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Introduction

C’est en dehors de 1’équilibre que se produisent les événements les plus intéres-
sants.

Tout phénoménes significatives, qu’ils soient biologiques, géologiques, ou en-
core astrophysiques, ont lieu hors de I’équilibre. Sans surprise, toute tentative de
décrire le comportement des systémes hors de I'équilibre nous oblige a reconsidérer
des concepts sur lesquelles nous nous sommes appuyés pendant des décennies. Il
n’est pas aisé de remettre en question notre compréhension des concepts communs
tels que ceux de la thermodynamique classique, mais la majorité de la matiére
dans I'univers n’est pas en équilibre. Cet ouvrage poursuit un effort de longue
date, qui remonte & Maxwell et Boltzmann, pour sonder la physique des systémes

déplacés hors d’équilibre. Parmi tous les phénomeénes non-équilibrés, une situa-
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tion commune est la conduction de chaleur, découvert par J.B.J. Fourier, qu’il
a analysé dans son célébre traité "Théorie analytique de la chaleur "([31]). Il y
a deux siécles déja, Fourier a souligné I'impossibilité de décrire le phénomeéne au
moyen de principes fondamentaux: "Mais quelle que soit 1’étendue des théories
mécaniques, elles ne s’appliquent pas aux effets de la chaleur. Ils composent
un ordre spécial de phénoménes qui ne peuvent s’expliquer par les principes du

mouvement et de I’équilibre."

La loi de Fourier pose une question complexe et encore non résolue: comment

peut-elle étre dérivée a partir de la dynamique microscopique?

I1 est possible de faire I’hypothése d’une séparation nette entre les échelles mi-
croscopiques et macroscopiques en utilisant une description grossiére du systéme.
A T’échelle microscopique, les transporteurs de chaleur sont des molécules dans
les gaz et les liquides ou des vibrations du réseau (les phonons) dans les solides,
qui évoluent en conséquence d’une dynamique déterministe et Hamiltonienne. A
I’échelle macroscopique la loi de Fourier implique un transfert diffusif d’énergie.
Si I’hypothése se vérifie, il est possible de définir sur tous les points de I'espace, a
I'instant ¢, un champ local de températureT (z, t) qui varie lentement & 1’échelle

microscopique.

Un systéme en contact avec une source de chaleur maintient une densité de
flux J(x,t) proportionnelle au gradient de température T via un conductivité

thermique k, pour laquelle la relation est donnée par:
J(x,t) = =kVT(z, t). (1.1)

Si u(z, t) représente la densité d’énergie locale, I'équation de continuité est satis-
faite Ou/0t + V -J = 0. En utilisant la relationdu/0T = ¢, ou c est le la chaleur

par unité de volume, conduit a ’équation de diffusion:

IOT(xz,t) 1
= oV VT 1), (1.2)
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La diffusion de I’énergie est conséquence de la loi de Fourier.

Il existe un grand nombre d’études et de nombreux modéles sur la conduction
de la chaleur traitant de la dérivation rigoureuse de la loi de Fourier a partir de la
dynamique microscopique Hamiltonienne. Pour des références sur des revues voir
[13], [20], et sur des résultats exacts avec résultats numériques voir [51]. Puisque
le but de ces études est de comprendre la physique fondamental sur laquelle repose
le phénoméne de diffusion de chaleur, on étudie des modéles simples en 1 ou 2
dimensions spatiales, dont les aspects techniques ont été écartés en faveur des
caractéristiques essentielles. Une conclusion importante et surprenante émergent
de ces études est la non validité de la loi de Fourier dans un et deux dimensions.
Sauf lorsque le systéme est rattaché & un potentiel de strate. Pour les systémes
tridimensionnels, on s’attend & ce que la loi de Fourier soit vraie mais on ne sait

pas encore sous quelles conditions.

La difficulté d’aborder la question de la dérivation microscopique est donnée
par le manque de cadre mathématique dans le régime de non-équilibre, ou la
dynamique joue un réle majeur. Tous les observables physiques impliqués dans
les phénoménes de transport de la chaleur comme le flux thermique, la tempéra-
ture et la conductivité sont définis seulement en équilibre ou trés prés de lui.
Dans cette thése, nous considérons les modéles en 1 dimension, électriquement
isolé avec des potentiels, qui modélisent les interactions entre les particules elles-
mémes et la structure en treillis. Les systémes considérés sont connectés a des
réservoirs caractérisés par leurs potentiels chimiques ou par leurs températures.
Les réservoirs sont supposés beaucoup plus grands que le systéme, de sorte que

leur état physique n’est pas influencé par ce dernier.

L’hypothése principale a faire est celle de [’équilibre thermique local: nous
imaginons le systéme divisé en plusieurs petits cubes, chacun assez grand pour
contenir un grand nombre de particules, mais qui reste assez petit a 1’échelle

macroscopique. On définit ensuite une température d’équilibre & un instant donné



et dans le centre du i-éme cube. Cette température varie dans le cube trés lente-
ment par rapport a 1’échelle macroscopique. Le systéme microscopique atteint
alors un équilibre local dans un temps qui est plus court que le temps typique de
I’évolution macroscopique, ou les observables de la thermodynamique sont bien
définies. Le passage de microscopique a macroscopique est ensuite effectué au
moyen de la limite hydrodynamique. Les équations diffusives sont obtenues a

partir des modeéles microscopiques comme une loi de grands nombres.

1.0.1 Etats stationnaires hors équilibre

L’une des approches les plus couramment utilisées consiste a étudier le transport
de la chaleur a l’état stationnaire de non-équilibre, obtenu lorsque le systéme est en
contact avec des sources d’énergie externes et / ou des réservoirs a différentes tem-
pératures. Les états stationnaires sont caractérisés par la présence des courants
qui traversent le systéme, et leur comportement macroscopique est codé dans les
coefficients de transport. Plusieurs modéles de réservoirs sont généralement util-
isés. Pour souci de simplicité, nous considérons ici uniquement des modéles a 1
dimension .

L’Hamiltonien d’un systéme de particules interagissant a travers un potentiel

d’interaction des proches voisins U et avec un potentiel externe V' est

H= é (2%;; + V(a:i)> + 21 Uz — 51). (1.3)

Avec {m;, z;,p;} o i = 1,2,...,n on désigne les masses (qui sont généralement
considérées toutes égales a 1), les positions et les moments des n particules.
Pour obtenir un courant de chaleur dans le systéme Hamiltonien, ce dernier doit
étre connecté aux réservoirs. Ceux que nous utiliserons dans cette thése sont
les réservoirs de Langevin. Ces types de réservoirs sont définis en ajoutant des

termes de force supplémentaires dans la dynamique. La forme la plus simple, est
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donnee’ par un terme dissipatif et un terme stochastique de type bruit gaussien.
Ainsi avec les réservoirs de Langevin connectés aux particules i =1 et i =n , les

équations du mouvement sont obtenues par:

( M
p1= fi ——p1+m(t)
my
pi=fi for i=2,3,....n-1 (1.4)

_
my,

\pn = fn pn+7h~(t)

oOH

ou f; = —
fi= -5
termes des bruits 7,; sont des Gaussiens, avec zéro moyen, et dont les coefficients

est la force newtonienne habituelle sur la i-éme particule. Les

de dissipation 7;, sont donnés par les covariances:

(

(m(®)m(t") = 2kpTymo(t —t)
<n7’(t)77r(t/)> - Qk'BTr’Yr(S(t - t/> (15>

(m(t)n-(t")) =0

\

ou 7T,, T; sont respectivement les températures des réservoirs gauche et droit, et

v le coefficient de dissipation.

1.1 But de cette thése

Dans cette thése, nous considérerons des systémes de particules en interaction qui
évoluent selon deux modeéles dynamiques: I'équation de Schrodinger linéaire dis-
créte (DLSE),(chapter 3 ), et une chaine anharmonique d’oscillateurs immergés
dans un bain de chaleur avec un gradient de température et perturbés par une ten-
sion & une extrémité (chapter 4). Nous avons prouvé une limite hydrodynamique
pour ces modelés, y compris la dérivation de la loi de Fourier pour DLSE et la

dérivation microscopique d’une transformation isotherme pour la chaine anhar-
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monique perturbée.

1.1.1 Equation discréte de Schrédinger

L’équation Discrete NonLineare de Schrédinger (DNLSE) est un systéme partic-
ulierement intéressant , qui a une application importante dans de nombreux do-
maines de la physique. Une exemple classique est le transport électronique dans
les biomolécules, DNLSE décrit la propagation d’ondes non linéaires dans une
couche photonique ou phononique([47], [25], [72], [42]). Au cours des derniéres
années, DNLSE a attiré 'attention de la communauté mathématique et physique,
car elle donne la description semi-classique des bosons piégés dans des réseaux

optiques périodiques: phénoméne dit des breathers.

Les breathers sont des solutions ponctuelles et spatialement localisées de
I’équation du réseau et correspondent a une particularité des systémes discrets
non linéaires qui est celle de maintenir une forte localisation de 1'énergie|65]. Le
mécanisme non linéaire est responsable du stockage et du transport d’emballages
cohérents d’énergie et de charges localisées dans le systéme. Malheureusement,
DNLSE pose toujours des problémes différents tels que le global well-posedness
de I'équation et comment gérer les breathers dans un cadre statistique. Vu les
nombreuses difficultés rencontrées sur le chemin non linéaire, nous avons étudié
le cas linéaire de 1’équation (DSLE). La DLSE est 'une des équations les plus
utilisées pour résoudre des problémes dans une seule dimension de la mécanique
quantique sur ordinateur et il est le modéle naturel pour les puits quantiques semi-
conducteurs et les dispositifs nanoélectriques. Dans chapter 3 nous avons étudié
la limite hydrodynamique de la DLSE et la compréhension du comportement en

présence de thermostats, afin de démontrer la loi de Fourier.
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1.1.2 Chaine anharmonique perturbée dans un gradient de

température et transformations thermodynamiques

Dans chapter 4, nous étudierons une chaine anharmonique den particules , fixe
a une extrémité et ol est appliquée une tension 7 a l'autre extrémité. La chaine
est en présence d’un gradient de température: chaque particule est en contact
indépendamment avec un réservoir de Langevin a température différente. Le but
est de prouver qu’a une échelle spatio-temporelle diffusive et de grainage grossier,
les contraintes volumiques évoluent vers une équation déterministe non-linéaire
diffusive. La transformation isotherme quasi statique est obtenue par une nou-
velle mise a ’échelle. Le développement d’une approche dynamique rigoureuse
pour prouver la transformations thermodynamique pour les états d’équilibre et
de non-équilibre est le but de la dérivation microscopique des transformations
thermodynamiques développées par Bertini, De Sole, Gabrielli, Jona-Lasinio et
Landim [9],[11] [10][12] et mis en ceuvre par Olla et Simon[54],[55] est d’étude
le développement d'une approche dynamique rigoureuse pour prouver la trans-
formations thermodynamique pour les états d’équilibre et de non-équilibre. Ce
principe a été dérivé [11], a partir de ’hypothése d’une I’évolution macroscopique
décrite par des équations hydrodynamiques. L’approche utilisée dans cette these
est le suivant : la dérivation microscopique de la transformation quasistatique

par la mise en échelle appropriée pour I'espace et le temps.

La transformation thermodynamique est effectuée par des changements dans
des contraintes ou des conditions externes qui entrainent un changement d’état
macroscopique. Ces transformations sont classées comme réversibles ou irréversibles
selon le fait que I'inversion des changements annulent ou n’annulent pas leurs ef-
fets. Bien que les transformations irréversibles soient les plus courantes, les trans-
formations réversibles jouent un role central dans le développement de la théorie
thermodynamique ; une des conditions de réversibilité nécessaire (mais pas suff-

isante) est qu’elle soit quasi-statique. En effet, pour passer d'un état d’équilibre
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a un autre, le systéme traverse une séquence d’états de non-équilibre, caractérisée
par des variations trés lentes de I’environnement (ot des transformations quasi-
statiques sont représentées par des courbes de trajectoires lisses continues par
morceaux sur la surface d’équilibre dans ’espace des paramétres.). Nous de-
vrions imaginer des transformations quasi-statiques, comme limite a l'infinie de
séquences de transformations irréversibles en non-équilibre.

La nouvelle idée dans [54] utilisée dans chapter 4,est de construire ces états
sous un rééchelonnement macroscopique de l'espace et du temps de la config-
uration microscopique des positions et des vitesses du systéme. Nous devrions
imaginer un systéme mécanique simple : un fil soumis & une tension en présence
d’un gradient de température. Le fil est caractérisé par sa longueur £, la distance
entre la premiére et la derniére particule. Chaque particule est en contact avec
un thermostat différent a une température différente et il y a un flux constant
d’énergie dans le fil. La premiére particule est attachée a un point fixe & une de ses
extrémités et il est tiré sur I'autre extrémité,par une tension 7, dont la longueur
du fil est fonction de la tension et de la température: £ = L(7, 5", ..., 3,"). En
changent la valeur de la tension appliquée, le systéme convergera finalement vers
un état stationnaire paramétré par la tension appliquée. A 1’échelle appropriée,
il s’agit d’une transformation thermodynamique isotherme a partir d’un état sta-
tionnaire & un autre, qui satisfait une inégalité de Clausius. Si nous voulons
obtenir une transformation réversible isotherme quasi statique, nous devons in-
troduire une échelle temporelle plus longue, et appliquer une tension variant lente-
ment dans le temps 7(¢€), le processus limite est si lent que le systéme est dans

un état stationnaire a chaque instant.

1.2 Technique utilisée

Dans le premier travail (chapter 3) nous démontrons la limite hydrodynamique

en utilisant des arguments standards dans la littérature [6]. Pour démontrer que
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le flux de densité vérifie la loi de Fourier dans 1’état stationnaire, nous avons
utilisé la limite de la production d’entropie. Une fois ’entropie bornée, on peut
controler les valeurs attendues des densités dans la mesure stationnaire. On mon-
tre que la densité totale est controlée proportionnellement a la taille du systéme.
Lorsque nous étudions le comportement hydrodynamique de la chaine dans le
chapter 4, nous avons découvert que la mesure d’entropie relative utilisée dans
le cas d’équilibre échoue en présence d’un gradient de température. Les états
stationnaires de la dynamique donnent lieu & une production d’entropie posi-
tive, de sorte que l'entropie relative classique les méthodes ne peuvent pas étre
utilisées. Nous développons de nouvelles estimations basées sur ’hypocoercivité
entropique, qui permet de controler la distribution des configurations des posi-
tions de la chaine. Nous appliquons la méthode de Guo Papanicolau et Varad-
han (GPV), précédemment développée pour une dynamique sur-amortie. Dans
cette approche, I'étape principale de la cloture de 1’équation macroscopique est
la comparaison directe de la distribution empirique a grain grossier dans 1’espace
microscopique et de la densité a I’échelle macroscopique. Ceci est réalisé par un
lié sur l'entropie relative et I'information de Fisher, utilisé comme fonction de
Liapunov par rapport a la mesure de Gibbs non homogéne. Les moyennes spa-
tiales -temporelles des états évolués convergent vers un équilibre local canonique
comme dans les arguments d’un bloc / deux blocs (chapitre 5 de [48] ). La limite
hydrodynamique de la chaine d’oscillateurs en interaction donne une équation de
diffusion linéaire, dont le coefficient de diffusion est naturellement exprimé en ter-
mes de fonctions thermodynamiques du systéme unidimensionnel. Pour justifier
I’ansatz que la mesure de densité hors équilibre ressemble lentement a une famille
variable d’états locaux de Gibbs, on démontre que les moyennes des quantités mi-
croscopique peuvent étre remplacées par leurs valeurs macroscopiques moyennes
locales. Méme si le systéme considéré est en déséquilibre, car en présence d’un

gradient macroscopique, la tension 7 change trés lentement et régulierement dans
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I’'espace, de sorte que nous pouvons diviser la chaine en blocs assez petits qui
sont en équilibre local entre eux; en d’autres termes, dans un bloc microscopique,
la température est constante. Cependant ce n’est pas la longueur de la chaine
elle-méme qui apparait dans la fonction intégrale mais la fonction potentielle
(une fonction locale de la configuration). Le principal probléme consiste donc
a remplacer V'(r;;1) par une fonction de la longueur d’étirement afin de « fer-
mer » I’équation. Ce remplacement est ’étape cruciale dans la démonstration et
est la conséquence de certaines bornes élémentaires sur la mesure de la densité
d’équilibre, obtenues pour la premiére fois par GPV. Ainsi, on obtient d’abord une
borne de la forme de Dirichlet (appelée plus précisément Information de Fisher)
a partir de la dérivée temporelle de ’entropie relative aux mesures stationnaires
a l'équilibre. Cette limite implique que le systéme est proche de I’équilibre a
I’échelle microscopique locale, et que la densité, sur un grand intervalle micro-
scopique, est proche de la densité dans un petit intervalle macroscopique. Dans le
chapter 4, on utilisera une hypocoercivité entropique, ot I'information de Fisher
est associée aux champs vectoriels de position et de vitesse. Les gradients de la
distribution des vitesses sont trés proches des gradients des positions, de sorte
qu’ils peuvent étre liés aux informations de Fisher sur les positions avec celui sur
les vitesses, revenant & un modeéle surmoulé. Ainsi, le reste de la preuve est la

méme que dans [37] .
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Introduction

Out of equilibrium is where the most interesting events happen. All compelling
phenomena, from biological ones to earth sciences and astrophysics significant
processes take place out of equilibrium. Unsurprisingly any attempt to under-
stand the behavior of systems removed from equilibrium forces us to reconsider
ideas we have relied on for decades. It is quite undertaking to question our under-
standing of commonly held concepts such as classic thermodynamics, but a good
part of matter in the universe, if not most of it, is not on equilibrium. So here
we are pursuing a longtime effort, which dates back to Maxwell and Boltzmann
themselves, to probe physics of systems displaced out of equilibrium.

