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In aeronautics, the concept of the “more electrical aircraft” was able to grow thanks to the 

evolution of power electronics in recent years, the increase of power density, accompanied by a decrease 

in cost, which had considerably spread the use of power converters for Adjustable Speed Drive (ASD) 

applications. Until recently, one could find various energy sources used in aircraft. The different types 

of on-board energies were pneumatic, hydraulic, and electric energy. The concept of the “more electric 

aircraft” involves replacing pneumatic and/or hydraulic energy by the electric one. These two axes of 

evolution are respectively called “Bleedless” and “Hydraulicless” architectures. The problem of 

pneumatic and hydraulic systems is the difficulty in locating and correcting problems that may be 

present, and which can lead to stopping the aircraft on the ground and therefore inducing economic 

losses. The interest in removing one of these energy vectors is to increase the reliability and safety of 

onboard equipment while reducing weight and maintenance costs. However, due to the power demand, 

developing the electrical network resulted in an increase of the voltage magnitude. The use of electric 

motor is thus likely to increase in aircraft application. 

There are two main families of motors: first, low-voltage motors with winding formed of 

cylindrical conductors wound randomly, and second, high-voltage motors with winding formed of 

rectangular conductors. These machines also have different built-in insulation systems to withstand the 

electrical stresses created by high voltage. These machines are also classified respectively as Type I and 

Type II. 

Like any equipment, electric motors undergo more or less severe aging over time, influenced by 

various phenomena. These degradations can come from thermal, mechanical, or electrical phenomena. 

For electric motors, the weakest part is usually the electrical insulation system. The failure of this system 

generally results in complete motor failure. The use of long cables connecting the inverter to the motor 

may cause significant overvoltage at the motor terminals. In addition, the shape of applied voltage called 

“pulse width modulation” (PWM) is comprised of pulse trains. Because of these pulses, voltage is no 

longer distributed homogeneously along the coil. In that case, large differences in voltage between turns 

are present. Moreover, associated with the low pressure conditions present in depressurized areas of the 

aircraft, these important volt age differences may cause the appearance of partial discharge (PD). Partial 

discharges are electrical discharges that partially short-circuit a void inside the insulation. The 

discharges induce a phenomenon of erosion due to the bombardment of charged particles, chemical 

deterioration, and local thermal stresses on the insulation system. Partial discharges are the sign of the 

next insulation system failure. 

Due to the criticality of PD consequences, it is necessary to detect the partial discharges ignition 

to assess the quality of electrical system insulation in the equipment and to qualify the system. There 

are many detection well known methods for AC and DC systems. However, detection is much more 

complex under PWM in low-voltage motors and more particularly in Type 1 motors that are used in 

more electric aircraft. The main problem with PWM power supply is that partial discharge signals are 
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embedded in the electro-magnetic noise generated by the switching due to their lowest amplitude than 

in Type II motor. 

In order to determine the PD appearance in a motor, it is important to carry out these tests under 

real operating constraints (electrical, environmental, mechanical ...): on-line measurement is mandatory. 

However, despite the representativeness of the test, if the detection system modifies the constraints 

present on the system under test, the results will be biased. It is therefore necessary to use a system 

which does not affect the reliability and the test configuration of the system under test. A non-intrusive 

measurement makes it possible to satisfy these conditions. 

 

The purpose of this thesis is to develop a detection and filtering method enabling non-intrusive 

on-line partial discharge detection in the aeronautical field to assess electrical insulation systems used 

in aircrafts. 

 

This thesis is the result of three years of work within the “Reliability” team at the Saint Exupery 

Institute of Research and Technology in Toulouse, and in the “Dielectrics Material in Energy 

Conversion” team at the Laplace Laboratory in Toulouse. This work was also carried out in close 

collaboration with Airbus Group Innovations, Airbus, Liebherr, Zodiac, Safran and Actia. 

  



Introduction 

- 3 - 

This PhD dissertation is divided into four chapters. A brief description of the content of those 

chapters is given below. 

 

Chapter I: State of the art 

This chapter describes the “more electric aircraft” concept and the insulation systems used in low 

voltage motors. We provide a general description of the mechanisms of occurrence for partial 

discharges, along with a detailed presentation of the concept of PWM and its influence on electrical 

stress. Finally, an analysis of sensor output signals is proposed. 

 

Chapter II: Experimental set-up 

The purpose of this chapter is first to improve the understanding of the sensor used in order to 

optimize it and to observe the influence of pressure on partial discharge. The modification of the 

frequency spectrum relative to pressure for AC and PWM voltage is presented and discussed.  

 

Chapter III: Development of a digital processing method to remove noise 

Chapter III describes a noise reduction method based on wavelet decomposition. First, we present 

the state of the art concerning this method, followed by a comparison of the results of this method 

compared to analog filtering. We then propose an automated algorithm for choosing the input parameters 

for this method. Lastly, the method, its operation and the validity of the algorithm, are tested on simples 

samples. 

 

Chapter IV: Investigations on electric motor test benches 

The last chapter focuses on the partial discharge detection method applied to industrial test 

benches. Five specific cases and their associated analyses are developed to highlight the ability of the 

method to detect partial discharges. We also cover various issues that may occur during tests on 

industrial test benches. 

 

Finally a conclusion of this work is presented and the possible future works are proposed. 
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 “More electrical aircraft” 

Conventional architectures found in commercial aircraft consist of a multitude of energy types 

[1]: 

• Pneumatic power 

• Mechanical power 

• Hydraulic power 

• Electrical power 

The disparity of these sources and their respective complexity lead to reduced efficiency of 

complete systems. For example, any pneumatic or hydraulic leak can cause a default for all equipment 

supplied by these energies. This induces a failure that forces the aircraft to remain on the ground, which 

incurs economic losses. In addition, this type of defect can be difficult to locate and correct. 

This reasoning led to emergence of the “more electrical aircraft” concept. The main intention of 

this concept is to remove the pneumatic and/or hydraulic network to increase reliability and safety for 

onboard equipment while reducing overall weight and maintenance costs. Moreover the segregation of 

the defects appeared to be simpler for an electrical network 

The “more electrical aircraft” concept is not new, as it was considered as early as World War II 

[2]. However, production capacity as well as existing power densities at that time, made this approach 

infeasible. It was not until the 1990s that it became more feasible to looking ahead towards new 

technologies to replace hydraulic systems with electrical systems. One of the major technological 

advances that helped to make the electric aircraft possible is the development of reliable power 

electronics that have high power density. New power converters based on these developments, and 

power switching devices based on semiconductors in particular, allow a new generation of aircrafts. 

Today, new ways to generate, distribute, and use energy are studied in the field of aeronautics, 

especially for new aircrafts based on this concept. 

The “more electrical aircraft” concept can be divided into two areas with respect to current 

aircrafts (Figure I.1): 

• The plane referred to as “hydraulic-less” is achieved by removing hydraulic systems. The 

Airbus A380 is one example, different from “conventional” planes by the fact that one of 

three hydraulic systems was removed, and part of the flight control system is electrified 

(ailerons, spoilers...). This design can be found on other aircrafts such as the A350 and 

A400M. 

• The plane referred to as “bleedless” is achieved by removing pneumatic systems. The 

Boeing 787 is a good example of this approach. The various pneumatic networks, such 

as defrost air conditioning systems, wing anti-icing, and engine starting systems, have 

been eliminated from this aircraft. 
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The all-electric aircraft is the implementation of these two axes. 

 

 
Figure I.1: More electrical aircraft axis 

 

The electric network in a “conventional” aircraft consists of a three-phase alternating part at 

115/200 V with a fixed frequency of 400 Hz, and a DC part at 28 V. Nevertheless, with the emergence 

of more electric aircraft, the energy requirement has increased and it was therefore necessary to raise 

voltage levels in order to limit cable diameter (gauge) while still meeting these energy needs. In that 

case, the electrical network is comprised of a three-phase AC part at 230 / 400 V with a variable 

frequency between 370 and 770 Hz, a DC part at ± 270 V (the 28 V and 115 V still remaining). 

These new voltage levels and the use of power electronics induce phenomena that were unknown 

until now in aeronautics [3]. These phenomena affect machines reliability and cause premature aging of 

equipment insulation, or even their total failure. These phenomena are known under the name of partial 

discharge (PD). 

 

 Overview of partial discharges 

According to the standard definition [4], a partial discharge (PD) is an electric discharge that 

short-circuits a gap between two conductors. Generally, PD appears when there is a local concentration 

of electric stress in the insulation or on the surface of the insulation. These discharges appear in the form 

of current pulses with duration shorter than 1 μs. The discharges induce a phenomenon of erosion due 

to the bombardment of charged particles, chemical deterioration, and a local thermal stresses of the 

insulation system [5]. 
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Electrical insulation systems (EIS) are not perfect. These systems may age and defects can be 

found. We can first consider homogeneous insulation aging, which is due to different influencing 

factors: 

• Environmental factors (temperature, humidity, gas types, corrosion ...) 

• Electrical Factors (type of voltage, current, frequency...) 

• Mechanical factors (torsion, bending, vibration...) 

Premature insulation “aging” due to defects such as protrusions, contaminants (foreign particles), 

or vacuoles may be observed. These imperfections are defects that occur during manufacturing. Over 

time, and therefore during operation, these imperfections can propagate and ultimately cause the 

insulation to breakdown. 

All these imperfections can be favorable sites for the occurrence of partial discharge. This is first 

explained by the fact that air has a lower dielectric strength than any other type of insulation (solid and 

liquid). Second, the electric field is enhanced in insulation because the relative permittivity of the 

insulation is always higher than the gas present in the cavities. 

 Phenomenology and Paschen’s law 

Upon a collision between a germ electron and a neutral gas molecule, if the energy transmitted 

by the impacting electron is sufficient, ionization of the species occurs. One will thus have a charged 

species (ions) and an electron extracted from that species. In turn, that electron and the first free electron 

will be accelerated and will ionize two other species, and so on. The attachment of electrons to gas 

molecules compensates the ionization until the electron energy is sufficient, and ionization becomes 

predominant compared to the attachment. This phenomenon is called an “electronic avalanche” [6]. 

 

 
Figure I.2: Electronic avalanche phenomenon 

 

To describe an avalanche, Townsend [7] provided a semi-empirical relationship for α/p: 
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  (I.2.1) 

 

With A and B, respectively in (torr-1.cm-1) and in (V.torr-1.cm-1), two constants dependant on the 

gas and on the reduced field E/p in (V.torr-1.cm-1), where p is the pressure in Torr and α the mean number 

of ionizations carried out by an electron per unit of length (also called the first Townsend coefficient). 

During the acceleration of ions in an electric field, the ions bombard the cathode and generate an 

electron emission. This emission is called secondary emission and is described by the second Townsend 

coefficient γ. 

For a self-sustaining discharge, it is required for ionization and secondary emission to be sufficient 

to maintain the discharge. Townsend defined the criterion of self-sustaining discharges by the following 

relationship: 

 γ (eαd-1)=1 (I.2.2) 

 

Depending on the experimental conditions (pressure, gas, materials, geometry of the electrodes, 

etc.), different secondary processes may occur: 

• Thermionic emission 

• Field electron emission 

• Work of metastable (ε process) on the cathode 

• Photoemission cathode (δ process) by the action of photons created by the discharge 

• Photo-ionization of the gas (β process) under the action of photons 

 

Nevertheless, in the case of a Townsend discharge, the processes mentioned above are negligible 

against the bombardment of ions at the cathode. However, for example, the photo-ionization mechanism 

has an important place in the formation of a streamer type of discharge. 

From the Townsend theory in gas, the Paschen law [8] describes how an electron avalanche is 

initiated by the electrons created by secondary emission. 

This law is valid for homogeneous electric fields and metal electrodes. It predicts that the 

breakdown voltage of a gas is a function of the product of pressure p and interelectrode distance d. 

  (I.2.3) 
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/
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p
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  (I.2.4) 

 

Experimental results of breakdown voltages in different gases depending on the product PD are 

shown below. 

 
Figure I.3: Paschen’s curve for various gases [9] 

 

It can be seen that the Paschen curve has a minimum. For air, this minimum is about 320V which 

corresponds to the voltage levels of the more electrical aircraft (230 Vrms). This minimum corresponds 

to an inter-electrode distance of 8 microns at atmospheric pressure. A voltage lower than this value does 

not allow the electric discharge to start, whatever the conditions of pressure and distance. 

One can thus observe that, in view of this minimum and new onboard aircraft voltages, there is a 

risk of occurrence of PDs in motors ([10], [11]). It therefore seems important to analyze the motors used 

in aircrafts in detail, and their insulation in particular. 

 

 Insulation systems for rotating machines 

Generally, AC rotating machines are classified in two main groups [12]: 

1. Type 1: By definition, the insulation of a Type I winding “is not expected to experience 

partial discharge activity within specified conditions in their service lives”. Type I 

motors correspond to low-voltage rotating machines, which generally have a randomly 

arranged winding composed of cylindrical wires, and whose insulation does not contain 

mica. 

• Type 2: By definition, the insulation of a Type II winding “is expected to withstand partial 

discharge activity in any part of the insulation system throughout their service lives”. 
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Type II motors correspond to high-voltage rotating machines, which use pre-compound 

coils formed of rectangular wires with mica insulation systems. 

The motors used in the aeronautical context are Type 1 motors. Given the voltage encountered in 

“conventional” aircraft, insulation systems such as the ones use in Type 2 motors do not appear as 

necessary. In addition, the cost of the low voltage motors is much lower (and is therefore preferred to 

high-voltage motors). However, with changing voltage magnitudes associated with more electric 

aircraft, insulation systems are not designed to avoid the occurrence of partial discharges or to withstand 

the degradation phenomena associated with them. 

 Low-voltage machine insulation 

There is a large number of components that may be used in the insulation systems of low-voltage 

rotating machines. These various materials are shown in Figure I.4 

 

 
Figure I.4: Overview of materials in a low-voltage insulation system: (1) turn insulation, (2) slot liner, (3) 

slot separator, (4) wedge, (5) phase separator, (6) lead sleeving, (7) coil-nose tape, (8) connection tape, (9) 

cable, (10) tie cord, and (11) bracing [13] 

 

The various insulating materials can be brought together into three major families: 

1. Magnet wire insulation 

2. Ground and slot insulation 

3. Phase and endwinding insulation 

 

 Magnet wire insulation 
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One of the most important insulation system is the wire insulation. In general, low-voltage motors 

are wound using round enameled wire. The magnet wire choice is a compromise between the filling 

ratio of the slots, mechanical and thermal properties, and the quality of electrical insulation. The 

thickness of the enamel does not exceed a few dozens of microns and it is not designed to overvoltages 

having a magnitude higher than 1 kV. As the arrangement of the turns is random, the first turn may be 

located near the last turn of the same coil. When the voltage variation is slow, the winding behaves as 

an inductive voltage divider and the voltage is distributed homogeneously along the coil. In the case of 

fast voltage changes like PWM pulses, the behavior is not the same and large voltage differences 

between these turns can be observed. This effect is detailed in Chapter I.5.1.1. 

 

 Ground and slot insulation  

The insulation of a motor also includes all materials used to insulate the windings from the stator 

frame, the rotor, and any component connected to the ground. These materials provide electrical 

insulation and mechanical protection from the sharp angles of the slots. This mainly includes the slot 

liner, slot separator, and wedges shown in Figure I.5 

 

 
Figure I.5: Slot liner, slot separator, and wedges seen during assembly [13] 

 

 Phase and endwinding insulation 

 

Another important point is the insulation between phases. These components can isolate strands 

of a phase with respect to another. These insulation systems are localized in the slots or in the motor 

endwinding (Figure I.6). 
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Figure I.6: Phase insulation in a partially-wound low-voltage stator [14] 

 

 Impregnation 

Impregnation is an insulation that can be applied to the previous three families. The purpose of 

impregnation is to replace any air gap in insulation systems with an impregnating liquid (resin or 

varnish). This impregnation improves heat transfer and mechanical strength but also acts as an insulation 

system.  

 Localization of Partial Discharges (PD) in low voltage motors 

Theoretically, given the nominal operating voltages of current machines, the insulation systems 

are supposed to be sufficient to protect equipment. 

However, reality may be different, as insulation systems are not perfect and may have various 

types of defects. For example, a recurring defect is induced by improper impregnation. In that case, only 

the enamel of the wires withstands the voltage, which can lead to the appearance of PDs. Incorrect 

positioning or failure of insulation between phases or in slots may cause PDs. In addition, some locations 

can cause strong field amplification (sharp angle of the core facing the coil) and therefore increase the 

risk of PD occurrence. 

To highlight these PDs, tests were carried out on a stator prototype with voltages exceeding the 

rated voltages and PWM like voltage. These tests were only intended to obtain visual confirmation of 

PD appearance areas with respect to the defects discussed above.  

Three different occurrence areas can be seen in the figures below [15]: 

• Between phases 

• In the slot 
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• In the endwinding 

 

Those photographs were taken using a long-exposure shutter in order to capture the light from the 

discharge at 100 mbar and at atmospheric pressure. 

 

 
Figure I.7: Partial discharges between phases (100 mbar) 

 
Figure I.8: Partial discharges in the slot (100 

mbar) 

 
Figure I.9: Partial discharges in endwinding  

(1013 mbar) 

 

These photos show that there is a risk for partial discharges to occur in low voltage motors under 

such voltage waveform. 

The concept of more electrical aircraft not only causes a change in the voltage levels, but also a 

change in voltage sources. With the evolution of power electronics, motors are increasingly supplied by 

power electronics systems (inverters) using PWM voltage. It is very important to understand the 

characteristics of this voltage, as it is very different from AC and DC voltage. 
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 PWM fundamentals 

 General interest 

In the past, DC motors were widely used for applications that required controlling rotation speed. 

Speed control is very simple because varying the voltage amplitude causes a change in the rotational 

speed of the rotor. For applications requiring fixed speeds, the use of AC motors was preferred. 

AC motors are currently used the most in low-voltage motors because their price, efficiency, and 

reliability are more appropriate than for DC motors. However, in some configurations, speed variation 

is one of the means for minimizing power losses. To change the speed of AC motors, it is necessary to 

use DC/AC or AC/AC inverters which make it possible to vary the amplitude of the applied voltage and 

the current frequency. 

Due to their high price, these inverters were used in relatively few applications. As prices have 

decreased recent years, increasing numbers of inverters are used for functions called “Adjustable Speed 

Drives” (ASD). At the same time, the problems caused by these inverters are well-known. Notably, they 

are responsible for current and voltage distortions of the networks, and they are also a source of harmonic 

pollution of the networks. 

In order to vary motor speed, the voltage inverter based on the pulse width modulation (PWM) 

switches the DC voltage source voltage into pulses of variable width at high frequencies on each phase. 

