodes share the same set of
labels, propagating labels from seed nodes to their neighbors. Many problems in domains
like biology or social data analysis involve heterogeneous networks where the nodes and
the relations between nodes are of different types, each node type being associated to a spe-
cific set of labels. For example, the LastFM social network, one of the datasets used in our
experiments, links users, tracks, artists and albums via seven different types of relations
such as friendship, most listened tracks, and authorship. In such a network, nodes of different
types influence each other and their labels are interdependent. The dependency is, how-
ever, more complex than with homogeneous networks and depends both on the nodes type
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and on their specific relation. Classical methods for homogeneous graphs, based for exam-
ple on label propagation, usually relies on a simple relational hypothesis like homophily
in social networks. They cannot be easily extended to heterogeneous networks, and new
methods have to be developed for dealing with this relational classification problem.

In this chapter, we consider the problem of node classification in heterogeneous graphs.
We propose a transductive approach based on graph embeddings where the node embed-
dings are learned so as to reflect both the classification objective for the different types of
nodes and the relational structure of the graph. When most embedding techniques con-
sider deterministic embeddings where each node is represented as a point in a representa-
tion space, we focus in this chapter on density-based embeddings which capture some form
of uncertainty about the learned representations. Uncertainty can have various causes re-
lated to the lack of information (isolated nodes in the graph) or because of the contradiction
between neighboring nodes (different labels). Our hypothesis is that, because of these dif-
ferent factors, training will result in learned representations with different confidence, and
that this uncertainty is important for this classification problem. For that, we use Gaussian
embeddings which have been recently proposed for learning word (Vilnis et al., 2015) and
knowledge graph (He et al., 2015) embeddings in an unsupervised setting. More precisely,
each graph node representation corresponds to a Gaussian distribution where the mean
and the variance are learned. The variance term is a measure of uncertainty associated with
the node representation. The objective function is composed of two terms, one reflecting
the classification task and the other one reflecting the relations between the nodes. Both
mono and multi-label classification can be handled by the model. For the experiments, we
focus on classification in social network data. This type of data offers a variety of situations
which allows us to illustrate the behavior and the performance of the model for different
types of heterogeneous classification problems.

To summarize, our contributions are as follows:

• We propose a new method for learning to classify nodes adapted to heterogeneous
graph data;

• We model the uncertainty associated with the nodes representation;

• We provide a comparison with state of the art baselines on a series of social data
classification problems representative of different situations.

5.2 Graph Node Classification with Gaussian Embeddings

5.2.1 Model

In this section we present our model, namely Heterogeneous Classification with Gaussian
Embeddings (HCGE).

We first introduce the notations used throughout this chapter. We also recall the basis
graph and classification notations introduced in Chapter 4.

A heterogeneous network is modeled as a directed weighted graph G = (N , E ,W)
where N is the set of nodes, E the set of edges andW the weights associated to the edges.
Each node xi ∈ N of the graph has a type ti ∈ T , where T = {1, 2, . . . , T}. We denote Ni

the neighbors of xi.
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Regarding the classification task, let Yt denote the set of categories associated with
nodes of type t, and #Yt the cardinality of Yt. L ⊂ N is the set of indexes of labeled
nodes. For i ∈ L, yi is the class vector associated to xi: node xi belongs to category c if
yci = 1 and does not belong if yci = −1.

In our model, each node xi is mapped onto a representation which is a Gaussian distri-
bution over the space Zi ∼ N (µi,Σi) in Rd. The latent space is common to all nodes. In
this chapter, we compare two different parameterizations of Σ. We experimented with a
spherical (Σi = σiId) and a diagonal (Σi = diag (σpi )p) covariance matrix. We use a weight
wr for each type of relation, wrij refers to the weight of the type of edge linking node i to
node j with a relation rij .

Loss Function

As in Chapter 4, we learn the representations of nodes and classifiers parameters by mini-
mizing an objective loss function. It takes the general form of transductive regularized loss
(Ji et al., 2010; Zhou et al., 2003), with a classification (∆C) and a regularization term (∆G),
both being detailed later:

L(Z, θ) =
∑
i∈L

∆C(fθti (Zi), yi) + λ
∑
i∈N

∑
j∈Ni

wrij∆G(Zi, Zj) (5.1)

As for classical transductive graph losses, the minimization in Equation 5.1 aims at finding
a trade-off between the difference between observed and predicted labels in Yt, and the
amount of information shared between two connected nodes. There are however major
differences, since here Z is not a label as in classical formulations, but a node embedding.
Finally, the function fθt(.) is a parametric classifier for a node of type t – there is one such
classifier for each node type. Since we are using Gaussian embeddings, the Zs are random
variables and the regularization term is a dissimilarity measure between distributions.

To avoid over-fitting, following (Vilnis et al., 2015), we regularize the mean and the
covariance matrix associated to each node. We add two constraints to prevent means and
covariances to be too large and to keep the covariance matrices positive definite (this also
prevents degenerate solutions):

||µi|| ≤ C and ∀p, m ≤ σpi ≤M (5.2)

where the different parameters C, m and M have been set manually after some trials on a
subset of the DBLP training set to respectively 10, 0.01 and 10 (and not changed after that),
but any other reasonable value will do.

The two following paragraphs refer to the respective parts of Equation 5.1.

Classifier

The mapping onto the latent space is learned so that the labels of each type of node can
be predicted from the (Gaussian) embedding. For that, we use a parametric classification
function fθt depending on the type t of the node. This multivariate function takes as input a
node representation and outputs a vector of scores for each label corresponding to the node



78 Chapter 5. Learning Gaussian Representations for Classification

type. The parameters θt of the classifier are learned by minimizing the following loss on
labeled data:

LClassification =
∑
i∈L

∆C(fθti (Zi), yi) (5.3)

where ∆C(fθti (Zi), yi) is the loss associated to predicting labels fθti (Zi) given the observed
labels yi. We recall that in this equation fθti (Zi) and yi have values in R#Yt .

In our experiments, we used different losses for ∆C . We first considered the case where
a class decision is simply the expectation of the classifier score together with a hinge loss,
adapting the loss proposed in (Jacob et al., 2014). For a given node x of type t with an
embedding Z, this gives:

∆C(fθt(Z), y) = ∆EV (fθt(Z), y)
def
=

#Yt∑
k=1

max
(

0; 1− ykEZ [fkθt(Z)]
)

(5.4)

where yk is 1 if x belongs to category k and −1 otherwise, and fkθt(Z) is a random variable
for category k.

Alternatively, the density based formulation allows us to leverage the density-based
representation through a probabilistic criterion, even in the case of linear classifiers. We
used here for ∆C the log-probability that ykfθt(Z) take a positive value. In this case, the
variance will be influenced by the two loss terms: if the two terms act in opposite direc-
tions, one solution will be to increase variance. As we will see this is confirmed by the
experiments.

∆C(fθt(Z), y) = ∆Pr(fθt(Z), y)
def
= −

#Yt∑
k=1

logP
(
ykfkθt(Z) > 0

)
(5.5)

In our experiments and for both costs, we used a linear classifier for fkθt , which allows
to easily compute the different costs and gradients, since the random variable fkθt(Z), being
a linear combination of Gaussian variables, is Gaussian too. A basic derivation shows that:

P
(
ykfkθt(Z) > 0

)
=

1

2

1 + erf

 µ · θt√
2
∑

p (θtpσ
p)2

 (5.6)

where erf is the Gauss error function.
There are some notable differences between the two classification losses during learning.

In the case of a linear classifier fθt , EZ [fkθt(Z)] = µ · θtk. Thus, minimizing ∆EV only updates
the mean of the Gaussian embedding: the covariance matrix of the embedding does not
interfere with the classification term, and is only present in the second term of Equation 5.1.

For the ∆Pr loss, the probability is proportional to erf

(
µ·θt√

2
∑
p (θtpσ

p)2

)
where the vari-

ance is present. When the graph regularization and classification cost pull the representa-
tion mean in opposite directions (opposite gradients), the model will respond by increasing
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the variance for the spherical variance model1: this behavior is interesting since it trans-
forms an opposition between regularization and classification costs into increased uncer-
tainty.

Graph Embedding

We make the hypothesis that two nodes connected in the graph should have similar repre-
sentations, whatever their type is. Intuitively, this will force nodes of the same type which
are close in the graph to be close in the representation space. The strength of this attraction
between nodes of the same class will be proportional to their closeness in the graph and
to the weight of the path(s) linking them. We use the asymmetric loss proposed in (Vilnis
et al., 2015; He et al., 2015):

LGraph =
∑
i

∑
j∈Ni

wrijDKL(Zj ||Zi) (5.7)

where ∆G(Zi, Zj) = DKL(Zj ||Zi) is the Kullback-Leibler divergence between the distribu-
tions of Zi from Zj :

DKL(Zj ||Zi) =

∫
x∈R
N (x;µj ,Σj) log

N (x;µj ,Σj)

N (x;µi,Σi)
dx

=
1

2

(
tr(Σ−1

i Σj) + (µi − µj)TΣ−1
i (µi − µj)− d− log

det(Σj)

det(Σi)

) (5.8)

The loss LGraph is a sum over the neighbors Ni of i, where wrij is the weight of the
type of edge between xi and xj . Other similarity measures between distributions could be
used as well, the Kullback-Leibler divergence having the advantage of being asymmetric,
which fits well the social network datasets used in the experiments since relations are not
necessarily symmetric.

Prior Parameters and Learned Relation Specific Parameters

For ease of reading, and to emphasize the Gaussian representations learning framework, we
omitted in Equation 5.1 the prior graph related parameters φij and ψi. In this contribution,
we used the same prior parameters as in Chapter 4 (see Section 4.2.2).

Similarly, we did not discuss learning thewr. The same reasoning as Chapter 4 holds for
this model. For instance, when using the ∆EV variant, we need to express µi as an explicit
function of w by zeroing ∇zL on Lw. As in Chapter 4, we obtain closed-form equations for
the parameters (mean and covariance in our case). This is the equivalence of Equation 4.6:

µ?i =

[∑
r

wrD
r
i

]−1

·

(∑
r

wrN
r
i

)
(5.9)

1the increase will be in the direction of the normal to the classifier hyperplane for the diagonal variance
model



80 Chapter 5. Learning Gaussian Representations for Classification

with

Dr
i = Diag

∑
j:i

r→j

φij
σpi

+
∑
j:j

r→i

φji
σpj


p∈[1..d]

N r
i = Vect

∑
j:i

r→j

φijµ
p
j

σpi
+
∑
j:j

r→i

φjiµ
p
j

σpj


p∈[1..d]

where j : i
r→ j corresponds to the set of r-neighbors of i.

For the other cases (∆Pr), the formulas are larger and for the sake of clarity we omit
them here.

Algorithm

Learning the Gaussian embeddings Z ∼ N (µ,Σ) and the classifiers parameters θ consists
in minimizing loss function in Equation 5.1. We used here a Stochastic Gradient Descent
Method to learn the latent representations, i.e. the µi, Σi as well as the parameters θ of the
classifiers.