Among all non equilibrium phenomena a particular situation all of us is fa-

miliar with is heat conduction. This was first discovered by J.B.J. Fourier who
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analyzed the phenomenon of heat transport in his famous treatise "Théorie an-
alytique de la chaleur" (|31]). Two centuries ago he already pointed out the
impossibility of describing the phenomenon by means of first principles: "But
whatever may be the range of mechanical theories, they do not apply to the ef-
fects of heat. These make up a special order of phenomena, which cannot be
explained by the principles of motion and equilibria". Fourier’s law poses a
complex and yet unsolved question: how can it be derived from the underlying

microscopic dynamics?

One assumption is that it is possible to have a coarse-grained description
with a clear separation between microscopic and macroscopic scales. At the
microscopic scale, heat carriers which are molecules in gas and liquids, lattice
vibration, phonons, in solids, evolve accordingly a deterministic dynamics well
accounted for an Hamiltonian description, whereas at macroscopic scale Fourier’s
law implies a diffusive transfer of energy. If the assumption is achieved, it is
possible to define at any spatial point x in the system and at time ¢, a local
temperature field T(z, t) which varies slowly both in space and time (compared
to microscopic scales). A system in contact with a source of heat sustains a heat
flux density J(x,t) proportional to the gradient of temperature T via a thermal

conductivity k, for which the relation is given by:
J(x,t) = —kVT(z, t). (2.1)

If u(x,t) represents the local energy density then this satisfies the continuity
equation Ju/0t+V -J = 0. Using the relation Ou/JT = ¢, where c is the specific

heat per unit volume, leads to the diffusion equation:

T (xz,t) 1
= oV VT 1), (2.2)

The diffusion of energy is indeed implied by Fourier’s law. Microscopically we
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have to think about heat carriers colliding randomly and the result is a heat
diffusion. Thus the Fourier’s law is a phenomenological law which provides an
accurate description of heat transport as observed in experimental systems. How
to rigorously derive Fourier’s law from the microscopic Hamiltonian has moti-
vated a large number of studies, and many model systems on heat conduction,
see for instance for short and schematic reviews of problems [13], [20], and known
exact results with numerical results [51]. Since the purpose of these studies is to
understand the basic physics behind the heat diffusion phenomenon, we convey
with the simple models proposed in 1 or 2 spatial dimensions, and the realis-
tic aspects have been discarded in favor of the essential features responsible of
the energy transport. One important and somewhat surprising conclusion that
emerges from these studies is that Fourier’s law is probably not valid in one and
two dimensional systems, except when the system is attached to an external sub-
strate potential. For three dimensional systems, one expects that Fourier’s law
is true in generic models, but it is not yet known as to what are the necessary

conditions.

The difficulty of approaching the question of microscopic derivation is given
by the lack of mathematical framework in the regime of non equilibrium, where
dynamics plays a major role, yet all the physical observables involved in heat
transport phenomena, heat flux, temperature and the conductivity are defined
only in equilibrium or very close to it. In this thesis we consider simple lat-
tice models in 1 dimension, electrically insulated with smooth inter-particle and
pinning potentials which model interactions among particles themselves and the
lattice structure. The systems are connected to reservoirs, characterized by their
chemical potentials or temperatures, assumed much larger then the system so

that their state is not changed by it.

The main assumption to be made is that of local thermal equilibrium: we

imagine the system divided into many little cubes, each big enough to contain a
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large number of particle but small enough on the macroscopic scale to be described
by an equilibrium temperature T'(¢,r;) defined at a specified time ¢ and in the
center of the i-th cube r;, which vary very slowly compared to macroscopic scale.
The microscopic system reaches a local equilibrium in a time which is shorter
than the typical time of the macroscopic evolution, where the thermodynamic
observables are well defined. The passage from microscopic to macroscopic is
then performed by means of the hydrodynamic limit. In the diffusive equations
are obtained from the microscopic models as a law of large numbers, in the limit
in which the ratio of the microscopic to the macroscopic spatial and temporal

scales go to zero, it holds with probability one.

2.0.1 Non equilibrium stationary states

One of the most commonly used approach to study heat transport has been to look
at the nonequilibrium stationary state, obtained when the system is in contact
with external sources of energy and/or reservoirs at different temperatures. In
the stationary states there are currents passing through the system, and their
macroscopic behavior is encoded in the transport coefficients. There are severals
models of reservoirs generally used. For sake of simplicity we consider here a
1-dimensional model.

The Hamiltonian of a system of n particles interacting through a nearest

neighbors interaction potential U and with an external potential V' is

H= 2:; (27;’;% + V(Ii)) + ngj U1 — 1) (2.3)

where {m;, z;, p;} for i = 1,2,...,n denotes the masses (which usually are consid-
ered all equals to 1), positions and momenta of the n particles. To drive heat
current in the Hamiltonian system, we need to connect it to heat reservoirs and

we describe here the one we will use in this thesis: Langevin baths. These partic-
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ular type of reservoirs are defined by adding additional force terms in the motion
equation of the particles in connection with them. In the simplest form, the addi-
tional forces consist of a dissipative term and a stochastic term, which is taken to
be a Gaussian white noise. Thus with Langevin reservoirs connected to particles

1 =1 and i = n, the equations of motion are given by:

(

= fi— lpl + mi(t)
my

pi=fi for i=2,3,...n-1 (2.4)

. Yr
Pn = fn — pn+77r(t)
L M,

where f; = — is the usual Newtonian force on the ¢-th particle. The noise

8$i

terms given by 7,; are Gaussian, with zero mean, and relater do dissipation

coefficients 7, by the covariances:

(

(m@&mt)) = 2kpTimo(t —t)
(e ()0 (1)) = 2kpToye0(t — 1) (2.5)

(m(t)n,(t') =0

\

where T, T; are the temperatures of the left and right reservoirs respectively,

is the dissipation coefficient.

2.1 Aim of this thesis

In this thesis we have considered systems of interacting particles which evolve
according to two dynamical models: discrete linear Schrodinger equation (DLSE),
(chapter 3), and an anharmonic chain of oscillators immersed in a heat bath with a
gradient of temperature and perturbed by a tension on one end of it (chapter 4).

We have proved an hydrodynamic limit for the these dynamics, including the
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derivation of Fourier’s law for DLSE and a microscopic derivation of an isothermal

transformation for the perturbed anharmonic chain.

2.1.1 Discrete Schrodinger equation

A particularly interesting system is the Discrete NonLinear Schrodinger equation
(DNLSE), that has important application in many domains of physics. A clas-
sic example is electronic transport in biomolecules or in optics and acoustics it
describes the propagation of nonlinear waves in a layered photonic or phononic
media ([47], [25], [72], [42]). In the recent years the DNLSE has attracted the
attention of the mathematics and physics community because it provides an ap-
proximate semiclassical description of bosons trapped in periodic optical lattices,

the so called breathers phenomenon.

The breathers are a time-periodic, spatially localized solutions to the dynam-
ical lattice equation, a particularity of discrete non linear systems, which are able
to sustain strong localization of energy [65]. The non-linear mechanism is respon-
sible for storage and transport of localized coherent packages of energy and charge
in the system. Unfortunately DNLSE are still posing different issues such as local
and global well-posedness of the equation and how to handle the breathers in a
statistical frameworks. In view of the many difficulties that we encountered in
the nonlinear path, we studied the linear case: the Discrete Linear Schrédinger
equation (DSLE). The DLSE it’s one of the most commonly employed equation
for solving problems in one dimension quantum mechanics on computer and it is
the natural model for semiconductor quantum wells and nanoelectric devices. In
chapter 3 we study the hydrodynamic limit of the DLSE and understanding the

behavior in presence of thermostats, in order to prove the Fourier’s law.
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2.1.2 Perturbed anharmonic chain in a gradient of temper-

ature and thermodynamic transformations

In chapter 4 we study an anharmonic chain of n particles, which at one end is
fixed, at the other end a tension 7 is applied. Moreover the chain is in presence
of a gradient of temperature: each particle is in contact independently with a
Langevin heat bath at different temperature. The aim is to prove that after a
diffusive space-time scaling and coarse-graining the volume strains evolves to a
deterministic non-linear diffusive equation. Quasi-static isothermal transforma-

tions in a temperature gradient are obtained by a further time scaling.

The development of a coherent dynamical approach to prove thermodynamic
transformations for both equilibrium and non-equilibrium states is the aim of the
microscopic derivation of thermodynamics transformations developed by Bertini,
De Sole, Gabrielli, Jona-Lasinio and Landim [9],[11] [10][12] and implemented
by Olla and Simon [54],[55]. This principle has been derived [11], by an explicit
construction of quasi static transformation, from the assumption that during the
transformation the system in local equilibrium state so that the macroscopic evo-
lution can be described by hydrodynamic equations, this is the leading idea of
the Microscopic Fluctuation Theory (MFT). The aim of which is to construct
analogues of thermodynamic potentials and to extract from them the typical
macroscopic behavior of the system. It is an extension of the Einstein equilib-
rium fluctuation theory to stationary non equilibrium states combined with a
dynamical point of view. The other approach is the one used in this thesis: the
microscopic derivation of quasistatic transformation by proper space and time
scaling.

A thermodynamic transformation is effected by changes in the constraints or
external conditions which result in a change of macro state, these transformations
may be classified as reversible or irreversible according to the fact that reversing

the changes undo or do not undo their effects. Although irreversible transforma-
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tions are the most common ones, reversible transformations play a central role
in the development of thermodynamic theory, and a necessary but not sufficient
condition for reversibility is that the transformation be quasi-static. Quasi-static
transformation is such that in order to go from one equilibrium state to another
one, the system passes through a sequence of non-equilibrium states, characterized
by very slow variations of the environment. (Hence, quasi-static transformations
are represented by continuous piecewise smooth path curves upon the equilibrium
surface, the parameter space.) We should imagine quasi-static transformations
as happening in a larger time-scale, as limit of sequence of irreversible infinites-
imal non-equilibrium transformations, so that the new idea in [54] and used in
chapter 4, is to construct these states under a proper macroscopic rescaling of
space and time of the microscopic configuration of the positions and velocities of
the system. We should imagine a simple mechanical system: a wire submitted
to a tension in presence of a gradient of temperature. The wire is characterized
by its length £, the distance between the first and last particle. Each particle is
in contact with a different thermostat at a different temperature and there is a
constant flow of energy in the wire. The first particle is attached to a fixed point
on one extreme and it is pulled at the other one by a tension (force) 7, thus the
length is a function of the tension and temperatures: £ = L(7, 8, ", ..., 5, %). By
changing the value of the applied tension, the system will eventually converge to
a stationary state parametrized by the tension applied. On an appropriate time
scale, this is an isothermal thermodynamic transformation from a stationary state
to another, and it satisfies a Clausius inequality. If we want to obtain a reversible
quasi-static isothermal transformation we have to introduce another larger time
scale et, and apply a tension slowly varying in time 7(€), the limiting process are

so slow that the system is in a stationary state at each instant of time.
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2.2 Technique used

In the first work (chapter 3) we prove the hydrodynamic limit using standard
arguments in the literature [6]. To demonstrate that in the stationary state the
density flow verifies Fourier’s law, we used the bound of the entropy production.
Once the entropy is bounded, we can control the expected values of the densities
with respect to the stationary measure, it is straightforward to show the total

density is controlled proportionally on the size of the system.

When we investigated the hydrodynamic behavior of the chain in chapter 4,
we discovered that the relative entropy measure used in the equilibrium case was
failing in the presence of a temperature gradient. The stationary states of the
dynamics have a positive entropy production, so the classical relative entropy
methods cannot be used. We develop new estimates based on entropic hypocoer-
civity, that allows to control the distribution of the positions configurations of the
chain. We applied the Guo Papanicolau and Varadhan (GPV) method, previously
developed for over-damped dynamics. In this approach the main step in closing
the macroscopic equation is the direct comparison of the coarse grained empirical
density in the microscopic and macroscopic space scale. This is achieved by a
bound on the Relative Entropy and the Fisher Information, used as Liapunov
functions with respect to the in-homogeneous Gibbs measure. The space-time
averages of the evolved state converge to a canonical local equilibrium as in the

one-block/two blocks argument (chapter 5 of [48]).

The hydrodynamic limit for the interacting chain of oscillators gives us a non-
linear diffusion equation, and the diffusion coefficient is naturally expressed in
terms of the thermodynamic functions of the one-dimensional system. We have
to justify the ansatz that the non-equilibrium density measure looks like a slowly
varying family of local Gibbs states. This means that the averages of microscopic
quantities can be replaced by their local macroscopic mean values. Even if our

system is in non-equilibrium, because we are in presence of a macroscopic gradi-
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ent, the tension 7 changes very slowly and smoothly in space, so we can divide
the chain in blocks small enough to have a local equilibrium for each one of them,
i. e. in a microscopic block the temperature is constant. However it is not the
length stretch itself that appears in the integral but the potential function, a local
function of the configuration. The main problem consists therefore in replacing
V'(ri41) by a function of the length stretch in order to "close" the equation. This
replacement is the crucial step in the proof and it is the consequence of certain
elementary bounds on the equilibrium density measure, obtained for the first time
by GPV. They first obtained a bound of the Dirichlet form (more precisely called
Fisher information) from the time derivative of the relative entropy with respect
to the equilibrium stationary measures. This bound implies that the system is
close to equilibrium on a local microscopic scale, and that the density on a large
microscopic interval is close to the density in a small macroscopic interval. In
chapter 4 it has been used an entropic hypocoercivity, where the Fisher informa-
tion is associated to the vector fields of position and velocity. Obtaining that the
gradients of the distribution in the velocities are very close to the gradients in
the positions, so that we can bound the Fisher Information on the positions with
the one on the velocities, coming back to overdamped model. So the rest of the

proof is the same as in [37].
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Diffusive limit and Fourier’s law for the

discrete Schrodinger equation

3.1 Introduction

Discrete Schrodinger equation, besides being viewed as a toy model for its contin-
uous counterparts, has itself a physical application as a discrete systems: it serves
as a model for electronic transport through crystals. In the realm of the physics
of cold atomic gases, the equation is an approximate semiclassical description of
bosons trapped in periodic optical lattices, and experimentally, discrete solitons

have been observed in a nonlinear optical array [26].
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In the past years much attention has been paid on the non linear case (DNLS)
for which the first analysis of the equilibrium statistical mechanics has been per-
formed in [65]. It has been osserved [63]| the relaxation of localized modes (dis-
crete breathers) in the presence of phonon baths has been discussed in. Only
recently, [42], the non equilibrium properties have been explored, considering an
open system that exchanges energy with external reservoirs, for which the result-
ing stationary states are investigated in the limit of low temperatures and large

particle densities, mapping the dynamics onto a coupled rotator chain.

Here we are interested in proving the hydrodynamic limit and Fourier’s law for
the DS equation in the simplified linear case. The linear case equation is interest-
ing as one of the most commonly employed methods for solving one-dimensional
quantum problems, for which many characteristics are still poorly understood.
The natural applications are in the context of solid-state physics, which links the

discrete model to realistic semiconductor quantum wells and nanoelectric devices.

In the present paper we study a chain of particles, for which the Hamilto-
nian dynamics is perturbed by a random continuous phase-changing noise. The
resulting total dynamics of the system is a degenerate hypoelliptic diffusion on
the phase space, which assures good ergodic properties, it conserves the total
norm and destroy the other conservation laws. The system is considered under
periodic boundary conditions. In the first part of the article we will prove the
hydrodynamic limit using standard arguments. In the second part we will add
an interaction between the system and external reservoirs, modeled by Ornstein-
Uhlenbeck processes at the corresponding chemical potentials. We prove that in
the stationary state Fourier’s law is valid for the density flow. The main tool
used in the proof is the bound of the entropy production as in [6]. Then in order
to obtain Fourier’s law, we need to control the expected values of the densities
respect to the stationary measure, which results in a bound of the expected total

density proportional to the size of the system.

28



The article is structured in the following way. In section 4.2 we define the
dynamics. In section 3.3 we state and prove the result of hydrodynamic limit. In

section 3.4 we prove the Fourier’s law by means of entropy bounds.

3.2 The model

Atoms are labeled by x € Ty where Ty = 1,..., N is the lattice torus of lenght
N, corresponding to periodic boundary conditions. The configuration space is
QY = C™ and a generic element is {1/(7)}.et,, where (z) characterize the
amplitude of the wave function of each particle. The Hamiltonian of the system

writes
N

Hy = [b(x) — oz + 1) o Z () [P (3.1)

=1
where |1 (z)[? is the number of particle or the “mass” at site z, at the boundary
the conditions are fixed: ¥n.1 = 1y = 0.

The linear case is for p = 1:

=

-1

Hy =Y @@ +1)" +o@)Y+1)+2) [ (3.2

=1

the corresponding equations of motion are

dip(z) . OH .
djf( | 31/1 (832[ = —iAY(x) (33

Here AY(z) = (z+ 1)+ (z — 1) — 2¢(z).
We denote 9(z) = ¥, () + iths(x) = |[¢(x)]e®®, and define the operator (on

local functions F': Ty — C)

Opa) F' (V) = ih(2) 0y F () = 0i(2) 0y, () F = (%) Oy, () F (3.4)
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We look for a stochastic perturbation which change randomly the phase of

the wave function, such that the total "mass"

My(@) = 3 (@) (3.5)

z€T N

is still a conserved quantity. The total “mass” is linear in the number of particles

MNW’) ~ N.

