. Gantner, Bayesian Personalized Ranking (Rendle et al., 2009) on which our model cost function is based on. We use the implementation from, 2011.

. Weimer, 2007) is a state-of-the art ranking algorithm for recommender systems that optimizes an upper bound of nDCG 10, CofiRank) Collaborative Filtering Ranking, 2007.

. Weimer, the dataset has been preprocessed as follows. For each dataset a given amount (10, 20, or 50) of items are kept from each user for training the model (the truncation level), 10 for the validation set, and the remaining ratings were used for testing. Users with fewer than 30, 40 or 70 (depending on the amount of items kept for the training set) ratings were removed to ensure that we could evaluate on at least 10 ratings for each user. We also removed items that were not rated by at least 5 users. The statistics of the training datasets are shown in Table 7.1. The validation set is used to select the best hyper-parameters for GER, SM and BPRMF. Finally, for evaluation, we re-rank the judged items using the evaluated model, and use a metric for ranked lists of items, namely nDCG at ranks 1, 5 and 10. Several ranking measures have been proposed in the literature to evaluate the performance of a ranking function, We followed mostly the experimental procedure of each case information retrieval and learning to rank models, as for instance in, 2002.

J. Abernethy, O. Chapelle, and C. Castillo, WITCH: A New Approach to Web Spam Detection, Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web (AIRWeb), 2008.

E. Airoldi, D. Blei, E. Xing, and S. Fienberg, A latent mixed membership model for relational data, Proceedings of the 3rd international workshop on Link discovery , LinkKDD '05, pp.82-89, 2005.
DOI : 10.1145/1134271.1134283

URL : http://www.sailing.cs.cmu.edu/pdf/2005/edolinkkdd05.pdf

R. Angelova and G. Weikum, Graph-based text classification, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, pp.485-492, 2006.
DOI : 10.1145/1148170.1148254

R. Angelova, G. Kasneci, and G. Weikum, Graffiti: graph-based classification in heterogeneous networks, World Wide Web 15.2, pp.139-170, 2012.
DOI : 10.1145/1631272.1631298

T. Barbounis, . Theocharis, P. Mc-alexiadis, and . Dokopoulos, Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models, IEEE Transactions on Energy Conversion, vol.21, issue.1, 2006.
DOI : 10.1109/TEC.2005.847954

H. Bay, A. Ess, T. Tuytelaars, and L. Van-gool, Speeded-up robust features (SURF) " . In: Computer vision and image understanding 110, pp.346-359, 2008.
DOI : 10.1016/j.cviu.2007.09.014

URL : http://www.cs.jhu.edu/%7Emisha/ReadingSeminar/Papers/Bay08.pdf

M. Belkin, P. Niyogi, and V. Sindhwani, Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples, In: J. Mach. Learn. Res, vol.7, pp.2399-2434, 2006.

A. Belmouhcine and M. Benkhalifa, Implicit Links based Web Page Representation for Web Page Classification, Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, WIMS '15, p.12, 2015.
DOI : 10.1162/089976601300014493

B. Taieb, R. Souhaib, and . Hyndman, Boosting multi-step autoregressive forecasts, 2014.

Y. Bengio, Continuous optimization of hyper-parameters, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp.305-310, 2000.
DOI : 10.1109/IJCNN.2000.857853

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, Neural Probabilistic Language Models, Journal of machine learning research 3.Feb, pp.1137-1155, 2003.
DOI : 10.1007/3-540-33486-6_6

URL : https://hal.archives-ouvertes.fr/hal-01434258

Y. Bengio, O. Delalleau, and N. L. Roux, Label propagation and quadratic criterion, Semi-supervised learning 10, 2006.

Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives " . In: Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.358, pp.1798-1828, 2013.
DOI : 10.1109/tpami.2013.50

URL : http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf

S. Bhagat, G. Cormode, and S. Muthukrishnan, Node Classification in Social Networks, Social network data analytics, pp.115-148, 2011.
DOI : 10.1007/978-1-4419-8462-3_5

URL : http://arxiv.org/pdf/1101.3291

D. M. Blei, A. Kucukelbir, and J. D. Mcauliffe, Variational Inference: A Review for Statisticians, Journal of the American Statistical Association, vol.2, issue.518, 2017.
DOI : 10.1016/j.neuroimage.2007.04.054

URL : http://arxiv.org/pdf/1601.00670

A. Bojchevski and S. Günnemann, Deep Gaussian Embedding of Attributed Graphs: Unsupervised Inductive Learning via Ranking, 2017.

