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Introduction

The moduli space ﬂg of genus ¢ stable curves is a central object in algebraic
geometry. From the point of view of birational geometry, it is natural to ask if
M, is of general type. Harris and Mumford [24] and Eisenbud and Harris [14]
address this question for g > 4, and find that M, is of general type for genus g > 24
and g = 22. For lower genus many cases are completely described, for instance
My, and M are unirational (see [§] and [I7]). For g = 23, we know a bound for
the Kodaira dimension, x(Ma3) > 2, due to Farkas [I6], but this case keep being
mysterious.

In the last decade, in an attempt to clarify this, a new approach emerged inspired
by work of Farkas and his collaborators Chiodo, Eisenbud, Ludwig, Schreyer, Verra.
The idea is to consider finite covers of ﬂg that are moduli spaces of stable curves
equipped with additional structure as py-covers (¢th roots of the trivial bundle) or
pe-spin bundles (¢th roots of the canonical bundle). These spaces have the property
that the transition to general type happens to a lower genus. For instance Farkas
[18] showed that the moduli space of even pa-spin curves (L square root of w and
even dimensional space of sections h(L)) is of general type for ¢ > 9. He also
showed with Verra, [21], that the moduli space of odd po-spin curves (L square root
of w and odd dimensional space of sections h°(L)) is of general type for g > 12.
Furthermore, Farkas and Ludwig proved in [19] that the moduli space of curves
with a po-cover (also called Prym curves) is of general type for g > 14, and, in [11],
Farkas, Chiodo, Eisenbud, Schreyer proved the same in the case of ps-covers for
g > 12. In this work we intend to generalize this approach in two ways:

1. a classification of the singular locus for the moduli space of curves with any
root of the canonical bundle and any of its powers;

2. a study of the moduli space of curves with G-covers for any finite group G.

Singularities of moduli of curves and roots. Our first direction consists in
analyzing pe-root structures for any line bundle on the universal family C, — Mg.
By the Franchetta conjecture, every line bundle on C, is a power of the relative
canonical bundle we, /A, up to pullbacks from M, itself, it is sufficient to consider
roots of these powers. This is the approach of the author’s paper [22], “Singularities
of moduli of curves with a universal root”. In the first part of this work we briefly
present its main results.

We write Rg,z for the moduli space of smooth curves equipped with a line bundle
L such that L®¢ = w®*  This space comes with a natural proper forgetful morphism
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e R’;Z — M. In order to extend 7 by a proper morphism to ng, we will use
the notion of twisted curve as done by Chiodo-Farkas in [12]. A twisted curve C is
a Deligne-Mumford stack with a stable curve C as coarse space and possibly non-
trivial stabilizers at its nodes. We consider twisted curves and line bundles over
them. In this way we obtain a compactification ﬁ;g.

For every rooted curve (C,L) the local picture of ﬁ]‘;g at the geometric point
[C, L] is isomorphic to C*73/Aut(C, L), where Aut(C, L) is the group of C automor-
phisms lifting to L (see discussion in Section [2.2.2) where we mod out quasi-trivial
automorphism). Our key tool is the Age Criterion@ of Reid, Shepherd-Barron and
Tai detecting non-canonical singularities quotients in terms of the age of any auto-
morphism h in Aut(C,L) acting on C3*973. Following Reid’s terminology we write
junior and senior for age less than 1 or > 1.

. =k . .
The singular locus of R, is a union of two components,
. —k k k
Sll’lg jo — Ng,f U Hg7€.
The N, ; , component is the locus of singularities “coming” from M,, that is
N;,e C 7! Sing M,,.

Given a twisted curve C, the dual graph I'(C) is the graph whose vertices are the
irreducible components of C and whose edges are the nodes of C. Moreover, we label
the edges of I'(C) with the orders of the stabilizers at the associated nodes. The dual
graph encodes a fundamental behavior of the point [C,L]. The H 5’5 component, the

locus of “new” singularities inside Sing ﬁ;g, can be entirely described in terms of
dual graphs, as shown in Theorem [3.13] We recall that a graph is tree-like if every

cycle is a loop.

Theorem. For every twisted curve C and every prime number p, we note I',(C)
the graph obtained from I'(C) by contracting the edges with stabilizer order divisible
by p. For any g,k,l non-negative integers with g > 4 and ¢ > 1, any geometric
point [C, L] of ﬁ;g is in H;“’g if at least one of the contracted graphs I'y(C), for any
prime number p dividing £, is not tree-like.

In order to describe the singular non-canonical locus Sing™® ﬁl; , We generalize the
notions of T-curve and J-curve introduced by Chiodo and Farkas in [12]: a T-curve
is a rooted curve (C, L) with an elliptic tail admitting an elliptic tail automorphism
of order 6; a J-curve is a rooted curve such that the group of ghost automorphisms,
1.e those automorphisms acting trivially on the coarse space C' of C, is a junior
group. Theorem shows that these curves fill the non-canonical locus.

_ =k . ‘
Theorem. The non-canonical locus of R, is the union
—k
: nc _ mk k
Sing™ R, , =T,,U J;,,

where T;’,ﬁ and ‘]5,6 are the locus of T-curves and the locus of J-curves respectively.
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It is possible to describe the J-locus in terms of dual graph informations, as
we do in Section for ¢ prime number. This analysis is new and completes the
description by Chiodo and Farkas of Sing"* ﬁgl for £ = 5. Furthermore, when the
J-locus is empty, we have a fundamental pluricanonical form extension property, as

proven in Remark and Theorem [4.43]

Theorem. For any g, k,{ non-negative integers with g > 4 and ¢ > 1, if the J-locus
of ﬁ’;g s empty, then

0 [75kreg . 0 {Sk N
ji <R ,nKﬁ,;e) - (R nKR;e),

g,¢ 9,0

for n sufficiently big and divisible, where ﬁ;’zeg is the locus of reqular points.

Moduli of curves and principal bundles. In the second part, for any finite
group G we consider curves with a principal G-bundle. We note R, the moduli
space of smooth curves equipped with a principal G-bundle. This space comes
with a natural forgetful morphism 7: R, — M,. In order to properly extend
T over Mg, we will use again the notion of twisted curve, and also the notion
of admissible G-cover, following Bertin-Romagny in [5]. Abramovich-Corti-Vistoli
proved in [I] that these two approaches are equivalent, and this allows to define the
compactification ﬁg’g.

Given a twisted G-cover (C, ¢), the local picture of ﬁg’g at the geometric point
[C, ¢] is isomorphic to the quotient C3¢73/Aut(C, ¢), where Aut(C, ¢) is the auto-
morphism group of the twisted G-cover. As in the case before, we can describe the
singular locus Sing R, . In particular, the notions of T-curves and J-curves gener-
alize to this case too, and again they fill the non-canonical singular locus Sing™® ﬁg@v.

Theorem. The non-canonical locus of R, is the union
Singnc ﬁgg = ng U Jg7g,
where Ty ¢ and Jy ¢ are the locus of T-curves and the locus of J-curves respectively.

Furthermore, in the case G = S5 the symmetric group of order 3, we prove in
Theorem that the J-locus is empty.

The final part of this work focuses on the case of the symmetric group G = S3,
with the goal of estimating the Kodaira dimension of R, s, and finding for which
genus ¢ this space is of general type. In this thesis, we provide an adapted version of
the Grothendieck-Riemann-Roch tool by Chiodo in [10] (see Proposition [6.3)). For
odd genus g = 2i+1, we follow [I1] and study a virtual divisor U, in view of a possible
proof of the fact that the canonical divisor Kﬁg,sg, is big. The construction of the
divisor relies in Koszul cohomology techniques: U, is the jumping loci for the Koszul
cohomology group associated to a rank 2 vector bundle (see Definition . This

brings us near to an original result about the connected component ﬁjfsg C Ry,s,
parametrizing curves with a connected Ss-cover. In order to achieve the result it
remains to prove two points: an extension result over the T-locus of ﬁg, s, analogous
to Theorem [4.43], and the virtual divisor U, being effective.
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Conjecture. The connected component ﬁk:igs of the moduli space ﬁg,g,& s of general
type for every odd genus g > 13.

Structure of this thesis. In Chapter 1 we introduce the notions of twisted G-
cover and admissible G-cover for any finite group G, we describe their local struc-
tures and state the important Abramovich-Corti-Vistoli result (see [I]) that the two
constructions are equivalent. In Chapter [2] we introduce spin bundles, i.e. curves
with a line bundle which is a root of some power of the canonical bundle. A reader
which is interested mainly at moduli spaces of such rooted curves can start from
here. Chapter [3| focuses on the techniques to analyze quotient singularities, and
gives a classification of the singular locus and the non-canonical singular locus for
any moduli of rooted curves. In Chapter [4] we apply the same local analysis to the
moduli space of twisted G-covers ﬁgﬁg. Finally, in the last two chapters we set the
main tools to approach the conjecture above, in particular we describe the connected
components of ﬁg,gg, we evaluate the canonical divisor Kﬁgyss and we write it down
as the linear combination of the virtual divisor U, and other effective divisors. The
proof the the bigness of this divisor is the last subject tackled by this work, and it
remains as the principal open question.



Chapter 1

Moduli of curves with a principal

G-bundle

We start this chapter by recalling the definition of the moduli space M, of smooth
curves of genus ¢, and its compactification Mg, the moduli space of stable curves
of genus g, as defined by Deligne and Mumford in [13].

Thereafter we introduce smooth curves with a connected principal G-bundle, for
G a finite group, and their moduli space R, . This space comes with a natural
forgetful proper morphism 7: Ry, — M,. In the case of principal connected G-
bundles over stable curves, the nodal singularities prevent the forgetful projection
to M, to be proper. To find a compactification of R, which is proper over M,,
we introduce two equivalent stacks: the one of twisted G-covers of genus g, noted
BEaI(G), and the one of admissible G-covers of genus g, noted Admgq These stacks
are Deligne-Mumford and are proven to be isomorphic by Abramovich, Corti and
Vistoli ([1]), we introduce them both because we will use different insights given by
both point of views. We will note ﬁgﬁg the stack of connected twisted G-covers. As
shown in Proposition [I.47] it generalizes the notion of level structure on curves. The
coarse space ﬁg,g of ﬁgg has an open and dense subset isomorphic to Ry g, and it
comes with a proper forgetful morphism 7: ﬁg,g — ﬂg which extends 7.

1.1 Structure of the moduli space

1.1.1 Smooth and stable curves

In this work a curve is always a proper reduced scheme of dimension 1 over the
field of complex numbers. For any scheme S, a smooth S-curve is a flat morphism
X — S such that every geometric fiber is a curve. An n-marking on X is the datum
of n non-intersecting sections oy,...,0,: S — X.

The moduli My ,, of smooth n-marked curves of genus g is the category of smooth
S-curves of genus g with n markings, for any scheme S. We refer to Abramovich
and Vistoli paper [2] for definitions and notations. A morphism of n-marked smooth
curves from X’ — S’ to X — S is a pair of scheme morphisms

X' X, f:8=S8

9



10 CHAPTER 1. MODULI OF CURVES WITH A PRINCIPAL G-BUNDLE

such that they form a cartesian square

x 1o x

L,

1.9

and f and f commute with the markings. We note §: My,, — Sch the canonical
forgetful functor, and Mg, (S) the fiber of M, over S, i.e. the category whose
objects are smooth n-marked S-curves, and morphisms are morphisms of S-curves
over the identity morphism idg.

Definition 1.1 (Stable curve). A stable curve C' is a curve whose singularities are
of type node, and whose automorphism group is a finite group.

Remark 1.2. The stability condition for an n-marked curve of genus g, is equiv-
alent to ask that 2g — 2 4+ n > 0, that every irreducible component F of genus 0
intersects C'\ E in at least 3 points and that every irreducible component E’ of genus
1 intersects C'\ E’ in at least 1 point.

Definition 1.3. A stable n-marked S-curve is a flat morphism X — S such that
every geometric fiber is a stable curve and there exists n markings o1,...,0,: S =+ X
such that o;(s) # o0;(s) if ¢ # j and such that o;(s) is in the smooth locus of C; for
every ¢ and any geometric point s € S.

Remark 1.4. Given a nodal curve C' with some marked points, we call Cyen the
generic locus of C, i.e. the complementary set of marked and nodal points.

1.1.2 Local structure of M,,

The category Mgm of stable n-marked curves, is a Deligne-Mumford stack, contain-
ing M,,, as an open and dense substack. In [I3], Deligne and Mumford proved
its coarse space Mg,n to be a proper projective scheme, thus containing the coarse
space M, , of M, ,, as an open and dense subset.

In the same paper [13], Deligne and Mumford carry a local analysis of stack ﬁg,n
based on deformation theory. For every n-marked stable curve (C;py,...,p,), the
deformation functor is representable (see [31] and [4, §11]) and it is represented by
a smooth scheme Def(C'; py, ..., p,) of dimension 3g — 3 + n with one distinguished
point noted p. The deformation scheme comes with a universal family

X — Def(C;p1,...,pn)

whose central fiber X, is identified with (C;py, ..., p,). Every automorphism of the
central fiber naturally extends to the whole family X by the universal property of
the deformation scheme, thus Aut(C; py, ..., p,) naturally acts on Def(C;py,...,p,)
and has p as fixed point.

The strict henselization of M, at the geometric point [C;pi,. .., p,] on M, is
the same as the Deligne-Mumford stack

[Def(C;p1,y ... o)/ Aut(Csp1, ..., Do)
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at p. As a consequence, for every geometric point [C;pi,...,p,| of the coarse
space M, ,,, the strict Henselization of M, at [C;p1, ..., p,] is the quotient

Def(C;p1,...,pn)/ Aut(Cip1, ..., pn).

This implies that every singularity of Mgm is a quotient singularity, and it will
be useful in our analysis on Section ??. From now on, we will refer to the strict
henselization of a scheme X at a geometric point p as the local picture of X at p.

Remark 1.5. We give a detailed description of the scheme Def(C;py,...,p,). As
showed in [4 §11.2], given a smooth curve C' with n marked points py,...,p,, we
have

Def(C’;pl, . ;pn) & Hl(C’ TC(_pl —_ . _pn))7

where T is the tangent bundle to curve C. This gives to Def(C'; p1, ..., p,) a natural
structure of vector space.

In the case of a nodal curve C, we follow [12] and consider Def(C; Sing C'), the
universal deformation of curve C' alongside with its nodes. We impose n = 0 in this
for sake of simplicity, the n > 0 case is similar. The normalization morphism

nor: C' — C

exists for every nodal curve. If we call C, (s, ..., Cy the irreducible components of
C and C; their normalizations, then

1%
e
=1

We note ¢, qo, . .., qs the nodes of C'; and we mark the preimages of the nodes via
nor on the normalization C. We call D; the divisor of marked points on the curve
C,; for every i, then we have a canonical decomposition

I

C.

Def (C; Sing C) = @) Def (C;; D;) = @ H' (Cy, T (- D). (1.1)

i=1

Furthermore, if we consider the quotient Def(C')/ Def(C;Sing C), we have a
canonical splitting

6
Def(C')/ Def(C; Sing C') = € M;, (1.2)

where M; = A! is the deformation scheme of node g; of C. The isomorphism
M; — A' is non-canonical and choosing one isomorphism is equivalent to choose a
smoothing of the node.