The dynamics is described by the following system of stochastic differential

equation for x =1,..., N

dip(a,t) = — i, t)dt — %w(x, £)dt + i (, t)/Ydw,

(3.6)
A (,t) = +HiAY* (, t)dt — %w*@, tdt — it /Adw,

where w,(t) are real independent standard Brownian motions and ~ is the noise

intensity parameter.

Let Lx be the generator of the system. A core for Ly is given by the space
C>(QY) of smooth functions on OV endowed with the product topology. On
C>(Q"), the generator is defined by

Ly = Ay + Sy (3.7)

where

Ay = > {iDG ey — iy (1)} (3.8)

z€T N

is the Liouville operator of a chain of interacting and

g
Sn=15 D G (3.9)

z€T N
is the diffusive operator corresponding to the noise part of eq. (3.6) Since the
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total mass is conserved by the stochastic perturbation, we have

Sy My () = 0. (3.10)

In the infinite volume case, the family of product measures:

o N(@)2

dun(dp) = ] 7200

ze€Tn

i (3.11)

are stationary for the dynamics, the parameter A > 0 correspond to the conserved

quantity of the dynamics, the total “mass”, while Z(\) is the normalization con-

N
stant. Here di) = H dy(x)dy* (z).
=1

The Lie algebra, generated by the Hamiltonian vector field and the noise fields,
has full rank at every point of the state space C", so the stationary measure has a
smooth density. We denote by (-) the expectation with respect to the stationary

measure.

Let us define the density of particle x as

pe = [U(2)], (3.12)

locally the conservation of mass generates an instantaneous current

L:Npm - jw—l,x - jx,m—H (313)

with
Jear1 = =Wy — Vpthei1}. (3.14)
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3.3 Hydrodynamic limit in the diffusive scaling

3.3.1 Notation

Let’s introduce some notation and definitions.

We will denote by (W™ ()0 = (™ (), N (t))i=0 the process on the torus
Tx whose evolution time is given by N2Ly. The factor N? corresponds to the
acceleration of time by N? in the stochastic differential equations (3.6). The

associated semigroup is denoted by (SX);so.

Fix a time T" > 0. Let M be the space of finite positive measures on Ty
endowed with the weak topology. Consider a sequence of probability measures
(Qn)n on D([0,T], M) corresponding to the Markov process 7" defined as the

density of the empirical measure

™V (w, du) == — Z Pz0q /N (du) (3.15)
Z‘ETN
where d,(du) is the Dirac measure localized on the point a € Ty. The time

evolution of the empirical measure will be

=N Z pz(t)05/n (du) (3.16)

QJGTN

starting from (u")y, a sequence of probability measures on Q associated to a

fixed initial deformation profile po : TV — [0, 00).

We will assume that the system is close to a local equilibrium. More precisely

we have the following definition:

Definition 1. A sequence (/LN)N of probability measures on Ty is associated to a

deformation profile py : Ty — [0,00), if for every continuous function G : Ty —
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[0, 00) and for every § > 0

Jim ”% > Ga/Np.— [ Gl

z€T N T

> 5] = 0. (3.17)

Our goal is to show that, if at a time ¢ = 0 the empirical measures are
associated to some initial profile py, at a macroscopic time ¢ they are associated

to a profile p; which is the solution of an hydrodynamic equation.

Theorem 3.3.1. Let (un)n be a sequence of probability measures on QY associ-
ated to a bounded initial density profile po. Then for every t > 0, the sequence of

random measures

7 (du) = <= 3 pu()d () (3.18)

z€T
converges in probability to the absolutely continuous measure m(du) = p(t,u)du

whose density is the solution of the heat equation:

1
Op = —Ap
v (3.19)

p(0,-) = po(-)-

For any function w : Ty — C, we denote Vw the discrete gradient of w
defined by
(Vw)(z) = w(z + 1) — w(z) (3.20)

and V* is the adjoint on L>(Ty) endowed with the standard inner product

(Vw)(z) =w(z —1) —w(x). (3.21)
The discrete Laplacian is A = —V'V*. For a discrete function w, Aw is given by
(Aw)(z) =w(x + 1) +w(z — 1) — 2w(x). (3.22)
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If G is a smooth local function on Ty and x € Ty, the discrete gradient is related
to the continuous one by:

r—1

) -G

(VNG)(z/N) = N [G( )} = G'(z/N) + o(N7Y) (3.23)

x
N

and the discrete Laplacian to the continuous one by:

z—1
N

z+1

) —2G(5) — G(

(BaG) /M) =N 6 . )| = 6y + o),

(3.24)

3.3.2 Limit identification

Under the empirical measure Q" for every smooth function G : Ty — C, the
quantity
1 x
N —
(.G = 3 Glnl) (3.25)

z€T N

the noise conserves ponctually the density so
t
(N, G) = (7}, G) —/ N2Ly(nl G)ds. (3.26)
0

We do now some manipulation on the integrand of the previous equation, first

using the definition of the empirical measure we have

1 N

N2Ly(IIV, G) = ~ > G(x/N)N*Lypy(z). (3.27)

r=1

Substituting in it the explicit continuity equation (3.13) we get

N2 Ly, G) = = 3" Gt/ NIN*Lx (oo a(t) — G (1) (3.28)

r=1

34



Now we perform a summation by part

N2Ly (TN, ) = % S (NG @/N) N1

€T

(3.29)

A second summation by parts is also possible, substituting the current by his
fluctuation-dissipation relation

) 1 ) 1 1
Jexz+1 = _ﬂﬁN]x,erl + ;(pt(x + 1) - pt(SL’)) - ;(514’1,1‘71 - gx,x72) (3'3O>

where £, ;1 is given by

Eorra—1 = Y(@ + 1Y%z — 1) + ¢ (x + 1)gp(x — 1).

(3.31)
Then
N SN iean = = STD/NIN g Lot
TS Z(VNG)(x/N)N%V(pS(x +1) = &z + Lo —1) =
K 1 (3.32)
=% Z(VNG) (.T/N)N%ﬁjw,erl"i_

_% m (ANG)(:U/N)%(PS(QUJFU—5s($+2>5”))-

we then obtain

0= (r'.G) = (.G) = | 5 TAANGNa/N)puo) = Exa + 1. = 1))ds

- %/0 %Z(VNG>($/N)£].:E,$+1-

(3.33)

It remains to study two terms, the first one is the contribution of the energy

between second neighbors and the other one is the contribution of the dissipative
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term. We study now the former one which is
‘1 1
w Z(ANG)@/N);&(:U + 1,2 —1)ds,

we remark that

Es(x+ 1,2 —1) = —Ogat 1) Jut1,0-1
and the fluctuation-dissipation relation for the current j,iq,-1 is
. 1 _ 1
Jz+1,2—1 = __‘CN]erl,xfl + _v{€x+2,x71 - 8x+1,x}'
2y v

The commutator [Oy(z+1), Ln] is

[Op(11), £n) = 2V [(r(2 + 2)8y, (o41) — Ur(@ + 1)Dy(012))

+ (Vi(@ + 2)0y, (1) — Yi(@ + 1)y, (242))] »

which applied to j,i1,-1 gives

[Oo(z+1), LN at1,0-1 =4i(x — 1) (¥s(z + 2) + 1i(x))

The term Oprat1)V{Eri22-1 — Ext1) 18

80(x+1)v{5x+2,;p71 - gx+1,:p} =2¢i(z + 1) (¥i(x) + Yi(x — 2))
— 2 (z + 1) (Y (x) + Y (x — 2))

so that
1 .
Es(x +1,2— 1) = ;ﬁNﬁe(Hl)ij,xq - 2V(Fz+2,x71 - f:p+1,x)

where

Fotaa-1 = 2{r(x + 2)¢,(z — 1) — Yi(x + 2)¢Yi(xz — 1) }.
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(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



We substitute this last expression in (3.34) and perform some manipulations

/ ZANG (+/N)5

(ENaG x+1)]x+1 z—1 QV(fx-‘er—l - Fx—i—l,x)) ds

- 272N? /0 N Z(ANG)(I/N)N2£Ngx+l,z—1(3)d3

- IN~2 /0 N ;(VNG)(x/N)QV(me_l — Fay12)ds
1 1

= mﬁ (VNG) (I/N) (gm—l-l,:l:—l(t) - gz+1,m—1(0)) +

2N2/ ZV G I/N z+2,2— 1—fm+1m>d8+NG

(3.42)
Where the quadratic variation of the martingale N is
o _N? t 2 2
(V] :W Z . ((AnG)(z/N)) (ae(x—i-l)gx—l-l,m—l) =
N2 gt (3.43)
2 .
5 2 | (CrO) /N B

So then, the contribution of the total term studied here, (3.34), can be neglected

considering the following bounds

1 M
Y Er) < g 3 (e O+ e p)f?) = T g
IETN Z’ETN
1 M
N2 D Frawlt) < e > (@ ) + [ +p, 1)) = ]1\\7[(27?) -0,

z€T N z€Tn

% Z Taatp(t) < % Z (2, t)|* < % (Z |@/}($,t)|2> < My (¥)

z€T N
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We expect then the following characterization of the hydrodynamic limit:

w6 = (. Gr+ = 3 [(OnGa/Mpads +oN). (a5)

z€T N
3.3.3 A rigorous proof

Let G € C?(Ty), then under Qu the quantity

1 T
N _
(m'.G) = 5 > G()m(x) (3.46)
z€eT
has an associated process

t
(), G) = (!, G) + / (05 + N?Ly) (N, G)ds (3.47)

0

with respect to the filtration F; = o(ps, s < t).
In order to prove the convergence of the sequence, we need first to show its
relatively compactness, then that all converging subsequences converge to the

same limit.

3.3.4 Relative Compactness

To show that (Qx)n is relatively compact, it suffices to prove that the sequence
of laws of the real processes ((m", G));>0 is relatively compact for any fixed G
in C?(Ty). We can repeat the same arguments as in [48] (Theorem 2.1, pag.
55). Let us denote Q% the probability QyG ™ on C([0,T],R), and define for
any function x € C([0,T],R) and any 6 > 0, the modulus of continuity of = by
w(z,y) = sup{|z(s) — x(t)|;s,t € [0,T],|s —t| < }. The criterion for relative

compactness of probabilities is:
Lemma 3.3.2. The sequence Q% 1s relatively compact if
o V€ [0,T], Ve >03A = A(t,e) > 0, sup QS [|(7Y, G)| > Al < e
N
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e limsup lim sup Q§ [w((7", G),8) > €] = 0

=0 N—ooo

Proof. The first condition of the lemma is satisfied thanks to the conservation of

the total “mass” and the following bound

Gl < Gl 3 o) = 62 <o) aay)

:EETN

where C(G) is a constant depending only on G. Then

Q% [I{m¥. G) = A] = Q% [|< ,G) +,Y— > / (ANG)(@/N)ps(z)ds| > A| <
z€T N
1
T |16+ 2 3 [(aG)aN)puwa
SCETN
C(G,t)
= A
(3.49)
D : C(G,t) .
The first condition is satisfied choosing A > ———=. Also the second condition
ve

is verified:

Q[ sup [(m",G) — (n, G)] <

[ sup | / S (ANG) (/N pula)dul]

lt—s|<6 E’YN M sl<s ol
_ C(C)oMy ()
- Nre
(3.50)
which goes to zero for N — oo and § — 0. O

3.3.5 Uniqueness of limit points

After proving the relatively compactness of (Qn)y, we want to characterize the

limit points of Q.
Lemma 3.3.3. Let Q" be a limit point of the sequence (Qn)n, then Q* is con-
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centrated on trajectories m € C([0,T], M) satisfying
1 t
(m, G) = (m, G) + ;/ (75, G")ds (3.51)
0

Proof. Let Q" be a limit point and let )y, be a sub-sequence converging to Q™.
We can replace de discrete Laplacian by the continuous one, since (AyG)(z/N) =
G"(z/N)+o(N~1), uniformly in N, in eq. (3.47). We fix ¢t € [0, T]. The applica-
tion from C'([0, T], M) to R, which associates |(m;, G) — (7, G) — % /Ot(ﬂs, G")ds|

to a path {m;;0 <t < T}, is continuous. So

¢
limkinf Qn, <<]7Tt,G> — (m, G) — %/ (r5, G"Yds| > e)
—00 0

1t (3.52)
> " (. 6) — (m0.6) = & [ 6] > )
7 Jo
since the set is open. Then simply observing that
Qn| sup |MF]] =0, (3.53)

0<t<T

we can conclude that all limit points Q* are concentrated on trajectories m; sat-
isfying

t
(.G = .G+~ [ (e 6as .54
0

It remains to prove that the limit trajectories are absolutely continuous respect

to the Lebesgue measure.

Lemma 3.3.4. All limit points Q™ of (Qn)n are concentrated on absolutely con-

tinuous measures, with respect to the Lebesque measure, w(du) = p(u)du such

that = € L*(Ty, du) :

Q" {m: w(du) = p(u)du} =1 (3.55)
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Proof. Since

Q" <(|7Tt,G> (70, G — %/0t<7rs,G”)ds| _ 0) _1 (3.56)

then choosing my = po(u)du it implies that 7, = p;(u)du. O

3.3.6 Uniqueness of weak solutions of the heat equation

and convergence in probability at fixed time

We need to show that there exists only one weak solution of the hydrodynamic
equation. There are different methods to prove that there exists only one weak
solution of the heat equation. We refer to [48] for the proof.

The limiting probability measure is concentrated on weakly continuous tra-
jectories, thus 7" converges in distribution to the deterministic measure ,(u)du.

Since convergence in distribution to a deterministic variable implies convergence

in probability, the theorem is proved.

3.4 Physical implications

The model is composed of = € {1,..., N} atoms attached at their extremities to
particle reservoirs of Langevin type at two different densities y; and p,.. The
interaction between the reservoirs is modeled by two Ornstein Uhlenbeck process
at the corresponding chemical potentials.

The stationary state is given by the law of independent Gaussian variables if
the two reservoirs have the same chemical potentials.

We prove that the Fourier’s law is valid in the stationary state for the density

flow, that the total mass is proportional to its size and that the average density
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per volume, in the infinite volume limit is given by the average of the chemical

potentials at the boundaries.

We attach the first particle 1 and the last N to two Langevin thermostats,
the dynamics is then described by the following system of stochastic differential

equation

.

dip(2,t) = — i, t)dt — %w(x, £)dt + i (x, t)/Ydw,
d* (,t) = +iy* (x, t)dt — %w*(x, t)dt — i /dw,
z=2..,N—1
dp(1,t) = — iA(1, t)dt — %(5 + A)U(1, t)dt + i\ /ydwy + \/Sdw,,
dy* (1,1) = +iA* (1, t)dt — %(6 + (L, 8)dE — it (1, ) y/ydw, + /Spdw?,
dp(N,t) = — iAY(N, t)dt — %(5 + (N, t)dt + ity /Fdwy + \/Oprdwn,,.

| dwt (N, 1) = Hid (N = 1, 1)t - %(5 F (N — 1, 0)dt — i (V) Fdwy + /Smdur,,
(3.57)

Where w,(t) are real independent standard Brownian motions, and wy(t) and

wy_1,n(t) are complex independent standard Brownian motions.

The generator of the dynamics is £ = Lx + L + L where Ly is (3.8), and

4]
‘CL = + 5{/’”(8’3)7(1) + 812/)2(1)) - (wr(l)a"/)r(l) + wl(l)a%u))}v
(3.58)

o
Lr :é{ur(ai’r(m ™ ai’i(zv)) o (wT(N)awr(N) + ¢i(N)3¢i(N))}

The currents are

j$,1’+1 = _Z{¢x¢;+1 - @D;@Z)xﬂ} for x = 27 ceey N — 1a
Joa = (2 — p1), (3.59)
INN+1 = — (20, — pN)
Because of the presence of reservoirs we have stationarity, for any xt = 1,.., N — 1,
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we have

(Jza+1) = (Jo1) = Un—1,N)- (3.60)

3.4.1 Entropy production

Denote by g,, (¢1,97,...¢¥n,1¥x) the density of the product of Gaussians with

mean 0 and variance p,

G (W01, 0%, -, ) = €~ ot i (3.61)

and by fx the density of the stationary measure with respect to g,

()= / Py (3.62)

N
where di) = H di(x)dy*(x), by hypoellipticity this density is smooth. By sta-
r=1
tionarity

0= _2<£N log fN)

N
_ (af)(I)fN)2 0 (aw(N)fN)z
=13 [ v+ g [ UG v 2(eitox )

(3.63)

for the left thermostat entropy production, let h = g,,/g,, and we rewrite the

last term as

—2(L;log fn) =—2 / ‘%Ncl log(‘%v)gmdw —2 / J%Nﬁz log(h)g,., dv

_ 0 [ (e (Un/h))?

(3.64)

G d) 4 6(pr — p1r) (20 — (p1))



Recognizing the last term as the current (jo1) = (2 — (p1)) we can have the

following bound

Z/ s

nfn)? 0 (Opy (fn/h))? _ (3.65)
+ 5:“1” / f—Ngurdw + éul/ fN/h g#ldw -

= 5(/~Ll - Mr)(jx,a:—i—l) >0

The right sign for the density current is then (j, ,4+1) < 0 (resp. (Juuzt1) > 0)

if < pp (vesp. p > piy).

3.4.2 Scaling of the average current

In order to recover the Fourier’s law we need to bound the instantaneous current.

