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Abstract

This thesis is devoted to the experimental and theoretical investigations of four instabilities

associated with the emergence of regular patterns over erodible/flexible substrates, and

related to hydrodynamics over a modulated relief.

First, the instability of a flexible sheet clamped at both ends and submitted to a perma-

nent wind is investigated. The flat sheet solution is unstable towards propagative waves, for

strong enough wind. We experimentally study the selection of frequency and wavenumber

as a function of the wind velocity. These quantities obey simple scaling laws derived from

a linear stability analysis of the problem. This phenomenon may be applied for energy

harvesting.

Second, an explanation is proposed for the giant ripples observed by spacecraft Rosetta

at the surface of the comet 67P. We show that the outgassing flow across a porous surface

granular layer and the strong pressure gradient associated with the day-night alternance

are responsible for thermal superficial winds. We show that these unexpected patterns are

analogous to ripples emerging on granular beds submitted to viscous shear flows. Linear

stability analysis of the problem quantitatively predicts the emergence of bedforms at the

observed wavelength and their propagation. This description provides a reliable tool to

predict the erosion and accretion processes controlling the evolution of small solar system

bodies.

Third, we propose a model for rhythmic, dune-like patterns observed on Sputnik

Planum of Pluto. Their emergence and evolution are related to the differential condensa-

tion/sublimation of nitrogen ice. We show that the temperature and pressure in Pluto’s

atmosphere are almost homogeneous and steady, and that heat flux from the atmosphere

due to convection and turbulent mixing is responsible for the emergence of these sublima-

tion patterns, in contrast to the penitentes instability due to solar radiation.

Last, we report an analytical model for the aeolian ripple instability by considering the

resonant grain trajectories over a modulated sand bed, taking the collective effect in the

transport layer into account. The model is tested against existing numerical simulations

that match experimental observations.
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French version

Cette thèse porte sur l’étude expérimentale et théorique de quatre instabilités associées

à l’émergence de motifs réguliers sur des substrats érodables ou fortement déformables,

instabilités liées à l’hydrodynamique sur un relief modulé.

La première partie porte sur l’étude de l’instabilité d’une plaque élastique fixée aux

deux bouts et soumise à un écoulement fluide permanent. La solution plane est instable

vis-à-vis d’ondes propagatives, lorsque l’écoulement est suffisamment fort. La sélection

de fréquence et de longueur d’onde est caractérisée expérimentalement en fonction de la

vitesse de l’écoulement. Ces quantités suivent remarquablement les lois d’échelle obtenues

par l’analyse de stabilité linéaire du problème. Le principe de l’expérience pourrait être

appliqué à la récupération d’énergie.

La deuxième partie porte sur une analyse théorique de la formation de rides géantes

sur la comète 67P, récemment observées par la sonde Rosetta. Nous montrons comment le

dégazage de vapeur se produit au travers d’une couche poreuse granulaire superficielle

et comment l’alternance jour/nuit conduit à des gradients de pression gigantesques qui

engendrent des vents thermiques de surface. Ces motifs apparaissent comme étant les

analogues de rides qui se forment à la surface de lit sableux dans un écoulement visqueux.

L’analyse de stabilité linéaire du problème permet de prédire quantitativement l’émergence

de ces rides à la longueur d’onde et à la vitesse de propagation observées. Cette description

fournit un outil robuste et fiable pour décrire les processus d’érosion et d’accrétion dans

l’évolution des petits corps.

Dans la troisième partie, nous proposons un modèle pour l’apparition de motifs de sub-

limation sur Pluton, tels que ceux observés sur Sputnik Planum. La formation et l’évolution

de ces motifs proviennent de la sublimation/condensation différentielle de la glace d’azote.

Nous montrons que l’atmosphère de Pluton possède des propriétés (température et pres-

sion) peu variables en espace et en temps. Nous analysons les différents mécanismes

d’instabilité en compétition et concluons à un mécanisme original, basé sur le mélange et

le transport de chaleur dans l’atmosphère, plutôt qu’au mécanisme des pénitents, basé sur

l’auto-éclairement de la surface de glace.

Enfin, nous avons étudié théoriquement l’instabilité de formation des rides éoliennes en

considérant les trajectoires des grains résonantes avec le relief. Cette modélisation prend

en compte de manière simple et effective les effets collectifs du transport de sédiments. Le

modèle est validé à partir de simulations numériques existantes, elles mêmes calées sur

des expériences contrôlées.
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Chapter 1

General introduction

When a fluid interacts with a movable or deformable structure with an internal or surround-

ing flow, it exerts forces on the structure, hence causing displacement or deformation. The

deformation/displacement, however, changes the boundary conditions of the flow at the

same time. Problems involving this kind of coupling have attracted a lot of attention in

both fundamental science and engineering [1]. Besides the traditional applications such as

the design of aircraft [2], automobiles [3] and bridges [4], it has also been considered for

medical treatments recently, such as in the analysis of aneurysms in large arteries [5] and

artificial heart valves [6]. In addition, the interaction between a fluid and a structure is also

relevant in the context of geological fluid mechanics [7]. Amongst other famous examples,

let us cite the dynamics of meanders [8] or the spontaneous formation of ripples and dunes

[9] in the nature. In this thesis, we focus on four subjects involving the interactions between

the flow and a flexible or an erodible substrate. They are respectively related to waves on a

flexible sheet, to granular patterns formed on an erodible bed and to sublimation patterns.

1.1 Flag flapping instability induced by wind

Waves on a flexible sheet are usually termed as the flag flapping instability (Fig. 1.1a). The

archetype setup is the case of a cantilevered flexible sheet lying in an axial flow, attached

on the up-stream side and freely flapping at the down-stream end. The interactive motion

between wind and flags has drawn people’s interests and curiosities since long. Figure 1.1b

describes a well-known and possibly apocryphal story about the Chinese Buddhist master

Hui-Neng (AD 638-713), arguing with two other monks when they watched a temple

flag flapping in the breeze. One claimed “The flag flaps!” and the other replying “No, it

is the wind that moves!”. Listening the back-and-forth argument, Hui-Neng interrupted
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and told them that they were both wrong, and that instead “It is the mind that actually

moves.” Although being short from the physical point view , it also diverted the framing of

a fascinating scientific question that might be posed as how the passive motions of the flag

interacts the unseen wind dynamics.

(a) (b)

Fig. 1.1 (a) National flags flapping; (b) An artistic rendering of the story of Hui-Neng and
two monks in Tang dynasty. (Photo sources: web)

So far, it is already well known that the flag instability results from the competition

between the destabilising effect of the pressure applied by the surrounding flowing fluid,

which, by virtue of Bernoulli’s principle, is lowered above crests and increased in troughs,

pushing the sheet away from its flat equilibrium, and the stabilising effect of the bending

rigidity of the solid, which tends to restore the sheet flat (Fig. 1.2a). The occurrence of

flag flapping is also related to the inertia of the flag, and the system is driven by the vortex

shedding at the trailing end (Fig. 1.2b). Compared with other flow-induced instabilities,

such as airfoil flutters involving only a limited number of degrees of freedom (usually

1 or 2), large deformations of the flag itself due to the flexibility always induce a large

number of degrees of freedom in the motion. The strong coupling between the fluid flow

and the elasticity is must therefore be included in the modeling, which leads to significant

difficulties to solve the problem. The characteristics of the dynamical system are expected

to be influenced by both the flow field and the properties of the flag. Recently, the flapping

of flags has been broadly studied due to its wide applications in the paper industry [11, 12]
and airfoil flutter [13], as well as the biological situations including snoring [14] and

the motion of swimming or flying animals [15–20] – see the recent review by Shelley &

Zhang [21] and references therein.
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Side wall

Side wall

Stream line

Stream line

(a)

Fixed end

Free end

Vortex shedding

Flow direction (b)

Fig. 1.2 (a) Sketch of Bernoulli’s principle, with the bold back line and the blue lines
respectievly, showing the sheet and the streamlines, and indicating the pressure difference
at troughs and crests with the black arrows. (b) Flow visualization of the wake structure
downstream of a flexible filament made of silk thread and immersed in a running soap
film [10].
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1.2 Granular patterns on an erodible bed

The emergence of granular patterns have been studied under various situations [22]. A

seminal example is that of ripples and dunes, which form spontaneously from an erodible

bed sheared by a fluid flow in a wide variety of environments (Fig. 1.3): in water channels,

rivers and coastal areas [23], in deserts [24] and snow fields [25] on Earth and under

methane or CO2 atmospheres on other planets [26–28], in hydraulic engineering and

industrial pipe flows [29, 30]. Their size can range from the centimeter scale for subaqueous

ripples to one hectometer for large river mega-dunes, from one decimeter for the smallest

aeolian dunes to one kilometer for the largest ones. Mature, finite-height bedforms are

typically asymmetric, with an avalanche slip face on their lee side. More generally, bedforms

exhibit different shapes depending on the symmetries of the fluid forcing, or the boundary

conditions [31]. Since the pioneering work by Bagnold [24], a number of studies have

been stimulated, and significant progresses have been achieved in the understanding of

the formation of ripples and dunes [9, 32], of coastal forms [33], of fluvial sedimentary

patterns [34], and of snow bedforms [35]. The dynamics of these patterns results from the

interaction between the fluid flow and the bed topography through sediment transport. In

the following, we recall a brief description of particle transport, which will be used in the

discussions afterwards.

Sediment transport mode

The particle at the bed surface are set into motion when the hydrodynamical drag is strong

enough to overcome a certain threshold related to the bed disorder. The ability of the fluid

to put the grains of the bed into motion is quantified by the Shields number defined as

Θ =
τ

(ρp −ρ)gd
, (1.1)

with g the gravity acceleration, d the grain size, ρ and ρp the fluid and particle densities;

and τ = ρu2
∗ the shear stress exerted by the fluid on the bed, where u∗ is the shear velocity.

The threshold Shields number Θt is closely related to the threshold velocity ut , which is

discussed in details in Section 5.2.

Observations have shown that the particles are transported in different modes as

schematically shown in Fig. 1.4, associated with the forces acting on them. In the aeolian

case, the ratio of the particle density to the fluid density is large so that the grains are mainly

transported in saltation, in a succession of jumps. When the impact of saltating grains on

the bed is strong enough, they release a splash-like shower of ejected grains that make
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Fig. 1.3 Granular patterns under various environments. (a) An aeolian dune and the ripples
on its surface; (b) and (c) show a snow dune and snow ripples; (d) subaqueous sand ripples
in the stream in the Altai Republic, Russia; (e) ripples observed on a Martian dune. (All
photos’ source: web.)
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small hops, and this secondary transport mode is called reptation. In the subaqueous case,

the grains and the fluid have comparable densities. The transport is mainly a turbulent

suspension when the velocity of turbulent fluctuations is larger than the settling velocity.

When gravity is large enough to confine sediment transport in a layer at the surface of the

bed, one refers to bedload: the grains are either hopping in saltation or roll and slide at

the bed surface, with long-contacts between the grains, termed as traction.

Aeolian

Saltation

Reptation

Subaqueous

Traction

Saltation

Bed-load

Suspension

{

b

a

Fig. 1.4 Schematics featuring the modes of sediment transport in the aeolian (a) and
subaqueous cases (b).

Saturated flux

Our primary interest is the evolution of the bed surface due to the sediment transport,

which is related to the particle flux q, in m2/s, counting the volume of the grains (packed

at the bed volume fraction) passing a vertical surface of unit width, and per unit time. To

understand, let’s consider a simplest case of an infinite flat sediment bed submitted to a

steady flow. After a transient time, a dynamical equilibrium between flow and particle

transport is reached, which means that there are as many particles deposited as particles

eroded from the bed. The erosion and deposition fluxes balance each other; i.e. there is
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no net erosion nor deposition of particles. The dynamical equilibrium is characterised by

the so-called saturated flux qsat which determines the resulting sediment transport flux,

and qsat is spatially homogeneous. It is obvious that the stronger the flow, the more it can

carry grains: qsat is therefore an increasing function of the increasing wind strength, which

vanishes below a threshold shear velocity u∗ = ut . As shown in Fig. 1.5a, the behavior of

qsat for bedload has been measured in hydraulic channels, and the data are traditionally

fitted by an empirical formula by Meyer-Peter & Müller (1948) [36]:

qsat∝

√

√

√

ρp −ρ
ρp

gd3 (Θ−Θt)
3/2 . (1.2)

This scaling law is well understood from Bagnold’s original idea [37]. The saturated flux

can be decomposed as the product of the number N of transported grains per unit area

by the mean grain horizontal velocity up: qsat = πd3/(6φb)Nup, with φb the bed volume

fraction. The total shear stress ρ f u2
∗ can be decomposed as the sum of the fluid-borne

shear stress τ f and the grain-borne shear stress τp. Now τp is proportional to the moving

grain density N and to the drag force acting on a grain moving at the average velocity

up due to a flow at the velocity u. If the grains are in a steady motion, the drag force

balances a resistive force due granular friction, collisions with the bed, etc. These different

dissipative mechanisms can be modeled as an overall effective friction force characterized

by a friction coefficient. Assuming that the transported grains do not disturb the flow, the

flow velocity u around grains must be proportional to the shear velocity, so that up scales

linearly with u∗ (or
p
Θ, Eq. 1.1). Furthermore, saturation is reached when the fluid-borne

shear stress equals the transport threshold at the surface of the static bed. As a consequence,

the number of transported particles per unit area is proportional to the excess shear stress,

or Θ−Θth. Taking the product of N and up, it then gives a transport law as in Eq. 1.2. We

will derive the transport law based on Bagnold’s idea for the cometary case in Chapter 5.

Saturation length

The sediment flux is no longer uniform when the bed topography is modulated by the

patterns (bedforms). There is ample experimental evidence that that transport does not

adapt instantaneously to a spatial change of the shear stress but shows a relaxation in space

and time [42]. Considering that the transport over bedforms is never far from its saturated

state, the problem can therefore be described by a linear relaxation towards the saturated

state, and one obtains:

Tsat
∂ q
∂ t
+ Lsat

∂ q
∂ x
= qsat − q, (1.3)
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Fig. 1.5 (a)Measurements of the saturated flux in the case of bed load transport under water.
(◦) Luque & van Beek (1976) [38], (•) data collected by Julien (1998) [39]. Red solid
line: qsat∝ (Θ−Θt)

3/2. (b) Experimental measurements of Lsat in the case of suspension,
with the distance x rescaled by the deposition length Ldep = Ud/Vfall, where U the flow
velocity and Vfall the grain falling velocity. Markers and lines: green circles (van Rijn 1986
[40]) and gray circles (Ashida & Okabe 1982 [41]) for net erosion, blue squares (Ashida &
Okabe 1982 [41]) for net deposition, solid and dotted lines in red for exponential fits.

where Lsat and Tsat are called the saturation length and times [43–51]. Comparing to the

bedform growth time (∼ 102 s for subaqueous ripples and ∼ 105 s for aeolian dunes), Tsat

is much smaller for the ripples and dunes, which justifies the simplifying assumption that

the fluid flow can be computed as if the bed were fixed. To understand Lsat, we consider a

homogeneous flow on a granular bed, which extends only in the half space x > 0. Upstream

of this bed (x < 0) is not erodible but has the same hydrodynamic roughness. The flux q at

the upwind boundary (x = 0) is zero; it grows and then relaxes exponentially towards qsat

over relaxation length Lsat, which thus characterise the length scale over which sediment

transport relaxes towards equilibrium. When the flux is locally larger than the saturated

flux, it decreases over space so that grains are deposited (see Fig. 1.5b). If the flux is locally

smaller than the saturated flux, it grows over space, causing erosion of the bed. Lsat has

been theoretically and experimentally studied for saltation [49, 52–55]

Lsat∝
ρp

ρ
d, (1.4)

and suspension [40, 41, 46, 56]

Lsat∝
u∗H
Vfall

, (1.5)
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with H the fluid depth and Vfall the falling velocity.

Contrarily to the aeolian transport, Lsat has never been directly measured for bedload,

mainly because it is much smaller, of the order of few grain sizes. Indirect estimates by

Fourrière et al. give very small values scaling with the grain diameter, typically 10–20d
[57]. We will start over the discussion of bed load saturation length in Chapter 5.

Stability analysis of a flat granular bed

The stability analysis gives the time and length scales at which bedforms emerge from

a flat bed. Studies have shown that aeolian dunes and subaqueous ripples form by the

very same linear instability, which has been modeled and quantitatively tested against

laboratory measurements [9]. The destabilizing effect results from the phase advance of

the wind velocity just above the surface with respect to the elevation profile. As in Fig.

1.6a, it shows a linear response of the basal shear stress τ, and we note, especially, the

phase advance with respect to the bottom. This means that the maximum shear stress

locates upstream of the crest. The stabilizing mechanism comes from the space lag between

sediment transport and wind velocity, which is characterized by the saturation length Lsat

[9, 44, 52] (Fig. 1.6b). Grains are eroded (deposited) when the flux increases (decreases)

in space. Instability takes place when the crest is in the deposition zone, i.e. when the

maximum of the sediment flux is upwind of the crest. The dispersion relation for the linear

stability analysis of a flat granular bed has been studied by Charru et al[9]. The growth rate

σ and propagation velocity c of a bed modulation of the wavenumber k = 2π/λ, where λ

is the wavelength, is given by:

σ =Qk2 (B −S )−A kLsat

1+ (kLsat)2
, (1.6)

c =Qk
A + (B −S )kLsat

1+ (kLsat)2
. (1.7)

In these expressions, Q ≡ τ∂τqsat quantifies the sediment transport, and S encodes the

fact that the threshold for transport is sensitive to the bed slope with S = 1
µτt/τ, where

µ= tan(29◦)≃ 0.55 is the tangent of the avalanche angle. A andB are the components

of the basal shear stress in phase and in quadrature with the bottom, respectively, whose

determination are discussed in Section 6.4.

Regarding aeolian ripples, it has been long known that they do not share the same ‘linear

instability’ formation mechanism as dunes and subaqueous ripples [59]. Until recently,

their emergence was ascribed to a geometrical effect responsible for the modulation of

sediment transport. We will revisit this problem in Part IV.
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Crest
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(a)

(b)

Fig. 1.6 Schematic of the ripple instability mechanism. (a)Rescaled basal shear stress
τ/τ0 on a smooth sinusoidal bottom (black line). Measurements for 2ζ0/λ= 0.0125 (red
squares) and 0.05 (blue squares) [58]; solid lines: best fit with three harmonics. τ0 is the
basal shear stress for the reference state: flat bed. ξ0 and λ are the amplitude and wave
length of the bedform. (b) The wind velocity close to the surface (red arrow) is modulated
by the topography. The maximum of wind, the crest of the bedform and the maximum the
sediment flux are labeled by red dotted line, black dotted line and orange dotted line.
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1.3 Sublimation patterns on an ice bed

Different patterns on a sublimating surface, such as penitentes and ice waves, have been

observed on Earth [60, 61], as in Fig. 1.7. Some of them also form (or are expected to

form) on other planetary bodies [62–64]. These patterns are always found in specific

environments, where the partial pressure of vapour (corresponding to the ice substance) in

the atmosphere is low, sublimation therefore significantly contributes to ablation and takes

a part in the development of patterns on the ice surface.

It is already known that penitentes form in sublimation conditions by differential

ablation due to self-illumination, vapor diffusion and heat conduction [66, 67]. Regarding

ice waves, the emergence and evolution can be described using a similar hydrodynamics as

granular (snow or sand) dunes and ripples. They differ by the presence of particle transport

in one case and the sublimation at the interface in the other. Recent studies have shows

that complex interactions between sublimation-related mass transfer and turbulent flow in

the lower-atmosphere lead to the development of stunning spiral-shaped topographic ice

waves at the surface of the North Polar cap of Mars, and it is the periodic spatial variations

in sublimation-related ablation rates that are responsible for the development of these

topographic waves [68, 69]. So far, the genesis of these patterns is still not completely

known, and further work is needed to understand the role of sublimation in the development

of such wavy patterns, the relevant dynamical mechanisms controlling the mass balance,

the dynamics at different scales and so on.

Another group of similar phenomena are dissolution patterns, such as scallops and

icicle ripples, which always develops in limestone caves and in caves in ice, as well as other

precipitation and dissolution interfaces [70–73]. These patterns result from the interaction

of a soluble surface and an adjacent turbulent flow, and this is beyond the discussion in

this thesis.

1.4 Fluid flow over the rippled patterns

All the patterns mentioned above are resulted from the interaction between substrates and

fluid flows over the interfaces. A good understanding of the flow field near the patterns

plays a key role in explaining the emergence and evolution of these patterns. As a general

description, we briefly introduce here a two-dimensional incompressible flow over the

interface, with x , z and ξ denote the flow direction, vertical direction and the interface

profile, respectively. Following the standard separation between average quantities and

fluctuating ones (denoted with a prime), the mean velocity field ui is governed by Reynolds
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(c)

(a) (b)

(d)

(e)

Fig. 1.7 (a) Field of Penitentes on the Upper Rio Blanco, Central Andes of Argentina.
The blades are between 1.5 and 2m in height, image from enWiki. (b) Ice waves, image
from Internet. (c) Ice waves on the ice surface observed in the cryosphere in Antarctica,
image from website of National Snow and Ice Data Center of USA. (d) Spiral-shaped
topographic ice waves at the surface of the North Polar cap of Mars, from the sublimation
and condensation of CO2, with superimposed katabatic wind streamlines from Massé et
al [65]. (e) A satellite image of the ice waves (or termed as ice megadunes) with 25 km
resolution, a top right inset showing the map of Antarctica and location of the ice waves,
credit: NASA Earth Observatory.
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averaged Navier Stokes equations:

∂iui =0, (1.8)

ρ(∂tui + u j∂ jui) =∂ jτi j − ∂i p, (1.9)

where τi j contains the deviatoric part of the Reynolds stress tensor −ρu′iu
′
j. The trace

of the Reynolds stress tensor is included inside p. We use here a Prandtl-like first order

turbulence closure in which the distance to the bed z − ξ determines the mixing length ℓ,

and the mixing frequency is given by the strain rate modulus |γ̇| =
q

1
2 γ̇i jγ̇i j, where we

have introduced the strain rate tensor γ̇i j = ∂iu j + ∂ jui.

In the general case, we can write the stress tensor components as the sum of the viscous

and turbulent contributions:

τxz =ρ
�

ℓ2|γ̇|+ ν
�

γ̇xz, (1.10)

τx x =ρ
�

ℓ2|γ̇|+ ν
�

γ̇x x , (1.11)

τzz =ρ
�

ℓ2|γ̇|+ ν
�

γ̇zz, (1.12)

where ν is the gas kinematic viscosity. In these expressions, the strain tensor components

are given by

γ̇xz = γ̇zx = ∂zux + ∂xuz, γ̇x x = 2∂xux and γ̇zz = 2∂zuz = −γ̇x x , (1.13)

and the strain modulus by:

|γ̇|2 = 2(∂xux)
2 + 2(∂zuz)

2 + (∂zux + ∂xuz)
2 = 4(∂xux)

2 + (∂zux + ∂xuz)
2. (1.14)

For a turbulent boundary layer, the mixing length cannot exceed the distance to the

wall, and it is generally estimated by ℓ= κ(z − ξ), with κ= 0.4 the von Kármán constant.

This expression describes well the fully turbulent part of the boundary layer, yet excluding

the viscous sublayer and buffer layer close to the wall. To apply the mixing length model in

the entire turbulent boundary layer, various empirical expression have been proposed, and

we employ here the van Driest formula by introducing a damping function [74],

ℓ= κ(z − ξ)
�

1− exp

�

−
(τxz/ρ)

1/2 (z − ξ)
νRt

��

, (1.15)

where Rt is the transitional Reynolds number. Following Hanratty [9, 75, 76], we consider

that the transitional Reynolds number depends on a dimensionless number H which
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depends on, but lags behind the pressure gradient:

a
ν

u∗
∂xH =

ν

ρu3
∗
∂x(τx x − p)−H (1.16)

where a is the multiplicative factor in front of the space lag and u∗ is the shear velocity.

H is positive when the pressure decreases in space, which is stabilizing. The transitional

Reynolds number is therefore an increasing function of H . We also introduce b as the

relative variation of Rt due to the pressure gradient:

b =
1
R0

t

dRt

dH
> 0. (1.17)

where R0
t = 25 is the transitional Reynolds number for the homogeneous case.

The generic hydrodynamical description above will be used simplify or further developed

in the coming chapters for different situations.

1.5 Outline of the thesis

The present thesis is elaborated in four parts:

1. In Part I, we study a situation related to but different from the flag flapping: a flexible

or compliant material clamped at both ends, which develops traveling waves when

submitted to a flow. We first measure the frequency and the wavenumber of the

waves varying the wind velocity and for different materials (paper and plastic sheets),

and then we carry out a linear stability analysis based on a simple hydrodynamic

assumption and on the Euler-Bernoulli beam theory for the sheet to study the temporal

and spatial scalings, which are then compared with the experimental data.

2. The work in Part II is inspired by the unexpected bedforms on Comet 67P/Churyumov

– Gerasimenko revealed by the Rosetta Mission of European Space Agency. In Chapter

4, we model the thermo-hydrodynamics of 67P’s atmosphere. Based on the specific

atmospheric properties, the sediment transport are analyzed in Chapter 5, and finally

we discuss the nature of the bedforms and compare the predicted time and length

scales with the observations in Chapter 6.

3. In Part III, we propose an explanation for the kilometer scale patterns on the surface

of Pluto, revealed by the New Horizons mission of NASA. Firstly, we study Pluto’s

atmosphere in Chapter 8, and then we model the ice waves in a general case by
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linking the emergence and evolution to the instability of an interface between a

sublimating ice bed and its turbulent vapor flow in Chapter 9. We test the model

against the observed patterns in the end.

4. In Part IV, we report an analytical model based on the sand grain trajectories to study

the emergence and evolution of the aeolian ripples. The model is then compared to

the numerical data; and we also present evidence from wind tunnel experiments.

5. Finally, the general conclusions and perspectives are given in Chapter 11.





Part I

Travelling waves on highly flexible

substrates





Chapter 2

Paper waves in the wind

2.1 Introduction

When it comes to the flag flapping instability, the earliest explanation dates back to

Rayleigh [77], who found that a flag of infinite span and infinite length is always un-

stable. When considering a flag of finite dimensions, this problem becomes more difficult

and depends on its aspect ratio, defined as the ratio of the flag span to the flag length.

The slender body approach and the airfoil theory have been respectively employed to

implement the calculations for asymptotically small [15, 78] and large [79, 14, 12, 80]
aspect ratios. A recent unified model by Eloy et al. [81, 82] has considered the intermediate

case. Experimental studies have been carried out in wind tunnels [83, 14, 12], in water

flumes [84] and even in flowing soap films [10]. The first experiments of Taneda were

performed in a vertical wind tunnel with flags of different materials (silk, flannel, canvas,

muslin) and shapes (triangles, rectangles), and it is reported that the flags do not flap in

slow flows due to the stabilizing effects of both viscosity and gravity [83]. Later, Datta

& Gottenberg conducted experiments with long ribbons hanging vertically in downward

flows, and the critical flow velocity for the onset of flapping was studied as a function of the

length, width and thickness of the ribbons [85]. This small aspect ratio regime has recently

been experimentally revisited by Lemaitre [78]. Experiments for larger and intermediate

aspect ratios have also been reported by Huang [14], Watanabe et al [12], Yamaguchi et

al [86] and Eloy et al [82]. In these experiments, the critical velocity, at which the flag flaps

spontaneously with a large amplitude and a well-defined frequency, is systematically found

higher than theoretical predictions [87] and the origin of this discrepancy has recently

been related to inherent planarity defects [88]. In a more recent experiment, Kim et al.

have investigated the occurrence of the flapping of an inverted flag, with a free leading

edge and a fixed trailing edge [89].
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Various numerical approaches have also been used to tackle the different aspects of

this problem. The experiments of Zhang et al [10]. were reproduced by direct numerical

simulation using immersed boundary method (IBM) [90] and arbitrary Lagrangian Eulerian

(ALE) [91, 90]. Both numerical methods have reproduced well qualitatively the stretched-

straight state and bistability-switching. Alben et al employed a flexible body vortex sheet

model to compute the fluid forcing and the flow field around a flapping 2D flag [92], and

they reported a chaotic state, characterised by undefined amplitude and frequency, may

appear when the incoming flow velocity is much larger than the critical velocity. Michelin

et al also observed this chaotic state by using a unsteady point vortex model [93].