A. Bordes, J. Weston, R. Collobert, and Y. Bengio, Learning structured embeddings of knowledge bases, Conference on Artificial Intelligence, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752498

A. Bordes, X. Glorot, J. Weston, and Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, In: Artificial Intelligence and Statistics, pp.127-135, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752499

A. Bordes, N. Usunier, A. Garcia-duran, J. Weston, and O. Yakhnenko, Translating embeddings for modeling multi-relational data, Advances in Neural Information Processing Systems, pp.2787-2795, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920777

A. Bordes, X. Glorot, J. Weston, and Y. Bengio, A semantic matching energy function for learning with multi-relational data, Machine Learning 94, pp.233-259, 2014.
DOI : 10.1007/s10994-010-5198-3

URL : https://hal.archives-ouvertes.fr/hal-00835282

N. Boulanger-lewandowski, Y. Bengio, and P. Vincent, Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription, 2011.

S. Bourigault, C. Lagnier, S. Lamprier, L. Denoyer, and P. Gallinari, Learning social network embeddings for predicting information diffusion, Proceedings of the 7th ACM international conference on Web search and data mining, WSDM '14, pp.393-402, 2014.
DOI : 10.1145/2556195.2556216

URL : https://hal.archives-ouvertes.fr/hal-01211783

S. Brahim-belhouari and A. English, Gaussian process for nonstationary time series prediction, Computational Statistics & Data Analysis, vol.47, issue.4, pp.705-712, 2004.
DOI : 10.1016/j.csda.2004.02.006

G. G. Brown, C. Herbert, and . Rutemiller, Means and Variances of Stochastic Vector Products with Applications to Random Linear Models, 1977.
DOI : 10.21236/ada041149

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a041149.pdf

Q. Cao, T. Bradley, . Ewing, A. Mark, and . Thompson, Forecasting wind speed with recurrent neural networks, European Journal of Operational Research, vol.221, issue.1, pp.148-154, 2012.
DOI : 10.1016/j.ejor.2012.02.042

S. Cao, W. Lu, and Q. Xu, GraRep, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM '15, pp.891-900, 2015.
DOI : 10.1126/science.290.5500.2319

O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning (chapelle, o, IEEE Transactions on Neural Networks, vol.203, pp.542-542, 2006.

Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, Deep Computational Phenotyping, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.507-516, 2015.
DOI : 10.1145/1150402.1150510

M. Chen, Z. Xu, K. Weinberger, and F. Sha, Marginalized denoising autoencoders for domain adaptation, 2012.

S. Chen, J. L. Moore, D. Turnbull, and T. Joachims, Playlist prediction via metric embedding, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.714-722, 2012.
DOI : 10.1145/2339530.2339643

URL : http://www.cs.cornell.edu/~shuochen/pubs/kdd12_chen.pdf

K. Cho, C. Van-merriënboer, . Gulcehre, . Bahdanau, . Bougares et al., Learning Phrase Representations using RNN Encoder???Decoder for Statistical Machine Translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
DOI : 10.3115/v1/D14-1179

URL : https://hal.archives-ouvertes.fr/hal-01433235

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville et al., A Recurrent Latent Variable Model for Sequential Data, 2015.

D. Ciregan, U. Meier, and J. Schmidhuber, Multi-column deep neural networks for image classification, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp.3642-3649, 2012.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu et al., Natural language processing (almost) from scratch, Journal of Machine Learning Research, vol.12, pp.2493-2537, 2011.

J. T. Connor, D. Martin, E. Les, and . Atlas, Recurrent neural networks and robust time series prediction, Neural Networks, IEEE Transactions on, 1994.
DOI : 10.1109/72.279188

N. A. Cressie, K. Christopher, N. J. Wikle-hoboken, and . Wiley, Statistics for spatio-temporal data. Wiley series in probability and statistics, pp.978-978, 2011.