From the stationarity, (3.59) and (3.60), we have

(p1) + (o) = 2(pu + p1r) (3.66)

By (3.30) we have:

, 1 1 1
]x,erl = ;{(px+1 — px) - §<Sx,z+2 - gmfl,x+1)} - ZLN]{L‘,$+1 fOI' T = 2; teey N — 27
12 = ——{(p2 = p1) = — >
J12 = 4y 40 P2 — pP1 1o 1,3 — 1o NJ1.2
. _ 4 ( ) n 2 2 Lo
JN-1,N = 474_5 PN — PN-1 47_|_5 N,N—2 47+5 NJN-1,N,
(3.67)
where
Evara = Y (@)P (2 +2) +¢"(2)Y (2 + 2). (3.68)
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Using the stationarity of the current we obtain

;] N2
<jx,x+l> ~ N _ a2 <jx,x+l>
N=3:3 (3.69)
1 1
= m((ﬂz\/—ﬁ —{p2)) — m«&\f—'zw —&13))
and by the relation (j12) = (jn_1.n), We get
1
(pv—1) = ={p2) +2(m + ) + 5 ((En—2n = E13))- (3.70)
we substitute the expression for (py_1) in (3.69) and obtain
, 1
(Ja+1) = m@(ﬂl + 1) = 2(p2) + (€13))-
By (3.67) we get (&) 3) as function of the densities and currents
v+,
(1) = ——5—{n2) +2((p2) = (p1), (3.71)

and then

4y +9
2

o) = g (2 ) = 2000) = ) +20000) — (o)

- ﬁ (Q(Ml + pr) — 47;_ 5<.jcc,ac+1> - <P1>>

2
(N —=3)+4y+6

((p + pr) = (p1)) -

Given that p > 0, we can bound the current by the external chemical potential

as
21 + pr)
YN —=3)+4y+4§

(Jaas1) < (3.72)
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So there exists a constant C', which depends on u, and p;, such that

, C
<]r,z+1> S N
for p; > p,., and
{omer) =~
]x,a:+1 - N
for p; > p,., such that
, C
|(Jaar1)] < N (3.73)

. Thanks to this bound to the current we are able now to claim the result in the

following theorems.

Theorem 1. For any v > 0

N—o0

. ) 2
lim N<]r,:fc+1> = ;(:ur - Ml> (3'74>

Theorem 2.

My ()

i 220 () (3.75)

3.4.3 Fourier’s law

Proposition 3.4.1. Forz =1 and v = N — 2 we have

lim (1,0 ,5) = 0 (3.76)

N—o0

Proof. The proof for x =1 and z = N — 2 are similar. Let’s do it for x = 1. We
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make use of Cauchy-Schwarz inequality.

<m@=/mw%%ww%
m/%% )iy

(3.77)
o 3w1 fN/ h) .
< —.
- \/N
O
Proposition 3.4.2. Forx =1 and x =N — 1
dim ((pz) = (pwi1)) = 0. (3.78)
—00
Proof. By (3.67)
) 1
V02) + 5{(E2a = E13)) = (p2) = (p1) (3.79)
then by (3.73) and (3.76) we have
Jim ({p1) = (p2)) =0 (3.80)
—00
and similarly for xt = N — 1. m
Then we have
Jim (p1) =2
o (3.81)

]\ll_{noo<pN> = 2ty
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and the Fourier’s law is

. : 2
lim N(jpur1) = ;(/Lr — ). (3.82)

N—o0
3.4.4 Average “mass" density

We define a function

) = 2 (p2) = 5{Excrar) (3.53)

by the continuity equation for z =2,.... N — 1

‘Cpa: = jw—l,z - jw,af-f—l (384)

and the fluctuation-dissipation equation

(Joar1) = —V79(x) (3.85)

we can write

A¢p(x) =0 forz=2,...,N — 1. (3.86)

By the discrete maximum principle |¢(x)| < maz{$(2), #(N — 1)} and using the
definition of currents (3.67)

02) = (L) ia) + (o)
s (3.87)
(N —1) =—( I J{In-1,3) + (pn)

both with (3.66), so, given that (p,) < 2(p + u,) for x = 1, N — 1 it follows

dy+9 .
6(2)] < =1 Gl + 20 + )
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In view of (3.73), it follows that
C
[¢(2)] < 5 +20m+py) forz=1,..,N—1 (3.88)

Furthermore, given the results of the previous section, propositions 3.76 and 3.78,

and the explicit expression of ¢

. 1 1
Jim ; o) = =+ pur) (3.89)
then for
N-1
r=1
we obtain the result
1 V=
Jim Z<MN<w>> =+ ). (3:90)

We can verify that, at equilibrium, the two thermostats must have the same

chemical potentials.

Proposition 3.4.3. If (j,,+1) = 0 then = p,.

Proof. By the stationarity and by (3.59), we can write the average densities at

the extremitiesin t =1 and z = N

pr) =2
(p1) ! (3.1)
<pN> =24y
and by (3.67) in the bulk, x =1,.... N — 1
1
<pm+1> - <pr> - 5 (<5m,z+2> - <gz—1,m+1>> (392)
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Then substituting recursively the extremity density value in 1, we find

1
(pz) = 201, + §<gz—1,z+1> (3.93)

and similarly when substituting the N density value

1
(pz) = 240 + §<5z—1,x+1> (3.94)

so that u, = . O]

3.4.5 Non Linear Case

When the Hamiltonian is nonlinear, p > 1, the current doesn’t decompose in

fluctuation-dissipation terms:

j:I:,erl - _‘Cij,erl + vpx + gxfl,erl + 8:(:,x+1 + gx,x+1|wz|p_1- (395)

Being a non gradient system a correction term in the second order approximation
of a local Gibbs measure in the relative entropy method should be added. Unfor-
tunately the non linearity made it for us impossible to find the proper correction

term which would gauge the system in the local averages.
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Non-equilibrium Isothermal
transformations in a temperature

oradient from a microscopic dynamics

The Annals of Probability, Vol./5, No.6A, 3987-4018,2017

4.1 Introduction

Macroscopic isothermal thermodynamic transformations can be modeled micro-
scopically by putting a system in contact with Langevin heat bath at a given

temperature 5~'. In [54] a chain of n anharmonic oscillators is immersed in
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a heat bath of Langevin thermostats acting independently on each particle. A
macroscopically equivalent isothermal dynamics is obtained by elastic collisions
with an external gas of independent particles with Maxwellian random velocities
with variance 5~!'. The effect is to quickly renew the velocities distribution of
the particles, so that at any given time it is very close to a Maxwellian at given
temperature. The chain is pinned only on one side, while at the opposite site
a force (tension) 7 is acting. The equilibrium distribution is characterized by
the two control parameters 3!, 7 (temperature and tension). The total length
and the energy of the system in equilibrium are in general non-linear functions

of these parameters given by the standard thermodynamic relations.

By changing the tension 7 applied to the system, a new equilibrium state, with
the same temperature 8!, will be eventually reached. For large n, while the heat
bath equilibrates the velocities at the corresponding temperature at time of order
1, the system converges to this global equilibrium length at a time scale of order
n?t. In [54] it is proven that the length stretch of the system evolves in a diffu-
sive space-time scale, i.e. after a scaling limit the empirical distribution of the
interparticle distances converges to the solution of a non-linear diffusive equation
governed by the local tension. Consequently this diffusive equation describes the
non-reversible isothermal thermodynamic transformation from one equilibrium to
another with a different tension. By a further rescaling of the time dependence
of the changing tension, a so called quasi-static or reversible isothermal transfor-
mation is obtained. Corresponding Clausius equalities/inequalities relating work

done and change in free energy can be proven.

The results of [54] summarized above concern isothermal transformations from
an equilibrium state to another, by changing the applied tension. In this chapter
we are interested in transformations between non-equilibrium stationary states.
We now consider the chain of oscillators immersed in a heat bath with a macro-

scopic gradient of temperature: each particle is in contact with thermostats at a
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different temperature. These temperatures slowly change from a particle to the
neighboring one. A tension 7 is again applied to the chain. In the stationary
state, that is now characterized by the tension 7 and the profile of temperatures
Bt ..., B, there is a continuous flow of energy through the chain from the
hot thermostats to the cold ones. Unlike the equilibrium case, the probability
distribution of the configurations of the chain in the stationary state cannot be

computed explicitly.

By changing the applied tension we can obtain transitions from a non-equilibrium
stationary state to another, that will happen in a diffusive space-time scale as in
the equilibrium case. The main result in the present chapter is that these trans-
formations are again governed by a diffusive equation that takes into account
the local temperature profile. The free energy can be computed according to
the local equilibrium rule and its changes during the transformation satisfy the
Clausius inequality with respect to the work done. This provides a mathemat-
ically precise example for understanding non-equilibrium thermodynamics from

microscopic dynamics.

The results in [54] where obtained by using the relative entropy method,
first developed by H.T.Yau in [84] for the Ginzburg-Landau dynamics, which is
just the over-damped version of the bulk dynamics of the oscillators chain. The
relative entropy method is very powerful and flexible, and was already applied
to interacting Ornstein-Uhlenbeck particles [76] as well as many other cases, in
particular in the hyperbolic scaling limit for Euler equation in the smooth regime
[58, 14]. This method consists in looking at the time evolution of the relative
entropy of the distribution of the particle with respect to the local Gibbs measure
parametrized by the non-constant tension profile corresponding to the solution
of the macroscopic diffusion equation. The key point of the method is in proving
that the time derivative of such relative entropy is small, so that the relative

entropy itself remains small with respect to the size of the system and local
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equilibrium, in a weak but sufficient form, propagates in time. In the particular
applications to interacting Ornstein-Uhlenbeck particles [76, 54], the local Gibbs
measure needs to be corrected by a small recentering of the damped velocities

due to the local gradient of the tension.

The relative entropy method seems to fail when the stationary measures are
not the equilibrium Gibbs measure, like in the present case. The reason is that
when taking the time derivative of the relative entropy mentioned above, a large
term, proportional to the gradient of the temperature, appears. This term is
related to the entropy production of the stationary measure. Consequently we

could not apply the relative entropy method to the present problem.

A previous method was developed by Guo, Papanicolaou and Varadhan in
[37] for over-damped dynamics. In this approach the main step in closing the
macroscopic equation is the direct comparison of the coarse grained empirical
density in the microscopic and macroscopic space scale. They obtain first a
bound of the Dirichlet form (more precisely called Fisher information) from the
time derivative of the relative entropy with respect to the equilibrium stationary
measures. This bound implies that the system is close to equilibrium on a local
microscopic scale, and that the density on a large microscopic interval is close
to the density in a small macroscopic interval (the so called one and two block

estimates, see [48] chapter 5).

In the over-damped dynamics considered in [37], the Dirichlet form appearing
in the time derivative of the relative entropy controls the gradients of the proba-
bility distributions with respects to the position of the particles. In the damped
models, the Dirichlet form appearing in the time derivative of the relative entropy
controls only the gradients on the velocities of the probability distribution of the
particles. In order to deal with damped models a different approach for comparing
densities on the different scales was developed in [57], after the over-damped case

in [81], based on Young measures. Unfortunately this approach requires a control
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of higher moments of the density that are difficult to prove for lattice models.

Consequently we could not apply this method either in the present situation.

The main mathematical novelty in the present work is the use of entropic
hypocoercivity, inspired by [82]. We introduce a Fisher information form I,
associated to the vector fields {0,, + 0y, }i=1....n, defined by (4.27). By computing
the time derivative of this Fisher information form on the distribution at time ¢
of the configurations, we obtain a uniform bound I,, < Cn~'. This implies that,
at the macroscopic diffusive time scale, velocity gradients of the distribution
are very close to positions gradients. This allows to obtain a bound on the
Fisher information on the positions from the bound on the Fisher information
on the velocities. At this point we are essentially with the same information as
in the over-damped model, and we proceed as in [37]. Observe that the Fisher
information 7, we introduce in (4.27) is more specific and a bit different from
the distorted Fisher information used by Villani in [82], in particular I,, is more
degenerate. On the other hand the calculations, that are contained in appendix
D are less miraculous than in [82], and they are stable enough to control the effect
of the boundary tension and of the gradient of temperature. This also suggests
that entropic hypocoercivity seems to be the right tool in order to obtain explicit

estimates uniform in the dimension of the system.

Adiabatic thermodynamic transformations are certainly more difficult to be
obtained from microscopic dynamics, for some preliminary results see [58, 14, 8,
55]. Equilibrium fluctuations for the dynamics with constant temperature can be
treated as in [56]. The fluctuations in the case with a gradient of temperature
are non-equilibrium fluctuation, and we believe that can be treated with the
techniques of the present work together with those developed in the over-damped

case in [16].

Large deviations for the stationary measure also require some further mathe-

matical investigations, but we conjecture that the corresponding quasi-potential

95



functional (|11]) is given by the free energy associated to the local Gibbs measure,

without any non-local terms, unlike the case of the simple exclusion process.

The chapter is structured in the following way. In section 4.2 we define the
dynamics and we state the main result (Theorem 4.2.1). In section 4.3 we discuss
the consequences for the thermodynamic transformations from a stationary state
to another, the Clausius inequality and the quasi-static limit. In section 4.4 are
obtained the bounds on the entropy and the various Fisher informations needed in
the proof of the hydrodynamic limit. In section 4.5 we show that any limit point
of the distribution of the empirical density on strain of the volume is concentrated
in the weak solutions of the macroscopic diffusion equation. The compactness,
regularity and uniqueness of the corresponding weak solution, necessary to con-
clude the proof, are proven in the first three appendices. Appendix D contains
the calculations and estimates for the time derivative of the Fisher information

I,.

4.2 The dynamics and the results

We consider a chain of n coupled oscillators in one dimension. Each phase space
is described by {g;,p;,i = 1,...,n} € R*". The interaction between two particles
i and ¢ — 1 is described by the potential energy V(¢; — ¢;_1) of an anharmonic
spring. The chain is attached on the left to a fixed point, so we set gy = 0, pg = 0.
We call {r; =¢; —qi_1,i = 1,...,n} the interparticle distance.

We assume V to be a positive smooth function, satisfying the following as-

sumptions:




ii) there exists a constant Cy > 0 such that:
sup V" (r)] < Cy, (4.2)

iii) there exists a constant C; > 0 such that:
V'(r)? <C(1+V(r)). (4.3)

In particular these conditions imply |V'(r)| < Cy + Cy|r| for some constant Cj.
Notice that these conditions allow potentials growing like V' (r) ~ |r| for large r,

with 1 < a < 2.

The energy is defined by the following Hamiltonian function:

H = lzj; (%’2 + V(ri)) . (4.4)

The particle dynamics is subject to an interaction with an environment given

by Langevin heat bath at different temperatures 3;'. We choose 3; as slowly

varying on a macroscopic scale, i.e. [; = [(i/n) for a given smooth strictly

positive function 5(z), x € [0, 1] such that iI[lf } By) > - > 0.
y€|0,1
The equations of motion are given by

p

dry(t) = n*(pi(t) — pioa (1) dt

dp;(t) = n?(V'(rig1(t)) — V'(r4(t))) dt — n?yp;(t)dt + n\/?dwi(t), i=1,.,N—1

7

dp,(t) = n*(7(t) — V'(rn(t))) dt — n*yp,(t) dt + n\/;jdwn(t).

(4.5)
Here {w;(t)}; are n-independent Wiener processes, v > 0 is the coupling parame-
ter with the Langevin thermostats. The time is rescaled according to the diffusive
space-time scaling, i.e. ¢ is the macroscopic time. The tension 7 = 7(¢) changes

at the macroscopic time scale (i.e. very slowly in the microscopic time scale).
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The generator of the diffusion is given by
LI = n? ATO 4 n*yS,,, (4.6)

where A7 is the Liouville generator
n n—1
A, = Z(pz —pi-1)0r, + Z(V/<ri+1) — V' (1)0p, + (T = V'(rn))d,,  (4.7)

i=1 =1

while S, is the operator
Z BO2 — pidy,) - (4.8)

4.2.1 Gibbs measures

For 7(t) = 7 constant, and §; = /5 homogeneous, the system has a unique invariant

probability measure given by a product of invariant Gibbs measures j;’ 5
dply = [ e #7902 drdp, (4.9)

=1

where &; is the energy of the particle i:

p2
E=5 +V(n). (4.10)

The function G(7, 8) is the Gibbs potential defined as:

G(r,3) = log {\/ﬁ/ Vir)=rr) } (4.11)

Notice that, thanks to condition (4.1), G(7, ) is finite for any 7 € R and any

B > 0. Furthermore it is strictly convex in 7.

The free energy of the equilibrium state (r, 3) is given by the Legendre trans-
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form of 371G (7, B):
F(r, B) = sup{rr — 37'G(r, 5)} (4.12)

The corresponding convex conjugate variables are the equilibrium average length

(1, 8) = 8719,G(7, B) (4.13)
and the tension
7(r,8) = 0,F(r, 8). (4.14)
Observe that
Eugﬁ[ri] =t(1, B), Eugﬂ[V’(ri)] =T (4.15)

4.2.2 The hydrodynamic limit

We assume that for a given initial profile r¢(z) the initial probability distribution

satisfies:

1

% Z G(i/n)r;(0) — G(z)ro(z)dz in probability (4.16)

n—oo 0

for any continuous test function G' € Cy([0, 1]). We expect that this same conver-

gence happens at the macroscopic time ¢:

LG/ — [ Gl s (4.17)
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where r(x,t) satisfies the following diffusive equation

(

Or(x,t) = %69237'(7’(%25),5(@) for x € [0,1]

0,1 (r(t,x), 5(2))|s=0 =0, 7(r(t,z),B(x))|s=1 =7(t), t>0 (4.18)

r(0,2) = ro(x), x€]0,1]

\

We say that r(z,t) is a weak solution of (4.18) if for any smooth function

G(z) on [0, 1] such that G(1) = 0 and G'(0) = 0 we have

/01 G(z) (r(z,t) —ro(x)) dr =y /Ot ds [/01 G"(z)7(r(z, s), B(x))dx — G'(1)7(s)
(4.19)

In appendix C we prove that the weak solution is unique in the class of functions

such that:

/0 ds /0 (0 (r(z, 5), B(x)))? dz < +o0. (4.20)

Let vg the inhomogeneous Gibbs measure

. N e Bi&i
dyﬁ_:g 7 (4.21)

Observe that this is not the stationary measure for the dynamics defined by (4.5)
and (4.6) for 7 = 0.