In this chapter, we report experiments of wind-generated waves on a flexible sheet

clamped at both ends, thus avoiding the flapping phenomenon and subsequent vortex

shedding from the trailing edge. These elastic surface waves are induced by the same

pressure-related instability mechanism as in the case of the flag flapping [79, 94–96], but

their dynamics and length/time scale selection are different, and were not investigated

before. The content is organized as follows. The experimental setup and the data processing

techniques are described in the following. Then, the linear instability analysis is carried

out. Finally, experimental results are compared with the theoretical predictions.

2.2 Experimental study

2.2.1 Experimental setup

As schematically illustrated in Fig. 2.1, the experiments are conducted in a wind tunnel with

a square cross section. We denote as x , y and z the longitudinal, transverse vertical and

horizontal axes, respectively. The wind flow is induced along x by imposing the pressure at

the inlet. The wind velocity V is monitored with an anemometer (Testo 405-V1, Appendix

A) at a fixed position at the exit of the tunnel. A flexible sheet of width ≃ 4 cm and of

length L is placed at the centre of the tunnel and clamped at both ends on fixed masts. We

denote as L0 the distance between the two masts and define ∆L = L − L0 (different values

of ∆L have been used, see below). The reference coordinate x = 0 is chosen at the inlet

mast. The air flow is uniformly injected on both faces of the sheet, in order to avoid the

formation of vortices. A transverse orientation of the sheet along y and z have both been

tested, showing qualitatively similar behaviors (quantitative differences exist, due to gravity,

see Section 2.4), and in what follows all data correspond to a vertical orientation. The

experiments are conducted either with paper or plastic (bi-oriented polypropylene) sheets

of different thicknesses. The values of the relevant physical characteristics of these materials
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Table 2.1 Values of the mass per unit surface m and the bending rigidity D of the three
different sheets used in the experiments.

Material
m D h

kg/m2 Nm µm

Paper 2.5× 10−1 7.6× 10−3 90
Plastic 8.6× 10−2 1.5× 10−4 58
Plastic 4.9× 10−2 4.2× 10−5 30

are given in Tab. 2.1, namely the mass per unit surface m and the bending rigidity D. This

last quantity was measured by determining the deflection under gravity of horizontally

clamped strips of various lengths. Interestingly, D changes by two orders of magnitude

from the thin plastic sheet to the paper, which allows us to investigate the instability over a

large range of parameters. A fast camera (Phantom Miro M340, Appendix A) is employed

to record the motion of the sheet through the transparent ceiling of the tunnel. The camera

is operated with a spatial resolution of 2560 pixel× 320 pixel, at 1.5 pixel/mm, and an

exposure time of 400 µs. The sample rate is typically between 1000 Hz and 2500 Hz during

the measurements.

Air Flow

  V m/s 

X

Y

Z

O
Fast Camera

Wind Tunnel

Flexible Sheet

Control Laptop

Mast Mast

Fig. 2.1 Sketch of the experimental setup. V is the air flow velocity, measured at a fixed
position at the outlet of the tunnel. The distance between the two masts is L0 = 1.5 m. The
square section of the tunnel is 0.15 m× 0.15 m. The sheet is 4 cm wide and its total length
is denoted as L = L0 +∆L. ∆L has been varied from 4 to 12 cm.

2.2.2 Experimental data

The wind flow generates waves on the sheet, that propagate downstream. The high-

frequency movies allow us to follow in detail the kinematics of these waves. In the case

of the paper sheet, they are mostly transverse to the wind, i.e. the sheet is not twisted.

However, due to a smaller flexibility, the plastic sheets show three-dimensional motions
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Fig. 2.2 Typical experimental measurements and data processing. (a) Single frame image of
the experimental record, with the red lines showing the detected borders of the sheet. (b)
Temporal variation of the deflection ζ of the sheet at a given location (here, x = 0.235 m).
Solid line: Fourier fit of the form ζ(x , t) = Acos(ωt − φ). (c) Spatial variation of the
angular frequencyω along x . Solid line: fit by a constant. (d) Spatial variation of the phase
φ along x . Solid line: linear fit of the form φ = kx . (e) Spatial variation of amplitude A
along x . Solid line: linear fit to estimate the slope ≃ 10−2. All these data correspond to the
paper sheet, at V = 8.6 m/s and with ∆L = 4 cm. Data for the plastic sheets or for other
control parameters look very similar. In panels (b-d), 8 time series corresponding to 2000
frames at 1000 Hz (2 s in total) have been averaged.
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for the stronger winds. For a given wind velocity, the experimental data are obtained as

follows. The borders of the sheet are detected from the image sequences by maximizing the

correlation with an analyzing wavelet (Fig. 2.2a). The average profile ζ(x , t) representing

the two-dimensional shape of the sheet is determined with a sub-millimetric resolution. The

typical time variation of ζ at a fixed value of x is displayed in Fig. 2.2b, and shows harmonic

oscillations: for a given x , ζ(x , t) is well represented by the function Acos(ωt −φ), where

A is an amplitude; ω is an angular frequency and φ is a phase. All these three quantities a
priori depend on x (and V ). However, as shown in Fig. 2.2c, ω turns out to be constant all

along the sheet and the phase is linearly related to space φ = kx (Fig. 2.2d), corresponding

to a constant wave propagation velocity c =ω/k. k is the wavenumber of the waves, and

λ = 2π/k is the wavelength. The behavior of A(x) shows several regimes (Fig. 2.2e). A
vanishes at both ends of the sheet, as it should because of the clamping. In between, it

first increases rapidly, then slowly decreases in a more noisy way over most of the tunnel,

and finally quickly drops at the very end. The first part can be associated with the spatial

development of the instability. As shown in section 2.4, the typical value of the amplitude in

the second regime is dictated by the geometrical constraint that relates A to k and ∆L/L0.
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Fig. 2.3 Measured angular frequency (a) and wavenumber (b) a function of wind velocity V
for paper sheet with ∆L = 4 cm. Solid lines are the phenomenological fittings: (a) ω∝ V
and (b) k∝ V 2/3.

We have conducted experiments similar to that corresponding to Fig. 2.2, systematically

varying the air flow velocity and the total length of the sheet L, for all three types of

sheet. As in Fig. 2.3, the dependence of the angular frequency and wave number on wind

velocity is plotted, and some simple monotonical variations are observed as suggested by

the phenomenological fitting, for which a rigorous explanation is needed. We now mostly
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focus on the frequency and the wavenumber of the waves, for which a comparison with an

analytical theory is possible.

2.3 Theoretical modelling

The purpose of this section is to provide a brief but self-contained summary of the theoretical

framework within which we analyze our experimental data. The theoretical description of

the flow over a flexible sheet has been treated in a general way several decades ago, as e.g.

summarized by Paidoussis [1], see chapter 10 and references therein. Here, we restrict

this analysis to a two-dimensional linear perturbation theory. Furthermore, we hypothesize

that the air flow can be decomposed into a turbulent inner boundary layer and an outer

laminar flow which can be described as an incompressible perfect fluid. As we only need

the pressure field, which is almost constant across the inner layer according to the boundary

layer theory, we will simply describe the outer layer. Under these simplifying assumptions,

we are able to derive analytical scaling laws for the frequency and the wavenumber of the

most unstable mode in the asymptotic limit of either very flexible or very rigid sheets, and

which were not available in the literature.

2.3.1 Governing equations

We consider a flexible sheet of infinite span and length submitted to an air flow along the

x-axis. For later rescalings, we denote by V the characteristic velocity of the wind, i.e.

the average air velocity at a given and fixed altitude zw (in the experiment zw ≃ 7.5 cm).

Assuming that the motion of the sheet is independent of the coordinate y , we denote ζ(x , t)
as its deflection with respect to the reference line z = 0. In the limit of small deflections

with respect to a flat reference state, the sheet obeys the linearized Euler-Bernoulli beam

equation:

m
∂ 2ζ

∂ t2
+ D

∂ 4ζ

∂ x4
+δp = 0, (2.1)

with δp the air pressure jump across the sheet. m and D are respectively the mass per unit

surface and the bending rigidity (Table 2.1).

Neglecting viscous stress in the outer layer and assuming incompressibility (recall that

velocities are on the order of a few m/s, i.e. corresponding to very low Mach numbers),

mass and momentum conservations for the flow field are therefore expressed by Euler
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equations:

∇ · u=0, (2.2)

∂ u
∂ t
+ (u · ∇)u= −

1
ρ
∇p, (2.3)

where u and p are the velocity and pressure fields, and ρ is the air density. Finally, the

fluid velocity on the sheet should be equal to the sheet velocity, in order to ensure the

impermeability of the sheet:

u(z = ζ) · n=
dζ
dt

, (2.4)

where n is the unit vector normal to the sheet. Equations (2.2-2.4) must be consistently

linearized in the limit of small sheet deflections, and together with (2.1) they form a closed

set that we analyze in the next sub-section.

2.3.2 Linearized problem

The base state the perturbations

We consider that the sheet is long enough to ignore the influence of boundaries and the

base state corresponds to a flat sheet, ζ(0) = 0. And it reads, for flow:

u(0)x = V ; u(0)z = 0; p(0) = P0, (2.5)

where P0 is the reference pressure. This state satisfies the conservation equations and the

boundary conditions above. Perturbing this base state, the velocity, pressure, and sheet

position are written as

ux = V + u(1)x ; uz = u(1)z ; p = P0 + p(1); ζ= ζ(1). (2.6)

Considering the boundary conditions, one obtains for flow

u(1)x = 0; u(1)z = 0; p(1) = 0 for z→∞; (2.7)

And Eq. 2.4 gives the normal velocity continuity

∂ ζ(1)

∂ t
+ V

∂ ζ(1)

∂ x
= u(1)z |z=0 . (2.8)
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Linearized equations and normal modes

Introducing Eq. 2.6 into the governing equations (2.2 and 2.3), one obtains the linearized

equations with respect to the base state (2.5) by neglecting the products of the perturbations,

∂ u(1)x

∂ x
+
∂ u(1)z

∂ z
=0, (2.9)

∂ u(1)x

∂ t
+ V

∂ u(1)x

∂ x
= −

1
ρ

∂ p(1)

∂ x
, (2.10)

∂ u(1)z

∂ t
+ V

∂ u(1)z

∂ x
= −

1
ρ

∂ p(1)

∂ z
(2.11)

we obtain a system with constant coefficients independent of x and t with Eq. 2.8, 2.9,

2.10 and 2.11. The dependence of the solutions on x and t is therefore exponential, and

the perturbations can be sought in the form of normal modes, characterized by the complex

frequency Ω:

ζ(1) =Aeikx−iΩt , (2.12)

u(1)x =U V kAe−iΩt+ikx−κz, (2.13)

u(1)z =W V kAe−iΩt+ikx−κz, (2.14)

p(1) =P ρV 2kAe−iΩt+ikx−κz, (2.15)

Ω will be later decomposed into real and imaginary parts as Ω=ω+ iσ, where σ is the

temporal growth rate of the perturbation. κ is the spatial decay rate along the z-axis. A
sets the amplitude of the sheet deflection, and, as it should in the framework of a linear

analysis, it will factorize out of all results when solving the governing equations in the

asymptotic limit kA≪ 1. V sets the dimensionful reference for the velocities, and ρV 2

does that for the pressure. The unknowns are thus the dimensionless quantities U , W and

P as well as κ, and they are to be determined by the above governing equations.

Plugging (2.12-2.15) into (2.8-2.11), and treating the first order in kA, we first find

κ2 = k2, (2.16)

from which we set κ= k (resp. κ= −k) for the fields in the region z > 0 (resp. z < 0), in

order for the perturbation to decay away from the sheet. The three other unknowns are
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found as:

U = ±
kV −Ω

kV
, (2.17)

W = i
kV −Ω

kV
, (2.18)

P = ∓
(kV −Ω)2

(kV )2
, (2.19)

where the ± sign corresponds to the positive/negative region (in z). For our purpose, the

most important quantity is δp the pressure jump across the sheet, which writes:

δp = p(z→ 0+)− p(z→ 0−) = −2ρ
(kV −Ω)2

k
ζ. (2.20)

This allows us to express the dispersion relation from Eq. 2.1 as:

mΩ2 − Dk4 + 2ρ
(kV −Ω)2

k
= 0, (2.21)

whose properties are studied in the next sub-section. Note again that this equation is a

simpler form of the dispersion relation derived in [1] (chapter 10) where the distance to

the bottom wall has been sent to infinity and the viscous drag, the spring stiffness of the

elastic foundation and the plate tension have been set to zero.

2.3.3 Dispersion relation

The above equation can be made dimensionless by setting Ω̄ = mΩ
ρV for the frequency, k̄ = mk

ρ

for the wavenumber, and D̄ = ρ2D
m3V 2 for the bending rigidity. With these rescaled variables,

Eq. 2.21 writes

Ω̄2 − D̄k̄4 +
2

k̄
(k̄− Ω̄)2 = 0, (2.22)

and D̄ is its only parameter. Because it is quadratic in Ω̄, (2.22) can easily be solved as:

Ω̄=
2k̄

k̄+ 2
±

√

√

√−2k̄3 + 2D̄k̄5 + D̄k̄6

(k̄+ 2)2
. (2.23)

As in Fig. 2.4, the real and imaginary parts of Ω̄ are plotted. Due to the square root in

(2.23), we can identify a cutoff wave number k̄c, solution of

− 2+ 2D̄k̄2
c + D̄k̄3

c = 0. (2.24)
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Above k̄c, Eq. 2.22 has two real roots, and the complex frequency Ω̄ of any perturbation

is real (the expression below the square root is positive), corresponding to a wave which

propagates without growth nor decay (σ = 0). On the other hand, any perturbation with a

wavenumber below k̄c has an angular frequency and a growth rate given by:

ω̄=
2k̄

k̄+ 2
, (2.25)

σ̄ = ±

√

√

√2k̄3 − 2D̄k̄5 − D̄k̄6

(k̄+ 2)2
. (2.26)

All wavenumbers between 0 and kc are unstable. In between, σ̄ shows a maximum,

corresponding to the most unstable wavenumber k̄m. It is the solution of dσ̄/dk̄ = 0, which

gives:

2D̄k̄4
m + 9D̄k̄3

m + 10D̄k̄2
m − k̄m − 6= 0. (2.27)
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Fig. 2.4 Dimensionless growth rate σ̄ (positive branches only) and the dimensionless
angular frequency ω̄ as a function as the dimensionless wavenumber, with the bending
rigidity D̄ = 10−3. Black and red curves indicate the behaviors of σ̄ and ω̄ for k̄ < k̄c and
k̄ > k̄c, respectively. Circles show the positions of cutoff wave number k̄c, maximum wave
number k̄m and maximum growth rate σ̄m.

We display σ̄ (positive branch) and ω̄ as functions of k̄ in Fig. 2.5. Both k̄m and k̄c

depend on the rigidity of the sheet, and they are larger for smaller D̄. In the unstable range

of k̄, ω̄ is independent of D̄. It increases linearly with k̄, and eventually saturates to the

value 2 when k̄ reaches values on the order of unity. Interestingly, this saturated regime

corresponds to waves with vanishing phase (ω/k) and group (dω/dk) velocities. Beyond
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k̄c, σ̄ = 0 and ω̄ enters another regime (not shown in Fig. 2.5b) where it asymptotically

varies like the square of the wavenumber.
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Fig. 2.5 (a) Dimensionless growth rate σ̄ (positive branches only) as a function as the
dimensionless wavenumber, for k̄ < k̄c, Eq. 2.26. The different lines correspond to different
values of the bending rigidity D̄. Dotted-dashed line: D̄ = 103, k̄c ≃ 3.110−2. Dashed
line: D̄ = 100, k̄c ≃ 8.410−1. Dotted line: D̄ = 10−3, k̄c ≃ 1.2101. Solid line: D̄ = 10−6,
k̄c ≃ 1.3 102. (b) Dimensionless angular frequency ω̄ as a function as of k̄, Eq. 2.25. Note:
for k̄ < k̄c, ω̄ is independent of D̄.

In this temporal stability analysis, both phase and group velocities are found positive,

which may suggest a convective instability, as often the case for instabilities generating

propagative waves. However, performing the spatial stability analysis of these equations,

one finds unstable modes with both positive and negative group velocities, suggesting an

absolute instability. Previous theoretical analyses of this issue [97, 98] (and references

therein) have shown that the instability is absolute below a threshold in D̄ around 102,

i.e. at small enough D or large enough V . This therefore justifies the temporal analysis

performed here.

2.3.4 Asymptotic analysis and scaling laws

Scaling laws for the characteristics of the most unstable mode (k̄m, ω̄m, σ̄m) as well as for

the cut-off wavenumber k̄c can be analytically derived in the limits of asymptotically small

and large D̄. k̄c and k̄m are calculated from (2.24) and (2.27), respectively. ω̄m and σ̄m

are obtained by introducing k̄m into Eqs. 2.25,2.26. Expanding these equations in the limit
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Fig. 2.6 Cut-off wavenumber k̄c (a), maximum wavenumber k̄m (b), maximum angular
frequency ω̄m (c) and maximum temporal growth rate σ̄m (d) as functions of the bending
rigidity D̄. Circles: data obtained numerically from the equations. Solid lines: asymptotic
expressions (2.28-2.31).
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D̄→ 0 and D̄→∞, one obtains for the wavenumbers:

k̄c ∼
�

2
D̄

�1/3

, k̄m ∼
�

1
2D̄

�1/3

for D̄→ 0, (2.28)

k̄c ∼
�

1
D̄

�1/2

, k̄m ∼
�

2
5D̄

�1/2

for D̄→∞. (2.29)

Similarly, the angular frequencies and growth rates scale as:

ω̄m ∼ 2, σ̄m ∼
�

27
16D̄

�1/6

for D̄→ 0, (2.30)

ω̄m ∼
�

3
5D̄

�1/2

, σ̄m ∼
�

2
5

�1/2� 3
5D̄

�3/4

for D̄→∞. (2.31)

The variations of k̄c, k̄m, ω̄m and σ̄m with D̄ are displayed in Fig. 2.6, showing a very good

agreement between the numerical solution of the equations and this asymptotic analysis.

2.4 Comparisons with experiments

2.4.1 Selection of angular frequency and wavenumber

Considering the experimental parameters (see Tab. 2.1 and typical values in Section 2.2),

the dimensionless rigidity lies in the range 10−3 – 10−2. For the analysis of the experimental

data, we shall then make use of the scaling laws (2.28) and (2.30) obtained in the limit of

small D̄. Introducing back physical dimensions in these expressions, we obtain

ωm ∼
2ρ
m

V, (2.32)

km ∼
� ρ

2D

�1/3
V 2/3. (2.33)

The selected angular frequency purely results from the balance between dynamic pressure

and inertia. The selected wavenumber results from the balance between dynamic pressure

and elasticity. It is interesting to compare the phase velocity ωm/km with that of the elastic

waves in the absence of wind flow. In the latter case, Eq. 2.1 tells us that the dispersion

relation is simply ω =
p

D/mk2, which corresponds to a velocity, evaluated at the most

unstable wavenumber,
p

D/mkm. This scales as km with V 2/3, whereas ωm/km is here

predicted to be proportional to V 1/3. Our main goal is the experimental check of these

scaling laws of ωm and km with the wind velocity V .
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Fig. 2.7 (a) Experimental values of the angular frequency as a function of the rescaled
wind velocity. The best linear fit for the paper sheet (triangles) is shown in solid line (slope
1.9). The dotted line is the best linear fit (slope 2.6) for the plastic sheets (circles for the
thick sheet (58 µm) and squares for the thin one (30 µm)). (b) Experimental values of the
wavenumber as a function of the rescaled wind velocity. The best fit by a 2/3-power law
gives a multiplicative factor 0.78. All these data are for ∆L = 4 cm.

The influence of gravity g is not accounted for in the theory. Computing the dimen-

sionless ratio mgh3/D, where h is the sheet thickness, which compares the gravity-induced

stress and the stress due to elastic bending, we can see that gravity is clearly sub-dominant:

this number is typically in the range 10−9–10−8. However, gravity does break the up-down

symmetry by slightly twisting the sheet, and, importantly, it sets a velocity scale vc that

breaks the predicted scale-free power laws. Balancing the dynamic pressure ρv2
c with the

weight of the sheet mg per unit surface, we get the characteristic velocity:

vc =
Æ

mg/ρ. (2.34)

Assuming that the observed waves correspond to the most unstable mode, we therefore

expect a data collapse when plotting data in the following way:

1
2

√

√ m
ρg
ω∼

V
vc

, (2.35)

3

√

√ 2D
mg

k ∼
�

V
vc

�2/3

. (2.36)

We emphasize that vc is not an adjustable parameter whose value would depend on the

experimental setting, but part of the theoretical analysis.

The experimental measurements of the angular frequency and the wavenumber, rescaled

as proposed above, are shown in Fig. 2.7. The data collapse is effectively pretty good,
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especially if one keeps in mind that the dimensionful wavenumber typically vary by a factor

of 6 andω by a factor of 10 at a given wind velocity from the paper to the thin plastic sheet,

for which D changes by two orders of magnitude (Tab. 2.1). The expected 2/3-power of k
with the wind velocity is nicely consistent with the data, although the limited accessible

range of V gives a low sensitivity on the value of the exponent. The adjusted multiplicative

factor in front of (V/vc)2/3 is furthermore only 20% below the prediction. The collapse for

ω is less impressive and one observes that the expected proportionality relationship (2.35)

only holds for large velocities: extrapolating the data, ω would vanish for V ≃ 1.5vc. Such

a multiplicative factor of order one shows that the dimensional analysis of perturbative

effects is correct. Similarly, the slope of this linear law is around 2, which is the correct

order of magnitude, but quantitatively larger than the prediction.

3
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Fig. 2.8 Same as Fig. 2.7, for the paper material only but with different sheet lengths:
∆L = 4 cm (circles), ∆L = 8 cm (squares) and ∆L = 12 cm (triangles). The solid lines are
the same as in Fig. 2.7 and correspond to the limit of small ∆L (linear regime).

2.4.2 Finite amplitude effects

Although the results displayed in Fig. 2.7 show a good agreement of the selection of angular

frequency and wavenumber in the experiments with the prediction of the linear stability

analysis of the problem, we have also found some evidence for finite amplitude effects.

Focusing on the paper material, we have systematically varied the sheet length. Data

corresponding to different values of ∆L are displayed in Fig. 2.8, showing ω and k in

the same rescaled way as in Fig. 2.7. The scaling law obeyed by the angular frequency

is found to be independent of the sheet length, whereas that of the wavenumber shows

small but systematic variations with ∆L. This shows the presence of non-linearities that

are not described here, the linear regime corresponding to the limit of vanishing ∆L. In
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Fig. 2.9 Schematic for the geometrical relation between the arclength and the length
between two lamps.

fact, wavenumber and amplitude of the waves can be related to each other as follows. As

in Fig. 2.9, we take a sinusoidal shape ζ = Asin(kx) for the sheet over its entire length

between the two clamps, and the arc length is then
∫ L0

0
(
p

1+ ζ′2)dx . Therefore, the geo-

metrical constraint that the extra-length ∆L accommodates these undulations without any

longitudinal extension can be written as:

∆L = L − L0 =

∫ L0

0

(
p

1+ ζ′2 − 1)dx . (2.37)

In the regime of small perturbation where kA≪ 1, and assuming that L0 is much larger

than the wavelength, the integral 1
L0

∫

sin(kx)dx vanishes and the above relation can be

simplified into:
∆L
L0
=

k2A2

4
. (2.38)

This suggests to take data such as those displayed in Fig. 2.2d, and to produce rescaled

amplitude profiles of the form
q

L0
∆L

kA(x)
2 vs x

L0
. This is done in Fig. 2.10, with data cor-

responding to different ∆L and different wind velocities. Although scattered, the data

collapse and the order of magnitude indicate that this geometrical constraints capture the

finite amplitude selection of the waves in these experiments.

2.5 Results and Discussions

Combining experiments and a linear analysis in the study of propagative waves on a flexible

sheet submitted to a permanent wind, we have shown that the selection of the frequency and

of the wavenumber obey the derived scaling laws. The experiments have been performed

with different materials, varying the their rigidity by two orders of magnitude. We have

shown that these scaling laws result from the balance between dynamic pressure and

inertia or elasticity. However, we have here performed the simplest theoretical analysis,

based on an unbounded homogeneous sheet. As a consequence, the theory can only work

in the limit kL0 ≫ 1. The boundary conditions actually break the invariance along the

x-axis. In principle, one should therefore find the temporal modes whose spatial shape
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Fig. 2.10 Rescaled longitudinal profiles of the wave amplitude. Symbols: red circles
(∆L = 4 cm) green circles (∆L = 8 cm) and blue circles (∆L = 12 cm). All these data
correspond to the paper sheet. Data for different wind velocities have been gathered.

is a superposition of modes, characterized by a complex wavenumber K = k − iq, and

satisfying the four boundary conditions – these are ζ(0, t) = 0, ζ′(0, t) = 0, ζ(L0, t) = 0

and ζ′(L0, t) = 0. As seen in Fig. 2.10, the wave amplitude A vanishes at both ends while

the central part remains almost homogeneous. We therefore expect the normal mode of

the problem to be close enough to a Fourier mode to justify the assumption made here.

Fig. 2.11 A piezoelectric flag in a uniform axial flow and the equivalent circuit of a piezo-
electric pair connected with a parallel RL circuit [99].

Finally, this work can be of applicative interest for energy harvesting. It is generally

based on a fluid flow, or on surface waves inducing a relative motion between articulated



36 Paper waves in the wind

parts, which is then converted into an electrical current. However, these moving parts

are subject to mechanical wear and may be noisy. It would therefore be interesting to

use instead deformable systems without rotating parts, like those investigated here: using

the permanent relative flow between the device and the surrounding fluid to produce

energy [100–104, 99, 105]. As in Fig. 2.11, it shows an energy harvesting mechanism by

using a piezoelectric flag waving in a uniform axial flow. The hydrodynamic flow deforming

the surface on which electrical charges are deposited will lead to a motion of charges, and

therefore to a current. Such a soft system therefore enables to transform mechanical energy

into electrical energy.



Part II

Giant ripples on comet

67P/Churyumov-Gerasimenko





Chapter 3

Introduction

3.1 Comet 67P/Churyumov–Gerasimenko and the Rosetta

mission

67P/Churyumov–Gerasimenko (abbreviated as 67P) is a Jupiter-family comet, originally

from the Kuiper belt. It was first observed on photographic plates in 1969 by Soviet

astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom

it is named. As in Fig. 3.1a, 67P has two lobes, a small one and a large one, with a thick

neck connecting in between. The current orbit is shown in Fig. 3.1b, and the latest fly-by

over the perihelion was on 13 August 2015. There are 19 distinct regions on 67P, with each

named after an Egyptian deity [106]. Parameters of 67P and its current orbit are listed in

Table 3.1.

67P was the destination of the European Space Agency (ESA) Rosetta mission (Fig.

3.1b). Rosetta is a space probe launched on 2 March 2004 from the Guiana Space Centre in

French Guiana. On 6 August 2014, it reached 67P, performed a series of manoeuvres and

entered orbit on 10 September 2014. Rosetta’s lander, Philae (Fig. 3.1c), touched down on

its surface on 12 November 2014, becoming the first spacecraft to land on a comet nucleus.