1.1.3 Group actions

To introduce curves equipped with a principal G-bundle, we need some basic tools
of groups theory.
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Given any finite group G' and an element h in it, we note b,: G — G the
multiplication map such that b,: s — h - s for all s in G. Moreover, we note
cn: G — @G the conjugation automorphism such that ¢;: s+ h-s-h~! for all sin G.
The subgroup of conjugation automorphisms, inside Aut(G), is called group of the
inner automorphisms and noted Inn(G).

We call Sub(G) the set of G subgroups and, for any subgroup H in Sub(G), we
call Zg(H) its centralizer

Zg(H) :={s € G| sh=hs Yh € H}.

We note simply by Zg the center of the whole group. The group Inn(G) acts
naturally on Sub(G).

Definition 1.6. We call 7 (G) the set of the orbits of the Inn(G)-action in Sub(G).
Equivalently, T (G) is the set of conjugacy classes of G subgroups.

Definition 1.7. Consider two subgroup conjugacy classes Hi, Hy in T(G), we say
that Hs is a subclass of H;, noted Hy < H;, if for one element (and hence for all)
Hy € H,, there exists H; in ‘H; such that H, is a subgroup of H;. If the inclusion
is strict, then H, is a strict subclass of H; and the notation is Hy < H;.

Consider a set 7 with a transitive left G-action
VvV GxT —=T.
Any map n: 7 — G induces, via ¢, a map 7 — 7. In particular,
Ew—ynE),E), YE€T.

This resumes in a map

V. GT > T7.

Noting S7 the set of permutations inside 77, we obtain that ¢ 1(S7) is the subset
of maps 7 — G inducing a T permutation.

Consider an element F in 7. We note, Hg its stabilizer, i.e. the G subset
fixing F. Given any other element (s, E') for some s in G, its stabilizer is

Hz/)(s,E) = S- HE . 8_1,

this proves the following lemma.

Lemma 1.8. Given any set T with a transitive G-action, there exists a canonical
class in H in T(G), and a canonical surjection

T—H

sending any object on its stabilizer.

Given T with its G-action and the group G itself with the Inn(G)-action, we
consider the set of G-equivariant maps Hom® (T, G).
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Lemma 1.9. For any object E in T, and any map n in HomG(T, G), we have
n(E) € Zg(Hp).
Proof. The equivariance condition means that

n((h, E)) = cn(n(E)) = h-n(E) - b~
for all hin G. If h is in Hp, the left hand side of the equality above is simply n(E),

therefore ¢, (n(E)) = n(E) for all h in Hg, and this is possible if and only if n(FE) is
in Z(;(HE) ]

The last two lemmata yield the following crucial proposition.

Proposition 1.10. The set of equivariant maps Hom® (T, G) is uniquely determined
by the canonical class H associated to T (see Lemma @ In particular given any
object E in T, there exists a canonical isomorphism

Hom®(T,G) = Zg(Hg).

Proof. The second part of the proposition follows from Lemmall.9, We observe that
if we consider another object E' = (s, E), then Hgs = s- Hg - s and

Zg(HE/) =S Zg<HE) : 871.
Therefore the inclusion Hom®(7", G) < G is determined, up to conjugation, by the

class H of Hg. O

1.1.4 Principal G-bundles

We introduce the stack R, of smooth curves of genus g with a principal G-bundle.

Definition 1.11 (principal G-bundle). If G is a finite group, a principal G-bundle
over a scheme X is a fiber bundle F' — X together with a left action ¥: G x F' — F
such that the induced morphism

V:GxF— FxxF,
is an isomorphism. Here 1: (h, z) — (¢(h, 2), z) for all h in G and z point of F.

Remark 1.12. As a direct consequence of the definition, every geometric fiber of
F — X is isomorphic to the group G itself. In our work X is always a (smooth or
nodal) curve.

Remark 1.13. The category of principal G-bundles is noted BG and comes with
a natural forgetful functor BG — Sch.
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Definition 1.14. The category R, ¢ objects are smooth S-curves X — S of genus g,
equipped with a connected principal G-bundle F' — X, for any scheme S. The
morphisms of R, ¢ are commutative diagrams as

Frt.F

L

X *.x

™

g2,

such that the two squares are cartesian and b is G-equivariant with respect to the
natural G-actions.

For any category G with a functor § to the scheme category, the datum of a
morphism S — G from a scheme S to G is equivalent to the datum of an object
X over S, i.e. such that §(X) = S. In the setting of principal G-bundles, this
means that a principal G-bundle over a smooth curve C' is uniquely determined by
a morphism C' — BG.

The objects of category R, ¢ are morphisms ¢: ¢' = BG where C' is a smooth
S-curve for any scheme S.

The category R, ¢ comes with a forgetful functor

T Rg,G — Mg.

Indeed, every object or morphism of Ry is sent by 7 on the underlying curve or
curve morphism.

Remark 1.15. Consider a smooth curve C of genus g and a connected principal
G-bundle F' — C, the scheme F is a smooth curve of genus ¢ = |G| - (¢ — 1) + 1,
with a free and faithful G-action. The moduli stack Hy & of smooth curves of genus
¢’ with a free and faithful G-action, has been studied by Bertin and Romagny in [5].
The category Hy g is isomorphic to R, ¢, but in this work we prefer the point of
view of ﬁg’g.

We consider a connected normal scheme X and a connected principal G-bundle
F — X. We note Autcey (X, F') its automorphism group in the category of coverings,
that is the automorphisms of F' factoring through the projection F' — X. We note
Autpg (X, F) its automorphism group in the category of principal G-bundles, that
is the covering automorphisms of F' compatible with the natural G-action.

We call T(F) the set of connected components of any principal G-bundle F' — X.
This comes equipped with a natural projection T: F' — T (F'). The group G acts
transitively on T (F), and by abuse of notation we call

v: GXxT(F)— T(F)
this action. As explained in Section [1.1.3] this action induces a map

o GTE 5 T(F)TH,
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Proposition 1.16. If X is a connected normal scheme, and F' — X a connected
principal G-bundle, then we have the following canonical identifications:

1. AUtCov(X7 F) = wajl(ST(F)):
2. Autpg(X, F) = Hom®(T(F),G).
Proof. We consider any morphism

b: F— F

commuting with the projection to X. Given the morphism

V:GXF — FxxF
introduced in Definition [1.11] we consider the chain of maps

FY4 e FYLaxF G, (1.3)

where 7 is the first projection. As G is discrete and F' is connected, the map above
is constant on the connected components and therefore there exists

n=nb): T(F)—=G
such that
b=1o((noT) xid).

Morphism b is an automorphism if and only if it is bijective on the connected com-
ponents set, i.e. if and only if ¥,(1(b)) € Sr).

The automorphisms of F' as a principal G-bundle must moreover preserve the
G-action, i.e. we must have

bObh:bhOb VhEG,

and therefore
noby =cpon.
This is the exact definition of 7 being in Hom® (T (F), G). O

Remark 1.17. In the case of a connected principal G-bundle F' — X, the propo-
sition above resumes in

Auteoy(X, F) =G and Autpe(X, F) = Zg.

The set of connected components 7 (F') of a general G-bundle F' — X, has a
transitive G-action. By Lemma [I.8] this induces a canonical conjugacy class H

in 7(G).

Definition 1.18. We call principal H-bundle, a principal G-bundle whose cano-
nical associated class in T(G) is ‘H. Equivalently, the stabilizer of every connected
component in 7 (F) is a G subgroup in H.
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Remark 1.19. By Proposition [1.10, the automorphism group of any principal H-
bundle, is isomorphic to Zg(H), where H is any G subgroup in the H class.

It is possible to describe principal G-bundles over curves by the monodromy
action, as done for example in [5]. Consider a smooth curve C, a marked point p,
on it and a principal G-bundle F' — C. We note py, ..., pj¢ the preimages of p, on
F. There exists a natural morphism m(C, p.) = S|g from the fundamental group
of C' to the permutation set of the fiber F, , the morphism is well defined up to
relabelling the points p;. It is known that the monodromy group, i.e. the image of
71 (C, p.) inside Sq), identifies canonically with group G, and this gives a surjection

w: m(C,p.) — G,

well defined up to conjugation. The following proposition is a rephrasing of [3]
Lemma 2.6] in the case of a smooth non-marked curve C.

Proposition 1.20. We consider a smooth curve C' and a point p, on it. The set
of isomorphism classes of connected principal G-bundles over C, is canonically in
bijection with the set of conjugacy classes of surjections m (C,p.) — G.

We observe that any morphism 7 (C,p,) — G is well defined up to conjugation
also if we change the base point p,.

Remark 1.21. If FF — C is any principal G-bundle, without the connectedness
hypothesis, it is still possible to define a morphism w: m1(C, p,) — G, but without
the surjectivity hypothesis. As we will also se later, the image of w is the stabilizer
of any connected component of F', and moreover the cokernel of w is in bijection
with the set of F' connected components.

Remark 1.22. The fundamental group for a genus g smooth curve C' is well known
to be the group freely generated by 2g elements

0417(12,...,()[9,51,...,59

with the additional relation

arfrar ' Bt aofacy By agBea, B =1 (1.4)

We observe that Propostion [1.20] gives an easy counting tool. The number of
principal G-bundles over a given curve C', equals the number of 2¢g-uples of not nec-
essarily distinct elements in G, defined up to conjugation, respecting relation ([1.4))
and generating G. For example, in any abelian group, relation is automatically
verified, therefore there exists |G|* principal G-bundles over any smooth curve of
genus g.

If we simply use the same definition of principal G-bundles to extend the stack
R, ¢ over nodal curves, the extended functor 7: ﬁgg — Mg would not be proper.
Indeed, we observe for example that in the case of G = py a cyclic group of order
prime ¢, the length of 7 fibers is not locally constant. If a curve C' has d nodes
and v irreducible components, its fundamental groups m;(C) is freely generated by
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29 — d +v — 1 elements. The fiber over [C] has length equal to £2979+*=1 — 1 but
in any neighborhood of [C] there exists a smooth curve C’ with fiber length (29 — 1
as shown above. We have to enlarge the ﬁg,g category, allowing over nodal curves
a more general notion than principal G-bundle.

1.2 Admissible GG-covers

In this section we introduce the possibility of ramified covers over stable curves,
by defining admissible G-covers. This notion was firstly developed by Abramovich,
Conti and Vistoli in [I], and also by Jarvis, Kaufmann and Kimura in [25].

1.2.1 Definitions

Definition 1.23 (Admissible cover). Given a nodal S-curve X — S with some
marked points, an admissible cover u: F' — X is a morphism such that:

1. F — X is a nodal S-curve;
2. every node of F maps to a node of X via u;

3. the restriction F'|x,,, — Xgen is an étale cover of degree d;

4. the local picture of ' = X — S at a point of F over a marked point of X is
isomorphic to
Spec Alx'] — Spec A[z] — Spec A,

for some normal ring A, an integer r > 0, and with u*z = (2/)";

5. the local picture of F =+ X — S at a point of F over a node of X is isomorphic

to
Spec (M) — Spec (M) — Spec A,
(z'y' —a) (zy —ar)

for some integer r > 0 and an element a € A, with v*z = (2’)" and u*y = (y')".

The category Adm,, 4 of n-pointed stable curves of genus g with an admissible
cover of degree d, is a proper Deligne-Mumford stack.

Using the notion of admissible cover, we can generalize principal G-bundles over
nodal curves, by defining admissible G-covers. We start by giving a local description
of the G-action at nodes and marked points of admissible covers.

Lemma 1.24. Consider u: F — C an admissible cover of a nodal curve C' such
that F|cy, — Cgen is a principal G-bundle. If p € F is one of the preimages of a
node or a marked point, then the stabilizer Hj is a cyclic group.

Proof. If p is the preimage of a marked point, the local picture of morphism u at p
is

Spec A[z'] — Spec Alz],
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where 2/ = 2" for some integer » > 0. This local description induces an action
of H; on U := Spec A[z'] which is free and transitive on U\{p}. The group of
automorphisms of U\{p} preserving r is exactly p,, therefore Hz must be cyclic
too.

In the case of a node p we observe that r is locally isomorphic to

where 2/ = 2" and 3/ = ", for an integer r > 0 and an element a € A. The scheme
U" := Spec (A[2',y']/(z'y’ — a")) is the union of two irreducible components Uy, Us,
and we can apply the deduction above to U;\{p} for i = 1, 2. ]

Remark 1.25. Focusing on the case of the node, we observe that H; acts indepen-
dently on the local charts U; and Us. We say that its action is balanced when the
character on the tangent space to U; is opposite to the character on the tangent
space to Us.

Definition 1.26 (Admissible G-cover). Given any finite group G, an admissible
cover r: ' — (' of a nodal curve C' is an admissible G-cover if

1. the restriction u|cy,, : F|cyen — Cgen is a principal G-bundle. This implies, by
Lemma that for every node or marked point p € F', the stabilizer Hj is
a cyclic group;

2. the action of Hj is balanced for every node p € F'.

Definition 1.27. We call Admgn the stack of stable curves of genus g with n marked
points and equipped with an admissible G-cover.

1.2.2 Local structure of an admissible G-cover

Consider an admissible G-cover F' — C, and a marked point p on F. We note H;
the cyclic stabilizer at p, and we observe that by definition of admissible G-cover,
the G-action induces a primitive character

Xp: Hﬁ — GL(TﬁF) = C*,

where T;F is the tangent space of I at p.

Given a subgroup H of G, for any primitive character y: H — C* for any s € GG
we note x* the conjugated character x*: sHs™' — C* such that x*(h) = x (s 'hs)
for all h € G. In the set of pairs (H, x), with H a cyclic G subgroup and y: H — C*
a character, we introduce the equivalence relation

(H,x) ~ (H',X') iff there exists s € G such that H' = sHs ' and x' = x*.

Consider a point p on the admissible G-cover F', such that it has a non-trivial
stabilizer Hj; with associated character x;. We observe that for any point s p of the
same singular fiber, the pair (H,.z, Xs.5) is equivalent to (Hp, x5):

Hyp = sHﬁsfl; Xsp = Xpr

Therefore the equivalence class of the pair only depends on the fiber F},.
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Definition 1.28. For any point p on F, we call local index the associated pair
(Hp, x5). For any point p € C' the conjugation class of the local index of any p in
its fiber is the same. Following [5], we call the conjugation class the G-type of the
fiber F,, and note it

[Hp, xp],

where H,, is the stabilizer of one of the points in F},, and X, the associated character.

Remark 1.29. For any cyclic subgroup H C G, the image of a primitive character
x: H — C* is the group of |G|th roots of the unit, py). We choose a privileged
root in this set, which is exp(2mi/|H|). After this choice, The datum of (H, ), is
equivalent to the datum of the H generator h, = x~!(e*™/IHl). As a consequence
the conjugation class [H, x] is naturally associated to the conjugation class [h,] of
hin G. Given p point of C', we note the G-type of F}, by this last conjugation class.

Consider a node ¢ on the admissible G-cover F', and the ¢ its node image on
curve C. Consider
Ve{zy=0} CAZ,

By construction V = Al UA; and the local picture of V' at ¢ is isomorphic to V', with
the node at the origin. We note F”’ := F|41 and F" := F|Aé. We note ¢ and ¢” the
preimages of ¢ on F’ and F” respectively. By definition, " — A} and F" — A} are
admissible G-covers of A with a marking at the origin. By the balancing condition,
the local index &’ of § is the inverse of the local index of ¢,

Bl _ (ﬁ//)—l.