Let f* the density, with respect to v, of the probability distribution of the

system at time t, i.e. the solution of
O ffr = LI fr (4.22)

where £7()* is the adjoint of £7(*) with respect to Vg, i.e. explicitly

n—1
L7105 — 2470 — 0 SOV, B m)pV (rir) + n2B(1paT + n2S,,  (4.23)
=1
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where

vnﬁu/n):n(ﬁ(i;l)—ﬁ(%)), P=1..n—1. (4.24)

Define the relative entropy of f’dvj with respect to dvy as:

Ho(t) = [ f7108 £, (4.25)
We assume that the initial density f; satisfy the bound
H,(0) < Ch. (4.26)

We also need some regularity of fj': define the hypercoercive Fisher information

functional:
S gt [ (O 0
Lt =3 5" / bt Ca)Ii) g, (4.27)
i=1 fi
where 0, = 0,, — 0,,,,i=1,...,n— 1, and v := vg. We assume that
1,(0) < K, (4.28)

with K, growing less than exponentially in n. We will show in Appendix D that

for any ¢ > 0 we have I,,(t) < Cn™".

Furthermore we assume that

lim
n—oo

fidvg. =0 (4.29)

for any continuous test function G' € Cy([0, 1]).

Theorem 4.2.1. Assume that the starting initial distribution satisfy the above
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conditions. Then

lim
n—oo

frdvs. = 0, (4.30)

% zn; G (%) ry — /0 Gl )

where r(x,t) is the unique weak solution of (4.18) satisfying (4.20).

Furthermore a local equilibrium result is valid in the following sense: consider
a local function ¢(r, p) such that for some positive finite constants C, Cy we have

the bound

B, p)| S CLY @+ V() +Coy a<] (4.31)

i€A
where Ay is the local support of ¢. Let k4 the length of Ay, and let ;¢ be the

shifted function, well defined for ky <7 <n — k, and define

~

¢(T7 ﬁ) = Eﬂf(r,ﬁ),@ (¢) N (432)
Corollary 4.2.2. [t holds

n—ky . 1
lim %i_%;la(%) 0:¢(r,p) — /0 G(2)p(r(x,t), B(z))dz| frdvs = 0.
(4.33)

4.3 Non-equilibrium thermodynamics

We collect in this section some interesting consequences of the main theorem for
the non-equilibrium thermodynamics of this system. All statements contained
in this section can be proven rigorously, except for one that will require more
investigation in the future. The aim is to build a non equilibrium thermodynamics
in the spirit of [12, 11]. The equilibrium version of these results has been already

proven in [54].
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As we already mentioned, stationary states of our dynamics are not given by
Gibbs measures if a gradient in the temperature profile is present, but they are still

characterized by the tension 7 applied. We denote these stationary distributions

n
S8,T

as non-equilibrium stationary states (NESS). Let us denote the density of

the stationary distribution with respect to v4.

It is easy to see that
/V/(n-) e Vg =T, i=1,...,n. (4.34)
In fact, since / Pifss v = 0 and
n2Lpi = V' (riga) = V'(r)) —ypi, i=1,...,n—1,
n 2Ly =1 = V'(rn) = ypn,
we have
0= [V lriss) = V) v = [ (7= Vi) 1205

By the main theorem 4.2.1, there exists a stationary profile of stretch 74, ,(y) =

t(7, 5(y)) (defined by (4.13)) such that for any continuous test function G:

" dyg =0, (4.35)

SS,T

lim
n—oo

% ; G (%) - /0 ()1, (2)da

In order to study the transition from one stationary state to another with
different tension, we start the system at time 0 with a stationary state with
tension 7y, and we change tension with time, setting 7(t) = 7 for ¢ > ¢;. The
distribution of the system will eventually converge to a stationary state with
tension 71. Let r(z,t) be the solution of the macroscopic equation (4.19) starting

with r(x) = 757, (z). Clearly r(z,t) = r1(x) = resr (x), as t — 0.
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4.3.1 Excess Heat

The (normalized) total internal energy of the system is defined by

n 2

1 ;
n — — — i 4.
U, - ;1 <2 + V(r )) (4.36)
It evolves as:

Un(t) — Un(0) = W, (1) + Qn(t)

where

Wn(t)=/Ot%(s)npn(s)dsz/Otﬂs)dqn(S)

n

is the (normalized) work done by the force 7(s) up to time ¢, while

Q) =Y [ s (3 =57+ v [ s @37

is the total flux of energy between the system and the heat bath (divided by n).

As a consequence of theorem 4.2.1 we have that

lim W, (t) = /0 7(s)dL(s)

n—o0

1
where L(t) = / r(z,t)dz, the total macroscopic length at time ¢. While for the
0

energy difference we expect that

lim (U (t) — Un(0)) :/0 [w(r(r(z,t), 8(x)), B(x)) — ulm, B(x))] dz  (4.38)

n—oo

where u(T, 5) is the average energy for ug.,, i.e.

1 i
u(r, ) = / Erdpiy g = 5+ / V (r)e=BV ()=m)=6(r) g
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with G(7,3) = log/e_ﬁ(v(”_”)dr. Unfortunately (4.38) does not follow from
(4.33), since (4.31) is not satisfied. Consequently at the moment we do not have a
rigorous proof of (4.38). In the constant temperature profile case, treated in [54],
this limit can be computed rigorously thanks to the use on the relative entropy

method [84] that gives a better control on the local distribution of the energy.

Since 7(r(z,t), B(x)) — 71 as t — oo, it follows that

u(t(r(z,t),8(x)), B(x)) — u(m, B(x))

and the energy change will become

/0 (u(ry, B(x)) — u(ro, B(x))) dx = /o h T(s)dL(s)ds+ Q=W+ @Q (4.39)

where @ is the limit of (4.37), which is called ezcess heat. So equation (4.39) is the
expression of the first principle of thermodynamics in this ¢sothermal transfor-
mation between non—equilibrium stationary states. Here isothermal means that

the profile of temperature does not change in time during the transformation.

4.3.2 Free energy

Define the free energy associated to the macroscopic profile r(x,t):

F(t) = /0 F(r(z,t), B(z))dz. (4.40)

Correspondingly the free energy associated to the macroscopic stationary state
is:

Foulr) = / Fras(2), B(x))da (4.41)
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A straightforward calculation using (4.19) gives

t 1
F(O) = Fulm) =W 1" [ ds [ @rlrie. 9 p@)de (142
0 0
and after the time limit ¢ — oo

~ ~ +o0 1
Foulrr) = Fulro) =W — 4! / dt / (O (r(a. ), B(x)))* de

<Ww

(4.43)

i.e. Clausius inequality for NESS. Notice that in the case ; constant, this is just

the usual Clausius inequality (see [54]).

4.3.3 Quasi-static limit and reversible transformations

The thermodynamic transformation obtained above from the stationary state at
tension 75 to the one at tension 7 is an irreversible transformation, where the
work done on the system by the external force is strictly bigger than the change

in free energy.

In thermodynamics the quasi-static transformations are (vaguely) defined as
those processes where changes are so slow such that the system is in equulib-
rium at each instant of time. In the spirit of [12] and [54], these quasi static
transformations are precisely defined as a limiting process by rescaling the time
dependence of the driving tension 7 by a small parameter ¢, i.e. by choosing
7(et). Of course the right time scale at which the evolution appears is ¢~ 't and

the rescaled solution 7 (x,t) = r(z,e 't) satisfy the equation

( 0T (2, 1) = éﬁgT(fe(x,t),B(m)) for  xe€l0,1]

0 (7 (¢, 2), B(x)) oo = 0, T(F(t,2). B@))pr = 7(t), t>0 (444)

7(7(0,2), B(x)) =10, x €10,166
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By repeating the argument above, equation (4.43) became:

€ 1 i ' ~E 2
fss(Tl) - Fss(TO) =W - 5/0 dt/o (az‘T(T (ﬁ,t),ﬁ(l‘))) dx (445)

By the same argument used in [54] for § constant, it can be proven that the
last term on the right hand side of (4.45) converges to 0 as ¢ — 0, and that
7 (7 (2,t), B(z)) — 7(t) for almost any = € [0,1] and ¢ > 0. Consequently in the

quasi-static limit we have the Clausius equality

‘FSS(Tl) - fss(TO) =W

This implies the following equality for the heat in the quasi-static limit:

Q= /0 BHx) (S(res(z, 71), tss (2, 71)) — S(rss(w,70), Uss(2,70))) dr (4.46)

analogous of the equilibrium equality @) = TAS.

In [53] a direct quasi-static limit is obtained form the microscopic dynamics
without passing through the macroscopic equation (4.19), by choosing a driving

tension 7 that changes at a slower time scale.

4.4 Entropy and hypercoercive bounds

In this section we prove the bounds on the relative entropy and the different
Fisher information that we need in the proof of the hydrodynamic limit in section
section 4.5. These bounds provide a quantitative information on the closeness of

the local distributions of the particles to some equilibrium measure.

In order to shorten formulas, we introduce here some vectorial notation. Given
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two vectors u = (u1,...,u,),v = (v1,...,0,), define
n n—1
uOUv = Zﬁ;luivi, UGV = Zﬁ;luwi, [ul? = ueu, |u|é = uGu.
i=1 i=1

We also use the notations

0y = (Opr-- s 0p) O = (0,0, O = Bip;— Oy,

(4.47)
Oy = (Ogys -, 0q,)s Oy = Or; — Orpyyy  Og = O,
Observe that with this notations we can write
S, = —8; © 0O, A =p-0,—0,V-0,+ 70, (4.48)

where V = Z V(r;) and the - denotes the usual scalar product in R". Then we

define the following Fisher informations forms on a probability density distribu-

tion (with respect to v.):

O, f |2 - Opf 12
oup = [Pelba, pun= [ %dvﬁ

f
g fI2

D, (f) = / %dw (4.49)
Opf + 0y f 2 . D, f®0

nin = [P, )y 2 [ A0 4y, 2

Proposition 4.4.1. Let f[' the solution of the forward equation (4.22). Then

there exist a constant C such that
¢ C t C
mw<on [ oumas<t o [ogmas<S @)
0 0

Proof. Taking the time derivative of the entropy we obtain:

d

(1) = / (L7D)* f1 log fldvg, (4.51)
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So that, using (4.23), we have

GHalt) = [ Lo frdvy = [ A0 favy D1
n—1
== VB [ Vi + 26,70 [ pufidv - D)
=1
(4.52)

n

Recall that ¢, = Z r;, then the time integral of the second term on the RHS of
i=1

(4.52) gives

o | s 7(s) [potzavs =5, | s tf(s) [ £z, -
= ur(t) [ aufidvs = 57(0) [ aufidvs =6, [ ds 7o) [z,

By the entropy inequality, for any a; > 0, using the first of the conditions (4.1),

/‘Qn|f dvg, < ilog/ elanldyg +— ! H ) < —log/He“”“'duﬁ + —H,(s)
< i Zlog/ (e™" + e~ dug, + lHn(s)

T P o

1 1 1
= — (G(a1, ) + G(—a, ;) — 2G(0, B)) + a_lH”(s) <nC(a1, B) + a_lH”<S)

a
L

(4.54)

We apply (4.54) to the three terms of the RHS of (4.53). So after this time

integration we can estimate, for any a; > 0,

[ s w0 s | < B () 0+ [ gy

Fn(2+ 1)B(1)K-Clay, B)
(4.55)

n*B(1)
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where K- = sup (|7(s)| + |7(9)]).

s>0

By integration by part and Schwarz inequality, for any as > 0 we have

= nz_: gﬂ/én /V/ Terl 8 ft dVB

1 = nﬁ /n / 2 rn a2n2 NP ([ £n
2_2 V' (rig1) fitdvg + ——DE(f}")
=1

n > VaBi/n) [ Viripifdv,

2

By our assumptions on 5(-) and assumption (4.3) on V', we have that for some

constant Cz > 0 depending on (-) and V/,

n—1 . n—1 n
Vi 2 /
( 5;1/71)) 14 (ri+1)2 < Cﬁ Z 174 (ri+1)2 < Cﬁcl Z (V(rl) —+ 1) (456)

i=1 . i=1 =1

By the entropy inequality, for any 0 such that 0 < ¢ < inf 5(y), there exists a
y
finite constant Cs g depending on V. d and S(-) such that:

. 1 n 1
> [ Vi < Slos / ST VO gy gﬂn@)
=1

52 G(0,8,)) + <>sca,g‘n+§ﬂn<t>

(4.57)

At this point we have obtained the following inequality, for some constant C'

not depending on n,

Ho(t) — Ho0) < —n? (7~ 2 /D”f" ( ‘ )/H

—(H (t) + Hn(0)) + nc(ay, az, 6,7, 5.).

a1

70 (4.58)




As a consequence, choosing ay = v and a; = 25(1) K-, we have
t t
H,(t) < 3H,(0) + C"/ H,(s)ds + cn — n27/ DE(fM)ds (4.59)
0 0

where C' and c¢ are constants independent of n. Given the initial bound on
H,(0) < ¢n, by Gronwall inequality we have for some ¢ independent on n:

H,(t) < "e'n. (4.60)

Inserting this in (4.59) we obtain, for some C' independent of n,

: é
v [ Prmas< (4.61)

The bound (4.61) gives only information about the distribution of the veloci-

ties. We also need a bound of the distribution of the positions.

In appendix D we prove that, as a consequence of (4.61), we have

I,(t) <

' wso (4.62)
n

Consequently

0uf1 OO f"

dvg.
fr g

Dﬂﬁ%zldﬁﬁ—ﬁﬂﬁﬁ—2/

c = O [ OO, 1
< — —DE(f" _Q/Md,/.
C N (£ N (£ 1 T rn
that gives
r(rn B n 2C
DI (f") <2D2(f) + —
Since we have already the bound (4.61), (4.50) follows. O

71



4.5 Characterization of the limit points

Now we investigate the hydrodynamic behavior of our model. Let us define the

empirical measure

7' (dx) Zn i /n(dx).

We also use the following notation, for a given smooth function G : [0, 1] — R,

Computing the time derivative we have:
.0~ ) = [ 236 (L) eon (4.63)
Ty, o, G) = o L :

Since

C:,(t)ri :n2(pi_pi—1>7 1= 17"'7”7 Po :07

after performing a summation by parts, we obtain

Lr (G Zv G( ) (t) + np. (H)G(1), (4.64)

where V,,G is defined by (4.24). We define also

o) o fo(5) ()] o
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Now observe that
i "Zl V.G 1 . — l G(1)
22 VeGP

# VG (£) (Vi) = Vi) = 6 (1) (70 = V()

n—1 .
2
i=1

n—1

0
——7) V.G (5> pi + ynpnG(1)

=1

n—1
n—1

- % Z ViV,G (%) V'(rip1) + VaG ( - ) V'(rn) = VoG (%) Vi(ry)

—nG (1) (7(t) = V'(ra))

(4.65)

Recall that, by the weak formulation of the macroscopic equation, cf. (4.19), it
is enough to consider test functions G such that G(1) = 0 and G'(0) = 0. This
takes care of the last term on the RHS of the above expression and in (4.64), and

putting these two expression together and dividing by v, we obtain

_ 1 ? n—1
7(t) /.- _ R vi: v 1. | /
L0, G) = 3 (-39 (n) Vi(rir) =7 VG < - ) Vi(r,)
1 1 = i
-1 - / 7(t) § _ .
+y VnG <n) \%4 (7“1) + ‘Cn 7n2 2 VnG <7’L> pz]

(4.66)

It is easy to show, by using the entropy inequality, that the last two terms are
1

negligible. In fact, since G'(0) = 0 we have that |V, G (—> | < Cgn~'. Further-
n

more

/6aV’(r)|—61V(T)dr < 400 Yo > 0.
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Then, using the entropy inequality we have for any a > 0:
Ca
Pdvg < — [ |V (ry)|fldv
fs B = ny /’ ( 1)|fs B.

[l () ve
C. Clo) , C

< =< ealvl(”)ldyg + &Hn(s) < ——+
nyo o n a

(4.67)

that goes to 0 after taking the limit as n — oo then o — co. About the last term

of the RHS in (4.66), after time integration we have to estimate

1 n—1
[

for s = 0,¢. By similar use of the entropy inequality it follows that this term also

1
n

disappears when n — oo.

To deal with the second term of the RHS of (4.66), we need the following

lemma:

Lemma 4.5.1.

) =0 (4.68)
Proof. Observe that

- 1 T(s ]' T(s
V/(rn) - T($> = _ﬁﬁ ( )pn — VPn = _ﬁﬁ ( )(pn + VQH) (4'69)

Then after time integration:

/0 (V'(ra(s)) — 7(s)) ds = iz (Pa(0) = pu(t)) — 5 (au(t) — 4 (0)) + 273571

n n?

wy(1).

It is easy to show that, using similar estimate as (4.53) and (4.54), the ex-
pectation of the absolute value of the right hand side of the above expression

converges to 0 as n — oo. [
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It follows that

Jim E ( /Ot <an (” . 1) V(i (s)) — G’(l)i—(s)) ds

We are finally left to deal with the first term of the RHS of (4.66). We will

) = 0. (4.70)

proceed as in [37]. For any € > 0 define

_ 1 ,
Tie = ST Z T, ne <i<n(l—e). (4.71)

lj—i|<ne

We first prove that the boundary terms are negligible:

Lemma 4.5.2.