Along with Philae, Rosetta is performing detailed investigations of 67P, and the mission

continues to return data from the spacecraft in orbit and from the lander in the comet’s

surface as of 2015. On 30 September 2016, the Rosetta spacecraft ended its mission by

landing on the comet in its Ma’at region.
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(a)

(b)

(c)

Fig. 3.1 (a) Comet 67P by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a
distance of 285 km, with he image resolution of 5.3 meters/pixel. (b) Orbit of Comet 67P
and the relative paths of the Rosetta probe and it. (c) Philae touched down on its surface.
Credit: ESA/Rosetta/MPS.
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Table 3.1 Parameters of 67P and its current orbit.

Item 67P

Mass Mc 1.0× 1013 kg
Bulk density ρc 470 kg/m3

Rotation period Γd 12.4 hours
Revolution period Γy 6.44 years
Perihelion distance rp 1.24 AU
Aphelion distance ra 5.68 AU

3.2 Unexpected bedforms on the comet

Rosetta misson has triggered a number of research reporting new discoveries on 67P,

including aspects on the nucleus [107–111], the coma [112–115], the surface features

[116, 106] and the interior properties [117–120].

What interests us is the bedforms there. The OSIRIS imaging instrument on board the

ESA’s Rosetta spacecraft has revealed some bedforms on the neck of the comet 67P/Churyumov-

Gerasimenko [106, 121–123] and on both lobes (Fig. 3.2). Several features suggest that

these rhythmic patterns belong to the family of ripples and dunes [9]. The pattern presents

the characteristic asymmetry of ripples and dunes, with a small steep side and a five times

longer gentle slope, which appears darker in Fig. 3.2a. Moreover, two photographs of the

same location – one well before perihelion and the other well after it – show the evidence

for the bedform propagation (Yellow marks in Fig. 3.2a).

However, the existence of sedimentary bedforms on a comet, comes as a surprise – it

requires sediment transport along the surface, i.e. erosion and deposition of particles. When

heated by the sun, the ice at the surface of comets sublimates into gas, that is, outgassing.

As gravity is extremely small due to the kilometer scale of the 67P’s dimensions[124, 107],
the escape velocity is much smaller than the typical thermal velocity. Outgassing therefore

constitutes an extremely rarefied atmosphere, called the coma as in planetary case, around

the nucleus (Fig. 3.3). This gas envelope expands radially. By contrast, ripples and dunes

observed in deserts, on the bed of rivers and on Mars and Titan [9, 125–128] are formed by

fluid flows parallel to the surface, dense enough to sustain sediment transport. The presence

of these apparent dunes therefore challenges the common views of surface processes on

comets and raises several questions. How can the radial outgassing produce a dense enough

vapour flow along the surface of the comet to transport grains [54, 129]? How could the

particles of the bed remain confined at the surface of the comet rather than being ejected

in the coma? Another unclear point is about the nature of these bed forms. Is there an
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Fig. 3.2 (a) View of the comet’s neck (Hapi) region by OSIRIS narrow-angle camera dated 18
September 2014, i.e. long before perihelion, showing evidence of local gas-driven transport
producing dune-like ripples, with a wavelength λ ≃ 5 m. Superimposed yellow marks:
position of the ripples from a photo dated 17 January 2016, i.e. long after perihelion (Fig.
S1) providing evidence for their propagation. (b) Photograph of ripplemarks in ‘Maftet’
region. Image taken on 05 March 2016, when Rosetta was 20.3 km from 67P, with a
resolution of 0.36 m/pixel. (c) Photograph of ripples at ‘Hatmehit’ region. Image taken on
13 April 2016, when Rosetta was 109.2 km from 67P, with a resolution of 1.98 m/pixel.
Credit: ESA/Rosetta/MPS.
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Fig. 3.3 Picture of the comet and its close coma. Red line shows the contour of the comet.
Green line shows the contour of the vapor halo at the resolution of the instrument. Image
taken on 18 February 2016, when Rosetta was 35.6 km from the comet, with a resolution
of 3.5 m/pixel. Photo credit: ESA/Rosetta/MPS.

terrestrial analogue? Making a naive analogy with sediment transport processes on larger

planetary bodies, the analog of aeolian dunes [9, 125, 130], whose wavelength scales

as λ ∼ 10ρpd/ρ, would have an emergent wavelength of 108 m due to the extremely

large density ratio on the comet, i.e. much larger than the comet itself. Similarly, using

the comet’s values, the analogue for aeolian ripples [131], whose wavelength scales as

λ∼
Æ

ρ/ρpu2
t /g, would produce a pattern of wavelength 104 m, also larger than the comet

size.

3.3 Outline of the part

Our goal is to understand the emergence and evolution of the bedforms on 67P, and

to constrain the modelling of dynamical processes in the superficial layer of the comet

nucleus. To explain the nature of these patterns, a good understanding of the sediment

transport on 67P’s surface is necessary, which is based on the discussion of the transport

threshold and mode. Yet, a description of the atmosphere should come first, which offers

the hydrodynamical parameters, like vapor density and viscosity, for the determination of

transport threshold and mode. This part is therefore constructed as follows. We first model

the dynamics of 67P’s atmosphere in Chapter 4. Then, the transport threshold and mode

are determined in Chapter 5. Finally, we discuss the nature of the bedforms in Chapter 6.





Chapter 4

Thermo-hydrodynamics of comet

67P/Churyumov–Gerasimenko’s

atmosphere

In this chapter, we propose a model for the dynamics of 67P’s atmosphere of our point

view, to serve the basics for the subsequent discussions on the sediment transport and

on the nature of the bedforms. Despite this two-lobe shape, we work below in spherical

coordinates, simplifying the geometry of the comet to a sphere of effective radius Rc. We

denote by r the radial coordinate that originates at the centre of the nucleus, by θ the

ortho-radial (azimuthal) angle, and by ϕ the polar angle. We shall also make use of the

distance z to the comet’s surface, counted positive downwards. Furthermore, we neglect

the effect of the comet’s obliquity. More detailed and recent modelling can be found in

[112–115].

In the following, we first provide derivations to estimate the gravity acceleration, which

enters the hydrodynamical equations of the coma, in the region of the neck, where the

bedforms that we have primarily studied are located. Then, the thermal process is studied.

Finally, the hydrodynamics of the coma is discussed, and the vapour flow along the surface

is computed, which could be responsible for the sediment transport (Chapter 5).

4.1 Gravity

The gravity field on 67P has been studied by [111]. The thick neck relating the two lobes

is of radius Rn ≃ 1 km. The large lobe has dimensions of 4.1× 3.2× 1.3 (in km). It can

be approximated as a sphere of effective radius Rl = (4.1 × 3.3 × 1.8)1/3/2 ≃ 1.5 km,
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leading to a gravity acceleration at the surface gl = G
4π
3 ρcRl ≃ 1.910−4 m/s2, where

G = 6.67 10−11 m3kg−1s−2 is the gravitational constant and ρc ≃ 470 kg/m3 an estimate of

the comet’s bulk mass density. Similarly, the small lobe is 2.6×2.3×1.8 (in km), which gives

an effective radius Rs ≃ 1.1 km, and a gravity acceleration at the surface gs ≃ 1.5 10−4 m/s2.

In the region of the neck, the gravity acceleration is given by

gn =
�

(gl sinθl + gs sinθs)
2 + (gl cosθl − gs cosθs)

2
�1/2

, (4.1)

where we have defined the two angles tanθl = Rn/Rl and tanθs = Rn/Rs. This expression

gives gn ≃ 2.210−4 m/s2. This value leads to an escape velocity on the order of
p

gnRn ≃
0.5 m/s, which is three orders of magnitude smaller than the thermal velocity Vth ≃ 500 m/s,
as we have declared in Section 3.2.

4.2 Thermal process of the comet’s nucleus

We describe in this section the thermal and ice sublimation processes, which are responsible

for the vapour outgassing near the comet surface and also couple into the hydrodynamics

of the coma.

4.2.1 Thermal diffusion

Inside the nucleus, we write the heat conductive flux as J⃗ = −kc∇⃗T , where T is the

temperature field and kc is the thermal conductivity. Denoting by C the bulk heat capacity

of the comet and ρc its bulk mass density, the heat conservation equation reads:

ρcC∂t T = kc∇2T. (4.2)

All three parameters kc, C and ρc are assumed to be homogeneous. Equivalently, a tem-

perature diffusion equation can be written with a thermal diffusivity κc = kc/(ρcC). The

material constituting the bulk of the comet is a mixture of dust and ice, with a rather

large porosity P on the order of 75% [111]. Its effective thermal inertia I =
p

kcρcC has

been estimated to be in the range 10–50 Jm−2K−1s−1/2 [132]. Taking ρc ≃ 470 kg/m3 and

C ≃ (1−P )× 103 J/kg/K, we obtain kc ≃ 10−2 W/m/K and κc ≃ 10−7 m2/s.
The time-evolution of the temperature of the comet’s surface Ts can be decomposed

in Fourier modes. Diffusion being linear, we can do the reasoning one particular mode

of angular frequency ω, written in complex notations as T̂s(ω). Assuming that the flux

vanishes at infinity (deep inside the bulk of the comet), the temperature field takes the
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form:

T = Tsexp (iωt + qz) (4.3)

Introducing Eq. 4.3 into Eq. 9.1, one obtains:

q2 =
iω
κ

, (4.4)

and the negative root is chosen since the temperature decays to zero when z → ∞.

Therefore, the solution of the diffusion equation in the Fourier space for the temperature

field takes the form:

T̂ (z,ω) = T̂s(ω)exp

�

−(1− i)z

√

√ |ω|
2κc

�

for ω≤ 0, (4.5)

T̂ (z,ω) = T̂s(ω)exp

�

−(1+ i)z

√

√ |ω|
2κc

�

for ω> 0. (4.6)

The penetration length δ is defined:

δ =

√

√2κc

|ω|
. (4.7)

The rotation period of the comet is Γd = 12.4 hours, or, equivalently, ωd = 2π/Γd =
1.4 10−4 s−1. This gives a diurnal penetrating length δd ≃ 4 cm, which means that a few

tens of cm below the surface, the day-night alternation has no influence on the temperature

field. Regarding the seasonal variations, the orbital period is Γy = 6.44 years, corresponding

to a penetrating length δy ≃ 3 m. Conversely, one can compute the time scale corresponding

to the size of the comet δh = Rc, which gives Γh ≃ 106 years. This is the time scale required

to get a homogeneous temperature Ta across the whole body. It is much smaller than the

age of the comet, which is that of the solar system, i.e. about 4.5 109 years.

4.2.2 Ice sublimation

We hypothesis that the vapour outgassing comes from the sublimation of ice just below

the surface of the comet. To sublimate ice at a rate corresponding to a vapour mass flux

qm (in kg per second and per unit surface), a power per unit surface L qm is absorbed.

L ≃ 3106 J/kg is the latent heat of water ice sublimation. The corresponding power

balances write:

(1−Ω)ψ= σεT 4
s + Js +L qm, (4.8)
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where Ω = 0.05 is the estimated albedo, σ = 5.6710−8 W/m2/K4 is the Stefan constant

and ϵ ≃ 0.9 is the estimated emissivity [132]. ψ = sinϕψE(ηE/η)2φ is the solar radiation

flux received by the comet at latitude ϕ, where ψE ≃ 1360 W/m2 is the radiation flux

received from the sun at ηE = 1 astronomical unit (au). η is the heliocentric distance of the

comet, which is a known function of time along the comet’s orbit. φ encodes the day-night

alternation following φ(t) =max[cos(2πt/Γd), 0]. The heat flux, computed at the comet’s

surface by

Js = −kc ∂z T |z=0 . (4.9)

Pluging Eq. 4.3 into Eq. 4.9, one easily gets Js from its Fourier transform:

Ĵs(ω) = (1− i)kc

√

√ |ω|
2κc

T̂s(ω) for ω≤ 0, (4.10)

Ĵs(ω) = (1+ i)kc

√

√ |ω|
2κc

T̂s(ω) for ω> 0. (4.11)

The integration of Eq. 4.8, coupled to those describing the vapor flow in the atmosphere as

well as in the porous surface layer, is used to predict the time variations of the vapor flux

qm at both daily and yearly scales.

4.3 Hydrodynamics of the comet’s atmosphere

The vapour flow in the comet’s atmosphere is described by the conservation of mass,

momentum and energy [133]:

∂ ρ

∂ t
+ ∇⃗ · (ρu⃗) = 0, (4.12)

∂ ρu⃗
∂ t
+ ∇⃗ · (ρu⃗u⃗) = ρ g⃗ − ∇⃗p+ ∇⃗ · ⃗⃗τ, (4.13)

∂

∂ t

�

ρ

�

ε+
1
2

u2
��

+ ∇⃗ ·
�

ρ

�

w+
1
2

u2
�

u⃗
�

= ρ g⃗ · u⃗+ ∇⃗ · ( ⃗⃗τ · u⃗)− ∇⃗ · J⃗ , (4.14)

with the mass density ρ, the velocity u⃗, the pressure p, the stress tensor ⃗⃗τ, the specific

energy ε, the specific enthalpy w = ε+ p/ρ, the heat flux J⃗ and the gravity acceleration g⃗.

Taking the density weighted time averaging to get so-called Favre averaged Navier Stokes

(FANS) equations, the averaged stress tensor can be expressed as the sum of viscous and

turbulent contributions:

τi j = ρνγ̇i j +ρνt

�

γ̇i j −
1
3

Kδi j

�

, (4.15)
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where we have introduced the shear rate γ̇i j = ∂ jui + ∂iu j −
2
3∂kukδi j, and where K = χ2|γ̇|,

with χ ≃ 2.5 a phenomenological constant and |γ̇| the modulus of the shear rate tensor. In

the ideal gas approximation, the molecular viscosity ν can be related to the mean free path

ℓ=
m

p
2πd2

wρ
, (4.16)

and to the thermal velocity

Vth =

√

√8kB T
πm

, (4.17)

defined as the mean magnitude of the velocity of the molecules, by

ν=
1
3

Vthℓ. (4.18)

kB = 1.3810−23 J/K is the Boltzmann constant, dw ≃ 0.34 nm is water molecule size and

m≃ 3 10−26 kg is the mass of a water molecule. Similarly, the averaged heat flux writes:

Ji = −ρ
γ

γ− 1

�

ν

Pr
+
νt

Prt

�

∂i
p
ρ

, (4.19)

with γ = 4/3 the adiabatic expansion coefficient and νt the turbulent viscosity of water

vapour. Pr and Prt are the Prandtl and turbulent Prandtl numbers, both typically on the

order of unity for gases. The averaged energy density has also an internal and a turbulent

contribution:

e = ρε=
1
γ− 1

p+
1
2
νtρK . (4.20)

Finally, the additional term u jτi j complements the enthalpy contribution ρwui.

4.3.1 Outer layer flow

Eqs. (4.12-4.14) can be solved averaging over the polar angle, and assuming steady

state. We describe the atmosphere as a two-layer flow: an outer layer where viscosity

and turbulent fluctuations can be neglected (perfect flow) and an inner turbulent layer

of thickness δi ≪ Rc matching with the surface conditions. Here we take Rc ≃ 1.95 km,

corresponding to an equivalent surface Sc ≃ 47.7 km2 [132]. We separately note Ur and Uθ
the velocity components in outer layer, and ur and uθ those in the inner layer. The pressure

and density in the inner layer are inherited from the outer layer. This hydrodynamical

description of the comet’s atmosphere loses it validity when the mean free path of the

vapour becomes on the order of the comet size itself. Neglecting all dissipative terms in
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(4.12-4.14), the steady equations for the outer layer are, for mass conservation:

1
r2

∂

∂ r

�

r2ρUr

�

+
1
r
∂

∂ θ
(ρUθ ) = 0; (4.21)

for momentum conservation in the radial direction:

1
r2

∂

∂ r

�

r2ρU2
r

�

+
1
r
∂

∂ θ
(ρUr Uθ )−

1
r
ρU2

θ
+
∂ p
∂ r
= 0; (4.22)

for momentum conservation in the ortho-radial direction:

1
r3

∂

∂ r

�

r3ρUr Uθ
�

+
1
r
∂

∂ θ

�

ρU2
θ

�

+
1
r
∂ p
∂ θ
= 0; (4.23)

and for the energy conservation:

1
r2

∂

∂ r

�

r2
�

1
2
ρ
�

U2
r + U2

θ

�

+
γ

γ− 1
p
�

Ur

�

+
1
r
∂

∂ θ

��

1
2
ρ
�

U2
r + U2

θ

�

+
γ

γ− 1
p
�

Uθ

�

= 0.

(4.24)

The asymptotic analysis of these equations gives:

Ur∝ r0, Uθ ∝ r2(1−γ), ρ∝ r−2 and p∝ r−2γ. (4.25)

One concludes that orthoradial terms are subdominant in the outer layer, and the equations

at the leading order reduce to

1
r2

∂

∂ r

�

r2ρUr

�

=0, (4.26)

1
r2

∂

∂ r

�

r2ρU2
r

�

+
∂ p
∂ r
=0, (4.27)

1
r2

∂

∂ r

�

r2
�

1
2
ρU2

r +
γ

γ− 1
p
�

Ur

�

=0. (4.28)

These equations can be integrated as:

Ur =U0

Æ

G(r), (4.29)

ρ =ρ0

�

Rc

r

�2 1
p

G(r)
, (4.30)

p =
�

p0 +
γ− 1
2γ

ρ0U2
0 [1− G(r)]
��

Rc

r

�2 1
p

G(r)
, (4.31)

= p0

�

G∞ − G(r)
G∞ − 1

��

Rc

r

�2 1
p

G(r)
(4.32)
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where the function G satisfies G(Rc) = 1, so that ρ0 and p0 are the vapour density and the

pressure at the surface of the comet r = Rc and U0 the velocity at top of the surface layer.

We have introduced

G∞ = 1+
2γ
γ− 1

p0

ρ0U2
0

. (4.33)

Eq. 4.26, and 4.28 are satisfied automatically, and from Eq. 4.27, we see that G must

satisfy

G′ −
γ− 1
γ+ 1

�

G∞
G′

G
+ (G∞ − G)

4
r

�

= 0, (4.34)

This first order differential equation solves into:

G
1
2 (γ−1)
�

G∞ − G
G∞ − 1

�

=
�

Rc

r

�2(γ−1)

, (4.35)

expressed inexplicitly, which could be easily handled in a numerical way. The outer flow is

then entirely determined by the three parameters ρ0, U0 and p0.

4.3.2 Turbulent boundary layer

We need to compute the vapor wind flow close to the surface, which may entrain the surface

grains into motion. This flow is controlled by the momentum balance in the boundary layer

approximation, in which the horizontal diffusion of momentum is negligible:

1
r3

∂

∂ r

�

r3(ρuruθ −τrθ )
�

+
1
r
∂

∂ θ

�

ρu2
θ

�

+
1
r
∂ p
∂ θ
= 0. (4.36)

To compute an approximate solution, we write the velocity profile in the inner layer under

the form:

uθ (r) =
u∗
κ

ln
�

1+
r − Rc

z0

�

, (4.37)

parametrised by the shear velocity u∗ defined from the basal shear stress τ0
rθ ≡ ρ0|u∗|u∗,

and the phenomenological von Kármán constant κ≃ 0.4 has been calibrated on turbulent

flows along a wall. For the sake of simplicity, we will use here the logarithmic law of the

wall, but more complicated profiles could be easily accommodated. z0 is the aerodynamic

roughness and here we take z0 = 0.11ν/u∗ corresponding to the smooth aerodynamic

regime. We introduce the notation

Λ≡ ln
�

1+
δi

z0

�

, (4.38)
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where δi is the thickness of the boundary layer. The density and the pressure in the inner

layer are inherited from the outer layer, so that p ≃ p0 and ρ ≃ ρ0. The radial velocity at

the top of the of the boundary layer is U0. Integrating (4.36) between Rc and Rc +δi, for

δi ≪ Rc, we obtain:

ρ0|u∗|u∗ +ρ0
Λ

κ
U0u∗ +

d
dθ

��

2− 2Λ+Λ2
�

δi

κ2Rc
ρ0u2
∗

�

+
δi

Rc

dp0

dθ
= 0, (4.39)

where we have used the fact that the velocity uθ vanishes at the comet’s surface, and that

the shear stress vanishes at the top of the inner turbulent boundary layer, when one reaches

the outer perfect flow.

The radial component of the velocity in the inner layer ur is deduced from uθ by the

mass conservation equation:

1
r2

∂

∂ r

�

r2ρur

�

+
1
r
∂

∂ θ
(ρuθ ) = 0. (4.40)

By integration across the boundary layer, we similarly obtain:

U0 = u0 −
1
ρ0

d
dθ

�

(Λ− 1)δi

κRc
ρ0u∗

�

. (4.41)

Using this expression for U0 in (4.36), we deduce:

ρ0|u∗|u∗ +ρ0
Λ

κ
u0u∗ +

d
dθ

��

2− 2Λ+Λ2
�

δi

κ2Rc
ρ0u2
∗

�

−
Λ

κ
u∗

d
dθ

�

(Λ− 1)δi

κR
ρ0u∗

�

= −
δi

Rc

dp0

dθ
, (4.42)

The boundary layer thickness corresponds to the crossover altitude at which one makes

the transition from the inner to the outer layer, i.e. where the inertial terms are comparable

to the pressure gradient:

�

|u∗|+
Λ

κ
u0

�

ρ0u∗ ≈
d

dθ

��

2− 2Λ+Λ2
�

δi

κ2Rc
ρ0u2
∗

�

−
Λ

κ
u∗

d
dθ

�

(Λ− 1)δi

κRc
ρ0u∗

�

, (4.43)

so that (4.42) simplifies into:

−
δi

2Rc

dp0

dθ
=
�

|u∗|+
Λ

κ
u0

�

ρ0u∗. (4.44)
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Eq. 4.43 is further simplified under the assumption that variations of all quantities along θ

are slow, essentially equivalent to sinusoidal variations, i.e. with d
dθ ≈

1
2π . We then obtain:

(Λ− 2)δi

2πκ2Rc
≈
|u∗|
u∗
+
Λ

κ

u0

u∗
. (4.45)

We finally solve (4.44) and (4.45) to obtain u∗ as well as δi. Note that the above equations

are only valid if the thickness of the turbulent boundary layer is larger than that of the

viscous sub-layer, i.e. when δi ≳ 10ν/u∗.

4.3.3 Porous sub-surface layer

The vapor production rate from outgassing, defined as the product of the vapor density ρ0

by the outward vapor velocity u0, has been measured at different heliocentric distances

[132, 134–138] (Fig. 4.5). Common models assume that ice sublimation takes place at the

surface and produces a radial flow at the thermal velocity [139]. This would result in a

density ρ0 an order of magnitude smaller than that necessary to induce a fluid drag force

large enough to overcome the threshold for grain motion (as discussed in Chapter 5). We

suggest that most of the vapor is emitted from sub-surface ice and must travel through the

porous surface granular layer (Fig. 4.1). Sublimation makes the ice trapped in the pores

recede, releasing unglued grains in surface that can be eroded. We assume that the ice

level remains at a constant distance from the surface, comparable to the grain size d.

We describe in the following the close sub-surface as a thin porous granular layer of

thickness h. The picture is that of a chaotic billiard, where a water molecule, emitted at

depth z = h where the ice is, experiences collisions with the grains of the packing but not

with the other molecules. The mean free path of the molecules is then a fraction of grain

size d. The probability for a molecule to cross this layer rather than going back to z = h
and being adsorbed by the ice again is pc∝ d/h, depending on porosity and grain shape.

We assume that the water molecules emitted from ice have a half Maxwell-Boltzmann

velocity distribution:

Pi(v⃗) =
�

m
2πkB Ti

�3/2

exp
�

−
m|v⃗|2

2kB Ti

�

Θ(v⃗ · e⃗r). (4.46)

Ti is the temperature of the ice at z = h. Θ is the Heaviside function and e⃗r is the unit

vector pointing upwards. The vapor mass flux of molecules emitted by the ice surface is

then

Fρsat

∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

0

dvr vr Pi(v⃗) =
1
4

FρsatV
i

th, (4.47)
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Fig. 4.1 Schematics of the porous granular layer at the comet’s surface. The water molecules
are emitted by the ice (dark blue) at the thermal velocity corresponding to the ice tempera-
ture. Experiencing collisions with the grains of the packing (blue arrows), the molecules
have a probability to cross the layer decreasing as the inverse of its thickness. The mean
free path of the molecules in the layer is comparable to the pores between the grains, i.e. a
fraction of the grain size. Molecules just above the surface may also enter the porous layer
and be absorbed if they reach the ice. This layer is typically 1.5d thick, so that the surface
grains, not glued to ice, are potentially free to move if the wind is above the transport
threshold.

where F is the ice surface fraction, and where we have introduced the thermal velocity

V i
th = Vth(Ti) =
p

8kB Ti/(πm) (see Eq. 4.17). ρsat is the saturated vapor density, here also

evaluated at the temperature of the ice Ti.

At the comet’s surface (z = 0), where the temperature of the vapor is T0, we assume

furthermore that the vapor flow has an average velocity u0 e⃗r , so that the water molecules

have a velocity distribution given by:

P0(v⃗) =
�

m
2πkB T0

�3/2

exp

�

−
m|v⃗ − u0 e⃗r |2

2kB T0

�

. (4.48)

The vapor mass flux of molecules entering in the porous layer from the atmosphere, whose

density is ρ0, is then

q− = ρ0

∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ 0

−∞
dvr (−vr)P0(v⃗) =

1
4

f (Υ0)ρ0V 0
th, (4.49)
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where we have introduced the thermal velocity V 0
th = Vth(T0), the velocity ratio Υ0 ≡ u0/V

0
th

and defined the function:

f (Υ ) = e−
4Υ2
π − 2Υ
�

1− erf
�

2Υ
p
π

��

. (4.50)

Υ is similar to a Mach number, as the speed of sound in an ideal gas is
p

γkB T/m =
p

π/6 Vth

for an adiabatic index γ= 4/3 used here.

Assuming perfect absorption of the water molecules when they come back to ice (a

vanishing probability of rebound), the vapor mass flux coming out at the surface qm = ρ0u0

is then the result of the following balance:

qm = Υ0ρ0V 0
th = pc

�

F
4
ρsatV

i
th − q−

�

. (4.51)

In the limit of an unlimited (F = 1) and vanishingly thin (Ti = T0) layer, the Hertz-Knudsen

sublimation law, with a vapur flux proportional to (ρsat−ρ0)Vth is recovered. Similarly, the

momentum flux ρ0u2
0 + p0 reads:

�

Υ 2
0 +

π

8

�

ρ0V 0
th

2 =
π

4

�

1
4

F pcρsatV
i

th
2 + (2− pc)q−V 0

th

�

. (4.52)

Finally, the energy flux
�

1
2ρ0u2

0 +
γ

γ−1 p0

�

u0 reads:

1
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0 +π
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ρ0V 0
th
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7π
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1
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th
3 − q−V 0
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2
�

. (4.53)

Introducing the expression for q− (4.49) into Eqs. 4.51 and 4.52, we solve for ρ0 and V 0
th:

ρ0 = F pc

π[ f (Υ0)(pc − 2) + 2] + 16Υ 2
0

π[ f (Υ0)pc + 4Υ0]2
ρsat, (4.54)

V 0
th =

π[ f (Υ0)pc + 4Υ0]
π[ f (Υ0)(pc − 2) + 2] + 16Υ 2

0

V i
th. (4.55)

The final equation for Υ0 is obtained introducing these expressions into (4.53):

− 7π2 +
�

32π2 − 112π
�

Υ 2
0 + (32π− 448)Υ 4

0 + 7(pc − 1) f 2(Υ0)

+
�

(14− 7pc)π
2 + 15pcπ

2Υ0 + (112π− 56pcπ)Υ
2
0 + 8pcπΥ

3
0

�

f (Υ0) = 0. (4.56)

To solve numerically this equation, values must be chosen for the different parameters.