Definition 1.30. Given an admissible G-cover F' — C, if ¢ is a node of C' and ¢
one of its preimages on F', then the local index of ¢ and the G-type of ¢ are well
defined once we fix a privileged branch of ¢. Switching the branch sends the local
index and the G-type in their inverses.

Definition 1.31. Given an admissible G-cover F' — C the series

[hill, Th2].---, [hal

of the G-types of the singular fibers over the marked points, is called Hurwitz datum
of the cover. The stack of admissible G-covers of genus g with a given Hurwitz
datum is noted Admg[[hl]],...,[[hn]}-

Remark 1.32. Given an admissible G-cover ' — C, F' is a stable curve with a
G-action on it which is free on the generic locus Fge, and transitive on every geo-
metric fiber Fy. The genus ¢’ of F' is uniquely determined via the Hurwitz formula
by the genus g of C, the degree |G| of the covering and the cardinalities |H,,| of
the stabilizers of points on the singular fibers. We generalize Remark [I.15] If we
fix the G-types [hi], ..., [h.] of the singular orbits, we can define the moduli stack
Hy .G [h],....[he] ©f connected stable curves of genus ¢ with a faithful G-action and
fixed G-types on the singular orbits. This stack is the object of [5] and a full sub-
stack of Admiﬂm]},..‘,[[hn]]-
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In the case of a smooth non-marked curve C', an admissible G-cover F' — C' is
simply a principal G-bundle as before. If we add one marked point p, we observe
that F'|c\gpy is a principal G-bundle over C\{p}. The datum of F|c\ ) completely

determines the admissible G-cover by taking the closure F' := F|c\ (. Also, the
G-action extends over the marked fiber F),, and because of the ramification over p,
a non-trivial stabilizer H; could eventually appear at any point p of the fiber.

This suggests that if we have ad admissible G-cover F' — C over a smooth
curve C, with singular orbits over the n marked points py,...,p, € C, in order to
generalize Proposition we have to consider the fundamental group of Cye,. This
is indeed the result of [5, Lemma 2.6].

Proposition 1.33. We consider a point p. on the generic locus Cyen of a smooth
n-marked curve (C;p1,...,p,). The set of isomorphism classes of admissible G-
covers of the curve is naturally in bijection with the set of conjugacy classes of maps
71 (Cgens x) — G.

Remark 1.34. If the smooth curve C' of genus g has n-marked points py, ..., py,
the fundamentale group of Cye, = C\{p1, ..., pn} has 2g + n generators

041»---,5251,’717---7%7

respecting the relation

arfray Byt angBagy) Bay i = 1 (1.5)

In particular for every generator +;, its image in G is in the G-type of marked point
pi (see [0, §2.3.1]).

In the case of a non-connected admissible G-cover F' — C' over a smooth n-
marked curve (C;py,...,p,), we consider the stabilizer H C G of any connected
component £ C F. Clearly the component (s, E), for some element s of G, has
stabilizer s - H - s71. Therefore the conjugacy class of the stabilizer is independent
on the choice of E. We note T (F') the set of connected components of . As in the
case of principal G-bundles, for every admissible G-cover there exists a canonical
class H in T (G) such that the stabilizer of every E in T (F') is a subgroup Hg in H.
Moreover, we have a canonical surjective map

T(F)— H.

Definition 1.35. Given the set T (G) of subgroup conjugacy classes in GG, and a class
‘H in it, an admissible H-cover is an admissible G-cover such that every connected
component has stabilizer in H.

Definition 1.36. We note AdmgG’H the stack of admissible H-cover over stable
curves of genus ¢, and we note Adrnf’[f;fl]1 el the stack of admissible H-cover with

Hurwitz datum [hq], ..., [h,] over the n marked points.
aH

Remark 1.37. It is important to point out that the moduli stack Admg 1], [l
has a non-empty set of objects if and only if one element (and therefore all the
elements) of any class [A;] is in the commutator group of G.
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Furthermore, we observe that it is possible to generalize point (2) of Proposition
too. We note Autaam(C, F') the set of automorphisms of an admissible G-cover
F—=C.

Proposition 1.38. Consider (C;p1,...,p,) a nodal n-marked curve, and F — C
an admissible H-cover for some class H in T (G), the

Autagm(C, F) = Hom%(T(F), G).

Proof. In the case of a smooth curve C, we consider the general locus Cyen =
C\{p1,-.-,pn}. The restriction Fy, = Flc,, is a principal G-bundle, therefore
by Proposition [1.16]

Autaqm(C, F) C Autpo(Cien, Fien) = Hom (T (Fyen, O).

Because T (Fgen) = T (F) and every automorphism of Fye, — Clen extends to the
whole F' by what we said above, then the thesis follows in this case.

In the case of a general stable curve C, we call C, ..., Cy its connected compo-
nents, and F; the restriction of F' to the components C; for all 7. As a consequence
of the first part, we have

AutAdm(Ci, Fl) = HOHIG(T(Fl), Cl)

The balancing condition at the nodes, impose that any automorphism in Autaqu (C, F')
acts as the same multiplicative factor on two touching components. This means that
a sequence of functions in [[, Hom“ (7 (F}), @), induces a global automorphism if and
only if it is the sequence of restrictions of a global function Hom® (T (F), G). O

Remark 1.39. As a consequence of Proposition for every connected compo-
nent £ C F, there exists a canonical isomorphism

AutAdm(C', F) = Zg(HE)

Remark 1.40. We state also the case of a non connected nodal curve C with an
admissible G-cover F' — C'. We note (1, ..., Cy, the connected components of C,
and F; := F|g the F restrictions. In this case,

AUtAdm(éa F) = HAUtAdm(éiy Fz) = HHomG(T(Fi), G).

1.3 Twisted G-covers

In our effort to enlarge the notion of principal G-bundles over stable curves, in the
previous section we admitted ramified covers of stable curves. Here we admit non-
trivial stabilizers at the nodes of a stable curve, by defining twisted curves. On this
new setting, principal G-bundles generalize to twisted G-covers. The twisting tech-
niques are widely discussed in [2] and [I], in particular twisted curves are introduced
in [I2] in the case of a p,-level structure on stable curves.
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1.3.1 Definitions

Definition 1.41 (Twisted curve). A twisted n-marked S-curve is a diagram

20,55, ¢ C
1
C
!
S.

Where:

1. Cis a Deligne-Mumford stack, proper over S, and étale locally it is a nodal
curve over S

2. the ¥; C C are disjoint closed substacks in the smooth locus of C — S for all i;
3. X; — S is an étale gerbe for all ¢;
4. C — C exhibits C as the coarse space of C, and it is an isomorphism over Cep,.

We recall that, given a scheme U and a finite abelian group p acting on U,
the stack [U/p] is the category of principal p-bundles £ — T, for any scheme T,
equipped with a p-equivariant morphism f: £ — U. The stack [U/p] is a proper
Deligne-Mumford stack and has a natural morphism to its coarse scheme U/u. By
the definition of twisted curve we get the local picture.

At a marking, morphism C — C' — S is locally isomorphic to
[Spec A[2']/ ] — Spec A[z] — Spec A

for some normal ring A and some integer r > 0. Here z = (2’)", and u, is the cyclic
group of order r acting on Spec A[z'] by the action &: 2/ +— &2’ for any £ € p,.

At a node, morphism C — C' — S is locally isomorphic to
Al y] Alz, y]
o (g —an) ] = 5o (520 ) = e

14

for some integer r > 0 and a € A. Here x = (2/)¢, y = (¢/)*. The group u, acts by

the action
& (@) = (&2, M)
where m is an element of Z/r and &, is a primitive rth root of the unit. The action

is called balanced if m = —1 mod r. A curve with balanced action at every node is
called a balanced curve.

Definition 1.42 (Twisted G-cover). Given an n-marked twisted curve

(21,...,2n; C—>C—>S),
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a twisted G-cover is a representable stack morphism ¢: C — BG, i.e. an object of
category
Fun(C, BG)

which moreover is representable.

Definition 1.43. We introduce category By, (G). Objects of B, ,(G) are twisted
n-marked S-curves of genus g with a twisted G-cover, for any scheme S.

Consider two twisted G-covers ¢': C' — BG and ¢: C — BG over the twisted
n-marked curves C' and C respectively. A morphism between (C',¢’) and (C, ¢) is
a pair (f,a) such that f: C" — C is a morphism of n-marked twisted curves, and
a: ¢ — ¢of is an isomorphism between objects of Fun(C', BG).

Remark 1.44. Given a twisted G-cover ¢: C — BG and a representable morphism
f: C — C, we note f*¢ the twisted G-cover ¢ of: C' — BG.

The category By, (G) is equivalently the 2-category of twisted stable n-pointed
maps of genus g and degree 0 to the category BG, as introduced in [2]. In the
same paper it is observed that the automorphism group of every l-morphism is
trivial, therefore this 2-category is equivalent to the category obtained by replac-
ing l-morphisms with their 2-isomorphism classes. In [2] this category is noted
Kgn(BG,0), the notation B, ,,(G) for the case of twisted G-covers appears for ex-
ample in [1].

Definition 1.45. A balanced twisted G-cover is a twisted G-cover over a twisted
balanced curve. We call BE%(G} the sub-functor of twisted balanced G-covers.

Remark 1.46. Given any twisted balanced Sy-cover F' — C, we consider the natural
inclusion Sy_1 C Sy. If C' is the coarse space of C, and F' := F/Sy_1, then I/ — C
is an admissible cover of degree d, as proven in [I, Lemma 4.2.1]. This gives a
morphism of stacks

¢: By (Sq) — Admyg,q,
which is a normalization morphism by [I, Proposition 4.2.2].

In the following proposition we observe that if the group G is the cyclic group g,
of order ¢, the choice of a twisted p,-cover over a twisted curve C, is equivalent to
the choice of an fth root of the trivial bundle Oc, i.e. a faithful line bundle L — C
with the property that L®¢ = Oc (see [12, §1.2]). This explains part of our work
as a generalization of [evel structures on curves, as developed for example in [12]
and [11].

Proposition 1.47. For any twisted curve C, there exists a natural bijection between
the set of twisted py-covers over C and the set of {th roots of Oc.

Proof. We consider the categories p, — Bunc and Rooté of twisted pg-covers over C
and of /th roots of Oc. We will show two functors

A: py — Bunc — Rooté, B: Rooté — py — Bunc

such that Ao B and B o A are the identity functors of respectively Root‘é and
My — Bunc.
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As py is naturally immersed in G,,, there exists a natural inclusion
t: Buy — BG,,.

If we have a twisted g -cover ¢: C — By, then to¢ is representable and the induced
line bundle is an /th root of the trivial line bundle.

Conversely, if L is an fth root of Oc, then it corresponds to a representable
morphism ¢': C — BG,,. If we consider the map exp,: BG,, — BG,, corresponding
to the fth power, the fact of L being an /th root means that the image of ¢’ is in
the kernel of exp,, that is Bp,.

We observe that B o A = idy,—pun and Ao B = idg,qe, which completes the
proof. O

1.3.2 Local structure of a twisted covers

We consider a twisted curve C over a geometric point S = Spec(C). For any marked
point p; we consider an open neighborhood U; = A!. As stated above, we know that
for any p; € C, the local picture of C at p; is the same as [U;/u,,] at the origin, with
the group p,, naturally acting by multiplication. Any principal G-bundle over C, or
equivalently any object of BG(C), is locally isomorphic at p; to a principal G-bundle

on [Ui/pr,].

Remark 1.48. In [I, §2.1.8] is explained how to realize twisted stable maps as
twisted objects over scheme theoretic curves. In particular, a principal G-bundle on
[Ui/ ;] is a principal G-bundle f: F' — U; plus a p,,-action compatible with the
pr-action on U; and G-equivariant. Formally, if ¢: G x F© — F'is the G-action
on F', then there exists a p,,-action v: u,, X F' — F' such that:

1. fovo({xid)=¢- f: F— U, for all € € w,.;
2. Yo(hx(vo(éxid))) =vo({x(¢(hxid))): F — F,forall h € G and £ € w,,.

For any ¢ € u,, we define a morphism &(§): F' — F' such that

(&) :=vo (£ xid).

By what we saw in the remark above, if p is a marked point and F' — U the
local picture of the twisted G-cover at p,then

a(&)(P) = v(hs D),
for all preimages p of p, where h; is an element of group G depending on p.

Definition 1.49. The element h; of G is called local index of the geometric point p.

Remark 1.50. By the local description we gave above, the fiber of C at any marked
point p is C, = Bpu,, for some positive integer r. The twisted G-cover ¢: C — BG
induces then a morphism

¢p: C, = B, = BG,



1.3. TWISTED G-COVERS 25

and a morphism

¢p: Aut(C,) — Aut(BG).

The group Aut(BG) is canonically isomorphic to G up to conjugation. This
implies that ¢ induces a morphism ¢,: pu, — G, and the representability of ¢
means, stack theoretically, that ¢, is an injection

(13p: p — G defined up to conjugation.

Considering the privileged primitive rth root & = exp(2mi/r), the datum of q~5p is
equivalent to the the conjugacy class of h, := ¢, (62”/ T) in G. We remark that [h,]
is also the conjugacy class of the local index of any preimage p of p.

Definition 1.51. The conjugacy class [h,] of h, € G is called G-type of ¢,, or
equivalently G-type of the point p with respect to the twisted G-cover ¢: C — BG.

Remark 1.52. In the next section we will see the equivalence between twisted
G-covers and admissible G-covers, this notion of G-type for twisted G-cover is the
exact translation of Definition [L.28] for admissible G-covers.

Remark 1.53. By the injectivity of morphism qu, any element of the G-type [h,]
has the same order r = r(p) of the p stabilizer.

We observe the local description of a twisted G-cover at a node of C. By defini-
tion, for any node ¢ € C, the local picture at g is the same as [V/u, | at the origin,
where

V= {xly/ = 0} C Ai/’y/,

and the p, -action is given by
- (2 y) = (&, &71Y)

for all £ € p,,.
The normalization of the node neighborhood V' is naturally isomorphic to

Ay UA, =V

We consider the normalization nor: C — C of the twisted curve C, the local picture
of nor morphism at ¢ is

(AL /e, U AL e, = [Vt

We note ¢; € AL, and ¢; € Aé, the two preimages of the node ¢ in V. In general,
every node has two preimages on the normalized twisted curve C, these are marked
points of C and they have the same stabilizer as the node.

As we have seen above, given a twisted G-cover on C, its local picture at a node
q is the same as a principal G-bundle over [V/u,. |, i.e. a principal G-bundle F' — V/
plus a p, -action compatible with the u, -action on V' and G-equivariant. This
induces
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e two principal G-bundles
F'— A, and F"— A,
with the naturally associated p, -actions. We note v': p, x F' — I’ and
V" py, x F" — F" the actions on F’ and F";

e a gluing isomorphism between the central fibers

kg Fl = FI,

which is equivariant with respect to the G-actions and the p, -actions, and
such that F' = (F' U F")/k,.

Following Remark [1.48] we define
&': F' — F' such that &'(€) := 1/ o (€ x id),
&' F" — F" such that &"(§) :=v" o (€ x id),
for £ € p,,. By the balancing condition, if we have two points ¢, and ¢, in F, and
Fy respectively, such that r,(q1) = Ga, then the local index at ¢, is the inverse of
the local index at o,
hql - hqgl

Therefore, if we note [h] and [ho] the G-types of ¢; and o with respect to F/ — Al
and F" — A}, then

[[hl]] = [[hz_l]]-

Remark 1.54. Once we choose a privileged branch of a node, we call G-type of
that node the G-type with respect to the restriction of the cover to that branch.
For example in the case above, if we choose the branch A, of node ¢, the G-type of
q is the G-type of ¢; with respect to F' — Al,  that is [hy]. Switching the branch
makes the G-type to become the inverse class [ho] = [hi'].