These pulse trains are used to reconstruct a fundamental variable frequency at the motor terminals, while 

rejecting harmonics. From an electromechanical point of view, only the fundamental is important. 

Nevertheless, for the insulation system, the presence of steep edges modifies the constraints with respect 

to the 50 Hz case. 

Figure I.10 shows an example of an electromechanical chain. 

 

 
Figure I.10: Diagram of an electromechanical chain 
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Figure I.11: PWM voltage between phases (black), current at the motor terminals (red) 

 

IGBTs (Insulated Gate Bipolar Transistors) used to create PWM voltage enable the generation of 

rising edges of tens of kV/µs, and can reach switching frequencies around 20 kHz. These improvements 

have helped reduce losses due to switching and motor torque. On the other hand, the reliability of these 

machines has declined dramatically. The first work on the subject was carried out by E. Persson [16]. 

The causes of motor failures may be due to different phenomena: 

• High switching frequency increases electromechanical effort. 

• The increase in dielectric and ohmic losses causes an increase in localized temperature. 

• The waveform can create surges depending on the type and length of connections to the motor. 

• The distribution of voltage is not uniform and is therefore concentrated on the first turns of the 

coils. 

 Control strategy 

Different control strategies exist to create PWM voltage. These strategies differ mainly on the 

control of harmonics created by the voltage. 

There are two main families of PWM techniques [17]: 

• Instantaneous PWM 

• Calculated PWM 

Instantaneous PWM may be local (controlling one commutation cell) or global (vector 

management controlling several commutation cells [18]). Generally, these strategies correspond to cases 

where the switching frequency Fd is large compared with the fundamental frequency Fs: 

 𝑛𝑛 = 𝐹𝐹𝑑𝑑/𝐹𝐹𝑠𝑠 ≥ 20 (I.4.1) 

 

For calculated PWM, forms of the square wave on a period of the fundamental are calculated to 

minimize parasitic harmonics. The results of these calculations are stored and used according to 

operating requirements. 
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The most conventional method is instantaneous PWM, and more precisely the “intersective” 

method. This method involves comparing the modulant (the signal to be synthesized) to a carrier wave, 

which has a generally triangular shape. 

The output signal is equal to 1 if the modulant has a larger amplitude than that of the carrier, and 

0 otherwise. Theoretically, the output signal varies at each intersection of the modulant and carrier. 

The diagram below shows an example of three-phase sinusoidal PWM with fm1 and fm2 for the 

two commutation cell modulation functions: 

 

 
Figure I.12: Example of a three-phase sinusoidal PWM [19] 

 

The output voltage vsT is therefore the difference between the elementary voltages vs1 and vs2 of 

each cell and is expressed by: 

 𝑣𝑣𝑠𝑠𝑠𝑠 = 𝑣𝑣𝑠𝑠1 − 𝑣𝑣𝑠𝑠2 = (𝑓𝑓𝑚𝑚1 − 𝑓𝑓𝑚𝑚2)𝐸𝐸 (I.4.2) 
 

 



 Chapter I. State of the art 

 

- 16 - 

In this section, we showed that there are different types of PWM controls for managing the created 

harmonics. As the voltage shape is very different from traditional forms such as AC or DC, it is 

important to focus on the influence of PWM on the electrical stress induced on the different insulation 

systems. Another important point concerns PD detection. There are many robust and validated methods 

for PD detection under AC and DC voltage, but methods are considerably less documented under PWM 

detection. 

 

 Partial discharges in machines fed by PWM inverters 

 Voltage distribution under PWM 

Generally, under an applied voltage of 50 Hz, each stator phase can be considered as a simple 

“inductive voltage divider”. In this case, voltage distribution is linear at all times. In the case of sudden 

variations in voltages such that generated by an inverter, the voltage edge does not propagate instantly 

from one end to the other end of the coil. Losses in the magnetic core spread the front by damping it and 

capacitance between turns divert high frequencies [20]. Voltage distribution is thus not linear and each 

phase is no longer an “inductive bridge” but rather an equivalent propagation line [21]. 

 Influence of dV/dt on voltage distribution 

There are many studies on the impact of the steep edges in machine coils. Modeling the 

distribution of the voltage along the stator phases is difficult because of coil complexity, geometry of 

the magnetic circuit, and the interaction of various electromagnetic phenomena. It is nevertheless 

possible to take an online approach for the equivalent transmission line with a focus on voltage 

distribution within the winding. 

Figure I.13 shows an example of a conventional structure of an infinitesimal element of a 

transmission line with constant parameters to represent a coil. All the distributed parameters are defined 

per unit length: Lb is the inductance per unit length; C and Ci are the equivalent capacities of the inter-

turn and slot base. Different resistances are used to take the losses into account: a part of r represents 

the resistive losses and skin effect in conductors of the winding, Ri to the dielectric losses, and the other 

part of r and R for losses in the magnetic part (hysteresis losses and by Eddy current). 
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Figure I.13: Infinitesimal element of equivalent transmission line 

 

As stated above, voltage is not distributed homogeneously along the winding during the 

application of steep edges. The non-instantaneous propagation of the edge and the distribution of the 

front due to losses (mainly in the magnetic core) contribute to increasing the maximum voltage between 

turns and, in particular, for phase input turns [21]. According to authors such as [22], 80% of the voltage 

for the fastest fronts is located at the terminals of the first coil (Figure I.14). 

 

 
Figure I.14: Percentage of the voltage across the first coil as a function of the rise time [22] 

 

Figure I.16 shows the non-linear nature of voltage distribution along a motor phase (Figure I.15). 

The insulation is highly stressed right after applying the front (Figure I.17). For longer times, voltage 

distribution looks like an “inductive voltage divider”. 
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Figure I.15: Schematic representation of an equipped phase of the motor [23] 

 

 
Figure I.16: Voltage phase/ground with the neutral point connected [24] 

 

 
Figure I.17: voltage between coils [24] 

 

In addition, another important parameter comes from the winding type used.  

Since random winding is the most common technique for low voltage motors and therefore also 

in the MEA approach, the risks associated are that the first turn and one of the last turns of the first coil 

may be joined. In this case, 80% of the voltage is supported by a few tens of microns of enamel. Existing 

insulation systems are not dimensioned to withstand such severe stresses. 
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 Overvoltages induced by PWM 

 The wave reflection phenomenon 

The cable connecting the motor to the PWM inverter has a significant effect on the occurrence of 

overvoltages at the motor terminals. This phenomenon is explained by the fact that the cable behaves as 

a transmission line to which the coils of the motor are not suitable in terms of impedance mismatches. 

In this case, the voltage edges propagate along the cable and are partially reflected at the motor and 

inverter terminals (very low internal impedance). This phenomenon induces motor input overvoltages 

[25][26]. Theoretically, if the motor impedance (Zm) is very large with respect to the cable's 

characteristic impedance (Zc), the voltage at the terminal of the motor can reach twice the value of the 

DC bus of the inverter. In addition, with the voltage edge damping quickly in the winding, the first coil 

is subject to a significant voltage gradient, and the insulation between the turns is highly stressed. The 

amplitude of the reflected wave compared to the incident wave (Vi) can be determined by the expression 

[27]: 

 
 

(I.5.1) 

 

 
Figure I.18: Voltage shape between phase output of the inverter (A) and the motor input (B) [28] 

 

 Cable length influence 

The wave reflection phenomenon is not only related to the impedance difference, but also to the 

cable length [29]. It is considered that a complete reflection of the wave will appear if the round-trip 

propagation time of the wave through the cable is equivalent to the rise time of the voltage edge. 

We can determine a “critical cable length” d, for which there will be total reflection of the voltage: 

 
 

(I.5.2) 
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(I.5.3) 

with d the critical length of the cable, tr the voltage rise time, c the speed of light (3.108 m/s), and 

εr the relative permittivity of the cable insulation. 

 

 
Figure I.19: Overvoltage at the motor terminals as a function of cable length and the edge rise time [28] 

 Conclusion 

The combination of steep edges, long cables, and impedance mismatch may induce overvoltages 

at the motor that can reach twice the voltage supplied by the inverter. These overvoltages, associated 

with the inhomogeneity of voltage distribution in the windings, create voltage differences between the 

turns that may exceed the Paschen threshold and thus cause partial discharge. 

  

  

rtvd ×=2
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 Partial discharge detection under PWM 

 Traditional detection methods 

The presence of partial discharges can be determined by various physical phenomena associated 

with them. More particularly, this includes the electrical pulses, radio frequency pulses, acoustic pulses, 

light emission, and various chemical reactions such as ozone production [30]. 

• Electrical pulse sensors: Based on the fact that an electron current flow is created at 

each partial discharge event, a current could be measured, with the total current depending 

on the number of charges transported by the partial discharge. The current flow creates a 

voltage pulse across the impedance of the insulation system. The purpose of an electrical 

pulse sensor, called a conventional partial discharge sensor [31], [32], is to measure the 

resulting pulse. 

• Radio Frequency (RF) sensors: partial discharges also create electromagnetic RF waves 

that propagate away from the discharge location site in the gaseous medium or within the 

windings. The discharge spectrum ranges from a few hundred kHz to several hundred 

MHz or more. A suitable bandwidth antenna could thus detect partial discharge activity 

[33]. 

• Energy-based methods: Since partial discharge creates light, RF, and pulse emission, 

energy is absorbed from the system and increases dielectric losses. Thus, a power factor 

tip-up method and another integration algorithm could be used. 

• Ozone detection: One of the by-products of partial discharge activity in the air is the 

creation of ozone, which is a gas with a recognizable odor. The concentration increases 

as partial discharge activity at the surface of the insulation material increases. From 

inexpensive chemical measurement tools to electronic sensors, the ozone concentration 

can be measured, though it is affected by temperature, humidity, and airflow rates. 

• Acoustic and ultrasonic detection: Partial discharges create a shockwave that can be 

detected by a microphone. A sound similar to frying could be heard if intense partial 

discharge activity is occurring. 

• Light: Partial discharges emitting light that can be observed in a dark room with a 

photomultiplier, or even with the naked eye, when discharges occur at the insulating 

material surface. 

 Partial discharge detection set-up 

The description of the following system is from the thesis work of Thibaut Billard [34], [35]. The 

Laplace laboratory has developed a partial discharge detection system that can detect discharges in a 



 Chapter I. State of the art 

 

- 22 - 

system supplied by PWM [36]. This system is based on an “on-line” and non-intrusive sensor. The 

detection system may be decomposed into four major parts: power supply, acquisition, sensor, and 

filters. Each of these parts is described in detail below. 

 

 Sensor 

Using non-intrusive sensors is mandatory for equipment reliability. A simple sensor was 

developed for this purpose. Initially, the sensor was developed to offer a less expensive (regarding cost) 

alternative to inductive sensors. This sensor was made using a 1.5 m coaxial cable, then stripped on its 

cut extremity to expose the metallic inner core over a length of 1 cm. The coaxial cable is stripped 

further, but only to expose the inner insulator for 1 cm without any ground shield. This was done to 

prevent any undesired contact between the metallic inner core and the shortened ground shield. This 

sensor is not an antenna. It is sensitive to distance and must be placed as close to the discharge area as 

possible. In the case of stator tests, it is placed on the power cable close to the stator terminals. 

 
Figure I.20: Sensor based on coaxial cable 

 

 PWM like power supply 

The power supply is a PWM like inverter. This PWM inverter has been entirely conceived, 

designed, and built at the Laplace Laboratory. This PWM inverter can simultaneously supply two phases 

with bipolar controllable voltage waveforms. The high voltage source generates voltages up to 1.7 kV 

DC on the converter input and supports peak currents up to 50A. The IGBTs are designed to support up 

to 1.5 kV, which allows testing low voltage motors and searching for the PDIV. 

The inverter provides modular bipolar voltage. The pulse duration, the time between pulses, and 

the switching frequency are adjustable, making it possible to create PWM voltage. 

This system enables us to perform various tests, for example between one phase and neutral, or 

between two phases. This allows us to perform off-line testing relatively close to the actual stress that 

the test equipment can withstand. Voltage measurement is performed using a differential voltage probe. 

 

As shown in Figure I.21, when the two command signals are similar, no voltage is applied across 

the two phases. When the two command signals are different, the output voltage is positive or negative, 

depending on which one is greater. 
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Figure I.21: PWM power supply and command 

 

 Filtering 

The use of filters is essential in partial discharge detection, and more particularly in the case of 

PWM power supply [37]. The difficulty of detecting PD during steep voltage edges is to increase the 

signal-to-noise (SNR) to measure low amplitude signals with high-frequency components among large 

amplitude signals with low-frequency components. The bandwidth of the filter and its cutoff frequency 

are the most important parameters in this filter’s design. The frequency spectrum of a discharge extends 

up to at least 1 GHz, as the noise generated by the PWM supply seems to not exceed a few hundred 

MHz (for the power supply used at the Laplace laboratory). The filter cutoff frequency should be greater 

than the frequency for noise suppression of commutations and must be adapted to the voltage rise time. 

 

  Acquisition 

The acquisition tool used is an oscilloscope (Tektronix MSO 5204 Digital Oscilloscope) with a 

digital bandwidth of 2 GHz and a sampling frequency of 5GS/s. The frequency spectrum of a discharge 

extends up to at least 1 GHz, and with the cutoff frequency of the filters used being a few hundred MHz, 

it is possible to detect partial discharges. 

 

 

 Example of off-line measurement  
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Figure I.22: Scheme of the complete off-line detection system 

 

The influence of the filter is given in the following figures. Figure I.23 shows that it is not possible 

to observe anything with the noise induced by switching. In Figure I.24, one can see the effect of adding 

a high-pass filter. The filter eliminates the noise due to the switching and allows to observe the partial 

discharge signal. It is possible to say that the low amplitude signals are PD because they appear at a 

maximum voltage and at each change of polarity repeatedly. 

 

 
Figure I.23 PD detection without filtering 

 
Figure I.24 PD detection with filtering 
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It can be seen below a photograph of the stator subjected to the voltage of the previous figures. 

“Glow” or “pseudo-glow” discharge is observed, which validates the fact that there are some partial 

discharges activity by correlation with the electrical detection [38]. 

 

 
Figure I.25: Photo of the winding and presence of PD in the endwindings. 

 Investigation of sensor signals 

As shown before, the method can detect partial discharges. However, not all sensor output signals 

are necessarily associated with PDs. Since the sensor is sensitive to quick changes in current, any 

phenomenon that induces this type of variation can cause a sensor response. The use of a high-pass filter 

eliminates much of the noise associated with switching, as well as external noise produced by the test 

bench or other equipment in the surrounding environment.  

However, in some cases, the noise extending over a wide frequency range can cause a sensor 

response, which is similar to a discharge. It is therefore necessary to be able to discriminate the signals 

resembling PDs with respect to false positives. The easiest way to check that the observed signals 

correspond to partial discharges is to vary the voltage over a wide range to investigate the ignition and 

extinction of signals resembling PDs. If the signals are always present regardless of the voltage or for 

voltage values lower than 320 Vpeak, we can consider that the observed signals are false positives. In the 

case of tests on industrial test benches, voltage amplitude can either not be modified or only on a 

relatively small range, which prevents application of the method mentioned above. In this case, it is 

necessary to observe other signal characteristics to determine the presence or absence of PDs. 

 

Different solutions are possible. One of them concerns observation of the voltage. In the case of 

low-voltage motors, partial discharges typically appear at the maximum voltage value, and therefore 

under PWM during quick voltage variations where surges or highest voltage values are commonly 

found. Another important point concerns the voltage value: we can be sure that the detected signals are 

false positives if there is a signal of interest at a maximum voltage value in the observed time interval, 

but there is no voltage differences higher than 320 Vpeak applied on the sample. 
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The figures below show a comparison between a PD signal and a false positive. In Figure I.26, 

the analysis is relatively simple because the maximum voltage does not exceed 150 V. In this case, we 

can be sure that the signal is a false positive because this level of voltage, and at atmospheric pressure, 

is below Paschen minimum. 

 

 
Figure I.26: Example of partial discharge, voltage (blue) 

sensor signal (red) 

 
Figure I.27: Example of false positive for a low voltage, 

voltage (blue) sensor signal (red) 

 

As mentioned previously, the temporal position is also important, and it may happen that signals 

seem to correspond temporally to the maximum voltage. However, thorough analysis is necessary to 

avoid errors while observing these signals. 

An example of this type of case is provided below. By observing Figure I.28 and Figure I.29, it 

appears that the signals are identical and temporally correspond to the maximum voltage. However, as 

can be seen by zooming in these two signals (Figure I.30 and Figure I.31), we can see that they are not 

located in the same temporal position. The false positive signal is before maximum voltage. The signal 

appears for a voltage of 260 V. The occurrence of PD is unlikely to be seen at this voltage level. Such 

signals may be associated to the noise remaining after noise removal if the chosen cutoff frequency of 

the filter is not suitable. Another explanation is that the signal may correspond to a DP on another phase 

for a three-phase configuration. 

It is, therefore, important to take into account the temporal position of the various signals observed 

while monitoring all voltage applied on the insulation system. Analysis of the different signal 

propagation times is also needed to ensure that delays or advances of observed signals are not induced 

by the set-up, but only by physical phenomena. 
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Figure I.28: Example of partial discharge, voltage (blue) 

sensor signal (red) 

 
Figure I.29: Example of false positive, voltage (blue) 

sensor signal (red)  

 
Figure I.30: Zoom on the partial discharge, voltage 

(blue) sensor signal (red)  

 
Figure I.31: Zoom on the false positive, voltage (blue) 

sensor signal (red) 

 

Note that all the above signals come from simulation and are simply intended to highlight the 

analysis required to avoid confusing PD signals with false positives. 

 

 Conclusion 

Throughout this chapter, we have seen that the insulation systems of currently-used motors, 

associated with the evolution of on-board electrical networks, increase the risk likeliness of partial 

discharge occurrence. Increasing motor supply voltages by converters induces a change in stress applied 

to the various insulation systems found in motors. Moreover, the types of motors that match previously 

required aeronautical needs are no longer adapted to current electrical stresses. With the “more electric 

aircraft” approach, the insulation systems are not designed to prevent the occurrence of partial 

discharges or to resist the aging phenomena associated with them. 

The implementation of a converter leads to another challenge related to the detection of partial 

discharge. Robust and reliable detection methods exist for equipment supplied by AC or DC voltage. 

On the other hand, detection is much more complex under PWM voltage, and specifically in the context 

of low voltage motors. For such motors, since the operating voltage is close to the PDIV, PDs appear 

mainly during the commutation and are embedded in the noise induced by switching. It was therefore 
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necessary to develop new detection methods and analysis procedures associated with these test 

conditions. 