Consistently with the value of the porosity of the comet’s ground, we take F = 0.2 for the ice
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surface fraction. The porous layer thickness is set to h = 1.5 d, which corresponds to a mono-

layer of grains not attached to the icy bed, and free to move by the wind. The probability

for a water molecule to cross the porous layer is set to pc = 0.1d/h ≃ 0.07, in order to

adjust the vapor density at the comet’s surface. With these numbers, the velocity ratio

Υ0 = u0/
p

8kB T0/(πm), which compares the outgassing velocity to the thermal velocity of

the vapour at the comet’s surface can be computed as the solution of Eq. 4.56. Its value

is remarkably insensitive to pc, and is always around Υ0 = 0.11, corresponding to a Mach

number ≃ 0.15.

So far, we have presented the full description of the coma’s thermo-hydrodynamics, and

the problem is then implemented in an ideal spherical geometry, considering solar radiation

modulated by both the seasonal scale and the day-night alternation. Eqs. 4.5, 4.6, 4.8,

4.10, 4.11, 4.17, 4.51, 4.54 and 4.55 are solved iteratively for thermodynamics. It should

be noted that the saturated vapour density ρsat is only the function of the temperature and

it is evaluted by the temperature at the ice surface [140]. The results will be discussed in

the following.

4.4 Results and discussions

4.4.1 Temperatures, density and pressure

The calculated results show both seasonal and diurnal time variations of the atmosphere

characteristics. At perihelion, the vapor temperature peaks around 200K at the surface of

the comet (Fig. 4.2), and the corresponding thermal velocity around 500 m/s, which is

much larger than the escape velocity. The vapour mean free path ℓ is about 3 cm at the

surface of the comet (Fig. 4.3). As ℓ is significantly smaller than the bedform emergent

wavelength λ≃ 5 m (Fig. 3.2a), hydrodynamics accurately describes the flow above relief.

The vapor density is around 10 times larger than the previous estimations due to the

presence of the granular porous layer. As we can see, there exists an asymmetry between

sunrise and sunset for temperature, density as well as the pressure (Fig. 4.4), which is

simply results from thermal inertia, as some heat is accumulated in the superficial layer

during in the morning and released in the afternoon.

4.4.2 Vapour flux

Regarding the vapor flux, observations [132, 141–144] provide data at a different helio-

centric distances η (Fig. 4.5a), which we use to calibrate some parameters of the model.
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Fig. 4.2 Time evolution of the vapour temperature (left axis) and corresponding thermal
velocity (right axis) just above the comet’s surface, calculated along the comet’s orbit around
the sun (Fig. 3.1b). Time is counted with respect to the zenith, at perihelion. Bold orange
lines: envelopes of the daily variations (inset) at perihelion, emphasising the maximum
and minimum values. Inset: Zoom on the time evolution during one comet rotation at
perihelion. The day/night alternation is suggested by the background grey scale.
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Fig. 4.3 Time evolution of the vapour density (left axis) and corresponding mean free path
(right axis) just above the comet’s surface. Curve conventions are the same as in Fig. 4.2.
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Fig. 4.4 (a) Time evolution of the vapour pressure just above the comet’s surface, calculated
along the comet’s orbit around the sun. Curve conventions are the same as in Fig. 4.2. (b)
Schematic of the outgassing process (blue) and the resulting winds (red arrows) driven by
strong pressure gradients from illuminated to shadow areas.

From the vapor mass flux qm coming out at the surface, integrated over the whole comet,

the global vapor flux reads:

q̄m(η) =
α

4π

∫ π

−π
dθ

∫ π

0

sinϕ qm(θ ,ϕ) dϕ, (4.57)

where the factor α accounts for the fraction of the surface where sublimation is effective.

Assuming that all points of the surface receiving the same insolation would produce the

same vapor rate, one can solve Eq. 4.8 at the equator only (ϕ = π/2) and compute the

vapor rate as

q̄m(η) =
α

4

∫ π

−π
| sinθ |qm(θ ) dθ , (4.58)

where the angle θ = 0 points in the direction of the sun. This assumption is valid as

long as the heat flux term Js in (4.8) is negligible, so that the surface points can be

considered as thermally decoupled. This is the case in the illuminated side of the comet

(−π/2 ≤ θ ≤ π/2), where most of the vapor flux comes from. This approximation is

uncontrolled on the night-side, where Js, due to the thermal inertia of the comet’s body, is

the source of heat for sublimation, but corresponding to a negligible part of qm (Fig. 4.5b).
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The fit of the observational data allows us to set the porous layer thickness to h = 1.5 d.

Larger values lead to a dependence of the vapor flux that decreases to fast with the

heliocentric distance η. Also, the fraction of active (sublimating) surface is adjusted to

α= 0.1 in order to reproduce the value of the flux at perihelion.
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Fig. 4.5 (a) Outgassing flux q̄m as a function of the comet’s heliocentric distance η. Solid
line: prediction of the model. Symbols: data from the literature, as specified in legend.
Three symbols are used for data from Bertaux et al. (2014) corresponding to three different
years: star (2009), inverted triangle (2002) and circle (1996). (b) Vapor flux at one single
comet day (perihelion), where θ = 0 corresponds to the noon. Therefore it is night for 67P
for θ = π/2∼ 3π/2, when qm is negligible.

4.4.3 Wind

From the thermal calculation, we see that the pressure drops by ten orders of magnitude

from day to night (Fig. 4.4). The comet’s atmosphere therefore presents a strong pressure

gradient that drives a tangential flow from the warm, high pressure towards the cold, low

pressure regions, in a surface boundary layer (Fig. 4.6). The extension of the halo of vapor

on the dark side of the comet is a signature of this surface wind (Fig. 3.3). To get u∗, we

iteratively solve Eqs. 4.38, 4.44 and 4.45 by pluging in the density ρ0(θ ) and the pressure

p0(θ ) profiles from the thermal calculations. The calculated results show that u∗ reverses

direction during the day and is maximal at sunrise and sunset due to the direction change
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Fig. 4.6 Schematic of the vapour flow at the comet surface driven by strong pressure
gradients from illuminated to shadow areas, with the solar radiation labelled in yellow, the
outgassing in blue and the resulting winds in red.

of the pressure gradient, with a shear velocity u∗ on the order of a fraction of the thermal

velocity (Fig. 4.2).

4.5 A brief summary

We have proposed here a model for the thermo-hydrodynamics of 67P’s coma. It couples

the kinetics of ice sublimation, driven by the power per unit surface received from the

sun, to the hydrodynamical description of the vapour flow in the coma. The calculation

is performed in an ideal spherical geometry using the active fraction 10% of the surface

as an adjustable parameter to match the measurements of the vapour rate at different

heliocentric distances. Using kinetic theory of gas, we predict that for such vapor flow

the outgassing velocity is around ten times smaller than that of the spectacular vapor jets

streaming from active pits [118, 124]. Accordingly, the vapor atmosphere is ten times

denser than previous estimates. A vapour flow along the comet surface is resulted from

the strong pressure gradient at the day-night alternace. Still, the atmosphere density is 7

orders of magnitude lower than on Earth, can such a flow entrain grains into motion? To

answer this question, the shear velocity u∗ is compared with the threshold velocity in the

next chapter.



Chapter 5

Sediment transport

Using the thermo-hydrodynamical parameters of the coma obtained in Chapter 4, sediment

transport on 67P is discussed in this chapter, to deduce a few key quantities, namely the

sediment transport threshold, the saturated flux and the saturation length for the cometary

case. We first estimate the grain size on 67P, which is the key parameter determining the

sediment transport threshold. Then, we determine the sediment transport mode. Finally, the

transport law is derived, accounting for the peculiar conditions of the comet’s atmosphere.

5.1 Grain size

There are high resolution pictures taken by Philae, Rosetta’s lander module, above the

Agilkia landing site (Fig. 5.1b). To estimate the grain size, a series of calibrated photographs

of a sand-bed is used to relate the image auto-correlation to the mean grain diameter of

the bed. The pictures are taken at resolutions going from 1 to 10 pixels per grain diameter

d. The rescaled correlation functions C(δ) collapse on a master curve, when δ is properly

divided by d – both expressed in the same units. To determine the mean grain size using a

picture whose resolution is known, one computes C(δ), with δ expressed in meters or in

pixels. One then determines by a least square method the value of d that should be used as

rescaling factor of δ, to collapse the new curve on the calibration curve [125]. The best

collapse of the correlation functions is obtained for a mean grain diameter d ≃ 9.7 mm on

the comet (Fig. 5.1A). Another image available for the estimation was taken by Rosetta

just before its touch down in the Ma’at region (Fig. 5.1d), which allowed us to determine

the surface granulometry (Fig. 5.1C). The results indicate that the surface is composed of

centimeter scale grains, which is consistent with the prediction in the publication [116].
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Fig. 5.1 Estimation of the grain size on the surface of 67P. A Auto-correlation function
C(δ) (red circles) com- puted from the photograph of the comet’s granular bed, taken
by Philae just be- fore its touch down in the Ma’at region (B), where large boulders and
rocks have been excluded. The resolution of the picture is 9.5 mm/pixel. Photo credit:
ESA/Rosetta/Philae/ROLIS/DLR. The correlation is compared to that computed with
pictures of calibrated aeolian sand from the Atlantic Sahara (green square, lower axis, is
expressed in units of the grain diameter) taken in the laboratory (Methods). The best
collapse of the correlation functions is obtained for a mean grain diameter d ≃ 9.7 mm
on the comet. C Histogram of grain size d computed from the photo- graph of the comet’s
granular bed shown in panel D taken by Rosetta just before its touch down in the Ma’at
region. The best fit by a log-normal distribution, shown in red, gives a mean grain diameter
d ≃ 38 mm.
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5.2 Transport threshold

In this section, we first calculate the threshold velocity ut with the effects of the mean free

path and the intergrain cohesion taken into account. Then ut is compared to u∗ to evaluate

whether the wind is able to set the surface grains into motion. The dependence of ut on

the grain size is discussed at the end.

5.2.1 Threshold velocity ut

We consider a grain of size d at the surface of the comet, on the verge to be entrained

into motion. The threshold shear velocity ut is quantitatively determined by the balance

between gravity, hydrodynamic drag, a cohesive force at the grain contacts and a resistive

force associated with the geometrical effect of the surrounding grains. The later can be

modeled by a Coulomb friction of coefficient µ relating the tangential and normal forces.

The grain weight can be expressed as π
6ρp gd3, where g is the gravity acceleration and ρp

is the mass density of the grains. In most practical cases, the threshold velocity falls in the

cross-over between the viscous and turbulent asymptotic regimes. It is thus important to

have a model of it valid in both regimes [145]. The drag force exerted on a grain reads

Fdrag =
π

8
Cd d2ρu2, (5.1)

where u is the velocity of the fluid around the grain and Cd is a drag coefficient. In order to

account for viscous as well as turbulent regimes, Cd can conveniently be written as:

Cd =
�

C1/2
∞ + s
� ν

ud

�1/2�2

, (5.2)

where ν is the fluid viscosity. C∞ and s are phenomenological calibrated constants. For

example, we have C∞ ≃ 1 and s ≃ 5 for natural grains. For the cometary case on 67P, the

atmosphere is dilute, i.e. the mean free path ℓ becomes comparable to the grain size, the

no-slip condition is no longer correct when calculating the drag force on small particles,

and one needs to consider the noncontinuum effects. An empirical correction due to

Cunningham [146] is applied here,

s2 =
25

1+ 2ℓ
d (1.257+ 0.4 exp(−0.55d/ℓ))

. (5.3)

When the grain is at rest at the surface of the bed, we consider that the hydrodynamical

stress is exerted on its upper half so that the effective drag force becomes Fdrag = β
π
8 Cd d2u2,
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Fig. 5.2 The origin of the sediment transport threshold at the scale of a grain.

with β = 1/2. Just at the threshold and neglecting cohesion force A for the moment, this

force is balanced by the horizontal bed friction felt by the grain: Ft =
π
6µ(ρp −ρ)gd3 (Fig.

5.2). Here we take µ= tan(29◦)≃ 0.55. We introduce the viscous size

dν = (ρp/ρ − 1)−1/3ν2/3 g−1/3, (5.4)

and further make the fluid velocity dimensionless as S 1/2 ≡ u/
Æ

(ρp/ρ − 1)gd. With these

notations, the threshold value of the flow velocity at the scale of the grain, denoted as S 1/2
t ,

is solution of

(C∞St)
1/2 + s
�

dν
d

�3/4

S 1/4
t −
�

4µ
3β

�1/2

= 0, (5.5)

which resolves immediately into:

St =
1

16C2
∞

�

�

s2
�

dν
d

�3/2

+ 8
�

µC∞
3β

�1/2
�1/2

− s
�

dν
d

�3/4
�4

. (5.6)

Following [145], the corresponding threshold Shields number is the sum of a viscous and a

turbulent contribution:

Θt = 2
�

dν
d

�3/2

S 1/2
t +

κ2

ln2(1+ 1/2ξ)
St , (5.7)

where ξ is the hydrodynamic roughness rescaled by the grain diameter. Here we take the

experimental value ξ= 1/30.

A similar approach can be used to compute the settling velocity Vfall, which also gives

the vertical threshold velocity, balancing the drag force and the particle weight. We can

proceed as in Eq. 5.5, but with µ/β = 1 and get:

Sfall =
1

16C2
∞

�

�

s2
�

dν
d

�3/2

+ 8
�

C∞
3

�1/2
�1/2

− s
�

dν
d

�3/4
�4

. (5.8)
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The settling velocity is found always smaller than u∗ during the fraction of time when

sediment transport occurs.
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Fig. 5.3 Dependence of the threshold shear velocity ut on the grain diameter d. The best
fit of experimental measurements (symbols) by theoretical predictions gives a cohesive
diameter dm ≃ 10 microns. Data from Yalin & Karahan, Hydraul. Div., Am. Soc. Civil Eng
105, 1433 (1979) [147].

5.2.2 Cohesion

The effect of the cohesion is absent from the discussion above, which is important when

the grain size is below a certain value. In the following, we consider the cohesion force

A between the grains and include it in the calculation of ut . Investigating this balance

highlights the need to apply findings from contact mechanics of rough interfaces [148] to

the study of small solar system bodies. The adhesive free energy, resulting from van der

Waals interactions, is proportional to the real area of contact between the grains, which is

much smaller than the apparent one because of surface roughness. A realistic computation

of this cohesion can be achieved under the assumption that contacts between grains are

made of elastically deformed nano-scale asperities and that the apparent area of contact

follows Hertz law for two spheres in contact. The cohesive force is then found to scale as

the maximal load experienced by the grains to the power 1/3 [149]. Considering that this
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load is typically the weight of a surface grain, this force scales as

A∝ (ρp gd/E)1/3γd, (5.9)

where ρp is the grain bulk density, E is the grain Young modulus and γ is the surface tension

of the grain material. It is therefore much lower than the force γd obtained for ideally

smooth grains. Importantly, the gravity force increases as d3, while the cohesive force

increases as d4/3 only. This allows to define a cross-over diameter dm at which these two

forces are comparable:

dm =

�

γ3

Eρ2
p g2

�1/5

. (5.10)

It gives the typical grain diameter below which cohesive effects become important and are

responsible for the increase of the threshold at small d. For silica (quartz) grains on Earth,

the cohesive size dm is around 10 µm (Fig. 5.3), and this is why sand grains, with typical

diameters on the order of a few hundreds microns, are not affected by cohesion. On the

comet, the composition of the regolith dust is not precisely know, but the particle bulk density

ρp has been estimated in the range 1000–3000 kg/m3 [114], i.e. close to that of sand on

Earth. We make the assumption that the values of E and γ are also similar for the particles

on both bodies. According to (5.10), the ratio of the values of dm on Earth and on 67P is

then essentially given by the corresponding ratio of the gravities, to the power 2/5. Using

the gravity field derived above, we can estimate dm ≃ (9.8/0.00022)2/5×10 µm≃ 720 µm

on the comet. Such a millimeter scale is three orders of magnitude smaller than the

capillary length
Æ

γ/ρp g ≃ 1 m suggested by the traditional approach, which ignores

contact roughness [129]. Accounting for these cohesion effects, the threshold Shields

number finally reads:

Θt = Θ
0
t

�

1+
3
2

�

dm

d

�5/3�

, (5.11)

where Θ0
t is the expression given by Eq. 5.7 [145]. And one thus obtains the threshold

velocity with cohesive effect taken into account:

ut =
q

Θt(ρp/ρ − 1)gd. (5.12)

Apparently, ut is a function of both the wind properties and the grain size, and the two

dependences are respectively discussed in the following.
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Fig. 5.4 (a) Time evolution of the velocity ratio u∗/ut , calculated along the comet’s orbit
around the sun. Time is counted with respect to the zenith, at perihelion. Bold orange lines:
envelopes of the daily variations (inset), emphasizing the maximum and minimum values.
Inset: Zoom of the evolution of u∗/ut during one comet day, at perihelion. The day/night
alternation is suggested by the background grey scale. Wind is above the transport threshold
in the afternoon (counted positive, schematized here and in next figures by a yellow circle
with an arrow pointing downwards) and in the morning (counted negative, yellow circle
with an arrow pointing upwards). (b)|u∗| (black curve) and ut (blue curve) at perihelion.
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5.2.3 A comparison of ut and u∗

Using the wind parameters (ρ0, ℓ and ν), we compute ut at the year scale for a given grain

diameter d = 4 mm (discussions Chapter 6) with Eq. 5.12. Fig. 5.4b shows |u∗| and ut

at perihelion, which indicates that where the wind is strong enough to entrain the grains

into motion in the ‘afternoon’ of one comet day. The ratio of u∗ and ut shows that there

is only a small fraction of the time – typically ≃ 6103 s at perihelion, i.e. ≃ 14% of the

comet’s day of 12.4 h. The asymmetry between sunrise and sunset winds has an important

consequence: the morning thermal wind is not strong enough to entrain grains (Fig. 5.4a).

5.2.4 Dependence of ut on d

102 103 104 105 106 107

103

102

Fig. 5.5 Dependence of the threshold shear velocity ut with the grain diameter d at peri-
helion, for afternoon conditions. The minimal velocity above which sediment transport
takes place is computed from the force balance on a grain between hydrodynamic drag,
bed friction and Van der Waals cohesive forces. The threshold increases above d = 1 m due
to gravity and below d = 1 mm due to cohesion. In between, ut is almost constant and
on the order of 50 m/s due to the large mean free path of the vapor ℓ≃ 3 cm (Fig. 4.3).
Yellow mark: range of observed grain sizes (Fig. 5.1).

With the wind parameters (ρ0 = 2.610−6 kg/m3, ℓ = 3 cm and ν = 4.6 m2/s) at the

‘afternoon’ peak wind at perihelion (Inset of Fig. 5.4a), ut is computed and plotted as a

function of the grain size d in Fig. 5.5, and it and shows a minimum value on the order of
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50 m/s for the whole range 103–105 µm. The curve shows generally three regimes. In the

large d regime, the turbulent drag essentially balances the friction force:

ut ∼
q

(ρp/ρ0)gd∝ d1/2. (5.13)

In the small d regime, the viscous drag balances cohesion:

ut ∼
�

ρp gd

E

�1/6�
γℓ

ρp gd3

�1/2
q

(ρp/ρ0)gd∝ d−5/6. (5.14)

In the intermediate regime for which dm < d < ℓ, the mean free path ℓ of the vapor

molecules is larger comparing with the case on Earth, which leads to a reduced drag force

for grains smaller than ℓ. In this regime, the viscous drag balances the friction force:

ut ∼
q

(ρp/ρ0)gℓ∝ d0. (5.15)

This explains that ut presents a plateau extending from the millimeter scale to the meter

scale (Fig. 5.5).

In conclusion, we find that, sufficiently close to perihelion, all these grains, and in par-

ticular those at the centimeter scale observed by Rosetta near bedforms, can be transported

by the afternoon thermal wind (Fig. 5.5).

5.3 Transport mode and saturated transport

5.3.1 Transport mode

Given the very large density ratio between grains and vapor, the grains can rebound when

colliding with the surface of the comet. At first this would suggest the possibility of a

cometary saltation [122] analogous to aeolian transport, in which the grains move by

bouncing or hopping [54, 129] (Fig. 1.4a,b). However, compared to the Earth, there are

two important differences that prevent saltation (Fig. 5.6). Rebounding grains would

acquire a vertical velocity larger than the escape velocity, on the order of a meter per

second. Moreover, the flow is turbulent above a viscous sub-layer, typically 0.7 m thick at

perihelion, where turbulent fluctuations are dampened by viscosity. After a rebound, grains

with enough energy to reach the turbulent zone would be entrained into suspension, as

the settling velocity is much smaller than turbulent velocity fluctuations. These grains are

eventually ejected into the coma. Thus, the only mode of sediment transport along the
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surface is traction, where grains remain in contact with the substratum on which they roll

or slide.

Traction

Ejection

Viscous

boundary

layer

Fig. 5.6 Schematics featuring the modes of sediment transport on the surface of 67P. In the
cometary case, grains rebounding on the bed are eventually ejected in the coma, preventing
the existence of saltation. This schematics holds for monolithic (crystalline) grains as well
as for agglomerates of smaller particles. Violet background: viscous sub-layer close to the
bed, which is typically 10ν/u∗ ≃ 0.7 m thick in the cometary case at perihelion.

5.3.2 Saturated transport flux qsat

The grains on the comet’s bed move in the traction mode, a slow transport, where the

energy brought by the flow is dissipated during the collision of moving grains with the static

grains of the bed. Sediment transport on the comet is therefore analogous to subaqueous

bedload. The behavior of qsat for bedload has been measured and fitted by an empirical

formula (Fig. 1.5a). Recalling the idea of Bagnold [37] (Section 1.2), we derive here the

corresponding sediment flux at saturation qsat, i.e. in the steady and homogeneous case,

for 67P. The saturated flux can generally be expressed as the product of the number N of

transported grains per unit area and the mean grain horizontal velocity up:

qsat =
1
φb

π

6
d3Nup, (5.16)

where φb is the bed volume fraction [150]. The basal shear stress τ= ρu2
∗ is decomposed

into the sum of the grain-born and fluid-born contributions τp +τ f . The grain-born stress

is τp = N Fdrag, with Fdrag the drag force acting on a grain moving at the average velocity

up. The fluid-born stress must be the threshold stress τt ≡ ρu2
t at equilibrium transport.

We then obtain

N = (τ−τt)/Fdrag. (5.17)
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In the terrestrial sub-aqueous bed-load, because the density ratio ρp/ρ is on the order of

a few units, the drag length is equal to a few d. The moving grains then quickly reach a

velocity comparable that of the fluid u. In the cometary case, however, this drag length is

much larger than the comet size, so that up remains much smaller than u. This gives an

almost constant drag force Fdrag on the moving grains, equal to that when the grains are

static. This situation of constant mechanical forcing then resembles, for the thin transport

layer, a granular avalanche, in which dissipation comes from the collisions between the

grains and is thus increasing with up [151]. In that case, it has been shown that, close

enough to the threshold, the grain velocity follows the scaling law

up ∼
p

gd, (5.18)

with a multiplicative factor around unity [152].

Combining Eq. 5.16, 5.17 and 5.18, these expressions give:

qsat ∼
π

6φb

τ−τt

Fdrag

p

gd. (5.19)

For τ on the order of a few τt , the number of moving grains per unit surface soon reaches

N ≃ 1/d2, which means that all the grains of this surface transport layer move. Leading to

a typical flux on the order of

qsat ≃ g1/2d3/2, (5.20)

which gives qsat at the order of 10−6 ∼ 10−5 m2/s for the centimeter scale grains on 67P.

5.3.3 Saturation length Lsat

The saturation length Lsat has been well modeled and measured in saltation and suspension

(Eq. 1.4 and 1.5). Regarding the case of bedload transport, it has never been directly

measured. As in [57], we calibrate here the behavior of the saturation length for bedload,

by deducing Lsat from controlled experimental measurement of the wavelength of emerging

sub-aqueous ripples for various situations, corresponding to the fastest growing mode

[153–156, 57, 157–159]. To be specific, we have grain size d, wave length λ, shear velocity

u∗ and the threshold velocity ut from the measurements. One could then compute the wave

number and the slope effect

k = 2π/λ, S =
1
µ

�

ut

u∗

�2

,
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and S is plugged into the dispersion relation (Eq. 1.6) to find Lsat, making the fastest

growing mode locating at the wave number k computed above. Lsat/d is then computed

and we obtain

Lsat/d ≃ 24, (5.21)

independent of the velocity of the flow (Fig. 5.7).

Charru & Mouilleron-Arnould (2002)

Coleman & Melville (1996); Baas et al (1994)

Langlois & Valance (2007); Baas et al (1999)

Betat et al (1999)

Langlois & Valance (2007)

Coleman & Melville (1996)

Kuru et al (1995)

101
100

100

101

102

Fig. 5.7 Saturation length Lsat in units of d as a function of the flow velocity at a grain
size above the surface u(d) rescaled by the grain settling velocity Vfall. Data are obtained
for various experimental conditions: grains in oil (circles), in water (squares), and in
water-glycerin solution (triangles); color codes for the grain size from 100 microns (red) to
830 microns (violet). Black solid line: Lsat/d ≃ 24.

5.4 A brief summary

In this chapter, we have discussed the sediment transport on 67P. In the first place, the

transport threshold is evaluated and compared to the vapour flow along the surface. The

comparison has confirmed the existence of sediment transport on 67P, near perihelion.

Then, we derived the saturated flux qsat and saturated length Lsat for the cometary case.

We retain these laws for the traction on the comet and study the nature of the bedforms in

next chapter.



Chapter 6

The nature of the bedforms

In the previous Chapter 4 and 5, we have modelled the atmosphere, and derived the

transport laws on 67P case by making the observed bedforms an analogue to the terrestrial

bedload patterns, which simply form by linear instability [9]. Based on these results, we

employ in this chapter the linear stability analysis to study the emergence and evolution of

the bedforms on 67P .

6.1 Dispersion relation

We recall here the dispersion relation (Eq. 1.6 and 1.7) for the linear stability analysis of a

flat granular bed and make it dimensionless by asking k̄ = kν/u∗, and L̄sat = Lsatu∗/ν:

σ̄ = k̄2 (B −S )−A k̄ L̄sat

1+ (k̄ L̄sat)2
, (6.1)

c̄ = k̄
A + (B −S )k̄ L̄sat

1+ (k̄ L̄sat)2
. (6.2)

with σ̄ = σ
Q

�

ν
u∗

�2
and c̄ = c

Q

�

ν
u∗

�

, respectively, the rescaled growth rate and rescaled

propagation speed. For Q, which quantifies the sediment transport, we take for its value

the scaling law (5.20) in the cometary case:

Q ≈ g1/2d3/2; (6.3)

The slope effect S = 1
µτt/τ is estimated by the cometary parameters, with µ = tan(29◦)≃

0.55. A andB are determined by discussing the basal shear stress on an undulated bed

in the following.
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The shear stress exerted by a flow in the x-direction on a fixed granular bed of elevation

z = Z(x) can be computed by means of hydrodynamic equations presented in Section

1.4. When the bed is modulated as Z(x) = ζeikx , these equations can be linearized

with respect to the small parameter kζ and solved for non-slip conditions on the bed

and vanishing first order corrections at z→∞. The shear stress takes the generic form

τxz = ρu2
∗

�

1+ kζeikxSt

�

where St is a dimensionless function of the rescaled vertical

coordinate kz. A andB are defined as

St(0) =A + iB , (6.4)

and they are functions of kν/u∗, which is the inverse of the Reynolds number based on the

wavelength, and can be interpreted as a Reynolds number for the perturbation. A and

B in the smooth hydrodynamic regime has been discussed in [9]. Depending on kν/u∗,
three asymptotic regimes can be identified. At large wavenumbers, the disturbed pressure

gradient is balanced by inertia and by the viscous stress, and asymptotic expressions ofA
andB have been derived in the viscous and inertial asymptotic regime:

A + iB =2+ i
1
2
(kδi)

−3 (6.5)

A + iB =γL (kδi)
−1 eiπ/6 (6.6)

where γL ≃ 1.06 is a constant [160, 161], and δi ∼ (ν2/ku2
∗)

1/3 represents the penetration

depth of vorticity disturbances. For small wavenumbers, turbulent Reynolds stress balances

the disturbed pressure gradient. In the turbulent asymptotic regime,A andB are deduced

as:

A + iB = 2
U2(δm)
U2(δi)

�

1+
1+ ln(π/2) + 4γE + iπ

ln(δi/z0)

�

, (6.7)

where U(z) is the logarithmic velocity profile, γE ≃ 0.577 is Euler’s constant and δm/z0 =
(π/(2kz0)) ln

−1/2(π/(2kz0)) [162, 163].