G. Dahl, A. Mohamed, and G. E. Hinton, Phone recognition with the mean-covariance restricted Boltzmann machine, Advances in neural information processing systems, pp.469-477, 2010.

G. E. Dahl, D. Yu, L. Deng, and A. Acero, Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.1, pp.30-42, 2012.
DOI : 10.1109/TASL.2011.2134090

URL : http://www.cs.toronto.edu/%7Egdahl/papers/DRAFT_DBN4LVCSR-TransASLP.pdf

G. Dauphin and . Mesnil-yann, Unsupervised and transfer learning challenge: a deep learning approach, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp.97-110, 2012.

D. Gooijer, J. G. , and R. J. Hyndman, 25 years of time series forecasting, International Journal of Forecasting, vol.22, issue.3, 2006.
DOI : 10.1016/j.ijforecast.2006.01.001

L. Deng, L. Michael, D. Seltzer, A. Yu, A. Acero et al., Binary coding of speech spectrograms using a deep auto-encoder, Eleventh Annual Conference of the International Speech Communication Association, 2010.

L. Denoyer and P. Gallinari, A Ranking Based Model for Automatic Image Annotation in a Social Network, 2010.

R. Devooght, A. Mantrach, I. Kivimäki, H. Bersini, A. Jaimes et al., Random walks based modularity, Proceedings of the 23rd international conference on World wide web, WWW '14, pp.213-224, 2014.
DOI : 10.1145/2566486.2567986

Y. Duan, F. Wei, M. Zhou, and H. Shum, Graph-based collective classification for tweets, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.2323-2326, 2012.
DOI : 10.1145/2396761.2398631

W. T. Freeman and M. Roth, Orientation histograms for hand gesture recognition " . In: International workshop on automatic face and gesture recognition, pp.296-301, 1995.

B. Gallagher, H. Tong, T. Eliassi-rad, and C. Faloutsos, Using ghost edges for classification in sparsely labeled networks, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.256-264, 2008.
DOI : 10.1145/1401890.1401925

URL : http://www.cs.cmu.edu/~htong/pdf/kdd08_tong_2.pdf

A. Gammerman, V. Vovk, and V. Vapnik, Learning by transduction, Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, 1998.

. Ganeshapillai, J. Gartheeban, A. Guttag, and . Lo, Learning connections in financial time series, Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp.109-117, 2013.

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-thieme, MyMediaLite, Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, 2011.
DOI : 10.1145/2043932.2043989

L. Getoor, P. Christopher, and . Diehl, Link mining, ACM SIGKDD Explorations Newsletter, vol.7, issue.2, pp.3-12, 2005.
DOI : 10.1145/1117454.1117456

X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for largescale sentiment classification: A deep learning approach, Proceedings of the 28th international conference on machine learning (ICML-11), pp.513-520, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752091

A. Grover and J. Leskovec, node2vec, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp.855-864, 2016.
DOI : 10.1137/1.9781611974010.51

URL : http://europepmc.org/articles/pmc5108654?pdf=render

Q. Gu, C. Aggarwal, J. Liu, and J. Han, Selective sampling on graphs for classification, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pp.131-139, 2013.
DOI : 10.1145/2487575.2487641

URL : http://people.virginia.edu/%7Eqg5w/kdd13.pdf

T. Hachino and V. Kadirkamanathan, Multiple Gaussian process models for direct time series forecasting, IEEJ Transactions on Electrical and Electronic Engineering, vol.197, issue.3, pp.245-252, 2011.
DOI : 10.1126/science.267326

P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, Temporal Pooling and Multiscale Learning for Automatic Annotation and Ranking of Music Audio, In: ISMIR, pp.729-734, 2011.

. He, K. Shizhu, G. Liu, J. Ji, and . Zhao, Learning to Represent Knowledge Graphs with Gaussian Embedding, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM '15, pp.623-632, 2015.
DOI : 10.1145/2505515.2505677

M. Hermans and B. Schrauwen, Training and analysing deep recurrent neural networks, Advances in Neural Information Processing Systems, pp.190-198, 2013.