¢ 1 [ne] [n—1] .
lim ILm//— o+ > (=V:iV,)G (1) V'(riza)| fdvs ds =0
€ n—oo J n o i fn(1—e)]+1 n
(4.72)

Proof. For simplicity of notation let us estimate just one side. Since our condi-
tions on V imply that |V'(r)| < Cy|r| + Cp, we only need to prove that for any

t>0:

[ne]
o 1 n
gt [ 53 I 7 oy 0 )

By the entropy inequality we have:

[ne] [ne

]
/lz |ral fi* dvg. < Llog/ el dyg + H,(t)
(L nao 11 "
1 [ne] .
< @ Z (g(Oéa Bz) + g(—a’ Bz) _ Qg(o’ Bz)) + E

1=2

Since G(a, B;) + G(—a, B;) — 2G(0, ;) < C'a?, for a constant C’ independent on

1, we have
[ne]

1 C

18 g < €

n i—2 (0]
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and by choosing a = e~1/? (4.73) follows. O

We are only left to show that

t 1 [n(lfs)] .
e=0n—o0 J, n i= a1 n

(4.74)

Thanks to the bound (4.50), we are now in the same position as in the proof of the
over-damped dynamics, as considered in [37], and by using similar argument as
used there (the so called one-block/two blocks) (4.74) follows. A slight difference
is due to the dependence of 7 on [;, but since this changes very slowly and
smoothly in space it is easy to consider microscopic blocks of size k with constant

temperature inside.

At this point the proof of theorem 4.2.1 follows by standard arguments. Let
Q. the probability distribution of 7" on C([0,T], M([0,1]), where M([0,1]) are
the signed measures on [0, 1]. In appendix B we prove that the sequence @, is
compact. Then, by the above results any limit point ) of (),, is concentrated on

absolutely continuous measures with densities 7(y, t) such that for any 0 <t < T,

EQ( /01 G(y) (F(y,t) — 7(y,0)) dy
o [Las [ 6wt sonis - ¢ e | <o

(4.75)

Furthermore in appendix A we prove that () is concentrated on densities that

satisfy the regularity condition to have uniqueness of the solution of the equation.
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4.6 Appendix A: Proof of the regularity bound
4.20

Proposition 4.6.1. There exists a finite constant C' such that for any limit point
distribution () we have the bound:

E® (/Ot ds/o1 dx (&CT(T(S,:E),/B(:p)))Q) <C. (4.76)

Proof. Tt is enough to prove that for any function F' € C*([0, 1]) such that F(0) =
0 the following inequality holds:

EQ (/Ot ds [/01 doF (2)7 (7 (s, 7), B(x)) — F(1)f(s)D <c (/01 F(x)2d:c)1/2.
In fact by a duality argument, since 7(#(s, 1), 3(1))

/0 dz (9,7(7(s, 2), B(2)))

sup fol deF'(x)7(7(s,x), B(z)) — F(l)?’(s).

Feci([0,1]) fol F(x)%dx

Observe that (4.77) corresponds to a choice of test functions G(z) in (4.19) such
that G’ = F. In order to obtain (4.77), compute

n

LU F /)t aa) = Y F/m) Al

=1
n—1

=Y F(i/n) (V'(rin) = V'(r;)) + F(1) (F = V(1))

=1

— % Z VF(in)V' (5 + F(1)7 — F(1/n)V'(r)



and after time integration and averaging over trajectories we have
1 g N n n
oz [ o Fm a0 = £
i=1
t 1 n t
_ / ds / LS VLR )V ) frdvs + F(1) / #(s) ds (4.78)
0 "= 0
t
—F(l/n)/ ds/V’(rl)f;ldl/B,
0

It is easy to see that, since F'(0) = 0 and differentiable, the last term of the right

hand side is negligible as n — oo, by the same argument used in (4.67).

About the first term on the RHS of (4.78), by the results of section 4.5, it

converges,upon extracting subsequences, to

_E9 ( /0 s /0 1 dxF'(x)‘r(r(s,x),B(x))) .

About the left hand side of (4.78), one can see easily that
1 - . n n
E/ZF(Z/n)pz(ft —Jo )d’/ﬁao-
i=1

Using the inequality Z ¢ <n? Z r?, we can bound the other term of the LHS

of (4.78) by observing that, for s = 0, t,

n n 1/2 9 1/2
% / ZF(i/n)%f:duﬁ. <7 (% > F(i/n)Q) ( / % > % fsnd,,B)
n 1/2 n 1/2 n 1/2
<7 (% Z F(i/n>2) ( / % Z r?f;‘dvﬁ) < Cy (% Z F(i/n)2> ,

Since F' is a continuous function on [0,1] the rhs of the above expression is
bounded in n and converges to the L? norm of F as n — oo. Thus (4.77)

follows. O
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4.7 Appendix B: Compactness

We prove in this section that the sequence of probability distributions @, on
C([0,t], M) induced by m, is tight. Here M is the space of the signed measures
on [0, 1] endowed by the weak convergence topology. This tightness is consequence

of the following statement.

Proposition 4.7.1. For any function G € C'([0,1]) such that G(1) = 0, G'(0) =

0 and any € > 0 we have

lim lim sup P+ [ sup (mn(t), G) — (mn(s),G)| > 6] =0 (4.79)

=0 nooo 0<s<t<T,|s—t|<8

Proof. By doing similar calculations as done in section 4.5 (see (4.64) and follow-

ing ones)
t n—1 i
<mp(t),G > — < m,(s),G >= —/S duilenG (ﬁ) pi(u)

/ du%; V'Y ( > V(11 (u)) — /: du%VnG (” - 1) V(1))
+ / du%VnG (%) V/(r1(w)) + # nzf V.G (%) (0i(t) — pi(s))

1=2

. %Z BV, (5) (wilt) = wi(s))

= 11(s,t) + Is(s,t) + I3(s,t) + I4(s,t) + I5(s, )

ol 1
We treat the corresponding 5 terms separately. The term I3 = / du—V,G (—) V' (r1(u))
s g n
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is the easiest to estimate, since G'(0) = 0, and using Schwarz inequality we have

sip (sl < sup / V(s (1))

0<s<t<T,|s—t|<8 0<s<t<T,|s—t|<s VY

< sup —t— 1/2(/ V' (r1(u ]du)
0<s<t<T,|s—t|<d 717

< ([ W)

Since, by entropy inequality,

(/OT |V’(r1(u))|2du) 1/2] < UOTE (IV'(r1(w)]?) du}

. . 1/2
/0 E (Z(V(n(u)) + 1)) du

< OTV2p\/?
i=1

/2

1/2
E

<C

so that
051/2T1/2

,ynl/z n—so0

E sup |I3(s,t)]

0<s<t<T,|s—t|<é

<

About I, this is equal to

—%an (” - 1) /: du (V' (1 (1)) — f(u))—%an (” - 1) /: dur(u) (4.80)

n n

The second term of the above expression is trivially bounded by C' since |t —s| <

9. For the first term on the right hand side of (4.80), by (4.69), we have

[ vt - ) - Pols) —pulf) [ pwdu+ VBT (1) — wa(s))

n n

The last term of the right hand side of the above is estimated by the standard

modulus of continuity of the Wiener process w,,. For the second term of the right
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hand side, this is bounded by

E sup v

0<s<t<T,|s—t|<d

<70 UOTE(pi(u))du}

/St pn(u)du

1/2

T
< Ol { / / By, frdvs du+ TS

< Cyot/? [( /0 ' / pifgduﬁ,du) ( / / af’"f /) duﬂ‘du>l/2+Tﬁgl_

where the last inequality is justified by the inequalities:

/pif:jdu. <Cn

/0 /(ap}f”) dydu<%

To deal with the first term we have to prove that

i & sup 1 (0)]) =0

n—o0 0<t<T N

Since

t
= @ [ () Vi)
1/t 2
+\/2751;1—/ e " (t_")dwn(u)
n Jo

The stochastic integral is easy to estimate by Doob’s inequality:

N\ or
sup < —
0<t<T n

MT/ wn ()

o[ "B (0) — B du + 7B
0 i

(/ Tpi<u>du) 1/2]

-1/2

-1/2

1/2

< 0,761/2

(4.81)

(4.82)



About the second term, by Schwarz inequality we have that

E sup
0<t<T

/0 e [F () — V' (1 (w)] du

< —= ([ B (r@ - VieaP) ar)

and by the entropy bound we have

1/2

E ([7(w) = V/(ra(w))*) < Cn

so that this term goes to zero like n~%/2. The first term in (4.82) is trivial to

estimate. This conclude the estimate of I5.

The estimation of I, is similar to the proof of (4.81), but require a little extra
work. We need to prove that

lim E sup =0. (4.83)

n—oo OStST

n—1 .

1 7

3 E V,.G (E) pi(t)
i=2

By the evolution equations we have
-1

o A

=2

+/0’*d8 ) i (%) V(ri())

=3

+/Otds e s (v G (1) V'(ra(s)) = VG (E) V’(rz(s)))

and all these terms can be estimated as in the proof of (4.81), so that (4.83)

follows.

Also I5 can be easily estimated by Doob inequality and using the independence

of w;(t).
Finally estimating I;, notice that since G is a smooth function, it can be
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bounded by

C t n—1 /
sup |I1(s,t)] < — sup / duz |V (rie1(uw))
i=2

0<s<t<T,|s—t|<§ VT 0<s<t<T,|s—t|<d J s
_ase - 1/2 (4.84)
< = > V' (riga(u)Pdu

and, by entropy inequality

1/2 T  n—1 1/2
(/ Z [V (riga(u))] du> < [/0 %ZE (|V,(Ti+1(u))|2> du] <C,

so that the expression in (4.84) is negligible in the limit § — 0. O

4.8 Appendix C: Uniqueness of weak solutions

Proposition 4.8.1. The weak solution of (4.19) is unique in the class of function

such that

/0 ds/o (0,7 (r(z, s), B(x)))? de < +o0 (4.85)

Proof. Let g(z) > 0 a smooth function with compact support contained in
[—1/4,1/4] such that /g(y)dy = 1. Then for A > 0 large enough, define the
R

function

Gily,z)=1— /y Ag(A(z — x))dz

Then for 1/(4\) < x <1—1/(4X), we have G»(0,2z) = 0 and 9,G(1,z) = 0, and
it can be used as test function in (4.19). So if r(z,t) is a solution in the given

class, we have

/0 Gy, ) (r(y,t) —ro(y)) dx = 7‘1/0 ds UO Ag(My — 2))0,7(r(y,s), B(y))dy| -
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Letting A — 400 we obtain:

/0 (1) — roly)) da = 4 / ds0,7(r(z, ), 5(z), V€ (0,1).

Let r(z,t),m2(x, t) two solutions in the class considered, and define

Ry(a,1) = / i tdy, =12
0

By the approximation argument done at the beginning of the proof, we have that
OiR;(x,t) =y~ 0,7 (ry (2, 5), B())

for every z € (0,1) and ¢ > 0.
Since 7(r;(1,1), (1)) = 7(t), and since 7(r, 3) is a strictly increasing function

of r,

d 1
1 (R1<I7t) - R2<x7t))2 dzx
dt J,

= 271/0 (Rl(xat) - RQ(x>t)) ax (7’(7“1<.1',t),5(x)) - T(TQ(xat)vﬂ(x))) dx

— 2y / (r1(,1) = ol ) (r(ri(2, 1), B(x)) — 7(ra(a, ), B(x))) da < 0.

4.9 Appendix D: proof of the entropic hypocoer-
cive bound (4.16)

We will prove in this appendix that there exists constants A > 0 and C' > 0

independent of n such that

%]n(f) < —Mn*L,(f) + Cn. (4.86)
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We will use the following commutation relations:

[apia 63_18;]] = 6i,j7 [apm A;] = 8%‘7 [8%7 A;] = _(a(?V a}?)Z

where 07V is the corresponding hessian matrix of V = Z V(ry).

i=1

Denote g, = 4/ f{* and observe that

I(g7) = 4/ (105901 + 10492 + 2 0,9:00,9:) dvg.

Recall that

n*Ar* = —n’ A7 + B
where .
B = —n Y VuB(i/m)piV'(rier) + 0*B(1par
=1

Consequently g; solves the equation:

_ 0, 0|2 1
Org = —n A g, + n*yS,g: + n2v|pgi|® 55n
t

+ —B%(t)gt

(4.87)

(4.88)

(4.89)

We then compute the time derivative of I,,(g7) by considering the three terms

separately. The first one gives:

d . _
pr / |8pgt|% dvg. = — an/apgtcaap(AT(t)gt) dvg.

- 27127/81097&@81)(8; © Opgt) dvg.

. 0,0
+2n27J 0p9:©0, (’ pgt‘®> dvg
] gt

(4.90)



By the commutation relations (4.87), and using (4.89), the first term on the RHS
of (4.90) is equal to

—an/apgt@)@qgt dvg. — 2n2/8pgt(7)¢47(t)8pgt dvg.

= —2n2/8pgt®8qgt dvg. — /8pgt®BZL(t)8pgt dvg.

Then the RHS of (4.90) is equal to

- 2n2/8pgt®8qgt dvg. — 2n2’y/8pgt®8p(8; © Opgt) dvg.

- 0, q;|? N _
+2n27/8pgt®8p (| p5t|®) dvg. +/gtapgt®apB;(t) dvg..

t

The last term of the above equation is equal to
n—1 i
/gt(?pgt@@an dl/ﬁ. = —n/gtZﬁ[lvnﬁ(ﬁ)w(mﬂ)@pigt dV/B. (491>
i=1

Notice that the term involving n*7p, does not appear in the above expression,
because the particular definition of ®. For any a; > 0, using Schwarz inequality,

(4.56) and (4.57), (4.91) is bounded by

1 2ni1 (Vnﬂ<%>>2 / 2 05177,2 9
E/gt ;TV (riv1)” dvg. + 5 /|0pgt|® dvg.

Cn  agn? 9
Sa—l‘i‘ 7 /‘8pgt|® dvg.

for a constant C' depending on (. and the initial entropy, but independent of n.

Computing the second term of the RHS of (4.90) we have:

n—1
/5’pgt®8p(8; © Opgr) dvg. = /Zﬁjlwpapjg\é dvg. + / |8pg% dvg.
j=1

n n—1

- /Zzﬁj_ggi_l(apiapjg)2 dvg. +/|8pg|é dvg.

i=1 j=1



About the third term on the RHS:

|3p9t|é> 23 L B Op.9t OpOp, 9t 105913105913,

9,00 (
I gt gt 9152

Summing all together we have obtained
d 2 2 ~ 2 aq 2
7 0p9:15 dvg. = —2n° | 0,9:©0,9; dvg. —n (27 - 7) 1095 dvg.

n—1 n
C
_2n 7/225 15 apigtapjgt) dyﬁ + _n

J=1 =1 a1

(4.92)

Now we deal with the derivative of the second term:

G [ 10wl dva =207 [ 0,950,4700) vy — 20y [ 0,060,0; © 9y0.) dva
9 |ap9t|<2a ~
+2n2y 0,9:®0, m dvg. + | 0y0:©0,(Bngt) dvg.
n—1 n
= —2n’ / 039100y (A7 g,) dvg. — 2n*y / BB (95,00, 9 — 97 0 905,9)” dvs.
7j=1 =1

+/8qgt®aq(Bngt) dvg..
(4.93)

The first and the last term give:

‘2"2/ 050, (A™0gy) dus. + / 049100, (Bags) v

= 2n? /8qgt® (02V0,) g1 dvg. + /gtaqgt@a B, dvg.
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The last term on the RHS of the above expression is equal to
/gtaqgt@)@an dvg.
n—1 i
=3 [ 5 atona) |9 () Visn s (5
1
b [ 600009095 (3 ) V0l

) Vo | do

Since V" and V,, 8 are bounded and (3(-) is positive bounded away from 0, this
last quantity is bounded for any as > 0 by

2&2/]8qgt%dyg. + C’a21/2pfgfdyg. < n2042/]8qgt%dl/g. +C'ay'n
i=1

Since V" is bounded, for any az > 0 we have

‘V”|2

2n2/8qgt®(821}@p)gt dvg. < a3n2/|8qgt|é dvg. + —=— /|8pgt|® dvg.

Putting all the terms together, the time derivative of the second term is bounded

by

d 2 2 2 Cn2 9
gt [ 1wl dvs. < (0o + as)i? [ oggilt dvs + == [ 10l dvs
— (4.94)
—2n 7/225 B (0,09 — 97 0p904,9)° dvs. + Clag'n

7j=1 =1

About the derivative of the third term, using the third of the commutation
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relations (4.87), gives

d ~ - -
EQ/aqthapgthB- = _2n2/ [aq(AT(t)gt)Qapgt + aq9t®6p<AT(t)9t>] dvg.
= [ [0u(Baa) 000+ 0,050, (Bag)] dvs

_Zn%/ [8qgt®8p(8; © Opgt) + 0g(05 © 8pgt)®8pgt] dvg.

. 0,0:|? 0,012\ -
+2n2'y/ [aqgt(D@p (| pggt|®) + 0, (—| p5t|®) ®0pgt] dvg.
t t

= 2n? /(8§V8p)gt®0pgtduﬂ - 2n2/ |049:|% dvs.