Our algorithm samples a pair of connected nodes and then makes a gradient update of
the nodes parameters. For each sampled node Zi that is part of the labeled training set L,
the algorithm performs an update according to the first term of Equation 5.3. This update
consists in successively modifying the parameters of the classification functions θti and of
the latent representations µi and Σi so as to minimize the classification loss term. Then, the
model updates its parameters with respect to the smoothness term of Equation 5.7. Note
that, while we use a stochastic gradient descent, other methods like mini-batch gradients or
batch algorithms could be used as well.

5.2.2 Experiments

Datasets

Experiments have been performed on three datasets respectively extracted from DBLP,
FlickR and LastFM. For all but the first dataset (DBLP), each node can have multiple la-
bels. The three datasets are described in Section 4.2.4 and summarized in Table 4.2.4.

We compare our approach with four state-of-the-art models:

• LINE (Tang et al., 2015), which is representative of unsupervised learning of graph
embeddings suitable for various tasks such as classification. We performed a logistic
regression with the learned representations as inputs.

• HLP (Zhu et al., 2002), which is representative of transductive graph algorithms de-
veloped for semi-supervised learning. As HLP is designed for homogeneous graphs,
we perform as many random walks as the number of node types, considering each
time that all the nodes are of a same given type.

• Graffiti (Angelova et al., 2012), which is a state of the art model for the task of classi-
fication with random walk in heterogeneous graph.
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Train size Model Train Val Test
Micro Micro Macro Author Paper

10%

LINE 25.1 18.9 19.5 23.0 29.1 16.8
HLP 100 24.7 24.1 27.2 32.6 21.8

Graffiti 100 32.4 30.9 38.1 50.8 25.3
LaHNet 99.8 33.8 32.1 40.0 53.9 26.0

HCGE(∆EV ,S) 99.7 33.1 30.9 38.5 52.1 24.9
HCGE(∆EV ,D) 95.6 31.4 30.4 37.4 49.9 24.9
HCGE(∆Pr ,S) 83.8 29.0 27.9 34.3 45.6 22.9
HCGE(∆Pr ,D) 92.9 29.0 28.3 34.3 45.1 23.6

30%

LINE 24.0 21.5 21.9 24.8 30.1 19.5
HLP 100 35.8 36.0 41.9 52.4 31.4

Graffiti 100 39.6 38.5 46.6 61.1 32.1
LaHNet 99.7 43.0 41.2 52.9 73.8 31.9

HCGE(∆EV ,S) 98.5 44.4 42.3 52.6 71.0 34.3
HCGE(∆EV ,D) 98.8 42.9 41.2 50.8 68.0 33.6
HCGE(∆Pr ,S) 97.5 41.8 41.3 52.1 71.4 32.8
HCGE(∆Pr ,D) 97.4 43.8 42.3 54.1 75.0 33.1

50%

LINE 24.2 21.1 22.3 25.0 29.8 20.2
HLP 100 39.7 39.4 46.5 59.3 33.7

Graffiti 100 41.5 41.2 49.4 64.1 34.8
LaHNet 99.9 45.5 44.4 56.8 79.2 34.5

HCGE(∆EV ,S) 99.3 45.6 44.6 55.2 74.1 36.3
HCGE(∆EV ,D) 98.1 44.7 43.9 53.7 71.0 36.3
HCGE(∆Pr ,S) 99.4 45.8 45.5 57.1 77.8 36.4
HCGE(∆Pr ,D) 97.6 45.9 45.7 57.7 79.2 36.2

TABLE 5.1: P@1 results of the model HCGE and baselines on DBLP

• LaHNet (Chapter 4), which is our previous contribution, a state of the art model for
the task of classification with deterministic vector representations in heterogeneous
graph. This is the deterministic version of this contribution.

For a state of the art of the graph node classification task please refer to Chapter 3.
Concerning the evaluation measures and protocol, we use and follow the same mea-

sures and protocol as in Chapter 4 (see Section 4.2.4 for details).

Results

In this section we present the results of four variants of our Gaussian embedding model,
and compare to LINE (Tang et al., 2015), Graffiti (Angelova et al., 2012), HLP (Zhu et al.,
2002) and LaHNet (Chapter 4). The experiments are performed on the three datasets de-
scribed in Table 4.2.4 and the results are described in Tables 5.1 (DBLP), 5.2 (FlickR) and 5.3
(LastFM). The best performing classifier (on the test set) is presented in bold.

Concerning the four variants of our model, HCGE(∆•,X) refers to the HCGE model with
the classification loss ∆• (∆EV or ∆Pr) and a spherical (X=S) or diagonal (X=D) covariance
matrix.

For micro P@k, our model generally outperforms the others on all the datasets. Super-
vised models (HLP, Graffiti, LaHNet and HCGE) using the class information outperform
unsupervised representation learning, which matches the results reported in Chapter 4 and
in (Jacob et al., 2014). On all datasets, the performances of HLP are below the performances
of Graffiti, LaHNet and HCGE. This clearly shows that modeling the heterogeneity of the
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Train size Model Train Val Test
Micro Micro Macro User Photo

10%

LINE 24.4 19.4 20.7 23.2 29.1 17.3
HLP 100 26.0 26.3 27.8 31.3 24.3

Graffiti 100 24.3 24.5 27.0 32.7 21.2
LaHNet 99.3 29.6 29.3 29.1 28.6 29.5

HCGE(∆EV ,S) 98.9 33.5 32.7 32.6 32.4 32.8
HCGE(∆EV ,D) 99.1 33.4 32.6 32.6 32.7 32.5
HCGE(∆Pr ,S) 96.0 30.4 29.7 29.2 28.1 30.3
HCGE(∆Pr ,D) 98.7 31.7 31.9 32.2 33.0 31.5

30%

LINE 23.0 21.6 21.5 24.2 30.6 17.9
HLP 100 47.6 47.7 43.7 34.5 53.0

Graffiti 100 47.5 47.0 43.7 36.1 51.3
LaHNet 100 49.2 48.4 43.6 32.5 54.7

HCGE(∆EV ,S) 99.1 51.5 50.0 45.6 35.4 55.8
HCGE(∆EV ,D) 98.7 51.6 50.1 45.7 35.3 56.0
HCGE(∆Pr ,S) 98.3 50.1 49.0 44.4 33.8 55.1
HCGE(∆Pr ,D) 98.5 50.6 50.0 45.8 36.1 55.5

50%

LINE 23.2 21.8 21.8 24.6 31.0 18.2
HLP 100 54.2 54.1 48.6 35.8 61.4

Graffiti 100 54.4 54.0 48.8 36.9 60.8
LaHNet 99.9 55.1 54.0 47.9 33.7 62.0

HCGE(∆EV ,S) 97.9 56.7 55.8 50.0 36.5 63.4
HCGE(∆EV ,D) 97.3 56.6 55.8 50.0 36.5 63.4
HCGE(∆Pr ,S) 98.8 55.7 54.8 49.0 35.5 62.5
HCGE(∆Pr ,D) 98.4 56.4 55.9 50.3 37.2 63.3

TABLE 5.2: P@k results of the model HCGE and baselines on FlickR

graph brings noteworthy improvements. Comparing the heterogeneous models, both LaH-
Net and HCGE outperform Graffiti on all datasets. On average, comparing to Graffiti, LaH-
Net is 2.4 better on DBLP, 2.1 better on FlickR and 2.5 better on LastFM. We observed the
same behavior for HCGE, with +2.8 on DBLP, +4.4 on FlickR and +6.0 on LastFM. We can
note that the more complex the dataset, the higher the gap compared to the baselines. This
also shows that the use of representations can clearly improve the performances.

On each dataset, our model outperforms LaHNet (and the other competitors) 8 times
over 9, with on average +1.0 points for DBLP, +2.3 for FlickR, and +3.8 for LastFM over the
second ranked model. According to the results, introducing uncertainty in representations
clearly improves results when comparing to LaHNet.

Let us also point out that, according to our initial intuition, the effect of using uncer-
tainty has more impact when the amount of training data is lower: the difference between
LaHNet and HCGE decreases in general when more training data is available (except for
DBLP).

Let us compare the performance of the variants ∆EV and ∆Pr. Globally, ∆Pr seems
to be disadvantaged by a low number of training examples, when ∆EV seems to be more
stable in comparison to other baselines. However, the more training data, the closer the ∆Pr

variant is to ∆EV . For example, on the DBLP dataset, moving from 10% to 30% improves
on average ∆Pr results by +13.7 but only by +11.1 for ∆EV . For a training set size of 50%,
the difference between ∆Pr and ∆EV is +1.1 on DBLP, and +0.1 on FlickR. For LastFM,
the difference is resp. -14.6 for 10%, -6.5 for 30% and -1.5 for 50% of the dataset used for
training. On the three datasets, the lower the training set size, the better ∆EV seems to be
comparing to ∆Pr. We could not explain this difference in the behavior between ∆EV and
∆Pr, but believe that this is due to the fact that the covariance matrix is only optimized
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Train size Model Train Val Test
Micro Micro Macro User Track Album Artist

10%

LINE 20.8 20.6 20.4 15.9 5.6 26.0 14.5 17.4
HLP 98.7 38.1 38.4 30.0 9.9 47.8 27.2 35.1

Graffiti 100 40.1 40.0 31.4 10.6 49.0 28.1 38.1
LaHNet 99.9 36.4 36.3 27.2 9.0 48.4 26.2 25.3

HCGE(∆EV ,S) 99.8 44.4 44.0 34.1 9.6 52.3 35.0 39.7
HCGE(∆EV ,D) 99.3 44.0 43.6 34.0 10.5 52.2 34.4 38.7
HCGE(∆Pr ,S) 97.6 27.7 27.8 20.7 4.1 34.9 21.0 23.0
HCGE(∆Pr ,D) 96.0 30.3 29.4 21.9 6.7 38.7 22.1 20.2

30%

LINE 20.5 20.9 20.5 17.0 10.1 25.9 14.4 17.5
HLP 98.9 50.2 49.7 40.0 17.2 60.5 37.7 44.8

Graffiti 100 50.8 50.3 40.4 17.2 61.7 36.2 46.5
LaHNet 99.8 54.2 53.3 40.3 9.7 65.8 42.7 42.9

HCGE(∆EV ,S) 99.6 58.2 57.3 45.0 14.8 68.2 45.9 51.2
HCGE(∆EV ,D) 99.5 57.9 57.0 45.3 16.8 67.5 45.7 51.3
HCGE(∆Pr ,S) 97.5 50.5 50.4 37.7 9.9 66.4 32.6 42.0
HCGE(∆Pr ,D) 96.9 51.5 50.8 38.5 13.2 65.0 41.4 34.4

50%

LINE 20.5 20.5 20.5 17.0 10.3 26.0 14.4 17.5
HLP 98.8 51.9 52.1 42.3 19.4 63.1 40.2 46.4

Graffiti 100 53.2 53.5 43.2 19.1 65.4 39.5 48.7
LaHNet 99.7 56.6 56.7 43.2 11.0 68.8 45.6 47.6

HCGE(∆EV ,S) 99.4 60.3 60.4 48.7 20.4 71.2 48.8 54.4
HCGE(∆EV ,D) 99.9 60.1 60.3 48.6 20.1 71.1 48.7 54.3
HCGE(∆Pr ,S) 99.2 58.6 58.5 45.0 11.8 69.8 47.4 51.0
HCGE(∆Pr ,D) 99.9 58.9 58.9 47.2 18.9 70.2 46.4 53.4

TABLE 5.3: P@k results of the model HCGE and baselines on LastFM

in the graph regularization term in the case of ∆EV . Let us now compare the use of a
spherical and a diagonal covariance matrix. For the ∆EV variant, it looks like moving from a
spherical covariance matrix to a diagonal one brings no improvement. It even decreases the
performance on DBLP. Concerning the ∆Pr variant, for which the covariance matrix plays
a role in the classification cost, conclusions are reversed and using diagonal covariance
matrices improves the results. On the FlickR dataset, using a diagonal variance improves
the results by 1.4 on average. However, it looks like the more training data, the less the
improvement, with +2.2 improvement for a training set size of 10%, +1.0 for 30% and +1.1
for 50%.