As the detection method development is relatively new, it is necessary to achieve a study on the 

sensor used to understand the observed phenomena. In addition, a study is required to ensure that the 

developed sensor is able to detect PDs regardless of environmental conditions. 

These issues are discussed in the next chapter. 

 

 



 

 

 
 



 Experimental set-up 
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One of the main points in detecting a phenomenon is to fully understand how the selected sensor 

works. In our work, it seemed mandatory to analyze sensor operation to accurately understand the 

physical phenomenon detected. In order to carry out this analysis, it was first necessary to propose a 

robust and standardized sensor in order to assess reproducibility of the results. Secondly, a study on the 

sensors used was necessary in order to know their influence. Finally, a correlation between a normalized 

signal (charge (pC) injected by a calibrator) and the output sensor signal was carried out in order to 

validate how the sensor works. 

Some of the electrical equipment concerned by our work may be located in depressurized areas, 

and while operating, the temperature can vary widely. Pressure and temperature parameters have an 

influence on the discharge inception voltage and may also modify their nature [39]. Therefore, for such 

operating conditions, it is important to pay particular attention to the detection system characteristics in 

order to achieve the best SNR while filtering the noise induced by the voltage switching. 

It was decided to study mainly the pressure in this chapter because it is the most impacting factor 

on the ignition of PDs. In addition, some equipments work in depressurized areas, while equipments 

operating in areas with high temperatures are less important in numbers 

The aim of this chapter is to have a better understanding of the impact of these parameters on the 

PDIV. 

 

 Sensor study 

 Sensor geometry 

One of the issues with home-made sensors (sensor presented in Chapter I.5.3) is the inherent lack 

of reproducibility in their elaboration and positionning. Clearly, slight variations can occur and may lead 

to changes in their response. Furthermore, sensor properties can evolve over time with handling. The 

solution we found was to use a Jack-SMA connector, connected to the end of a coaxial cable. This sensor 

is robust, inexpensive, and standardized. It also has about the same geometry and size as the home-made 

coaxial cable sensor. Another problem is the positioning of the sensor. Due to its geometry, achieving 

good contact and adequate holding on the power cable can be complex. For this reason, we developed 

special pliers to ensure good contact regardless of the cable gauge. 
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Figure II.1: Jack-SMA type 

 

 
Figure II.2: Jack-SMA with the holding system 

 
Figure II.3: Zoom on the connection part 

 

 Correlation research between calibrator voltage and the sensor 

response 

Generally, to calibrate a detection system based on electrical signals, a calibrator is used to create 

current pulses having a waveform similar to those of the PDs. To understand how the sensor works, it 

is necessary to compare the voltage associated with the current pulse and the sensor’s output voltage. 
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 Experimental set-up 

 
Figure II.4: Diagram of the experimental set-up used to establish the correlation between calibrator 

voltage and sensor response 

 Results 

In order to compare the different signals, it is important to remove the white noise induced by the 

measurement devices. This white noise is mainly due to the oscilloscope and can be separated into two 

components. The first component of noise is a fixed level of noise contributed primarily by the scope’s 

front-end attenuator and amplifier. The second component of noise is a relative level of noise based on 

the scope’s dynamic range, which is determined by the specific V/div setting. 

To remove the white noise, the signals were filtered using an analogical low-pass filter with a 

cutoff frequency of 200 MHz. 
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Figure II.5: Calibrator voltage associated to a 10nC injected charge (black), Sensor signal filtered at 200 

MHz (blue) 

 

Due to its working method, it is assumed that a capacitive coupling is induced between the core 

of the power cable and the metallic part of the Jack-SMA connector being used as a sensor. Moreover, 

it can be seen in the Figure II.15 that the signal of the sensor is in phase advance of 90 ° with respect to 

the signal of the calibrator. This phenomenon is characteristic of a capacitive phase shift. Since the 

current is in this case the derivative of the voltage with respect to time, the derivative of the calibrator 

signal must look like to the sensor signal. 

However, since the amplitude difference between the derivative of the output voltage and the 

sensor signal is significant, the signal amplitude is normalized to allow comparison of the two signals. 

The derivative of the calibrator’s output voltage was determined and compared to the sensor’s output 

voltage. Good correlation of the voltage shape is found between the two signals (Figure II.6). The 

difference in amplitude and the waveforms can be explained by the transfer function, which should not 

be linear over the entire frequency spectrum. The sensor operation may therefore be considered as a 

capacitive coupling [40]–[43]. 
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Figure II.6: Sensor signal filtered at 200 MHz (blue), derivative calibrator voltage for 10nC injected 

charge (red) 

It is important to note that this sensor is sensitive to the dynamic of the partial discharge compared 

to the "standards" sensors, which are only sensitive to the amplitude of the discharge. 

 Delay induced by cable length 

A trivial, but important point to take into account when analyzing the sensor output signal is the 

propagation time between : 

• the sensor and the oscilloscope 

• the measurement voltage and the sensor  

• the place where the measure is achieved and the system supposed to have PD 

In Figure II.8 the observed signal is the voltage associated with the charge pulse injected by the 

calibrator. 
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 Experimental set-up 

 
Figure II.7: Diagram of the experimental set-up used to establish the influence of cable length 

 Results 

 
Figure II.8: Influence of cable length on signal position 

 

As shown in Figure II.8, there is a delay of 7.6 ns between the calibrator signal (in black) and the 

sensor signal, connected to the oscilloscope via a 1.5 m coaxial cable. There is a delay of 108.4 ns 

between the two sensors. The first one (in blue) is connected to the oscilloscope with a 1.5 m coaxial 

cable, and the second one (in red) with a 21.5 m coaxial cable. 
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According to the data sheet for the coaxial cable we used (RG58 C/U), the nominal propagation 

velocity (vp) is 66% of the speed of light (c). The cable length (L) can be determined from the measured 

delay (∆t) according to the following equation: 

 

 𝐿𝐿 = ∆t .𝑣𝑣𝑝𝑝 (II.1.1) 

with vp ≈ 200 000 km/s  

 

The calculation was performed to compare the result to the actual length.  

 

 Delay induced by the first sensor 

 𝐿𝐿 = 7.6x10−9.𝑣𝑣𝑝𝑝 = 1.52 m (II.1.2) 

 Delay-induced by the second sensor 

 𝐿𝐿 = 108.4x10−9.𝑣𝑣𝑝𝑝 = 21.44 m (II.1.3) 

 

The actual lengths found by the calculation are within about 1% error. For our overall study of 

PDs, it will be important to take into account the delay induced by the connection in order to avoid 

making false assumptions [41]. 

 

 Sensor optimization  

As previously stated and demonstrated, the sensor is based on a capacitive coupling. Sensor 

sensitivity and sensor signal amplitude can therefore be increased simply by improving the coupling 

capacitance value. This is achieved by increasing the contact surface by putting copper tape on the 

surface of the power cable to control the interacting area and thus the value of the induced capacity. 

 

 

 
Figure II.9: Simple optimization of the sensor sensitivity 

 

Induced capacity can be evaluated using the following equations: 

h 
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 𝑅𝑅0 ≤ 𝑟𝑟 ≤ 𝑅𝑅1  

 2πrh𝜀𝜀𝑟𝑟𝜀𝜀0𝐸𝐸(𝑟𝑟) = 𝑄𝑄 <=> 𝐸𝐸(𝑟𝑟) =
𝑄𝑄

2𝜋𝜋𝜀𝜀𝑟𝑟𝜀𝜀0
×

1
𝑟𝑟ℎ

 (II.2.1) 

 𝐸𝐸�⃗ = −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗ 𝑉𝑉 <=> 𝑉𝑉0 = � 𝐸𝐸(𝑟𝑟)𝑑𝑑𝑑𝑑 =
𝑄𝑄

2𝜋𝜋𝜀𝜀0ℎ

𝑅𝑅1

𝑅𝑅0

�
1
𝜀𝜀𝑟𝑟

log �
𝑅𝑅1
𝑅𝑅0
�� =

𝑄𝑄
𝐶𝐶

 (II.2.2) 

The induced capacity is given by: 

 𝐶𝐶 =
2𝜋𝜋𝜀𝜀0ℎ

1
𝜀𝜀𝑟𝑟

log �𝑅𝑅1𝑅𝑅0
�
 (II.2.3) 

 

The influence of the increase of the coupling capacitance on the maximum amplitude of the 

observed signal is shown in Figure II.10. 

  
Figure II.10: Comparison between the amplitude of the sensor signal with and without optimization 

depending on the length of cylindrical capacity.  

 

 Role of the pressure : Experimental set-up 

For the experiments related to the impact of the pressure, two power supplies were used for these 

tests, first the PWM like power supply described previously (Chapter I.5.3.2) and the AC voltage was 

applied thanks to two autotransformers in series with a transformer to supply samples up to 3 kVrms 

(no.1 on the Figure II.14).  

Moreover, non-intrusive current transformer sensor was also tested in such PWM environment 

(no.2 on the Figure II.14). This sensor essentially behaves like a transformer. The primary winding is 

actually the circuit in which partial discharge must be detected, with one cable going through a tore 
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ferrite loop representing the magnetic circuit. The output secondary winding thus provides an image of 

the current going through the primary winding. The bandwidth at -3dB is between 0.5 and 80MHz. 

 

 
Figure II.11: Rogowski coil 

 

Experiments were performed on twisted pair samples of enameled wires (nominal diameter Ø = 

1.31 mm) (no.3 on the Figure II.14). The twisted pair samples were made according to usual norms and 

recommendations [44]. This sample is representative of the winding that can be found in randomly 

wound motors.  

 

 
Figure II.12: Twisted pair of enameled wires 

 

To perform tests close to aeronautical conditions, a vacuum chamber was used with a sufficiently 

large volume to be able to perform tests on samples ranging from twisted pair to stator (no.4 on the 

Figure II.14). Pressure could vary from atmospheric pressure up to a few tens of millibars. Electrical 

connections were provided by high-voltage bushings. 
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Figure II.13: Vacuum system 

 

The complete experimental set-up is described in Figure II.14 below. 
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Figure II.14: Experimental set-up for tests at low pressure 

1 

2 

3 

4 
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 Reproducibility of the measurements 

Twisted pairs were used and tested, and the results presented here correspond to a selection of 

three of them randomly chosen. These twisted pairs consisted of 10 twists, with diameter of the enameled 

wire about 1.31 mm. All voltages below are peak voltages. 

 
Table II.1: Comparison of PDIV and PDEV for different twisted pairs at atmospheric pressure under AC 

voltage 

 PT1 PT2 PT3 

Test 
numbe

r 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

1 954,6 933,4 940,5 926,3 954,6 926,3 

2 954,6 940,5 947,5 919,2 957,4 933,4 

3 954,6 926,3 947,5 919,2 954,6 930,6 

4 954,6 933,4 947,5 905,1 947,5 933,4 

5 954,6 933,4 947,5 916,4 947,5 936,2 

 

Same study was performed under PWM-like voltage.  

 
Table II.2: Comparison of PDIV and PDEV for different twisted pairs at atmospheric pressure under 

PWM like voltage with a 200 MHz high pass filter 

 PT1 PT2 PT3 

Test 
numbe

r 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

PDIV 
(Vpeak) 

PDEV 
(Vpeak) 

1 1032 980 1032 1008 984 960 

2 1032 1008 1056 1008 1032 1008 

3 1056 1008 1056 1008 1056 1008 

4 1056 1008 1056 1008 1056 1008 

5 1056 1008 1056 1000 1056 1008 
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Given these results, we can consider that there is good reproducibility of results between the 

different twisted pairs allowing us to be confident on the results presented below. A slight difference 

can be observed on the PDIV between AC and PWM-like voltage, which is due to the filtering. 

 Influence of pressure under AC 

To study the influence of pressure on the ability of the method to detect PDs, tests were performed 

at different pressures under AC voltage and under PWM like voltage. The main idea is to compare the 

impact of this parameter on the discharge characteristics while enabling a comparison between the 

different sensors. 

This involves two hypotheses: 

• The partial discharge ignition voltage is the same, whatever the voltage waveform 

• The nature of the discharge remains the same, whatever the voltage waveform 

These assumptions will be discussed and confirmed in the following part. 

 

 Influence of the sensor on detection 

Three sensors were used for these tests: Jack-SMA sensor, Jack-SMA sensor with an additional 

capacitive effect (2 cm copper tape) and Rogowski coil. We first checked PDIV and PDEV at different 

pressures and AC voltage, since PDs are easy to detect under such conditions. 

 

 
Figure II.15 : Influence of pressure on PDIV for three sensors under AC voltage 

 

A decrease in PDIV is clearly observed with decreasing pressure. This phenomenon corresponds 

to expected behavior and is in good agreement with Paschen's law. 
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We compared the detected PDIV for each sensor. Jack-SMA sensor with an additional capacitive 

effect detects discharges first, it was then used under AC voltage to detect the PDIV. Subsequently, 

PDIV corresponds to the voltage at which the discharge is detected by the sensor used. 

It can also be observed that the PDIV detected by the Rogowski sensor is close to the optimized 

Jack-SMA sensor. On the other hand, without increasing the capacitive effect, the Jack-SMA sensor 

detects the PDs for a higher voltage and the PDIV detected has a large error. This is explained by the 

fact that the SNR of this sensor is low without the increase of the capacitive effect, making it difficult 

to distinguish a signal associated with a PD and the noise. 

 Influence of the cut-off frequency of the filter on detection 

Detecting conditions used here were those described for the tests performed under PWM-like 

voltage, which requires the use of a high-pass filter, as explained previously. The main idea is to study 

the impact of pressure on detection, with respect to the change in the nature of the discharge. Since the 

frequency content may be modified in that case, adapting the cut-off frequency to detect PDs must be 

envisaged. As the filter is suspected of inducing errors on PDIV, we studied its impact under AC voltage 

at different pressure values.  

These tests were performed at different pressure values with high-pass filters presenting cut-off 

frequencies of 50, 90, and 200 MHz and the Jack-SMA sensor with an additional capacitive effect. 

 

 
Figure II.16 : Influence of filter cut-off frequencies on the PDIV at different pressure values under AC 

voltage 

 

The measured PDIV is artificially increased using high-pass filters (Figure II.16). It should be 

noted that the higher the cut-off frequency, the larger the PDIV at 100 and 400 mbar. One assumption 

is that the high-frequency components of the spectrum are too small under such conditions. It is therefore 
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necessary to increase the voltage to detect partial discharge (which already appeared at 444 Vpeak). 

Hence, with the 200 MHz filter, the PDIV is about three times larger than the one measured with the 

sensor without filtering. 

This same phenomenon was not observed at atmospheric pressure and 700 mbar: the filter cut-off 

frequency had no impact on the PDIV (Figure II.16). This is a proof that modifying the pressure leads 

to a modification of the discharge spectrum. 

 Spectral analysis 

We then performed a study on the discharge frequency spectra for the different pressures under 

study. For each pressure level, 30 acquisitions of PD were recorded using the Jack-SMA sensor under 

AC voltage. We determined the spectrum of each and plotted their average value (Figure II.17). 

Since the DPs do not appear at the same voltage as a function of the pressure, it can therefore be 

assumed that the amplitude of these discharges will vary as a function of the pressure. It was therefore 

decided to normalized the results in order to compare the shape of the PDs frequency spectra. For each 

pressure, the frequency spectrum has been normalized with respect to its maximum value. This 

normalization prevents the comparison of the amplitudes of these spectra as a function of the pressure. 

Nevertheless, it makes it possible to highlight the evolution of the most energetic frequency ranges as a 

function of the pressure. 

It is obvious that the amplitude of the high-frequency components (40MHz – 100MHz) decreases 

with a decrease of the pressure while the amplitude of the low-frequency components (9MHz – 40MHz) 

increase. Moreover, at 100 mbar, for frequencies above 30 MHz, the signal amplitude is almost null 

despite some rays around 50 MHz that may contain a small portion of the discharge energy. A zoom on 

the y-axis confirms this assumption, with rays up to 70 MHz (Figure II.18). Some rays around 100 MHz 

can be observed at 100 mbar, though these rays do not match PD signals, but rather to noise induced by 

external systems during tests. 
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Figure II.17: Normalized changes of PD spectrum under AC voltage as a function of pressure 

 
Figure II.18: Zoom on high-frequency components of partial discharges at 100 mbar 

 

It is necessary to specify that certain characteristic frequencies can come from the detection circuit 

(resonances) and that is why the analysis is qualitative (normalized and observation of the relative 

variation). 

It has been seen that the Jack-SMA sensor is sensitive to the dynamics of the discharge, so it can 

be assumed that the frequency shift as a function of the pressure comes from a variation in the rise time 

of the discharges and / or from a variation of the amplitude of the discharges. 

We therefore compared two PD signals for two pressure values. 
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Figure II.19: PD signal shape at 1013 mbar 

 
Figure II.20: PD signal shape at 100 mbar 

 

At 100 mbar, the signal is completely different from the PD signal at 1013 mbar. The rise time of 

the front is about 121 ns and it is ten times longer than at atmospheric pressure (13 ns). This explains 

the observed frequency shift. 
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 Influence of pressure under PWM  

 Influence of the sensor on detection 

In the case of detection under PWM, it is not possible to detect the PDs without filtering the 

electromagnetic noise associated with the dV/dt. We therefore compare the response of the sensors 

without filtering and with high-pass filtering at 290 MHz. 

It can be seen on the Figure II.21 that the noise coincide temporally with each of the dV/dt. The 

aim of the filtering will be to eliminate this noise in order to observe only the signals associated with the 

PDs. 

 
Figure II.21: PWM like voltage shape (black), Rogowski sensor signal without filtering(blue), Jack-SMA 

sensor signal without filtering (red), Jack-SMA sensor (with an additional capacitive effect) signal without 

filtering (green) 

 

Subsequently all the sensor signals were filtered using high-pass filters having a cut-off frequency 

of 290 MHz. 
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Figure II.22: PWM like voltage shape (black), Rogowski sensor signal filtered at 290 MHz (blue), Jack-

SMA sensor signal filtered at 290 MHz (red), Jack-SMA sensor (with an additional capacitive effect) 

signal filtered at 290 MHz (green) 

 

It can be seen that this cut-off frequency allows a complete denoising for the three sensors, 

nevertheless in the case of the Rogowski sensor the PDs signals also appear to be filtered. This is due to 

the fact that the bandwidth of this sensor is not sufficient when using high-pass filters. Indeed, the 

bandwidth (at -3dB) of the sensor does not exceed 80 MHz and since the filter cut-off frequency is 

higher, all the signals are filtered. Subsequently, only the optimized Jack-SMA and Jack-SMA sensors 

will be studied. 

 

PDIV and PDEV were measured for different pressure values. Discharges were detected using a 

Jack-SMA sensor filtered analogically using different cut-off frequencies (185, 290 and 390 MHz). The 

PD signals were observed for the three different cut-off frequencies simultaneously. For the conditions 

under study, only the filter cut-off frequencies above 290 MHz provides full electromagnetic dV/dt noise 

removal. 