Remark 1.55. Given this description, we introduce another notation for a twisted
G-cover ¢: C — BG. We consider the universal G-bundle {{ — BG. The pullback

F:=¢"U

is a twisted curve with a natural projection F — C. Over the generic locus Cgey,
the restriction Fge, is isomorphic to the principal scheme theoretic G-bundle Fiep,
at the nodes the local picture is sketched above.

We consider a twisted curve C and its normalization morphism nor: C — C.
From our description is clear that if F — C is a twisted G-cover over C, then nor*F is
a twisted G-cover over C, too. Conversely, knowing the twisted G-cover over C, and
the gluing isomorphisms x, at each node of C, we have a twisted G-cover over C.
This is resumed in the following proposition.

Proposition 1.56. The datum of a balanced twisted G-cover F — C, is equivalent to
the data of a twisted G'-cover on its normalization F' — C, and an isomorphism kg as

above for every node q of C, with the isomorphisms K, defined up to automorphism
of ' — C.

Proof. da fare. m
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1.3.3 Local structure of B;’%(G)

The local structure of By (@) can be described with a very similar approach of what
we did for M,,,. We work the case n = 0 of unmarked twisted G-covers. Given a
twisted G-cover (C, ¢), its deformation functor is representable and the associated
scheme Def(C, ¢) is isomorphic to Def(C) via the forgetful functor (C, ¢) — C. The
automorphism group Aut(C, ¢) naturally acts on Def(C, ¢) = Def(C) and the local
picture of By*/(G) at [C, ¢] is the same of

[Def(C)/ Aut(C, ¢)]

at the central point.

Remark 1.57. Consider a twisted curve C whose coarse space is the curve C', we give

a description of the scheme Def(C) as we did in Remark [1.5[ for Def(C'). As before
we note by Cy, ..., Cy the irreducible components of C, by C; the normalization of
curve C; and by nor: C' — C the normalization morphism. Furthermore, we note
by q1,...,qs; the C nodes. As Cis a twisted curve, every node ¢; has an eventually
non-trivial stabilizer, which is a cyclic group of order r;.

The deformation Def(C;Sing C) of C alongside with its nodes, is canonically

identified with the deformation of C' alongside with its nodes.

14 14
Def (C; Sing C) = Def(C; Sing C) = @ Def(Cy; D;) = @5 H'(Ci, Tg, (—Dy)). (1.6)
=1

i=1
As in the previous case, the following quotient has a canonical splitting.

é
Def(C)/ Def(C; Sing C) = P R;. (1.7)

J=1

In this case R; = A' is the deformation scheme of the node g; together with its stack
structure. If we consider the schemes M; of Equation (1.2) in Remark there
exists for every j a canonical morphism R; — M; of order r; ramified in exactly one
point.

1.3.4 Equivalence between twisted and admissible covers

We introduced the two categories B;’al(G) and Admf with the purpose of “well”
defining the notion of principal G-bundle over stable non-smooth curves. This two
categories are proven isomorphic in [I].

Theorem 1.58 (see [1, Theorem 4.3.2]). There ezists a base preserving equivalence
between BEaI(G) and Admf, therefore in particular they are isomorphic Deligne-
Mumford stacks.

The proof of this proposed in [I] can be sketched quickly. Given a twisted G-cover

¢: C— BG,
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it is a principal G-bundle Fye, — Cgen on the generic locus of the coarse space C,
and this can be uniquely completed to an admissible G-cover F' — C'. Conversely,
given an admissible G-cover F' — C, it induces a stack quotient C := [F'/G] and
therefore a representable morphism C — BG with balanced action on nodes.

In what follows we will adopt the notation ﬁgv(; for the stack B, pa(G) whose
objects are twisted G-covers, or equivalently the stack of Admg whose objects are

admissible G-covers. For every class H in 7 (G) we note ﬁ:(; the full substack of
R, ¢ whose objects are admissible H-covers.

The correspondence of Theorem [1.58allows the translation of every machinery we
developed on twisted G-covers to admissible G-covers, and conversely. For example,
the two definitions of G-type we introduced are equivalent, and we can use over
twisted G-covers the notion of Hurwitz datum. We will note

=H
Ry 1.l

the stack of admissible H-covers of genus ¢ with Hurwitz datum [h],. .., [hy].
Furthermore, this correspondence gives a general statement about the automor-
phism of any twisted G-cover. Suppose C is a non-necessarily connected twisted
curve, with coarse space C', and ¢: C — BG a twisted G-cover on C. We note
Aut(C, ¢) the automorphism group of this twisted G-cover, and we note F' — C the
associated admissible G-cover. Therefore by the correspondence we have

Aut(C, ¢) = Aut(C, F),

and we can use all the previous results.



Chapter 2

Spin bundles

In this chapter we consider the case where G is a cyclic group of order £. We already
observed that taking a twisted py-cover is equivalent to taking a line bundle L and
a trivialization L®¢ — O over the same twisted curve. We will note ﬁg,ﬂ =R,
the moduli space of twisted curves equipped with an /th root of the trivial bundle.
We generalize this by considering line bundles which are ¢th roots of some power of
the canonical bundle. In the first section we introduce some notions of graph theory
that are necessary to treat the dual graphs of stable curves. In the second section
we analyze stable curves with an ¢th root of the canonical bundle, and describe their
automorphism group.

2.1 Basic graph theory

Consider a connected graph I" with vertex set V' and edge set E, we call loop an
edge that starts and ends on the same vertex, we call separating an edge e such that
the graph with vertex set V' and edge set E\{e} is disconnected.

We note by E, the set of separating edges. We note by [E the set of oriented
edges: the elements of this set are edges in E equipped with an orientation, in
particular for every edge e € E we note e, the head vertex and e_ the tail, and
there is a 2-to-1 projection E — E. We also introduce a conjugation in E, such that
for each e € E, the conjugated edge € is obtained by reversing the orientation, in
particular

(€)+ =e-.

For every graph I, when there is no risk of confusion with note by V' the cardinality
of the vertex set V(I') and by E the cardinality of the edge set E(I).

2.1.1 Cochains on graphs

We introduce now a simple arithmetic over graphs. We consider a finite group G
acting on graph ['. That is there exist two GG actions on the vertex set and on the
edge set,

Gx V()= V() and G xET) — EI).

29
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We note these actions by h-v and h-e for every h in G and every vertex v and oriented
edge e. These actions must respect the following natural intersection conditions

1. (h-e)y =h-e; VYheG,eecE();
2. h-e=h-e YheG,ecEI).

Observe that there are no faithfulness conditions, therefore any vertex or edge may
have a non trivial stabilizer. We note H, and H, the stabilizers of vertex v and edge
e respectively. We remark that

Ho,=s5-H,-s" YweV(I),se€q,

and the same is true for H,. In general, every orbit of vertices (or oriented edges)
is characterized by a conjugacy class H in 7 (G), and every element of H is the
stabilizer of some object in the orbit.

We introduce the cochains groups.

Definition 2.1 (Cochains). The group of 0-cochains is the group of G-valued func-
tions on V(I') compatible with the G-action

C(;G) =={a: V(I') > Gl alg-v) =g-alv)- g '}.

The group of 1-cochains is the group of antisymmetric functions on [E with the
same compatibility condition

CHI;G) == {b: E— G| b(e) =ble) ™", blg-e)=g-ble)-g~'}.

Clearly, these groups generalize the cochains groups defined by Chiodo and
Farkas in [12]. In particular the Chiodo-Farkas groups refer to the case of a trivial
G-action on I'. In this chapter we work in this Chiodo-Farkas case, with G = u, a
cyclic group. Therefore, C°(T; ) is the group of pe-valued functions on the ver-
tices, and C1(T'; ) is the group of the p,-valued functions on the oriented edges of
[, such that b(e) = b(e)~L.

We observe that via the (non-canonical) choice of the rth root &, = exp(2mi/r),
we have the identification

C'T; py) = CYT;Z/0) fori=0,1.

We use this notation in the following of this chapter. When there is no risk of
confusion, we eventually note the groups by C°(T") and C'(T).
There exists a natural differential

§: O Z/0) — CHI; Z/1)

such that
Sa(e) :=aley) —ale_), Va € C'T';Z/{) Ve € E.

The exterior differential fits into an useful exact sequence of abelian groups.

0— 7/t 5 COT:Z/0) > CHI; Z)0). (2.1)
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Where the injection i sends h € Z/¢ on the cochain constatly equal to h.
Given a graph I', we have the identification

cra) = @ z/

veV(T)

Moreover, if we choose a privileged orientation for every edge e in E(I"), then we
have a canonical isomorphism

ciriz/t) = @ z/t.

ecE()

We often refer to a subset W C V' by referring to its characteristic function Iy,
i.e. the cochain V' — Z such that Iy (v) = 1 for all v € W and Iy (v) =0 if v & W.

Definition 2.2. A path in a graph ' is a sequence eq,es, ..., e, of edges in E
overlying k distinct non-oriented edges in E, and such that the head of e; is the tail
of ;01 foralli=1,... k.

A circuit is a closed path, i.e. a path P = (e, ..., ex) such that the head of ey is
the tail of e;. We often refer to a circuit by referring to its characteristic function Ip,
i.e. the cochain E — Z such that Ip(e;) = 1 for every i, Ip(e;) = —1 and Ip(e) =0
if e is not on the circuit.

Proposition 2.3. A 1-cochain b is in Imé if and only if, for every circuit K =
(e1,...,ex) in E, we have

b(IC) :==b(e1) +b(ez) +---+b(e) =0 mod ¢.

Proof. If b € Im 4, the condition above is easily verified. To complete the proof we
will show that if the condition si verified, then there exists a cochain a € C°(T'; Z/()
such that da = b. We choose a vertex v € V(I') and pose a(v) =0 mod ¢, for any
other vertex w € V(I') we consider a path P = (ey, ..., e, ) starting in v and ending
in w. We pose

a(w) :=b(P) =bler) + -+ blem).

By the condition on circuits, the cochain a is well defined, and by construction we
have b = da. m

Definition 2.4. A cut is a 1-cochain b: E — A such that there exists a non-empty
subset W C V' and the values of b are the following:

e b(e) = hg for some hy € Z /¢, if the head of e is in W and the tail in V\W;

e b(e) = —hy if the head is in V\WW and the tail in W;

e b(e) = 0 elsewhere.

Remark 2.5. Any cut b is an element of Im . Indeed, if b is the cut associated to
subset W C V and of value hg in Z/¢, then b = § (hg - Iw).
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Lemma 2.6 (see [0l Lemma 5.1]). If T is a spanning tree for I', for every oriented
edge e € Ep there is a unique cut b € CY(T';Z/) such that b(e) = 1 and the elements
of the support of b other than e and € are all in E\Er.

Definition 2.7. We call cutr(e; T') the unique cut b resulting from the lemma for
all e € Er.

Proposition 2.8. If T is a spanning tree for I, then the elements cutr(e; T'), with
edge e varying on Er, form a basis of Im(0).

For a proof of this and a deeper analysis of the image of §, see [0, Chap.5].

2.1.2 Trees, tree-like graphs and graph contraction

Definition 2.9. A tree is a graph that does not contain any circuit. A tree-like
graph is a connected graph whose only circuits are loops.

Remark 2.10. For every connected graph I', the first Betti number
W()=E—V+1
is the dimension rank of the homology group H;(I';Z). Note that, b; being positive,
E>V -1

The inequality above is an equality if and only if I' is a tree.

For every connected graph I' with vertex set V' and edge set F, we can choose a
connected subgraph 7" with the same vertex set and edge set £ C E such that T'
is a tree.

Definition 2.11. The graph T is a spanning tree of I'.

We call E7 the set of oriented edges of the spanning tree T'. Here we notice that
E contains a distinguished subset of edges Eg, whose size is smaller than V' — 1.

Lemma 2.12. If E,, C E is the set of edges in I' that are separating, then
Eep <V -1
with equality if and only if T is tree-like.

Proof. If T' is a spanning tree for I' and Er its edge set, then Eg, C Ep. Indeed,
an edge e € L, is the only path between its two extremities, therefore, since T is
connected, e must be in Ep. Thus Es, < Ep =V — 1, with equality if and only if
all the edges of I' are loops or separating edges, i.e. if I" is a tree-like graph. O]

Another tool in graph theory is edge contraction, which corresponds to the in-
tuitive operation of collapsing vertices linked to certain edges.

Definition 2.13. Given a graph I'" with vertex set V' and edge set E, we choose a
subset D C F. Contracting edges in D means taking the graph I'y such that:
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1. the edge set of I'g is Ey := E\D;

2. given the relation in V, v ~ w if v and w are linked by an edge e € D, the
vertex set of L'y is Vo 1= V/ ~.

We have a natural morphism I' — T’y called contraction of D. Edge contraction
will be useful, in particular we will consider the image of the exterior differential
and its restriction over contractions of a given graph. If 'y is a contraction of I,
then E(I'y) is canonically a subset of F(I'). As a consequence, cochains over I'y are
cochains over I" with the additional condition that the values on E(I")\E(T'y) are
all 0. Then we have a natural immersion

C'(To; Z/E) — CY(T;Z/1).
Consider the two exterior differentials
§: CUT;Z)0) — CHT;Z/¢) and  6g: COTo; Z/0) — CH(To; Z)1).

Clearly & is the restriction of § on C%(Ty; G). From this observation we have the
following.

Proposition 2.14.
Im &y = C*(Ty; Z/¢) N Im 6.

Remark 2.15. We observe that given a graph contraction I' — Iy, the separating
edges who are not contracted remain separating. Moreover, an edge who is not
separating cannot become separating.

2.2 Moduli of rooted curves

Given a non-negative integer k and a positive integer ¢, we consider a triple (C, L, 6),
that is the data of a twisted curve C, plus a faithful line bundle L on it and an
isomorphism

0: L% — WE,
where wc is the canonical bundle on C. If we note C the coarse space of C, we
observe that wc is the pullback of the canonical bundle we of C' via the coarsening.
This allows to call L an £th root of wgk, and the triple (C,L,0) a rooted curve.

Definition 2.16. We define the category ﬁ];g whose objects are rooted curves
(C—S,L,0)

such that C — S is an S-twisted curve of genus g whose coarse space is C' and such
that L is an fth root of w%k. A morphism between two rooted curves (C',L’,0") and
(C,L,8) is a pair (f,f) such that f: C' — C is a morphism of twisted curves and the
diagram

f

L'——L

L,

c—f-c
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is a cartesian square such that 6 o f®¢ = ¢/.

Remark 2.17. The stack ﬁl;g is non-empty if and only if ¢ divides degw®* =
k- (2g — 2). If this is the case, for every curve C there exists exactly 29 (th rooted
curves equipped with an /th root of w%k .

2.2.1 Local structure of rooted curves

If a curve is nodal, it has several irreducible components. The information about
the relative crossing of this components is encoded in the dual graph.

Definition 2.18 (Dual graph). Given a nodal curve C, the dual graph I'(C) has
the set of irreducible components of C' as vertex set, and the set of nodes of C' as
edge set E. The edge associated to the node ¢ links the vertices associated to the
components where the branches of ¢ lie. If there is a G-action on the curve, with G
finite group, this naturally induces a G-action on the dual graph.