Qualitative Discussion

In this section, we focus on studying qualitatively the representations found by HCGE. We
consider the most robust variant of our model (∆EV ,S), and the most challenging dataset,
LastFM (similar observations were made on the other datasets). We will examine the re-
spective role of regularization and classification costs on labeled training nodes, and the
relationship between the learned variance of a node and the local node properties (like its
number of neighbors).

We first examined the respective role of classification and regularization costs. In Equa-
tion 5.1, the max-margin classification cost implies that the gradient of a node x is 0 if
ykEz[fkθt(z)] is above 1. In this case, the only constraints on the node are due to the graph
regularization cost. We can see how many of the nodes are used by the classification cost
by looking at the number of cases for which ykEz[fkθt(z)] is below or equal to 1. In Figure
5.1a, we have shown an histogram of ykEz[fkθt(z)] for labeled nodes in the training set (after
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convergence). For around one third of the nodes, the value of the classifier is above 1.1 –
they could be removed from the labeled set without harming the solution (however, these
could have been useful in early stages of optimization). It means that; similarly to kernel
vectors in Support Vector Machine, a few nodes in the graph play the role of "kernel" nodes
which preserve the boundaries in the graph.

Regarding the relationship between the learned variance and the local properties of each
node, we looked at the relationship between the PageRank2 (Page et al., 1999) of a node
and its variance. We expected central nodes to have a certain representation, i.e. a small
variance. Figure 5.1b shows that high PageRank implies a small variance, which means
that for central nodes, representations are less uncertain. This matches our expectations.
However, the reverse implication is not true.

5.3 Conclusion

We have explored the use of uncertainty for learning to represent nodes in the challeng-
ing task of heterogeneous graph node classification. The proposed model, Heterogeneous
Classification with Gaussian Embeddings (HCGE), learns for each node a Gaussian distri-
bution over the representation space, parameterized by its mean and covariance matrix, by
optimizing a loss function that includes a classification loss and graph regularization loss.
We have examined four variants of this model, by using either spherical and diagonal co-
variance matrices, and by using two different loss functions for classification. Our model
can easily be extended to inductive learning by defining the Gaussian representation z as a
parameterized function of the input features.

Based on the experimental results obtained on datasets representative of different situ-
ations, our main findings are that (i) integrating uncertainty in representations improved
classification (ii) according to our initial intuition, the effect of using uncertainty has gen-
erally more impact when the amount of training data is lower and (iii) according to our
expectation, highly central nodes seem to have less variance associated to their representa-
tion.

2Using a standard damping factor of 0.15
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(A) Histogram of ykEz
[
fkθt(z)

]
.

(B) σ against the log-PageRank.

FIGURE 5.1: Qualitative results for the model HCGE(∆EV ,S) on the LastFM
dataset with 50% of the dataset used for train. In Figure 5.1b, we computed

Gaussian kernel density to show high density regions in the plot.





87

Chapter 6

Learning Gaussian Representations
for Relational Time Series Forecasting

Abstract
In this chapter, we address the problem of modeling multiple simultaneous time series
generated by different sources, where the observations are not only correlated inside each
series, but also across the different series. This problem happens in many domains such
as ecology, meteorology, etc. We propose a new dynamical state space model, based on
representation learning, for modeling the evolution of such series. The joint relational and
temporal dynamics of the series are modeled as Gaussian distributions in a latent space. A
decoder maps the latent representations to the observations. The two components (dynamic
model and decoder) are jointly trained. Using stochastic representations allows us to model
the uncertainty inherent to observations and to predict unobserved values together with a
confidence in the prediction.
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6.1 Introduction

6.1.1 Relational Time Series

Relational time series, i.e. multiple time series where the observations are correlated be-
tween series occur in many domains such as ecology, medicine, biology, earth observa-
tion by satellite imagery or local measurements, multimedia or even social data analysis.
The correlations between the different observed series can correspond to a proximity (e.g.
earth observation or epidemic diffusion) or to a similarity of behavior (e.g. user traces
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FIGURE 6.1: Representation of relational time series as a a graph, where
nodes correspond to series, and edges correspond to a prior relation between
two series. In this relational setting the task considered in this chapter is fore-

casting.

in social data). In the statistical literature, the modeling of relational time series is the
topic of a dedicated field: spatio-temporal statistics (Cressie et al., 2011; Wikle et al., 2010).
Different methodologies have been developed in the field for handling a large variety of
spatio-temporal phenomena, with an emphasis on the analysis of natural observations like
weather prediction, ecology or remote sensing. In the machine learning domain, there exists
a vast literature dedicated to sequence or time series prediction. Recently, deep recurrent
neural networks have witnessed notable successes in different sequence and time series
modeling tasks leading to an increasing number of publications, e.g. (Barbounis et al., 2006;
Hsieh et al., 2011; Cao et al., 2012; Hermans et al., 2013). Despite a large number of recent
developments, the modeling and analysis of relational time series has not been considered,
up to our knowledge, in the field of representation learning. In addition, most of the models
are deterministic in the sense that they are trained to predict future values from the past of
the series.

6.1.2 Contribution

We propose a new state space model for relational time series forecasting, able to model
the uncertainty both at the observation and at the modeling levels. This approach asso-
ciates each point of a time series with a Gaussian distribution in a latent space, the distribu-
tion over the observed values being directly computed from these latent distributions. The
model has two main components. One is responsible for the dynamics in the latent space
and is trained to model the evolution of the Gaussian distribution considering both the tem-
poral intra-series and the relational inter-series dependencies. A second component acts as
a decoder and maps the latent representations associated with each series to the correspond-
ing observations in the output space. Throughout the chapter, we will consider that the
inter-series relations are provided as prior knowledge, since we are mainly interested into
series coming from physical sources for which this evidence is generally available. Note
that this is not restrictive and the proposed model can be extended to learn the relations
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too. Although the focus in the paper is on forecasting, the model can be straightforwardly
extended to solve the imputation problem that aims at predicting missing values.

Our model is built on top of the model in (Ziat et al., 2016) which proposes a determin-
istic dynamical process model but does not consider any explicit modeling of uncertainty.
The new model makes use of Gaussian embeddings instead of simple vectors, and extends
the dynamics and loss functions of the model in (Ziat et al., 2016).

The contributions presented in this chapter are thus:

• A new dynamical model for relational time series inspired by representation learning;

• A stochastic component for modeling the uncertainties at the observation and dy-
namic levels;

• Predictions provided by the proposed approach correspond to distributions over pos-
sible outputs.

This chapter is organized as follows. In Section 6.2, we introduce some related work
on forecasting in time series, representation learning for time series, and recent deep learn-
ing works focusing on modeling uncertainty. We do not provide a complete state of the
art of the task since the purpose of this contribution was to see how good Gaussian repre-
sentations can deal with this task. The model proposed for this contribution is presented
in Section 6.3.1 together with four different variants. Section 6.3.3 presents experimental
results on four datasets, and Section 6.4 concludes this work and gives some perspectives.

6.2 Related Work

The classical topic of time series modeling and forecasting has given rise to an extensive lit-
erature. In statistics, classical linear models include many variations around auto-regressive
and moving average models (De Gooijer et al., 2006). In machine learning, non linear ex-
tensions of these models based on neural networks have been proposed as early as the 90s,
opening the way to many other non linear models including kernel methods (Muller et al.,
1999).

Relational time series have mainly been studied in the field of spatio-temporal statistics
(Cressie et al., 2011; Wikle et al., 2010). The traditional method first relied on a descrip-
tive approach using the first and second-order moments of the process for modeling the
spatio-temporal dependencies. More recently, dynamical state models, where the current
state is conditioned on the past, have been explored (Wikle, 2015). These models have been
considered both for continuous/discrete space and time components. However, the most
common way is to consider discrete time, leading to the modeling of time series of spatial
processes as we do here. When space is discrete, the model comes down to a general vec-
torial autoregressive formulation. These models face a curse of dimensionality in the case
of a large number of sources. Different strategies have been adopted to solve this problem
such as embedding the spatio-temporal process in a low-dimensional manifold or param-
eter reduction (Wikle, 2015), leading to model families quite similar to the ones used in
machine learning for modeling dynamical phenomena. Also, for complex underlying pro-
cesses, observations only provide an incomplete description of the process dynamics so that
modeling uncertainty at the data and model levels is an important topic.
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In the last 10 years, there has been a growing interest in learning latent representations
for example through neural networks and deep learning. Dynamical state space models
such as recurrent neural networks (RNN), which have been used for time series forecasting
in different contexts since the early nineties (Connor et al., 1994), have recently witnessed
important successes in different areas for general sequence modeling problems, leading to
breakthroughs in domains like speech (Graves et al., 2013), language generation (Sutskever
et al., 2011), translation (Cho et al., 2014), and many others. Among this family, the model
closest to ours is the dynamic factor graph model of (Mirowski et al., 2009) designed for
multiple series modeling for the tasks of forecasting and imputation. However this model
does not consider relational dependencies which is the focus of our approach.

Most of the above models make use of pointwise representations and do not model ex-
plicitly the uncertainties present in the process and/or in the observations. Recently, in the
learning representation community, there has been a growing interest in using distributions
as latent representations instead of points. (Vilnis et al., 2015; He et al., 2015) and our pre-
vious contribution, all make use of Gaussian distributions for representing different items
like words (Vilnis et al., 2015), nodes in knowledge graphs (He et al., 2015) or nodes in
graphs for transductive classification (Chapter 5). Note that Gaussian processes have also
been used for time series prediction, but they have mainly been considered for univariate
time series prediction (Hachino et al., 2011; Brahim-Belhouari et al., 2004) and they do not
use a state space formulation.