 



Chapter II. Experimental set-up 

 

- 48 - 

 
Figure II.23: Influence of pressure on PDIV for two sensors filtered at 290 MHz 

 

Not surprisingly, the PDIV value decreases with pressure and whatever the filter for each pressure 

(from 100 mbar to 1013 mbar), PDIV remains the same. It can be seen in the figure that there is no 

difference on the PDIV between the Jack-SMA sensor and the optimized Jack-SMA sensor. This is due 

to the filtering, which eliminates a large part of the noise and therefore allows the detection of the PDs 

when their amplitude is sufficiently large. In some cases, since the amplitude of the PD is low, it is 

difficult to distinguish the signal associated with a discharge of the white noise induced by the 

acquisition system with the Jack- SMA sensor while the optimized Jack-SMA amplifies the signal 

associated with the PD and allows its detection. 

 Influence of the cut-off frequency of the filter on detection 

As we have seen previously, the cut-off frequencies do not influence the measured PDIV, but it 

is interesting to observe their influences on the amplitude of the PDs measured. 
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Figure II.24: Influence of filter cut-off frequencies on the PDIV at different pressure values for two 

sensors 

It can be seen that an increase in the cut-off frequency of the filters induces a decrease in the 

amplitude of the measured PD signals. It can be observed that regardless of the cut-off frequency of the 

filters, the optimized Jack-SMA sensor makes it possible to recover a signal with a greater amplitude. 

The detection is thus improved because the SNR is higher. 

However, under PWM, the cut-off frequency does not lead to errors on the PDIV. It is therefore 

important to study the spectrum of the PDs under PWM to understand this difference with the AC case.  

 Spectral analysis 

In order to confirm the influence of pressure on the amplitude of high-frequency components, the 

same study as the one performed under AC was undertaken for PWM-like voltage. 

Nevertheless, it is more complex in this case to analyze the frequency content since it is necessary 

to remove all the noise induced during the switching while preserving the “entire” PD signal. 

 

Hence, it was decided to follow the proposed procedure to carry out this study: 

• Measure of PDIV (using the appropriate filter) 

• Acquire the signal without any filtering, for a voltage value of 90% of PDIV (signal without 

PD) 

• Acquire the signal without any filtering at PDIV (signal with PD) 

• Calculate the difference between the signal with PD and the signal without PD 

• Calculate the frequency spectrum of the difference 
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This procedure has some limits: 

• If the filter is not adapted, there may be an error on the PDIV 

• Generally for a voltage value of 90% of PDIV, the PDEV is reached but in some cases this 

may not be the case 

• This procedure is only valid if the noise is repeatable, if  the noise varies too much from one 

acquisition to another the analysis will be totally false 

 

In this case, it can be seen that the amplitudes of the frequency components are in the same range 

for all the pressure values. It has therefore been decided to normalize all the frequency spectra with 

respect to the amplitude of an identical frequency component for the four pressure values. This makes 

it possible to observe the variation in the shape of the frequency spectrum as well as the modification of 

the amplitude of the frequency components as a function of the pressure. 

 

The average of the signals with and without PD can be seen in Figure II.25.  

 
Figure II.25: Sensor signal spectrum without any filtering for a voltage value of 90% of PDIV (red) Sensor 

signal spectrum without any filtering at the PDIV(blue) 

 

First of all, it is important to note that the spectrum of the PD signals under such conditions 

extends over a wider frequency range than that observed under AC voltage. The question is to know if 

this is due to a change in the discharges nature. 

In the Figure II.26, the magnitude of high-frequency components (80 – 400MHz) decreases with 

pressure while the amplitude of the low-frequency components (8MHz – 80MHz) increase. Such 
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behavior may be detrimental to the accuracy of the PDIV measurements. For a pressure of 100 mbar, 

the magnitude of the components above 300 MHz for the PD spectrum is very small.  

 

 
Figure II.26: Normalized changes of PD spectrum under PWM-like voltage as a function of pressure 

 

It may be asked, how it is possible to detect PDs under PWM because it has been observed in the 

Figure II.26 that there are very few frequency components above 300 MHz and the cut-off frequency of 

the high-pass filters is about 290 MHz. This is due to the fact that our analogical filters are not perfect, 

according to the frequency response given by the manufacturer the different levels of attenuation are as 

follows: 

• loss < 1.5 dB at 290 MHz 

• loss of 3 dB at 245 MHz 

• loss > 20 dB at 190 MHz 

It is therefore possible to detect the PDs with this filter because, despite the cutoff frequency of 

290 MHz, some of the lower frequency components are not attenuated. 
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 Limits of the detection method 

It has been observed previously that the PD spectrum is modified when the pressure decreases. It 

therefore seemed interesting determine the limits of the detection method. The PDIV research and the 

observation of the discharge amplitude have been carried out for a pressure range between 200 mbar 

and 40 mbar. 

The study could not be carried out for lower pressure values due to the inaccuracy of the pressure 

measurement which was about 5 mbar and an error well above 10% below 40 mbar was observed. 

The tests were performed under AC and PWM like voltage on twisted pair and the detection was 

achieved thanks to the Jack-SMA sensor. 

 

 
Figure II.27: Search for signal disappearance (PDIV) 

 
Figure II.28: Search for signal disappearance (PD magnitude) 
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First of all, it is important to specify that at 60 and 40 mbar a glow discharge was observed along 

the twisted pair for a voltage amplitude of 550 V under AC and PWM like voltage (Figure II.29). 

Nevertheless, Figure II.27 and Figure II.28 show that at 40 mbar, no electrical signal is detected. 

At 60 mbar, PDs signal are only measured under PWM like voltage. 

Compared to the AC case, it can be assumed that the signals disappear for lower values of pressure 

under PWM because the PDs spectrum spreads over a higher frequency range. A greater decrease in 

pressure is necessary to reduce the amplitude of the high-frequency components of the PDs signals. 

Since below 40 mbar, whatever the voltage waveform, it seems that the frequency spectrum 

spreads over a frequency range too low to be detected using our systems. It will therefore be necessary 

to use another detection method, if applications in low pressure range are considered. 

 

    
Figure II.29: Influence of the pressure on the “light” emitted by PDs on twisted pair at PDIV for a 

frequency of 10 kHz 
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 Conclusion 

The results presented in this chapter showed that pressure has a significant influence on the 

detection of partial discharges, and specifically on their characteristics. 

A decrease in pressure causes a change in the frequency spectrum of the partial discharge. High-

frequency components of the discharge signals tend to decrease or even disappear under very low 

pressure. 

In addition, the sensors used are sensitive to rapid current variations. If the frequency components 

are shifted to lower frequencies, the bandwidth of the sensors may not be sufficient to detect these 

signals. An error in determining the PDIV can be made in this case. Below 40 mbar (or 60 mbars) 

depending of the voltage waveform, the proposed method is no longer functional and the sensors no 

longer detected any signals, despite the presence of discharges [45]. 

As detection in PWM voltage requires the use of high-pass filters to remove the noise induced by 

switching, there may be a complete suppression of the frequency components associated with the PDs. 

However, we observed that the discharge frequency spectrum covers a much larger frequency range 

than with AC. Therefore, the method was functional regardless of the pressure and voltage form tested. 

It would nevertheless be interesting to perform further analysis on the changing nature of the 

discharges according to pressure in order to optimize detection systems. 

Such a study needs the development of a complete understanding of the discharge mechanisms 

versus the pressure and therefore of the nature of the discharge itself which is far from the objective of 

this work. 

Noise filtering is an important issue. The choice of the cutoff frequency remains a difficult task 

because it is dependent on the analog filters available during testing, of the pressure as observed above 

as well as the expertise of the operator. 

It thus seems important to optimize filter choice. To do this, it is possible to use digital filters that 

make it possible to have an infinite number of filters available. However, this solution still requires 

significant expertise regarding the selection of the filter cutoff frequency. 

In the industry, it is often difficult to have an expert who can participate in all tests, especially if 

detection is included for health-monitoring applications. This is why it is necessary to develop a fully 

automated digital method to replace the expertise of an operator. The next chapter proposes such a 

solution. 
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 Context  

When seeking to detect Partial Discharges in equipment supplied by inverter using PWM for e.g., 

a key challenge is to distinguish the raw signal with respect to electromagnetic noise induced by fast 

switching inverters. The magnitude of the signal associated with Partial Discharges generally has an 

amplitude of several tens of mV, while the magnitude of the noise signal is on the order of several 

hundred mV and depends on the voltage magnitude. From a frequency perspective, the spectrum of a 

discharge may extend up to the GHz range, while the noise spectrum does not extend beyond a few 

hundred of MHz [46]. 

In our work, a simple technique for observing the presence or the absence of a discharge was to 

filter the raw signal in order to retrieve only the high-frequency components of the signal using analog 

high-pass filters. While this technique works well, some external parameters can alter the discharge 

spectrum like the pressure for e.g..  

Another important point is that in aeronautical environments, some equipment operates under 

pressure and temperature conditions that can vary greatly. These environmental condition variations can 

alter the signals associated with PD. The denoising technique must therefore work regardless of the 

operating conditions.  

This chapter discusses the use of wavelets as digital processing for this purpose. 

 

 Noise source 

As PD measurement is performed in industrial environment, the presence of noise in the signal 

of interest is therefore inevitable. To be recognized as a PD, the detected signal should therefore appear 

with sufficient recurrence and be large enough to be detected as something other than just random noise. 

We can divide the main sources of noise into four categories, classified by the type of interference 

they produce [47], [48]: 

 Periodic pulse interference caused by power electronics or other periodic operations. 

 Discrete spectral interferences (DSI) embody a continuous sinusoidal signal and can be 

caused, for example, by AM/FM radio emission or power line communication systems. 

 Stochastic pulse interference amplitude and moments of random occurrence caused by 

operations of occasional workers, power electronics, lightning strikes... 

 Other noise involving interference of the measurement circuit and ambient noise [49] 

 

Of all the external interference types mentioned above, DSI can be identified and eliminated in 

the frequency domain, as that interference has a narrow band frequency spectrum centered around the 

dominant frequency, while PD pulses have a relatively wide frequency spectrum band. All PDs that 

occur at the same instant of periodic pulses are lost, which is undesirable. But it is very difficult to 
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identify and eliminate stochastic pulse interference because it has many features in common (both in 

time and frequency) with PD pulses. Methods to eliminate interference must thus be continuously 

explored to improve the sensitivity of PD measurements on-site and/or online. 

In most cases, external interference can cause false indications, thereby reducing the credibility 

of PD measurement as a diagnostic tool. Since this is a recognized problem, significant research has 

been conducted in this area, and several techniques to remove this external interference have been 

proposed. Narrowband detectors achieve somewhat positive results, though best results were obtained 

by balanced bridge arrangements and by pulse-discriminating circuits [31]. But these analog noise 

suppression methods are laborious, requiring both additional equipment and critical adjustments that 

might not be very easy in on-line conditions. 

Figure III.1 shows that it is impossible to distinguish the presence of the PD signal. The amplitude 

of the noise induced by switching under PWM voltage being too large compared to the PD amplitude. 

 

 
Figure III.1: Noisy signal induced by switching (black) 

 Noise suppression techniques 

The biggest problem with these measurements lies in their sensitivity and accuracy. Good 

sensitivity allows detection of low amplitude PD signals buried in noise. Good accuracy is related to the 

ability to distinguish signal PD from another similar shape of signals. 

In literature, we can find different techniques for extracting PD signals from raw data. The article 

[50] performed a comparison of some of these noise suppression methods based on several parameters. 

 Fast Fourier Transform-Based Denoising (Clustering techniques [51], [52])  

 Low-Pass Filtering 

 Wigner-Ville Distribution-Based Denoising 

 Short-Time Fourier Transform-Based Denoising 
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 Least Mean Square Approach 

 Frequency-Domain Adaptive Filtering 

 Recursive Least Squares and Exponentially Weighted Recursive Least Squares Methods 

 Matched Filtering 

 Notch Filtering 

 Wavelet Denoising 

In this paper, all these methods are compared according to the Mean Squared Error (MSE) 

between the raw signal and the noise-suppressed signal as well as the execution time of filtering. 

By definition, normalized MSE is: 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑ [𝑌𝑌(𝑖𝑖) − 𝑋𝑋(𝑖𝑖)]2𝑛𝑛
𝑖𝑖=0

𝑛𝑛𝜎𝜎𝑛𝑛2
 (III.2.1) 

With X the noisy sequence, Y the filtered sequence, n the number of samples for which X is 

defined, and 𝜎𝜎𝑛𝑛2 the total noise power. 

 

Based on these criteria, Wavelet Denoising and Low-pass Filtering methods have proven to be 

the most effective. In our case, since the electromagnetic noise induced by switching has low-frequency 

components, the low-pass filtering is not possible. The best technique for extracting PD signals is 

therefore the Wavelet Denoising method. 

Two types of measurements are made to analyze the discharge frequency spectrum for systems 

powered by the inverter: first the acquisition of existing noise for a voltage below the PDIV (≈ PDIV – 

10% PDIV) and after, an acquisition for a voltage higher than the PDIV. Note that, in this case, the value 

of PDIV was determined by means of high-pass filtering. 

The Short-time Fourier transform (STFT) results reported in Figure III.2 show that the spectral 

energy of only the disturbance propagates up to 150 MHz, but only during “on/off” switching. 

Thereafter, the remaining ringing is negligible (above 100 MHz). Figure III.3, shows that the spectral 

energy under PD spreads up to 350 MHz. It is therefore possible to filter noise and retrieve part of the 

PD signal [53]. However, finding this cut-off frequency can be complex and depends on the user’s 

experience. It is therefore necessary to use an automated method capable of matching all configurations.  
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Figure III.2: Noisy signal induced by switching without PD (top curve), STFT of noise without PD (lower 

curve) 

 

 
Figure III.3: Noisy signal induced by switching with PD (top curve), STFT of noise with PD (lower curve) 

 

 General understanding of the wavelet transform 

Invented by Jean Morlet, the wavelet transform (Wavelet Transform - WT), just as the Fourier 

transform (Fourier Transform - FT) is a mathematical signal processing tool that decomposes a signal 

into different basic functions. The basic functions of the FT being the sine and cosine, the result of 

applying this method provides information only on the frequency content of the signal of interest. The 

disadvantage lies in not knowing the moment at which each frequency component appears. 
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Besides that, the basic functions of the WTs called “wavelets” allow two-dimensional resolution 

in the frequency and time domains. The result of these two transforms represents the projection of a 

signal based on wavelets for the WT or complex exponential functions for the FT. 

Moreover, in comparison, the FT shows extreme efficiency for analyzing periodic phenomena, 

time-invariant and stationary techniques, while WT screens all components produced by transients, of 

variable time and non-stationary [47], [54]. 

Therefore, with the PD signal being of a non-periodic nature and exhibiting very fast transient 

characteristics, the WT approach seems more suitable in this context. The method has proved its ability 

to denoise PD signals, but mainly under AC voltage and in the presence of white noise [49], [55]–[57]. 

It is therefore necessary to check whether this method is functional for denoising PDs occurring under 

PWM. We used this technique to remove noise superimposed on PDs. 

 Wavelet definition 

To understand the wavelet transform, it is first necessary to understand what a wavelet is. As its 

name indicates, a wavelet is a wave of limited duration. Generally speaking, a wave is an oscillating 

function, such as a sine wave extending over the entire time axis and therefore with an infinite energy. 

A wavelet is a wave of zero means and with finite energy concentrated over a time interval [54]. 

Mathematically, a function can be called wavelet if it fulfills admissibility and regularity 

conditions. 

 Admissibility property 

 
�

|ψ(𝜔𝜔)|2

|𝜔𝜔| 𝑑𝑑𝑑𝑑 < +∞ (III.3.1) 

With Ψ (ω) the Fourier transform of the wavelet function ψ (t). 

This property ensures the reconstruction of a signal without loss of information. It follows that a 

wavelet must have a type of spectrum band pass and a zero-time average. Given this latter feature, ψ (t) 

must have the shape of a wave. 

 

 Regularity property 

This property requires the wavelet function to be smooth and concentrated in time and frequency 

domains. 

 

Figure III.4 provides a clear view of these two conditions with a wavelet called the “Daubechies” 

wavelet. While the sinusoid is periodic and therefore predictable, the wavelet has an irregular and 

asymmetrical feature. We can easily deduce that the signals with transients will be better interpreted 

from irregular wavelets than with sinusoids. 
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Figure III.4: Daubechies wavelet 

 

 Wavelet analysis 

The time-frequency performance given by the wavelet analysis makes it possible to divide the 

signal into several pieces and to analyze content separately. This method enables us to know all the 

frequency components of a signal present at a given time. 

More specifically, wavelet analysis uses a “window” whose dimensions are adjustable to 

fractionate the signal and observe only a small portion (see Figure III.5). This window, contained in the 

wavelet function, is then moved along the signal. The spectrum is calculated for each position. This 

process is then repeated for other window sizes. Lastly, the result is a set of representations of time-

frequency signals, where each has a different resolution. For that reason, wavelet transform is described 

as multi-resolution analysis, as it provides information from overview down to details. 

 
Figure III.5: Window and wavelet function 

 

Upon application, terms of “scale” are used rather than frequencies. The scale is essentially the 

opposite of the frequency: large scales provide an overview, an approximation, while small scales insist 

on details. In fact, as the scale increases, the selection window is expanded to include an increasingly 

global view. The transition from large to small scales is used to gradually zoom in the signal of interest. 
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Figure III.6: Multiresolution decomposition 

 

It is therefore reasonable to suggest that this signal-processing tool has many advantages, 

including: 

 Time-frequency analysis: each frequency and time of occurrence are known. 

 Multi-resolution analysis: low resolution for the overall view and high-resolution for 

details. 

 Local analysis: surrounded by a portion of a long signal. 

 

Two main areas exist in wavelet transformation: the continuous wavelet transform and the discrete 

wavelet transform from which many other variations are derived. The main theoretical concepts of these 

methods are described below. 

 

 Continuous wavelet transform 

The continuous wavelet transform (Continuous Wavelet Transform - CWT) of a finite energy 

signal, provides a series of two-dimensional coefficients 𝛾𝛾(𝑠𝑠, 𝜏𝜏) from this one-dimensional signal, 

locating the signal in the time and frequency domains, as defined by the following formula: 

 
𝛾𝛾(𝑠𝑠, 𝜏𝜏) = � 𝑓𝑓(𝑡𝑡) 𝜓𝜓𝑠𝑠,𝜏𝜏

∗
+∞

−∞
(𝑡𝑡)𝑑𝑑𝑑𝑑 (III.5.1) 

where 

 s (scale) is a scaling parameter, s> 0 

 τ (translation) is a second displacement parameter 

 γ are the wavelet coefficients, scale functions and position 

 𝜓𝜓𝑠𝑠,𝜏𝜏(𝑡𝑡) are wavelets (basic) 

 * indicates complex conjugation 

 

The WT calculates the correlation between the signal of interest and a modified wavelet 𝜓𝜓(𝑡𝑡). 