Remark 2.19. Given a twisted curve C whose coarse space is C', the dual graph
I'(C) is the dual graph I'(C) of curve C.

Remark 2.20. In dual graph setting, where the vertices are the components of a
curve C' and the edges are the nodes, the oriented edge set E could be seen as the set
of branches at the curve nodes. Indeed, every edge e, equipped with an orientation,
is bijectively associated to the branch it is pointing at.

The category ﬁ;g a Deligne-Mumford stack generalizing the stack of level curves
or spin curves as treated for example in [19], [26] or [12]. Moreover, this generalizes
also the stack of twisted py-covers. Indeed in the case & = 0 we have proved in

Proposition [1.47| that R, ,., = R, ,.

Given a node ¢ of the twisted curve C, the local picture of C at ¢ is [V/u,] where
V = {2’y = 0} C A? and r is a positive integer dividing ¢. The local picture of a
line bundle L — C at ¢ is the following line bundle on V/,

Vx Al—=AZ | x Al

j 'y

%
with a p,-action compatible with the stack action on V', that is
5 : (xl7yl7 S) = (51‘/7571y/7£m8)7

for all £ in w, and all points (2, 1/, s) of V x Al. The index m is an element of Z/r,
it is called local multiplicity of the node ¢ and, by the faithfulness of L, it has order
exactly 7. We observe that £” is the local index at the node by Definition [1.28] and
as py is abelian, this coincides with the py-type of the node. The local multiplicity
depends on the choice of a privileged branch of node ¢. In particular in the case
above m is the local index with respect to the Al, branch.
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Remark 2.21. Following [12, §1.3.4], it is possible to define a multiplicity index
M e CH(T(C); Z/0),

a cochain encoding this datum for every node of C. If e is the edge associated to
node ¢ and with orientation pointing at the branch of A;,, then M (e) := m.

2.2.2 Automorphisms of rooted curves

We denote by Aut(C, L, #) the group of automorphism of any rooted curve (C, L, 0).
We denote by [C, L, 6] the point of ﬁ;e associated to the rooted curve (C, L, 0), then

the local picture of the stack ﬁ];,e at [C,L,0] is
[Def(C,L,8)/ Aut(C,L,0)],

where the universal deformation Def(C, L, #) is a smooth scheme of dimension 3g—3,
and

oY

Aut(C,L,0) = {(s,p)| s € Aut(C) and p: s*L — L such that ¢ o p®* = s*(b}

is the automorphism group of (C,L,#). This implies that the local picture of the

moduli space ﬁz’g is the classical quotient Def(C,L,8)/ Aut(C,L,#). The deforma-
tion space Def(C,L,6) is canonically isomorphic to Def(C) via the étale forgetful
functor (C,L,0) — C. Also we see that the action of Aut(C,L,#) on Def(C) is not
faithful. In particular the quasi-trivial automorphisms (idc, ¢) with ¢ € p,, whose
action scale the fibers, have trivial action. Thus it becomes natural to consider the

group

Aut(C,L,0) := Aut(C,L, 0)/{(idc; O)| ¢ € pe} = {s € Aut(C)| s’L = L}.

Remark 2.22. After what we said, the local picture of ﬁ’;x at (C,L,0) can be
rewritten as

Def(C)/Aut(C, L, §).

The coarsening C — C' induces a group homomorphism
Aut(C,L,0) — Aut(C).

We note the kernel and the image of this morphism by Aut.(C,L,6) and Aut'(C')
(see also [12], chap. 2]). They fit into the following short exact sequence,

1 — Auto(C,L,0) — Aut(C,L,0) — Aut'(C) — 1. (2.2)

Definition 2.23. The group Aut.(C,L,#) is the group of ghost automorphisms.
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Given a rooted curve (C, L, 0), we come back to the local multiplicity on a node
g whose local picture is [{xy = 0}/u,] with r positive integer. As we have already
seen, once we choose a privileged branch, the action on the bundle fiber near the
node is &.(t,z,y) = (7, &2, & 1y). We observe that the canonical line bundle wc
is the pullback of the canonical line bundle over the coarse space C, and this, with
the isomorphism L®* 2 wc, implies that (fﬁn)é = 1. So ¢m is a multiple of . As a
consequence of the faithfulness of L, the order r equals 1 or /.

Given a stable curve C' we consider its irreducible components C},...,Cy, as
seen before there exists a normalization C' = ]_[6Z where C; is the normalization of
curve C;. For any i, we call ¢g; the genus of C;, n; the number of node preimages
on C; via the normalization morphism, and v; the associated vertex in the dual
graph ' = T'(C).

Proposition 2.24. Consider a stable curve C with dual graph T' and consider a
cochain M in CY(T';Z/). Also consider the differential

0: CHT;Z)0) — CUT; Z.)0).

There exists an (th root of the canonical bundle w%’k with multiplicity index M, if
and only if
OM(v))=k-(2g:—2+mn;) Y, € V(D).

Proof. 1f (C,L,0) is any rooted curve, then we obtain the result simply verifying a
degree condition on every irreducible component of C. We have

deg (L|,,)®" = Z M(e) mod /.

€4+=0;

We call ¢y, ... g, the preimages of the C' nodes on the normalized curve C;. Then,

Knowing that (L], )®* 2 (wl,)®" we obtain, as we wanted,

)2 = Z M(e) mod /.

€4 =V;

deg (w

To prove the other implication we will show that the multidegree condition im-
plies deg w%k =0 mod ¢, and conclude by Remark [2.17, Indeed,

deg w3k = Z deg F|.,.
UiEV(F)
Therefore, using the condition above we obtain
degwdF = Z Z M(e) = Z M(e) =0 mod 2.
v;eV(T) e4+=v; ecE(T)

]

Consider a rooted curve (C, L, #) such that the coarse space of Cis C. Starting
from the dual graph I'(C) and the multiplicity index M of (C, L, 8), consider the new
contracted graph I'y(C) defined by
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1. the vertex set Vy = V(C)/ ~, defined by modding out the relation
(ey ~e_if M(e) =0);

2. the edge set Ey = {e € E(C)| M(e) # 0}.

Remark 2.25. The graph I’y is obtained by contracting the edges of I' where the
function M vanishes.

Definition 2.26. The pair (I'y(C), M), where M is the restriction of the multiplicity
index on the contracted edge set, is called decorated graph of the curve (C,L,0). If
the cochain M is clear from context, we will refer also to I'y(C) or 'y alone as the
decorated graph.

To study Aut.(C, L, #) we start from a bigger group, the group Autc(C) contain-
ing automorphisms of C fixing the coarse space C. Consider a node ¢ of C whose
local picture is [{xy = 0}/p,]. Consider an automorphism 7 € Auts(C). The local
action of n at ¢ is (z,y) — ({x,y) = (v,&y), with & € wu,. As a consequence of
the definition of Auts(C), the action of 1 outside the C nodes is trivial. Then the
whole group Autc(C) is generated by automorphisms of the form (z,y) — (&x,y)
on a node and trivial elsewhere.

We are interested in representing Autc(C) as acting on the edges of the dual
graph, thus we introduce the group of functions E — Z/¢ that are even with respect
to conjugation

S(D;Z)0) = {b: E — Z/0 | b(e) = b(e) mod ¢} .

We have a canonical identification sending the function b € S(I'4(C);Z/¢) to the
automorphism 7 with local action (z,y) (52(8)37, y) on the node associated to the
edge e if M(e) # 0. Therefore the decorated graph encodes the automorphisms
acting trivially on the coarse space. We can write

Aute(C) = S(T'o(C); Z/t) = (Z,/6)>"). (2.3)

We already saw that elements of C'(I';Z/() are odd functions E — Z/{. Given
g € S(I';Z/¢) and N € CYT';Z/¢), their natural product N - g is still an odd
function, thus an element of C'(T';Z /().

Given the normalization morphism nor: C — C, consider the short exact se-
quence of sheaves over C

1 — Z/0 — nor,nor*Z/{ = L[l singc — 1.

The sections of the central sheaf are Z//(-valued functions over C. Moreover, the
image of a section s by t is the function that assigns to each node the difference
between the two values of s on the preimages. The cohomology of this sequence
gives the following long exact sequence

1= 7/t — COT;Z/0) 5 CHT: Z,/0) - Pic(C)[(] 2255 Pic(C)[(] — 1. (2.4)

Here, Pic(C)[¢] = H'(C,Z/!) is the subgroup of Pic(C') of elements of order divid-
ing ¢, i.e. of ¢th roots of the trivial bundle.
As showed in [9], we have the following result
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Proposition 2.27. If (C,L, ) is a rooted curve and a an automorphism in Auts(C),
then
a'l=L®7(aM).

Proposition means that, if a is an automorphism in Autq(C), the pullback
a*L is totally determined by the product a- M € C!(Ty;Z/{¢), where a is seen as an
element of S(I'y;Z/¢), and M is the multiplicity index of (C, L, ¢).

As a consequence we have the following theorem.

Theorem 2.28. An element a € Autc(C), lifts to Aut(C, L, @) if and only if
aM € Ker(r) = Imé.

In the following we will state the more general Proposition for the case of
twisted G-covers.

We recall the subcomplex C*(T'g(C);Z/¢) C CYT(C);Z/f). Moreover, if &y is
the ¢ operator on C%(T'y), i.e. the restriction of the § operator to this space, from
Proposition we know that Im(dy) = C*(Tg) N Imd. Given multiplicity index
M € CYT;Z/¢), we define the subgroup C},(T;Z/¢) C CYT;Z/¢) of cochains
N such that for every oriented edge e there exists a positive integer n such that
N(e) = M(e) - n.

Remark 2.29. As a consequence of Proposition [2.28] we get the canonical identi-

fication
Aute(C,L,0) = Tm(3) N Cly (i Z/0)

via the multiplication a — M - a.



Chapter 3

Singularities of moduli of rooted
curves

For any moduli space of rooted curves ﬁ];g, the local picture at any point is a
quotient C3973 /@ where & is a finite subgroup of GL(C?973. Quotient singularities
are a deeply studied kind of singularities, and in particular in this chapter we classify
any point [C, L, ¢] of ﬁ;e as smooth point, canonical singular point or non-canonical
singular points, by using some characteristics of the decorated dual graph of (C, L, ¢).
In the first section we introduce the notions of quasireflection automorphism and
age invariant, which are central in analyzing quotient singularities. In the second

section we completely describe the singular locus Sing’R , and in the third section
we describe also the non-canonical locus Sing™ R, via a new stratification of the

moduli space.
The results of this chapter already appeared in the author’s paper [22].

3.1 Techniques to treat quotient singularities

3.1.1 Quasireflections

We consider a quotient of the form C"/& where & is a finite subgroup of GL(C").
In this setting we introduce some automorphisms called quasireflections.

Definition 3.1 (Quasireflection). Any finite order complex automorphism h €
GL(C") is called a quasireflection if its fixed locus has dimension exactly n — 1.
Equivalently, h is a quasireflection if, for an opportune choice of the basis, we can
diagonalize it as

h = Diag(¢,1,1,...,1),

where £ is a primitive root of the unit of order equal to the order of h. Given a finite
group & C GL(C"), we note QR(®) the subgroup generated by quasireflections.

Quasireflections have the interesting property that any complex vector space,
quotiented by them, keeps being a smooth variety. In particular if h € GL(C") is a
quasireflection, variety C"/h is isomorphic to C".

39
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Proposition 3.2 (see [29]). Consider any vector space quotient

Vi=V/®,
where V=2 C™ is a complex vector space and & C GL(V) is a finite group. Variety
V" is smooth if and only if H is generated by quasireflections.

In the following, we will work with quotients of the form
Def(C)/Aut(C, L, 0),

therefore the smoothness of any point [C, L, 0] € ﬁ;e will depend on the group of
automorphisms being generated by quasireflections.

3.1.2 Age invariant

In the case of the group & not being generated by quasireflections, we need another
tool to distinguish between canonical singularities and non-canonical singularities.
The age is an additive positive function from the representations ring of & to rational
numbers,

age: Rep(8) — Q.

First consider the group Z/r for every r positive integer. Given the character m
such that 1 — m € Z/r, we define age(m) = m/r. These characters are a basis for
the group Rep(Z/r), then we can extend age over the entire representation ring.

Consider a ®-representation p: & — GL(V), the age function could be defined
on any injection i: Z/r < & simply composing the injection with p,

agey : i +— age(poi).
Definition 3.3 (Age). On any finite group &, age is defined by

& Lo | Jtil i o 6} Z%

r>1

where f is the set bijection sending h € &, element of order r, to the injection
obtained by mapping 1 € Z/r to h.

Remark 3.4. The identification f is non-canonical, it depends on the choice of the
primitive root &, = exp(2mi/r).

Remark 3.5. To see all this explicitly, consider any automorphism h € GL(C") of
finite order r, consider any basis such that

h = Diag(&, &2, ..., &m).

In this setting,

1 n
age(h) = . Zai.
i=1
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Given a quasireflection h € GL(C™) and the canonical projection
p: C™ — (C"/h) = C",

we can chose the basis of C" in such a way that ¢ is the identity in all the coordinates
but one, on the non-trivial coordinate ¢ is the mapping z — 2".

Definition 3.6 (Junior group). A finite group & C GL(C™) that contains no
quasireflections is called junior if the image of the age function intersects the open
interval |0, 1],

age 8N 0, 1[ # 0.

The group & is called senior if the intersection is empty.

Remark 3.7. The image of age: & — Q does not depend on the choice of identi-
fication f, therefore junior and senior groups are well defined independently from
any choice of a primitive root &,.

The following criterion is the central tool in our work, it sets a correspondence
between age and canonical singularities.

Proposition 3.8 (Age criterion, see [30]). Consider any vector space quotient
Vii=V/®,

where V= C™ is a complex vector space and & C GL(V) is a finite group containing
no quasireflections. Then V' has a non-canonical singularity if and only if & is
Junior.

We will use the Age Criterion to find non-canonical singularities by the study
of group Aut(C,L,#) action. We point out that to satisfy the hypothesis of Age
Criterion, it is necessary for Aut(C, L, ) to be quasireflections free. As this is often
not the case, the following lemma is necessary to represent the same singularity by
a group with no quasireflections.

Proposition 3.9 (see [29]). Consider a finite subgroup & C GL(C™). Then, there

exists an isomorphism u: C"/ QR(B) — C" and a finite subgroup 8 C GL(C")
isomorphic to 8/ QR(®), such that the following diagram is commutative.

cr —— C"/ QR(®) N o

! l !

C"/H —— (C"/QR(®))/(8/QR(8)) —— C"/&

In the following section we approach the characterization of singularities for ﬁ]; ‘-
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3.2 Smooth points

3.2.1 Ghost quasireflections

In order to characterize any rooted curve (C, L, §) whose automorphism group Aut(C, L, 6)
is generated by quasireflections, in this section we characterize those rooted curves
such that the group of ghost automorphisms, Aut(C, L, #), is generated by quasire-
flections.

Lemma 3.10. Any automorphism a in Autc(C) is a ghost quasireflection in the
group Aut~(C,L,0) if and only if a(e) =0 mod ¢ for all edges of T'o(C) but one that
1S a separating edge.

Proof. 1f a is a quasireflection, the action on all but one of the coordinates must
be trivial. Therefore a(e) = 0 on all the edges but one, say e;. If e; is in any
circuit (eq,...,e;) of Iy with & > 1, we have, by Remark [4.28] that Y a(e;) = 0.
As a(e;) # 0, there exists i > 1 such that a(e;) # 0, contradiction. Thus e; is not in
any circuit, then it is a separating edge.