G. Hinton, Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, IEEE Signal Processing Magazine, vol.29, issue.6, pp.82-97, 2012.
DOI : 10.1109/MSP.2012.2205597

T. Hsieh, W. Hsiao, and . Yeh, Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm, Applied soft computing, 2011.
DOI : 10.1016/j.asoc.2010.09.007

T. Hwang and R. Kuang, A Heterogeneous Label Propagation Algorithm for Disease Gene Discovery, 2010.
DOI : 10.1137/1.9781611972801.51

URL : http://www.siam.org/proceedings/datamining/2010/dm10_051_hwangt.pdf

Y. Jacob, L. Denoyer, and P. Gallinari, Learning latent representations of nodes for classifying in heterogeneous social networks, Proceedings of the 7th ACM international conference on Web search and data mining, WSDM '14, pp.373-382, 2014.
DOI : 10.1145/2556195.2556225

URL : https://hal.archives-ouvertes.fr/hal-01212733

K. Järvelin and J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, TOIS) 20.4, pp.422-446, 2002.
DOI : 10.1145/582415.582418

R. Jenatton, L. Nicolas, A. Roux, . Bordes, R. Guillaume et al., A latent factor model for highly multi-relational data, Advances in Neural Information Processing Systems, pp.3167-3175, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776335

D. Jensen, J. Neville, and B. Gallagher, Why collective inference improves relational classification, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.593-598, 2004.
DOI : 10.1145/1014052.1014125

URL : http://kdl.cs.umass.edu/papers/jensen-et-al-kdd2004.pdf

M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao, Graph Regularized Transductive Classification on Heterogeneous Information Networks, European Conference on Machine Learning and Knowledge Discovery in Databases, pp.570-586, 2010.
DOI : 10.1007/978-3-642-15880-3_42

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-15880-3_42.pdf

M. I. Jordan, Z. Ghahramani, S. Tommi, . Jaakkola, K. Lawrence et al., An Introduction to Variational Methods for Graphical Models, Machine learning 37, pp.183-233, 1999.
DOI : 10.1007/978-94-011-5014-9_5

URL : http://www.cis.upenn.edu/~mkearns/papers/barbados/jgjs-var.pdf

R. Kalman and . Emil, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

URL : http://fluidsengineering.asmedigitalcollection.asme.org/data/journals/jfega4/27220/35_1.pdf

M. Karl, M. Sölch, J. Bayer, and P. Van-der-smagt, Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data, pp.1605-06432, 2016.

Y. Kim and S. Choi, Bayesian binomial mixture model for collaborative prediction with non-random missing data, Proceedings of the 8th ACM Conference on Recommender systems, RecSys '14, pp.201-208, 2014.
DOI : 10.1145/2645710.2645754

D. Kingma and J. Ba, Adam: A method for stochastic optimization, 2015.

D. Kingma and M. Welling, Auto-Encoding Variational Bayes, 2014.

T. G. Kolda, W. Brett, and . Bader, Tensor Decompositions and Applications, SIAM review 51.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

URL : http://csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/SAND2007-6702.pdf

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.42-50, 2009.
DOI : 10.1109/MC.2009.263

URL : http://research.yahoo.com/files/ieeecomputer.pdf

R. G. Krishnan, U. Shalit, and D. Sontag, Deep Kalman Filters, NIPS 2015 Workshop, 2015.

R. G. Krishnan, U. Shalit, and D. Sontag, Structured Inference Networks for Nonlinear State Space Models, Proceedings of the 31 AAAI Conference on Artificial Intelligence, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, pp.1097-1105, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.1150-1157, 1999.
DOI : 10.1109/ICCV.1999.790410

URL : http://www-inst.cs.berkeley.edu/~cs294-6/fa06/papers/LoweD_Object recognition from local scale-invariant features.pdf

Q. Lu and L. Getoor, Link-based classification, In: ICML, vol.3, pp.496-503, 2003.

J. Luketina, T. Raiko, M. Berglund, and K. Greff, Scalable Gradient- Based Tuning of Continuous Regularization Hyperparameters, Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, pp.2952-2960, 2016.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967.