Thus, the more the analyzed signal portion and wavelet 𝜓𝜓𝑠𝑠,𝜏𝜏(𝑡𝑡) are similar, the higher the value of the γ 

coefficient. In fact, all 𝜓𝜓𝑠𝑠,𝜏𝜏(𝑡𝑡) wavelets are derived from a single function 𝜓𝜓(𝑡𝑡), called the “mother 

wavelet” scaled and translated as follows: 
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𝜓𝜓𝑠𝑠,𝜏𝜏(𝑡𝑡) =

1
√𝑠𝑠

𝜓𝜓 �
𝑡𝑡 − 𝜏𝜏
𝑠𝑠

� (III.5.2) 

With √𝑠𝑠 divider that is the energy normalization factor so that each “child” wavelet has a wavelet 

energy equivalent to that of the “mother” wavelet [58]. Obtaining a CWT consists applying five steps 

successively: 

1. Choosing a “mother” wavelet.  

2. Calculating the correlation index between the selected wavelet and the beginning of the 

signal to be analyzed, equal to the unit in case of perfect equality. 

3. Continuous shift of the wavelet to the right on the time axis and repeating steps 1 and 2 

until the end of the signal. 

4. Scaling (expanding) the wavelet and repeating steps 1 to 3 

5. Repeating steps 1 to 4 for all scales. 

 

The theory presented above gives a good idea regarding the usefulness and operation of WT in 

the continuous area. However, in practice, the CWT form of equation (III.5.1) is not an option for three 

reasons: 

1. Redundancy: CWT results from the continuous movement of a window, whose 

dimensions are also continuously changed along the signal of interest, and gives the level 

of correlation between the two. The basic functions in the continuous area do not respect 

the property of orthogonality, resulting in significant redundancy in the coefficients 

obtained. 

2. Infinity wavelet: as every “child” wavelet results from a changed parameter of the 

“mother” wavelet, there is an uncountable number of basic functions, each leading to a 

different transform. Limits must be set to work with a reasonable number of functions. 

3. CWT of many functions have no analytical solution: WT of some functions are only 

computable numerically, hence the need to use faster algorithms to benefit from the full 

power of the WT. 

 

Because of these problems, the discrete wavelet transform (Discrete Wavelet Transform - DWT) 

was introduced. The DWT is described below, and it is worth specifying the major difference with the 

continuous version. First, both deal with discrete signals as measured with a certain sampling frequency. 

The continuous or discrete appearance, therefore, qualifies the analyzed signal. In fact, in the CWT case, 

it is the factor and translation scale which are continuously determined. 

 



Chapter III. Development of a digital processing method to remove noise 

 

- 63 - 

 Discrete wavelet transform 

The successive steps from the continuous wavelet transform to the discrete model are detailed 

below. 

 First step 

A first step towards the discrete transform is to eliminate redundancy by discretizing the wavelet. 

Of course, the basic functions are continuous, but it is then the scale s and translation τ parameters that 

vary stepwise and not continuously. The introduction of this property in equation (III.5.2) gives: 

 
𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) =

1

�𝑠𝑠0
𝑗𝑗
𝜓𝜓 �

𝑡𝑡 − k𝜏𝜏0𝑠𝑠0
𝑗𝑗

𝑠𝑠0
𝑗𝑗 �       𝑗𝑗,𝑘𝑘 ∈ ℤ;  𝑠𝑠0 > 1 (III.6.1) 

With j and k, respectively, parameters related to the wavelet scaling and translation. 

 

In most cases, the parameters are fixed, 𝑠𝑠0 = 2 and 𝜏𝜏0 = 1, in order to obtain a dyadic sampling 

sampling frequency of the frequency axis and of the time axis,giving the following result: 

 
𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) =

1
√2𝑗𝑗

𝜓𝜓 �
𝑡𝑡 − k2𝑗𝑗

2𝑗𝑗
�       𝑗𝑗,𝑘𝑘 ∈ ℤ (III.6.2) 

 

 
Figure III.7 : Localization of the discrete wavelets in the time-scale space on a dyadic grid [59] 

 

The next step is to make the basic discrete wavelet orthonormal. The wavelets are then orthogonal 

to their own dilatations and translations, and this is made possible just by choosing a proper wavelet 

mother: 
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�𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)𝜓𝜓𝑚𝑚,𝑛𝑛

∗ (𝑡𝑡)𝑑𝑑𝑑𝑑 = �      1 if 𝑗𝑗 = 𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 𝑛𝑛
 0 otherwise           

 (III.6.3) 

  Second step 

The second disadvantage of CWT, that is, the infinite number of wavelets, is remedied by 

introducing the scaling function φ (t). The concept is to set an upper bound to the index j in the discrete 

wavelet equation (III.6.2), in turn imposing a lower limit to reduce the wavelet spectrum. Figure III.8 

provides a clear picture of the following explanation. When calculating WT, the wavelets are repeatedly 

expanded and translated in the time domain, this being carried out by increasing the indices j and k of 

equation (III.6.2). With index k varying the translation function, an upper terminal is automatically 

linked to the signal length to be analyzed. The extent of the wavelet spectrum is reduced by half each 

time that the index j is incremented by 1. As mentioned earlier, the spectrum of a wavelet can be seen 

as a band pass filter, and thus a series of dilated wavelets create a band pass filter bank as shown in 

Figure III.8. 

If such a filter bank covered the entire signal spectrum, its reconstruction would be perfect, but 

the computing time would make the operation impractical. The function φ (t) is used for that reason: 

once the bandwidths of wavelet spectra reaches a defined minimum, such as from j = n + 2 in Figure 

III.8, they are replaced by a low-pass filter formed by the spectrum of the scaling function φ (t). 

 
Figure III.8: Spectra of a scaling function 𝝋𝝋 (𝒕𝒕) and a dilated wavelet 𝝍𝝍(𝒕𝒕) [59] 

 

The scaling function, with a spectrum similar to a low-pass filter coupled to dilated wavelets, and 

for which each spectrum is band pass type, forms a filter bank to cover the entire spectrum of the signal 

to be analyzed. 

  Third step 

Now, only the last CWT disadvantage remains to overcome, that is, the non-existence of 

analytical solutions before determining all the concepts necessary for defining the discrete wavelet 

transform. Implementing the WT as a filter bank can solve this. 

The processed signals result in most instances of a time sampling. The last change to be made 

then is to make the discrete WT using an iterated version of a bank of digital filters. 
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It is possible to decompose the signal spectrum into various frequency bands thanks to wavelets 

and the scaling function. The successful design is to divide the signal spectrum by applying two filters: 

a high-pass and low-pass of the same bandwidth. However, the components selected by the low-pass 

filter still contain references to information that could be interesting. To retrieve these references, the 

application of two filters explained above is repeated with bandwidth reduced by half, giving two new 

sets of data. This can be repeated until satisfaction while the information is obtained. The WT is 

implemented as the repeated application of a bank of bandwidth filters, reduced at each iteration. 

 Results 

To summarize: the DWT performs a time-scale representation of a signal by digital filtering; 

filters of different cut-off frequencies are used to analyze the signal at different scales. Two filters, a 

high-pass (H) and a low-pass (L) therefore decompose the signal of interest into two parts, before being 

sub-sampled by two, to maintain the same amount of data to be processed at each iteration. Thus, low 

and high-frequency components are obtained, respectively called approximation coefficients (cA) and 

detail coefficients (cD) [48], [60]. The frequency content of these coefficients is limited by the Nyquist 

criterion. 

Regarding the choice of the “mother” wavelet, it must be oriented to meet: 

1. The existence of a scaling function φ (t). 

2. The orthogonality of the results obtained by the WT. 

 

Despite the variety of wavelet shapes, only some have those characteristics, the most common 

being Daubechies, Symlet, Coiflet [58]. Examples of these functions are shown below in Figure III.9. 

The integer K coupled to the diminutive of the name of the wavelet, for example, 10 in 'db10', is related 

to the number of zero moments. 

 

  



Chapter III. Development of a digital processing method to remove noise 

 

- 66 - 

 
 

Figure III.9: Different wavelets shape: (from left to right: Daubechies, Symlet, Coiflet) 

 Reconstitution 

It is then possible to reconstruct the original time signal in reverse order. The approximation and 

detail coefficients are oversampled by two before passing through the synthesis filters, respectively low-

pass filters (L') and high pass (H') synthesis. The filters used in the decomposition are called analysis 

filters, while those for reconstruction are called synthesis filters. Lastly, to retrieve the original signal, 

the high- and low-frequency components are added, a logical method called inverse discrete wavelet 

transform (Inverse Discrete Wavelet Transform - IDWT) expressed as: 

 
𝑓𝑓(𝑡𝑡) = � 𝑐𝑐(𝑘𝑘)𝜑𝜑𝑘𝑘(𝑡𝑡) + � � 𝑑𝑑(𝑗𝑗,𝑘𝑘)

∞

𝑘𝑘=−∞

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)
∞

𝑗𝑗=0

∞

𝑘𝑘=−∞

 (III.6.4) 

with 𝜑𝜑𝑘𝑘(𝑡𝑡) and 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) respectively obtained through the scaling function 𝜑𝜑(𝑡𝑡) and the mother 

wavelet 𝜓𝜓(𝑡𝑡) as follows: 

 𝜑𝜑𝑘𝑘(𝑡𝑡) = 𝜑𝜑(𝑡𝑡 − 𝑘𝑘) (III.6.5) 

 
𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2𝑗𝑗 2⁄ 𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘) (III.6.6) 

with 𝑐𝑐(𝑘𝑘) and 𝑑𝑑(𝑗𝑗,𝑘𝑘) representing respectively the coefficients of approximation and detail jth 

level of the original signal. 

 

Figure III.10 illustrates the principle where S is the starting signal and cAi and cDi are the 

approximation and detail coefficients at level i. The original signal, having been a J-level decomposition 

here, is retrieved by summing the coefficients of the approximation of the Jth level, every detail 

coefficient obtained from the 1st to the Jth level. 
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Figure III.10: Diagram of multilevel decomposition by DWT 

 

It should be stated that the perfect reconstruction of the original signal could not be obtained in 

all cases. For this, the analysis and synthesis filters must be properly selected. Indeed, the step of 

subsampling the high- and low-frequency components induced distortion, or more exactly the spectra 

overlap phenomena, thus preventing reconstitution of the initial signal during the reconstruction step. 

To counter this problem, the choice of filters is not left to chance. During the multi-resolution analysis 

of a signal, orthogonal bases can be built from functions, such as scaling functions 𝜑𝜑 (𝑡𝑡) and wavelet ψ 

(t). These bases are then calculated by using a pair of filters h [n] and g [n] [61]. 

 
1
√2

𝜓𝜓�
𝑡𝑡
2
� = � ℎ[𝑛𝑛]

+∞

𝑛𝑛=−∞

𝜓𝜓(𝑡𝑡 − 𝑛𝑛) (III.6.7) 

 
1
√2

𝜑𝜑 �
𝑡𝑡
2
� = � 𝑔𝑔[𝑛𝑛]

+∞

𝑛𝑛=−∞

𝜑𝜑(𝑡𝑡 − 𝑛𝑛) (III.6.8) 

with 

 
ℎ[𝑛𝑛] =

1
√2

〈𝜓𝜓 �
𝑡𝑡
2
� ,𝜓𝜓(𝑡𝑡 − 𝑛𝑛)〉 (III.6.9) 

 
𝑔𝑔[𝑛𝑛] =

1
√2

〈𝜑𝜑 �
𝑡𝑡
2
� ,𝜑𝜑(𝑡𝑡 − 𝑛𝑛)〉 (III.6.10) 

and 

 𝑔𝑔[𝑛𝑛] = (−1)1−𝑛𝑛ℎ[1 − 𝑛𝑛] (III.6.11) 
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 Denoising by wavelet transform 

Noise removal of raw data using WT requires identifying noise components in order to ensure 

that signal reconstruction is free of unwanted components. The ability to differentiate noise compared 

to PDs signals can be improved by knowing various characteristics specific to each noise component: 

frequency bands occupied, shapes, attenuation . . . 

It is essential to distinguish the noise components hidden in the signal in order to avoid removing 

high-frequency characteristics leading directly to the loss of valuable information, as would be the case 

when analyzing partial discharge signals. 

The majority of existing techniques for noise suppression showed satisfactory performance for 

removing discrete spectral interferences (DSI). Indeed, DSIs are the easiest to detect as they do have 

some components to specify frequencies. On the downside, the largest difficulty in this area lies in the 

treatment of random types of impulsive interference whose time and frequency characteristics are very 

similar to those of PD signals [62]. 

The procedure for the standard denoising method proceeds in three steps: 

1. Decomposition consists in selecting a mother wavelet and a level J to retrieve the 

coefficients resulting from application of the WT from the first to I levels. 

2. Choice of the elimination coefficient threshold to suppress some components considered as 

unnecessary. 

3. Reconstruct the original signal-free components suppressed by Step 2. 

 Settings parameters 

To proceed with the optimal removal of interference, several parameters related to the nature of 

the signal of interest must be determined. Among them is the choice of the “mother” wavelet, 

determining the maximum level of decomposition, and lastly, the thresholding method. 

 “Mother” wavelet 

The selection of the “mother” wavelet used to analyze a signal is very important. Indeed, the 

application of DWT will provide even more maximum value coefficients if the shape of the wavelet is 

similar to that of the desired signal. 

The theoretical shape of a PD signal follows that of a damped exponential pulse (DEP), or damped 

oscillatory pulse (DOP), depending on the detection circuit. Many studies have reached conclusions 

about the effectiveness of “Daubechies” wavelets designated by the abbreviation dbK, “Symlet” symK, 

and “Coiflet” coifK. 

The WT can be defined as a similarity measurement. The more the wavelet and analyzed signal 

are similar, the higher the coefficients obtained after decomposition will be. A simple criterion for 

determining the optimal wavelet is to calculate the correlation coefficient first between a pulse PD and 
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the various existing wavelets. The higher the correlation, the better the similarity between the shape of 

the wavelet and that of the PD signal, which involves achieving higher coefficients. 

The selection of the mother wavelet is generally based on the digital model of a PD pulse. 

However, in practice, the shape of a pulse PD varies depending on the detection method, test object, 

type of PD, location of PDs, and signal propagation and attenuation method. This significantly 

complicates the implementation of a filtering universal method. 

 

 Decomposition level 

 

In general, the level of decomposition of a signal by DWT is limited to: 

 𝐽𝐽 = [log2 𝑁𝑁] (III.7.1) 

with N, the length of the analyzed signal. Nevertheless, as we use MATLAB software [63], the 

length of the filter implemented by a wavelet then restricts the maximum possible number of levels. 

 𝐽𝐽 = 𝑓𝑓𝑓𝑓𝑓𝑓(log2(𝑁𝑁 𝑁𝑁𝑤𝑤 − 1⁄ ) (III.7.2) 

with fix which rounded to the integer closest to zero and Nw corresponding to the length of the 

decomposition filter associated with the selected “mother” wavelet [60]. 

 

With respect to computation time, achieving the maximum level of decomposition is not 

recommended. The question of “when to stop” the analysis is then raised. A compromise must therefore 

be set between the speed of the algorithm and quality of results. This is done by evaluating multiple 

criteria. The most-used are the signal-to-noise ratio (SNR) and the correlation coefficient (CC). SNR 

expresses the signal power divided by the power of the ambient noise signal; CC measures the similarity 

between the original and filtered signal to eliminate interference and thus restore the PD signal with 

little distortion. Large SNR and CC values are sought. 

 

The level of decomposition is therefore often selected by trial and error, or according to the 

frequency bands determined by the sampling frequency. Indeed, the greater the sampling frequency is, 

the greater the decomposition depth will be in order to recover the entire frequency spectrum. 

 

 Thresholding method 

 

A very important concept is the thresholding method and the applied threshold value. With this, 

all component values above a determined limit are canceled. 

The application of the thresholding can be either hard or soft: 

 

1. Hard thresholding 
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𝑓𝑓ℎ(𝑥𝑥) = �  𝑥𝑥     |𝑥𝑥| ≥ 𝑡𝑡

  0          else
 (III.7.3) 

This function is known to keep the abrupt changes of the signal x 

2.  Soft thresholding 

 
𝑓𝑓𝑠𝑠(𝑥𝑥) = � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)[|𝑥𝑥| − 𝑡𝑡]       𝑥𝑥 ≥ 𝑡𝑡

  0                                     else
 (III.7.4) 

This function is recognized for its effectiveness in relatively regular signal portions but 

unfortunately it sometimes overly smoothes some spikes. 

Applying a hard threshold is generally preferred for PDs. Indeed, the coefficient values associated 

with PDs are higher and then give a better signal-to-noise ratio than soft thresholding. 

 

 Applying the method  

 Choosing between the CWT and DWT method 

When the energy of the signal is finite, not all values of decomposition are needed to exactly 

reconstruct the original signal, when a wavelet that satisfies some admissibility condition is used. Usual 

wavelets satisfy this condition. In this case, a continuous-time signal is characterized by the knowledge 

of the discrete transform. In such cases, discrete analysis is sufficient and continuous analysis is 

redundant. But when a signal is recorded in continuous time, or on a very fine time grid, both analyses 

are possible. Due to the sample rate of the oscilloscope we used, both techniques are possible. To 

compare the two methods, our study focuses on the quality of denoising (signal-to-noise ratio) as well 

as its speed. Calculation times given below are not necessarily interesting as such, since they depend on 

the computer used to study both methods. However, the ratio of their respective duration is interesting 

because it enables highlighting the speed of one method with respect to the other. 

To perform these tests, PD measurements were achieved on twisted pair of enameled wire fed by 

a PWM like power supply at atmospheric pressure (Figure III.11). The signals denoised by wavelet 

transform are compared to analogic filtered signals. 
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Figure III.11: Experimental set-up no. 2 
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Figure III.12: PWM like voltage shape(blue), sensor signal without filtering (black) 

 

To compare the two methods under optimal conditions, the “mother” wavelet “db8” was chosen, 

notably because it is a wavelet that seems to allow better extraction according to the bibliography [57], 

[58], [60]. Preliminary tests were carried out in order to reconstruct only the PD signal. For this purpose, 

with DWT, decomposition levels 1 through 4 are used to reconstruct the PD signal; for CWT, scales 

from 1 to 16 are used to reconstruct the signal. 
 