1 - -
+§ /gt [8an®8pgt + aqthaan] dl/ﬂ,

n—1 n
—anty [ 3306755 [(20,9) (910,,9)] v
j=1 i=1
n—1 n
—|—2n27/z Z 2&;15;19;1 [(apiapjg)(apigt)(a%gt) + (a(IjaPig) (apjgt>(apigt>] dvg.
j=1 i=1
n—1 n
iy [0S0 A 00070, 00O
j=1 i=1
(4.95)
The last three terms of the RHS of the (4.95) can be written as
n—1 n
—4n27/z Zﬁz_lﬁj_l [(amaqy'gt - gt_lapigta‘bgt) (apiapjgt - gt_lapigtapfgt)} dyﬂ'
j=1 i=1

so they combine with the corresponding terms coming from the time derivative

of the first two terms of I,, giving an exact square.

The second term of (4.95), by the same arguments used before, can be bounded

by

n2a4/ |8qgt%dug. + nas / |8pgt|édug. +Cn(agt +azt)
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About the first term of (4.95), since V" is bounded, it is bounded by V. n? / |0pg¢| % dv..

Putting all these bounds together we obtain that

d .
Ejn(ft) < —n2/<ap/ 0,903 dvs. — n2/<aq/ |0y9:| % dvs. — 2n2/8pgt®3qgtdyg. +Cn

n—1 n
_2N27/Z Zﬂ:lﬁj_l [(6pia(Ijgt - gt_l@pigtaqjgt) + (apiapjgt - gt_lalngtapjgt)}2 dvg.

j=1 i=1

with

Kg=2— g — 3 —Qy

By choosing a4+ a3+ a4 < 1 we have obtained that for some constants C, Cy > 0

independent of n

d
() < =L (£) + Cin +Ca [ 10,2 dvs.

dt
t 04
2
/0 d3/|8pgs|®dl/ﬁ. < o

after time integration we have for some constant Cl:

By recalling 4.61

L) < e ) + 21— e

that implies

L.(fi) <

Cy
— 4.
. (4.96)

for any reasonable initial conditions such that I,,(fo) is finite and not growing too

fast with n.

Remark 4.9.1. An important example for understanding the meaning of a den-
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sity with small I, functional, consider the inhomogeneous Gibbs density:

n n—1
[ =exp <Z BiTiri + Z %Vn(ﬁm)p,) /N (4.97)
=1 =1

where N is a normalization constant. In the case of constant temperature these
densities play an important role in the relative entropy method (cf [76, 54]), as to
a non-constant profile of tension corresponds a profile of small damped velocities

averages. Computing I,, on f we have
n—1

L(f) = Z |:Bi7_i — Bit1Tit1 + %Vn(ﬂm) =0.

=1
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CEMRACS Project: Turbulent

Published as Diffusion limit of Langevin PDF models in weakly inhomogeneous
turbulence, C. Emako, V. Letizia, N. Petrova, R. Sainct, R.Duclous, O. Soulard,
ESAIM: PROCEEDINGS AND SURVEYS, January 2015, Vol. 48, p. 400-419.
Edited by N. Champagnat, T. Leliévre, A. Nouy.

5.1 Introduction

Since the early work of Pope [62], the so-called probability density function (PDF)
approach has proved to be an efficient tool for predicting turbulent flows. In this
approach, one derives and solves a modeled transport equation for the one-point

PDF of the fluctuating velocity field and, when necessary, of additional variables
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describing the state of the flow, such as concentration, temperature or density. In
the modeling process of the flow one-point statistics, closures must be applied to
the turbulent acceleration as well as to molecular diffusion terms. Most of these
closures yield a PDF transport equation of the Langevin type [62, 60, 61, 32]. In

this work, we will only focus on this class of models.

While mostly used to predict turbulent reactive flows, the PDF approach
has also demonstrated its utility for solving incompressible inert flows. In this
context, Langevin PDF models have been shown [60] to be connected to simpler
turbulent models which focus solely on the second-order one-point correlation
tensor of the velocity field, also called Reynolds stress tensor. These Reynolds
stress models (RSM) revert to the well known k& — ¢ model when turbulence is
isotropic. The PDF/RSM equivalence encompasses most physical processes at
work in incompressible flows, including production, non-linear redistribution and
dissipation effects. However, strong differences exist in the way both approaches

deal with the transport of the turbulent kinetic energy and of its anisotropy.

In RSM, turbulent transport is usually modeled by a gradient diffusion as-
sumption. Many variants of this closure exist, but most are found to yield similar
results in practical situations [85, 79]. In the PDF approach, the situation is
different. The advection term appearing in the Navier-Stokes equations does not
require any closure. In that sense, turbulent advection is often said to be treated
“exactly” or “without assumption” [80, 32]. However, such statements might be
somewhat misleading. Indeed, the overall process of turbulent transport is not
exact since the statistics of the velocity field are affected by the Langevin closures

used in the remaining parts of the PDF transport equation.

Thus, turbulent transport and Langevin closures are interacting in PDF mod-
els. This interaction is flow-dependent and cannot be made explicit in the general
case. Yet, when non-equilibrium /production effects become negligible, the PDF

equation is expected to degenerate and to yield a gradient diffusion formulation
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for the transport of Reynolds stresses. This is suggested by several works, for
instance [60, 38, 85|, which focus on triple velocity correlations and on their ex-
pression in the absence of production. As a consequence, in this diffusion limit,
a PDF/RSM equivalence should exist for the turbulent transport term. Then,
significant knowledge could be gained by comparing the two families of models,
just as it was done in the homogeneous case by Pope [60].

However, the diffusion limit of PDF models has never been looked at thor-
oughly. The precise conditions under which it occurs have not been explicited.
Besides, the influence of dissipation processes are usually discarded while they
are expected to play a significant role. Finally and more importantly, the study
of the diffusion limit has been limited to considerations on the sole triple velocity
correlations and not on the PDF itself.

Thus, the purpose of this work is to study the diffusion limit of PDF Langevin
models and to explicit the connection with RSM models in that particular case.
To this end, we consider a simplified setting in which diffusion and dissipation are
the only active physical mechanisms. Then, we look for an asymptotic expansion
of the Langevin PDF equation in terms of the ratio of the integral to the mean
gradient length. The relevance of this expansion is verified on several simulations.

Finally, its implications in terms of physical models are discussed.

5.2 Simplified Langevin PDF model applied to a
turbulent zone

Throughout this work, we will consider a canonical turbulent flow consisting in
a 1D slab of turbulence that decays and diffuses with time. This flow is sketched
in figure 5-1 and will be refered to as turbulent zone (TZ). The inhomogeneous
direction is denoted by x; and the length of the TZ by Lrz. Our interest lies in
finding the properties of the PDF f(u;z1,t) of the velocity field u = (uq, ug, u3)
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Figure 5-1: Sketch of a turbulent zone as studied in this work.

at point x; and time ¢ when modelled by the simplified Langevin model (SLM)
[62]. In the TZ configuration and with the SLM, the evolution of f is given by:

E + (9961 - _an 81’1 B Twu]' + 7€8ujuj

of of 0 {<8R1j Ci_ )fl Co_ O*f ’ (5.1)

where Cy and C; are model constants, R;; = w;u; is the Reynolds stress tensor, k
is the mean turbulent kinetic energy, @w is the mean dissipation frequency and
is the mean dissipation rate. The Reynolds stress tensor R;; and k are obtained

directly from the PDF by the relations:

1 1
k?(l’l,t) = §Ru(l’1,t) = §m($1,t) and Rij(fﬂl,t) = W([L’l,t> = / Uinf(u;ZL’l,t>du

R3
(5.2)
The dissipation rate and frequency are linked by the relation:
g t
B 1) = S0 (5.3)
k(xlv t)

An additional equation for the dissipation is required to close the system. As

in standard k — Z models, this equation is obtained by direct analogy with the
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equation of k. The evolution of & deduced from the PDF equation (5.1) is:

ok 0 — _
E + 8_%1 (Ulk) = —¢ (54)

The evolution of € is then set to:

0 0 Jp— _
ET + pr. (C.owk) =-C.,we (5.5)

where C. and C., are model constants and where u;k is the following triple velocity

correlation:

1
w;k = Euiupup

The values of the different constants appearing in the above equations are given

in table 5.1. These values are taken from the litterature |62, 60, 61, 32|.

C’0 C(1 CE CEQ
2
3Ci-1) 155 1 19

Table 5.1: Model constants

Note that Cy and C are not independent: in order to ensure that Z is the dis-
sipation rate of k one must have Cy = ;(Cl —1). As noted in [60], the value of
(' varies significantly in the litterature. It mostly depends on whether the SLM
is used to model both the non-linear redistribution of energy and the rapid con-
tribution of the pressure gradient, or whether it is associated with an additional
component modelling the rapid pressure part. In the former case, the value of Cy
is usually set to higher values, typically C; = 4.15. In the latter case, it is set to
lower values, typically C; = 1.8. In the absence of production, as in the TZ case
considered here, there is no rapid pressure term and both low and high values of

(' are acceptable.
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5.3 Weakly inhomogeneous limit and diffusion regime

5.3.1 Main assumption

Two main lengths characterize the turbulent field in the TZ configuration, the
integral length ¢ and the gradient length L. They are respectively defined as:

-1

f = — and L = [l%}

k Oz 1
The integral length ¢ is representative of the size of the turbulent eddies present
in the turbulent zone, while L measures the inhomogeneity of the turbulent field
and is expected to be roughly on the order of the turbulent zone size L.

We now make the assumption that the flow is weakly inhomogeneous, i.e. that

turbulent eddies are much smaller than L. More precisely, we assume that:

i
7~ <] (5.6)

Anticipating on a configuration where the PDF remains close to a Gaussian, this

assumption can be incorporated in the equation (5.1) and (5.5) as:

of of 0 ORy;, Ci_ Co_ O%f

3t + Cath 3x1 N 8Uj |:<€a 8I1 2 WU]> f:| + 2 88ujuj (57)
0e 0 _— _

E + Gaa—xl (OECL) ulk) = —052(,«} 9 (58)

5.3.2 Asymptotic expansion

We look for a solution of equations (5.7) and (5.8) in the form of an expansion

along the small parameter €,:

F=fO4efO 4@ (5.9)

g =20 4,20 4 22 4 .| (5.10)
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v
\t—‘

where we impose f J(u;z1,t)du = 1 and / fO(u;zy, t)du = 0,Vi
R3

without loss of generahty

The zero order of the expansion for f obeys a Fokker-Planck equation. Its
9_

asymptotic solution is an isotropic Gaussian of variance ¢ = gk(o). We will

assume that the time is large enough so that this asymptotic solution is reached.

Then, we have:

Uq

0) (4 __ex 2 270
f9a2q,t) = oty with 0% = 3k

Uy

where the zero order kinetic energy and its dissipation evolve according to:

8E(0) _ .0 H=(0) z(0) 2

ot T v

The variance uiuj(l) and Y obey an autonomous system of equations. Zero

being a particular solution of it, the choice we retain is
uiuj(l) =0 and 2" =0

With this condition, we obtain:

1
3C, +2C., — 6

f Ozaxlo u1< UilU;

0 - _
e o )f( ) with Cy, =

o2
As explained above, ) does not contribute to the Reynolds stresses (w;i; " = 0).
However, it yields the main contribution to the third order moments. From the

previous formula, one has:

)
amaY = —2C %ai (61205 + 61705 + 01057 (5.11)
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In particular, the flux of kinetic energy is given by:

2
W= 5¢, 00, (5.12)

uk
Y YW Oxy

The second order is not detailed here. It yields an anisotropic contribution to the
Reynolds stresses and an even contribution to the PDF, with a dependency on

the gradient of o* and on its Laplacian.

5.3.3 Main result: approximate PDF solution in the weakly

inhomogeneous regime

By collecting the main orders of the asymptotic expansion, we obtain that:

Fluyzy,t) {1 +\/2/5C, éi gf 21:/13 (5 - Zk;‘g)} e(m/;;://j (5.13)
where k is solution of a k — Z-like system:
_ L
% = 6%1 <Ck%§—fl> ~z (5.14)
% - 81 ((J Ckk_ <§; E%)) Wz (5.15)
with:
=00 _ 20

9 9(3C, + 2C., — 6)

To obtain these expressions, we used the relations ¢ = Ew/g and 0% = 2k/3. We

also injected relation (5.12) into the evolution equations (5.4)-(5.5) of k and E.

When C. = 1, as chosen in this study, the above k — Z system admits an

asymptotic self-similar solution, first found by Barenblatt & co-workers [3] and
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later by Cherfils & Harrison [19]. It is given by:

Rla,t) = Fo (1+42) 2 (1= [2/a0]®) (e, t) =80 (14 2) 7 (1= [/aw))
(5.16)
with A(t) = Ao (14 t/m)? and 8 = H (5.17)

The values of k and & at t = 0 and z; = 0 are related to the two free parameters

defining the initial length of the profile Ay and the initial turbulent time 7:

— —3/2
_ %o Ay = 1
T 1y 0 B(C-, — 1) % (5.18)

Equations (5.13)-(5.15), with their analytic solution (5.16)-(5.18), are the
main result of this work. They show that, in the weakly inhomogeneous regime,
the simplified Langevin PDF model behaves as a standard & — & model. In
particular, turbulent transport is given on first order by a diffusion term which
coefficient depends explicitely on two model constants: C; and C.,. The physical

implications of this finding will be discussed in section 5.5.

5.4 Numerical validation

In order to gain confidence in the solution derived in section 5.3.2, we would
like to provide, a posteriori, the numerical evidence that the derived PDF shapes
(5.13) are observed and correspond to the diffusion regime described by equations

(5.14)-(5.15). To do so, we use two different numerical solvers.

e The first one is a Eulerian Monte Carlo (EMC) solver and is applied to solve
equations (5.1) and (5.5). EMC methods have been introduced in |78, 71]
and have been extended to include the velocity field in [75].

e The second one is a direct deterministic solver based on finite volume ap-
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proximations and described in appendix 5.6. Given the high number of
dimensions of equation (5.1), the computational cost of a deterministic
method is too expensive. Hence, we decide to apply the deterministic
method to a simplified version of equations (5.1) and (5.5). This simplified

system is described in section 5.4.2.

5.4.1 FEulerian Monte Carlo simulations

First, we solve equations (5.1) and (5.5) with a Eulerian Monte Carlo (EMC)
solver. The parameters of the simulation are the following. The computational
domain [Zin, Tmaz] 18 set to [—80,80]. It is discretized with N, = 256 points.
The number of stochastic fields is set to Ny = 16000. The initial conditions are

set according to the expected solution (5.16):

=0k (1-[3])  ans-0-=(i-[z])

where we set the values Ay = 10 and ky = 1.5 and where the values of 7, and
o are given by formula (5.18). Two calculations are done: one with Cy = 4.15
and one with 7 = 1.8. For '} = 1.8, one has 7y = 2.0 and 5 = 0.84 and for
C7 = 4.15, one has 1 = 3.6 and gg = 0.47.

Self-similarity

In order to assess the self-similarity of the solution, we focus on the following

three parameters:

7. — — 3 f%(l’l,t)dl’l
kmaz(t) = gllgﬁé (k(a:l,t)) , Emaz(t) = 22}?{5 (E(xq,t)) and Ly = Vi —

The ratio E/ kmaz taken at different times is displayed on figure 5-2 as a function

of x1/Ly, and for two values of C;. It can be seen that the respective profiles of
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the two ratios fall approximately on a single curve. This indicates that & is close
to a self-similar state. Besides, the collapsed curves remain close to parabolas
as predicted by solution (5.14)-(5.15). The main difference with this solution
occurs at the edges of the turbulent zone : while equations (5.14)-(5.15) predict
a compact support for k, the simulation yields a non-compact one. While not

displayed here, the same conclusions also apply to €.

k/k_max
k/k_max

x/L_k x/L_k

Figure 5-2: k/kpae as a function of x1/Ly at different times from ¢/t = 0.3 to
t/to =95

We now consider the time evolutions of the three parameters ke, Emaz a0d
L; and compare them against their predicted values given by the self-similar
solution (5.14)-(5.15). To this end, we introduce the three ratios Ry, R. and Ry,
defined by:

Emaa: gmaz Lk
Ao (14 t/x)°

Rk = = _ ) RE = — s RL =
k() (1 +t/7_0) 2423 gO (1 +t/7'0> 3428
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If the self-similar solution (5.14)-(5.15) applies, then Ry, R. and Ry should be-
come independent of time. Besides, given that the initial condition was chosen
close to a self-similar solution, one should have R, = R, = R; ~ 1. A strict
equality is not expected since the initial is not fully coherent with the self-similar
state. In particular, the initial PDF is a Gaussian, whereas the self-similar PDF
deviates from Gaussianity.

The three ratios Ry, R. and Ry are displayed in figure 5-3. It can be seen
that they indeed remain approximately constant and stay close to one for the two

simulations respectively performed with C; = 1.8 and C; = 4.15. As a conclusion,
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Figure 5-3: Evolution of Ry, R. and R as a function of time.

the self-similar solution (5.14)-(5.15) appears to be in good agreement with the

simulation results.

Flux of kinetic energy

The existence and properties of the self-similar solution arise from the approx-
imation of the flux of kinetic energy given by formula (5.12). To check this

approximation, we introduce the non-dimensional flux :

F*(Jfl,t) = —
k

urk
3/2

mazx \/2,BCk(C€2 - 1)
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According to formula (5.12), F* should be equal to x1/Ly(1 — [21/L]?). The
comparison between the two functions is displayed in figure 5-4 at different times.
It can be seen that both simulation and prediction are in good agreement in the
central part of the mixing zone, from z1/L; € [—0.7,0.7]. Outside, the gradient
diffusion assumption ceases to be relevent: the predicted flux of kinetic energy
becomes much smaller than the simulated flux. This observation is consistent

with the one made on the non-compactness of the k — profiles observed in figure

9-2.