Reciprocally, consider an automorphism a € S(I'yg; Z/¢) such that there exists an
oriented separating edge e; with the property that a(e) = 0 for all e € E\{ej, e}
and a(ey) # 0. Then for every circuit (e, ...,e,) we have Y a(e}) = 0 and so a is
in Auto(C,L, ). O

Definition 3.11. We call QR(Aut(C,L,0)) or simply QR(C,L,60) the group gen-
erated by quasireflection automorphisms of the rooted curve (C,L,0). We call
QR(Aut~(C,L,0)) or simply QR(C,L,0) the group generated by ghost quasire-
flections.

Remark 3.12. If we note Eyp, C Ey = E(I'y) the subset of separating edges of I'y,
we have a simple description of the group QR(C, L, #).

QRq(C,L,0) = EB Z/r(e) ¢ @ Z/r(e) = S(To; M).

e€Fsep eckEy

To show the next theorem we update our tools following [12, §2.4]. We introduce
the p-adic valuation. Let e be an oriented edge in E(T'),

vp(e) :=val, r(e).

Given the dual graph I'(C) = T, consider the factorization of ¢ in prime numbers
¢ = [[p™, where we note v, := v,(¢) the p-adic valuation of ¢, or equivalently
the maximum power of p dividing ¢. For every prime number p we define F(Vg) by
contracting every edge e of I such that p’ divides r(e). We will note T',(C) := T'(1,").
We have the chain of contraction already introduced in [12].

I »T,=Tw") > Twr ) —- =T) = {}

We point out that given two integers r and ' such that r divides r’/, we look at Z/r
as canonically immersed in Z/r’. In particular for every prime number p, we have
the inclusion sequence Z/p C Z/p* C Z/p® C - - -.
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Theorem 3.13. Consider a rooted curve (C,L,0). The group of ghost automor-
phisms Aut(C,L,0) is generated by quasireflections if and only if the graphs I',(C)
are tree-like for every prime number p dividing {.

Proof. As seen above, we have the canonical identification

Aute(C) = P Z/r(e).

ecE(T)

Given the multiplicity index M of (C,L,6) and the exterior differential operator
§: COT;Z/0)) — CHT;Z/), as stated in Remark [2.29] the group of ghost automor-
phisms Aut(C, L, #) is canonically identified with C},(I';Z/¢)) N Im 4.

We consider the function 1, such that 7,(e) := min(~,, v,(e)). We observe that,
by definition, for every oriented edge e € E(I') the order r(e) factorizes as

6) — Hp’Yp—ﬂp(e)‘

pl¢

Furthermore, given the canonical immersion
CHT(WF); Z/t) — C(T; Z/0)

for © = 0,1. We define 52 as the restriction of the delta operator on the group
CO(T'(v); Z/p*»~7*1) for all p in the factorization of £ and for all j between 1 and 7.

As stated above, an automorphism a € Aut¢(C) is a quasireflection in Aut(C, L, 6)
if and only if a(e) = 0 mod r(e) for all edges but one that is a separating edge. This
allows the following decomposition

QRo(C,LO) = P Z/re)= P Pz/p "D = P EB (Z/p')%,

eeEsep(F) EGESGP p|é |rlcm J=1

where we define the integers 8 as (8 := Eyp (F(V;” ]H)) — Eep (F(Vg” J)) if j <,

and B)7 := Ey, (v}). Following [12, Lemma 2.22], we have a similar decomposition
for Aut(C,L,¥0):

Auty(C,L,0) = C,(I; Z/0) N Imé = P ilmag =P é;(Z/pj)aJ

ple 3=1 ple j=1

where of =V <F( o ]H)) 1% (F( o7 j)) forall j > 0. We observe that af > /3
for all p dividing ¢ and k > 0. Moreover, Aut.(C,L,8) coincides with QR(C, L, 0)
if and only if ozg; = ﬂg for all p and j. Fixing p, this is equivalent to impose
>, B, = >, aj. In the previous expression the left hand side is Fyp(T',) and the
right hand side is V(I',) — 1, we saw in Lemma that the equality is achieved if
and only if I, is tree-like. O]
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Remark 3.14. A bouquet is a graph with only one vertex, or equivalently a tree-
like graph with no non-loop edges. Theorem is a generalization of [12, The-
orem 2.28|. In particular Chiodo and Farkas proved that in the case k& = 0, the
moduli of level curves, if [C, L, 0] is smooth then the contracted graphs I',, are bou-
quet. This happens because in the case k = 0, every separating node must have
trivial stabilizer, i.e. the M cochain must be 0 and therefore they disappear after
the contraction. In the general case, M could be non-zero on separating edges too,
and the theorem is still true using the more general notion of tree-like graph.

. —k
3.2.2 Smooth points of R,
We recall the quasireflection analysis in the case of a stable curve C.

Definition 3.15. Within a stable curve C', an elliptic tail is an irreducible compo-
nent of geometric genus 1 that meets the rest of the curve in only one point called
an elliptic tail node. Equivalently, T" is an elliptic tail if and only if its algebraic
genus is 1 and TN C\T = {q¢}.

Definition 3.16. An element ¢ € Aut(C) is an elliptic tail automorphism if there
exists an elliptic tail T' of C' such that i fixes T" and his restriction to C\T is the
identity. An elliptic tail automorphism of order 2 is called an elliptic tail quasireflec-

tion (ETQR). In the literature ETQRs are called elliptic tail involutions (or ETIs),
we changed this convention in order to generalize the notion.

Remark 3.17. Every scheme theoretic curve of algebraic genus 1 with one marked
point has exactly one involution ¢. Then there is a unique ETQR associated to every
elliptic tail.

More precisely an elliptic tail E could be of two types. The first type is a smooth
curve of geometric genus 1 with one marked point, i.e. an elliptic curve: in this case
we have F = C/A, for A integral lattice of rank 2, the marked point is the origin,
and the only involution is the map induced by x — —x on C. The second type is the
rational line with one marked point and an autointersection point: in this case we
can write £ = P'/{1 = —1}, the marked point is the origin, and the only involution
is the map induced by = ~ —z on P!.

From Remark [I.5] we have a coordinate system on Def(C'). Our notation is again
C1,...,Cy for the irreducible components of C', C; for the normalization of curve
C; for every i, and ¢y,...,qs for the nodes of C. We have a canonical subscheme

Def(C; Sing C') such that
1%
Def(C) D Def(C;Sing C) = @) H'(C;, Tg, (— D).
i=1
Furthermore, the quotient of these two schemes has a splitting

0
Def(C)/ Def(C; Sing C) = € A, ,
j=1
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where Ag = M; as defined in Remark |1.5, These coordinates systems on the space
Def(C; Slng C') and Def(C)/ Def(C; Sing C') allow the detection of quasireflections
and the age calculations for every automorphism a € Aut(C). Indeed, the diag-
onalizations of the a-action on the two spaces determines a diagonalization of the
a-action on the whole Def(C'). Therefore, a is a quasireflection if it acts non-trivially
on exactly one coordinate on Def(C; Sing C') or Def(C')/ Def(C; Sing C'). Further-
more, the age of a is the sum of its ages calculated on the two spaces.

The choice of the coordinate ¢; associated to the smoothing of node ¢; is non-
canonical. In particular, scheme M; is the deformation scheme for node g;, i.e. it
comes with a flat morphism X — M; isomorphic to

{zy=t;} C A, x A}

!
Al

Given any automorphism of the central fiber {zy = 0} C A? of the family, this
representation allows to catch the associated action on Mj, i.e. on the coordinate
smoothing the node.

The following theorem by Harris and Mumford describes the action of the auto-
morphism group Aut(C') on Def(C).

Theorem 3.18 (See [24, Theorem 2]). Consider a stable curve C' of genus g > 4.
An element of Aut(C) acts as a quasireflection on Def(C) if and only if it is an
ETQR. In particular, if n € Aut(C) is an ETQR acting non trivially on the tail
T with elliptic tail node q;, then n acts trivially on Def(C;Sing C), and its action
on Def(C)/ Def(C'; Sing C') is t; — —t; on the coordinate associated to q;, and the
identity t — t on the remaining coordinates.

This theorem allows to conclude that on the moduli space ﬂg of stable curves,
any point [C] is smooth if and only the group Aut(C') is generated by ETQRs.

We discussed in Remark [2.22[the fact that every point [C, L, 0] € ﬁ;z has a local
picture isomorphic to

Def(C)/Aut(C, L, §).

Therefore, to find the smooth points of ﬁgjg, by Proposition we need to know
when Aut(C,L,0) is generated by quasireflections. To do this we generalize the
notion of ETQR.

In Remark we have seen that the deformation schemes Def(C') and Def(C)
are very similar. The deformations Def(C; Sing C') and Def(C; Sing C) are canoni-
cally identified,

Def(C'; Sing C') = Def(C; Sing C) = @Def C;, D;).

For the deformation of the nodes, the description is slightly different. We note
r1,...,7s the order of the cyclic stabilizers in C of the nodes ¢, ..., ¢s respectively.
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We have
Def(C)/ Def(C; Sing C) = @A

where Aé = R; as defined in Remark [1.57, The scheme R, is the deformation

scheme of the node ¢; with its stack structure, in particular it comes with a flat
representable morphism of Deligne-Mumford stacks X — R; isomorphic to

{a'y = 1} /r,] = AL,

where the local stabilizer p,., acts by
g : ('Tla y/> g]) = (556/, £7lylu fj)
After this construction we also get the morphism R; — M, which is isomorphic to

A;;lj — Atlj such that (£;)"7 = t;.

Remark 3.19. Consider a stack-theoretic curve E of genus 1 with one marked point.
We call F its coarse space. In the case of an elliptic tail of a curve C, the marked
point is the point of intersection between E and ﬁ

If E is an elliptic curve, then E = F and the curve has exactly one involution 7.
In case E is rational, its normalization is the stack E = [P'/u,], with p, acting by
multiplication, and E = E/{0 = co}. There exists a canonical involution iy in this
case too: we consider the pushforward of the involution on P! such that z — 1/z.
As every involution of E project to the canonical involution of E via the coarsening,
we consider the autointersection node of E and its local picture [{z'y’ = 0}/, ], then
we observe that iy is the only E involution acting trivially on the product z'y’ and
therefore acting trivially on the smoothing coordinate ¢ associated to this node.

Given any twisted curve C with an elliptic tail E whose elliptic tail node is called g,
the construction above defines a canonical involution iy on E up to non-trivial action
on q.

Definition 3.20. We generalize the notion of ETQR to rooted curves. An element
i € Aut(C, L, ¢) is an ETQR if there exists an elliptic tail E of C with elliptic tail node
q, such that the action of i on C\E is trivial, and the action on E, up to non-trivial
action on ¢, is the canonical involution ig.

Lemma 3.21. Consider an element h of Aut(C,L,0). It acts as a quasireflection
on Def(C) if and only if one of the following is true:

1. the automorphism h is a ghost quasireflection, i.e. an element of Aut.(C,L,6)
which moreover operates as a quasireflection;

2. the automorphism h is an ETQR, using the generalized Definition [3.20.
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Proof. We first prove the “only if” part. If h acts trivially on certain coordinates
of Def(C), a fortiori we have that h acts trivially on the corresponding coordinates
of Def(C'). Therefore h acts as the identity or as a quasireflection on Def(C). In
the first case, h is a ghost automorphism and we are in case (1). If h acts as a
quasireflection, then it is a classical ETQR as we pointed out on Theorem [3.18] and
it acts non-trivially on the elliptic tail node ¢ associated to an elliptic tail.

As we know that the actions of A is trivial on the components Def(C;, D;), so
is the action of h on these components. It remains to know the action of h on
the nodes with non-trivial stabilizer and other than ¢. If the elliptic tail where h
operates non trivially is a rational component with an autointersection node ¢, by
hypothesis h acts trivially on the universal deformation R; of this node. Therefore,
the h restriction to the elliptic tail has to be the canonical involution iy (see Remark
B.19). For every node other than ¢ and g, if the local picture is [{z'y’ = 0}/p,.],
the action of h must be of the form

(@', y) = (&2, y) = (2, &y)  for some & € p,,.

If £ # 1 this gives a non-trivial action on the associated universal deformation M;,
against our hypothesis. By Definition this implies that h is an ETQR of (C, ¢).

For the “if” part, we observe that a ghost quasireflection is automatically a
quasireflection. It remains to prove the case of point (2). By definition of ETQR,
its action on Def(C) can be non-trivial only on the components associated to the
separating node ¢ of the tail. As a consequence h acts as the identity or as a quasire-
flection. The local coarse picture at ¢ is {xy = 0}, where y = 0 is the branch lying
on the elliptic tail. Then the action of h on the coarse space is (z,y) — (—x,y).
Therefore the action is a fortior: non trivial on the coordinate associated to the
stack node ¢ in Def(C). O

Lemma 3.22. If QR(Aut(C)) (also called QR(C') ) is the group generated by ETQRSs
inside Aut(C), then any element h € QR(C) which could be lifted to Aut(C,L,8),
has a lifting in QR(C, L, 0), too.

Proof. By definition, Aut(C, L, #) is the set of automorphisms s € Aut(C) such that
s*L = L. Consider h € QR(C) such that its decomposition in quasireflections is
h = igiy - - 1m, and every 7; is an ETQR acting non-trivially on an elliptic tail E;.
Any lifting of ¢ is in the form q = igiy - - - i,,,-a, where i; is a (generalized) ETQR acting
non-trivially on E;, and a is a ghost acting non-trivially only on nodes other than the
elliptic tail nodes of the E;. We observe that every i, is a lifting in Aut(C) of 7;, we
are going to prove that moreover iy € Aut(C,L,#). By construction, h*L = L if and
only if ifL = L for all ¢ and a*L = L. This implies that every i, lies in Aut(C,L,6),
and therefore ha™! is a lifting of A lying in QR(C, L, ). O

Remark 3.23. We recall the short exact sequence

1 — Aut(C,L,0) — Aut(C,L,0) = Aut'(C) — 1
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and introduce the group QR'(C) C Aut’'(C), generated by liftable quasireflections,
i.e. by those quasireflections h in Aut’(C') such that there exists an automorphism
in Aut(C, ¢) whose coarsening is h. Knowing that

B(QR(C,L,0)) Cc QR/(C) C Aut'(C) N QR(C),

the previous lemma shows that QR'(C) = B(QR(C, L, #)). Using also Lemma m,
we obtain that the following is a short exact sequence

1 — QR.(C,L,0) — QR(C,L,0) — QR/(C) — 1.

Theorem 3.24. The group Aut(C,L,0) is generated by quasireflections if and only
if both Aut(C,L,0) and Aut'(C) are generated by quasireflections.

Proof. After the previous remark, the following is a short exact sequence
The theorem follows. O]

As we know that any point [C,L,0] € ﬁ’;é is smooth if and only if the group
Aut(C,L,0) is generated by quasireflections, then the next theorem follows from

Theorems [3.13] and 3.24]

Theorem 3.25. For any g > 4 and { positive integer. The point [C, L, @] is smooth
if and only if Aut'(C') is generated by ETQRs of C' and the T',(C) are tree-like.

We introduce two closed loci of ﬁ];,e,
N, :=={[C,L,0]] Aut'(C) is not generated by ETQRs} ,

Hj,z = {[C, L, 0]| Aut(C,L,0) is not generated by quasireflections} .