With the wind and granular parameters on 67P estimated in the previous chapters,A
andB are calculated over the whole range of the wave number, using Hanratty’s model

for the turbulent closure (black solid lines in Fig. 6.1). Apparently, the laminar regime

is separated from the turbulent regime by a transitional regime where a ‘crisis’ can be

observed, which nicely fits the experimental measurements [9]. In this regime, the pertur-

bation partly penetrates the turbulent region so that both viscosity effects and turbulent

fluctuations are needed to be taken into account. The flow is accelerated/deaccelerated on

the upstream/downstream face of a bump, where the streamwise pressure gradient tends

to damp the turbulent fluctuations so that the viscous sublayer thickens, and therefore
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there exists a periodic transition from the viscous to the turbulent inner layer. However, it

is still an open question for a true understanding of the interplay between a wavy bottom,

even though Hanratty’s model provides a convenient parameterization.

6.2 Most unstable mode

In this section, we select the fastest growing mode, i.e., most unstable mode, to predict the

temporal and spatial characteristics of these patterns.

6.2.1 Wave length selection

A most unstable mode k̄m corresponding to the maximum growth rate is deduced from

Eq. 6.1 as the solution of dσ̄
dk̄
= 0. The corresponding growth rate is σ̄m = σ̄(k̄m), and the

propagation speed is c̄m = c̄(k̄m).
We compute the most unstable mode, and get a relation between k̄ and L̄sat. Using

Lsat/λ= L̄satk̄/(2π), one then obtains

λ

Lsat
= f
�

Lsat u∗
ν

�

, (6.8)

as in Fig. 6.2, along with a phenomenological fit Empirically, we find that it approximatively

scales as λ/Lsat ≈ (Lsatu∗/ν)
−2/5. With Eq 5.21 and 6.8, we compute the most unstable

wavelength as a function of grain size d. As in Fig. 6.3, λ ranges from 10 to 20 m for a

mean grain diameter d between 10 and 40 mm, in good agreement with the observed

crest-to-crest distance, as in Table. 6.1.

6.2.2 Bedform growth and propagation

For grain size d between 10 and 40 mm, the traction sediment flux is on the order of 4 10−5

m2/s. The corresponding ripple growth time, deduced from the linear stability analysis is

5 104 s. This time must be compared to the total time during which sediment transport takes

place during a revolution around the sun, which is around 106 s (0.7% of the revolution

period), i.e. 20 times larger. The ripples therefore have enough time to emerge and mature

during one comet revolution.

At the neck (Hapi) region, the observed emergent ripple wavelength λ is around 7 m.

This corresponds to a grain size d = 4 mm. The sediment flux estimated from (5.20) is on

the order of 4 10−6 m2/s. The dispersion relation (Fig. 6.4) indicates that the most unstable
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Fig. 6.1 Basal shear stress componentsA in phase (a) andB in quadrature (b) with respect
to the bed elevation, as functions of the rescaled wave number kν/u∗. Three asymptotics
are identified: turbulent regime (blue dashed line, Eq. 6.7), inertia regime (green dashed
line, Eq. 6.6) and viscous regime (red dashed line, Eq. 6.5); in addition, a transitional
region where a ‘crisis’ can be observed.
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Photo name N λ t Region
Web link for picture (m) (107 s)

Comet_from_9_m -2.36 Ma’at
www.esa.int/spaceinimages/Images/2015/07/Comet_from_9_m

Comet_from_67.4_m 1 27 -2.36 Ma’at
www.esa.int/spaceinimages/Images/2015/07/Comet_from_67.4_m
Comet_from_67.4_m 5 4 -2.36 Ma’at
www.esa.int/spaceinimages/Images/2015/07/Comet_from_67.4_m
NAC_2016-04-13T15.17.54.813Z_ID10_1397549800_F22 11 16.5 2.09 Ma’at
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-04-19.html
NAC_2016-01-10T15.58.51.484Z_ID10_1397549008_F22 15 17.5 1.29 Ma’at
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-01-18.html
NAC_2016-03-05T11.36.49.540Z_ID30_1397549100_F24 1 20 1.76 Ma’at
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-03-12.html
NAC_2016-05-21T11.41.59.934Z_ID20_1397549001_F22 1 20 1.56 Ma’at
planetgate.mps.mpg.de/image_of_the_day/public/osiris_iofd_2016-05-23.html
NAC_2016-01-17T06.55.38.746Z_ID10_1397549500_F22 11 25 1.35 Ma’at
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-01-22.html
NAC_2016-05-21T11.41.59.934Z_ID20_1397549001_F22 2.4 Ma’at
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-05-23.html
NAC_2016-01-17T06.55.38.746Z_ID10_1397549500_F22 4 20 1.35 Hapi
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-01-22.html
NAC_2016-02-27T15.33.24.581Z_ID30_1397549500_F22 2 16 1.70 Hapi
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-03-05.html
NAC_2016-06-15T21.49.20.545Z_ID10_1397549600_F22 3 17.5 2.64 Hapi
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-06-24.html
NAC_2016-06-15T21.49.20.545Z_ID10_1397549600_F22 6 12 2.64 Hapi
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-06-24.html
NAC_2016-06-15T21.49.20.545Z_ID10_1397549600_F22 8 7 2.64 Hapi
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-06-24.html
ROS_CAM1_20141024T180435_P 12 7 -2.52 Hapi
imagearchives.esac.esa.int/picture.php?/8905/category/64
ROS_CAM1_20141024T180435_P 3 16 -2.52 Hapi
imagearchives.esac.esa.int/picture.php?/8905/category/64
NAC_2016-02-27T06.58.40.552Z_ID10_1397549600_F22 15 7.5 1.70 Ash
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-03-01.html
NAC_2016-02-27T06.58.40.552Z_ID10_1397549600_F22 6 12.5 1.70 Ash
planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-03-01.html
NAC_2016-06-06T18.19.07.691Z_ID20_1397549100_F22 7 12 2.57 Ash
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-06-08.html
NAC_2016-06-06T18.19.07.691Z_ID20_1397549100_F22 10 9 2.57 Ash
planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-06-08.html
Rosetta’s last image 3.58 Ma’at
www.esa.int/spaceinimages/Images/2016/09/Rosetta_s_last_image

Table 6.1 Ripple crest-to-crest distance measured on pictures of different regions of 67P.
N + 1 is the number of successive ripple crests identified on the picture. λ is the average
value of their distance. t is the time to perihelion (13 Aug. 2015), counted positive
(negative) after (before) it.

http://www.esa.int/spaceinimages/Images/2015/07/Comet_from_9_m
http://www.esa.int/spaceinimages/Images/2015/07/Comet_from_67.4_m
http://www.esa.int/spaceinimages/Images/2015/07/Comet_from_67.4_m
https://planetgate.mps.mpg.de/Image_of_the_Day/public/OSIRIS_IofD_2016-04-19.html
https://planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-01-18.html
https://planetgate.mps.mpg.de/image_of_the_day/public/OSIRIS_IofD_2016-03-12.html
https://planetgate.mps.mpg.de/image_of_the_day/public/osiris_iofd_2016-05-23.html
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Fig. 6.2 Relaiton betwwen λ/Lsat and the rescaled saturated length Lsat u∗/ν predicted from
the most unstable mode (red curve), and the approximated scaling λ/Lsat ≈ (Lsatu∗/ν)

−2/5

( black curve).

mode locates at kν/u∗ ≃ 0.06, and the growth rate of this mode reads:

σm ≃ 5.210−3Q(u∗/ν)2 ≃ 510−6 s−1. (6.9)

Accordingly, comparing pictures before and after perihelion (Fig. 3.2a), we observe that

some ripples have disappeared at the downwind end of the field and others have nucleated

at the upwind entrance. In between, ripples have propagated. To get the propagation

length, the photographs are mapped one on the other using fixed elements of relief (cliffs,

rocks, holes, etc) that can be recognized on both pictures. The mapping is performed

through a projection, assuming in first approximation that the landscape is planar. The

ripple crests and avalanche slip faces can be easily detected and can be transposed from

one photograph to the other, and it is estimated on the order of 10 m over one revolution.

Mature ripples at a wavelength of 18 m (kν/u∗ ≃ 0.024) propagate at a velocity:

c ≃ 0.18Qu∗/ν≃ 10−5 m/s. (6.10)

Therefore, the propagation length is around ≃ 10 m for the time during sediment transport

occurs ≃ 106 s, this is also consistent with the observations (Fig. 3.2a).
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Fig. 6.3 Relation between the wavelength and the mean grain diameter predicted at
perihelion, for afternoon conditions. The most unstable mode of the linear instability selects
the emergent wavelength, which depends on the grain diameter through the saturation
length Lsat (Fig. 5.7). Yellow mark: range of measured crest-to-crest distance and grains
size (Table. 6.1).
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Fig. 6.4 Dispersion relation: dimensionless growth rate (a) and propagation speed (b) as
functions of the rescaled wavenumber kν/u∗, computed at perihelion for d = 4 mm, with
a saturation length Lsat/d = 24. This corresponds to the neck (Hapi) region, where the
observed emergent ripple wavelength λ is around 7 m. The corresponding most unstable
mode (red dot) is at kν/u∗ ≃ 0.06. Vapor viscosity and shear velocity are respectively
ν≃ 5 m2/s and u∗ ≃ 70 m/s, respectively. With a reference sediment fluxQ ≃ 4 10−6 m2/s,
the growth rate of this mode is σm ≃ 5.210−3Q(u∗/ν)2 ≃ 510−6 s−1. Mature ripples at a
wavelength of 18 m (kν/u∗ ≃ 0.024) propagate at a velocity c ≃ 0.18Qu∗/ν≃ 10−5 m/s,
i.e. over ≃ 10 m for the time during sediment transport occurs ≃ 106 s.
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6.3 Conclusions

In this part, we have proposed an explanation for the bedforms observed on 67P. The

discussions are mainly three parts, namely thermo-hydrodynamics of atmosphere, sediment

transport and the nature of the bedforms.

In modelling the dynamics of the atmosphere, we find that the existence of the ripples

on 67P changes the understanding of outgassing on the comet surface. If the vapor emits

with a velocity like the spectacular jets, it feeds an extremely thin atmosphere, which is

unlikely to set the grains on 67P’s surface into motion. We thus suggest the presence of a

porous surface granular layer that slows down the radial outgassing velocity and results in

a thicker atmosphere. The pressure gradient due to the day-night alternace results in the

surface vapor flow. It is verified to be responsible for the sediment transport of centimeter

scale grains on the comet surface, by comparing to the transport threshold.

Considering the low escape velocity and a thick viscous sublayer flow on 67P’s surface,

we have proved that the transport mode is only traction. Making an analogue to the terres-

trial subaqueous ripples, the transport laws are derived using Bagnold’s idea, and controlled

experimental measurements. Finally, the temporal and spatial scales are predicted for

the cometary case by selecting the fastest growing mode in the linear instability analysis,

and the predicted results are consistent with the observations. These bedforms live in the

viscous sublayer of 67P’s atmosphere, they are thus ‘viscous ripples’.





Part III

Sublimation dunes on Pluto





Chapter 7

Introduction

7.1 Pluto and the New Horizons mission

Pluto is a dwarf planet in the Kuiper belt, a ring of bodies beyond Neptune (Fig. 7.1a),

discovered by the American astronomer Clyde Tombaugh in 1930. It was originally consid-

ered the ninth planet from the Sun, yet reclassified as a member of the new "dwarf planet"

category in 2005. Pluto has a moderately inclined relative to the ecliptic (over 17°) and

moderately eccentric (elliptical) orbit (Fig. 7.1c), which leaves a small region of Pluto’s

orbit lies nearer the Sun than Neptune’s. Pluto’s last perihelion transit was on May 8, 1989.

Parameters of Pluto and its orbit are listed in Table 7.1.

Pluto was the primary mission to perform a flyby of NASA’s New Horizons spacecraft,

which is a part of NASA’s New Frontiers programme. New Horizons was engineered by

Johns Hopkins University and Southwest Research Institute in US, and launched on January

19 2006 (Fig. 7.1b,c). After nearly ten years, three-billion-mile journey, the spacecraft

began its approach phase to Pluto on January 15, 2015, and it flew 12,500 km above the

surface of Pluto on July 14 2015, making it the first spacecraft to explore the dwarf planet.

Having completed its flyby of Pluto, it is now on the way to a secondary mission to fly by

and study one or more other Kuiper belt objects, expected to take place in January, 2019,

when it is 43.4 AU from the Sun.

7.2 Rythmic patterns on the surface of Pluto

During the flyby, New Horizons made detailed measurements and observations of Pluto

and its moons, and lots of investigations have been stimulated on atmosphere [165, 166],
on geology [167], on space enviroment [168, 169], on surface compositions [170, 171],
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(a) (b)

(c)

Fig. 7.1 (a) A global view photo, created by four images taken 450,000 km away from the
Pluto by the New Horizons spacecraft on July 14 2015, showing features as small as 2.2 km.
Credit: NASA/JHUAPL/SwRI. (b) New Horizons spacecraft from NASA’s New Frontiers
program. (c) Pluto’s orbit (Yellow curve) and New Horizons spacecraft’s trajectory (red
curve). (b) and (c) are from the Web.
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Table 7.1 Parameters of Pluto and its orbit.

Item Values

Mass MP 1.3× 1022 kg
Bulk density ρP 1885 kg/m3

Radius RP 1185 km
Surface gravity g 0.625 m/s
Escape velocity ve 900 m/s2

Rotation period Γd 153.282 hours
Revolution period Γy 247.74 years
Perihelion distance rp 29.6 AU
Aphelion distance ra 49.3 AU
Perihelion solar radiation ψp 1.6 W/m2

Aphelion solar radiation ψa 0.6 W/m2

Fig. 7.2 Phase diagrams of four geologically relevant substances: nitrogen, ethane, carbon
dioxide and water. Shaded regions indicate where the liquid phase is stable. Also shown
are the surface pressure and temperature conditions for Pluto, Titan, Mars and the Earth.
It is clear that liquids are expected at the surfaces of Titan and Earth, but not Mars or Pluto.
Conversely, on Mars and Pluto, direct conversion from solid to gas (sublimation) or vice
versa is likely. Figure from Schenk and Nimmo (2016) [164].



88 Introduction

(a) (b)

30 km2 km

Fig. 7.3 (a) A highest-resolution image showing that the mountains end abruptly at the
shoreline of the Sputnik Planum, where the soft, nitrogen-rich ices of the plain form a
nearly level surface, broken only by the fine trace work of striking, cellular boundaries and
the dune-like patterns on the surface of the plain’s ices. This view is about 50 miles wide,
and the top of the image is to Pluto’s northwest. Credit: NASA/JHUAPL/SwRI. (b) An
extended colour image shows the rounded and bizarrely textured mountains, where some
crescentic dunes can be observed (framed by a red rectangle). Image was taken by the
Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, with a resolution
around 510 m/pixel.
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and on small satellites [172] etc. New Horizons has also provided high resolution images

of a large icy plain called Sputnik Planum, which displays rhythmic, dune-like patterns

at kilometer scale, which are remained unexplained up to now (Fig. 7.3a). Although one

picture (Fig. 7.3b) of Pluto displays crescentic dunes that look like barchans, the formation

of sediment dunes is hardly possible on Pluto due to its low pressure, about 1 Pa (Fig. 7.2)

[164]. Given their location on Pluto, we therefore hypothesise that these patterns are rather

sublimation dunes, created by differential condensation/sublimation of nitrogen ice.

In the following, we first describe the thermal and hydrodynamical characteristics of

Pluto’s atmosphere. Then, we model the emergency of sublimation dunes from a general

point of view. Finally, we test the model against Pluto’s ice patterns using the measured

and estimated parameters.





Chapter 8

Pluto’s atmosphere

In this chapter, the dynamics of Pluto’s atmosphere is modelled in a simple way, to serve

the basics/reference for the subsequent discussions on the physical modelling and on the

estimation of parameters. More recent and detailed discussions can be found in [166] and

[173]. In the following, we first give a general description, and then discuss the thermal

and hydrodynamical properties of Pluto’s atmosphere .

8.1 A general description

The atmosphere of Pluto is the tenuous layer of gases surrounding Pluto. Its existence has

been studied since 1980s by way of earth-based observation of occultations of stars by Pluto

[174–176] and spectroscopy [177], and was convincingly confirmed by observations in

1988 [178]. In 2015, it was revisited from a close distance by the spacecraft New Horizons

[166, 179]. From a recent observation by New Horizons (Fig. 8.1), we see the atmosphere

is present all over the surface. This is because of the larger gravity, which is only 10 times

smaller that that on the earth. More over the escape velocity is larger than the thermal

velocity, which is on the order of 200 m/s, so there is almost no leak there, and atmosphere

is close to the saturated state (Table 7.1). The main component of the atmosphere of

Pluto is nitrogen (N2), with minor amounts of methane (CH4) and carbon monoxide (CO).

From the latest measurements by New Horizons, the content of methane is 0.25% [179];
regarding the carbon monoxide, there are Earth-based estimates 0.05–0.075% in 2015

[180]. All kinds of gas are vaporized from their ices on Pluto’s surface [179, 178], and we

consider only nitrogen and nitrogen ice (termed as Ns
2 ) in the following analysis due to

the dominated proportion, whose parameters are listed in Table 8.1.
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Fig. 8.1 Departure shot of Pluto by New Horizons, showing Pluto’s atmosphere backlit by
the Sun. The blue color is close to what a human eye would have seen, and is caused by
layers of haze in the atmosphere.

Table 8.1 Parameters of nitrogen (N2) and nitrogen ice (Ns
2) .

Item Value

N2 molecule size a 2.9 10−10 m
N2 molar mass M 28 10−3 kg/mol
N2 molecule mass m 4.65 10−26kg
N2 isentropic index γ 7/5
Ns

2 thermal conductivity ks 0.2 W/m/K
Ns

2 thermal diffusivity κs 1.95 10−7 m2/s
Ns

2 mass density ρs 1026 kg/m3

Ns
2 specific heat at constant volume Cs 1000 J/K/kg

Ns
2 sublimation latent heat L 2.5105 J/kg

Ns
2 ice estimated albedo ΩN 0.8, from [181]

Ns
2 ice estimated emissivity ε 0.6
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Fig. 8.2 Pressure and temperature in Pluto’s lower atmosphere. (a) Pressure. (b) Tem-
perature. These profiles were retrieved from radio occultation data recorded by the REX
instrument onboard New Horizons. Each graph shows results at both entry (red line with
circles) and exit (blue line with triangles), situated on opposite sides of Pluto. The profiles
are most accurate at the surface, where the uncertainties in pressure and temperature are
1 mbar and 3 K, respectively. Temperature fluctuations at altitudes of >20 km are caused
by noise; no gravity waves were detected at the sensitivity of these measurements. The
dashed line indicates the saturation temperature of N2. Figure from [166].

Previous and recent investigations have shown that surface pressure of the atmosphere

of Pluto is about p0 = 1 Pa, roughly 100,000 times less than Earth’s atmospheric pressure

[166, 164]. The surface temprearture is around T0 = 40 K, but it quickly grows with

altitude due to methane-generated greenhouse effect (Fig. 8.2). Pluto’s atmosphere is

thus stably stratified. Near the altitude 30 km it reaches 110 K, and then slowly decreases

[178, 182, 183]. We could estimate the saturated state of the atmosphere on the surface

of Pluto. The saturation vapour pressure psat is a calibrated function of the solid-vapour

interface temperature [184], evaluated in bars by

ln psat = A0 +
∑

j

A j/T
j (8.1)

with A0 = 1.24101, A1 = −8.074102, A2 = −3.926103, A3 = 6.297104, A4 = −4.633105,

A5 = 1.325 106 (Table 5 and Figure 21 in [184]). One therefore obtains psat = 8 Pa for T0 =
40 K, and the corresponding saturated mass density ρsat = mPsat/(kB T ) = 6.810−4 kg/m3.
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8.2 Thermo-hydrodynamics of Pluto’s atmosphere

8.2.1 Thermal processes

Following the procedure in Section 4.2, we compute the thermal diffusion in the nucleus of

Pluto, and find a diurnal thermal penetrating length δd ≃ 0.2 m, which means that a few

tens of cm below the surface, the day-night alternation has no influence on the temperature

field, and a seasonal penetrating length δy ≃ 22 m.

Energy balance at the Pluto surface is governed by Eq. 4.8. Neglecting the sublimation

due to the almost saturated state, it simplifies into:

(1−ΩN )ψ= ΣεT 4
0 + J0. (8.2)

Together with Eqs. 4.10 and 4.11, Eq. 8.2 is solved at the revolution scale of Pluto, including

the day-night alternace. As you could see in Fig. 8.3, the computed temperature is around

the measured 40 K, with very small day-night variation.

Excluding the sublimation latent heat in Eq. 8.2 actually means a saturated atmosphere

near Pluto’s surface. Thus, we can find the pressure and density with Eq. 8.1 and ideal

gas law. The results show that the gentle variation in temperature also gives the similar

phenomenon in the pressure (Fig. 8.4) and density (Fig. 8.5). To understand the gentle

variations in these parameters, Eq. 8.2 is linearised and transformed into the Fourier space:

(1−ΩN )ψ̂(1) = ΣεT 3
(0) T̂(1) + Ĵ(1), (8.3)

where the subscript (0) and (1) indicate the base state and its first order correction.

Considering T(0) ∼ [ψ/(Σε)]1/4 and Ĵ(1) ∼ ks

Ç

|ω|
2κs

T̂(1), one compares the heat flux and the

radiation term, which gives the dimensionless number controlling the day-night temperature

difference:

DT =

�

k2
sρ

2
s C2

s

Σε

Γ 2
d

ψ3

�1/4

. (8.4)

Plugging into the values, we have DP
T = 2107 for Pluto and DC

T = 3103 for comet 67P.

This number is large for both comet 67P and Pluto, which means most of the first order

correction of solar radiation contributes into the heat flux, rather than modulating the

temperature. Moreover, DP
T is larger than DC

T over four orders of magnitude, and this is

why the day-night variation on Pluto is much smaller than that for comet 67P (Fig. 4.2).
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Fig. 8.3 Time evolution of the surface temperature of Pluto, calculated along the Pluto’s
orbit around the sun (Fig. 7.1c). Time is counted with respect to the zenith, at perihelion.
(A) Envelopes of the daily variations at the revolution scale, emphasising the maximum and
minimum values. (B) Zoom on the time evolution during one Pluto rotation at perihelion.
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Fig. 8.4 Time evolution of the atmosphere pressure near Pluto’s surface. We take p0 =
psat(T0). Curve conventions are the same as in Fig. 8.3.
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Fig. 8.5 Time evolution of the atmosphere density near Pluto’s surface. We take ρ0 =
ρsat(T0). Curve conventions are the same as in Fig. 8.3.

8.2.2 Hydrodynamical description

We consider an atmospheric boundary layer to compute the wind flow close to Pluto’s

surface. As the situation for comet 67P (Section 4.3.2), we assume the same velocity profile

uθ (r) =
u∗
κ ln
�

1+
r−Rp

z0

�

and dimensionless number Λ ≡ ln
�

1+ δi
z0

�

as in Eqs. 4.37 and

4.38. Neglecting the horizontal diffusion, the momentum balance in the boundary layer

approximation writes in Eq. 4.36. Integrating Eq. 4.36 from the ground (r = Rp) to the at

the top of the inner turbulent boundary layer (r = Rp +δi), where we assume a vanishing

leak, we obtain:

ρ0|u∗|u∗ +
d

dθ

��

2− 2Λ+Λ2
�

δi

κ2Rp
ρ0u2
∗

�

= −
δi

Rp

dp0

dθ
, (8.5)

where we have used the fact that the velocity uθ vanishes at the Pluto’s surface, and that

the shear stress and ur vanish at r = Rp + δi. The inertial terms are comparable to the

pressure gradient at the crossover altitude of the boundary layer thickness, one thus has:

ρ0|u∗|u∗ ≈
d

dθ

��

2− 2Λ+Λ2
�

δi

κ2Rp
ρ0u2
∗

�

, (8.6)
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and Eq. 8.5 simplifies into:

−
δi

2Rp

dp0

dθ
= ρ0|u∗|u∗. (8.7)

We make here the same assumption as the comet 67P case that variations of all quantities

along θ are slow, which allows us to take d
dθ ≈

1
2π , and thus Eq. 8.6 simplifies into

�

2− 2Λ+Λ2
�

δi

2πκ2Rp
≈ 1. (8.8)

With the density ρ0 and pressure p0 profiles from Section 8.2.1, we finally solve (8.7) and

(8.8) to obtain u∗ (Fig. 8.6). The results suggest the daily peak values of u∗ are almost

invariant at the revolution scale, and direction of u∗ shows periodic variation, resulted

from the fact that the directions of pressure gradient are opposite before and after noon.

The computed δi is a around 10 kilometers, much larger than the thickness of the viscous

sublayer of a few meters.
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Fig. 8.6 Time evolution of the the friction velocity u∗ at Pluto’s surface. Curve conventions
are the same as in Fig. 8.3.
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8.3 A brief summary

In this chapter, we have simply considered Pluto’s atmosphere. The results show that

thermodynamical parameters (T0, ρ0 and p0) show much smaller variation during the

day-night alternance, compared to those of comet 67P; so are they at the revolution scale.

Regarding the hydrodynamics, the computed u∗ also shows gentle variation at both rotation

and revolution scales, in spite of the periodic variation in direction.

In the present model, we have neglected the ice sublimation when considering the

energy balance at Pluto’s surface, which allows us to consider the thermal processes

and hydrodynamics separately. The computed temperature and pressure are close to the

measured data [166], and this confirms this simplification at a certain extent. Admittedly,

more detailed model is needed to consider the ice sublimation, which couples thermal and

hydrodynamical calculations, yet beyond the discussion in this thesis.



Chapter 9

Physical model of sublimation dunes

Most natural patterns form by linear instability, in which disturbances of different wave-

lengths are selectively amplified, such as aeolian dunes and subaqueous ripples on the

Earth and other planets like Mars [9, 26, 67]. Moreover, from the modeling of Pluto’s

atmosphere in the previous chapter, we see rather gentle variations in the parameters

at both rotation and revolution time scales. Taking this two factors, we propose here a

model for sublimation dunes based on the linear instability analysis by considering a flat

solid surface which is slightly out of equilibrium with its vapour, no other phase in the

atmosphere, submitted to a homogeneous and time independent wind. The analysis is two

dimensional, with x the horizontal wind direction and the z-axis vertical, oriented upwards

(Fig. 9.1).

Vapor �ow

Sublimation/condensation solid
Heat �ux in the ice

Heat �ux from

the atmosphere

Surface radiation

Latent heat

Solar radiation

Fig. 9.1 Instability of a sublimation/condensation surface z = ξ (bold solid line). The base
state is a flat surface z = 0 (bold dashed line), with λ and H the wavelength and amplitude
of the relief, respectively.
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9.1 Governing equations

9.1.1 Thermal processes

We consider the thermal processes separately in the solid and in the vapour, and couple

them later on at the interface. In the solid, we write the heat flux as j⃗ = −ks∇⃗T , where T
is the temperature and ks is the thermal conductivity. Introducing the bulk mass density of

the solid ρs and its heat capacity Cs, the heat conservation equation reads:

ρsCs∂t T = ks∇2T. (9.1)

All three parameters ks, Cs and ρs are assumed to be homogeneous in space. Equivalently,

a temperature diffusion equation can be written, which involves the thermal diffusivity

ks/(ρsCs).