G. S. Mann and A. Mccallum, Generalized expectation criteria for semisupervised learning with weakly labeled data, The Journal of Machine Learning Research, vol.11, pp.955-984, 2010.

H. Markowitz, Portfolio selection " . In: The journal of finance 7, pp.77-91, 1952.

L. Mcdowell and D. Aha, Semi-Supervised Collective Classification via Hybrid Label Regularization, Proceedings of the 29th International Conference on Machine Learning (ICML-12). Ed. by John Langford and Joelle Pineau. ICML '12, pp.975-982, 2012.

T. Mikolov, I. Sutskever, K. Chen, S. Greg, J. Corrado et al., Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

P. Mirowski and Y. Lecun, Dynamic Factor Graphs for Time Series Modeling, Machine Learning and Knowledge Discovery in Databases, 2009.
DOI : 10.1145/1068009.1068315

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-04174-7_9.pdf

A. Mnih, E. Geoffrey, and . Hinton, A scalable hierarchical distributed language model, Advances in neural information processing systems, pp.1081-1088, 2009.

A. Mohamed, E. George, G. Dahl, and . Hinton, Acoustic Modeling Using Deep Belief Networks, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.1, pp.14-22, 2012.
DOI : 10.1109/TASL.2011.2109382

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.338.2670&rep=rep1&type=pdf

D. D. Monner, A. James, and . Reggia, Recurrent Neural Collective Classification, Neural Networks and Learning Systems, pp.1932-1943, 2013.
DOI : 10.1109/TNNLS.2013.2270376

T. Mukherjee, M. Timothy, and . Hospedales, Gaussian Visual-Linguistic Embedding for Zero-Shot Recognition, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.912-918, 2016.
DOI : 10.18653/v1/D16-1089

URL : https://doi.org/10.18653/v1/d16-1089

K. Muller, . Smola, . Ratsch, . Scholkopf, V. Kohlmorgen et al., Using support vector machines for time series prediction, 1999.

S. Myaeng, M. Hyon, and . Lee, A practical hypertext categorization method using links and incrementally available class information, Proceedings of SIGIR00, 23rd ACM International Conference on Research and Development in Information Retrieval, 2000.

G. Namata, B. Mark, L. London, and . Getoor, Collective Graph Identification, In: ACM Transactions on Knowledge Discovery from Data (TKDD), vol.10, issue.3, p.25, 2016.
DOI : 10.1145/2020408.2020429

S. Nandanwar and M. N. Murty, Structural Neighborhood Based Classification of Nodes in a Network, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp.1085-1094, 2016.
DOI : 10.1109/TKDE.2013.39

J. Neville and D. Jensen, Iterative classification in relational data, Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data, pp.13-20, 2000.

M. Nickel, V. Tresp, and H. Kriegel, A three-way model for collective learning on multi-relational data, Proceedings of the 28th international conference on machine learning (ICML-11), pp.809-816, 2011.

L. Nie, D. Brian, X. Davison, and . Qi, Topical link analysis for web search, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, pp.91-98, 2006.
DOI : 10.1145/1148170.1148189

M. Niepert, M. Ahmed, and K. Kutzkov, Learning Convolutional Neural Networks for Graphs, p.2016, 2016.

L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, p.8090, 1999.

B. Perozzi, R. Al-rfou, and S. Skiena, DeepWalk, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, pp.701-710, 2014.
DOI : 10.1145/2623330.2623732

URL : http://arxiv.org/pdf/1403.6652

S. Peters, L. Denoyer, and P. Gallinari, Iterative Annotation of Multi-relational Social Networks, 2010 International Conference on Advances in Social Networks Analysis and Mining, pp.96-103, 2010.
DOI : 10.1109/ASONAM.2010.13

URL : https://hal.archives-ouvertes.fr/hal-01357569

I. Pfeiffer, J. Joseph, J. Neville, N. Paul, and . Bennett, Overcoming Relational Learning Biases to Accurately Predict Preferences in Large Scale Networks, Proceedings of the 24th International Conference on World Wide Web, WWW '15, pp.853-863, 2015.
DOI : 10.1109/ICDM.2011.151

URL : http://www.www2015.it/documents/proceedings/proceedings/p853.pdf

R. Pimplikar, D. Garg, D. Bharani, and G. Parija, Learning to Propagate Rare Labels, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM '14, pp.201-210, 2014.
DOI : 10.1162/08997660360581958

D. Rezende, S. Jimenez, D. Mohamed, and . Wierstra, Stochastic backpropagation and variational inference in deep latent Gaussian models, International Conference on Machine Learning, 2014.