Recent techniques that combine variational inference and stochastic back propagation
(Kingma et al., 2014; Rezende et al., 2014) deal with uncertainty by modeling distributions
in the observation space, mapping random variables within a latent space to observations
with a deep neural network. The motivation for these models is the modeling and approxi-
mation of complex distributions. Extension of these ideas to the modeling of sequences and
time series has been proposed very recently (Fraccaro et al., 2016; Krishnan et al., 2017; Karl
et al., 2016; Chung et al., 2015). Many of these models propose to combine ideas coming
from recurrent neural networks where the latent (or hidden) units are deterministic func-
tions of the past observations with ideas from state space systems where the latent states are
modeled as random variables. The objective is generally to bypass the limitations of each
model family (absence of uncertainty modeling for RNNs and limitations to simple dynam-
ics for state space models). Although this is a very recent line of work, several variations
of these ideas have been proposed for modeling complex temporal dynamics while consid-
ering the uncertainty of the dynamical process. Like for their static counterpart (Kingma
et al., 2014), these models mainly focus on estimating complex distributions. The difference
is that they consider sequence models instead of vector spaces for the former models. They
are then mainly used as generative models and evaluated on their ability to recover these
distributions. Our model has been designed for forecasting and is not used as a generative
model. Also, our formulation gives us direct access to the output distribution with no need
to sample or work with intractable distributions. Our goal is not to capture complex data
distributions but to predict future or missing values. Another difference is that all these
models do have as input either past observations (like in classical RNNs) or a command
(like in classical state space systems), which is not the case for our model where the Z rep-
resentations are learned directly. Finally none of these models considers relational series
as we do here. Another related line of work is the extension of classical latent linear state
space models (Kalman filters) by neural networks (Krishnan et al., 2015). Here again the
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goal is different, and like in classical Kalman filters, the objective is to recover the latent
signal. However, even if there are clear differences between all these systems both in their
formulation and in their use, they are related and clarifying the nature of this relation is an
interesting open topic.

6.3 Relational Time Series Forecasting with Gaussian Embeddings

6.3.1 Model

Notations and Task Formal Description

Let us consider a set of n temporal sequences1 x1, ..,xn, coming from different sources, such
that x(t)

i ∈ R is the value of the ith sequence at time t defined by xi = (x
(1)
i , .., x

(T )
i ), T being

the number of observed time steps. For simplification, we consider that all the series have
the same length, but again this is not restrictive.

We model the dependencies between the different series through a graph, the different
sources being the graph nodes and the links modeling explicit dependencies between the
sources. This is illustrated in Figure 6.1. The links can reflect a spatial proximity between the
sources of the series, a similarity of behavior between users or any other predefined relation.
These explicit relations are modeled in the latent space, through our hypothesis that links
represent some prior information about a potential dependency between two sources. If the
observations confirm this dependency, the model will learn latent representations for the
sources dynamics that will be close one to the other. The proximity of the representations
is controlled by the strength of the link between the two time series when provided, and
denoted ei,j . We assume that the graph structure is static through time.

Let us denote τ the size of the prediction horizon. The forecasting problem considered
here is to compute, knowing {x(t)

i }i,t and for all series i the values x(T+k)
i for all k in [1; τ ].

6.3.2 Informal description

The proposed model is a dynamic state space model: the dynamics are modeled in a contin-
uous latent state space and the observations are generated from states in this latent space.
State space models have already been considered for multiple time series (e.g. (Mirowski
et al., 2009)) and for spatio-temporal processes (e.g. (Wikle et al., 2010)).

Both the observations and the dynamics are subject to uncertainties. Usually, the obser-
vations correspond to a partial view of the underlying generating process and the dynamics
being hidden is not directly accessible and should be modeled as a stochastic process.

To handle this uncertainty, we propose a model, denoted here Relational Dynamic model
with Gaussian representations (RDG), that represents latent factors as distributions in a la-
tent space and learns the series dynamics in this latent space. The distributions themselves
are estimated using observations like for any other representation learning model. Besides
being more adapted to handling the noise inherent to the process and to the observations,
the model can be used to predict the posterior distribution of the variables associated to the
series and in particular the confidence or variance associated to the predictions.

1For simplicity, each sequence is an univariate time series, but the model can be trivially extended to multi-
variate series.
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FIGURE 6.2: The Gaussian embedding Z(t)
i , the dynamic function h and the

decoding function f are learned. We compute Z(t+1)
i and Z(t+2)

i using h and
Z

(t)
i . Then we computeX(t+1)

i andX(t+2)
i fromZ

(t+1)
i andZ(t+2)

i respectively
using f .

The model is an extension of the deterministic model of (Ziat et al., 2016) and has two
main components:

• Decoding component f : we consider that each series corresponds to a particular
trajectory in an unknown latent space. Each series x(1)

i , ...., x
(T )
i is thus associated to

a series of random variables in Rd denoted Z
(1)
i , ...., Z

(T )
i . Z(t)

i is the latent factor ex-
plaining the observed value of the series i at time t, and d is the size of the latent space.
We model each Z

(t)
i as a multivariate normal variable N (µ

(t)
i ,Σ

(t)
i ). The observation

can be computed from this latent distribution by using a decoding function f mapping
Z

(t)
i to X(t)

i = f(Z
(t)
i ).

• Dynamic component h: The second component models the series dynamics in the la-
tent space. We suppose that dynamics can be captured for all series through a function
h that maps the latent random variableZ(t)

i to the next latent variableZ(t+1)
i = h(Z

(t)
i ).

In addition, constraints are introduced to reflect prior knowledge about the relational
dependency structure of the series. For any couple of series i and j with a known
dependency, i.e. such that ei,j > 0, we add a corresponding constraint on Z

(t)
i and

Z
(t)
j .

Figure 6.2 summarizes this description.
In the following, we explain how the distributions corresponding to the random vari-

ables Z(t)
i are learned, jointly to the functions f (decoder component) and h (dynamic com-

ponent).

Model Definition

We suppose that the random variablesZ(t)
i follow a Gaussian distributionZ(t)

i ∼ N (µ
(t)
i ,Σ

(t)
i )

where µ(t)
i and Σ

(t)
i have to be estimated from known observations. For simplicity, we con-

sider in the following that Σ
(t)
i is a diagonal matrix, with σ(t)

i,j denoting the jth value of the
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diagonal of Σ
(t)
i . Since the representations Z(t)

i themselves are learned in the training phase,
this diagonal hypothesis imposes a simple constraint on the Z(t)

i and the model remains
very flexible.

We define a global loss function L(µ,Σ, f, h) where µ and Σ denote the means and
covariance matrices for all the series and for all the time steps between 1 and T . The loss is
a sum of three terms: (i) a decoding loss ∆De, (ii) a dynamical loss ∆Dy and (iii) a structural
loss ∆R:

L(µ,Σ, f, h) =

n∑
i=1

T∑
t=1

∆De1(f(Z
(t)
i ), x

(t)
i )

+ λDy

n∑
i=1

T−1∑
t=1

∆Dy1
(Z

(t+1)
i , h(Z

(t)
i ))

+ λR

n∑
j=1

T∑
t=1

ei,j∆R(Z
(t)
i , Z

(t)
j ) (6.1)

where λDy and λR are hyperparameters weighting the importance of the different elements
in the loss function.

The first term of Equation 6.1 corresponds to the decoding component, and forces both
f and the learned distributions of variables Z to “explain” the observations, the second
term, the dynamic component, encourages h to model the time dynamics in the latent space,
while the third term captures the relations between the pairs of series. In the following,
we use for f a linear function and for h either a linear or non-linear function. The reason
for using a linear f is that the model flexibility mainly comes from the possibility to learn
the Z representations and that adding a non linear decoder would not improve much its
potential. Besides, it allows to derive closed form expressions for the predicted outputs and
thus offers simple scalable solutions, whereas predicting the distributions for a non linear
transformation of the latent variables would involve more complex approximate solutions.

Learning Learning the model is performed through the minimization of the loss function
L(µ,Σ, f, h) with respect to µ, Σ, f and h. To simplify the notations, the parameters of f
and h are not made explicit in the notations – f and h are only supposed to be differentiable.
At the end of the learning process, all the latent distributions for each of the time steps are
known for the training data, as well as the decoding function f and the dynamical one
h. We used ADAM (Kingma et al., 2015) as a stochastic gradient descent technique. This
optimization can be easily made on a large scale dataset, and/or by using GPUs. We have
considered different variants of the model. For clarity we first describe below the model
that provided the best results on the majority of experiments. The other variants are briefly
described at the end of the section and will then be used as baselines for comparison.

From Latent Space to Observations The mapping onto the latent space is learned so that
the values x(t)

i of each series can be predicted from its respective Gaussian embedding Z(t)
i

through the f function. We use, as the loss functions ∆De1 for measuring the error be-
tween the predicted distribution f(Z

(t)
i ) and the observation x

(t)
i , the expectation of the
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mean squared error between the predictions and the observations:

∆De1(f(Z
(t)
i ), x

(t)
i )

def
= E

[
(f(Z

(t)
i )− x(t)

i )2
]

(6.2)

When f is a linear function, this loss can be explicitly written as:

∆De1(f(Z
(t)
i ), x

(t)
i ) =

d∑
k=1

θ2
kσ

(t)
i,k +

(
< θ, µ

(t)
i > −x(t)

i

)2
(6.3)

Note that minimizing ∆De1 updates both the mean and the variance of the distribution.
More specifically, an observed value xi with ∆De1 will pull all the variances σ(t)

i,k down.
This is an interesting property since observing values should reduce the variance of the
representation. Moreover, variance is reduced for the dimensions that are important for the
prediction.

Modeling Dynamics The loss function ∆Dy1
aims at finding values Z(·)

i and a dynamic

model h, that will be used to predict the representation of the next state Z(t+1)
i of the time

series i. The function h maps a distribution N (µ
(t)
i ,Σ

(t)
i ) to N (µ

(t+1)
i ,Σ

(t+1)
i ). Based on

(Vilnis et al., 2015) and our previous contribution (Chapter 5), we use a Kullback-Leibler
divergence (noted DKL(·||·)) to compare the distribution of Z(t+1)

i to the distribution pre-
dicted by h, f(Z

(t)
i ).

We consider that the latent representation at time (t+1) is a non linear transformation of
the latent distribution at time t. Practically, we used two non linear multilayer perceptrons
(MLP), hm and hc; hm predicts the means and hc variances: more precisely the next mean is
given by µ(t+1)

i = hm(µ
(t)
i ,Σ

(t)
i ), and the next variance by Σ

(t+1)
i = hc(µ

(t)
i ,Σ

(t)
i ). This gives:

∆Dy1
(Z

(t+1)
i , h(Z

(t)
i ))

def
= DKL(Z

(t+1)
i ||N (hm(µ

(t)
i ,Σ

(t)
i ), hc(µ

(t)
i ,Σ

(t)
i ))) (6.4)

We make the hypothesis that the resulting distribution (for Z(t+1)
i ) is Gaussian. The KL

divergence between the two Gaussian distributions has a simple analytic form from which
the gradient can be easily computed (Vilnis et al., 2015).