0.4

r 0.4 T
Simulation Simulation
Analytical solution = Analytical solution =
03 03

Fr

Figure 5-4: F™ as a function of x; /Ly, at different times from ¢/tg = 1 to t/tg = 5.

5.4.2 Deterministic finite volume simulations

The Eulerian Monte Carlo method has allowed to study some properties of the
second and third order moments of the velocity field. However, its intrisic noise

is too high to directly study the PDF. To circumvent this deficiency, we propose
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to use a deterministic solver.

Simplification of system (5.1)-(5.5)

As explained above, equations (5.1)-(5.5) have a high number of dimenions : 1 in
time and 4 in velocity and physical space. The computational cost of a determin-
istic method is too expensive so that we propose to simplify these equations in
order to reduce their dimensionality. More precisely, we focus on the the marginal

PDF f; of uy. By integrating equation (5.1) over us and ug, one obtains that f;

evolves as:
of1 ofs o |[ou: Ci_ Ci—1_, 82f
— =— - — * 5.19
ot U (91'1 8u1 8:61 2 wih fl 2 aulul ’ ( )
s 2_ D — . . .
where £° = §€ is the dissipation of w?. This equation is closed provided the

evolution of % is known in terms of the statistics of u;. This is not the case of
equation (5.5) which is related to k. Hence, we propose to simplify this equation.
Namely, we assume that the Reynolds stresses are strictly isotropic. Then, the
turbulent frequency can be related to u_% according to: w = E/E =z /u_% Besides,
we assume that Ta;; is also an isotropic tensor, which yields uk = 3u_i1”/ 2.
With these assumptions, one deduces from equation (5.5) the following simplified
evolution for £*:

Je* n i
ot 0n

<Caw u?) = —C.we (5.20)

Equations (5.19)-(5.20) are three dimensional and can be solved with the de-
terministic solver. They share the same properties as equations (5.1)-(5.5) but

present a slight variation in the weakly inhomogeneous limit. The limit of f; is,
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as expected, the integral of the limit of f (5.13) over uy and ug:

—u /(2u 1 o 2 2
filusan, t) = —— [ 1 i ( —2) . (5.21)

/902 2ot 2
2mug ujw uy

However, the value of 3 is not given by formula (5.11) but by:

— (9u
ud = —C et
U= " 0x

with Cy = 6C,. The notation C}, has been retained here because in the diffusion

limit, u2 and & obey a k — & like system similar to equations (5.14)-(5.15). The

solution of this system is then obtained directly from equations (5.16) by replacing

k by u? and by &*.

Set-up

The computational domain is defined by [Zin, Tmae] = [—30, 30] and [Umin, Umaz] =
[—6,6]. Tt is discretized with (n,, n,,) = 256 points and the time step is set to

dt = 2-1073. The initial conditions are set according to

? 2
u_%@bt:o) = ko (1— [il] ) + kmin , €(x1,t=0)=5 (1_ [7\1] )
° 0

where ko = 1 and Ay = 10 and where the values of 7, and g, are given by formula
(5.18). The additional parameter Kmin 1S s€t t0 Kpin = 1072, Tt is required because
Diracs cannot be represented in a deterministic method. They are here replaced
by a Gaussian with a variance sufficiently small for the PDF to approximate a
Dirac, and sufficiently large to obtain a numerical resolution of the PDF with a
reasonable number of velocity points.

The coefficients of the model are set such as C; = 2.73, in order to recover

Cy = 1.
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Comparison with analytical PDF solutions

For the TMZ configuration described in section 5.4.2, we first compare the diffu-
sion solution (5.16), and the numerical solution of the equations (5.19)-(5.20). In
the figures 5-5 and 5-6, we observe a good agreement between the numerical and
the analytical solutions, for the second and third moments of the PDF. More-
over, in figure 5-7, the self-similality of the solution is checked, with respect to
the quantities Ry, R, and Ry, (that are defined in section 5.4.1). This shows that
the PDF solution operates close to the diffusion regime, for which asymptotic

PDF solutions have been derived in section 5.3.2.

Then, we can legitimately analyse the anisotropic, odd part of the PDF, with
respect to the analytical one (denoted as e, f' in section 5.3.2). The comparison
between the numerical and analytical PDF is shown in figure 5-8, respectively
at the center and at the edge of the TMZ. At the end of the simulation, the
anisotropy of the PDF is greater at the edge than at the center of the TMZ. This
can be seen via the value of the small expansion parameter, which stabilizes at
€, = 5.107% at the center of the TMZ, and ¢, = 0.8 at the edge of the TMZ. The
validity range of the expansion is therefore not verified a posteriori at all points of
the domain. However the PDF shapes are qualitatively the same, and the TMZ
diffuses at the correct rate. This gives confidence in the asymptotic expansion

derived in section 5.3.2.

107



Figure 5-5: Turbulent kinetic energy from t¢/tq = 1 to t/ty = 5. Comparison
between Barenblatt analytical solution 3] and the numerical PDF solution.

Figure 5-6: Normalized third order moment from ¢/t = 1 to t/ty = 5. Compari-
son between Barenblatt analytical solution [3] and the numerical PDF solution.

Figure 5-7: Evolution of Ry, R., and R as a function of time.
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Numerical PDF solution ——
‘Analytical solution ——

I
04 | \

o2
(a) PDF at the TMZ center (b) PDF at the point where al is
x
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Figure 5-8: Even part of the PDF. Comparison bewteen the numerical PDF and
the solution obtained from the asymptotic development, at t/ty = 5.

5.5 Discussion and conclusions

In section 5.3, we showed that, in the weakly inhomogeneous limit, the simplified
Langevin PDF model gives rise to diffusion approximation for turbulent transport
and behaves as a standard k& —  model. In section 5.4, we performed numerical
simulations of a turbulent mixing zone and showed that the weakly inhomoge-
neous limit and the diffusion approximation were relevent to describe the diffusion

and decay of turbulence in this configuration.

These results raise a number of questions concerning the way turbulent trans-
port is effectively modelled in Langevin PDF models. First, the transport of
kinetic energy is given on first order by a gradient diffusion approximation. The
corresponding diffusion coefficient C}, is found to depend explicitely on two model
constants: C and C.,. We recall that the constant C., is set in order to repro-
duce the correct decay of kinetic energy in homogeneous isotropic turbulence. As
for the constant (', it is set in order to specify the decay of the anisotropy tensor
bij = Rij — 2k/30;; in homogeneous turbulence. Hence, one is faced with an ap-
parent contradiction : the coefficient controlling turbulent transport in Langevin

PDF methods is set by observations and reasonings made in homogeneous tur-
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bulence, which by definition is devoid of turbulent transport.

Second, the value of '} varies in the litterature and so does the value of the
diffusion coefficient Cj. For C; = 1.8, one has C}, = 0.7 and for C; = 4.15, one
has C), = 0.22. These values have to be compared with the usual value retained
in k —  models C,E_E = 0.15 — 0.22. Thus, if one wants to obtain results close
to a standard k —  model in the diffusion-dissipation regime, one should rather
choose a value of C'; = 4.15. However, as explained in section 5.2, higher values of
C are usually associated with simpler models discarding the rapid contribution
of the pressure gradient. For more realistic models, it is the value C; = 1.8 which
is relevant. Hence, one is left to choose between a value of C; that captures
correctly turbulent transport and a value that is compatible with the presence
of a rapid pressure model. In addition to the first comment, this second remark
tends to indicate that the definition of C} and the term it controls in the simplified
Langevin model is overloaded. It looks as if the C} term in equation (5.1) had
to represent two distinct physical mechanisms: return to isotropy and turbulent

transport.

Finally, a last remark must be made. While the Langevin PDF and k — &
models behave alike in the diffusion limit, there is still a fundamental difference

between the two. In the k—z model, the gradient diffusion term models turbulent
—2
S __
advection and also turbulent transport by the pressure: —C’,’:’Efﬁmik = w;k +
€

u;p. By contrast, in the simplified Langevin PDF model, pressure transport is

neglected. This can be seen in equation (5.4) where only the flux of k appears.

For the simplified Langevin model, one has: —Ckg&,h% = w;k. This relation
could be justified if 7;p was negligible. However, this is not the case. In isotropic
turbulence, one has exactly: up = —2/5u;k [52]. Therefore, an important part
of turbulent transport is missing in PDF models. Still, the fact that %;p and w;k

are proportional allows for an effective definition of Cj which accounts for the

missing term and give an overall correct transport in the diffusion regime. In
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that case, the value of u;k is overestimated by a factor 5/3 ~ 1.7.
All these remarks point to some deficiencies in the way turbulent transport
is represented in PDF models. We hope to adress some of these deficiencies in a

forthcoming paper.

5.6 Deterministic direct method

We propose here a Finite Volume numerical method to discretize the equation
(5.19), where the space, velocity fluctuation and time dimensions are discretized
to yield a unique value of the PDF fi(uy;x1,t). This numerical scheme should

allow to statisfy the following constraints:

filu;2e,t) >0, (5.22)

/Rfl(ul;fﬂl,t)dul = 1, (5.23)

/ulfl(ul;xl,t)dul = 0. (524)
R

To simplify notations, we will hereafter drop the index 1 from x; and f;.

We introduce a cartesian, uniform mesh, defined by the control volumes C; ; =
[azi,l/g,miﬂ/g} [uj,l/Q,ujH/g}, where (i,7) € I x J C N x Z. We define Ax and
Awv as the sizes of the space and velocity control volumes, respectively. x; = iAx
and u; = jAwv here refer to the cell centers, whereas ;112 = (i + 1/2)Ax and
ujr1/2 = (J + 1/2)Au refer to the volume control boundaries.

Let f; be an average approximation of the PDF on the control volume at time

t" =nAt,n € N,

n 1 n
fiy = AoAs /c” [z, u, ") dudz (5.25)

We start from the Finite Volume scheme originally derived in [29]. We recall the
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basic steps leading to its construction on the simplified advection equation

of , of _

o Tum=0,u>0, (5.26)

for the sake of simplicity. Its extension by symmetry to the negative velocity space
is straighforward. Its application to the right-hand side, velocity drift terms, in
equation (5.19), will be discussed herebelow.
First, a time explicit Euler scheme is employed to discretize the equation (5.26)
as

At

fin+1 =fi'+ UA_x (Fﬁu/z - Fin—l/Z) 5 (5.27)

where F; 5 = F(7i112,t") stands as a discrete conservative approximation of
f(z,t) on the boundary of the control volume [a:l-,l /2, Tig1 /2}. Second, following
[29], a second order MUSCL reconstruction technique (by primitive), leads to the

approximation

F(ZL‘, tn) = fln + €+% (f;j_l - fln) s Vr € [xi_1/2,$i+1/2] . (528)

The slope limiter €' is introduced in order to recover the maximum priciple

At
0 < fI" <||flloo under the CFL condition U < 1. Its expression, given by
T

(0 GE (= f7) (fF = fity) <0
¢+ — ) min (1, 21 /lloe = )) GE (fi = f1) <0 (5.29)

fn _
i it1
2fn
min (1, —— ] ,else
fr, —fr
\ 1+1 7

leads to a nonlinear expression for the numerical flux.

This approximation procedure can be further extended to evaluate the velocity

drift term in the right hand side of equation (5.19), which involves the velocity
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1,2
variance gradient e This drift term should balance with the advection term
x

in the left hand side of equation (5.19), in order to guarantee the zero mean ve-

locity conservation (5.24). At the discrete level, this requirement is met with a

2

re-definition of e as a function of the discrete, reconstructed, numerical flux
xr

obtained for the advection term (left hand side of equation (5.19))

" Fr.. _F" Fr . F"
o 27 i+1/2,5 i—1/2,j 4,j+1/2 4,j—1/2
= E u; AL Av/ <— E u;j T Afu) ,

i J J
(5.30)

ou?

O

which is the analogous of the continuous relation, obtained by integration by

o of aof
= /RdUU28_ZL‘ (—/Rduu%> . (5.31)

The chosen discrete definition (5.30) mimics the integration by part (5.31) re-

parts,

quired to satisty the zero mean velocity conservation (5.24), that is w = 0.
A similar procedure is now applied to the C; term in the right hand side of

equation (5.19), which is rewritten as

a <%wuf> -2 (%w (u— ) f> . (5.32)

An extension of the Finite Volume scheme (5.27)-(5.28)-(5.29) is employed here,
to the more general case where the fluxes depend on the drift variable w. This
dependance is treated with a conservative centered discretization of the velocity
variable in the flux uf. A discrete definition for u is required at this point
in (5.32). We introduce an approximation that satisfies the zero mean velocity

conservation in a discrete manner on the discrete analogous of the equation (5.32)
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E"

F " U WUiq 0™
ﬂ?: Zuj ,J+1/2AU z,gl/zAv/ (Zuy j+1/2 m+1/2AU j—1/2 z,]1/2Av> ’

: : (5.33)

which is the discrete analoguous of the continuous expression

E— duu //du— (uf)=0. (5.34)

We finally obtain un unsplit discretization for all the advection terms in equation
(5.19). The discrete analogous of the probability density conservation (5.23) is
satisfied if the slope limiters are not active for the advection term u% In this
case, we indeed obtain a centered discretization whatever the sign of the velocity
is. We accept a small deviation from the probability density conservation, where

the limiters are active to guarantee the maximum principle.

We now turn to the discretization of the Cy operator in the right hand side of
equation (5.19). This term is splitted and discretized with an centered, implicit
scheme, with net flux boundary conditions on the velocity space. This ensures
the respect of the conservations (5.23) and (5.24), at the discrete level. Moreover,
we obtain a M-matrix with a positive right hand side, leading to a positive PDF.
Finally, we remark that the splitting of the Cj operator is convenient in the sense
that it allows both the implicitation of this term and an easy implementation of
a parallelisation on the space dimension x with good expected scalability. We

have made use of the MPI parallelisation protocol to do so.
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Résumé

Cette thése réalisée sous la direction du
Professeur Stefano Olla, est consacrée a I'étude
des modéles microscopiques pour la derivation
de la conduction de la chaleur. Démontrer
rigoureusement une equation diffusive
macroscopique a partir d’'une description
microscopique du systéme est a aujourd’hui
encore une probleme ouvert. Le premier model
consideré est une systéme décrit par I'equation
de Schrodinger linéaire discrete (DLS) en dim 1,
perturbé par une dynamique stochastique
conservative. La phase de chaque particule
change mais la norme totale (ou le nombre de
particules) est conservée. La dynamique
résultante est une diffusion hypoelliptique
dégénérée qui converge vers un état stationnaire
régulier. On peut montrer que le systéme a un
limite hydrodynamique donné par la solution de
I'equation de la chaleur. Quand le systeme est
rattaché aux bords a deux reservoirs de
Langevin a deux différents potentiels chimiques,
on peut montrer que I'état stationnaire, dans la
limite vers l'infinie, satisfait la loi de Fourier. On
étudie une chaine des oscillateurs anharmonique
immergée en un reservoir de chaleur avec un
gradient de temperature. On exerce une tension,
variable dans le temps, a une des deux
extrémités de la chaine, et I'autre reste fixe. On
montre que sous un changement d’échelle
diffusive dans I'espace et dans le temps, la
distribution d’étirement de la chaine évolue selon
un equation diffusive non-lineaire. Les états
stationnaires de la dynamique sont
hors-équilibre et ils ont une production d’entropie
positive, donc les techniques classiques comme
le méthode de I'entropie relative ne peuvent pas
étre utilisés directement. On developpe des
estimations qui reposent sur I'hypocoercitivité
entropique.La limite macroscopique peut étre
utilisé pour modéliser les transformations
thermodynamique isothermiques entre états
stationnaire de

non-équilibre.

Mots Clés

Loi de Fourier, mécanique statistique,
thermodynamique hors équilibre ,
hypocoercitivité, limite hydrodynamique,
equation diffusive

Abstract

The object of research of this thesis is the
derivation of heat equation from the
underlying microscopic dynamics of the system.
Two main models have been studied: a
microscopic system described by the discrete
Schrédinger equation and an anharmonic chain
of oscillators in presence of a gradient of
temperature. The first model considered is the
one-dimensional discrete linear Schrédinger
(DLS) equation perturbed by a conservative
stochastic dynamics, that changes the phase of
each particles, conserving the total norm (or
number of particles). The resulting total
dynamics is a degenerate hypoelliptic diffusion
with a smooth stationary state. It has been
shown that the system has a hydrodynamical
limit given by the solution of the heat equation.
When it is coupled at the boundaries to two
Langevin thermostats at two different chemical
potentials, it has been proven that the stationary
state, in the limit to infinity, satisfies the
Fourier’'s law. The second model considered is
a chain of anharmonic oscillators immersed in
a heat bath with a temperature gradient and a
time varying tension applied to one end of the
chain while the other side is fixed to a point. We
prove that under diffusive space-time rescaling
the volume strain distribution of the chain
evolves following a non-linear diffusive
equation. The stationary states of the dynamics
are of non-equilibrium and have a positive
entropy production, so the classical

relative entropy methods cannot be used. We
develop new estimates based on

entropic hypocoercivity, that allows to control
the distribution of the positions configurations of
the chain. The macroscopic limit can be used to
model isothermal thermodynamic
transformations between non-equilibrium
stationary states. CEMRACS project on
simulating Rayleigh- Taylor and
Richtmyer-Meshkov turbulent mixing zones with
a probability density function method at last.

Keywords

Fourier’s law, statistical mechanics,
thermodynamics, non equilibrium
thermodynamics,

hypocoercivity, hydrodynamic limit, diffusive
equation.