F. Ricci, L. Rokach, B. Shapira, K. Paul, and B. , Recommender Systems Handbook, 2011.

S. Riedel, L. Yao, A. Mccallum, M. Benjamin, and . Marlin, Relation Extraction with Matrix Factorization and Universal Schemas, pp.74-84, 2013.

S. Rifai, N. Yann, P. Dauphin, Y. Vincent, X. Bengio et al., The manifold tangent classifier, Advances in Neural Information Processing Systems, pp.2294-2302, 2011.

M. Rudolph, F. Ruiz, S. Mandt, and D. Blei, Exponential family embeddings, Advances in Neural Information Processing Systems, pp.478-486, 2016.

C. Sacca, M. Diligenti, and M. Gori, Collective Classification Using Semantic Based Regularization, 2013 12th International Conference on Machine Learning and Applications, pp.283-286, 2013.
DOI : 10.1109/ICMLA.2013.57

R. Salakhutdinov and A. Mnih, Probabilistic Matrix Factorization, Proceedings of Advances in Neural Information Processing Systems, pp.1257-1264, 2007.

F. Seide, G. Li, and D. Yu, Conversational speech transcription using context-dependent deep neural networks, Twelfth Annual Conference of the International Speech Communication Association, 2011.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher et al., Collective Classification in Network Data, AI Magazine, vol.29, issue.3, pp.93-106, 2008.
DOI : 10.1609/aimag.v29i3.2157

URL : http://drum.lib.umd.edu/bitstream/1903/7546/1/ai-mag-tr08.pdf

R. Socher, H. Eric, J. Huang, . Pennin, D. Christopher et al., Dynamic pooling and unfolding recursive autoencoders for paraphrase detection, Advances in Neural Information Processing Systems, pp.801-809, 2011.

R. Socher, D. Chen, D. Christopher, A. Manning, and . Ng, Reasoning with neural tensor networks for knowledge base completion, Advances in Neural Information Processing Systems, pp.926-934, 2013.

N. Srivastava, R. Ruslan, and . Salakhutdinov, Multimodal learning with deep boltzmann machines, Advances in neural information processing systems, pp.2222-2230, 2012.

D. H. Stern, R. Herbrich, and T. Graepel, Matchbox, Proceedings of the 18th international conference on World wide web, WWW '09, pp.111-120, 2009.
DOI : 10.1145/1526709.1526725

Y. Sun, Y. Yu, and J. Han, Ranking-based clustering of heterogeneous information networks with star network schema, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.797-806, 2009.
DOI : 10.1145/1557019.1557107

URL : http://www.cs.uiuc.edu/homes/hanj/pdf/kdd09_ysun.pdf

J. Tang, M. Qu, M. Wang, M. Zhang-yan, and Q. Mei, LINE, Proceedings of the 24th International Conference on World Wide Web, WWW '15, pp.1067-1077, 2015.
DOI : 10.1145/2556195.2556259

URL : https://hal.archives-ouvertes.fr/hal-00777489

L. Vilnis and A. Mccallum, Word representations via gaussian embedding, 2015.

T. Vu and D. Parker, Node Embeddings in Social Network Analysis, Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM '15, pp.326-329, 2015.
DOI : 10.1162/neco.2006.18.7.1527

J. Wang and J. Zhu, Portfolio theory of information retrieval, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, 2009.
DOI : 10.1145/1571941.1571963

URL : http://web4.cs.ucl.ac.uk/staff/jun.wang/papers/2009-sigir09-portfoliotheory.pdf