Structural regularization term At last, ∆R corresponds to a structural regularization over
the graph structure that encourages the model to learn similar representations for time se-
ries that are interdependent. This forces the model to learn representations that reflect the
structural dependencies between the series. Recall that these dependencies are supposed to
be provided as priors for this model. We define this regularization loss as:

∆R(Z
(t)
i ||Z

(t)
j ) = DKL(Z

(t)
i ||Z

(t)
j ) (6.5)

which again has, for Gaussian random variables, a simple analytical form that can be used
for learning2. This is similar to what was done in Chapter 5 to define the relationships

2 1
2
(tr(Σ

(t)
j

−1
Σ

(t)
i ) + (µ

(t)
j − µ

(t)
i )TΣ

(t)
j

−1
(µ

(t)
j − µ

(t)
i )− d− log(

|Σ(t)
i |

|Σ(t)
j |

))
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between two nodes in the graph.

Impact of minimizing the KL-divergence on predicted values

Here, we show how the structural regularization term ∆R between two connected time se-
ries bounds the difference between predicted distributions w.r.t. the total variation distance.

Definition 1 LetX and Y be two real random variables of density distribution respectivelyDX and
DY . Let B be the Borel set of R. The total variation distance between X and Y noted dTV (X,Y ) is
defined via:

dTV (X,Y ) = sup
A∈Borel

(|DX(A)−DY (A)|) (6.6)

where dTV is a distance between distributions. It is used here because of its simple rela-
tion with DKL through Pinsker inequality. dTV represents the largest possible difference
between the probabilities that the two random variables can assign to the same event. It is
greater or equal to the `1 distance between the density functions.

Property 1 (Pinsker’s inequality for Gaussian vectors) Let Zi and Zj be two Gaussian ran-
dom variables of Rd with both diagonal co-variance matrices. Let θ ∈ Rd. We have:

dTV (θ · Zi, θ · Zj) ≤
√
d ·DKL(Zi||Zj)

2
(6.7)

Proof 1 Since we consider here diagonal covariance matrices and that the KL-divergence is invari-
ant by multiplying both random variables by the same scalar, we can show that:

DKL(Zi||Zj) =
d∑

k=1

DKL(Zi,k||Zj,k) =
d∑

k=1

DKL(θkZi,k||θkZj,k) (6.8)

with Zi,k being the k-th component of the Gaussian vector Zi.
Using Pinsker’s inequality one can see that minimizing the KL-divergence also minimizes the

total variation norm, leading to:

2
d∑

k=1

(dTV (θkZi,k, θkZj,k))
2 ≤

d∑
k=1

DKL(θkZi,k||θkZj,k) (6.9)

Then using the Cauchy–Schwarz inequality, we have:

1

d

(
d∑

k=1

dTV (θkZi,k, θkZj,k)

)2

≤
d∑

k=1

(dTV (θkZi,k, θkZj,k))
2 (6.10)

Finally, each component of the random vectors Z being pairwise independent, we have:

dTV (
d∑

k=1

θkZi,k,
d∑

k=1

θkZj,k) ≤
d∑

k=1

dTV (θkZi,k, θkZj,k) (6.11)
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Combining the above inequalities, we can straightforwardly show the following one:

dTV (θ · Zi, θ · Zj) ≤
√
d ·DKL(Zi||Zj)

2
(6.12)

Thus, the closer the Rd-Gaussian variables (w.r.t. the KL-divergence), the closer their
inner product distribution with a vector of Rd (w.r.t. the total variation distance).

This means that having similar latent representations constrains the predicted values to
be similar, and the above result provides a bound on this closeness.

Inference and Time Complexity

The inference step is straightforward. Having learned f , h and the distribution parameters
of Z using past values for all series i, the last Z(T )

i distribution values will be used as initial
values for predicting the latent distributions at (T + 1) using transfer function h: the pre-
dicted distribution then follows N (h(µ

(T )
i ,Σ

(T )
i )). The time series prediction at time T + 1

can then be computed via the decoding function f and followsN (h(µ
(T )
i ,Σ

(T )
i )). To predict

at horizon 2, we just iterate the procedure, starting from the distribution of the latent vari-
ables at time T + 1, leading to distribution N (h ◦ h(µ

(T )
i ,Σ

(T )
i )) for Z(T+2)

i , and then again
using h to get the predicted distribution of the series at T + 2, etc.

Inferring the value of the i-th time series at time (T+N) requires to compute f(hN (ZTi )),
f being linear if h is a MLP the time complexity of the inference procedure is then in
O(Ndd′) with d′ the size of the MLP hidden layer, with O(nTd + dd′) parameters to learn,
if h is linear the complexity of the inference is in O(Nd2) with O(nTd + d2) parameters to
learn.

Variants

We have experimented with other variants of the model by considering alternative losses
and h functions. For the loss, we also considered a simple difference between the expected
value of f and the observation using a mean-square error:

∆De2(f(Z
(t)
i ), x

(t)
i )

def
=
(
E
[
f(Z

(t)
i )
]
− x(t)

i

)2
(6.13)

When considering a linear decoding function such as f(·) =< θ, · > , θ being the set of
parameters of f , ∆De2 can be rewritten as as:

∆De2(f(Z
(t)
i ), x

(t)
i ) = (< θ, µ

(t)
i > −x(t)

i )2 (6.14)

This loss only models the mean of the distribution whereas the loss in Section 6.3.1 considers
both the mean and the variance.

For h, we also considered a linear function, instead of a non linear one as described
before. This is again a simplification of the model. We then consider that the latent repre-
sentation at time (t + 1) is a linear transformation of the latent distribution at time t. The
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transformed variable is also a Gaussian and its parameters can be easily computed. h is a
function from Rd to Rd which is represented by a matrix γ ∈Md,d(R):

∆Dy2
(Z

(t+1)
i , h(Z

(t)
i ))

def
= DKL(Z

(t+1)
i ||γZ(t)

i ) = DKL(Z
(t+1)
i ||N (γµ

(t)
i , γΣ

(t)
i γ

T )) (6.15)

6.3.3 Experiments

Datasets

Experiments have been performed on four datasets respectively extracted from Google Flu
Trends3, WHO4 and from two datasets from Grand Lyon5 (GL) (respectively data from
traffic conditions and from car parks occupancy). All the series are normalized. For all
datasets, we used binary dependency relations indicating whether two series are related or
not.

• The Google Flu Trend (GFT) dataset is composed of an aggregation of weekly Google
search queries related to the flu in 29 countries. This dataset spans about ten years
of time. The relations between series are defined a priori so that the series of two
countries i and j are linked, i.e. ei,j = 1 in Equation 6.1, only if the countries have a
common frontier. There are 96 relations.

• The GL Traffic (GL-T) dataset corresponds to the traffic conditions of the 50 busi-
est roads of the city of Lyon (France). Data is aggregated on 20 minutes windows
spanning 15 days. The binary relations between series are based on the geographical
proximity of roads. There are 130 relations.

• The GL Park (GL-P) dataset represents the occupancy of public car parks in Lyon.
The series correspond to the occupancy of the 30 busiest car parks. It has the same
window and period of time as the previous dataset, and the binary relations between
series are based on the geographical proximity of car parks. There are 74 relations.

• The WHO dataset provides the number of deaths caused by diphtheria over 91 dif-
ferent countries, giving rise to 91 time series. The binary relations between series are
defined so that two series are linked if the corresponding countries share a common
frontier. There are 228 links.

Baselines

We compare our approach with five baselines:

• Auto-Regressive (AR), a monovariate linear auto-regressive model. It computes its
predictions based on a learned linear function of a fixed number p of past values of
the series. The order p of the model is a hyperparameter of the model selected by grid
search.

3http://www.google.org/flutrends
4http://www.who.int
5http://data.grandlyon.com
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• Feed Forward Neural Network (FFNN), representative of non-linear auto-regressive
models of order p where the non-linear function is modeled as a feed-forward neural
network with one hidden layer of size s. In this case, p and s are hyperparameters
selected by grid search.

• RNN, a recurrent neural network, with one hidden layer of size s, of recurrent units
and tanh non-linearities. The RNN model is a state space non-linear auto-regressive
model with exogenous inputs (the past values of the series). Note that this model
should in principle be able to learn the inter-series dependencies, but the dependen-
cies are not modeled explicitly as they are in our model. Also the RNN does not in-
troduce explicit modeling of uncertainties. We used here a simple RNN, experiments
with GRU and LSTM giving similar results.

• KF (Kalman, 1960), is a classic Kalman Filter with linear transformations from one
state to another.

• DFG (Mirowski et al., 2009), a state of the art model that learns continuous determin-
istic latent variables by modeling the dynamics and the joint probabilities between
series. All the hyperparameters of the baselines have been set using a validation set
by grid search, including the best architectures for the dynamic model h when it is a
multi-layer perceptron with one hidden layer or a linear model.

The different variants of our model are denoted RDGi,j with i, j ∈ {1, 2}. RDG1,1

thus corresponds to the main model introduced in Section 6.3.1, RDG1,2 to the model with
decoding loss ∆De1 and linear h, i.e. dynamic loss ∆Dy2

.

Experimental protocol

The different model hyper-parameters have been selected using a time series cross-vali-
dation procedure called rolling origin as in (Ben Taieb et al., 2014; Ganeshapillai et al., 2013).
This protocol makes use of a sliding training window of size T . The value of T has been
fixed so that it is large enough to capture the main dynamics of the different series. Each
series has been normalized such that its values are between 0 and 1.
For the evaluation metric, we have considered a root-mean-square error (RMSE) criterion.
We evaluate the models by considering prediction errors at horizon t+ 1.

Results

Let us first present the performance of our model w.r.t. the baselines for prediction at hori-
zon 1 in Figure 6.3. We have tested the four variants of our approach i.e. combinations
of ∆De1 or ∆De2 with ∆Dy1

or ∆Dy2
. The proposed model obtains the best results on all the

datasets except GFT where KF performs better. It outperforms the baselines on two datasets
(GL-P -Grand Lyon Parks- and GFT -Google Flu Trends- on the table) and gets results sim-
ilar to the RNN on the two others (GL-T -Grand Lyon Traffic- and WHO). RDG1,1 usually
gets better results than the other models, i.e. the best combination is a MSE expectation
error for the decoder and a non-linear model for the dynamics.

Figure 6.4 shows the prediction quality (RMSE) at (T + 1), (T + 2), (T + 3), (T + 4) and
(T + 5) and illustrates the ability of RDG to predict correctly at different horizons. One can
remark that at (T + 5) KF performs badly in comparison to other baselines.
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Model GL-T GL-P GFT WHO
AR 0.0752 0.0892 0.0626 0.0832

FFNN 0.0751 0.0894 0.045 0.0838
RNN 0.0709 0.0890 0.0431 0.0795

KF 0.0711 0.0833 0.0388 0.0799
DFG 0.0712 0.0911 0.0592 0.0795

RDG2,2 0.0742 0.0902 0.0607 0.0848
RDG2,1 0.0707 0.0834 0.0434 0.0796
RDG1,2 0.0765 0.0896 0.0589 0.0831
RDG1,1 0.0718 0.0828 0.0429 0.0795

FIGURE 6.3: Comparison of RMSE at T+1 on the four datasets between base-
lines and our proposed model (RDG) on the prediction task. RDGk,l corre-

sponds to the variant with losses (∆Dek ,∆Dyl
).