In the vapour, the convective heat flux, ρCv Tu⃗ is not a galilean invariant and does not

vanish when there is flow velocity. This flux, from the point of view of heat conservation,

is ρCv(T − T0)u⃗; and thus we write the heat flux as the sum of a convective term and a

diffusive term:

j⃗ = ρCv(T − T0)u⃗− kv∇⃗T (9.2)

where T,ρ, Cv and kv are respectively the temperature, the mass density, the heat capacity

and the thermal conductivity of the vapour. Then, the heat conservation equation reads:

ρCv∂t T + ∂x jx + ∂z jz = 0. (9.3)

The thermal conductivity kv will be specified in the following.

9.1.2 Hydrodynamics

For the vapour flow, we assume an incompressible turbulent situation described by Reynolds

Averaged Navior-Stokes equations (Eqs. 1.8 and 1.9), with the Reynolds stress closed by

the Prandtl mixing length (Eq. 1.15 ) and Hanratty’s model (Eq. 1.16), as presented in

Section 1.4. For the thermal description, it should be noted that kv composed of a turbulent

and a viscous term:

kv = ρCv

�

ℓ2|γ̇|
βt
+
ν

βν

�

, (9.4)

where βt and βν are the turbulent and viscous Prandtl numbers. For an ideal gas, βν = 1.

As for the turbulent Prandtl number, a typical value for gases is βt = 0.7.
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9.1.3 Sublimation interface

The vapour sublimation/condensation occurs at the interface, and the flux q (in mass per

unit surface and unit time) is governed by the Hertz-Knudsen law, and we recall here:

q = αVth (ρsat −ρ) , (9.5)

where Vth is the thermal velocity defined in Eq. 4.17 as the average velocity of the molecules.

α is a dimensionless factor, which encodes the probability that a molecule of the vapour is

absorbed or emitted at the surface of the solid. Its typical value is between 10−2 and 1, and,

for simplicity, we neglect its dependence with temperature. The saturation vapour density

ρsat is related to saturated pressure psat by the ideal gas law and psat is a calibrated function

of the temperature as in Eq. 8.1 [184], here evaluated at the solid-vapour interface and

denoted as T i. Later on, the vapour density and the pressure at the interface will similarly

be denoted as ρi and pi respectively.

To obtain q, we can expand the saturation density ρsat, the density ρ and the thermal

velocity Vth around the reference state (T0, ρsat(T0), psat(T0)) at the interface. As for ρsat,

ρsat

�

T i
�

= ρsat (T0) +ρ
′
sat (T0)
�

T i − T0

�

, (9.6)

where the prime means the derivative with respect to the temperature. Using the ideal

gas law, we can express ρ′sat =
ρsat
T

�

T
p′sat
psat
− 1
�

. Now using the Clausius-Clapeyron equation

p′sat =Lρsat/T [185], we can write

ρ′sat(T0) =
ρsat(T0)

T0

�

mL
kB T0
− 1
�

, (9.7)

plugging in 9.6, it gives

ρsat

�

T i
�

= ρsat(T0) +
ρsat(T0)

T0

mL
kB T0

(T i − T0)−
ρsat(T0)

T0
(T i − T0), (9.8)

where L is the latent heat of ice sublimation, and m is the mass of a vapor molecule.

Similarly for thermal velocity, one has Vth(T i) = Vth(T0) + V ′th(T0)
�

T i − T0

�

, and it further

gives

Vth

�

T i
�

= Vth(T0)

�

1+
T i − T0

2T0

�

. (9.9)
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Regarding the density, one needs to do the expansions in both T i at T0 and pi at psat(T0):

ρi =
mpi

kB T i
=

m
��

pi − psat(T0)
�

+ psat(T0)
�

kb [(T i − T0) + T0]
, (9.10)

ρi =ρsat(T0) +
m

kB T0

�

pi − psat(T0)
�

−
ρsat(T0)

T0
(T i − T0). (9.11)

From Eq 9.5, 9.8, 9.9 and 9.11, finally obtain:

q = αVth(T0)ρsat(T0)

�

1+
T i − T0

2T0

��

mL
kB T0

(T i − T0)
T0

−
pi − psat(T0)

psat(T0)

�

. (9.12)

As we will consider small variations of T i around T0, one can neglect the variation associated

with the thermal velocity so that:

q = αVth(T0)ρsat(T0)

�

mL
kB T0

(T i − T0)
T0

−
pi − psat(T0)

psat(T0)

�

. (9.13)

At the interface, the vertical and horizontal velocities of the vapour are respectively

related to vapour flux q and no-slip condition:

uz(ξ
+) =

q
ρi

, (9.14)

ux(ξ
+) =0. (9.15)

For the thermal interfacial conditions, the temperature must be continuous, but the heat

flux across it is not: to sublimate ice at a rate corresponding to a vapour flux q, an energy

flux L q is needed. This quantity must be provided by the heat flux difference. These two

conditions at the interface elevation z = ξ (later in Eq. 9.25) thus write:

T (ξ−) = T (ξ+), (9.16)

j(ξ−) =L q+ΣεT 4
i − j(ξ+)− jψ , (9.17)

where ΣεT 4
i is the surface radiation, with Σ and ε the Stefan constant and emissivity, and

jψ is a light power flux, as the ice surface is submitted to an insolation. jψ will be specified

in the following.
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9.1.4 Self-illumination on a modulated surface

In this subsection, we determine the illumination of a modulated surface z = ξ(x) in a

way similar to [67, 186]. Due to a finite albedo ΩN , a unit surface re-emits a light power

flux ΩN jψ, proportional to the power received jψ. Note that jψ is (1−ΩN ) times the power

emitted by the sun. When the interface is flat, none of the re-emitted photons reach the

surface again. However, when the surface is modulated, its illumination is partly due to

these photons. Assuming isotropy of the re-emission, and a one-dimensional profile, one

obtains:

jψ(x ,ξ) = j0
ψ
+ΩN

∫ xb

xa

|S |
π

jψ(X ,ξ(X )) dX , (9.18)

where j0
ψ

is the power received by a flat solid, due to sun illumination, and S dξ is the

solid angle through which the element dξ at position X is seen from point x , which reads

S (X ) =
1

x − X

�

ξ′(x)−
ξ(x)− ξ(X )

x − X

�

. (9.19)

In this expression, ξ′ is the derivative of the interface profile. The bounds xa and xb of this

integral both depend on x too. They correspond to positions beyond which the interface

cannot be seen from position x , due to shadowing (Fig. 9.2). As the reference state

considered is homogeneous, at the linear order, eigen-modes of the illumination operator

(9.18) are periodic. However, due to the non-local nature of S , they are not Fourier modes,

as known in the general context of Fredholm equations. In particular, the illumination of

a sinusoidal profile ξ(x) = H cos(kx) is not strictly sinusoidal. For such a function, the

contribution to the integral term giving the illumination at first order in kH reads:

I(ηx) =

∫ ηb

ηa

�

�

�

�

sinηx +
cosηx − cosη′x
ηx −η′x

�

�

�

�

dη′x
|ηx −η′x |

, (9.20)

where ηx = kx . The boundaries of the integral, ηa(ηx) and ηb(ηx), correspond to rays

that are tangent to the surface (Fig. 9.2). For 0< ηx < π, they are solutions of

sinηx +
cosηa − cosηx

ηa −ηx
=0 for 0≤ ηx ≤ π/2 (9.21)

sinηa +
cosηx − cosηa

ηx −ηa
=0 for π/2≤ ηx ≤ π (9.22)

sinηb +
cosηb − cosηx

ηb −ηx
=0 (9.23)
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Fig. 9.2 A given point x receives light from a portion of the surface. The rays determining
the limits of this portion are either tangential to the surface at the point considered (a)
or at the point of emission (b). These conditions determine xa and xb by Eqs. 9.21-9.23.
Figures from [67].

2

1.5

1

0.5

0

Fig. 9.3 (a) Bounds of the integral (9.20) given by Eqs. 9.21-9.23. (b) Integral I(η) (solid
line) giving the illumination profile for a sinusoidal surface, compared to the function
1− cos(kx) (dotted line). Figures from [67].
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For π < ηx < 2π, the bounds are obtained by symmetry. The dependence of these bounds

on ηx is displayed in Fig. 9.3a. However, the non-harmonic contribution of the modes

turn out to be negligible and the integral (9.20) is numerically found to be very close to

the function 1 − cos(kx) (Fig. 9.3b). For the linear stability performed here, the light

volumetric power at the interface can be approximately written as

jψ(x) = j0
ψ
[1+ΩkH (1− cos(kx))] , (9.24)

with Ω= ΩN/π.

9.2 Linearised problem

In this section, we perform the linear analysis of the problem. For small enough amplitudes,

we can consider a bottom profile (Fig. 9.1) of the form

ξ(x) = Heσt+ikx (9.25)

without loss of generality (real parts of expressions are understood). λ = 2π/k is the

wavelength of the bottom and H the amplitude of the corrugation. The case of an arbitrary

relief can be deduced by a simple superposition of Fourier modes. σ is the growth rate of

the elevation. We make the usual assumption that the time 1/σ is much larger than all

time scales involved in the hydrodynamical and thermal processes, so that the solid surface

can be considered as fixed in the computation of the velocity, stress and temperature fields.

9.2.1 Base state

The actual base state is inhomogeneous and time dependent. There is a partition of the

energy at the surface between latent heat, conductive flux in the solid, conductive and

convective flux in the atmosphere, illumination by the sun and radiation. Furthermore,

gradients lead to horizontal transport of energy. For the sake of simplicity, we consider a flat

solid surface (Dashed line in Fig. 9.1) which presents a uniform temperature T0, and thus

the surface temperature T i = T0; and we assume that the thermal flux is both homogeneous

in the solid and in the atmosphere, which are respectively noted j0
− and j0

+. Moreover we

consider that the sunlight flux above the surface is uniform, equal to j0
ψ

, and induces a

constant migration of the surface at a velocity−q0/ρs. The pressure p = p0 above the surface

is also homogeneous. It relates to the vapour density as ρ0 = ρsat(T0) +
m

kB T0
(p0 − psat(T0)).
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Following (9.13), the sublimation/condensation flux in the base state obeys the equation:

q0 = −αVth(T0)ρsat(T0)
�

p0 − psat(T0)
psat(T0)

�

. (9.26)

q0 can be positive (net ablation) or negative (net accumulation), depending on whether

the pressure p0 is below or above its saturated value psat(T0). As in Eqs. 9.14 and 9.17, the

corresponding vertical velocity of the vapour and the power balance at the interface read:

w0 ≃
q0

ρ0
, (9.27)

j0
− =L q0 +ΣεT 4

0 − j0
+ − j0

ψ
. (9.28)

w0 is positive when sublimation occurs.

Regarding the vapor flow, a steady and homogeneous situation along the x-axis is

considered. The strain rate reduces to ∂zux . The x component of Eq. 1.9 reduces to

ρuz∂zux = ∂zτxz. Because in the base state uz = w0 and ρ = ρ0 are independent of z, this

balance can be written as ∂z(τxz −ρ0w0ux) = 0, or equivalently τxz −ρ0w0ux ≡ ρ0|u∗|u∗.
Summing up the turbulent and viscous contributions of the shear stress τxz, we obtain:

ρ0

�

ℓ2|∂zux |∂zux + ν∂zux

�

−ρ0w0ux = ρ0|u∗|u∗. (9.29)

Similarly, Eq. 4.9 reduces to ρ0Cvw0T − kv∂z T = j0
+. With the expression in Eq. 9.82 for kv,

it reads:

ρ0Cvw0(T − T0)−ρ0Cv

�

ℓ2|γ̇|
βt
+
ν

βν

�

∂z T = j0
+. (9.30)

In the solid, the temperature field obeys Fourier’s law as −ks∂z T = j0
− and it easily solves

into:

T = T0 −
j0
−

ks
z , (9.31)

where we have used the boundary condition T = T0 at the interface.

9.2.2 First order fields

With respect to the small parameter kH, we can write all the relevant quantities f above

the solid surface under the generic form:

f (x , z) = f̄ (η) + kHeσt+ikx F(η), (9.32)
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where f̄ corresponds to the homogeneous (base) state, and F encodes the profile of the first

order correction. More explicitly, for all fields in the atmosphere, we define non-dimensional

functions U , W , ..., Y of the dimensionless variable η= kz by:

ux =u∗
�

U + kHeσt+ikx U
�

, (9.33)

uz =u∗
�

W + kHeσt+ikxW
�

, (9.34)

τxz =τzx = ρ0u2
∗

�

1+ kHeσt+ikxSt

�

, (9.35)

τzz − p = − p0 −ρ0u2
∗kHeσt+ikxSn, (9.36)

p = p0 +ρ0u2
∗kHeσt+ikx P, (9.37)

τzz =ρ0u2
∗kHeσt+ikxSzz, (9.38)

τx x =ρ0u2
∗kHeσt+ikxSx x , (9.39)

kℓ=Υ + kHeσt+ikx L, (9.40)

T = T0 +
u2
∗

L
T0

�

−T + kHeσt+ikxΘ
�

, (9.41)

jz = j0
+ −ρ0Cv

u3
∗

L
T0kHeσt+ikx Y, (9.42)

jψ = j0
ψ

�

1−ΩkHeσt+ikx
�

. (9.43)

With these perturbed fields, we will develop the linearised governing equations later on.

9.2.3 Base state in a dimensionless form

Starting from the base state, we now make the normalized and identity the dimensionless

numbers. The base state flow field reads:

ux = u∗U , and uz = w0 = u∗W , (9.44)

and we have the dimensionless mixing length Υ = kℓ (Eq. 9.40). From Eq. 1.15, it is

rescaled as:

Υ (η) = κη
�

1− exp(−Rη/R0
t )
�

, (9.45)

where we have introduced the Reynolds number with respect to the wavelength:

R =
u∗
kν

. (9.46)
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Plugging Eq. 9.44 and 9.45 in 9.29, the function U (η) giving the wind profile can be

computed by:

Υ 2|U ′|U ′ +R−1U ′ −WU = 1, (9.47)

or equivalently

U ′ =
−1+
p

1+ 4Υ 2R2(1+WU )
2Υ 2R

, (9.48)

which must be solved with the boundary condition U (0) = 0 corresponding to the no-slip

condition of the wind at the solid interface (Eq. 9.15). When Υ 2R2≪ 1, Eq. 9.48 simplifies

into:

U ′ =R(1+WU ), (9.49)

and it further gives U ′(0) =R . The rescaled vertical velocity reads:

W =
w0

u∗
=

q0

u∗ρ0
. (9.50)

W = 0 corresponds to a reference state that is not sublimating.

The base state temperature field, strain rate modulus and thermal conductive coefficient

are

T =T0 −
u2
∗

L
T0T , (9.51)

|γ̇|=u∗kU ′, (9.52)

kv =ρCv
u∗
k

�

U ′Υ 2

βt
+
R−1

βν

�

. (9.53)

Plugging Eq. 9.51-9.53 in 9.30, the temperature profile obeys:

�

Υ 2|U ′|
βt

+
R−1

βν

�

T ′ −WT =
j0
+L

ρ0Cv T0u3
∗
=
J+
A 3

, (9.54)

where we have introduced the dimensionless quantities

J+ =
j0
+k3

B T 5
0 C2

v

α3m3L 5V 3
thρ0

and A =
kB T 2

0 Cvu∗
αL 2mVth

, (9.55)

we will specify later how heat flux j+ is rescaled to get J+. It is obvious that sublimation

(net ablation) conditions correspond to negative values of J+. Eq. 9.54 must be solved

with the boundary condition that the temperature is T0 at the interface, i.e. T (0) = 0,



9.2 Linearised problem 109

which gives:

T ′(0) =
J+βν
A 3R−1

=
J+βν
A 2K

, (9.56)

with K =AR−1.

9.2.4 Interfacial equations

From Eq. 9.41, the temperature at the interface z = ξ reads:

T i − T0 =
u2
∗

L
T0

�

−T (ξ) + kHeσt+ikxΘ(ξ)
�

. (9.57)

Considering T (ξ) = T (0) + T ′(0)kξ and Θ(ξ+) = Θ(0) + Θ′(0)kξ at the linear order,

Eq. 9.57 becomes

T i − T0 =
u2
∗

L
T0kH
�

Θ(0)−T ′(0)
�

eσt+ikx , (9.58)

where we have used T (0) = 0 and neglected a second order term. According to the

temperature continuity at the interface (9.16), one has T (ξ−)−T0+
j0−
ks
ξ− = T (ξ+)−T0+

j0−
ks
ξ−.

Introducing 9.58 and 9.25, it gives

T (ξ−)− T0 +
j0
−

ks
ξ− =

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx .

In the solid, the temperature field obeys the Laplace equation, and can therefore be

expressed as:

T − T0 +
j0
−

ks
z =

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx+kz. (9.59)

From Fourier’s law of heat conduction, the thermal fluxes in the solid are:

jx = − iksk

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx+kz, (9.60)

jz − j0
− = − ksk

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx+kz. (9.61)

The heat flux at the interface reads (Eq. 9.42):

jz(ξ
+)− j0

+ = −ρ0Cvu∗
u2
∗

L
T0kHeσt+ikx Y (0), (9.62)
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where we have used Y (ξ+) = Y (0) + Y ′(0)kξ and neglected the second order terms. On

the other hand, Eq. 9.61 gives

jz(ξ
−)− j0

− = −ksk

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx . (9.63)

Recalling 9.17 and 9.28, one obtains the conditions at the interface:

ρ0Cvu∗
u2
∗

L
T0kHeσt+ikx Y (0) = ksk

�

u2
∗k

L
T0

�

Θ(0)−T ′(0)
�

+
j0
−

ks

�

Heσt+ikx

+L (q− q0) + 4
u2
∗

L
ΣεT 4

0

�

Θ(0)−T ′(0)
�

kHeσt+ikx + j0
ψ
ΩkHeσt+ikx . (9.64)

where we have used Eq. 9.43 and linearised the surface radiation term Σε(T 4
i − T 4

0 ).
Furthermore, it gives

q− q0 =

�

ρ0Cvu
3
∗T0

L 2
Y (0)−

u2
∗ksk

L 2
T0

�

Θ(0)−T ′(0)
�

−
j0
−

L

−4
u2
∗

L 2
ΣεT 4

0

�

Θ(0)−T ′(0)
�

−
j0
ψ
Ω

L

�

kHeσt+ikx . (9.65)

The growth rate σ is estimated by the mass conservation as:

q− q0

ρs
= −σHeσt+ikx . (9.66)

From (9.13) and (9.26), we obtain:

q− q0

ρs
=
αmVth(T0)

kB T0ρs

�

ρsat(T0)L
T0

�

T i − T0

�

−
�

pi − p0

�

�

(9.67)

where we have taken the fact that ρ0 ≃ ρsat(T0). Introducing Eqs. 9.58 and 9.69, Eq. 9.67

becomes:

q− q0

ρs
= α

mVth

ρskB T0
ρ0u2
∗

�

Θ(0)− Sn(0)− 2i −
J+βν
A 2K

�

kHeσt+ikx , (9.68)

where we have used Eq. 9.56, 9.90, and the interfacial pressure:

pi = p0 +ρ0u2
∗kHeσt+ikx P(0). (9.69)
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Recalling Eq. 9.66, we therefore get the complex growth rate:

σ = fσR−1
�

Sn(0) + 2i −Θ(0) +
J+βν
A 2K

�

, (9.70)

whose real and imaginary parts give the temporal growth rate and the propagation speed

respectively, and with fσ =
αmVthρu3

∗
ρskB T0ν

. Note that we have the normalized growth rate:σ̄ =
σ/ fσ. Another equation relating the flux to the velocity is:

q− q0 = ρ0u∗kHeσt+ikxW (0), (9.71)

which gives, recalling Eq. 9.65:

W (0) = CA
�

Θ(0)− Sn(0)− 2i −
J+βν
A 2K

�

, (9.72)

where we have defined the dimensionless number:

C =
α2m2L 2V 2

th

k2
B T 3

0 Cv
. (9.73)

Eliminating q− q0 from Eqs. 9.65 and 9.68, we obtain the equation relating the flux to the

temperature:

αmVth

kB T0

�

Θ(0)−T ′(0)− Sn(0)− 2i
�

=
Cvu∗T0

L 2
Y (0)−
�

ksT0k
ρ0L 2

�

Θ(0)−T ′(0)
�

+
j0
−

ρ0u2
∗L

�

−
4ΣεT 4

0

ρ0L 2

�

Θ(0)−T ′(0)
�

−
j0
ψ
Ω

ρ0u2
∗L

. (9.74)

Solving for Θ(0), it gives the lower boundary condition in a dimensionless form:

Θ(0) =
J+βν
A 2K

+
1

1+KB + 4DJΣ

�

A Y (0) + Sn(0) + 2i −
J− +ΩJψ
A 2

�

, (9.75)

where we have used q0 = ρ0W u∗, and rescaled all the heat flux terms by a reference flux
α3m3L 5V 3

thρ0

k3
B T5

0 C2
v

:

J− =
j0
−k3

B T 5
0 C2

v

α3m3L 5V 3
thρ0

, JΣ =
Σεk3

B T 9
0 C2

v

α3m3L 5V 3
thρ0

, Jψ =
j0
ψ

k3
B T 5

0 C2
v

α3m3L 5V 3
thρ0

and JL =WAE ,

(9.76)
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with

B =
ks

ρ0Cvν
, D =

α2m2L 3V 2
th

k2
B T 4

0 C2
v

and E =
k2

B T 3
0 Cv

α2m2L 2V 2
th

. (9.77)

B characterizes the heat diffusion in the solid. With these rescaled fluxes, one obtains the

normalised form for Eq. 9.28,

J− = JL +JΣ −J+ −Jψ. (9.78)

We could consider a reduced model by putting Y (0) = 0 and Sn(0) = 0 in Eq 9.75. Plugging

into Eq 9.70, one gets the reduced growth rate:

σre = fσ
K
�

J− +ΩJψ
�

A 3(1+KB + 4DJΣ)
, (9.79)

and σ̄re = σre/ fσ. This analytical scaling serves a test on the full solution at the limit of

neglecting the heat flux and pressure effect.

9.2.5 Linearised system

In this section, we linearise the governing equations and the boundary conditions to get the

mathematical description for the system. For starters, the linearised strain rate modulus,

viscous and turbulent stress coefficient and the thermal conductivity are computed at the

linear order:

|γ̇|=u∗k
�

U ′ + (U ′ + iW )kHeσt+ikx
�

, (9.80)

l2|γ̇|+ ν=
u∗
k

��

U ′Υ 2 +R
�

+
�

(U ′ + iW )Υ 2 + 2Υ LU ′
�

kHeσt+ikx
�

, (9.81)

kv =ρCv
u∗
k

��

U ′Υ 2

βt
+
R−1

βν

�

+
1
βt

�

(U ′ + iW )Υ 2 + 2Υ LU ′
�

kHeσt+ikx
�

. (9.82)

These formulas are of use in the following linearisation.

Linearised equations

We first linearise the Hanratty equation (Eq. 1.16), and it gives at the linear order:

(R + ia)H = i(Sx x − Szz − Sn) = −
4U
U ′
− iSn. (9.83)
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Now, we can express the disturbance to the mixing length:

L = κ

�

−1+ exp(−Rη/Rt)

�

1−
Rη
R0

t
+
Rη2

R0
t
(St/2− bH )
��

, (9.84)

where b is the relative variation of Rt due to the pressure gradient:

b =
1
R0

t

dRt

dH
> 0. (9.85)

Plugging Eq 9.81, 9.33 - 9.34, and 1.10 - 1.12 into 9.35 - 9.39, one obtains, at the linear

order, the stress functions as follows:

St =
�

R−1 + 2Υ 2U ′
�

(U ′ + iW ) + 2ΥU ′2 L, (9.86)

Sx x =2
�

R−1 + Υ 2U ′
�

iU =
2iU
U ′

, (9.87)

Szz = − 2
�

R−1 + Υ 2U ′
�

iU =
−2iU
U ′

, (9.88)

P =Sn + Szz = Sn −
2iU
U ′

. (9.89)

where we have used
�

R−1 + Υ 2U ′
�

= 1/U ′ at the zeroth order. Considering Eq. 9.106, it

gives from Eq. 9.89:

P(0) = Sn(0) + 2i (9.90)

Similarly, we plug Eqs. 9.33 - 9.39 into Navier-Stokes equations (Eqs. 1.8 and 1.9), and

the linear expansion gives rise to:

W ′ = − iU , (9.91)

S′t = iU U +U ′W +WU ′ + iSn − iSx x + iSzz, (9.92)

S′n = − iUW −WW ′ + iSt . (9.93)

where we have introduced Eq. 9.89 when finding 9.92.

As for the scalar equations, we plug Eqs. 9.82, 9.41 and 9.42 into Eq. 9.2 - 9.3, it gives

Y ′ = − iT U +
�

iU +
Υ 2|U ′|
βt

+
R−1

βν

�

Θ, (9.94)

Y =
�

Υ 2|U ′|
βt

+
R−1

βν

�

Θ′ −
1
βt
T ′
�

Υ 2(U ′ + iW ) + 2Υ LU ′
�

+WT −WΘ. (9.95)
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With U ′ and Θ′ expressed from Eq. 9.86 and 9.95, we then obtain six closed equations:

U ′ = − iW +
St − 2ΥU ′2 L
R−1 + 2Υ 2U ′

, (9.96)

W ′ = − iU , (9.97)

S′t =
�

iU +
4
U ′

�

U +WU ′ +U ′W + iSn, (9.98)

S′n = − iUW −WW ′ + iSt , (9.99)

Θ′ =

�

Y +WΘ−WT +
T ′
�

Υ 2St + 2Υ LU ′
�

R−1 + Υ 2U ′
��

βt (R−1 + 2Υ 2U ′)

�

/

�

Υ 2|U ′|
βt

+
R−1

βν

�

,

(9.100)

Y ′ = − iT U +
�

iU +
Υ 2|U ′|
βt

+
R−1

βν

�

Θ, (9.101)

where

L = κ

�

−1+ exp(−Rη/Rt)

�

1−
Rη
R0

t
+
η2

R0
t

�

R
2

St +
b

1+ iaR−1

�

4U
U ′
+ iSn

��

��

.

(9.102)

Boundary conditions

Boundary conditions are needed to solve the system. The upper boundary corresponds to

the limit η→∞, in which the vertical fluxes of mass and momentum vanish asymptotically.

This means that the first order corrections to the shear stress and to the vertical velocity

must tend to zero: W (∞) = 0 and St(∞) = 0. In practice, a boundary at finite height

D (at ηD = kD) is introduced, at which we impose a null vertical velocity and a constant

tangential stress ρ0u2
∗ so that:

W (ηD) =0, (9.103)

St(ηD) =0. (9.104)

This corresponds to a physical situation where the fluid is entrained by a moving upper

plate, for instance a stress-controlled Couette annular cell. Then, we consider the limit

D→ +∞, i.e. when the results become independent of D.

On the interface z = ξ, the horizontal velocity component must vanish ux = 0, and we

have, from Eq. 9.33,

U (ξ) + U(ξ)kξ= 0; (9.105)
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considering U (ξ) =U (0) +U ′(0)kξ and U(ξ) = U(0) + U ′(0)kξ, Eq. 9.105 gives:

U(0) = −U ′(0) = −R (9.106)

where we have used U (0) = 0, and U (0) =R from Eq. 9.49. We recall the conditions for

vertical velocity and temperature at the interface here:

W (0) =CA
�

Θ(0)− Sn(0)− 2i −
J+βν
A 2K

�

, (9.107)

Θ(0) =
J+βν
A 2K

+
1

1+KB + 4DJΣ

�

A Y (0) + Sn(0) + 2i −
J− +ΩJψ
A 2

�

. (9.108)

Furthermore, the heat flux through the upper boundary remains equal to j0
+, because the

first order correction from the bed profile modulation becomes negligible when it is far

from the bed. We therefore have:

Y (ηD) = 0 (9.109)

To sum up, six boundary conditions (Eq. 9.103, 9.104, 9.106, 9.107 - 9.109) are specified

to solve the linearised governing eqautions (Eq. 9.96-9.101).