We have by Theorem |3.25( that the singular locus Sing ﬁ;ﬁ is their union

. =k

Remark 3.26. Consider the natural projection 7: ﬁ;z — Mg, we observe that
N;,e C 7! Sing M,,.

Indeed, after Remark 3.23, QR'(C) = Aut’(C) N QR(C) and therefore Aut(C')

QR(C) if and only if Aut'(C) = QR'(C). This implies that (7~!SingM,)" C
(N, ; 0)¢, and taking the complementary we obtain the result.
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3.2.3 A new stratification of the singular locus

As we saw, the information about the automorphism group of a certain rooted
curve (C,L,#) is encoded by its dual decorated graph (I'¢(C), M). It is therefore

quite natural to introduce a stratification of ﬁz,g using this notion. For this, we
extend the notion of graph contraction: if Iy — I'} is a usual graph contraction,
the ring C'(T'}; Z/¢) is naturally immersed in C'(T'; Z/¢), then the contraction of a
pair (I'y, M{) is the pair (I}, M]) where the cochain M| is the restriction of M]. If
it is clear from the context, we could refer to the decorated graph restriction simply
with the graph contraction I'j — I".

Definition 3.27. Given a decorated graph (T, M) with M € C*(T';Z/{), consider
this locus in ﬁ;g:

S = {[c, L,6] € Rey: To(C) =T, and M is the multiplicity index of (C, L, 9)} .

These loci makes a new stratification of the space. We can find a first link
between the decorated graphs and geometric properties of the strata.

Proposition 3.28. If E is the cardinality of the edge set E(I'), then the codimension
of S,y inside ﬁ];é 18
Codim S(F,M) = F.

Proof. We take a general point [C, L, 6] of stratum S(p ), it has V' =V irreducible
components Cq, ..., Cy. We call g; the genus of C; and n; the number node preimages

on the normalized curve C;. Then we have " n; = 2E. We obtain that the dimension
of Def(C,L,0) is

”
dim Def(C,L,0) = (3g;i —3+mn;) =3 g — 3V +2E.

i=1

It is known that if g is the C genus, then ¢ = > ¢g; — V + E + 1, and therefore
dim Def(C,L,0) = 3g — 3 — E. The result on the codimension follows. O

Using contraction, we have this description of the closed strata.

B L if (I'y, M) is the decorated graph of (C,L, ),
Saymyy =[G L O €R,, ¢ there exists a contraction (I'g, M) —
(I}, M)

[]

After Theorem |3.25we have seen that the singular locus of ﬁz, ¢ 1s easily described
as the union of two loci

The stratification just introduced is particularly useful in describing the “new” lo-
cus HY, We recall the definition of vine curves.
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Definition 3.29. We note I'(s,) a graph with two vertices linked by n edges. A
curve C is an n-vine curve if I'(C) contracts to I'(y,) for some n > 2. Equivalently
an n-vine curve has coarse space C' = C7 U (Cy which is the union of two curves
intersecting each other n times.

Lemma 3.30. If [C,L,0] € Singﬁ’;g s a point in H;Z whose decorated graph is
(To, M), then there exists n > 2 and a graph contraction I'c — I'(2n). Equivalently
C 1s an n-vine curve for some n > 2.

Proof. Tt [C,L,0] € H 575, by definition I'y contains a circuit that is not a loop. We
will show an edge contraction I'y — I'(2,,) for some n > 2.

Consider two different vertices v; and vy that are consecutive on a non-loop cir-
cuit K C I'y. Now consider a partition V' = V; LU V5 of the vertex set such that
vy € Vi and vy € V5. This defines an edge contraction I'y — I'(o ) where e € E(I)
is contracted if its two extremities lie in the same V;. As K is a circuit, necessarily
n > 2 and the theorem is proved. ]

We conclude that H ;g is the union of the closed strata associated to vine graphs.

k —
Hgvg = U S(F(Q,n):M)'

n>2
MeCH (D (g,n)5Z/0)

3.3 The non-canonical singular locus for / prime
number

As suggested by the title, in this section we consider the case of £ prime number, and

give a classification of the non-canonical singular locus Sing™ R, ,. In particular we
will see that this locus is the union of two subloci T; s and J, ;g, we will focus on the
second one.

3.3.1 T-curves and .J-curves

We introduce two closed loci which are central in our description.

Definition 3.31 (T-curves). A rooted curve (C, L, ¢) is a T-curve if there exists an
automorphism a € Aut(C, L, ¢) such that its coarsening a is an elliptic tail automor-

phism of order 6. The locus of T-curves in ﬁl;e is noted Tg’f 0

Definition 3.32 (J-curves). A rooted curve (C,L, ) is a J-curve if the group
&C(CJ Lu ¢)/ QRc(C, L7 ¢)7

which is the group of ghosts quotiented by its subgroup of quasireflections, is junior.

=k
The locus of J-curve in R, , is noted Jf,e-

Theorem 3.33. For g > 4, the non-canonical locus of ﬁl;’g is formed by T'-curves
and J-curves, i.e. it is the union

. —k
Slngnc Rgx - T;e U J;,Z
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About this result, we will prove a more general theorem in the next chapter (see
Theorem [4.36)). In particular we will show that the same classification is true for the
moduli space of twisted G-covers. In [22] Theorem 5.8], the author gives a specific

proof for the ﬁ]‘;g case.

Remark 3.34. We observe that Theorem 2.44 of Chiodo and Farkas [12], affirms
exactly that in the case k =0, ¢ < 6 and ¢ # 5, the J-locus Jg’g is empty for every

genus g, and therefore Sing™® ﬁg,z coincides with the T-locus for these values of £.

The J-locus is the “new” part of the non-canonical locus which appears passing

from M, to one of its coverings ﬁl;z. For some values of ¢ and k this locus could be
empty, however, a consequence of our analysis is that it is actually not empty for
any ¢ > 2 and k # 0.

We will exhibit an explicit decomposition of J;E in terms of the strata S a).
We point out a significant difference with respect to the description of the singular
locus: in the case of H 5’3, we showed a decomposition in terms of loci whose generic
point represents a two component curve, i.e. a vine curve. For the J-locus we do
not have such an elegant minimal decomposition: for values of ¢ large enough, there
exists strata representing .J-curves with an arbitrary high number of components,
such that each one of their smoothing is not a J-curve. Equivalently, there are
decorated graphs with an arbitrary high number of vertices and admitting junior
automorphisms, but such that each one of its contraction does not admit junior
automorphisms.

Remark 3.35. We already observed that a ghost automorphism always acts triv-
ially on loop edges of decorated dual graphs, and that quasireflections only act on
separating edges. Thus we can ignore these edges in studying

MC(Ca L7 6)/ QRC(C7 L7 0)

From this point we will automatically contract loops and separating edges as they
appear. This is not a big change in our setting, in fact graphs without loops and
separating edges are a subset of the graphs we considered until now. Reducing our
analysis to this subset is done for the sole purpose of simplifying the notation.

Age is not well-behaved with respect to graph contraction, but there is another
invariant which is better behaved: we will define a number associated to every
ghost, which respects a super-additive property in the case of strata intersection
(see Theorem . Here we only work under the condition of ¢ being a prime
number.

3.3.2 Evaluating age with dual graphs

Given a graph I' and a multiplicity index M € CY(T';Z/f) we recall the group
S(I'; M) of even functions f: E(I') — Z/¢ such that for all e in E, f(e) is in the
group Z/r(e) C Z/¢, where r(e) is the order of M(e). We consider the multiplicative
morphism

S(T; M) — CHT;Z/¢),
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such that a — M - a and define the subgroup
A M) C S(T; M)

which is the subset of automorphisms a such that a - M is in ImJ. By Remark
A(T; M) is canonically identified with the group of ghost automorphisms
Aut(C, L, 0) of any rooted curve whose multiplicity index is M.

We note (I'y, M) the decorated dual graph associated to I'. As £ is a prime num-
ber, S(Ty; M) is canonically identified to C'(T'y; Z/¢) via M multiplication. When
there is no risk of confusion, from now on we will not repeat the notation of Z/¢
and M on the label of groups A, S and C'.

Consider a graph contraction I'y — I'y and if M is the multiplicity index associ-
ated to Ty, we denote by M, its restrction to C'(T'y;Z/¢). Because of contraction,
the edge set E(I') is a subset of E(I'y), so that the group S(I'y) is naturally im-
mersed in S(Ty), and C'(Ty) in C'(Ty). These immersions are compatible with
multiplication by M, thus A(I';) = A(I'g) N S(I';) and we have a natural immersion
of the A groups too.

Proposition 3.36. Given a contraction (I'g, M) — (I'y, M), the elements of A(T'y)
are those cochains of A(I'y) whose support is contained in E(I'y).

This gives an interesting correspondence between curve specialization, decorated
graph contraction, strata inclusion and canonical immersions between the associated
ghost automorphism groups.

We note Vj and Ej the cardinalities of V(I'g) and E(Ig) respectively. From
the definition of A(I'g;Z/¢) and Proposition 2.8, we know that A(Ig) = Z/¢0~1,
and we have an explicit basis for it. We consider a spanning tree T for I'y, we
call e, eq,...,ey—1 the edges of T, each one with an orientation. Then the cuts
cutp, (e;; ) form a basis of A(I'g). We can also write

Vo—1

A(To) = €P (cutr, (e T) - Z/0) .

i=1
Therefore, for an n-vine decorated graph (I'(a,y, M), the A(I'(2,) is cyclic.

Remark 3.37. An element a € A(I'g) could be seen as living on stratum Sy ar)-
We observe that if (I'y, M) — (I'y, M;) is a contraction, then a lies in A(I';) by
the natural injection. Thus every automorphism living on Sy ar) lives on the clo-
sure E(FO,M)'

If a ghost automorphism is junior, it carries a non-canonical singularity that
spreads all over the closure of the stratum where the automorphism lives. This
informal statement justifies the following definition.

Definition 3.38. The age of a stratum S, ) is the minimum age of a ghost
automorphism a in A(T'g). As in the case of group age, the age of an automorphism
depends on the primitive root chosen, but the stratum age does not.
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With this new notation, the J-locus could be written as follows,

Jg"f = U 3(F07M

age 5(1“0,M)<1

Indeed, if [C,L, 0] € ﬁ;g has a junior ghosts group, then this point lies on the closure
of a junior stratum. Conversely, every point in the closure of a junior stratum has
a junior ghosts group.

Definition 3.39. We say that a set of contractions {(I'g, M) — (I';, M;)}, for i =
.k, covers Ty if E(I'y) = U, £(I';). We observe that if this set is a covering,
then A(T";, M;) C A(Ty, M) for every i and

k
FO: m F'L»Mi)'

Definition 3.40. An automorphism a € A(T) is supported on stratum Sy ar) if
its support is the whole E(T'y) set. We observe that this property has an immediate
moduli interpretation: an automorphism supported on S(r, 1) appears in the ghost
group of every curve in 3(1‘0, ) but it does not appear in any other stratum whose
closure contains Siry,ar)-

The age of a strata intersection is not bounded by the sum of the ages of strata
intersecting. However, there exists another invariant which has a superadditive
property with respect to strata intersection. We will pay attention to the new
automorphisms that appear at the intersection, i.e. those automorphisms supported
on the intersection stratum, using the notion just introduced. We note by E' the
cardinality of E(I"), by V the cardinality of V(I"), by E; the cardinalities of the edge
sets E(I';) and by V; the cardinalities of the edge sets V (I';).

Theorem 3.41. Consider a covering (I'o, M) — (I';, M;), with i = 1,...,m, such
that

m

A(To) =) A(T).

=1

Then for every a supported on Sy we have

agea — Fy > Z age S(r,, ) EZ) .

To prove the theorem we need the following lemma

Lemma 3.42. If a is supported on Sy ), then
agea+ agea ' = .

Proof. Given an edge ¢ € E(Ty), by definition, a=!(e),a(e) are elements of Z//.
As a is supported on Sir ), a(e) # 0 for all e in E(T), and then this component
brings to agea and agea™! respectively a value of a(e)/¢ and (1 —a(e)/f). As a
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consequence we obtain agea + agea™! = E = Codim S(r a)- n

1

As a direct consequence of the previous lemma, we have agea™ = FEjy — agea.

By hypothesis we can write,
at=a+ay+ - +apy,

where a; € A(T;, M;) for every i, and we call ¢; the cardinality of a; support. By
subadditivity of age, we have agea™ < 3 age a;, then using Lemma we obtain

m
E agea, —cz.

By the fact that ¢; < E; for every i, and by the definition of age for the strata, the
Theorem is proved. O

We observe that E; = Codim S(r, a7,y by Proposition [3.28, we found an inequality
about age involving geometric data. There is another formulation of the statement.
We already observed that for every graph I'; the first Betti number is

(D)= E— (V- 1).

If the sum in the hypothesis is a direct sum, the rank condition is equivalent to
Vo — 1 =>_V; — 1. Therefore we have the following.

Corollary 3.43. If the decorated graphs (I';, M;) cover (I'g, M) and

m

A(Ty) = @A(Fi),

then for every automorphism a supported on A(Ty) we have
agea — by (Iy) > Z age S, M) — bl(l“i)) )
=1

In the case of two strata intersecting, a rank condition implies the splitting of
A(Ty, M) in a direct sum.

Lemma 3.44. Consider the contractions of decorated graphs (I'g, M) — (I';, M;)
fori=1,2. If 'y and Iy cover I'y, and moreover

Vo—1=WVi—-1)+(Va—1),

then we have

A(Ty) = A(ly) & A(T9).

Proof. Before proving it, we point out a useful fact: given any contraction I'y — T';,
the natural injection A(T;) < A(T'y) sends cuts on cuts. We suppose, without loss
of generalities, that V; < V5, and we prove the lemma by induction on V;.
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The base case V; = 1 is empty, [' = I's and the thesis follows obviously. Now
suppose V4 = ¢ > 1, then V5 < V4 and so there exists two vertices of I'y connected
by edges who lies in £(I'y) but not in E(I'y). We call e; one of these edges in E(I'y)
and T; a spanning tree of I'; containing e;. If cutp,(eq;77) is the corresponding
cut, it is also an element of A(I'g). By rank conditions it suffices to prove that
A(ly) = A(l'y) + A(T'y). Consider a € A(I'y) which is not a sum of elements in
A(T;) and A(T3). Now we define

adi=a—u- CUtF1(€1;T1)7

where u is the necessary integer such that a’(e;) = 0. Consider the graphs (I'f, M’)
and (T}, M{) obtained contracting the edge e; in Ty and I'; respectively. By con-
struction the contractions I, — I'} and I'j — T’y still respect the hypothesis, and
V(I'}) = Vi — 1. Therefore by induction the automorphism a’, which is an element
of A(T'y, M'), is a sum

a' = a) + ag,

with a} € A(T")) € A(T'y) and ay € A(T'y). Finally a = u- cutr, (e; T1) + a} + ay, then
it is in A(T"y) + A(I'2). This is a contradiction and so the lemma is proved. O

3.3.3 The locus J;z for ¢ =2

In what follows we will find, for some small prime values of ¢, a description of J;Z
by our stratification. Before starting we point out that our analysis will focus in the
cases JJ, and J_,.

Proposition 3.45. If { is prime, we have a natural stack isomorphism R;g = R’;,Z
for every k between 1 and { — 1.