FIGURE 6.4: Comparison of RMSE from T+1 to T+5 on GL-T between base-
lines and our proposed model (RDG) on the prediction task.
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FIGURE 6.5: Forecasts on GFT (two different time series of the dataset) with
the RDG2,2 model showing its range of confidence: E(f(Z(t)))±var(f(Z(t))).

Prediction at 25 + n corresponds to f(hn(Z(25)).

RDG has the additional property of modeling the uncertainty associated to its predic-
tions, which is not the case for a RNN. Let us consider the curves presented in Figure 6.5.
They illustrate, the predictions made by our model together with their associated variance
computed through the Gaussian embeddings. First, one can see that the ground truth val-
ues are always within the confidence interval provided by our model, which means that
RDG computes relevant minimum and maximum possible values. Another aspect is that
the size of the interval increases with the prediction horizon, which is what is expected from
such a model. The latter is then able to predict relevant confidence values for its predictions.

Comparison between RDG with/without structural regularization or uncertainty We
compare in Table 6.1 the results between our model when taking into account the neigh-
borhood graph (λR 6= 0) or not (λR = 0): forecasts are uniformly worse for all datasets
when we do not take into account the neighborhood graph, it suggests that the regularizer
improves the model when the input graph is relevant. Furthermore, we give the results ob-
tained without uncertainty, which corresponds to the model described in (Ziat et al., 2016)
(denoted Rainstorm): here again, our model outperforms this deterministic model for all
the datasets.

Model GL-T GL-P GFT WHO
Rainstorm 0.0710 0.0886 0.0440 0.0804

RDG (λR = 0) 0.0719 0.900 0.0441 0.0807
RDG 0.0707 0.0828 0.0388 0.0795

TABLE 6.1: RMSE at T + 1 on the four datasets.
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6.4 Conclusion

In this contribution, we have proposed a model for relational time series forecasting. Our
model (RDG) is based on latent Gaussian embeddings, and has shown competitive per-
formance on four different datasets compared to state-of-the-art models. Moreover, RDG
allows us to model the uncertainty of predictions, providing for example confidence inter-
vals for each prediction.
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Chapter 7

Learning Gaussian Representations
for Collaborative Filtering

Abstract
Most collaborative filtering systems, such as matrix factorization, use vector representations
for items and users. Recommendation datasets consist in a matrix of item ratings from
various users. This matrix can also be seen as a weight matrix for a bipartite graph between
users and items which motivated our interest in tackling this task. Those representations
are deterministic, and do not allow modeling the uncertainty of the learned representation.
Uncertainty can be useful when a user has a small number of rated items (cold start), or
when there is conflicting information about the behavior of a user or the ratings of an item.
In this chapter, we leverage recent works in learning Gaussian embeddings and apply it
to the task of recommendation. In this contribution, we show that our proposed model
performs well on three representative collections (Yahoo, Yelp and MovieLens) and analyze
learned representations.
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7.1 Introduction

7.1.1 Recommender Systems and Uncertainty

Recommendation is the last task involving relational data that we studied during this the-
sis. Recommendation datasets consist before all in a matrix of item ratings from various
users. This matrix can also be seen as a weight matrix for a bipartite graph between users
and items. Note that more complex recommendation datasets exist, which might involve
multiple relation types between users and products (e.g. buy, look at) or associate attributes
with users and items (e.g. ratings, reviews). Recommender systems help users find items
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they might like in large repositories, thus alleviating the information overload problem.
Methods for recommending items can be broadly classified into collaborative filtering (CF),
content-based, and hybrid methods (Ricci et al., 2011). Among recommender systems, col-
laborative filtering systems are the most successful and widely used because they leverage
all past ratings from users and items, while content-based approaches typically build users
(or items) profiles from items (or users) predefined representations. In the context of the
thesis, exploring collaborative filtering methods is interesting since the task can be cast into
a problem involving relational data where entities are users and products, and relation-
ships include some form of relation like friendship, buying, rating, reviewing or searching for a
product.

This contribution is a first step in this direction: we explore the use of Gaussian represen-
tations for the recommendation task. Among collaborative recommender systems we are
interested in those that represent users and items as vectors in a common latent "recommen-
dation" space. Matrix factorization derivatives are a typical example of such models. The
main assumption behind these models is that the inner product between a user and an item
representation is correlated with the rating the user would give to the item. The main inter-
est of these models is their potential for integrating different sources of information (Zhang
et al., 2016) as well as their good performance, both in efficiency and effectiveness (Ricci et
al., 2011). The most successful approaches are based on learning-to-rank approaches such
as (Rendle et al., 2009; Weimer et al., 2007).

Despite the success of deterministic representation learning, one limitation of these
models is their inability for handling uncertainty. Even when they are based on a probabilis-
tic model, e.g. (Salakhutdinov et al., 2007; Rendle et al., 2009), they only suppose a Gaussian
prior over the user and item embeddings but still learn a deterministic representation. The
prior is thus only used as a regularization term on the user and item representations.

Uncertain representations can have various causes, either related to the lack of informa-
tion (new users or items, insufficient number of ratings for a user or an item, users that did
not rate any movie of a given genre), or to contradictions between user or item ratings. To
illustrate the latter, let us take a user that likes only a part of Kung Fu movies, but with no
clear pattern, i.e. no sub-genre. With usual approaches, such a user will have a component
set to zero for the direction of the space corresponding to Kung Fu. With our proposed
approach, we would still have a zero mean, but with a high variance. Our hypothesis is
that, because of these two factors, namely cold start and conflicting information, training
will result in learned representations with different confidences, and that this uncertainty
is important for recommending.

Moreover, using a density rather than a fixed point has an important potential for de-
veloping new approaches to recommendation. First, instead of computing a score for each
item, the model can compute a probability distribution of the score, or the covariance be-
tween the scores given by users for two different item. This can be interesting when trying
to diversify result lists, since the variance of the representations can be leveraged e.g. by
Portfolio approaches1 (Wang et al., 2009): the model could propose diversified lists taking
into account the variance of the representation (i.e. with different degrees of risk). Sec-
ondly, such models are interesting because they can serve as a basis for integrating different

1Economic theory dealing with investment in financial markets. The goal is to select a set (portfolio) of
financial products based on their uncertainty/risk. This theory suggests that diversification is an effective way
to reduce the risk of the portfolio (Markowitz, 1952).
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sources of external information, and thus serve as a better bridge between content-based ap-
proaches and collaborative filtering ones. Thirdly, time could be modeled by supposing that
the variance of the user or item representation increases with time if no new information
(i.e. user ratings) are provided.

7.1.2 Contribution

In this chapter, we describe the model proposed as our fourth contribution. This model uses
Gaussian embeddings which have been recently and successfully proposed for learning
word (Vilnis et al., 2015), knowledge graph (He et al., 2015), nodes in a graph (Chapter 5)
or time series (Chapter 6) embeddings. More precisely, we suppose that each user or item
representation corresponds to a Gaussian distribution where the mean and the variance
are learned. Said otherwise, instead of a fixed point in space, a density represents each
item or user. The variance term is a measure of uncertainty associated to the user/item
representation.

To learn these Gaussian embeddings, we rely on a learning to rank approach. More
precisely, we use the same starting point as (Rendle et al., 2009), that aims at maximizing
the probability of ranking pairs of items for individual users. While the starting point is
the same, we can leverage the probabilistic framework to directly estimate this probability
– while (Rendle et al., 2009) use a transformation of the difference of the items scores to
compute it.

In the following, we first describe the proposed model, and then show experimen-
tally that it performs very well compared to state-of-the-art approaches on three different
datasets. The contributions of this chapter are

• The use of Gaussian representations for items and users in collaborative filtering;

• Extensive experimental work that shows the good performance of the model;

• Qualitative analysis to show how the variance component is used in the model.

7.2 Learning Gaussian Embeddings for Collaborative Filtering

7.2.1 Model

Our model is learned through a pairwise learning-to-rank criteria that was first proposed by
Rendle et al. (Rendle et al., 2009) for collaborative filtering (Bayesian Personalized Ranking,
BPR). Formally, they optimize the maximum a posteriori of a ranking model, a training
dataset D, i.e.

p (Θ|D) ∝ p (D|Θ) p (Θ)

where D represents the set of all ordered triples (u, i, j) (the user u ∈ U prefers item i ∈ I
to item j ∈ I) and Θ, the model parameters. The factor p (Θ) corresponds to the prior on
the item and user representations (a Gaussian prior in (Rendle et al., 2009)). Then, using the
standard hypothesis of the independence of samples given the model parameters, we have

p (D|Θ) =
∏

(u,i,j)∈D

p (i >u j|Θ) (7.1)
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In (Rendle et al., 2009), the probability that user u prefers item i to item j, noted by
i >u j, is modeled by the sigmoid function of the difference of the inner products, that is:

p (i >u j|Θ) = σ (xi · xu + bi − xj · xu − bj) (7.2)

where bi (resp. bj) is the (popularity) bias for item i (resp. j)2. The popularity bias is the
tendency for popular items to be recommended more frequently, i.e. it corresponds to the
mean score that should be given to the corresponding item.

The Gaussian Embeddings Ranking Model

In this contribution, while we start with Equation 7.1, the different variables x• (• is either
a user u or an item i) are random variables, denoted X•, and not elements of a vector space.
We can hence estimate directly the probability p (i >u j|Θ) for the inner product Xu ·Xi to
be higher than Xu ·Xj .

We start by supposing that user and item representations follow a normal distribution,
that is for any user u and item i,

Xi ∼ N (µi,Σi) and Xu ∼ N (µu,Σu)

We suppose that Σ• = diag(σ•1, . . . , σ•N ) is a diagonal covariance matrix3 to limit the
complexity of the model (N is the dimension of the latent space): in practice, we have 2N
parameters for each user, and 2N + 1 for each item (+1 because of the bias). The variance
is associated with each element of the standard basis of the vector space. In practice, this
helps the model to learn meaningful dimensions, since it forces the use of the standard
latent space basis.

Since Xi and Xu are random variables, their inner product is also a random variable,
and we do not need to use the sigmoid function of Equation 7.2 as for BPR to compute
the probability that user u prefers i to j. We can instead directly use the random variables
defined above, that is:

p (i >u j|Θ) = p (Xi ·Xu + bi > Xj ·Xu + bj |Θ)

= p
(

Xu · (Xj −Xi)︸ ︷︷ ︸
Zuij

< bi − bj
∣∣∣Θ)

where bi and bj are the item biases4. To compute the above equation, we use two following
simplifications:

1. Item representations are independent given the model parameters. This implies that
the difference Xj −Xi follows a normal distribution

N (µj − µi,Σi + Σj)

2Since this equation represent the difference between the expected scores of items i and j, there is no user
bias.