X. Wang and G. Sukthankar, Multi-label relational neighbor classification using social context features, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pp.464-472, 2013.
DOI : 10.1145/2487575.2487610

URL : http://dl.acm.org/ft_gateway.cfm?id=2487610&type=pdf

M. Weimer, A. Karatzoglou, Q. Viet-le, and A. Smola, CofiRank Maximum Margin Matrix Factorization for Collaborative Ranking, Advances in Neural Information Processing Systems, pp.1-3, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00482740

M. Weimer, A. Karatzoglou, and A. Smola, Improving maximum margin matrix factorization, Machine Learning, vol.723, pp.263-276, 2008.
DOI : 10.1007/s10994-008-5073-7

URL : https://hal.archives-ouvertes.fr/hal-00482747

J. Weston, S. Bengio, and N. Usunier, Large scale image annotation: learning??to??rank with??joint word-image embeddings, Machine learning 81.1, pp.21-35, 2010.
DOI : 10.1007/s10994-010-5198-3

URL : https://link.springer.com/content/pdf/10.1007%2Fs10994-010-5198-3.pdf

C. K. Wikle, Modern perspectives on statistics for spatio-temporal data, Wiley Interdisciplinary Reviews: Computational Statistics, vol.105, issue.1, pp.86-98, 2015.
DOI : 10.1198/jasa.2009.tm09036

C. K. Wikle, B. Mevin, and . Hooten, A general science-based framework for dynamical spatio-temporal models, In: Test, vol.193, pp.417-451, 2010.
DOI : 10.1007/s11749-010-0209-z

J. Winn, M. Christopher, and . Bishop, Variational message passing, Journal of Machine Learning Research, vol.6, pp.661-694, 2005.

Z. Wu, X. Wang, Y. Jiang, H. Ye, and X. Xue, Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification, Proceedings of the 23rd ACM international conference on Multimedia, MM '15, pp.461-470, 2015.
DOI : 10.1007/978-3-642-15567-3_39

URL : http://arxiv.org/pdf/1504.01561

R. Xiang and J. Neville, Collective inference for network data with copula latent markov networks, Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, pp.647-656, 2013.
DOI : 10.1145/2433396.2433477

URL : http://www.cs.purdue.edu/homes/neville/papers/xiang-neville-wsdm2013.pdf

Z. Yang, W. Cohen, and R. Salakhutdinov, Revisiting Semi-Supervised Learning with Graph Embeddings, p.2016, 2016.

J. Ye and L. Akoglu, Robust Semi-Supervised Classification for Multi- Relational Graphs, 2015.

F. Zhang, N. Yuan, D. Lian, X. Xie, and W. Ma, Collaborative Knowledge Base Embedding for Recommender Systems, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp.353-362, 2016.
DOI : 10.1145/2339530.2339611

J. Zhang, G. Tian, Y. Mu, and W. Fan, Supervised deep learning with auxiliary networks, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, pp.353-361, 2014.
DOI : 10.1145/2623330.2623618

Q. Zheng and D. Skillicorn, Spectral Embedding of Signed Networks, 2015.
DOI : 10.1137/1.9781611974010.7

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, Learning with Local and Global Consistency, Proceedings of the 16th International Conference on Neural Information Processing Systems. NIPS'03, pp.321-328, 2003.

D. Zhou, J. Huang, and B. Schölkopf, Learning from labeled and unlabeled data on a directed graph, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.1036-1043, 2005.
DOI : 10.1145/1102351.1102482

URL : http://www.kyb.tuebingen.mpg.de/publications/attachments/LPDG_3463%5B1%5D.pdf

S. Zhou, S. Zhang, and J. Wang, Deep sparse coding network for image classification, Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, ICIMCS '15, p.24, 2015.
DOI : 10.1109/CVPR.2011.5995484

Y. Zhou and L. Liu, Activity-edge centric multi-label classification for mining heterogeneous information networks, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, pp.1276-1285, 2014.
DOI : 10.1145/2623330.2623737

URL : http://www.cc.gatech.edu/%7Elingliu/papers/2014/SIGKDD2014-AEClass.pdf