Table III.1: Relationship between decomposition level (DWT) and scales (CWT)  

Decomposition level (DWT) 1 2 3 4 5 6 7 8 9 10 

Scales (CWT) 2 4 8 16 32 64 128 256 512 1024 

 CWT test 

 
Figure III.13: PWM like voltage (blue), sensor signal filtered analogically at 200 MHz (black), sensor 

signal reconstructed by CWT (red) 
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Figure III.13 shows that the shape of the signal reconstructed by CWT is the same that to the 

filtered analogic signal. The amplitude of the signal during reconstruction by wavelet transform is much 

larger than the signal filtered analogically. This is explained by the significant redundancy of signals 

corresponding to different scales that can be seen in Figure III.14. This redundancy induced a significant 

error on the amplitude of signals after reconstruction. The aim of this work is only to detect, and not to 

find the precise value of the amplitude, which is why that redundancy is interesting. In the case of CWT, 

the SNR is 247 while that of the signal filtered analogically is about 21. The computation time for the 

CWT is about 1.8 s in this case with an “ordinary” personal computer. 

 
Figure III.14: Fast Fourier Transform (FFT) of CWT scales 1 to 5 

 DWT test 

 
Figure III.15: PWM like voltage (blue), sensor signal filtered analogically at 200 MHz (black), sensor 

signal reconstruct by DWT (red) 
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In the case of the DWT, it can be seen in Figure III.15 that the shape of the signal reconstructed 

by CWT is also the same that to the filtered analogic signal. However, in this case, the amplitude of the 

signal reconstructed by wavelet is equivalent to the signal filtered analogically. This is explained by the 

fact that redundancy is much lower in the case of DWT. Figure III.16 shows that the levels of 

decomposition cover a broader spectrum and have lower redundancy than CWT. In the case of DWT, 

SNR is 43. The computation time for DWT application is about 0.9 s in this case. 

 

 
Figure III.16: FFT of DWT decomposition levels 1 to 5 

 Final Choice 

Given the previous results, it can be seen that the amplitude and SNR of CWT are much more 

higher than with DWT. Despite the significant error induced by the redundancy of the different scales, 

in order to observe partial discharges, this error improves the visibility of signals of interest because it 

increases the SNR indirectly. 

DWT outperforms CWT in terms of computation time because, to reconstruct a signal in the same 

frequency range, CWT requires a larger number of scales than the amount of decomposition levels 

necessary for DWT. Furthermore, if reconstruction requires a large amount of decomposition levels or 

scales, this time is increased greatly. For example, to reconstruct a signal from 10 levels of 

decomposition for DWT or 1024 scales for CWT, the computation time with the same computer as that 

used previously is 187 s for CWT and 1.2 s for DWT. However, to extract PDs, only the first levels or 

scales are interesting, because a focus on high-frequency components is sufficient to remove all noise-

induced switching. In this case the computation time is of the same order of magnitude between the two 

methods, but the CWT allows a better SNR. 

CWT was therefore selected in order to extract the PD noise signals. 
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 Denoising 

The wavelet transform is mainly used to reduce the noise cited in the section III.2. However, in 

the case of partial discharge detection, the problem must be considered from another point of view. With 

the conventional way of using wavelet transform, the signals associated with PDs would be removed 

and only the signals induced by switching would be preserved. The usual method for denoising signals 

reconstructed by CWT or DWT is a thresholding of the different decomposition levels. However, this 

method is no longer appropriate for detecting PDs because the PD signal amplitude is well below noise 

signals. 

It was therefore necessary to find an alternative to this method to denoise the final signal. For this, 

we considered that the frequency spectrum of the discharges generally extends between a few hundred 

MHz and GHz. Regarding the spectrum of noise switching, it depends on the switching speed and more 

particularly on the associated dV/dt and di/dt. It has been observed that for dV/dt below 10 kV/μs, the 

frequency spectrum does not extend beyond a few hundred MHz. 

It has been noted when using wavelet transform that each decomposition level corresponds to a 

specific frequency band: 

• First decomposition levels  frequency bands centered around high frequency 

• Last decomposition levels  frequency bands centered around low frequency  

From this observation, it is possible to observe the signals associated with PDs in the first 

decomposition levels only. These decomposition levels are therefore used to reconstruct the signal of 

the PDs. 

The signal used to study noise suppression is shown in Figure III.17. 

 

 
Figure III.17: PWM like voltage shape (blue), sensor signal without filtering (black), sensor signal filtered 

analogically at 200 MHz (black) 
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The CWT method was applied to the sensor signal without any filtering to obtain the different 

scales. Temporal reconstruction of each scale from levels 1 to 10 is shown below. We can see in Figure 

III.18 that, from levels 1 to 5, there are only two events that appear on the signals and correspond 

temporally to switching. From level 5, there are 4 events in each of the signals and each of them 

corresponds to a switching. In this case, it can be considered that there is noise because each signal 

corresponds temporally to each voltage edge. 

 

 

 
Figure III.18: Temporal representation of scales 1 to 10 

 

To validate the proposed method, two reconstructions were compared. The signal in Figure III.19 

was reconstructed using the scales 1 to 10, while the signal in Figure III.20 was reconstructed with the 

scales 1 to 5. 
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The first signal obtained is very different from the signal filtered analogically. Moreover, it can 

be seen that noise is not completely removed. For the second signal reconstructed from the first 5 levels, 

the shape of the reconstructed signal and the signal filtered analogically are identical. Not only that, but 

all noise seems to be removed. 

We observed therefore that the proposed method is functional for extracting noisy PD signals. 

 

 
Figure III.19: PWM like voltage (blue), sensor signal filtered analogically at 200 MHz (black), sensor 

signal reconstructed by CWT from Scales 1 to 10 (red) 

 

 
Figure III.20: PWM like voltage (blue), sensor signal filtered analogically at 200 MHz (black), sensor 

signal reconstructed by CWT from Scales 1 to 5 (red) 
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 Automated choice of “mother” wavelet 

The choice of the “mother” wavelet is one of the most important parameters for a denoising 

method based on the wavelet technique. Indeed, this choice impacts the quality of noise suppression 

directly. This choice is often realized by the correlation between the wavelet shape and the PD signal. 

Since it is difficult to know the shape of the spectrum induced by switching ahead of time, it is necessary 

to use an automated method, independent of the waveform characteristics of the signal under test. 

The method was proposed by [57]. The selection criterion of the “mother” wavelet is based on 

the energy and entropy of each of the decomposition levels. 

The first step of the method consists in finding the decomposition level containing the information 

associated with the discharge signal. For this, the energy content is considered for each level of 

decomposition. Using the equation (III.10.3), the decomposition level at which the signal is the least 

noisy, as compared to other levels of decompositions, is determined. The highest “energy slop for detail 

sub-band” (ESDS) value shows the most informative decomposition level, where L indicates the level 

of decomposition and EDx is the decomposition level energy at scale x. 

 x = [2,3, … , 𝐿𝐿 − 1] (III.10.1) 

 ESDS𝑥𝑥 = ED𝑥𝑥 − ED𝑥𝑥−1 + ED𝑥𝑥 − ED𝑥𝑥+1 (III.10.2) 

 ESDS = max(ESDS𝑥𝑥) (III.10.3) 

Once the decomposition level presenting the most useful information has been determined, it is 

necessary to choose the mother wavelet that maximizes the energy contained in the previously-

determined level of decomposition. Each decomposition level corresponds to a specific frequency range. 

If the signal has frequency components in this band, wavelet coefficients in the decomposition level are 

significant. The energy at each decomposition level is given by equation (III.10.4), where a corresponds 

to the decomposition level, N is the number of wavelet coefficients, W(a,i) indicates the wavelet 

coefficients at decomposition level a, and i is a variable changing from 1 to N. 

 

E(a) = �|𝑊𝑊(𝑎𝑎, 𝑖𝑖)|2
𝑁𝑁

𝑖𝑖=1

 (III.10.4) 

Another important point is the distribution of wavelet coefficients. As PDs are fast phenomena, 

energy is concentrated in a very short period of time. Entropy is defined as the probability distribution 

of a random variable. In our case, we looked for low entropy because it corresponds to a high 

concentration of energy. In equation (III.10.5), a corresponds to the decomposition level, pi, which is 

given by equation (III.10.6), is the ratio of each decomposition level component energy to total 

decomposition level energy. 
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E𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(a) = −�𝑝𝑝𝑖𝑖 . log2(𝑝𝑝𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (III.10.5) 

 
𝑝𝑝𝑖𝑖 =

|𝑊𝑊(𝑎𝑎, 𝑖𝑖)|2

𝐸𝐸(𝑎𝑎)  (III.10.6) 

The optimal wavelet maximizes energy in the frequency range of interest of the signal while 

minimizing entropy. The sub-band energy to entropy (SBETE) is calculated for each wavelet and the 

SBETE presenting the largest value is considered as the optimal wavelet to denoise the signal. 

 
SBETE =

𝐸𝐸(𝑎𝑎)
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎) =

∑ |𝑊𝑊(𝑎𝑎, 𝑖𝑖)|2𝑁𝑁
𝑖𝑖=1

−∑ 𝑝𝑝𝑖𝑖. log2(𝑝𝑝𝑖𝑖)𝑁𝑁
𝑖𝑖=1

 (III.10.7) 

 

The flowchart for this method is shown below in Figure III.21 

 
Figure III.21 Method flowchart 
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  Method validation 

For validation, the method was applied by first fixing the mother wavelet as “db7” and after by 

using the automatic choice method of the mother wavelet. 

The results can be seen below in Figure III.22 and Figure III.23, representing respectively the PD 

signal reconstruction with a mother wavelet “db7” and the wavelet defined automatically (in this case 

“coif1”). 

First, we observed that the two reconstruction signals are similar both to each other and to the 

filtered analogical signal. The only difference between the two reconstructions is the signal amplitude. 

Reconstruction with the automated choice enables retrieving a PD signal having an amplitude twice as 

large as the one reconstructed with wavelet “db7”. 

 
Figure III.22: PWM like voltage shape (blue), sensor signal filtered at 200 MHz (black), PD signal 

reconstructed by CWT with a mother wavelet “db7” (red) 

 
Figure III.23: PWM like voltage shape (blue), sensor signal filtered at 200 MHz (black), PD signal 

reconstructed by CWT with the automated choice of the mother wavelet (“coif1” in this case) (red) 
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Another important point to check to validate the complete denoising method is to ensure that the 

method detects no signals when there is no PD ignition and ensure that it is always effective to remove 

noise.  

The test was performed at a voltage below the PDIV. In this case, the PDIV was about 1 kV, 

therefore, the applied voltage was 900V. 

 

 
Figure III.24: PWM like voltage shape below the PDIV (blue), sensor signal filtered at 200 MHz (black), 

PD signal reconstructed by CWT with the automated choice of the mother wavelet (“coif1” in this case) 

(red) 

 

Figure III.24 shows that all noise is suppressed and that the method does not detect any signals 

characteristic of PDs. 

The last point to check is that the method is able to denoise the signals whatever the pressure. The 

Figure III.25 shows the ability of the method to denoise the signal at 100 mbar. In this case, the PDIV 

was about 580 V. 
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Figure III.25: PWM like voltage shape below the PDIV (blue), sensor signal without filtering (black), 

sensor signal filtered at 200 MHz (green), PD signal reconstructed by CWT with the automated choice of 

the mother wavelet (“coif1” in this case) (red) 

  Conclusion 

The digital denoising method based on continuous wavelet transform is functional and it sets all 

the wavelet transform configuration parameters automatically. This method has real interest with respect 

to high-pass filtering because human expertise is no longer required to remove noise in signals. 

It is still important to note the limitations of this technique. First, to be functional, it is necessary 

for the signal to be discretized with a large sampling frequency in order to represent fast signals. 

Another important point is that the amplitude of the signal reconstructed by the method has a very 

significant error. Indeed, frequency band overlap corresponding to each level of decomposition induces 

a very significant error. However, error is also induced with the use of a high-pass filter because all 

frequency components below the cutoff frequency are removed. 

Some work is now needed to automate choice levels for reconstruction to denoise all the noise 

induced by switching. 

With the development of this denoising tool associated with the detection method it is possible to 

carry out tests in order to detect the presence of PDs on real devices on industrial test benches.  

This study is presented in the next chapter. 
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The purpose of investigating industrial test benches is to check the validity of the detection 

method, particularly the sensor used. This sensor was tested in a laboratory environment but a few tests 

were also carried out on industrial test benches. In these tests, Thibaut Billard and Benjamin Cella 

worked on motors test benches respectively from Renault and Liebherr [35], [64]. 

Currently, to our knowledge there are no paper in the literature on on-line and non-intrusive partial 

discharge detection in type 1 motors supplied by PWM voltage. The work presented in this chapter 

highlights the ability of the developed method to detect partial discharges on equipment currently 

embarked in aircrafts. 

From an industrial point of view, the interest of the PDs detection method comes from the need 

to qualify their equipment and then to certify them. To do this, it is necessary to have a robust method 

capable of functioning under any test conditions. The only way to make the developed method robust is 

to carry out numerous tests on different test benches. 

For confidentiality reasons, the names of the companies and technical details of the systems tested 

are not mentioned. We only go into details regarding the analysis and observations made while using 

the detection method. Moreover, for whole of the results presented below, the temporal data have been 

normalized in order to represent only the period of the voltage signals observed (which is also a method 

to keep the confidentiality of the results). 

We performed numerous tests on about ten different benches. Five specific cases are developed 

below to highlight the difficulty of detecting partial discharges under normal operating conditions. In 

particular, those cases address: 

• the difficulty of removing noise 

• a new issue of overvoltage induced by power electronics 

• the need to perform a complete analysis to confirm the presence or absence of partial 

discharges 

• a low voltage case where the method is functional and for which we observed partial 

discharges 

• a high voltage case where the method proves its validity 

 

It is important to point out that a lot of other tests on engine benches were carried out at low 

pressure, on different machines and different conditions, nevertheless for reasons brevity and of 

confidentiality these studies will not be detailed below. Moreover, this study gives only a few additional 

observations compared to the different cases presented. 
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 Filtering  

Before investigating the presence of partial discharges, it is also necessary to determine the 

optimal cutoff frequency for the high-pass filters to use. The procedure is to perform a preliminary test 

using a filter with a low cutoff frequency, then to observe the signals that coincide temporally with 

voltage edges. If recurring signals for each voltage front are still present, it is necessary to repeat the 

procedure by gradually increasing the cutoff frequency of the filter used until the disappearance of these 

recurring signals, while hoping the filtering has not removed also the signal due to PD. 

An example of this procedure in a real case is presented below. 

 
Figure IV.1: Phase to phase voltage (blue), sensor signal on 1 of this 2 phases without filtering (red)  

As it can be seen, recurring signals occur at each voltage edge without filtering. The amplitude of 

the recurring signal is about 100 mV, making it impossible to observe partial discharge signals if there 

are any. 
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Figure IV.2: Zoom on the dV/dt of the phase to phase voltage (blue), sensor signal on 1 of this 2 phases 

with filtering (red) 

 

In the Figure IV.2, the recurrent noise has been completely removed using filters with a 200 MHz 

cutoff frequency. It is important to note that the value of the cutoff frequency depends on the system 

being studied. Indeed, the frequency range over which the noise spans depends on the voltage edge, and 

more particularly on the di/dt induced. It will therefore be necessary to perform this procedure for each 

test set-up, preventing automatic filter choice. It is worth stressing that the filter choice depends on the 

expertise of the operator performing the test, and that the quality of results are highly dependent on this 

preliminary choice. 

 

 Partial discharge investigations on motor test benches 

Once the filter choice achieved, the analysis of the presence of partial discharges may be 

performed. Generally, the simplest method is to vary the voltage and observe the ignition or extinction 

of particular signals coinciding temporally with the maximum voltages and voltage edges. However, 

during industrial tests, reality is often far more complex. Indeed, industrial benches on which tests were 

performed, were not designed for partial discharge tests. It is therefore often impossible to vary the 

voltage magnitude, even if just over a relatively small range. This prevents the observation of ignition 

or extinction of signals that could be related to partial discharges. It is therefore necessary to conduct a 

thorough analysis of the observed signals. It is not possible to propose an universal method for analyzing 

these signals, because any such method depends on experimental parameters that can be varied. 

The five cases below represent an overview of the tests conducted with the industrial partners: 

• The first case highlights the difficulty of filtering that may be encountered in some cases, and 

thus prevents PD detection. 
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• The second case focuses on the presence of surges that are not dependent of phenomena usually 

documented in literature, and may increase the risk of partial discharge occurrence. 

• The third case emphasizes the need to perform a complete analysis to confirm the presence or 

absence of partial discharges. 

• The fourth case puts forward the ability of our system to detect partial discharges on an 

equivalent electromechanical chain to those on-board of certain aircraft. 

• The last case puts forward the ability of our system to detect partial discharges on systems 

supplied by IGBT inverters with higher voltage level or by SiC inverter. 
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Experimental set-up 

The diagram in Figure IV.3 represents the generic set-up used for measurement. During tests, the 

number of differential probes or sensors may vary, as well as the cutoff frequency of the filters used. 

However, an important issue concerns the acquisition system. In some cases, the use of two 

oscilloscopes is necessary for acquiring all voltages and to search for PDs on all phases. The oscilloscope 

trigger is defined on an oscilloscope to observe all phenomena at the same time. This oscilloscope 

(oscilloscope master) then sends a synchronization signal to trigger the second oscilloscope (slave 

oscilloscope) at the same moment. 

Figure IV.3 : Generic experimental set-up 
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Figure IV.4: Example of a specific experimental set-up 
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 Case 1: Filtering difficulties 

First, a test was conducted with a DC bus voltage of 388 V and a speed of 2000 rpm on an Actia 

industrial test bench. This test was intended to adjust the oscilloscope calibers and to optimize the input 

filter choice for the scope. This test also allowed us to determine the amplitude of the voltage across the 

machine. The curves representing the voltage at the machine terminals and the output signals from the 

different sensors are plotted below. 

 

 
Figure IV.5: Phase to phase voltage VW(black), sensor signal filtered at 200 MHz phase V (blue), sensor 

signal filtered at 400 MHz phase W (red), sensor signal filtered at 400 MHz phase U (green) 

 

First of all, it can be seen in the Figure IV.5 that no surge is present at the converter output. It is 

possible to conclude that the 200 MHz cutoff frequency is not suitable because noise is not suppressed 

enough and reaches amplitudes on the order of hundreds of mV, which prevents searching for possible 

PDs. 

Filters with a cutoff frequency of 400 MHz were used to optimize filtering. Noise is decreased 

significantly in this case, however, it is still not filtered enough. Indeed, the amplitude of sensor output 

noise for these filters reaches an amplitude on the order of tens of mV. 