3Note that we denote the variance σ.
4In this contribution, we did not consider them to be random variables, but they could be.
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2. We approximate the inner product distribution by a Gaussian5 using moment match-
ing (mean and variance), using the results from (Brown et al., 1977) who defined the
moments of the inner product of two Gaussian random variables; with our notations,
the two first moments of Zuij are defined as:

E [Zuij ] = µ>u (µj − µi) (7.3)

Var [Zuij ] = µ>u (Σi + Σj)µu + (µj − µi)>Σu(µj − µi)
+ tr (Σu (Σj + Σi))

=
∑
k

(σik + σjk)
(
µ2
uk + σuk

)
+ σuk (µjk − µik)2

(7.4)

The above assumptions allow us to write:

p (i >u j|Θ) =

∫ bi−bj

−∞
N (x;E [Zuij ] ,Var [Zuij ]) dx (7.5)

which is the Normal cumulative distribution function, it can be rewritten using the error
function (erf(x) = 2√

π

∫ x
0 e
−t2dt):

p (i >u j|Θ) =
1

2

[
1 + erf

(
(bi − bj)− E [Zuij ]√

2Var [Zuij ]

)]

=
1

2

1 + erf

 bi − bj − µ>u (µj − µi)√
2
∑

k (σik + σjk)
(
µ2
uk + σuk

)
+ σuk (µjk − µik)2

 (7.6)

This function can be easily differentiated with respect to the µ•k and σ•k (• is a user or
an item):

∂p (i >u j|Θ)

∂µik
= −∂p (i >u j|Θ)

∂µjk
= −∆uij

µukD
2
uij + 2σuk(µjk − µik)Nuij

D3
uij

∂p (i >u j|Θ)

∂σik
=
∂p (i >u j|Θ)

∂σjk
= ∆uijNuij

µ2
uk + σuk
D3
uij

∂p (i >u j|Θ)

∂µuk
= ∆uij

(µik − µjk)D2
uij + 2µuk(σik + σjk)Nuij

D3
uij

∂p (i >u j|Θ)

∂σuk
= ∆uijNuij

σik + σjk + (µjk − µik)2

D3
uij

(7.7)

with
Nuij = bi − bj − E [Zuij ]

Duij =
√

2Var [Zuij ]

∆uij =
1√
π

exp

[
−
(
Nuij

Duij

)2
] (7.8)

5This is a common approximation because of ease of computation.
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From Equation 7.6, and ignoring the biases, we can see that the difference between the
inner products µu · µi and µu · µj controls which is the preferred item, i.e. if the difference
is negative (resp. positive) then erf returns a positive (resp. negative) value. Furthermore,
the variances of the user and the item control the confidence. The larger the variances, the
closer to 0.5 the probability (since erf(0) = 0). This is the main difference with other matrix
factorization-based approaches.

Finally, we have to define the prior distribution over the parameters Θ on the parame-
ters, i.e. the means and variances. As we consider only a diagonal covariance matrix, we
can consider an independent prior for each mean and variance, i.e. for any µ•k and Σ•kk.
In this case, using a NormalGamma (NG) prior is a natural choice since it is the conjugate
distribution of a normal distribution with unknown mean and variance. More specifically,
we suppose that (

µ•k, σ
−1
•k
)
∼ NG (ν, λ, α, β) (7.9)

where • is a user or an item and:

NG (x, τ | ν, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(x−ν)2

2 (7.10)

where Γ is the gamma function. We choose standard values for the parameters: ν = 0,
λ = 1, α = 2 and β = 2 – these parameters do not change much the solution, and were
chosen so that user and item representations are not too much constrained. With this choice
of parameters the mode of the mean is 0 and the mode of the variance is 1.

Loss function

Plugging Equations 7.9 and 7.1 gives6:

L = log p (Θ) +
∑

(u,i,j)∈DS

log p (i >u j|Θ)

+
=
∑
u,k

[(
1

2
− α

)
log (σuk)−

2β + λµ2
uk

2σuk

]
+
∑
i,k

[(
1

2
− α

)
log (σik)−

2β + λµ2
ik

2σik

]
− c

∑
k

b2k +
∑

(u,i,j)∈D

log p (i >u j|Θ)

where • is a user or an item, +
= means equal up to a constant, and p (i >u j|Θ) is given by

Equation 7.6. We also suppose that biases are distributed through a normal prior probability
distribution (to avoid over-fitting), which results in an L2 regularization over biases. The
parameters Θ = {Σ•, µ•}•∈U∪I are optimized with stochastic gradient update, by picking
on a triple at each step and updating the correspond means and variances (for user u, item
i and j). The experimental protocol is detailed in Section 7.2.2.

6Note that logNG(µ•k, σ
−1
•k )

+
= log exp

[
(1/2− α) log(σ•k)− β/σ•k − λ(µ•k − ν)2/(2σ•k)

]
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Dataset Users Items Ratings
10 20 50 10 20 50 10 20 50

Yahoo! 3,386 1,645 286 1,000 1,000 995 158,868 99,915 32,759
MovieLens 743 643 448 1,336 1,330 1,307 94,491 91,053 80,643

Yelp 13,775 8,828 3,388 44,877 39,355 27,878 980,528 790,859 466,522

TABLE 7.1: Datasets statistics by truncation level (10, 20 or 50 ratings by user
in the training set).

Ordering items

To evaluate, we need to produce a ranked list of items for each user. To do so, we could
define a distribution probability over ranked list of items from our model using pairwise
comparison of items. We could, for instance, consider that i >u j if p (i >u j|Θ) > 0.5, since
it defines total ordering over items. However, this ranking does not preserve the variance
information since p (i >u j|Θ) > 0.5 if and only if (bi− bj−µ>u (µj−µi)) > 0. So, to preserve
the variance information of the representations when ordering items, we chose a simpler
and more efficient way of computing a single total ordering. More precisely, we order items
by their probability of having a positive score, i.e.:

sui = p(Xu ·Xi + bi > 0) =
1

2

1 + erf

 bi − µ>u µi√
2
∑

k σik
(
µ2
uk + σuk

)
+ σukµ

2
ik

 (7.11)

This ordering preserves the variance information – a score (Xu ·Xi+bi) with a high variance
will be associated with a score sui close to 0.5 (either greater if µi · µu + bi > 0 or smaller
otherwise). Other ranking functions, based on Portfolio theory for instance, can be used.

7.2.2 Experiments

We experimented with three different datasets extracted respectively from the Yahoo! Music
ratings for User Selected and Randomly Selected songs, version 1.0 7, the MovieLens 100k dataset
8 and the Yelp Dataset Challenge 9. The Yahoo! dataset contains ratings for songs. The
original rating data includes 15,400 users, and 1,000 songs for approximately 350,000 rat-
ings. The MovieLens dataset contains ratings for movies. The original rating data includes
943 users, and 1,682 movies for approximately 100,000 ratings. The Yelp dataset contains
ratings for businesses. The original rating data includes 1,029,432 users, and 144,072 busi-
nesses for approximately 4.1 million ratings.

We experimented with the following models, which are all based on a learning-to-rank
criterion (except for MP):

(MP) Most popular ranking where items are ranked based on how often they have been
seen in the past – while simple, this baseline is always competitive. There is no hyper-
parameter to optimize for this procedure;

7This dataset is available through the Yahoo! Webscope data sharing program http://webscope.
sandbox.yahoo.com/.

8Available at http://grouplens.org/datasets/movielens/100k/.
9See https://www.yelp.com/dataset_challenge for more information.

http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/
http://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset_challenge
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(SM) Soft margin (hinge) ranking loss, using stochastic gradient descent (Weimer et al.,
2008) using the implementation from the library (Gantner et al., 2011) and optimizing
all possible hyper-parameters;

(BPRMF) Bayesian Personalized Ranking (Rendle et al., 2009) on which our model cost
function is based on. We use the implementation from (Gantner et al., 2011) optimiz-
ing all possible hyper-parameters;

(CofiRank) Collaborative Filtering Ranking (Weimer et al., 2007) is a state-of-the art ranking
algorithm for recommender systems that optimizes an upper bound of nDCG10. We
chose the hyper-parameters based on their paper (Weimer et al., 2007);

(GER) The model presented in this contribution, named Gaussian Embeddings Ranking.
The number of dimensions was set among 5, 10, 20, 50, 100, 200, 500 and 1000.

We followed mostly the experimental procedure of (Weimer et al., 2007). In each case,
the dataset has been preprocessed as follows. For each dataset a given amount (10, 20, or
50) of items are kept from each user for training the model (the truncation level), 10 for the
validation set, and the remaining ratings were used for testing. Users with fewer than 30,
40 or 70 (depending on the amount of items kept for the training set) ratings were removed
to ensure that we could evaluate on at least 10 ratings for each user. We also removed items
that were not rated by at least 5 users. The statistics of the training datasets are shown in
Table 7.1. The validation set is used to select the best hyper-parameters for GER, SM and
BPRMF. Finally, for evaluation, we re-rank the judged items using the evaluated model,
and use a metric for ranked lists of items, namely nDCG at ranks 1, 5 and 10. Several
ranking measures have been proposed in the literature to evaluate the performance of a
ranking function. The nDCG measure (Järvelin et al., 2002) is a popular measure used in
information retrieval and learning to rank models, as for instance in (Weimer et al., 2007).
We used nDCG rather than MAP since nDCG handles multiple levels of relevance, whereas
MAP is designed for binary relevance. The reported results are the average of 5 different
experiments, with 5 different train/validation/test splits.

Results are reported in Table 7.2. There are roughly three groups of models: (1) Soft
Margin (SM) that performed worse; (2) BPRMF and most popular (MP); (3) GER and Cofi-
Rank (CR). Most popular (MP) performs well because of the chosen experimental evalua-
tion where only items seen by the user are evaluated and ranked.

Our model (GER) outperforms the others on the MovieLens and Yelp dataset. It is above
CofiRank (nDCG difference between 0.01 and 0.08), and is only below CofiRank on the
Yahoo dataset for train sizes 20 and 50 (nDCG difference between 0.001 and 0.02). Overall,
GER is performing very well on three datasets with different characteristics (in terms of
rating behavior, and number of ratings). Finally, a dimension of 50 generally gives good
results independently of the dataset for GER, and c (bias regularization) ≈ 10−5 give good
results on MovieLens and Yelp, but needs to be higher (≈ 10−3) on Yahoo to achieve good
results.

10https://github.com/markusweimer/cofirank

https://github.com/markusweimer/cofirank
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Train Size→ 10 20 50
Model ↓ N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10
Yahoo!