Solving strategy

Introducing the vector X = (U , W, St , Sn,Θ, Y ), we finally get at the first order in kH the

following compact form of the equation to integrate:

d
dη

X =MX + S (9.110)

withM the coefficient matrix and S the source term. The general solution of this equation

is the linear superposition of all solutions of the homogeneous system (i.e. with S = 0),

and a particular solution.

In practice, we solve the equations using a fourth-order Runge-Kutta scheme with a

logarithmic step. Because we have some boundary conditions at the bottom of the domain

yet the others are at the top, we firstly integrate twice over half of the domain, with one

from the bottom to the center and the other from the top to the center, and we then match

the two solutions at the center of the domain. To be specific:

1. We cross upward a first time from the bottom to the top to compute the value of U
and T at the top of the domain;

2. We cross upward from the bottom to the center of the domain to find one solution:
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(a) The particluar solution is computed,

(b) The general solution is computed associated to the missing variables at the

bottom: St(0), Sn(0) and Y (0);

3. Similarly to Step 2, We cross downward from the top to the center of the domain

to find another solution. Firstly, the particular solution is computed, and then the

general solution is computed by adjusting the missing variables at the top: U(ηD),
Sn(ηD) and Θ(ηD);

4. Then we match the two solutions at the center of the domain. The matched solution

satisfies the boundary conditions at both sides of the domain, from which we are able

to compute the dispersion relation and other secondary parameters interested.

9.3 Dispersion relation

In this section, we analyse the physical content of the model by studying the dependence of

the dispersion relation on the different parameters. Firstly, the parameters are summarised

and/or estimated for the problem of Pluto’s sublimation patterns. We take the measured

values for the temperature and pressure at Pluto’s surface: T0 ≈ 40 K and p0 ≈ 1 Pa. Other

parameters for the N2 atmosphere at the surface of Pluto are computed and presented

in Table 9.1, and the probability of molecule absorption/emission is taken α ≈ 1 for

Hertz-Knudsen law (Eq. 9.5). With these numbers, we evaluate the dimensionless numbers

B = 37.4 C = 433.0 D = 3657.3 and E = 2.310−3. (9.111)

A is related to u∗, and we haveA = 3.3 10−5, for u∗ ≃ 1 m/s. Accordingly, the multiplica-

tive factor fσ = 1.410−8 s−1 in front of the growth rate (Eq. 9.70 and 9.79).

In the following, discussions will be divided into two parts according to the two dominant

destabilising factors: the penitentes instability, associated with solar radiation and due to

the self-illumination of the surface, and a diffusion-convection instability associated with

the heat flux coming from the atmosphere towards the surface. We will study the influence

of the parameters on dispersion relation in a rather abstract way, regardless the values

of the dimensionless numbers on Pluto. Then we will apply the analysis to the patterns

observed on Pluto.
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Table 9.1 Parameters of N2-atmosphere at the surface of Pluto.

Item Value

Mass density ρ = mp0/(kB T0) 8.410−5 kg/m3

Thermal velocity Vth =
p

8kB T0/(πm) 1.7 102 m/s
Mean free path ℓm = kB T0/(

p
2πa2P0) 1.510−3 m

Kinematic viscosity ν= 1
3 Vthℓ 8.6 10−2 m2/s

Specific heat capacity Cv =
5
2 kB/m 7.4 102 J/K/kg

9.3.1 Instability due to heat diffusion and convection

Heat flux from the atmosphere is characterized by J+. It is due to the heat diffusion, and

mostly the convection and turbulent mixing governed by hydrodynamics. We set Ω= 0 to

study alone the instability characteristics due to heat flux.

As a start, we take the simplest situation by taking a fixed value for the rescaled wind

velocity, A = 3.310−6 and send other effects to 0: W = 0, J− = 0 and JΣ = 0. The

dispersion relation and instability diagram are computed by varying J+, as shown in Fig.

9.4. The results indicate that heat flux has a destabilising effect and induces instabilities

in the range where R ∈ (10−4, 10−1). The maximum growth rate increases when rising

J+, with a most unstable mode located around R ≈ 10−2. To understand this instability,

we computed the perturbed fields for the most unstable mode. The diffusion coefficient

is modulated by the bottom (in first order approximation) and follows it, due to the fact

that it is based on the distance to the ground (Fig. 9.5a). The velocity field is shown with

stream functions in Fig. 9.5b. The streamlines get closer at the crests, which means a larger

velocity there than at the troughs. The resulting temperature field is plotted in Fig. 9.5c.

One sees that the temperature iso-coutours are closer to each others in the trough. So the

heat flux is higher at troughs than that at crests, which means more energy at the troughs

for sublimation. The temperature field is resulted from the power balance at the surface,

which combines temperature, heat flux and pressure, from the heat transport along the

streamlines by convection, and from diffusion which spreads the field. So, the wavelength

is selected by the balance between diffusion and convection, and scales as the viscous length

ν/u∗. Also, one sees in Fig. 9.4b, there is a threshold J+ for the instability. This is due to a

stabilising pressure effect, which will be discussed later on, will dominate the system if J+
is too small. For the currentA = 3.310−6, the threshold flux is around J+ ≈ 10−15.

The pressure effect is characterized byA , since p∝ ρu2
∗∝A

2. The dispersion rela-

tion and instability diagram is therefore computed by varyingA , keeping J+ = 3.0 10−12

fixed as well as W = 0, J− = 0 and JΣ = 0. As shown in Fig.9.6a, we observed the
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Fig. 9.4 (a) Dispersion relation computed at different J+ . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. A = 3.3 10−6, J=0,
JΣ = 0 and W = 0 for all the curves; and J+ = 5.510−14 for black ones, J+ = 3.010−12

for blue ones, J+ = 1.6 10−10 for red ones. Dotted line shows the position of the maximum
growth rate. (b) Stability diagram in J+–R−1 plane. Dashed line is the marginal stability
curve, and solid curve indicates the position of the most unstable mode.

similar instability as in Fig. 9.4a, while the growth rate is decreasing with increasing

A . Thus, pressure is a stabilising effect. This comes from the fact that a higher pressure

corresponds to a higher density and therefore a higher condensation rate, as described in

Hertz-Knudsen law (Eq. 9.5). On crests, pressure is lower because of a higher velocity. On

troughs, conversely, pressure is higher (Fig. 9.5b). This favors condensation in the troughs

and sublimation on crests, which is stabilising. This is also why there is an upper bound

in A for instabilities (Fig. 9.6b), where the heat flux is not large enough the overcome

the stabilising pressure. For J+ = 3.010−12 in this calculation, the maximumA is about

5 10−5 .

The influence of the base state sublimation rate is characterized by the rescaled vertical

velocity W . We fix A = 3.310−6, J+ = 3.010−12, J− = 0 and JΣ = 0. The dispersion

relation is then computed varying W , as shown in Fig. 9.7. The results indicate that the

non-zero W creates a new range of unstable wave numbers at large wavelength where

the growth rate is constant. The cut-off wavenumber increases linearly with the blowing

velocity W . We can see that the dispersion relation keeps the same shape at large wave

numbers, at least when W is small (Fig. 9.7a).
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(a)

(b)

(c)

Fig. 9.5 Perturbed fields showing the instability due to heat diffusion and convection.
Diffusion coefficient field (a), velocity field (b) and temperature field (c) are plotted both
in iso-coutours and in colours. The values are decreasing from red to violet for both colours
and iso-coutours.
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Fig. 9.6 (a) Dispersion relation computed at differentA . Solid curves and dashed ones are
respectively the rescaled growth rate σ̄ and its opposite value −σ̄. J+ = 3.0 10−12, J− = 0,
JΣ = 0 and W = 0 for all the curves; andA = 3.310−7 for black ones,A = 3.310−6 for
blue ones,A = 3.3 10−5 for red ones. (b) Stability diagram inA -R−1 plane. Dashed line
is the marginal stability curve, and solid curve indicates the position of the most unstable
mode.
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Fig. 9.7 Dispersion relations computed at different W . Solid curves and dashed ones are
respectively the rescaled growth rate σ̄ and its opposite value −σ̄. J+ = 3.0 10−12, J− = 0,
JΣ = 0 andA = 3.3 10−6 for all the curves. In panel (a) W = 0 for black ones, W = 10−6

for red ones, W = 10−5 for blue ones, W = 10−4 for green ones; in panel (b) W = 10−3 for
red ones, W = 10−2 for blue ones, W = 10−1 for green ones.
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To study the influence of the thermal radiation of the solid surface, we compute the

dispersion relation by varying JΣ, withA = 3.3 10−6, J+ = 3.0 10−12, J− = 0 and W = 0.

JΣ enters the instability from temperature boundary condition on the surface (Eq. 9.75).

Introducing it into the growth rate (Eq. 9.70), it gives:

σ =
fσR−1

1+KB + 4DJΣ
[(KB + 4DJΣ)(Sn(0) + 2i)−A Y (0)] . (9.112)

One can see that JΣ appears in front of the stabilising pressure term. When JΣ is small,

the growth rate is close but lower than that from JΣ = 0 (red and black curves in Fig. 9.8).

As JΣ is increased, the stabilising pressure becomes dominant and stabilises the flat state

(violet, blue and green curves in Fig. 9.8).
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Fig. 9.8 Dispersion relation computed at different JΣ . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. J+ = 3.010−12,
A = 3.3 10−6, J− = 0 and W = 0 for all the curves; and JΣ = 0 for grey ones, JΣ = 10−8

for red ones, JΣ = 10−7 for black ones, JΣ = 10−6 for violet ones, JΣ = 10−5 for blue ones,
JΣ = 10−3 for green ones.

Regarding the influence of the heat flux in the solid ice, we compute the dispersion

relation by varying J−, with J+ = 3.0 10−12,A = 3.3 10−6, JΣ = 0 andW = 0. The results

show that the instability zone becomes larger when J− increases (blue and red curves in

Fig 9.9). If the heat flux keeps rising, the instability becomes scale-free, nonselective over
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wave numbers, and the growth rate linearly increases (orange curves in Fig 9.9a); this

asymptotics corresponds to the Mullins-Sekerka instability [187].
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Fig. 9.9 Dispersion relation computed at different J− . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. J+ = 3.010−12,
A = 3.310−6 JΣ = 0 and W = 0 for all the curves. In panel (a), J− = 0 for blue curves,
J− = 10−12 for red ones, J− = 10−11 for green ones, J− = 10−10 for orange ones. In panel
(b), J− = 0 for blue curves, J− = −410−12 for green ones, J− = −610−12 for violet ones,
J− = −8 10−12 for grey ones, J− = −10−11 for red ones and J− = −10−10 for orange ones.

9.3.2 Instability due to solar radiation

To study the behavior of the system due to the solar radiation and surface illumination, we

set J+ = 0, and take a constant Ω = 0.25 (defined in Eq. 9.24). Similar to Subsection 9.3.1,

we take JΣ = 0, J− = 0 and W = 0 as a start. Dispersion relation and instability diagram

are computed varyingA , as shown in Fig. 9.10. WhenA is small, the self-illumination

term is larger than the pressure effect and the flat base state is unstable. As shown by the

orange curve in Fig. 9.10a, the growth rate increases linearly with R−1 which points to

the fact that self-illumination is a scale-free effect. The dispersion relation superimposes

well on the analytical scaling (Eq. 9.79). AsA rises, the system shows selective instability

over R−1, and the width of unstable zone and the growth rate are both decreasing with

increasingA due to the stablising pressure effect (red, blue and green curves in Fig. 9.10a).

As shown in Fig. 9.10b, there are three zones on the stability diagram inA -R−1 plane. For

smallA , the base state presents a scale free instability because the system is driven by the

solar radiation. AsA increases, the instability becomes selective in wave number, which
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comes from the competition between the wind pressure effect and solar radiation. For even

largerA , the pressure effect becomes dominant and stabilises the flat state. It is easy to

understand: the marginal stability curve goes up if we increase Jψ, because it increases the

scale-free unstable zone. Also, the maximumA for the instability (the maximum values of

dashed curves in Fig. 9.10b) rises, when pressure effect becomes dominant.
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Fig. 9.10 (a) Dispersion relation computed at differentA . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. JΣ = 0, Jψ = 10−10,
J− = 0 andW = 0 for all the curves; andA = −5.5 10−5 for orange ones,A = 6.9 10−5 for
green ones,A = 7.6 10−5 for blue ones,A = 8.3 10−5 for red ones. (b) Stability diagram
inA –R−1 plane. Blow the dotted line, it is scale-free unstable zone. Dashed line is the
marginal stability curve, and solid curve indicates the position of the most unstable mode.

The W effect is shown in Fig. 9.11. It induces an instability plateau at small wave

number, similarly to that in Fig. 9.7. The cut-off wavenumber also increases linearly with

W . Regarding the surface radiation, as shown in Fig. 9.12, it behaves the same as in the

same way as for the heat diffusion-convection case (Fig. 9.8). It has a stabilising effect.

The influence of the heat flux in the solid ice is shown in Fig. 9.13. It is destabilising as

expected from the Mullins-Sekerka instability (as in Fig. 9.9).

9.3.3 Application to Pluto

Knowing the effects of all these parameters, we now study the patterns on Pluto. All the

fluxes discussed above are coupled by the power balance, as in Eq. 9.78. With the collected

parameters, we can estimate

JΣ = 3.2 10−10 and Jψ = 9.510−10. (9.113)
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Fig. 9.11 Dispersion relations computed at different W . Solid curves and dashed ones are
respectively the rescaled growth rate σ̄ and its opposite value −σ̄. Jψ = 10−10, J− = 0,
JΣ = 0 andA = 7.6 10−5 for all the curves; W = 0 for red ones, W = 10−4 for black ones,
W = 10−3 for blue ones, W = 10−2 for green ones.
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Fig. 9.12 Dispersion relation computed at different JΣ . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. Jψ = 10−10,
A = 7.6 10−5, J− = 0 and W = 0 for all the curves; and JΣ = 0 for blue ones, JΣ = 10−10

for red ones, JΣ = 10−8 for green ones, JΣ = 10−6 for black ones.
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Fig. 9.13 Dispersion relation computed at different J− . Solid curves and dashed ones
are respectively the rescaled growth rate σ̄ and its opposite value −σ̄. Jψ = 10−10,
A = 7.610−5 JΣ = 0 and W = 0 for all the curves. In panel (a), J− = 0 for blue curves,
J− = 10−12 for red ones, J− = 10−11 for green ones, J− = 10−10 for orange ones. In panel
(b), J− = 0 for blue curves, J− = −410−12 for violet ones, J− = −610−12 for grey ones,
J− = −8 10−12 for green ones, J− = −10−11 for red ones and J− = −10−10 for orange ones.
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It should be noted that we use here the solar radiation 1.3 W/m2 at the measurement spot

of New Horizons for Jψ. From the study on penitentes instability, we know that the heat

flux in the solid is negligible [67], so we take here J− = 0. What remains is the fraction

of the net flux Jψ −JΣ that goes into sublimation JL and that goes into heat flux from

atmosphere J+. We introduce the ratio

ε=
J+
Jψ −JΣ

, (9.114)

and vary it from 0 to 1 to see its effect on the instabilities. From the high resolution images

taken by New Horizons, we have measured the wavelength of the patterns, and we take an

average wavelength λ= 400m for the following discussions.

In Fig. 9.15, dispersion relations for different flux distributions are computed with

A = 3.310−6, corresponding a wind velocity u∗ = 0.1 m/s . The value ε = 0 is the pure

solar radiation situation. One obtains instability over all the wave number without selection

(black curve in Fig. 9.15). For this kind of scale-free dispersion relation, we expect a

nonlinear pattern coarsening, which will lead to larger and larger wavelengths [188]. This

is probably not the case on Pluto. Moreover, it can not explain the direction of the patterns

changing from place to place (Fig. 9.14). If a small fraction of the heat flux comes from

the atmosphere ( ε = 0.25), one can see the instability being selective in wave number,

showing a local maximum around R = 10−2. However, it is still more unstable at large

wave number (orange curves in Fig. 9.15). One therefore would expect the patterns to

develop at small wavelength, which is not consistent with the observed patterns length

scale either.

When half of the heat flux arriving at the ground comes from the atmosphere (ε = 0.5),

the instability shows a nice selectivity over wave numbers, with a most unstable mode

locating around R = 10−2. Moreover, it is stable at large wave numbers (blue curves

in Fig. 9.15). If one goes on increasing the fraction of heat flux from atmosphere, one

gets the same instability properties (green and red curves in Fig. 9.15), except that the

unstable plateau disappears for ε = 1 case because W = 0. Taking the most unstable mode,

we estimate the wind velocity with respect to the observed wave length on Pluto, and it

gives u∗ = 0.13 m/s. This value is consistent with the one involved in A in the present

calculation, and also consistent with the prediction from the atmosphere model in Chapter

8. In Fig. 9.16, we show the influence of the wind velocity on the instability. We can clear

see that larger wind induces larger pressure, stabilising the system.



9.4 Conclusions 127

2 km

Fig. 9.14 Rhythmic dune-like patterns observed on the south of the Sputnik plain on Pluto,
showing that the pattern adapts to the relief and has a direction that is not selected by the
orientation with respect to the sun.

9.4 Conclusions

In this part, we have developed an model for the rhythmic, dune-like patterns observed on

Pluto. In modelling the dynamics of the atmosphere, we find that the thermal parameters

and the velocity do not vary much at both rotation and revolution time scales compared

to that of comet 67P. We developed a dimensionless number (Eq. 8.4) showing that most

of the first order correction of the solar radiation contributes to the heat flux, instead of

modulating the temperature, and this effect is even stronger for Pluto. Considering this

quasi-steady uniform atmosphere, we have investigated the instability in the parameter

space.

The discussions have shown the presence of four destabilising mechanisms: the dif-

fusion/convection of heat, the blowing velocity from the surface, the Mullins-Sekerka

instability associated with a thermal flux coming from the ice and the penitentes instability

associated with self-illumination of the surface. In turn, from a Bernoulli-like effect, pres-

sure turns out to be stabilising. In the end, the model is tested against the patterns on Pluto,

and we have shown that heat flux from the atmosphere due to convection and turbulent

mixing are likely to be responsible for the the emergency of these patterns. Therefore,
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Fig. 9.15 Dispersion relation computed at different ε for Pluto. Solid curves and dashed
ones are respectively the rescaled growth rate σ̄ and its opposite value. A = 3.310−6

for all the curves, ε = 0 for black one, ε = 0.25 for orange ones, ε = 0.5 for blue ones,
ε = 0.75 for green ones, and ε = 1 for red ones. The dotted line indicates the locating most
unstable mode.
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Fig. 9.16 Dispersion relation computed at differentA for Pluto. Solid curves and dashed
ones are respectively the rescaled growth rate σ̄ and its opposite value. ε = 0.5 for all
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we conclude that these sublimation dunes could be emergent patterns formed by linear

instability under the mixing and transport of heat by the wind.



Part IV

Aeolian sand ripples





Chapter 10

Aeolian sand ripples instability

As we have mentioned in Section 1.2, granular ripples form in various environments,

resulted from the interaction between topography and sediment transport. The formation

of subaqueous ripples is now rather well understood. Regarding aeolian ripples, ubiquitous

in deserts or at the surface of sand beaches, it has long been recognized that they do not

form via the same dynamical mechanism as dunes [59]. Their formation and evolution are

not fully explained yet, despite the significant attention that has been given ever since last

century. In this chapter, we revisit this question and present progresses we made on the

subject.

10.1 Introduction

The modeling of aeolian ripple’s formation dates back to the work of Bagnold [189], who

suggested that the ripple wavelength is equal to the characteristic length of the saltation

jump. This idea was however proved problematic because experimental observations

showed that grains jump over distances that are much larger than the ripple wavelength, and

moreover this model cannot predict the merging of ripples and the resulting “coarsening” of

ripple patterns observed in both in the field and in controlled experiments [190]. Anderson

has proposed an alternative to Bagnold’s model, pointing out that reptation plays a key

role in aeolian ripple formation [42]. The hop length distribution has later been described

in terms of a ‘splash function’ [191]. This model was further improved by taking possible

rolling of reptating particles down the slopes of sand surfaces into account, and the improved

model was able to simulate realistic shapes of aeolian ripples and ripple coarsening [192–

194]. From Anderson’s model, Yizhaq et al [195] proposed a continuous model considering

ripples as two-dimensional structures on the sand surface, and the variability of saltation
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flux due to surface undulations. This model, however, does not include sand segregation

effect and is not able to capture the disappearance of ripples at high wind velocity. All the

above models (and others like Manukyan and Prigozhin [196], Terzidis et al [197] and

Csahók et al [198]) relate the emergence and evolution of aeolian ripples to the reptation

transport caused by the impacts on the ground of grains entrained by the wind into saltation

in the transport layer. The characteristic height of the transport layer is indicated by Bagnold

focal point. The majority of the particle are transported and all the reptation happens

below this point. The transport substantially slows down the wind close to the surface.

Theoretical and numerical models [42, 191] report that below the focal point, the air

velocity is almost invariant with the friction velocity u∗. Therefore, the characteristics of

the grain population that dominate transport (trajectories and velocities) is independent

of u∗, so is the length at which aeolian ripples emerge. However, field and laboratory

measurements [190, 199, 200] have shown that the wavelength of ripples, which is of the

order of ten centimetres on Earth, is much larger than the reptation hop length, of a few

grain sizes, and both the wavelength and the propagation speed increases linearly with u∗
(Fig. 10.1). This strongly suggests that a fundamental ingredient is missing in the existing

models of ripples instability mentioned above. Further studies are necessary to explain this

discrepancy.
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Fig. 10.1 Selection of the ripple wavelength and propagation speed. (a) Ripple wavelength
λ as a function of the wind shear velocity u∗. (b) Ripples propagation speed c as a function
of u∗. Experimental data are from [200], and the simulation ones are from [131].

Recently, this question was revisited numerically in the group in which this thesis was

done [131]. The results have recovered the linear increase of the wavelength and propaga-

tion speed with u∗ (Fig. 10.1), and have shown that ‘resonant grain trajectories’, tuned

with the ripple wavelength, are closely related to the dynamical mechanisms controlling the

formation of aeolian ripples, and that the product of the ripple wavelength and velocity is
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a proxy for the sediment flux. In collaboration with Orencio Durán and A. Brad Murray, we

propose in the following an analytical model for the aeolian ripple instability, as a successor

of the precursive work [131]. The content is organised as follows. Firstly, a simplified

transport model is described. Then, we explain a model for the bed evolution considering

as a collective effect by a crater function. The models are compared to the numerical data,

and we also show some preparatory experimental work at the end.

10.2 A simplified transport model

We propose here a simplified transport model, in which successive trajectories of a single

grain are computed. We assume a time scale separation between sediment transport and

bed evolution, i.e. we hypothesize that the bed profile is fixed during the time we compute

the grain trajectories. For the base state, we consider a particular grain trajectory over

a flat bed for a steady and homogeneous case, starting at position x↑, of length ℓ0 and

thus arriving at position x↓ = x↑ + ℓ0, as in Fig. 10.2a. The grains are assumed to start

their trajectory with a random velocity, whose distribution is equivalently described by

the hop-length distribution P(ℓ0). Here we idealize the prediction from the numerical

simulation [131], and describe it as

P(ℓ0) =
1

ln (ℓs/ℓd)
1
ℓ0

, (10.1)

where we have explicitly introduced the lower and upper cutoffs, ℓd and ℓs respectively. ℓs is

transport length scale, proportional to qsat/ϕ↑ (see Eq. 10.9 below), i.e. increasing linearly

with the wind shear velocity. ℓd is on the order of the grain size d. We thus have ℓs≫ ℓd ,

and we can consider the normalisation ln (ℓs/ℓd) as fairly constant, even for varying wind

strengths.

10.2.1 Hop length modulation

In the case of a modulated bed Z(x) = Ẑ eikx , trajectories are modified, with λ= 2π/k the

wavelength of and Ẑ the amplitude of the modulated bed. At the first order in the bed

elevation profile, we can write their disturbed length ℓ in a generic way as:

ℓ− ℓ0 = Ẑ eikx↓L , (10.2)

where L is a complex number – note: as usually understood with complex notations, real

part must be taken. This hop length modulation comes from the geometry of the rippled bed,
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(a)

(b)

(c)

Fig. 10.2 A particular grain trajectory over a flat (a) and a rippled (b and c) bed. Red
curves are the trajectories and the black solid curves are the profile of the bed surfaces.
The reference flat bed surface are noted as dashed black lines in (b) and (c).

and is also due to the modulation of the wind induced by the bed. We successively analyse

below these two independent contributions and compute the corresponding modulus and

the phase of L as functions of the primary parameter kℓ, and for different secondary

parameters.

Geometrical effect

We note α↓ the arrival angle of the grain on the bed (counted positive) and consider it as

a constant, independent of ℓ0. On a flat bed (Fig. 10.2a), the equation of the trajectory

close to its end is z = tanα↓(x↑ + ℓ0 − x). Starting on a modulated bed (Fig. 10.2b,c), at

altitude Z(x↑), the trajectory of a grain starting with the same initial velocity crosses the

bed again at x↓, where ℓ is the modified hop length. Neglecting wind modulation, the

trajectory remains identical as that on a flat bed and one then gets, at the linear order, the

condition Z(x↓) = Z(x↑) + tanα↓(x↑ + ℓ0 − x↓), which solves into

ℓ− ℓ0 =
1

tanα↓

�

Z(x↑)− Z(x↓)
�

(10.3)
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Introducing Z(x↑) = Ẑ eikx↑ and Z(x↓) = Ẑ eikx↓ into Eq. 10.3 and comparing with Eq. 10.2,

one obtains an explicit expression for the geometrical contribution to L :

Lg =
1

tanα↓

�

e−ikℓ − 1
�

. (10.4)

where we have used the definition x↓ ≡ x↑ + ℓ.

Wind effect

We now consider the influence of the modulation of the wind velocity. The corresponding

contribution Lw is computed numerically, from the integration of the particle trajectories

[131]. The wind velocity u⃗ enters the equation of the grain motion through the drag force.

For the sake of simplicity, we choose a wind velocity field of the form:

ux(x , z) =
u∗
κ
µ(z − Z) (10.5)

uz(x , z) = Z ′(x)
u∗
κ
µ(z − Z) (10.6)

In the molecular dynamics simulations, the profile µ(z) is determined from the case of steady

and homogeneous transport. It takes into account the negative feedback of transport on the

wind. For comparison, we have also considered the analytical formula µ(z) = ln(1+ z/ξ0),
with ξ0 the hydrodynamical roughness. For further test of robustness of the results, we

have also used two other wind models where the effect of transport is ignored: the perfect

flow, and a Reynolds averaged description of the flow on a relief, in the spirit of Jackson &

Hunt (1975) [201], as done for dunes [57, 162].
The modulus and the phase of the function Lg and Lw are displayed in Fig. 10.3 as

a function of ℓ/λ, for the profile µ(z) computed from the simulations [131]. It turns out

that, to a first approximation, the two contributions Lg and Lw are similar in magnitude

and behave roughly in the same way.