Proof. Consider a scheme S and a triple (C — S, L, ¢) in R;é(S). Consider the map
sending it to
(C— S, L%k ¢®F) ¢ RS’K(S).

As ¢ is prime and k£ # 0 mod ¢, this morphism has a canonical inverse, so we ob-
tained an isomorphism of categories. O

In this case the J-locus is always empty. Indeed, every automorphisms in
Aut(C,L,0)/ QR must have a support of cardinality at least 2, but for every edge
in the support, a ghost a has a contribution of 1/2 to its age. Hence there are no
junior automorphisms in Aut-(C,L,#)/ QR. This result was already obtained by

Farkas and Ludwig for the Prym space ﬁ;z in [19], and by Ludwig for ﬁ;a in [20].

3.3.4 The locus J;g for / =3

The process of finding the J;E decomposition, for specific values of ¢ and k, will
always follows three steps.
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Step 1. We identify at first the graphs which can support a junior automorphism
in Aut(C,L,0)/QR, i.e. those graphs with £ < ¢ and no separating edges. If I'
is one of these graphs, we identify the Z//f-valued automorphisms supported on T',
i.e. the elements of @, pr) L /¢ which are non-trivial on every edge and are junior.
These automorphisms are the junior elements in Aute(C) for an (-twisted curve
whose dual graph is I'.

If £ = 3 there is only one junior automorphism which can be supported on a
Z/3-valued decorated graph, the one represented in the image below and supported
on F(272).

Step 2. For each one of these junior automorphisms, we search for multiplicity
cochains that respect the lift condition of Theorem [2.28 on the automorphisms
above. In this case the only possibilities are the following cochains

A dny-
M, M,

In fact, the two decorated graphs (I'(s,9), M;) and (I'(2,2), M>) are isomorphic by
the isomorphism inverting the two vertices. Thus for ¢ = 3, there is only one class
of decorated graphs admitting junior automorphisms.

Step 3. By Proposition [2.24] there is an additional multidegree condition that
the decorated graph must satisfy.

Z M (e) = deg w[ﬁk =k-(29;, —24n;) mod (¢ Vv, V(D). (3.1)

€4+=V;

By Proposition we can focus in cases k = 0 and 1. If k = 1 the condition of
(3.1)) is empty, because 2 and 3 are coprime and there always exists a sequence of g;
satisfying the equality. Then we have

T =
Jg,3 - S(F(z,z):Ml)‘

In case k = 0, by 1} we have Ze+:v M;i(e) =0 mod 3 for both vertices, but
this condition is not satisfied by (1"(272), Ml), then

0
(]973 = J.

3.3.5 The locus J;,z for /=5

Step 1 and 2. For ¢ = 5, every graph (I', M) such that there exists a junior auto-
morphism a € A(T", M), contracts on a vine stratum. This is a consequence of the
following lemma.



Lemma 3.46. If { is a prime number, consider a decorated graph (I';, M) such that
there exists a vertex vy € V(I') connected with ezxactly two vertices vy, vz and such
that between vy and vy there 1s only one edge called e

If Sy is a junior stratum, then there exists a non-trivial graph contraction
(I', M) — (I'y, My) such that S, ar,) is also junior.

Remark 3.47. This lemma permits one to simplify the analysis of junior strata.
Every stratum labeled with a graph containing the configuration above, can be
ignored in the analysis. Indeed, if Srap) is a subset of the J-locus, there exists a
decorated graph (I'y, M;) with less vertices such that Sy C g(rl’Ml) C J;,e-

Proof of the Lemma. Consider a € A(I', M) such that agea < 1. If a is not sup-
ported on S ), we contract one edge where a acts trivially and the lemma is
proved. Thus we suppose a supported on S ). We call €’ one of the edges con-
necting v; and v3. We consider a spanning tree T' of I passing though e’ and not
passing through e. Then we call I'y and I'y the two contractions of I' obtained

contracting respectively ¢’ and Er\{¢'}. By Lemma , we have
A, M) = ATy, My) ® A(Ty, Ms).
Therefore we use Theorem [3.41] to obtain
agea — E > (age S, ) — E(I'1)) + (age Sy — E(I2)) .
As E = E(I'1) + E(I'y) — 1 by construction, a junior implies S(r, ar,) or S(ry,a,) to

be junior. O]

The configuration of Lemma |3.46| appears in every non-vine graph with less than
5 edges. As a consequence the reduction to vine strata follows.

To summarize these vine strata we introduce a new notation. Consider a n-vine
graph, with vertices v; and vy and edges eq, ..., e, all taken oriented from v; to vs.
If the multiplicity index M on the graph take values M(e;) in Z/¢, we note this
decorated graph by (M (ey), M(es),..., M(e,)). For example the graphs appeared
in the precedent paragraph are noted (1,1) and (2,2). We can now state the ten
classes of vine graphs which support a junior ghost for £ =5,

(1,1), (2,2), (1,2), (1,3), (1,1,1), (2,2,2), (1,1,3), (2,2,1), (1,1,1,1), (2,2,2,2).

Step 3. For k = 1, equation (3.1)) is always respected for some genus labellings
of the graph. Therefore we have

ng,5 = 3(1,1)U3(2,2)U3(1,2)U3(1,3) U3(1,1,1)U3(2,2,2)U3(17173)U3(272,1)U§(1’17171)US(M,M).
If k = 0 the equation is satisfied by two vine graphs, and we obtain the following
Jg?,5 = g(1,1,3) U 3(2,271).

In particular, this result fills the hole in Chiodo and Farkas analysis in [12]. They
proved that the J-locus in the space ﬁg,e is empty for £ < 6 and ¢ # 5.



58 CHAPTER 3. SINGULARITIES OF MODULI OF ROOTED CURVES

3.3.6 The locus Jgkj for ¢/ =7

Step 1 and 2. Using Lemma |3.46| we observe that for £ = 7 there are two kinds of
graphs admitting junior automorphisms. The first kind is the usual vine graph, but
we can also have a 3-cycle graph such that every pair of vertices is connected by two
edges. In this second case, the only possible automorphism with age lower than 1
takes value 1 on every edge. As a consequence the possible decorations are like in

figure below.
[
A/A B
A+ B
S

A+ B
We define two sets of decorated graphs

V7 := {vine decorated graphs admitting junior automorphism}/ =

C7 := {graphs decorated as in the figure}/ = .

Step 3. If k = 1, condition (3.1) is always verified by some genus labeling.
Therefore, we have

J;7 = U E(F,M) U U E(F,M)-

(F,M)EV7 (F,M)€C7

If £k =0, we call V the subset of V; of decorated graphs respecting equation
(3.1). Every graph in C7 does not respect the equation. Indeed, we must have
4A+2B =0 mod 7 and 2B — 2A =0 mod 7, therefore A = B = 0 which is not
allowed. Finally, we have

Tor= U Swm.

(T, M)eV

In other words, the J-locus of ﬁgi is a union of vine strata.



Chapter 4

Moduli of twisted (G-covers

In this chapter we consider the moduli space of twisted G-curves ﬁg,c for any finite
group GG, and we develop a similar analysis to the one that we did for the moduli
spaces of rooted curves ﬁ’;’g. In particular, in the first section we update the dual
graph tools. In the second section we show a similar description of the singular locus,
and moreover the fact that the non-canonical locus Sing™® ﬁgg is the union of the
T-locus and the J-locus also in this case. Finally, we show the pluricanonical forms
extension result for the case G abelian group, and state a similar conjecture in
the case G = S35 the symmetric group of order 3.

4.1 Decorated dual graphs and G-covers

4.1.1 Graph G-covers

In Section we introduced graphs with a G-action, and the associated groups
of 0-cochains and 1-cochains. To treat twisted G-covers and their associated dual
graphs, we need to focus on the notion of graph G-cover. Given a graph I', we start
by recalling the natural differential §: C°(T') — C'(T'), this can be defined also in
the case of a general finite group G.

§: CUT;G) — CH(T; G)
such that
Sa(e) == aley)-ale_)™, Va € C'T;G) Ve € E.

Given a not necessarily connected graph I', we note 7 (I') the set of connected
components of graph I', and we observe that the G-action on I' induces naturally a
G-action on T(I') too. The exterior differential fits into an useful exact sequence of
groups

0 — Hom®(T(I"),G) & C(I';G) & CM(T'; G). (4.1)

Where the injection i sends f € Hom®(T(I'),G) on the cochain a such that for
every component v € T(T'), a is constantly equal to f(7y) on ~.

Remark 4.1. We recall that for any group we can define a (non-associative) Z-
action via h-n := h" for all hin G and n € Z.

29
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We generalize Proposition to the case of any finite group G.

Proposition 4.2. A 1-cochain b is in Imd if and only if, for every circuit K =
(e1,...,ex) in E, we have

b(K) := b(er) - blew) - -~ be) = 1.

Proof. 1If b € Im ¢, the condition above is easily verified. To complete the proof we
will show that if the condition si verified, then there exists a cochain a € C°(T'; G)
such that da = b. We choose a vertex v € V(I') and pose a(v) = 1, for any other
vertex w € V(I') we consider a path P = (ey, ..., ey,) starting in v and ending in w.
We pose
a(w) :==b(P) =b(e1) - - - blen,).

By the condition on circuits, the cochain a is well defined, and by construction we
have b = da. O

We can now introduce edge contraction for a graph with a non-trivial G-action.

Definition 4.3. Given a graph I with a G-action, a vertex set V and edge set F,
we choose a subset D C F which is stable by the G-action. Contracting edges in D
means taking the graph I'y such that:

1. the edge set of I'g is Fy := E\D;

2. given the relation in V, v ~ w if v and w are linked by an edge e € D, the
vertex set of Iy is Vg :=V/ ~.

The G-action on I' induces naturally a G-action on I'y.

All the properties of graph contraction proved in Section are still verified,
because they do not depend on the G-action.
Given any graph I'" with a G-action, we define its G-quotient

r=T/G

by V(T') := V(I')/G and E(T') := E(I')/G. The conditions on the G-action stated
at the beginning of section assure that I' is well defined. Moreover, the edge
contraction of D C E(I) is compatible with the quotient, so that if ' — Iy is the
contraction, then

is the contraction of D/G.

We call the natural morphism I' — T a graph G-cover. For any vertex o of T,
we note Hj its stabilizer in G. For every vertex v of I, its preimages in V(') all
have a stabilizer in the same conjugacy class H in T(G), i.e. for all o in f~!(v) we
have H; € ‘H. Moreover, for every subgroup H in the class H, there exists a vertex
preimage v of v with stabilizer exactly H. In particular the cardinality of the v fiber
is |G|/|H| where |H]| is the cardinality of any subgroup in H. The same is true for
any edge e in E(I).

This behavior suggests to introduce a labelling on the vertices of graph I'.

We observe that it is possible to give another description of the cochain groups

of I by considering the graph G-cover I' — T".
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Proposition 4.4. If F — C is an admissible G-cover of a stable curve, and f: T —
I' is its associated graph G-cover, then we have the identification

COT;G) = [] Hom®(f'(v).G).

veV(T)

Moreover, if we choose a privileged orientation for every edge e in E(I'), then we
have a canonical isomorphism

Definition 4.5. Given a graph I’ with a G-action on it, its subgroup function is the
map V(I') — Sub(G) sending any vertex & on its stabilizer Hj.

Given the associated graph G-cover I' — T, the associated class function of
graph I' is a map V(') — T(G) sending any vertex v on the conjugacy class H of

the stabilizer Hy for any vertex o in the set f~!(v) C V(T').

Consider a 1-cochain b in Cl(f; G). For any oriented edge e of I', and for every
preimage € in f~'(e), the conjugacy class [h] of b(€) in [G] only depends on edge e.
Moreover, for every element in h in [h.], there exists an edge preimage &’ such that
b(é') = h.

Definition 4.6. Given a graph G-cover f: I' — I', and a 1-cochain b on I, the
associated type function of b is a map M,: E(I') — [G] such that for any e in E(T'),
M, (e) is the conjugacy class of any b(€) with € in the set f~1(e).

Given a type function on I and an oriented edge e € E(I"), the order of M (e)
is well defined as the order of any element in the conjugacy class, therefore we say
that r(e) is the order of e with respect to M. We observe that r(e) = r(e) for all e,
therefore the order is well defined as a function on the edge set (without orientation),
r: E(I') — Z-¢. In the following it will be useful to consider every graph with a
type function, as it was equipped with the cyclic group Z/r(e) at the edge e.

Remark 4.7. If we have an admissible G-cover F — C, we consider I' and T’
the dual graphs associated respectively to F' and C. The first with the naturally
associated G-action. Therefore I' =T'/G and I' — T is a graph G-cover.

Remark 4.8. We recall the correspondence between admissible G-covers over a
stable curve C, and twisted G-covers over C', treated in section [1.3.4] By this, the
dual graphs T' and T introduced for any admissible G-cover, are well defined for the
associated twisted G-cover, too.

For any admissible G-cover F — C, consider the dual graphs I' = I'(F) and
I' = I'(C), consider the cochain by € C*(I'; G) such that for any oriented edge & in
E(T), bg(é) is the local index of the associated node with the orientation inducing
the privileged branch (see Definition and Remark . The correspondent
type function M, : E(I') — [G], is the function sending any oriented edge e in the

G-type of the associated node.



62 CHAPTER 4. MODULI OF TWISTED G-COVERS

Definition 4.9. We call indices cochain of the admissible G-cover F' — C, the
cochain bg in C’l(f‘; (). Moreover, we call type function of I — C', the type function
M, associated to the indices cochain br. When there is no risk of confusion, we
note the type function of F' — C simply by M.

Remark 4.10. In the case of an admissible G-cover with G abelian group, the
type function uniquely determines the indices cochain. In the case of G = s a
cyclic group, we already introduced the type function, see Remark [2.21] by using
the multiplicity index notation of Chiodo and Farkas.

We can now update the definition of decorated dual graph to G-covers. Consider
an admissible G-cover F' — C' and the associated graph G-cover I — I". We define
the contracted graphs I'y and Ty. Let D C E(f) bet the subset of edges where the
cochain br of local indices is trivial, that is

D :={ecET)| bp(¢) =1}.
The graph [y is the result of D contraction on I. The graph I'y is the quotient
[y/G, i.e. it is the graph I" after conctraction of the edges where the type function
M has value [[1].

Definition 4.11. The pair (I'((C), M), where M is the restriction of the type
function on the contracted edge set, is called decorated graph of the admissible G-
cover F' — C (or equivalently of the associated twisted G-cover (C,¢)). If the
function M is clear from context, we will refer also to I'o(C') or 'y alone as the
decorated graph.

4.1.2 Basic theory of sheaves in groups and torsors

To have a good description of the ghost automorphism group Aut.(C, ¢), we intro-
duce some basic notions in sheaves and torsors theory. We refer in particular to
Calmes and Fasel paper [7] for notations and definitions.

Consider a scheme S and a site T over the category Sch/S of S-schemes. An
S-sheaf is a sheaf over the category Sch/S with the T topology. Consider G an
S-sheaf in groups, and P an S-sheaf in sets with a left G-action.

Definition 4.12 (torsor). The sheaf P is a torsor under G (or a G-torsor) if

1. the application
GXxP—PxP,

where the components are the action and the identity, is an isomorphism;
2. for every covering {S;} of S, P(S;) is non-empty for every 7.

For example, if G is a finite group, a principal G-bundle over a scheme S, is a
G-torsor, where G is the S-sheaf in groups defined by

G(S") =5 xG VS s