MP 53.0 59.1 67.3 52.5 58.3 66.4 53.6 57.8 64.0
BPRMF 52.8 59.0 67.2 52.2 58.3 66.4 52.2 57.7 63.5

SM 50.9 56.7 65.4 49.7 55.6 64.2 49.9 54.1 60.3
CR 53.5 60.3 68.2 57.8 61.7 68.9 56.0 60.0 65.6

GER 53.5 60.3 68.3 53.8 60.7 68.2 54.3 59.6 65.3
MovieLens

MP 66.0 64.7 65.8 68.4 65.3 66.3 69.1 67.4 67.5
BPRMF 66.1 64.6 65.7 66.3 64.3 65.8 66.9 65.0 66.2

SM 55.9 57.5 60.3 58.3 59.6 61.6 58.6 60.4 62.5
CR 69.0 67.3 68.6 69.7 68.5 69.5 71.4 69.4 70.6

GER 70.3 67.7 70.0 72.0 69.5 71.1 72.5 71.3 71.5
Yelp
MP 40.7 41.5 46.9 39.5 39.9 44.7 37.4 37.6 41.4

BPRMF 40.8 41.3 46.8 39.6 39.8 44.6 37.3 37.2 40.9
SM 37.3 38.3 44.4 35.8 36.9 41.9 33.4 34.1 38.0
CR 47.1 46.9 51.1 46.5 46.6 50.4 46.2 45.8 48.6

GER 55.2 52.2 56.2 57.4 53.5 56.4 58.2 53.7 55.3

TABLE 7.2: Collaborative Ranking results. nDCG values (×100) at different
truncation levels are shown within the main columns, which are split based

on the amount of training ratings.

Analysis

We now turn to the analysis of results, based on the study of the learned representations for
the MovieLens dataset11. We used the hyper-parameters that were selected on the valida-
tion set, and looked at the set of mean-variance couples, i.e. the (µ•k, σ•k) for k ∈ {1, . . . , N}
and where • is a user or an item.

In figure 7.1, we plotted the different couples (µ•1, σ•1), as well as the histogram of mean
and variance for the MovieLens dataset. We can see that the model exploits the different
ranges of mean (-0.3 to 0.3) and, more importantly, variance (0.4 to 1.6). We recall that we
use a NormalGamma prior for (µ•k, σ•k). Thus, according to the chosen parameters, the
mode of the means should be near 0 and the mode of the variances near 1. The ranges
exploited by the model are then around the priors. This was satisfying since it was not
obvious that the variance component would be used by the model. The same holds for the
other datasets, components and training sizes. Other examples are given in Figures 7.2 for
users and 7.3 for items.

To have a deeper insight on the use of the variance, in Figures 7.4 and 7.5, we plotted vi-
olin (density) plots of the variance of users and items, for different latent space dimensions
(5 to 1000), and training set sizes (i.e. truncation levels of 10, 20 and 50). We can observe that
when the amount of training data increases, the median of the σ•k decreases while the vari-
ance of the σ•k increases. This corresponds to our hypotheses. The decrease of the median
of the σ•k shows that more evidence (i.e. more training examples) reduces the uncertainty

11The same holds for the other datasets.
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FIGURE 7.1: User (top) and item (bottom) learned first component represen-
tation plots (σ•1 vs µ•1) for the training set with 50 items per user from the

MovieLens dataset and a representation dimension of 50.
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FIGURE 7.2: Subset of user learned components representation plots (σ•k
vs µ•k with different k) for the training set with 50 items per user from the

MovieLens dataset and a representation dimension of 50.
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FIGURE 7.3: Subset of item learned components representation plots (σ•k
vs µ•k with different k) for the training set with 50 items per user from the

MovieLens dataset and a representation dimension of 50.
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FIGURE 7.4: Violin (density) plots for the variance of users (σ•k) for different
latent space dimensions on the MovieLens dataset. Three training set sizes
settings (truncation levels) were used: 10 (top), 20 (middle) and 50 (bottom)
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FIGURE 7.5: Violin (density) plots for the variance of items (σ•k) for different
latent space dimensions on the MovieLens dataset. Three training set sizes
settings (truncation levels) were used: 10 (top), 20 (middle) and 50 (bottom)
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on the representation. The increase of the variance of the σ•k can be the consequence that
more training data induces more possible conflicting ratings and hence an increase in some
case the variances. The latter is confirmed by the case of item representations that receive
more ratings. Finally, we can observe that when the dimension increases too much, most
of the density of the σ•k is centered around the prior – which could imply that most of the
dimensions were simply not used.

7.3 Conclusion

In this chapter, we presented a collaborative recommender system where user and items
correspond to distributions in a latent space, rather than to a deterministic point for other
representation-based models, allowing to cope with the inherent uncertainty due to lack
of information, or to conflicting information. We show on three datasets that our model
outperforms state-of-the-art works. We analyzed qualitatively the results showing that the
variance distribution was correlated with space dimension and train size.

Our work is a first step in the direction of exploiting a social graph along with the rat-
ings, and opens hence the following possible research directions:

• The integration of different sources of information (e.g. sellers, reviews), exploiting
the uncertainty of each source;

• The use of the variance for handling time learning a dynamic function modeling its
evolution through time (the representation becomes more and more uncertain if no
new information is provided);

• The diversification of proposed rankings (e.g. Portfolio theory can be used to produce
rankings with various risks).





119

Part III

Conclusion





121

Chapter 8

Conclusion et perspectives
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8.1 Conclusion

In this thesis we have explored representation learning techniques in the context of rela-
tional data. We have studied three different tasks: graph node classification, relational time
series forecasting and collaborative filtering. Whatever the studied task, the goal of our
work was to make the best use of the information contained in the graph to improve the
learned representations.

We first focused on learning deterministic representations for the classification task, and
then explored a new framework consisting in exploiting Gaussian representations of enti-
ties, i.e. of nodes in a graph.

8.1.1 Contributions

Graph Node Classification

The classification task is the first task we were interested in. We proposed two different
contributions for the challenging task of heterogeneous graph node classification.

In our first contribution (Chapter 4), we proposed a model that learns deterministic
representations for each node. This is the only contribution where we use deterministic
representation learning. Our proposed model also learns relation specific weights that de-
termine how informative the relations between different types of nodes are. Experimental
results show that this model is able to learn correlations between labels of different types
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of nodes, thus notably improving the class label inference. We performed extensive experi-
ments and showed that this model works well compared to competing methods.

In our second contribution (Chapter 5), we have adapted the previous model to learn
Gaussian representations and have explored the use of uncertainty in this context. We have
examined four variants of this model, by using either spherical and diagonal covariance
matrices, and by using two different loss functions for classification. According to the re-
sults, introducing uncertainty in representations clearly improves results when comparing
to its deterministic counterpart.

Relational Time Series Forecasting

In our third contribution (Chapter 6), we proposed to explore quantitative and qualitative
results of learned Gaussian representations for the relational time series forecasting task.

We proposed a model for relational time series forecasting based on latent Gaussian em-
beddings. This model has shown competitive performance on four different datasets com-
pared to state-of-the-art models. Using Gaussian representations has allowed us to model
the uncertainty of predictions, and to provide confidence intervals for each prediction.

Collaborative Filtering

In our last contribution (Chapter 7), we have pursued the exploration of quantitative and
qualitative results of learned Gaussian representations for a different task, namely collabo-
rative filtering.

We have proposed a recommender system where users and items correspond to Gaus-
sian representations. This has allowed us to cope with the inherent uncertainty due to
lack of information or conflicting information. We have shown that our model outperforms
state-of-the-art works. We have analyzed qualitatively the results showing that the variance
distribution was influenced with space dimension and train size.

8.1.2 Learning Hyperparameters

In both Chapters 4 and 5, we used the framework of continuous optimization of hyperpa-
rameters (Bengio, 2000; Luketina et al., 2016). This framework learns regularization hyper-
parameters simultaneously to the model parameters. There is no formal proof that such
procedures converge to an optimal choice of hyperparameters. We derived in these con-
tributions our own version for the problems at hand. While continuous optimization of
hyperparameters is still an open problem, since this method is unlikely to find the best set
of hyperparameters, we have observed that this framework was key to find an approximate
solution which performs well for our classification task, both with deterministic and non-
deterministic embeddings. Handling graphs with a variety of relationships dictate the use
of such techniques.

8.1.3 From Deterministic to Gaussian Representations

The main goal of this thesis was to apply representation learning techniques to relational
data. Our first contribution explored the use of deterministic representation learning for
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the classification task. Based on these results, we extended the model to use Gaussian rep-
resentations, based on the intuition that it would help the model by allowing to explicitly
model the uncertainty of representation of nodes – especially those isolated in the graph,
or with conflicting information (e.g. belonging to different communities). We found that
this modeling clearly improves the results, which encouraged us to explore different tasks,
namely forecasting and ranking, to see if those advantages would still hold.

Integrating uncertainty in representations improved the results compared to state of the
art models. Besides quantitative results and based on the learned Gaussian representations
of the experiments of our last three contributions, our conclusions were that:

• The effect of using uncertainty has generally more impact when the amount of train-
ing data is lower;

• Highly central nodes seem to have less variance associated to their representation;

In our last three contributions we applied this method to represent different types of
entities (e.g. nodes in a graph) into the space of Gaussian distributions, and learn the rep-
resentations directly in that space. This allowed us to represent entities not as vectors, but
as densities over a latent space, directly representing notions of uncertainty and enabling
a richer geometry in the embedded space. We have shown the effectiveness of Gaussian
representations compared to vector representation on various tasks, namely classification,
forecasting and ranking.

8.2 Perspectives

Finally, we detail some of the perspectives open by this thesis, dealing with each task in
turn.

8.2.1 Classification Task

The contributions presented in Chapters 4 and 5 use a simple modeling of the interactions
between nodes. Besides the learned hyperparmeters, no distinction is made between the
different types of relations that exist in heterogeneous networks.

Thus, modeling interactions in a more complex way, such as the ones presented in Chap-
ter 2 for knowledge bases, could help take advantage of such diversity.

8.2.2 Forecasting Task

The contribution presented in Chapter 6 aims at applying the Gaussian representation
framework for the forecasting task. We firstly choose to use it based on the model pre-
sented in (Ziat et al., 2016), which is a simple but effective model.

But more sophisticated models exist using the deterministic representation learning
framework. For example, it would be interesting to adapt the model presented in (Ziat
et al., 2017) which learns more complex interactions between time series. In this work, the
prediction of a time series at time T + 1 uses the latent representations of all linked time
series at time T . In this case, applying the Gaussian framework to this model should allow
us to capture richer dynamics across multiple time series. This would allow studying how
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the variances of the learn representations at time T will influence the variances of Gaussian
representations at time T + 1.

8.2.3 Ranking Task

The contribution presented in Chapter 7 is a first step that aimed at assessing whether the
Gaussian representation framework could be applied to recommendation in the context of
relational data. Since we got promising results, proceeding with this work by proposing
new models for relational data with various types of nodes (other than users and items)
and integrating different sources of information (link between users or items, content infor-
mation, etc.) is interesting.

8.2.4 Learning Gaussian Embeddings for Knowledge Bases

As shown in Section 2.3.2, lot of works have focused on learning deterministic represen-
tations for knowledge bases. To the best of our knowledge, the presented models have
not been adapted to the Gaussian framework. (He et al., 2015) have proposed a model
to learn Gaussian representation, the score they use for a triplet (s, r, o) is S(s, r, o) =
DKL(Zs − Zo||Zr). Thus, one can imagine adapting the deterministic models presented
in Section 2.3.2, i.g. TransE (Bordes et al., 2013) with deterministic or Gaussian translations
over Gaussian representations.
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