10.2.2 Flux modulation

We introduce the distribution ψ(ℓ, x↓), such that ψ(ℓ, x↓)dℓd x↓ is the volume of the grains

(packed at the bed volume fraction φb) arriving per unit time and unit transverse length in

the interval [x↓, x↓ + d x↓] after a hop of length between ℓ and ℓ+ dℓ. We also introduce

the erosion rate ϕ↑, which measures the volume of the grains (at φb again) leaving a unit

surface of the bed per unit time. P(ℓ)dℓϕ↑(x↑)d x↑ thus expresses the volume of the grains
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Fig. 10.3 Modulus (a) and phase (b) of the factorL involved in Eq. 10.2 as functions of ℓ/λ.
Solid line: geometrical contribution (Eq. 10.4), taking into account the small variations
of α↓. Dotted line: contribution of the modulated wind. Dashed line: sum of these two
contributions. Data from the numerical simulation by Orencio Durán with the model similar
to [131].
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leaving per unit time and unit transverse length in the interval [x↑, x↑ + d x↑] with a hop of

length between ℓ and ℓ+ dℓ. It derives from the grain conservation equation:

ψ(ℓ, x↓)dℓd x↓ = P(ℓ)dℓϕ↑(x↑)d x↑, (10.7)

Bothψ and ϕ↑ have a zeroth order contribution corresponding to the flat bed, and a first

order correction for the modulated bed. We denote the decomposition by ψ =ψ0+ψ1 and

ϕ↑ = ϕ0
↑ +ϕ

1
↑ . Considering the homogeneous and steady base state, we have ψ0(ℓ, x↓) =

ψ0(ℓ) and ϕ0
↑(x↑) = ϕ

0
↑ , and Eq. 10.7 then simply gives

ψ0(ℓ) = P(ℓ)ϕ0
↑ . (10.8)

The saturated flux is given by qsat =
∫ ℓs

ℓd
ℓψ0(ℓ) dℓ. Using the expression for the hop length

distribution (10.1) and Eq. 10.8, it gives

qsat = ϕ
0
↑
ℓs − ℓd

ln (ℓs/ℓd)
≃ ϕ0

↑
ℓs

ln (ℓs/ℓd)
. (10.9)

where we have used ℓs≫ ℓd .

For the first order contribution ψ1, several contributions must be added. The first term

is due to the disturbance ϕ1
↑ evaluated at the starting point x↑ = x↓ − ℓ. The second term

comes from the change of variables (ℓ0, x↑)↔ (ℓ, x↓) by Eq. 10.2 and x↓ ≡ x↑ + ℓ, whose

Jacobian reads:
�

�

�

�

�

∂ ℓ0
∂ ℓ

∂ x↑
∂ ℓ

∂ ℓ0
∂ x↓

∂ x↑
∂ x↓

�

�

�

�

�

=

�

�

�

�

�

1− kẐeikx↓L ′ −1

−ikẐ eikx↓L 1

�

�

�

�

�

= 1− kẐeikx↓
�

L ′ + iL
�

, (10.10)

where L ′ = ∂L /∂ (kℓ). If we consider only the geometrical contribution by plugging

Eq. 10.4 into 10.2 , the Jacobi reduces to 1+ ik
tanα↓

Ẑ eikx↓ , which corresponds to the slope

effect and is to be discussed at the end of this section. Last, there is a term involving the

derivative of P(ℓ) when accounting for the disturbance of the hop length. Therefore, the

expression of ψ1 finally reads:

ψ1(ℓ, x↓) = P(ℓ)ϕ1
↑(x↓ − ℓ)− P(ℓ)ϕ0

↑

�

L ′ + iL
�

kẐeikx↓ −ϕ0
↑

P ′(ℓ)
k
L kẐeikx↓ . (10.11)
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From the decompostion of ψ and ϕ, one could take the generic form for the fisrt order

contributions:

ϕ1
↑(x↑) =ϕ

0
↑ F↑kẐeikx↑ (10.12)

ψ1(ℓ, x↓) =ϕ
0
↑ P(ℓ)A kẐeikx↓ (10.13)

withA and F↑ two dimensionless numbers, and we have used Eq. 10.8. From Eq. 10.11 -

10.13, one obtains:

A = F↑e
−ikℓ −
�

L ′ + iL
�

−
P ′(ℓ)
kP(ℓ)

L , (10.14)

The problem closes under the assumption that sediment transport is in a steady state, i.e.

when deposition and erosion rates exactly balance:

ϕ↓(x)≡
∫

ψ(ℓ, x)dℓ= ϕ↑(x) , (10.15)

with Eq. 10.11 and 10.12 plugged into 10.15, it gives

F↑ = −

∫

P(ℓ) (L ′ + iL ) dℓ+
∫ P ′(ℓ)

k L dℓ

1−
∫

P(ℓ)e−ikℓdℓ
. (10.16)

The analytical expression for the factorA corresponding to the geometrical contribution

(10.4) can be derived. Using the normalisation condition
∫

P(ℓ)dℓ = 1 and the fact that the

integrals
∫

P(ℓ)e−ikℓdℓ as well as 1
k

∫

P ′(ℓ)L dℓ are dominated by the behaviour of their

integrand at small ℓ when ℓd → 0 because of P(ℓ)∼ ℓ−1. Eq. 10.16 thus reduces to

F↑ ∼ i/ tanα↓. (10.17)

ives: Plugging Eq 10.17 and 10.4 into 10.14, one obtains

tanα↓A ∼ i(1+ e−ikℓ) +
e−ikℓ − 1

kℓ
, (10.18)

where we have used P ′(ℓ)/P(ℓ) ∼ ℓ−1. As can be seen from the linear structure of

Eqs. (10.14) and (10.16) in L , the contribution due to the wind modulation adds up.

For comparison, it is interesting to compute the flux modulation rate corresponding

to Anderson’s picture [202, 203]. In Anderson’s model, the geometrical effect taken into

account is the change of the cross section due to the bed slope. In our formalism, this

is encoded in the Jacobian, which relates the lengths and coordinates. With the sole

contribution of Eq. (10.10), and for L = Lg , one simply gets A = i/ tanα↓. In other
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words, there is a prediction for a modulation of the impacting flux, but this modulation is

independent of kℓ: There is no resonance when ℓ is a multiple of λ.
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Fig. 10.4 Modulus (a) and phase (b) of flux modulation rateA . Dots are computed from
the full simulations [131], with u∗/ut = 4, and with increasing wave numbers k labelled
from red to violet. Analytical prediction (Eq. 10.18) corresponding to the geometrical
contribution, with an adjustable overall prefactor on the order of 2.

10.3 A simplified model for bed evolution

The simplified model described in Section 10.2 is able to reproduce the shape of the flux

modulation rate, but, as far as ripples are concerned, shows two shortcomings:

1. It models trajectories starting from the bed and which therefore cross the interfacial

boundary layer, but ignores mid-air collisions occurring in this layer;

2. It ignores erosion/deposition processes and therefore, by construction, does not lead

to any evolution of the bed.

In order to fix these problems, we present in this section an approach based on a crater

function. This function ∆(x − x↓,ℓ) quantifies the change of the bed profile at position

x , after a grain making a hop of length ℓ has collided with the static grains at position

x↓. ψ(ℓ, x↓) expresses the probability that a grain arrives at x↓ after a hop of length ℓ.

Following these definitions, the equation governing the bed evolution reads:

∂t Z =

∫ ∫

ψ(ℓ, x↓)∆(x − x↓,ℓ)d x↓dℓ. (10.19)

This approach assumes a clear separation of moving grains that rebound after they hit the

static bed, and those which do not. The latter may be called reptons, and are effectively

encoded in the crater function. The former are the saltons, but it should be emphasised
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again that they are not distinguished from the reptons by a criterion on the hop length or the

hop height. The hop length distribution of the saltons is an input of the description – and is

not computed self-consistently by means of a given splash function. We further assume that

it is well approximated by P(ℓ), which makes no distinction between saltons and reptons.

The reason is that the computation of the modulation rateA of the distribution ψ with P
(see Section 10.2), although leading to a stationary bed, gives a quantitative fit of the curve

A (kℓ) measured in the full simulations (Fig. 10.4), where the ripples develop. Another

important point is that the processes at work in the interfacial layer can be effectively

encoded in P, taking it as a power law, as measured in the simulations. Finally, we assume

for ∆ a self-similar form

∆(x − x↓,ℓ) =
1
ℓ
C
� x − x↓

ℓ

�

. (10.20)

This form is consistent with the presence of scale-free processes in the interfacial layer.

Importantly, there is no explicit dependence on the grain diameter d. C is a dimensionless

function – following Eq. 10.19, the function ∆ has the dimension of the inverse of a length

– which we now wish to determine in order to reproduce the properties of the ripples, their

growth rate and propagation velocity in particular. Expression (10.20) is for a flat bed. In

the case of a modulated bed as considered below, following the zeroth order (10.20), the

first order correction to the crater function can be written as

∆1(x − x↓,ℓ) = −
1
ℓ
S
� x − x↓

ℓ

�

ikẐ eikx↓ . (10.21)

Note that we consider the modulation of the bed at the point x↓ of arrival. The minus sign

in this expression comes from the fact that the crater is increased when the bed slope at x↓
is negative.

Taking Eq. 10.19 for a flat steady bed, and recalling that ψ0 = P(ℓ)ϕ0
↑ in this case, we

obtain

0=

∫ ∫

ϕ0
↑ P(ℓ)

1
ℓ
C
� x
ℓ

�

d xdℓ. (10.22)

Using the normalisation condition
∫

P(ℓ)dℓ= 1, this leads to the following constrain on

C :
∫

C (s) ds = 0. (10.23)

This expresses the mass conservation.

For an undulated bed, two contributions must be considered. First we take ∆ at zeroth

order, while ψ is taken at first order in Eq. 10.19. This contribution is associated with

a complex growth rate Ωd – later identified as the destabilising term of the total growth
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rate Ω. σ = ℜ(Ω) is the actual growth rate of the bed undulations. c = −ℑ(Ω)/k is the

propagation velocity of the pattern. Following the definition of ψ1 (Eq. 10.13) with the

modulation rateA , we obtain:

Ωd

ϕ0
↑
= k

∫ ∫

P(ℓ)A (kℓ) e−ikℓsC (s) dsdℓ. (10.24)

where we have changed variable and taken s = (x − x↓)/ℓ. With the expression of P(ℓ) (Eq.

10.1) and changing variable with r = kℓ, we can write Eq. 10.24 as

Ωd

ϕ0
↑
=

k
ln (ℓs/ℓd)

∫ +∞

−∞

∫ kℓs

kℓd

1
r
A (r)C (s) e−irsdsdr. (10.25)

Considering the definition of Fourier transform, one further obtains,

Ωd

ϕ0
↑
=

k
ln (ℓs/ℓd)

∫ kℓs

kℓd

1
r
A (r) Ĉ (r)dr. (10.26)

with Ĉ (r) the Fourier transform of C (s).

The second (later identified as the stabilising term) contribution to the growth rate

comes from ∆ taken at first order (Eq. 10.21) and ψ taken at zeroth order (Eq. 10.8) in

Eq. 10.19. It similarly gives:

Ωs

ϕ0
↑
= −

ik
ln (ℓs/ℓd)

∫ +∞

−∞

∫ kℓs

kℓd

1
r
S (s) e−irsdsdr

= −
ik

ln (ℓs/ℓd)

∫ kℓs

kℓd

1
r
Ŝ (r)dr, (10.27)

where we have changed the variables and have used the definition of Fourier transform,

similarly as in Eq. 10.25 and 10.26, and Ŝ (r) the Fourier transform of S (s).

For the sake of a simple analytical form, we take for the crater function the derivative

of the Gaussian

C (s) = (s− s̄)e−[a(s−s̄)]2 . (10.28)

The coefficient a is a positive real number, which encodes for the spatial extension of the

crater (width∝ 1/a). s̄ is the shift between the centre of the crater function and the point

of impact. This functional form satisfies the condition (10.23). One can then analytically
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compute Ĉ , which reads:

Ĉ (r) =
∫ ∞

−∞
e−irs−[a(s−s̄)]2(s− s̄)ds = −i

p
π

2a3
re−irs̄−r2/(4a2). (10.29)

The remaining integral over r can then be computed for the functionA given by Eq. 10.18,

in the limit ℓd → 0 and ℓs →∞. The integration can be done analytically and involves

special functions. In the limit of small s̄, it gives at first order:

ln (ℓs/ℓd) tanα↓
kϕ0
↑

Ωd = − i
p
π

2a3

∫ ∞

0

e−irs̄−r2/(4a2)

�

i
�

1+ e−ir
�

+
e−ir − 1

r

�

dr

=
p
π

2a3

¦

a
p
π
�

1+ e−a2
(1− erf(ia))
�

−
π

2
erf(a) + ia2

2F2

�

1,1; 3/2, 2;−a2
�

©

+ s̄
p
π

2a3

¦

a
p
π
�

1− e−a2
[1+ 2a2] (1− erf(ia))

�

− i4a2
©

(10.30)

where erf is the error function and 2F2 is the generalized hypergeometric function. Note

that the analytical expression for an arbitrary s̄ exists, but is not compact enough to be easily

displayed. For a ≃ 1, this expression gives a positive real part and a negative imaginary

part, which are both of order one (Fig. 10.5). Furthermore, we have checked that, for

ℓd → 0 and small s̄, this asymptotic behaviour independent of k is reached as soon as

kℓs ≳ 2a.
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Fig. 10.5 Complex growth rate Ωd as a function of rescaled wave number k ℓs. Computed
from Eq. 10.26 with A given by (10.18) and C given by (10.29), and with a = 1, s̄ =
0 and ℓd = 0.
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Similarly, we take S (s) = (s− s̄)e−[b(s−s̄)]2 , where b is another positive real number, so

that Eq. 10.27 leads to

Ωs

qsatk2
= −

π

2b2

1
kℓs

e−(bs̄)2
�

erf
�

kℓs

2b
+ i bs̄
�

− erf
�

kℓd

2b
+ i bs̄
��

, (10.31)

where we have used Ŝ (r) = −i
p
π

2b3 re−irs̄−r2/(4b2), and Eq. 10.9 for qsat . In the limit of

ℓd → 0 and s̄→ 0, this expression reduces to

Ωs

qsatk2
= −

π

2b2

1
kℓs

erf
�

kℓs

2b

�

. (10.32)

Eq. 10.32 is plotted in Fig. 10.6 , and it is independent of k as soon as kℓs/b ≲ 1 . One

therefore obtains
Ωs b

3

qsatk2
≈ −
p
π

2
for

kℓs

b
≲ 1 . (10.33)
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Fig. 10.6 Growth rate Ωs as a function of rescaled wave number k ℓs/b. Computed from Eq.
10.31 with s̄ = 0 and ℓd = 0.

With the analytical model, we would like to recover the same structure for the dispersion

relation as the one reported in the numerical work [131], in which the growth rate is derived

as a parabolic function

σ = c1ϕ
0
↑k− c2qsatk

2, (10.34)

where c1 and c2 are multiplicative constants of order 1. It contains a destabilising term,

linear in k, and a stabilising term, quadratic in k (Fig. 10.7). In the model, we also consider

the growth rate in two parts, a destabilising term Ωd and a stabilising term Ωs. Ωd is
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expressed in Eq. 10.25. It is the product of k, and an integral that is independent of k. In

the limit of ℓd → 0 and ℓs→∞, the integral is finite, as calculated in Eq. 10.30 and shown

in Fig. 10.5. It is indicated that Ωd is positive and proportional to k. As for Ωs, it is given

in Eq. 10.27, and it is found negative and proportional to k2 in the limit of small ℓd and

small s̄ (Eq. 10.32 and 10.33). So, we successfully recover the two contributions in the

dispersion relation.
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Fig. 10.7 Dispersion relation measured from numerical simulations. Ripple growth rate as a
function of the wavenumber k for different wind speeds (red: u∗/uth = 3, green: u∗/uth = 4
, blue: u∗/uth = 5 ). The solid line is the best fit by Eq. 10.34. Figure from [131].

10.4 Discussions

In this chapter, we consider the aeolian ripple instability in an analytical way. Sediment

transport is modelled computing the successive trajectories of the single grain and the

bed evolution is characterised by a crater function. We have compared the model with

numerical data that well recover the experimental facts, and good agreement has been

seen in the modulation of saltation flux rate and in the dispersion relation.

Experimentally, one has observed the modulation of saltation flux. As in Fig. 10.8, one

can clearly see the saltation rain above the rippled bed is modulated and the grains prefer-

entially hit the bed upwind of the ripple crests. To make a systematic and quantitatively

test, we built a wind tunnel. As sketched in Fig. 10.9, it is composed of a fully transparent

Plexiglas rectangular tank of length L = 1.5 m, width W = 0.2 m, and depth h= 50 mm,

fitted to the bottom of a horizontal channel of rectangular cross-section, with a honeycomb
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Fig. 10.8 Experimental evidence of a modulated saltation flux. Images obtained after
analysis of a fast movie recorded in a wind tunnel. The ripple is vertically illuminated with
a laser sheet. Images are corrected from the heterogeneity of the light intensity. Figure
from [131].

and a designed contraction to uniform the air flow injected upstream. The channel width

and length are identical to those of the tank, and its height is H = 200 mm. The tank is

filled with sand grains while measurements.
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Fig. 10.9 Sketch of the experimental setup for aeolian sand ripples. The sand tank and the
wind tunnel are connected to the downstream air flow, induced by an axial fan through
a honeycomb and a contraction. Sand bed is labelled in dirt-colored. Dotted dashed line
shows the central line of the tunnel. x , y and z are denoted as the longitudinal, transverse
vertical and horizontal directions, respectively.

Fig. 10.10 Aeolian sand ripples emerging from a flat bed in the wind tunnel, with the arrow
showing the wind direction. Wind velocity at the central of the tunnel is V ≈ 4.0 m/s

As a starting test, a flat sand bed is produced, whose surface level precisely coincides

with the bottom of the wind tunnel at z = 0. Sheared by an axial flow for about 5 minutes,

we observe obvious ripples, as in Fig 10.10. The future work is to study the flux modulation
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over a sinusoidal rippled bed. For this, we will prepare the sinusoidal rippled sand beds

with different the wavelength and amplitude, and a fast camera will be employed to record

the motion of the sand grains from the side view to study the hop length distribution, and

its modulation.



Chapter 11

Conclusions and perspectives

In this thesis, we have focused on patterns observed on a flexible or an erodible substrate

induced by hydrodynamical instabilities. Four different problems have been studied whose

major conclusions and perspectives are summarized here:

1. Travelling waves on a flexible sheet induced by an axial wind are modelled experi-

mentally and theoretically. We conclude that the frequency is selected by the balance

between the system inertia and dynamic pressure, while the wavelength results from

the balance between sheet elasticity and dynamic pressure; and the amplitude dis-

tribution comes mainly from the geometrical constraints. In the theoretical frame,

we have assumed an unbounded homogeneous sheet, which thus constrain the pre-

dicted scalings to the limit kL0≫ 1. In addition, we have hypothesized an inviscid

description for the fluid flow, and it is thus impossible to study the viscous effect on

the system, such as shear stress over the sheet surface, which could be of importance

in some cases. As a consequence, future work will have to seek for modes which

satisfy the boundary conditions at both end, breaking the invariance along the wind

direction, and to include the viscous effect in the model. Regarding the application,

this work can be of interest for energy harvesting mechanism by using a piezoelectric

flag waving in a uniform axial flow [99, 104], as in Fig. 2.11.

2. The development of ripples on 67P can be ascribed to the outgassing across a porous

surface granular layer, as well as the surface vapor flows induced by the vapor pressure

gradient due to the day-night alternace. Most vapour is emitted from sub-surface

ice and flows out at a much smaller velocity, resulting in the presence of a thicker

atmosphere on the comet surface. The surface flow estimated by the turbulent

boundary layer theory is responsible for the sediment transport for the grains at the

centimeter scale. Expected temporal and spatial scales are obtained by making the
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cometary case an analogue to the terrestrial subaqueous bedload. More generally,

bedforms reflect the characteristics of the bed and the flow they originate from,

making them a good indicator of the physical mechanisms at work. Comets thus

provide an opportunity to better understand erosion and accretion processes on

planetesimals, with implications for the open question of how these bodies can grow

from the meter to the kilometer scale [204, 205].

3. An explanation is proposed for the rhythmic, dune-like patterns observed on Pluto.

These patterns are hypothesized to be sublimation dunes created by differential con-

densation/sublimation of nitrogen ice given their location on Pluto. Firstly, we study

thermo-hydrodynamics of the atmosphere, and the results show gentle variations in

the parameters for both rotation and revolution scales. Considering the characteristics

of the atmosphere and the linear patterns in the nature, we model the sublimation

patterns in a general way, by linking their emergence and evolution to the thermal

and hydrodynamic instability of an interface between a sublimating ice bed and its

turbulent vapor flow. The discussion has focused on two major destabilising factors:

the heat flux from the atmosphere due to hydrodynamics and the solar radiation. In

the end, the model has been tested against the patterns on Pluto. Given the observed

wave length, we conclude that heat flux from the atmosphere due to convection and

turbulent mixing is responsible for the the emergency of these patterns. Admittedly,

more detailed atmosphere model is necessary to support this conclusion in the future

work.

4. Aeolian ripple instability is revisited in an analytical way. In the model, successive

trajectories of a single grain are computed to model the sediment transport, and

a crater function is employed to describe the collective effect of the bed evolution.

Good agreement has been seen when comparing the theoretical prediction with

the numerical data [131]. The growth rate is considered containing a destabilising

contribution and a stabilising contribution, and the results have shown that the

analytical model recovers well the same structure for dispersion relation as reported

in [131]. For the further work, it is necessary to perform experimental tests for the

model, and it will be also interesting to study the nonlinear characteristics of the

model.
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Appendix A

Measuring apparatus

Testo 405-V1 Metric Thermal-Anemometer

Testo 405-V1 Metric Thermal-Anemometer (Fig. A.1) has a rapid response sensor for

detecting the most minute changes in air velocity such as windows, door and heat exchanger

leaks. This mini-anemometer reads air velocity and temperature and calculates volume

flow. The datailed technical data are listed in Table A.1.

Fig. A.1 A photo of Testo 405-V1 Metric Thermal-Anemometer from internet.
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Table A.1 Technical data of Testo 405-V1 Metric Thermal-Anemometer

Item Value

Wind speed resolution 0.01 m/s
Accuracy ±0.05
Velocity range 0∼ 10 m/s
Temperature range −20∼ +50 ◦C
Size 300 mm× 36 mm× 37 mm
Power supply 3 micro batteries (AAA)

Phantom Miro M340

M340 (Fig. A.2) has a throughput of 3.2 Gpx/s and a frame rate of 800 fps at full resolution.

Both cameras have a minimum exposure time of 1 µs and a straddle time of 1.4 µs. For

the memory, it offers 3GB, 6GB, 12GB high-speed internal RAM, amd slot for CineFlash

support- 120 GB upgradable to 240 GB. And it can be mounted by Canon EOS, Nikon

F-mount, support F & G style lenses, Nikon F mount adapter (allows the use of F-mount

lenses on EOS mount), 1" C-mount, PL-mount. The further technical data are listed in

Table A.2.

Fig. A.2 A photo of fast camera Phantom Miro M340 from internet.
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Table A.2 Technical data of fast camera Phantom Miro M340

Item Value

Resolution 2560 × 1600
Sensor 25.6 mm × 16.0 mm
Frame rate 800 fps
Operation temperature 10∼ −40 ◦C
Size 190 mm× 90 mm× 100 mm
Power supply 100 - 240 VAC power supply, Rechargeable battery
Weight 1.4 kg (without CineFlash, lens or battery)
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List of symbols

A Amplitude of paper waves.

Cd Drag coefficient.

Cs Heat capacity of the solid ice.

Cν Heat capacity of the vapour.

C Bulk heat capacity of 67P’s nucleus.

D Bending rigidity of flexible sheets.

E Grain Young modulus.

Fdrag Drag force exerted on a grain.

F↑ Dimensionless function related to the first order correction of phi.

F Ice surface fraction.

I Effective thermal inertia of 67P’s nucleus.

L0 Distance between two masts.

Lsat Saturated length.

L Mixing length.

MP Mass of Pluto.

Mc Mass of comet 67P.

N The number of transported grains per unit area.

P(ℓ) Distribution of the hop length.
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RP Radius of Pluto.

Rc Effective spherical raduis of comet 67P.

Rl Effective spherical raduis of large lobe comet 67P.

Rn Raduis of the neck of comet 67P.

Rs Effective spherical raduis of small lobe comet 67P.

R0
t Transitional Reynolds number for the homogeneous case.

Rt Transitional Reynolds number.

Sc Surface area of comet 67P.

Sn Dimensionless function related to the first order correction of τzz − p.

St Dimensionless function related to the first order correction of τxz.

Sx x Dimensionless function related to the first order correction of τx x .

Szz Dimensionless function related to the first order correction of τzz.

T i Temperature at the sublimation interface.

T0 Base state temperature.

Ur Radial velocity components in outer layer.

Uθ Azimuthal velocity components in outer layer.

U Dimensionless function related to the first order correction of x velocity.

Vfall Settling velocity.

Vth Thermal velocity.

V Wind velocity.

W Dimensionless function related to the first order correction of z velocity.

Y Dimensionless function related to the first order correction of heat flux in z direction.

∆ Crater function.

Γd Rotation period of comet 67P, and Pluto.
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Γy Revolution period of comet 67P, and Pluto.

Ω Complex growth rate.

Θ Dimensionless function related to the first order correction of temperature field.

Υ0 Ratio of u0 and V 0
th.

α↓ Arrival angle of the grain on the bed.

D̄ Dimensionless bending rigidity.

ω̄ Dimensionless angular frequency.

σ̄ Dimensionless growth rate.

k̄ Dimensionless wave number.

βt Turbulent Prandtl number.

βν Viscous Prandtl number.

δi Thickness of the inner turbulent layer.

ℓ Hop length.

η Heliocentric distance of 67P.

γ Adiabatic expansion coefficient.

γ Surface tension of the grain material.

κc Thermal diffusivity of 67P’s nucleus.

κ Karman constant.

λ Wave length.

A Dimensionless function related to the first order correction of psi.

A Phase componet of the basal shear stress with the bottom.

B Quadrature componet of the basal shear stress with the bottom.

G Gravitational constant.

H Dimensionless number relating transitional Reynolds number to pressure lag.
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L Latent heat of solid ice sublimation.

P Dimensionless function related to the first order correction of pressure field.

Q the susceptibility with respect to the shear stress.

R Reynolds number with respect to wavenumber.

S the susceptibility with respect to the slope.

T Dimensionless function related to base state temperature field.

U Dimensionless function related to the first order correction of x direction velocity.

W Dimensionless function related to the first order correction of z direction velocity.

µ Effective friction coefficient.

νt Turbulent viscousity.

ν Molecule viscousity.

ω Angular frequency.

φb Bed volume fraction.

ψ Distribution of grains volume arriving per unit time in a interval with a certain hop

length.

ρi Density at the sublimation interface.

ρ0 Base state density.

ρP Bulk density of Pluto.

ρc Bulk density of comet 67P.

ρsat Saturated density.

σ Growth rate.

τ Basal shear stress.

ϵ Specific energy.

ϕ Erosion rate.
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ξ Solid ice surface profile.

ζ Two-dimensional shape of the sheet.

c Propagation speed.

dm Cohesive size.

d Grain size.

g Gravity acceleration.

kB Boltzmann constant.

ks Thermal conductivity of the solid ice.

kν Thermal conductivity of the vapour.

k Wave number.

pi Pressure at the sublimation interface.

p0 Base state pressure.

psat Saturated vapour pressure.

q(x , t) Particle flux.

qsat Saturated particle flux.

ra Aphelion distance of comet 67P, and Pluto.

rp Perihelion distance of comet 67P, and Pluto.

u∗ shear velocity.

ur Radial velocity components in inner layer.

ut Threshold velocity.

ux Vapour velocity in x direction.

uz Vapour velocity in z direction.

uθ Azimuthal velocity components in inner layer.

w Specific enthalpy.
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x↓ Trajectory ending position.

x↑ Trajectory starting position.

z0 Aerodynamic roughness.

|γ̇| Modulus of the shear rate tensor.
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