 In the following, the rising edges are defined by the voltage variation from 0 V to ±V, and falling 

edges by the voltage variation from ±V to 0V 

To better understand the presence of this noise, we observed the front measured during testing. 

Figure IV.6 shows that the dV/dt of the falling edge is about 3 kV/μs.. 
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Figure IV.6: Rising edge of the voltage 

 

For these amplitudes of dV/dt, the noise can not be beyond the cutoff frequencies of the filters 

used. It can therefore be deduced that the amplitude of noise, in this case, is not directly connected to 

the dV/dt. First, it is possible that the magnitude of the current is very large when switching. Another 

important point to be noted is that during these tests none of the systems are shielded and 

electromagnetic interference (EMI) may exist and can radiate. 

 Comparison of the signal vs the sensor position 

For these tests, the set-up test was modified to observe the influence of sensor position on the 

signal. 

Two sensors were placed on phase W. The first is located close to the inverter, while the second 

is positioned near the machine terminals. The signal is filtered for the two sensors using a high-pass 

filter with a 400 MHz cutoff frequency. The DC bus voltage was 388 V and the machine speed was 

approximately 2000 rpm. The purpose of this test is to observe whether the noise disappears further 

away from the converter. 
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Figure IV.7: Phase to phase voltage UW (black), sensor signal phase U close to the motor (blue), sensor 

signal phase U close to the inverter (green) 

 

Figure IV.7 shows that the sensor position has an influence on the amplitude of the observed 

signal. However, the sensor position does not suppress the observed noise and it does not allow the 

detection of PDs. The noise amplitude coinciding temporally to the falling edge is divided by two close 

to the motor, in comparison to the signal measured close to the converter. For noise coinciding to the 

rising edge, little influence of the position was observed on noise amplitude. The change in the amplitude 

of the noise coinciding with the falling edge between the two positions of the sensor can be explained 

by the filtering. The falling edge is slower than the rising edge and its spectrum therefore extends over 

a lower frequency range than the one associated with the rising edge. It is possible that in this case the 

filtering removes a large part of the energy components and induces this modification. 

 Influence of the Current 

The experimental setup remains the same in this test. The DC bus voltage was raised to 400 V 

with an increase in the effective current up to 350 A. The motor speed was about 2850 rpm. 

The purpose of these tests is to observe the influence of the value of the current on the voltage 

and signal measured by the sensors. 
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Figure IV.8: Phase to phase voltage UW (black), sensor signal on phase U close to the motor (blue) 

 

Figure IV.8 shows that the noise associated with the rising edge has completely disappeared. This 

is explained by the fact that the dV/dt of the rising edge decreased with increasing current and filtering 

thus removes all noise. The dV/dt of the front has a magnitude of about 1.4 kV/μs. We can also see that 

there is very little noise at the falling edge. Another noise signal is present, but there is no temporal 

coincidence with an edge observed when measuring. This noise is most likely induced by further 

switching. 

 

It is therefore impossible to reach a conclusion regarding the presence or absence of discharge for 

the equipment studied. However, given the test conditions, there is little risk of observing PDs, as this 

system does not induce overvoltage across the machine. Voltage does not exceed 420V, which is a too 

low level for initiating a partial discharge at atmospheric pressure. 

 

This test shows that noise extends over a too large frequency range to be able to filter noise with 

the available filters. In addition, since the frequency content of a partial discharge for these dV/dt does 

not extend beyond a few hundred MHz, it would probably be impossible to detect partial discharges if 

a filter with a higher cutoff frequency was used. 

This case offers a good example of the problem of noise completely preventing PD detection. 
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 Case 2: Abnormal presence of surges 

The PWM voltage was not modifiable in this test.  Only the voltage of the AC source and the 

speed are the parameters that could be changed. In this part, when referring to the supply voltage (voltage 

between 180 and 260 V), reference is made to the line voltage of the AC power supply. 

 

 
Figure IV.9 Diagram of motor test bench 

 

We observed that increasing speed beyond a certain range affects the quality of the voltage signal. 

As it was not possible to control the voltage signal directly, speed was modified to modify voltage 

indirectly. This change induces power surges for the appearance of PDs. The nominal operating motor 

voltage level was 540 V, with a very short cable length connecting the actuator to the inverter (about 

ten cm). There was theoretically little risk that surges would initiate PDs. 

Machine temperature was monitored during testing, varying between 46 °C and 52 °C. As this 

variation is small, it does not seem to influence the development of PDs. 

 The influence of rotation speed 

First, we paid attention to the influence of rotational speed on the voltage waveform. The figures 

below show the shape of voltage between phases for different speeds. 

 

 
Figure IV.10: Voltage between phases for lowest rotation speed 
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Figure IV.11: Voltage between phases for medium rotation speed 

 

 
Figure IV.12: Voltage between phases for fastest rotation speed 

 

Two surges can be observed. The first one (no. 1) occurs during the polarity change whatever the 

speed, while the other (no. 2) appears gradually, coinciding with a change of polarity on one of the other 

power phases. Speed does not seem to have an effect on the first amplitude surge but only on that of the 

second. For a speed of 10,000 rpm, there is no overvoltage. The overvoltage can be observed only from 

12,000 rpm. For a speed of 12,000 rpm and a source amplitude of 200 V, the overvoltage has “peak to 

peak” amplitude of about 900V. For a speed of 14,000 rpm, the overvoltage has “peak to peak” 

amplitude of about 1.1kV. Analyzing the influence of the speed highlighted the fact that the command 

induces very high overvoltages. The cable length is very short in our case, but we can imagine that a 
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combination of this command and a significantly longer cable length could increase the observed 

overvoltage significantly. 

It is possible for PDs to appear, given the magnitude of these surges. It is important to note that 

surges were observed when the sinusoidal voltage source provided a voltage of 200V. It is therefore 

necessary to study the influence of this voltage on the amplitude of the induced voltages. 

 The influence of voltage magnitude 

The table below gives the amplitude of overvoltages associated with the machine speed at the 

largest speed and for different values of the AC supply voltage. Overvoltage amplitude is greatest for 

this rotation speed. 

 
Table IV.1: Overvoltage amplitude with supply voltage 

AC Supply voltage (Volts) “Peak to Peak” magnitude of 
overvoltage (Volts) 

180 930 

200 1070 

220 1170 

240 1280 

260 1360 

 

It can be seen that the amplitude of the overvoltage increases almost linearly with the amplitude 

of the voltage. We can also observe that the largest surges can reach 1.4 kV. These very high surge 

values are liable to induce PDs. 

 Partial discharge detection 

With tests performed on industrial test benches, it can be complex to distinguish the presence of 

PD noise. Having parameters whose variation range is low (such as the voltage amplitude variation) 

further complicates the analysis: 

• The voltage may be insufficient to initiate PDs, in which case it is impossible to search 

the PDIV. 

• Or, the applied voltage may exceed the partial discharge inception voltage (PDIV), in 

which case it is impossible to sufficiently reduce the voltage amplitude to reach the partial 

discharge extinction voltage (PDEV). 
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As already mentioned with a PWM power supply, the main problem regarding PD detection is 

the electromagnetic noise induced by switching, which is directly related to dV/dt. Also, according to 

the state of art, when the voltage reaches the PDIV, PDs appear during the dV/dt. They are buried in 

noise. In order to observe them, “low frequency” components must be filtered because the frequency 

spectrum of a PD generally extends over a larger frequency range than the noise associated with 

semiconductor switching 

Thus, for a 260V supply voltage and the fastest speed of the machine, output signals of the sensor 

that could be PDs are observed (Figure IV.13). The high-pass filter has a cutoff frequency of 200 MHz. 

 

 
Figure IV.13: Phase to phase voltage UW (black), sensor signal on U and filtered at 200 MHz (blue) 

 

Figure IV.13 shows that: 

• These signals coincide temporally with the phase to phase voltage surges (dashed arrows) 

• Their amplitude varies (which is a feature of the stochastic nature of PDs). 

• For overvoltage, there is no associated signal output from the sensor (continuous arrow). 

 Studying dV/dt 

To verify that the signals observed by the sensor are not due to the noise associated with 

switching, it is important to observe the different voltage. For this, zooming on the peak signals at the 

sensor output enables us to observe dV/dt for the associated surge. This zoom makes it possible to 

measure the rise time of the PWM voltage. 
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Figure IV.14: Phase to phase voltage UV (black), phase to phase voltage VW (blue), sensor signal filtered 

at 200 MHz (red) 

The list of studied dV/dt and associated rise times are given below. In the following, the rising 

edges are defined by the voltage variation from 0 V to ±V, and falling edges by the voltage variation 

from ±V to 0V. In the case of overvoltage, the rising edge is the transition from one polarity to the other, 

and the falling edge is the return to 0V. The edges below were recorded for a 260 V power supply. 

Overvoltage on the phase to 
phase voltage  UV  : 

Rising edge: 1.7 kV/µs 

Falling edge: 3 kV/ µs 

1 

2 
3 

4 

1 
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Table IV.2: Voltage edges shape and their associated dV/dt 

The fastest edges correspond to the rising edges of the pulse of the PWM voltage. An 

electromagnetic noise extending to higher frequencies will be associated with these fronts, but as it may 

be noted no singular peak is observed on the filtered output signal from the sensor. 

The filter cutoff frequency used here is sufficient to suppress noise induced by switching. The 

peak observed at the sensor output corresponds to slower fronts. This peak is not due to electromagnetic 

noise from switching and could be associated with PD. Before validating this assumption, it is necessary 

to ensure that this signal is not related to another phenomenon. 

Voltage shape of the phase to 
phase voltage VW associated 

with the overvoltage on the phase 
to phase voltage UV: 

Rising edge: 4.5 kV/ µs 

Falling edge: 890 V/µs 

Voltage shape of one pulse of 
phase to phase voltage VW 

(positive polarity): 

Rising edge: 6.24 kV/µs 

Falling edge: 1 kV/ µs 

Voltage shape of one pulse of the 
phase to phase voltage UV 

(positive polarity): 

Rising edge: 6.4 kV/µs 

Falling edge: 1.1 kV/ µs 

2 

3 

4 
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Signal analysis 

First, the signal was observed over many periods to estimate its recurrence (Figure IV.15). 

Figure IV.15: Acquisition for analyzing recurrence 

Two groups of peaks were observed: 

• The first, corresponding to high amplitude peaks coinciding with the surge that starts in

the negative polarity and ends in the positive polarity.

• The second, consisting of lower amplitude peaks coinciding with the surge that starts in

the positive polarity and ends in the negative polarity.

We can also notice that the latter behavior recurs in all three periods. This type of phenomenon is 

not characteristic of PDs. Indeed, an appearance in each period would be more likely. The present state 

of our knowledge does not allow us to propose a valid origin to explain the observed behavior. 

We then analyzed the signal using a filter with a lower cutoff frequency (100 MHz). The signal 

below was observed (Figure IV.16): 

3T 3T 3T 3T 
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Figure IV.16: Phase to phase voltage UV (black), phase to phase voltage VW (blue), sensor signal filtered 

at 100 MHz (red) 

 

The peaks appearing for surges starting in the positive polarity and ending in negative polarity of 

the phase to phase voltage UV (black curve) are observed consistently. However, additional peaks of 

smaller amplitude, coinciding with the surge observed of the phase to phase voltage VW (blue curve) 

appear. Reducing the cutoff frequency of the filter leads to the detection of phenomena that can be noise 

associated to switching occurrences, on other non-instrumented phases, and not PDs. 

 

Given the presence of surges, PD appearance may not be excluded. The presence of overvoltages 

induced by the type of command had not been observed to date. In addition, the magnitude of these 

surges is directly related to the machine’s rotation speed. When the surge is sufficient, the sensor detects 

some signals, but it is currently not possible to rule on the nature of the detected peaks. The 

characteristics of the peaks that may be associated with PDs are as follows: 

• Their position in the phase must coincide with surges. 

• They are not related to electromagnetic noise-induced by switching since they do not 

occur for fronts with the highest dV/dt. 

Nevertheless, their recurrence rate does not match with that usually observed for PDs. Another 

assumption is that they could be related to a certain type of discharge but more fundamental works are 

still necessary before being able to conclude 

 

This case helped highlight the emergence of surges depending on speed and induced by the 

command. This behavior had not been documented previously. Also, it can be seen that, in some cases 

it is possible to observe signals that can be related to partial discharges, though some features do not 
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correspond to PDs. In some case, it may be impossible to rule on the presence of PDs even if noise is 

completely removed. 
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  Case 3: Necessity of a deep analysis 

The nominal operating motor voltage level in this case was 540V and the cable length connecting 

the actuator to the inverter was significantly long. There is theoretically a risk to obtained surges, which 

may initiate PDs. However, it was not possible to carry out voltage measurements at the motor terminals 

for this configuration because the test bench was in a tank and all the measurments were made on a 

connexion box outside of this tank. 

 

After determining the appropriate cutoff frequency filters, acquisition was carried out to observe 

the sensor output signals. 

 
Figure IV.17. Phase to phase voltage UV (black), phase to phase voltage VW (blue), phase to phase voltage 

WU (red), sensor signal on phase U1 filtered at 150 MHz (green) on a large time 

 

First of all, it can be seen in Figure IV.17 that the noise is fully filtered. Then, it may be observed 

that the sensor output signals may be similar to partial discharges. The amplitude of the signal varies 

significantly from one case to another. In addition, the phenomenon is not periodic suggesting that the 

phenomenon is not related to noise. To further investigate the signals, acquisitions were performed in a 

shorter time. 
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Figure IV.18: Phase to ground voltage U (black), phase to ground voltage V (blue), phase to ground 

voltage W (red), sensor signal on phase U filtered at 150 MHz (green) 

Figure IV.18 shows that the sensor output signal appears during the switching of phase to ground 

voltage U. A slight time difference can be seen between the maximum value of the phase to ground 

voltage, which can be explained by signal wave propagation time. However, this glitch does not match 

the peak temporally after the change in polarity, but rather to a ripple just before the change in polarity. 

Moreover, a maximum voltage oscillation of 375V is observed. If the sensor signal output corresponds 

to a PD, then it is not located in the slot because the voltage is too low compared to the values usually 

measured during the initial off-line partial discharge tests. 

A study of the phase to phase voltage is needed to know whether the PDs are initiated or not. 

Figure IV.19: Phase to phase voltage UV (black), phase to phase voltage VW (blue), phase to phase voltage 

WU (red), sensor signal on phase U filtered at 150 MHz (green), zoom on sensor signal  
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Figure IV.19 shows that the output signal does not match the maximum of the first oscillation of 

the phase to phase voltage UV, but rather the maximum of the second oscillation. The maximum voltage 

of the second oscillation is 633V, whereas the maximum voltage of the first oscillation is 660V. If the 

signal is a partial discharge, it would be surprising that this signal coincides with the second oscillation, 

as the maximum voltage is located in the first oscillation. 

Other acquisitions were performed to observe whether this phenomenon repeats itself or not. 

 

 
Figure IV.20: Phase to phase voltage UV (black), phase to phase voltage VW (blue), phase to phase voltage 

WU (red), sensor signal on phase U filtered at 150 MHz (green), zoom on sensor signal 

 

Figure IV.20 shows that the signal coincides with a maximum phase to phase voltage UV. In that 

case, the maximum voltage value is 700V. 

In the three Figures above, we can see that the sensor output signals appear to coincide for 

voltages of square waves having the lowest duty cycle. A signal was investigated over ten periods and, 

then the temporal position of the sensor output signals was studied. 
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Two zooms on interesting signals are shown in Figure IV.22 and Figure IV.23. For these two 

signals, it can be seen that the signal coincides temporally with the last pulse of the positive polarity of 

the phase to phase voltage UV. It is nevertheless difficult to see these voltage pulses because their 

duration is less than 1 μs. Also, it can be seen that these nearly square waves have low voltage amplitude: 

the pulse of Figure IV.23 has a peak amplitude of 86 V, while the pulse of Figure IV.22 has a peak 

amplitude of 186 V. It can be claimed with certainty that the signals observed in these cases are not PDs. 

 

Given the results obtained, the observed signals do not correspond to partial discharge. During 

the steady state, these signals still appear at the last pulse of the polarity for which the voltage can be 

very low. However, other parameters such as low occurrence and the fact that the signal appears for the 

maximum voltage of a pulse can be misleading. Indeed, these parameters are generally associated with 

PD signals. It is therefore important to pay attention to these false positives, and it would be impossible 

to rule on these signals if they had not appeared for very low voltages (<100V ). 

 

A switch aborted by the command could cause these voltage pulses of very short duration and 

sometimes very low amplitude. It is actually uncommon for all branches of the inverter to switch so 

close to each other, and commutations are generally operated in pairs in a standard PWM strategy. 

Updating the duty cycles for the command controlling the machine may, in some cases, involve this 

kind of switching, later aborted by control and safety devices. The proximity of these events with 

polarity changes in the steady state and during the starting phase would indicate a borderline case for 

calculating duty cycles from the desired operating point. 
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Case 4: “Simple” PD detection 

For this test, it was possible to vary the speed and bus voltage over a wide range. 

First, a test with a DC bus voltage of 554V was conducted. This test was intended to adjust 

oscilloscope calibers and optimize selection of the filters. The diagram below shows the curves 

representing the voltage at the machine terminals and the output signals from the different sensors. 

Connection to the oscilloscope, channel: 

1. W phase to ground voltage measurement

2. UW phase to phase voltage measurement

3. Jack-SMA sensor on U phase – No filtering

4. Jack-SMA sensor on W phase – No filtering

Figure IV.24: Phase to phase voltage UW (blue), sensor signal on U without filtering (red), sensor signal 

on W without filtering (green) 

Overvoltages can be observed on the phase to phase voltage measurement. These surges have a 

maximum amplitude of 770V peak. It can then be seen that the sensors are saturated by switching, and 

further tests are necessary using high-pass filters to suppress electromagnetic noise. 

For this test, the previous set-up has been used, but high-pass filters with cutoff frequency of 200 

MHz were added. 

The figure below shows that the use of these filters removes all the output signals from the 

sensors, particularly noise-induced voltage edges (Figure IV.24). 

Connection to the oscilloscope, channel: 

1. UW phase to phase voltage measurement

2. Jack-SMA sensor on U phase – 200 MHz high-pass filtering

3. Jack-SMA sensor on W phase – 200 MHz high-pass filtering
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Figure IV.25: Phase to phase voltage UW (black), sensor signal on U filtered at 200 MHz (blue), sensor 

signal on W filtered at 200 MHz (red) 

 Study on the winding 

In the case below, the filters were replaced by filters with a lower cutoff frequency (100 MHz). 

A signal similar to a PD signal can be seen in the Figure IV.26 for the two sensors. The noise induced 

by switching is completely filtered. 

 

The parameters, which confirm the hypothesis of the presence of discharges, are: 

• Low recurrence 

• PD signal seem to coincide temporally with peak voltages 

• Consecutive signals at different voltage polarities 

• And, last but not least, signals appearing from the same voltage as the PDIV measured 

under AC supply voltage in a previous test 

 

Various acquisitions were performed for different times in Figure IV.26. 

 

Connection to the oscilloscope, channel: 

1. UW phase to phase voltage measurement  

2. Jack-SMA sensor on U phase – 100 MHz high-pass filtering 

3. Jack-SMA sensor on W phase – 100 MHz high-pass filtering 
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The temporal position of the signal was observed to compare it to the maximum voltage in order 

to confirm the assumption  that these signals correspond to discharges.  

Nevertheless, Figure IV.27 shows that the characteristic signals appear in advance from the 

maximum voltage, so it is necessary to measure the other phase to phase voltages to ensure that these 

signals appear at a maximum voltage. 

 

 
Figure IV.27: Phase to phase voltage UW (black), sensor signal on phase U filtered at 100 MHz (blue), 

sensor signal on phase W filtered at 100 MHz (red), comparison between sensor signal and maximum 

voltage time position 

 

Following the previous tests, we decided to measure all the voltage between phases. 

 

Connection to the oscilloscope, channel: 

1. UV phase to phase voltage measurement 

2. UW phase to phase voltage measurement 

3. VW phase to phase voltage measurement 

4. Jack-SMA sensor on U phase – 100 MHz high-pass filtering 
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Figure IV.28: Phase to phase voltage UV (black), phase to phase voltage UW (blue), phase to phase voltage 

VW (red), sensor signal on phase U filtered at 100 MHz (red), time position comparison between sensor 

signal and all the maximum voltage 

Figure IV.29: Phase to phase voltage UV (black), phase to phase voltage UW (blue), phase to phase voltage 

VW (red), sensor signal on phase U filtered at 100 MHz (green), Zoom of the sensor signal and all the 

maximum voltage 

Figure IV.29 shows that the sensor signal appears at the maximum value of the phase to phase 

voltage UW. 

To improve the detection, we decided to try to increase the capacitive effect of the sensor using 

copper tape. At the same time, we placed an inductive sensor. 
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Connection to the oscilloscope, channel: 

• UV phase to phase voltage measurement.  

• Jack-SMA Sensor located on U + High Pass filter 100 MHz. 

• Inductive sensor located on U + High Pass filter 100 MHz 

• Jack-SMA Sensor located on U + additional capacitive effect (Scotch tape) + High Pass 

filter 100 MHz 

•  

 
Figure IV.30: Phase to phase voltage UV (black), sensor (jack SMA) signal on phase U filtered at 100 MHz 

(blue), sensor (inductive) signal on phase U filtered at 100 MHz (red), sensor (jack SMA + additional 

capacitive effect) signal on phase U filtered at 100 MHz (green)  

 

First of all, Figure IV.30 shows that the amplitude of discharges on the sensor, which is improved 

with the capacitive effect, is much larger than that on the single sensor.  

It can also be observed that the inductive sensor detects PD. However, the signal amplitude is 

lower than the one measured by the sensor with the improved capacitive effect. 

Another important point is that all the sensors detect the same signal. This suggests that our 

detection system is functional and able to detect and locate all discharge phenomena 

 

These tests detect signals similar to partial discharges on representative equipment operated under 

normal conditions. These signals have all the features of partial discharges: 

• Low recurrence 

• PD signal temporally coinciding with peak voltages 

• Consecutive signals at different voltage polarities. 

• Signals appearing from the same voltage as the PDIV measured under AC supply voltage 
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We can therefore consider that the detection system is functional. The increase in the sensor’s 

coupling capacitance can increase the magnitude of the measured signals significantly. Ten times greater 

amplitude can be seen compared to the “single” sensor. Twice greater amplitude was observed relative 

to the inductive sensor. 

Denoising by CWT method 

The denoising method based on wavelet decomposition, detailed in Chapter III, has only been 

validated on on laboratory samples. It is therefore particularly interesting to apply under real constraints 

in an industrial environment. 

The results of the denoising method applied to the previous case are given in Figure IV.31. 

Figure IV.31: Phase to phase voltage UW (black), sensor signal on phase U without filtering (blue), sensor 

signal on phase U filtered at 100 MHz (red), sensor signal reconstructed by CWT (green) (note the scale 

changes) 

Our method allows suppressing the noise (blue curve) and leads to a good reconstruction of the 

PD signal. Moreover, the amplitude of the signal reconstructed thanks to the numerical method is five 

times greater than the signal filtered analogically. In the case under study here, there was few doubts 

regarding the presence of discharges, but in other cases, not shown here, the proposed method improves 

the denoising. 
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 Case 5: PD detection in machines fed by SiC inverter 

With the concept of “more electric aircraft”, higher voltage levels and changing electrical 

architectures (notably the increased use of converters) was observed. Future projects related to hybrid 

propulsion for e.g. are considering a further increase in voltage levels. In a relatively near future (20 

years), voltage up to several kilovolts may be envisioned. In addition, silicon carbide-based (SiC) 

electronic power components will probably replace the current silicon-based components in some high 

efficiencies and high power density applications. The use of high voltage will increase the risk of partial 

discharge occurrence, while the evolution of electronic components will result in an increase in 

switching speed and consequently an increase in the noise frequency spectrum. 

In this context, it is important to determine whether the detection method detailed in this thesis 

will always be functional, given this development. Currently, many domains use voltages on the order 

of kilovolts and are studying converters using SiC components. Some tests were carried out on an 

industrial bench using on SiC converters supplied by a DC bus of a few hundred volts. All tests were 

carried out on prototype motors with an important length of cabling. 

The brief description of the results obtained with the detection method during these tests is 

provided below, allowing a clear demonstration of the ability of the method to detect PDs. 

 

 PD detection 

Tests were performed with a SiC converter supplied by a DC bus at 750 V and the distance 

between the inverter and the motor was about ten meters. 

 

 
Figure IV.32: PD research on a motor supplied by a SiC converter 
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Figure IV.33: Zoom on a partial discharge for a 1 kV overvoltage 

Under such conditions, the overvoltages amplitude is about 1100 V and the dV / dt have a value 

of 10 kV/μs. To eliminate the noise induced by these voltage fronts, it was necessary to use high pass 

filters having a cut-off frequency of 500 MHz. 

There are no characteristic signals that coincide temporally with all fronts, indicating that the filter 

is adequate for removing noise-induced switching. 

The observed signals have many characteristics of the presence of discharges: 

• Low recurrence

• Signals seem to coincide temporally with peak voltages

The Jack-SMA sensors optimized with a 5 cm copper tape were used for the observation of PDs, 

but the signals detected after filtering had a too large amplitude (> 10 V). It was not necessary to enhance 

the sensor to detect the PD in this case. Discharges were therefore very energetic. 

Another interesting result of this study concerns the ability of detecting PDs despite the use of 

filters having a high cut-off frequency. It has been observed in Chapter II that the amplitude of the 

frequency components of PDs, appearing under PWM for 3 kV / μs edges, is very low beyond 300 MHz. 

In this case, despite of the use of filters having a cutoff frequency of 500 MHz, signals of PDs have been 

detected, which proves that in this case the frequency spectrum of the PDs spreads over a higher 

frequency range than for 3 kV / μs edges. The dV / dt thus appears to have an influence on the frequency 

spectrum of the PDs. 

The method is functional andthe characteristic signals of PDs coincide temporally to overvoltage 

occurrences. Additionally, the variable distribution of the amplitude of the sensor signals corresponds 

to the stochasticity of partial discharge. 
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 Temporal position of PDs 

All the studies presented up to now have been focused on low-voltage motors working at voltage 

levels generally lower than the PDIV and it is only the overvoltage induced by the electromechanical 

chain that lead to PDs ignition. This is why discharges appear during the voltage edge and why denoising 

is such a big problem. 

 

During these tests, the rating coltage was high compared to the PDIV. It seemed therefore 

particularly interesting to study the distribution in time of the PDs. 

Hence Figure IV.34 and Figure IV.35 clearly illustrate that PDs appear not only during the voltage 

front but also during the plateau part of the voltage. Such a behavior corresponds to the PDs pattern 

observed and reported in the literature for motors operating at high voltage. The detection during the 

continuous part (plateau) of the voltage being much simpler because there is no need to filter the signals. 

 

 
Figure IV.34: Temporal position of PDs on two periods 

 



Chapter IV. Investigations on electric motor test benches 

- 117 - 

Figure IV.35: Zoom and persistence on a voltage edge to observe temporal position of PDs 

As another fact, In the case of motors operating at higher voltages, the PDs not only appear during 

the front but also on the continuous part of the square waveform (Figure IV.36). The appearance of PDs 

in this type of machines is much more studied [65], [66]. 

Figure IV.36: PD patterns at 1.8 kV (peak value) with bipolar and unipolar square waveforms [67] 

The results presented in Figure IV.34 and Figure IV.35 look like the ones of the Figure IV.36. 

We can therefore state that our method also works for detecting discharges in motors powered by 

SiC inverters and high voltages. Further tests must now be performed to ensure the validity of these 

preliminary conclusions.  
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Given the current state of the art, the concept of “more electric aircraft” has led to the possible 

occurrence of partial discharges in on-board electrical equipments. This phenomenon was not known in 

the aeronautical field until recently, yet it could result in accelerated failure of these equipments  

Increase in the magnitude of the voltage due to the replacement of some other energy vectors, the 

increased use of converters, and the use of Type I motors are factors that induce the probability of 

occurrence of partial discharges. PWM voltage causes the inhomogeneity of voltage distribution in the 

coil as well as significant surges to the motor terminals. It is therefore mandatory to assess the insulation 

systems of the various equipment from a partial discharge perspective. To do this, we must be able to 

detect partial discharges, particularly in an online and non-intrusive manner to obtain an accurate 

representation of the phenomena’s occurrence, studied under nominal equipment operating conditions. 

For that reason, the aim of this work was to develop such a detection method. 

To fulfill this goal, we had first to understand the phenomena leading to the occurrence of partial 

discharges, along with existing detection methods. The state of the art helped highlight the Type I motors 

used in aircraft and supplied by PWM, where partial discharges could be obtained. Methods for detecting 

these phenomena are well-known under AC and DC voltage, but under PWM, detection methods are 

less mastered. Additionally, for the operating voltage under study close to (or lower than) the PDIV, it 

has been observed that partial discharges occur mainly in the voltage edge and are thus embedded in the 

electromagnetic noise created by the switching. Analog high-pass filtering proved its ability to remove 

noise and retrieve partial discharge signals. 

It seemed necessary to first drive an analysis of the sensor used for detecting partial discharges in 

order to optimize its operation. This sensor is based on capacitive coupling, and it was demonstrated 

that increasing the value of the induced capacity is sufficient to increase the performance of the sensor. 

In the aeronautics field, variations in pressure and temperature can have a major influence on equipment 

operations, specifically on the appearance of partial discharges. It is well known that the partial 

discharge inception voltage depends on these two parameters. However, it has been observed that, under 

low-pressure, sensors based on detecting electrical phenomena can no longer detect the real inception 

or even the presence of partial discharges. To explain this, we completed a study on the influence of 

pressure on partial discharge. This study highlights the modification of the partial discharge frequency 

spectrum depending on pressure. The decrease in pressure causes a reduction in the amplitude of high-

frequency components, while increasing the amplitude of the low-frequency ones. This effect is 

detrimental to the detection under PWM because the association of this phenomenon with high-pass 

filtering can lead to an inability to detect partial discharge or with a significant error. Another 

observation concerns the frequency range over which the partial discharges extend, depending on the 

shape of the supply voltage. It was observed that the frequency range over which partial discharges 

extend is much higher for twisted pairs supplied by PWM voltage than by AC voltage. It would be thus 
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interesting to conduct a study on spectrum evolution according to dV/dt values to see if there is a 

relationship.  

 

The second issue is to filter the noise induced by switching. While being a crucial point for 

detection, testing showed that implementing effective filtering is not a trivial task. Furthermore, there is 

no predefined methodology for choosing the cutoff frequency for removing noise while maintaining the 

signals associated with partial discharge. This choice can only be made during the test because it is 

directly related to the equipment tested. The presence of an expert is therefore always required to achieve 

good detection, however, the quality of filtering depends strongly on the experimenter, which can cause 

a wide disparity in results. To avoid this problem, we developed a digital processing method based on 

wavelet decomposition to remove the noise in signals. To further avoid the requirement for human 

expertise, we developed a detection algorithm. This method of digital noise removal demonstrated its 

effectiveness during laboratory tests on twisted pair supplied by PWM. 

 

The method proved its efficiency through tests on different motor test benches and enabled us to 

highlight various phenomena that can lead to false positives to take into account when analyzing results. 

In addition to the detection of partial discharges, this method can be versatile and flexible regardless of 

the equipment under test. In industrial scenarios, partial discharge tests must be superimposed on other 

tests, which means that it is important not to disturb the existing set-up and testing. Our method fulfilled 

all these requirements. 

 

Following this work, many opportunities may be proposed to improve our ability to detect partial 

discharges and improve understanding of these phenomena in the aeronautical environment. These 

perspectives can be divided into two main axis: 

First of all from an application point of view, using the combination of the experimental set-up 

and the digital processing tool described can lead to a mobile platform for detecting partial discharge. 

However, this platform is based on scientific equipment and is therefore more suited to laboratory tests, 

rather than testing in industrial environments. It would be interesting to create test equipment based on 

this detection method, but more adapted to the industrial environment. In addition, a denoising program 

based on wavelet transform has been developed (Appendix 1). From a general point of view, the 

detection system can be transposed to other areas than aeronautics. The method has already been tested 

in the field of railway and automobile for nearly equivalent voltage levels. Moreover, the current trend 

is an increase of voltage magnitude for future aircrafts. The method has demonstrated its ability to detect 

PDs in the case of motors operating at high voltage and will therefore be transposable to future 

equipments that will operate with these new voltage levels. Nevertheless, in view of the concerns with 

the current voltage levels, it can be said with certainty that the systems will be submitted to the PDs for 

higher voltage levels. 
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Secondly, it has been shown that the pressure has an influence on the nature of the discharge and 

consequently on the ability of the sensors to detect them. A study focusing on PDs phenomenology 

would be important to better understand these variations. Moreover, it would allow to better understand 

the influence of the pressure on the aging induced by the PDs. 
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V Digital processing tool 

As discussed in Chapter III, a method of partial discharge noise suppression was developed along 

with an algorithm to automate the selection of the method’s input parameters. Developed with 

MATLAB, this method is functional in laboratory testing. However, the use of MATLAB is less 

widespread in the industrial field than in the laboratory and it therefore seemed interesting to develop a 

digital tool in an executable format so that any industrial partner could use it and share their experience 

of its operation with us. The developed tool is described below. 

V.1 User interface 

The interface associated with the digital tool is shown below. A brief description of the different 

interface elements are presented afterwards as an example of applying the method. 

Figure V.1: Three parts of the interface: graphical area (blue), configuration area (red), and control area 

(green) 

V.1.1 Graphical area 

The first graph, named “Données brutes” (“raw data”), displays the voltage and the sensor signal 

that corresponds to the signal that will be processed by the wavelet method. These two curves are the 

same as those displayed by the acquisition system. 
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The second graph, named “Traitement par ondelette” (“wavelet processing”) is used to display 

the sensor signal denoised by the treatment method. This will display the signal processed by wavelet, 

and optionally the presence of discharges. 

 

V.1.2 Control area 
 

This section consists of 4 buttons: 

• “Start acquisition”: This button launches acquisition and digital processing or stops it 

if it is running. Once acquisition is initiated, the name of the button changes to “Stop 

acquisition”. 

• “Préconisation ondelette” (“Wavelet recommendation”): This button automatically 

determines the most appropriate wavelet for extracting PD signals. This button is used 

before starting acquisition. As soon as the button is pressed and calculation is performed, 

a frame with the name of the recommended wavelet appears in the configuration area to 

the right of “Ondelette préconisée” (“recommended wavelet”).  

• “Détail décomposition” (“Detailed decomposition”): This button opens an interface 

that shows different levels of decomposition after wavelet treatment. This makes it 

possible to refine method configuration. 

• “Sauvegarde” (“Save”): This button opens a backup window to save the various 

displayed curves in “.xlsx” or “.csv” format. 

 

V.1.3 Configuration area 
 

In this area, there are two configuration zones. First, “Définition des voies utilisées” (“Setting 

channels used”), and “Paramètres reconstruction par ondelettes” (“Wavelet reconstruction settings”). 

The description of the various parameters of these zones is given below: 

 

Setting channels used: 

• “Channel Signal brut PD” (“Raw PD Signal Channel”): This drop-down menu allows 

the user to choose the channel number used for acquiring the PD sensor signal to be 

processed digitally. 

• “Channel Mesure de voltage” (“Voltage Measurement Channel”): This drop-down 

menu allows the user to choose the channel used for acquiring the voltage signal. 

 
Wavelet reconstruction parameters: 
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• “Ondelette préconisée” (“Recommended wavelet”): When the wavelet

recommendation button has been switched, a framework specifying the recommended

wavelet is displayed.

• “Famille ondelette” (“Wavelet family”): This drop-down menu allows the user to

select the wavelet that will be used for digital processing. It is recommended to select the

recommended wavelet, though the user has the option to choose others.

• “Niveau de décomposition” (“Decomposition level”): This drop-down menu allows

the user to select the decomposition depth of the digital processing method. It is

recommended to leaving this level at 10 for the first acquisition. After observing the

detailed decomposition, it the level may be lowered.

• “Niveau bas de reconstruction” (“Low reconstruction level”): This drop-down menu

lets the user choose the level of decomposition from which the method will start

reconstruction of the final signal.

• “Niveau haut de reconstruction” (“High reconstruction level”): This drop-down

menu lets the user choose the level of decomposition from which the method will finish

the reconstruction of the final signal.

• “Niveau Exclus” (“Level excluded”): This drop-down menu lets the user delete a

decomposition level between the high and low reconstruction levels. This function is

useful when noise is present on one of the decomposition levels. In order to not exclude

any signal, the default value for this parameter is 0. As long as the setting is at this value,

the processing tool does not take it into account for reconstruction.

V.2  Acquisition results 

An example of denoising partial discharges for testing on a twisted pair at low pressure is shown 

below: 
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Figure V.2: Example of denoising using the digital numerical tool 

 

This tool performs “online” processing virtually. In reality, processing time is limited by the speed 

of data transfer between the acquisition system and the computer on which the tool is running. As an 

example, the refresh time on a desktop laptop computer is on the order of one second.  
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